Untersuchung der Expression und phänotypischen Bedeutung von *Ran-binding protein 3-like* in innermedullären Sammelrohrzellen der Niere

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät I – Biowissenschaften

der Martin-Luther-Universität Halle-Wittenberg,

vorgelegt

von Herrn Dmitry Chernyakov

geb. am 11.03.1994 in Brjansk

Gutachter

1. PD. Dr. Frank Erdmann

2. Prof. Dr. Bayram Edemir

3. Prof. Dr. Giuliano Ciarimboli

Verteidigungsdatum: 01.06.2023

Just don't believe the hype.

Inhaltsverzeichnis

Ir	haltsv	erzeichnisl
A	bkürzu	ngsverzeichnisVIII
A	bbildu	ngsverzeichnisXIII
Т	abellen	verzeichnisXVI
1	Ein	eitung1
	1.1	Die Niere 1
	1.1.	Lage und Aufbau 1
	1.1.2	2 Das Nephron
	1.2	Einfluss von Hyperosmolalität auf zelluläre Prozesse
	1.2.	l Begriffsklärung
	1.2.2	2 Folgen von hyperosmotischem Stress
	1.2.	3 Adaptionsmechanismen
	1.3	Nuclear factor of activated T-cells 5 (NFAT5)
	1.3.	Die Proteinfamilie der Rel-Proteine 10
	1.3.2	2 Funktion von NFAT5 in der Nierenphysiologie 12
	1.4	Ran-binding protein 3-like - bisherige Forschung
	1.5	Das Nierenzellkarzinom
	1.5.	Klassifikation
	1.5.2	2 Pathogenese
	1.6	Osmolalitäsregulierte-Gene im RCC
2	Ziel	stellung
3	Mat	erialien
	3.1	Chemikalien
	3.2	Allgemeine Materialien
	3.3	Geräte
	3.4	Wissenschatfliche Software
	3.5	Kits
	3.6	Enzyme
	3.7	Plasmide
	3.8	Antikörper
	3.9	Puffer und Lösungen und Zellkulturmedien
	3.10	Zellen und Bakterien
	3.11	Oligonukleotide
	3.11	.1 Primer für guide-RNA-Klonierung

3.11.2	Primer für Target-Amplifizierung und Sequenzierung	
3.11.3	Standardsequenzierprimer	30
3.11.4	quantitative PCR-Primer	30
3.11.5	Primer für Quick-Change-Mutagenese	
3.11.6	RANBP3L V180 Vektor-Klonierung	
4 Method	en	32
4.1 All	gemeine Zellkulturstammhaltung	32
4.1.1	Kultivierung der immortalisierten Zelllinien mpkCCD und HEK-293T	32
4.1.2	Passagieren und Zellzahlbestimmung der Zelllinien	32
4.1.3	Kultivierung unter extrazellulärer Hyperosmolalität	
4.2 All	gemeine molekularbiologische Methoden	
4.2.1	Herstellung chemisch kompetenter E. coli	33
4.2.2	Transformation von E. coli	
4.2.3	Mini-Präparation	
4.2.4	Sequenzierung	
4.2.5	Maxi-Präparation	
4.2.6	Isolation genomischer DNA	
4.2.7	Polymerasekettenreaktion	34
4.2.8	Agarose-Gelelektrophorese	35
4.2.9	Aufreinigung der DNA	
4.2.9	.1 Aufreinigung aus dem PCR Ansatz	36
4.2.9	.2 Aufreinigung aus dem Agarosegel	36
4.2.10	RNA-Isolation und cDNA-Synthese	
4.2.11	Quantitative PCR (qPCR)	
4.2.12	Auswertung der qPCR-Analysen	
4.2.13	Proteinisolation und Konzentrationsbestimmung	
4.2.14	SDS-Page und Western Blot	
4.2.15	Immunfluoreszenz	39
4.2.16	Quantitative Analyse mittels Zen Blue	40
4.2.1	6.1 Signalintensitätsdiagramm	40
4.2.1	6.2 Berechnung der Lamellipodienfläche	41
4.3 Eta	blierung einer primären Maus-Nierenzellkultur	
4.3.1	Organentnahme und Kultivierung	
4.3.2	Ex-vivo Knockout von NFAT5	

4.4	Generi	ierung CRISPR/Cas9-vermittelter-defizienter-mpkCCD-Zellen	
4	.4.1 C	RIPSR/Cas9 Vektor-Klonierung	43
	4.4.1.1	Verdau des lentiviralen Vektors	
	4.4.1.2	Oligonukleotid-Zusammenlagerung	44
	4.4.1.3	Ligation und Plasmidaufreinigung	44
4	.4.2 V	'irusproduktion	
	4.4.2.1	Hek-293T Transfektion	45
	4.4.2.2	Transduktion der mpkCCD Zelllinie	46
4	.4.3 G	enotypische Charakterisierung	
	4.4.3.1	Nachweis des CRISPR/Cas9-vermittelten-Doppelstrangbruches im Z	Ziellokus46
	4.4.3.2	Vereinzelung	
	4.4.3.3	Tracking of InDels by DEcomposition (TIDE)	
	4.4.3.4	TOPO-TA Klonierung	
4.5	Phäno	typische Charakterisierung defizienter Zellen	49
4	.5.1 N	ligrations- und Proliferationsanalyse	49
	4.5.1.1	Migration	49
	4.5.1.2	Proliferation	50
4	.5.2 S	oft-Agar-Assay	51
4.6	Analys	se des globalen Genexpressionsprofils	51
4.7	Etablie	erung von zweifach-defizienten-mpkCCD-Zellen	52
4.8	Behan	dlung der Zellen mit TGF-β1	52
4.9	Promo	toranalysen	52
4	.9.1 S	uche nach evolutionär konservierten Sequenzen (ECRs)	52
4	.9.2 K	Ionierung von Ranbp3I-Promotor-Fragmenten	53
4	.9.3 Q	uick change Mutagenese vom Ranbp31-Promotor-Fragment	55
4	.9.4 N	lessung der Promotoraktivität	55
4.10) Etablie	erung einer RANBP3L-überexprimierenden-Zelllinie	55
4	.10.1 K	Ionierung des RANBP3L-FLAG Plasmids	55
4	.10.2 S	tabile Transfektion in mpkCCD-Zellen	57
4	.10.3 N	lachweis der Überexpression	57
4.11	Nutzu	ng von frei zugänglichen online Datenbanken	58
4	.11.1 P	rimerdesign mittels NCBI Primer-BLAST	58

	4.	11.2	CRI	SPR/CAS9-vermittelter-Knockout	58
		4.11.2	2.1	СНОРСНОР	58
		4.11.2	2.2	TIDE	58
		4.11.2	2.3	Expasy	58
	4.	11.3	Gen	expressionsanalysen	58
		4.11.3	3.1	Morpheus	58
		4.11.3	3.2	TCGA	58
		4.11.3	3.3	The Human Protein Atlas	59
		4.11.3	3.4	Gepia2	59
		4.11.3	3.5	DAVID	59
		4.11.3	3.6	GSEA	59
		4.11.3	3.7	UALCAN	59
	4.	11.4	Pror	notorstudien	60
		4.11.4	4.1	ECR	60
		4.11.4	4.2	JASPAR	60
		4.11.4	4.3	QuikChange Primer Design	60
	4.12	Stat	istisc	he Auswertung der Daten	60
5	Eı	rgebni	sse		61
	5.1	Osn	notisc	he Genregulation von Ranbp31	61
	5.	1.1	Exp	ression in einer murinen IMCD-Primärkultur	61
	5.	1.2	Exp	ression in der mpkCCD-Zelllinie	63
	5.2	NFA	AT5 a	ls Schlüsseltranskriptionsfaktor der Hyperosmolalität	64
	5.3	Gen	erier	ung einer CRISPR/Cas9-vermittelten-NFAT5-defizienten-mpkCCD-Zelllinie	66
	5.	3.1	Kno	ckout-Verifizierung	66
		5.3.1.	1	Genomische Charakterisierung des Knockouts	66
		5.3.1.	2	NFAT5-Defizienz auf Protein-Ebene	69
	5.	3.2	Exp	ressionsanalyse der NFAT5-defizienten-mpkCCD-Klone	72
	5.4	Tan	noxife	en-vermittelter ex-vivo-Knockout von NFAT5 in primär-kultivierten-Maus-	
	Nier	enzelle	n		73
	5.4	4.1	Etab	lierung einer NFAT5-defizienten-Primärkultur	73
	5.4	4.2	Exp	ressionsanalyse einer NFAT5-defizienten-Primärkultur	76
	5.5	Ran	bp3l	als direktes NFAT5-Target	76

5.5.1 5.5.2		Evolutionär konservierte NFAT5-Bindestellen im Ranbp31-Promotorbereich	. 76
		Analyse der Promotoraktivität von unterschiedlichen Ranbp31-Promotorfragment	en . 78
	5.6 Ger	nerierung einer CRISPR/Cas9-vermittelten-RANBP3L-defizienten-mpkCCD-Zellli	nie . 79
	5.6.1	Genomische Charakterisierung des RANBP3L-Knockouts	. 79
	5.6.2	Morphologische Untersuchungen der RANBP3L-KO-Zellen	. 82
	5.6.3	Funktionelle Charakterisierung der RANBP3L-KO-Zellen	. 83
	5.6.3.	.1 Migrationsanalysen	. 84
	5.6.3.	.2 Proliferationsanalysen	. 85
	5.6.3.	.3 Soft-Agar-Assay	. 85
	5.6.4	Genexpressionanalyse von RANBP3L-defizienten-Zellen	. 86
	5.6.4	.1 Globale Genexpressionsveränderung	. 86
	5.6.4	.2 Analyse von Signalwegen und angereicherten Gensets	. 88
	5.6.4. im R0	.3 Assoziation einer RANBP3L-Defizienz mit der Expression prognostischer G CC	ene . 90
	5.6.5	Analyse ausgewählter regulierter Gene bei RANBP3L-Defizienz	. 93
	5.7 Cha	arakterisierung von SPARC und RANBP3L-defizienten-Zellen	. 96
	5.7.1	Etablierung von SPARC und RANBP3L-defizienten-Zellen	. 96
	5.7.2	Phänotypische Untersuchungen von SPARC und RANBP3L-defizienten-Zellen	. 98
	5.7.2.	.1 qPCR Analyse von Col4a1 und Col4a2	. 98
	5.7.2.	.2 Morphologische Untersuchung	. 99
	5.7.2.	.3 Phänotypische Charakterisierung	100
	5.8 Mö	gliche Assoziation zum TFG-β-Signalweg	102
6	Diskussi	ion	106
	6.1 Die Anpassung	e mpkCCD-Zelllinie als geeignetes Modellsystem für Hyperosmolalitäts-assoziierte	- 106
	6.2 NF.	AT5 ist an der hyperosmolalitäts-regulierenden Expression von Ranbp3l beteiligt.	107
	6.2.1 unter Hy	NFAT5-Defizienz sorgt für einen Verlust der Expressionsinduktion von Ranbp31 /perosmolalität	107
	6.2.2 Expressi	NFAT5 ist direkt an der hyperosmolalität-assoziierten-Ranbp3l- ionsinduktion beteiligt	108
	6.3 Die Nierenzellk	e Expression osmolalitätsregulierter-Gene zeigt eine prognostische Rolle beim karzinom	109

(6.4	Ein	RANBP3L-Verlust in mpkCCD-Zellen führt zu einem tumor-assoziierten-	Phänotyp.
		·····		
6.4.1		1	Morphologische Veränderungen	
	6.4.2	2	Veränderung der Migration und Proliferation	
(6.5	Ein	RANBP3L-Verlust führt zu einer prognostisch unvorteilhaften Gensignatu	r im
	interen	Zenk		114
]	5.6 Phänot	Der typ	Knockout von SPARC in RANBP3L-defizienten-Zellen minimiert den ma	
(6.7	RA	NBP3L ist an der Translokation von TGF-β abhängigen Proteinen beteiligt.	
7	Zus	amm	nenfassung und Ausblick	
Lit	teratu	rverz	zeichnis	XVIII
8	Anh	ang		xxxvIII
:	8.1	Vek	torkarten	.XXXVIII
:	8.2	RA	NBP3 und RANBP3L Aminosäure-Sequenz und Domänen	XLI
:	8.3	Nov	vogene NGS Vorgehen	XLII
:	8.4	Diff	ferenziell exprimierte Gene unter Hyperosmolalität in Maus IMCDs und mp	okCCDs XLV
:	8.5	Imn	nunfluoreszenzfärbung von NFAT5 in HEK293-T-Zellen	LXXIV
:	8.6	NFA	AT5 putative Bindesequenz	LXXIV
1	8.7 Kontro	Diff ollen	ferentiell exprimierte Gene in NFAT5-defizienten-IMCD-Primärzellen vs.	Wildtyp- LXXV
:	8.8	Nie	renzellkarzinom - Klassifikation, Einteilung und Therapieentwicklung	LXXVII
	8.8.	1	Histologische Beispiele der häufigsten Nierenzellkarzinom Entitäten	LXXVII
	8.8.2	2	Nierenzellkarzinom-Stadien Einteilung	LXXVII
	8.8.3	3	Medikamentöse Therapie-Entwicklung beim Nierenzellkarzinom	. LXXVIII
:	8.9	GEI	PIA2 Tumorentitäten	LXXIX
:	8.10	Exp	asy-Analyse	LXXX
	8.10	.1	NFAT5	LXXX
	8.10	.2	RANBP3L	LXXX
	8.10	.3	SPARC	LXXX
:	8.11	RA	NBP3L-Knockout-Analysen	LXXXI
	8.11	.1	1771 regulierte Gene in RANBP3L-defizienten-mpkCCD-Zellen im Verg	leich zu
	Scr-	Kont	rollen	LXXXI
	8.11	.2	Weitere angereicherte Gensets	CXXI
	8.11	.3	qPCR weiterer RANBP3L-Knockout Klone	CXXII
	8.11	.4	Prognostische Gene des Nierenzellkarzinoms laut Protein-Atlas	CXXIII

8.1	1.5	Mutationen im RANBP3L-Genom	CXLI
8.12	Exp	ressionsanalysen in anderen RCC-Datensets	CXLI
8.12	2.1	Expression ausgewählter Gene in einem KIRC-änhlichen Mausmodell	CXLI
8.12	2.2	RANBP3L-Expression im CDC	CXLII
8.13	RAN	NBP3L überexprimierende mpkCCD-Zellen	CXLII
8.14	Imn	nunfluoreszenzanalyse von c-JUN und Smad2	CXLIII
8.14	4.1	c-JUN-Färbung	CXLIII
8.14	4.2	Phospho c-JUN-Färbung	CXLIV
8.14	4.3	SMAD2-Färbung	CXLV
8.14	4.4	Phospho SMAD2-Färbung	CXLVI
8.15	Ana	lyse der Mausklinik	CXLVII
Eigenstä	indig	keitserklärung	. CXLVIII
Danksag	gung		LXXXIX
Lebensl	auf		XC
Publika	tionsl	iste	XCI

Abkürzungsverzeichnis

300	Kultivierung von Zellen bei 300 mosmol/kg (isoosmolar)
4-OH-TM	4-Hydroxytamoxifen
600	Kultivierung von Zellen bei 600 mosmol/kg (hyperosmolar)
786-0	Zelllinie des klarzelligen Nierenzellkarzinoms, primärer Tumor
ADGRA2	adhesion G protein-coupled receptor A2
ADH	Antidiuretisches Hormon
AED	auxiliary export domain
AG	Arbeitsgruppe
ALDH2	Aldehyd-Dehydrogenase 2
AQP	Aquaporin
Aqp2-Cre	Cre-Rekombinase im Aqp2-Promotor
AR	Aldosereduktase
ATP6V0E2	ATPase H+ transporting V0 subunit e2
AVP	Arginin-Vasopressin
BAP1	BRCA1 Associated Protein 1
BGT1	Betaine/GABA Transporter 1
BMP	bone morphogenic protein
BMP-40	basement-membrane protein 40
bp	Basenpaar
C1orf100	chromosome 1 open reading frame 100
Caki 1	Zelllinie des klarzelligen Nierenzellkarzinoms, metastatisch
Cas9	CRISPR associated protein 9
CBR1	carbonyl reductase 1
CCDC91	coiled-coil domain containing 91
CD	cluster of differentiation
CDC	Collecting duct carcinoma, Nieren-Sammelrohr-Zellkarzinom
cDNA	complementary DNA, komplementäre DNA
c-JUN	cellular JUN
CMV	Cytomegalievirus
CMV-Cre	Cre-Rekombinase im CMV Enhancer Bereich
COL4A1	Collagen Type IV Alpha 1 Chain
COL4A2	Collagen Type IV Alpha 2 Chain
СР	ceruloplasmin
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
CRM1	1 chromosomal region maintenance
Ст	cycle threshold
DAPI	4',6-Diamidin-2-Phenylindol
DBN1	drebrin 1

DD	Dimerisierungsdomäne
ddH ₂ O	bidestilliertes Wasser
DEG	differentially expressed genes, differenziell-regulierte-Gene
DMEM	Dulbecco´s Modified Eagle Medium
DMSO	Dimethylsulfoxid
DNA	deoxyribonucleic acid, Desoxyribonukleinsäure
dNTP	Desoxyribonukleosidtriphosphat
DSB	Doppelstrangbruch
DTT	Dithiothreitol
E. coli	Escherichia coli
ECR	evolutionarily conserved regions, evolutionär konservierte Regionen
EDTA	Ethylendiamintetraessigsäure
ELF 5	E74-like factor 5
ЕМТ	Epithelial-mesenchymale Transition
EPO	Erythropoetin
ER ^{T2}	tamoxifen inducible estrogen receptor
et al.	et alia (und andere)
ES	enrichment score
FACS	Fluorescence-activated cell sorting
FKS	fötales Kälberserum
flx	floxed allele
FPKM	fragment per kilobase million
FXYD2	FXYD domain-containing ion transport regulator 2
FXYD4	FXYD domain-containing ion transport regulator 4
GAPDH	Glycerin-Aldehyd-3-phosphat-Dehydrogenase
GEPIA	Gene expression profiling interactive analysis
GFR	glomeruläre Filtrationsrate
GLIPR2	GLI pathogenesis related 2
GSEA	Gene Set Enrichment Analysis, Gen-Set-Anreicherungsanalyse
HE-Färbung	Hämatoxylin-Eosin-Färbung
НЕК 293Т	Human Embryonic Kidney-293T, Zelllinie
нох	homeobox
HIF	Hypoxie-induzierter Faktor
HR	Hazard Ratio
HSP	Hitzeschockprotein
IFN	Interferon
IGV	Integrative Genomics Viewer
IL	Interleukin
IMCD	Inner medullary collecting duct

InDel	Insetion/ Deletion
IPO	Importin
JNK	c-JUN-N-terminale Kinasen
KEGG	Kyoto Encyclopedia of Genes and Genomes
KICH	Kidney renal chromophobe carcinoma, chromophobes Nierenzellkarzinom
KIRC	Kidney renal clear cell carcinoma, klarzelliges Nierenzellkarzinom
KIRP	Kidney renal papillary cell carcinoma, papilläres Nierenzellkarzinom
КО	Knockout
loxP	locus of X-over P1
LYPD2	LY6/PLAUR domain containing 2
МАРК	mitogen-activated protein kinase
MCS	multiple cloning site
MDC1	Mediator of DNA damage checkpoint protein 1
mosmol	Miliosmol
mosmol/kg	Osmolalität, Miliosmol pro Kilogramm
mpkCCD	Mouse cortical collecting duct, Zelllinie
mRNA	messenger-RNA
N1	NFAT5-defizienter-mpkCCD-Zellklon erzeugt durch gRNA 1
N3	NFAT5-defizienter-mpkCCD-Zellklon erzeugt durch gRNA 3
NCBI	National Center for Biotechnology Information
n.d.	nicht detektierbar
NES	nuclear export signal, Kernexportsignal
NGS	Next generation sequencing
NKCC2	Na ⁺ -K ⁺ -2Cl ⁻ Cotransporter Typ 2
NLS	nuclear localization signal, Kernimportsignal
NFĸB	nuclear factor 'kappa-light-chain-enhancer' of activated B-cells
NFAT	Nuclear factor of activated T-cells
NRK	Normal rat kidney cell line, Zelllinie
n.s.	nicht signifikant
OREBP	Osmotic-responsive element binding protein
p53	Protein 53
PBRM1	Polybromo 1
PBS	Phosphate Buffered Saline
РСА	Principal component analysis, Hauptkomponentenanalyse
PCR	Polymerase chain reaction
PHACTR2	phosphatase and actin regulator 2
PI3	Phosphoinositid-3
PMP22	peripheral myelin protein 22
pLP1/2	proteolipid protein 1/2

R1	RANBP3L-defizienter-mpkCCD-Zellklon erzeugt durch gRNA 1
R3	RANBP3L-defizienter-mpkCCD-Zellklon erzeugt durch gRNA 3
R1-S2	RANBP3L und SPARC-defizienter-mpkCCD-Zellklon
R1-Scr	$RANBP3L-defizienter-mpkCCD-Zellklon+stabil-transduziertes-{\it Scrambled-Plasmid}$
RAAS	Renin-Angiotensin-Aldosteron-System
RAN	Ras related nuclear protein
RANBP	Ran Bindeprotein
RANBP3L	Ran-binding protein like
RAS	Rat Sarcoma
RB1	RB transcriptional corepressor 1
RBD	Ran-binding domain, Ran-Bindedomäne
RCC	Renal cell carcinoma, Nierenzellkarzinom
RHD	Rel homology domain
RHO	Ras homology gene
RIPA	Radioimmunoprecipitation assay
RNA	ribonucleic acid, Ribonukleinsäure
RNF183	ring finger protein 183
qPCR	quantitative PCR
RVI	regulatorischen Volumenzunahme
RWD	Relative wound denstiy
S 2	Sicherheitsstufe 2
SDS	sodium dodecyl sulfate, Natriumdodecylsulfat
Scr	Scrambled
Scr-Scr	doppelt transfizierter Scrambled mpkCCD Zellklon
SETD2	SET Domain Containing 2
sgRNA	single guide RNA
SH3GL2	SH3 Domain Containing GRB2 Like 2
SLC	Solute carrier
SMAD	Mothers against decapentaplegic homolog
SMIT	Sodium-myo-inositol co-transporter
SPARC	Secreted Protein Acidic And Cysteine Rich
TAD	transactivation domain
TAUT	Taurine Transporter
TCGA	The Cancer Genome Atlas
TGF-β	Transforming growth factor beta
TIDE	Tracking of Indels by Decomposition
ТКІ	Tyrosinkinase-Inhibitoren
TonE	Tonicity-responsive enhancer
TonEBP	Tonicity-responsive enhancer binding protein

ТОРО	Topoisomerase
TRAF1	TNF receptor associated factor 1
UALCAN	The University of Alabama at Birmingham Cancer data analysis Portal
Ube-Cre	Ubiquitin expressed Cre-recombinase
UNC5B	unc-5 netrin receptor B
UT-A	Urea transporter A
UTR	untranslatierte Region
UV	Ultraviolet
VEGF	Vascular Endothelial Growth Factor
VHL	Von Hippel Lindau
VSVG	vesicular stomatitis virus G glycoprotein
WT	Widltyp
X-GAL	5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid

Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung der Nierenanatomie
Abbildung 2: Schematische Darstellung der wichtigsten Transportsysteme im proximalen Tubulus.
Abbildung 3: Schematische Darstellung der wichtigen Prozesse zur passiven Wasserresorption und
Konzentrierung des Urins
Abbildung 4: Schematische Darstellung der Domänenstruktur von NFAT1-5 und NF-κB/Rel 11
Abbildung 5: Detaillierte Domänenstruktur von NFAT5
Abbildung 6: Postulierter Mechanismus der CRM1-abhängigen-Proteintranslokation mittels Ran und RANBP3. 14
Abbildung 7: Schematische mRNA-Expressionsverteilung von RANBP3 und RANBP3L
Abbildung 8: Schematische Darstellung der Einteilung des Nierenzellkarzinoms in die Stadien I-IV
und die jeweilige Überlebenswahrscheinlichkeit
Abbildung 9: Expressionsprofil der top 25 herunterregulierten Gene im klarzelligen
Nierenzellkarzinom
Abbildung 10: Expression von RANBP3L im Nierenzellkarzinom sowie dessen prognostische
Relevanz
Abbildung 11: Beispiel einer Signalintensitätsanalyse mittels Zen Blue
Abbildung 12: Beispielmessung der Lamellipodienfläche der Zellen
Abbildung 13: Beispiel einer Mischkultursequenz
Abbildung 14: Verdünnungsreihe zur Zellvereinzelung
Abbildung 15: Schematische Darstellung der Sequenzanalyse durch das TIDE webtool
Abbildung 16: Schematische Darstellung der Klonierung von Ranbp3l-Promotorfragmenten in den
PGL3 Vektor
Abbildung 17: Schematische Darstellung der Klonierung des proteinkodierenden Bereichs von
Ranbp3l in den V180 Vektor
Abbildung 18: Volcano-Plot von Maus-IMCD-Zellen
Abbildung 19: FPKM-Werte aller identifizierten Transkripte der RANBP-Familie
Abbildung 20: Signifikant-regulierte-Gene in mpkCCD und murinen IMCD-Zellen unter
Hyperosmolalität
Abbildung 21: Immunfluoreszenzanalyse von NFAT5 in murinen IMCD und mpkCCD-Zellen 65
Abbildung 22: Genomische Struktur des murinen NFAT5 nach gRNA Transduktion
Abbildung 23: TIDE-Analyse der NFAT5-defizienten-mpkCCD-Zellen
Abbildung 24: Schematische Darstellung der trunkierten NFAT5 Einzelklone N1 und N3 im
Vergleich zum WT-NFAT5-Protein
Abbildung 25: Nachweis der Defizienz von NFAT5 in N1 und N3 mittels Western Blot

Abbildung 26: NEATS Immunfluorescences frakmen von Ser und NEATS defizienten Zellen - 71
Abbildung 20: NFAT3-Infinumuoreszenzaumannen von Sci- und NFAT3-derizienten-zenen /1
Abbildung 27: qPCR von Scr und NFATS-defizienten-Zellen
Abbildung 28: Etablierung eines konditionellen NFA15-Knockout-Systems in primarkultivierten
Maus-Nierenzellen
Abbildung 29: NFAT5-Immunfluoreszenzaufnahmen primärer IMCD-Zellen mit und ohne 4-OH-
TM Behandlung
Abbildung 30: qPCR Analyse der Nfat5-Expression in NFAT5-defizienten-Zellen sowie den
Kontrollgruppen75
Abbildung 31: NGS-Analyse von primären IMCD-Zellen mit und ohne 4-OH-TM Behandlung 76
Abbildung 32: Analyse von NFAT5-Bindestellen im <i>Ranbp3l</i> -Promotor über diverse Spezies77
Abbildung 33: Promotoraktivität von mutierten Ranbp3l-Promotorfragmenten in HEK-293T-Zellen.
Abbildung 34: Genomische Struktur von murinem Ranbp3l nach gRNA-Transduktion
Abbildung 35: TIDE-Analyse der RANBP3L-defizienten-mpkCCD-Zellen
Abbildung 36: Schematische Darstellung der trunkierten RANBP3L Varianten
Abbildung 37: Morphologische Analyse von Scr-, R1- und R3-mpkCCD-Zellen
Abbildung 38: Untersuchung der Migrationsgeschwindigkeit von Scr-, R1- und R3-mpkCCD-
Zellen
Abbildung 39: Proliferationsanalysen von Scr-, R1- und R3-mpkCCD-Zellen
Abbildung 40: Analyse der Fähigkeit zur Koloniebildung in Scr, R1 und R3 mpkCCD-Zellen 86
Abbildung 41: Signifikant-deregulierte-Gene zwischen RANBP3L-defizienten-Zellen und Scr-
Zellen bei 300 mosmol/kg und 600 mosmol/kg
Abbildung 42: Bioinformatische Gruppierung und Analysen von angereichten Gensets nach Verlust
von RANBP3L
Abbildung 43: Hauptkomponentenanalyse (PCA) der top 30 hoch- und herunterregulierten Gene
nach RANBP3L-Verlust
Abbildung 44: Expression prognostischer Gene des RANBP3L-regulierten-Gensets
Abbildung 45: Expression des prognostischen Gensets in den TCGA-RCC-Kohorten
Abbildung 46: Expression von <i>Sparc. Col4a1</i> und <i>Col4a2</i> im Nierenzellkarzinom
Abbildung 47: Pearson-Korrelation der RANBP3-Expression mit SPARC und $COI 4A1/2$ in RCC.
und dem Subtypen KIRC
Abbildung 48: Etablierung eines SPARC und RANBP31 -Doppel-Knockout-Finzelklons 97
Abbildung 49: Schematische Darstellung der trunkierten SPARC Proteinvariante in R1-S2-Zellen
im Vergleich zum WT-SPARC Protein
Abbildung 50: aPCR Analyse für Coldal und Colda? in Ser Ser P1 Ser und P1 S2 mpkCCD
7 contains 50. qr CK Analyse for Contain and Contains in Ser-Ser, K1-Ser and K1-S2-InpKCCD-7 allon 00
99

Abbildung 51: Färbung des Zytoskeletts mittels Phalloidin
Abbildung 52: Migrationsverhalten von Scr-Scr-, R1-Scr- und R1-S2-mpkCCD-Zellen 101
Abbildung 53: Koloniebildung von Scr-Scr, R1-Scr und R1-S2-mpkCCD-Zellen
Abbildung 54: Box-Plot für TGFB1-Expression im Nierenzellkarzinom
Abbildung 55: Effekt von TGF-β1 auf den Phänotyp von unterschiedlichen mpkCCD-Zellen 104
Abbildung 56: Verlust des osmotischen Gradienten bei der Urinbildung in Vhl $^{\Delta/\Delta}$ Mäusen 110
Abbildung 57: Schematische Darstellung der möglichen Funktion von RANBP3L
Abbildung 58: Immunfluoreszenzaufnahmen von HEK-293T-Zellen unter 300 und 450 mosmol/kg
für NFAT5LXXIV
Abbildung 59: Putative Bindesequenz von NFAT5 laut JASPARLXXIV
Abbildung 60: Pathohistologie des Nierenzellkarzinoms.
Abbildung 61: Medikamentöse Therapie-Entwicklung beim Nierenzellkarzinom LXXVIII
Abbildung 62: qPCR Analyse weiterer RANBP3L-KO-Klone für ausgewählte Zielgene CXXII
Abbildung 63: Regulation prognostische Gene im Nierenzellkarzinom nach RANBP3L-Defizienz.
CXXIII
Abbildung 64: Mutationsprofil von RANBP3L im RCCCXLI
Abbildung 65: Expression von <i>Ranbp3l, Sparc, Col4a1</i> und <i>Col4a2</i> in WT und <i>Vhl</i> ^{Δ/Δ} <i>Trp53</i> ^{Δ/Δ}
<i>Rb1</i> ^{∆/∆} Mäusen (VpR)CXLI
Abbildung 66: Expression von RANBP3L in zwei unabhängigen CDC-DatensätzenCXLII
Abbildung 67: Überepxression von RANBP3L in mpkCCD-ZellenCXLII
Abbildung 68: Immunfluoreszenzanalyse von c-JUN in Scr- und R1-mpkCCD-Zellen CXLIII
Abbildung 69: Immunfluoreszenzanalyse von phosphoryliertem c-JUN in Scr- und R1-mpkCCD-
ZellenCXLIV
Abbildung 70: Immunfluoreszenzanalyse von SMAD2 in Scr- und R1-mpkCCD-Zellen CXLV
Abbildung 71: Immunfluoreszenzanalyse von phosphoryliertem SMAD2 in Scr- und R1-mpkCCD-
ZellenCXLVI
Abbildung 72: Möglicher Analyse-Screen der RANBP3L-defizienten-Maus in der German Mouse

Tabellenverzeichnis

Tabelle 1: Reaktionsansatz des standardisierten PCR-Protokolls zur Amplifizierung spezifischer
DNA-Fragmente
Tabelle 2: Programm des standardisierten PCR-Protokolls zur Amplifizierung spezifischer DNA-
Fragmente
Tabelle 3: Reaktionsansatz der cDNA-Synthese aus 1µg RNA
Tabelle 4: Reaktionsansatz der qPCR pro <i>well</i> mit SYBR® Select Master Mix für CFX
Tabelle 5: Programm f ür die qPCR mit SYBR® Select Master Mix f ür CFX
Tabelle 6: BsmBI-Verdau des lentiviralen Vektors lentiCRISPRv2 43
Tabelle 7: Beispiel für die Oligonukleotid-Generierung aus der Zielsequenz
Tabelle 8: Reaktionsansatz für die Oligonukleatid-Zusammenlagerung
Tabelle 9: Programm der Oligonukleotid-Zusammenlagerung
Tabelle 10: Ansatz für die Ligationsreaktion von verdautem lentiCRISPRv2 und einem
Oligonukleotid-Paar
Tabelle 11: Ansatz für die Transfektion von HEK-293T Zellen einer 100 mm Schale 45
Tabelle 12: Ansatz f ür die Zwischenklonierung in den TOPO-TA-Vektor
Tabelle 13: Ansatz f ür den Restriktionsverdau
Tabelle 14: Ansatz f ür die Ligationsreaktion 53
Tabelle 15: Mutierte NFAT5 Bindesequenzen im Ranbp3l-Promotor 55
Tabelle 16: Reaktionsansatz für die Transfektion mittels TurboFect pro well
Tabelle 17: Verwendete gRNAs gegen den murinen Nfat5-Lokus
Tabelle 18: Zusammenfassung der Sequenzanalyse der TOPO-TA-Klone. 69
Tabelle 19: Verwendete gRNAs f Werwendete gRNAs f Werwendete gRNAs f
Tabelle 20: Zusammenfassung der Sequenzanalyse aller R1 und R3-TOPO-TA-Klone.82
Tabelle 21: Funktion aller 17 im RCC prognostischen Gene laut Proteinatlas
Tabelle 22: mittlere FPKM-Werte der Gene Sparc, Col4a1 und Col4a2 in Scr- und R1-Zellen 93
Tabelle 23: Verwendete gRNAs f Yerwendete gRNAs f Yerwendete gRNAs f
Tabelle 24: Zusammenfassung der Sequenzanalyse aller R1-S2-TOPO-TA-Klone
Tabelle 25: Log ₂ fold changes signifikant differenziell exprimierte Gene unter Hyperosmolalität in
Maus IMCD ZellenXLV
Tabelle 26: Log ₂ fold changes signifikant differenziell exprimierte Gene unter Hyperosmolalität in
mpkCCD ZellenL
Tabelle 27: Log ₂ fold changes gemeinsamer differenziell exprimierte Gene unter Hyperosmolalität
in Maus IMCDs und mpkCCDLXVII
Tabelle 28: Log ₂ fold change von differentiell exprimierten, hyperosmolalitäts-regulierten-Genen in
NFAT5 defizienten-IMCD-Primärzellen unter 600 mosmol/kg im Vergleich zur Kontrolle LXXV

Tabelle 29: Einteilung der Stadien des NierenzellkarzinomsLXXVII
Tabelle 30: Auflistung aller in GEPIA2 enthaltenen Tumorentitäten mit den jeweiligen Abkürzungen
LXXIX
Tabelle 31: Log ₂ fold change von 1771 differentiell-regulierten-Genen in RANBP3L-defizienten-
Zellen unter 300 und 600 mosmol/kgLXXXI
Tabelle 32: Top 20 angereicherte Gensets aus der Klasse HallmarksCXXI
Tabelle 33: Top 20 angereicherte Gensets aus der Klasse ReactomeCXXI
Tabelle 34: Liste aller prognostisch unvorteilhaften und vorteilhaften Gene im Nierenzellkarzinom
aus dem Humanen Protein AtlasCXXIII

1 Einleitung

1.1 Die Niere

Die Nieren übernehmen im Körper vielfältige Aufgaben. Dazu zählen unter anderem die Wasserund Elektrolythomöostase sowie die Elimination harnpflichtiger Stoffwechselendprodukte [1]. Bei einer Durchblutung von knapp 1700 l Blut am Tag werden etwa 120 ml Blutplasma pro Minute filtriert und somit von Stoffwechselabfällen gereinigt, welche zusammen mit dem gebildeten Urin (1-2 l am Tag) ausgeschieden werden [1, 2]. Zu den über die Nieren eliminierten Stoffen zählen unter anderem Medikamente beziehungsweise ihre Metabolite und harnpflichtige Substanzen wie Harnstoff, Harnsäure und Kreatinin [3, 4]. Bei akuter oder chronischer Niereninsuffizienz können diese Substanzen akkumulieren und durch ihre toxischen Effekte verschiedene Organsysteme affektieren [1, 5].

Weitere Aufgaben der Nieren umfassen die Regulation des Säure-Base-Gleichgewichts, wobei der Blut-pH-Wert im Wesentlichen über die renale Rückresorption von Bikarbonat reguliert wird [1, 6], sowie die Bildung einer Reihe lebensnotwendiger Hormone [1]. Durch die nierenspezifische Synthese des Hormons Erythropoetin (EPO) wird die Produktion von Erythrozyten stimuliert [7]. Über das Renin-Angiotensin-Aldosteron-System (RAAS) regulieren die Nieren den systemischen Blutdruck zum Erhalt der renalen Perfusion [8] um folglich eine konstante glomeruläre Filtrationsrate (GFR) zu gewährleisten. Vitamin D3 wird durch die Nieren in die biologisch aktive Form Calcitriol (1a, 25-)Dihydroxycholecalciferol) umgewandelt, wodurch die intestinale Calcium- und Phosphataufnahme erhöht sowie die renale Ausscheidung dieser vermindert und somit die Mineralisierung der Knochen unterstützt wird [9].

1.1.1 Lage und Aufbau

Die Nieren sind paarig, retroperitoneal beiderseits der Wirbelsäule angelegte Organe [10] (Abbildung 1A). Beide Nieren sind zunächst von einer dünnen Bindegewebskapsel, der *Capsula fibrosa*, umhüllt und in einem Fettgewebskörper eingebettet [1]. Zusammen mit der Nebenniere werden sie wiederrum von einem Faszien-Sack, der *Fascia renalis* (Gerotafaszie), eingefasst [10]. Der mediale Rand der Niere bildet eine Einziehung, den sogenannten Nierenhilus, an welchem sich die Blutgefäße verzweigen und der Harnleiter (*Ureter*) entspringt [10]. Das Nierenparenchym, unterteilt sich von außen nach innen in die

Nierenrinde (Cortex) und das Nierenmark (Medulla) [1] (Abbildung 1B). In der Medulla liegen die Nierenpyramiden, welche mit ihrer Spitze, der Papille, zum Hilus gerichtet sind. Sie besitzen viele kleine Öffnungen, über welche der Harn aus den Sammelrohren in die Nierenkelche austritt. Die Kelche bilden das Nierenbecken (*Pelvis renalis*), welches in den Harnleiter übergeht. Die Harnleiter beider Nieren münden in die Harnblase, in der der Urin gesammelt und über die Harnröhre (Urethra) ausgeschieden wird [1].

A) Darstellung der Lage der Nieren im menschlichen Körper inklusive Harnleiter und Harnblase. B) Aufbau der Niere. Die Nieren besitzen eine komplexe innere Struktur, welche in Nierenparenchym (Nierenrinde und Nierenmark) und Nierenbeckenkelchsystem (Nierenkelch und Nierenbecken) unterteilt wird. C) Feinstruktur der Niere und schematischer Aufbau der Blutversorgung. Die Nieren werden über die Nierenarterien mit Blut versorgt, welche sich mehrfach verzweigen und in Richtung Cortex führen, wo sie sich schließlich zu den afferenten Arteriolen verzweigen, aus welchen die Glomeruli, hervorgehen. Ausgehend von den juxtamedullären Glomeruli verzweigen sich die Blutgefäße in die *Vasa recta* und versorgen so das Nierenmark (verändert nach [11, 12]).

Die Nieren werden über die Nierenarterien (Arteriae renales), welche paarig aus der abdominellen Aorta entspringen, mit Blut versorgt [1]. Die Blutgefäße verzweigen sich innerhalb der Nieren mehrfach (Arteriae interlobares, Arteriae arcuatae und Arteriae *interlobulares*) und führen entlang der Nierenpyramiden in Richtung Cortex, wo sie sich schließlich zur den afferenten Arteriolen (Vasa afferentia) verzweigen, aus welchen Gefäßknäuel, Glomeruli genannt, hervorgehen [1] (Abbildung 1C). Die Glomeruli stellen die primären Filtrationseinheiten der Nieren dar, welche größtenteils kortikal, aber auch marknah (juxtamedullär) lokalisiert sind [13]. Hier wird das arterielle Blut über die glomeruläre Basalmembran filtriert und das Ultrafiltrat (Primärharn) in die angrenzende Bowman-Kapsel abgegeben [1, 13]. Das filtrierte Blut fließt anschließend arteriell weiter über die Vasa efferentia, welche sich erneut in ein peritubuläres Kapillarsystem verzweigen, das vor allem die Tubuli des Cortex mit Blut versorgt. Ausgehend von den juxtamedullären Glomeruli verzweigen sich die Vasa efferentia in die Vasa recta und versorgen so das Nierenmark [1, 13] (Abbildung 1C). Das venöse Blut von den peritubulären Kapillaren des Cortex sowie von den Vasa recta des Nierenmarks gelangt nacheinander in die Venae arcuatae, die Venae interlobares und die Venae renales, von wo es dann in die Vena cava *inferior* fließt.

1.1.2 Das Nephron

Der in den Glomeruli erzeugte Primärharn wird über das Tubulussystem abtransportiert und durch diverse Resorptions- und Sekretionsprozesse konzentriert. Glomeruli und Tubuli werden zusammen als Nephrone bezeichnet und bilden so die eigentlichen funktionellen Einheiten der Nieren [1, 13]. Insgesamt befinden sich in einer menschlichen Niere etwa 1,2 Millionen Nephrone [1]. Ausgehend vom Glomerulus und der Bowman-Kapsel erstreckt sich der proximale Tubulus über den absteigenden Ast der Henle-Schleife bis in die Medulla [1, 13]. Über die Henle-Schleife ist der proximale Tubulus mit dem distalen Tubulus verbunden, der parallel dazu wieder in den Cortex zurückführt. Von dort aus fließt der Harn in das Sammelrohr, welches schließlich in das Nierenbecken mündet [1, 13] (Abbildung 1C). Entlang des Nephrons werden 99 % des glomerulär filtrierten Primärharns durch Epithelzellen rückresorbiert [14].

Im Glomerulus beginnt die Urinproduktion mit der Ultrafiltration des Blutes. Der Glomerulus ist ein Knäuel aus parallel verlaufenden Kapillaren der afferenten Arteriolen, welches nur für niedermolekulare Substanzen (bis ca. 15 kDa) durchlässig ist [15].

Blutzellen und höhermolekulare Substanzen wie das Plasmaalbumin können unter physiologischen Umständen die Kapillarwand nicht passieren und gelangen damit nicht in den gebildeten Primärharn. Kleinere Teilchen, wie Wasser, Elektrolyte, Aminosäuren, Bicarbonat, Glucose, Harnstoff und Kreatinin können währenddessen ungehindert die Filter passieren und liegen so im Primärharn in nahezu identischer Konzentration wie im Blutplasma vor [15]. Der überwiegende Teil der im Primärharn enthaltenen Moleküle inklusive zwei Drittel des filtrierten Wassers werden bereits im proximalen Tubulus rückresorbiert [16]. Bei gesunder Nierenfunktion werden somit am Tag ca. 180 l Primärharn produziert [1].

Abbildung 2: Schematische Darstellung der wichtigsten Transportsysteme im proximalen Tubulus.

Die Na⁺/K⁺-ATPase (rot) an der basolateralen Membran transportiert Na⁺ unter ATP-Verbrauch im Austausch gegen K⁺ aus der Zelle in das Interstitium. Dieser Gradient ist die Triebkraft für sekundäre, Na⁺-abhängige Transportsysteme. Unter anderem wird über Na⁺/H⁺-Antiporter (gelb) Na⁺ im Austausch gegen Protonen über die apikale Membran in die Zelle transportiert, was direkt an die Rückgewinnung von Bicarbonat gekoppelt ist. Weiterhin werden über diverse Na⁺-Symport-Carrierer (grün, weiß) L-Aminosäuren, Glukose, Phosphat, Sulfat, Galactose, Vitamin C, Lactat, Acetat, Citrat, Acetoacetat, Succinat und andere Stoffe sekundär aktiv aus dem Primärharn in die Zelle aufgenommen. Durch die Resorption der im Filtrat enthaltenen gelösten Stoffe wird entlang eines osmotischen Gradienten ebenfalls Wasser rückresorbiert. Erleichtert wird dieser Wassertransport durch die Expression von Aquaporinen in der luminalen und basolateralen Membran. Dabei ist Aquaporin-1 (AQP1) vorwiegend im proximalen Tubulus exprimiert und hauptverantwortlich für den dort stattfindenden Wassertransport (blauer Kanal) (verändert nach [17]).

Die Resorption fast aller Stoffe ist direkt an Na⁺-Ionen gekoppelt. Die Na⁺/K⁺-ATPase an der basolateralen Membran von proximalen Tubuluszellen transportiert Na⁺ unter hohem ATP-Verbrauch im Austausch gegen K⁺ aus der Zelle in das Interstitium, wodurch die intrazelluläre Na⁺-Konzentration geringer als die extrazelluläre Konzentration ist [16] (Abbildung 2, rot). Dieser Gradient ist die Triebkraft für sekundär aktive, Na⁺-abhängige Transportsysteme. Unter anderem wird Na⁺ dabei über Na⁺/H⁺-Antiporter im Austausch gegen Protonen über die apikale Membran in die Zelle transportiert, was direkt an die Rückgewinnung von Bicarbonat gekoppelt ist und damit wichtigen Beitrag zur Regulation des Säure-Base-Haushaltes leistet [6] (Abbildung 2, gelb). Weiterhin werden über diverse Na⁺-Symport-Carrier L-Aminosäuren, Phosphat, Sulfat, Galactose, Vitamin C, Lactat, Acetat, Citrat, Acetoacetat, Succinat und andere Stoffe sekundär aktiv aus dem Primärharn in die Zelle aufgenommen [1] (Abbildung 2, grün). Durch die Resorption der im Filtrat enthaltenen gelösten Stoffe wird entlang eines osmotischen Gradienten ebenfalls Wasser rückresorbiert [16]. Erleichtert wird der Wassertransport durch die Expression von Wasserkanälen, den Aquaporinen in der luminalen und basolateralen Epithelmembran. Dabei ist Aquaporin-1 (AQP1) vorwiegend im proximalen Tubulus und dem absteigenden Ast der Henle-Schleife exprimiert und hauptverantwortlich für den dort stattfindenden Wassertransport [18] (Abbildung 2, blauer Kanal). Durch den gekoppelten Ionen- und Wassertransport besitzt der Harn im proximalen Tubulus dieselbe Osmolalität wie das angrenzende Blutplasma von ~ 290 mosmol/kg, weshalb man hier auch von isoosmotischer Rückresorption spricht. Der erzeugte Endharn hingegen kann beim Menschen Osmolalitäten von bis zu 1200 mosmol/kg erreichen [19]. Grundlage hierfür ist die Generierung eines hypertonen Interstitiums durch das Gegenstromprinzip. Darunter versteht man eine parallele Anordnung von Tubuli und Gefäßen mit verschiedener Flussrichtung und unterschiedlichen Permeabilitätseigenschaften [13] (Abbildung 3).

Zusammen mit Na⁺/K⁺-ATPasen erfolgt im dicken aufsteigenden Teil der Schleife eine aktive Resorption von NaCl durch Na⁺-K⁺-2Cl⁻-Symporter (NKCC2). Dieser Teil des Nephrons ist gleichzeitig impermeabel für Wasser, sodass hier ein hypotoner Harn gebildet wird [13]. Der absteigende Ast der Henle-Schleife ist, im Gegensatz zum dicken, aufsteigenden Ast, durch das Vorhandensein von AQP1 wasserdurchlässig [18]. Wasser diffundiert in das höher osmolare Interstitium, wo es größtenteils von den *Vasa recta* abtransportiert wird, sodass der vorher isoosmotische Harn hyperton wird [13]. Am dünnen,

absteigenden Ast findet abgesehen von der Wasserrückresorption wenig Ionenaustausch statt, da hier Transporterproteine fehlen.

Gleichzeitig findet in den unteren Hauptzellen des Sammelrohres über spezifische Harnstofftransporter eine Rückresorption von Harnstoff statt, welcher neben NaCl mit einem Anteil von fast 50 % zum Aufbau des hypertonen Interstitiums in der Medulla beiträgt [20]. Der dünne, aufsteigende Ast der Henle-Schleife ist durchlässig für Harnstoff, wodurch er wieder in das Tubulussystem zurück gelangt und dem Kreislauf wieder zur Verfügung steht. Von hier aus gelangt der hypotone Urin in den distalen Tubulus. Die Hauptaufgabe des distalen Tubulus und des Sammelrohres besteht darin, den Harn final aufzukonzentrieren und dabei seine Zusammensetzung feinabzustimmen [13]. Hier wird die Rückresorption von Wasser hormonell reguliert [21]. Durch spezifische Rezeptoren im Hypothalamus des werden Osmolalitätsunterschiede im Blut registriert. Bei Gehirns ansteigender Blutosmolalität kommt es zur Ausschüttung des Hormons Arginin-Vasopression (AVP), auch anti-diuretisches Hormon (ADH) genannt. AVP bindet nach dem Erreichen der Nieren an den basolateralen Vasopressin-V2-Rezeptor (V2R) in der Membran der Sammelrohr-Epithelzellen. Dadurch wird eine Signalkaskade ausgelöst, die letztendlich dazu führt, dass AQP2 in die luminale Epithelmembran der Sammelrohrzellen eingebaut wird [21]. Der Einbau von AQP2 ermöglicht die Rückresorption von Wasser aus dem Lumen des Sammelrohrs in die Epithelzellen. Der Transport von den Epithelzellen in das Blutsystem erfolgt nun wiederum über die Aquaporine 3 und 4 (AQP3, AQP4) [18]. Der Endharn kann somit dem hyperosmolaren Interstitium entsprechend bis zu Osmolalitäten von 1200 mosmol/kg konzentriert werden [19].

Dieser komplexe Prozess der Urinproduktion, bei dem die Rückgewinnung von Elektrolyten und Wasser passiv an die Natriumrückresorption gekoppelt ist, beginnend bei den Glomeruli über den proximalen Tubulus und der Henle-Schleife bis zum Sammelrohr ist noch einmal zusammenfassend und auf das wichtigste begrenzt in Abbildung 3 dargestellt.

Abbildung 3: Schematische Darstellung der wichtigen Prozesse zur passiven Wasserresorption und Konzentrierung des Urins.

Im Glomerulus beginnt die Urinproduktion mit der Filtration Blutes (Bildung des Pirmärharns, 180 l am Tag). Höhermolekulare Substanzen können die Kapillarwand (gestrichelte Linie) nicht passieren. Kleinere Teilchen wie Wasser und Elektrolyte können gleichermaßen aus dem Primärharn rückresorbiert (brauner Solute Pfeil) werden, weswegen die Osmolalität bei etwa 300 mosmol/kg bleibt. Aus dem proximalen Tubulus gelangt das Filtrat in die Henle-Schleife. Diese ist hauptverantwortlich für den Aufbau eines osmotischen Gradienten. Dieser wird erreicht über das Gegenstromprinzip zwischen Henle-Schleife und Vasa recta. Die Vasa recta besitzt einen vom Glomerulus ausgehenden, ins Mark absteigenden Ast (rot markiert) und einen aufsteigenden Ast (blau markiert), die parallel zueinander verlaufen. Henle-Schleife und Vasa recta sind dabei so angeordnet, dass nicht nur eine gegenläufige Fließrichtung zwischen den jeweiligen auf- und absteigenden Ästen ermöglicht wird, sondern zudem auch zwischen Henle-Schleife und Vasa recta. Im dicken aufsteigenden Teil der Henle-Schleife erfolgt eine aktive Resorption von NaCl (oranger Pfeil). Dieser Teil des Nephrons ist impermeabel für Wasser, sodass hier ein hypotoner Harn gebildet wird. Der absteigende Ast der Henle-Schleife ist, im Gegensatz zum dicken, aufsteigenden Ast, durch das Vorhandensein von AQP1 wasserdurchlässig. Wasser diffundiert in das höher osmolare Interstitium (blauer Pfeil), sodass der vorher isoosmotische Harn hyperton wird. Gleichzeitig findet in den unteren Hauptzellen des Sammelrohres eine Rückresorption von Harnstoff statt (grüner Pfeil), welches neben NaCl zum Aufbau des hypertonen Interstitiums in der Medulla beiträgt. Der dünne, aufsteigende Ast der Henle-Schleife ist durchlässig für Harnstoff, wodurch er wieder in das Tubulussystem zurück gelangt und dem Kreislauf wieder zur Verfügung steht. Von hier aus gelangt der hypotone Urin in den distalen Tubulus und von dort ins Sammelrohr. Die Hauptaufgabe des Sammelrohres besteht in der Aufkonzentrierung des Harns. Durch AQP2 an der Epithelmembran kommt es zur Rückresorption von Wasser aus dem Lumen. Der Transport von den Epithelzellen in das Blutsystem erfolgt nun über die Aquaporine 3 und 4 (AQP3, AQP4). Der Endharn (1-2 l am Tag) kann somit bis zu Osmolalitäten von 1200 mosmol/kg aufkonzentriert werden (verändert nach [22, 23]).

1.2 Einfluss von Hyperosmolalität auf zelluläre Prozesse

1.2.1 Begriffsklärung

Die Osmolalität einer Flüssigkeit definiert sich durch die Anzahl der in ihr gelösten Teilchen, wodurch kolligativen Eigenschaften wie Gefrierpunkt, Siedepunkt oder Dampfdruck einer Flüssigkeit verändert werden. Dementsprechend ist die Osmolalität die Summe der osmotischen Konzentrationen aller dissoziierten Teilchen in einer Lösung und wird in mosmol/kg angegeben [24].

Dagegen abzugrenzen ist die Tonizität. Sie bezieht sich immer auf den Effekt von unterschiedlichen Osmolalitäten zwischen zwei Lösungen, die durch eine semipermeable Membran voneinander getrennt sind, wie beispielweise das intrazelluläre und extrazelluläre Milieu [25]. Die Folge dieses Effektes ist immer ein osmotisch getriebener Wassertransfer zwischen zwei Kompartimenten, welcher eine Volumenänderung der Zelle mit sich bringt. Dabei unterscheidet man drei Zustände: Zellen, die einer extrazellulären Hypertonizität ausgesetzt sind, also deren extrazelluläre Lösung mehr gelöste Teilchen beinhaltet als innerhalb der Zelle, verlieren an Wasser und dementsprechend auch an Zellvolumen. Das Gegenteil ist der Fall, wenn die Lösung hypoton ist. Ist eine Lösung jedoch isoton, ändert sich das Volumen aufgrund identischer Konzentrationen gelöster Teilchen in- und außerhalb der Zellen nicht [24].

1.2.2 Folgen von hyperosmotischem Stress

In der inneren Medulla der Nieren ist die Osmolalität des Interstitiums mit etwa 1200 mosmol/kg viermal so hoch wie die des Cortex oder die des Blutplasmas mit 300 mosmol/kg [19]. Bedingt durch diesen Effekt sind Zellen aus der inneren Medulla der Nieren hohem osmotischen Stress ausgesetzt, welcher zu Änderungen in der Zellgröße und des Zytoskeletts sowie zu einem Zellzyklus-Arrest führt [26, 27]. Sind die negativen Auswirkungen für die Zelle nicht mehr tolerierbar, kann Hyperosmolalität auch die Apoptose induzieren [27]. Studien zeigen dabei, dass kultivierte Zellen bereits bei wesentlich geringeren Osmolalitäten absterben als *in-vivo* [28, 29]. Um große zelluläre Schäden zu verhindern und physiologische Funktionen zu erfüllen, ist es den Zellen über Adaptionsprozesse jedoch möglich eine derart hohe Osmolalität zu tolerieren [30].

1.2.3 Adaptionsmechanismen

Anpassungsmechanismen der Zelle auf extrazelluläre Hyperosmolalität können zeitlich in Stadien eingeordnet werden. Eine der ersten Anpassungen besteht in der regulatorischen Volumenzunahme (RVI) der Zelle [26]. Damit verbunden ist die schnelle Aktivierung von membrangebundenen Ionentransportern und eine Anreicherung der anorganischen Ionen Na⁺, K⁺ und Cl⁻ um die zytoplasmatische Osmolalität zu erhöhen [26]. Der damit einhergehende osmotisch getriebene Wassereinstrom stellt das Zellvolumen wieder her. Dies führt jedoch in zu hohen Konzentrationen zu nachteiligen Auswirkungen auf die Zellphysiologie. Dazu zählen eine veränderte Enzymaktivität, verminderte DNA-Replikation, verminderte Proteinsynthese und im Extremfall DNA-Doppelstrangbrüche mit konsekutiver Apoptoseinduktion [30-32], weshalb parallel sowie nachfolgend dazu weitere Anpassungsmechanismen erfolgen müssen.

Um die Homöostase der anorganischen Ionenkonzentration wiederherzustellen, werden verzögert (Stunden bis Tage nach Exposition) nicht toxische, metabolisch neutrale organische Osmolyte in der Zelle akkumuliert [30]. Sie können aus verschiedenen chemischen Klassen stammen, einschließlich Aminosäuren, Methylaminen und Polyolen [33]. Zu den organischen Osmolyten zählen unter anderem Betain, Glycerophosphorylcholin (GPC), Myo-Inositol, Taurin und Sorbitol [26, 30]. Die Akkumulation dieser Stoffe in der Zelle geschieht entweder durch Aufnahme der Osmolyte aus dem extrazellulären Raum oder durch intrazelluläre Produktion [30]. So sind Betain/GABA-Transporter (BGT1, Slc6a12), Na⁺-Myo-Inositol-Transporter (SMIT, Slc5a3) oder Taurin-Transporter (TAUT, Slc6a6) für den Import von Betain, Myo-Inositol und Taurin verantwortlich während Aldosereduktase (AR) die Synthese von Sorbitol aus Glukose katalysiert [34-37].

Neben der Akkumulation von organischen Osmolyte werden bei extrazellulärer Hyperosmolalität molekulare Chaperone und Hitzeschockproteine aktiviert, die der Destabilisierung und Fehlfaltung von zellulären Proteinen entgegenwirken. Das Hitzeschockprotein HSP70 bindet reversibel an hydrophobe Seitenketten von ungefalteten oder teilweise entfalteten Proteinen und führt zur Wiederherstellung der korrekten Konformation, wodurch fehlerhafte intramolekulare Wechselwirkungen oder Aggregationen verhindert werden [26, 30]. Weiterhin wird, um Schäden an der DNA zu beseitigen, die durch hyperosmotischen Stress entstanden sind, die Expression des Tumorsuppressorgens p53 induziert [26]. Als Transkriptionsfaktor reguliert p53 die Expression von Genen, die an der Kontrolle des Zellzyklus, der Reparatur der DNA oder der Induktion der Apoptose beteiligt sind [38].

Eine Vielzahl an Studien legt nahe, dass hyperosmotischer Stress nicht nur in renalen Zellen von Relevanz ist, sondern dass viele Mechanismen und Signalwege zur Anpassung an hyperosmotischem Stress in unterschiedlichen Zelltypen analog ablaufen. Beispielsweise konnten die aufgeführten Anpassungsmechanismen bereits in T-Zellen, B-Zellen, Makrophagen, Neuronen, Myoblasten, Fibroblasten, glatten Gefäßmuskelzellen und Epithelzellen nachgewiesen werden [39]. In vielen Prozessen zur Anpassung an hyperosmolare Bedingungen ist der Transkriptionsfaktor *Nuclear factor of activated T-cells* (NFAT5) beteiligt und stellt somit einen bedeutenden Regulator für die Anpassung an osmotischem Stress dar [39].

1.3 Nuclear factor of activated T-cells 5 (NFAT5)

1.3.1 Die Proteinfamilie der Rel-Proteine

NFAT5, auch bekannt als TonEBP (*Tonicity-responsive enhancer binding protein*) oder OREBP (*Osmotic-responsive element binding protein*), gilt als der bedeutendste Transkriptionsfaktor von hyperosmotischer Stressvermittlung [39, 40]. Es konnte gezeigt werden, dass NFAT5 in einer Reihe verschiedener Gewebetypen, wie Niere, Gehirn, Herz, Thymus, Lunge und Skelettmuskulatur exprimiert wird [41, 42].

Erstmals wurde NFAT5 1999 als TonEBP in medullären Zellen der Nieren identifiziert [42]. MIYAKAWA et al. zeigten, dass NFAT5 bei der Antwort auf osmotischen Stress mit Hilfe einer Rel-homologen DNA-Bindedomäne (RHD) an *Tonicity-responsive enhancer* (TonE)-Elemente osmoprotektiver-Gene bindet und so die Expression dieser Gene reguliert [42]. Aufgrund struktureller Ähnlichkeiten durch die RHD zählt NFAT5 mit den Calcineurinabhängigen NFAT 1-4 Proteinen sowie der NF-κB-Gruppe (*Nuclear factor kappa-lightchain-enhancer of activated B-cells*) zur Rel-Familie [43, 44] (Abbildung 4).

Abbildung 4: Schematische Darstellung der Domänenstruktur von NFAT1-5 und NF-\kappaB/Rel. Alle Proteine weisen eine konservierte RHD Domäne (grün) auf. Die N- und C-terminalen Domänen sind nicht über die Gruppen hinaus konserviert (grau). Allein die NFAT1-4 weisen eine Calcium abhängige NHR Domäne (orange) auf (RHD = Rel Homologie Domäne, NHR = NFAT-homologe Region, verändert nach [45]).

Allerdings besitzen, abgesehen von der konservierten RHD die Vertreter der Rel-Familie nur geringe strukturelle Ähnlichkeiten [43]. So fehlt NFAT5 die N-terminale regulatorische NFAT-homologe Domäne (NHR), welche in NFAT 1-4 Proteinen zu finden ist [41, 46]. Sie weisen eine sehr hohe Variabilität in ihrer DNA-Bindung auf, wodurch eine Vielzahl unterschiedlicher Transkripte, wie beispielsweise Signalproteine, Cytokine und Zelloberflächenproteine, reguliert werden können [47]. Weiterhin werden sie in einer Vielzahl von Geweben exprimiert, wie neuralem Gewebe, Endothelzellen, Skelett- und Herzmuskeln, Chondrozyten, Keratinozyten, Adipozyten und in den meisten Immunzellen [47]. Auch die fünf Mitglieder der NF-κB-Gruppe (Rel A, Rel B, c-Rel, p50 und p52) sind untereinander sehr unterschiedlich und weisen sehr heterogene DNA-Bindemotive auf [48]. In Abbildung 5 ist die Domänen-Organisation des NFAT5-Proteins schematisch dargestellt [45].

NFAT5 enthält eine Vielzahl an funktionellen Domänen. Darunter eine NES, AED und NLS Domäne für die Translokation in und aus dem Zellkern, eine TAD1 und TAD2 Domäne zur transkriptionellen Aktivierung sowie eine RHD Domäne zur DNA-Bindung (NES = *nuclear export signal*, AED = *auxiliary export domain*, NLS = *nuclear import signal*, TAD1/2 = Transaktivierungsdomäne1/2, RHD = Rel Homologie Domäne, DD = Dimerisierungsdomäne, verändert nach [45]).

Die Kernimport- und -exportsignale NLS, NES und AED vermitteln den Transport von NFAT5 zwischen Zellplasma und Zellkern. Unter isoosmolaren Bedingungen befindet sich NFAT5 nicht in einem statischen Zustand, sondern liegt sowohl im Zytoplasma als auch im Zellkern in einem aktiven Gleichgewichtszustand vor [42]. Verändert sich die extrazelluläre Osmolalität des Milieus verändert sich die Menge und das Verhältnis von NFAT5 zwischen Kern und Cytosol, wobei hyperosmolarer Stress den nukleären Import und die Akkumulation des Transkriptionsfaktors erhöht, während Hypoosmolalität zu seinem nukleären Export führt [49]. NFAT5 liegt in der Zelle als Homodimer vor und bindet über die Rel Homologie Domäne (RHD) an DNA-Elementen mit einer TGGAAANN (N, beliebiges Nukleotid, siehe Anhang Abbildung 59) Sequenz [45].

1.3.2 Funktion von NFAT5 in der Nierenphysiologie

Die Konzentrierung des Harns und die damit verbundene Aufrechterhaltung des Wasserund Elektrolythaushaltes zählt zu den Hauptfunktionen der Nieren [1]. Dies hat eine hohe interstitielle Osmolalität von bis zu 1200 mosmol/kg insbesondere in marknahen Bereichen in den Nieren zur Folge [19]. Durch seine Funktion als Schlüsseltranskriptionsfaktor reguliert NFAT5 eine Vielzahl von Genen, die für die Adaption der Zellen an eine höhere Osmolalität wichtig sind. So konnte gezeigt werden, dass NFAT5 die Aktivierung von Wasserkanälen, wie Aquaproin-1 (Aqp1, proximalen Tubulus und absteigenden Ast der Henle-Schleife) [50] oder von Aquaproin-2 (Aqp2, Sammelrohr) [51] steuert, was zur Regulierung der Wasserpermeabilität des Nephrons beiträgt. Zusätzlich reguliert NFAT5 die Expression der Urea transporter a (Uta1, Uta3 und Uta4), welche bedeutsam für die Erhöhung der interstitiellen Osmolalität und der Ausscheidung von Harnstoff sind [52]. Ebenfalls steuert NFAT5 unter Hyperosmolalität die Aktivierung der Gene SMIT, BGT1, AR oder TAUT, die eine Akkumulation oder Synthese von Osmolyten in der Zelle zur Folge haben [40]. Weitere Daten beschreiben eine NFAT5-vermittelte-Expression von Hitzeschockproteinen (HSP70), wodurch fehlerhafte Proteinfaltungen verhindert werden [53].

Neben diesen klassischen hyperosmolalitäts-induzierten-Genen zeigen Studien die Regulation hunderter weiterer Gene über die extrazelluläre Osmolalitätserhöhung [54, 55]. Jedoch sind die meisten der identifizierten Gene, die ebenfalls über die Osmolalität sehr stark in ihrer Expression reguliert werden, in Bezug auf eine NFAT5-abhängige-Expression oder die physiologische Rolle in den Nieren kaum charakterisiert. Dazu zählt ebenfalls das, aus letzterer Studie am stärksten regulierte-Gen, *ran-binding protein 3-like (Ranbp3l)* [55].

1.4 Ran-binding protein 3-like - bisherige Forschung

SCHULZE BLASUM et al. konnten insgesamt über 8700 osmolalitätsregulierte-Gene in primärkultivierten-intermedullären-Sammelrohrzellen (IMCD, *inner medulla collectingduct*) von Ratten identifizieren [55]. Zu den am stärksten hochregulierten Genen unter Hyperosmolalität und zugleich kaum charakterisierte zählte das *Ranbp31*, welches für diese Arbeit von besonderem Interesse war [55-57].

RANBP3L zeigt unter seiner Familie die größte Ähnlichkeit zu RANBP3 (siehe Aminosäuresequenz im Anhang unter 8.2), welches schon in diversen Studien als Kern-Transport-Protein beschrieben werden konnte [58-60]. Deshalb wird von einer ähnlichen Funktion von RANBP3L ausgegangen. Die einzige Arbeit außerhalb unseres Labors hat eine RANBP3L Funktion bei der Regulation Signalwegen von von des knochenmorphogenetischen Proteins (bone morphogenic protein, BMP) gezeigt, indem es die Smad-Proteine, in diesem Fall Smad1, 5 und 8, aus dem Kern transportiert [61, 62]. Die Funktion als Kernexport-Protein ist zurückzuführen auf die in RANBP3L-Sequenz konservierte Ran-Bindedomäne (RBD) von etwa 120 Aminosäuren [63, 64]. Das Ras related nuclear protein (Ran) ist ein kleines monomeres G-Protein, welches eine entscheidende Rolle im nukleo-zytoplasmatischen-Transport spielt. Der nukleotidgebundene-Zustand von Ran wird durch das Ran GTPase-activating protein (RanGAP) und durch den Guaninnukleotid-Austauschfaktor RCC1 reguliert [65, 66]. Da RCC1 im Zellkern vorliegt und RanGAP auf das Zytoplasma beschränkt ist, ist Ran im Zellkern primär an GTP und im Cytosol an GDP gebunden, was die treibende Kraft des nukleo-zytoplasmatischen-Transports darstellt. Im Zellkern lagert sich CRM1, auch Exportin1 genannt, mit Ran-GTP und dem NES-tragenden Cargo-Protein zu einem ternären CRM1/Ran/Cargo-Komplex zusammen, der durch den Kernporenkomplex (NPC) ins Zytoplasma transloziert [63] (Abbildung 6).

Abbildung 6: Postulierter Mechanismus der CRM1-abhängigen-Proteintranslokation mittels Ran und RANBP3.

Im Nucleus wird Ran-GDP durch RCC1 zum Ran-GTP umgewandelt. Um Cargo-Proteine (markiert durch ein NES Signal, blau) aus dem Nucleus in das Cytosol zu transportieren formt sich ein ternärer Komplex aus CRM1/Ran-GTP/Cargo-Komplex, welcher durch RANBP3 begünstigt wird. Der Komplex passiert die Kernmembran und zerfällt im Cytosol. Ran-GTP wird im Cytosol zu Ran-GDP durch die RanGAP umgewandelt. RANBP3 und CRM1 können nun erneut die Kernmembran passieren und stehen für einen neuen Zyklus bereit (CRM1 = Chromosomal Maintenance 1/ Exportin 1, GDP = Guanosindiphosphat, GTP = Guanosintriphosphat NES = nuclear export signal, Ran = Ras-related nuclear protein, RanGAP = Ran GTPase-activating protein 1, RANBP3 = Ran-binding protein 3, RCC1 = Regulator der Chromosomenkondensation 1, auch bekannt als Ran-Guanin-Nucleotid-Austauschfaktor, verändert nach [67]).

Andere RBD-haltige Proteine sind beispielsweise das kleine RANBP1 [68] oder RANBP2, auch Nup358 genannt. Letzteres ist ein Riesennukleoporin,welches an der cytosolischen Seite des NPC lokalisiert ist und vier RBDs enthält [69].

SCHULZE BLASUM et al. konnten bereits zeigen, das Ranbp3l-mRNA in der Ratte spezifisch in den Nieren und dort vor allem in den tief gelegenen innermedullären Bereichen und der Papille exprimiert wird [55]. Diese Ergebnisse decken sich mit dem humanen Expressionsmuster von RANBP3L laut der Datenbank GEPIA2 (Abbildung 7). Während RANBP3 eine ubiquitäre Expression aufweist, zeigt RANBP3L eine spezifische Expression in den Nieren und dem Gehirn. Diese Befunde wurden auch durch Immunfluoreszenzaufnahmen der Ratten-Nierenrinde und inneren Medulla validiert [55]. Weiterhin konnte gezeigt werden, dass durch Kultivierung von primären Ratten-IMCD-

Zellen in Medium mit 600 mosmol/kg eine verstärkte RANBP3L-Proteinsynthese im Zellkern zu beobachten ist. Zusätzlich konnte dieser Effekt in Zellen des proximalen Tubulus von Ratten, den NRK-Zellen, bestätigt werden. Somit ist durch extrazelluläre Hyperosmolalität eine Methode vorhanden, die die physiologischen Bedingungen der Nieren *in-vitro* nachahmt und auf deren Grundlage die Rolle von RANBP3L untersucht werden kann [55].

Abbildung 7: Schematische mRNA-Expressionsverteilung von *RANBP3* und *RANBP3L*. Während *RANBP3* eine ubiquitäre mRNA-Verteilung aufzeigt, ist die Expression von *RANBP3L* begrenzt auf die Nieren und das Gehirn. Daten bezogen von GEPIA2 [70] (Datenstand: 14.07.2022).

RANBP3L sowie eine Vielzahl weiterer osmolalitätsregulierter-Gene, die von SCHULZE BLASUM et al. [55] gefunden wurden, konnten in der Studie von KANDABARAU et al. ebenfalls identifiziert werden [56]. Zusätzlich wurde hier gezeigt, dass diese Gene im Nierenzellkarzinom invers reguliert sind und die Expression von 111 Genen davon, sowie auch *RANBP3L*, mit dem Überleben von Nierenzellkarzinom-Patienten korreliert. Ob oder wie die Gene bei der Entstehung oder Progression des Nierenzellkarzinoms eine Rolle spielen ist bislang kaum untersucht.

1.5 Das Nierenzellkarzinom

1.5.1 Klassifikation

Das Nierenzellkarzinom (*renal cell carcinoma*, RCC) ist eine sehr heterogene Tumorentität, die am häufigsten den Epithelzellen des Nephrons entspringt und sich durch verschiedene Subtypen auszeichnet [71]. Die häufigsten Formen bilden das klarzellige-Nierenzellkarzinom (KIRC), mit ca. 70-80 % aller RCC-Fälle [71, 72], das papilläre Karzinom (KIRP) mit etwa 10-15 % [72] sowie das chromophobe Karzinom (KICH, ca. 3-5 %) [72]. Nach der Diagnose kann das Nierenzellkarzinom in 4 Stadien unterteilt werden (Abbildung 8A, siehe Anhang 8.1) [73] wobei mit steigendem Stadium sich die Überlebenswahrscheinlichkeit der Patienten enorm verringert [73, 74] (Abbildung 8B).

A) Einteilung der Stadien des Nierenzellkarzinoms. Bei Stadium 1-2 ist der Tumor lokal auf die Niere begrenzt und wird anhand seiner Größe (Stadium 1 < 7 cm > Stadium 2) kategorisiert. Stadium 3 ist dadurch gekennzeichnet, dass der Tumor beginnt das umliegende Fettgewebe oder benachbarte Blutgefäße zu infiltrieren. Patienten im Stadium 4 besitzen entweder Fernmetastasen oder ein lokal fortgeschrittenes Tumorstadium mit Infiltration über die Grenzen der Gerotafaszie hinaus beziehungsweise Befall mehrerer regionaler Lymphknoten [73] (verändert nach [75]). B) Kaplan-Meier-Plot aus der Studie von CHANG et al. [74] zeigt Verringerung der Überlebenswahrscheinlichkeit mit steigendem Tumorstadium. Hierfür wurden 328 Patienten analysiert. Im Stadium I lag die Überlebensrate bei 85,8 %, im Stadium II bei 85,5 %, im Stadium III bei 59,1 % und im Stadium IV bei 35,7 %.
Frühzeitig entdeckt (Stadium I – Stadium II) ist das Nierenzellkarzinom zwar heilbar, in fortgeschrittenen (ab Stadium III) beziehungsweise metastasierten Stadien jedoch meist nur in palliativer Intension behandelbar [71, 72].

1.5.2 Pathogenese

Zu den Hauptrisikofaktoren für eine Entstehung von RCC zählen arterielle Hypertonie, Nikotinkonsum, geringe physische Aktivität und Übergewicht [71]. Aber auch hereditäre Nierenzellkarzinome sind in der Literatur beschrieben [71]. So gilt der Verlust oder die Inaktivierung des von Hippel-Lindau-Tumorsuppressorgens (VHL) als ein Hauptrisikofaktor für die Entwicklung von RCC [76]. Allerdings zeigten Studien, dass eine Mutation von VHL allein nicht ausreicht, um die Entstehung eines Nierenzellkarzinoms zu induzieren [77]. In dem Maus-Modell von HARLANDER et al. waren zusätzlich Mutationen der Gene Trp53 und Rb1 notwendig [77]. Ebenso sind innerhalb eines Nierenzellkarzinoms auch häufig neben VHL, Deletionen in den Tumorsuppressorgenen PBRM1, SETD2 und BAP1 zu finden [78]. Mittels der Next Generation Sequencing (NGS)-Analyse von Tumorzellen konnten in den letzten Jahren immer mehr solcher Daten bei sinkenden Kosten erfasst werden [79]. So der sehr früh entdeckten VHL-Mutation viele weitere konnten also neben Nierenzellkarzinom-assoziierte-Gene identifiziert werden [80]. Die Mutations- bzw. Expressions-Heterogenität, die sich in Nierenkarzinomzellen beobachten lässt, wirkt sich wiederum auf die unterschiedliche Prognose betroffener Patienten sowie deren Behandlungsmöglichkeiten aus [71]. Zukünftige Herausforderungen liegen also in der Interpretation und Analyse identifizierter Expressionsprofile mit dem Ziel die Ursachen der Erkrankung besser zu verstehen und letztendlich dadurch neue Therapiekonzepte entwickeln zu können [81].

1.6 Osmolalitäsregulierte-Gene im RCC

Wie in Absatz 1.2.3 erwähnt, konnte in Ratten-IMCD-Zellen mittels Sequenzier- und *in-silico*-Analysen gezeigt werden, dass Hyperosmolalität verantwortlich für die Expression und Repression hunderter charakteristischer Gene ist [55]. Viele davon zeigen eine inverse Regulation im Nierenzellkarzinom sowie eine signifikante Korrelation mit der Überlebensrate von KIRC-Patienten [56]. Das Expressionsprofil der top 25 herunterregulierten-Gene in der KIRC-Kohorte aus der TCGA (*The Cancer Genome Atlas*)

Datenbank [82] zeigt zudem bekannte osmolalitätsregulierte-Gene (rot markiert) [56] sowie auch *RANBP3L* auf (Abbildung 9).

Top 25 herunterregulierte Gene in KIRC

Dargestellt sind die top 25 herunterregulierten Gene im klarzelligen Nierenzellkarzinom (KIRC). Darunter auch identifizierte hyperosmolalitätsregulierte-Gene (rot markiert [55]) sowie auch *RANBP3L*. Die Daten stammen aus der TCGA-Datenbank und sind durch das Ualcan-tool dargestellt [83] (Datenstand: 14.07.2022)

Eine genaue Analyse der *RANBP3L*-Expression im Vergleich zu der Kontrollkohorte zeigt eine signifikante Reduktion im RCC und allen drei Subtypen KIRC, KICH und KIRP (Abbildung 10A-B). Zusätzlich scheint allein die Expression von *RANBP3L* ein prognostischer Faktor für das Gesamtüberleben innerhalb der KIRC-Kohorte zu sein (Abbildung 10C). Die Analyse der TCGA-Mutationsdatenbank ergab weiterhin keine weit verbreiteten Mutationen innerhalb der genomischen Region von *RANBP3L* (siehe Anhang 8.11.4), was für eine tatsächliche Herunterregulierung von *RANBP3L* beim Nierenzellkarzinom spricht.

Abbildung 10: Expression von *RANBP3L* im Nierenzellkarzinom sowie dessen prognostische Relevanz. A) Expression von *RANBP3L* im Nierenzellkarzinom (grau) im Vergleich zu den gesunden Kontrollen (weiß). B) Expression von *RANBP3L* separiert nach den Nierenzellkarzinomentitäten KIRC (rot), KICH (blau) und KIRP (gelb) im Vergleich zu den gesunden Kontrollen (weiß). Die Werte wurden mit einem Student's-T-Test analysiert und sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt, ***, p < 0,001. Die Daten stammen aus der TCGA-Datenbank [82, 84] (Datenstand 14.07.2022). C) Kaplan-Meier-Plots für RANBP3L im Nierenzellkarzinom. Alle Kaplan-Meier-Plots wurden mit dem GEPIA2-*Tool* mit der entsprechenden RCC-Kohorte aus TCGA-Daten und normalen Proben (N) erstellt [70]. Die Gruppengrößen sowie die p-Werte sind den Grafiken zu entnehmen (Hoch: Proben mit einem Expressionsniveau, das über dem Median liegt, werden als Hochexpressionskohorte betrachtet. Niedrig: Proben mit einem Expressionsniveau, das unter dem Median liegt, werden als Kohorte mit niedriger Expression betrachtet, Logrank-Test) [85].

Die bis jetzt gezeigten Daten verdeutlichen eine prognostische Relevanz osmolalitätsregulierter-Gene wie *RANBP3L* im Nierenzellkarzinom aber ohne näher auf die nierenspezifische Regulation und zelluläre Funktion einzugehen. Das Fehlen solcher Daten bildet die Intention für die Anfertigung dieser naturwissenschaftlichen Doktorarbeit.

2 Zielstellung

Die Physiologie der Nieren weist einen osmotischen Gradienten zwischen Nieren-Cortex und Medulla auf, wobei sich die Osmolalität in Richtung Medulla aufkonzentriert. Genexpressionsanalysen in innermedullären Sammelrohrzellen (IMCD) von Ratten zeigten hunderte von osmoregulierten-Genen im Vergleich zu Zellen unter isoosmsolaren Bedingungen. Weiterhin scheinen viele dieser Gene über den Transkriptionsfaktor NFAT5 reguliert zu werden. Sie zeigen eine signifikante Korrelation mit der Überlebensrate von Nierenzellkarzinompatienten - vorrangig im klarzelligen Subtyp (KIRC). Eines der am stärksten regulierten Gene war das bis dahin kaum charakterisierte *Ranbp3l (Ran-binding protein 3-like)*. Vorarbeiten zeigten bereits eine nierenspezifische-Expression in Sammelrohrzellen, was eine wichtige Rolle in der Nierenphysiologie impliziert. Im Rahmen dieses Projektes sollte die Expressionregulation von *Ranbp3l* unter Hyperosmolalität weiter charakterisiert sowie dessen Rolle für die Nierenfunktion auf zellulärer Ebene herausgearbeitet werden. Dafür wurden folgende Ziele formuliert:

1) Die in Ratten-IMCD erzeugten Daten sollten in Mausmodellen verifiziert werden.

Dafür musste:

- die etablierte Kultivierung von Ratten-IMCD auf Maus-IMCD-Zellen übertragen werden.
- die Sammelrohrzelllinie mpkCCD für *in-vitro*-Studien als Modellsystem charakterisiert werden.

2) Die Rolle von NFAT5 bei der hyperosmolalitäts-vermittelten-Transkriptionsaktivierung von *Ranbp3l* sollte untersucht werden.

Dafür war es nötig:

- NFAT5 mittels CRISPR/Cas9 in mpkCCD unter Verwendung verschiedener gRNAs sowie einer *Scramble* (Scr)-gRNA auszuschalten.
- *ex-vivo* NFAT5 konditionell durch Zugabe von 4-Hydroxy-Tamoxifen in murinen IMCD auszuschalten.
- eine direkte Interaktion von NFAT5 und RANBP3L über Promotoranalysen zu bestätigen.

3) Die physiologische Funktion von RANBP3L sollte *in-vitro* genauer untersucht werden.

Dafür wurden:

- die mpKCCD-Zelllinie mittels einer CRISPR/Cas9 induzierten RANBP3L-Inaktivierung (analog zum NFAT5-*Knockout*) auf phänotypische Unterschiede dieser Zellen untersucht.
- globale Genexpressionsanalysen der RANBP3L-*Knockout*-Zellen durchgeführt, die zu RANBP3L Zielgenen führen sollten.
- die bioinformatisch identifizierten Zielgene durch Rettungsversuche verifiziert und genauer analysiert.

3 Materialien

3.1 Chemikalien

Alle Grundchemikalien wurden von Sigma (Missouri, USA), Thermo Fisher Scientific (Massachusetts, USA), Invitrogen (Massachusetts, USA), Gibco®Life Technologies (Massachusetts, USA), Merck (Massachusetts, USA) oder Roth (Karlsruhe, Deutschland) bezogen. Alle besonderen Chemikalien sind nachfolgend aufgelistet und entstammen, soweit nicht anders angegeben, den oben genannten Firmen.

Bezeichnung	Hersteller
4-Hydroxytamoxifen	Sigma-Aldrich
DNA Ladder (50 bp-1 kb)	NEB (Massachusetts, USA)
Agarose	Biozym (Oldendorf, Deutschland)
Ampicillin	Sigma-Aldrich
Bacto TM Agar	BD Biosciences (Heidelberg,
	Deutschland)
Bradfordreagenz	Bio-Rad Laboratories (Kalifornien,
	USA)
CaCl ₂	Merck
Collagen IV	Thermo Fisher Scientific
DAPI	Sigma-Aldrich
Dimethylsulfoxid (DMSO)	AppliChem (Darmstadt, Deutschland)
destilliertes Wasser	Apotheke des Uniklinikums Halle
	(Saale)
Ethidiumbromid, 1 % wässrige Lösung	Carl Roth
Fluoroshield TM	Sigma-Aldrich
Formaldehyd	Thermo Fisher Scientific
G418 (Geneticin)	Invitrogen
Gelatine (50%ig)	Sigma-Aldrich
Glycerol	Merck
Kanamycin	Sigma-Aldrich
LB Broth	Sigma-Aldrich
Milchpulver	Carl Roth
Natriumchlorid	Carl Roth
NuPAGE [™] LDS-Probenpuffer (4x)	Invitrogen
NuPAGE [™] MES SDS Laufpuffer (20X)	Invitrogen
Oligo-dT Primer	Invitrogen
Phalloidin-Alexa Fluor™ 488	Invitrogen
Phalloidin-Alexa Fluor™ 568	Invitrogen
PBS	Sigma-Aldrich

Ponceau S Penicillin/Streptomycin Puromycin (10 mg/ml) Random Hexamere SeeBlue[™] Plus2 Pre-stained SYBR[™] Select Master Mix für CFX

Triton X-100 Trypsin-EDTA TurboFect Tween® 20 Urea X-Gal-Lösung

3.2 Allgemeine Materialien

Bezeichnung

Amersham[™] Protran® 0,2 µm Deckgläser, 12 mm Durchmesser Filterspitzen 10, 20, 100, 200, 1000 µl Flüssigprobenbeutel Whirl-Pak® Hard-Shell PCR Plates, 96-*well*, weiß IncuCyte® ImageLock 96-*well* Platten Microseal 'B' PCR Plate Sealing Film Mini Trans-Blot Neubauer Zählkammer 0,1 mm

Novex[™] 4-20% Tris-Gycin-Gele Objektträger Mattrand, 76 x 26 mm Serologische Pipetten 5, 10, 25 50 ml Whatman[™] Chromatography Paper 3 mm XCell SureLock Mini-Cell Modul Zellkulturflasche 25,75 cm² Zellkulturplatte 6, 12, 24, 48, 96F *well* Zellkulturschale 100

3.3 Geräte

Bezeichnung

BioPhotometer® D30 Bio-Rad CFX Connect[™] Real-Time System ChemiDoc[™]MP Imaging System Digital Graphic Printer UP-D890 Chem Cruz (Santa Cruz, USA) Gibco®Life Technologies Sigma-Aldrich Invitrogen Applied Biosystems (Massachusetts, USA) Merck Sigma-Aldrich Thermo Fisher Scientific Merck Sigma-Aldrich biomol (Hamburg, Deutschland)

Hersteller

GE Healthcare (Illinois, USA) VWR (Darmstadt, Deutschland) Biozym Carl Roth **Bio-Rad Laboratories** Sartorius (Göttingen, Deutschland) **Bio-Rad Laboratories Bio-Rad Laboratories** Marienfeld (Lauda-Königshofen, Deutschland) Invitrogen Süsse, (Wuppertal, Deutschland) Sarstedt (Nümbrecht, Deutschland) **GE** Healthcare Thermo Fisher Scientific TPP® (Trasadingen, Schweiz) **TPP**® TPP®

Hersteller

Eppendorf, (Hamburg, Deutschland) Bio-Rad Laboratories Bio-Rad Laboratories Sony Corporation (Tokio, Japan) **Digital Sonifier 250** HeraeusTM Biofuge fresco HeraeusTM HERAcell Brutschrank Heraeus[™] HERAsafe KSP HeraeusTM Multifuge 1 S-R IncuCyte S3® Live-Cell Analysis System Keyence BZ-9000 LSRFortessaTM Cell Analyzer Mini Trans-Blot® Cell New BrunswickTM Excella® E24 (Schüttler) T100TM Thermal Cycler ThermoMixer F1.5 Gellaufkammer UVP UVsolo touch Geldokumentationssystem PowerPac[™] Basic Power Supply Sub-Cell GT Cell (Laufkammer) Spark® Multimode Mikroplatten Reader Sprout[®] Mini Zentrifuge Vortex Genie 2 WoundMakerTM XCell II Blot Module (Transferkammer)

3.4 Wissenschatfliche Software

Bezeichnung

Bio-Rad CFX Manager 3.1 **Bio-Rad CFX Maestro 2.0 GraphPad Prism 8** Incucyte[®] Analysis Software Zen 3.0 blue edition Image Lab Software

3.5 **Kits**

Bezeichnung

GenEluteTM Gel Extraction GenEluteTM Mammalian Genomic DNA Miniprep Sigma-Aldrich GenEluteTM Mammalian Total RNA Miniprep Sigma-Aldrich GenEluteTM PCR Clean-Up Sigma-Aldrich GeneJET Plasmid Miniprep Thermo Fischer Scientific M-MLV Reverse Transkriptase Invitrogen Luciferase Assay System Promega Pierce[™] ECL Western Blotting Substrate Thermo Fischer Scientific

Branson (Connecticut, USA) Thermo Fisher Scientific Thermo Fisher Scientific Thermo Fisher Scientific Thermo Fisher Scientific Sartorius (Göttingen, Deutschland) Keyence (Osaka, Japan) BD (New Jersey, USA) **Bio-Rad Laboratories** Eppendorf **Bio-Rad Laboratories** Eppendorf **Bio-Rad Laboratories** Analytik Jena (Jena, Deutschland) **Bio-Rad Laboratories Bio-Rad Laboratories** Tecan (Männedorf, Schweiz) Roth Thermo Fisher Scientific Sartorius Thermo Fisher Scientific

Hersteller

Bio-Rad Laboratories Bio-Rad Laboratories GraphPad Software Sartorius Carl Zeiss (Jena, Deutschland) **Bio-Rad Laboratories**

Hersteller

Sigma-Aldrich

PureLinkTM HiPure Plasmid Filter Maxiprep QuickChange II Mutagenese TOPO® TA Cloning[®]

Invitrogen Agilent (Santa Clara, USA) Invitrogen

3.6 Enzyme

Restriktionsenzyme	Schnittstelle	Hersteller
AscI	GG/CGCGCC	Thermo Fischer Scientific
BsmBI	CGTCTCN/NNNN	Thermo Fischer Scientific
PacI	TTAAT/TAA	Thermo Fischer Scientific
SacI	GAGCT/C	Thermo Fischer Scientific
XhoI	C/TCGAG	Thermo Fischer Scientific

weitere Enzyme

Hyaluronidase Kollagenase Typ 2 Proteinase K (0,5 mg/ml) T4-Ligase *Jumpstart Taq* DNA-Polymerase

Hersteller

Sigma-Aldrich Cellsystems (Troisdorf, Deutschland) Sigma-Aldrich Thermo Fischer Scientific Sigma-Aldrich

Alle weiteren nicht speziell aufgelisteten Enzyme entstammen aus dazugehörigen Kits.

3.7 Plasmide

CRISPR/Cas9 Knockout Plasmide	Hersteller
Crispr lenti v2	addgene-# 98290
Crispr lenti v2-Scr-gRNA	laborintern hergestellt
Crispr lenti v2-gRNA1-mNfat5	laborintern hergestellt
Crispr lenti v2-gRNA2-mNfat5	laborintern hergestellt
Crispr lenti v2 gRNA3-mNfat5	laborintern hergestellt
Crispr lenti v2-gRNA1-mRanbp31	laborintern hergestellt
Crispr lenti v2-gRNA2-mRanbp3l	laborintern hergestellt
Crispr lenti v2-gRNA3-mRanbp3l	laborintern hergestellt
SGL40C.EFS.dTomato	AG Heckl, addgene - #89395
SGL40C.EFS.dTomato-Scr-gRNA	laborintern hergestellt
SGL40C.EFS.dTomato-gRNA1-Sparc	laborintern hergestellt
SGL40C.EFS.dTomato-gRNA2-Sparc	laborintern hergestellt

Virus Plasmide	Hersteller
pLP1	ViraPower TM Lentiviral Packaging Mix (Thermo)
pLP2	ViraPower TM Lentiviral Packaging Mix (Thermo)
VSVG	ViraPower TM Lentiviral Packaging Mix (Thermo)

Luciferase Plasmide	Hersteller
PGL3-promMx1	addgene - #30536
PGL3-2 kb-mRanbp31	laborintern hergestellt
PGL3-0,8 kb-mRanbp31	laborintern hergestellt
PGL3-0,8 bp-quick1-mRanbp31	laborintern hergestellt
PGL3-0,8 bp-quick2-mRanbp31	laborintern hergestellt
PGL3-0,8 bp-quick1+2-mRanbp31	laborintern hergestellt
GFP-Kontrollplasmid	addgene - # 6085-1
RANBP3L Überexpression	Hersteller
	11 # 11707

V180-Leervektor	addgene-# 11707
V180-RANBP3L-Flag	laborintern hergestellt

Von den kommerziell erhältlichen Plasmiden sind die dazugehörigen Vektorkarten im Anhang unter 8.1 hinterlegt.

3.8 Antikörper

Die Antikörper wurden von den Firmen Abcam (Cambridge, Vereinigtes Königreich), Cell Signaling (Massachusetts, USA), Sigma Aldrich, Jackson ImmunoResearch (Ely, Vereinigtes Königreich) oder Thermo Fisher Scientific bezogen.

Primärantikörper	Host	Verdünnung	Kopplung
NFAT5 (ab3446)	Kaninchen	1:1000	-
GAPDH (14C10)	Kaninchen	1:5000	-
SMAD2 (5339)	Kaninchen	1:500	-
p-SMAD2 (Ser465/467) (138D4)	Kaninchen	1:500	-
c-JUN (9165)	Kaninchen	1:500	-
p-c-JUN(Ser63) (2361)	Kaninchen	1:500	-
ANTI-FLAG® M2 (F1804)	Maus	1:1000	-
Sekundärantikörper	Host	Verdünnung	Kopplung
IgG anti-Kaninchen (111-035-144)	Ziege	1:1000	Meerrettichperoxidase
IgG anti-Kaninchen (A-11008)	Ziege	1:1000	Alexa Fluor 488
IgG anti-Maus (A-11004)	Ziege	1:1000	Alexa Fluor 568

Bei Verwendung der Antikörper im Western Blot wurden die Primärantikörper (gegen NFAT5, GAPDH) in der Blockierlösung verdünnt (5 % Magermilchpulver in PBST, siehe 3.9) und der Sekundäerantikörper (IgG anti-Kaninchen+Meerrettichperoxidase) in PBST. Für die Immunfluoreszenzanalysen wurden die jeweiligen Primärantikörper (gegen NFAT5, SMAD2, p-SMAD2, c-JUN, p-c-JUN, FLAG-M2) in einer 0,3 % igen Gelatinelösung (siehe

3.9) verdünnt. Die Sekundärantikörper (IgG anti-Kaninchen + Alexa Fluor 488, IgG anti-Maus+ Alexa Fluor 568) dagegen wurden in PBS verdünnt.

3.9 Puffer und Lösungen und Zellkulturmedien

Die zur Puffer- und Lösungsherstellung verwendeten Chemikalien stammen von den Firmen AppliChem, Carl Roth, Merck sowie Sigma und entsprechen dem höchsten Reinheitsgrad. Zellkulturmedien wurden von Sigma bezogen. Weitere nicht explizit aufgeführte Standard-Puffer und Lösungen wurden nach MANIATIS ET. AL. [86] hergestellt.

PCR und Elektrophorese	Bestandteile
DNA-Probenpuffer, 6x	50 % (v/v) Glycerol 50 % (v/v) TAE
	Bromphenolblau
TAE-Puffer, 50x	2 M Tris-Base
	2 M Eisessig
	pH 8 0
	ph 0,0
SDS-PAGE und Western Blot	Bestandteile
Transferpuffer	25 mM Tris
	190 mM Glycin
	20 % (v/v) Methanol
Waschpuffer	0,1 %Tween-20 in PBS
Blockierlösung	5 % Magermilchpulver in Waschpuffer
Immunfluoreszenz (IF)	Bestandteile
Fixierpuffer	5 % Formaldehydlösung in PBS
Dormochiliciorungenuffor	0.1 % Trition V 100 in PPS
renneabhsierungsputter	0,1 % 1111011 A-100 III FBS
IF Blockierlösung/Waschlösung	0,3 % Gelatine in PBS
Zellkulturmedien	Bestandteile
DMFM/E12 Vollmedium für mpkCCD	+ 10 % FKS
	+ 100 JJ/ml Penicillin
	+ 100 U/ml Streptomycin
	· · · · · · · · · · · · · · · · · · ·
DMEM Medium für HEK293-T	+ 10 % FKS
	+ 100 U/ml Penicillin
	+ 100 U/ml Streptomycin

DMEM Medium für Primärkultur

+ 1 % Ultroser
+ 1 % essenzielle Aminosäuren
+ 100 U/ml Penicillin
+ 100 U/ml Streptomycin

3.10 Zellen und Bakterien

Eukaryotische Zellen

primäre Nierenzellkultur aus Mausnieren [87]

• Kultivierung von IMCD-Zellen (*Inner medullary collecting duct*, innermedulläre Sammelrohrzellen)

mpKCCD-Zelllinie [88]

- abgeleitet aus kortikalen Sammelrohrzellen einer transgenen Maus (*cortical collecting duct*, mpKCCD)
- enthalten integriertes SV40 large T-Antigen

HEK293-T Zelllinie, ATCC-CRL-3216, [89]

- abgeleitet von humanen embryonalen Nierenzellen, adhärent
- enthalten integriertes SV40-large T Antigen

Prokaryotische Zellen

E. coli DH5α (Thermo Fisher Scientific, 18265017)

• Genotyp: F- Φ 80lacZ Δ M15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ -

3.11 Oligonukleotide

Alle verwendeten Primer wurden von der Firma Biolegio (Nijmegen, Niederlande) synthetisch hergestellt.

3.11.1 Primer für guide-RNA-Klonierung

Die *guide*-RNA (gRNA)-Sequenzen (20 Nukleoteide) wurden mittels CHOP CHOP (siehe 4.4.1) generiert. Die Primer für die Klonierung der gRNA-Sequenz in den Crispr lenti v2 Vektor (3.7) wurden nach SANJANA et al. [90] designt (siehe 4.4.1.2).

Name	5'-3'
Kontroll-gRNA (Scramble gRNA)	
Scramble-gRNA-O1	CACCGATATCCGGAATTCGCGCGAT
Scramble-gRNA-O2	AAACATCGCGCGAATTCCGGATATC

Nfat5 gRNAs

Nfat5 gRNA1-O1	CACCGCAATCTCGTCGTTTGACCCC
Nfat5 gRNA1-O2	AAACGGGGTCAAACGACGAGATTGC
Nfat5 gRNA2-O1	CACCGTTTCGTTTTCGTGATTTACG
Nfat5 gRNA2-O2	AAACCGTAAATCACGAAAACGAAAC
Nfat5 gRNA3-O1	CACCGGTTACTTACCCCCACGGCTG
Nfat5 gRNA3-O2	AAACCAGCCGTGGGGGTAAGTAACC

Ranbp3l gRNAs

1 0	
Ranbp3l-gRNA1-O1	CACCGCTTTGTCTCAAACGCGTCTG
Ranbp3l-gRNA1-O2	AAACCAGACGCGTTTGAGACAAAGC
Ranbp3l-gRNA2-O1	CACCGTTGCGACTGAACGACACGGC
Ranbp3l-gRNA2-O2	AAACGCCGTGTCGTTCAGTCGCAAC
Ranbp3l-gRNA3-O1	CACCGCAGCTGACGCGTGCACGAAC
Ranbp3l-gRNA3-O2	AAACGTTCGTGCACGCGTCAGCTGC

Sparc gRNAs

Sparc g	RNA1-01
Sparc g	RNA1-O2
Sparc g	RNA2-01
Sparc g	RNA2-02

CACCGCGGTGCAGAGGAAACGGTCG AAACCGACCGTTTCCTCTGCACCGC CACCGGGGCCCTCCCGGCCAGGCAA AAACTTGCCTGGCCGGGAGGGCCCC

3.11.2 Primer für Target-Amplifizierung und Sequenzierung

Die Primer für die Amplifizierung der Zielsequenz mittels PCR wurden in dem integrierten *Primer-BLAST tool* von NCBI (*National Center for Biotechnology Information*) erstellt (siehe 4.11.1) [91].

5'-3'
AGCATCCATCAACCCCGAAG
TGTGGATACCAACCCATTTCCA
AGCCAGCCTAGGTGAAAACA
TCTTCGGGGTTGATGGATGC
ATCGATCTCCACCCACTACGA
TGAGGCATCAGAGTGTCAGG
AGCCAGGCCTAATAGTGTCA
GTAGTCCACCCTCGGGTTTAT
GTTTTACATGCGAGGCGAGA
CCACCCTTCCCCAGACATAC
CCCCTCACTTTCTTCTGGGTT

mSparc-gRNA1-antisense	ATCTTGGTGACCGGATGTGAC
mSparc-gRNA2- <i>sense</i>	GCTCTAAACAAGGTGGCGTC
mSparc-gRNA2-antisense	GGTTTGTTCCCTAAAGCTGGG

3.11.3 Standardsequenzierprimer

Die Sequenzen der Standardsequenzierprimer (bis auf GL-2) wurden von addgene bezogen (https://www.addgene.org/mol-bio-reference/sequencing-primers/; Stand: 24.07.2022). Die Sequenz von GL-2 entstammt vom Promega aus dem *Luciferase Assay System*-Kit.

Name	5'-3'
M13 sense	TGTAAAACGACGGCCAGT
U6 Primer sense	GAGGGCCTATTTCCCATGATT
RV-3	CTAGCAAAATAGGCTGTCCC
GL-2	CTTTATGTTTTTGGCGTCTTCCA
CMV-sense	CGCAAATGGGCGGTAGGCGTG

3.11.4 quantitative PCR-Primer

Primer für die quantitative PCR (qPCR) wurden ebenfalls mittels NCBI erstellt [91].

Name (alle Primer für *mus musculus*) 5'-3'

Gapdh-real sense	TGGCCTTCCGTGTTCCTACC
Gapdh-real antisense	GGTCCTCAGTGTAGCCCAAGATG
Ranbp31-real sense	GAACTCTCCCAGCAGAAAGC
Ranbp31-real antisense	CAAGTCTCTGTGCTCTGTGG
Aqp2-real sense	CACCGGCTGCTCCATGAATCC
Aqp2-real antisense	TCCGCCTCCAGGCCCTTGAGC
Slc6a12-real sense	CTGGGAGAGACGGGTTTTGGGTATTACATC
Slc6a12-real antisense	GGACCCCAGGTCGTGGAT
Nfat5 exon 4-5 sense	TACAGCCTGAAACCCAACAC
Nfat5 exon 4-5 sense	ACTCGACCAGAATCATTGCC
Sparc-real sense	CCTGGACTACATCGGACCAT
Sparc-real antisense	GCCCTCATCTCTCGTACA
Col4a1-real sense	GCAACATCAACAACGTCTGC
Col4a1-real antisense	ACTGCGGAATCTGAATGGTC
Col4a2-real sense	CCCTGGTATCTCTCCACCAT
Col4a2-real antisense	TGATTCCAGGAAGTGCGTTT
Sh3gl2-real sense	AAAGAAATCGCCGAGTCGAG
Sh3gl2-real antisense	GGCAAACTCTAGGCTCATCC
Aldh2-real sense	AAGGGAACAAGGAGGACGTA

Aldh2-real antisense	CCAAATCCACCAGGTACGAG
Hoxa7-real sense	CTCTGCAGTGACCTCGCCAA
Hoxa7-real antisense	CTCTGCAGTGACCTCGCCAA

3.11.5 Primer für Quick-Change-Mutagenese

Primer für eine gerichtete Mutagenese des *Ranbp3l*-Promotors wurden mittels des *QuikChange Primer Design tools* der Firma Agilent erstellt (siehe 4.11.4.3).

Name	5'-3'
RANBP3L-Prom1-(2 kb)-sense	CCGGCAGAGCTCACCAGGAATAGCCACTACAACAT
RANBP3L-Prom1-(2 kb)-antisense	GGCCTACTCGAGGGTACCAACGATCTGGCTGTGAC
RANBP3L-Prom2-(0.8 kb)-sense	CCGGCAGAGCTCTTACAGAGTCCGAGAGTCCCAGC
RBP3L-Prom2-(0,8 kb)-antisense	GGCCTACTCGAGGGTACCAACGATCTGGCTGTGAC
Quick-Mut-1-sense	CTGGTCAGGAGCGCATTTTTTTGTACTGCTGGGAC TCTCGGACTCTGT
Quick-Mut-1-antisense	ACAGAGTCCGAGAGTCCCAGCAGTACAAAAAATG CGCTCCTGACCAG
Quick-Mut-2-sense	CAGTTATTCTCAGGCACAAGCGAAATTTTTTAGAT CCAGCTGGATCTGGTC
Quick-Mut-2-antisense	TCCTGACCAGATCCAGCTGGATCTAAAAAATTTCG CTTGTGCCTGAGAATAACG

3.11.6 RANBP3L V180 Vektor-Klonierung

Primer für die Vektor-Klonierung des proteinkodierenden Bereichs von *Ranbp31* (NCBI Referenzsequenz: NM_198024.2) wurden ebenfalls mittels NCBI erstellt [91].

Name	5'-3'
AscI Primer-sense	CACCGGGCGCGCCATGTCTACAACACAAAGGAAAG
PacI Primer-antisense	GCACCTTAATTAATTATGAACAGACAATTGACTGTC

4 Methoden

4.1 Allgemeine Zellkulturstammhaltung

Die Kultivierung aller in dieser Arbeit genutzten Zellen erfolgte in einem Inkubator bei 37°C, 5 % CO₂-Gehalt und 95 % Luftfeuchte. Alle Methoden, die zum Passagieren sowie Manipulieren der Zellen angewandt wurden, wurden stets an einer sterilen Sicherheitswerkbank durchgeführt. Zellkulturmedien, PBS-Waschpuffer und 1x-Trypsin/EDTA wurden vor ihrer Anwendung in einem Wasserbad auf 37°C erwärmt und nach Gebrauch wieder bei 4°C gelagert.

4.1.1 Kultivierung der immortalisierten Zelllinien mpkCCD und HEK-293T

Die *human embryonic kidney 293T cells* (HEK-293T-Zellen) wurden in *Dulbecco's Modified Eagle Medium* (DMEM) supplementiert mit 10 % fötalem Kälberserum (FKS), sowie 1 % Penicillin/Streptavidin (100 U/ml) kultiviert.

Dagegen erfolgte die Kultivierung der *mouse cortical collecting duct* (mpkCCD)-Zellen in *Dulbecco's Modified Eagles Medium/Nutrient Mixture F-12 Ham* (DMEM/F12) Medium mit 10 % fötalem Kälberserum (FKS) und 1 % Penicillin/Streptavidin (100 U/ml).

4.1.2 Passagieren und Zellzahlbestimmung der Zelllinien

Zum Passagieren der Zellen wurde zunächst das alte Medium vollständig abgenommen und die Zellkulturflasche einmal mit PBS gewaschen. Zum Lösen der adhärenten Zellen vom Flaschenboden wurde je nach Flaschengröße 0,5-2 ml 1x-Trypsin/EDTA eingesetzt und die Zellkulturflasche für 5-10 min bei 37°C inkubiert, bis sich alle Zellen vom Boden abgelöst hatten. Danach wurde je nach Flaschengröße 2-10 ml Medium zugegeben und durch mehrmaliges Auf- und Abpipettieren die Zellen vereinzelt. Zum Weiterführen wurden 500-1000 µl (je nach Anzahl von Kultivierungstagen und Größe der Zellkulturflasche) in eine neue Zellkulturflasche mit Medium überführt (25 cm²: 5 ml Medium, 75 cm²: 10 ml Medium). Das Passagieren von Zellen im 6-, 24-, 48- oder 96-*well* Formaten erfolgte nach demselben Prinzip, jedoch mit an die Größen der *well*-Platten angepassten Volumina. Für experimentelle Untersuchungen wurde die Zellzahl mit der Zählkammer nach Neubauer bestimmt und in das entsprechende *Well*- oder Flaschenformat mit dem entsprechenden Medienvolumen ausgesät.

4.1.3 Kultivierung unter extrazellulärer Hyperosmolalität

Für die Kultivierung aller Zellen wurde Medium mit einer Osmolalität von ca. 300 mosmol/kg verwendet (isoosmolar). Um die Expression von osmotisch-regulierten-Genen in der mpkCCD-Zelllinie zu induzieren, wurden die Zellen unter 600 mosmol/kg kultiviert. Hierfür wurde die Osmolalitat des Mediums durch die Zugabe von 100 mM NaCl und 100 mM Urea erhöht. Um die Osmolalitätserhöhung zu verifizieren, wurde im Zentrallabor des Universitätsklinikums die Osmolalität des Mediums mit Hilfe eines Osmometers gemessen. Für die Adaption der Zellen von 300 mosmol/kg auf 600 mosmol/kg war es wichtig die Zellen auf 450 mosmol/kg für mindestens 24 h zwischenzukultivieren. Dieses Medium wurde durch Mischen gleicher Teile des 300er und 600er Mediums hergestellt.

4.2 Allgemeine molekularbiologische Methoden

4.2.1 Herstellung chemisch kompetenter E. coli

Zur Herstellung kompetenter Bakterien wurde der DH5 α Bakterienstamm verwendet. Dafür wurde 1 ml einer Übernachtkultur in 100 ml LB-Medium überführt und bis zu einer OD_{600 nm} von 0,5 bei 37°C inkubiert. Anschließend wurden die Bakterien für 15 min bei 4000 x g und 4°C zentrifugiert. Der Überstand wurde verworfen und das Pellet in 25 ml 100 mM CaCl₂ (4°C) resuspendiert und 30 min auf Eis inkubiert. Es erfolgte eine erneute Zentrifugation für 15 min bei 4000xg und 4°C. Der Überstand wurde verworfen und das Pellet in 1,6 ml 100 mM CaCl₂ (4°C) resuspendiert. Nach Zugabe von 400 µl Glycerin wurde das Gemisch in kalte, sterile Eppendorfgefäße zu je 100 µl aliquotiert und bei -80°C gelagert.

4.2.2 Transformation von E. coli

Zur Transformation wurden chemisch kompetente *E. coli* (DH5α) auf Eis aufgetaut und 100-1000 ng Plasmid hinzupipettiert. Nach einer 30-minütigen Inkubation auf Eis folgte ein Hitzeschock bei 42°C für 2 Minuten. Danach wurden 400 µl LB-Medium hinzugegeben und die Zellen bei 37°C für 1 h schüttelnd inkubiert. Der Ansatz wurde anschließend bei 8000 x g für 3 min zentrifugiert und der Überstand verworfen. Das Pellet wurde im Restmedium resuspendiert und auf vorgewärmte LB-Agarplatten mit entsprechendem Antibiotikum ausplattiert und bei 37°C über Nacht kultiviert.

4.2.3 Mini-Präparation

Zur Gewinnung von Plasmiden wurden transformierte Einzelklone in 3 ml LB-Flüssigmedium mit dem jeweiligen Antibiotikum überführt und bei 37°C schüttelnd über Nacht inkubiert. Die Aufreinigung der DNA der Plasmide erfolgte am darauffolgenden Tag mit dem GeneJET *Plasmid Mini prep Kit* (Thermo) nach Angaben des Herstellers.

4.2.4 Sequenzierung

Zur Überprüfung der Sequenzen wurden die gewünschten DNA-Proben von der Firma GATC/Eurofins sequenziert. Dazu wurde DNA mit 1 μ l 10 μ M Primer (spezifisch für jeden Versuch) versetzt und mit ddH₂O auf 10 μ l aufgefüllt und versandt.

4.2.5 Maxi-Präparation

Nach Bestätigung der korrekt klonierten Plasmid-DNA mittels der Sequenzierung aus 4.2.4 wurde eine Übernachtkultur in 200 ml LB-Flüssigmedium mit dem jeweiligen Antibiotikum angesetzt und bei 37°C schüttelnd über Nacht inkubiert. Die Isolation der Plasmid-DNA erfolgte mit dem *PureLink HiPure Plasmid Filter Kit* nach Angaben der Firma Invitrogen. Die Elution der DNA erfolgte in 500-1000 µl H₂O. Die Proben wurden bei -20°C gelagert.

4.2.6 Isolation genomischer DNA

Für die Isolation der genomischen DNA wurden die Zellen wie in Punkt 4.1.2 trypsiniert und nachfolgend bei 400 x g für 5 min zentrifugiert. Aus den pelletierten Zellen wurde mit dem *GenElute Mammalian Genomic DNA Miniprep Kit* nach Herstellerangaben genomische DNA isoliert und je nach Pelletgröße in 100-200 µl Elutionspuffer eluiert. Die Konzentration wurde am BioPhotometer® D30 bestimmt und bis zur Verwendung bei -20°C gelagert.

4.2.7 Polymerasekettenreaktion

Zur Amplifikation von spezifischen DNA-Fragmenten wurde ein standardisiertes PCR-Protokoll nach dem folgenden Reaktionsansatz verwendet:

Komponenten	Menge
10x PCR Reaction Buffer	5 µl
dNTP-Mix (10 mM)	1 µl
Primer sense (10 mM)	1 µl
Primer antisense (10 mM)	1 µl
JumpStart Taq DNA Polymerase	0,5 µl
DNA	x µl
H ₂ O	ad 50 µl

Tabelle 1: Reaktionsansatz des standardisierten PCR-Protokolls zur Amplifizierung spezifischer DNA-Fragmente

Die PCR-Reaktionen wurden nach den folgenden Programmen durchgeführt:

Tabelle 2: Programm des standardisierten PCR-Protokolls zur Amplifizierung spezifischer DNA-Fragmente

Programmschritt	Temperatur	Zeit	
Initiale Denaturierung	95°C	3 min	
Denaturierung	95°C	30 s	
Annealing	56°C	30 s	35 Zyklen von 2-4
Elongation	72°C	30 s-90 s	-
Finale Elongation	72°C	5 min	
Hold	4 C	∞	
	Programmschritt Initiale Denaturierung Denaturierung Annealing Elongation Finale Elongation Hold	ProgrammschrittTemperaturInitiale Denaturierung95°CDenaturierung95°CAnnealing56°CElongation72°CFinale Elongation72°CHold4 C	ProgrammschrittTemperaturZeitInitiale Denaturierung 95° C3 minDenaturierung 95° C30 sAnnealing 56° C30 sElongation 72° C 30 s -90 sFinale Elongation 72° C 5 min Hold 4 C ∞

Die Dauer der Elongationsphase wurde je nach erwarteter Fragmentlänge und verwendeter Polymerase mit etwa 1000 bp/min angepasst.

4.2.8 Agarose-Gelelektrophorese

Zur größenabhängigen Auftrennung der PCR-Produkte wurde die Agarose-Gelelektrophorese angewendet. Es wurden je nach erwarteter Produktgröße 1-3 %-ige Agarose-Gele hergestellt. Die Agarose wurde in 1x-TAE-Puffer durch Erhitzen in einer Mikrowelle vollständig gelöst und nach Zugabe von 0,5 µg/ml Ethidiumbromid (EtBr) in eine horizontale Gelkammer gegossen. Nach dem Erhärten des Gels wurde es vollständig mit 1x-TAE-Puffer bedeckt. Die aufzutragenden Proben wurden mit 5x-Probenpuffer versetzt (Bromphenolblau) und in die Taschen des Gels pipettiert. Als Größenstandard wurden 5 µl der GeneRuler DNA Ladder (50bp-1kb) mit aufgetragen. Der Lauf erfolgte anschließend bei einer Spannung von 100-120 V für 30-60 min. Das Gel wurde anschließend unter UV-Licht (UVP UVsolo touch Geldokumentationssystem) analysiert.

4.2.9 Aufreinigung der DNA

4.2.9.1 Aufreinigung aus dem PCR Ansatz

Für die Aufreinigung der PCR-Produkte aus dem PCR-Ansatz wurde das *GenElute PCR Clean-Up Kit* nach Angaben des Herstellers verwendet. Je nach Stärke der Bande im Gel wurde die DNA in 20-50 µl eluiert.

4.2.9.2 Aufreinigung aus dem Agarosegel

Für die Aufreinigung von PCR-Produkten aus dem Agarosegel wurde die entsprechende DNA-Bande aus dem Gel ausgeschnitten und anschließend mit dem *GenElute Gel Extraction Kit* nach Angaben des Herstellers aufgereinigt. Je nach Stärke der Bande im Gel wurde die DNA in 20-50 µl eluiert.

4.2.10 RNA-Isolation und cDNA-Synthese

Für die RNA-Isolierung wurde das *Gen Elute Mammalian Total RNA Miniprep Kits* von Sigma nach Angaben des Herstellers verwendet.

Die Elution der RNA erfolgte je nach eingesetzter Zellmenge in 20-50 μ l Elutionspuffer. Die RNA-Konzentration wurde photometrisch bestimmt und bis zur Verwendung bei -20°C gelagert. Zur Erzeugung der cDNA wurde das M-MLV-RT-Protokoll (Invitrogen) verwendet und 1 μ g RNA nach dem folgenden Reaktionsansatz umgeschrieben:

Tabelle 3: Reaktionsansatz der cDNA-Synthese aus 1µg RNA

Komponenten	Menge
Oligo dT (100 µM)	0,5 µl
Random Hexamer-Primer (100 µM)	0,5 µl
dNTP-Mix (10 mM)	1 µl
RNA	1 µg
H ₂ O	ad 13 µl

Es erfolgte eine 5-minütige Inkubation bei 65°C.

Komponenten	Menge
5x-First Strand Buffer	4,0 µl
DTT (0,1 M)	2,0 µl
	19 ul

Nach 2-minütiger Inkubation bei 37°C wurde 1 µl *Moloney Murine Leukemia Virus Reverse Transcriptase* (M-MLVRT) zum Ansatz gegeben und 10 min bei 2°C inkubiert. Nach 50 min bei 37°C wurde die Reaktion mit 70 °C für 15 min abgeschlossen. Bis zur weiteren Verwendung wurden die Proben bei -20°C gelagert.

4.2.11 Quantitative PCR (qPCR)

Mittel der quantitative PCR (qPCR), auch *real time* PCR genannt, können relative Genexpressionsunterschiede zwischen einer Kontrolle und einer spezifisch behandelten Probe charakterisiert werden. Dazu dient ein DNA-interkalierender Farbstoff (hier *SYBR-Green*), wodurch anhand der daraus resultierenden Fluoreszenz die relative DNA-Menge bestimmt werden kann. Als *"Housekeeping-Gene"* wurde Glycerin-Aldehyd-3-phosphat-dehydrogenase (*Gapdh*) mitgeführt. Vor der Verwendung der in 4.2.10 hergestellten cDNA wurde diese 1:20 verdünnt. Die qPCR erfolgte im 96-*well* Format mit folgendem Reaktionsansatz pro *well*:

Tabelle 4: Reaktionsansatz der qPCR pro well mit SYBR® Select Master Mix für CFX

Komponenten	Menge
2x SYBR Select Master Mix für CFX	5 µl
Primer sense (10 mM)	1 µl
Primer antisense (10 mM)	1 µl
cDNA (12,5 ng/µl)	3 µl
	10 µl Gesamtvolumen

Für jede Kombination aus Probe und Primerpaar wurden technische Duplikate vermessen. Die qPCR wurde anschließend nach dem Programm von Tabelle 5 in einem Thermocycler (CFX ConnectTM *Real-Time System*) durchgeführt:

Tabelle	5: Programm	für die	aPCR 1	mit SYB	R® Select	Master	Mix für	CFX
			1 - 0			1.1.4.0.4.4.1		~ ~ ~ ~

	Programmschritt	Temperatur	Zeit	
1.	Uracil N-Glycosylase	50°C	2 min	
	Aktivierung			
	(Verringerung von Fremd			
	DNA-Kontaminationen)			
2.	Initiale Denaturierung	95°C	2 min	
3.	Denaturierung	95°C	5 s	40 Zyklen von Schritt 3-4
4.	Annealing und Elongation	60°C	30 s	
5.	Schmelzkurve	65°C-95°C	5 s Erhöh	ung in 0,5°C-Schritten

Schritt 1 (Uracil N-Glycosylase Aktivierung) dient der Verringerung von Kontaminationen durch zuvor amplifizierte DNA.

4.2.12 Auswertung der qPCR-Analysen

Für die Auswertung der qPCR-Ergebnisse wurde die Software Bio-Rad CFX Manager 3.1 verwendet.

Um die relativen Genexpressions-Unterschiede zu quantifizieren, wird der Ct-Wert von GAPDH von dem Ct-Wert des Zieltranskripts abgezogen. Anschließend wird die $\Delta\Delta C_{t}$ -Methode nach LIVAK UND SCHMITTGEN [92] angewendet um die relative Genexpressionsänderung zu erfassen.

4.2.13 Proteinisolation und Konzentrationsbestimmung

Die Zellen wurden wie in 4.1.2 beschrieben trypsiniert. Zur Gewinnung zellulärer Proteine wurden die Zellen zu Beginn bei 1200 x g für 5 min zentrifugiert. Die geernteten und pelletierten Zellen wurden je nach Größe des Zellpellets in 50-200 µl Pierce RIPA *Lysis and Extraction Buffer* resuspendiert. Der RIPA-Puffer wurde zuvor mit einem Protease-Inhibitor-Mix (40 µl Inhibitormix pro 1 ml RIPA Puffer) versetzt. Der Ansatz wurde dann 30 min auf Eis inkubiert und anschließend zusätzlich für 1 min mit Ultraschall behandelt (Sonifier W-250D, 60 % Amplitude, 60°C Abbruchtemperatur). Zur Entfernung der Zelltrümmer wurde der Ansatz für 30 min bei 15.000xg pelletiert.

Die Konzentration des proteinhaltigen Überstandes wurde mittels der Bradford-Methode [93] photometrisch bestimmt (BioPhotometer D30). Hierfür wurden 2 µl Probe mit 798 µl Wasser und 200 µl Bradford-Reagenz (*Protein Assay Dye Reagent Concentrate*) vermischt und die Absorption bei 595 nm gemessen. Mittels einer BSA-Kalibiergeraden konnte dann die Konzentration der Probe berechnet werden.

4.2.14 SDS-Page und Western Blot

Für die Auftrennung der Proteine nach ihrer Größe wurde die Methode der SDS-PAGE nach LAEMMLI angewendet [94]. Hierfür wurden Novex NuPAGE 4-12 % Bis-Tris-Protein-Gele verwendet, die in das XCell SureLock *Mini-Cell Electrophoresis System* eingespannt wurden. Zunächst wurden 10 µg Protein mit 5 µl 4x-Lämmli-Puffer versetzt und mit RIPA *Lysis and Extraction Buffer* auf 20 µl aufgefüllt.

Der Ansatz wurde anschließend für 10 min bei 95°C inkubiert. Die SureLock Mini-Apparatur wurde mit 1x NuPAGE SDS *Running Buffer* gefüllt und die Proben in die einzelnen Taschen pipettiert. Zusätzlich wurden 5 µl des *SeeBlue Plus2 Prestained Protein Standard* Marker mit aufgetragen. Die Auftrennung der Proteine erfolgte zunächst 10 min bei 80 V und weitere 1 ¹/₂ h bei 120 V bis die Bromphenol-Lauffront das Ende des Gels erreicht hatte.

Zur weiteren immunchemischen Detektion von Proteinen mittels spezifisch-bindenden Antikörpern wurde die Western Blot-Methode nach TOWBIN et al. angewendet [95]. Das Gel wurde auf eine 0,45 µm Nitrocellulose-Membran gelegt und zwischen jeweils einer Schicht Filterpapier und einer Schicht Schaumpolstern in eine Halterungskassette eingespannt. Die Kassette wurde anschließend in eine Tank-Blot-Apparatur überführt, sodass der Minuspol zur Gelseite zeigte und der Pluspol zur Membranseite. Dadurch bewegen sich die, durch den Probenpuffer negativ-geladenen, Proteine in Richtung des Pluspols und dementsprechend auf die Membran. Die Apparatur wurde mit 1x-Laufpuffer befüllt und anschließend für 3 h bei 4°C bei einer Spannung von 75 V angeschlossen. Danach wurde die Membran zur weiteren Verwendung entnommen. Es erfolgte eine kurze Färbung mit Ponceau S, um eine gleichmäßige Beladung des Gels mit Proteinen und den Transfer auf die Membran zu prüfen. Danach wurde die Membran kurz mit destilliertem Wasser gewaschen und für 30 min bei Raumtemperatur in der Blockierlösung inkubiert, um unspezifische Bindungsstellen für Antikörper auf der Membran zu blockieren. Anschließend wurde die Membran, je nach Behandlung, größenspezifisch geschnitten, sodass die einzelnen Teile der Membran mit unterschiedlichen Primärantikörpern inkubiert werden konnten. Die Inkubation erfolgte in der Blockierlösung über Nacht bei 4°C. Am darauffolgenden Tag wurde die Antikörper-Lösung vollständig abgenommen und die Membranen dreimal für 10 min mit PBST gewaschen.

Danach erfolgte die Inkubation mit dem jeweils passenden HRP-gekoppelten-Sekundärantikörper, ebenfalls in der Blockierlösung für 1-2 h bei Raumtemperatur. Abschließend wurde die Membran erneut dreimal für 10 min mit PBST gewaschen. Als Detektionsmethode wurde die Chemilumineszenz angewendet. Hierfür wurden die Amersham ECL Prime Western-Blot-Detektions-Reagenzien 1:1 vermischt und auf die Membran gegeben. Die Detektion erfolgte an einem ChemiDoc *Imaging System*.

4.2.15 Immunfluoreszenz

Für die Immunfluoreszenz wurden Zellen auf Deckgläsern in 24-*well* Platten ausgesät und für die Zeit des Versuches bei 37°C und 5 % CO₂ inkubiert. Danach wurde das Kultivierungsmedium vollständig durch das Ausschlagen der Platte entfernt und die Zellen in 400 µl 4 %igem Formalin pro *well* für 20 min bei Raumtemperatur (RT) fixiert.

Anschließend wurde pro *well* mit 400 µl PBS dreimal für 15 min erneut bei RT gewaschen. Die Zellen wurden hiernach mit 400 µl einer 0,1 %igen Triton-X-100-Lösung für 5 min unter RT permeabilisiert und anschließend erneut dreimal für 15 min mit PBS gewaschen. Das Blockieren unspezifischer Bindungsstellen für Antikörper erfolgte in 400 µl einer 0,3 %igen *Fishskin*-Gelatine-Lösung für 30 min bei 37°C. Nach dem Blockieren wurden 200 µl der Primärantikörper-Lösung (in 0,3 % Gelatine-Lösung) auf jedes Deckglas gegeben und für 1 h bei 37°C in einem Brutschrank inkubiert. Anschließend wurden die *wells* erneut dreimal für 15 min bei RT mit PBS gewaschen und mit der Sekundärantikörper-Lösung (in PBS) wieder für 1 h bei 37°C inkubiert. Als Kernmarker diente für alle Versuche DAPI. Abschließend wurden die Deckgläser erneut dreimal für 15 min bei RT mit PBS gewaschen, danach kurz in bidestilliertem Wasser entsalzt und abgetupft. Auf Objektträgern wurde pro Deckglas ein Tropfen *Fluoroshield* Eindeckmedium gegeben, die Deckgläser mit der zellbewachsenen Seite zum Eindeckmedium hin geklappt und über Nacht bei RT trocknen gelassen. Die Objektträger mit den Deckgläsern wurden nach dem Trocknen unter einem Fluoreszenmikroskop betrachtet.

4.2.16 Quantitative Analyse mittels Zen Blue

Die *Zen Blue Software* der Firma Zeiss wurde zur weiteren Analyse der Immunfluoreszenzbilder genutzt. Über das Programm erfolgte die Berechnung der NFAT5 und DAPI Signalintensität (5.2 und 5.3.1.2) sowie die Berechnung der Lamellipodienfläche (5.6.2).

4.2.16.1 Signalintensitätsdiagramm

Der Signalintensität des grünen und blauen Kanals wurde in einem repräsentativen Bereich eines jeden Präparats (durch weißen Pfeil dargestellt) aufgenommen. Die generierten Signalintensitäten für den blauen und grünen Kanal wurden folgend durch GraphPadPrism grafisch als Plot der Signalintensität gegen die Präparatlänge (in Pixel) angegeben.

Abbildung 11: Beispiel einer Signalintensitätsanalyse mittels Zen Blue.

Dargestellt sind Beispielaufnahmen von NFAT5 Färbungen bei 300 mosmol/kg (oben) sowie 600 mosmol/kg (unten). DAPI diente als Kernsignal. Für beide Präparate galten identische Färbebedingungen sowie Geräteund Lichteinstellungen. Die Intensitäten beider aufgenommen Signale wurde in einem repräsentativen Bereich des Präparats mittels der *Zen Blue-Software* ermittelt und sind durch den weißen Pfeil dargestellt. Die Software zeigt zusätzlich immer die Signalintensität im roten Kanal an, welcher aber für diese Beispielaufnahme mit keinem Fluorophor-gekoppeltem Antikörper belegt wurde und daher zu vernachlässigen ist.

4.2.16.2 Berechnung der Lamellipodienfläche

Die Flächenmessung der Lamellipodien wurde im Kanal der Phalloidinfärbung vorgenommen. Da Phalloidin benutzt wird, um das Aktin-Zytoskeletts anzufärben, können somit die Zellgrenzen erkennbar gemacht werden. Dazu wurde die *Zen Blue-Software* verwendet, die aus dem umrissenen Bereich eine Fläche in Pixel bestimmt hat. Pro Präparat wurde immer mindestens von 4 Zellen die Fläche der Lamellipodien bestimmt.

Abbildung 12: Beispielmessung der Lamellipodienfläche der Zellen.

Dargestellt ist eine Beispielaufnahme von einer Phalloidin-Alexa Fluor[™]-568-Färbung. DAPI diente als Kernsignal. Für alle Präparate galten identische Färbebedingungen sowie Geräte- und Lichteinstellungen. Die Lamellipodienfläche beider Signale wurde mittels der *Zen Blue-Software* ermittelt.

4.3 Etablierung einer primären Maus-Nierenzellkultur

4.3.1 Organentnahme und Kultivierung

Mäuse mit dem gewünschten Phänotyp wurden im ZMG angemeldet und von den Tierpflegern von den Zuchttieren separiert. Am darauffolgenden Tag wurden diese Mäuse unter CO₂ narkotisiert und final durch zervikale Dislokation getötet. Anschließend erfolgte die Entnahme der Nieren. Jedes Paar Nieren wurde in ein separates 15 ml Falcon in kaltem PBS aufgenommen. Nach Entnahme beider Nieren wurden IMCD-Zellen nach dem Protokoll von FAUST et al. isoliert [87]. Dazu wurde die Papille mit einer Schere ausgeschnitten und mit einem Skalpell zerkleinert. Die zerkleinerten Papillenfragmente wurden mit einer Enzymlösung bestehend aus Hyaloronidase (2 mg/ml) und Collagenase (2,2 mg/ml) 1 h bei 37°C unter Schütteln inkubiert. Anschließend wurde die Lösung durch mehrmaliges Auf- und Abpippetieren homogenisiert und weitere 30 min bei 37°C unter Schütteln inkubiert. Danach wurde die Lösung für 5 min bei 400 x g zentrifugiert, der Überstand verworfen und in PBS-Lösung gewaschen. Nach erneuter Zentrifugierung für 5 min bei 400 g wurde die Lösung im Primärzellkulturmedium aufgenommen und 24 h im Brutschrank bei 37°C und 5 % CO2 inkubiert. Anschließend wurde das Medium komplett abgenommen und alle nicht abgesetzten Zellen und restlichen unverdauten Lipid- und Organfragmente durch Waschen mit PBS entfernt. Die Zellen wurden mit frischem Medium weiter unter 37°C und 5 % CO₂ im Brutschrank kultiviert.

4.3.2 Ex-vivo Knockout von NFAT5

Es wurde ein konditionelles *Knockout*-System in Mäusen über eine Tamoxifen induzierbare Ube-Cre/ERT2-Maus-Linie etabliert. Eine Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/wt} Maus wurde freundlicherweise von KÜPER et al. zur Verfügung gestellt [96]. Durch Verpaarung der Mäuse innerhalb des Stammes, durch Tierpfleger des Uniklinikums Halle (Saale), konnte eine Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} Maus generiert werden. Dieser Stamm besitzt eine ubiquitäre Tamoxifen induzierbare Cre-Aktivität, welche unter der Kontrolle des ubiquitären C-Promotors liegt. Das Cre/ERT2 Fusionsprotein besteht aus der Rekombinase Cre fusioniert an einen mutierten humanen Östrogen-Rezeptor, welcher nicht seinen natürlichen Agonisten 17β-Estradiol, sondern 4-Hydroxytamoxifen (4-OH-TM) bindet. Ohne eine Induktion ist Cre/ERT2 im Cytoplasma lokalisiert. Erst durch die Zugabe von 4-OH-TM transloziert es in den Kern, wo die Cre Rekombinase aktiv werden kann. Tamoxifen

metabolisiert in der Leber zu 4-OH-TM, welches der eigentliche Agonist ist (siehe Abbildung 28). Nach Organentnahme des jeweiligen Maus-Genotypes wurden die Primärzellen in Kultur genommen. Nach 48 h Kultivierung der Zellen unter den jeweiligen Bedingungen wurde 4-OH-TM für 24 h zugegeben. Anschließend wurde das Medium wieder auf die jeweilige Osmolalität gewechselt und weitere 3 Tage inkubiert. Um den *Knockout* von NFAT5 zu bestätigen, wurde sowohl RNA aus den Zellen isoliert und anschließend mittels qPCR analysiert als auch Immunfluoreszenz-Bilder aufgenommen.

4.4 Generierung CRISPR/Cas9-vermittelter-defizienter-mpkCCD-Zellen

Zur Generierung von CRISPR/Cas9-vermittelten-defizienten-Zellen wurde ein 1-Plasmid lentivirales System genutzt. Dieser Vektor enthält den kodierenden Bereich für die Nuklease Cas9 sowie einen U6 Promotor und das nötige *guide*-RNA (gRNA) *scaffold*. Für eine gezielte Mutation eines spezifischen Gens wurde eine Zielsequenz in den lentiCRISRv2 Vektor einkloniert. Als Kontrolle wurde eine AG-interne Kontroll-*guide*-RNA verwendet, die keine Zielsequenz bindet (*Scramble*-gRNA = ATATCCGGAATTCGCGCGAT) und im weiteren Verlauf als Scr-gRNA bezeichnet wird. Diese synthetische gRNA wurde vor dem Beginn der experimentellen Arbeit dieser Dissertation generiert und bestätigt. Zur Generierung von gRNA-Sequenzen für eine CRISPR/Cas9-vermittelte-Mutation der Zielgene wurde das online *tool* CHOPCHOP verwendet [97].

4.4.1 CRIPSR/Cas9 Vektor-Klonierung

4.4.1.1 Verdau des lentiviralen Vektors

Der lentivirale Vektor lentiCRISPRv2 [98] wurde mittels BsmBI für 30 min bei 37°C nach folgendem Schema verdaut:

Komponenten	Menge
lentiCRISPRv2	5 μg
BsmBI	1 μl
10x Tango Buffer	6 µl
DTT (0,1 M)	1 μl
H ₂ O	ad 60 µl

Tabelle 6: BsmBI-Verdau des lentiviralen Vektors lentiCRISPRv2

Der verdaute Ansatz wurde auf ein Agarosegel aufgetragen (4.2.8), um das mittels BsmBI geschnittene Fragment vom restlichen Vektor der Größe nach zu trennen. Der geschnittene Vektor wurde anschließend nach 4.2.9.2 aufgereinigt.

4.4.1.2 Oligonukleotid-Zusammenlagerung

Die von CHOPCHOP generierten Zielsequenzen wurden mit für das lentiCRISPRv2 Plasmid spezifischen Überhängen ausgestattet und die Oligos von der Firma Biolegio bestellt.

Tabelle 7: Beispiel für die Oligonukleotid-Generierung aus der Zielsequenz.

Zielsequenz (gRNA)	CAATCTCGTCGTTTGACCCC
Oligo 1 (5'-3')	CACCG-CAATCTCGTCGTTTGACCCC
Oligo 2 (5'-3')	AAAC-GGGGTCAAACGACGAGATTG-C

Ansatz je Oligopaar:

Tabelle 8: Reaktionsansatz für die Oligonukleatid-Zusammenlagerung

Komponenten	Menge
Oligo 1 (100 mM)	1 μl
Oligo 2 (100 mM)	1 μl
10x T4 Ligasepuffer	1 µl
Nukleasefreies H ₂ O	7 μl
	10 µl Gesamtvolumen

Die Reaktion wurde in einem Thermocycler nach dem folgenden Programm durchgeführt:

Tabelle 9: P	rogramm der	Oligonukleotid-	Zusammenlagerung
	0	0	0 0

Programmschritt	Zeit
37°C	30 min
95°C	5 min
langsam Abkühlen auf 25°C	5°C/min

Anschließend wurde der Ansatz 1:200 verdünnt.

4.4.1.3 Ligation und Plasmidaufreinigung

Die Ligationsreaktion erfolgte nach dem folgenden Reaktionsansatz bei 4°C über Nacht.

Komponenten	Menge
lentiCRISPRv2 verdautes Plasmid	50 ng
Oligo-Paare (1:200)	1 µl
10x T4 Ligase Puffer	1 µl
ATP (0,1 mM)	1 µl
T4-Ligase	1 µl
H ₂ O	ad 10 µl

Tabelle 10: Ansatz für die Ligationsreaktion von verdautem lentiCRISPRv2 und einem Oligonukleotid-Paar.

Das erhaltene Plasmid wurde analog zu 4.2.2 in chemisch kompetente DH5α transformiert, die DNA mittels Mini-Präparation isoliert (4.2.3), mit dem U6 Primer sequenziert (3.11.3, U6 Primer *sense*) und für größere Maßstäbe mittels Maxi-Präparation erneut isoliert (4.2.5).

4.4.2 Virusproduktion

Die Produktion der Viren-Partikel und alle nachfolgenden Schritte, die virushaltiges Material enthielten, erfolgten nach Gentechnik S2-Standards.

4.4.2.1 Hek-293T Transfektion

Für die Transfektion der mpkCCD-Zelllinie mit den gRNA-tragenden lentiCRISPRv2-Vektoren und der Scr-Kontrolle wurden Viren-Partikel produziert. Als Produktionssystem wurden HEK293T-Zellen verwendet, die aufgrund der Expression des SV40 LT-Antigens zur Überexpression von lentiviralen Vektoren, die einen SV40 *origin* tragen, geeignet sind[99]. Dafür wurden 2x10⁶ HEK-293T-Zellen in Zellkulturschalen (100 mm) ausgesät und bis zu einer Konfluenz von 70 % in DMEM-Medium mit 10 % FKS inkubiert. Zur Herstellung der Viruspartikel wurden die Vektoren pLP1, pLP2, pLP/VSVG (siehe 3.7) und das Transfektionsreagenz TurboFect verwendet. Der folgende Ansatz wurde dafür hergestellt:

Komponenten	Menge
pLP1	7,2 µg
pLP2	2,4 µg
pLP/VSVG	4,0 µg
lentiCRISPRv2+spezifische gRNA	10,4 µg
Turbofect	46 µl pro Ansatz
serumfreies DMEM-Medium	300 µl pro Ansatz

Tabelle 11: Ansatz für die Transfektion von HEK-293T Zellen einer 100 mm Schale.

Der Reaktionsansatz wurde 15 min bei Raumtemperatur inkubiert und anschließend tropfenweise auf eine 100 mm HEK-293T Schale pipettiert. Nach 24 h Inkubation der Zellen bei 37°C wurde das Medium gewechselt (10 ml frisches Medium) und die Zellen weitere 48 h im Brutschrank inkubiert. Nachfolgend wurde der Überstand aus den Schalen entnommen, für 5 min bei 300 x g zentrifugiert und abschließend filtriert (0,45 μ m). Bis zur geplanten Transduktion der Zielzellen wurde der virushaltige Überstand bei -20°C weggefroren. Es erfolgte kein spezifischer Nachweis für transduzierte Viren im Mediumsüberstand.

4.4.2.2 Transduktion der mpkCCD Zelllinie

Die zu transfizierenden mpkCCD-Zellen wurden in 12-*well* Platten ausgesät (je zwei *wells* pro gRNA-Konstrukt), sodass nach einer Inkubationszeit von 24 h eine Konfluenz von 50-60 % erreicht wurde. Danach wurde das Medium vollständig abgenommen und 1 ml frisches Medium sowie 1 ml Virus-Überstand mit dem lentiCRISPRv2-gRNA-Konstrukt auf jeweils zwei *wells* gegeben. Die Zellen wurden für 48 h bei 37°C im Brutschrank inkubiert. Danach wurde das Medium vollständig entfernt, die Zellen durch Trypsin/EDTA abgelöst und auf 25 cm²- Zellkultur-Flaschen verteilt. Die Selektion der Zellen und die weitere Kultivierung erfolgte mit Puromycin-haltigem Medium (2 µg/ml).

4.4.3 Genotypische Charakterisierung

4.4.3.1 Nachweis des CRISPR/Cas9-vermittelten-Doppelstrangbruches im Ziellokus

Für den Nachweis der Aktivität und des Schnittes im Ziellokus der Cas9 mit der gebundenen gRNA wurde zunächst aus den behandelten Zellen DNA isoliert (4.2.6) und mittels PCR und spezifischen Primern (3.11.2) der Ziellokus amplifiziert. Nachfolgend erfolgte eine Analyse mittels Sangersequenzierung (4.2.4). Bei Beobachtung multipler *Peaks* an derselben Position (Abbildung 13) wurde die Zellkultur als Mischkultur bezeichnet.

Abbildung 13: Beispiel einer Mischkultursequenz.

Dargestellt ist eine Wildtyp-Sequenz (oben) sowie die Sequenz einer Mischkultur (unten). Während in der Wilddytp-Sequenz nur ein definierter Peak an jeder Position zu erkennen ist, sind in der Mischkultur multiple Peaks an einer Position. Dies ist das Resultat des CRISPR/Cas9-vermittelten-Doppelstrangbruches (DBS) und des darauffolgenden Reparaturmechanismus NHEJ (*non-homologous end joining*). Durch das Fehlen eines *template*-Stranges findet in jeder Zelle eine andere DNA-Reparatur statt. Die grüne Fläche stellt den Zielbereich der gRNA dar und der rote Bereich das PAM-Motiv.

4.4.3.2 Vereinzelung

Um eine defiziente Zelllinie mit einer spezifischen Mutation zu erzeugen, musste die Mischkultur vereinzelt werden. Dafür wurden die Zellen trypsiniert, gezählt und so weit verdünnt, dass eine Konzentration von **10 Zellen/ml**, **5 Zellen/ml** sowie **2,5 Zellen/ml** erreicht wurde. Aus diesen drei Verdünnungsstufen wurden jeweils 100 µl pro *well* auf eine 96-*well*-Platte verteilt (Abbildung 14).

Abbildung 14: Verdünnungsreihe zur Zellvereinzelung

Nach zweiwöchiger Kultivierung der Zellen im Brutschrank bei 37°C und 5 %CO₂ wurde die 96-*well*-Platte durch ein Mikroskop auf Kolonien untersucht. *Wells* mit vitalen Zellen, die in einer Einzelkolonie wuchsen, wurden markiert und weiter bis zu einer Konfluenz von 80-90 % kultiviert und anschließend in eine 6-*well*-Platte überführt. Beim erneuten Erreichen von einer Konfluenz von 80-90 % wurde DNA der gewählten Einzelklone isoliert (4.2.6), mit spezifischen Primern amplifiziert (4.2.7), aufgereinigt (4.2.9.1) und anschließend mit dem sense Primer sequenziert (4.2.4).

4.4.3.3 Tracking of InDels by DEcomposition (TIDE)

Um die erhaltenen Sequenzdaten auszuwerten wurde das freizugängliche *online-tool* TIDE verwendet [100]. Für die Analyse mittels TIDE war es notwendig eine WT-Sequenz als Referenz mitzuführen. Das Programm ermittelt dann, durch den Vergleich der WT-Sequenz gegen die gRNA-behandelte Sequenz, die jeweilige Mutationswahrscheinlichkeit auf beiden Allelen. Die Mutationswahrscheinlichkeiten geben dementsprechend Auskunft, ob es sich um einen wirklichen *Knockout* des Zielgens durch eine Leserasterverschiebung handelt.

Abbildung 15: Schematische Darstellung der Sequenzanalyse durch das TIDE webtool.

Für die Sequenzanalyse wird die gRNA Sequenz, eine WT-Referenzsequenz sowie die zuuntersuchende KO-Sequenz benötigt. Aus diesen Daten errechnet das Programm die möglichen Deletionen und Insertion in der Sequenz (Screenshot von der TIDE Internetseite, http://shinyapps.datacurators.nl/tide/, Datenstand: 14.07.2022).

4.4.3.4 TOPO-TA Klonierung

Um einerseits die bioinformatische Analyse von TIDE zu bestätigen und zusätzlich die genaue Mutation im Zielgen zu ermitteln, wurde das DNA-Amplifikat, welches die Mutation enthält, in einen TOPO-TA-Vektor nach Tabelle 12 zwischenkloniert.

	-
Komponenten	Menge
aufgereinigtes PCR-Amplifikat	4,5 μl
TOPO-TA-Vektor	0,5 µl
Salzlösung	1 μl
	6 µl Gesamtvolumen

Tabelle 12: Ansatz für die Zwischenklonierung in den TOPO-TA-Vektor

Nach Klonierung wurde das Plasmid in *DH5* α *E. coli* transformiert und auf Ampicillin und X-Gal Platten über Nacht bei 37°C inkubiert. X-Gal dient für eine Blau-Weiß-Selektion. Die Position der Insertion von DNA-Amplifikaten im TOPO-TA-Vektor enthält das Gen für die β -Galactosidase. Durch Einfügung des Amplifikats wird die β -Galactosidase funktionsunfähig. Die β -Galactosidase kann den Farbstoff X-Gal in einen blauen Farbstoff spalten (5,5'-Dibromo-4,4'-Dichloro-Indigo) [101]. Transgene Organismen können den Farbstoff dementsprechend nicht mehr spalten und bilden folglich weiße Kolonien. Es wurden pro Amplifikat 10 Klone gepickt, zirkuläre DNA isoliert (4.2.3) und anschließend mit dem M13 sense Primer sequenziert (3.11.3, M13 sense).

4.5 Phänotypische Charakterisierung defizienter Zellen

4.5.1 Migrations- und Proliferationsanalyse

Für die Migrations- und Proliferationsversuche wurden die Zellen unter den jeweiligen Versuchsbedingungen kultiviert und an einem IncuCyte® an der *Core Facilty Imaging* der Martin-Luther-Universität Halle-Wittenberg im Charles-Tanford-Proteinzentrum durchgeführt und über einen Zeitraum von 24 h Daten aufgenommen. Die Datenauswertung erfolgte über die IncuCyte®-Software.

4.5.1.1 Migration

Für die Bestimmung des Migrationsverhaltens am Incucyte® mussten die Zellen vor Aufnahme des Experiments in eine 96-*well* IncuCyte® ImageLock- Zellkulturschale ausgesät werden. Die Zellzahl wurde so gewählt, dass die Zellen im *well* eine Konfluenz von 100 % vor Versuchsstart aufwiesen. Mittels eines *WoundMakers* wurde dem konfluenten Zellrasen dann eine Wunde definierter Breite zugefügt (700-800 µm). Das Medium wurde anschließend durch Ausschlagen entfernt und anschließend mit PBS gewaschen und das Medium erneuert (100 µl/*well*). Die Zellkulturschale wurde anschließend in das IncuCyte® *Live-Cell Analysis*-System innerhalb eines Brutschranks gestellt (37°C, 5 % CO₂). Über eine Kamera wurde dann die Zellmigration für 24 h betrachtet, indem alle 4 h zwei separate Bildaufnahmen pro *well* erfolgten. Die Auswertung der Migration erfolgte durch die Bestimmung der *relative wound density* (RWD). Die RWD ist ein auf die Dichte der Zellregion relativierter prozentualer Wert der Wunddichte und setzt sich wie folgt zusammen (IncuCyte® ZOOM-Manual Scratch Wound Cell Migration & Invasion Assays):

$$\% RWD(t) = 100 \cdot \frac{(w(t) - w(0))}{(c(t) - w(0))}$$

w(t) = Dichte der Wunde zu einem bestimmen Zeitpunkt (t)

c(t) = Dichte der Zellregion zu einem bestimmten Zeitpunkt (t)

Die RWD für jeden Messzeitpunkt wurde von der Software pro *well* angegeben und nachfolgend in GraphPad Prism übernommen. Für den Zeitpunkt bis 8 h nach Migrationsstart wurden die Werte zusätzlich einer linearen Regression unterzogen. Die gebildeten Anstiege für jedes technische Replikat wurden gemittelt und auf die jeweiligen Kontrollen normalisiert wodurch eine relative Migrationsänderung (relativ zur Kontrolle) angegeben werden konnte.

4.5.1.2 Proliferation

Zur Bestimmung der Proliferation wurden die jeweiligen Zellen in 96-*well* Platten ausgesät und 24 h inkubiert. Nachfolgend wurden die Zellen über das IncuCyte® *Live-Cell Analysis*-System für 48 h über eine Kamera alle 4 h dokumentiert.

Die Regression der Graphen aus Abbildung 39 wurde in GraphPad Prism mittels einer Gleichung für exponentielles Wachstum durchgeführt:

$$y = y_0 \cdot e^{kx}$$

y = relative Wachstumsrate (%)

$$\mathbf{x} = \mathbf{t} (\mathbf{h})$$

Mit den ermittelten Geschwindigkeitskoeffizienten (k) wurde anschließend die Verdopplungszeit (t_d) der Zellen bestimmt:

$$t_d = \frac{\ln(2)}{k}$$

4.5.2 Soft-Agar-Assay

Zur Bestimmung des Transformationspotentials der untersuchten Zellen wurde der Soft-Agar-Assay durchgeführt. Nach 2-wöchiger Inkubation der Zellen wurde die Koloniegröße und Anzahl bestimmt. Vor Start des Experiments wurde in 48-well Platten ein Basis-Agar (0,5 %) gegossen. Hierfür wurde autoklavierte 2 % ige Agarose mit entsprechendem Medium 1:4 verdünnt und in die Kavitäten pipettiert. Zum Aushärten des Basis-Agars wurden die Platten bei 4°C und bis zum Start des Experimentes gelagert. Zu Beginn wurden 62.500 Zellen in 4 ml Medium gegeben. Dazu wurden 500 μl FKS pipettiert. Dieser Ansatz wurde danach für 30 min im Brutschrank (37°C, 5 % CO₂) inkubiert. Danach wurden zum Ansatz 500 µl aufgewärmte 2 % ige Agarose gegeben, durch Auf- und Abpippetieren gut durchmischt und sofort davon 200 µl in die wells auf den Basis-Agar pipettiert (final 2500 Zellen pro well). Für jeden Zelltyp erfolgte eine 2-fach-Bestimmung pro Experiment. Die Zellkulturplatte wurde anschließend für 1 h unter der Zellkulturbank stehen gelassen und 200 µl Medium in die *wells* auf den Haupt-Agar gegeben. Über einen Zeitraum von 2 Wochen wurde die Platte dann im Brutschrank (37°C, 5 % CO2) inkubiert, unter Erneuerung des Mediums aller drei Tage. Nach zwei Wochen wurden an einem Lichtmikroskop Bilder von verschiedenen Ebenen der wells aufgenommen. Die Bilder wurden dann unter Verwendung des ImageJ-Programms ausgewertet [102]. Zunächst wurden alle Ebenenbilder eines wells in ImageJ geöffnet und die Farbtiefe auf 8 Bit eingestellt. Danach wurde aus allen Bildern ein Stapelbild angefertigt, sodass alle Ebenen auf eine projiziert wurden (Z projection). Von diesem Stapelbild wurden Hintergrundsignale bis zu einer Grenze von 100 Pixeln abgezogen. Der Schwellenwert des Bildes wurde dann auf 212 Pixel eingestellt und die Partikel von 70-2000 Pixel Größe analysiert und gezählt. Die weitere Verarbeitung der erhaltenen Daten erfolgte mit GraphPad Prism.

4.6 Analyse des globalen Genexpressionsprofils

Für die Analyse des globalen Genexpressionprofils wurden die Zellen in 6-*well* Platten ausgesät. Die Zellzahl wurde so gewählt, dass das *well* nach einer Inkubationszeit von 96 h eine Konfluenz von 80-90 % aufwies. Es wurden Zellen bei 300 mosmol/kg Medium-Osmolalitat ausgesät, sowie Zellen, die zuvor für 72 h an 450 mosmol/kg adaptiert wurden bei 600 mosmol/kg ausgesät. Die RNA wurde nach 4.2.10 isoliert und dessen Qualität über die Aufnahme eines Absorptionsspektrums (Biophotometer D30) überprüft. Zusätzlich wurde die Adaption an die erhöhte Osmolalität mittels qPCR (4.2.11) des

nierenspezifischen, osmolalitätsabhängigen Gens *Aqp2* überprüft. Bis zum Versand wurde die RNA bei -80°C gelagert. Die RNA-Sequenzierung und bioinformatische Auswertung der Daten wurde durch die Firma Novogene Co, Ltd durchgeführt (siehe Anhang 8.3).

4.7 Etablierung von zweifach-defizienten-mpkCCD-Zellen

Zur Untersuchung der weiteren Funktion von RANBP3L-defizienten-Zellen wurde zusätzlich noch SPARC in den mpkCCD-Zellen funktionell ausgeknockt. Da diese mpkCCDs bereits eine aktive Cas9 aufweisen, musste nur noch ein neues Vektorkonstrukt mit neuer gRNA und neuer Selektion (Rotfluoreszenz) ausgewählt werden. Das Plasmid wurde freundlicherweise von der AG HECKL der Universitätsklinik und Poliklinik für Pädiatrie I Halle (Saale) bereitgestellt (3.7). Auch hier wurde zusätzlich zu spezifischen gRNAs noch eine Kontroll gRNA (Scr-gRNA) kloniert. Die Vektor-Klonierung, Transfektion und Transduktion erfolgte dabei analog zu den Punkten 4.4.1 - 4.4.2. Nach 48 h Kultivierung der mpkCCD-Zellen mit Virusüberstand wurde das Vorhandeinsein rotfluoreszierender Zellen mittels Fluoreszenzmikroskopie als Zeichen der erfolgreichen Tranduktion analysiert. Nachfolgend erfolgte eine Sortierung der Zellen am LSRFortessaTM Cell Analyzer, wobei nur rotfluoreszierende Zellen weitergeführt wurden. Anschließend wurden die Zellen auf 6-*well* Platten überführt und bis zu Konfluenz unter 2 µg/ml Puromycin kultiviert. Danach erfolgte die DNA-Isolation und Einzelklongenerierung nach oben beschriebenem Schema (4.4.3).

4.8 Behandlung der Zellen mit TGF-β1

Für funktionelle Charakterisierungen wurden die Zellen mit TGF-β1 des Herstellers PromoCell (Heidelberg, Deutschland) behandelt. Dafür wurde zuerst das lyophilisierte TGFβ1 in 10 mM Citronsäure (pH = 3,0) gelöst (50 mM *stock* Konzentration) und bis zur Verwendung bei -20°C gelagert. Die Zellen wurden mit 10 ng/ml für 48 h mit TGF-β1inkubiert.

4.9 Promotoranalysen

4.9.1 Suche nach evolutionär konservierten Sequenzen (ECRs)

Um Sequenzabschnitte in verschiedenen Spezies zu vergleichen, wurde das freizugängliche *ECR Browser tool* verwendet [103]. Dieser Browser bietet die Möglichkeit innerhalb von 12
verschiedenen Spezies nach konservierten Sequenzen zu suchen. Für *Ranbp31* wurde ein Promotorbereich von ca. 2000 bp *upstream* vom Startcodon gewählt. Hier konnten mehrere konservierte Bereiche identifiziert werden. Diese konnten nun durch eine weitere Datenbank, JASPAR, auf Transkriptionsfaktorerkennungssequenzen untersucht werden [104]. Laut JASPAR bindet NFAT5 an der DNA-Sequenz NTTTCCA (siehe Anhang 8.6).

4.9.2 Klonierung von Ranbp3I-Promotor-Fragmenten

Aus muriner DNA wurde mittels PCR und spezifischer Primer ein 2 kb sowie 0,8 kb großes *Ranbp3l*-Promotor-Fragment (siehe 3.11.5, *Ranbp3l*-Prom1-2 kb und *Ranbp3l*-Prom2-0,8 kb) amplifizert (ab Startcodon *upstream* gezählt). Die Primer wurden so gewählt, dass das Promotor-Fragment spezifische Restriktionserkennungssequenzen als Überhänge bekam. Die Produkte wurden wie in Absatz 4.2.9.2 beschrieben aus dem Gel aufgereinigt und in einen TOPO-TA-Vektor zwischenkloniert (4.4.3.4). Der erhaltene TOPO-TA-Vektoren mit dem jeweiligen murinen *Ranbp3l*-Promotor-Fragment (2 kb und 0,8 kb) und das Luciferase enthaltende PGL3 Plasmid (3.7) wurden mit den Restriktionsenzymen SacI und XhoI bei 37°C für 1 h geschnitten und danach auf einem Gel aufgetragen.

Komponenten	Menge	
Plasmid	1 µg	
SacI	1 µl	
XhoI	1 µl	
10x CutSmart [™] Puffer	5 μl	
H ₂ O	ad 50 ul	

Tabelle 13: Ansatz für den Restriktionsverdau

Das *Ranbp31*-Promotor-Fragment sowie das geschnittene PGL3 *backbone* wurden aus dem Gel aufgereinigt und über Nacht bei 4 h nach folgendem Schema ligiert:

Tabelle 14: Ansatz für die Ligationsreaktion

Komponenten	Menge
PGL3-Plasmid	50 ng
Ranbp31-Promotor-Fragment	45 ng
10x T4 Ligase Puffer	2 µl
ATP (0,1 mM)	1 µl
T4-Ligase	1 µl
H ₂ O	ad 20 µl

Das Vektor-Insert Verhältnis betrug dabei 1:3. Anschließend erfolgte wie in Punkt 4.2.2 bis 4.2.5 beschrieben die Transformation und die finale Maxi-Präparation der erzeugten Plasmide. Zur Verifizierung wurden die Plasmide mit den Primern RV-3 und GL-2 sequenziert (Primer siehe 3.11.3). Der Klonierungsprozess ist zusammenfassend in Abbildung 16 dargestellt. Im weiteren Verlauf wurden die erzeugten Plasmide PGL3-2 kb-mRanbp3l und PGL3-0,8 kb-mRanbp3l bezeichnet.

Abbildung 16: Schematische Darstellung der Klonierung von *Ranbp3l*-Promotorfragmenten in den PGL3 Vektor.

Zu Beginn wurde mit spezifischen Primern aus muriner DNA *Ranbp3l*-Promotorfragmente amplifiziert, welche als Überhänge Restriktionserkennungssequenzen (orange = SacI, grün = XhoI) enthielten (1). Dieses PCR-Fragment wurde in einen TOPO Vektor zwischenkloniert (2). Nun wurde das erzeugte TOPO-Plasmid und der PGL3 Vektor mit SacI und XhoI verdaut (3) und das *Ranbp3l*-Promotorfragment sowie das PGL3 *backbone* aus dem Gel extrahiert und zusammenligiert (4). Nach erfolgter Transformation und Aufreinigung konnte somit der PGL3 Vektor mit einem *Ranbp3l*-Promotorfragment (3.7, PGL3-2 kb-mRanbp3l) oder PGL3-0,8 kb-mRanbp3l) erzeugt werden.

4.9.3 Quick change Mutagenese vom Ranbp3I-Promotor-Fragment

In dem Konstrukt PGL3-0,8 kb-mRanbp3l wurden die putativen NFAT5-Bindestellen durch das *QuickChange II Mutagenese* Kit mutiert. Aus der *QuikChange Primer Design* -Software der Firma Agilent wurden Primer bestimmt, die den gewünschten *Ranbp3l*-Promotor-Bereich mutieren (Primer siehe 3.11.5, Quick-Mut-1 und Quick-Mut-2). Die WT-Sequenzen sowie die erzeugten mutierten Sequenzen sind in Tabelle 15 dargestellt. Die erhaltenen Plasmide mit den mutierten Promotorbereichen (siehe 3.7, PGL3-0,8 bp-quick1-mRanbp3l, PGL3-0,8 bp-quick2-mRanbp3l, PGL3-0,8 bp-quick1+2-mRanbp3l) wurden erneut wie in Absatz 4.2.2 bis 4.2.5 beschrieben in *E. coli* transformiert und mittels Mini- und nachfolgender Maxi-Präparation aufgereinigt. Auch hier dienten zur Verifizierung die Primer RV-3 und GL-2 (3.11.3).

Tabelle 15: Mutierte NFAT5 Bindesequenzen im Ranbp3l-Promotor

Komponenten	Ranbp31-Promotor-Sequenz
WT-Bindestelle 1	GTACA TTTCCA TGCGC
Quick-Mut-Bindestelle 1	GTACA AAAAAA TGCGC
WT-Bindestelle 2	GATCT TTTCCA TTTCG
Quick-Mut-Bindestelle 2	GATCT AAAAAA TTTCG

4.9.4 Messung der Promotoraktivität

HEK-293T-Zellen wurden in 96-*well*-Platte ausgesetzt und für 24 h bei 37 C inkubiert. Darauf folgte die Transfektion mit den jeweiligen Promotorkonstrukten (3.7) und einem GFP-Kontrollplasmid (addgene # 6085-1). Nach 24 h wurden die Zellen auf Grünfluoreszenz untersucht. Bei erfolgreicher Transfektion wurde die Mediumosmolalität auf 450 mosmol/kg erhöht. Nach weiteren 24 h erfolgte die Lumineszenzmessung mit dem *Luciferase Assay System* von Promega nach Angaben des Herstellers.

4.10 Etablierung einer RANBP3L-überexprimierenden-Zelllinie

4.10.1 Klonierung des RANBP3L-FLAG Plasmids

Aus muriner cDNA wurde mittels spezifischer Primer der komplette für *Ranbp31* proteinkodierende Bereich (NCBI Referenzsequenz: NM_198024.2) durch PCR amplifiziert (siehe 3.11.6, AscI Primer-*sense* und PacI Primer-*antisense*). Dafür wurden die Primer so designt, dass das erzeugte Konstrukt Restriktionsschnittstellen-Überhänge erhält, die

spezifisch von AscI und PacI erkannt werden. Das Fragment wurde nachfolgend wie in 4.4.3.4 beschrieben in einen TOPO-TA-Vektor zwischenkloniert. Im nächsten Schritt wurden der zwischenklonierte TOPO-TA+Ranbp3l Vektor und der Zielvektor (3.7, V180-Leervektor) mit den Restriktionsenzymen AscI und PacI analog zu Tabelle 13 inkubiert. Die Ligation erfolgte über Nacht nach analogem Prinzip wie in Tabelle 14 (Abbildung 17 zeigt kompletten Klonierungsprozess). Anschließend erfolgte wie in Punkt 4.2.2 bis 4.2.5 beschrieben die Transformation und die finale Maxi-Präparation des erzeugten Plasmids (siehe 3.7, V180-RANBP3L-Flag).

Abbildung 17: Schematische Darstellung der Klonierung des proteinkodierenden Bereichs von *Ranbp3l* in den V180 Vektor.

Zu Beginn wurde aus murinen Zellen RNA isoliert und in cDNA synthetisiert. Im weiteren Verlauf wurde mit spezifischen Primern der proteinkodierende Bereich von *Ranbp3l* (NCBI Referenzsequenz: NM_198024.2) aus der cDNA amplifiziert (1). Dieser besitzt zusätzlich als Überhänge Restriktionserkennungssequenzen (orange = PacI, grün = AscI). Dieses PCR-Fragment wurde in einen TOPO Vektor zwischenkloniert (2). Nun wurde das erzeugte TOPO Plasmid und der V180 Vektor mit PacI und AscI verdaut (3) und die *Ranbp3l* proteinkodierende Sequenz sowie das V180-Leervektor *backbone* aus dem Gel extrahiert und zusammenligiert (4). Nach Transformation und Aufreinigung wurde somit der V180 Vektor mit einem *Ranbp3l*-proteinkodierender Fragment erzeugt (3.7, V180-RANBP3L-Flag), welcher als Überexpressionsplasmid benutzt werden konnte.

Final wurde die erfolgreiche Klonierung des RANBP3L kodierenden Bereichs in den V180-Flag Vektor mittels Sequenzierung (4.2.4) der qPCR *Ranbp3l* Primer (siehe 3.11.4, Ranbp3lreal sense, Ranbp3l-real antisense) und des CMV-*sense* Primers (3.11.3) verifiziert.

4.10.2 Stabile Transfektion in mpkCCD-Zellen

Die mpkCCD-Zellen wurden in 12-*well* Platten so ausgesetzt, dass am Tag der Transfektion eine Konfluenz von 70-80 % vorlag. Das Volumen pro *well* betrug 2 ml. Die Transfektion des aus 4.10.1 generierten V180-RANBP3L-Flag-Plasmids sowie des leeren Plasmids als Negativkontrolle (3.7, V180-Leervektor) erfolgte nach folgendem Reaktionsansatz:

Tabelle 16: Reaktionsansatz für die Transfektion mittels TurboFect pro well.

Komponenten	Menge	Serum freies Medium
Vektor	2 µg	200 µl
TurboFect-Transfektions-Reagenz	6μl	

Der Reaktionsansatz wurde gevortext und für 15 min bei Raumtemperatur inkubiert. Danach wurden die 200 µl des Transfektionsansatzes tropfenweise pro *well* zugegeben und die Zellen für weitere 48 h bei 37°C im Brutschrank inkubiert. Das transfizierte Plasmid enthält einen kodierenden Bereich für eine Neomycinresistenz. So wurden die transfizierten mpkCCD-Zellen mit 0,25 mg/ml G418 (Geneticin) versetzt und nachfolgend nur mit G418 versetztem Medium kultiviert.

4.10.3 Nachweis der Überexpression

Die Überexpression von RANBP3L in den mpkCCD-Zellen wurde auf RNA-Ebene durch eine qPCR auf *Ranbp3l* analysiert. Die Überexpression auf Proteinebene konnte anhand der Kernlokalisation von RANBP3L und des existierenden Flag-Tags im V180 Vektor (der Flag-Tag ist direkt an den C-terminal für Ranbp3l kodierenden Bereich gebunden) mittels Immunfluoreszenz analysiert werden (Siehe Anhang 8.13.). Als Kontrolle dienten jeweils mit dem Leervektor stabil transfizierte Zellen.

4.11 Nutzung von frei zugänglichen online Datenbanken

4.11.1 Primerdesign mittels NCBI Primer-BLAST

Zur Generierung spezifischer Primer für PCR, qPCR oder diverse Klonierungen wurde das NCBI Primer-BLAST tool verwendet (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, Stand 17.08.21) [91].

4.11.2 CRISPR/CAS9-vermittelter-Knockout

4.11.2.1 CHOPCHOP

Das gRNA Design für das CRISPR/Cas9 System wurde mittels CHOP-CHOP durchgeführt (https://chopchop.cbu.uib.no, Stand 17.08.21) [97].

4.11.2.2 *TIDE*

Eine CRISPR/Cas9-vermittelten-Mischkultur sowie Einzelklongenerierung wurde mittels einer *Tracking of Indels by DEcomposition* (TIDE)-Analyse verifiziert (http://shinyapps.datacurators.nl/tide/, Stand 17.08.21) [100].

4.11.2.3 Expasy

Die Einzelklon-DNA-Sequenzen wurden nun mittels Expasy in Protein-Sequenzen umgewandelt und somit die Proteinlänge der CRISPR/Cas9-vermittelten-*Knockout*-Klone analysiert (https://web.expasy.org/translate/, Stand 17.08.21) [105].

4.11.3 Genexpressionsanalysen

4.11.3.1 Morpheus

Die Morpheus Software des *Broad Institute* wurde zur Generierung von Heatmaps verwendet (https://software.broadinstitute.org/morpheus/, Stand 17.08.21).

4.11.3.2 TCGA

Die *The Cancer Genome Atlas* (TCGA)-Datenbank diente dazu, aus der Kohorte der Nierenzellkarzinompatienten Genexpressionsprofile zu erstellen und mit den Subtypen KIRC, KICH und KIRP zu vergleichen (https://xenabrowser.net, Stand 17.08.21) [82].

4.11.3.3 The Human Protein Atlas

Der humane Protein-Atlas wurde verwendet, um vorteilhafte und unvorteilhafte Gensets für das Nierenzellkarzinom mit entstandenen Genexpressionsprofil-Analysen von RANBP3L-KO-Zellen zu vergleichen (https://www.proteinatlas.org/humanproteome/pathology, Stand 17.08.21) [106].

4.11.3.4 *Gepia2*

Gene Expression Profiling Interactive Analysis 2 (Gepia2) wurde genutzt, um Kaplan-Meier-Plots einzelner Gene sowie Gensets zu generieren. Weiterhin wurde die Hauptkomponentenanalyse (*principal component analysis*, PCA) hiermit generiert. Die Hauptkomponentenanalyse ist dabei ein statistisches Verfahren, mit dem viele Variablen (Gene) zu wenigen Hauptkomponenten zusammengefasst werden, um so eine Darstellung der Daten in wenigen Plots zu ermöglichen. Dafür wird mathematisch eine Trendkurve über alle Werte gelegt (PC1) und wiederum eine zweite Trendkurve die senkrecht zur ersten steht (PC2). Dies kann für die Anzahl an existierenden Variablen wiederholt werden. Meistens decken aber bereits PC1 und PC2 den Großteil der Daten ab, womit durch einen einzigen Plot (X = PC1 und Y = PC2) eine Aussagekraft für alle Gene beschrieben werden kann (http://gepia2.cancer-pku.cn, Stand 17.08.21) [70].

4.11.3.5 DAVID

The Database for Annotation, Visualization and Integrated Discovery, DAVID wurde zur Generierung von *KEGG-Pathway*-Analysen ((*Kyoto Encyclopedia of Genes and Genomes*) genutzt (https://david.ncifcrf.gov/tools.jsp, Stand 17.08.21) [107].

4.11.3.6 GSEA

Gene Set Enrichment Analysis (GSEA) wurden mittels der Software des Broad Instituts generiert (https://www.gsea-msigdb.org/gsea/index.jsp, Stand 17.08.21) [108].

4.11.3.7 UALCAN

Das The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) wurde für die Generierung der Heatmap aus Abbildung 9 verwendet (http://ualcan.path.uab.edu/, Stand: 17.08.2021)[83].

4.11.4 Promotorstudien

4.11.4.1 ECR

Zur Ermittlung von evolutionär konservierten Bereichen wurde die freizugängliche Datenbank *Evolutionary Conserved Regions* (ECR)-Browser benutzt. (https://ecrbrowser.dcode.org, Stand 17.08.21).

4.11.4.2 **JASPAR**

Zur Untersuchung der evolutionär konservierten Bereiche auf putative Transkriptionsfaktor Bindestellen wurde die Datenbank JASPAR genutzt (http://jaspar.genereg.net, Stand 17.08.21) [104, 109].

4.11.4.3 QuikChange Primer Design

Zum Design der Primer für eine Quick Change Mutagenese wurde die Software QuikChangePrimerDesignderFirmaAgilentverwendet(https://www.agilent.com/store/primerDesignProgram.jsp, Stand 17.08.21).

4.12 Statistische Auswertung der Daten

Daten, die für eine statistische Auswertung verwendet wurden, wurden aus mindestens drei unabhängigen Experimenten mit mindestens zwei technischen Replikate gewonnen. und als Mittelwerte ± Standardfehler des Mittelwerts (*Standard error of the mean*, SEM) dargestellt. Die Auswertung der Ergebnisse erfolgte mittels GraphPad Prism 8. Signifikante Unterschiede wurden im Vergleich zur im Ansatz mitgeführten Kontrolle durch den Student t-Test oder 1-Weg-ANOVA bestimmt. Für jedes Experiment ist die n-Zahl sowie statische Auswertemethode in der Legende aufgeführt.

5 Ergebnisse

5.1 Osmotische Genregulation von *Ranbp3I*

5.1.1 Expression in einer murinen IMCD-Primärkultur

SCHULZE BLASUM et al. konnte in Primärkulturen von innermedullären Sammelrohrzellen (*inner medullary collecting duct*, IMCD) aus Ratten durch Microarray-Analysen bisher noch unbeschriebene Gene und Signalwege identifizieren, die über die Osmolalität beeinflusst werden. Darunter befand sich auch das *ran-binding protein 3-like* (*Ranbp3l*) [55]. Zu Beginn meiner Arbeiten sollten die in Ratte gewonnen *Microarray* Daten in Maus IMCD-Primärkulturen verifiziert werden. Dafür wurde mittels Next-Generation-Sequenzierung (NGS) das globale Genexpressionsprofil der murinen IMCD-Zellen unter isoosmolaren (300 mosmol/kg) sowie hyperosmolaren (600 mosmol/kg) Bedingungen bestimmt (Abbildung 18).

Abbildung 18: Volcano-Plot von Maus-IMCD-Zellen.

Maus IMCD-Zellen wurden 7 d in 300 mosmol/kg und 600 msomol/kg Medium kultiviert. Anschließend wurde die RNA isoliert, die Reinheit bestimmt und durch die Firma Novogene mittels NGS analysiert. Der dargestellte Volcano-Plot gibt Auskunft darüber, welche Gene in welchem Ausmaß differentiell exprimiert werden sowie auch wie signifikant diese Veränderung ist. Grundlage der Volcano-Plots sind die differentiell exprimierten Gen (DEG)-Listen. Die x-Achse stellt den log₂ fold change dar, welcher das Verhältnis der Transkriptmengen zweier verglichener Proben angibt. Die Y-Achse dagegen gibt den -log₁₀(padjust)- Wert an, der die Signifikanz der Änderung der Daten einbezieht. P_{adjust}-Werte von \geq 0,05 wurden als nicht signifikant eingestuft (gestrichelte Linie). Dargestellt sind alle unterschiedlich regulierten Gene zwischen den bei 300 mosmol/kg und 600 msomol/kg ermittelten Transkripten. Die Punkte in den Volcano-Plots repräsentieren Gene (Blaue Punkte stehen für herunterregulierte Gene, die roten Punkte dagegen für hochreguliere Gene, schwarz = nicht signifikant regulierte Gene, n = 2 für jede Osmolalität).

Die Firma Novogene Co, Ltd übernahm dabei die Qualitätskontrolle der RNA-Proben, die RNA-Sequenzierung und die bioinformatische Auswertung der erhaltenen Daten. Genaueres über das Vorgehen von Novogene ist im Anhang unter 8.3 zu finden. Die Ergebnisse zeigen, dass ebenfalls in murinen Primärkulturen eine Vielzahl an Genen reguliert wird. Dabei ist zu erkennen, dass insgesamt 735 Gene (347 hoch und 388 runter) in ihrer Expression signifikant reguliert sind. Neben bekannten osmolalitätsregulierten-Genen wie Aqp2 (log₂ fold change = 4,98) [51], Fxyd2 (log₂ fold change = 4,49) [110] oder Prss35 (log₂ fold change = 5,82) [54], die auch in den Ratten-*Microarray*-Daten identifiziert werden konnten [55], zeigt auch *Ranbp31* eine ähnlich starke Induktion seiner Expression (log_2 fold change = 4,62) unter Hyperosmolalität (Die log₂ fold changes aller unter Hyperosmolalität signifikantregulierten-Gene aus Maus-IMCD-Zellen sind im Anhang 8.4 unter Tabelle 25 zu finden). Weiterhin konnte gezeigt werden, dass in demselben Datensatz kein anderes Mitglied der Ran binding protein Familie einen solchen Unterschied in der Genexpressionsänderung besitzt. In Abbildung 19 sind die fragments per kilobase million (FPKM) der Ran Bindeprotein Familienmitglieder als Heatmap für 300 mosmol/kg und 600 mosmol/kg beider Proben dargestellt. Es ist deutlich zu erkennen, dass nur die Ranbp3l-Expression bei 600 mosmol/kg einen Unterschied im Vergleich zu den 300 mosmol/kg Proben aufweist.

Abbildung 19: FPKM-Werte aller identifizierten Transkripte der RANBP-Familie.

Maus IMCD-Zellen wurden 7 d bei 300 mosmol/kg und 600 mosmol/kg kultiviert. Anschließend wurde die RNA isoliert, die Reinheit bestimmt und von der Firma Novogene die RNA Sequenzierung durchgeführt. Dargestellt sind die FPKM (*fragments per kilobase million*) Werte eines jeden zur RANBP-Familie gehörenden Transkripts, welches durch RNA-Sequenzierung identifiziert werden konnte (Ranbp = Ran binding protein, Ipo = Importin, n=2 für jede Osmolalität) [85].

Zusammenfassend lässt sich also sagen, dass die gewonnen Daten aus Ratten-IMCD-Zellen sich ebenfalls auf eine murine Primärkultur übertragen lassen konnten.

5.1.2 Expression in der mpkCCD-Zelllinie

Um die Funktion von RANBP3L erforschen zu können, war es weiterhin notwendig auf ein Modell zurückzugreifen, welches im Gegensatz zu Primärkulturen seine Manipulation zu lässt. Diese Zelllinie sollte zusätzlich renalen Ursprungs sein und sich unter Hyperosmolalität kultivieren lassen. In der Literatur wird die mpkCCD-Sammelrohrzelllinie als solch ein Model beschrieben [51, 88, 111, 112]. Auch hier konnte durch NGS-Analysen gezeigt werden, dass *Ranbp3l* unter Hyperosmolalität (600 mosmol/kg) signifikant hochreguliert wird (log₂ fold change = 8,95, Abbildung 20A). (Die log₂ fold changes aller signifikant-regulierter-Gene aus mpkCCD Zellen sind im Anhang 8.4 in der Tabelle 26 zu finden).

Abbildung 20: Signifikant-regulierte-Gene in mpkCCD und murinen IMCD-Zellen unter Hyperosmolalität.

A) Die mpkCCD-Zellen wurden 7 d in 300 mosmol/kg und 600 mosmol/kg Medium kultiviert. Anschließend wurde die RNA isoliert, die Reinheit bestimmt und durch die Firma Novogene durch NGS analysiert. Der hier dargestellte Volcano-Plot gibt Auskunft darüber, welche Gene in welchem Ausmaß differentiell exprimiert werden sowie auch wie signifikant diese Veränderung ist. Die x-Achse stellt den log₂ fold change dar. Die Y-Achse dagegen gibt den $-\log_{10}(padjust)$ - Wert an. Dargestellt sind alle unterschiedlich regulierten Gene zwischen den bei 300 mosmol/kg und 600 msomol/kg. Die Punkte in den Volcano-Plots repräsentieren Gene (Blaue Punkte stehen für herunterregulierte Gene, die roten Punkte dagegen für hochreguliere Gene, n =2 für jede Osmolalität). B) Maus IMCD und mpkCCD-Zellen wurden 7 d unter Hyperosmolalität kultiviert, die RNA wurde isoliert und nachfolgend ein globales Genexpressionsprofil erstellt. Überlappende signifikant-regulierte-Gene (log₂ fold change < -1, > 1) sind gegeneinander dargestellt und zeigen eine signifikante Korrelation (n = 583, p < 0,0001, Blaue = überlappende herunterregulierte Gene, rot = überlappende hochregulierte Gene, grüner Punkt = *Ranbp3l*) [85].

Nachfolgend wurde untersucht wie stark die durch Hyperosmolalität induzierten Genexpressionsprofile zwischen primären IMCDs und mpKCCD-Zellen korrelieren. In Abbildung 20B sind die aus Abbildung 18 enthaltenen murinen IMCD-Daten sowie die log₂ fold change Werte der mpkCCD-Zellen (kleiner als -1 und größer als 1) gegeneinander aufgetragen. Dabei konnten 583 gemeinsame signifikant differentiell-regulierte-Gene beschrieben werden (Die log₂ fold changes aller gemeinsamer signifikant-regulierter-Gene sind im Anhang 8.4 in der Tabelle 27 zu finden).

Dabei lässt sich erkennen, dass beide Gensets signifikant und positiv miteinander korrelieren ($R^2 = 0,2025$). Weiterhin lässt sich feststellen, dass *Ranbp3l* in beiden Datensätzen eine der am stärksten hochregulierten Transkripte war (grüner Punkt). Somit ist gezeigt, dass für die weiteren Analysen der Funktion von RANBP3L sich die mpKCCD-Zelllinie eignet. Sie weist nicht nur eine vergleichbare Induktion von *Ranbp3l* zu der murinen IMCD-Primärkultur auf, sondern exprimiert ebenfalls ein vergleichbares Genset wie in der murinen-IMCD-Primärkultur. Dadurch sind die weiteren Daten sehr wahrscheinlich auf physiologische *in-vivo*-Prozesse übertragbar.

5.2 NFAT5 als Schlüsseltranskriptionsfaktor der Hyperosmolalität

Wie unter Punkt 1.3 dargelegt, wird NFAT5 als Schlüsseltranskriptionsfaktor der Anpassung an Hyperosmolalität beschrieben [40, 43]. Dabei kommt es einerseits zu einer verstärkten Transkription als auch einer Translokalisation in den Zellkern. Die Lokalisation von NFAT5 im Zellkern wurde folgend in murinen-IMCD-Zellen sowie der mpKCCD-Zelllinie mittels Immunfluoreszenzanalysen untersucht und die Ergebnisse sind in Abbildung 21 dargestellt. Bei beiden Färbungen diente DAPI als Kernmarker. Es ist zu erkennen, dass das NFAT5-Signal unter 300 mosmol/kg diffus in der Zelle verteilt vorliegt und unter 600 mosmol/kg im Kern deutlich angereichert ist. Eine quantitative Auswertung mit der *Zen Blue-Software* (4.2.16) zeigt zusätzlich die überlagerte Auftragung der Signalintensität des DAPI-sowie des NFAT5-Signals über das Präparat (Abbildung 21B und D). Für beide Analysen lassen sich ähnliche Schlussfolgerungen treffen. Während das NFAT5-Signal unter 300 mosmol/kg ein über die gesamte Zelle verstreutes Signal aufweist, welches nur gering mit dem DAPI-Signal überlappt, zeigt der Plot unter 600 mosmol/kg eine starke Kern-Kolokalisation mit dem DAPI-Kernsingal.

Abbildung 21: Immunfluoreszenzanalyse von NFAT5 in murinen IMCD und mpkCCD-Zellen. A, C) Primär-kultivierte-Maus-IMCD-Zellen (A) und mpkCCD-Zellen (C) wurden jeweils auf Deckgläsern ausgesetzt und unter 300 mosmol/kg beziehungsweise 600 mosmol/kg bis zu einer gewünschten Konfluenz kultiviert. Für die Immunfluoreszenzfärbung wurden die Zellen fixiert und mit spezifischen Antikörpern gegen NFAT5 (3446-Abcam) behandelt. Als Kernmarker diente DAPI (Maßstabsleiste: 100 μm). **B, D**) Intensitätsdiagramm des NFAT5- und DAPI-Signals für primär-kultivierte-Maus-IMCD-Zellen (B) und mpkCCD-Zellen (D). Die Färbung der Zellen mit dem NFAT5-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die isoosmolare und hyperosmolare Probe. Die Quantifizierung der Signalintensitäten erfolgte durch die *Zen Blue-Software* für den mit dem weißen Pfeil markierten Bereichs.

Es konnte folglich gezeigt werden, dass NFAT5 in beiden Systemen unter Hyperosmolalität stark nukleär lokalisiert vorliegt und somit die mpKCCD-Zelllinie einen ähnlichen Mechanismus der NFAT5-Aktivierung aufweist. Viele der bekannten osmoregulierten-Gene aus 1.3.2 sind durch NFAT5 reguliert [40, 51]. Es sollte nun untersucht werden, ob auch *Ranbp31* in seiner Expression über NFAT5 reguliert wird. Dazu diente ein CRISPR/Cas9-vermitteltes-*Knock-Out*-System, um die endogene Expression von NFAT5 in den verwendeten mpkCCD-Zellen zu inaktivieren.

5.3 Generierung einer CRISPR/Cas9-vermittelten-NFAT5-defizientenmpkCCD-Zelllinie

5.3.1 Knockout-Verifizierung

5.3.1.1 Genomische Charakterisierung des Knockouts

Durch die Verwendung der CRISPR/Cas9-Methode kann spezifisch ein genomischer Bereich verändert werden [113-115]. In diesem Zusammenhang sollte eine Mutation des NFAT5-Lokus in mpkCCD-Zellen zu einem NFAT5-Funktionsverlust führen. Dazu wurden in den mpkCCD-Zellen NFAT5 mittels drei verschiedener gRNAs am Exon 4 mutiert (Tabelle 17, generiert mit den Oligos aus 3.11.1 für *Nfat5* nach *4.4.1.2*) (Abbildung 22A).

Tabelle 17: Verwendete gRNAs gegen den murinen Nfat5-Lokus

Name	gRNA-Sequenz	Exon
NFAT5-gRNA1	CAATCTCGTCGTTTGACCCC	4
NFAT5-gRNA2	TTTCGTTTTCGTGATTTACG	4
NFAT5-gRNA3	GTTACTTACCCCCACGGCTG	4

Dieser Bereich wurde ausgewählt, da es 100 % Sequenzhomologie zu dem humanen NFAT5 aufweist [96]. Diese starke Konservierung spricht für die Kodierung eines wichtigen funktionellen Bereichs. Zunächst wurden dafür die drei gegen NFAT5 gerichtete gRNAs separat in einen lentiCRISPRv2-Vektor kloniert, in kompetenten DH5a-Zellen (E. coli) vervielfältigt und das Plasmid isoliert (4.4.1). Mit Hilfe eines lentiviralen Transduktionssystems wurden die gRNA-tragenden lentiCRISPRv2-Konstrukte (3.7, Crispr lenti v2-gRNA1-mNfat5, Crispr lenti v2-gRNA2-mNfat5, Crispr lenti v2 gRNA3-mNfat5) in die mpkCCD-Zelllinie eingebracht (4.4.2) und über Selektion durch 2 µg/ml Puromycin eine Mischkultur mit verschiedenen NFAT5 mutierten Zellen generiert. Die Transduktion war nur für Crispr lenti v2-gRNA1-mNfat5 und Crispr lenti v2-gRNA3-mNfat5 erfolgreich, da unter Puromycinbehandlung alle Crispr lenti v2-gRNA2-mNfat5-transduzierten-Zellen abstarben. Die erzeugten Mutationen ließen sich durch eine PCR mit spezifischen Primern des Zielbereichs im Nfat5-Lokus (Primer siehe 3.11.2., mNfat5-gRNA1+2 sowie mNfat5gRNA3) verifizieren (Daten nicht gezeigt). Die PCR-Produkte wurden schließlich aus dem PCR Ansatz aufgereinigt (4.2.9.1) und mit den gerade erwähnten sense und antisense Primern sequenziert (4.2.4).

Die Cas9-Nuklease sorgt an der Zielsequenz für einen Doppelstrangbruch (DSB), worauf die Zelle über den *non-homologous end joining* (NHEJ) Mechanismus beide DNA-Stränge

ohne vorhandenes *template* wieder zusammenfügt. Dabei kommt es zur Entstehung von **In**sertionen und **Del**etionen (InDels) [116]. Nicht jede Veränderung der NFAT5-DNA sorgt für einen kompletten funktionellen *Knockout* des Proteins. Somit ist die erzeugte Mischkultur nur als *Kockdown* von NFAT5 zu betrachten (Sequenzbeispiel siehe Abbildung 13). Es ist wichtig eine Mutation zu erzeugen, welche in einem *Frameshift* und nachfolgend zu einer falschen oder abbrechenden Translation des Proteins führt. Durch Verdünnungsreihen wurde aus den Mischkulturen schließlich Einzelklone generiert (4.4.3.2), dessen Mutationen im *Nfat5*-Lokus mittels PCR (Primer siehe 3.11.2., mNfat5-gRNA1+2 sowie mNfat5-gRNA3) für das zielsequenztragende-DNA-Fragment verifiziert wurde. Die PCR-Produkte wurden erneut aufgereinigt und sequenziert. Anhand der Sequenzierungsergebnisse konnten final aus zwei verschiedenen gRNAs zwei Einzelklone (N1 und N3) als NFAT5-*Knockout*-Klone generiert werden (Abbildung 22B).

Abbildung 22: Genomische Struktur des murinen NFAT5 nach gRNA Transduktion A) Schematische genomische Struktur des murinen NFAT5. grau = nicht kodierende Exons, gelb = Exon mit Zielsequenz, Schwarz = kodierende Exons B) Sequenzanalyse von Scr (oben), N1 (unten links) und N3 (unten rechts) Zellen für Zielsequenz-enthaltendes DNA-Fragment. Im Klon N1 (links) ist das Fehlen einer Base Guanin zu erkennen, während im Klon N3 (rechts) nach der PAM Sequenz multiple Peaks an derselben Position auftreten, was auf eine Genomveränderung durch die gRNA zurückzuführen ist (PAM = *protospacer adjacent motif*, rot Fläche= PAM Sequenz, grün Fläche= Zielsequenz).

Zusätzlich wurde eine Kontrolle mit einer zufällig zusammengesetzten *Scramble*-gRNA (Scr-gRNA = ATATCCGGAATTCGCGCGAT, generiert mit den Oligos aus 3.11.1 für *Scramble* nach *4.4.1.2*) ohne gerichtete Ziel-Sequenz in den lentiCRISPRv2-Vektor kloniert (3.7, Crispr lenti v2-Scr-gRNA) und wie die NFAT5-gRNAs in mpkCCD-Zellen transfiziert, um den Effekt der dauerhaft aktiven Cas9-Nuklease für spätere funktionelle

Ergebnisse auszuschließen [117]. Die Scr-DNA weist für den NFAT5-Bereich nur Wildtypsequenz auf und wurde daraufhin für alle folgenden Experimente als Kontrolle eingesetzt (Abbildung 22B, obere Sequenz = Scr-DNA).

Unter Verwendung der TIDE-Software (4.4.3.3) konnte anschließend die genaue Größe des InDels auf beiden Allelen identifiziert werden [100]. Für diese Analyse wurden die Sequenziererdaten aus Abbildung 22B genutzt. Das Programm ermittelt dann, durch den Vergleich der WT-Sequenz gegen die gRNA-behandelte Sequenz, die jeweilige Mutationswahrscheinlichkeit auf beiden Allelen. Die bionformatische Auswertung von TIDE für beide NFAT5-KO-Klone N1 und N3 ist in Abbildung 23 dargestellt (N1 oben, N3 unten).

Das PCR-Amplifikat wurde mit einer jeweiligen Kontrollsequenz sowie der gRNA Sequenz (N1 oben, N3 unten) in die TIDE-Software geladen. Die Zahlen über den Balken beziehen sich auf den Anteil des InDels an der Gesamtsequenz angegeben in %. Klon N1 (oben) weist, wie die Sequenz bereits zeigt, eine Deletion von einer Base auf. Klon N3 (unten) zeigt eine Deletion von 4 bp sowie 2 bp (rot = signifikant, schwarz = nicht signifikant) [85].

WT Seguena

Die roten Balken geben Auskunft über die in den jeweiligen Klonen entstandenen Mutationen und den berechneten Anteil an der DNA-Sequenz. Daher zeigt die Auswertung eine Deletion auf beiden Allen im Klon N1 und eine Deletion von 4 bp sowie 2 bp im Klon N3.

Weiterhin wurde nach Selektion der Klone N1 und N3 das PCR-Amplifikat (siehe 3.11.2, generiert durch PCR mit den Primern mNfat5-gRNA1+2 sowie mNfat5-gRNA3), welches für die TIDE-Analyse diente, in einem TOPO-TA-Vektor zwischenkloniert (4.4.3.4) um einerseits die bioinformatische TIDE-Analyse zu verifizieren und zusätzlich, nicht nur die Größe, sondern auch die genaue Sequenzmutation von N1 und N3 zu erhalten. Nach der Klonierung wurde das Plasmid in *DH5* α *E. coli* transformiert und auf Ampicillin + X-Gal Platten über Nacht bei 37°C inkubiert. X-Gal dient hier für eine Blau-Weiß-Selektion (4.4.3.4). Es wurden jeweils 10 weiße Klone eines jeden Amplifikats gepickt, die DNA aufgereinigt und mit dem M13 *sense* Primer (3.11.3) sequenziert. Die erhaltenen Sequenzen bestätigten die TIDE-Analyse und zeigen, dass es bei Klon N1 auf beiden Allelen zu einer Deletion von einem G (Guanin) kam. Klon N3 weist auf einem Allel eine 2 bp Deletion von CT (Cytidin + Thymin) und eine 4 bp Deletion von GCTG (Guanin + Cytodin + Thymin + Guanin) auf dem anderen Allel auf (Tabelle 18).

VI-Sequenz	
CCGGGGGTCAAACGACGAGATTGTGAAGAATCT	ACTTACCCCCACGGCTGAGGAGCAGCTCTCCACTT
NFAT5-gRNA1-KO	NFAT5-gRNA3-KO
CCGGG-GTCAAACGACGAGATTGTGAAGAATCT	ACTTACCCCCACGGGAGGAGCAGCTCTCCACTT
CCGGG-GTCAAACGACGAGATTGTGAAGAATCT	ACTTACCCCCACGAGGAGCAGCTCTCCACTT

Tabelle 18: Zusammenfassung der Sequenzanalyse der TOPO-TA-Klone.

5.3.1.2 NFAT5-Defizienz auf Protein-Ebene

Der N1 sowie N3-Klon bilden aufgrund der CRISPR/Cas9-vermittelten-Mutation eine Leserasterverschiebung. Um folgend herauszufinden, wie groß das gebildete NFAT5-Protein in den Klonen N1 und N3 ist, wurden die sequenzierten Bereiche über das *Webtool ExPASy-translate* in eine Aminosäuresequenz umgewandelt und diese mit der murinen WT-NFAT5-Aminosäuresequenz verglichen (siehe Anhang 8.10.1). Es konnte festgestellt werden, dass es in beiden Klonen zu einem früheren Abbruch der Translation kommt. Weiterhin zeigt die Analyse, dass N1-Klone im Vergleich zu N3 ein größeres NFAT5Protein bilden, aber beide trunkierte NFAT5-Varianten über keine funktionelle RHD oder Kernimport Domänen verfügen (Abbildung 24).

Abbildung 24: Schematische Darstellung der trunkierten NFAT5 Einzelklone N1 und N3 im Vergleich zum WT-NFAT5-Protein.

Im Vergleich zu der WT-NFAT5-Struktur konnte gezeigt werden, dass es in den Klonen N1 und N3 durch die Leserasterverschiebung zu einem frühzeitigen N-terminalen Translationsabbruch kommt. Beide Klone bilden die Aminosäuren für die NES (grau) sowie die TAD1 (beige) Domäne. Klon N1 weist zusätzlich einen kurzen Teil der AED (braun) Sequenz auf. Es fehlen aber vollständig die NLS, RHD sowie die TAD2 Domäne. In gelb ist die *de-novo*-Sequenz der Klone N1 und N3 dargestellt, die aufgrund der Leserasterverschiebung neue Aminosäureketten hervorbringt.

Beide NFAT5-defizienten-mpkCCD-Klone weisen trunkierte NFAT5-Varianten auf, die zum Funktionsverlust des Proteins führen müssten. Um die NFAT5-Defizienz auf Proteinebene zu bestätigen, wurde ein Western Blot mit isolierten Proteinproben aus den Einzelklonkulturen N1 und N3 durchgeführt (4.2.13-4.2.14). Für die beiden Einzelklone N1 und N3 kann im Vergleich zu Scr keine eindeutige NFAT5-Bande detektiert werden (Abbildung 25). GAPDH, welches als Ladekontrolle dient, ist im Gegensatz dazu in allen drei Proben nahezu gleich abundant vertreten.

Abbildung 25: Nachweis der Defizienz von NFAT5 in N1 und N3 mittels Western Blot.

Proteine wurden aus den jeweiligen Zellen isoliert und über eine SDS-Page ihrer Größe nach aufgetrennt. Nachfolgend erfolgte das Blotten der Proteine auf eine Nitrocellulose-Membran. Durch spezifisch-bindende Antikörper wurde dann in den Scr, N1 und N3-Proben NFAT5 (3446-Abcam) und GAPDH (Cell Signaling) analysiert [85].

Um zusätzlich den Funktionsverlust von NFAT5 als Transkriptionsfaktor zu bestätigen, wurden Immunfluoreszenzanalysen (4.2.15) mit einem anti-NFAT5 Antikörper durchgeführt. Wie Abbildung 21 schon gezeigt hat, transloziert NFAT5 unter Hyperosmolalität (600 mosomol/kg) verstärkt in den Zellkern. Während bei Scr-mpkCCD-Zellen dies immer noch der Fall ist, konnte unter extrazellulärer Hyperosmolalität bei den NFAT5-defizienten-Zellen kein definiertes Kernsignal von NFAT5 mehr beobachtet werden (Abbildung 26A). DAPI diente in den Versuchen als Kernmarker. Erneut zeigt die quantitative Auswertung der Signalintensität in den Scr-Kontrollen unter Hyperosmolalität ein überlagertes NFAT5-Signal mit dem DAPI-Signal. Für die NFAT5-defizienten-Klone N1 und N3 kann diese Überlagerung beider Signale nicht mehr gezeigt werden (Abbildung 26B).

Abbildung 26: NFAT5-Immunfluoreszenzaufnahmen von Scr- und NFAT5-defizienten-Zellen.

A) Scr, N1 und N3-Zellen wurden jeweils auf Deckgläsern ausgesetzt und unter 300 mosmol/kg beziehungsweise 600 mosmol/kg bis zu einer gewünschten Konfluenz kultiviert. Für die Immunfluoreszenzfärbung wurden die Zellen fixiert und mit spezifischen Antikörpern gegen NFAT5 (3446-Abcam) behandelt. Als Kernmarker diente DAPI (Maßstabsleiste: 100 μ M). B) Intensitätsdiagramm des NFAT5 und DAPI-Signals für Scr; N1 und N3 zeigt bei dem Scr-Kontrollpräparat (oben) überlappende Peaks in beiden Kanälen, während bei beiden NFAT5 KO-Präparaten (Mitte und Unten) nur unspezifische NFAT5 Signale identifiziert werden konnten. Die Färbung der Zellen mit dem NFAT5-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr- und KO-Probe. Die Quantifizierung der Signalintensitäten erfolgte durch die Zen Blue-Software für den mit dem weißen Pfeil markierten Bereichs.

5.3.2 Expressionsanalyse der NFAT5-defizienten-mpkCCD-Klone

Nach erfolgreicher Etablierung von NFAT5-defizienten-mpkCCD-Zellen wurde die NFAT5 abhängige *Rannbp3l*-Expression untersucht. Dafür wurden die Scr- sowie N1- und N3-Zellen für 7 d unter 300 mosmol/kg sowie 600 mosmol/kg kultiviert und folgend die RNA isoliert und qPCR-Analysen durchgeführt (4.2.10-4.2.12). Zur Verifizierung der Osmolalitätsadaption wurde zunächst die relative Expressionsänderung von *Ranbp3, Aqp2* und *Slc6a12* der Scr-Zellen bei 600 mosmol/kg bezogen auf die isoosomolare Kontrolle (300 mosmol/kg) mittels qPCR bestimmt (Primer siehe 3.11.4, *Ranbp3l*-real, *Aqp2*-real, *Slc6a12*-real, *Gapdh*-real). Als *housekeeping gene* wurde *Gapdh* genutzt. Unter Hyperosmolalität war die Expression der Transkripte, wie erwartet, stark hochreguliert (nicht dargestellt, analog zu Abbildung 20). Anschließend wurden die Genexpressionswerte der beiden Einzelklone N1 und N3 auf die Genexpressionswerte der Scr-Kontrolle bei 600 mosmol/kg normiert und für *Ranbp3l* statistisch ausgewertet. Als Positivkontrollen dienten *Aqp2* und *Slc6a12* (Abbildung 27). Es ist zu erkennen, dass die NFAT5-defizienten-Zellen bei 600 mosmol/kg im Vergleich zu der Scr-Kontrolle signifikant weniger *Aqp2*, *Slc6a12* und *Ranbp3l* exprimieren.

Scr und NFAT5-defiziente-Zellen wurden 7 d unter 300 mosmol/kg und 600 mosmol/kg kultiviert. Anschließend wurde RNA isoliert und 1 µg RNA zu cDNA umgeschrieben. Durch die Verwendung spezifischer Primer konnten qPCR für *Aqp2* und *Ranbp3l*, mit *Gapdh* als *house keeping gene* (Primer siehe 3.11.4, *Ranbp3l*-real, *Aqp2*-real, *Slc6a12*-real, *Gapdh*-real) durchgeführt werden (Mittelwerte \pm SEM (Fehlerbalken), n = 3-5, *, p < 0,05, **, p < 0,01, Student's-T-Test) [85].

5.4 Tamoxifen-vermittelter *ex-vivo-Knockout* von NFAT5 in primärkultivierten-Maus-Nierenzellen

5.4.1 Etablierung einer NFAT5-defizienten-Primärkultur

Nach erfolgreicher Charakterisierung der NFAT5-defizienten-mpkCCD-Zellen sollte analysiert werden, ob eine NFAT5-abhängige-*Ranbp3l*-Expression auch in einer primären Maus-IMCD-Zellkultur beobachtet werden kann. Da globale NFAT5-*Knockout*-Mausembryonen eine höhere Letalität aufweisen [40], wurde ein konditionelles NFAT5-*Knockout* System in Mäusen über eine Tamoxifen induzierbare Ube-Cre/ERT2-Maus-Linie der Gruppe KÜPER et al. genutzt [96].

Abbildung 28: Etablierung eines konditionellen NFAT5-*Knockout*-Systems in primärkultivierten Maus-Nierenzellen.

A) Ablaufplan für die Kultivierung von primären murinen IMCD-Zellen. B) Cre-Aktvierung durch 4-Hydroxy-Tamoxifen (4-OH-TM). Ohne Tamoxifen (links) ist die CRE-ERT in Cytosol lokalisiert und nicht reaktiv. Bei Gabe von 4-OH-TM ins Medium (1), kommt es durch die Bindung von 4-OH-TM an den CRE-ERT Komplex (2) zur Aktivierung und somit zur Translokation in den Zellkern (3). Die Cre-Rekombinase erkennt loxp frankierte Bereiche und schneidet diese aus dem Genom (4). Bei der Translation entsteht folglich eine mutierte NFAT5 Variante, der das Exon 4 vollständig fehlt (5).

In Abbildung 28A ist die Generierung von NFAT5-defizienten-Primärzellen schematisch aufgezeigt [87] sowie in Abbildung 28B die genaue Wirkungsweise des 4-Hydroxy-Tamoxifens (4-OH-TM) induzierten konditionellen NFAT5-*Knockout*s. Es erfolgte wie in Abbildung 28A dargestellt die Nierenentnahme bei den Mäusen und ein enzymatischer

Verdau zur Homogenisierung des Gewebes. Die Zellen wurden nachfolgend für die jeweiligen Analysen in unterschiedliche well-Formate ausgesät und kultiviert. Um den Knockout zu verifizieren wurde ein Teil der Zellen für eine Immunfluoreszenz Analyse analog zu den NFAT5-defizienten-mpkCCD-Zellen verwendet und aus einem anderen Teil RNA isoliert. Ohne die Zugabe von 4-OH-TM zeigt die Immunfluoreszenz deutlich ein starkes Kernsignal bei 600 mosmol/kg. Dieselbe Färbung zeigt bei Zugabe von 4-OH-TM nur noch ein diffuses NFAT5-Signal (Abbildung 29A). Erneut lässt sich der Funktionsverlust von NAFT5 durch die quantitative Analyse mittels eines Signalintensitätsdiagramms verifizieren. In Abbildung 29B ist zu erkennen, dass in der Kontrolle das NFAT5-Signal aufgrund der Kernlokalisation mit dem DAPI-Signal überlagert ist. Dies ist bei den 4-OH-TM behandelten Zellen nicht mehr der Fall, weswegen von einem Funktionsverlust des NFAT5-Proteins als Transkriptionsfaktor auszugehen ist.

Abbildung 29: NFAT5-Immunfluoreszenzaufnahmen primärer IMCD-Zellen mit und ohne 4-OH-TM Behandlung.

A) Die murinen IMCD-Zellen wurden aus Mausnieren von Ube-Cre/ERT2 ^{+/-} NFAT5 ^{fl/flx} Mäusen isoliert und auf Deckgläsern in 24-*well* Platten ausgesetzt. Nach 48 h Inkubation wurde 1 μg/ml 4-OH-TM, außer bei den Kontrollwells, zugegeben und 24 h weiter inkubiert. Es erfolgte ein Mediumswechsel und nach weiteren 72 h Inkubation wurden die Zellen fixiert und mit spezifischen Antikörpern gegen NFAT5 (3446-Abcam) behandelt. Unter einer 4-OH-TM Behandlung kann kein nukleäres NFAT5-Signal mehr detektiert werden. Als Kernmarker diente DAPI (Maßstabsleiste: 100 μm). **B**) Die Signalintensität des NFAT5 und DAPI Signals über dem Präparat zeigt bei dem Kontrollpräparat überlappende Peaks in beiden Kanälen, während bei dem 4-OH-TM Präparat nur unspezifische NFAT5 Signale identifiziert werden konnten. Die Quantifizierung erfolgte durch die *Zen Blue-Software* für den mit dem weißen Pfeil markierten Bereichs. Die Färbung der Zellen mit dem NFAT5-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Kontroll- und 4-OH-TM-Probe.

1 μg der isolierten RNA wurde in cDNA umgeschrieben und für qPCRs verwendet, die mit spezifischen Primern, die Exon 4 von NAFT5 binden (Primer siehe 3.11.4, *Nfat5* exon 4-5),

durchgeführt wurde. Da bei einer Aktivierung der Cre-Rekombinase Exon 4 vom murinen *Nfat5* herausgeschnitten wird, kann mit diesen Primern die tamoxifen-induzierte-NFAT5-Deletion quantitativ nachgewiesen werden. Als Kontrolle dienten sowohl Ube-Cre/ERT2 ^{-/-} Nfat5 ^{flx/flx} Maus-Primärkulturzellen mit einer 4-OH-TM Behandlung, sowie Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} ohne 4-OH-TM. Bei allen isolierten Kontrollproben (\circ und •) ist das *Nfat5*-Expressionsniveau auf einem ähnlichen Niveau (Abbildung 30), weswegen auch ein toxischer Nebeneffekt von 4-OH-TM ausgeschlossen werden kann. Weiterhin zeigen die Daten, bei fast allen isolierten Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} Proben mit einer 4-OH-TM Behandlung (\Box) eine deutliche Herunterregulation der *Nfat5*-Expression im Vergleich zu beiden Kontrollgruppen (Abbildung 30).

Abbildung 30: qPCR Analyse der *Nfat5*-Expression in NFAT5-defizienten-Zellen sowie den Kontrollgruppen.

IMCD-Zellen wurden aus Mausnieren isoliert und in 24-*well* Platten ausgesetzt. Nach 48 h Inkubation wurde den Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} IMCD-Zellen 1 µg/ml 4-OH-TM zugegeben (\Box) und 24 h weiter inkubiert. Es dienten Ube-Cre/ERT2 ^{-/-}NFAT5 ^{flx/flx} + 4-OH-TM (\circ) und Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} ohne 4-OH-TM Gabe (\bullet) als Kontrolltiere. Es erfolgte ein Mediumswechsel und nach weiteren 72 h Inkubation erfolgte die RNA Isolation, c-DNA Umschreibung und qPCR Analysen (3.11.4, *Nfat5* exon 4-5, *Gapdh*-real). Es konnte festgestellt werden, dass die relative *Nfat5*-Expression (relativ zu *Gapdh*) in den Kontrollgruppen (Ube-Cre/ERT2 ^{-/-}NFAT5 ^{flx/flx} oder Ube-Cre/ERT2 ^{+/-}NFAT5 ^{flx/flx} ohne 4-OH-TM Zugabe) nicht signifikant verändert vorlag, während eine 4-OH-TM Gabe in den Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} zu einer signifikanten Herunterregulation von *Nfat5* führte (Mittelwerte ± SEM (Fehlerbalken), mit n = 3-9, n.s., p > 0,5, **, p < 0,01. 1-Weg-ANOVA) [85].

5.4.2 Expressionsanalyse einer NFAT5-defizienten-Primärkultur

Nach erfolgreicher Etablierung einer 4-OH-TM-induzierbaren-NFAT5-KO-Maus-Primärkultur sollte nun untersucht werden, ob das Fehlen von NFAT5 einen Effekt auf die Expression von *Ranbp3l* unter Hyperosmolalität hat.

Für eine globale Genexpressiosnanalyse wurden je zwei Ube-Cre/ERT2 ^{+/-} NFAT5 ^{flx/flx} mit 4-OH-TM behandelten IMCD-Kulturen sowie zwei nicht mit 4-OH-TM behandelte Ube-Cre/ERT2 ^{-/-} Nfat5 ^{flx/flx} Kontrollen verwendet. Auch hier konnte der *Knockout* anhand der Verteilung der *RNA-Seq-Reads* im *Nfat5*-Maus-Genom verifiziert werden, da in Abbildung 31A deutlich zu sehen ist, dass das Exon 4 in der 4-OH-TM Gruppe fehlt (durch Pfeil markiert). Weiterhin konnten Genexpressionsdaten zeigen, dass kanonische NFAT5regulierte-Gene (*Akr1b3*, *Aqp2*, *Slc5a3* etc.) sowie auch *Ranbp3l* in der behandelten Gruppe nicht mehr mittels Hyperosmolalität in ihrer Expression induziert werden (Abbildung 31B).

Abbildung 31: NGS-Analyse von primären IMCD-Zellen mit und ohne 4-OH-TM Behandlung. A) Dargestellt sind die *RNAS-Seq-Reads* einer Probe (schwarz = Kontrolle, rot = 4-OH-TM Behandlung) gemapped auf die Exon-Intron-Struktur von murinem *Nfat5*. Dieser Plot verifiziert den 4-OH-TMvermittelten-NFAT5-*Knockout*, da eindeutig gezeigt werden kann, dass Exon 4 fehlt. B) FPKM-Werte kanonischer NFAT-Zielgene. Während die Kontrolle unter 600 mosmol/kg eine Induktion der Gene zeigt, ist dies in der 4-OH-TM Gruppe nicht mehr der Fall [85].

5.5 *Ranbp3I* als direktes NFAT5-Target

5.5.1 Evolutionär konservierte NFAT5-Bindestellen im Ranbp3l-Promotorbereich

Es konnte bislang gezeigt werden, dass *in-vitro* sowie *ex-vivo* die *Ranbp31*-Expression über NAFT5 reguliert wird. Bei vielen kanonischen-NFAT5-regulierten-Genen konnte bereits

eine direkte Bindung von NFAT5 an den Promotorbereich gezeigt werden [40, 42, 51, 53]. Weiterhin sollte untersucht werden, ob diese Regulation über die Bindung von NFAT5 an *Ranbp3l*-Promotorbereiche ebenfalls direkt vermittelt wird. Dafür wurden zunächst mit der freizugänglichen online Datenbank ECR evolutionär-konservierte-Bereiche in der *Ranbp3l*-Promotorregion (2000 bp *uptream* vom Startcodon) identifiziert (Abbildung 32A). Die mit Pfeil markierten Bereiche stellen stark konservierte Bereiche über die gezeigten Spezies dar.

Abbildung 32: Analyse von NFAT5-Bindestellen im *Ranbp3l*-Promotor über diverse Spezies. A) Screenshot aus einem Bereich der menschlichen *Ranbp3l*-Promotorregion von der ECR-Browser-Website mit evolutionär konservierten Regionen (ECR) in den Genomen von Ratte, Maus, Hund, Makaken und Schimpansen. Die rosafarbenen Linien (siehe Pfeile) zeigen die ECR zwischen dem Menschen und den angegebenen Säugetieren. B) Der 800 bp große Bereich vor der *Ranbp3l*-Starttranskriptionsstelle ist in den angegebenen Säugetieren konserviert und enthält eine konservierte NFAT5-Konsensussequenz (NNTTTCCA ist gelb dargestellt, Bindestelle 1) und eine nur teilweise konservierte Sequenz (nicht konservierte Nukleotide sind rot dargestellt. Bindestelle 2) [85].

Die nun identifizierten Bereiche wurden mit einer weiteren freizugänglichen Software (JASPAR) auf putative Transkriptionsfaktorbindestellen untersucht (NFAT5-Konsensussequenz = NNTTTCCA, siehe Anhang Abbildung 59). Darunter konnten zwei nah beieinander gelegene Bindestellen für NFAT5 ca. 800 bp *upstream* vom Startcodon identifiziert werden (Abbildung 32B). Während eine dieser Bindestellen eine starke

Konservierung aufweist (Bindestelle 1), zeigt die andere (Bindestelle 2) eine veränderte Basenabfolge bei höher entwickelten Vertebraten.

5.5.2 Analyse der Promotoraktivität von unterschiedlichen Ranbp3l-Promotorfragmenten

Um zu untersuchen ob auch der Ranbp3l-Promotor unter der direkten Kontrolle von NFAT5 steht, wurden verschiedene Promotorfragmente in einen PGL3-Luciferasevektor kloniert (Primer siehe 3.11.5 RANBP3L-Prom1-2 kb, RANBP3L-Prom2-0,8 kb) (4.9). Dazu wurde ein langes 2 kb großes Promotorfragment als auch ein kürzeres (800 bp), welches aber immer noch beide putative NFAT5-Bindesequenzen enthält, in einen PGL3-Vektor kloniert (3.7, PGL3-2 kb-mRanbp31, PGL3-0,8 kb-mRanbp31). Zusätzlich wurden die zwei NFAT5-Bindestellen im Ranbp31-Promotor mittels quick change mutagenese mutiert (3.7, jeweils eine = PGL3-0,8 bp-quick1-mRanbp31, PGL3-0,8 bp-quick2-mRanbp31 sowie beide zusammen = PGL3-0.8 bp-quick1+2-mRanbp31). Das jeweilige *Ranbp31*-Promotor-Fragment wurde vor die für Luciferase-kodierende-Region kloniert (Primer siehe 3.11.5 RANBP3L-Prom1-2 kb, RANBP3L-Prom2-0,8 kb). Bindet nun NFAT5 an die putativen Erkennungssequenzen des Promotor-Fragments aktiviert es als Transkriptionsfaktor die Expression der Luciferase, welche durch eine Lumineszenzmessung quantifiziert werden kann (4.9.4). Somit kann durch die Lumineszenz die Promotoraktivität angegeben werden. Die Promotoraktivität wurde nachfolgend in HEK-293T-Zellen untersucht (4.9.4). Ebenfalls wie die mpkCCD-Zellen transloziert NFAT5 in HEK-293T-Zellen unter Hyperosmolalität in den Kern (siehe Anhang Abbildung 58) und kann nachfolgend die Expression von Zielgenen aktivieren. HEK-293T-Zellen wurden mit dem gewünschten Plasmidkonstrukt transfiziert und 24 h unter 450 mosmol/kg Medium inkubiert und nachfolgend die Lumineszenz gemessen. Da HEK-293T-Zellen im Gegensatz zu mpKCCD-Zellen nicht differenzierte Nierenzellen sind, führt eine kurzfristige Inkubation dieser Zellen bei 600 mosmol/kg zu unerwünschten apoptotischen Nebeneffekten [26]. In Abbildung 33 sind die Ergebnisse der Lumineszenzmessung dargestellt. In Abbildung 33A ist zu erkennen, dass das 2 kb Promotor-Konstrukt eine ca. zweifache Induktion der Ranbp3l-Promotoraktivität im Vergleich zur isoosmolaren Kontrolle zeigt. Die weiteren Daten aus Abbildung 33B zeigen außerdem, dass das 0,8 kb Konstrukt ebenfalls die Promotoraktivität induziert in etwa in der gleichen Relation wie das 2 kb Konstrukt.

Abbildung 33: Promotoraktivität von mutierten *Ranbp3l*-Promotorfragmenten in HEK-293T-Zellen. A) Gesteigerte Promotoraktivität des kompletten (2kb) *Ranbp3l*-Konstrukts unter 450 mosmol/kg im Vergleich zu 300 mosmol/kg. Mittelwerte \pm SEM (Fehlerbalken), n = 4 (mit jeweils technischen Duplikaten) **, p<0,01, Student's-T-Test. B) Relative Promotoraktivität nach Inkubation der Zellen unter 450 mosmol/kg Mediumsosmolalität. Es ist kein signifikanter Unterschied in der Promotoraktivität zwischen dem 2 kb und dem 0,8 kb Promotor-Konstrukt zu erkennen. Die Mutation der ersten Bindestelle sorgt für eine signifikant geringere Aktivität, während eine Mutation der zweiten Bindestelle kein Unterschied in der Aktivität erkennen lässt. Eine Kombination beider Mutationen sorgt wiederum für eine tendenzielle Reduktion der Aktivität (Mut-1 = erste Bindestelle mutiert, Mut 2 = zweite Bindestelle mutiert, Mut-1+2 = beide Bindestellen mutiert. Mittelwerte \pm SEM (Fehlerbalken), n = 4 (mit jeweils technischen Duplikaten), n.s, p > 0,05, *, p < 0,05, 1-Weg-ANOVA) [85].

Dagegen zeigt eine Mutation der ersten Bindestelle (konservierte Bindestelle 1 aus Abbildung 32B) eine deutlich verringerte Aktivierung um etwa 50 %, wohingegen eine Mutation der zweiten Bindestelle (teilweise konservierte Bindestelle 2 aus Abbildung 32B) zu keiner signifikanten Reduktion der Promotoraktivität geführt hat. Eine Kombination beider Mutationen zeigt erneut eine Verringerung der Promotoraktivität (Abbildung 33 B). Zusammenfassend kann aber gesagt werden, dass anhand der gezeigten Daten eine direkte NFAT5-Beteiligung an der *Ranbp3l*-Expression stattfinden könnte.

5.6 Generierung einer CRISPR/Cas9-vermittelten-RANBP3L-defizientenmpkCCD-Zelllinie

5.6.1 Genomische Charakterisierung des RANBP3L-Knockouts

Die meisten NFAT5-abhängigen-Gene haben in der Niere eine osmoprotektive-Eigenschaft [40, 53]. *RANBP3L* konnte mit den hier gezeigten Daten als neues osmolalitäts-induziertes-NFAT5-Zielgen beschrieben werden dessen physiologische Rolle in der Niere bislang noch ungeklärt ist. Da die mpkCCD-Zelllinie ein gutes Modellsystem für hyperosmolalitätsvermittelte-Adaptionsprozesse widerspiegelt, wurde folgend die zelluläre Funktion von RANBP3L in diesen Zellen untersucht. Dafür wurde, analog zu den NFAT5-CRISPR/Cas9-Experimenten, die funktionelle Expression von RANBP3L in den mpkCCD-Zellen verhindert. Es wurden hierfür *Ranbp3l*-gRNAs designed (Tabelle 19, Nutzung der Oligos aus 3.11.1 für *Ranbp3l* nach 4.4.1.2) und in den Crispr lenti v2-Vektor kloniert (3.7, Crispr lenti v2-gRNA1-mRanbp3l, Crispr lenti v2-gRNA2-mRanbp3l und Crispr lenti v2-gRNA3-mRanbp3l).

Tabelle 19: Verwendete gRNAs für den murinen Ranbp3l-Lokus

Name	gRNA-Sequenz	Exon
RANBP3L-gRNA1	CTTTGTCTCAAACGCGTCTG	5
RANBP3L-gRNA2	TTGCGACTGAACGACACGGC	13
RANBP3L-gRNA3	CAGCTGACGCGTGCACGAAC	1

Die erzeugten Plasmide wurden zur Virusproduktion in HEK-293T-Zellen transfiziert, die Viruspartikel in mpkCCD-Zellen transduziert und die erhaltene Mischkultur mittels PCR und Sangersequenzierung untersucht (Primer für Zielsequenzamplifizierung 3.11.2, mRanbp3l-gRNA1, mRanbp3l-gRNA2, mRanbp3l-gRNA3). Hier zeigte sich, dass RANBP3L-gRNA2 transduzierte mpkCCD-Zellen zwar unter 2 µg/ml Puromycin kultivierbar waren, aber keine Sequenzveränderungen aufwiesen (Daten nicht gezeigt). Aus diesem Grund wurde nur die RANBP3L-gRNA1 und gRNA3 mpkCCD-Mischkulturen mittels Verdünnungsreihe in Einzelklone separiert (4.4). Final gelang es so zwei RANBP3L-*Knockout*-Klone (R1 und R3) verschiedener gRNAs zu gewinnen (Abbildung 34). Als Kontrollzellen dienten wieder die bereits etablierten Scr-mpkCCD-Zellen.

Abbildung 34: Genomische Struktur von murinem Ranbp3l nach gRNA-Transduktion. A) Schematische genomische Struktur von Maus Ranbp3l. Grau = nicht kodierende Exons, gelb = Exon mit Zielsequenz, Schwarz = kodierende Exons. B) Sequenzanalyse von Scr, R1 und R3 Zellen für Zielsequenzenthaltendes DNA-Fragment. Beide Klone weisen multiple Peaks an derselben Stelle auf, was auf eine Genomveränderung durch die gRNA zurückzuführen ist. PAM = protospacer adjacent motif, rot = PAM Sequenz, grün = Zielsequenz.

Der Vergleich der WT-Sequenz gegen die Sequenz beider RANBP3L-defizienten-Klone durch die TIDE-Analyse (4.4.3.3) ergibt Mutationen, welche einen *Frameshift* in beiden Einzelklonen auf beiden Allelen aufweist (Abbildung 35).

Abbildung 35: TIDE-Analyse der RANBP3L-defizienten-mpkCCD-Zellen. Das PCR-Amplifikat wurde mit einer jeweiligen Kontrollsequenz sowie der gRNA Sequenz in die TIDE Software geladen. Die Zahlen über den Balken beziehen sich auf den Anteil des InDels an der Gesamtsequenz angegeben in %. Klon R1 (oben) weist, eine Deletion von 2 bp sowie eine Insertion von 1 bp auf. Klon R3 (unten) dagegen zeigt eine Deletion von 4 bp sowie 1 bp (rot = signifikant, schwarz = nicht signifikant) [85].

Ebenfalls wie für NFAT5 wurden mittels TOPO-TA-Klonierung (4.4.3.4) die Ergebnisse aus der bioinformatischen TIDE-Analyse bestätigt (Tabelle 20). Hierfür wurde in den R1und R3-Zellen der gRNA-tragende-*Ranbp3l*-Lokus mittels PCR amplifiziert (Primer siehe Primer für Zielsequenzamplifizierung 3.11.2, mRanbp3l-gRNA1, mRanbp3l-gRNA3) und das Amplifikat in den TOPO-TA-Vektor kloniert. Auch hier wurden, nach Transformation des zwischenklonierten Plasmids auf Ampicillin + X-Gal-Aagar Platten, jeweils 10 weiße Klone eines jeden Amplifikats gepickt, die DNA aufgereinigt und mit dem M13 *sense* Primer (3.11.3) sequenziert. Der Einzelklon R1 weist eine Insertion von 1 bp (T) und eine Deletion von 2 bp (TC) auf, während in R3 zwei Deletionen von je 1 bp (G) und 4 bp (CGTG) gezeigt werden können.

WT-Sequenz	
AACTTTGTCTCAAACGCGTCTGAGGTCCTCGTCA	CCAGTTCGTGCACGCGTCAGCTGCAGGTGCAGG
RANBP3L-gRNA1-KO	RANBP3L-gRNA3-KO
AACTTTGTCTCAAACGCGTTCTGAGGTCCTCGTCA	CCAGTTCACGCGTCAGCTGCAGGTGCAGGA
AACTTTGTCTCAAACGCGTGAGGTCCTCGTCA	CCAGTTC-TGCACGCGTCAGCTGCAGGTGCAGGA

Tabelle 20: Zusammenfassung der Sequenzanalyse aller R1 und R3-TOPO-TA-Klone.

Auf DNA-Ebene konnte eindeutig eine Leserasterverschiebung festgestellt werden, was zu einem Funktionsverlust des RANBP3L-Proteins führen müsste. Folgend wurde die analysierte DNA-Sequenz der Einzelklone R1 und R3 mittels Expasy in Proteinsequenzen umgerechnet (komplette AS-Sequenz siehe Anhang 8.10.2). Es zeigt sich, dass es in beiden Einzelklonen N-terminal vor der RAN-Bindedomäne zu einem Translationsabbruch kommt und somit ein Funktionsverlust von RANB3L zu erwarten ist. In Abbildung 36 sind die berechneten *Knockout*-Varianten schematisch dargestellt, wobei in Klon R1 ein längeres RANBP3L-Protein synthetisiert wird als in R3.

Abbildung 36: Schematische Darstellung der trunkierten RANBP3L Varianten.

Während die WT RANBP3L Sequenz C-terminal eine RAN Bindedomäne (RBD) beinhaltet, die über viele RANBP Familienmitglieder konserviert ist, konnte gezeigt werden, dass in den Klonen R1 und R3 es durch die Leserasterverschiebung zu einem frühzeitigen N-terminalen Translationsabbruch kommt (Grau = nicht konservierter Bereich, braun = RAN Bindedomäne, Gelb = durch CRISPR/Cas9-vermittelte *de-novo*-Sequenz, die zu einem frühzeitigen Abbruch während der Translation führt).

Es existiert zum Zeitraum der Anfertigung dieser Dissertation kein kommerziell erhältlicher Antikörper gegen murines RANBP3L. Aus diesem Grund konnte die CRISPR/Cas9vermittelte-RANBP3L-Defizienz in den mpkCCD-Zellen nicht, wie für NFAT5, durch Western Blot oder Immunfluoreszenz verifiziert werden. Nachfolgend sind die ausgewählten Klone R1 und R3 morphologisch und phänotypisch charakterisiert worden.

5.6.2 Morphologische Untersuchungen der RANBP3L-KO-Zellen

Um zu überprüfen, ob ein RANBP3L-*Knockout* (RANBP3L-KO) in den mpkCCD-Zellen zu morphologischen Veränderungen von Zell-Zell-Kontakten führt, wurde das F-Aktin als Bestandteil des Zytoskeletts angefärbt. Durch die Affinität von Phalloidin zum F-Aktin

lassen sich Anteile des Aktin-Zytoskeletts anfärben [118]. Bei der Scr-Kontrolle sind die Aktin-Filamente hauptsächlich membranassoziiert (Abbildung 37A).

Abbildung 37: Morphologische Analyse von Scr-, R1- und R3-mpkCCD-Zellen.

A) Färbung von F-Aktin mit Alexa-568-gekoppeltem Phalloidin in Scr-, R1- und R3-mpkCCD-Zellen, Färbung des Zellkerns mit DAPI (Maßstabsleiste: 10 µm). Weiße Pfeile zeigen die Grenze der Lamellipodien an. **B**) Fold change der Lamellipodien-Fläche von RANBP3L-KO-Zellen im Vergleich zu Scr-Zellen. Die von Lamellipodien-bedeckte-Fläche wurde mit der *Zen Blue-Software* gemessen. Die Färbung der Zellen mit Phalloidin-Alexa FluorTM 568 und die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr-, R1 und R3-Probe. Für jede Bedingung wurden 2-4 Zellen aus 3 unabhängigen biologischen Replikaten gemessen (n = 3, Mittelwerte ± SEM (Fehlerbalken), n.s., p > 0,05, *, p < 0,05, ***, p < 0,001, 1-Weg-ANOVA) [85].

Dadurch lassen sich einzelne Zellen voneinander unterscheiden. Weiterhin sind zwischen den Zellen kaum Lücken zu erkennen, was auf einen starken Zell-Zell-Kontakt schließen lässt. Dieser Effekt verstärkt sich bei Anpassung an die Hyperosmolalität enorm. Im Kontrast dazu weisen die Zellverbände der RANBP3L-KO-Zellen auch starke intrazelluläre Stressfaser-Signale auf (Abbildung 37A). Die Zellgrenzen sind nicht weniger deutlich zu erkennen. Auch die Anpassung an das hyperosmolare Medium ist morphologisch nicht mehr zu erkennen. Zur genaueren Quantifizierung wurden aus den Bildern die Fläche der Lamellipodien gemessen (4.2.16.2) (Abbildung 37B). Deutlich dabei zu erkennen ist die Vergrößerung der Lamellipodien in den RANBP3L-KO-Klonen um das 1.5- bis 3-fache.

5.6.3 Funktionelle Charakterisierung der RANBP3L-KO-Zellen

Die Fluoreszenzaufnahmen konnten zeigen, dass RANBP3L-KO-Zellen im Vergleich zu Scr-Zellen deutlich reduzierte Zell-Zell-Kontakte ausprägen sowie vergrößerte Lamellipodien besitzen. Deswegen wurde im nächsten Schritt das Migrationsverhalten der Zellen untersucht.

5.6.3.1 Migrationsanalysen

Das Migrationsverhalten von Scr- und RANBP3L-KO-Zellen wurde über das Live-Zell-*Imaging*-System von Incucyte über 24 h bestimmt (4.5.1.2). Dabei ist zu erkennen, dass sich bereits nach 8 h bei RANBP3L-defizienten-Zellen die Wunde fast komplett geschlossen hat, während die Scr-Zellen deutlich langsamer migrieren. Dieses Phänomen ist zusätzlich unter 600 mosmol/kg verstärkt zu beobachten (Abbildung 38A). Mittels IncuCyte®-Software konnte die Zellmigration auch quantitativ ausgewertet werden. Abbildung 38B zeigt die relative Migrationsänderung nach 8 h, während Abbildung 38C die relative Wunddichte (*relative wound density*, RWD) in Prozent über die gesamten 24 h angibt. Zu erkennen ist, dass die RANBP3L-defizienten-Zellen nach 16 h keinen offenen Wundrasen mehr aufweisen, wohingegen die Scr-Zellen zu diesem Zeitpunkt erst bei 50-70 % relativer Wunddichte sind.

Abbildung 38: Untersuchung der Migrationsgeschwindigkeit von Scr-, R1- und R3-mpkCCD-Zellen. A) Repräsentative Bilder der Wundschließung. Scr-, R1- und R3-mpkCCD-Zellen wurden in 96-*well* Platten kultiviert, und die Zellmigration wurde durch Live-Zell-Imaging mit dem IncuCyte S3-System überwacht. Die Bilder zeigen die fortschreitende Schließung einer induzierten Wunde zu den angegebenen Zeitpunkten (0 h und 8 h). Die Wundbereiche sind dunkelgrün markiert (Maßstabsbalken: 400 µm). B) Die relative Migrationsänderung nach 8 h wurde durch lineare Regressionsanalyse mit GraphPad Prism berechnet. C) Diagramm der Wunddichte über die Zeit. Der Migrationstest wurde 24 h lang durchgeführt (Mittelwerte \pm SEM (Fehlerbalken), n = 6 (mit 4 technischen Wiederholungen), n.s., p > 0,05, *, p < 0,05, ***, p < 0,001, 1-Weg-ANOVA) [85].

5.6.3.2 Proliferationsanalysen

Ebenfalls über das Live-Zell-*Imaging*-System von Incucyte wurde die Proliferation der mpkCCD-Zellen bestimmt (4.5.1.2). Mittels einer exponentiellen Wachstumsgleichung (4.5.1.2) wurde die Verdopplungszeit der Scr-, R1- und R3-Zellen berechnet. Diese Ergebnisse zeigen unter isoosmolaren Bedingungen eine signifikant erhöhte Verdopplungszeit der RANBP3L-KO-Zellen auf ca. 13-14 h. Im Vergleich dazu weisen die Scr-Zellen eine mittlere Verdopplungszeit von 11 h auf (Abbildung 39). Ein ähnlicher Effekt lässt sich ebenfalls unter Hyperosmolalität beobachten.

Abbildung 39: Proliferationsanalysen von Scr-, R1- und R3-mpkCCD-Zellen. Die Zellen wurden in 96-*well*-Platten kultiviert und die Proliferation wurde durch Live-Zell-Imaging mit dem IncuCyte S3-System gemessen, wobei alle 4 h über 24 h ein Bild aufgenommen wurde. Die relative Zelldichte wurde mit der IncuCyte S3-Software berechnet und auf die Zelldichte bei 0 h normiert. Die Datenpunkte wurden durch eine nichtlineare exponentielle Wachstumsgleichung mit GraphPad Prism angepasst um die mittleren Verdopplungszeiten zu berechnen (Mittelwerte \pm SEM (Fehlerbalken), n = 3 (mit 4 technischen Wiederholungen), n.s., p > 0,05, **, p < 0,01; ***, p < 0,001, Student's-T-Test) [85].

5.6.3.3 Soft-Agar-Assay

Zusätzlich zu den Migrations- und Proliferationsversuchen wurde mittels des Soft-Agar-Assays die verankerungsunabhängige Koloniebildung beobachtet [119] (4.5.2). Diese Eigenschaft wird als ein Kennzeichen der Karzinogenese betrachtet [120]. Die Auswertung zeigte nach zwei Wochen Kultivierung eine deutlich größere Kolonie-Anzahl in RANBP3L-KO-Zellen (Abbildung 40A). Die quantitative Auswertung ergibt zwar deutliche Streuungen innerhalb der Koloniezahl, ist aber stets in den RANBP3L-KO-Zellen erhöht (Abbildung 40B). Im Mittel liegt die Koloniezahl bei ca. 300-400. Weiterhin ist die Größe der vorhandenen Kolonien der RANBP3L-KO-Zellen deutlich erhöht. Zusätzlich ist zu beobachten, dass unter 600 mosmol/kg aus Scr-Zellen keine Kolonien anwachsen konnten. Währenddessen kommt es bei RANBP3L-KO-Zellen immer noch zu zwar kleinem, aber deutlichem Kolonienwachstum (Abbildung 40C).

Abbildung 40: Analyse der Fähigkeit zur Koloniebildung in Scr, R1 und R3 mpkCCD-Zellen. A) Repräsentative Bilder von Scr-, R1- und R3-Zellen während des Koloniebildungstests. Nach zweiwöchiger Inkubation wurden 4-5 Bilder pro Vertiefung aufgenommen und mit dem *Image-J-Softwaretool* übereinandergelegt (Maßstabsleiste: 500 Pixel). B-C) Koloniezahl und Koloniegröße bei 300 mosmol/kg (B) und 600 mosmol/kg (C). Die Werte sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt (n.d. = nicht detektierbar, n = 4 (mit je mindestens 4 technischen Replikaten), *, p < 0,05, **, p < 0,01, ***, p < 0,001, Student's-T-Test) [85].

5.6.4 Genexpressionanalyse von RANBP3L-defizienten-Zellen

5.6.4.1 Globale Genexpressionsveränderung

Ein Verlust von RANBP3L in mpkCCD-Zellen führt zu starken morphologischen und phänotypischen Veränderungen. Um zu analysieren welche Gene diese Veränderungen bedingen, wurde mittels Next-Generation-Sequenzierung (NGS) das globale Genexpressionsprofil von Scr- und RANBP3L-KO-Zellen (folgend nur für R1 gezeigt) unter isoosmolaren sowie hyperosmolaren Bedingungen bestimmt. Wie schon in den vorangegangenen Versuchen übernahm die Firma Novogene Co. Ltd dabei die Qualitätskontrolle der RNA-Proben, die RNA-Sequenzierung und die bioinformatische Auswertung der erhaltenen Daten (siehe Anhang 8.3). Im Folgenden wird ein Teil der erhaltenen Ergebnisse beschrieben. Die in Abbildung 41A dargestellten Volcano-Plots

zeigen alle signifikant differentiell-regulierten-Transkripte im Vergleich zu den Scr-Kontrollzellen, jeweils bei 300 mosmol/kg (links) und bei 600 mosmol/kg (rechts).

A) Scr- und R1-mpkCCD-Zellen wurden 7 d in 300 mosmol/kg und 600 mosmol/kg Medium kultiviert. Anschließend wurde die RNA isoliert, die Reinheit bestimmt und durch die Firma Novogene durch NGS analysiert. Der hier dargestellte Volcano-Plot gibt Auskunft darüber, welche Gene in welchem Ausmaß differentiell exprimiert werden sowie auch wie signifikant diese Veränderung ist. Die x-Achse stellt den log₂ fold change dar. Die Y-Achse dagegen gibt den -log₁₀(padjust)- Wert an. P_{adjust}-Werte von $\geq 0,05$ wurden als nicht signifikant eingestuft (gestrichelte Linie). Dargestellt sind alle unterschiedlich regulierten Gene zwischen den bei 300 mosmol/kg (links) und 600 msomol/kg (rechts) ermittelten Transkripten. Die Punkte in den Volcano-Plots repräsentieren Gene (Blaue Punkte stehen für herunterregulierte Gene, die rote Punkte dagegen für hochreguliere Gene, schwarz = nicht signifikant regulierte Gene, n =2 für jede Osmolalität). **B**) Venn-Diagramm zeigt die Überschneidung von 1771 Genen, deren Genexpression bei 300 und 600 mosmol/kg in R1-Zellklonen verändert ist [85].

Es ist zu erkennen, dass bei 300 mosmol/kg Mediumsosmolalität kultivierte RANBP3Ldefiziente-Zellen im Vergleich zu den Scr-Zellen 2689 Gene signifikant differentiell exprimiert wurden, wovon ein Großteil der Gene (2071Gene) in den RANBP3L-*Knockout*s signifikant herunterreguliert ist. Dagegen sind 618 Gene signifikant in ihrer Expression hochreguliert. Bei höheren Mediumsosmolalitäten nimmt die differenzielle Genexpression zwischen RANBP3L-KO-Zellen und Kontrolle zu. Dort werden insgesamt 3782 Gene signifikant differentiell reguliert. Für die weitere statistische Analyse wurden alle differentiell-regulierten-Gene in RANBP3L-defizienten-Zellen im Vergleich zur Scr-Kontrolle bei 300 mosmol/kg sowie 600 mosmol/kg zusammengefasst. Dies ergab eine Gruppe von 4699 signifikant-regulierten-Genen (Abbildung 41B). Die Gesamtheit dieser Gene beschreibt final die Veränderung der Genexpression von mpkCCD-Zellen bei einer RANBP3L-Defizienz. Die weitere Analyse der 4699 differenziell exprimierten Gene (DEGs) ergab eine Deregulierung von 1771 Genen, die sich unter iso- und hyperosmotischen Bedingungen überschneiden. Interessanterweise waren fast alle Gene (1767) zwischen 300 und 600 osmol/kg gemeinsam hoch (468) beziehungsweise herunter (1299) reguliert (komplette Liste siehe Anhang 8.11.1). Im Gegensatz dazu waren 917 Gene ausschließlich Bedingungen verändert, unter isoosmolaren während 2011 Gene nur unter hyperosmotischen Bedingungen differenziell exprimiert wurden.

5.6.4.2 Analyse von Signalwegen und angereicherten Gensets

Abbildung 42A zeigt die 4699 Gene als Heatmap. Hierarchisches Clustering trennte die Scr-Zellen eindeutig von den RANBP3L-KO-Zellen und innerhalb dieser Gruppen gruppierten sich die Proben nach ihren Zellkulturbedingungen (300 mosmol/kg oder 600 mosmol/kg). Weiterhin konnte gezeigt werden, dass osmolalitätsregulierte-Gene aus den Scr-Zellen keine Regulation in RANBP3L-defizienten-Zellen aufweisen (Abbildung 42A). Die in-silico-Analysen von biologischen Prozessen (Abbildung 42B) und KEGG Signalwegen (Abbildung 42C) der 4699 DEGs (Kyoto Encyclopedia of Genes and Genomes) wurden mit dem DAVID tool (4.11.3.5) generiert und ergab eine signifikante Anreicherung von Genen in Verbindung mit ribosomalen Signalwegen (translation, Ribosome) sowie Krebsassoziierten-Pfaden (angiogenesis, cell migration, Pathways in Cancer, Proteoglycans in Cancer und PI3K-Akt pathway) (Abbildung 42B-C). Diese Ergebnisse sind durch eine Gensatzanreicherungsanalyse (GSEA, Gene Set Enrichment Analysis) bestätigt. Der zu untersuchende Datensatz aus den 4699 Genen ergab als Top 2 angereicherte Gensets in der Klasse Hallmarks eine Anreichung von EMT- (Epithelial-to-mesenchymal transition) und TGF-β-assoziierten-Pfaden. Weiterhin zeigt sich die Tendenz zu einer Anreicherung von Genen aus dem KEGG-Genset für Nierenzellkarzinom in RANBP3L-KO-Zellen

(Abbildung 42C, weitere Genset-Anreicherungen sind dem Anhang unter 8.11.2 zu entnehmen).

Abbildung 42: Bioinformatische Gruppierung und Analysen von angereichten Gensets nach Verlust von RANBP3L.

A) *Heatmap* und hierarchisches *Clustering* aller 4699 differenziell-regulierter-Gene zwischen Scr und R1-Zellen. **B-C**) Die Liste der unterschiedlich exprimierten Gene zwischen Scr und R1 mpkCCD-Zellen, die unter 300 und 600 mosmol/kg kultiviert wurden, wurde auf Anreicherung biologischer Prozesse (B) oder von KEGG-Pfaden (C) analysiert. Die 10 am stärksten angereicherten Pfade sind hier jeweils dargestellt. **D**) Die Gensatz-Anreicherungsanalyse (GSEA) der RNA-Seq-Ergebnisse zeigt die Induktion von EMT- und TGF- β -Signalwegen sowie eine positive Korrelation mit Nierenzellkarzinom-Signalwegen. Ein GSEA-Plot ist dabei aufgeteilt in drei verschiedene Bereiche. Im oberen Teil der Grafik (grüner Graph) befindet sich der laufende Enrichment Score (ES) für den Gensatz, während die Analyse die Rangliste abläuft. Der Wert an der Spitze des Diagramms entspricht dem ES für den Gensatz. Der zweite Teil des Diagramms (Mitte mit roter bis blauer Abstufung) zeigt, wo die Mitglieder der Gengruppe, die mit dem Pfad oder dem Merkmal in Verbindung stehen, sich in der Rangliste befinden. Der dritte Teil des Graphen (unten in grau) zeigt die Anzahl sowie die Verteilung von positiv zu negativ des zu analysierenden Gensets entlang der Liste [85].

5.6.4.3 Assoziation einer RANBP3L-Defizienz mit der Expression prognostischer Gene im RCC

Als nächstes wurde untersucht, ob die in den RANBP3L-KO-Zellen RCC-tendierende-Gensignatur mit den Expressionsprofilen der menschlichen KIRC-, KIRP- oder KICH-Proben aus der TCGA-Nierenzellkarzinom-Kohorte übereinstimmt, indem die Hauptkomponentenanalyse (PCA) verwendet wurde. Die Hauptkomponentenanalyse ist dabei ein statistisches Verfahren, mit dem viele Variablen (Gene) zu wenigen Hauptkomponenten zusammengefasst werden, um so eine Darstellung der Daten in wenigen Plots zu ermöglichen (4.11.3.4). Von den unter 300 und 600 mosmol/kg gemeinsam regulierten 1771 Genen (Abbildung 42D) wurden für die PCA die 30 am stärksten hoch- und herunterregulierten Gene verwendet (Abbildung 43) (komplette Liste siehe Anhang 8.11.1).

Abbildung 43: Hauptkomponentenanalyse (PCA) der top 30 hoch- und herunterregulierten Gene nach RANBP3L-Verlust.

PCA der top 30 herunterregulierten Gene (links), PCA der top 30 hochregulierten Gene (Mitte), PCA der top 30 hoch und herunterregulierten Gene (rechts) (Liste siehe Anhang 8.11.1.). Die PCA ist ein statistisches Verfahren, mit dem viele Variablen (Gene) zu wenigen Hauptkomponenten zusammengefasst werden. Dafür wird mathematisch eine Trendkurve über alle Werte gelegt (PC1) und wiederum eine zweite Trendkurve, die senkrecht zur ersten steht (PC2). Dies kann weiterhin wiederholt werden für die Anzahl an existierenden Variablen. Meistens decken aber bereits PC1 und PC2 den Großteil der Daten ab, womit durch einen einzigen Plot (X = PC1 und Y = PC2) eine Aussagekraft für alle Gene beschrieben werden kann. Die Grafik wurde durch GEPIA2 erstellt [70] (Datenstand 14.07.2022). (Rot = KICH-Tumor, Braun = KIRC-Tumor, Blau = KIRP-Tumor, grün = KICH-Normal, türkis = KIRC-Normal, dunkelgrün = KIRP-Normal [85])

Die Visualisierung der ersten beiden Hauptkomponenten ergibt für die 30 am stärksten herunterregulierten Gene eine leichte Separierung des KIRC-Phänotyps während die 30 hochregulierten Gene ein starkes Subtypen-spezifisches-Clustering zeigen. Insbesondere die Kombination von hoch- und herunterregulierten Signaturen trennt die KIRC-Proben deutlich vom Rest. Zusammenfassend lässt sich sagen, dass der Verlust von RANBP3L stark mit einer KIRC-Gensignatur assoziiert ist.

Im nächsten Schritt wurde analysiert, ob die RANBP3L-abhängige-Genregulation mit bereits bekannten Nierenkarzinom-assoziierten-Genen korreliert. Dafür wurden die Daten aus dem Protein-Atlas (4.11.3.3) verwendet, der für das Nierenzellkarzinom 3209 prognostisch unvorteilhafte und 2755 vorteilhaft-regulierten-Genen aufweist (gesamte Liste siehe Anhang 8.11.4). Aus den vorher etablierten 1771 regulierten Gene konnten insgesamt 290 günstige und 333 ungünstige übereinstimmende Gene identifiziert werden (siehe Anhang Abbildung 63). Interessanterweise sind günstige und ungünstige Gene gleichmäßig in der Gruppe der Gene verteilt, die in den RANBP3L-defizienten-Zellen herunterreguliert sind (18 % bzw. 17 %). Im Gegensatz dazu werden in RANBP3L-KO-Zellen eine größere Anzahl ungünstiger Gene (23 %) induziert als günstige Gene (11 %).

Da der humane Protein-Atlas für das Nierenzellkarzinom die mit Abstand meisten prognostischen Gene aufweist, wurde der erhaltene Datensatz von 623 prognostisch übereinstimmenden Genen weiter eingeschränkt- Dazu wurden nur Gene mit einem \log_2 fold change von mindestens > 3 oder \leq -3 und einem mittleren FPKM-Wert von mehr als 10 extrahiert. So konnten final nur die signifikantesten und am meisten veränderten Transkripte eingeschlossen werden. Dies ergab final eine Liste von 17 Genen (Abbildung 44).

Abbildung 44: Expression prognostischer Gene des RANBP3L-regulierten-Gensets. Die prognostischen Gene sind nach ihrem korrespondierenden \log_2 fold change sortiert. Dabei sind vorteilhafte Gene blau und unvorteilhafte gelb dargestellt. Nach bioinformatischer Selektion sind von 1771 regulierten Genen 17 Gene übrig. Dabei ist zu erkennen, dass 7 von 8 hochregulierten Genen unvorteilhaft sind und 6 von 9 herunterregulierten Genen vorteilhaft sind. Damit ergibt sich in Summe ein unvorteilhafter Phänotyp [85].

Die Mehrheit der 17 verbleibenden Gene ist mit einer insgesamt ungünstigen Prognose für das Nierenzellkarzinom verbunden. Von insgesamt 8 hochregulierten Genen sind 7 (87,5 %) unvorteilhaft (gelb) und 6 von 9 herunterregulierten Genen (66,7 %) sind als vorteilhaft (blau) klassifiziert. Um diese Daten zu bestätigen wurde mit weiteren RANBP3L-

defizienten-Klonen, für ausgewählte Gene, die Expressionsänderung mittels qPCR analysiert (siehe Anhang 8.11.3).

Weiterhin ist in Tabelle 21 die Funktion der Proteine laut Proteinatlas aufgezeigt. Zusammenfassend legen die Daten nahe, dass der Verlust von RANBP3L zu einer ungünstigen Gensignatur für das Nierenzellkarzinom führt.

Gensymbol	prognostischer Faktor im RCC	Funktion laut Proteinatlas [106], Stand 1.08.2022
Sh3gl2	vorteilhaft	Endozytose
ATP6v0e2	vorteilhaft	Ion-Trasnport
Phactr2	vorteilhaft	Actin-Bindung
Aldh2	vorteilhaft	Oxidoreductase
CCdc91	unvorteilhaft	Protein Trasnport
Hoxa7	vorteilhaft	Transkriptionsfaktor, Entwicklung
Traf1	unvorteilhaft	Apoptose
Ср	unvorteilhaft	Ion-Trasnport
Dbn1	vorteilhaft	Actin-Bindung
Glipr2	unvorteilhaft	keine Information bezüglich Funktion
Adgra2	unvorteilhaft	Angiogenese
Col4a2	unvorteilhaft	Bestandteil der Basalmembran, Angiogenese
Col4a1	unvorteilhaft	Bestandteil der Basalmembran, Angiogenese
Cbr1	vorteilhaft	Oxidoreductase
Sparc	unvorteilhaft	Zellmatrixinteraktion
Pmp22	unvorteilhaft	Wachstumsregulations
Unc5b	unvorteilhaft	Apoptose

 Tabelle 21: Funktion aller 17 im RCC prognostischen Gene laut Proteinatlas.

Die RNA-Seq-Analysen von RANBP3L-defizienten-Zellen zeigen einen signifikanten Einfluss von prognostischen Genen für das Nierenzellkarzinom. Allerdings unterscheidet der humanen Protein-Atlas nicht zwischen den Nierenzellkarzinom-Subtypen KIRC, KICH und KIRP. Da die PCA-Analysen (Abbildung 43) eine deutliche Gruppierung der Daten für den KIRC-Phänotyp zeigten, wurde das etablierte Genset (17 Gene, Abbildung 44) genauer analysiert. Dazu dienten die TCGA-Daten für die Nierenzellkarzinom-Subtypen (KIRC, KICH und KIRP). Im Vergleich zu normalem Gewebe (N, weiß) ist die mittlere Expression der 8 hochregulierten Gene in der KIRC-Kohorte (rot) besonders stark erhöht, während die mittlere Expression der 9 herunterregulierten Gene in allen drei Nierenzellkarzinom-Subtypen (KIRC, KICH und KIRP) gleich stark abnimmt (Abbildung 45).

Abbildung 45: Expression des prognostischen Gensets in den TCGA-RCC-Kohorten. Mittlere log_2 -Expression der 8 hochregulierten (ohne ADGRA2, nicht in TCGA Datenset enthalten) (links) und 9 herunterregulierten (rechts) RCC-Biomarker aus Abbildung 44 in RCC-Subtypen KIRC (rot), KICH (blau) und KIRP (gelb) im Vergleich zu normalem Gewebe (N, weiß). Die Werte wurden mit einem Student's-T-Test analysiert und sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt (*, p < 0,05, ***, p < 0,001). Die Daten stammen aus der TCGA-Datenbank [82, 84] [85] (Datenstand 14.07.2022).

5.6.5 Analyse ausgewählter regulierter Gene bei RANBP3L-Defizienz

Bis zu diesem Punkt wurde immer ein *Ranbp3l*-assoziiertes-Genset betrachtet. In den weiterfolgenden Analysen wurden einzelne Gene und ihre Regulation im Zusammenhang mit der *Ranbp3l*-Expression und dem Nierenzellkarzinom charakterisiert. Für diesen Sachverhalt wurden die Gene *Sparc (Secreted Protein Acidic And Cysteine Rich), Col4a1 (Collagen Type IV Alpha 1 Chain)* und *Col4a2 (Collagen Type IV Alpha 2 Chain)* verwendet, da sie neben einer starken relativen Expressionsinduktion (*Sparc* log₂ fold change = 5,47, *Col4a1* log₂ fold change = 4,69, *Col4a2* log₂ fold change = 4,65) auch sehr abundant in den RANBP3L-defizienten-Zelle vorliegen (Tabelle 22). Weiterhin existieren Studien die bereits einen Zusammenhang von *Sparc* und *Col4a1/2* im Nierenzellkarzinom zeigten [121].

Name Scr - 300 Scr - 600 R1 - 300 R1 - 600 Sparc 1,38 2,61 93.42 88.70 Col4a1 3,18 6,55 130,11 106,97 Col4a2 3,89 144,28 115,17 6,43

Tabelle 22: mittlere FPKM-Werte der Gene Sparc, Col4a1 und Col4a2 in Scr- und R1-Zellen

Zu Beginn wurde dafür mittels der TCGA-Datenbank die Expression dieser Gene im Nierenzellkarzinom (grau) und der Subtypen KIRC (rot), KICH (blau) und KIRP (gelb) verglichen (Abbildung 46). Zu sehen ist deutlich, dass alle drei Gene eine signifikant verstärkte Expression aufweisen, die nur in der KIRC-Entität auftritt.

Abbildung 46: Expression von *Sparc*, *Col4a1* und *Col4a2* im Nierenzellkarzinom Die log₂-Expression von *SPARC* (A), *COL4A1* (B) und *COL4A2* (C) in RCC (grau) und seinen Subtypen KIRC (rot), KICH (blau) und KIRP (gelb) im Vergleich zu normalem Gewebe (N, weiß). Die Werte wurden mit einem Student's-T-Test analysiert und sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt (n.s. > 0,05, **, p < 0,01, ***, p < 0,001). Die Daten stammen aus der TCGA-Datenbank [82, 84] (Datenstand: 14.07.2022).

Weitere Analysen ergeben ebenfalls eine signifikant-negative-Korrelation zwischen der *RANBP3L*- und *SPARC*-, *COL4A1*- oder *COL4A2*-Expression in der KIRC-Kohorte (rot) (Abbildung 47).

Abbildung 47: Pearson-Korrelation der *RANBP3*-Expression mit *SPARC* und *COL4A1/2* in RCC und dem Subtypen KIRC.

Zusammengefasst zeigt die Analyse der TCGA-Daten einen starken Zusammenhang der *RANBP3L*-Expression mit den aus Abbildung 44 identifizierten Zielgenen *SPARC* und *COL4A1/2* in Bezug auf das Nierenzellkarzinom und speziell dem KIRC-Subtyp. Inwieweit diese bioinformatischen Expressions-Korrelationen eine echte physiologische Signifikanz aufweisen, wurde in weiteren Analysen untersucht.

Die \log_2 -Expressionswerte von *RANBP3L* wurden in RCC (**A**, grau) und dem Subtypen KIRC (**B**, rot) jeweils gegen die \log_2 Expressionswerte von *SPARC*, *COL4A1* und *COL4A2* gegeneinander aufgetragen und die Korrelation ermittelt. Die jeweiligen Signifikanzen sind den Grafiken zu entnehmen. Die Daten stammen aus der TCGA-Datenbank [82, 84] (Datenstand: 14.07.2022).

5.7 Charakterisierung von SPARC und RANBP3L-defizienten-Zellen

5.7.1 Etablierung von SPARC und RANBP3L-defizienten-Zellen

Um die bioinformatische Auswertung des RANBP3L-*Knockout*-Genexpressionsprofils sowie die Korrelationsanalysen der TCGA-Kohorten zu verifizieren, wurde folgend untersucht, ob der beobachtete RANBP3L-KO-Phänotyp aus 5.6.3 durch eine zusätzliche Defizienz von SPARC abgemildert werden kann. Dafür wurde folgend mittels CRISPR/Cas9 SPARC inaktiviert und die Morphologie sowie die karzinogenen Merkmale wie Migration oder Koloniebildung analysiert.

Der CRISPR/Cas9-vermittelte-*Knockout* von SPARC in RANBP3L-defizienten-Zellen wurde mit einem Plasmid durchgeführt, welches weder den kodierenden Bereich für die Cas9-Nuklease noch eine Resistenzkassette enthält, sondern nur die SPARC-spezifische gRNA-Sequenz sowie eine für dtTomato kodierende Sequenz trägt (SGL40C.EFS.dTomato). Dadurch können stabil transfizierte Zellen rot fluoreszieren und im Anschuss danach sortiert werden. Zu Beginn wurden erneut verschiedene gRNAs (Tabelle 23, Nutzung der Sparc-Oligos aus 3.11.1) in den Vektor kloniert (3.7, SGL40C.EFS.dTomato-gRNA1-Sparc, SGL40C.EFS.dTomato-gRNA2-Sparc).

Tabelle 23: Verwendete gRNAs f ür den murinen Sparc-Lokus

Name	gRNA-Sequenz	Exon
SPARC-gRNA1	CGGTGCAGAGGAAACGGTCG	2
SPARC-gRNA2	GGGCCCTCCCGGCCAGGCAA	4

Die Klonierung und Virusproduktion erfolgte analog zu NFAT5 und RANBP3L. Nach Selektion mit 2 µg/ml Puromycin zeigte nur die SPARC-gRNA2-transduzierten Zellen eine Mischkultur nach der Analyse der Sangersequenzierung (Primer siehe 3.11.2, mSparcgRNA2). Nachfolgend wurde die SPARC-gRNA2-Mischkultur nach rotfluoreszierenden Zellen als Einzelklone sortiert und mittels TIDE analysiert (Abbildung 48). Hierfür wurde mittels PCR und spezifischen Primern (Primer siehe 3.11.2, mSparc-gRNA2) der Zielbereich im *Sparc*-Lokus amplifiziert und im Anschluss sequenziert mit den oben erwähnten *sense* und *antisene* Primern. Es lässt sich ein SPARC-KO-Einzelklon mit einer Deletion von 11 bp sowie 2 bp feststellen. Dieser Klon wird nachfolgend als R1-S2 bezeichnet. Als Kontrollen diente eine doppelt Scr transfizierte Linie (Scr-Puro + Scr-dt tomato, normaler Phänotyp), nachfolgend als Scr-Scr bezeichnet, sowie eine RANBP3L-KO Scr transfizierte Linie (R1-Scr dt tomato, onkogener Phänotyp), nachfolgend als R1-Scr benannt.

Abbildung 48: Etablierung eines SPARC und RANBP3L-Doppel-Knockout-Einzelklons.

A) Selektion mittels dtTomato zeigt eine Rotfluoreszenz (rot, unten) aller mpkCCD-Zellen. DAPI (blau, oben) diente als Kernmarker. Die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr-Scr, R1-Scr und R1-S2-Probe (Maßstabsleiste:100 μ m). B) TIDE-Analyse des Klons R1-S2 zeigt eine Deletion von 11bp sowie eine Deletion von 2bp. Das PCR-Amplifikat wurde mit einer jeweiligen Kontrollsequenz sowie der gRNA Sequenz in die TIDE Software geladen. Die Zahlen über den Balken beziehen sich auf den Anteil des InDels an der Gesamtsequenz angegeben in % (rot = signifikant, schwarz = nicht signifikant) [85].

Im Anschluss wurde ebenfalls, wie für *Nfat5* und *Ranbp3l*, die TIDE-Analyse durch eine TOPO-TA Klonierung verifiziert. Erneut wurde das PCR-Amplifikat (3.11.2, mSparc-gRNA2) in einen TOPO-TA-Vektor zwischenkloniert. Es wurden nach Transformation des

zwischenklonierten Plasmids jeweils 10 weiße Klone des R1-S2 Amplifikats gepickt, die DNA aufgereinigt und mit dem M13 *sense* Primer (3.11.3) sequenziert. Die Ergebnisse sind in Tabelle 24 dargestellt. So weist Klon R1-S2 eine 11 bp Deletion von TCTCCTTTGCC und eine 2 bp Deletion auf dem anderen Allel von TG auf.

 Tabelle 24: Zusammenfassung der Sequenzanalyse aller R1-S2-TOPO-TA-Klone.

WT-Sequenz	
GCCTGGATCTTCTTCTCCTTTGCCTGGCCGGGAGGGCCCTGGCAGCCCCTGTAAG	
SPARC-gRNA2-KO	
GCCTGGATCTTCTTCTCCTTCCTGGCCGGGAGGGCCCTGGCAGCCCCTGTAAG	
GCCTGGATCTTCTTTGGCCGGGAGGGCCCTGGCAGCCCCTGTAAG	

Folgend wurden die analysierten DNA-Sequenzen des Einzelklons mittels Expasy in Proteinsequenzen konvertiert (komplette AS Sequenz siehe Anhang 8.10.3). Es zeigt sich, dass nur ein kurzer N-terminaler-Bereich des SPARC-Proteins im Einzelklon gebildet wird, bevor es zu einem Translationsabbruch kommt (Abbildung 49). Nachfolgend wurde dieser Klon untersucht.

Abbildung 49: Schematische Darstellung der trunkierten SPARC Proteinvariante in R1-S2-Zellen im Vergleich zum WT-SPARC Protein.

Proteinstruktur von WT-SPARC kann in drei konservierte Domänen aufgeteilt werden. grün = *acidic region*, blau = *follistatin-like domain*, orange = Extracellular- Ca^{2+} -*binding domain*. Die trunkierte SPARC Variante des R1-S2 Klons zeigt dagegen nur einen stark verkürzten Bereich der aziden Domäne sowie eine unspezifische Proteinabfolge (gelb) bis zum vorzeitigen Translationsabbruch.

5.7.2 Phänotypische Untersuchungen von SPARC und RANBP3Ldefizienten-Zellen

5.7.2.1 qPCR Analyse von Col4a1 und Col4a2

Die NGS-Daten der RANBP3L-defizienten-Zellen zeigen eine Hochregulation von *Col4a1* und *Col4a2* im Vergleich zu den Kontrollzellen. Weiterhin zeigen Studien als auch die TCGA-Daten eine assoziierte Expression von *SPARC* und *COL4A1/2* [121]. So wurden eine qPCR-Analyse für *Col4a1* und *Col4a2* in mpkCCD-Zellen durchgeführt (Primer siehe

3.11.4, *Col4a1*-real, *Col4a2*-real). Als *housekeeping gene* wurde *Gapdh* ((Primer siehe 3.11.4, *Gapdh*-real) verwendet. Die Analyse zeigt eine erwartete Hochregulation von *Col4a1* sowie *Col4a2* in R1-Scr-Zellen im Vergleich zu Scr-Scr-Zellen. Dagegen zeigt die R1-S2-Zellen zwar immer noch eine 4-5-fache Hochregulation von *Col4a1* und *Col4a2* im Vergleich zu den Scr-Scr-Zellen, aber im Vergleich zu den R1-Scr-Zellen kann hier eine ca. 50 %-ige Herunterregulation von beiden Collagen 4 Transkripten gezeigt werden (Abbildung 50).

Abbildung 50: qPCR Analyse für *Col4a1* und *Col4a2* in Scr-Scr, R1-Scr und R1-S2-mpkCCD-Zellen. Die RNA von den jeweiligen Zellen wurde isoliert und 1 µg RNA zu cDNA umgeschrieben. Durch die Verwendung spezifischer Primer (Primer siehe 3.11.4, *Col4a1*-real, *Col4a2*-real, *Gapdh*-real) konnten qPCR Daten für *Col4a1* und *Col4a2*, mit *Gapdh* als *house keeping gene* generiert werden. Als Kontrollen dienten Scr-Scr und R1-Scr Zellen (Mittelwerte \pm SEM (Fehlerbalken), n = 3, n.s., p > 0,05, *, p < 0,05, ***, p < 0,001. 1-Weg-ANOVA).

5.7.2.2 Morphologische Untersuchung

Morphologische Analysen der Zellen mittels Phalloidin-Alexa-Fluor[™]-488-Färbung ergaben für die Kontrollzellen ein ähnliches Bild wie in Abbildung 37. Während die Scr-Scr-Zellen ein membranassoziiertes Signal zeigen, weisen die R1-Scr-Zellen eher ein mesenchymalen Phänotyp mit unklareren Zellgrenzen auf. Die R1-S2-Zellen zeigen dagegen einen verbesserten Zell-Zell-Kontakverbund, der sich aber immer noch in seiner

Polarität und Membranassoziation des Phalloidin-Signals von der Kontrolle unterscheidet (Abbildung 51).

DAPI, F-ACTIN

Abbildung 51: Färbung des Zytoskeletts mittels Phalloidin.

Färbung von F-Aktin mit Alexa-488-gekoppeltem Phalloidin in Scr-Scr, R1-Scr und R1-S2 -mpkCCD-Zellen. Färbung des Zellkerns erfolgte mit DAPI. Die Färbung der Zellen mit Phalloidin-Alexa-FluorTM-488 sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr-Scr-, R1-Scr- und R1-S2-Probe (Oben = Übersichtsbild des Zellsubtyps, Unten = detaillierte Aufnahme des Zellsubtyps, Maßstabsleiste: oben 100 µm, unten 10 µm).

5.7.2.3 Phänotypische Charakterisierung

Die morphologische Untersuchung konnte bereits einen tendenziell verbesserten Zell-Zell-Kontakt feststellen, weswegen auch hier anschließend die Migration der Scr-Scr-, R1-Scrund R1-S2-Zellen untersucht wurde. Analog zu 5.6.3 wurde die Migration nach dem Erreichen eines konfluenten Zellrasens mit dem Incucyte-Sytsem durchgeführt. Pro *well* wurde dem Monolayer eine definierte Wunde zugefügt und die Zellmigration unter *live Imaging* 24 h verfolgt (4.5.1.1). Auch hier konnte, analog zu den Ergebnissen aus Abbildung 38, eine schnellere Wundschließung der R1-Scr-Zellen im Vergleich zu den Scr-Scr-Zellen beobachtet werden. Während nach 8 h die R1-Scr-Wunde bereits geschlossen ist, ist dies für Scr-Scr noch nicht der Fall (Abbildung 52A, C). Die R1-S2-Zellen dagegen migrierten wieder in einem ähnlichen Maß wie die Scr-Scr-Kontrollen. Die quantitative Analyse der relativen Migrationsänderung nach 8 h ergibt einen erwarteten signifikanten Unterschied zwischen Scr-Scr und R1-Scr, aber keinen signifikanten Unterschied zwischen Scr-Scr- und R1-S2-Zellen (Abbildung 52B).

Abbildung 52: Migrationsverhalten von Scr-Scr-, R1-Scr- und R1-S2-mpkCCD-Zellen. A) Repräsentative Bilder der Wundschließung nach angebenenen Zeitpunkten. Scr-Scr-, R1-Scr- und R1-S2-mpkCCD-Zellen wurden in 96-*well*-Platten kultiviert und die Zellmigration wurde durch Live-Zell-*Imaging* mit dem IncuCyte S3-System überwacht. Die Bilder zeigen die fortschreitende Schließung einer induzierten Wunde zu den angegebenen Zeitpunkten (0 h und 8 h). Die Wundbereiche sind dunkelgrün markiert (Maßstabsbalken: 400 µm). B) Die relative Migrationsänderung nach 8 h wurde durch lineare Regressionsanalyse mit GraphPad Prism berechnet. C) Diagramm der Wunddichte über die Zeit. Der Migrationstest wurde 24 h lang durchgeführt (Mittelwerte \pm SEM (Fehlerbalken), n = 3 (mit 4 technischen Wiederholungen), *, p < 0,05, ***, p < 0,001, 1-Weg-ANOVA).

Auch die Bildung von Kolonien im Soft-Agar wurde hier erneut untersucht (Abbildung 53). Für Scr-Scr und R1-Scr lassen sich analoge Ergebnisse einer verstärkten Koloniebildung zeigen wie für die Scr- und R1-Zellen aus Abbildung 40. Die R1-S2-Zellen dagegen weisen im Vergleich zu den R1-Scr-Zellen eine deutlich verringerte Koloniezahl auf, die sich auf einem ähnlichen Niveau wie der Scr-Scr-Zellen befindet.

Abbildung 53: Koloniebildung von Scr-Scr, R1-Scr und R1-S2-mpkCCD-Zellen. A) Repräsentative Bilder von Scr-Scr, R1-Scr und R1-S2-mpkCCD-Zellen während des Koloniebildungstests. Nach zweiwöchiger Inkubation wurden 4-5 Bilder pro Vertiefung aufgenommen und mit dem *Image-J-Softwaretool* übereinandergelegt (Maßstabsleiste: 500 Pixel). B) Koloniezahl, die Werte sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt (n.s., p > 0,05, **, p < 0,01, ***, p < 0,001, 1-Weg-ANOVA).

Zusammenfassend zeigen diese Daten, dass ein *Knockout* von SPARC in RANBP3Ldeifzienten-Zellen nicht nur die Koexpression von weiteren RANBP3L-regulierten-Genen wie *Col4a1* und *Col4a2* herunterreguliert, sondern auch, dass zuvor beobachtbare morphologische und phänotypische Besonderheiten von RANBP3L-defizienten-Zellen abgeschwächt werden.

5.8 Mögliche Assoziation zum TFG-β-Signalweg

Bis jetzt zeigen die hier beschriebenen Ergebnisse, dass eine RANBP3L-Defizienz mit einer KIRC-ähnlichen und unvorteilhaften Gensignatur einhergeht und im Wesentlichen Transkripte wie *Sparc* und *Col4a1* oder *Col4a2* eine onkogene Rolle zu spielen scheinen. BAO et al. konnten im Nierenzellkarzinom bereits eine Rolle von SPARC über den TGF- β 1-Signalweg feststellen [122]. Die Gensignatur von RANBP3L-defizienten-mpkCCD-Zellen zeigt ebenfalls eine Assoziation zu TGF- β -Signalwegen (Abbildung 42C). Auch die TCGA-Daten für das Nierenzellkarzinom (Abbildung 54A-B) zeigten die stärkste Expression von *TGFB1* (kodierendes Gen für TGF- β 1) in KIRC (rot) im Vergleich zur Kontrollkohorte (Abbildung 54B). Ebenfalls weisen Expressionsanalysen zwischen *TGFB1* und *RANBP3L*,

SPARC sowie *COL4A1/2* eine Korrelation innerhalb der KIRC-Kohorte (rot) auf (Abbildung 54C-D).

A) Die log₂-Expression von *TGFB1* in RCC (grau) gegen die Kontrollkohorte. B) Die log₂-Expression von *TGFB1* in RCC-Subtypen KIRC (rot), KICH (blau) und KIRP (gelb) im Vergleich zu normalem Gewebe (N, weiß). Die Werte wurden mit einem Student's-T-Test analysiert und sind in einem Whisker-Plot mit 1-99 Perzentilen dargestellt (n.s. > 0,05, *, p <0,05, ***, p < 0,001). Die Daten stammen aus der TCGA-Datenbank [82, 84] (Datenstand: 14.07.2022). C-D) Die log₂-Expressionswerte von *TGFB1* wurden in RCC (C, grau = RCC, weiß = normales Gewebe)und seinem Subtypen, KIRC (D, rot = KIRC, weiß = normales Gewebe) gegen die log₂-Expressionswerte von *RANBP3L*, *SPARC*, *COL4A1* und *COL4A2* aufgetragen und die Korrelation ermittelt. Die jeweiligen Signifikanzen sind den Grafiken zu entnehmen. Die Daten stammen aus der TCGA-Datenbank [82, 84].

Weiterhin konnte gezeigt werden, dass Scr-Zellen unter TGF-β1-Kultivierung (4.8) nach 48 h eine deutlich veränderte Morphologie aufweisen, die der von RANBP3L-defizienten-Zellen ähnelt (Abbildung 55A). Neben einer deutlichen Reduktion der Zell-Zell-Kontakte konnte ebenfalls eine verstärkte Ausprägung von Lamellipodien beobachtet werden (weiße Pfeile Abbildung 55A).

Abbildung 55: Effekt von TGF- β 1 auf den Phänotyp von unterschiedlichen mpkCCD-Zellen. A) Fluoreszenzaufnahmen nach Phalloidin-568-Färbung mit und ohne TGF- β 1-Zugabe von Scr- und R1-mpkCCD-Zellen (Maßstabsleiste: 10 µm). B) Die relative Migrationsänderung nach 8 h für Scr- und R1-Zellen mit und ohne TGF- β 1 Zugabe wurde durch lineare Regressionsanalyse mit GraphPad Prism berechnet. C) Diagramm der Wunddichte über die Zeit. Der Migrationstest wurde 24 h lang durchgeführt. (Mittelwerte ± SEM (Fehlerbalken). n = 3 (mit 4 technischen Wiederholungen). n.s., p > 0,05, *, p < 0,05, ***, p < 0,001, 1-Weg-ANOVA). D) qPCR Analysen für *Sparc*, *Col4a1* und *Col4a2* (Primer siehe 3.11.4, *Sparc*-real, *Col4a1*-real, *Col4a2*-real, *Gapdh*-real) mit und ohne TGF- β 1 Zugabe in RANBP3L-überexprimierenden-Zellen (OE, grün) im Vergleich zu Kontrollzellen (mock, weiß). Als *housekeeping gene* diente *Gapdh* (Mittelwerte ± SEM (Fehlerbalken), n = 3, n.s., p < 0,05, *, p < 0,05, ***, p < 0,001, 1-Weg-ANOVA).

Diese Beobachtung geht konform mit einer signifikant erhöhten Migrationsfähigkeit der Scr-Zellen unter TGF-\u00c61-Kultivierung um das Zweifache. Dies entsprach einem ähnlichen Niveau wie von RANBP3L-KO-Zellen (Abbildung 55B-C). Eine Zugabe von TGF-β1 zu R1-Zellen verstärkt den beobachteten migratorischen Effekt durch ein erneutes Ansteigen der Migration auf das 2,5-fache im Vergleich zu Scr-Zellen. Um zu untersuchen, ob RANBP3L und TGF-\beta1 in funktioneller Verbindung stehen, wurden RANBP3Lüberexprimerende-mpkCCD-Zellen durch eine stabile Transfektion des V180-RANBP3L-Flag-Plasmids etabliert (OE-Zellen) (3.7, 4.10.2). Die erfolgreiche Überexpression wurde mittels qPCR auf Ranbp31 (Primer siehe 3.11.4, Ranbp31-real, Gapdh-real) und durch Immunfluoreszenzanalysen mit einem Flag-Antikörper nachgewiesen (siehe Anhang 8.13). Als Kontrollen dienten stabil transfizierte mpkCCD-Zellen mit einem V180-Leervektor (mock-Zellen) (3.7). RANBP3L überexprimierende mpkCCD-Zellen als auch die Kontrollzellen wurden jeweils mit oder ohne TGF-^β1 inkubiert. Mittels qPCR-Analysen (Primer siehe 3.11.4, Sparc-real, Col4a1-real, Col4a2-real, Gapdh-real) kann gezeigt das RANBP3L-assoziierte-Gene wie Sparc eine signifikante mRNAwerden. Expressions induktion in mock-Zellen unter TGF-B1 zeigen. Für Col4a1 und Col4a2 kann nur eine leichte Expressionsinduktion beobachtet werden. Gleichzeitig ist zu erkennen, dass die TGF-β-vermittelte-Induktion von Sparc bei den RANBP3L-überexprimierenden Zellen (OE-Zellen) signifikant vermindert ist (Abbildung 55D). Für Col4a1 und Col4a2 zeigt sich erneut kein signifikanter Zusammenhang aber eine tendenzielle Reduktion der Expression durch die RANBP3L-Überexpression.

Zusammenfassend lässt sich sagen, dass eine *TGFB1*-Expression in starker Korrelation mit *RANBP3L* und RANBP3L-abhängigen-Genen in der KIRC-Kohorte steht und dass eine TGF-β1-Behandlung einen RANBP3L-defizienten-Zell-Phänotyp annimmt. Weiterhin zeigt eine TGF-β1-Behandlung in mpkCCD-Zellen eine Induktion der *Sparc*-mRNA-Expression, welche in RANBP3L-überexprimierenden-Zellen signifikant reduziert war. Daher lässt sich auf einen gemeinsamen Signalweg schlussfolgern, der allerdings noch in weiteren Assays genauer untersucht werden muss.

6 Diskussion

6.1 Die mpkCCD-Zelllinie als geeignetes Modellsystem für Hyperosmolalitäts-assoziierte-Anpassungen

Um den Mechanismen der hyperosmolalitäts-induzierten-Anpassung von Zellen genauer analysieren zu können, war es wichtig auf Modelle zurückzugreifen, die bereits grundlegende physiologische Niereneigenschaften besitzen und des Weiteren, im Gegensatz zu primär-kultivierten-Nierenzellen, ihre Manipulation zulassen. In der Literatur wird die aus dem kortikalen Sammelrohr von SV-PK/Tag-Mäusen gewonnene Sammelrohrzelllinie mpkCCD als solch ein Model beschrieben [51, 88, 111, 123, 124]. In der Vergangenheit wurden nierenphysiologische Analysen in diesen Zelllinien mittels AVP-Gabe untersucht. Die hier gezeigten Daten sowie bereits ältere Arbeiten aus unserer Gruppe zeigten, dass bereits mittels Osmolalitätsänderung des Mediums die Genexpression der Zellen verändert werden kann [51, 112]. Die Erstellung von Genexpressionsprofilen in diesen Zellen zeigte, dass Hyperosmolalität zu umfangreichen Transkriptionsveränderungen führt. Ranbp3l gehörte zu den Transkripten mit dem höchsten Anstieg der Expression. Der Vergleich der regulierten Gene zwischen primär-kultivierten-IMCD-Zellen und der mpkCCD-Zelllinie unter Hyperosmolalität ergab eine signifikante Gesamtkorrelation (Abbildung 20). Somit konnte nicht nur eine vergleichbare Induktion von Ranbp3l zu der murinen IMCD-Primärkultur gezeigt werden, sondern ebenfalls, dass ein vergleichbares Genset wie in der murinen IMCD-Primärkultur exprimiert wird.

Eine weitere Verifizierung in anderen Sammelrohrmodell-Zelllinien würde die hier aufgeführten Daten verstärken, allerdings existieren nach heutigem Wissen keine geeigneten kommerziell-verfügbaren-Linien. Die Zelllinie mIMCD3 ist zwar ebenfalls aus epithelialen murinen Sammelrohrzellen gewonnen, zeigte aber in vorangegangen Experimenten der AG wenig Ansprechen auf bereits etablierte osmolalitätsregulierte-Markergene wie *Aqp2*, *Fxyd2* oder *Slc6a12*. Deswegen wurde sie für die weitere Forschung nicht verwendet. Weiterhin ist die MDCK-Zelllinie ein anderes Nieren-Modell. Diese Linie ist zwar als manipulationsfähig beschrieben, wird allerdings für EMT und virale Infektionsstudien eingesetzt [125] und ist im Gegensatz zu den mpkCCD und der mIMCD3 aus der Niere eines Cocker Spaniels gewonnen und damit vom Säugersystem unpassend, da nur wenig Antikörper speziell auf Hundeantigene getestet werden.

6.2 NFAT5 ist an der hyperosmolalitäts-regulierenden Expression von *Ranbp3I* beteiligt

6.2.1 NFAT5-Defizienz sorgt für einen Verlust der Expressionsinduktion von Ranbp3I unter Hyperosmolalität

Es konnte bereits gezeigt werden, dass die Hyperosmolalität einen Faktor darstellt, der die Expression von *Ranbp3l* in IMCD-Zellen der Ratte und Maus induziert. In dieser Arbeit wurde der Befund erweitert, indem *Ranbp3l* als neues NFAT5-Zielgen unter hyperosmotischen Bedingungen mit NFAT5-defizienten-mpkCCD- und primär-kultivierten-IMCD-Zellen nachgewiesen wurde.

Wie bereits für viele Zellmodelle gezeigt [39, 126], kommt es auch in der mpKCCD-Zelllinie zu einer NFAT5-Aktivierung unter Hyperosmolalität (Abbildung 21), weswegen sie als Modellsystem verwendet werden kann. Die NFAT5-Defizienz in den mpkCCD-Zellen wurde mittels einer CRISPR/Cas9-vermittelten-Inaktivierung und Vereinzelung in zwei unabhängige Klone (N1 und N3) erreicht (Abbildung 24 - Abbildung 26). Off-target-Effekte sind durch die Nutzung von zwei unabhängigen gRNAs minimiert [127], weswegen die beobachteten Ergebnisse auf den Verlust von NFAT5 zurückzuführen sind. Die Daten zeigten eine deutliche Reduktion der Expression von Ranbp3l sowie bereits etablierten Markern wie Aqp2 und Slc6a12 [40] in den NFAT5-defizientne-Zellen im Vergleich zu den Kontrollen (Abbildung 27). Dies wird durch Daten von IZUMI et al [54] bestätigt, die zeigen, dass nach NFAT5-Verlust ebenfalls Gene wie Aqp2 oder Slc6a12 unter Hyperosmolalität keine Aktivierung ihrer Expression mehr aufweisen [54]. Allerdings nutzte diese Studie keine nierenspezifischen Zellen, sondern murine embryonale Fibroblasten-Zellen. Weitere in-vitro-Studien die wiederum Nierenzelllinien (mpkCCD oder IMCD3) verwendeten, nutzten ein siRNA-vermittelte-NFAT5-Knockdown-Modell [51, 126, 128]. Durch siRNAs wird zwar die Expression von Nfat5 signifikant verringert aber es kann kein kompletter Funktionsverlust der Zielstruktur erzielt werden [129]. Somit bietet diese Arbeit die ersten Daten eines nierenspezifischen NFAT5-Knockout-Modells unter Iso- und Hyperosmolalität. Neben den zellulären Modellen existieren aber unterschiedliche NFAT5-Knockout-Mausmodelle. Sie zeigen abseits der spezifischen Nierenfunktion eine weitere wichtige Rolle in der Embryonalentwicklung [130-132]. Experimente mehrerer Arbeitsgruppen zeigten eine hohe embryonale Sterblichkeitsrate von Mäusen mit homozygotem NFAT5-Knockout [40, 133, 134]. Der Knockout äußerte sich durch ein stark verringertes Körpergewicht, Herzentwicklungsstörungen sowie in der Atrophie der Nieren-Medulla. Aufgrund der hohen Sterblichkeit der NFAT5-KO-Tiere scheint ein globaler *Knockout* nicht geeignet zu sein, um die Funktionen von NFAT5 im adulten Tier zu bestimmen. Um solche Einschränkungen zu überwinden, entwickelten KÜPER et al. ein induzierbares NFAT5-KO-Mausmodell [96]. Mit Hilfe dieser Mäuse wurden nun primäre IMCD-Zellen isoliert und NFAT5 *ex-vivo* durch Hydroxytamoxifen (4-OH-TM) deaktiviert (Abbildung 28). Die NGS-Analyse zeigte auf, dass die primärkultivierten NFAT5-KO-Zellen ähnliche Merkmale der NFAT5-vermittelten-Osmoregulation wie die transgenen Mäuse von KÜPER et al. [96] oder LÓPEZ-RODRÍGUEZ et al. [40], denen die NFAT5-Aktivität fehlte, aufwiesen. So waren klassische Zielgene wie *Aqp2*, diverse *Solute-Carrier*-Gene, Hitzeschockproteine als auch das hier zu untersuchende *Ranbp3l* betroffen (Abbildung 31).

6.2.2 NFAT5 ist direkt an der hyperosmolalität-assoziierten-Ranbp3l-Expressionsinduktion beteiligt

Anhand beider Modelle (*in-vitro-* und *ex-vivo-*NFAT5-KO) konnte gezeigt werden, dass der Verlust von NFAT5 dazu führt, dass kanonische-Osmolalitätsgene wie *Aqp2, Slc5a3, Slc6a6 oder Slc6a12* [40, 51, 54, 135] weniger oder gar nicht auf Osmolalitätsänderung reagieren (Abbildung 27 und Abbildung 31). Für viele dieser Gene konnte eine direkte Expressionsregulierung durch NFAT5 nachgewiesen werden [40, 42, 51, 53].

Dieser Zusammenhang konnte ebenfalls für *Ranbp31* gezeigt werden. Mittels eines Luciferase-Assays und *Quick change mutagenese* Studien wurden putative NFAT5-Bindestellen auf ihre Promotoraktivität untersucht. Es zeigte sich, dass eine Mutation der Bindestellen zu einem Aktivitätsverlust führte. (Abbildung 33). Im Vergleich zu der Erhöhung der *Ranbp31*-mRNA-Expression wirkt dies allerdings gering. Mögliche Ursachen dafür können sein, dass die HEK-293T-Zellen nur bei 450 mosmol/kg kultiviert wurden. Eine weitere mögliche Erklärung für diese leichte Induktion ist, dass nur eine kurze Sequenz des *Ranbp31*-Promotors untersucht wurde. In Übereinstimmung mit unseren Ergebnissen haben HASLER et al. [51] und CHEN et al. [136] gezeigt, dass die Aktivität der *AQP2*- und *SGK1*-Promotoren (die jeweils ein NFAT5-bindendes Element enthalten) nach hyperosmolaler Stimulation um das ~1,5- bzw. 5-Fache anstieg. Im *SMIT*-Promotor wurden mindestens fünf NFAT5-bindende-Elemente über 50 kb verteilt nachgewiesen, die an der NFAT5-vermittelten-Transkriptionsstimulation beteiligt sind [137]. Ähnliches gilt auch für den *AKR1B1*-Promotor, wo drei NFAT5-bindende-Sequenzen identifiziert wurden [138]. Daher kann nicht ausgeschlossen werden, dass weitere andere NFAT5-Bindestellen in weiter *upstream* gelegenen Regionen des *Ranbp3l*-Promotors vorhanden sind. Es könnten auch bislang nicht identifizierte NFAT5-Sequenzen an der Bindung zu NFAT5 führen oder weitere bislang nicht untersuchte Transkriptionsfaktoren, die ebenfalls durch Hyperosmolalität aktiviert werden, an der *Ranbp3l*-Induktion beteiligt sein. Hier könnte ELF5 als Transkriptionsfaktor [56], weiter untersucht werden, da *Aqp2* ebenfalls über ELF5 reguliert werden kann [139].

Eine weniger artifizielle Methode zur Untersuchung der direkten Induktion von *Ranbp3l* durch NFAT5 könnte mittels Chromatin-Immunpräzipitations-Sequenzierung (CHIP-Seq) verifiziert werden [140]. Dabei werden Zellen in Ethanol fixiert und somit die bindenden Proteine an DNA konserviert. Durch nachfolgende DNA-Fragmentierung, Inkubation dieser Fragmente mit speziellen NFAT5 Antikörpern und finaler DNA-Aufreinigung kann mittels RNA-Seq untersucht werden, ob sich unter den enthaltenen Fragmenten *Ranbp3l*-Promotor Fragmente befinden. Damit könnten auch mögliche weiter entfernte Promotorbereiche identifiziert werden.

6.3 Die Expression osmolalitätsregulierter-Gene zeigt eine prognostische Rolle beim Nierenzellkarzinom

Neben der nierenphysiologischen Funktion von NFAT5 als Transkriptionsfaktor, haben verschiedene Studien die Beziehung zwischen NFAT5 und mehreren Tumorentitäten aufgezeigt [141-147]. Die Resultate der Arbeiten sind allerdings divers. So zeigen einige Daten eine karzinogene Wirkung im Mammakarzinom [141]. in Lungenadenokarzinomzellen [142], in Melanomzellen [143] oder auch in Thymomen [144]. Im Gegensatz dazu konnte beobachtet werden, dass NFAT5 im hepatozellulären Karzinom die Apoptose induzieren [145] oder die T-Zellen-Aktivierung in der Nähe von Tumormassen fördern kann [146]. Weiterhin zeigen Daten auch eine signifikant verringerte Expression von NFAT5 sowie kanonischen NFAT5-Zielgenen im Nierenzellkarzinom. Die Studie von BOGUSLAWSKA et al. [147] wurden mittels der TCGA (The Cancer Genome Atlas) Datenbank erstellt [82].

Die TCGA-Datenbank ermöglicht hier weitere Einblicke in die Entstehung und Progression des Nierenzellkarzinoms (RCC), wie durch die Identifizierung von Gensignaturen, die eine Unterscheidung zwischen den Nierenzellkarzinom-Subtypen mit gesundem Gewebe ermöglichen [82]. Sie beinhaltet Daten zu den drei häufigsten RCC-Entitäten, dem klarzelligen (KIRC), dem papillären (KIRP) und dem chromophoben (KICH) Nierenzellkarzinom [76]. Neben der Studie von BOGUSLAWSKA et al. [147] zeigen auch Daten von GROSS et al. [112] und KANDABARAU et al. [56] erste Berichte, welche ein Expressionsmuster von Genen definiert, das nicht nur zur Unterscheidung zwischen normalem- und Tumorgewebe verwendet werden kann und mit dem tumorspezifischem Überleben in unabhängigen KIRC-Kohorten assoziiert ist, sondern einen gemeinsamen physiologischen Mechanismus aufweist, der deren Expression osmolalitäts-vermittelt reguliert. Eine physiologische Erklärung für die Regulation vieler osmolalitäts-assoziierter-Nierenzellkarzinom bietet ein RCC-induzierendes-Mausmodell Gene im von SCHONEBERGER et al. [148]. Wie in 1.5.2 beschrieben gilt die Mutation des Hippel-Lindau Proteins (VHL) als einer der wesentlichsten Aspekte in der RCC-Entwicklung [76]. Dabei ist bekannt, dass es bei einem VHL-Knockout zu einer Daueraktivierung des Transkriptionsfaktors HIF-1 und zu einer damit verbundenen Überexpression HIF-1abhängiger Gene kommt. Dazu zählt unter anderem der angiogene Vascular Endothelial Growth Factor (VEGF), was die Ausbildung neuer Blutgefäße stimuliert [149]. SCHONEBERGER et al. [148] postulieren, dass ein VHL-Knockout zu einer verstärkten Vaskularisation im Interstitium führt, welches darin resultiert, dass die Mäuse den hyperosmotischen Gradienten in den Nieren nicht aufbauen können, der für die Urinkonzentration notwendig ist, da ein Großteil der Ionen bereits im proximalen Tubulus resorbiert werden (Abbildung 56).

Abbildung 56: Verlust des osmotischen Gradienten bei der Urinbildung in Vhl^{Δ/Δ}Mäusen.

A) In gesunden Mäusen wird durch Permabilitätsunterschiede und das Gegenstromprinzip in den Nephronen der Niere Wasser passiv rückresorbiert wodurch der Urin bis zu einer Osmolalität 1200 mosmol/kg aufkonzentriert wird. **B)** Ein Verlust von VHL führt zu einer verstärkten Ausbildung von Blutgefäßen wodurch es zu einer verstärkten Resorption der Solute und folglich zu einer vergrößerten Urinabgabe kommt (verändert nach [148]).

Somit scheint es einen erklärbaren physiologischen Ansatz für die inverse Regulation von osmolalitätsregulierten-Genen im Nierenzellkarzinom zu geben aber es bleibt ungeklärt, wie das prognostische Potential dieses Gensets funktionell mit der Entstehung oder Progression des Nierenzellkarzinoms zusammenhängt. Die Untersuchung einzelner Gene aus diesem Set ist daher wichtiger Bestandteil aktueller Forschung [56, 112, 126, 150, 151].

Diese Arbeit nutzte die etablierten mpkCCD-Zelllinie um mittels eines CRISPR/Cas9vermittelten-*Knockouts* die Funktion des stark osmolalitätsregulierten-RANBP3Ls näher zu analysieren. Aufgrund der hohen Aminosäuresequenzhomologie zu RANBP3 und dem Vorhandensein einer konservierten RAN-Bindedomäne (siehe Anhang 8.2) wird eine ähnliche Kernexport-Funktion von RANBP3L in der Niere angenommen. RANBP3 ist bereits als TGF-β-terminierendes-Protein klassifiziert, da gezeigt werden konnte, dass es TGF-β-vermittelte-Proteine aus dem Zellkern zurück in das Zytoplasma transportiert [58, 60]. Für RANBP3L konnte bislang eine Translokation für die Proteine Smad1/5/8 gezeigt werden [62]. Weitere Arbeiten, die die prognostische Relevanz mit einem funktionellen Mechanismus vergleichen exisiteren nicht. Diese Arbeit liefert erste mechanistische Erklärungen für den prognostischen Wert von *RANPB3L* (Abbildung 10) beim Nierenzellkarzinom, da der Verlust der Expression von *Ranbp3l* in Sammelrohrzellen der Niere eine zelluläre Transformation hin zu einem tumorähnlichen-Phänotyp auslöst (5.6.2-5.6.3.3) welcher durch einen mögliche Translokation von TGF-β-abhängigen-Proteinen vermittelt werden könnte (5.8).

6.4 Ein RANBP3L-Verlust in mpkCCD-Zellen führt zu einem tumorassoziierten-Phänotyp

6.4.1 Morphologische Veränderungen

Die morphologische Untersuchung ließ zu Beginn ein Verlust der epithelialen Struktur und der Anpassung der mpkCCD-Zellen an die Hyperosmolalität durch eine F-Aktin-Färbung mittels Phalloidin erkennen [118] (Abbildung 37A). Während Scr-Zellen unter 600 mosmol/kg ein dichteres Aktin-Netz im Vergleich zu der isoosmolaren Behandlung (Abbildung 37 - Abbildung 39) zeigen, ist dies für RANBP3L-defiziente-Zellen nicht mehr der Fall. Diese Daten gehen einher mit bereits publizierten Arbeiten in MDCK-Zellen [152]. Die Veränderungen im Zytoskelett der RANBP3L-defizienten-mpkCCD-Zellen ist direkt auf den Verlust von RANBP3L zurückzuführen, da den Zellen keine weiteren genetischen Veränderungen zugrunde liegen und für die Untersuchungen zwei unabhängige RANBP3L-

Knockout-Klone (R1 und R3) genutzt wurden (Abbildung 34). Aktin ist ein Hauptbestandteil des eukaryotischen Zyotskeletts und sorgt über Verankerungen mit *Adherens junction* (AJ) [153] und *Tight junction* (TJ) [153] an der Zellmembran für die Stabilität und Polarität der Zelle sowie Zell-Zell-Kontakten mit benachbarten Epithelzellen. Ein Verlust oder eine Reduktion dieser Eigenschaften ist oft mit der Annahme eines migratorischen und invasiven Phänotyps verbunden [154], welches durch die verstärkte Ausprägung von Lamellipodien [155] beobachtet werden konnte, besonders bei solchen Zellen, die an zellfreien Regionen angrenzten (Abbildung 37B). Die Entstehung von Lamellipodien wird durch F-Aktin-Filamente verursacht, die gegen die Membran drücken und somit eine Fortbewegung der Zelle ermöglichen [156]. Eine solche Reorganisationen des Zytoskellets hinzu einem invasiven Phänotyps wird als Kennzeichen einer beginnenden *epithelial-mesenchymal transition* (EMT) gewertet [154].

Um diesen Befund zu bekräftigen könnten weitere klassische Marker der EMT in RANBP3L-deifzienten-Zellen analysiert werden [157]. Wie bereits beschrieben ist Aktin durch seine Verbindung von AJ und TJ ein wesentlicher Bestandteil für die Integrität und Stabilität von Epithelzellen. Über eine Färbung des Adherens junctions-Proteins β-Catenin könnte verifiziert werden, dass zwischen den veränderten mpkCCD-Zellen weniger Zell-Zell-Kontakte ausgebildet werden. Dies wurde bereits für VHL-defiziente-mpkCCD-Zellen von GROSS et al. [112] gezeigt. β-Catenin assoziiert mit der zytoplasmatischen Domäne von E-Cadherinen [154]. Eine reduzierte Expression von E-Cadherin wurde in diversen Krebsentitäten, wie dem Kolorektal-, Pankreas-, Prostata- oder Mammakarzinom [154] beschrieben und gilt als klassischer Marker der EMT. Neben der Analyse von AJs könnte ebenfalls die Expression Tight junctions wie ZO-1 (zonula occludens-1) analysiert werden. ZO-1 agiert als Verbindungsstück zwischen den Transmembranproteinen Occludin und Claudin und dem Aktin-Zytoskelett [153]. Für VHL-defiziente-mpkCCD-Zellen [112] als auch diverse Krebsentitäten, unter anderem dem hepatozellulären Karzinom [158], konnte bereits eine reduzierte ZO-1-Expression in Verbindung mit einer erhöhte Invasivität festgestellt werden.

6.4.2 Veränderung der Migration und Proliferation

Als weiteres Zeichen eines malignen-Phänotyps konnte eine beschleunigte Zellmigration der RANBP3L-defizienten-Zellen im Vergleich zu den Scr-Zellen gezeigt werden (Abbildung 38). Wie für die morphologische Untersuchung, zeigte sich ebenfalls keine Anpassung an

die extrazelluläre Osmolalität, wie sie andere Studien bereits für MDCK und mpkCCD-Zellen zeigen konnten [112, 152]. Diese Daten werden weiterhin verifiziert durch eine verlangsamte Proliferation der RANBP3L-KO-Zellen in einem 2D-Monolayer-Modell (Abbildung 39). Der beobachtete beschleunigte Wundschluss tritt somit nicht durch eine verstärkte Proliferation der Zellen auf. Es wird deutlich, dass ein RANBP3L-Verlust in Sammelrohrzellen eher einen malignen Phänotyp induziert, der sich durch ein starkes Migrationspotential und eher geringe Proliferation der Zellen auszeichnet. Trotzdem ließ sich feststellen, dass die Klone R1 und R3 im Soft-Agar-Assay signifikant größere Kolonien bilden konnte im Vergleich zu Scr (Abbildung 40). Der gut etablierte Soft-Agar-Assay stellt durch sein verankerungsunabhängiges Wachstum eine in-vitro Methode dar, mit der ein mögliches Transformationspotential von Zelllinien untersucht werden kann [119]. Ein Transformationspotential von Tumorzellen ist nicht nur durch die invasive Eigenschaft gekennzeichnet in die Blutlaufbahn des Körpers zu gelangen, sondern ebenfalls in einem fremden Gewebe zu kolonialisieren [159]. Den RANBP3L-defizienten-Zellen ist es demnach möglich beide Phänotypen auszubilden. In einem adhärenten 2D-Monolayer-System zeigen die KO-Zellen eher einen migratorischen Phänotyp. Durch die Ausbildung der größeren Kolonien lässt sich jedoch ebenfalls auf einen proliferativen Phänotyp der Zellen rückschließen. Diese Beobachtung wird außerdem durch den "Go or Grow"- Ansatz unterstützt [160, 161]. Er besagt, dass die gesteigerte Proliferation oder Migration von Tumorzellen nicht allein auf genetische Mutationen zurückzuführen sind, sondern ebenfalls äußeren Einflüssen bedingen und die Zellen somit zwischen zwei Zuständen wechseln.

Um die erzeugten *in-vitro* Daten eines mesenchymalen Phänotyps auch *in-vivo* zu verifizieren, sollten zukünftig Xenograft-Studien (subkutanes Tumorwachstum und Tumormetastasierung) mit den hier etablierten RANBP3L-KO-mpkCCD-Zellen im Vergleich zu Scr-mpkCCD-Zellen durchgeführt werden. Dabei wären ein vergrößertes Tumorvolumen sowie eine verstärkte Tumormetastasierung der RANBP3L-defizienten-Zellen im Vergleich zu den Scr-Zellen zu erwarten. Als mögliche Positivkontrollen würden sich bekannten Nierenzellkarzinom-Zelllinien wie 786-0 (KIRC, primär) oder Caki-1 (KIRC, metatstasiert) anbieten [162-164].

6.5 Ein RANBP3L-Verlust führt zu einer prognostisch unvorteilhaften Gensignatur im Nierenzellkarzinom

Neben funktionellen Unterschieden geht der Verlust von RANBP3L mit einer massiven Genexpressionsänderung einher. Im Vergleich zu den Kontrollzellen konnten insgesamt 4699 Gene identifiziert werden, die in ihrer Expression signifikant reguliert sind (300 und 600 mosmol/kg zusammengefasst, Abbildung 42). Diese Verschiebung des Genexpressionsprofils geht einher mit verschiedenen krebsassoziierten-Signalwegen, darunter die Phosphatidylinositol-3-Kinase (PI3K) / Akt-, EMT- oder TGF-β-Signalkaskaden (Abbildung 42B-C). Dies steht im Einklang mit Nierenzellkarzinom-Studien, die über eine hohe Aktivität von PI3K/Akt berichten [165] und stimmt mit den Ergebnissen (siehe 5.6.2 und 5.6.3) einer mesenchymaleren Morphologie sowie einer beschleunigten Migration überein [166]. Darüber hinaus werden diese Daten durch die einzig weitere existierende Arbeit über RANBP3L unterstützt, dass der Kernexport von Smad-Proteinen mittels RANBP3L durch knochenmorphogenetische Proteine (BMP) reguliert wird, die zur TGF-β-Superfamilie gehören [62, 167]. Auffallend war, dass eine RANBP3L-regulierte-Gensignatur mit einer Nierenzellkarzinom-Signatur einherging (Abbildung 42C) und sich die KIRC-Kohorte durch eine Hauptkomponentenanalyse (PCA) deutlich von den anderen RCC-Subtypen (KICH und KIRP) und dem normalen Kontrollgewebe unterschied (Abbildung 43). Weiterhin zeigte der Vergleich der Daten mit Daten aus dem humanen Pathologie-Atlas [106, 135], dass ein RANBP3L-Mangel vor allem die Expression von Genen induziert, die mit einer ungünstigen Prognose bei Patienten mit Nierenzellkarzinom assoziiert sind (Abbildung 44). Zum jetzigen Kenntnisstand ist dies die einzige Arbeit, die eine differenzierte Gensignatur beschreibt, die durch den Funktionsverlust eines bestimmten Gens vermittelt wird und die KIRC eindeutig von anderen RCC-Entitäten und normalem Gewebe unterscheidet. Bekannte Studien haben bislang nur Gensignatur mit dem Überleben von RCC-Patienten [135, 168-171] oder dem Metastasierungspotential des Tumors [172] in Verbindung gebracht. Obwohl dazu keine humanen, sondern murine Zelllinien verwendet wurden, deuten diese Daten zusammen mit einer veröffentlichten Studie mit primären Ratten-IMCD-Zellen [56] auf einen translationalen Wert für KIRC-Patienten hin. Eine weitere potenzielle Einschränkung dieser Arbeit ist die Verwendung von Sammelohrzellen [88]. Es herrscht zwar traditionell die Auffassung, dass KIRC aus Zellen des proximalen Tubulus entsteht [71] aber schon 1989 konnte NOGUEIRA et al. in einem Rattenmodell zeigen, dass klarzellige Nierenzellkarzinome aus Segmenten des Sammelrohres stammten [173]. Unterstützt wird diese Vermutung durch modernere Untersuchungen, die gezeigt haben, dass in manchen KIRC-Tumorproben Marker exprimiert sind, die typisch für den distalen Tubulus oder das Sammelrohr sind [174, 175]. Jedoch werden zusätzlich zu den Haupt-RCC-Entitäten (KIRC, KICH und KIRP) auch andere Subtypen beschrieben. Darunter stellt das Nieren-Sammelrohr-Zellkarzinom (CDC; auch *Ductus-Bellini* -Karzinom genannt) eine weitere seltene (weniger als 2 %) aber hoch aggressive RCC-Entität dar [176]. Für CDCs liegen nur wenige Studien vor, von denen noch weniger Genexpressionsprofile erstellten. Diese wenigen zeigen aber, dass ein CDC-spezifischer Gensatz mit dem KIRC-Subtyp clustert [135, 177, 178] und dass eine starke Herabregulierung von *RANBP3L* für CDC-Proben im Vergleich zur Kontrollgruppe charakteristisch ist (siehe Anhang 8.12).

So wäre es sinnvoll in den nächsten Schritten Genexpressionsanalysen von globalen sowie nierenspezifischen RANBP3L-defizienten-Mäusen gegen Kontrollgruppen zu vergleichen, um zu untersuchen, ob ein ähnliches tumor-assoziiertes-Genexpressionsprofil auch in einem *in-vivo* Modell beobachtet werden kann. Die Generierung von globalen RANBP3L-defizienten-Mäusen wurde auch bereits in Auftrag gegeben, erfordert aber mehr Zeit als gedacht, weswegen diese Daten kein Bestandteil dieser Dissertation werden konnten. Etablierte nierenspezifsiche-*Knockout*-Mausmodelle existieren bereits, die unter anderem Ksp-Cadherin als Nierenmakrer [179] oder Aquaporin 2 als Sammelrohrzell-Marker [180] verwenden. Eine erste phänotypische Analyse der Mäuse (Aussehen, Verhalten, Metabolismus, Pathologie etc., siehe Anhang 8.15) könnte in einer Kooperation mit der deutschen Mausklinik (*german mouse clinic*, GMC) erfolgen [181].

6.6 Der *Knockout* von SPARC in RANBP3L-defizienten-Zellen minimiert den malignen Phänotyp

In den weiterfolgenden Analysen wurden einzelne Gene aus dem RANBP3L-anhängigen-Genset bestehend aus 17 Genen (Abbildung 44) intensiver charakterisiert. Für diesen Sachverhalt wurden die Gene *Sparc*, *Col4a1* und *Col4a2* verwendet, da sie neben einer starken relativen Expressionsinduktion auch sehr abundant in den RANBP3L-defizienten-Zellen vorliegen. Weiterhin existieren Studien, die bereits einen Zusammenhang von *Sparc* und *Col4a1/2* im Nierenzellkarzinom zeigen [121].

SPARC beeinflusst viele molekulare Funktionen wie Gewebewachstum, Zell-Matrix-Adhäsion, Wachstumsfaktoraktivität und die ECM-Dynamik [182]. Dies deutet auf eine wichtige Rolle bei der Karzinomentwicklung und -progression hin. Die Studienlage ist allerdings sehr divers, da sowohl erhöhte als auch verringerte SPARC-Niveaus während der Tumorentstehung bekannt sind. Eine verminderte *SPARC*-Expression wurde bei der akuten myeloischen Leukämie, dem duktalen Adenokarzinom des Pankreas und dem Ovarialkarzinom [183-185] ermittelt, während eine Überexpression von SPARC mit Tumorentitäten wie dem Mammakarzinom, Melanom, Glioblastom und Nierenzellkarzinom in Verbindung gebracht wurde [121, 186-188]. Es ist weiterhin bekannt, dass SPARC mit Kollagen I-V in Assoziation stehen. Dies wird durch Arbeiten an *C. elegans* [189], *Drosophila* [190, 191] sowie Mäusen [192] unterstützt. Sie gehen davon aus, dass SPARC die Löslichkeit von Kollagenen fördert, indem es als Chaperon fungiert und somit verhindert, dass Kollagen mit Zelloberflächenrezeptoren interagiert. Somit wird die Hypothese aufgestellt, dass die betroffenen Gewebe bei einem erhöhten SPARC-Spiegel leichter von malignen Zellen durchdrungen werden können [189].

Das RANBP3L-defiziente-Genexpressionsprofil korreliert ebenfalls mit einem von FREW et al. etabliertem KIRC-ähnlichen-Mausmodell [77, 193]. In diesem Modell ist *Ranbp3l* herunterreguliert und neu identifizierte, von RANBP3L-abhängige-Gene wie *Sparc, Col4a1* und *Col4a2* sind hochreguliert (siehe Anhang 8.12.1). So wurde nachfolgend mittels TCGA-Analyse die Korrelation der Expression von *RANBP3L* mit *SPARC, COL4A1* und *COL4A2* im Nierenzellkarzinom, besonders im KIRC-Subtyp, bestätigt (Abbildung 46). Um zu untersuchen, ob diese Ergebnisse phänotypische Relevanz haben, wurde ein CRISPR/Cas9-vermittelten-*Knockout* von SPARC in RANBP3L-defizienten-Zellen durchgeführt. Zusammenfassend zeigen die ersten Daten eine Abschwächung des onkognene Phänotyps von RANBP3L-defizienten-Zellen durch einen zusätzlichen SPARC-*Knockout* und verifizierten die vorangegangenen Genepxressionsanalysen (Abbildung 50-Abbildung 53). Weiterführend wäre ebenfalls eine globale Genexpressionsanalyse der doppelt-defizienten-

Zellen im Vergleich zu einfach-defizienten-Zellen und den Kontrollzellen sinnvoll. Ebenfalls sollten die in 6.4 erwähnten Xenograft-Analysen zusätzlich mit den doppeltdefizienten-Zellen (RANBP3L-KO + SPARC-KO) durchgeführt werden, um die Abschwächung des malignen Phänotyps *in-vivo* zu bestätigen. Es wurde auch berichtet, dass die Überexpression von SPARC in Lungenmetastasen von Mammakarzinomen allein nicht ausreicht, um eine Zelle mit metastatischen Fähigkeiten zu bilden [194], sondern stattdessen die Malignität von Zellen fördert, die bereits ein basales Maß an invasiver Fähigkeit besitzen. Daher sollte die Rolle anderer, nicht charakterisierter nachgeschalteter Zielgene von RANBP3L analysiert werden. Dazu zählen zum Beispiel *Sh3gl2 (SH3 Domain Containing GRB2 Like 2)*, auch Endophilin A1 genannt, von dem bekannt ist, dass ein Mangel die Malignität bei Urothelkarzinomen und nicht-kleinzelligem Lungenkarzinom (NSCLC) fördert [195, 196] oder diverse Hox Gene (*Hoxa10, Hoxa9 oder Hoxa7*), welche in vielen Tumorentitäten eine Rolle zu spielen scheinen [197]. Weitere unter RANBP3L-regulierte-Transkripte waren das *Unc5b* (Unc-5 Netrin Receptor B), welches im Mammakarzinom die Proliferation und Metastasierung fördert [198] und das *Pmp22* (peripheral myelin protein 2), dessen erhöhte Expression bereits im Magenkarzinom beobachtet werden konnte [199]. Ob und wie diese und weitere regulierte Gene in Assoziation zu RANBP3L stehen ist bislang nicht untersucht.

6.7 RANBP3L ist an der Translokation von TGF-β abhängigen Proteinen beteiligt

Die TGF-β-Signalkaskade führt über Faktoren wie Smad2/3 oder c-JUN zu einer Aktivierung von Genen wie SNAIL oder ZEB die wiederum die Expression klassische EMT Marker wie Fibronectin, Vimentin oder N-Cadherin aktivieren. [200]. Daten aus in-vitround *in-vivo*-Experimenten zeigen ebenfalls eine TGF-β-vermittelte-Expressionsinduktion für Sparc [122] und Col4a1/2 [201]. Weiterhin zeigen die TCGA-Daten für das RCC eine erhöhte Expression von TGFB1 (kodierendes gen für TGF-\beta1) im Vergleich zur Kontrollkohorte sowie eine Korrelation mit der Expression von SPARC, COL4A1/2 und auch RANBP3L (Abbildung 54). Darüber hinaus führt eine TGF-B1-Behandlung der mpkCCD-Zellen zu der Induktion eines Phänotyps, der einer RANBP3L-Defizienz ähnelt sowie einer erhöhten Sparc-Expression (Abbildung 55). Eine RANBP3Lüberexprimierende-mpkCCD-Zellkultur zeigt dagegen eine signifikant verringerte Sparc-Induktion unter einer TGF-β1-Behandlung (Abbildung 55), weswegen von einer reprimierenden Eigenschaft von RANBP3L auf die TGF-β-Signalkaskade geschlossen werden kann. Studien zeigen, dass die SPARC-Expression über eine c-JUN/ JNK-Kaskade aktiviert wird [182] und, dass der JNK-Signalweg durch verschiedene Stimuli aktiviert werden kann, die mit akuten und chronischen Nierenschäden in Verbindung gebracht werden [202, 203]. Erste Immunfluoreszenz Daten zeigen, dass bei 600 mosmol/kg die phosphorylierte aktive Form von c-JUN im Kern weniger stark vorliegt als unter isoosmolaren Bedingungen (siehe Anhang 8.14). Diese Beobachtung konnte im RANBP3L-KO-Zellen nicht mehr gezeigt werden. Dies deutet darauf hin, dass RANBP3L unter physiologischen Bedingungen in Sammelrohrzellen der Niere die Translokation von c-JUN oder c-JUN-abhängiger-Faktoren in den Kern hemmen oder vermindern und damit eine Signalkaskade von c-JUN-abhängigen-Genen terminieren könnte (Abbildung 57).

Abbildung 57: Schematische Darstellung der möglichen Funktion von RANBP3L.

Dargestellt ist der kanonische sowie nicht kanonische Signalweg nach TGF- β Aktivierung. Im kanonischen Signalweg werden SMAD2/3-Proteine an ihren C-terminalen Serinresten phosphoryliert und bilden einen Komplex mit SMAD4 (auch co-SMAD genannt). Dieser Komplex transloziert in den Kern und bindet dort an weitere Co-Faktoren, wodurch eine Reihe von biologischen Prozessen durch transkriptionelle Regulierung von Zielgenen in Gang gesetzt werden. Nicht kanonische TGF- β Kaskaden können über Ras und RhoA JNK phosphorylieren, welches wiederum im Nucleus c-JUN aktiviert. Final werden Zielgene für verstärkte Invasion, Migration oder auch Inflammation transkriptionell aktiviert. RANBP3L könnte nach diesem Schema direkt die Translokation von Smad2/3, c-JUN oder *upstream* geschalteten Proteinen inhibieren. Smad2/3/4 = *mothers against decapentaplegic homolog 2/3/4*, Ras = *Rat sarcoma*, RhoA = *Ras Homolog Gene Family Member A*, JNK = c-Jun-N-terminale Kinasen, c-JUN = *AP-1 transcription factor subunit* (verändert nach [203-205])

Weitere Experimente, die die nachgeschaltete Signalübertragung von RANBP3L aufzeigen, sind somit erforderlich. So könnte die Signalkaskade genauer mittels CO-Immunpräzipitation (CO-IP) in der bereits etablierten RANBP3L-überexprimierendenmpkCCD-Zelllinie untersucht werden. Dafür würden durch ein spezifisches Protokoll nur RANBP3L-gebundene-Faktoren aufgearbeitet und nachfolgend massenspektrometrisch untersucht werden. Hier könnte final bewiesen werden, ob RANBP3L direkt c-JUN oder

andere Protein in dieser Kaskade (JNK, Smad2/3) hemmt. Nachfolgend könnten diese Ergebnisse dazu führen den Verlust von RANBP3L durch eine Inhibitortherapie gegen TGFβ, Smad2/3, cJUN oder andere identifizierte Faktoren zu kompensieren. Im Gegensatz zu einem SPARC-Knockout wäre dieser Ansatz auch therapeutisch im Nierenzellkarzinom denkbar. Momentan befinden sich solche Inhibitoren noch in experimenteller Testung und müssen hinreichend auf ihre Spezifität und Wirksamkeit analysiert werden [206, 207]. Bislang ist keine nierenspezifische Tumortherapie in der Anwendung. Erste medikamentöse Therapien wurden in den 1980er -1990er Jahren mittels Zytokintherapie durch Interferon alpha (IFN-α) [208] und Interleukin 2 (IL-2) [209] durchgeführt. Ein deutlicher Fortschritt konnte ab 2005 mit den Multityrosinkinase-Inhibitoren Sorafenib und Sunitinib erzielt werden [210]. Neuere Ansätze in der onkologischen Therapie haben den Einsatz von Immuncheckpoint-Inhibitoren hervorgebracht [211]. Dabei werden Antikörper gegen Rezeptoren wie PDL-1 und CTLA4 hergestellt, die eine Abschwächung des Immunsystems durch Tumorzellen verhindern [211]. Zum heutigen Zeitpunkt stehen nun unterschiedliche Kombinations- und Monotherapien zur Verfügung [71]. Dabei muss allerdings beachtet werden, dass in den meisten Studien nur klarzellige Nierenzellkarzinome eingeschlossen wurden. Aktuell werden Nierenzellkarzinome mit einer Kombination von Axtitinib mit Avelumab [212] oder Axitinib mit Pembrolizumab [213] unabhängig vom Risikofaktor oder histologischer Entität behandelt (siehe Anhang Abbildung 61). Somit geht dieses Konzept eher auf die generelle Inhibierung der Vaskularisation (Axtitinib) sowie auf die immunmodulatorische Funktion durch die PD-L1 Inhibitoren Avelumab oder Pembrolizumab aber nicht auf Nierenkarzinom-spezifische-Faktoren. Studien zeigten bereits, dass eine TGF-β induzierte SPARC-Expression durch Smad- und JNK-Inhibitoren herunterreguliert werden kann [214, 215]. Diese Daten könnten in den RANBP3Ldefizienten-mpkCCD-Zellen, den zuvor erwähnten RCC-Xenograft-Modellen (6.4.2) oder

der in-vivo RANBP3L-KO-Maus (6.5) verifiziert werden.

119

7 Zusammenfassung und Ausblick

In den menschlichen Nieren herrscht ein osmotischer Gradient zwischen dem Cortex und der Medulla, wobei sich die Osmolalität in Richtung Medulla bis zu 1200 mosmol/kg aufkonzentriert. Um diesen Belastungen standzuhalten, besitzen die Zellen in den einzelnen Tubulussegmenten ein zu Grunde liegendes Geneexpressionsprofil. Wie dieses spezifische Expressionsprofil erreicht wird, ist nicht vollkommen verstanden. Die Zellen aktivieren gezielte Adaptionsmechanismen, die hauptsächlich über den Transkriptionsfaktor *Nuclear factor of activated T-cells 5* (NFAT5) reguliert sind. Vorarbeiten zeigen, dass in IMCD-Zellen der Niere die extrazelluläre Osmolalität die Expression von hunderten nierenzellspezifischen-Genen reguliert. Weiterhin zeigen Studien, dass viele dieser beschriebenen Gene zusätzlich invers mit der Expression in Nierenzellkarzinomen (RCC) korrelieren. Von einigen Genen ist eine RCC-assoziierte-Funktion bereits beschrieben, aber für viele fehlt dies noch. Eines der dabei am stärksten regulierten Gene mit prognostischer Relevanz ist das kaum charakterisierte *Ran-binding protein 3-like (RANBP3L)*. Somit war es Ziel dieser Arbeit über die Untersuchung der *RANBP3L*-Expression und Funktion erste Rückschlüsse auf den zugrundeliegenden Signalweg zu schließen.

Innerhalb dieser Arbeit konnte in murinen Systemen über einen CRISPR/Cas9-vermittelten-NFAT5-*Knockout* (KO) *in-vitro* als auch über ein induzierbares KO-System *ex-vivo* gezeigt werden, dass die Expressionsinduktion unter Hyperosmolalität bekannter und unbekannter NFAT5-abhängigen-Gene, einschließlich *Ranbp31* verloren geht. Weiterhin konnte durch Promotoraktivitätsanalysen eine direkte Interaktion von NFAT5 bei der Regulation von *Ranbp31* aufgezeigt werden.

Anschließend wurde RANBP3L ebenfalls mittels CRISPR/Cas9 ausgeknockt und die Zelllinie mpkCCD nachfolgend phänotypisch charakterisiert. Die Ergebnisse zeigten eine onkogene Wirkung des RANBP3L-Verlustes durch eine mesenchymalere Morphologie, eine verstärkte Migration sowie eine verstärkte Koloniebildung. Um zu untersuchen, welche Gene diese phänotypischen Veränderungen bedingen, wurde mittels RNA-Seq das globale Genexpressionsprofil von RANBP3L-defizienten-Zellen analysiert. Die Ergebnisse zeigen ein stark KIRC (klarzelliges Nierenzellkarzinom)-abhängiges-Expressionsprofil. Vor allem fiel eine Anreichung der Gene Secreted Protein Acidic And Cysteine Rich (Sparc), Collagen Type IV Alpha 1 Chain (Col4a1) sowie Collagen Type IV Alpha 2 Chain (Col4a2) auf, die nachfolgend untersucht wurden. In-silico-Analysen zeigten, dass alle drei Gene im KIRC-Subtyp stark mit der RANBP3L-Expression korrelieren. Um die bioinformatischen NGS-

Analysen zu verifizieren, wurde ein CRISPR/Cas9-vermittelter-SPARC-*Knockout* in RANBP3L-defizienten-Zellen etabliert. Der zuvor beobachtete onkogene Phänotyp zeigte durch die zusätzliche SPARC-Defizienz eine deutliche Abmilderung bezüglich der Migration und Koloniebildung der Zellen.

Andere Arbeiten zeigen bereits eine Rolle von SPARC im Nierenzellkarzinom, welche TGF- β 1 vermittelt zu sein scheint, da *TGFB1* (für TGF- β 1 kodierendes Gen) in RCC im Vergleich zu den Kontrollkohorten hochreguliert vorliegt. In diesem Zusammenhang zeigen unsere Daten, dass eine TGF- β 1-Behandlung zu einem ähnlichen Phänotyp führt, wie eine erzeugte RANBP3L-Defizienz. Weiterhin zeigen die Daten, dass eine RANBP3L-Überexpression die TGF- β 1-vermittelte-Expression von *Sparc* hemmt. Das lässt Rückschlüsse darauf zu, dass RANBP3L in der Niere ein TGF- β -terminierende Funktion besitzen könnte, indem RANBP3L TGF- β -vermittelten-Faktoren aus dem Zellkern in das Cytosol transloziert. Darunter fallen kanonische Faktoren wie Smad2/3 oder Smad4 sowie nicht-kanonische TGF- β Proteine wie JNK oder c-JUN. Da bereits c-JUN als Transkriptionsfaktor für SPARC bekannt ist, wäre diese Signalkaskade ein denkbarer Ansatz.

Interessant bleibt zu untersuchen, ob die hier gezeigten *in-vitro*-Ergebnisse sich in RANBP3L-defizienten-Mausmodellen oder Xenograft-Studien verifizieren lassen. In diesem Zusammenhang wird es ebenfalls wichtig sein den zugrundeliegenden Signalweg von RANBP3L genauer aufzuschlüsseln. Diese Daten könnten zukünftig helfen die Behandlung von bestimmten Nierenzellkarzinom-Entitäten, durch das *Targeting* bislang nicht genutzter RANBP3L-assoziierter-Pfade, zu verbessern.

Literaturverzeichnis

- 1 Wallace MA. Anatomy and physiology of the kidney. *AORN J* 1998; 68: 800, 803-816, 819-820; quiz 821-804.
- 2 Kaufman DP, Basit H, Knohl SJ. Physiology, Glomerular Filtration Rate. *StatPearls*: Treasure Island (FL), 2020.
- Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. *Clin J Am Soc Nephrol* 2015; 10: 1444-1458.
- 4 Masereeuw R, Russel FG. Mechanisms and clinical implications of renal drug excretion. *Drug Metab Rev* 2001; 33: 299-351.
- 5 Almeras C, Argiles A. The general picture of uremia. *Semin Dial* 2009; 22: 329-333.
- 6 Brown D, Wagner CA. Molecular mechanisms of acid-base sensing by the kidney. J Am Soc Nephrol 2012; 23: 774-780.
- 7 Maxwell AP, Lappin TR, Johnston CF, Bridges JM, McGeown MG. Erythropoietin production in kidney tubular cells. *Br J Haematol* 1990; 74: 535-539.
- 8 Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. *Compr Physiol* 2014; 4: 1201-1228.
- 9 Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. *Am J Clin Nutr* 2008; 88: 491S-499S.
- 10 Soriano RM, Penfold D, Leslie SW. Anatomy, Abdomen and Pelvis, Kidneys. *StatPearls*: Treasure Island (FL), 2021.
- 11 Pape H KA, Silbernagl S. *Physiologie Die Funktion der Niere*, vol. 9. Thieme, 2019.
- 12 (IQWiG) IfQuWiG. Wie funktionieren die Nieren?, 12. Januar 2022.
- 13 Madrazo-Ibarra A, Vaitla P. Histology, Nephron. *StatPearls*: Treasure Island (FL), 2021.
- 14 Zhuo JL, Li XC. Proximal nephron. *Compr Physiol* 2013; 3: 1079-1123.

- 15 Murray I, Paolini MA. Histology, Kidney and Glomerulus. *StatPearls*: Treasure Island (FL), 2021.
- 16 Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. *Clin J Am Soc Nephrol* 2014; 9: 1627-1638.
- 17 Behrends J BJ, Deutzmann R, Ehmke H, Frings S, Grissmer S, Hoth M, Kurtz A, Leipziger J et al. *Duale Reihe Physiologie*. Georg Thieme Verlag, 2021.
- 18 Edemir B, Pavenstadt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. *Pflugers Arch* 2011; 461: 607-621.
- 19 Sands JM, Layton HE. The physiology of urinary concentration: an update. *Semin Nephrol* 2009; 29: 178-195.
- 20 Bankir LT, Trinh-Trang-Tan MM. Renal urea transporters. Direct and indirect regulation by vasopressin. *Exp Physiol* 2000; 85 Spec No: 243S-252S.
- 21 Cuzzo B, Padala SA, Lappin SL. Physiology, Vasopressin. *StatPearls*: Treasure Island (FL), 2021.
- 22 Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. *Clin J Am Soc Nephrol* 2014; 9: 1781-1789.
- 23 Nawata CM, Pannabecker TL. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. *J Comp Physiol B* 2018; 188: 899-918.
- 24 Argyropoulos C, Rondon-Berrios H, Raj DS, Malhotra D, Agaba EI, Rohrscheib M *et al.* Hypertonicity: Pathophysiologic Concept and Experimental Studies. *Cureus* 2016; 8: e596.
- 25 Maldonado KA, Mohiuddin SS. Biochemistry, Hypertonicity. *StatPearls*: Treasure Island (FL), 2020.
- 26 Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. *Physiol Rev* 2007; 87: 1441-1474.
- 27 Dmitrieva NI, Michea LF, Rocha GM, Burg MB. Cell cycle delay and apoptosis in response to osmotic stress. *Comp Biochem Physiol A Mol Integr Physiol* 2001; 130: 411-420.

- 28 Cai Q, Michea L, Andrews P, Zhang Z, Rocha G, Dmitrieva N *et al.* Rate of increase of osmolality determines osmotic tolerance of mouse inner medullary epithelial cells. *Am J Physiol Renal Physiol* 2002; 283: F792-798.
- 29 Michea L, Ferguson DR, Peters EM, Andrews PM, Kirby MR, Burg MB. Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. *Am J Physiol Renal Physiol* 2000; 278: F209-218.
- 30 Neuhofer W, Beck FX. Response of renal medullary cells to osmotic stress. *Contrib Nephrol* 2005; 148: 21-34.
- 31 Kultz D, Chakravarty D. Hyperosmolality in the form of elevated NaCl but not urea causes DNA damage in murine kidney cells. *Proc Natl Acad Sci U S A* 2001; 98: 1999-2004.
- 32 Petronini PG, Tramacere M, Mazzini A, Kay JE, Borghetti AF. Control of protein synthesis by extracellular Na+ in cultured fibroblasts. *J Cell Physiol* 1989; 140: 202-211.
- 33 Khan SH, Ahmad N, Ahmad F, Kumar R. Naturally occurring organic osmolytes: from cell physiology to disease prevention. *IUBMB Life* 2010; 62: 891-895.
- 34 Grunewald RW, Wagner M, Schubert I, Franz HE, Muller GA, Steffgen J. Rat renal expression of mRNA coding for aldose reductase and sorbitol dehydrogenase and its osmotic regulation in inner medullary collecting duct cells. *Cell Physiol Biochem* 1998; 8: 293-303.
- 35 Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S *et al.* Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. *Biochem J* 2004; 382: 177-182.
- 36 Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A *et al.* Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. *J Biol Chem* 1992; 267: 649-652.
- 37 Yamauchi A, Uchida S, Preston AS, Kwon HM, Handler JS. Hypertonicity stimulates transcription of gene for Na(+)-myo-inositol cotransporter in MDCK cells. *Am J Physiol* 1993; 264: F20-23.
- 38 Meek DW. Post-translational modification of p53 and the integration of stress signals. *Pathol Biol (Paris)* 1997; 45: 804-814.
- 39 Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. *Biomol Concepts* 2012; 3: 345-364.
- 40 Lopez-Rodriguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI *et al.* Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. *Proc Natl Acad Sci U S A* 2004; 101: 2392-2397.
- 41 Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. *Proc Natl Acad Sci U S A* 1999; 96: 7214-7219.
- 42 Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. *Proc Natl Acad Sci U S A* 1999; 96: 2538-2542.
- 43 Aramburu J, Drews-Elger K, Estrada-Gelonch A, Minguillon J, Morancho B, Santiago V *et al.* Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. *Biochem Pharmacol* 2006; 72: 1597-1604.
- 44 Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. *Genes Dev* 2003; 17: 2205-2232.
- 45 Lee N, Kim D, Kim WU. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. *Front Immunol* 2019; 10: 270.
- 46 Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. *Annu Rev Immunol* 1997; 15: 707-747.
- 47 Viola JP, Carvalho LD, Fonseca BP, Teixeira LK. NFAT transcription factors: from cell cycle to tumor development. *Braz J Med Biol Res* 2005; 38: 335-344.
- 48 Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. *Cold Spring Harb Perspect Biol* 2009; 1: a000034.
- 49 Tong EH, Guo JJ, Huang AL, Liu H, Hu CD, Chung SS *et al.* Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5. *J Biol Chem* 2006; 281: 23870-23879.
- 50 Lanaspa MA, Andres-Hernando A, Li N, Rivard CJ, Cicerchi C, Roncal-Jimenez C *et al.* The expression of aquaporin-1 in the medulla of the kidney is dependent on the transcription factor associated with hypertonicity, TonEBP. *J Biol Chem* 2010; 285: 31694-31703.

1531.

51

- 52 Nakayama Y, Peng T, Sands JM, Bagnasco SM. The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression. *J Biol Chem* 2000; 275: 38275-38280.
- 53 Woo SK, Lee SD, Na KY, Park WK, Kwon HM. TonEBP/NFAT5 stimulates transcription of HSP70 in response to hypertonicity. *Mol Cell Biol* 2002; 22: 5753-5760.
- 54 Izumi Y, Yang W, Zhu J, Burg MB, Ferraris JD. RNA-Seq analysis of high NaClinduced gene expression. *Physiol Genomics* 2015; 47: 500-513.
- 55 Schulze Blasum B, Schroter R, Neugebauer U, Hofschroer V, Pavenstadt H, Ciarimboli G *et al*. The kidney-specific expression of genes can be modulated by the extracellular osmolality. *FASEB J* 2016; 30: 3588-3597.
- 56 Kandabarau S, Leiz J, Krohn K, Winter S, Bedke J, Schwab M *et al.* Hypertonicity-Affected Genes Are Differentially Expressed in Clear Cell Renal Cell Carcinoma and Correlate with Cancer-Specific Survival. *Cancers (Basel)* 2019; 12.
- 57 Hinze C, Karaiskos N, Boltengagen A, Walentin K, Redo K, Himmerkus N *et al.* Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. *J Am Soc Nephrol* 2021; 32: 291-306.
- 58 Dai F, Lin X, Chang C, Feng XH. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. *Dev Cell* 2009; 16: 345-357.
- 59 Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U. RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. *EMBO Rep* 2001; 2: 926-932.
- 60 Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1. *J Cell Biol* 2005; 171: 785-797.
- 61 Chen F, Lin X, Xu P, Zhang Z, Chen Y, Wang C *et al.* Correction for Chen et al., "Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation". *Mol Cell Biol* 2017; 37.

- 62 Chen F, Lin X, Xu P, Zhang Z, Chen Y, Wang C *et al.* Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. *Mol Cell Biol* 2015; 35: 1700-1711.
- 63 Langer K, Dian C, Rybin V, Muller CW, Petosa C. Insights into the function of the CRM1 cofactor RanBP3 from the structure of its Ran-binding domain. *PLoS One* 2011; 6: e17011.
- 64 Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A. Structure of a Ranbinding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. *Nature* 1999; 398: 39-46.
- 65 Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. *Proc Natl Acad Sci U S A* 1994; 91: 2587-2591.
- 66 Bischoff FR, Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. *Nature* 1991; 354: 80-82.
- 67 Riddick G, Macara IG. The adapter importin-alpha provides flexible control of nuclear import at the expense of efficiency. *Mol Syst Biol* 2007; 3: 118.
- 68 Richards SA, Lounsbury KM, Carey KL, Macara IG. A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1. *J Cell Biol* 1996; 134: 1157-1168.
- 69 Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. *J Biol Chem* 1995; 270: 14209-14213.
- 70 Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for largescale expression profiling and interactive analysis. *Nucleic Acids Res* 2019; 47: W556-W560.
- 71 Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M *et al.* Renal cell carcinoma. *Nat Rev Dis Primers* 2017; 3: 17009.
- 72 Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. *Lancet* 2009; 373: 1119-1132.
- 73 Pandey J, Syed W. Renal Cancer. *StatPearls*: Treasure Island (FL), 2021.

- 74 Chang YH, Chuang CK, Pang ST, Wu CT, Chuang KL, Chuang HC *et al.* Prognostic value of TNM stage and tumor necrosis for renal cell carcinoma. *Kaohsiung J Med Sci* 2011; 27: 59-63.
- 75 Physiopedia. Kidney cancer stage, 2021.
- 76 Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H *et al*. Mutations of the VHL tumour suppressor gene in renal carcinoma. *Nat Genet* 1994; 7: 85-90.
- 77 Harlander S, Schonenberger D, Toussaint NC, Prummer M, Catalano A, Brandt L *et al*. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. *Nat Med* 2017; 23: 869-877.
- 78 Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M *et al.* Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. *Clin Cancer Res* 2013; 19: 3259-3267.
- 79 Park ST, Kim J. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. *Int Neurourol J* 2016; 20: S76-83.
- 80 Elias R, Sharma A, Singla N, Brugarolas J. Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. *Kidney Cancer J* 2019; 17: 94-104.
- 81 Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. *Nat Rev Cancer* 2015; 15: 55-64.
- 82 Goldman M, Craft B, Swatloski T, Cline M, Morozova O, Diekhans M *et al.* The UCSC Cancer Genomics Browser: update 2015. *Nucleic Acids Res* 2015; 43: D812-817.
- 83 Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B *et al.* UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. *Neoplasia* 2017; 19: 649-658.
- 84 Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A *et al.* Visualizing and interpreting cancer genomics data via the Xena platform. *Nat Biotechnol* 2020; 38: 675-678.
- 85 Chernyakov D, Gross A, Fischer A, Bornkessel N, Schultheiss C, Gerloff D *et al.* Loss of RANBP3L leads to transformation of renal epithelial cells towards a renal clear cell carcinoma like phenotype. *J Exp Clin Cancer Res* 2021; 40: 226.

- Faust D, Geelhaar A, Eisermann B, Eichhorst J, Wiesner B, Rosenthal W *et al.* Culturing primary rat inner medullary collecting duct cells. *J Vis Exp* 2013.
- 88 Duong Van Huyen J, Bens M, Vandewalle A. Differential effects of aldosterone and vasopressin on chloride fluxes in transimmortalized mouse cortical collecting duct cells. *J Membr Biol* 1998; 164: 79-90.
- 89 DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. *Mol Cell Biol* 1987; 7: 379-387.
- 90 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. *Nat Methods* 2014; 11: 783-784.
- 91 Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* 2012; 13: 134.
- 92 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001; 25: 402-408.
- 93 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 1976; 72: 248-254.
- 94 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 1970; 227: 680-685.
- 95 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci U S A* 1979; 76: 4350-4354.
- 96 Kuper C, Beck FX, Neuhofer W. Generation of a conditional knockout allele for the NFAT5 gene in mice. *Front Physiol* 2014; 5: 507.
- 97 Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. *Nucleic Acids Res* 2019; 47: W171-W174.

- 98 Stringer BW, Day BW, D'Souza RCJ, Jamieson PR, Ensbey KS, Bruce ZC *et al.* A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. *Sci Rep* 2019; 9: 4902.
- 99 Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. *Mol Ther Methods Clin Dev* 2016; 3: 16017.
- 100 Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. *Nucleic Acids Res* 2014; 42: e168.
- 101 Chaffin DO, Rubens CE. Blue/white screening of recombinant plasmids in Grampositive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. *Gene* 1998; 219: 91-99.
- 102 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* 2012; 9: 676-682.
- 103 Ovcharenko I, Nobrega MA, Loots GG, Stubbs L. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. *Nucleic Acids Res* 2004; 32: W280-286.
- 104 Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA *et al.* JASPAR 2020: update of the open-access database of transcription factor binding profiles. *Nucleic Acids Res* 2020; 48: D87-D92.
- 105 Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res* 2003; 31: 3784-3788.
- 106 Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G *et al.* A pathology atlas of the human cancer transcriptome. *Science* 2017; 357.
- 107 Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 2009; 4: 44-57.
- 108 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles. *Proc Natl Acad Sci U S A* 2005; 102: 15545-15550.
- 109 Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ *et al.* JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. *Nucleic Acids Res* 2014; 42: D142-147.

- 110 Wetzel RK, Pascoa JL, Arystarkhova E. Stress-induced expression of the gamma subunit (FXYD2) modulates Na,K-ATPase activity and cell growth. *J Biol Chem* 2004; 279: 41750-41757.
- 111 Yu MJ, Miller RL, Uawithya P, Rinschen MM, Khositseth S, Braucht DW *et al.* Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. *Proc Natl Acad Sci U S A* 2009; 106: 2441-2446.
- 112 Gross A, Chernyakov D, Gallwitz L, Bornkessel N, Edemir B. Deletion of Von Hippel-Lindau Interferes with Hyper Osmolality Induced Gene Expression and Induces an Unfavorable Gene Expression Pattern. *Cancers (Basel)* 2020; 12.
- 113 Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. *Nat Biotechnol* 2013; 31: 230-232.
- 114 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N *et al.* Multiplex genome engineering using CRISPR/Cas systems. *Science* 2013; 339: 819-823.
- 115 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE *et al.* RNA-guided human genome engineering via Cas9. *Science* 2013; 339: 823-826.
- 116 Bauer DE, Canver MC, Orkin SH. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. *J Vis Exp* 2015: e52118.
- 117 Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M *et al.* Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. *G3* (*Bethesda*) 2017; 7: 2719-2727.
- 118 Lengsfeld AM, Low I, Wieland T, Dancker P, Hasselbach W. Interaction of phalloidin with actin. *Proc Natl Acad Sci U S A* 1974; 71: 2803-2807.
- 119 Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK *et al.* The soft agar colony formation assay. *J Vis Exp* 2014: e51998.
- 120 de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. *Proc Natl Acad Sci U S A* 1978; 75: 4001-4005.
- 121 Kato Y, Sakai N, Baba M, Kaneko S, Kondo K, Kubota Y *et al.* Stimulation of motility of human renal cell carcinoma by SPARC/Osteonectin/BM-40 associated with type IV collagen. *Invasion Metastasis* 1998; 18: 105-114.

- 122 Bao JM, Dang Q, Lin CJ, Lo UG, Feldkoren B, Dang A *et al.* SPARC is a key mediator of TGF-beta-induced renal cancer metastasis. *J Cell Physiol* 2021; 236: 1926-1938.
- 123 Bens M, Vallet V, Cluzeaud F, Pascual-Letallec L, Kahn A, Rafestin-Oblin ME *et al.* Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. *J Am Soc Nephrol* 1999; 10: 923-934.
- 124 Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T *et al.* Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. *Proc Natl Acad Sci U S A* 2010; 107: 3882-3887.
- 125 Capellini FM, Vencia W, Amadori M, Mignone G, Parisi E, Masiello L *et al.* Characterization of MDCK cells and evaluation of their ability to respond to infectious and non-infectious stressors. *Cytotechnology* 2020; 72: 97-109.
- 126 Maeoka Y, Wu Y, Okamoto T, Kanemoto S, Guo XP, Saito A *et al.* NFAT5 upregulates expression of the kidney-specific ubiquitin ligase gene Rnf183 under hypertonic conditions in inner-medullary collecting duct cells. *J Biol Chem* 2019; 294: 101-115.
- 127 Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. *Mol Ther Nucleic Acids* 2015; 4: e264.
- 128 Lakshmipathi J, Wheatley W, Kumar A, Mercenne G, Rodan AR, Kohan DE. Identification of NFAT5 as a transcriptional regulator of the EDN1 gene in collecting duct. *Am J Physiol Renal Physiol* 2019; 316: F481-F487.
- 129 Boettcher M, McManus MT. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. *Mol Cell* 2015; 58: 575-585.
- 130 Arroyo JA, Teng C, Battaglia FC, Galan HL. Determination of the NFAT5/TonEBP transcription factor in the human and ovine placenta. *Syst Biol Reprod Med* 2009; 55: 164-170.
- 131 Maouyo D, Kim JY, Lee SD, Wu Y, Woo SK, Kwon HM. Mouse TonEBP-NFAT5: expression in early development and alternative splicing. *Am J Physiol Renal Physiol* 2002; 282: F802-809.
- 132 Arroyo JA, Garcia-Jones P, Graham A, Teng CC, Battaglia FC, Galan HL. Placental TonEBP/NFAT5 osmolyte regulation in an ovine model of intrauterine growth restriction. *Biol Reprod* 2012; 86: 94.

- 133 Mak MC, Lam KM, Chan PK, Lau YB, Tang WH, Yeung PK *et al.* Embryonic lethality in mice lacking the nuclear factor of activated T cells 5 protein due to impaired cardiac development and function. *PLoS One* 2011; 6: e19186.
- 134 Mak KM, Lo AC, Lam AK, Yeung PK, Ko BC, Chung SS *et al.* Nuclear factor of activated T cells 5 deficiency increases the severity of neuronal cell death in ischemic injury. *Neurosignals* 2012; 20: 237-251.
- 135 Agaba EI, Rohrscheib M, Tzamaloukas AH. The renal concentrating mechanism and the clinical consequences of its loss. *Niger Med J* 2012; 53: 109-115.
- 136 Chen S, Grigsby CL, Law CS, Ni X, Nekrep N, Olsen K *et al.* Tonicity-dependent induction of Sgk1 expression has a potential role in dehydration-induced natriuresis in rodents. *J Clin Invest* 2009; 119: 1647-1658.
- 137 Rim JS, Atta MG, Dahl SC, Berry GT, Handler JS, Kwon HM. Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5'-flanking region. *J Biol Chem* 1998; 273: 20615-20621.
- 138 Ko BC, Ruepp B, Bohren KM, Gabbay KH, Chung SS. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. *J Biol Chem* 1997; 272: 16431-16437.
- 139 Grassmeyer J, Mukherjee M, deRiso J, Hettinger C, Bailey M, Sinha S *et al.* Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp2 and Avpr2 gene expression. *Dev Biol* 2017; 424: 77-89.
- 140 Nakato R, Sakata T. Methods for ChIP-seq analysis: A practical workflow and advanced applications. *Methods* 2021; 187: 44-53.
- 141 Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. *Oncol Lett* 2016; 12: 933-943.
- 142 Guo K, Jin F. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. *Biochem Biophys Res Commun* 2015; 465: 644-649.
- 143 Kim DH, Kim KS, Ramakrishna S. NFAT5 promotes in vivo development of murine melanoma metastasis. *Biochem Biophys Res Commun* 2018; 505: 748-754.

- 145 Qin X, Li C, Guo T, Chen J, Wang HT, Wang YT *et al.* Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway. *J Exp Clin Cancer Res* 2017; 36: 148.
- 146 Tellechea M, Buxade M, Tejedor S, Aramburu J, Lopez-Rodriguez C. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. *J Immunol* 2018; 200: 305-315.
- 147 Boguslawska J, Poplawski P, Alseekh S, Koblowska M, Iwanicka-Nowicka R, Rybicka B *et al.* MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. *Cancers (Basel)* 2019; 11.
- 148 Schonenberger D, Rajski M, Harlander S, Frew IJ. Vhl deletion in renal epithelia causes HIF-1alpha-dependent, HIF-2alpha-independent angiogenesis and constitutive diuresis. *Oncotarget* 2016; 7: 60971-60985.
- 149 Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. *Cell* 2019; 176: 1248-1264.
- 150 Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu XY *et al.* DNMT1-maintained hypermethylation of Kruppel-like factor 5 involves in the progression of clear cell renal cell carcinoma. *Cell Death Dis* 2017; 8: e2952.
- 151 He J, Yang B. Aquaporins in Renal Diseases. *Int J Mol Sci* 2019; 20.
- 152 Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. *Pflugers Arch* 1999; 438: 330-337.
- 153 Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. *Biochim Biophys Acta* 2008; 1778: 660-669.
- 154 Knights AJ, Funnell AP, Crossley M, Pearson RC. Holding Tight: Cell Junctions and Cancer Spread. *Trends Cancer Res* 2012; 8: 61-69.
- 155 Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y *et al*. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. *J Cell Biol* 2020; 219.

- 156 Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. *Mol Biol Cell* 2000; 11: 2999-3012.
- 157 Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. *J Clin Invest* 2009; 119: 1429-1437.
- 158 Zhang X, Wang L, Zhang H, Tu F, Qiang Y, Nie C. Decreased expression of ZO-1 is associated with tumor metastases in liver cancer. *Oncol Lett* 2019; 17: 1859-1864.
- 159 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. *J Clin Invest* 2009; 119: 1420-1428.
- 160 Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A. 'Go or grow': the key to the emergence of invasion in tumour progression? *Math Med Biol* 2012; 29: 49-65.
- 161 Shiwarski DJ, Shao C, Bill A, Kim J, Xiao D, Bertrand CA *et al.* To "grow" or "go": TMEM16A expression as a switch between tumor growth and metastasis in SCCHN. *Clin Cancer Res* 2014; 20: 4673-4688.
- 162 Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. *Mol Cancer* 2016; 15: 83.
- 163 Feng C, Sun Y, Ding G, Wu Z, Jiang H, Wang L *et al.* PI3Kbeta inhibitor TGX221 selectively inhibits renal cell carcinoma cells with both VHL and SETD2 mutations and links multiple pathways. *Sci Rep* 2015; 5: 9465.
- 164 Masannat J, Purayil HT, Zhang Y, Russin M, Mahmud I, Kim W *et al.* betaArrestin2 Mediates Renal Cell Carcinoma Tumor Growth. *Sci Rep* 2018; 8: 4879.
- 165 Guo H, German P, Bai S, Barnes S, Guo W, Qi X *et al*. The PI3K/AKT Pathway and Renal Cell Carcinoma. *J Genet Genomics* 2015; 42: 343-353.
- 166 Tretbar S, Krausbeck P, Muller A, Friedrich M, Vaxevanis C, Bukur J *et al.* TGFbeta inducible epithelial-to-mesenchymal transition in renal cell carcinoma. *Oncotarget* 2019; 10: 1507-1524.
- 167 Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. *Cytokine Growth Factor Rev* 2005; 16: 251-263.
- 168 Brooks SA, Brannon AR, Parker JS, Fisher JC, Sen O, Kattan MW *et al.* ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. *Eur Urol* 2014; 66: 77-84.

- 169 Dai J, Lu Y, Wang J, Yang L, Han Y, Wang Y *et al.* A four-gene signature predicts survival in clear-cell renal-cell carcinoma. *Oncotarget* 2016; 7: 82712-82726.
- 170 Li F, Hu W, Zhang W, Li G, Guo Y. A 17-Gene Signature Predicted Prognosis in Renal Cell Carcinoma. *Dis Markers* 2020; 2020: 8352809.
- 171 Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Aydin H *et al.* A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. *Lancet Oncol* 2015; 16: 676-685.
- 172 Sanjmyatav J, Steiner T, Wunderlich H, Diegmann J, Gajda M, Junker K. A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. *J Urol* 2011; 186: 289-294.
- 173 Nogueira E, Klimek F, Weber E, Bannasch P. Collecting duct origin of rat renal clear cell tumors. *Virchows Arch B Cell Pathol Incl Mol Pathol* 1989; 57: 275-283.
- 174 Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD. Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. *Mod Pathol* 2005; 18: 933-940.
- 175 Ozcan A, Zhai Q, Javed R, Shen SS, Coffey D, Krishnan B *et al.* PAX-2 is a helpful marker for diagnosing metastatic renal cell carcinoma: comparison with the renal cell carcinoma marker antigen and kidney-specific cadherin. *Arch Pathol Lab Med* 2010; 134: 1121-1129.
- 176 Ciszewski S, Jakimow A, Smolska-Ciszewska B. Collecting (Bellini) duct carcinoma: A clinical study of a rare tumour and review of the literature. *Can Urol Assoc J* 2015; 9: E589-593.
- 177 Malouf GG, Comperat E, Yao H, Mouawad R, Lindner V, Rioux-Leclercq N *et al.* Unique Transcriptomic Profile of Collecting Duct Carcinomas Relative to Upper Tract Urothelial Carcinomas and other Kidney Carcinomas. *Sci Rep* 2016; 6: 30988.
- 178 Wang J, Papanicolau-Sengos A, Chintala S, Wei L, Liu B, Hu Q *et al.* Collecting duct carcinoma of the kidney is associated with CDKN2A deletion and SLC family gene up-regulation. *Oncotarget* 2016; 7: 29901-29915.
- 179 Shao X, Somlo S, Igarashi P. Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. *J Am Soc Nephrol* 2002; 13: 1837-1846.

- 180 Ge Y, Ahn D, Stricklett PK, Hughes AK, Yanagisawa M, Verbalis JG *et al.* Collecting duct-specific knockout of endothelin-1 alters vasopressin regulation of urine osmolality. *Am J Physiol Renal Physiol* 2005; 288: F912-920.
- 181 Fuchs H, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Cho YL *et al.* Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. *Behav Brain Res* 2018; 352: 187-196.
- 182 Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ. Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. *Oncogene* 2002; 21: 7077-7091.
- 183 DiMartino JF, Lacayo NJ, Varadi M, Li L, Saraiya C, Ravindranath Y *et al.* Low or absent SPARC expression in acute myeloid leukemia with MLL rearrangements is associated with sensitivity to growth inhibition by exogenous SPARC protein. *Leukemia* 2006; 20: 426-432.
- 184 Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su GH *et al.* SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. *Oncogene* 2003; 22: 5021-5030.
- 185 Yiu GK, Chan WY, Ng SW, Chan PS, Cheung KK, Berkowitz RS *et al.* SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. *Am J Pathol* 2001; 159: 609-622.
- 186 Barth PJ, Moll R, Ramaswamy A. Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. *Virchows Arch* 2005; 446: 532-536.
- 187 Girotti MR, Fernandez M, Lopez JA, Camafeita E, Fernandez EA, Albar JP *et al.* SPARC promotes cathepsin B-mediated melanoma invasiveness through a collagen I/alpha2beta1 integrin axis. *J Invest Dermatol* 2011; 131: 2438-2447.
- 188 Schultz C, Lemke N, Ge S, Golembieski WA, Rempel SA. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. *Cancer Res* 2002; 62: 6270-6277.
- 189 Morrissey MA, Jayadev R, Miley GR, Blebea CA, Chi Q, Ihara S *et al.* SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. *PLoS Genet* 2016; 12: e1005905.

- 190 Martinek N, Shahab J, Saathoff M, Ringuette M. Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. *J Cell Sci* 2008; 121: 1671-1680.
- 191 Shahab J, Baratta C, Scuric B, Godt D, Venken KJ, Ringuette MJ. Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster. *Dev Dyn* 2015; 244: 540-552.
- 192 Bradshaw AD. The role of SPARC in extracellular matrix assembly. *J Cell Commun Signal* 2009; 3: 239-246.
- 193 Hoefflin R, Harlander S, Schafer S, Metzger P, Kuo F, Schonenberger D *et al.* HIF-1alpha and HIF-2alpha differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. *Nat Commun* 2020; 11: 4111.
- 194 Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD *et al*. Genes that mediate breast cancer metastasis to lung. *Nature* 2005; 436: 518-524.
- 195 Dasgupta S, Jang JS, Shao C, Mukhopadhyay ND, Sokhi UK, Das SK *et al.* SH3GL2 is frequently deleted in non-small cell lung cancer and downregulates tumor growth by modulating EGFR signaling. *J Mol Med (Berl)* 2013; 91: 381-393.
- 196 Majumdar S, Gong EM, Di Vizio D, Dreyfuss J, Degraff DJ, Hager MH *et al.* Loss of Sh3gl2/endophilin A1 is a common event in urothelial carcinoma that promotes malignant behavior. *Neoplasia* 2013; 15: 749-760.
- 197 Brotto DB, Siena ADD, de B, II, Carvalho S, Muys BR, Goedert L *et al.* Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. *Tumour Biol* 2020; 42: 1010428320918050.
- 198 Wu S, Guo X, Zhou J, Zhu X, Chen H, Zhang K *et al.* High expression of UNC5B enhances tumor proliferation, increases metastasis, and worsens prognosis in breast cancer. *Aging (Albany NY)* 2020; 12: 17079-17098.
- 199 Cai W, Chen G, Luo Q, Liu J, Guo X, Zhang T *et al.* PMP22 Regulates Self-Renewal and Chemoresistance of Gastric Cancer Cells. *Mol Cancer Ther* 2017; 16: 1187-1198.
- 200 Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. *Cell Res* 2009; 19: 156-172.
- 201 Castro NE, Kato M, Park JT, Natarajan R. Transforming growth factor beta1 (TGFbeta1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. *J Biol Chem* 2014; 289: 29001-29013.

- 202 Smith AO, Jonassen JA, Preval KM, Davis RJ, Pazour GJ. c-Jun N-terminal kinase (JNK) signaling contributes to cystic burden in polycystic kidney disease. *PLoS Genet* 2021; 17: e1009711.
- 203 Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK Signaling Pathway in Renal Fibrosis. *Front Physiol* 2017; 8: 829.
- 204 Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. *Adv Exp Med Biol* 2020; 1202: 179-201.
- 205 Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. *Cells* 2020; 9.
- 206 Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. *J Enzyme Inhib Med Chem* 2020; 35: 574-583.
- 207 Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF, Chen CL. Recent progress in TGFbeta inhibitors for cancer therapy. *Biomed Pharmacother* 2021; 134: 111046.
- 208 Minasian LM, Motzer RJ, Gluck L, Mazumdar M, Vlamis V, Krown SE. Interferon alfa-2a in advanced renal cell carcinoma: treatment results and survival in 159 patients with long-term follow-up. *J Clin Oncol* 1993; 11: 1368-1375.
- 209 Rosenberg SA. Interleukin 2 for patients with renal cancer. *Nat Clin Pract Oncol* 2007; 4: 497.
- 210 Bamias A, Escudier B, Sternberg CN, Zagouri F, Dellis A, Djavan B *et al.* Current Clinical Practice Guidelines for the Treatment of Renal Cell Carcinoma: A Systematic Review and Critical Evaluation. *Oncologist* 2017; 22: 667-679.
- Hui E. Immune checkpoint inhibitors. *J Cell Biol* 2019; 218: 740-741.
- 212 Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT *et al.* Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. *N Engl J Med* 2019; 380: 1103-1115.
- 213 Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D *et al*. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. *N Engl J Med* 2019; 380: 1116-1127.

- 214 Shibata S, Ishiyama J. Secreted protein acidic and rich in cysteine (SPARC) is upregulated by transforming growth factor (TGF)-beta and is required for TGF-betainduced hydrogen peroxide production in fibroblasts. *Fibrogenesis Tissue Repair* 2013; 6: 6.
- 215 Kang MH, Oh DJ, Kang JH, Rhee DJ. Regulation of SPARC by transforming growth factor beta2 in human trabecular meshwork. *Invest Ophthalmol Vis Sci* 2013; 54: 2523-2532.
- 216 Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Res* 2010; 38: 1767-1771.
- 217 Erlich Y, Mitra PP, delaBastide M, McCombie WR, Hannon GJ. Alta-Cyclic: a selfoptimizing base caller for next-generation sequencing. *Nat Methods* 2008; 5: 679-682.
- ²¹⁸ Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M *et al.* Synthetic spike-in standards for RNA-seq experiments. *Genome Res* 2011; 21: 1543-1551.
- 219 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 1997; 25: 3389-3402.
- 220 Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR *et al*. The Pfam protein families database. *Nucleic Acids Res* 2008; 36: D281-288.
- 221 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013; 29: 15-21.
- 222 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010; 20: 1297-1303.
- 223 Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ *et al.* Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 2010; 28: 511-515.
- 224 Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N *et al.* A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. *Brief Bioinform* 2013; 14: 671-683.
- 225 Anders S, Huber W. Differential expression analysis for sequence count data. *Genome Biol* 2010; 11: R106.

- 226 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 2010; 26: 139-140.
- 227 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 2000; 28: 27-30.
- 228 Peng Zhang1 JYR. Renal Cell Carcinoma. *Annals of Urologic Oncology* 2018; 1: 1-18.
- 229 Wach S, Taubert H, Weigelt K, Hase N, Kohn M, Misiak D *et al.* RNA Sequencing of Collecting Duct Renal Cell Carcinoma Suggests an Interaction between miRNA and Target Genes and a Predominance of Deregulated Solute Carrier Genes. *Cancers* (*Basel*) 2019; 12.

8 Anhang

8.1 Vektorkarten

lentiCRISPRv2 puro (Plasmid #98290)

SGL40C.EFS.dTomato (Plasmid #89395)

pGL3-pomMx1 (Plasmid #30536)

V180 pLP Triple-Flag (Plasmid #11707)

pET28:GFP (Plasmid # 6085-1)

pCR 2.1-TOPO TA Vektor (451641)

8.2 RANBP3 und RANBP3L Aminosäure-Sequenz und Domänen

Murines RANBP3L-UniProtKB - Q6PDH4

MSTTQRKDDSHLFTSSCTRQLQVQEDRQQQEKYVIAQPIFVFEKGEHNFKRPAEDSLEETAEPEFT GFLRKRVRSSSVTLHTTDPQSQGVATLSQTRLRSSSFTDVPTFPPCRPVRKNNVFMTSRLLQRSDD MNNVEQGPPMRSSEQVLRPAVLQPSQTQSCQKAGTTFGPGALKSYKKEKAEHEISEVGSSSSLLSE NLPNARSSIQLSTDPCISEAPSGCQPKEDKCSFTSCSSDFVFGENMVERVLGTQKLTQPPLQNLSY AKEKTFKSVLKFPNAVSNSDSIENISLVESAAAFSSKPSQKCLLEKIDVITGEETEHNVLKINCKI FVFNKATESWSERGQGILRLNDTAGRECGTLQSRLIMRNQGSLRLVLNSRLWAQMKIQRASQKNLR ITATDLEDDGIKIFLIQASAKDTGFLYAAIHHRLVALRSLAKQGDGGPAESQSDTALPQLNGESCD EDEDEIAQVTKNGSDPSRWSHRQSIVCS

Murines RANBP3-UniProtKB - Q9CT10

MADLANEEKPAVAPSVFVFQKDKGQKRSAGSSSPEAGEDSDHEDGNYCPPVKRERTSSLTHSEEKS SGFRLKPPTLIHGQAPSAGLPSQKPREQQRGVLRPAVLQAPQPKVLSQTVPSSGTNGVSMPADCTG PATSVSPENLTQRSPSESAEETHTLEEKVPQKTPHGTSEEGHCEEEQAAPQAFVFGQNLRDRVKLM NENASVADVDSAAHPSSETPSATNYFLQYISSSADNATHSADNSTKFVFGQNMSERVLSPPKLNEA NSDTSRETTHAQSGSESSSQEAAPKKESLAESAAAYTKATAWTCLLEKVEVITGEEAESNVLQIQC KLFVFDKTSQSWVERGRGLLRLNDMASTDDGTLQSRLVMRTQGSLRLILNTKLWAQMQMDKASEKS IRITATDAEDQGVKVFLISASSKDTGQLYAALHHRILALRSRAEQEQEAKAPPPEPGATRATEEED SDEDAVLAPSGVTGAGTGDEGDGQAPGST

Rot = konservierte Aminosäuren in der Ran Bindedomäne (RBD)

Grün = NLS (nuclear localisation signal, Kernlokalisationssignal)

8.3 Novogene NGS Vorgehen

Die NGS Sequenzierung und nachfolgende Datenanalyse wurde von Novogene durchgeführt. Dies geschah wie von Novogene vorgesehen und beschrieben [216-227].

RNA-Quantifizierung und -Qualifizierung

Der RNA-Abbau und die Kontamination wurden auf 1%igen Agarosegelen überwacht. Die RNA-Reinheit wurde mit dem NanoPhotometer®-Spektralphotometer (IMPLEN, CA, USA) überprüft. Die RNA-Integrität und -Quantifizierung wurde mit dem RNA Nano 6000 Assay Kit des Bioanalyzer 2100 Systems (Agilent Technologies, CA, USA) bewertet.

Bibliotheksvorbereitung für die Transkriptomsequenzierung

Eine Gesamtmenge von 1 µg RNA pro Probe wurde als Ausgangsmaterial für die RNA-Probenvorbereitung verwendet. Die Sequenzierungsbibliotheken wurden mit dem NEBNext® UltraTM RNA Library Prep Kit für Illumina® (New England Biolabs, Ipswich, MA, USA) gemäß den Empfehlungen des Herstellers erstellt, wobei Indexcodes hinzugefügt wurden, um jeder Probe die jeweiligen Sequenzen zuzuordnen. Die mRNA wurde aus der Gesamt-RNA mit an Poly-T-Oligos gebundenen durch magnetischen Beads aufgereinigt. Die Fragmentierung erfolgte unter Verwendung zweiwertiger Kationen bei erhöhter Temperatur in NEBNext First Strand Synthesis Reaction Buffer (5X). Die cDNA-Erststrang-Synthese erfolgte unter Verwendung von Random-Hexamer-Primern und M-MuLV Reverse Transcriptase (RNase H-). Die Synthese des zweiten cDNA-Strangs erfolgte anschließend mit DNA-Polymerase I und RNase H. Die verbleibenden Überhänge wurden durch Exonuklease/Polymerase-Aktivitäten in stumpfe Enden umgewandelt. Nach der Adenylierung der 3'-Enden der DNA-Fragmente wurden NEBNext Adaptor mit Haarnadelschleifenstruktur ligiert, um die Hybridisierung vorzubereiten. Zur Auswahl von cDNA-Fragmenten mit einer Länge von vorzugsweise 150 bis 200 bp wurden die Bibliotheksfragmente mit dem AMPure XP-System (Beckman Coulter, Beverly, USA) gereinigt. Dann wurden 3 µl USER-Enzym (New England Biolabs, USA) mit größenselektierter, adaptorgeligierter cDNA bei 37°C für 15 Minuten verwendet, gefolgt von 5 Minuten bei 95°C vor der PCR. Dann wurde die PCR mit Phusion High-Fidelity DNA Polymerase, Universal PCR Primern und Index (X) Primer durchgeführt. Schließlich wurden die PCR-Produkte gereinigt (AMPure XP System) und die Qualität der Bibliothek mit dem Agilent Bioanalyzer 2100 System bewertet.

Clustering und Sequenzierung

Das Clustering der indexkodierten Proben wurde mit einem cBot Cluster Generation System unter Verwendung des PE Cluster Kits cBot-HS (Illumina, San Diego, CA, USA) gemäß den Anweisungen des Herstellers durchgeführt. Nach der Clustergenerierung wurden die Bibliothekspräparate auf einer Illumina-Plattform sequenziert und Paired-End-Reads generiert.

Datenanalyse und Qualitätskontrolle

Die Rohdaten (Raw Reads) im FASTQ-Format wurden zunächst mit firmeneigenen Skripten verarbeitet. In diesem Schritt wurden saubere Daten (Clean Reads) erhalten, indem Reads, die Adapter- und Poly-N-Sequenzen enthalten, sowie Reads mit geringer Qualität aus den Rohdaten entfernt wurden. Gleichzeitig wurden Q20, Q30 und der GC-Gehalt der sauberen Daten berechnet. Alle nachgeschalteten Analysen basierten auf den sauberen Daten mit hoher Qualität.

Mapping auf das Referenzgenom

Referenzgenom- und Genmodell-Annotationsdateien wurden direkt vom Genom-Website-Browser (NCBI/UCSC/Ensembl) heruntergeladen. Paired-End Clean Reads wurden mit der Software HISAT2 auf das Referenzgenom gemappt. HISAT2 verwendet einen großen Satz von kleinen GFM-Indizes, die zusammen das gesamte Genom abdecken. Diese kleinen Indizes (so genannte lokale Indizes) ermöglichen in Kombination mit verschiedenen Alignment-Strategien ein schnelles und genaues Alignment von Sequenzierungs-Reads.

Quantifizierung

HTSeq wurde verwendet, um die Anzahl der Lesungen zu zählen, die von jedem Gen, einschließlich bekannter und neuer Gene, zugeordnet wurden. Anschließend wurde die RPKM jedes Gens auf der Grundlage der Länge des Gens und der Anzahl der auf dieses Gen gemappten Reads berechnet. RPKM (*Reads Per Kilobase of exon model per million mapped reads*) berücksichtigt die Auswirkungen der Sequenziertiefe und der Genlänge auf die Anzahl der Reads gleichzeitig und ist derzeit die am häufigsten verwendete Methode zur Schätzung der Genexpressionswerte.

Differenzielle Expressionsanalyse

Die Analyse der differentiellen Expression zwischen zwei Bedingungen/Gruppen (drei biologische Replikate pro Bedingung) wurde mit dem R-Paket DESeq2 durchgeführt. DESeq2 bietet statistische Routinen zur Bestimmung der differentiellen Expression in digitalen Genexpressionsdaten unter Verwendung eines auf der negativen Binomialverteilung basierenden Modells. Die resultierenden P-Werte wurden mit dem Ansatz von Benjamini und Hochberg zur Kontrolle der Falschentdeckungsrate (FDR) angepasst. Gene mit einem bereinigten p-Wert < 0,05, die durchDESeq2 gefunden wurden, wurden als differenziell exprimiert eingestuft.

Anreicherungsanalyse

Eine gängige Methode für die Suche nach gemeinsamen Funktionen von Genen ist die Einbeziehung des biologischen Wissens, das durch biologische Ontologien bereitgestellt wird. Die *Gene Ontology* (GO) annotiert Gene zu biologischen Prozessen, molekularen Funktionen und zellulären Komponenten in einer gerichteten azyklischen Graphenstruktur, und die *Kyoto Encyclopedia of Genes and Genomes* (KEGG) annotiert Gene zu Pfaden. KEGG ist eine Datenbankressource für das Verständnis von Funktionen und Funktionen auf hoher Ebene des biologischen Systems, wie z. B. der Zelle, des Organismus und des Ökosystems, aus Informationen auf molekularer Ebene, insbesondere aus großen molekularen Datensätzen, die durch Genomsequenzierung und andere experimentelle Technologien mit hohem Durchsatz erzeugt werden (http://www.genome.jp/kegg/). Wir verwendeten die KOBAS-Software, um die statistische Anreicherung von Genen mit unterschiedlicher Expression in KEGG-Pfaden zu testen.

8.4 Differenziell exprimierte Gene unter Hyperosmolalität in Maus IMCDs und mpkCCDs.

$Tabelle\ 25:\ Log_2\ fold\ changes\ signifikant\ differenziell\ exprimierte\ Gene\ unter\ Hyperosmolalität\ in\ Maus\ IMCD\ Zellen$

Aufgelistet sind alle signifikant-regulierten-Gene unter Hyperosmolalität in Maus-IMCD-Zellen. Die hier gelisteten Gene sind in Abbildung 18 als Volcano Plot dargestellt.

signifikan	t herunterr 300 v	egulierte Gene 1 /s. 600	MCD	signifikant hochregulierte Gene IMCD 300 vs. 600			
Genname	Log2 fold change	Genname	Log2 fold change	Genname	Log ₂ fold change	Genname	Log ₂ fold change
Chil3	-6,2774	Wnt10b	-1,6530	Chpt1	0,8263	Defb1	1,5280
Fcrls	-5,3339	Ass1	-1,6455	Fam20c	0,8513	Mlxipl	1,5289
Dnah14	-4,6630	Glipr1	-1,6433	Megf9	0,8582	Esrrb	1,5309
Ccr5	-4,2479	Scarf2	-1,6396	Hsd17b11	0,8587	Nr3c2	1,5352
Mrc1	-4,1085	Cntfr	-1,6391	Loxl4	0,8689	Car2	1,5353
Wfdc17	-3,9773	D630003M21Rik	-1,6330	Bcl6	0,8748	Elf5	1,5387
Pf4	-3,8972	Cd40	-1,6240	Fam84a	0,8772	Gstt1	1,5489
Parvg	-3,8908	Stra6	-1,6218	Srgap3	0,8789	Slc4a5	1,5514
Bcl2a1d	-3,7442	Phyhd1	-1,6195	L1cam	0,8817	Fcgbp	1,5573
Foxl2os	-3,7347	Pdgfc	-1,6176	Cldn8	0,8842	Gjb1	1,5794
Dpysl4	-3,6491	Tlr13	-1,6155	Ctdspl	0,8860	Vgll1	1,5911
Ccl6	-3,5899	Sema3d	-1,6071	Tgfbr3	0,9025	Gstm1	1,5921
Themis2	-3,5850	Inha	-1,5994	Cd14	0,9170	Prkar2b	1,5939
AI593442	-3,5484	Pik3ap1	-1,5964	Blnk	0,9193	Cldn19	1,5947
Igfbp2	-3,5440	Pirb	-1,5919	Reps2	0,9214	Rhof	1,5957
Slco2b1	-3,5178	Dmrta2	-1,5850	Nipal1	0,9273	Aldh1a1	1,5977
Cd4	-3,5025	Wfdc8	-1,5759	Cdo1	0,9286	Plet10s	1,5985
Itgax	-3,4594	Obsl1	-1,5655	Nadk2	0,9301	Clcnka	1,6041
Lrrc25	-3,4594	Ctss	-1,5579	Lgals3bp	0,9333	AI839979	1,6047
Sla	-3,4480	Slco5a1	-1,5475	Ctnnal1	0,9387	Hspalb	1,6108
Clec4n	-3,4215	Cldn6	-1,5472	Lpin2	0,9420	Ifit2	1,6131
Selp	-3,3923	9930111J21Rik2	-1,5419	Hcfc1r1	0,9444	Aqp4	1,6196
Foxl2	-3,3923	Sox9	-1,5319	4932438A13Rik	0,9514	Lectl	1,6215
Adamts16	-3,3854	Tead2	-1,5308	Nyap1	0,9530	Spon1	1,6265
Krt17	-3,2770	Mycl	-1,5300	Ampd3	0,9534	Galm	1,6346
Igfbpl1	-3,2370	Trpv2	-1,5295	Ppm1k	0,9613	Selenbp1	1,6360
Fbxo40	-3,2352	Adcy1	-1,5258	Bcat1	0,9615	Havcr1	1,6370
Capn6	-3,2115	Slc29a4	-1,5245	Tiam1	0,9655	Hspa4l	1,6482
Msi1	-3.1745	Cyth4	-1.5242	Gm7694	0.9733	Prtn3	1.6534
Fcgr4	-3,1546	Lmcd1	-1,5224	Lynx1	0,9772	Zim1	1,6584
Ifi202b	-3,1098	Cyp4a12b	-1,5185	Itpr2	0,9831	Carl1	1,6640
Cx3cr1	-3.0875	Tenm4	-1.5085	Tspan12	0.9852	Strip2	1.6668
Trem1	-3,0753	Lhx1	-1,5076	Sema4b	0,9885	Ppp4r4	1,6699
Clec7a	-3,0704	Ccnd2	-1,5057	Napepld	0,9887	Timd2	1.6699
Ms4a7	-3,0685	Pcsk5	-1,4873	Egln3	0,9888	Btc	1.6843
Dgkk	-3,0589	Anpep	-1,4797	Fam149a	0,9925	Gcm1	1,6851
Bcl11b	-3,0506	Maf	-1,4719	Wfs1	0,9932	Scd1	1.6894

signifikant h	erunterre 300 v	egulierte Gene IM s. 600	CD	signifikant hochregulierte Gene IMCD 300 vs. 600			
Msr1	-3,0467	Ms4a6d	-1,4556	Gpr146	0,9967	Epor	1,6930
Cd300lf	-3,0368	Trank1	-1,4541	Map3k1	0,9970	Tmem45b	1,7003
Syndig1	-3,0100	Lfng	-1,4495	Rtn1	1,0065	Ptprh	1,7058
Ifi205	-3,0000	Gm8113	-1,4493	Hifla	1,0117	Slc1a3	1,7065
Pamr1	-2,9386	Mnda	-1,4397	Pfkp	1,0123	Plcxd1	1,7123
Clqc	-2,9272	Tll1	-1,4378	Bcam	1,0127	Gm6665	1,7360
Klhl1	-2,8826	Ltbp1	-1,4315	Tspan33	1,0154	Fabp3	1,7411
Foxfl	-2,8651	Ogdhl	-1,4257	Haus4	1,0166	Gm5868	1,7521
Tifab	-2,8455	Cd200r3	-1,4219	Hist1h1c	1,0244	Gm12868	1,7526
Ccrl	-2,8244	Fcerlg	-1,4176	Cdc42ep2	1,0265	Tmem27	1,7533
Dcx	-2,7980	4632428N05Rik	-1,4116	Ermp1	1,0285	Bsnd	1,7583
Ptpn7	-2,7776	Dbn1	-1,4055	Tmprss2	1,0335	Oxtr	1,7600
Gpnmb	-2,7611	Nme4	-1,3998	Hgfac	1,0346	Rasl11b	1,7614
P2rx2	-2,7570	Map7d2	-1,3965	Clca3a2	1,0350	Prom2	1,7626
Tfec	-2.7500	Dab2	-1.3911	Sptb	1.0443	Hist1h2be	1.7634
Ms4a4a	-2.7370	Moxd1	-1.3844	Gramd1b	1.0466	Slc45a3	1.7695
Eya4	-2.7309	Nox4	-1.3789	Epn3	1.0478	Shisa7	1.7822
Clqa	-2.7166	Adamts5	-1.3789	Bmpr1b	1.0480	Nrip3	1.7830
Lair1	-2.7162	Cda	-1.3653	Diap3	1.0545	Veph1	1.7873
Arg1	-2.7139	Sdc3	-1.3511	Cys1	1.0616	Dnase112	1.7934
Mmp12	-2.7108	Scara3	-1.3503	Ptgs1	1.0638	Fut2	1.7952
Itgal	-2.6684	Cd36	-1.3479	Fam174b	1.0659	Serpina10	1.7959
Capn8	-2.6668	Runx2	-1.3468	Tspan15	1.0706	Serpina6	1.7987
Pygo1	-2.6630	Pvrl4	-1.3430	Lmo7	1.0750	Slc14a2	1.8090
P2ry13	-2.6521	Olfm2	-1.3422	Homer2	1.0755	Podn	1.8153
Shc2	-2,6469	Nuak1	-1.3421	Styk1	1.0766	Rhpn2	1.8192
Csf2rb	-2.6451	Jag1	-1.3327	Cdh16	1.0778	Gcntl	1.8308
Ms4a6c	-2.6057	Tnc	-1.3293	Mapk11	1.0788	Them7	1.8427
F13a1	-2.5987	Adra2a	-1.3283	Hspb2	1.0812	Gm2260	1.8541
Cthrc1	-2.5930	Prrg3	-1.3235	Bnip3	1.0814	Sorcs3	1.8580
Lilrb4a	-2.5874	Gpr176	-1.3189	Ak4	1.0815	Hist1h4k	1.8613
Mmp16	-2.5850	P2ry6	-1.3090	Tspan8	1.0818	Slc6a19	1.8698
Col14a1	-2.5607	Gsap	-1.2902	Pdzk1ip1	1.0825	Rasal1	1.8979
Cdh10	-2.5546	Gm8995	-1.2895	Arhgef37	1.0875	Kcns3	1.9033
Tyrobp	-2.5506	Rasl12	-1.2821	Folr1	1,0942	Gm42528	1,9117
Hck	-2.5449	Fblim1	-1.2810	Hagh	1.0957	Cldn10	1.9186
Dpp6	-2.5433	Adam12	-1.2786	Ndrg4	1.0982	Flrt1	1,9260
Mmp8	-2.5394	Des	-1.2785	Kbtbd11	1,0992	Ifit1b11	1,9260
Tgfbi	-2.5325	2310007B03Rik	-1.2754	Lifr	1,1015	Arl4d	1.9296
Coro6	-2.5250	Pdlim4	-1.2718	Gm10241	1.1025	Apela	1.9303
Plcb2	-2,5025	Dpysl3	-1.2689	Camk1d	1.1046	Stc1	1.9329
C1qb	-2,4849	Gm5424	-1.2680	Tspan1	1.1108	Oit1	1,9386
Pld4	-2,4695	Lrp2	-1.2655	Rasgrf2	1.1150	Urah	1.9551
Hsd11b2	-2,4464	Pappa	-1.2595	Mapt	1.1175	Car8	1.9645
AI607873	-2,4344	Fn1	-1,2522	Kcnj15	1,1217	Gm21960	1,9668

signifikant h	erunterre 300 v	egulierte Gene IM s. 600	ICD	signifikant hochregulierte Gene IMCD 300 vs. 600			
Wisp1	-2,4299	Ctsw	-1,2466	Ociad2	1,1222	Cldn15	1,9769
Ly6h	-2,4150	Pdgfb	-1,2418	Pfkfb3	1,1236	Slc25a48	1,9777
Pkp1	-2,4044	Cotl1	-1,2393	Frem2	1,1243	Fndc9	1,9974
Laptm5	-2,3810	D8Ertd82e	-1,2387	Pmvk	1,1323	Ckmt1	1,9986
Cd300a	-2,3744	Akr1c19	-1,2381	Ugdh	1,1341	Rasd1	2,0041
Selplg	-2,3576	Zc3hav11	-1,2306	Peg10	1,1351	Dtx1	2,0106
Mmp13	-2,3536	Laxl	-1,2274	Unc13d	1,1481	Lipg	2,0111
Lilr4b	-2,3424	Nrep	-1,2150	Gprc5b	1,1503	Mgarp	2,0373
Aoah	-2,3074	Sfn	-1,2126	Glt28d2	1,1528	Plet1	2,0629
Fcgr3	-2,3055	Pmp22	-1,2116	Dnm3	1,1592	Fbln1	2,0641
C3ar1	-2,2573	Lmol	-1,2052	Id2	1,1604	Slc34a2	2,0658
Abca9	-2,2395	Foxj1	-1,2049	Lparl	1,1629	Fam107a	2,0704
Ccl9	-2,1908	Prss22	-1,2049	Arhgap24	1,1644	Gm17750	2,0728
Cacna1h	-2,1898	Ctla2b	-1,2044	Pgap1	1,1647	Tmem229a	2,0817
Mafb	-2,1783	Cd38	-1,1961	Acer2	1,1654	Gm15753	2,0943
Bin2	-2,1699	Ltk	-1,1944	Zbtb16	1,1770	Neurl1b	2,1393
Fyb	-2,1553	Sox8	-1,1923	Npnt	1,1773	Sod3	2,1418
Cnrl	-2,1414	Igsf9	-1,1903	Prr15	1,1826	Ifit1	2,1553
Plek	-2,1333	Gria3	-1,1844	Muc1	1,1844	Ccl20	2,1670
Fcgr2b	-2,1293	Cdkn1c	-1,1828	Fbxo2	1,1868	Krt4	2,1677
Ramp1	-2,1293	Plin2	-1,1676	Sema3c	1,1955	1700016C15Rik	2,1802
Rab3il1	-2,1011	Col27a1	-1,1633	Pax2	1,1969	Aqp1	2,1841
Fbln5	-2,0856	1111	-1,1625	Me1	1,1994	Sult1d1	2,1949
Cyp21a1	-2,0849	Sox17	-1,1511	Irs2	1,2005	Inmt	2,2039
St8sia2	-2,0834	Gdpd5	-1,1444	Coro2a	1,2007	Clca2	2,2224
Serpina3g	-2,0661	Sepp1	-1,1408	Akr1b8	1,2077	Cnnm1	2,2367
Arl11	-2,0566	Serpine1	-1,1399	Mal	1,2160	Svep1	2,2370
Ano1	-2,0566	Gm16907	-1,1375	Hacd4	1,2170	Igfbp5	2,2383
Dkk3	-2,0302	Mical1	-1,1358	Sgk1	1,2202	Irs3	2,2461
Arhgap30	-2,0124	Cyp1b1	-1,1307	Wnt4	1,2324	Fa2h	2,2495
Cd1d1	-2,0000	Sorcs2	-1,1278	Cab39l	1,2398	Itga8	2,2854
Gm9821	-2,0000	Palld	-1,1266	Entpd5	1,2575	Pcx	2,2872
Gm16574	-2,0000	Creb311	-1,1264	Acap1	1,2602	Gsdmcl2	2,2966
Cxcl12	-1,9887	Ptpru	-1,1171	Layn	1,2610	Ppef2	2,3038
Nat8l	-1,9875	Lrrn1	-1,1085	Nupr1	1,2642	Gm16310	2,3129
Slc35f1	-1,9787	Arrdc4	-1,1074	Tnfaip2	1,2647	Scg5	2,3262
Ikzf1	-1,9709	Mcam	-1,1066	Upk3b	1,2689	Psca	2,3290
Pramef12	-1,9584	Arntl2	-1,1033	Gstt3	1,2697	Psg22	2,3382
Adgrb1	-1,9553	Nfatc4	-1,0933	Bspry	1,2719	Gm42835	2,3606
Gxylt2	-1,9524	Rhobtb1	-1,0903	Phyhipl	1,2758	Serpina1f	2,3618
Auts2	-1,9519	Marcksl1	-1,0764	Tas1r3	1,2773	Slc14a1	2,3668
Galnt6	-1,9500	Gm14005	-1,0737	Cited4	1,2801	Pik3c2g	2,4150
Samsn1	-1,9386	Bglap3	-1,0663	P3h2	1,2866	B230312C02Rik	2,4190
Mmp15	-1,9328	Jam2	-1,0649	Mrps6	1,2872	Muc4	2,4303
Sumo2	-1,9319	Stk26	-1,0640	Aldoc	1,2884	Aqp5	2,4374

signifikant]	herunterr 300 v	egulierte Gene I vs. 600	MCD	signifikant hochregulierte Gene IMCD 300 vs. 600			
Gatm	-1,9313	Cdh2	-1,0616	Кар	1,2957	Slc6a12	2,4670
Spock3	-1,9269	Arid5a	-1,0571	Wnt16	1,3064	Ptprr	2,4838
Vcam1	-1,9218	Gjb2	-1,0567	Tmprss4	1,3070	Ghrhr	2,4854
Siglec1	-1,9175	Cdh11	-1,0492	Oat	1,3121	Fga	2,4919
March1	-1,9175	Vwa2	-1,0454	Agfg2	1,3209	Tmem254c	2,5236
Fbln2	-1,8838	Tmem86a	-1,0452	Kcnj16	1,3245	Serpina16	2,5546
Vash2	-1,8745	Gm10282	-1,0441	Gm6736	1,3276	Dgkg	2,5707
Mmp9	-1,8725	Kit	-1,0433	Idh1	1,3285	Abca13	2,5850
Fgl2	-1,8699	Tcf7	-1,0407	Kctd12	1,3292	Nqo1	2,6106
Gpr50	-1,8662	Tspan7	-1,0364	Crispld2	1,3311	Plat	2,6235
Fermt3	-1,8573	Ltbp2	-1,0348	Muc20	1,3323	Rnf186	2,6396
Btbd11	-1,8504	5730559C18Rik	-1,0241	Acss1	1,3451	Gsta2	2,6554
Fam163a	-1,8480	Tmeff1	-1,0131	Tert	1,3453	Olfm4	2,6586
Cd33	-1,8456	Bmp7	-1,0126	Adora1	1,3468	Slc38a3	2,6630
Klf8	-1,8430	Csrp2	-1,0096	Lzts3	1,3477	Slc5a3	2,6868
Tmem151b	-1,8240	Vangl2	-1,0060	Cyfip2	1,3583	Gm42586	2,6889
Pard6g	-1,8231	Inhbb	-0,9982	Vstm5	1,3726	9530052E02Rik	2,7279
Col7a1	-1,8083	Malrd1	-0,9944	Dbp	1,3744	Fxyd4	2,7316
Ms4a6b	-1,8030	Slc16a2	-0,9925	Ppap2b	1,3762	Lypd2	2,7753
Ncf1	-1,8017	Pxdn	-0,9919	Plch2	1,3765	Cav3	2,7814
Tbxas1	-1,7965	Cldn1	-0,9917	Slc17a4	1,3794	Dio1	2,7885
Nckap11	-1,7952	Clcf1	-0,9859	Akr1b3	1,3833	0610012D04Rik	2,8875
Csf2rb2	-1,7879	Ncam1	-0,9847	Ldhd	1,3837	Cyp11b1	2,8962
Pltp	-1,7824	Epb41l2	-0,9842	Fut9	1,3867	Rnf183	2,9023
Serpinb9b	-1,7731	Myo7a	-0,9815	Oas2	1,3893	Kcnj1	2,9260
Nkain1	-1,7697	Ccbe1	-0,9738	Hspa12a	1,3905	Gm43003	2,9475
Acp5	-1,7687	Reepб	-0,9711	Ddit4l	1,3912	Slc12a1	2,9500
Il23a	-1,7643	Pde4d	-0,9633	Fbxo41	1,3913	Aldob	2,9740
Megf6	-1,7562	Gpc4	-0,9512	Sult1a1	1,4015	Guca2b	2,9814
Apobec1	-1,7536	Kifla	-0,9510	Pdela	1,4090	Enpp2	2,9948
Cd53	-1,7514	Zdhhc15	-0,9437	Rftn2	1,4113	Adgrf1	3,0221
Npr3	-1,7350	Prnp	-0,9368	Tmem30b	1,4116	Slc5a1	3,0605
Gm14206	-1,7348	Ecm1	-0,9342	2210011C24Rik	1,4139	Cdkl1	3,1394
Hpgd	-1,7342	Sox4	-0,9341	Nipal4	1,4166	Slc6a18	3,1751
Adra2c	-1,7145	Rin2	-0,9311	Rassf6	1,4358	Gucy2g	3,2039
9930111J21Rik1	-1,7132	Angptl4	-0,9288	Mycbpap	1,4365	Slc38a11	3,2167
Lcp1	-1,7101	Mgst1	-0,9211	Sprr1a	1,4441	Htr5b	3,2410
Sh3pxd2b	-1,6924	Sbk1	-0,9116	A330023F24Rik	1,4480	Nptx1	3,2479
Csdc2	-1,6818	Chd7	-0,8955	Hs3st1	1,4488	Zan	3,2749
Marcks	-1,6790	Fyn	-0,8954	Klhl14	1,4522	Gm7893	3,2977
Stra6l	-1,6679	Nek6	-0,8926	Srpx2	1,4536	Il5ra	3,3021
Ivl	-1,6663	Synpo	-0,8888	Hsph1	1,4545	Pabpn11	3,3219
Lcp2	-1,6641	Fstll	-0,8825	Trabd2b	1,4550	Fndc1	3,3373
Palmd	-1,6614	Prkcdbp	-0,8672	Vsig10l	1,4584	Eln	3,3540
Zdhhc2	-1,6593	Rpl17-ps10	-0,8632	Atp1b1	1,4618	Gm13418	3,3750

signi	fikant herunterr 300 v	egulierte Ge vs. 600	ne IMCD	signifika	nt hochreg 300 v	ulierte Gene I vs. 600	MCD
Apbb1ip	-1,6590	Lrrc8c	-0,8590	Nckap5	1,4654	Gm567	3,3897
		Bmp1	-0,8456	Slco4a1	1,4672	BC016548	3,4150
				Cd59b	1,4699	Gsdmcl-ps	3,4500
				Gcnt4	1,4704	Gm37320	3,5166
				Depdc1b	1,4757	Calml3	3,6439
				Gem	1,4766	Gsdmc4	3,6476
				Paqr5	1,4833	Lgi2	3,6480
				Ros1	1,4876	Pou2f3	3,6724
				5730508B09Rik	1,4884	Gsdmc3	3,7325
				Gstm2-ps1	1,4924	Npy4r	3,7682
				Gm17281	1,4937	Slc17a1	3,7732
				Hs3st3b1	1,4988	Gm11749	3,8826
				Gstm2	1,5002	Rs1	3,9069
				Hipk4	1,5009	Gsdmc2	3,9686
				Hspala	1,5013	Tldc2	4,1699
				Cobll1	1,5037	Fxyd2	4,4892
				Atp7b	1,5070	Ranbp3l	4,6226
				Cbr2	1,5106	Gm5210	4,9773
				Pglyrp1	1,5123	Gm5043	5,1293
				Ptges	1,5172	Meox2	5,7944
				Gcnt3	1,5198	Prss35	5,8200
				Gm12138	1,5207	Aqp2	5,9813

Tabelle 26: Log₂ fold changes signifikant differenziell exprimierte Gene unter Hyperosmolalität in mpkCCD Zellen

Aufgelistet sind alle signifikant-regulierten-Gene unter Hyperosmolalität in mpkCCD Zellen. Die hier gelisteten Gene sind in Abbildung 20A als Volcano Plot dargestellt.

signifikant	herunterreg 300 v	gulierte Gene mp /s. 600	okCCD	signifikant hochregulierte Gene mpkCCD 300 vs. 600				
Genname	Log ₂ fold change	Genname	Log ₂ fold change	Genname	Log ₂ fold change	Genname	Log ₂ fold change	
Sprr2b	-4,8777	B230118H07Rik	-0,6921	Col4a3bp	0,3605	Homez	0,9179	
Pdzrn3	-4,6439	Chmp2b	-0,6918	Ptk2	0,3641	4632404H12Rik	0,9190	
2610528A11Rik	-4,5593	Tmem64	-0,6917	Itpripl2	0,3702	Tacc2	0,9217	
Krt5	-4,0692	Polr3g	-0,6916	Bcr	0,3734	Slc6a6	0,9241	
Serpina1e	-4,0297	Impa1	-0,6910	Gm6206	0,3748	Fzd8	0,9251	
Gm20796	-3,7814	Rps29	-0,6909	Sik2	0,3802	Adgrg1	0,9251	
Serpinb9b	-3,7769	Gm11263	-0,6903	Pdrg1	0,3822	Adcy6	0,9266	
Prss52	-3,6553	Ruvbl2	-0,6887	Nxf1	0,3886	Nrk	0,9271	
Krt16	-3,5443	Pmm1	-0,6883	Stk4	0,3948	Rnf24	0,9274	
Fmo1	-3,5236	Gm10243	-0,6881	Ccar1	0,3952	Dennd2d	0,9281	
Nts	-3,4594	Klf10	-0,6879	Ddhd2	0,3993	Atxn7l1	0,9283	
Anks4b	-3,3219	Rps13-ps2	-0,6878	Sema4d	0,3999	Atrn	0,9288	
Clca3b	-3,2653	Med21	-0,6875	Psmd5	0,4014	Ppm1d	0,9296	
Clip4	-3,2479	A430005L14Rik	-0,6869	Ppp1r21	0,4051	Ahr	0,9297	
Rab7b	-3,1876	Hs1bp3	-0,6866	Pkp4	0,4051	Gpd1	0,9304	
Aldh3a1	-3,1352	2310009B15Rik	-0,6861	Gfod2	0,4072	Nfat5	0,9308	
Nmnat2	-3,0589	Gm15710	-0,6856	Rock2	0,4113	Cadm1	0,9309	
Krt14	-3,0255	Myzap	-0,6851	Mpp1	0,4141	Trim56	0,9343	
Sprr2a3	-2,8745	Tspan18	-0,6850	Cstf2t	0,4149	Lipg	0,9349	
Crocc2	-2,8365	Rps10-ps2	-0.6843	Zbtb41	0.4171	Map4k1	0.9386	
Cntfr	-2,8301	Sdhc	-0,6842	Rabif	0,4171	Map4k3	0,9399	
Klra4	-2,8220	Gm12751	-0,6842	Lars2	0,4195	Apobr	0,9404	
Kif26a	-2,8074	Gadd45b	-0.6839	Myd88	0.4215	Rhbdl1	0.9413	
Sprr1a	-2,7957	Fam65b	-0,6838	Ube2g1	0,4219	Neurl1b	0,9452	
Gm37131	-2,7944	R3hcc1	-0,6834	Smek1	0,4232	Manla	0,9456	
Cav1	-2,7662	2410006H16Rik	-0,6820	Bmi1	0,4233	Ccdc62	0,9475	
Vcam1	-2.7600	Rpl9	-0.6819	Cyb5b	0.4242	Dram2	0.9487	
Scara5	-2,7305	Dhfr	-0,6818	Agtpbp1	0,4258	Diap2	0,9490	
Cysrt1	-2,7249	Exosc3	-0,6817	Map2k7	0,4295	Serpini1	0,9497	
H2-M2	-2,6781	Aprt	-0.6814	Nisch	0.4296	Snx8	0.9566	
Nrcam	-2,6724	Mapk13	-0,6810	Myo10	0,4298	Traf4	0,9567	
Gm4070	-2,6503	Epb41l2	-0,6804	Atp9b	0,4311	Eda	0,9571	
Hacd1	-2.6400	Plekhh1	-0.6788	Cnot11	0.4312	Pak6	0.9578	
Meox1	-2.6245	Dse	-0.6784	Baz1b	0.4315	Eme2	0.9581	
Gm2115	-2,6189	Rpl27a	-0,6784	Pgs1	0,4317	Arid3b	0,9588	
Il1rn	-2,6040	Ttc9	-0.6778	Gon4l	0.4335	Gpd11	0.9595	
Dmkn	-2,5629	Dpy1911	-0,6778	Btbd9	0,4336	Ngf	0,9597	
Drd3	-2,5293	Arl6ip5	-0,6778	Zfp384	0.4337	Litaf	0,9601	
Tigit	-2.5075	Cryl1	-0.6775	Spint2	0.4337	Atg16l2	0.9628	
Nalcn	-2.4883	Chd7	-0,6768	Setd1a	0,4340	Dapk1	0,9630	

signifikant he	signifikant herunterregulierte Gene mpkCCD 300 vs. 600				signifikant hochregulierte Gene mpkCCD 300 vs. 600			
Grin1	-2,4386	Cat	-0,6763	Hsd17b4	0,4351	Ptprcap	0,9639	
Cbs	-2,4315	Bcap29	-0,6755	Ccdc88c	0,4352	Plxnb1	0,9670	
B230303012Rik	-2,4288	Arfgef3	-0,6753	Mthfd2l	0,4355	Sh2b2	0,9683	
Eps8	-2,4272	Notch3	-0,6743	Gm23935	0,4360	2700081015Rik	0,9694	
Slc26a9	-2,4116	Rpl27	-0,6740	Gm14420	0,4368	Tapbp	0,9698	
Ereg	-2,4053	Gm6311	-0,6726	Cdc14a	0,4397	Dnase112	0,9709	
Mro	-2,4021	Tmem256	-0,6720	Ncor1	0,4402	Gm21887	0,9711	
Ppp1r42	-2,4021	Pkia	-0,6717	Tmppe	0,4404	Sparc	0,9738	
Gjal	-2,4017	Tnfrsf23	-0,6713	Wasl	0,4410	Bahcc1	0,9742	
Pkp1	-2,3692	Gm10177	-0,6700	Acsl5	0,4411	Rltpr	0,9759	
Liph	-2,3536	Prkch	-0,6680	Zfand5	0,4433	Illrl	0,9765	
Enho	-2,3505	Gm6472	-0,6678	Phf20	0,4462	6330403L08Rik	0,9780	
Upk3bl	-2,3265	Gprc5a	-0,6671	Rdh13	0,4466	Kdm7a	0,9802	
Serpina3h	-2,3219	Gm15682	-0,6662	Pank2	0,4476	Socs2	0,9807	
Gabrp	-2,3140	Rps27	-0,6662	Ubl3	0,4477	H2-DMb1	0,9813	
Sprr2a1	-2,2928	Gm4735	-0,6660	Arhgef18	0,4486	Spns2	0,9833	
Aldh3b2	-2,2863	Rrm1	-0,6659	Zfp672	0,4489	Ppm1k	0,9836	
Il15ra	-2,2801	Rpl18	-0,6642	Galnt4	0,4491	Tgif2	0,9840	
Gm10010	-2,2801	Gm12854	-0,6637	Atg2a	0,4495	6330403K07Rik	0,9846	
Cacna2d1	-2,2479	Rps15a	-0,6634	Rab11b	0,4506	Gm43597	0,9848	
Card14	-2,2429	Adck4	-0,6632	Zcchc14	0,4523	Lgals9	0,9852	
Gvin1	-2,1940	Fam83b	-0,6632	Tmem63b	0,4554	Tor3a	0,9853	
1124	-2,1794	Gm8730	-0,6626	Zfp408	0,4556	Mast1	0,9854	
S100a14	-2,1573	Fut10	-0,6620	Socs5	0,4559	Fam3c	0,9856	
Gm43202	-2,1538	Rpsa-ps10	-0,6617	Tsen54	0,4567	Zbtb18	0,9874	
Sfta2	-2,1155	Asph	-0,6614	Ssh1	0,4570	Dclre1b	0,9875	
P2rx3	-2,1043	Shisa4	-0,6609	Zfp629	0,4574	Scx	0,9893	
Flt4	-2,0994	Impdh1	-0,6605	Alg13	0,4579	Dsg2	0,9925	
Gck	-2,0919	Itgb2	-0,6572	Cgnl1	0,4585	Tspan33	0,9925	
Gm2895	-2,0834	Sapcd2	-0,6566	Tmem132a	0,4590	Tfdp2	0,9936	
Mb	-2,0641	Higd1a	-0,6566	Tmem127	0,4591	Tmem140	0,9943	
Gdnf	-2,0563	9430038101Rik	-0,6563	Tanc1	0,4594	Nfkbid	0,9948	
Mirt1	-2,0559	Dgka	-0,6543	Tulp4	0,4596	Dhx58	0,9956	
Timp1	-2,0507	Eno1	-0,6543	Neurl4	0,4606	Pcdh19	0,9976	
Asb2	-2,0395	Ahnak	-0,6541	Tspan14	0,4609	6430550D23Rik	1,0000	
Prss27	-2,0395	Rbks	-0,6537	Ints3	0,4614	B230208H11Rik	1,0000	
Rwdd3	-2,0368	Eif1b	-0,6531	B3glct	0,4616	Hsf4	1,0000	
Efhd1	-2,0324	Baiap2	-0,6530	Arhgef17	0,4618	Jak3	1,0000	
Ramp3	-2,0319	Maoa	-0,6519	Caskin2	0,4630	Zfp950	1,0047	
Mall	-2,0297	Gm11518	-0,6518	Brd2	0,4632	Hsph1	1,0055	
Tcrg-C4	-2,0199	Itgb4	-0,6516	Sec22c	0,4636	RP23- 114E15.18	1,0067	
Fbln2	-2,0036	Rpl37	-0,6504	Ttyh3	0,4642	Tert	1,0073	
Figf	-1,9827	Ier3ip1	-0,6502	Slc39a9	0,4650	Spon1	1,0095	
Krt79	-1,9740	Марб	-0,6484	Zbed4	0,4652	Paqr5	1,0107	
Cda	-1,9664	Slc30a1	-0,6470	Tsc22d1	0,4661	2900093K20Rik	1,0108	

signifikant h	erunterre 300 v	gulierte Gene mp /s. 600	kCCD	signifikant hochregulierte Gene mpkCCD 300 vs. 600			
RP23-200M5.7	-1,9652	Prodh	-0,6463	Akap13	0,4661	Shank2	1,0109
Entpd3	-1,9639	Fra10ac1	-0,6461	Rapgef6	0,4662	Pgap1	1,0121
Mrvil	-1,9511	Rpsa	-0,6459	Kmt2b	0,4669	Pla2g4c	1,0124
RP23-200M5.8	-1,9511	Gm9493	-0,6458	Pcnxl3	0,4678	Phf3	1,0126
Nod2	-1,9449	Gpx1	-0,6448	Mrpl45	0,4681	Mycbpap	1,0144
Fcgrt	-1,9431	Rpl23a	-0,6444	Sema6b	0,4688	Cd59a	1,0145
Chrnd	-1,9419	Gm13436	-0,6439	Sptbn2	0,4689	Bex1	1,0146
Dab2	-1,9411	Gm11703	-0,6436	Gclm	0,4696	Cx3cl1	1,0158
Uroc1	-1,9156	Vegfb	-0,6435	Cdk5	0,4698	Dixdc1	1,0161
Cyp2s1	-1,9120	AI413582	-0,6423	Kansl2	0,4709	Lmo4	1,0181
Anxa8	-1,9060	1110007C09Rik	-0,6420	Phactr4	0,4709	Lipe	1,0216
Gm6634	-1,8745	Chchd5	-0,6418	Hmg20b	0,4710	Plscr2	1,0226
Tnip3	-1,8745	Gm15500	-0,6410	Eif2ak2	0,4710	Hifla	1,0233
Aim11	-1,8679	Ppp3cc	-0,6400	Arhgef16	0,4716	Mypopos	1,0236
Fam167a	-1,8663	Krt8	-0,6399	Zfp513	0,4717	Tspan1	1,0245
Prkg2	-1.8659	Rps4x	-0.6385	Tpm1	0.4728	Nuak2	1.0262
Cyp26b1	-1.8598	Hddc2	-0.6378	Bspry	0.4731	Hoxb4	1.0328
Kndc1	-1.8515	Def6	-0.6377	Fbxw17	0.4731	Dmtn	1.0338
Gm11451	-1.8301	Gm6467	-0.6366	Pop5	0.4732	Slc35g1	1.0363
Klk10	-1.8224	Hspe1	-0.6360	Llgl2	0.4744	H2-DMb2	1.0389
Krt4	-1.8159	Rps3a1	-0.6359	Macf1	0.4751	Rell2	1.0390
Trank1	-1.8074	Npm3	-0.6353	Hdac6	0.4752	Izumo4	1.0401
RP24-363021.3	-1.7975	Pms2	-0.6351	Edem3	0.4752	Btg1	1.0409
Lamc3	-1.7970	Rpl19-ps11	-0.6350	Cenpj	0.4752	Ext1	1.0458
Vtcn1	-1.7910	Syne3	-0.6345	Atf6b	0.4753	Gm12276	1.0458
Btbd11	-1.7847	Nabp1	-0.6344	Spint1	0.4763	Gm14276	1.0478
Cldn1	-1.7748	Atp10a	-0.6341	Sdhaf2	0.4769	Yjefn3	1.0487
<i>Il33</i>	-1.7737	Eef1d	-0.6335	Anxa5	0.4771	Abcc4	1.0503
Dsg3	-1.7726	Mast4	-0.6328	Fbxo33	0.4771	Gm8783	1.0539
Pla2g16	-1.7714	Bach1	-0.6328	Gskip	0.4772	Agap1	1.0553
Mfi2	-1.7687	Rab25	-0.6326	Fam83h	0.4784	Helz2	1.0565
Pbp2	-1.7661	Rpl21-ps15	-0.6325	Kif12	0.4788	Kank3	1.0575
Podxl	-1.7326	Gm4332	-0.6323	Slc44a2	0.4797	Fa2h	1.0576
S100a7a	-1.7318	Hspbap1	-0.6323	Mepce	0.4798	Csf2ra	1.0583
Serpinb5	-1.7201	Eif2d	-0.6308	Specc1	0.4808	1700067K01Rik	1.0584
BB557941	-1.7199	Tbc1d22a	-0.6304	Ube4a	0.4814	Wfikkn1	1,0589
Rpsa-ps1	-1 7162	Acyp1	-0.6301	Asb13	0.4821	4930481B07Rik	1 0597
Ahnak2	-1 7162	Mipol1	-0.6291	Btbd7	0.4821	Frem2	1,0597
Fgfbp1	-1 7051	Gm10288	-0.6291	Camta2	0.4822	Ptp4a1	1,0000
Tmeff1	-1 7018	1700024P16Rik	-0.6288	Pip5k1c	0.4835	Cds1	1,0005
Cep83os	-1 6997	Gm14322	-0.6286	Zfp319	0.4837	Fam63a	1,0070
Sgk2	-1.6911	Rras	-0.6285	Hagh	0,4846	Sh3bp4	1,0698
Gm15848	-1 6881	Pold2	-0.6283	Mtmr2	0.4859	Itpr1	1 0710
Selenbp2	-1 6881	Gm9115	-0.6280	Camsap1	0.4860	Avil	1.0721
- 1810011010Rik	-1 6881	Cdca7l	-0.6270	Zfp318	0.4861	Fmnl3	1,0747
	1,0001		0,0270	1	5,1001		1,0/7/

signifikant h	erunterre 300 v	gulierte Gene vs. 600	mpkCCD	signifikant hochregulierte Gene mpkCCD 300 vs. 600				
Fkbp11	-1,6827	Camk1	-0,6268	Otud3	0,4871	Lgr4	1,0777	
4930481A15Rik	-1,6781	Gipc2	-0,6261	Ocell	0,4881	Gli3	1,0786	
Lincenc1	-1,6630	Stk10	-0,6260	40787	0,4898	Hist1h4i	1,0790	
Slc22a4	-1,6603	Gm15501	-0,6260	Atxn7l2	0,4913	Cul7	1,0851	
Ak5	-1,6554	Acy1	-0.6256	Rbpms	0,4915	Tm6sf2	1,0875	
Fxyd5	-1,6547	Tprg	-0,6253	2410089E03Rik	0,4923	Cpe	1,0875	
Emp1	-1,6510	Gm7665	-0.6250	D1Ertd622e	0,4924	Gm37422	1,0875	
Fam71f2	-1.6439	Prrc1	-0.6249	Tlr3	0.4930	Slc39a8	1.0881	
Ggta1	-1,6348	Tmsb10	-0,6241	Zfp608	0,4939	A730017L22Rik	1,0901	
Gm3716	-1.6150	Fancl	-0.6237	Map3k10	0.4947	Gm11696	1.0958	
Abcg2	-1.6096	Rps28	-0.6231	Swap70	0.4949	Tiam1	1.0974	
Cst6	-1.6090	Rplp0	-0.6218	Zfp46	0.4968	Fam160a1	1.0976	
Hspb1	-1.6079	Rpl10	-0.6218	Dock1	0.4971	Trp63	1.0995	
Myh14	-1.5962	Rpl29	-0.6217	Nfxl1	0.4978	Cpne8	1,1008	
Ank1	-1.5880	Rps6-ps4	-0.6217	Noa1	0.4982	Gm10524	1,1028	
Gm37145	-1.5850	Epb41l4aos	-0.6213	Morc2a	0,4990	Cdh17	1,1069	
Cpm	-1.5811	Cdca7	-0.6210	Hoxb6	0 4993	Vgf	1,1103	
Gsdma	-1 5742	Pold4	-0.6192	H2afj	0,5022	Fgd4	1 1 1 0 6	
Etv5	-1.5716	Naf1	-0.6186	Micall1	0,5022	Limch1	1,1123	
Tmem71	-1 5705	Ift46	-0.6177	Ivns1abp	0,5028	Trim21	1 1 1 50	
1700007L15Rik	-1 5663	Pus7	-0.6174	Slc22a23	0,5020	Ndufb2	1 1 1 61	
Ltf	-1 5641	Nsa2	-0.6168	Mier3	0,5042	Gpr182	1 1 1 69	
Gm11613	-1 5629	Rpl8	-0.6160	Ttc13	0,5059	Ybx2	1 1 1 1 7 4	
Mlf1	-1 5523	Phlda2	-0.6157	Sh2b1	0,5067	Gm27028	1 1 1 86	
Lgals1	-1 5519	Gm5884	-0.6155	Kat6b	0,5068	D630039A03Rik	1 1 1 92	
Cers3	-1 5514	Mybl2	-0.6151	Pigw	0,5000	Tle6	1 1 1 98	
Ablim1	-1 5436	Ctsb	-0.6151	Plod3	0,5088	Tacc1	1 1 1 98	
Tnfrsf1b	-1 5406	Rps12-ps3	-0.6150	Trim39	0,5000	Kcnj10	1 1 2 3 2	
Myo1b	-1 5208	Snhg5	-0.6145	Smarcad1	0,5090	A930004D18Rik	1,1232	
Fam198b	-1 5052	Rps3	-0.6136	Specc11	0,5101	Irs2	1,1243	
2310069B03Rik	-1 5045	Hk2	-0.6109	Cramp11	0,5108	Ndst1	1,1254	
Rasa4	-1,5045	Dnajc19	-0,6103	Epc1	0,5110	Tmem120b	1,1272	
Tmem53	-1 5025	Rin1	-0.6101	Cfap43	0,5119	Icosl	1 1 2 8 9	
Anxa2	-1,5025	Rpl7	-0,6101	Birc2	0,5120	Slc8b1	1,1207	
Krt19	-1,3003	Klf5	-0,0099	Lhfp	0,5127	Stra6	1,1312	
St6galnac2	1 4082	Rpl4	-0,0090	AU040320	0,5136	Dock8	1,1313	
Dusp5	1 4075	Rps18-ps3	-0,0095	Mprip	0,5130	Adam11	1,1316	
Spo11	-1,4975	Dus2	-0,6070	Tsc22d4	0,5130	Slc45a4	1,1355	
Adssl1	-1,4900	Synpo	-0,0070	Mtmr10	0,5141	Gm26880	1,1307	
Slc26a1	1 4854	Clstn1	-0,0000	Fam208a	0,5170	Itgb6	1,1427	
Gm4535	-1,4654	Sil1	-0,0000	Dlg1	0,5170	Plekhh2	1,1430	
C920009B18Rik	-1,4000	Ifrd2	-0,0039	Secisbp2	0,5170	Gm10143	1,1442	
Pecr	-1,4/04	, Cct8	-0,0050	Lrfn4	0,5109	Usp46	1,1449	
Gap43	-1,4093	Smox	-0,0049	Slc27a4	0,5192	Gm14230	1,1430	
Fgf5	-1,4093	Oxct1	-0,0045	Fosl2	0,5192	Lynx1	1,1433	
	-1,4030		-0,0045	1	0,5190	-	1,1404	

Cdc34-ps

Fam163a

Hlx

Cd44

Gucala

Endod1

Fam81a

Scarb2

Padi1

Wdr72

Dclk3

Grasp

Fst

Coq3

Gckr

Fam161a

Ccdc122

Tpm2

Fgf11

Tomm7

Pter

Slpi

Csrp2

Tmprss4

Eva1c

Csdc2

Steap3

Bckdhb

Gm14306

Hist1h3c

Tubb6

Myo15

Fhad1

Krt80

Ltbp2

Adam8

Inca1

Fam71f1

Zdhhc2

Tmem151a

Fam114a1

Sorbs3

Zfp930

Rps11

Rpl9-ps4

Gm5428

Tfcp2l1

Mrpl48

Arrb2

Mrrf

-1,3093

-1,3040

-1,3025

-1,3017

-1,3013

-1,2977

-1,2942

-1,2939

-1,2917

Gm43742

A530016L24Rik

RP23-143J24.4

9030617003Rik

signifikant	herunterre 300	gulierte Gene mp vs. 600	okCCD	signifika	signifikant hochregulierte Gene mpkCCD 300 vs. 600					
84-ps	-1,4639	Nphp1	-0,6034	Tor1aip1	0,5206	B4galt6	1,1466			
	-1,4584	Cdk6	-0,6029	Ets1	0,5206	Abhd11os	1,1540			
163a	-1,4529	Isoc1	-0,6026	Parp6	0,5211	Lurap1	1,1569			
t –	-1,4305	Dis3	-0,6023	Lactb	0,5217	Jade1	1,1609			
ıla	-1,4190	Gm7846	-0,6012	Map3k1	0,5223	Nat14	1,1631			
617003Rik	-1,4187	Pycr2	-0,6009	Smad7	0,5234	5330438D12Rik	1,1631			
od1	-1,4150	Ipo5	-0,6006	Map3k9	0,5235	F730043M19Rik	1,1636			
81a	-1,4142	Gga2	-0,5996	Gm53	0,5253	Hist1h2bc	1,1644			
b2	-1,4113	Cd81	-0,5976	Igf2bp1	0,5258	Ankrd44	1,1675			
1	-1,4069	Snrpa1	-0,5970	Zfp715	0,5263	Opn5	1,1721			
72	-1,4005	Rpl34-ps1	-0,5967	Zbtb48	0,5285	Smtnl2	1,1747			
3	-1,3994	3110082117Rik	-0,5957	BC037034	0,5296	Plet1	1,1752			
р	-1,3967	Focad	-0,5948	Mon2	0,5296	Fut4	1,1799			
	-1,3942	Gm9625	-0,5944	Fut11	0,5302	Serpine1	1,1803			
}	-1,3932	Acat1	-0,5942	Mbd5	0,5309	Orai2	1,1842			
	-1,3899	Fam46b	-0,5937	Zfp523	0,5310	4933415A04Rik	1,1854			
161a	-1,3870	Rpl15	-0,5934	Fbxl19	0,5315	Izumo1	1,1859			
122	-1,3843	Mrpl2	-0,5929	Zfp251	0,5320	Pik3c2a	1,1871			
2	-1,3798	Neil1	-0,5917	Ube2q1	0,5328	Zglp1	1,1876			
1	-1,3781	Epha4	-0,5914	Hip1	0,5335	Gli1	1,1883			
3-143J24.4	-1,3750	S100a13	-0,5904	Kansl1	0,5340	Kcnk1	1,1889			
m7	-1,3731	Ppap2a	-0,5895	Rab3ip	0,5342	Apbb2	1,1893			
	-1,3720	Eif2s1	-0,5884	Zyx	0,5349	RP24-143K11.1	1,1895			
2	-1,3698	Fcho1	-0,5884	Prmt2	0,5354	Psca	1,1904			
	-1,3675	Gm9794	-0,5883	Sumo3	0,5360	Omp	1,1918			
rss4	-1,3630	Tom1	-0,5882	Dcun1d2	0,5364	Epor	1,1944			
с	-1,3626	Adsl	-0,5880	Pip4k2c	0,5373	Mzf1	1,1950			
2	-1,3608	Rps21	-0,5879	Gprc5c	0,5374	Nyap1	1,1983			
<i>n3</i>	-1,3563	Impact	-0,5875	Taok2	0,5383	Rimbp3	1,1988			
3742	-1,3559	Pyroxd1	-0,5872	Rnf145	0,5384	Mcf2l	1,1995			
0016L24Rik	-1,3558	Tsr2	-0,5866	Aacs	0,5386	RP23-380L19.3	1,2001			
hb	-1,3506	Cnih1	-0,5849	Cpd	0,5389	B330016D10Rik	1,2025			
4306	-1,3297	Rpl18a	-0,5845	Nckipsd	0,5390	Gm43305	1,2047			
h3c	-1,3219	Svip	-0,5840	Mmgt2	0,5420	Gm17396	1,2070			
6	-1,3169	Endog	-0,5830	Асрб	0,5426	Rad9b	1,2116			
15	-1,3103	AA465934	-0,5829	Tcirg1	0,5431	Slc3a1	1,2118			

Nav1

Maz

Reep3

Gramd4

Slc18a2

Zmym6

Wdfy3

Zbtb12

Nucb2

-0,5827

-0,5824

-0,5824

-0,5821

-0,5816

-0,5812

-0,5811

-0,5811

-0,5809

Gm43460

Gm43457

Timp3

Cldn15

Htr5b

Chd5

Gm43860

4632428C04Rik

Ttbk2

1,2184

1,2187

1,2199

1,2224

1,2224

1,2224

1,2224

1,2241

1,2261

0,5434

0,5436

0,5444

0,5445

0,5451

0,5452

0,5453

0,5465

0,5467

signifikant]	herunterre 300 v	egulierte Gen vs. 600	e mpkCCD	signifikant hochregulierte Gene mpkCCD 300 vs. 600			
S100a10	-1,2860	Zfp185	-0,5799	Iffo2	0,5469	Ppp2r3a	1,2288
Gm14005	-1,2829	Sgms1	-0,5788	Pank1	0,5473	Rasgrp2	1,2306
Gm28119	-1,2768	Pfdn5	-0,5774	Gpr137	0,5479	4933405L10Rik	1,2308
Tmem40	-1,2652	Ostm1	-0,5771	Prkcd	0,5482	Cysltr1	1,2347
Itga6	-1,2603	Sh3bp1	-0,5769	Tmem131	0,5511	Mylk	1,2355
Wnt4	-1,2544	Tritl	-0,5755	Zfp12	0,5525	Bend5	1,2359
Pik3cd	-1,2542	Eif5a2	-0,5746	Tmem68	0,5531	Phactr2	1,2382
Pltp	-1,2526	Susd4	-0,5746	Zfp668	0,5536	Tlcd2	1,2388
Cd93	-1,2508	Snrpd2	-0,5746	Мррб	0,5537	Gm16793	1,2436
Dhrs7	-1,2496	Emd	-0,5739	BC031181	0,5539	Runx2	1,2453
Gm37800	-1,2377	Prpsap2	-0,5735	Snn	0,5544	Rasip1	1,2469
Zfpm1	-1,2358	Nup37	-0,5731	Rbm15b	0,5548	2010016118Rik	1,2521
Emp3	-1,2328	Rpl14	-0,5726	Bid	0,5549	Lpin2	1,2544
Slc16a1	-1,2263	Rpl22	-0,5726	Gm15800	0,5551	Shroom4	1,2545
Akr1c19	-1,2208	Mex3d	-0,5725	Dpy19l4	0,5560	Idh1	1,2559
Has2	-1,2127	Tmem175	-0,5704	Trim45	0,5560	Cnbd2	1,2584
Tns4	-1,2118	Birc5	-0,5694	Zfp428	0,5577	Irf9	1,2586
Tmie	-1,2089	Bin1	-0,5693	Sphk1	0,5585	Pclo	1,2596
<i>Т</i> гаррс6а	-1,2039	Wdr83os	-0,5693	Smpd1	0,5594	A230083G16Rik	1,2599
Rpp40	-1,2033	Rpl17-ps5	-0,5692	Map3k11	0,5594	Slc5a5	1,2622
Galk1	-1,1994	Tuba4a	-0,5688	Elovl6	0,5600	Sh2d4a	1,2659
Gm13056	-1,1991	Arhgap8	-0,5679	Zfp276	0,5603	Comp	1,2721
Pcyt1b	-1,1936	Cstb	-0,5678	C2cd2l	0,5607	Ikzf4	1,2726
Meis2	-1,1924	Gm5805	-0,5674	Zfp235	0,5611	Slc5a3	1,2731
Ccnd1	-1,1885	Gm16477	-0,5672	Scmh1	0,5616	Zswim6	1,2751
Lrrc51	-1,1852	Gm11560	-0,5670	Armc5	0,5619	L1cam	1,2784
5930403N24Rik	-1,1844	Tuba1b	-0,5666	Slc38a2	0,5620	Trim34a	1,2789
Thsd7a	-1,1842	Uck2	-0,5651	Bbs2	0,5634	Csfl	1,2824
P4ha2	-1,1834	Siva1	-0,5650	Slc25a20	0,5635	Scin	1,2834
Sdcbp2	-1,1833	Slc25a24	-0,5646	Plxna3	0,5638	A3galt2	1,2835
Serpinb6a	-1,1820	Gm13394	-0,5637	Als2	0,5643	Apom	1,2880
Krt20	-1,1798	Gas5	-0,5633	Bcam	0,5652	Glt28d2	1,2887
Dnph1	-1,1750	Gm10443	-0,5631	Steap2	0,5652	Ttc22	1,2895
P4ha1	-1,1740	Tmem192	-0,5630	Letmd1	0,5657	Fndc9	1,2895
Sbsn	-1,1674	Gnb2l1	-0,5630	Bcat1	0,5663	Serpinb6b	1,2920
Gm5297	-1,1669	Wdr34	-0,5629	Baz2b	0,5669	Plekha1	1,2936
Gpr137b	-1,1576	Rlf	-0,5625	Fkrp	0,5675	E230013L22Rik	1,2946
Slc22a21	-1,1561	Rps20	-0,5602	Rhot2	0,5675	Serpinb9	1,2950
Ptrh1	-1,1528	Krt18	-0,5600	Trim47	0,5678	Olfm4	1,2994
Atp6v0a4	-1,1489	Pgm1	-0,5596	Cep104	0,5679	H2-T10	1,3007
Aifm3	-1,1468	Rab11fip5	-0,5586	4930522L14Rik	0,5679	Hsd11b2	1,3020
Pof1b	-1,1464	Nhp2	-0,5562	Tcf7l2	0,5680	Syt11	1,3049
Mslnl	-1,1457	Eif3e	-0,5562	Ppfibp1	0,5681	Jam3	1,3049
A330009N23Rik	-1,1436	Nme6	-0,5559	Gprasp1	0,5682	Itgb8	1,3053
Amdhd1	-1,1435	mt-Rnr2	-0,5557	Cacnb3	0,5684	Gm12932	1,3081

signifikant h	erunterre 300 v	gulierte Gene mpl vs. 600	kCCD	signifikant hochregulierte Gene mpkCCD 300 vs. 600				
Sema3b	-1,1412	Tbrg1	-0,5550	Exog	0,5686	Hyi	1,3099	
0610038B21Rik	-1,1342	Rassf8	-0,5548	Prss16	0,5687	Ksr2	1,3126	
Tnfrsf9	-1,1339	Rpl9-ps6	-0,5528	Gm24270	0,5689	Aldh4a1	1,3135	
Mrto4	-1,1331	Mrpl48-ps	-0,5522	B4galt3	0,5692	Adam1a	1,3184	
Msx2	-1,1306	Smad1	-0,5509	Syde2	0,5695	Gprc5b	1,3188	
Xk	-1,1291	Ckap2l	-0,5505	Tlr4	0,5707	Ccdc40	1,3219	
1500011K16Rik	-1,1277	Ppp1r13l	-0,5500	Smyd4	0,5736	Slc4a11	1,3221	
Muc4	-1,1268	Cdk20	-0,5493	Smad2	0,5741	Them6	1,3230	
RP24-174G2.1	-1,1227	Nsun2	-0,5491	Iscu	0,5749	Cdk5r1	1,3239	
Fstl3	-1,1193	Sms	-0,5490	Agpat3	0,5752	RP24-143K11.2	1,3286	
Lypd3	-1,1190	Tbl2	-0,5486	Cic	0,5767	Matk	1,3310	
Cav2	-1,1135	Rbm3	-0,5481	Aftph	0,5775	Glipr2	1,3312	
Stbd1	-1,1126	2810417H13Rik	-0,5477	F2r	0,5778	Crim1	1,3332	
Gsta4	-1,1078	Rps19-ps6	-0,5476	Fchsd2	0,5794	Gm7160	1,3349	
Ephx1	-1,1071	Elp4	-0,5470	Serinc2	0,5795	Gm17399	1,3388	
Rpl21-ps11	-1,1051	Chchd6	-0,5458	Enpp4	0,5796	Impg2	1,3429	
Lmna	-1,1047	Gm10132	-0,5456	Hs6st1	0,5804	Ccdc64	1,3430	
Dok7	-1,1039	Sox9	-0,5449	Gcnt2	0,5805	Pde8b	1,3503	
Gls2	-1,1003	Tomm5	-0,5448	Exoc8	0,5811	Gm20559	1,3508	
5031415H12Rik	-1,0995	Osgep	-0,5434	Nprl2	0,5811	Slc7a6	1,3512	
Sorbs2	-1.0993	Mettl1	-0.5433	Wnt7b	0.5816	Npr1	1.3516	
Gpr137b-ps	-1.0952	Igf2bp2	-0.5425	Gramd1c	0.5817	4930563E22Rik	1.3555	
Ppargc1b	-1,0948	Rbm8a	-0,5423	Patz1	0,5825	Pik3r3	1,3560	
Speg	-1.0938	Sgoll	-0.5417	Mras	0.5836	1810019D21Rik	1.3564	
Msln	-1.0936	1110059E24Rik	-0.5415	4931414P19Rik	0.5841	Pdlim5	1.3571	
Numbl	-1,0818	Rpl6	-0,5414	Trim46	0,5843	Col4a3	1,3599	
Tgm1	-1.0807	Rasef	-0.5411	Ntn4	0.5852	Hspa1b	1.3601	
Spa17	-1.0794	Sub1	-0.5409	Trak2	0.5855	8430422M14Rik	1.3661	
Gcsh	-1.0790	Dus4l	-0.5407	Mlst8	0.5858	Ifit2	1.3701	
Hmga1	-1.0763	Ttll12	-0.5403	Camkk2	0.5861	Akna	1.3785	
Card6	-1.0740	Malsu1	-0.5389	Usp27x	0.5878	Lgals4	1.3890	
Nrp1	-1.0727	Plod1	-0.5389	Lemd2	0.5889	Dnah10	1,3899	
Ano1	-1.0721	Rpl37rt	-0.5386	Zfp94	0.5891	Atp1b1	1.3946	
Katnal2	-1.0683	Snrpg	-0.5380	Rab15	0.5898	Lurap11	1,3969	
Akrle1	-1.0668	Top1mt	-0.5376	Klrg2	0.5906	Grb14	1,3976	
Angptl2	-1.0616	E2f2	-0.5371	Sec23b	0.5908	Malat1	1.3981	
Pla2g12a	-1,0559	Gm9843	-0,5370	Nox4	0,5910	Gbp4	1,3996	
111f6	-1.0556	Nudt2	-0.5362	Rnf167	0.5919	Gm43034	1.4021	
Pnkp	-1,0556	Tmem54	-0,5360	Plekha3	0,5920	Hal	1,4030	
Btnlal	-1,0541	Gm6136	-0,5353	4930523C07Rik	0,5926	Syne2	1,4032	
BC029722	-1.0521	Arfrp1	-0.5352	3110062M04Rik	0.5928	Irgq	1,4036	
Map3k6	-1,0506	Lsm7	-0,5346	Samhd1	0,5943	Ddx58	1,4116	
Tarsl2	-1,0476	Zfand1	-0,5346	Bst2	0,5956	Chpt1	1,4121	
Gsap	-1,0466	Gm13680	-0,5346	Dennd5a	0,5957	Fgd3	1,4143	
Rem2	-1,0466	Pms1	-0,5337	Skil	0,5962	6820408C15Rik	1,4150	
signifikant herunterregulierte Gene mpkCCD 300 vs. 600				signifikant hochregulierte Gene mpkCCD 300 vs. 600				
---	---	------------	---------	---	--------	---------------	---------	
Eef2kmt	-1,0463	Ptrf	-0,5333	Sbk1	0,5967	Me1	1,4187	
Marcks	-1,0453	Bnip1	-0,5329	Pde7a	0,5978	Hoxa4	1,4206	
Akap12	-1,0374	Chmp6	-0,5326	Acap3	0,5996	Lbp	1,4211	
Gm10169	-1,0356	Gm4737	-0,5320	Fhod1	0,5998	Vstm5	1,4219	
Gm8129	-1,0302	Rgs12	-0,5320	Atxn7	0,6000	Tepp	1,4245	
4933421A08Rik	-1,0275	Gm13092	-0,5312	D630045J12Rik	0,6008	Slco2a1	1,4306	
Hmga1-rs1	-1,0232	Fau	-0,5307	Zbtb44	0,6018	Ppcdc	1,4307	
Plau	-1,0208	Tmem97	-0,5307	Tpcn1	0,6025	Pnpla6	1,4329	
Ttc39a	-1,0204	Cdc34	-0,5302	Jmjd4	0,6025	Frat2	1,4337	
Vsnl1	-1,0191	Ncapg	-0,5295	Dtnb	0,6030	Slco1a5	1,4371	
Blvra	-1,0166	Cast	-0,5294	Rnf5	0,6050	Pcx	1,4403	
Slc16a6	-1.0141	Tctn3	-0.5293	Zbtb38	0.6055	Insl3	1.4436	
Inhbb	-1,0137	Rpl9-ps7	-0,5290	Tprn	0,6055	Gm11946	1,4463	
Spire1	-1.0131	Bzw2	-0.5288	Col4a5	0.6068	RP24-157012.2	1.4530	
Sult2b1	-1.0130	Nipsnap1	-0.5283	Plekhg3	0.6069	Grin3b	1.4558	
Sord	-1.0116	Ncl	-0.5282	Tfap2a	0.6071	Fscn2	1.4594	
Fam65c	-1.0098	Atp5g2	-0.5281	Zhx3	0.6071	Lzts3	1.4614	
S100a16	-1.0096	Rpl23	-0.5279	Wasf1	0.6081	Mxd4	1.4615	
Rps27rt	-1.0091	Lta4h	-0.5275	Gnaq	0.6086	2900052L18Rik	1.4626	
Nfic	-1.0066	Mettl22	-0.5272	Epb41l4b	0.6093	Sort1	1.4649	
Rps15a-ps7	-1.0062	Znrd1	-0.5224	Zfp628	0.6100	Spata20	1.4687	
Rpl36	-1.0020	Pet100	-0.5219	Tcf7l1	0.6100	Aspa	1,4721	
Epdr1	-1.0016	Capns1	-0.5213	Gripap1	0.6103	Ctnnal1	1,4735	
Pxdc1	-1.0012	Fbxo10	-0.5211	Bdnf	0.6122	Muc20	1,4737	
Areg	-1.0000	Gltscr2	-0.5208	Hsd17b7	0.6133	Fgf9	1,4881	
Slc2a8	-0.9969	Cdkn2aipnl	-0.5208	Pikfyve	0.6135	Tbr1	1,4883	
Drap1	-0.9965	Mettl2	-0.5207	Prr3	0.6137	1700102P08Rik	1,4975	
Plekho2	-0.9917	Ybx3	-0.5207	Adgrl1	0.6148	B230206H07Rik	1,4988	
Ifi205	-0.9916	Ctsc	-0.5203	R3hdm2	0.6150	Filip11	1.5016	
Reck	-0.9881	Ccdc107	-0.5202	Rdh10	0.6165	Elfn1	1,5096	
Gchfr	-0.9865	Plcb3	-0.5202	Lrrc1	0.6168	Kifc2	1,5100	
Miip	-0.9822	Kctd10	-0.5201	Gm17491	0.6183	Wdr66	1,5102	
Ccdc34	-0.9820	Hprt	-0.5200	Zbtb1	0.6183	Arhgap9	1.5125	
Tekt5	-0.9806	Cenpa	-0.5196	Ppia	0.6188	Pou2f2	1,5146	
Arl4c	-0.9788	Mrpl28	-0.5192	Atxn7l3	0.6189	Rnf225	1.5182	
Ada	-0.9787	Kif21a	-0.5191	Dsn1	0.6200	P2rx2	1,5185	
Morn1	-0.9781	Slc18b1	-0 5183	Stat2	0.6200	Galr2	1 5217	
Alad	-0.9775	Piga	-0 5182	Prune	0.6201	D630024D03Rik	1,5220	
Rpl36a-ps1	-0.9765	Dpagt1	-0 5179	St3gal3	0,6202	RP23-134H19.4	1,5226	
Gm5786	-0.9745	Rps6ka4	-0 5178	Fam13b	0,6202	Cyp4b1	1,5250	
Tpi-rs11	-0.9744	Ttc32	-0 5164	Lbh	0,6221	Derl3	1,5251	
Cdkn3	-0.9722	Itga7	-0.5162	Tbc1d8	0.6223	Zmynd10	1,5305	
Pdlim2	-0.9707	Gm7536	-0.5157	Rnf213	0.6224	A330058E17Rik	1,5325	
Pctp	-0.9695	Nfatc2	-0 5152	Gba2	0.6229	Fxyd4	1 5377	
Mettl20	-0.9657	Ірр	-0 5137	Usp35	0.6234	Cul9	1 5406	
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-,/	1	-,		-,2 .00	

signifikant herunterregulierte Gene mpkCCD 300 vs. 600			signifikant hochregulierte Gene mpkCCD 300 vs. 600				
Arpin	-0,9599	Rps13-ps1	-0,5133	Gm43737	0,6235	Gm20492	1,5406
Mif	-0,9579	Fam185a	-0,5131	Afap112	0,6236	Lrrd1	1,5425
Gm10275	-0,9566	Tspan5	-0,5123	Acvr2a	0,6243	Fgfr2	1,5426
Rpl13-ps6	-0,9526	Tead2	-0,5116	Gm26809	0,6244	Ptgs2	1,5427
Rpl35a	-0,9511	Lsm5	-0,5112	Mavs	0,6246	Bicc1	1,5470
Rps27a	-0,9466	Tbl3	-0,5112	Lmo7	0,6248	Ccdc116	1,5475
Plxna2	-0,9452	Adi1	-0,5108	Sh2d3c	0,6257	Oas1c	1,5486
Perp	-0,9430	Cnot6l	-0,5107	Fmnl2	0,6265	Cd24a	1,5488
Cadm4	-0,9423	Tpst2	-0,5099	Limd2	0,6273	Rep15	1,5493
1134	-0,9417	Id1	-0,5092	Mob3b	0,6280	Myom1	1,5528
Anxa3	-0,9399	Rpf2	-0,5087	Rab20	0,6286	Camk2n1	1,5541
Msh5	-0,9386	Lage3	-0,5082	Ajuba	0,6288	Gm5602	1,5569
Matn3	-0,9386	Smim15	-0,5081	Hspb2	0,6296	Mycn	1,5576
Chst13	-0,9384	Ict1	-0,5080	Zfp646	0,6297	Rrad	1,5577
Plek2	-0,9365	Pabpc1	-0,5077	P3h2	0,6319	Scarf1	1,5587
Fbxl2	-0,9326	Nsmaf	-0,5077	Usp49	0,6322	C1qtnf6	1,5642
Tnfaip811	-0,9317	Ppid	-0,5069	Zmynd8	0,6322	Cldn4	1,5765
Ctsl	-0,9309	Klc3	-0,5061	Ap1s2	0,6340	Akr1b8	1,5801
Bmp7	-0,9303	Parn	-0,5059	Cdh24	0,6345	Oasla	1,5841
Rpl35a-ps2	-0,9292	Ccdc66	-0,5040	Prkx	0,6349	B230217C12Rik	1,5850
Dnajc15	-0,9283	Psmb3	-0,5024	Zfp182	0,6350	Psd2	1,5850
Znrd1as	-0,9281	Rpl3	-0,5024	Pkd2l2	0,6353	Pglyrp2	1,5850
Pgm2	-0,9260	Rpl21	-0,5021	Ptms	0,6357	Adgra1	1,5903
Glt1d1	-0,9227	Rpl3-ps2	-0,5013	Anxa1	0,6358	Ccl5	1,5963
Gm12602	-0,9223	Gatsl3	-0,5007	2810403A07Rik	0,6362	Chrnb2	1,5972
Rpl38	-0,9222	Xylt2	-0,5004	Gm6548	0,6366	Hhipl2	1,6020
Gpd2	-0,9197	Naa10	-0,5003	Blnk	0,6369	Adra2a	1,6041
Atg9b	-0,9194	Gm6863	-0,5002	Pafah2	0,6372	Gm11537	1,6049
Rpl41	-0,9175	Pgap2	-0,5001	4931406C07Rik	0,6375	Eps8l1	1,6054
Ribc1	-0,9153	Npm1	-0,4979	Slc25a45	0,6379	4933408B17Rik	1,6194
Arntl2	-0,9148	Kif13a	-0,4974	Ndufa6	0,6393	1115	1,6253
Gm7993	-0,9128	Epb4113	-0,4971	Tns3	0,6394	Slc39a4	1,6261
Rpia	-0,9120	Gm4294	-0,4964	Fermt1	0,6395	Kctd6	1,6307
Gm29630	-0,9069	40422	-0,4963	Epb41l4a	0,6397	Tnfsf13b	1,6323
Rpl38-ps2	-0,9066	Zfp111	-0,4962	Trp53bp2	0,6407	Arid3a	1,6340
Socs1	-0,9060	Rpl17-ps10	-0,4962	5033430115Rik	0,6411	Prr22	1,6349
Plekhg6	-0,9038	Parpbp	-0,4960	Arhgap42	0,6416	Dok3	1,6392
Rpl35	-0,9037	Hpcal1	-0,4951	Gdf11	0,6422	Cytip	1,6415
Bphl	-0,9001	Mpzl3	-0,4950	Amotl2	0,6425	Plekha4	1,6485
Wipi1	-0,8991	Basp1	-0,4948	Fat2	0,6427	Arhgef37	1,6538
Smim3	-0,8969	Axl	-0,4946	Ndrg3	0,6443	Gm27343	1,6540
Hspb11	-0,8944	Fam83d	-0,4942	Ift80	0,6444	1600020E01Rik	1,6543
Tmem41a	-0,8901	Mrps16	-0,4938	Kcnk5	0,6452	Strip2	1,6556
Terf1	-0,8894	Ube2e1	-0,4935	Papd7	0,6453	Espnl	1,6605
Smim6	-0,8892	Nfyb	-0,4934	Zfp84	0,6458	Sptb	1,6652

signifikant herunterregulierte Gene mpkCCD 300 vs. 600				signifikant hochregulierte Gene mpkCCD 300 vs. 600			
2010204K13Rik	-0,8891	Glrx3	-0,4929	Hapln4	0,6470	4930533K18Rik	1,6724
Aiml	-0,8887	Zfp37	-0,4918	Pitpnm2	0,6493	Sec1411	1,6764
Kdelc2	-0,8879	Rpl14-ps1	-0,4916	Cdan1	0,6494	Dsg4	1,6781
Akap7	-0,8878	Isy1	-0,4913	Myl6b	0,6505	1700001022Rik	1,6881
Rpl36a-ps2	-0,8878	Ybx1	-0,4903	Mcam	0,6505	Prkar2b	1,6895
Rad9a	-0,8867	Unc119	-0,4891	Vps37c	0,6509	Fhod3	1,6931
Nphp3	-0,8840	Efhd2	-0,4891	Ctxn1	0,6510	Ecscr	1,7004
Pstpip2	-0,8806	Ing2	-0,4889	Gm43719	0,6510	Gm27209	1,7004
Rpl12	-0,8803	Psmd8	-0,4877	Man2a2	0,6510	Hspa4l	1,7021
Dph5	-0,8800	Rps5	-0,4872	Ptger1	0,6511	Ltbp1	1,7059
Rps16	-0,8778	Fntb	-0,4867	Slc12a6	0,6516	Adora2a	1,7078
Adora1	-0,8774	Mrpl1	-0,4867	Chst7	0,6521	Gm13418	1,7078
Sepw1	-0,8773	5031439G07Rik	-0,4864	Slc30a4	0,6533	Gm43693	1,7078
Blvrb	-0,8773	Mfge8	-0,4863	Csrnp1	0,6534	Fam43a	1,7088
Nkpd1	-0,8769	Zswim3	-0,4863	Fndc3b	0,6552	Gm17971	1,7105
Nsmce1	-0,8764	Fibp	-0,4858	Zfp579	0,6560	Rn7sk	1,7151
Odc1	-0,8759	Fbxw9	-0,4846	Lrrc24	0,6569	Fam169a	1,7199
Rps19-ps7	-0,8758	Srp72	-0,4841	Stard10	0,6569	Baiap3	1,7264
Coa4	-0,8745	Rpl3-ps1	-0,4839	Ptprj	0,6580	A530084C06Rik	1,7306
Gsn	-0,8742	Fh1	-0,4837	Slco3a1	0,6587	Plekhg4	1,7327
Ckmt1	-0,8742	Thoc7	-0,4835	2610507B11Rik	0,6599	Fam20c	1,7362
Ropn11	-0,8708	Stambpl1	-0,4831	BC051226	0,6607	Gpr153	1,7370
Tpil	-0,8701	Nxn	-0,4831	Snapc1	0,6613	Gm15753	1,7485
Tomm70a	-0,8692	Scpep1	-0,4826	Wdr81	0,6617	Uvrag	1,7506
Gm21710	-0,8684	Gk	-0,4814	Traf5	0,6620	Arhgap24	1,7535
Zfp36l2	-0,8655	Pofut1	-0,4804	Esrp2	0,6622	Irgm1	1,7558
Gm4604	-0,8648	Manea	-0,4804	Styk1	0,6624	Gm42878	1,7574
Arhgap40	-0,8646	Pes1	-0,4800	Gm15545	0,6630	Isg15	1,7600
Cmss1	-0,8631	Coq5	-0,4798	Xrcc1	0,6644	Ncald	1,7614
Grhpr	-0,8622	Cetn3	-0,4797	Iba57	0,6645	Gm43270	1,7618
Gadd45g	-0,8614	Nin	-0,4795	Anapc16	0,6649	2310068J16Rik	1,7655
Gm12254	-0,8603	Tctex1d2	-0,4795	Ulk2	0,6652	Ср	1,7670
Rps26	-0,8603	Pgrmc1	-0,4791	Ermp1	0,6653	4930402H24Rik	1,7693
Pifl	-0,8577	Psd4	-0,4790	Itga10	0,6663	Gm20544	1,7723
Gm2223	-0,8568	Snx6	-0,4789	Slc25a38	0,6671	Col11a2	1,7767
Clybl	-0,8551	Gtf3a	-0,4789	Pfn2	0,6682	Hist1h2bg	1,7776
Akap17b	-0,8532	Mrpl30	-0,4779	Inpp5f	0,6685	Megf9	1,7813
Vill	-0,8528	Orc5	-0,4779	Edrf1	0,6685	Hs3st1	1,7853
Tmbim1	-0,8523	Rps9	-0,4769	Fanca	0,6686	Tmem91	1,7885
Plcd1	-0,8519	Gm10282	-0,4761	Znrf2	0,6687	Spire2	1,7996
Gm2000	-0,8517	Zfpm2	-0,4758	Hoxb8	0,6687	Acox2	1,8000
Gm10156	-0,8509	Ahcy	-0,4755	Prr14l	0,6687	Cldn8	1,8000
Rpl28-ps1	-0,8470	Hmces	-0,4744	Slc35a5	0,6688	Ccl9	1,8074
Entpd2	-0,8458	Phykpl	-0,4743	Tesk1	0,6691	Spaca4	1,8074
Krt7	-0,8454	Tmem5	-0,4742	Samd14	0,6702	Gm9955	1,8074

signifikant herunterregulierte Gene mpkCCD 300 vs. 600			signifikant	hochregu 300	llierte Gene mpk vs. 600	ene mpkCCD		
Mdfi	-0,8453	Gm10094	-0,4741	Hap1	0,6703	4930426D05Rik	1,8074	
Lor	-0,8451	Mrps9	-0,4741	BC021891	0,6717	Foxal	1,8159	
Pgk1	-0,8445	Fer	-0,4737	Ano8	0,6722	Cilp2	1,8171	
Gcat	-0,8424	Rp9	-0,4734	Atplal	0,6723	Slc16a5	1,8179	
Rpl36a	-0,8401	Kxd1	-0,4730	Kif3c	0,6723	Gm38056	1,8231	
Rpl34	-0,8391	Krtcap3	-0,4710	Cxxc5	0,6724	Fbxl22	1,8255	
Rpl28	-0,8377	Gm15427	-0,4705	Slc25a10	0,6726	2210016F16Rik	1,8260	
Creg1	-0,8373	1110004F10Rik	-0,4699	Slc12a7	0,6737	Gm43310	1,8278	
Clu	-0,8341	Prelid1	-0,4695	Mfhas1	0,6738	Ddx60	1,8285	
Rplp1	-0,8339	Uqcrb	-0,4692	Coq10b	0,6738	Gm42940	1,8365	
Rps2	-0,8333	Cct5	-0,4690	Cfp	0,6753	Oit1	1,8389	
Gm10420	-0,8326	Lrrc40	-0,4685	Rap1gap2	0,6754	Vegfa	1,8411	
Eif2s3x	-0,8294	Dhps	-0,4681	Zfp697	0,6794	Col4a4	1,8473	
Rps10-ps1	-0,8284	Ptpn21	-0,4676	4931428F04Rik	0,6795	Gm37621	1,8501	
Sfn	-0,8276	Rpl10a	-0,4669	Мурор	0,6798	4933413G19Rik	1,8541	
Yifla	-0,8273	Ruvbl1	-0,4669	Mast2	0,6798	Arrb1	1,8591	
Esr1	-0,8265	Eif3i	-0,4666	Smap2	0,6803	Fabp3	1,8667	
Gm14388	-0,8253	Tdg	-0,4659	Cpne2	0,6805	C1ra	1,8669	
Adam12	-0,8235	Garl	-0,4648	Arhgef3	0,6806	Hsd17b11	1,8685	
Rpl39	-0,8235	Serbp1	-0,4645	Zscan2	0,6808	Igsf5	1,8698	
Enkur	-0,8231	Chtf18	-0,4644	Tln2	0,6809	Sorcs2	1,8701	
Bbs12	-0,8223	Farsb	-0,4644	Cxcl5	0,6818	Serpinf2	1,8908	
Rps14	-0,8201	Ccng1	-0,4641	Rusc1	0,6831	Ugt8a	1,8946	
Rps16-ps2	-0,8185	Usp6nl	-0,4637	Fxr2	0,6837	Gm9522	1,8995	
Morn4	-0,8170	Hmbs	-0,4635	Lin9	0,6848	Agmo	1,9018	
1110004E09Rik	-0,8167	Gm4204	-0,4634	Zfp236	0,6849	Oasl2	1,9088	
Azin2	-0,8156	Mrpl15	-0,4608	Sft2d3	0,6851	Itga1	1,9120	
Tmem238	-0,8154	Phlda3	-0,4605	Slc25a19	0,6853	Tc2n	1,9147	
Rps12	-0,8153	Sgk3	-0,4604	Psd3	0,6859	Trim12a	1,9303	
Il17re	-0,8130	Dtd1	-0,4599	Galm	0,6876	Fam179a	1,9329	
Tmem98	-0,8127	Smurf1	-0,4592	Gm16314	0,6882	Gm16209	1,9329	
Gm2a	-0,8117	Fundc2	-0,4591	Edn1	0,6898	Slc25a48	1,9344	
Rpl17	-0,8111	Slc39a11	-0,4582	Rn18s-rs5	0,6900	Casp14	1,9381	
Dis3l2	-0,8108	Vars2	-0,4582	Glis3	0,6900	Tns1	1,9414	
Eya2	-0,8103	Nufip1	-0,4582	Rere	0,6902	Gem	1,9441	
Tmem205	-0,8100	Thbs3	-0,4580	Frmd4b	0,6910	Nos2	1,9475	
Apool	-0,8092	Znhit3	-0,4575	Bpgm	0,6915	Oas1g	1,9497	
Adamtsl4	-0,8085	Rad23a	-0,4560	Mllt11	0,6940	Heyl	1,9502	
Mum111	-0,8078	Mrps10	-0,4558	Pde5a	0,6940	Muc1	1,9522	
Eeflg	-0,8076	Lrrc8b	-0,4548	Epn2	0,6945	Hist1h1c	1,9619	
Celf2	-0,8070	Lnp	-0,4544	Hipk1	0,6956	Trabd2b	1,9709	
Rpl31	-0,8061	Clic1	-0,4544	Atp11a	0,6961	Mapk4	1,9733	
Rps23	-0,8060	Fam57a	-0,4540	4932438A13Rik	0,6970	Cfap69	1,9763	
Hilpda	-0,8057	Capza1	-0,4527	Ehd4	0,6971	Gfap	1,9866	
Tagln2	-0,8043	Ndufb5	-0,4524	Mllt3	0,6972	Myom3	1,9938	

signifikant herunterregulierte Gene mpkCCD 300 vs. 600			signifikant	hochregu 300	lierte Gene mpk vs. 600	CCD	
Stom	-0,8029	Zcchc17	-0,4524	Aktip	0,6981	Gm15418	2,0000
Cep41	-0,8024	Krtcap2	-0,4507	Parp8	0,6983	4930511M06Rik	2,0000
Gm11942	-0,8019	Dhrs1	-0,4503	Asb1	0,6983	Dao	2,0082
Gstol	-0,8015	Plekha7	-0,4501	Ppt2	0,6986	Tbxa2r	2,0116
Ifitm10	-0,7995	Eef1b2	-0,4499	Arhgef9	0,6989	Ppp1r3f	2,0128
Map3k8	-0,7976	Sde2	-0,4498	Acap1	0,6994	Ccnjl	2,0169
Irf8	-0,7968	Emc2	-0,4497	Mal	0,6997	Trpv3	2,0224
Tatdn3	-0,7962	Banf1	-0,4496	Phf6	0,7000	Cish	2,0240
Rpl26	-0,7961	Me2	-0,4493	Slc39a6	0,7002	Fam188b	2,0300
Gm10076	-0,7955	Snrpd1	-0,4493	Pomgnt1	0,7019	Sycp3	2,0410
Rhbdl2	-0,7953	Polr2h	-0,4472	Foxc1	0,7022	4930512B01Rik	2,0561
Sptssa	-0,7951	Ckap2	-0,4471	Kmt2d	0,7028	Hic1	2,0641
Garnl3	-0,7922	Tmem9	-0,4461	Gm9958	0,7032	Ampd3	2,0678
Dip2c	-0,7916	Zranb2	-0,4461	Lgr6	0,7033	Slc5a9	2,0704
Klf4	-0,7915	Nt5dc1	-0,4452	Tmem62	0,7035	Tgfbr3	2,0716
Rps2-ps13	-0,7904	Cpt2	-0,4447	Casd1	0,7051	Rnasel	2,0734
Rpl31-ps8	-0,7903	Adamts15	-0,4446	Klf13	0,7053	B230312C02Rik	2,0780
Rps10	-0,7898	Hat1	-0,4443	Rom1	0,7058	Ggt1	2,0875
Mov10	-0,7894	Ppm11	-0,4435	Spg7	0,7074	Crb2	2,0995
Adgre5	-0,7890	Fkbp5	-0,4423	Rac3	0,7077	Tmem59l	2,1008
Slc29a1	-0,7888	Fbl	-0,4422	Pls3	0,7084	Igtp	2,1035
2610301B20Rik	-0,7870	Slc25a4	-0,4417	Zfp239	0,7096	Lppr4	2,1065
Dusp10	-0,7867	B9d1	-0,4414	Atp8b1	0,7096	Bpi	2,1155
Rpl27-ps3	-0,7863	Ppa2	-0,4413	Camk2d	0,7101	Ppara	2,1155
A630095E13Rik	-0,7858	Gm13736	-0,4410	Gm27003	0,7110	2310014F06Rik	2,1155
Rpl30	-0,7851	Clns1a	-0,4409	Dock9	0,7115	Gpx2	2,1197
Rps15a-ps6	-0,7846	Timm13	-0,4407	Mex3b	0,7121	1111	2,1414
Acsf2	-0,7841	Prim1	-0,4399	Phf8	0,7122	Anxa9	2,1449
Dgat2	-0,7836	Appl1	-0,4395	Mtus1	0,7137	Cldn22	2,1497
Aldoa	-0,7831	Mpzl2	-0,4394	Cyth1	0,7146	Gfod1	2,1510
Nudt19	-0,7822	Ccdc85b	-0,4389	Rhof	0,7149	Mir8102	2,1699
Serpina3g	-0,7815	2810428115Rik	-0,4389	Cep95	0,7151	Cxcl3	2,1699
Igsf3	-0,7805	Celsr1	-0,4387	Trp53inp2	0,7165	Cxcl10	2,1707
Nadsyn1	-0,7796	Mrpl50	-0,4383	Vgll4	0,7166	Srgap3	2,1782
Ghr	-0,7794	Chmp4c	-0,4382	Rgl3	0,7174	Itgb3	2,1852
Gdpd5	-0,7788	Tubalc	-0,4378	Apoe	0,7183	Gm7329	2,1926
Alg3	-0,7785	Mcm10	-0,4371	Sfxn2	0,7187	Ccno	2,1975
Rps25	-0,7780	Irak1bp1	-0,4370	Samd4	0,7201	Rnf43	2,2042
Rpl32	-0,7774	2700029M09Rik	-0,4370	Stxbp1	0,7205	Ggt7	2,2101
Ehd2	-0,7763	Rnf219	-0,4370	Cdc42se1	0,7205	Gm5082	2,2130
Rps7	-0,7756	Nudt4	-0,4357	Rc3h2	0,7208	Tnf	2,2278
Rpl5	-0,7753	Cct4	-0,4355	Ppp2r5b	0,7209	Phyhipl	2,2288
Scd2	-0,7733	Eif3f	-0,4354	Gm21967	0,7209	Cmpk2	2,2321
Nif311	-0,7720	Wnt7a	-0,4348	Gyltl1b	0,7211	Mxra8	2,2353
Pgk1-rs7	-0,7719	Gm11847	-0,4346	Rundc3a	0,7215	Adh7	2,2479

signifikant herunterregulierte Gene mpkCCD 300 vs. 600			signifikant h	ochreguli 300 v	rte Gene mpkCCD 600			
Elk3	-0,7715	Cltb	-0,4345	Sardh	0,7221	Spock2	2,2587	
Bsg	-0,7715	Pitrml	-0,4338	Junb	0,7224	Gm14057	2,2599	
9130008F23Rik	-0,7707	Shisa5	-0,4333	Nol4	0,7240	Car2	2,2650	
Map3k7cl	-0,7692	Eif3h	-0,4327	Kctd2	0,7242	Was	2,2709	
Pcolce2	-0,7691	Eefsec	-0,4324	Rgmb	0,7244	Otoa	2,2854	
Gm14648	-0.7683	Wfdc2	-0.4322	Cd14	0.7245	Plagl1	2.3198	
Cc2d2a	-0,7631	Tubb5	-0,4321	Hexim1	0,7252	Sytl2	2,3219	
Neil3	-0.7612	Ddx56	-0.4303	Arhgap32	0.7256	Clsl	2.3219	
Casp6	-0.7610	Prmt7	-0.4294	Bok	0.7257	Tmprss6	2.3219	
Pla2g7	-0.7608	Rell1	-0.4288	Slc4a7	0.7258	Spon2	2.3334	
Gm13192	-0.7603	Cpsf3	-0.4287	Mrps6	0.7308	Cobll1	2.3366	
Rpl11	-0.7582	Cks2	-0.4281	Fcho2	0.7317	Ptprr	2.3366	
Fosl1	-0.7578	Bace1	-0.4279	Lmbrd2	0.7321	Pinlyp	2.3370	
Gm14586	-0.7554	Alg5	-0.4276	Btg2	0.7325	1700016C15Rik	2,3370	
Rps26-ps1	-0.7552	Uqcrh	-0.4269	Prob1	0,7332	Irgm2	2 3394	
Acp1	-0.7550	Naa50	-0.4252	Nmrk1	0.7338	Nacad	2 3450	
Tnfaip3	-0 7545	Xxylt1	-0.4249	Slc7a4	0,7351	Lrp2	2,3450	
E330009J07Rik	-0.7525	Slc25a12	-0.4241	Slc7a1	0,7357	Slc46a2	2,3479	
Rab31	-0,7523	Edem2	-0,4237	Ahcyl2	0,7362	Pde1c	2,3570	
Dusp7	-0.7518	Clasp2	-0.4234	Spag1	0,7370	Aqp6	2,3377	
Isg20	0.7514	Ctbp1	0.4234	Elf1	0,7374	S100g	2,3717	
Hdhd3	0.7507	Memol	0.4233	Klhdc8a	0,7374	Scube3	2,3720	
Vamp5	-0,7506	Tmem209	-0,4235	Gaa	0,7383	Atp10b	2,3720	
Gm4366	0.7504	Naca	0,4210	C4a	0,7385	Cdkl1	2,3707	
Chid1	0.7401	Sar1b	0.4208	Arap2	0,7388	Fam53b	2,3014	
Apln	0.7491	Ebna1bp2	0,4204	D930015E06Rik	0,7388	Gm9959	2,3857	
Gm3756	0.7465	AW209491	0,4204	Steap1	0,7408	Gm43162	2,3090	
Gm12918	-0,7403	Pvib	-0,4203	Dusp8	0,7412	Maf	2,3923	
Avpi1	0.7430	Haus1	-0,4201	Gm29170	0,7420	Gm15411	2,3923	
Rps19	-0,7446	Gm15210	-0,4200	Dag1	0,7432	Ctof	2,3945	
1117rd	-0,7443	Nsf	-0,4189	Cdc42hng	0,7472	Sema7a	2,3940	
Stoml2	-0,7437	Mrp113	-0,4164	Pin5k1b	0,7475	Cvp2d9	2,3908	
Frmd4a	-0,7428	Gpc4	-0,4179	2410131K14Rik	0,7405	Papln	2,4021	
D111	-0,7428	Nao2	-0,4178	Slc35b4	0,7465	Leals7	2,4025	
Abhd14a	-0,7427	Hdefrn3	-0,4175	Usp20	0,7502	Pmepal	2,4060	
Rnln?	-0,7419	Cnhn	-0,4100	Gm37795	0,7510	Tas1r3	2,4007	
Sirt5	-0,7417	Ndufb10	-0,4162	Rilnl1	0,7517	Nadk?	2,4080	
Tinl	-0,7403	Atic	-0,4159	Rah11fin?	0,7519	Mir681	2,4212	
Rns8	-0,7398	San30	-0,4153	Gnsm1	0,7542	Peas	2,4330	
Rps2-ps10	-0,7387	Pkig	-0,4152	Wwc1	0,7557	Slc16a12	2,4406	
Txnrd1	-0,/387	Pnn1r?	-0,4149	Epn3	0,7565	Abi3hn	2,4406	
Rhoc	-0,/385	Fif5a	-0,4145	Vwa5a	0,7565	Lynd?	2,4412	
D8Frtd820	-0,7377	Ddahl	-0,4145	Mfsd11	0,7571	Akan4	2,4535	
Trdmt1	-0,7370	Cdc20	-0,4143	St3aal1	0,7595	Alcam	2,4594	
Sec61a	-0,7370	Dctnn1	-0,4113	Nav2	0,7607	Cd70h	2,4594	
Secong	-0,7363	Duppi	-0,4108	110112	0,7615	<i>Cur 70</i>	2,4594	

signifikant herunterregulierte Gene mpkCCD 300 vs. 600			signifikant h	gnifikant hochregulierte Gene mpkCCD 300 vs. 600			
Trpm4	-0,7346	Utp111	-0,4103	Tmem2	0,7617	Nrip3	2,4767
Gm10736	-0,7340	Vamp3	-0,4083	Peli1	0,7650	4921506M07Rik	2,4814
Gm3788	-0,7333	Dusp14	-0,4079	Tle2	0,7656	1700039E22Rik	2,4854
9530053A07Rik	-0,7331	Snx5	-0,4069	Mybl1	0,7666	Clec2l	2,4948
Snrpe	-0,7327	Sgpp1	-0,4064	Ppp1r10	0,7672	Edar	2,4975
Mthfd11	-0,7324	Sash1	-0,4046	Xbp1	0,7708	Gm6736	2,4983
P2rx4	-0,7319	Prps1	-0,4040	Rcan1	0,7713	Tnfsf15	2,4996
Marc2	-0,7309	Hmgn5	-0,4040	Gpr157	0,7718	Ffar4	2,5004
Tspo	-0,7293	Atr	-0,4035	Arhgef12	0,7723	Clstn3	2,5004
Dusp4	-0,7289	Clqbp	-0,4021	E030030106Rik	0,7724	Slc45a3	2,5025
Hint2	-0,7288	Nup43	-0,4019	Mthfd2	0,7726	Itgb2l	2,5078
Nipal4	-0,7273	Nbeal2	-0,4001	Dfna5	0,7738	Gm6445	2,5146
Eif3s6-ps2	-0,7267	Psma6	-0,3996	Slc24a5	0,7748	Gal3st1	2,5239
Rpl37a	-0,7267	Bckdk	-0,3973	Ehf	0,7752	38231	2,5366
Got2	-0,7259	Трт3	-0,3955	Fam102a	0,7767	Col27a1	2,5443
Rpl39-ps	-0,7256	Map7d1	-0,3951	Ptch1	0,7768	Cfap46	2,5443
Wdr54	-0,7225	Atp5d	-0,3949	Mppe1	0,7782	Tg	2,5489
Fmnl1	-0,7224	Cct2	-0,3944	Sema4c	0,7789	Cdh16	2,5519
Yif1b	-0,7222	Sod2	-0,3940	Gm527	0,7795	Bmf	2,5539
Rps18	-0,7218	Tra2b	-0,3939	Arhgef25	0,7803	Duspб	2,5755
Gm11361	-0,7217	Serpinh1	-0,3938	Rgs2	0,7805	Car5b	2,5760
Vat1	-0,7213	Ndufv2	-0,3937	Furin	0,7808	Irf7	2,5772
Reep4	-0,7196	Pebp1	-0,3937	App	0,7820	Pth2r	2,5850
Prss23	-0,7190	Galnt3	-0,3918	Snx30	0,7836	Ifit1	2,5911
Anp32a	-0,7187	Taf1d	-0,3917	Kif5a	0,7845	Lect1	2,5943
Chchd10	-0,7180	Smn1	-0,3912	Sh3tc2	0,7855	Igfbp7	2,6003
Rpl7a-ps5	-0,7174	Ddx49	-0,3911	Dqx1	0,7863	Rasl11b	2,6034
Syngr2	-0,7169	Ccnf	-0,3908	Sipa112	0,7878	Gja5	2,6082
Xrcc6bp1	-0,7165	Drg2	-0,3908	Tmco3	0,7883	Arc	2,6219
Foxn1	-0,7164	Prdx3	-0,3899	Rbbp9	0,7900	Crlf1	2,6242
Trim16	-0,7162	Ehbp111	-0,3887	Nbeal1	0,7900	Abcc6	2,6323
Rps13	-0,7161	Ola1	-0,3883	Grk5	0,7909	Rap1gap	2,6375
Lactb2	-0,7151	Сстба	-0,3875	Slc22a15	0,7915	Gm42528	2,6410
Rps15	-0,7143	Dpy30	-0,3860	Leng9	0,7923	Xaf1	2,6420
Slc25a17	-0,7139	Dcun1d5	-0,3850	Ngfrap1	0,7924	Ip6k3	2,6630
Gbel	-0,7131	Pmpcb	-0,3844	Mocos	0,7931	Plb1	2,6630
Gjb3	-0,7125	Llph	-0,3832	Zcchc2	0,7937	Ccl2	2,6738
Rpl13	-0,7117	Nsfl1c	-0,3824	Stap2	0,7945	Cyp4a12a	2,6910
Ptk2b	-0,7111	Rpl36al	-0,3823	Mfsd6l	0,7950	Nqo1	2,6977
Eepd1	-0,7109	Slc11a2	-0,3814	5930420M18Rik	0,7959	Rsad2	2,6979
Atp5k	-0,7099	Ap2a2	-0,3794	Efnb3	0,7970	Oaslb	2,7337
Sh3bp5	-0,7091	Tex10	-0,3770	Pla2g6	0,7985	Gm13986	2,7370
Rpl19	-0,7089	Ndufa10	-0,3757	Fbxo2	0,7998	Stard8	2,7442
Rps17	-0,7085	Dlst	-0,3757	Stradb	0,8015	Ppap2b	2,7526
Tigd2	-0,7078	Хrccб	-0,3756	Six5	0,8017	Klhl14	2,7631

signifikant herunterregulierte Gene mpkCCD 300 vs. 600						
Rps24	-0,7057	2700060E02Rik	-0,3753	Cr		
Vrk2	-0,7049	Crcp	-0,3740	Zņ		
Kdelr3	-0,7037	Eif3m	-0,3720	Co		
Bbs7	-0,7037	Magoh	-0,3720	Cđ		
Hmga2	-0,7019	Ndufc2	-0,3718	Efr		
Gm15772	-0,7019	Tmem109	-0,3716	Ти		
Rundc3b	-0,7017	Pmf1	-0,3715	Me		
2700094K13Rik	-0,7016	Spcs3	-0,3707	Nu		
Gm10154	-0,7012	Ascc3	-0,3703	No		
2810025M15Rik	-0,7012	Tars2	-0,3694	As		
Plekha2	-0,7009	Agps	-0,3694	Kr		
Ddx19b	-0,7006	Slk	-0,3682	Gc		
Rps6	-0,7000	Pdcd6	-0,3676	Dn		
Necap1	-0,6998	Gmps	-0,3609	Zs		
Pcnxl4	-0,6993	Rwdd1	-0,3602	Sm		
Gm11249	-0,6978	Fam98b	-0,3567	Ifit		
S100a11	-0,6972	Mrpl47	-0,3558	Dc		
Eif2b3	-0,6969	Fkbp9	-0,3546	Spi		
Il1rap	-0,6969	Cfl2	-0,3503	My		
Pa2g4	-0,6945	Rcn2	-0,3477	Sn.		
Eno1b	-0,6942	Cops4	-0,3476	Np		
Cdsn	-0,6932	Uqcrc2	-0,3470	Nr		
Tmem231	-0,6926	Erh	-0,3438	Zfį		
	-0,6921	Eif4e	-0,3336	Me		
				Dv		
				Pa		
				H6		
				Zfį		

signifikant hochregulierte Gene mpkCCD						
	300	vs. 000				
Crebzf	0,8025	Cxcl11	2,7655			
Znfx1	0,8026	Gmpr	2,8024			
Col4a2	0,8034	Keg1	2,8074			
Cdkl5	0,8039	Rph3a	2,8074			
Efna4	0,8047	Slc4a5	2,8301			
Tulp3	0,8057	Uckllos	2,8413			
Mecom	0,8078	Pax2	2,8809			
Nuak1	0,8079	Cdh5	2,8845			
Nol4l	0,8095	Trim30a	2,9143			
Asic1	0,8100	Slc6a19	2,9210			
Krit1	0,8105	Sod3	2,9260			
Gcnt1	0,8106	Pou2f3	2,9307			
Dmd	0,8112	Adgrg3	2,9313			
Zswim8	0,8119	Camk2b	2,9537			
Smoc1	0,8141	Ifit3b	2,9652			
Ifitm3	0,8152	Akr1b3	2,9841			
Dcaf11	0,8169	Pabpn11	3,0000			
Spns3	0,8170	Oasle	3,0000			
Myo9a	0,8173	Sec1	3,0000			
Snx9	0,8177	Ifi27	3,0020			
Npnt	0,8186	2210406010Rik	3,0051			
Nrip2	0,8189	Ifi44	3,0064			
Zfp438	0,8205	Meox2	3,0444			
Mex3a	0,8207	Tgtp2	3,0589			
Dvll	0,8222	2410004101Rik	3,0635			
Pax8	0,8224	Gm43011	3,0661			
H6pd	0,8225	Chdh	3,0783			
Zfp651	0,8233	Lax1	3,0797			
Gm16536	0,8235	Masp1	3,0875			
Wfs1	0,8246	Eddm3b	3,0969			
Uba7	0,8254	Nr1h4	3,1012			
5430405H02Rik	0,8255	Fxyd6	3,1043			
Ampd2	0,8262	Gm12138	3,1455			
Met	0,8263	Gm42586	3,1699			
Pgm2l1	0,8265	Gm13594	3,1699			
Eps8l2	0,8265	Lifr	3,1809			
Fam234a	0,8269	Nupr1	3,1881			
Hic2	0,8271	Alox12e	3,2016			
Myo5c	0,8293	Apon	3,2141			
Arl15	0,8301	Cyp2d22	3,2150			
Cited4	0,8305	Adgrb1	3,2150			
Ncor2	0,8317	Angptl4	3,2200			
Gse1	0,8342	Lgals3bp	3,2288			
Slc2a1	0,8350	Tgtp1	3,2479			
Gm20045	0,8353	Hpgds	3,2789			

signifikant herunterregulierte Gene mpkCCD 300 vs. 600	signifikant h	ochregul 300 v	ierte Gene mpkC s. 600	CD
	Lrch1	0,8362	Gm11374	3,2854
	Rab3a	0.8391	Usp18	3.2914
	Ggt6	0.8397	Il17rb	3.2919
	Selo	0,8400	Ifit3	3,2973
	Rassf6	0.8414	1700054A03Rik	3.3219
	Gm12319	0.8420	Lta	3.3286
	Trpv4	0,8452	Cacna1d	3,3877
	Rusc2	0,8476	Sectm1a	3,3923
	Kank1	0,8478	Gm11373	3,4594
	Gm7120	0,8480	Iqgap2	3,4594
	Cebpd	0,8516	Rtp4	3,4825
	Inpp5j	0,8520	Mks1	3,5305
	Cnksr3	0,8527	Cnnm1	3,5677
	3110056K07Rik	0,8532	Mx1	3,5699
	Smarca1	0,8541	Thbs1	3,6172
	Tle4	0,8543	Gbp2	3,6477
	Rfk	0,8546	Mx2	3,6503
	Cnnm2	0,8550	Fry	3,6941
	Fes	0,8554	Aqp1	3,6965
	Tmem171	0,8559	9130409J20Rik	3,7079
	Slc16a8	0,8564	RP23-132J21.5	3,7162
	Slc26a10	0,8600	Afap111	3,8018
	Ccdc68	0,8617	Obscn	3,8176
	Cyp4a12b	0,8622	Scn4a	3,8244
	Casz1	0,8635	Ifi47	3,8244
	Shb	0,8636	Gm38244	3,8329
	Pon3	0,8643	Slco4a1	3,8437
	Cln3	0,8648	Foxq1	3,8467
	Tssk4	0,8651	Oas3	3,8580
	Slc9a5	0,8664	Sult1d1	3,8715
	Cacna1g	0,8688	Gbp3	3,9372
	Nipal3	0,8697	Gucy2g	3,9542
	Sowahb	0,8711	Krt23	3,9827
	Rassf2	0,8714	Zbp1	4,0100
	Hspa11	0,8745	Plat	4,0268
	Socs7	0,8750	Rnf183	4,0271
	N4bp2os	0,8754	Tmem61	4,0404
	Gm14321	0,8769	Ifit1bl1	4,0492
	Cacnala	0,8781	Sgk1	4,0496
	Erich1	0,8794	Slc6a19os	4,1155
	Zbtb20	0,8816	Sost	4,1293
	Letm2	0,8826	Fam107a	4,1353
	Spaca6	0,8842	Clcnka	4,1699
	Gm43681	0,8845	ligp1	4,2288
	Smtn	0,8851	Tmem252	4,3038

signifikant herunterregulierte Gene mpkCCD 300 vs. 600	signifikant h	ochregul 300 v	ierte Gene mpkC s. 600	CCD
	Wbp5	0,8856	Sema3d	4,3083
	Mef2a	0,8871	Mroh4	4,3219
	Kazn	0,8896	Gm7631	4,3219
	Eya1	0,8905	C4bp	4,3615
	Tspan12	0,8918	Rbm20	4,4051
	Fam129c	0,8931	Adgrfl	4,4195
	Rnf19b	0,8959	Ptprb	4,5110
	Rasl10a	0,8981	Veph1	4,6310
	Ss1811	0,8989	Soga1	4,6743
	Parp10	0,9006	Gper1	4,7827
	Lamb1	0,9009	Ghrhr	5,0444
	Dhcr24	0,9012	Kcnj16	5,1651
	Nckap5l	0,9012	Oas2	5,2605
	Plac8	0,9017	Bsnd	5,3461
	Cpeb4	0,9019	Gm567	5,4263
	Wwc2	0,9023	Inmt	5,4419
	Noxo1	0,9027	Slc17a1	5,4919
	P3h1	0,9030	Dnm3	5,7500
	Greb1l	0,9031	Slc1a3	5,8517
	Cryab	0,9037	Npy4r	5,8621
	Slc31a2	0,9089	Kcnj1	6,1799
	Fasn	0,9103	Slc6a12	7,6795
	Sh3d19	0,9116	Tldc2	7,7795
	Spef1	0,9135	Fxyd2	7,9012
	Nedd9	0,9149	Prss35	8,4998
	117	0,9161	Ranbp31	8,9542
	Gstm1	0,9168		

Tabelle 27: Log₂ fold changes gemeinsamer differenziell exprimierte Gene unter Hyperosmolalität in Maus IMCDs und mpkCCD.

Aufgelistet sind die am stärksten signifikant-regulierten-Gene unter Hyperosmolalität in Maus-IMCDs und mpkCCD-Zellen mit einem \log_2 fold change von < -1/> 1. Die hier gelisteten Gene sind in Abbildung 20B dargestellt.

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
1700016C15Rik	2,1802	2,3370	Gm8318	1,8073	-1,0589
1700027F09Rik	1,8073	-1,3219	Gm8935	-1,1699	-1,1375
1700036G14Rik	2,8073	1,3219	Gm8989	-1,1699	-1,4594
1700039E22Rik	2,5187	2,4854	Gm9772	-1,9386	-1,0875
2010110E17Rik	-1,2630	1,7004	Gm9955	-1,7370	1,8074
2210406010Rik	1,2928	3,0051	Gm9968	1,9635	1,2730
2310007B03Rik	-1,2754	-1,4839	Gpbar1	1,1375	-1,7162
2410004I01Rik	1,1275	3,0635	Gpr153	-1,0375	1,7370
2410004P03Rik	1,1699	1,5850	Gpr61	1,5850	1,1699
2600006K01Rik	1,0000	1,3870	Gpr65	-1,2895	-1,4594
2610528A11Rik	1,7004	-4,5593	Gprc5b	1,1503	1,3188
2810407A14Rik	1,5850	-2,0000	Gpx2	2,4448	2,1197
4632428C04Rik	1,4926	1,2199	Gpx2-ps1	2,3219	1,2630
4930426D05Rik	1,5482	1,8074	Grin3b	1,0875	1,4558
4930500F10Rik	1,2224	1,2630	Gsap	-1,2902	-1,0466
4930512B01Rik	1,4938	2,0561	Gsdmc2	3,9686	2,9069
4930513D17Rik	2,0000	1,5850	Gsdmc4	3,6476	2,1293
4930578106Rik	1,3219	-1,4594	Gsdmcl2	2,2966	1,1375
4930580E04Rik	-1,5850	1,1699	Gsdmcl-ps	3,4500	1,3785
4933408B17Rik	1,7549	1,6194	Gsg1	-1,3219	-1,7004
4933421A08Rik	-2,1699	-1,0275	Gsta1	2,4739	-1,8365
4933429H19Rik	-1,5850	1,1699	Guca2b	2,9814	1,6521
5031414D18Rik	-2,0875	-2,3785	Gucy2g	3,2039	3,9542
5730420D15Rik	-1,3219	2,0000	H2-M2	-1,5850	-2,6781
5830416119Rik	-1,7004	-1,6521	Hal	1,3785	1,4030
5930403N24Rik	-1,7549	-1,1844	Has2	-1,0224	-1,2127
9330161L09Rik	1,2095	1,0275	Hifla	1,0117	1,0233
Abcc2	-1,0995	1,3785	Histlhlc	1,0244	1,9619
Abcc6	2,0000	2,6323	Hist1h2be	1,7634	1,1375
Abhd11os	1,5607	1,1540	Hist1h3c	1,0000	-1,3219
Abi3bp	1,4044	2,4412	Hist1h4i	1,0171	1,0790
Acoxl	-1,0589	1,1783	Hist1h4k	1,8613	1,0952
Actl10	-1,3219	1,2081	Hnmt	1,4427	2,9069
Adam4	-1,0356	1,2955	Homer2	1,0755	1,3219
Adcyap1r1	2,3735	1,8074	Нр	-1,7312	1,2479
Adgrb1	-1,9553	3,2150	Hpgds	-1,4948	3,2789
Adgrf1	3,0221	4,4195	Hs3st1	1,4488	1,7853
Adra2a	-1,3283	1,6041	Hsd11b2	-2,4464	1,3020
Adssl1	-1,1180	-1,4894	Hspa1a	1,5013	1,1234

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
Agmo	1,1481	1,9018	Hspa1b	1,6108	1,3601
AI118078	-1,5850	-1,3536	Hspa4l	1,6482	1,7021
Akr1b3	1,3833	2,9841	Hsph1	1,4545	1,0055
Akr1b8	1,2077	1,5801	Htr5b	3,2410	1,2224
Akr1c19	-1,2381	-1,2208	Htr6	-1,1375	1,3785
Aldoc	1,2884	-1,6200	Idh1	1,3285	1,2559
Anol	-2,0566	-1,0721	Ifi47	-1,0719	3,8244
Apela	1,9303	1,3219	Ifit1	2,1553	2,5911
Apoc2	-1,2016	2,0875	Ifit1b11	1,9260	4,0492
Apol9a	1,4594	1,7221	Ifit1bl2	1,3344	1,3626
Apom	1,4330	1,2880	Ifit2	1,6131	1,3701
Apon	1,1926	3,2141	Ifit3	1,5042	3,2973
Aqp1	2,1841	3,6965	Ifit3b	1,6423	2,9652
Aqp10-ps	1,3923	1,1699	1111	-1,1625	2,1414
Aqp2	5,9813	2,2224	Il1f9	1,4594	-1,0589
Aqp6	2,0000	2,3717	Il1rn	-1,1201	-2,6040
Arhgap24	1,1644	1,7535	Inmt	2,2039	5,4419
Arhgef37	1,0875	1,6538	Irf7	1,0316	2,5772
Atp1b1	1,4618	1,3946	Irs2	1,2005	1,1254
Avil	-1,1651	1,0722	Irs3	2,2461	1,4854
B230303012Rik	-1,5850	-2,4288	Isg15	1,1832	1,7601
B230312C02Rik	2,4190	2,0780	Itih4	-1,1699	1,2479
Baiap3	1,4406	1,7264	Kbtbd11	1,0992	2,1699
BC006965	-1,8073	1,2630	Kcnj1	2,9260	6,1799
Bhlha9	-1,4263	-1,6215	Kcnj16	1,3245	5,1651
Bnip3	1,0814	-1,5118	Kcnn4	-1,8480	-1,1024
Bpi	-1,1375	2,1155	Kif21b	-1,0436	1,3219
Bpifb6	-1,8073	1,1699	Kif26a	-1,3833	-2,8074
Bsnd	1,7583	5,3461	Klhl14	1,4522	2,7631
Btbd11	-1,8504	-1,7847	Klk11	-2,9386	-1,5850
C920009B18Rik	-1,3219	-1,4764	Klra14-ps	1,5850	-1,2801
Cacna1h	-2,1898	1,3219	Krt14	-1,3187	-3,0255
Cacna2d1	-1,0080	-2,2479	Krt16	-2,0000	-3,5443
Calml3	3,6439	1,3785	Krt4	2,1677	-1,8159
Caly	1,3219	-1,3219	Krt5	1,3293	-4,0692
Capn8	-2,6668	-1,1699	Krt79	1,0704	-1,9740
Car2	1,5353	2,2650	Lax1	-1,2274	3,0797
Card14	1,3585	-2,2429	Lcp1	-1,7101	-1,4475
Casp14	-1,1333	1,9381	Lectl	1,6215	2,5943
Casr	-1,5850	-1,3626	Lifr	1,1015	3,1809
Cbr2	1,5106	1,3252	Lincenc1	-1,1520	-1,6630
Ccdc121	1,3219	1,5850	Lrp2	-1,2655	2,3479
Ccl2	-1,0299	2,6738	Lrp2bp	1,4150	-1,2630
Ccl9	-2,1908	1,8074	Ltbp1	-1,4315	1,7059

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log2 fold change mpkCCD 300 vs. 600
Ccnd2	-1,5057	-1,4150	Ltbp2	-1,0348	-1,3013
Ccno	-1,1844	2,1975	Lypd2	2,7753	2,4535
Cd109	-1,0728	-1,3219	Lzts3	1,3477	1,4614
Cd36	-1,3479	-1,8074	Maf	-1,4719	2,3923
Cd6	-1,3219	1,6630	Mafb	-2,1783	-1,5850
Cd79b	1,9652	2,4594	Marcks	-1,6790	-1,0453
Cda	-1,3653	-1,9664	Me1	1,1994	1,4187
Cdh16	1,0778	2,5519	Meox2	5,7944	3,0444
Cdhr2	1,5361	-1,3219	Mill1	2,5850	1,1699
Cdkl1	3,1394	2,3814	Mir5100	-1,4854	-1,3219
Cdkn1c	-1,1828	1,5850	Mir5135	-2,0000	1,1699
Cemip	1,0395	1,9475	Mir681	2,0000	2,4330
Cfap53	1,1339	1,1699	Mir7213	-1,4406	-1,4594
Clca3a2	1,0350	-1,4594	Mir8102	1,5850	2,1699
Clca3b	-2,1120	-3,2653	Mirt1	-1,2630	-2,0559
Clcnka	1,6041	4,1699	Mmp15	-1,9328	1,5719
Cldn11	-1,1844	1,4594	Mmp24	-1,5146	-1,7814
Cldn15	1,9769	1,2224	Moxd1	-1,3844	1,2701
Clec10a	-2,7370	1,3219	Mroh4	1,0668	4,3219
Clec2l	1,2928	2,4948	Muc1	1,1844	1,9522
Cnfn	2,3219	-1,4406	Muc16	-2,3219	-1,5850
Cnnm1	2,2367	3,5677	Muc20	1,3323	1,4737
Cntfr	-1,6391	-2,8301	Muc4	2,4303	-1,1268
Cobll1	1,5037	2,3366	Mx1	3,8580	3,5699
Col27a1	-1,1633	2,5443	Mx2	1,4150	3,6503
Crb2	-1,3587	2,0995	Mybph	1,8073	-1,1699
Creb3l3	-1,8073	1,2801	Mycbpap	1,4365	1,0144
Crispld2	1,3311	2,3692	Myh15	-1,6845	1,3785
Crocc2	1,0435	-2,8365	Myl7	1,3219	-1,6630
Csdc2	-1,6818	-1,3608	Myoc	-1,2224	1,7655
Csrp2	-1,0096	-1,3698	Myom3	2,0000	1,9938
Cst6	-2,3219	-1,6090	Naip1	1,4406	-1,3785
Cwh43	1,2479	-1,4060	Nptx1	3,2479	1,3626
Cyp2d34	2,0000	1,3219	Npy4r	3,7682	5,8621
Cyp2d9	2,0000	2,4021	Nqo1	2,6106	2,6977
Cyp4a12a	-1,1110	2,6910	Nrep	-1,2150	1,6439
Cytip	-1,1766	1,6415	Nrip3	1,7830	2,4767
D130052B06Rik	-1,7162	-1,0704	Nts	-1,0641	-3,4594
D630024D03Rik	2,1375	1,5220	Nupr1	1,2642	3,1881
D630029K05Rik	1,1699	-1,3536	Nxf3	-1,5850	1,1699
D630039A03Rik	1,1459	1,1192	Nxnl1	2,5236	1,2955
D830025C05Rik	-2,0000	1,1699	Oas2	1,3893	5,2605
D830044D21Rik	1,3785	-1,2955	Oas3	2,0875	3,8580
Dab2	-1,3911	-1,9411	Oaz3	-1,7776	1,5850

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log2 fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
Dao	1,4770	2,0082	Obscn	1,6944	3,8176
Dbp	1,3744	-1,3098	Ogdhl	-1,4257	1,3626
Defb1	1,5280	1,5850	Oit1	1,9386	1,8389
Dhx58os	2,3219	2,0000	Olfm4	2,6586	1,2994
Dio1	2,7885	2,7549	Omp	1,0317	1,1918
Dio2	1,7580	-1,1699	Opn5	1,2630	1,1721
Dkk3	-2,0302	-1,3785	Oprd1	1,8073	-1,2630
Dmkn	1,1047	-2,5629	Orm2	-1,4150	2,4594
Dnajc5b	1,3219	2,0000	P2rx2	-2,7570	1,5185
Dnm3	1,1592	5,7500	P2ry6	-1,3090	-1,3219
Dock3	-1,0740	1,1155	Pabpn11	3,3219	3,0000
Draxin	-1,5850	1,2895	Palmd	-1,6614	1,1926
Dsc1	1,8073	1,4594	Paqr5	1,4833	1,0107
Dusp15	-1,9260	1,8074	Pax2	1,1969	2,8809
Edar	1,8688	2,4975	Pck1	1,6630	2,0875
Eddm3b	-1,0444	3,0969	Pcsk5	-1,4873	1,1699
Elf5	1,5387	1,3219	Pcx	2,2872	1,4403
Entpd3	-1,3384	-1,9639	Pde1c	1,1367	2,3599
Epor	1,6930	1,1944	Pecr	-1,1399	-1,4695
Espnl	-2,5850	1,6605	Pgap1	1,1647	1,0121
Fa2h	2,2495	1,0576	Phf20-ps	-1,2630	1,1468
Fabp3	1,7411	1,8667	Phyhd1	-1,6195	1,8074
Fam107a	2,0704	4,1353	Phyhipl	1,2758	2,2288
Fam163a	-1,8480	-1,4529	Pinlyp	1,8413	2,3370
Fam65c	1,1975	-1,0098	Pkp1	-2,4044	-2,3692
Fam83e	1,8745	1,0973	Plat	2,6235	4,0268
Fbln1	2,0641	1,2224	Plb1	2,0000	2,6630
Fbln2	-1,8838	-2,0036	Plbd1	-1,8260	1,1699
Fbxo41	1,3913	2,0875	Plet1	2,0629	1,1752
Fbxw26	-1,7472	2,5850	Pltp	-1,7824	-1,2526
Fcerlg	-1,4176	1,3785	Pmepalos	-1,8606	1,5850
Fcgr2b	-2,1293	-1,1699	Podxl	-1,3305	-1,7326
Fcna	-3,4150	-1,1926	Pou2f2	-1,7162	1,5146
Fer1l6	1,0525	-1,9594	Pou2f3	3,6724	2,9307
Ffar4	-2,0875	2,5004	Pou6f2	1,8073	1,7225
Fgf5	-1,3219	-1,4658	Ppap2b	1,3762	2,7526
Fgfbp1	1,5850	-1,7051	Ppp1r14d	-1,0231	-1,1293
Fgl1	-1,8480	1,1699	Ppp1r3fos	1,0780	1,1699
Figf	1,9027	-1,9827	Ppp1r42	-1,3785	-2,4021
Fndc9	1,9974	1,2895	Ppp4r4	1,6699	1,5850
Folr1	1,0942	1,7370	Prkar2b	1,5939	1,6895
Frem2	1,1243	1,0608	Prl2c3	1,4739	-1,1575
Fxyd2	4,4892	7,9012	Prss27	-1,2918	-2,0395
Fxyd3	1,1520	-1,1155	Prss35	5,8200	8,4998

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
Fxyd4	2,7316	1,5377	Prtn3	1,6534	1,5564
Fyb	-2,1553	-1,5850	Psca	2,3290	1,1904
Gabrp	-1,4566	-2,3140	Ptafr	-1,5850	-1,7370
Gabrr2	1,3219	1,5850	Ptges	1,5172	-1,1024
Gap43	1,3219	-1,4695	Pth2r	1,5361	2,5850
Gbp3	1,0749	3,9372	Ptpn7	-2,7776	2,0000
Gbp4	1,1476	1,3996	Ptprh	1,7058	1,1375
Gck	1,2303	-2,0919	Ptprq	-1,1027	1,2955
Gdnf	-2,0780	-2,0563	Ptprr	2,4838	2,3367
Gem	1,4766	1,9441	R3hdml	2,7004	1,6477
Ghrhr	2,4854	5,0444	Ranbp3l	4,6227	8,954,191
Gipc3	2,2224	1,2538	Rasl11b	1,7614	2,6034
Glrp1	-1,8745	-1,2895	Rbfox3	2,0444	1,4854
Glt28d2	1,1528	1,2887	Rgs9	1,0562	1,2224
Gm10129	1,4150	1,4854	Rgsl1	1,2224	1,6630
Gm10305	-1,2630	-1,5850	Rimbp3	1,1375	1,1988
Gm11189	1,1155	1,0780	Rnf183	2,9023	4,0271
Gm11373	1,5850	3,4594	RP23-132J215	2,0356	3,7162
Gm11534	-1,5850	-1,0995	RP23-142A1412	3,1699	2,9542
Gm11725	1,0995	-1,1699	RP23-200M57	1,1008	-1,9652
Gm12089	1,7370	1,9069	RP23-470G184	-1,3334	-1,3410
Gm12138	1,5207	3,1455	RP24-3630213	-1,1561	-1,7975
Gm12349	-2,7004	-1,2224	Rpl7a-ps10	-1,3219	-1,0704
Gm12527	-1,1926	1,2578	Rps12-ps1	-1,3219	1,2224
Gm12788	1,3219	1,3026	Rpsa-ps1	-1,3923	-1,7162
Gm12868	1,7526	1,4594	Rsad2	1,0055	2,6979
Gm12932	1,4150	1,3081	Rsf1os2	1,3219	-1,6881
Gm12974	1,2224	1,1699	Runx2	-1,3468	1,2453
Gm13418	3,3750	1,7078	S100a7a	1,6859	-1,7318
Gm13532	1,2224	-1,5850	S100g	2,3219	2,3720
Gm13594	1,1926	3,1699	Sbsn	1,5040	-1,1674
Gm14005	-1,0737	-1,2829	Scara5	-2,5850	-2,7305
Gm14057	1,0000	2,2599	Scn4a	2,4594	3,8244
Gm15384	-1,0995	1,3219	Scube2	1,2854	1,7004
Gm15410	2,6439	1,1699	Selenbp1	1,6360	-1,6843
Gm15513	-1,8073	1,8301	Sema3d	-1,6071	4,3083
Gm15562	-1,4150	1,3219	Serpina3h	-1,2064	-2,3219
Gm15687	1,2224	1,2630	Serpina3i	-1,5850	-1,2801
Gm15753	2,0943	1,7485	Serpinb1a	-1,1605	-2,5236
Gm15775	-1,1829	1,4448	Serpinb9b	-1,7731	-3,7769
Gm15900	1,3219	1,0995	Serpine1	-1,1399	1,1803
Gm15998	1,4919	1,5850	Sfta2	1,0375	-2,1155
Gm16090	1,5850	1,3049	Sgcd	1,1155	-2,3923
Gm16170	-1,0106	-1,4150	Sgk1	1,2202	4,0496

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
Gm16178	1,1247	-1,2224	Sgk2	1,3134	-1,6911
Gm16253	1,8480	1,1575	Shd	-1,6698	1,4594
Gm16351	-1,5850	-1,7004	Slc16a5	1,1234	1,8179
Gm16546	-1,3219	1,1699	Slc17a1	3,7732	5,4919
Gm16599	-2,9069	1,1699	Slc17a4	1,3794	1,1699
Gm17382	1,5850	1,4150	Slc1a3	1,7065	5,8517
Gm17545	-1,5850	-1,0780	Slc25a48	1,9777	1,9344
Gm17833	-1,0704	1,0875	Slc35f1	-1,9787	-1,3785
Gm19552	1,4150	1,5850	Slc45a3	1,7695	2,5025
Gm19791	1,4150	1,6781	Slc46a2	1,1822	2,3576
Gm21859	-1,7004	2,0000	Slc4a5	1,5514	2,8301
Gm21963	-1,1699	-1,1375	Slc5a3	2,6868	1,2731
Gm23171	-1,2224	-1,3219	Slc5a9	-1,0531	2,0704
Gm23966	-1,0780	1,0506	Slc6a12	2,4670	7,6795
Gm24289	-1,4150	-1,0641	Slc6a18	3,1751	1,8931
Gm25493	1,1699	-1,1375	Slc6a19	1,8698	2,9210
Gm25520	-1,3219	1,1699	Slc6a19os	1,7370	4,1155
Gm26446	-2,0000	1,1699	Slc6a20a	1,7549	1,4594
Gm26640	-1,2224	-2,0875	Slc9a9	-1,1019	-1,0740
Gm26681	1,3626	1,0875	Slco1a5	-1,1876	1,4371
Gm26710	1,0000	1,0489	Slco4a1	1,4672	3,8437
Gm27206	1,3985	-1,2895	Slfn4	1,1699	1,4854
Gm27271	1,4150	1,1375	Slfn8	-1,3126	1,2895
Gm27343	1,3536	1,6540	Slpi	-2,4330	-1,3675
Gm28119	-1,1553	-1,2768	Snora69	-1,8073	-1,2224
Gm28198	-1,7162	-1,0704	Snord83b	-1,9069	1,1043
Gm2885	2,1375	-1,0931	Sobp	-1,2630	-1,1699
Gm29155	1,5025	1,1155	Sod3	2,1418	2,9260
Gm29480	-2,0000	-1,1375	Sorcs2	-1,1278	1,8701
Gm34240	-1,2224	1,5850	Sost	1,3219	4,1293
Gm36551	-1,5850	-1,1110	Spata20	1,3890	1,4687
Gm36938	1,3219	-1,1699	Spata25	-1,2224	1,8074
Gm36955	1,4594	1,1375	Spink10	1,1699	2,2224
Gm37012	-1,2224	1,3219	Spon1	1,6265	1,0095
Gm37078	1,3785	1,5850	Sprr1a	1,4441	-2,7957
Gm37145	-1,4854	-1,5850	Sprr2a3	-1,5361	-2,8745
Gm37691	1,4594	1,0641	Sprr2e	1,1699	-1,3476
Gm37800	-1,4150	-1,2377	Sptb	1,0443	1,6652
Gm38056	1,5194	1,8231	Stra6	-1,6218	1,1315
Gm38218	1,2410	1,5850	Strip2	1,6668	1,6556
Gm38220	1,8745	-1,1155	Sult1d1	2,1949	3,8715
Gm38244	2,2730	3,8329	Sumo2	-1,9319	1,0477
Gm4134	-1,8073	1,5850	Syna	1,0000	1,4475
Gm4211	1,5025	1,0589	Tal2	1,3479	1,1575

Genname	Log ₂ fold change IMCD 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600	Genname	Log ₂ fold change Maus 300 vs. 600	Log ₂ fold change mpkCCD 300 vs. 600
Gm42504	1,3219	1,5850	Tas1r3	1,2773	2,4086
Gm42507	1,2224	1,1155	Tenm2	1,4594	1,6147
Gm42528	1,9117	2,6410	Tert	1,3453	1,0073
Gm42586	2,6889	3,1699	Tg	-1,1009	2,5489
Gm42889	1,5025	1,3785	Tldc2	4,1699	7,7795
Gm42922	-1,1699	-1,3219	Tmeff1	-1,0131	-1,7018
Gm43070	-1,5850	1,1699	Tmem145	1,1155	1,4854
Gm43137	1,3626	1,5546	Tmem179	-1,5850	-1,6630
Gm43336	-1,6521	1,1699	Tmem61	1,3219	4,0404
Gm43460	1,2718	1,2184	Tmprss11e	-1,4300	-2,1468
Gm43571	1,1375	1,3219	Tmprss4	1,3070	-1,3630
Gm43652	1,9069	1,1155	Tnfrsf9	-1,1015	-1,1339
Gm43684	1,4739	1,1699	Tnni1	1,4594	1,2630
Gm43693	1,4150	1,7078	Tnxb	1,7935	1,0000
Gm43742	2,0000	-1,3559	Trabd2b	1,4550	1,9709
Gm43800	1,4713	1,4594	Trank1	-1,4541	-1,8074
Gm4631	2,3923	-2,8413	Trim75	1,5850	1,2224
Gm4825	1,5850	-1,3626	Tspan1	1,1108	1,0245
Gm5043	5,1293	2,9069	Tspan11	1,0875	1,4800
Gm5210	4,9773	2,0875	Tssk1	1,1926	1,1699
Gm5432	-1,3219	-1,1375	Tubb3	-1,0444	1,0000
Gm553	-1,1926	1,3219	Unc79	1,7370	-1,1699
Gm5615	-2,4594	-1,1444	Upk3bl	1,0969	-2,3265
Gm567	3,3897	5,4263	Uroc1	1,3626	-1,9156
Gm6445	1,7105	2,5146	Vcam1	-1,9218	-2,7600
Gm6736	1,3276	2,4983	Veph1	1,7873	4,6310
Gm6811	-1,3219	-1,2224	Vgll1	1,5911	-1,5850
Gm7452	1,8745	-1,5850	Vstm5	1,3726	1,4219
Gm7535	1,5850	-1,0780	Wnt4	1,2324	-1,2544
Gm7631	1,3785	4,3219	Zbtb7c	-2,1964	-1,4330
Gm7832	1,1255	-1,4406	Zcwpw2	1,2538	1,2224
Gm7893	3,2977	2,4330	Zdhhc2	-1,6593	-1,2917
Gm8225	1,4594	-1,7776			

8.5 Immunfluoreszenzfärbung von NFAT5 in HEK293-T-Zellen

Abbildung 58: Immunfluoreszenzaufnahmen von HEK-293T-Zellen unter 300 und 450 mosmol/kg für NFAT5.

Die HEK293-T Zellen wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Nach 24 h Inkubation wurde das Medium von 300 mosmol/kg auf 450 mosmol/kg hochgesetzt. Nach weiteren 24 h Inkubation erfolgte die Fixierung der Zellen in 5 % iger Formaldehydlösung. Die Zellen wurden mittels Immunfluoreszenz auf NFAT5 gefärbt. DAPI diente als Kernmarker (Oben = Zellen unter 300 mosmol/kg, Unten = Zellen unter 450 mosmol/kg, Maßstabsleiste: 100 μ m).

8.6 NFAT5 putative Bindesequenz

Abbildung 59: Putative Bindesequenz von NFAT5 laut JASPAR

Die putative Bindesequenz von NFAT5 wurde aus der online Datenbank JASPAR bezogen [104] (Datenstand: 14.07.2022). Für die Analysen wurde somit die Sequenz NTTTCCA verwendet.

8.7 Differentiell exprimierte Gene in NFAT5-defizienten-IMCD-Primärzellen vs. Wildtyp-Kontrollen

Tabelle 28: Log₂ fold change von differentiell exprimierten, hyperosmolalitäts-regulierten-Genen in NFAT5 defizienten-IMCD-Primärzellen unter 600 mosmol/kg im Vergleich zur Kontrolle.

Genname	Log ₂ fold change Kontrolle 300 vs. 600	Log2 fold change +4-OH-TM 600 vs. Kontrolle 600	Genname	Log2 fold change Kontrolle 300 vs. 600	Log2 fold change +4-OH-TM 600 vs. Kontrolle 600
1700016C15Rik	2,1802	-4,6341	Hspa4l	1,6482	-2,1198
4932438A13Rik	0,9514	-1,6410	Hsph1	1,4545	-1,7000
9530052E02Rik	2,7279	-3,4060	Ifi202b	-3,1098	1,6807
A330023F24Rik	1,4480	-1,8603	Irs3	2,2461	-2,2232
Acer2	1,1654	-1,4681	Kbtbd11	1,0992	-2,3369
Adam12	-1,2786	1,3142	Kcnj1	2,9260	-4,5560
Adcy1	-1,5258	2,0301	Klhl14	1,4522	-2,8307
Adgrfl	3,0221	-2,1171	Lectl	1,6215	-4,3219
Akr1b3	1,3833	-2,5216	Lgals3bp	0,9333	-1,4611
Ampd3	0,9534	-1,3753	Lpar1	1,1629	-1,5368
Ano1	-2,0566	1,6478	Lypd2	2,7753	-3,8908
Apela	1,9303	-2,8720	Muc20	1,3323	-1,4127
Aqp1	2,1841	-1,7206	Muc4	2,4303	-2,5877
Aqp2	5,9813	-5,5702	Neurl1b	2,1393	-2,7849
Aqp4	1,6196	-2,0566	Nipal4	1,4166	1,7066
Arhgef37	1,0875	-1,7218	Nkain1	-1,7697	1,7938
B230312C02Rik	2,4190	-2,4831	Npnt	1,1773	-2,2155
Bsnd	1,7583	-2,1836	Nptx1	3,2479	-2,8494
Cab39l	1,2398	-1,9376	Nqo1	2,6106	-1,8714
Calml3	3,6439	-2,7694	Nupr1	1,2642	-1,6359
Ccl6	-3,5899	-2,6303	Oas2	1,3893	-2,6650
Cd14	0,9170	-1,5421	Ociad2	1,1222	-1,9869
Cd59b	1,4699	-1,9587	P2rx2	-2,7570	2,4436
Cdh16	1,0778	-1,6153	Pabpn11	3,3219	-2,7142
Cdh2	-1,0616	1,8192	Pcx	2,2872	-1,5497
Cdkl1	3,1394	-3,2119	Pde1a	1,4090	-2,0800
Cdkn1c	-1,1828	2,1929	Pfkfb3	1,1236	-1,3896
Ckmt1	1,9986	-1,9929	Phyhipl	1,2758	-1,9808
Clca2	2,2224	-3,0704	Pik3c2g	2,4150	-3,7370
Clca3a2	1,0350	-1,8573	Plat	2,6235	-2,2800
Cldn1	-0,9917	1,8944	Plet1	2,0629	-2,1187
Cldn15	1,9769	-2,7254	Pletlos	1,5985	-2,4343
Cldn19	1,5947	-1,6386	Plin2	-1,1676	1,6407
Cnnm1	2,2367	-3,4173	Pmp22	-1,2116	2,8216
Cobll1	1,5037	-1,3271	Podn	1,8153	-3,0986
Cyp4a12b	-1,5185	4,4962	Pou2f3	3,6724	-3,3505
Cys1	1,0616	-1,4989	Ppp4r4	1,6699	-1,9334
Defb1	1,5280	-3,0144	Prkar2b	1,5939	-1,7701

Genname	Log2 fold change Kontrolle 300 vs. 600	Log2 fold change +4-OH-TM 600 vs. Kontrolle 600	Genname	Log2 fold change Kontrolle 300 vs. 600	Log ₂ fold change +4-OH-TM 600 vs. Kontrolle 600
Dgkg	2,5707	-3,8509	Prom2	1,7626	-1,7447
Dgkk	-3,0589	1,7092	Psca	2,3290	-1,8990
Dio1	2,7885	-3,9260	Ptges	1,5172	-1,6212
Dnase112	1,7934	-1,5455	Ptprh	1,7058	-1,4975
Egln3	0,9888	-2,1178	Ptprr	2,4838	-2,2359
Fa2h	2,2495	-2,1093	Ranbp31	4,6226	-5,2205
Fam163a	-1,8480	2,0790	Rasal1	1,8979	-2,1622
Fam20c	0,8513	-2,0931	Rasd1	2,0041	-1,8342
Fcgbp	1,5573	-2,5384	Rasl11b	1,7614	-2,0714
Flrt1	1,9260	-1,6107	Rassf6	1,4358	-2,0542
Fndc1	3,3373	-4,3373	Rnf183	2,9023	-3,3034
Foxl2os	-3,7347	2,5078	Ros1	1,4876	-3,1239
Frem2	1,1243	-1,8584	Rtn1	1,0065	-1,4085
Fut2	1,7952	-2,9758	Scg5	2,3262	-1,7698
Fut9	1,3867	-1,6101	Serpina10	1,7959	-2,2445
Fxyd2	4,4892	-4,4811	Serpina6	1,7987	-2,2138
Fxyd4	2,7316	-2,8379	Shisa7	1,7822	-2,0057
Gcnt4	1,4704	-1,9982	Slc12a1	2,9500	-2,4552
Gjb1	1,5794	-1,7095	Slc14a2	1,8090	-4,1984
Gm11749	3,8826	-4,2977	Slc17a1	3,7732	-4,1623
Gm12138	1,5207	-2,2277	Slc17a4	1,3794	-1,9821
Gm15753	2,0943	-2,0184	Slc1a3	1,7065	-3,0284
Gm16310	2,3129	-2,4060	Slc25a48	1,9777	-1,3860
Gm37320	3,5166	-2,5166	Slc38a11	3,2167	-5,3866
Gm42586	2,6889	-3,0875	Slc45a3	1,7695	-1,4537
Gm43003	2,9475	1,9351	Slc4a5	1,5514	-2,0518
Gm5043	5,1293	-4,5443	Slc5a3	2,6868	-2,4558
Gm5210	4,9773	-4,3923	Slc6a12	2,4670	-2,8279
Gm567	3,3897	-2,9003	Slco4a1	1,4672	-2,8253
Gm6665	1,7360	-2,0628	Sod3	2,1418	-3,5061
Gpr50	-1,8662	2,4207	Sorcs3	1,8580	-2,0990
Gprc5b	1,1503	-1,3769	Spon1	1,6265	-2,5455
Gramd1b	1,0466	-1,3481	Srpx2	1,4536	-2,3251
Gsdmc2	3,9686	-5,8687	St8sia2	-2,0834	1,5160
Gsdmc3	3,7325	-6,3502	Sult1a1	1,4015	-1,9678
Gsdmc4	3,6476	-4,5568	Sumo2	-1,9319	2,0070
Gsdmcl-ps	3,4500	-3,9355	Syndig1	-3,0100	2,5443
Gstm2	1,5002	-2,0755	Tas1r3	1,2773	-1,5384
Gucy2g	3,2039	-3,6189	Tmem45b	1,7003	-1,6350
Hacd4	1,2170	-2,3358	Tmprss2	1,0335	-1,5669
Hsd11b2	-2,4464	1,5932	Tspan1	1,1108	-2,3337
Hspa1a	1,5013	-2,4690	Veph1	1,7873	-1,6201
Hspalb	1,6108	-2,9620			

8.8 Nierenzellkarzinom - Klassifikation, Einteilung und Therapieentwicklung

8.8.1 Histologische Beispiele der häufigsten Nierenzellkarzinom Entitäten

Abbildung 60: Pathohistologie des Nierenzellkarzinoms.

Typische histomorphologische Erscheinungsbilder von klarzelligen (A), papillären (B, Typ 1 und Typ 2), chromophoben (C) Nierenzellkarzinomen und Sammelrohrkarzinomen (D). HE-Färbungen, (Maßstabsleiste: 100 µm) (Verändert nach [228])

8.8.2 Nierenzellkarzinom-Stadien Einteilung

Stadium	Primärtumor	Lymphknoten	Fernmetastasen
Ι	T1	NO	M0
	Tla		
	T1b		
II	T2a	N0	M0
	T2b		
III	T3a	N0	M0
	T3b		
	T3c		
	T1-3	N1	
IV	T4	N0, N1	M0
	alle T	alle N	M1

 Tabelle 29: Einteilung der Stadien des Nierenzellkarzinoms

8.8.3 Medikamentöse Therapie-Entwicklung beim Nierenzellkarzinom

Abbildung 61: Medikamentöse Therapie-Entwicklung beim Nierenzellkarzinom.

Innerhlab der letzten 40 Jahre hat sich die medikamentöse Therapie des Nierenzellkarzinoms stark verändert. Während in den 1980er und 90er Jahren eine Zytokintherapie mit IFN-α und IL-2 das Standardverfahren war, wurde in den frühen 2000er Jahren das Nierenzellkarzinom durch gezieltere Angiogenese- und Proliferationshemmung mittels Tyrosinkinaseinhibitoren (TKI) sowie m-TOR Inhibitoren behandelt. Seit 2015 werden zusätzlich Immun-Check-PointInhibitoren bei der Behandlung eingesetzt. Erstlinientherapie ist derzeit eine Kombination aus Axitinib und Avelumab oder Axitinib mit Pembrolizumab (Verändert nach [71, 212, 213])

8.9 GEPIA2 Tumorentitäten

Tabelle 30• Auflictung	raller in (CEPIA7 enthaltenen	Tumorentitäten mit den	ieweiligen Ahkiirzungen
rabelle 50. Auffistung	; and in OEI IAZ chunanchen	i unioi chutaten nint uen	je weingen Abkulzungen

TCGA Name	Tumorentität
ACC	Adrenocortical carcinoma
BLCA	Bladder Urothelial Carcinoma
BRCA	Breast invasive carcinoma
CESC	Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL	Cholangio carcinoma
COAD	Colon adenocarcinoma
DLBC	Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA	Esophageal carcinoma
GBM	Glioblastoma multiforme
HNSC	Head and Neck squamous cell carcinoma
KICH	Kidney Chromophobe
KIRC	Kidney renal clear cell carcinoma
KIRP	Kidney renal papillary cell carcinoma
LAML	Acute Myeloid Leukemia
LGG	Brain Lower Grade Glioma
LIHC	Liver hepatocellular carcinoma
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell carcinoma
MESO	Mesothelioma
OV	Ovarian serous cystadenocarcinoma
PAAD	Pancreatic adenocarcinoma
PCPG	Pheochromocytoma and Paraganglioma
PRAD	Prostate adenocarcinoma
READ	Rectum adenocarcinoma
SARC	Sarcoma
SKCM	Skin Cutaneous Melanoma
STAD	Stomach adenocarcinoma
TGCT	Testicular Germ Cell Tumors
THCA	Thyroid carcinoma
THYM	Thymoma
UCEC	Uterine Corpus Endometrial Carcinoma
UCS	Uterine Carcinosarcoma
UVM	Uveal Melanoma

8.10 Expasy-Analyse

8.10.1 NFAT5

NFAT5-WT-Proteinsequenz-Q9WV30:

MGGACSSFTTSSSPTIYSTSVTDSKAMQVESCSSAVGVSNRGVSEKQLTGNTVQQHPSTPKRHTVLYISPPPEDLLDNSRMSCQDEGCGLESEQSCSMWMEDSPSNFSNMS TSSYNDNTEVPRKSRKRNPKQRPGVKRRDCEESNMDIFDADSAKAPHYVLSQLTTDNKGNSKAGNGTLDSQKGTGVKKSPMLCGQYPVKSEGKELKIVVQPETQHRARYLT EGSRGSVKDRTQQGFPTVKLEGHNEPVVLQVFVGNDSGRVKPHGFYQACRTTGRNTPCKEVDIEGTTVIEVGLDPSNMMTLAVDCVGILKLRNADVEARIGIAGSKKKST RARLVFRVNITRKDGSTLTLQTPSSPILCTQPAGVPEILKKSLHSCSVKGEEEVFLIGKNFLKGTKVIFQENVSDENSKKSEAEIDMELFHQNHLIVKVPPYHDQHITLPV SVGIYVVTNAGRSHDVQPFTYTPDPAAGALVVNVKKEISSPARFCSFEEAMKAMKTGCNVDKVTILENALITPLISSSNKTEDVTPMEVTSEKRSSPIFQTTKSIGST QTLETISNIAGGAFFSSPSSSSHLTPESENQQQLQPKAYNPETLTTIQTQDISQPGTFPAVSAASQLPSSDALLQQATQFQTREAQSRDTIQSDTVVNLSQLTEASQQQOS PLQEQAQTLQQQIPSNIFPSFSVSQLQSTIQQLQAGSFTGSAAGGRSGSVDLVQQVLEAQQQLSSVJFSTPGNENVQEQLNADIFQVSQLDNSVSPGMFSSAESAVHTR PDNLLPGRADSVHQQTENTLSNQQQQQQQQUMESSAAMVMEMQQSICQAAQIQSELFPSAASASGLQQSPVVQQPSHMMSALPTNEDMQMQCELFSSPPAASGNETS ADAQNLSQETQGSIFHSPNFIVHSQTSTASSEQLQPSMFHSQNTIAVLQGSSVPQDQSPNIFLSQSSINNLQTNTVAQEEQISFFAAQSISPLQQSHSMASLQSGNFLQQSSTHSPQAQAFQQQP PISHIQTPILSQEQAQPSQQLFQPVALGSLPPNPMPQNQQGPIFQTQRPIVGMQSNSPSQEQQQQQQQQQQQQQQQQQQQSIFFSNQAAATMASQKQPPPNMMFSPN QNFMASQEQQNQSIFHQQSNAFMNQEQQPMQFQNQFTVSSLQMFGTPQSESPQTSLFHSSPQIQLVGSFSSDQQVTFLSFSASAALQTSINQPDMQQSPLYSPQNNI PGIQGSTSSPQQALLFHNTTGGTINQIQNSPGSSQTSGMFLFGIQNNCSQLLTSGFATLPDQLMAINQQGPNEGQSSVTTLLSQMPETSPLASSVNSQNMEKIDL VVSLSQQQNNIFGSF

NFAT-N1-Proteinsequenz:

MGGACSSFTTSSSPTIYSTSVTDSKAMQVESCSSAVGVSNRGVSEKQLTGNTVQQHPSTPKRHTVLYISPPPEDLLDNSRMSCQDEGCGLESEQSCSMWMEDSPSNFSNMS TSSYNDNTEVPRKSRKRNPKQRPG<mark>SNDEIVKNLIWIYLMPTVPKHLTMCFLSLPRTTKATQKLEMEHWTAKRELE-</mark>

NFAT5 -N3-Proteinsequenz:

MGGACSSFTTSSSPTIYSTSVTDSKAMQVESCSSRGGK-MGGACSSFTTSSSPTIYSTSVTDSKAMQVESCSSWG-

8.10.2 RANBP3L

RANBP3L-WT-Proteinsequenz-Q6PDH4:

MSTTQRKDDSHLFTSSCTRQLQVQEDRQQQEKYVIAQPIFVFEKGEHNFKRPAEDSLEETAEPEFTGFLRKRVRSSSVTLHTTDPQSQGVATLSQTRLRSSSFTDVPTFPPC RPVRKNNVFMTSRLLQRSDDMNVEQGPPMRSSEQVLRPAVLQPSQTQSCQKAGTTFGFGALKSYKTKEKAEHEISEVGSSSSLLSENLPNARSSIQLSTDPCISEAPSGCQ PKEDKCSFTSCSSDFVFGENNVERVLGTQKLTQPPLQNLSYAKEKTFKSVLKFPNAVSNSDSIENISLVESAAAFSSKPSQKCLLEKIDVITGEETEHNVLKINCKIFVFNK ATESWSERGQGILRLNDTAGRECGTLQSRLIMRNQGSLRLVLNSRLWAQMKIQRASQKNLRITATDLEDDGIKIFLIQASAKDTGFLYAAIHHRLVALRSLAKQGDGGPAES QSDTALPQLNGESCDEDEEIAQVTKNGSDFSRWSHRQSIVCS

RANBP3L-R1-Proteinsequenz:

MSTTQRKDDSHLFTSSCTRQLQVQEDRQQQEKYVIAQPIFVFEKGEHNFKRPAEDSLEETAEPEFTGFLRKRVRSSSVTLHTTDPQSQGVATLSQTRLEVLVIH-MSTTQRKDDSHLFTSSCTRQLQVQEDRQQQEKYVIAQPIFVFEKGEHNFKRPAEDSLEETAEPEFTGFLRKRVRSSSVTLHTTDPQSQGVATLSQTREVLVIH-

RANBP3L-R3-Proteinsequenz:

MSTTQRKDDSHLFTSSRVSCRCRRIGNSKKNMSLLSQYLFLRKENTILRDLQKTAWKKRQSLNSLVS-MSTTORKDDSHLFTSSARVSCRCRRIGNSKKNMSLLSQYLFLRKENTILRDLOKTAWKKROSLNSLVS-

8.10.3 SPARC

SPARC-WT-Proteinsequenz-P07214:

MRAWIFFLLCLAGRALAAPQQTEVAEEIVEEETVVEETGVPVGANPVQVEMGEFEDGAEETVEEVVADNPCQNHHCKHGKVCELDESNTPMCVCQDPTSCPAPIGEFEKVCS NDNKTFDSSCHFFATKCTLEGTKKGHKLHLDYIGPCKYIAPCLDSELTEFPLRMRDWLKNVLVTLYERDEGNNLLTEKQKLRVKKIHENEKRLEAGDHPVELLARDFEKNYN MYIFPVHWQFGQLDQH PIDGYLSHTELAPLRAPLIPMEHCTTRFFETCDLDNDKYIALEEWAGCFGIKEQDINKDLVI

SPARC-S2-Proteinsequenz:

MRAWIFFLLPGREGPGSPSD-MRAWIFFLLGREGPGSPSD-

8.11 RANBP3L-Knockout-Analysen

8.11.1 1771 regulierte Gene in RANBP3L-defizienten-mpkCCD-Zellen im Vergleich zu Scr-Kontrollen

Tabelle 31: Log ₂ fold change von 1771	differentiell-regulierten-Genen in	RANBP3L-defizienten-Zellen
unter 300 und 600 mosmol/kg		

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Hoxa10	-9,9189	-8,5906	-9,2547
Zfp422	-9,2877	-9,1072	-9,1975
Hoxa9	-10,2363	-8,1408	-9,1886
Sh3gl2	-8,7756	-8,7108	-8,7432
Atp6v0e2	-8,8098	-8,4402	-8,6250
Epdr1	-9,3939	-7,8073	-8,6006
Hdgfrp3	-9,3106	-7,5721	-8,4414
Phactr2	-8,6493	-7,9805	-8,3149
Galnt11	-7,9527	-8,3891	-8,1709
Smoc1	-7,7392	-8,1383	-7,9387
Inmt	-7,8486	-7,8643	-7,8565
Asb4	-6,9578	-8,4498	-7,7038
Plagl1	-6,4998	-8,8196	-7,6597
Eif5a2	-8,3320	-6,7574	-7,5447
Aldh2	-7,4998	-7,5780	-7,5389
Hebp2	-7,6635	-7,3685	-7,5160
Ccdc91	-7,4892	-7,3912	-7,4402
Slc9a7	-7,2621	-7,1472	-7,2046
Hoxd9	-7,4625	-6,8503	-7,1564
Sim1	-7,2503	-7,0458	-7,1480
Arrb1	-5,8745	-8,3185	-7,0965
Enox2	-6,9692	-6,9986	-6,9839
Tspan13	-7,0279	-6,7781	-6,9030
Sipa112	-7,1510	-6,6169	-6,8840
Nrk	-6,6653	-7,0075	-6,8364
Neil3	-6,3808	-7,2046	-6,7927
Kitl	-6,5999	-6,9009	-6,7504
Hoxa7	-6,6214	-6,6408	-6,6311
Hoxd8	-7,2940	-5,9122	-6,6031
Adgra1	-6,0821	-7,0875	-6,5848
Prdm5	-6,6865	-6,3129	-6,4997
Myb	-6,5812	-6,3837	-6,4824
Zfhx4	-5,8857	-7,0389	-6,4623
Rnf217	-7,7275	-5,0497	-6,3886
Kcnq1	-6,5288	-6,1137	-6,3213
Dclk2	-6,5999	-6,0371	-6,3185
Olfm4	-6,5709	-5,9447	-6,2578
3830403n18rik	-5,5721	-6,5242	-6,0482

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Hoxd10	-6,7347	-5,3438	-6,0393
Tmem159	-6,4703	-5,5546	-6,0125
Pank1	-6,0639	-5,8743	-5,9691
Epha7	-6,6110	-5,1699	-5,8905
Bckdhb	-7,0580	-4,7074	-5,8827
Gm13394	-6,5323	-5,1279	-5,8301
Ust	-5,9600	-5,6935	-5,8267
Bbs7	-5,9658	-5,6771	-5,8215
Rgs20	-5,6439	-5,8887	-5,7663
Tet2	-6,5999	-4,9069	-5,7534
Slmo1	-6,2479	-5,2432	-5,7455
Smarca1	-6,2969	-5,0636	-5,6802
Fzd8	-6,0056	-5,3458	-5,6757
Pdlim1	-6,6830	-4,5131	-5,5980
Ano9	-5,7987	-5,3820	-5,5904
Rorb	-5,3663	-5,8009	-5,5836
Tex101	-6,0056	-5,0444	-5,5250
Dapk1	-5,3923	-5,5480	-5,4702
Cbs	-6,0625	-4,8009	-5,4317
Ugt8a	-6,2117	-4,5973	-5,4045
Thsd7a	-6,3193	-4,4831	-5,4012
Gstt1	-5,3322	-5,4553	-5,3938
Nat2	-5,1548	-5,5850	-5,3699
Samd12	-5,3219	-5,3750	-5,3485
Hoxd3os1	-5,0804	-5,5799	-5,3302
Scara5	-5,8413	-4,6958	-5,2686
Pcdh19	-5,6366	-4,8269	-5,2317
9130019o22rik	-4,8988	-5,5025	-5,2007
Slc39a8	-4,0768	-6,1649	-5,1209
Ai429214	-5,5924	-4,6439	-5,1182
Mtus1	-4,7248	-5,3840	-5,0544
Zfp493	-4,6795	-5,4150	-5,0473
Gk5	-5,2946	-4,7495	-5,0221
Serpina3g	-5,9341	-4,0531	-4,9936
St6galnac6	-4,5392	-5,4094	-4,9743
Gm773	-5,1241	-4,8202	-4,9721
Trafl	-5,0987	-4,8402	-4,9694
A730020e08rik	-5,7814	-4,0149	-4,8982
Fam92a	-5,3651	-4,4305	-4,8978
Tmeff1	-5,4207	-4,3038	-4,8622
Ptp4a3	-5,5495	-4,1744	-4,8619
Fsd11	-4,7004	-5,0224	-4,8614
Hoxd4	-5,1293	-4,5546	-4,8419
Lrfn3	-4,1015	-5,5314	-4,8165
Opn5	-4,2288	-5,4009	-4,8148

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Gm28230	-4,9658	-4,6438	-4,8048
Stox2	-5,6600	-3,8875	-4,7738
Lect1	-3,6818	-5,8611	-4,7715
Gpr153	-3,8704	-5,6073	-4,7388
<i>Htr1b</i>	-4,9864	-4,4827	-4,7345
Ccl5	-4,5978	-4,8315	-4,7146
Zfp941	-5,3398	-4,0875	-4,7137
Trim12a	-3,7279	-5,6582	-4,6931
Capsl	-4,5699	-4,7814	-4,6756
Apol9b	-3,8074	-5,4958	-4,6516
Tmprss4	-4,7977	-4,4346	-4,6161
Clcal	-5,0732	-4,1565	-4,6149
Apol9a	-4,0000	-5,2075	-4,6037
Gm14295	-4,2682	-4,9248	-4,5965
Asrgl1	-4,2808	-4,7655	-4,5232
Sytl4	-4,9542	-4,0589	-4,5065
Hoxd3	-4,2094	-4,7682	-4,4888
Xlr	-4,3910	-4,4535	-4,4222
Ccserl	-4,6448	-4,1350	-4,3899
Fmo1	-5,0541	-3,7004	-4,3772
Tenm4	-4,6724	-4,0732	-4,3728
Tnc	-4,4703	-4,2250	-4,3476
Oas1g	-3,3692	-5,3189	-4,3441
Sycp1	-4,1155	-4,5546	-4,3350
Celsr2	-5,0196	-3,6323	-4,3259
Lpar1	-4,5353	-4,0000	-4,2676
Aldh5a1	-4,1170	-4,3452	-4,2311
Lppr4	-3,9542	-4,4757	-4,2150
Nlrx1	-3,7415	-4,5546	-4,1480
Nfix	-3,4102	-4,8329	-4,1216
Arhgef38	-3,6639	-4,5622	-4,1131
Lifr	-4,8580	-3,2840	-4,0710
Gm20559	-2,8908	-5,2416	-4,0662
C130071c03rik	-4,5698	-3,5236	-4,0467
Dnaic2	-3,8580	-4,1898	-4,0239
<i>I</i> 133	-5,4071	-2,6333	-4,0202
Tmem45b	-4,4101	-3,5843	-3,9972
Zfp870	-4,2288	-3,7549	-3,9918
Kcnj15	-3,6147	-4,3575	-3,9861
Rtp4	-2,7188	-5,2013	-3,9601
2010300c02rik	-5,0924	-2,8225	-3,9575
Slc9a2	-3,8771	-3,9396	-3,9084
Cfap74	-4,1293	-3,6818	-3,9055
Bnc2	-3,9069	-3,8826	-3,8948
Sytl2	-3,5236	-4,2605	-3,8920

Genname	log ₂ fold change – R1 vs.	log ₂ fold change – R1 vs. Scr	mittlerer log2 fold change – R1
Mvt11	-4 6771	-3 0976	-3 8874
Wdr72	-4 0444	-3 6438	-3 8441
Rsad?	-2 6118	-5 0467	-3 8292
Oasla	-3.0771	-4 5763	-3 8267
Fkhn11	-4 9773	-2 5942	-3 7857
II15	-2.9696	-4.5949	-3,7823
1700011h14rik	-4 4811	-3 0719	-3,7765
Fooy	-4 3038	-3 2479	-3 7758
Poflh	-3.8329	-3 6865	-3 7597
Nr1h4	-3.4263	-4.0680	-3.7472
Dnaic12	-4.0258	-3 4556	-3.7407
Aan11	-4.7142	-2.7655	-3.7399
5830444b04rik	-3.5236	-3.9542	-3 7389
Klh114	-4.7004	-2.6562	-3 6783
Cxcl10	-2 6766	-4 6740	-3 6753
Vsnl1	-4 0780	-3.2288	-3 6534
Zc4h2	-3 4790	-3 8093	-3 6442
1117rh	-3 0149	-4 2479	-3 6314
Ifi205	-3 4179	-3.8413	-3 6296
Ppp1r1h	-3 7347	-3 5036	-3 6192
Ninal?	-3 4342	-3 7415	-3 5878
Slc18b1	-3 6834	-3 4578	-3 5706
Slc5al	-3.5850	-3.5443	-3 5646
Trps1	-3.3219	-3 8073	-3 5646
Cmpk2	-2.7090	-4.4191	-3.5640
Rnf43	-4.0149	-3.1037	-3.5593
Inpp4h	-4 8497	-2.2479	-3 5488
117	-3.8826	-3.1743	-3.5284
Aldhlal	-4 4263	-2.6041	-3 5152
Zdhhc14	-2.9740	-4.0356	-3.5048
Hevl	-3.2977	-3 6630	-3 4803
Dagla	-3.4795	-3.4594	-3,4694
Accs	-3,5443	-3,3923	-3,4683
9130409j20rik	-3,8826	-3,0360	-3,4593
Ai662270	-3,7814	-3,1293	-3,4553
Adamts7	-3,7300	-3,1516	-3,4408
<i>Flrt1</i>	-2,4391	-4,4263	-3,4327
Has2	-4,0371	-2,8244	-3,4308
Gm43742	-3,6647	-3,1832	-3,4240
Ntpcr	-3,0318	-3,7965	-3,4142
Il1f5	-2,3985	-4,4263	-3,4124
Cp	-2,8898	-3,9273	-3,4086
Tgfbr3	-2,9413	-3,8670	-3,4042
Slc26a1	-4,0189	-2,7814	-3,4001
Clstn3	-3,5850	-3,1593	-3,3721

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Tprg	-4,2844	-2,4368	-3,3606
Ppp1r9a	-3,1175	-3,5844	-3,3510
Cntn4	-3,8073	-2,8480	-3,3277
Gabrp	-2,9920	-3,5662	-3,2791
Tet1	-4,1085	-2,4330	-3,2707
Dtna	-3,8455	-2,6765	-3,2610
Fam171b	-3,2479	-3,2730	-3,2605
Ggt7	-2,9773	-3,5435	-3,2604
E430018j23rik	-3,6273	-2,8893	-3,2583
Cep126	-3,4703	-3,0000	-3,2352
Slc22a18	-3,5484	-2,8074	-3,1779
Naip2	-2,3559	-3,9619	-3,1589
Kbtbd6	-3,8074	-2,5096	-3,1585
Ifit1	-1,8166	-4,4964	-3,1565
Slc16a10	-2,8751	-3,4244	-3,1497
Ankrd35	-4,3923	-1,9005	-3,1464
Nxpe4	-3,0179	-3,2695	-3,1437
C1qtnf6	-2,3219	-3,8861	-3,1040
Rassf4	-3,2895	-2,8826	-3,0861
D630039a03rik	-4,3219	-1,7781	-3,0500
Cd81	-2,9275	-3,1226	-3,0250
Dbn1	-2,8215	-3,2082	-3,0148
Tfpi	-2,7395	-3,2882	-3,0139
Psrc1	-4,0753	-1,9320	-3,0036
Veph1	-2,8220	-3,1729	-2,9974
Lypd2	-2,0031	-3,9395	-2,9713
Limch1	-3,7430	-2,1922	-2,9676
Il5ra	-3,2599	-2,6743	-2,9671
Fcgrt	-2,1259	-3,8074	-2,9666
Map3k7cl	-4,0822	-1,7796	-2,9309
Chadl	-3,0000	-2,8365	-2,9182
Gm43305	-2,4405	-3,3826	-2,9115
Smim6	-3,3385	-2,4493	-2,8939
Synpo	-3,5416	-2,2126	-2,8771
Steap3	-3,2143	-2,5361	-2,8752
Epsti1	-2,9635	-2,7334	-2,8484
Car13	-2,3431	-3,3491	-2,8461
Fhod3	-3,4594	-2,1323	-2,7959
Renbp	-2,7460	-2,8329	-2,7894
Nfkbid	-2,6491	-2,8554	-2,7522
Tas1r3	-2,3773	-3,1197	-2,7485
Chdh	-3,1149	-2,3279	-2,7214
Sgsm1	-3,0948	-2,3404	-2,7176
Parp14	-1,7241	-3,7024	-2,7133
Gstm7	-3,2192	-2,1883	-2,7037

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Zfp28	-2,7643	-2,6333	-2,6988
Bcl2114	-3,3825	-2,0000	-2,6912
Aqp1	-4,1890	-1,1673	-2,6782
Fkbp14	-2,7655	-2,5236	-2,6445
9330182106rik	-3,0603	-2,2180	-2,6392
Loxl3	-2,7370	-2,5090	-2,6230
Gpr182	-2,9449	-2,2962	-2,6205
Akap17b	-2,0601	-3,1766	-2,6184
Gmfg	-2,1553	-3,0661	-2,6107
Ramp3	-2,9281	-2,2587	-2,5934
Il13ra1	-2,5003	-2,6855	-2,5929
Hsf2bp	-2,5850	-2,5916	-2,5883
Matn2	-3,3785	-1,7901	-2,5843
5730596b20rik	-2,6135	-2,5311	-2,5723
Ifitm3	-1,9064	-3,2055	-2,5559
Tmem173	-2,4162	-2,6915	-2,5539
Spaca7	-2,6724	-2,3770	-2,5247
Нохаб	-2,5157	-2,5236	-2,5196
Vcam1	-3,0191	-2,0199	-2,5195
Tmem121	-2,8224	-2,2155	-2,5190
Fer1l4	-3,1799	-1,8248	-2,5023
6330403k07rik	-2,7472	-2,2172	-2,4822
Rasl10b	-2,7279	-2,1876	-2,4578
Dok3	-2,7051	-2,1744	-2,4397
Ppm1e	-2,1468	-2,7318	-2,4393
Tbc1d30	-2,7549	-2,0896	-2,4223
Ly6e	-1,4285	-3,3977	-2,4131
Cxcl5	-1,9454	-2,8726	-2,4090
Chd9	-2,4423	-2,3746	-2,4085
Il1rl1	-2,9469	-1,8692	-2,4080
Ppp2r2c	-2,5767	-2,2285	-2,4026
Hoxa5	-2,4658	-2,3238	-2,3948
Cxcl2	-1,5295	-3,2412	-2,3853
Tnfrsf9	-2,5668	-2,1699	-2,3684
Dgat2	-1,9919	-2,7116	-2,3517
Fat2	-2,1699	-2,5131	-2,3415
Oasl1	-1,6567	-3,0170	-2,3368
Ppbp	-2,6269	-2,0297	-2,3283
Ntn4	-2,7815	-1,8717	-2,3266
Нрса	-1,9260	-2,7258	-2,3259
Peg13	-2,4529	-2,1979	-2,3254
Gna15	-1,9175	-2,7162	-2,3169
Vtcn1	-2,3665	-2,2479	-2,3072
Stra6	-2,4535	-2,1375	-2,2955
Aoc3	-2,0310	-2,5535	-2,2922

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Flrt3	-2,5729	-2,0078	-2,2904
Fgf9	-2,6818	-1,8969	-2,2894
Snx32	-2,9149	-1,6280	-2,2715
Cyp4v3	-2,3448	-2,1979	-2,2714
Tspyl4	-1,9943	-2,5382	-2,2663
Tgfb3	-2,7673	-1,7549	-2,2611
Slc16a11	-2,7694	-1,7513	-2,2604
Rltpr	-2,1806	-2,3355	-2,2580
Rps19-ps7	-2,2278	-2,2780	-2,2529
Sult1c2	-2,4334	-2,0402	-2,2368
Mroh6	-2,8278	-1,5997	-2,2138
D630045j12rik	-2,0458	-2,3624	-2,2041
Gm43719	-3,0806	-1,3190	-2,1998
Slc5a5	-2,2574	-2,1273	-2,1924
C1qtnf1	-2,3883	-1,9542	-2,1712
Zfp111	-2,2907	-2,0319	-2,1613
P2rx2	-2,3350	-1,9553	-2,1452
Rp23-263b18.5	-2,1592	-2,1115	-2,1354
Cgrefl	-2,9206	-1,3489	-2,1347
Ifih1	-1,4944	-2,7706	-2,1325
Itga1	-2,5575	-1,7045	-2,1310
Fbp2	-2,1155	-2,1210	-2,1182
Vax2	-2,1352	-2,0952	-2,1152
Akap6	-2,7914	-1,4330	-2,1122
Fbxl22	-2,4964	-1,7030	-2,0997
5930403n24rik	-1,7179	-2,4594	-2,0886
Gpr155	-2,2261	-1,9115	-2,0688
Adam8	-2,0704	-2,0483	-2,0593
Lrpap1	-1,9290	-2,1817	-2,0554
Phyhipl	-1,7668	-2,3158	-2,0413
Megf6	-2,1618	-1,9163	-2,0391
\$100a1	-2,2393	-1,8284	-2,0339
Amdhd1	-1,6029	-2,4594	-2,0312
Pclo	-1,8931	-2,1526	-2,0229
Isg15	-1,0367	-3,0015	-2,0191
Nap113	-1,8365	-2,1822	-2,0094
Mt-rnr2	-2,4282	-1,5719	-2,0000
Dll1	-2,1932	-1,8020	-1,9976
Man2a1	-2,1796	-1,8148	-1,9972
Rnf225	-1,9758	-2,0086	-1,9922
Kif12	-2,5006	-1,4799	-1,9903
Nrg2	-2,5850	-1,3864	-1,9857
Cdh16	-2,5979	-1,3600	-1,9790
Eya4	-1,8406	-2,1124	-1,9765
Eid1	-2,1246	-1,8143	-1,9694

Genname	log ₂ fold change – R1 vs.	log ₂ fold change – R1 vs. Scr	mittlerer log2 fold change – R1
Plot 1	Scr 300	-2 5837	vs. Scr
Mucl	-2 0047	-1 9125	-1.9586
Rundc3b	-2, 3422	-1.5741	-1 9581
Kalrn	-2.0439	-1.8712	-1.9575
Smim5	-2.1626	-1.7370	-1.9498
Fuz	-2.0943	-1.7942	-1.9443
Cnp	-2.0295	-1.8534	-1.9415
Vcan	-2.4150	-1.4507	-1.9328
Gm15347	-1.8638	-1.9932	-1.9285
Mylk	-2,8496	-1,0055	-1,9276
Ada	-2.4248	-1.4048	-1.9148
Nipa1	-1,6421	-2,1848	-1,9134
Hist3h2ba	-2,3219	-1,4792	-1,9005
Сре	-2,2393	-1,5496	-1,8944
1 1700024p16rik	-1,7896	-1,9862	-1,8879
Cd93	-2,6920	-1,0667	-1,8794
Aa474331	-1,6090	-2,0303	-1,8197
Tanc2	-2,1229	-1,5160	-1,8195
Slfn9	-1,7584	-1,8730	-1,8157
Ptger1	-2,0931	-1,5356	-1,8143
Nup2101	-2,2026	-1,4014	-1,8020
Gyg	-1,9002	-1,7037	-1,8020
Pctp	-1,8177	-1,7706	-1,7941
Lta	-1,6323	-1,9455	-1,7889
St6galnac2	-1,8621	-1,7097	-1,7859
Sptb	-2,4141	-1,1574	-1,7857
Ildr1	-1,9040	-1,6542	-1,7791
Sema3a	-2,1427	-1,4122	-1,7774
Gstt3	-1,7667	-1,7855	-1,7761
Cbfa2t3	-1,6802	-1,8691	-1,7747
Lynx1	-1,3200	-2,2066	-1,7633
Dnajc22	-1,8901	-1,5642	-1,7271
Tmem86a	-2,2755	-1,1781	-1,7268
Abhd3	-1,8413	-1,6110	-1,7262
Tpd5211	-2,5660	-0,8689	-1,7174
Immp2l	-1,5410	-1,8841	-1,7125
Sgk2	-1,8034	-1,6171	-1,7103
Glt8d2	-1,8188	-1,5954	-1,7071
Tmc4	-1,9267	-1,4730	-1,6998
Dll4	-2,0685	-1,3159	-1,6922
Col11a2	-1,1806	-2,1988	-1,6897
Fermt1	-1,5832	-1,7884	-1,6858
Ptch1	-1,3409	-2,0103	-1,6756
Poln	-2,3083	-1,0412	-1,6748
Ccrl2	-1,4525	-1,8791	-1,6658

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Nsmaf	-1,8457	-1,4763	-1,6610
Ptprcap	-2,0179	-1,3038	-1,6609
Mppe1	-1,8346	-1,4862	-1,6604
Plscr4	-2,2038	-1,1155	-1,6596
Esrp2	-1,5776	-1,7265	-1,6521
Hoxb5os	-1,7497	-1,5486	-1,6492
Ier5l	-1,7693	-1,5266	-1,6480
Gm13237	-1,5694	-1,7188	-1,6441
Skap1	-1,8256	-1,4622	-1,6439
Atp11a	-1,5583	-1,7269	-1,6426
Cd14	-1,6304	-1,6397	-1,6351
Wnk4	-1,7736	-1,4798	-1,6267
Serpinb5	-1,4505	-1,7975	-1,6240
Eno2	-2,1158	-1,1155	-1,6156
Inpp5j	-1,4169	-1,8027	-1,6098
Vash2	-1,1329	-2,0866	-1,6098
Tssk6	-1,8220	-1,3962	-1,6091
Ophn1	-1,8719	-1,3281	-1,6000
Sh3bgrl	-1,4782	-1,7183	-1,5982
S100a16	-1,6764	-1,5185	-1,5974
Agpat3	-1,5994	-1,5838	-1,5916
Slc3a1	-1,7078	-1,4690	-1,5884
1700052k11rik	-1,6197	-1,5571	-1,5884
Fam171a2	-1,7179	-1,4499	-1,5839
Lurap11	-0,9790	-2,1885	-1,5838
Hspb1	-1,8364	-1,3282	-1,5823
Serpini1	-1,9918	-1,1721	-1,5819
Rundc3a	-2,0185	-1,1386	-1,5786
Palld	-1,7419	-1,4144	-1,5781
Map2	-1,7766	-1,3741	-1,5754
Syn3	-1,9584	-1,1833	-1,5709
Creb3l2	-1,6108	-1,5289	-1,5699
Adgrg6	-1,5996	-1,5318	-1,5657
Tnfsf15	-2,2095	-0,9212	-1,5653
Galnt12	-1,5192	-1,6030	-1,5611
Tbc1d2b	-1,5023	-1,6194	-1,5608
Dmpk	-2,1191	-0,9929	-1,5560
Mapre2	-1,3303	-1,7726	-1,5514
Hmgb2	-1,7439	-1,3516	-1,5478
Ttc30a1	-1,9180	-1,1772	-1,5476
Aoc2	-1,4479	-1,6283	-1,5381
Bicc1	-1,8999	-1,1616	-1,5307
Bahcc1	-1,3642	-1,6961	-1,5302
Cldn15	-1,7549	-1,3049	-1,5299
Myo15b	-1,3089	-1,7429	-1,5259

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Zfp759	-1,3594	-1,6818	-1,5206
Fjx1	-1,8186	-1,2211	-1,5198
Lor	-1,7023	-1,3285	-1,5154
Pcyox11	-1,2309	-1,7954	-1,5131
Adamtsl4	-1,5676	-1,4218	-1,4947
Matk	-1,5055	-1,4739	-1,4897
Pter	-1,5361	-1,4425	-1,4893
Fzd1	-1,9793	-0,9913	-1,4853
Mmd	-1,5222	-1,4316	-1,4769
Cmtr1	-1,5185	-1,4238	-1,4711
Grb14	-1,9343	-0,9934	-1,4638
Dnase112	-1,7179	-1,2087	-1,4633
Gprc5b	-1,3207	-1,6034	-1,4620
Slc24a5	-1,9556	-0,9674	-1,4615
Tyro3	-1,4375	-1,4786	-1,4581
Vash1	-1,2262	-1,6794	-1,4528
Gdf15	-1,0982	-1,8052	-1,4517
Crlf1	-1,5948	-1,3028	-1,4488
Pstpip2	-1,6807	-1,2108	-1,4457
Dmrt2	-1,3299	-1,5594	-1,4447
Creb3l4	-1,8699	-1,0138	-1,4419
Kifc3	-1,6680	-1,2141	-1,4410
Asah2	-1,1696	-1,7094	-1,4395
Rasl11b	-1,3969	-1,4813	-1,4391
Usp20	-1,3312	-1,5245	-1,4279
Sphk1	-1,3405	-1,5096	-1,4251
Samd91	-1,5470	-1,3023	-1,4247
Rasl11a	-1,1608	-1,6818	-1,4213
Itga7	-1,8240	-1,0093	-1,4167
Pgm211	-1,3999	-1,4317	-1,4158
Eme2	-1,4254	-1,4021	-1,4138
Sh2d4b	-1,7027	-1,1245	-1,4136
Phf19	-1,5178	-1,2967	-1,4072
S100a14	-1,2877	-1,5268	-1,4072
Ngf	-1,3347	-1,4734	-1,4040
Bach2	-1,3585	-1,4342	-1,3963
Phyh	-1,3256	-1,4618	-1,3937
Fut10	-1,8120	-0,9675	-1,3897
Hoxa2	-1,5162	-1,2602	-1,3882
Rnf130	-1,5256	-1,2465	-1,3860
Naprt	-1,9314	-0,8343	-1,3829
S100a13	-1,2595	-1,4977	-1,3786
Ankrd1	-1,2257	-1,5245	-1,3751
Nt5c3b	-1,4716	-1,2713	-1,3714
Stat5a	-1,2085	-1,5278	-1,3682

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Lrrc8e	-1,6555	-1,0746	-1,3651
Sep 04	-1,7732	-0,9534	-1,3633
Fndc4	-1,4408	-1,2800	-1,3604
Rp24-174g2.1	-1,9662	-0,7424	-1,3543
Tacc1	-1,4573	-1,2504	-1,3538
Trmt11	-1,8146	-0,8773	-1,3460
Sgcb	-1,3819	-1,3014	-1,3417
2610005107rik	-1,2945	-1,3872	-1,3409
Car5b	-1,5105	-1,1587	-1,3346
Trpm6	-1,8101	-0,8586	-1,3343
Tall	-1,8160	-0,8416	-1,3288
Zfp239	-1,3858	-1,2688	-1,3273
Scin	-1,7116	-0,9311	-1,3214
Itga2	-1,5305	-1,1003	-1,3154
Agtrap	-1,3826	-1,2380	-1,3103
Tm6sf2	-1,3899	-1,2269	-1,3084
Gm17201	-1,2640	-1,3500	-1,3070
Ankrd52	-1,3659	-1,2401	-1,3030
Zdhhc1	-1,4673	-1,1354	-1,3013
Gm6548	-1,1476	-1,4494	-1,2985
Hmgn5	-1,4825	-1,1123	-1,2974
Gm21769	-1,4406	-1,1526	-1,2966
Stat5b	-1,4398	-1,1500	-1,2949
Greb11	-1,5405	-1,0406	-1,2906
Mme	-1,2124	-1,3563	-1,2844
Slc9a3r1	-1,5056	-1,0595	-1,2825
Hspa1b	-1,6520	-0,9095	-1,2808
Golm1	-1,2615	-1,2989	-1,2802
Prr7	-1,4487	-1,1068	-1,2777
Gm10557	-1,2419	-1,3047	-1,2733
Gca	-1,1523	-1,3937	-1,2730
Mylip	-1,4770	-1,0462	-1,2616
Smarcc2	-1,2779	-1,2382	-1,2581
Irf9	-0,8640	-1,6500	-1,2570
Gm11914	-1,4978	-1,0031	-1,2504
Kcnj14	-1,2599	-1,2410	-1,2504
Tmem40	-1,4508	-1,0395	-1,2452
D8ertd82e	-1,1290	-1,3416	-1,2353
Dph7	-1,3187	-1,1516	-1,2352
Gm13160	-1,2701	-1,1859	-1,2280
Neurl1b	-1,8159	-0,6361	-1,2260
Usp36	-1,2007	-1,2492	-1,2249
Gpc4	-1,5411	-0,8971	-1,2191
Spin4	-1,2401	-1,1909	-1,2155
Tysnd1	-1,3587	-1,0714	-1,2151

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
St5	-1,1003	-1,3289	-1,2146
Dtx3l	-1,1259	-1,3018	-1,2138
Tob2	-1,3939	-1,0297	-1,2118
Nek3	-1,4374	-0,9780	-1,2077
Zik1	-1,1662	-1,2479	-1,2071
Manla	-1,4161	-0,9963	-1,2062
Ptpn22	-1,3704	-1,0301	-1,2003
Ctsh	-1,5341	-0,8630	-1,1986
Arl6ip1	-1,1376	-1,2582	-1,1979
Serinc5	-1,1051	-1,2835	-1,1943
D030028a08rik	-0,9813	-1,4071	-1,1942
Rnf213	-0,6430	-1,7448	-1,1939
Pak3	-1,2905	-1,0872	-1,1888
Smpd3	-1,1633	-1,2114	-1,1873
Camkmt	-1,2299	-1,1442	-1,1871
Blnk	-0,8452	-1,5284	-1,1868
Col18a1	-1,2424	-1,1298	-1,1861
Uba7	-1,0393	-1,3261	-1,1827
Fbxw17	-0,8636	-1,4896	-1,1766
Gjc1	-1,2367	-1,1129	-1,1748
Cst6	-1,4433	-0,8968	-1,1701
Tspyl1	-1,3096	-1,0217	-1,1656
Kifc2	-1,1026	-1,2282	-1,1654
Cstb	-1,2792	-1,0417	-1,1605
Camkk2	-0,8673	-1,4501	-1,1587
Acox1	-1,2935	-1,0237	-1,1586
Naaladl2	-1,3612	-0,9543	-1,1577
Gm21811	-1,1408	-1,1745	-1,1576
Top2a	-1,2208	-1,0822	-1,1515
Rasef	-1,0399	-1,2623	-1,1511
Kcnh7	-1,1850	-1,1172	-1,1511
Rhbdl2	-1,5882	-0,7137	-1,1509
Coa3	-1,3124	-0,9873	-1,1498
Ank3	-1,5589	-0,7355	-1,1472
Foxn1	-0,9875	-1,3061	-1,1468
Sh2d3c	-1,1254	-1,1661	-1,1457
Fam20c	-1,4542	-0,8352	-1,1447
Eea1	-1,0048	-1,2763	-1,1406
Aamdc	-1,3519	-0,9260	-1,1389
Crip1	-1,6812	-0,5946	-1,1379
Itga2b	-1,2770	-0,9963	-1,1367
Dcbld1	-0,9632	-1,3090	-1,1361
Stat3	-1,0136	-1,2571	-1,1353
Fam195b	-1,0950	-1,1722	-1,1336
Dusp14	-1,3273	-0,9355	-1,1314
Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
---------------	--------------------------------------	--------------------------------------	--
Zfp862-ps	-1,1237	-1,1355	-1,1296
Dennd1a	-1,2833	-0,9747	-1,1290
Hoxb3	-1,3630	-0,8883	-1,1257
Emx2os	-1,4139	-0,8280	-1,1209
Ehf	-1,3399	-0,8987	-1,1193
Heximl	-1,2840	-0,9538	-1,1189
A630095e13rik	-0,9158	-1,3114	-1,1136
Tor1b	-1,1875	-1,0370	-1,1122
Fzd7	-1,1534	-1,0650	-1,1092
Morf4l1	-1,2995	-0,9144	-1,1070
Gpr157	-1,1365	-1,0769	-1,1067
Ids	-1,0012	-1,2077	-1,1044
Hddc2	-1,5376	-0,6705	-1,1041
Pccb	-1,2059	-0,9980	-1,1019
Lrch1	-1,0120	-1,1914	-1,1017
Ifngr1	-1,1659	-1,0348	-1,1004
Glt28d2	-1,5816	-0,6182	-1,0999
Slc16a8	-1,1993	-0,9904	-1,0949
Gm4524	-1,2269	-0,9621	-1,0945
Epcam	-1,1922	-0,9950	-1,0936
Irgq	-0,6485	-1,5350	-1,0918
Tpgs1	-1,3659	-0,8159	-1,0909
Endov	-0,8235	-1,3506	-1,0871
Zfp324	-1,1049	-1,0686	-1,0867
4632415105rik	-1,0598	-1,1114	-1,0856
Ube2d1	-0,8151	-1,3370	-1,0761
Slc39a11	-1,2178	-0,9342	-1,0760
Ric8b	-1,0500	-1,0950	-1,0725
Arl2bp	-1,1814	-0,9633	-1,0723
Fam171a1	-1,1054	-1,0327	-1,0691
Mkrn2os	-0,9789	-1,1526	-1,0657
Zfpm2	-1,0621	-1,0690	-1,0655
Parp9	-0,7443	-1,3859	-1,0651
Ezhl	-1,0818	-1,0420	-1,0619
НохаЗ	-1,4065	-0,7146	-1,0606
D3ertd254e	-1,1717	-0,9468	-1,0593
<i>Herc</i> 6	-1,1107	-1,0050	-1,0579
H2-d1	-0,9558	-1,1589	-1,0574
Gm5860	-1,2757	-0,8373	-1,0565
Rbms3	-1,3846	-0,7280	-1,0563
Slc7a7	-1,0623	-1,0497	-1,0560
Ttll3	-1,0547	-1,0555	-1,0551
Dtx4	-0,9655	-1,1399	-1,0527
Syde1	-1,3074	-0,7958	-1,0516
1700019g17rik	-0,9309	-1,1679	-1,0494

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Gm17435	-1,0324	-1,0589	-1,0457
Tmem64	-1,3671	-0,7242	-1,0457
Bc021891	-1,2543	-0,8302	-1,0422
Arf2	-1,0250	-1,0582	-1,0416
Ehhadh	-1,0978	-0,9847	-1,0412
Mob3b	-1,0218	-1,0585	-1,0402
Il17rc	-1,0144	-1,0641	-1,0393
Npnt	-1,1782	-0,8975	-1,0379
Srd5a1	-1,4490	-0,6190	-1,0340
Fasn	-0,7600	-1,3079	-1,0339
Zbtb39	-1,0533	-1,0141	-1,0337
Sesn1	-1,0577	-1,0064	-1,0320
Lmnb2	-1,0236	-1,0404	-1,0320
Grk5	-1,2157	-0,8483	-1,0320
Arpin	-1,1845	-0,8778	-1,0312
Tbk1	-1,0693	-0,9914	-1,0303
Cisd3	-1,4074	-0,6511	-1,0292
Cds1	-1,0350	-1,0218	-1,0284
Lman2	-1,1892	-0,8635	-1,0264
Ndufa8	-1,1547	-0,8978	-1,0262
Ssbp4	-1,1636	-0,8887	-1,0261
Mroh2a	-1,3367	-0,7145	-1,0256
Zfp319	-1,0669	-0,9841	-1,0255
Rad51c	-1,1791	-0,8709	-1,0250
Ttc7	-1,3197	-0,7282	-1,0239
Rassf3	-0,9460	-1,1002	-1,0231
Cradd	-1,0753	-0,9664	-1,0209
Gm6483	-0,9750	-1,0627	-1,0188
Arhgap6	-1,1953	-0,8376	-1,0164
Ilvbl	-1,1302	-0,9007	-1,0154
Cdc14b	-0,9667	-1,0573	-1,0120
Ncln	-1,1090	-0,9079	-1,0084
Gm21092	-1,0623	-0,9539	-1,0081
Rhbdl1	-1,0089	-1,0046	-1,0067
Mfn1	-1,0944	-0,9158	-1,0051
Fance	-1,1418	-0,8678	-1,0048
Iars	-0,6570	-1,3411	-0,9990
Pard6a	-1,0769	-0,9178	-0,9974
Strada	-0,8768	-1,1127	-0,9948
Baiap2	-1,3270	-0,6583	-0,9927
Ercc6l2	-1,0138	-0,9697	-0,9918
Cd59a	-1,1391	-0,8420	-0,9905
Gins3	-1,0641	-0,9164	-0,9903
Gprc5c	-0,8889	-1,0840	-0,9865
Snf8	-1,0841	-0,8884	-0,9862

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Cklf	-1,1122	-0,8593	-0,9858
Krt4	-3,1279	1,1610	-0,9834
Il17re	-0,9081	-1,0588	-0,9834
Clmn	-1,2144	-0,7516	-0,9830
Rbl2	-1,2598	-0,7054	-0,9826
Cltb	-1,1234	-0,8408	-0,9821
Mxd3	-1,2148	-0,7477	-0,9813
Hnrnph3	-0,9562	-1,0029	-0,9796
Ncoa7	-0,8977	-1,0605	-0,9791
1810019d21rik	-0,8702	-1,0859	-0,9780
Ern1	-0,9687	-0,9867	-0,9777
Syne2	-0,7396	-1,2101	-0,9749
Caskin2	-0,9202	-1,0281	-0,9741
Ptprm	-1,1446	-0,8026	-0,9736
Vps37a	-1,0394	-0,9069	-0,9732
Psen2	-0,9529	-0,9931	-0,9730
Itgb2	-1,2984	-0,6465	-0,9725
Unk	-1,0590	-0,8854	-0,9722
Cutal	-1,3372	-0,6067	-0,9720
Sap30	-1,2517	-0,6916	-0,9716
Esyt1	-0,9055	-1,0332	-0,9694
B2m	-0,7594	-1,1790	-0,9692
Txnrd3	-1,1640	-0,7738	-0,9689
Plscr2	-0,8888	-1,0482	-0,9685
Psme3	-1,0283	-0,9032	-0,9657
2700099c18rik	-1,1994	-0,7307	-0,9651
Dennd4b	-0,8213	-1,1088	-0,9651
Rnd2	-1,2522	-0,6745	-0,9634
Zfp358	-1,1422	-0,7835	-0,9628
Mlkl	-1,0226	-0,9026	-0,9626
L1cam	-0,9600	-0,9630	-0,9615
Phb	-1,1576	-0,7653	-0,9614
Abca2	-1,0504	-0,8708	-0,9606
Mau2	-0,9659	-0,9543	-0,9601
Aktip	-0,8255	-1,0946	-0,9600
Ell	-1,0597	-0,8602	-0,9600
Slc7a6	-1,2475	-0,6688	-0,9582
Gm10039	-1,0241	-0,8906	-0,9574
Zfp866	-1,1167	-0,7955	-0,9561
Slc25a16	-0,9337	-0,9765	-0,9551
Tor2a	-1,1766	-0,7293	-0,9529
Btg1	-0,9752	-0,9301	-0,9527
Traf3ip2	-0,9946	-0,9085	-0,9515
Tcf19	-1,0587	-0,8425	-0,9506
Grb7	-1,2934	-0,6073	-0,9504

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
2810428i15rik	-1,1188	-0,7813	-0,9501
Ppp1r21	-0,9827	-0,9169	-0,9498
Agtpbp1	-0,8933	-1,0060	-0,9496
Gm6485	-1,0618	-0,8339	-0,9478
Atf3	-0,8361	-1,0509	-0,9435
Prpsap1	-1,1417	-0,7399	-0,9408
Plekhh3	-0,8799	-1,0016	-0,9408
Hcfc2	-1,0627	-0,8178	-0,9402
Pomgnt2	-0,8100	-1,0704	-0,9402
Hoxb6	-0,9775	-0,9000	-0,9388
Pfn2	-1,0368	-0,8363	-0,9365
Cpeb3	-0,8129	-1,0569	-0,9349
Helz	-1,0789	-0,7887	-0,9338
Zfp639	-0,9980	-0,8682	-0,9331
Sh3glb2	-1,0729	-0,7923	-0,9326
Gm11808	-1,0013	-0,8634	-0,9323
Zdhhc17	-0,9429	-0,9217	-0,9323
Nle1	-1,1738	-0,6899	-0,9318
Gstm5	-1,2626	-0,5997	-0,9311
Evpl	-1,0129	-0,8481	-0,9305
Pax9	-1,1514	-0,7087	-0,9301
Galnt4	-0,8738	-0,9834	-0,9286
Garem	-0,8161	-1,0372	-0,9266
Amfr	-0,9704	-0,8736	-0,9220
Akap1	-0,9828	-0,8607	-0,9217
Nup85	-1,0991	-0,7393	-0,9192
Sep 09	-0,8991	-0,9376	-0,9184
Acaca	-0,7834	-1,0521	-0,9178
Bex1	-1,3888	-0,4433	-0,9160
Exosc2	-1,0175	-0,8127	-0,9151
Unc13d	-1,0136	-0,8122	-0,9129
Eya2	-1,0313	-0,7937	-0,9125
Psmd3	-1,0752	-0,7472	-0,9112
Rbms2	-0,9705	-0,8517	-0,9111
Tprn	-0,9964	-0,8216	-0,9090
Prrc2b	-0,8806	-0,9370	-0,9088
Zfp213	-0,9870	-0,8291	-0,9080
Nt5dc1	-0,7594	-1,0542	-0,9068
L3mbtl3	-0,7860	-1,0262	-0,9061
Cdc40	-1,0761	-0,7356	-0,9058
Slc25a10	-0,9442	-0,8664	-0,9053
2010111i01rik	-0,7958	-1,0142	-0,9050
Rrp1	-1,0816	-0,7275	-0,9045
Smarce1	-1,0503	-0,7545	-0,9024
Ano10	-0,8731	-0,9301	-0,9016

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Atp5g1	-1,0353	-0,7667	-0,9010
Irs2	-0,8152	-0,9832	-0,8992
Ubr3	-0,8957	-0,9010	-0,8984
Gm5141	-0,9584	-0,8349	-0,8966
Rnf128	-1,1240	-0,6675	-0,8958
Lgals1	-1,1252	-0,6647	-0,8950
Ulk2	-0,7260	-1,0610	-0,8935
Ddhd2	-0,8113	-0,9740	-0,8927
Pkn1	-0,9876	-0,7962	-0,8919
Prpsap2	-0,8530	-0,9301	-0,8916
Pcnt	-0,9355	-0,8419	-0,8887
Scoc	-0,8128	-0,9641	-0,8885
Fbxo7	-1,0197	-0,7572	-0,8885
Fnbp1	-0,8679	-0,9087	-0,8883
Kat6a	-0,9624	-0,8139	-0,8882
Fbxw5	-0,9595	-0,8156	-0,8875
Slc6a17	-0,9731	-0,8016	-0,8873
Armc6	-0,8676	-0,9069	-0,8872
Uimc1	-0,9869	-0,7875	-0,8872
Rufy2	-0,9429	-0,8314	-0,8872
Slc27a4	-0,8130	-0,9606	-0,8868
Lrp5	-1,0728	-0,6999	-0,8864
Sec24d	-0,7301	-1,0423	-0,8862
Mfsd7b	-1,0979	-0,6729	-0,8854
Ap3d1	-1,0139	-0,7551	-0,8845
Ттсо3	-0,7974	-0,9710	-0,8842
Lrrc59	-0,9318	-0,8352	-0,8835
Msh6	-1,0935	-0,6723	-0,8829
Trim25	-0,6242	-1,1392	-0,8817
Rnft1	-0,9111	-0,8520	-0,8815
Tmbim4	-0,9867	-0,7759	-0,8813
Cept1	-0,7723	-0,9891	-0,8807
Rev3l	-0,9587	-0,7998	-0,8793
Cyth1	-0,7654	-0,9915	-0,8785
Sirt1	-0,9758	-0,7799	-0,8778
Etl4	-0,7273	-1,0269	-0,8771
Nenf	-0,8410	-0,9035	-0,8723
Slc39a3	-0,8762	-0,8677	-0,8719
Appl2	-0,9112	-0,8316	-0,8714
H3f3b	-0,9764	-0,7662	-0,8713
Slc7a6os	-1,0006	-0,7418	-0,8712
Lrrc14	-0,8112	-0,9300	-0,8706
Ggh	-1,0160	-0,7236	-0,8698
Sppl2b	-0,8552	-0,8787	-0,8670
3830406c13rik	-1,0776	-0,6536	-0,8656

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Cox11	-1,0388	-0,6917	-0,8653
Gm12715	-1,0630	-0,6670	-0,8650
Nacc1	-0,9711	-0,7588	-0,8649
Map3k14	-1,0646	-0,6653	-0,8649
Cenpb	-0,7667	-0,9629	-0,8648
Cdr2l	-0,9214	-0,8076	-0,8645
Itgb4	-0,8946	-0,8332	-0,8639
Amigo1	-0,9358	-0,7916	-0,8637
Serinc1	-0,7389	-0,9874	-0,8631
Mettl23	-1,2305	-0,4953	-0,8629
Tma16	-1,0809	-0,6431	-0,8620
Cc2d1a	-0,9150	-0,8062	-0,8606
Hook3	-0,9075	-0,8128	-0,8601
Med26	-0,8671	-0,8509	-0,8590
Hap1	-0,9274	-0,7905	-0,8589
Nup210	-0,6726	-1,0415	-0,8570
Tmem62	-0,9933	-0,7203	-0,8568
Crem	-0,9610	-0,7524	-0,8567
Mtfr2	-0,8590	-0,8518	-0,8554
Syngr2	-1,0640	-0,6462	-0,8551
Gm13092	-1,0433	-0,6663	-0,8548
Gpsm1	-0,8100	-0,8985	-0,8543
Foxn2	-0,8706	-0,8360	-0,8533
Ghdc	-0,7662	-0,9402	-0,8532
D10wsu102e	-0,9575	-0,7469	-0,8522
Samhd1	-0,7439	-0,9605	-0,8522
Ppm1d	-0,9297	-0,7746	-0,8521
Slc35e1	-0,9718	-0,7319	-0,8519
Cog1	-0,9316	-0,7721	-0,8519
Sh3kbp1	-1,1313	-0,5706	-0,8509
Ext2	-0,9337	-0,7678	-0,8508
Fnta	-1,0612	-0,6401	-0,8506
Pcyt1b	-1,0343	-0,6646	-0,8494
Asb6	-0,9091	-0,7888	-0,8490
Trim47	-0,9351	-0,7618	-0,8484
Tmem19	-0,7926	-0,8988	-0,8457
Rundc1	-1,0058	-0,6823	-0,8441
Cenpu	-0,8731	-0,8129	-0,8430
E130307a14rik	-1,0214	-0,6643	-0,8428
Nme1	-1,0464	-0,6374	-0,8419
Atp13a1	-0,9266	-0,7562	-0,8414
6820431f20rik	-0,8037	-0,8787	-0,8412
Oaz1	-1,1623	-0,5159	-0,8391
Hmgn3	-1,0873	-0,5890	-0,8382
6430548m08rik	-0,9573	-0,7189	-0,8381

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Pgs1	-0,8777	-0,7937	-0,8357
Grk6	-0,8044	-0,8633	-0,8339
Itpr1	-0,7801	-0,8875	-0,8338
Gna11	-0,9339	-0,7334	-0,8337
Aspscr1	-0,9000	-0,7672	-0,8336
Prosc	-1,0230	-0,6433	-0,8331
2210011c24rik	-1,1624	-0,5033	-0,8328
Crat	-1,0311	-0,6333	-0,8322
Tfdp1	-0,9674	-0,6958	-0,8316
Rnf170	-0,8087	-0,8531	-0,8309
D8ertd738e	-1,0637	-0,5979	-0,8308
Hgsnat	-0,7970	-0,8608	-0,8289
Mb21d1	-0,7937	-0,8618	-0,8277
Lactb	-1,0715	-0,5828	-0,8271
Rab5b	-0,8211	-0,8331	-0,8271
Ttll7	-0,9422	-0,7104	-0,8263
Ankle1	-1,0561	-0,5948	-0,8254
Pip5k1c	-0,8431	-0,8070	-0,8250
Traf2	-1,0137	-0,6343	-0,8240
Mrm1	-0,7997	-0,8467	-0,8232
Fadd	-0,7977	-0,8485	-0,8231
Sin3b	-0,9076	-0,7363	-0,8220
Mcm5	-0,9733	-0,6698	-0,8216
Cdk2	-0,9481	-0,6943	-0,8212
Ddx42	-0,8857	-0,7547	-0,8202
Acd	-1,0364	-0,6032	-0,8198
Kif1bp	-0,9988	-0,6380	-0,8184
Tsen54	-0,9526	-0,6827	-0,8176
Rwdd1	-1,1118	-0,5202	-0,8160
Tmem5	-0,9769	-0,6544	-0,8156
Scx	-0,8340	-0,7944	-0,8142
Zwint	-0,7967	-0,8305	-0,8136
Pomt1	-0,8185	-0,8084	-0,8134
Tmem161a	-0,7368	-0,8900	-0,8134
Tnip2	-0,6690	-0,9562	-0,8126
Prim1	-0,8875	-0,7350	-0,8113
Timeless	-0,9255	-0,6962	-0,8109
Prdx2	-0,9171	-0,7043	-0,8107
Gm7335	-0,8121	-0,8084	-0,8103
2310036o22rik	-0,9176	-0,7006	-0,8091
Tecr	-0,8428	-0,7725	-0,8077
Hoxb8	-0,7698	-0,8451	-0,8074
Rffl	-0,8741	-0,7379	-0,8060
Scpep1	-0,9102	-0,7010	-0,8056
Dhrs11	-0,8210	-0,7896	-0,8053

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Mpv17l2	-0,8146	-0,7953	-0,8050
Casc3	-0,9066	-0,7033	-0,8049
Brip1	-0,8392	-0,7705	-0,8048
Lbhd1	-1,0429	-0,5660	-0,8044
Heatr3	-0,9574	-0,6511	-0,8042
Usp38	-0,9127	-0,6939	-0,8033
Ттсб	-0,8632	-0,7415	-0,8023
Gm43737	-0,7973	-0,8052	-0,8013
Arhgap42	-0,9457	-0,6565	-0,8011
Madd	-0,8263	-0,7753	-0,8008
Urm1	-0,9052	-0,6962	-0,8007
Brca2	-0,7563	-0,8444	-0,8003
Grb2	-0,9220	-0,6776	-0,7998
Pcm1	-0,9937	-0,6052	-0,7995
Ap2b1	-0,9453	-0,6504	-0,7979
Gm26917	-0,9020	-0,6929	-0,7975
Trappc10	-0,7975	-0,7969	-0,7972
Cul4a	-0,9390	-0,6546	-0,7968
Apba3	-0,8978	-0,6912	-0,7945
Cpd	-0,6598	-0,9278	-0,7938
Bicd1	-0,7838	-0,8028	-0,7933
Myo5c	-0,8056	-0,7809	-0,7932
Pkp3	-0,8982	-0,6877	-0,7930
1110051m20rik	-0,9885	-0,5900	-0,7892
Slc43a2	-0,6781	-0,9001	-0,7891
Rab8a	-0,8998	-0,6778	-0,7888
Ormdl3	-0,7003	-0,8773	-0,7888
Gpr107	-0,8107	-0,7666	-0,7887
Sap30bp	-0,9114	-0,6625	-0,7869
Myo19	-0,7630	-0,8083	-0,7856
Dcxr	-0,8349	-0,7363	-0,7856
Ppp2r4	-0,8869	-0,6828	-0,7848
Dcaf7	-0,7850	-0,7831	-0,7840
Farsa	-0,9024	-0,6638	-0,7831
Tnrc6c	-0,8160	-0,7502	-0,7831
Naaa	-0,8813	-0,6847	-0,7830
Gga3	-0,8367	-0,7290	-0,7828
Aatf	-0,8728	-0,6923	-0,7826
Gadd45g	-0,9086	-0,6553	-0,7819
H2-k1	-0,7225	-0,8410	-0,7818
Cant1	-0,6931	-0,8703	-0,7817
Psmb3	-0,9151	-0,6469	-0,7810
2310067b10rik	-0,8792	-0,6817	-0,7805
Pla2g15	-0,6926	-0,8680	-0,7803
Chpt1	-0,9872	-0,5732	-0,7802

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Micu1	-0,8855	-0,6732	-0,7793
Cstf2t	-0,7562	-0,8015	-0,7789
Mum1	-0,8584	-0,6993	-0,7788
Dip2a	-0,7522	-0,8028	-0,7775
Fzd2	-0,9743	-0,5803	-0,7773
Sptan1	-0,7724	-0,7811	-0,7768
Mrps7	-0,9603	-0,5901	-0,7752
Gm9824	-0,7177	-0,8326	-0,7752
Vmp1	-0,6695	-0,8807	-0,7751
Smarcd2	-0,8356	-0,7133	-0,7744
Arl16	-0,9333	-0,6150	-0,7742
Pigf	-0,8033	-0,7447	-0,7740
Slc25a42	-0,8266	-0,7210	-0,7738
Neurl3	-0,6358	-0,9111	-0,7735
Fn3krp	-0,9237	-0,6232	-0,7735
E2f4	-1,0034	-0,5434	-0,7734
Slc25a15	-1,0197	-0,5268	-0,7732
Rab3ip	-0,9003	-0,6459	-0,7731
Vps53	-0,8187	-0,7269	-0,7728
Dolk	-0,7192	-0,8260	-0,7726
Mast3	-1,0587	-0,4844	-0,7716
Zc3h10	-0,9294	-0,6123	-0,7708
Map1s	-0,9175	-0,6239	-0,7707
St7l	-0,7117	-0,8276	-0,7696
Phc3	-0,8419	-0,6934	-0,7677
Ccdc53	-1,0279	-0,5071	-0,7675
Ralgds	-0,7963	-0,7384	-0,7674
Rps6kb1	-0,9671	-0,5656	-0,7663
Uck1	-0,8307	-0,7012	-0,7660
Nfatc3	-0,7455	-0,7852	-0,7653
Zbtb24	-0,9604	-0,5684	-0,7644
Rab33b	-0,6633	-0,8633	-0,7633
Polr3h	-0,9243	-0,6015	-0,7629
Heatr6	-0,7801	-0,7451	-0,7626
Nploc4	-0,8048	-0,7162	-0,7605
Cactin	-0,9840	-0,5351	-0,7596
Mrps28	-1,0279	-0,4907	-0,7593
Tmem263	-0,8835	-0,6339	-0,7587
Pip4k2b	-0,7448	-0,7705	-0,7576
Caml	-0,6654	-0,8492	-0,7573
Athl1	-0,6547	-0,8589	-0,7568
Dus11	-0,9722	-0,5352	-0,7537
Tbcel	-0,7899	-0,7166	-0,7532
Fam32a	-0,8131	-0,6923	-0,7527
Actg1	-0,8518	-0,6528	-0,7523

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Ston1	-0,8624	-0,6418	-0,7521
1700030k09rik	-0,8175	-0,6865	-0,7520
Pax8	-0,9219	-0,5794	-0,7507
Mta3	-0,8218	-0,6795	-0,7506
Alg5	-0,8622	-0,6388	-0,7505
Nol11	-0,8205	-0,6804	-0,7504
Uqcr11	-0,9808	-0,5188	-0,7498
Rad51d	-0,9007	-0,5965	-0,7486
Cherp	-0,7781	-0,7164	-0,7473
Fam160a1	-0,9091	-0,5850	-0,7470
Sik1	-0,7668	-0,7272	-0,7470
Ntmt1	-0,9146	-0,5776	-0,7461
1190002n15rik	-0,8055	-0,6853	-0,7454
Rabepk	-0,8374	-0,6534	-0,7454
Cd82	-0,9457	-0,5437	-0,7447
Jund	-0,6719	-0,8163	-0,7441
Slc16a13	-0,7398	-0,7483	-0,7440
Torla	-0,7869	-0,6987	-0,7428
Rexo1	-0,8604	-0,6251	-0,7427
Tob1	-1,0285	-0,4569	-0,7427
Cenpt	-0,7586	-0,7262	-0,7424
Slc22a15	-0,7493	-0,7354	-0,7423
Mknk2	-0,9113	-0,5729	-0,7421
Tlk2	-0,7665	-0,7176	-0,7421
Sptlc1	-0,5651	-0,9171	-0,7411
Mtmr1	-0,7944	-0,6870	-0,7407
Eftud2	-0,8408	-0,6404	-0,7406
Ndufb7	-0,9337	-0,5471	-0,7404
Recql5	-0,7420	-0,7386	-0,7403
Arhgdia	-0,7989	-0,6786	-0,7388
Aldh9a1	-0,7284	-0,7474	-0,7379
Dgke	-0,7893	-0,6858	-0,7375
Sf3a2	-0,8880	-0,5840	-0,7360
Pnpo	-0,6684	-0,8020	-0,7352
Nt5c	-0,8214	-0,6484	-0,7349
Med22	-0,8434	-0,6249	-0,7342
Pgrmc2	-0,8392	-0,6274	-0,7333
Dhx40	-0,8728	-0,5933	-0,7331
Gm10232	-0,8797	-0,5862	-0,7329
Zfp398	-0,6479	-0,8173	-0,7326
Gosr2	-0,7831	-0,6810	-0,7320
Coasy	-0,7754	-0,6881	-0,7318
Dohh	-0,8314	-0,6302	-0,7308
Itga5	-0,8606	-0,6005	-0,7306
Pcsk7	-0,7282	-0,7326	-0,7304

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Psmd12	-0,9562	-0,5039	-0,7301
Fbf1	-0,7659	-0,6925	-0,7292
Gm15920	-0,9109	-0,5471	-0,7290
Nedd1	-0,6765	-0,7813	-0,7289
Borcs8	-0,7773	-0,6759	-0,7266
Tspan33	-0,8241	-0,6289	-0,7265
Mrpl23	-0,7584	-0,6945	-0,7264
Sema4d	-0,6859	-0,7661	-0,7260
Slc10a7	-0,7351	-0,7164	-0,7257
Vdac3-ps1	-0,7881	-0,6633	-0,7257
Mbd3	-0,9395	-0,5115	-0,7255
Atp6v1b2	-0,7111	-0,7384	-0,7247
Zhx3	-0,8181	-0,6312	-0,7247
Ints2	-0,6357	-0,8134	-0,7246
Atp11b	-0,9386	-0,5101	-0,7243
Ccdc47	-0,8122	-0,6337	-0,7230
Abca3	-0,6466	-0,7986	-0,7226
Dynll2	-0,8622	-0,5796	-0,7209
Gps1	-0,8869	-0,5531	-0,7200
Snrpd3	-0,8764	-0,5635	-0,7199
Tmem243	-0,7282	-0,7103	-0,7192
Ttc14	-0,8592	-0,5781	-0,7186
Nhsl1	-0,9336	-0,5024	-0,7180
H2afy	-0,9522	-0,4832	-0,7177
Mgat4a	-0,8441	-0,5877	-0,7159
Mecom	-0,8848	-0,5461	-0,7155
Tlr3	-0,6677	-0,7619	-0,7148
Erbb2	-0,7887	-0,6402	-0,7144
Twf2	-0,6123	-0,8161	-0,7142
Ippk	-0,6717	-0,7566	-0,7142
Aes	-0,9617	-0,4666	-0,7141
Vps26a	-0,8766	-0,5510	-0,7138
D11wsu47e	-0,7929	-0,6340	-0,7134
Socs7	-0,6603	-0,7645	-0,7124
Vdac3	-0,8283	-0,5940	-0,7112
Usb1	-0,7200	-0,7006	-0,7103
Ptprk	-0,5526	-0,8659	-0,7092
Hexdc	-0,8429	-0,5733	-0,7081
Glo1	-0,8766	-0,5394	-0,7080
Jtb	-0,6602	-0,7557	-0,7080
Inpp5e	-0,6797	-0,7354	-0,7075
Dnajb1	-0,8630	-0,5501	-0,7066
2310011j03rik	-0,7309	-0,6815	-0,7062
Acly	-0,6884	-0,7237	-0,7061
Rspry1	-0,7178	-0,6941	-0,7060

Genname	log2 fold change – Scr 300	R1 vs. log2 fold change – R1 vs. 600	Scr mittlerer log2 fold change – R1 vs. Scr
Exoc7	-0,8333	-0,5746	-0,7039
Vps36	-0,7693	-0,6379	-0,7036
Cnep1r1	-0,6403	-0,7650	-0,7027
Kpna2	-0,8090	-0,5961	-0,7025
D230025d16rik	-0,7417	-0,6628	-0,7022
Prkar2a	-0,8186	-0,5853	-0,7020
Wdr83os	-0,8675	-0,5363	-0,7019
Tsc22d1	-0,5215	-0,8810	-0,7013
Poc1b	-0,8343	-0,5672	-0,7008
Polrmt	-0,7296	-0,6673	-0,6985
Parp3	-0,7991	-0,5971	-0,6981
Psd	-0,7270	-0,6685	-0,6978
Slc35b1	-0,6799	-0,7152	-0,6975
Tmem259	-0,7434	-0,6504	-0,6969
Hdac1	-0,8553	-0,5379	-0,6966
Rsu1	-0,7856	-0,6072	-0,6964
Spcs3	-0,8932	-0,4988	-0,6960
Erlin1	-0,7799	-0,6120	-0,6960
Dhx32	-0,6072	-0,7833	-0,6952
Abhd2	-0,5957	-0,7928	-0,6942
Cc2d1b	-0,6481	-0,7392	-0,6936
Dazap1	-0,7512	-0,6358	-0,6935
Zbtb43	-0,8559	-0,5306	-0,6932
Abhd16a	-0,7673	-0,6188	-0,6930
Atp5h	-0,9369	-0,4488	-0,6928
Tmed9	-0,7476	-0,6369	-0,6923
Dcun1d2	-0,7384	-0,6447	-0,6916
U2af1	-0,8109	-0,5691	-0,6900
Usp44	-0,7328	-0,6471	-0,6900
Psmc5	-0,7888	-0,5901	-0,6894
Homer3	-0,6423	-0,7313	-0,6868
B3gnt3	-0,7031	-0,6696	-0,6863
Tubb2a	-0,6437	-0,7286	-0,6861
Ftsj3	-0,7680	-0,6042	-0,6861
Bmp2k	-0,7357	-0,6350	-0,6854
Abcb10	-0,6764	-0,6918	-0,6841
Ipmk	-0,6189	-0,7475	-0,6832
Fpgs	-0,7560	-0,6100	-0,6830
Dhx8	-0,7161	-0,6487	-0,6824
Sbno2	-0,7252	-0,6394	-0,6823
Ocel1	-0,7581	-0,6051	-0,6816
Btbd3	-0,7508	-0,6095	-0,6801
Scrn2	-0,6563	-0,7031	-0,6797
Nr2f6	-0,7885	-0,5697	-0,6791
Fto	-0,8097	-0,5476	-0,6786

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Mif4gd	-0,8053	-0,5518	-0,6785
Paics	-0,8364	-0,5205	-0,6785
Ubqln1	-0,8392	-0,5171	-0,6781
Rab15	-0,7959	-0,5598	-0,6779
Gfod2	-0,7745	-0,5811	-0,6778
Ranbp10	-0,8134	-0,5417	-0,6776
Gm53	-0,7015	-0,6522	-0,6769
Lemd3	-0,7382	-0,6140	-0,6761
Crtap	-0,8823	-0,4680	-0,6751
St14	-0,7967	-0,5525	-0,6746
Gipc1	-0,7184	-0,6301	-0,6743
Zswim4	-0,6928	-0,6532	-0,6730
Edf1	-0,8112	-0,5322	-0,6717
Myo9b	-0,6979	-0,6432	-0,6706
Ddx28	-0,8410	-0,4969	-0,6689
Gm10146	-0,6958	-0,6418	-0,6688
Mocs2	-0,8438	-0,4931	-0,6684
Nae1	-0,6799	-0,6567	-0,6683
Ccdc59	-0,7696	-0,5666	-0,6681
Afap112	-0,8205	-0,5153	-0,6679
Akap11	-0,6835	-0,6523	-0,6679
Capn7	-0,6665	-0,6688	-0,6677
Kat2a	-0,7382	-0,5971	-0,6677
Eif2ak3	-0,7072	-0,6260	-0,6666
Wdr83	-0,6686	-0,6644	-0,6665
Larp1b	-0,7949	-0,5373	-0,6661
Prkca	-0,7817	-0,5502	-0,6659
D10jhu81e	-0,8056	-0,5240	-0,6648
Tnpo2	-0,7526	-0,5761	-0,6644
Plekhj1	-0,8144	-0,5143	-0,6643
Dapk3	-0,8533	-0,4733	-0,6633
Ap1m1	-0,5764	-0,7501	-0,6633
Tubgcp3	-0,7683	-0,5582	-0,6633
Dctn2	-0,7260	-0,6002	-0,6631
Alyref	-0,8641	-0,4615	-0,6628
Brcal	-0,7627	-0,5624	-0,6626
Sash1	-0,8568	-0,4681	-0,6625
Tubg1	-0,7373	-0,5872	-0,6623
Rfng	-0,6446	-0,6793	-0,6620
Cabin1	-0,6978	-0,6248	-0,6613
Ptrf	-0,7986	-0,5229	-0,6608
Recql	-0,8053	-0,5160	-0,6607
Iscal	-0,6942	-0,6264	-0,6603
Ranbp2	-0,7180	-0,6006	-0,6593
Mcfd2	-0,7687	-0,5499	-0,6593

Genname	log2 fold change – Scr 300	R1 vs. log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Yipf6	-0,6722	-0,6453	-0,6587
Mcph1	-0,7423	-0,5740	-0,6582
Pbx3	-0,7824	-0,5335	-0,6579
Stx17	-0,5712	-0,7447	-0,6579
Rbm17	-0,8060	-0,5098	-0,6579
Msh2	-0,7671	-0,5481	-0,6576
Mon2	-0,6903	-0,6246	-0,6575
Psmc3ip	-0,7157	-0,5981	-0,6569
Rnf146	-0,7154	-0,5973	-0,6563
Sar1a	-0,8009	-0,5116	-0,6562
Dcun1d1	-0,8057	-0,5059	-0,6558
Fanca	-0,7016	-0,6093	-0,6554
Ppp2r3a	-0,7581	-0,5526	-0,6554
Ndfip1	-0,6756	-0,6339	-0,6548
Spns2	-0,8116	-0,4978	-0,6547
P4hb	-0,8150	-0,4940	-0,6545
Wrn	-0,7001	-0,6085	-0,6543
Taok2	-0,7555	-0,5508	-0,6532
Gm9816	-0,7363	-0,5691	-0,6527
Pxdn	-0,7356	-0,5686	-0,6521
Asfla	-0,7890	-0,5142	-0,6516
Zzef1	-0,6089	-0,6933	-0,6511
Мси	-0,7216	-0,5781	-0,6498
Mrps2	-0,7228	-0,5744	-0,6486
Plk4	-0,7277	-0,5695	-0,6486
Smarca5	-0,8592	-0,4363	-0,6478
Tom111	-0,7710	-0,5224	-0,6467
Man2b2	-0,6620	-0,6311	-0,6465
Rab14	-0,7182	-0,5732	-0,6457
Gm10093	-0,7705	-0,5174	-0,6439
Hn1	-0,7162	-0,5688	-0,6425
Stard3	-0,6910	-0,5931	-0,6420
Med24	-0,7421	-0,5402	-0,6411
Snx3	-0,8199	-0,4620	-0,6410
Cdk4	-0,8011	-0,4797	-0,6404
Bc017643	-0,7045	-0,5756	-0,6401
Phf2	-0,7156	-0,5643	-0,6399
Mtfr1	-0,6468	-0,6327	-0,6397
B4galnt1	-0,6779	-0,6007	-0,6393
Ormdl2	-0,5875	-0,6874	-0,6374
Tmem147	-0,7381	-0,5364	-0,6372
Stxbp4	-0,6931	-0,5801	-0,6366
Prepl	-0,6834	-0,5894	-0,6364
Thoc3	-0,6774	-0,5947	-0,6361
Stk11	-0,7360	-0,5341	-0,6350

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Samd14	-0,6728	-0,5955	-0,6341
Cbfb	-0,6070	-0,6582	-0,6326
Lgals8	-0,6543	-0,6088	-0,6315
Smg8	-0,6543	-0,6077	-0,6310
Pwp1	-0,7463	-0,5148	-0,6305
Os9	-0,6059	-0,6545	-0,6302
Rab5c	-0,6846	-0,5731	-0,6288
Wdr41	-0,5806	-0,6769	-0,6288
Trnt1	-0,6747	-0,5823	-0,6285
Tusc3	-0,7733	-0,4836	-0,6285
Vps4a	-0,6581	-0,5962	-0,6272
Nup188	-0,6613	-0,5908	-0,6260
Llph	-0,7604	-0,4846	-0,6225
Trappc11	-0,6927	-0,5513	-0,6220
Anapc11	-0,6530	-0,5903	-0,6217
Stim1	-0,7343	-0,5080	-0,6212
Fam120a	-0,8128	-0,4290	-0,6209
Fzd6	-0,6587	-0,5829	-0,6208
Hoxb4	-0,6212	-0,6188	-0,6200
Zdhhc12	-0,5813	-0,6585	-0,6199
Supt4a	-0,8045	-0,4349	-0,6197
Vps35	-0,7560	-0,4809	-0,6185
Cs	-0,8103	-0,4266	-0,6185
Cdk1	-0,7765	-0,4599	-0,6182
Smim12	-0,6859	-0,5506	-0,6182
Sephs2	-0,7196	-0,5163	-0,6179
Eogt	-0,5876	-0,6461	-0,6169
Setd7	-0,6855	-0,5476	-0,6165
Hacel	-0,6546	-0,5783	-0,6164
Bc005624	-0,6518	-0,5809	-0,6163
Slc30a7	-0,6884	-0,5425	-0,6154
Nrbf2	-0,6640	-0,5631	-0,6136
Prmt2	-0,5745	-0,6523	-0,6134
Atxn7l3	-0,7275	-0,4916	-0,6095
Thap11	-0,7009	-0,5167	-0,6088
Cd164	-0,7303	-0,4870	-0,6086
Ube2n	-0,8343	-0,3828	-0,6085
Mus81	-0,4923	-0,7230	-0,6077
D17h6s53e	-0,6580	-0,5572	-0,6076
Polr2e	-0,7499	-0,4632	-0,6066
Mtmr4	-0,7189	-0,4941	-0,6065
Selk	-0,7442	-0,4682	-0,6062
Nup93	-0,7540	-0,4564	-0,6052
Faf2	-0,6152	-0,5950	-0,6051
Tex2	-0,7157	-0,4939	-0,6048

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Ash2l	-0,6329	-0,5764	-0,6046
Slc35b4	-0,5864	-0,6213	-0,6039
Zc3h7b	-0,7170	-0,4897	-0,6033
Rtcb	-0,7014	-0,5020	-0,6017
Arll	-0,7406	-0,4628	-0,6017
Pym1	-0,6763	-0,5254	-0,6009
Synrg	-0,5926	-0,6087	-0,6006
Abl1	-0,7132	-0,4875	-0,6003
Swi5	-0,7426	-0,4542	-0,5984
Whsc111	-0,7062	-0,4897	-0,5979
Atp2b1	-0,6870	-0,5074	-0,5972
Fam207a	-0,6024	-0,5910	-0,5967
Mrpl38	-0,7232	-0,4695	-0,5964
Lsr	-0,5746	-0,6180	-0,5963
Yeats4	-0,7699	-0,4227	-0,5963
Mfge8	-0,7937	-0,3981	-0,5959
Appbp2	-0,7109	-0,4804	-0,5956
Cbx1	-0,7424	-0,4485	-0,5954
Acad9	-0,7178	-0,4716	-0,5947
Zbtb7a	-0,6887	-0,4996	-0,5942
Nup214	-0,6335	-0,5543	-0,5939
Fam96b	-0,6875	-0,5001	-0,5938
Spag9	-0,7110	-0,4763	-0,5937
Gpatch8	-0,6292	-0,5580	-0,5936
Calm2	-0,7924	-0,3918	-0,5921
Fam107b	-0,7435	-0,4398	-0,5917
Sgta	-0,6778	-0,5049	-0,5913
Zmpste24	-0,5655	-0,6169	-0,5912
Cdc16	-0,7084	-0,4723	-0,5903
Hgs	-0,6241	-0,5560	-0,5901
Thada	-0,6415	-0,5367	-0,5891
Gna13	-0,6205	-0,5571	-0,5888
Map2k2	-0,7050	-0,4711	-0,5881
Prkci	-0,7229	-0,4520	-0,5875
Eif4ebp2	-0,7418	-0,4310	-0,5864
Мст3ар	-0,6493	-0,5225	-0,5859
Abce1	-0,7168	-0,4534	-0,5851
Gopc	-0,6168	-0,5461	-0,5815
Dcakd	-0,6695	-0,4929	-0,5812
Tpm4	-0,6216	-0,5403	-0,5810
Lamp1	-0,6378	-0,5211	-0,5795
Llgl2	-0,6476	-0,5071	-0,5773
Mpc2	-0,6031	-0,5491	-0,5761
Gtf3c6	-0,6630	-0,4880	-0,5755
Eps1511	-0,6209	-0,5291	-0,5750

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Ppapdc1b	-0,6081	-0,5389	-0,5735
Ythdf3	-0,7210	-0,4254	-0,5732
Sirt7	-0,5869	-0,5591	-0,5730
Hint1	-0,6025	-0,5398	-0,5711
Tmem184c	-0,5211	-0,6195	-0,5703
Cdc123	-0,6794	-0,4610	-0,5702
Golga7	-0,6500	-0,4903	-0,5702
Herc4	-0,6899	-0,4502	-0,5700
Zmynd19	-0,5598	-0,5769	-0,5683
Spop	-0,6742	-0,4597	-0,5670
Cep83	-0,6081	-0,5228	-0,5655
Gpat4	-0,6147	-0,5099	-0,5623
Fuca1	-0,6686	-0,4538	-0,5612
Zfp280b	-0,5899	-0,5290	-0,5594
Acol	-0,6225	-0,4950	-0,5588
Slc35c1	-0,5323	-0,5806	-0,5565
Fam134c	-0,6535	-0,4579	-0,5557
Abhd13	-0,6084	-0,5023	-0,5554
Ube2g2	-0,6316	-0,4789	-0,5552
Cdan1	-0,5953	-0,5151	-0,5552
Ddx49	-0,6280	-0,4819	-0,5550
Arhgef7	-0,5266	-0,5805	-0,5536
Atxn7l3b	-0,6030	-0,5027	-0,5528
Ccdc43	-0,6629	-0,4419	-0,5524
Mpp1	-0,5526	-0,5494	-0,5510
Gins4	-0,6520	-0,4475	-0,5497
Amd1	-0,6601	-0,4385	-0,5493
Gfer	-0,5794	-0,5175	-0,5485
Psmb4	-0,5825	-0,5134	-0,5480
Nus1	-0,6336	-0,4606	-0,5471
Dnajb12	-0,6944	-0,3956	-0,5450
Taf5	-0,5743	-0,5140	-0,5441
Cipc	-0,5998	-0,4848	-0,5423
Foxk2	-0,6073	-0,4594	-0,5333
Fbxo3	-0,6003	-0,4627	-0,5315
Hiat1	-0,5976	-0,4611	-0,5294
Tspan31	-0,6172	-0,4352	-0,5262
Cers5	-0,5814	-0,4654	-0,5234
Rfk	-0,5934	-0,4498	-0,5216
Map2k7	-0,5633	-0,4613	-0,5123
Itgb1	-0,5162	-0,5048	-0,5105
Cyb5b	-0,5753	-0,4349	-0,5051
Hacd3	-0,4649	-0,5320	-0,4985
Smpdl3b	-0,5090	-0,4807	-0,4948
Chd3	-0,4828	-0,4685	-0,4757

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Slc35a4	-0,4905	-0,4396	-0,4651
Lgrб	-1,2168	0,6729	-0,2719
Cyp1b1	0,8899	-1,0349	-0,0725
Fxyd5	-0,9143	0,8855	-0,0144
Ppp1r12b	0,7648	-0,6735	0,0457
Blcap	0,5536	0,5153	0,5345
Kctd3	0,5578	0,5271	0,5425
Stk4	0,5543	0,5340	0,5442
Wfdc2	0,6412	0,4717	0,5564
Rbck1	0,5703	0,5584	0,5644
Strn3	0,6348	0,4955	0,5651
Rrp36	0,5008	0,6332	0,5670
Dgkd	0,5684	0,5821	0,5753
Lrig1	0,5483	0,6101	0,5792
Rrn3	0,6098	0,5557	0,5827
Ephb3	0,6618	0,5250	0,5934
Rtel1	0,5928	0,5983	0,5955
Basp1	0,5678	0,6391	0,6034
Polh	0,6205	0,6457	0,6331
Kpna1	0,5908	0,6825	0,6367
Ai661453	0,6522	0,6254	0,6388
Cenpq	0,6356	0,6445	0,6401
Pitrm1	0,5096	0,7824	0,6460
Slc39a10	0,6594	0,6370	0,6482
Kif3b	0,7225	0,5765	0,6495
Rras2	0,4776	0,8331	0,6553
Sep 02	0,5569	0,7704	0,6636
Pea15a	0,7366	0,5921	0,6644
Hspa13	0,5372	0,7926	0,6649
Src	0,6402	0,6970	0,6686
Ptbp2	0,6070	0,7408	0,6739
Abcc1	0,7488	0,6023	0,6755
Stambpl1	0,6624	0,6936	0,6780
Ctsl	0,5396	0,8198	0,6797
Wars	0,6836	0,6806	0,6821
Ets2	0,8930	0,4778	0,6854
Qk	0,5675	0,8094	0,6885
Ttil	0,6368	0,7409	0,6889
Nif311	0,6071	0,7766	0,6918
Gpc1	0,9026	0,4946	0,6986
Rbmx	0,8588	0,5437	0,7012
Tnk2	0,6880	0,7192	0,7036
Rbm38	0,5976	0,8108	0,7042
Atp13a3	0,7165	0,6922	0,7043
9130008f23rik	0,7164	0,6955	0,7060

Genname	log2 fold change – R1 Scr 300	vs. log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Thoc6	0,5861	0,8307	0,7084
Rab23	0,7810	0,6361	0,7086
Lrrfip1	0,5932	0,8302	0,7117
Trip10	0,5846	0,8413	0,7129
Snx18	0,6946	0,7320	0,7133
Psd3	0,9174	0,5280	0,7227
Klc1	0,6545	0,7915	0,7230
Slc25a33	0,7314	0,7239	0,7276
Tm9sf2	0,7234	0,7320	0,7277
Wdr70	0,5335	0,9307	0,7321
Uqcc1	0,7300	0,7390	0,7345
Lama5	0,5558	0,9185	0,7371
Rab5a	0,7168	0,7620	0,7394
Dock8	0,7834	0,6965	0,7400
Zfp462	0,7241	0,7639	0,7440
Gprc5a	0,7829	0,7066	0,7448
Prkaa1	0,6201	0,8786	0,7494
Klhdc3	0,7365	0,7685	0,7525
Lpp	0,8600	0,6503	0,7552
Lmbrd2	0,8386	0,6785	0,7585
Mbp	0,5954	0,9238	0,7596
Smurf1	0,6731	0,8467	0,7599
Prdx6	0,6832	0,8503	0,7667
Pvrl2	0,8997	0,6373	0,7685
Med20	0,6576	0,8806	0,7691
Bmp1	0,5629	0,9888	0,7758
Crebbp	0,6843	0,8752	0,7797
Phldb2	1,0279	0,5327	0,7803
Chpf	0,7490	0,8132	0,7811
Tbc1d5	0,5796	0,9872	0,7834
Gtf3c3	0,7387	0,8288	0,7837
Trp53inp2	0,8867	0,6811	0,7839
Efna5	0,7966	0,7748	0,7857
Il4ra	0,6459	0,9291	0,7875
Znrf2	1,0394	0,5360	0,7877
Coq10b	0,7089	0,8701	0,7895
Supt3	0,8039	0,7857	0,7948
Dus3l	0,6101	0,9807	0,7954
Pard6b	0,7010	0,8913	0,7961
Lamc2	0,6447	0,9497	0,7972
Igsf9	0,6866	0,9087	0,7976
Ldlrap1	0,6502	0,9518	0,8010
Nup155	0,7036	0,9070	0,8053
Igfbp7	1,0570	0,5537	0,8054
Pdia4	0,7209	0,8915	0,8062

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Rassf5	0,7283	0,8861	0,8072
Dnajc21	0,6534	0,9635	0,8084
Cflar	0,6053	1,0314	0,8183
Fkbp5	0,8586	0,7792	0,8189
Dpy1911	0,5425	1,1100	0,8263
Snx5	0,6283	1,0304	0,8293
Eepd1	0,8120	0,8480	0,8300
Cables2	0,7298	0,9350	0,8324
Tead4	0,6505	1,0171	0,8338
Prpf6	0,7069	0,9666	0,8368
Brix1	0,6821	0,9923	0,8372
Kdm7a	1,0944	0,5800	0,8372
Wtip	0,8537	0,8260	0,8399
Fyttd1	0,6230	1,0575	0,8403
Nipbl	0,7051	0,9813	0,8432
Itm2c	0,8372	0,8503	0,8438
Dock9	0,9632	0,7273	0,8453
Klhl28	0,9637	0,7342	0,8489
Foxp4	0,7588	0,9414	0,8501
Etohi1	0,8247	0,8914	0,8581
Mrgbp	0,8165	0,9018	0,8591
Stk11ip	0,7893	0,9432	0,8662
Gstz1	0,8103	0,9411	0,8757
Baiap2l2	0,6996	1,0526	0,8761
Utp14b	0,9284	0,8293	0,8788
Syt12	0,8571	0,9022	0,8796
Maff	0,8282	0,9395	0,8839
Nfkbiz	1,1422	0,6263	0,8843
Rab31	0,7399	1,0287	0,8843
Epb4111	0,6557	1,1166	0,8861
Ube2v2	0,5474	1,2306	0,8890
Tmem63b	0,8122	0,9678	0,8900
5730559c18rik	1,1340	0,6474	0,8907
Rpl36	0,5511	1,2346	0,8928
Tnfrsf22	0,8381	0,9485	0,8933
Fez2	0,7769	1,0116	0,8943
Gas5	0,8132	0,9783	0,8958
Morc4	0,7779	1,0157	0,8968
Anxa3	0,5504	1,2456	0,8980
Pdzk1ip1	1,1324	0,6695	0,9009
Prkch	0,8474	0,9620	0,9047
Esyt2	0,8540	0,9614	0,9077
Dcbld2	0,7925	1,0294	0,9110
Ttc33	0,7953	1,0277	0,9115
Adgrl2	1,0007	0,8245	0,9126

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Igf2r	0,8876	0,9394	0,9135
Dmxl2	0,8469	0,9887	0,9178
Tns1	0,7768	1,0602	0,9185
Lrrc58	0,7811	1,0576	0,9193
Rictor	0,6793	1,1687	0,9240
Emp1	0,8682	0,9808	0,9245
Dyrk3	0,9855	0,8703	0,9279
Drosha	0,8417	1,0450	0,9433
Mcam	0,9706	0,9239	0,9472
Rpl37rt	0,7559	1,1416	0,9488
Stk24	0,8135	1,0922	0,9528
C79130	0,9678	0,9416	0,9547
Ubac2	0,8304	1,0800	0,9552
Tgif2	1,0776	0,8381	0,9578
Tbc1d2	0,9260	0,9926	0,9593
Ggta1	0,5562	1,3700	0,9631
Bbs1	0,8556	1,0798	0,9677
Ptger4	1,1405	0,8043	0,9724
Arhgef3	0,9521	0,9962	0,9742
Bcat1	1,0052	0,9438	0,9745
Bcl2l1	1,0354	0,9197	0,9776
Nova1	0,7272	1,2310	0,9791
Afap1	1,0912	0,8735	0,9824
Ghr	1,0012	0,9636	0,9824
Fam49b	0,9050	1,0709	0,9879
Plekhh1	0,8505	1,1350	0,9928
A130014a01rik	1,1114	0,8972	1,0043
Sep 05	1,2405	0,7704	1,0055
Slc4a4	1,1070	0,9087	1,0079
Dlg1	1,0953	0,9271	1,0112
Rpl37	0,7379	1,2888	1,0133
Inf2	0,9030	1,1251	1,0141
Rad1	0,9106	1,1180	1,0143
Gm13655	0,8111	1,2216	1,0163
6030458c11rik	0,9614	1,0746	1,0180
Psmg1	0,8755	1,1660	1,0207
Lrp12	1,1335	0,9105	1,0220
Stom	0,8859	1,1650	1,0254
Rbm25	0,9682	1,0857	1,0269
Gtf2a2	0,8255	1,2290	1,0273
Sox12	0,8970	1,1689	1,0330
Kdm5b	0,8556	1,2204	1,0380
Ddah1	0,8256	1,2560	1,0408
Asap2	0,9814	1,1038	1,0426
Runx2	1,4913	0,6091	1,0502

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Syne3	0,9672	1,1336	1,0504
2810408i11rik	1,0726	1,0397	1,0562
Wnt9a	1,1022	1,0265	1,0644
Creg1	1,0256	1,1164	1,0710
Ripk4	0,8480	1,3043	1,0761
Foxn3	1,1513	1,0067	1,0790
Cul7	1,1779	0,9823	1,0801
Cd68	1,2649	0,8976	1,0813
1700025g04rik	0,8006	1,3703	1,0854
Mrpl48-ps	0,7502	1,4251	1,0877
Fam101b	0,8129	1,3677	1,0903
Ppp1r18	1,1025	1,0968	1,0996
Lsm14b	1,0053	1,2102	1,1078
Atxn7l1	0,8439	1,3752	1,1095
Fblim1	0,9386	1,2813	1,1100
Ntn1	1,4497	0,7773	1,1135
Trim16	0,9339	1,2957	1,1148
Slc9a3r2	0,9153	1,3152	1,1153
Flot1	1,4431	0,7904	1,1168
Fermt2	0,9271	1,3064	1,1168
Rabl3	0,9529	1,2855	1,1192
Sumf1	0,9851	1,2606	1,1228
9530053a07rik	0,9092	1,3528	1,1310
Rfx2	1,1525	1,1113	1,1319
Hk2	0,9182	1,3491	1,1337
Rbpsuh-rs3	1,0546	1,2182	1,1364
Rbpj	0,9835	1,2894	1,1364
Ier3	0,8685	1,4184	1,1434
Prss22	1,2107	1,0762	1,1435
Ptk7	1,1331	1,1590	1,1461
Hcfc1r1	1,0521	1,2411	1,1466
Fbln2	0,6125	1,6814	1,1469
Ulbp1	1,3559	0,9428	1,1494
Cyp4a12b	1,4285	0,8721	1,1503
Mttp	0,8522	1,4572	1,1547
Pcdh1	1,0425	1,2700	1,1562
Plek2	1,0044	1,3356	1,1700
Snora28	1,2047	1,1361	1,1704
Kcnj10	1,5887	0,7604	1,1745
Aim11	1,2974	1,0605	1,1790
St3gal4	1,1494	1,2087	1,1790
Slc4a3	1,0122	1,3486	1,1804
Tnfrsf23	1,0731	1,2914	1,1822
Vgll3	1,3201	1,0456	1,1829
Wrb	1,1902	1,1820	1,1861

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Bc022687	1,2904	1,0914	1,1909
Bst1	1,0591	1,3302	1,1946
Zbtb21	1,0822	1,3079	1,1950
Sub1	0,7772	1,6162	1,1967
Dock5	1,3483	1,0516	1,2000
Cdsn	1,4693	0,9380	1,2036
Krt20	1,0254	1,3842	1,2048
Ikbke	1,4754	0,9399	1,2076
Mlh3	0,9720	1,4504	1,2112
Me3	1,5352	0,8985	1,2169
Clybl	1,0101	1,4265	1,2183
Bc034090	0,8612	1,5824	1,2218
Ppdpf	0,9698	1,4749	1,2224
Cald1	1,1500	1,3038	1,2269
Hmgal-rsl	0,8050	1,6522	1,2286
Gm20544	1,3028	1,1575	1,2302
Aw549877	1,0665	1,4035	1,2350
Ipo5	1,0042	1,4696	1,2369
Asap1	1,2523	1,2283	1,2403
Pxdc1	0,8955	1,5897	1,2426
Lmo7	1,5829	0,9044	1,2437
Ss18l1	1,1628	1,3330	1,2479
Sema3b	0,9619	1,5407	1,2513
Amacr	1,1113	1,4056	1,2584
Mycl	1,5757	0,9488	1,2622
Ablim2	1,6490	0,8839	1,2664
Rap1gap2	1,5819	0,9608	1,2714
Apobr	1,2095	1,3362	1,2728
Rilpl2	0,9402	1,6140	1,2771
Susd4	1,0600	1,4959	1,2780
Csf3	1,6523	0,9064	1,2793
Rps6ka5	1,3561	1,2086	1,2824
C2cd2	1,2255	1,3456	1,2856
Prkcd	1,3837	1,1899	1,2868
Gm7862	1,3744	1,2056	1,2900
Nxpe3	1,0696	1,5195	1,2946
Dusp4	0,8461	1,7551	1,3006
Cldn6	1,1051	1,4998	1,3025
Brwd1	1,3526	1,2579	1,3052
Glrx	1,4277	1,1839	1,3058
Cep170	1,3658	1,2466	1,3062
Ai467606	1,2656	1,3622	1,3139
Padi2	0,8670	1,7625	1,3147
Plcxd2	1,2300	1,4085	1,3192
Myo1e	1,1926	1,4466	1,3196

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Gsto1	1,2549	1,4019	1,3284
Aa414768	0,9581	1,7035	1,3308
Wnt7a	1,2233	1,4608	1,3420
Tmtc4	1,3274	1,3617	1,3446
Tcf7	1,4295	1,2702	1,3498
Tcn2	1,6015	1,1125	1,3570
Dusp10	1,5106	1,2147	1,3627
Mex3b	1,6620	1,0679	1,3649
Inhbb	1,0543	1,6817	1,3680
Arhgap40	0,6705	2,0695	1,3700
Sdcbp2	1,3845	1,3559	1,3702
Cpeb2	1,7427	1,0000	1,3714
Bdnf	1,8130	0,9433	1,3782
Sgk1	1,9445	0,8421	1,3933
Gm4262	1,2276	1,5609	1,3942
Sema3e	1,6400	1,1707	1,4053
Evl	1,3157	1,4964	1,4061
Axl	1,0384	1,8089	1,4237
Mical2	1,3561	1,4979	1,4270
Hmgn1	1,2114	1,6456	1,4285
Olfr1372-ps1	1,3112	1,5465	1,4288
F730043m19rik	1,1167	1,7838	1,4502
Dock4	1,5711	1,3449	1,4580
Ankrd44	1,6689	1,2602	1,4646
Bnip2	1,2898	1,6407	1,4653
Zbtb46	1,3758	1,5574	1,4666
Farp1	1,5456	1,3930	1,4693
Prss23	1,4091	1,5386	1,4739
Arvcf	1,4154	1,5541	1,4847
Crabp2	2,0022	0,9685	1,4854
Hmha1	1,4843	1,5135	1,4989
Zc3hav11	1,4722	1,5403	1,5062
Ephb2	1,6401	1,3725	1,5063
Tgfb2	1,3904	1,6460	1,5182
Ppargc1b	1,3183	1,7244	1,5213
Etv5	1,0231	2,0393	1,5312
Vangl2	1,4337	1,6391	1,5364
Rex2	1,7370	1,3479	1,5424
Gm14286	1,4557	1,6374	1,5466
Dlk2	1,1699	1,9447	1,5573
Wnt10a	1,5446	1,5733	1,5590
Slc16a5	1,5475	1,6110	1,5792
Camta1	1,3500	1,8179	1,5840
B230208h11rik	1,8634	1,3386	1,6010
Hist2h2be	1,2166	1,9891	1,6028

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Pdlim2	0,7386	2,5065	1,6225
4930556m19rik	1,4512	1,7971	1,6242
B930095g15rik	1,6805	1,5688	1,6247
Pmepa1	2,5025	0,7486	1,6256
Nr4a1	1,6336	1,6464	1,6400
Tsku	1,9596	1,3344	1,6470
Arap1	1,5150	1,7897	1,6524
2410004i01rik	2,1324	1,1753	1,6538
Tmem144	1,5046	1,8084	1,6565
Согоб	1,4150	1,9008	1,6579
Prkg2	1,1158	2,2328	1,6743
Eno3	1,9656	1,4158	1,6907
Gucala	1,1976	2,1993	1,6985
Gpsm3	1,6688	1,7521	1,7104
Slc26a9	1,2528	2,1790	1,7159
Pglyrp3	1,9054	1,5525	1,7290
Plekho1	1,8350	1,6453	1,7401
Padi1	0,9536	2,5536	1,7536
Il34	1,0796	2,4319	1,7557
Bmp7	1,2267	2,3078	1,7672
Nkain1	2,1220	1,4192	1,7706
Ybx2	1,7370	1,8090	1,7730
Tnfrsf21	1,8896	1,6583	1,7740
Klk10	1,2575	2,2962	1,7769
Adgrg3	2,3112	1,2468	1,7790
Gm13056	0,9848	2,5965	1,7906
Gm14230	1,7546	1,8705	1,8125
Zfp9	1,9275	1,7244	1,8259
Tekt5	1,2806	2,3760	1,8283
Prss27	1,1800	2,4835	1,8318
Chd7	1,6452	2,0287	1,8369
Fuom	1,8205	1,8689	1,8447
Ikzf2	1,9701	1,7240	1,8470
Sh2b2	2,3591	1,3474	1,8532
Serpinh1	1,7112	2,0378	1,8745
Serpine1	2,5602	1,2314	1,8958
Mb21d2	1,7145	2,0788	1,8967
Rai14	1,9003	1,9414	1,9209
Col8a1	1,0485	2,8150	1,9317
Spo11	1,0766	2,7914	1,9340
Abcc3	1,9717	1,9042	1,9379
Ttc7b	1,9023	2,0000	1,9511
Gja5	2,0687	1,8383	1,9535
Plat	1,9036	2,0119	1,9577
Zan	1,5002	2,4634	1,9818

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
C130074g19rik	1,5887	2,3963	1,9925
Bdh1	2,0194	2,0175	2,0184
Col7a1	2,5406	1,5017	2,0211
Cenpv	2,1892	1,8598	2,0245
Tmem151a	1,8360	2,2709	2,0534
Gm42835	1,6408	2,4908	2,0658
Crocc2	1,3674	2,8651	2,1162
Abcb1a	1,6197	2,6477	2,1337
Emp3	1,2417	3,0442	2,1429
Irf8	1,8727	2,4217	2,1472
Sdc3	2,5223	1,8194	2,1709
Zbtb32	2,2451	2,1101	2,1776
Rin2	1,8656	2,5005	2,1831
Hvcn1	2,1699	2,2548	2,2123
Adam12	2,0800	2,3605	2,2203
Foxl2os	1,7063	2,7370	2,2216
Man1c1	2,2924	2,1553	2,2238
Gm37855	2,3512	2,0969	2,2240
Rps6ka2	2,0044	2,4475	2,2259
R74862	2,1290	2,3410	2,2350
Dlx3	2,0962	2,3831	2,2396
Gpr132	2,1623	2,3785	2,2704
Slc2a4	2,1375	2,4429	2,2902
Gm1045	1,9584	2,7325	2,3454
Rab19	2,1506	2,5670	2,3588
Srgap3	2,9411	1,8016	2,3714
Gm14317	2,3597	2,4824	2,4210
Rp23-143j24.4	2,2224	2,6294	2,4259
Rapgef5	2,7070	2,1579	2,4324
Nbl1	2,6714	2,1982	2,4348
Lama3	2,1130	2,7954	2,4542
Ereg	2,3591	2,6234	2,4913
Nol4l	2,5594	2,4516	2,5055
Trapla	2,8863	2,1444	2,5154
Sox11	2,4235	2,6077	2,5156
H2-m3	2,3747	2,6731	2,5239
Fst	2,6972	2,3540	2,5256
Jph1	2,7279	2,3521	2,5400
Col16a1	2,5531	2,5850	2,5690
Platr21	2,6630	2,4824	2,5727
Slc2a3	2,3692	2,8301	2,5997
Gm8909	2,9621	2,2801	2,6211
Tmem37	2,1995	3,0854	2,6425
Synpo21	2,2249	3,0809	2,6529
Evalc	2,4775	2,8707	2,6741

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
1124	2,1244	3,2614	2,6929
Nlrc3	3,0544	2,3410	2,6977
Heg1	2,3720	3,0488	2,7104
Acap1	2,7932	2,6467	2,7200
Gm15894	2,2210	3,2224	2,7217
B3gnt7	2,9175	2,6699	2,7937
Asb2	3,3458	2,2563	2,8011
Gm6650	2,5842	3,0919	2,8380
Tigit	2,0338	3,6672	2,8505
4930461g14rik	2,4627	3,2528	2,8578
Tuba8	2,9175	2,9133	2,9154
Igf2os	3,2016	2,6323	2,9170
Padi3	2,8707	3,0753	2,9730
Casp14	3,5995	2,3488	2,9741
Arap3	2,4911	3,5760	3,0336
Igf2	3,7127	2,3704	3,0415
Elfn1	3,3219	2,8382	3,0801
Ccdc114	2,8164	3,3530	3,0847
Tmem130	2,5850	3,5850	3,0850
Camk2n1	3,1793	3,0232	3,1013
Card14	2,5961	3,6323	3,1142
Sp8	2,6316	3,6283	3,1300
Spon2	3,1926	3,1075	3,1501
Slc15a3	3,2606	3,0478	3,1542
Fam198b	2,7802	3,7695	3,2748
Tgm2	3,5236	3,0704	3,2970
Itgb7	4,6378	1,9696	3,3037
Cntfr	1,7625	4,8509	3,3067
Als2cr12	3,0940	3,6215	3,3577
Lypd5	2,7033	4,0324	3,3678
Ly6f	3,2612	3,4854	3,3733
Glipr2	3,8270	3,1119	3,4695
Speer3	3,1783	3,8625	3,5204
Trim54	3,2410	3,8365	3,5388
Serpinb9b	3,2424	4,1699	3,7061
Adgra2	3,7965	3,6304	3,7134
Dmkn	4,5971	2,8443	3,7207
Dhrs9	3,3219	4,1699	3,7459
Nid1	3,3528	4,1430	3,7479
Cpt1c	3,6439	3,9117	3,7778
Cbr3	3,7689	3,8598	3,8144
Inhba	4,1226	3,5110	3,8168
Ociad2	3,6577	4,1155	3,8866
Lrrc61	4,3621	3,4330	3,8975
Col4a4	4,1814	3,7970	3,9892

Genname	log2 fold change – R1 vs. Scr 300	log2 fold change – R1 vs. Scr 600	mittlerer log2 fold change – R1 vs. Scr
Sftpd	3,7324	4,2479	3,9902
Parvg	3,4330	4,7726	4,1028
Mcpt8	3,6304	4,6356	4,1330
Myo7b	4,4263	4,2297	4,3280
Lrrc32	5,5546	3,2801	4,4173
Col4a2	5,1525	4,1369	4,6447
Col4a1	5,3219	4,0565	4,6892
Cbr1	4,5502	4,8428	4,6965
Gstk1	5,2094	4,3458	4,7776
Parvb	4,6242	4,9682	4,7962
Parm1	4,8908	4,9157	4,9032
Col4a3	5,0398	4,8047	4,9223
Acp5	5,3557	4,8260	5,0908
Gcnt3	5,5131	5,0875	5,3003
Sparc	5,8540	5,0887	5,4714
Siglecg	4,7138	6,4757	5,5948
Gnao1	5,8413	5,8606	5,8509
Ical	5,6630	6,6390	6,1510
Bc025446	6,0813	6,5512	6,3163
Syt17	6,1974	7,5353	6,8663
Tmem30b	6,8421	7,4142	7,1281
Pmp22	7,5644	7,6553	7,6099
Unc5b	7,3540	8,8877	8,1209

8.11.2 Weitere angereicherte Gensets

Nummer	Name	Enrichment Score (ES)	FDR
1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	0,44	1
2	HALLMARK_TGF_BETA_SIGNALING	0,36	1
3	HALLMARK_IL2_STAT5_SIGNALING	0,5	1
4	HALLMARK_MYOGENESIS	0,28	1
5	HALLMARK_APICAL_JUNCTION	0,28	1
6	HALLMARK_UV_RESPONSE_DN	0,26	1
7	HALLMARK_COAGULATION	0,25	1
8	HALLMARK_MITOTIC_SPINDLE	0,20	1
9	HALLMARK_FATTY_ACID_METABOLISM	0,21	1
10	HALLMARK_KRAS_SIGNALING_UP	0,22	1
11	HALLMARK_XENOBIOTIC_METABOLISM	0,21	1
12	HALLMARK_COMPLEMENT	0,21	1
13	HALLMARK_HYPOXIA	0,20	1
14	HALLMARK_INFLAMMATORY_RESPONSE	0,20	1
15	HALLMARK_TNFA_SIGNALING_VIA_NFKB	0,16	1
16	HALLMARK_ESTROGEN_RESPONSE_EARLY	0,13	1
17	HALLMARK_MTORC1_SIGNALING	0,16	1
18	HALLMARK_GLYCOLYSIS	0,18	1
19	HALLMARK_ALLOGRAFT_REJECTION	0,09	1
20	HALLMARK_HEME_METABOLISM	0,07	0,998

Tabelle 32: Top 20 angereicherte Gensets aus der Klasse Hallmarks

Tabelle 33: Top 20 angereicherte Gensets aus der Klasse Reactome

Nummer	Name	Enrichment Score (ES)	FDR
1	REACTOME_LAMININ_INTERACTIONS	0,64	1
2	REACTOME_SIGNALING_BY_PDGF	0,52	1
3	REACTOME_NON_INTEGRIN_MEMBRANE_ECM_INTERAC TIONS	0,53	1
4	REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_ MATRIX	0,62	1
5	REACTOME_CELL_CELL_COMMUNICATION	0,46	1
6	REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_O THER_MULTIMERIC_STRUCTURES	0,61	1
7	REACTOME_ECM_PROTEOGLYCANS	0,53	1
8	REACTOME_COLLAGEN_FORMATION	0,54	1
9	REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION	0,39	1
10	REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS	0,41	1
11	REACTOME_COLLAGEN_DEGRADATION	0,61	1
12	REACTOME_CELL_JUNCTION_ORGANIZATION	0,46	1
13	REACTOME_COLLAGEN_BIOSYNTHESIS_AND_MODIFYIN G_ENZYMES	0,59	1
14	REACTOME_NUCLEAR_EVENTS_KINASE_AND_TRANSCR IPTION_FACTOR_ACTIVATION	0,52	1
15	REACTOME_CELL_CELL_JUNCTION_ORGANIZATION	0,38	1
16	REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY	0,42	1
17	REACTOME_NEGATIVE_REGULATION_OF_MAPK_PATHW AY	0,43	1
18	REACTOME_SIGNALING_BY_VEGF	0,38	1
19	REACTOME_FCGAMMA_RECEPTOR_FCGR_DEPENDENT_ PHAGOCYTOSIS	0,34	1
20	REACTOME_ACTIVATION_OF_NMDA_RECEPTORS_AND_ POSTSYNAPTIC_EVENTS	0,28	1

8.11.3 qPCR weiterer RANBP3L-Knockout Klone

8.11.4 Prognostische Gene des Nierenzellkarzinoms laut Protein-Atlas

prognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC				
ANLN	ALDOC	CLDND1	COL8A2	CD4	GNG7	C9orf78	MRPS18C	PGAP3
CEP55	NUDT1	RBM26	FAM89B	MGST1	KIF13B	HDHD3	ITPRID2	PPDPF
TPX2	B3GNT5	RARRES1	PCSK5	PSMG4	CRB3	UBAC1	VPS9D1	IRGQ
CCNB2	YJEFN3	CAPN12	APLN	DRAM2	PAFAH2	FDX1	PEX19	TMEM200A
PRR11	COL4A1	ANKRD13B	PLEKHH3	HCN3	ACAT1	PRMT9	ABHD14B	CEP68
CCNA2	BAZ1A	RPL11	TSPAN8	DMXL2	CRAT	MRPS25	RORC	ZNF845
CDK1	CRLF3	CBR3	TRIM47	MEF2D	SLC25A4	ZMIZ1	GMPR	TACSTD2
CDCA5	RBMS1	IGLV5-45	U2AF1L4	SEMA5B	CDS1	PDZRN3	MARCHF9	PLPP6
FOXM1	CRTC2	SNX20	MUC13	KIF3C	ACO2	CIRBP	CDKN2AIP	FUT1
PLK1	HNRNPAB	MAPK11	TTYH2	GUCY1A1	ACSS3	ABHD11	STOML2	ZNF704
TRIP13	TAF12	TMEM150B	ZNF385A	TMEM67	AUH	WLS	PLCH1	RSPH14
TOP2A	EED	SSB	ATF4	HSF2	Clorf210	SLC3A1	GLYATL1	CTCF
KIF11	PDLIM2	H4C8	PRDM1	PRKCSH	HADH	IGF1R	JMY	GFER
COLGALT1	IGLV2-11	C20orf27	ERGIC3	CCDC91	IMPA2	PDSS2	MPP6	CFAP410
SPC24	CXCR4	FCHSD1	CD86	RTN4RL1	IRF6	TMEM82	THAP10	REPS2
MELK	REC8	CBLN3	BOLA3	TMA16	METTL7A	LIMCH1	TMEM139	SMIM6
KIF20A	IGHV4-59	SACS	LARP6	STARD3	PCCA	PLCL1	GSPT1	TMEM178B
RIPK2	UPF3B	NAT9	TLDC2	TRNP1	TMEM25	KIAA1549	GTPBP8	DAO
FKBP10	KIN	SLC7A7	PDCD7	LILRA5	ZNF844	SUGCT	RENBP	UPRT
TNNT1	DIPK1A	RNASEH2A	CCR1	KIF26A	TOLLIP	ZNF468	CAMSAP1	B9D1
CDCA8	RAN	PHLDB1	PLS3	TRAM1	PINK1	ALPK3	SDSL	PET117

Tabelle 34: Liste aller prognostisch unvorteilhaften und vorteilhaften Gene im Nierenzellkarzinom aus	
dem Humanen Protein Atlas	

prognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC				
MKI67	GXYLT2	IGHV4-31	ZDHHC20	BRD8	SYNJ2BP	ZSCAN18	HACD3	PPP2R5E
CDC20	DNAH11	C3orf70	ZNF121	FAM207A	DHRS12	POMGNT2	ARHGEF18	ARPIN
CENPF	IGHV3-15	FOSL1	IGHV3-73	NECAB3	BAG1	PLEKHH1	GDE1	TSPAN14
SNRPA1	PANX1	LSM10	MEF2C	KPTN	LRBA	AP1AR	HID1	PLG
RRM2	IGLV2-23	TTLL3	EHD3	RASSF2	WDR72	EPM2A	NME6	UBL3
PRC1	EDNRA	LAMP5	CEP350	PGBD2	RBM47	TTC39B	SOSTDC1	C9orf64
KIFC1	ASAP1	ELF4	RBM4B	ADH1B	AP3S2	DHDDS	P4HTM	RHOB
BIRC5	CIRL	HSH2D	CDKN2B	NRAS	ASTN2	CLSTN1	ADAMTS16	FNDC3A
PAEP	ANGPT2	DYRK4	TNFSF9	LIMS1	CLYBL	LIAS	MANSC1	ASH2L
CKAP4	TMEM87B	SRSF11	JUNB	TAX1BP3	ANK3	XPC	HDAC5	KLF7
KIF2C	ABCB6	F13A1	UBE2Z	VIRMA	PTPN3	HSDL1	NDUFB5	AASDHPPT
UBE2C	TOP1MT	BIRC3	LMOD1	RNF113A	ATP5F1A	FOXI2	TRMT10C	AMD1
MYBL2	ATG12	NRARP	VPS45	RC3H1	NNT	C17orf113	MRPL1	SSTR1
DONSON	SAP30	SEPTIN5	TYROBP	CROCC	SOWAHB	ASRGL1	RAB9A	C6
RAPGEFL1	DUSP12	PNRC1	RBM33	ZNF587	SPRYD3	NR1D2	ST7	CTSL
CDKN3	IRF3	TRMT13	RPS12	HTATIP2	TMEM8B	SPTLC3	CLDN3	C15orf40
PSRC1	CENPT	IL1R1	IFI44L	KCTD20	SETD3	MAT2B	FBXW4	KLF3
P3H1	NMI	RPS3	PFN1	UBA2	PLEKHA7	ZNF669	NDUFB9	BCL7B
PTTG1	MRTFA	HEPH	GZMK	RAP2A	ALDH6A1	MICU1	LRP2	NEO1
CAPZA1	UBE2F	MDM4	SMOX	PRAM1	GPD1L	FNBP1L	RARB	ANGPT1
INTS8	NME4	STAC3	CSF1R	RAP1B	DGLUCY	ZMYND11	HMGCS2	CIAPIN1
IQGAP3	PREX2	CD8B	NCK1	SPNS3	DAB2IP	SUOX	COX7A2	ANKEF1
C1QTNF6	LPAR2	ARHGEF2	РКР3	HECA	MRPL49	SUMF1	ANKS6	ADGRL1
CENPW	RAB34	ENY2	ARHGDIB	ZMYM4	GRAMD1C	FAM53B	ATP5F1D	RNF167
AURKB	ASPN	MIER2	IGLV7-46	S100A9	TCTA	NDUFS7	DUS2	SEC16A
IL20RB	IGHV3-30	CHD1	ARGLU1	SIPA1L2	CRY2	GPR160	THAP9	DCTN5
MSTO1	TNFRSF25	PTPN12	UBE2J1	SH3BP5	NEDD4L	KCNK5	SF3B2	ZNF823
SLC7A5	MT1G	HLX	TLR2	KCTD13	CDKL2	SYNGR1	ABTB2	UBE2D3
PDCD5	TGM2	PRIM2	POLR2G	AFAP1	ZNF433	MAP7	DENND4C	TSC22D1
TACC3	SIRT7	AKT1S1	CLIC3	PCDHGC3	AP5M1	PPFIBP1	HDHD2	IST1
CARS1	STX10	ZEB1	GIMAP4	NDE1	AKTIP	TSPYL4	FAM13B	RAB36
FKBP11	CCDC74A	MCUB	TJAP1	NCAM1	OGDHL	BPHL	LZIC	ARHGEF35
EIF4EBP1	CCDC167	APOL1	ZNF511	SEMA4A	PDPK1	TM9SF2	CACNB2	FBXO33
PDGFRL	DDR2	AP2M1	ABTB1	TMPRSS3	PAQR5	ZNF618	SOWAHC	TBL1X
RBIS	SF3B4	SFN	FMO3	HDAC7	ZCCHC14	ACOX1	SNX19	PLPP3
SRPX2	C19orf38	LSM8	PTCD1	AP4M1	PPARGC1A	SIM1	RHOU	TMEM106C
STEAP3	JPT1	ZNF746	TBXAS1	OSBPL7	TJP2	ATPAF1	RBL2	HSPA1L
MTHFD2	ABL2	IGHA2	RPL37A	PPAT	ENAM	FAM71E1	PEX12	PTAR1
CCNB1	CDON	SLC15A4	NAPB	CSNK1D	DLAT	DUSP15	SLC25A39	TUBB2A
CALR	IGHV3-23	CSPG4	WIPF1	SENP1	OGDH	ZC3H7B	ALG12	EXOC6
STX16	ME1	PROCR	PDCD1LG2	ST6GALNAC4	TMEM192	CYP17A1	RCHY1	FRAS1
PPP1R18	NUDT17	RPL10	PHETA1	CDKN1B	ERBB2	MFSD3	WDFY3	LGMN
IF116	IGHA1	RLF	CDH24	CD34	BEX4	SACM1L	EPB41L4A	SLC27A1
ASF1B	POSTN	NXPH4	SYT7	MFSD13A	MPP7	TSPAN7	SBF2	FBXW5
NOP56	UCN	NXPE3	THRSP	LMAN2	FAHD1	ADGRG1	HADHA	CBR1
RFC4	IGLV2-18	PRRC2C	TXNDC5	TFPI2	SLC30A9	TMEM213	SLC22A11	CTSC
				ļ				

prognostisc	h unvorteilha	ft im RCC			prognostisch	vorteilhaft	im RCC	
UBE2T	TLNRD1	LTBP1	C5AR1	TRBV19	LDHD	NLN	BCAT2	PRAG1
SHC1	DNMT3B	UCP2	CACNA2D1	FAM204A	RAI2	TRIM35	CTTNBP2	OXA1L
SEC61A2	PFKFB3	FBXO6	GSTA2	RAB32	CBR4	HERC3	TOM1	KAT6B
SLC38A5	INAFM2	CARM1	VEGFC	FBLIM1	NMNAT1	EIF5	ITM2B	GGT1
CERCAM	LAMP3	POLD3	L1CAM	MGAT1	BSPRY	VAPA	RALGAPA2	AQR
LMNB1	TOX	S1PR3	RABL2A	PTGS1	AFG3L2	CUX1	CREB3	SS18
GTPBP2	SUV39H1	SLC4A7	MARCKSL1	SLC35C2	MUL1	SLC2A11	GATD1	CLN6
CDC7	EFNA5	TMEM237	LY6D	RPS14	CTDSPL	KITLG	G6PC	PLCG2
SLC17A9	RNF2	BRSK1	ATP2B4	PSENEN	VWA8	PPP2CB	ATOH8	TTC8
SERPINH1	BTG1	PLEC	GZMM	ATG5	TRIM2	PTGES2	CCDC96	GLRB
LTB4R	TMC8	UBE2D1	RPL18	TRIAP1	DENND1C	F2RL1	CRTC1	DCAF4
RUNX1	KRBOX4	RPL31	CNRIP1	ATIC	SUCLA2	ZNF79	IRF2BP1	HAO2
PABPC1L	PTMA	TAF1C	DTYMK	TNFRSF12A	OVOL1	SLC41A3	DISP1	PMVK
RAD51AP1	KCNE4	TPST1	SRC	SBSPON	PACSIN2	ALAS1	TIMM13	PIK3C3
SKP2	MT1F	CCT5	AKR1C3	FCGR2B	KAT5	COX5A	WDR25	PCGF5
CENPH	RPS6KB2	GNPAT	STARD13	RBM6	FBXO34	UGT2A3	GAB1	LYPLA2
CIS	TBC1D7	MAP3K7CL	NKIRAS2	TPPP3	MYORG	YLPM1	GGA2	TGFBR3
NUMBL	P2RY1	CNOT11	KCNC3	CDK9	TSPYL1	RAB3A	KLF4	ZNF839
ATAD2	HILPDA	ANGEL2	SLC52A2	PJVK	SHROOM3	ARFGEF2	ZNF135	FRMD4B
PRCC	IGHV1-24	KPNB1	TMEM97	DTX4	CAB39L	BTBD1	BICDL1	WDR11
PCLAF	RFC2	ITGB3BP	TSPAN15	MAN2A2	PEBP1	MPPE1	ENTPD5	SLC39A5
KCNN4	TAGLN	RPIA	CACYBP	PFDN6	MFSD4A	РССВ	SLK	MCU
CTHRC1	IL1RAP	MAP7D1	ALG3	DDX59	EMX2	C3orf33	DHRS7B	CPNE3
RNASET2	POLR1H	SFRP2	TMCO1	S100PBP	COL4A4	HIP1R	MIEF1	NCOA2
FAM83D	DNAJC10	DENR	GRK2	RGS5	FAAH2	COX6A1	MRPS18B	ZBTB6
C1R	F2R	IGKV5-2	LRWD1	TAF9	MARVELD2	OTUD1	PDE4D	SMARCA1
CDCA2	CHST15	NUDCD1	ASPSCR1	ISYNA1	KDF1	ENDOD1	EPG5	ANGPTL1
ADAM12	CA9	RAB37	RAB4B	DDX42	BEX2	THEM6	PCNX1	AGMAT
GFPT2	BOP1	CRKL	FBXO4	HGFAC	RAB17	RAPGEF3	ZNF570	SKP1
JAK3	CHAC1	CTSW	FRMD6	KHDRBS1	DCAF11	LONP2	DMAC2	TNS3
ADA	ZNF783	DUSP7	SPAG4	GRIK5	GOT1	DNAAF2	MTRES1	BAMBI
BCL3	ST3GAL5	KCTD3	ABLIM3	DCHS1	BTBD9	FBP1	ATP5MG	CCDC68
B4GALNT1	CGAS	PMM2	CAV1	ТМРО	ENPP5	DHCR7	FAM151A	SRP14
CNTNAP1	IL2RG	ENGASE	GIMAP2	TRBJ2-1	BDH2	ZNF627	SLC35A5	CHMP3
NUSAP1	EMP3	FRZB	TNK2	TMEM256	ZC2HC1C	ENPP4	TMEM101	ZNF189
PLCXD1	C12orf57	ADRM1	CEMIP2	CD55	OSBPL1A	SLC5A1	DENND1A	TBC1D15
COL6A2	BICD1	GMFG	RHOJ	FILIP1L	COBLL1	ATP1B1	TRPV4	VSTM2A
MSC	TMED2	POLR3D	CLEC7A	PSMC3IP	RAB3IP	GSTO2	RASSF10	ZBTB45
KPNA2	KCNK3	RUSC1	ELL2	EIF1	FUCA1	SYNGR3	ADAP1	LYRM9
PSMD13	GRK5	GLRX3	TMEM100	PRDX6	CDC42BPG	CTNNA1	MAVS	DCTN6
TRIB3	FANCG	TRAFD1	BET1	SLX4IP	PPP1R26	VAV2	TC2N	COX6B1
SCNM1	PSTPIP2	LZTS1	НООКЗ	TARS1	PRR15L	MTM1	USP11	RHOT2
TF	PGM3	ISM1	KRT20	ILF3	LNX2	UNC45A	LAMP1	EIF3K
RCN1	SEPTIN1	ZBTB2	PSMB9	BUD31	ZNF132	NT5DC1	ANKRD33B	PALM
FANCI	PABPN1	HIC1	FSTL1	TRBJ2-7	APBB1	CAMSAP3	NDFIP2	RABGGTA
GALNT2	MTF2	NAB2	MKS1	SREK1IP1	ATP6V1D	PIGV	OSBPL2	FAM174A
				ļ				

nrognostisc	h unvorteilhaf	ft im RCC			nrognostisch	vorteilhaft	im RCC	
CDC25B	P2RY6	GOLGA8B	MMP14	IRAG1	MTURN	NDUFB2	ANTKMT	RC3H2
CRABP2	NOTCH3	IGHV2-70	STRADB	RAI14	NKIRAS1	RPUSD2	BRD3OS	DOLK
RNASE2	AXL	EOMES	PDE7A	COMT	RGP1	ARFGAP2	RTCB	PTGR1
BID	RAB24	RNF166	TTC21B	COX412	MMUT	H1-0	FAAH	CDKL5
SLC43A3	TMEM74B	USP21	CCAR1	ARHGAP30	COX16	ZFP3	TMEM9B	FER
HAPLN3	OTULIN	CPNE7	HK2	PTGS2	SLC25A23	DEGS2	GET3	REPIN1
CCSAP	PRIMA1	C10B	ITGAX	PPOX	DYNLL2	RBM18	XPA	POLR2L
STAT2	TONSL	SOX2	RBM15	HSP90AB1	DLST	SLC25A3	USP4	LACTB2
UCK2	SNAI1	PRELID2	ACTR5	SMARCD2	MYO6	COX18	ERG28	CCAR2
SPAG5	LPCAT1	EIF3B	BCAT1	ANKRD49	APOOL	FUT3	C3orf14	NMRK1
CLEC2B	MEIS2	SEMA4F	RASGRP2		NDRG2	ATP6V0E2	SCAP	KIT
CENPO	C2	PDGFRA	CCN1		KIF3R	IRFN3	SUPT6H	CENPC
RHNO1	SLC7A2	CNPY3	ICHAIN		CPT?	ннат	FXYD6	SWT1
ITVI	RNF24	ILKAP	SMCHD1		NDUFS1	CX3CL1	RNF19R	ARHGFF10
TNECEIA	DODD1	CD247	DNUCD		MDD5	TURCO		
INFSF14	PUBPI	CD247	PNISK		MPP5	TUSC2	FUBP3	MCOLNI
NAPILI	CD248	108 108	PILKB		SPIANI	DGCR2	MERIK	EPHA4
YBX3	TNFRSF1A	GPATCH2	CIP2A		HSD17B8	GLYR1	WFDC2	TTC19
TMEM44	ZNF703	ZNF579	ERI1		PNPLA4	SNX2	Clorf226	OGFOD3
SMN1	VNN2	TMEM39A	WRAP73		HTT	AKR7A3	CYFIP1	LRSAM1
MAST2	XAF1	SRSF10	GSDMD		LARGE2	NICN1	PPTC7	TSTD2
HP	STXBP5	MZT1	FYN		TOX3	FZD1	WWOX	PWWP2B
DERL3	P4HA2	MXI1	TLCD3A		CYFIP2	CTSF	ZNF502	FTCD
SRPX	IGHV1-69	NOL8	TXNDC15		VTI1B	TNFRSF19	WDR6	MGAT4B
APOBEC3 G	GPRIN1	C11orf86	EHBP1L1		CISH	HSDL2	ADHFE1	EVA1A
OLFML2B	SNF8	CLEC11A	TBXA2R		ATP6V1A	TRIM50	SLC35A4	CFAP53
РВК	LGI4	EPST11	PIP4K2A		NCR3LG1	GGT6	ZNF649	PDCD10
IL15RA	CEBPD	SMIM13	BUD23		MBP	KCNJ16	NAXD	ABCB8
TXNDC12	PMEPA1	NFATC2IP	PIGL		SLC16A12	VCP	ARHGAP12	VAT1
IMPDH1	PRELID1	CADM3	VAVI		PTGR2	FRK	KAT14	MSLN
PLOD1	MBNL1	OSM	RPL18A		SCOC	SCO1	POMT1	GMDS
COL5A1	SKA2	KCNK6	FLOT1		ZFYVE1	PDP2	ACBD5	RSF1
THBS3	TRBC2	RPP21	RAB3IL1		COBL	ZYG11B	ZNF136	ZNF510
XPOT	LOXL2	CPOX	MLPH		GPHN	NECTIN3	TDRD7	DNAJB1
CEBPB	DIPK2A	HDAC1	BTBD16		MTFR1L	SULT1C4	PURA	MDP1
TUBA1B	RPS25	UBA7	GNLY		ACADSB	SRSF8	ATG2A	HNF1B
FNTA	SKIV2L	NOCT	DSE		SOX6	RWDD4	MAPK11P1	CNKSR3
MOCOS	RPS2	RBM38	ZBTB12		SH3GL2	KTN1	L RNF185	FAM120AO
LBP	RTN4RL2	IGKV1-16	PIDD1		PRKN	DCAF10	ABCD3	S MKRN2
ZWINT	EIF3E	FLVCR1	FBXW7		PAIP2B	NUDT16L1	LPCAT3	KDM6B
ADAM19	PHTF2	CSNK2B	KCNS3		РНҮН	ZNF772	CTSD	EIF3L
HIKESHI	IER3	WWC3	SLC6A8		VPS13D	ZADH2	CDKN1A	PDF
MLLT11	IGKV3-15	TRIM3	TCF3		MIPEP	AGFG2	PRKAA2	GAS2
SAA1	MRPL17	PRF1	CZIB		LMO7	LANCL2	CMTR2	NOX4
HM13	TAF1D	STAMBPL1	SUPT7L		MTMR10	EPCAM	NDUFC2	ABI3BP
MYDGF	ADGRA2	FBXO41	DAGLB		<i>COQ7</i>	NDUFA6	SNX4	HMGB3
				ļ				

		b Daa	1			Daa	
prognostisc	h unvorteilhaf	t im RCC		prognostisch	vorteilhaft	IM RCC	CUDA.
KCIDI/	SCNNIG	CAMLG	RFLNB	DBI	PHF/	MYCBP2	CIB2
RPL22L1	IIGAII	C3	RPS13	FIIMZ	SLC39A9	PIGR	ZNF402
SH2D2A	MSAN1D3	NEMPI	LRRC45	OPA3	GKAPI	PLGRKI	MCC
UNCI3D	LINGOI	HSPA14	UNC5B	IQGAP2	<i>COQ6</i>	ASAP3	MRIFB
ILIR2	SEPTIN4	ZNF22	TMEM132E	TBC1D4	HINT3	LARPIB	DNAJC4
PABPCI	ЕРНАЗ	TRBV20-1	CCDC74B	ABHD6	SLC44A4	MED29	F2RL3
NUP62	LENG8	CD3E	SERPINGI	ESRRG	ATP6V0C	DMXLI	NAPRT
RCN3	GLRX2	RFX7	FEM1C	HOMEZ	DYNC1H1	ACTN4	GPRC5B
USF1	IGHV5-51	COA6	H1-2	MAPK8IP1	METTL27	LRRC8A	INO80
TTLL4	LTB	SYTL1	CHIC2	GBA2	HEATR5A	ZNF287	YJU2
NFKB2	ATF5	DNAJC2	NFATC2	PPA2	SCAMP2	PAK4	ATP8B1
F2	SLC6A3	LEMD2	MX1	SLC2A9	STN1	FAM168B	SCGB2A1
NUDT5	FAM189B	RABGGTB	DERL1	LARS2	RCAN2	C15orf61	BPNT1
COL1A1	IGKV1-17	ADTRP	NECAB2	CRPPA	RAP1GAP	SLC43A2	EMC8
PYCR1	EXOSC5	CD68	MARS1	MYO5B	EPHA1	CPQ	TNK1
NFE2L3	IGKV6D-21	LPIN3	GFUS	MPV17L	CDIP1	WWP1	STUM
HMGB2	LHFPL2	TXNDC17	ADGRL4	GNA11	STX3	UQCR10	CSDC2
RPLP0	CEBPZOS	FAM111A	CXCL1	C4orf19	SLC25A35	HPN	BCAS2
GORAB	PDCD1	CD209	SP100	HYAL1	DMRTA1	TADA3	CALM1
GRAMD1A	SH3BP1	TRNAU1AP	PILRA	ACADL	SMARCB1	ANO4	ETNK2
EZH2	ARFGAP1	NCKAP5L	MED15	LIN7A	RAB11FIP1	DUSP3	SLIT2
MCM6	IL2RB	PGS1	IGKV1D-16	ARHGAP24	TXN2	MVP	UBE2D4
POFUT2	RPS11	POLG2	UACA	SPRING1	TOB2	CTDP1	RIPK4
APOBEC3	TMEM91	SP110	EMILIN2	DMAC1	KAZN	AP5S1	ARIH2
H DIMT1	AKAP17A	ANAPC4	TRIM11	CWH43	MRPS28	MFSD1	RGL3
DDX55	CSGALNACT2	CIQC	OFD1	ITGA6	HECTD1	USP20	IL17RB
CSF1	TNFAIP8L2	TRPC4AP	ATP13A3	SESTD1	DNAL4	TTC28	COA3
SLC2A6	NPAS2	HACE1	RPS9	USP2	TSR2	ATP9A	TMEM141
YARS1	FOXC2	MSX1	STK10	NR3C2	CHL1	ACO1	FAM155B
VAMP1	GAS2L3	ECT2	GTPBP3	PPP1R13B	NARS2	DACT2	FAIM
IL6	YBX1	C10orf99	РЗНЗ	GNB5	PARS2	IP6K1	MARCHF8
ATP6V1C2	HMCN1	TXNRD1	НСК	FYCO1	RABEP2	C6orf89	KDM3B
PIM2	SLC5A6	EWSR1	RAB27A	TEF	FARS2	SLC10A2	CHCHD6
CALU	CCL5	STAT1	CPSF4	MED22	KLHL26	SPAG7	FAM161B
MITD1	HSPA12A	CREM	ERN1	FNIP2	SMARCA2	OXR1	TM6SF1
MOV10	SLC16A3	PDCD2L	CCL4	TMCO4	SMG6	TMEM30B	TNFRSF11B
TCIRG1	CCDC142	APOL3	MEIS1	UNC13B	ESRP2	MTHFD1	TXNDC16
PADI3	PROSER3	IL4R	SEC23A	SIAE	SPX	TTC12	ATMIN
TTC13	APOBEC3D	DARS1	PCGF1	LRPAP1	GLYAT	SEMA6D	CMC1
HNRNPL	IGLV3-25	PHF12	CD47	MPC1	ATP6V0A4	PIP	DPEP1
PPIB	SLC39A14	PPP1R14A	XXYLT1	ST14	SCAMP5	ATPAF2	ARHGEF37
ZNF117	BUB3	CCNT2	ATG16L1	ZER1	FMO5	APTX	SCEL
ARPC3	CUTC	IGKV3-7	DLG4	NUDT7	SLC48A1	TAPBPL	MEF2A
P4HB	SLC50A1	VAMP5	NT5C3A	MEGF9	ZBTB7A	AOX1	TLE4
RCC1	STAB1	ZNF608	SERTAD2	HIBADH	VPS50	NSDHL	ZNF41
SEMA7A	MPHOSPH10	ATP1B3	PTPRS	PRDX2	DPP4	DTWD2	FMO4
					/		

prognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC								
TNFSF13B	GRIPAP1	GBP4	RGS16	DCTN3	ZFYVE28	BTC	LRRC4					
GNL2	METTL23	ZNF354B	LCAT	WWP2	VPS37B	HS6ST3	NR4A1					
TIMP1	ACTG2	ETS1	SDC3	RALGPS1	HERC1	MARS2	PDCL					
MZT2A	MPZL1	ANXA6	SMG9	OCLN	RAP1GAP2	MGAM	NFIA					
MAD2L1	FAAP24	H4C9	SOD2	TADA2B	SPTLC1	CYB561D2	STX18					
WDR75	TGFB3	SLC7A1	РМР22	CCDC106	DHX30	FBXL5	ARSG					
CASP4	ACBD6	ANGPTL4	DDX27	NUDT9	CGNL1	ZNF697	MPND					
PLBD2	USP39	TRBV7-9	CSK	MMP24	PRUNE2	CREBBP	PGP					
DOK3	PPP1R3B	DCAF15	SF3B6	SLC49A4	FBXW2	SPG11	CRYBG3					
RHBDF2	RASGEF1A	HAX1	EIF2D	CLDN7	RAB25	C1QL3	ZC3H14					
PSMA1	PARP12	PARP1	PLK3	COQ9	FN3K	FBXO44	SLC12A2					
GABRE	IGKV1-8	SFRP4	C2CD2L	PLCD1	FAN1	LTF	MACO1					
RELT	PIP5K1A	NDUFA4L2	IGKV2D-40	GNE	GLUD1	LRP10	POLR2B					
VTN	ARHGEF25	SLC38A6	AP1M1	MEPCE	LMBR1	AOPEP	KIAA0586					
NVL	BAAT	ZBED6CL	TNFRSF10	HIBCH	ARAF	FRAT1	TLN1					
FHL3	GRAMD1B	CCDC3	B MMRN1	GATB	CLASP2	PARD6B	DNAJC16					
TNFRSF18	HGS	TCP11L1	RPS17	MRPL50	PTCHD4	CYB5B	FRMD3					
NACA	ANKRD16	IGLV1-51	RND3	ARHGEF16	EFL1	ADNP2	RALGAPB					
LAG3	TMEM79	NR1H3	PARP14	BAHD1	PCIF1	B4GALT6	RNF146					
TCERG1	TBC1D10C	FMOD	GAL3ST1	ACAA2	SAMD12	FAM168A	TBL3					
HDAC10	ADAMTSL4	ALKBH2	AP1G2	CPLANE2	PELI2	ETFB	HNRNPH2					
PLOD2	ZC3H3	INTS7	CD6	CD59	OPLAH	CD9	ATP11A					
NIFK	PDE10A	ATP23	CCDC34	FAM210B	EMX1	BTBD6	ZSCAN2					
PTP4A2	LMBR1L	RPL13A	BICRA	PANK1	ZFYVE26	AGAP1	AGXT2					
GSDMB	PHF11	MRPL9	ZNF266	CNPPD1	BCL7A	BRMS1L	ARNT2					
BASP1	PSMD3	IL10RA	CAD	STRBP	ZDHHC1	G3BP2	RANBP10					
LIMD2	RNF122	MAGOH	IGLV8-61	DLG3	VAC14	TMEM127	PNPLA6					
GINS1	FOXJ3	DCN	CLIP4	AGL	WBP1L	LIMD1	MOCS3					
COL6A3	ADPGK	HOXC8	СҮВА	CIPC	SLMAP	ZMYND10	TFDP1					
AQP9	CBX3	MYEOV	SLC16A2	PEX7	VPS18	GTPBP10	ZNF91					
PEDS1	PA2G4	AP2S1	LSM5	DHRS7	TBC1D9	R3HCC1	MAGEF1					
CLEC2D	LGALS12	IGLV10-54	MARCHF7	RETSAT	RNF20	UBIAD1	MLST8					
ZNF706	SRGAP2	ZFC3H1	TRABD	EPHX2	BTBD7	RNF180	APPL2					
C8orf76	CHST1	SCARB1	RBMS3	SDHD	GAK	PCNX4	C20orf194					
TMEM45A	TTC9C	PAXBP1	CHORDC1	CYB5D2	ZKSCAN2	EXOC4	SH3YL1					
LY96	ODF2L	MKNK1	ZC3H8	WDR61	FGF9	COQ3	TLE5					
PLEKHO1	CNN2	LTO1	CSE1L	PRSS8	ARL3	DIXDC1	C2orf88					
TK1	ZNF239	NRGN	SH3PXD2B	JUP	SLC45A4	STK24	TOMM40L					
CYBC1	UBE2Q1	LGALS9	ABCC10	DDX28	CHMP2B	KCTD14	TEK					
IGFBP1	RPS27	LRP1	UVSSA	ABCC4	SMIM19	GIGYF2	FBXL15					
MELTF	LRR1	IGHV3-11	OGN	GHITM	USF3	EIF4E3	SINHCAF					
PLPPR2	LGALS8	DPH7	RNF207	MOB3B	NCOA7	FCHO2	IMPACT					
POU2F2	MRC2	SLC26A6	ARHGAP25	UQCRC1	TRIP11	HERC6	TSC1					
CHST11	PDLIM3	CFB	MOB3A	FECH	HAGH	FGD4	NUMA1					
CD7	DEDD	MTMR4	PERM1	TACC2	TLN2	EDNRB	TMEM38B					
ENO2	ZNF600	PLEKHF1	PLEK	FBXO7	PRR15	ANKRD29	RAB11FIP3					
			I									
nrognostise	h unvorteilhat	t im RCC		nragnastisch	prognostisch unvorteilhaft im PCC							
-------------	----------------	----------	----------	--------------	-----------------------------------	----------	-----------	--	--	--	--	--
PDIA5	DCLRE1B	CFAP298	ENPP3	PARD3B	NSMF	PI4KA	DENND11					
PADI1	CCM2	DSN1	CCDC130	KLHDC2	PNPLA8	APPL1	H2AZ2					
IGHG3	IGFBP3	PHKA2	ORC2	SUCLG2	PRKACB	VTI1A	DYNC112					
RPL36A	RPS6KB1	AFAP1L2	KCNN3	ARFIP1	ARHGEF28	SURF6	TLE1					
SHFL	IFT20	INO80B	S100A13	CDC14B	GORASP1	MT-ND5	CTTNBP2N					
CERS5	CDK2AP1	ARNTL2	CDCA7L	PLCL2	SHANK2	TRAK2	L PIM3					
GEMIN7	SLC38A10	PHF10	PRR7	TMEM38A	BSG	PJA1	LSR					
KRTCAP2	IKBKE	GEM	SAP30BP	PIGO	CHMP4C	EP300	AURKAIP1					
HSP90B1	CBX8	СНКВ	IOSEC2	RPP14	BCL2L2	DCAF1	CCNC					
SLC19A1	SPINK1	ASPH	UBE2J2	DSG2	PLEKHB1	BIK	NAPG					
RPS24	LILRB2	ROCK2	IAMA4	TIMM10B	GHDC	CLDN10	TNPO2					
IFNGR2	ZFAND2A	USP15	MYRF	DDR1	GRPEL1	HUNK	FIG4					
RPS18	CYP2J2	NLRP1	USB1	APEH	FOXRED1	ZNF48	PELI3					
CXCL13	SLC9A9	MSN	IGHV1-2	CLDN4	PICALM	PCDH1	SLC3A2					
LGALS1	IGLON5	CSTF3	SRSF3	LRP5	ECI2	BSCL2	RAB38					
H2AC20	SYDE1	PPM1M	СНТОР	KIAA0232	WIPI2	MAML3	DBN1					
ARPC5	FNDC3B	PUSL1	PRPF38B	TMEM171	PIP4K2C	MICOS13	NUDT18					
11.411	IGHV1-3	EIE5A	GEMIN5	PXMP4	SH3BP4	UTRN	SPACA9					
TPM4	SLC35B1	IGLV1-36	EVI2B	KCNJ15	MRPL46	SLC44A3	GPRIN3					
FAM104A	IGLV2-14	BAK1	HPS5	SMIM24	GSTK1	C4orf36	KIAA2026					
C17orf58	CORO1A	DGKA	TCF7L1	PSKH1	AKAP9	HBP1	PDPR					
ZDHHC18	CDKN2A	KCNT2	IRAK1	EPB41L1	GIPC2	PIN1	SLC22A5					
RPN2	IFITM3	HECTD2	PAFAH1B3	AIFM1	DNAJB14	MBLAC1	DSCAML1					
CDK2	SMCO4	PCOLCE	SF3A2	ZNF629	PMPCA	NCOR1	ATP7A					
PFDN4	GTF2E2	IGHV4-4	PLK2	ADH5	TK2	METTL15	TOGARAM1					
NARF	ALPK1	GARS1	TRAF2	TRMO	OSCP1	ZBTB47	ATP6V1B2					
DDX39A	R3HDM1	PPP3R1	SYTL4	ZNF684	NUDT22	MAP2K5	RGS12					
COL5A2	IGHV1-18	PHIP	MRPL58	RGN	GLOD4	ANKS1A	LYG1					
CLIP3	CD99	GPR132	CSTB	RETREG1	EVI5L	EPS15L1	GAS2L1					
HCST	VASP	P2RY14	CERKL	TBC1D14	ATRN	TMEM159	ARHGAP31					
ACAP1	PLXND1	FAM229A	IGHV3-20	BCKDHA	ATP6V0D2	ARHGAP10	TAB3					
POLR2H	CENPM	CLIC2	RAC1	KLHL36	SLC31A1	MYL12B	BPTF					
CDKN2C	PSAT1	H2BC4	CPSF6	ATP8A1	TRAPPC6A	PLRG1	CUEDC1					
IRF7	IGLV3-9	FAM89A	CSRP1	TRUB2	EAPP	PC	RMDN1					
MT1X	CKS1B	SIT1	GSTO1	ETFDH	GALNT11	GRB7	TAPT1					
TDG	FAM126A	CENPJ	CYGB	ERMP1	THSD7A	NACC2	VPS26C					
GMPPA	CASP10	VEGFA	ARL6IP6	CGN	ATXN7L3B	NAIF1	TTC5					
TAGLN2	STRADA	CKS2	COA4	ZNF821	SLC12A4	MED18	ZXDA					
HSD11B1	CHRD	WDR27	RPS23	PHYHD1	NDUFAF5	TOX4	TAF1B					
DNAJC12	PYCARD	CACNA1H	ACSF2	ACAD8	EPB41L5	TKFC	XYLB					
SPACA6	PIR	AOC3	GDF6	UNC119B	ACOT2	ZNF229	RAB20					
SSBP4	ASNS	ALOX5	CUL7	MARVELD3	CADM4	ACOT4	GPX4					
PPDPFL	TUBA1C	PTP4A3	ССТ6А	NDUFB6	DHFR2	INTS5	KCTD6					
VKORC1	DAXX	AGO2	FLT1	NDUFV1	ZNF853	CAVIN2	GFOD2					
GBP2	SEC31B	TRIM65	DOK2	GLRX5	ATP5MC3	SLC51B	MAPK8					
SH3BGRL3	DBF4	DNAAF3	SPRY4	HDAC11	NUMB	DNAJC27	TRAPPC13					

						DCC	
prognostisc	h unvorteilhal	t im RCC		prognostisch	vorteilhaft	IM RCC	DEDDUA
NOP2	FCGR2A	CALDI	IGLV7-43	MITE	SEC24B	DYNC2HI	PIPKN2
TMEM214	PEAIS	MAMLI	MRPL36	CDC42BPB	TREH	RILP	SMYD2
IL27RA	GLIPR2	SLC5A9	FPRI	SIRT5	SLC24A1	UG18	ZBTB43
CPNE1	MICAL1	TAF10	OLFM2	BCR	SRR	SLC40A1	FAM229B
KHDC4	S1PR5	STK4	SERPINB6	KLHL9	DIP2C	USP7	JHY
RPL27A	PPRC1	POLR3C	ARID4B	FAXDC2	PTPN9	ECHS1	TSFM
PSMB4	EME2	ABCC9	SFR1	L2HGDH	COX8A	FZD4	DYRK1B
TRAF5	MTG1	LXN	TM4SF1	PIP5K1B	PIGQ	IPO8	UTP20
PABPC4	DEGS1	QSOX1	RHBDD3	MFAP1	PACRG	CHCHD4	LETM1
FBLN1	MFAP4	CASP8AP2	FYB1	ZNF385B	CROT	TMED1	FCSK
CYRIB	NPLOC4	TBL2	ITGA1	EDA	SLC16A9	DDO	NCBP2AS2
TCF19	SH2B2	IGLV4-69	NMB	BOK	APOO	MED7	SLC22A7
COL3A1	POGLUT1	CKAP2	ZNF248	SIK2	ZNF426	ERCC6L2	THAP5
TSEN15	PCSK6	CD8A	PWP1	DNAJA2	ZFYVE21	TES	SLC13A2
SRP19	B4GALT3	CCN4	LGALS4	SYPL1	NAGLU	TSPAN33	MAPK13
GABBR1	TXLNA	CWC15	DNAJB4	KL	NLRX1	TINAG	CPXM2
AMPD2	ADAMTS4	CD300A	TOR1AIP2	GPR108	MIOX	NCOA6	TMEM135
ADAM8	RPS15A	HSPB6	RFC5	TNFSF13	NDUFS3	ADGRF5	SLC39A4
SPINK13	UPK2	HEG1	SNX3	APLP2	AP3D1	SLC16A7	HOGA1
NMU	RPL12	VEZT	PTRHD1	HADHB	RUNDC3B	SEMA3G	SLC25A13
CRP	IFFO1	ABCC2	ZNF37A	TIMM21	GPN3	CLINT1	NUDCD3
FAM216A	IFNAR2	MAN2B1	RPL36	HERPUD1	PRCP	BCL2L1	MSMO1
RGS10	JMJD6	LEPROTL1	BLZF1	ATP5F1B	GUF1	SLC13A1	DIRAS3
S1PR2	RASA2	GAS1	РНС2	ECSIT	TUFM	SMIM20	SLC18B1
LYAR	NRP2	PCOLCE2	ORM1	CLN5	SLC6A12	KLHL7	LYSMD3
ANAPC7	MYADM	HSPA6	CHRDL1	DSP	RNF121	GALM	ATP5F1C
FBXL6	ST8SIA4	APOL4	NRBF2	ELOVL7	DUSP8	EPN2	CDHR2
C12orf45	PRR3	NRBP2	IER5	DFFA	APP	TIGD5	WWC2
CPXM1	MORF4L2	ZNF700	EEF2K	PPM1A	CHP1	ABHD5	ATP5PO
FABP5	UBC	SRF	SLC22A23	CPPED1	TAX1BP1	LIPH	PITPNA
GOLT1B	HTRA1	PODN	NOL3	PRKCZ	EMC3	ETFRF1	SWI5
SRD5A3	MYL9	FOXJ1	GUCY1B1	ZBTB4	SH2B1	GAB2	CA13
KRI1	DYNLL1	IGHV3-53	PTPRC	THTPA	BBS2	PTPRK	USH1C
CEP83	ATXN2L	GPR4	TSPAN13	IBA57	GJB1	FAM185A	AGPS
SP140L	NES	SPI1	Clorf54	LAMTOR3	SLC30A2	SOWAHA	ZNF277
ISG15	SMC4	UBE2D2	TRAPPC12	TPRG1L	IGSF3	SNRK	PAOX
TARRP1	TIA1	SYCE11	NLRC5	PFX11G	AP4\$1	MONIR	CRIM1
FTS11	NGF	FFRMT3	RABSE	TRAPPC8	RNF38	СНСНД7	MISP3
AVEN	ESCNI		CCDC40	WDP21	VIE1D	CMEP	
AVEN MAD2V12	TSONI	CDID CEND5	NSMCE44	CLDV		DEST	
MAPSK12	NADD1	CD704	NSMCE4A		ADCIAPI	KESI USD11P2	ARFIF2
DUDD	MUD	CD/9A	ADAMTS5	EAD2	CLECTOA		AIG/
PLP2	MIIP	POLB	ADAMI55	KIFIC	KAB40B	NUPR2	PGRMC2
ANKRDI3D	EXUSCO	MCTP2	EKFE	CRYLI	UPFI	rUXN3	NXNL2
KDELR3	SAMD9	FXRI	GPR173	ZBTB42	ARSJ	PDK2	FRY
PDLIM7	DDX56	BNIP2	FAM162B	SMDT1	LRRK2	DNAI4	STRN3
GAPDH	LUC7L3	MED10	DLGAP4	TMEM170A	POLR2C	TRMT61B	DDX1

prognostise	ch unvorteilha	ft im RCC		prognostiscl	ı vorteilhaft	im RCC	
RNF215	TSPAN2	ZNF133	SEC22A	KLF13	SORBS2	AMN	GTF2F1
PRRX1	TMSB10	IGFBP2	DNMT3A	VPS51	PTPRG	NUBP2	TFDP2
PSMD4	CHI3L2	RASD2	ARHGAP4	FBXO3	CBLC	CERS4	RTN3
PSMA4	CCL19	OAS3	NDUFAF2	PLA2G12A	MOAP1	CYSTM1	ALDH8A1
SCG2	DGUOK	TADA2A	MSANTD2	BTD	EYA3	RAB11FIP2	MRPS24
Clorf216	HMGN1	GPX7	EGLN3	SCAPER	EARS2	ZNF253	TMEM102
KXD1	MAP3K8	PCNX2	VNN1	GPAT3	NPM2	ADCK2	MDH1
TGFBI	U2SURP	AIF1	GABPB1	GRSF1	KIAA1671	VPS35	SNX9
MAP4K1	MARVELD1	CASP3	JCAD	KRT7	TTC7B	RALGAPA1	NDUFC1
PLPP5	PIEZO1	SCN9A	PCDH12	C3orf18	RHOA	UBR7	HIPK2
TPM2	S100A8	QKI	KHSRP	MED9	POLR2E	GOLGA2	
TRBV9	KIAA0930	WFDC5	ZWILCH	SLC25A11	KIAA1143	ZNF407	
APOBEC3C	ERICH2	C11orf96	NUTF2	MRPS30	MIOS	CIAO3	
ACTN1	AGER	ATAD2B	LUC7L	GOT2	PTPRA	TSPAN31	
FAM20A	SSTR2	MYO1B	CD53	IVD	TMEM174	KIAA1191	
CALHM6	DDOST	GTPBP4	CPE	TMEM125	SLC12A6	USP10	
IGLV3-19	IGLV3-16	LY75	ZNF444	IL17RD	ACADS	CNTN4	
EIF2S2	PLIN3	IGHV3-43	MCM4	HINT2	NDUFAF1	TMEM72	
EFNA3	ANXA5	UBD	MMP11	RPP25L	ELP6	PIP4P1	
AGAP6	RIN1	COL4A5	ZNF107	DDX24	POC1B	SLC20A2	
MMP1	GPR176	ZNF182	CD109	ADRB2	FLNB	SOCS6	
SLFN11	DYRK3	BTN3A3	SGSH	PTPN21	RNF26	PTPRB	
IGLC3	CDK7	CXCR6	HLA-F	MGST2	FBXO2	THUMPD3	
CKLF	POC1A	LAMB3	IL7	FXYD2	BOD1L1	LRCH1	
CENPU	SEMA4C	RFFL	NELFE	GK	CNDP2	MFSD6	
ORM2	FAM171B	KLHL23	RPS6KC1	WDR20	ENTPD2	LIN54	
PTK6	FIGNL1	CXCL5	TOE1	ATP5PB	IMMT	API5	
BCL6	HNRNPA3	IDH1	ACER3	CC2D2A	NATD1	NBPF1	
CEP170	PIEZO2	SLIT3	CD93	CDS2	HLF	CSRNP1	
CHD1L	CORO6	SP3	PPME1	SYNE2	IQSEC1	UBB	
ADCY3	EBF1	HEBP2	PAN2	CHTF8	GOLGA4	NFAT5	
CRELD2	ROR2	HENMT1	CNOT3	SPATA18	ATP6V0B	MAGI2	
TAF5	TRMT1	RRP36	MAP3K14	MKKS	SUSD1	TMEM116	
RPL30	ZNF202	RHBDF1	APOBEC3B	HSPA4L	CTR9	LIN7C	
TRAM2	IPMK	CARS2	TRMT112	PRRG2	CAPZA2	CLCN3	
ZNF251	FGG	EPS8L3	SEPTIN7	CPEB3	TINAGL1	TMEM251	
DKC1	CMTM7	TRANK1	POLR2D	DMTN	MROH1	TPMT	
FADS3	RPP30	RRP12	DAAM2	РНКВ	TMLHE	C16orf91	
COL1A2	CCNL1	TPT1	SNRPB2	PDCD6IP	MOCS2	FNDC10	
ECM1	SRRT	AKNA	ATG4B	UQCRFS1	ACAD10	IPP	
RRAS	NNMT	PDCL3	CCDC88C	DAZAP2	AP1M2	CSTF2	
RNF7	ZP3	HOXA11	SRSF6	MAL	WDR24	SMIM5	
TMEM132A	HSPB11	ТТҮНЗ	ATP5F1E	NDUFA5	OSBP2	SLCO4C1	
C11orf24	NR2C1	EEF1D	SSR3	CRADD	SCFD2	CUBN	
HTRA3	PNCK	DUSP23	DCAF13	ZNF57	TOM1L1	OARD1	
COL12A1	RAC2	GPR35	TMEM267	OXSM	GCLC	BRF1	

prognostisc	h unvorteilhat	ft im RCC		prognostisch	vorteilhaft	im RCC
DTL	RNF181	TTC39C	MMD	AMOT	SAV1	C21orf62
RPL39	IGKV3-20	LCK	CYP2R1	NAPA	NDUFS4	AK7
L3HYPDH	LGALS3BP	ZNF281	IPO9	PPARA	HMGCS1	KCTD12
C5orf46	SNRPG	RABIF	ТМХЗ	TMEM245	ATAD1	MID1IP1
PPIH	SOCS1	TIMELESS	S1PR4	CMTM4	FAM50B	CCDC12
EIF2B1	SPSB1	TCOF1	ATXN7L3	ABHD10	TMEM47	CHCHD3
PTHLH	ELMOD3	MRNIP	FATE1	SIRT3	ORC4	ZNF561
NPEPL1	CDK17	RP9	ARHGAP40	TPRN	SLC6A19	SF3A1
GATA6	LAMTOR2	ODF3B	TUBA1A	INSYN1	TRIM68	CS
FADS1	APOH	DCP2	S100A4	GRHPR	PEX10	MED20
ANAPC5	ALG13	NKD2	TSHZ3	PRKAB1	NDUFA8	FBRSL1
RGS19	C2orf68	NAGPA	MLXIP	BCKDHB	RASGEF1B	LDAH
NME1	DDX39B	ITGAL	P2RX7	EVC	GULP1	ZNF440
IL2RA	CCNL2	NABP2	AAAS	LCMT2	МҮОМЗ	SLC4A4
NRDC	IGKV3OR2-	OSCAR	GIT2	MACC1	PCYT2	SLC26A1
IGKC	QTRT1	IGFBP4	DDX60L	ILDR1	MRPL34	NMRK2
RPLP1	TMEM92	RPL24	GEMIN6	VPS37D	NELFB	FCER1A
IFITM2	DENND5A	TRPC1	SLC29A1	RNF43	COX10	PPP2R1A
CDH11	FXYD3	SMTN	CREB3L1	AK3	STARD7	USP38
IGHG1	CDK11A	HYI	IGKV2D-29	LLGL2	PIK3R4	POLR3B
Clorf131	SMOC2	EMB	KLHL42	PLLP	PPP6C	NAPSA
AP2A1	UTP6	ZNF335	GPSM2	TOM1L2	GPAM	ZNF516
STX4	RASAL3	BCL2A1	INHBB	STUB1	DHRS4	C2orf15
MT2A	CXCL10	SSPN	RBM41	PEPD	SMPD1	VPS4B
CLK2	RANBP1	RBM39	NOVA2	TECPR2	PPP1R21	NFYC
RRP1B	DOCK5	SCARF2	INAFM1	UQCRC2	TMEM150C	GTF3C1
SNRPA	TRPV2	WASF1	HSPA5	FDFT1	MPP1	MYO7B
AUP1	LRRC59	CDC42EP5	C15orf39	CLTRN	GPRASP2	MBIP
BRIX1	CD27	FOXN2	PRSS23	MAGIX	SLC25A25	SLC4A2
MSL3	H3-3A	RAD9A	МҮО7А	SURF1	AREL1	CHUK
P4HA3	ZSCAN9	IGKV2-24	PPP1R14D	MRPS2	MACROD1	NUDT4
BMP1	PHTF1	CCDC80	GATAD2B	ACAA1	CABLES1	KIAA0319L
NOP58	RASSF5	TMEM273	TAF4B	C11orf71	NFS1	RABGEF1
DNAJB11	STC1	REEP4	S100A1	USP19	ARL8B	ARMC7
COPZ2	OR51E1	CEP164	SORCS2	MECP2	VDR	SGPP2
SLN	ZNF558	UBAP2L	IGHV2-70D	DLD	STK33	BEX3
BST2	PAG1	RGS2	GNGT2	ADAL	MYO1D	SNX24
ALDH18A1	CABLES2	CENATAC	CASP1	VEPH1	FA2H	TRAPPC2B
OASL	ANKRD10	KLF16	ZBED1	KLHDC7A	KYAT3	SMTNL2
FXYD5	GZMA	NFASC	GATA3	AKAP1	C11orf68	ATP6V0A1
CRYGS	CASP8	TNIP2	EFNA4	ACTR8	MRPS36	PRXL2B
BATF	NUP107	SRSF1	AMZ2	CAAP1	AMOTL1	FAM219B
ITPKA	MEA1	ENC1	G0S2	TEX264	C11orf54	ZDHHC21
DPYSL3	FOLH1	SLC43A1	SMC6	AKR1C1	TRAPPC9	ZNF75D
EXOSC1	ICAM1	KRT19	JMJD4	RBM23	RAVER2	LYPLAL1
BLOC1S3	PRDX4	POU2F1	IFIT3	NTN4	HIRA	TM7SF3

prognostisc	ognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC			
RUNX2	PGF	IGLV2-8	IPO4	PDP1	CCNB11P1	ZNF551		
COL16A1	FAM136A	WTAP	PCDH18	ZNF329	DDAH1	IFT88		
AHI1	VMO1	GUCY1A2	ARID3A	SYNE4	COPS4	C17orf75		
CHFR	SYNGAP1	DTX1	PMF1-BGLAP	C18orf32	USP30	HS3ST2		
UBE2O	INTS3	AGAP9	SV2A	SECISBP2	GALNT16	PTN		
FABP6	OSTM1	C1QL4	CD70	CCDC71	ALDH2	SMCR8		
IGLC2	ZCRB1	TENT5A	PI4KB	DCTPP1	ABCB7	JKAMP		
SCG5	NFKBIE	CD3D	RSL1D1	RPH3AL	JADE2	FHIT		
PCGF6	GPR162	ITGA4	IGHJ3	AR	DMKN	PCSK1N		
SLC2A1	RPL35A	TRIO	NDNF	UFSP2	RALBP1	TRAF6		
ADAMTS10	GNB4	TPM3	SLC26A2	VAPB	TPPP	AAGAB		
TBX19	CCDC59	ZNF83	MYO1F	RNF208	RORA	DBR1		
IKBIP	ADRA1B	HAUS6	EFHC1	RNF152	NPR3	TMED4		
NSMAF	PYCR2	CDK4	GPSM1	ELMOD2	ARHGEF12	SGMS2		
CNOT9	EIF5B	HLA-DOB	PLIN2	MYL3	GAREM1	SREBF2		
TUBA3D	IGHV3-49	EDRF1	G3BP1	RHPN2	TSG101	GATM		
AKR1B10	KRT13	GPR180	SEC22B	NAA30	SGCB	PEX26		
ATP8B3	ACAN	SRGN	SLC41A2	PARP3	AIF1L	MYH10		
HAPLN1	CDCA4	LIX1L	CD48	TP53INP2	CA2	C11orf1		
MICB	SIRPG	PRPF3	ZNF276	BCL2	QARS1	BICD2		
IGLV3-27	MCHR1	FARSB	ATG16L2	VPS35L	IDH3G	TIMM22		
RESF1	PIK3R6	HHEX	MTX1	AQP1	COQ4	LRRC20		
TMEM39B	COPS7B	ELK1	LZTS2	RNF123	RAD17	RREB1		
GBP1	CCDC112	PRXL2C	GGA3	KLHL22	NFE2L1	FBXO25		
GPX8	COMP	ELMO1	DNER	MFAP3L	MECR	SH2D3A		
PDIA4	SYNPO	ZBTB17	LYN	TBC1D1	ADCK1	NEK1		
RBM45	SLC25A32	SEMA6B	C12orf29	DDB1	CYC1	ZNF260		
TMEM158	NENF	SUSD2	NLGN2	PSEN1	NEK11	VPS11		
NPTX2	FLNA	MEDAG	DEK	TMC4	BCAM	ZNF24		
H2AX	PFDN5	MFNG	HNRNPH1	BPGM	KIF9	C22orf39		
ATAD3B	PROM2	PCDH17	GYS1	ARHGAP6	ACSF3	PIFO		
LSM2	ABCC1	SERPINB8	TRIM52	PGAP4	SNX13	WARS2		
IL10RB	NME2	ANGPTL2	NR2F1	BAG5	FANCC	THAP4		
ADAM15	GALK1	DCBLD2	PRUNE1	PPARG	RABGAP1	IDI1		
IFITM1	IGHV1-46	SAMD11	TUBG2	STK32B	SLC4A11	RBPMS2		
ORMDL1	ZNF267	TRAC	GNAS	PLEKHB2	GALT	PLEKHF2		
GDPD3	CIQA	GPS2	PTGER3	UMAD1	IGIP	SLAIN2		
MFGE8	GLT8D2	SLC20A1	GSAP	ATP6V0D1	GCSH	TIMP3		
EFHD2	FASLG	OLFML3	PLAU	SVIP	HSD17B4	OSBPL10		
MICALL2	ARAP3	GBGT1	RASL11A	RAB14	TRIP4	GSK3B		
ERO1A	HSD3B7	PSME2	KLHL6	ZDHHC3	SLC39A8	SLC25A51		
GDPD5	CYP2S1	COL4A2	MRPS15	OXCT1	GTF2I	AZGP1		
TMEM81	S100A3	CAPRIN2	SMIM10L1	CHDH	ANO10	SHISA9		
JTB	IGLC7	KCNAB2	ZNF789	MAPKAPK3	PTER	ABRAXAS1		
PLEKHG4	MRPL55	SPARC	ADARB1	ILVBL	SLC2A8	ATP2C1		
ANKRD39	KCNJ8	TET3	CAPZB	TMEM186	ASB8	BRD7		
			I					

prognostisc	rognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC		
SEC61A1	ARPC1B	MCM5	USE1	WWC1	KLF9	MMAB	
YEATS2	LIN37	PSMG1	SFT2D1	DEF8	SETMAR	TUNAR	
GPSM3	EDEM3	FMNL3	LPAR6	ITFG1	EMC10	PACS2	
DUSP14	FABP7	RBM22	NAT14	LRATD2	TOPORS	KCNJ11	
RAD51D	SERPINB9	CNPY4	NOS3	BCL2L13	LRPPRC	EIF4ENIF1	
PSTPIP1	AARSD1	CDK5RAP3	P2RY10	ESRP1	CA5B	MUC20	
RBCK1	CXCR3	B4GALT2	IAH1	CAT	ERLIN2	SNX18	
PRAME	MED30	MICAL2	MDFIC	INIP	EIF4EBP2	EVC2	
ZNF692	NDUFAF8	RAD18	THOC5	RNF13	PTH1R	TATDN3	
NCSTN	PSMB3	RHOC	MAK16	SLC38A11	COX7B	PDE7B	
CHEK2	MASTL	TRERF1	FUT11	FBXO21	MAGEE1	AK8	
PLAUR	NR3C1	HGH1	PHLDA3	CLCN5	SELENOP	AMBRA1	
KNSTRN	PDE3A	OLFML2A	DUSP10	TTC9	KLC4	ACVR2A	
ARHGAP9	CDH13	DRAP1	GPATCH4	HSD17B12	KHDRBS3	GIN1	
GNRH1	METTL26	DBI	PWWP2A	MRRF	ABCG1	SMIM4	
EMILIN1	GZMH	DCAF8	ADPRS	SUCLG1	TNFRSF21	ALAD	
NPHP3	EPB41	DHRS2	GSTA1	MFN2	MAPKAP1	UQCR11	
XCL2	LUM	TCEA1	GPCPD1	RAB19	AP1B1	PIK3C2A	
RBMX2	ACKR3	SPOCK1	JAM3	DMAC2L	ZNF330	ACTR3B	
MMP19	SH3D21	CCDC85B	MIA3	CNNM2	GSS	EIF4G2	
GLIPR1	Clorf159	ACTB	TMED3	ALDH1L1	NAPEPLD	TTLL1	
RPS8	TMCC1	KMT2E	MAF	COX411	TRIM4	ZBED3	
IGLV3-1	MEIS3	KIF2A	XPO1	CGRRF1	URM1	SLC16A4	
C1QTNF1	H3C4	RAP2C	LRRC8C	MAGI3	PTPRD	TIMM8A	
FJX1	Clorf35	ACTR3	RPL10A	NSUN7	ADCY5	CNOT6L	
DENND4B	TRA2A	PHYKPL	KPNA3	NEBL	SLC27A2	CTBP2	
AEBP1	THOC1	HERC4	MTDH	PDHB	UBAP1	NAA80	
SOCS3	NFATC4	ORAI3	NOTCH4	CACFD1	LCMT1	RNF14	
P4HA1	IGKV3D-15	ACHE	HLA-E	SLC1A1	TST	KLHL21	
LDHA	SLC36A1	S100A16	NRP1	SLC25A12	SIGIRR	SAP30L	
TEAD4	FCER1G	CCNH	RAPGEF6	РМРСВ	KIF16B	TJP1	
PTRH2	CYRIA	POGZ	SPAG1	AP1G1	ZNF718	ARPP19	
DEF6	REM1	LRRC32	LYL1	MINDY2	CNOT4	METAP1	
PUS7	ANGPTL8	IGHV3-64	BRAT1	NIPSNAP2	DNAJC5	MCCD1	
CHEK1	PMS1	CPSF3	DIAPH2	ACOT11	TFCP2L1	DARS2	
EBI3	IGLV4-60	EFEMP2	DRAM1	ASAH1	DENND6A	SLC25A15	
KMT5C	ADGRE5	NUCB2	HMGN2	FOCAD	ALKBH7	CPTP	
COL6A1	FAM118A	GABPA	HAUS7	FUT6	QDPR	RCBTB1	
STAT4	E2F5	GMIP	ERG	LMTK3	TMPRSS2	SIRT4	
NTM	DNTTIP1	MRPL24	SPRN	NDUFS8	AP3B1	BMERB1	
FOXS1	HOXD10	PDE6D	TRIM66	MTFMT	SETD2	NME5	
PDK1	CFH	INHA	CRLF1	VPS41	KMT2C	NFKB1	
IGLV9-49	CSAD	IF135	RGS4	MINDY1	SCGB1D2	TRAPPC6B	
KIRREL1	FNDC1	BTAF1	PTGFRN	USP53	NCOA4	VPS4A	
ITGAE	ELOVL5	MMP9	FCN1	PDE12	GLIS2	ITGB8	
DTX2	VSIG4	ASPHD2	EHD2	NUBPL	SLC25A5	MSH3	
			1				

prognostisc	h unvorteilhat	ft im RCC		prognostisch	vorteilhaft	im RCC
MZB1	PLEKHA2	NCAPG2	ADAM9	SEMA5A	GADD45A	ZFP90
SMIM3	CEP250	PTPRE	ESM1	PGPEP1	ZNF14	DNAJA3
MRPL53	CRISPLD2	EFS	YWHAG	MED21	JADE1	GSR
TMEM165	RASA3	PHLDB3	AGBL3	ACADM	ATP5MC1	ALKBH1
TGFB1	H4C5	NBPF15	SULF2	ALDH3A2	RIN2	DCTD
IL13RA1	YY1AP1	TMEM234	BCL6B	AMT	ANXA3	PTPN23
ATXN7L2	ANKZF1	TMEM255B	ZDHHC8	MYRIP	SHMT1	TTC33
PTPN2	CD96	AATF	HEATR1	MYH14	RTN4IP1	PRKAG1
RPS20	YWHAZ	SLFN12	METTL18	ARHGAP5	PPP1R9A	ZNF420
IGFN1	SPIDR	BTN3A1	RNF125	HIGD1A	RHBDD2	VRK3
IGHMBP2	MYLK	SIDT2	AGPAT4	СКВ	SPIN1	RPS6KA1
SAA2	SH3PXD2A	RPL23	GTF2H4	ICA1	ANXA9	OPA1
CIQLI	TMEM119	DESI2	LAT2	SCIN	PLS1	MLLT3
ITGA5	APBB3	TBL1XR1	TNFAIP2	FAM110B	NIPSNAP1	CHD9
NAA25	RPF2	PLCB3	PLN	ACAD9	TMEM238	TENT4B
RPS7	CXCL2	RBM17	PLSCR4	KIAA1109	MT-ND6	CRTAC1
WDR76	SLAMF6	MCTS1	NDRG1	ZNF880	COLCA2	ART5
IF144	IGHV2-5	IGHV3-7	GAL3ST4	SEPHS2	HMOX2	SLC44A1
ACTA2	SCNN1B	TLCD2	TBPL1	VWA7	FBXL14	BBS9
GORASP2	SH3KBP1	SNRPE	SPAST	CLN8	CAB39	CYP39A1
SERPINF1	TP53113	DMTF1	C2CD4A	SAMM50	MTCH2	FBXL16
KAT2A	DNAJB13	FTL	SNRNP48	WASL	MCF2L	COMTD1
UTP11	SNRPF	USP31	PTGER2	BCAR1	UBE3C	FAT4
CHTF18	ANXA2	TIGD1	POLR1C	MAG11	DOCK8	PCYOX1
PIGC	IGKV1D-8	TRAF1	ATP1B2	FBXL17	COX15	MAEA
TIPRL	SPDL1	FST	DUSP4	KCTD1	PBXIP1	URGCP
AURKA	H2AZ1	EGFLAM	GRPEL2	VAV3	TSPAN1	MAML2
DVL3	GOLGA8A	CSRP2	NIT1	NDUFA4	KIDINS220	SCAMP1
TCN1	FEZ1	CLSTN3	PAPOLG	CASKIN2	ZNF768	CCDC198
ZRANB2	EPO	C1orf198	PSMC3	TRAK1	FAM131C	SERP2
PAQR6	HSF4	ZNF343	BTN3A2	DNAJC30	NOP9	RAD50
CARD8	RPLP2	UBE2V1	SETDB1	CPEB4	HMGCR	ATG14
E2F3	CDC42SE1	RNF217	RBM25	ATP10D	NDUFB10	UBAP2
APOA1	IGKV3D-11	KATNBL1	ENG	ETFA	TLE2	SLC39A13
CLASRP	UBE2A	VRK2	DPY30	HMGCL	KDSR	PLIN5
H2BC8	DDX41	GNA12	SETD5	ACOT1	LYRM7	SLC5A8
ADAMTS2	RAD52	CDK19	SRSF4	DNAL1	ACSM3	BEX5
PPFIA4	HEYL	DGKZ	PEAR1	ADCY9	SNX1	ZNF503
TPD52L2	CCDC57	DPT	TCEAL7	ATP6AP1	BBS12	SLU7
TPSG1	DEPP1	SIGLEC10	GNAI3	ATXN1L	ZC3H12C	TEKT2
EIF4A1	IGLV6-57	NRN1	NAGK	PHLPP1	VPS36	ANXA7
CD44	TPST2	EVA1B	AK4	SATB2	MRPL35	GLUD2
FHOD1	CES4A	ISG20L2	AIDA	RAB21	TMBIM6	PHACTR2
ANKLE2	ADAP2	ACTL6A	SMIM29	PPFIBP2	Clorf116	HNRNPA0
NASP	OGT	ZRSR2	HPS3	ABAT	TMEM53	RAP1GDS1
FNBP4	BRD9	RGS1	PRKRIP1	SH3RF1	ARHGEF9	MRPL44

prognostisc	rognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC		
STX6	THY1	FBXO45	ТНОС6	ARHGAP35	BCDIN3D	MOB2	
PI3	ANK2	SELL	IGHV3-72	SECISBP2L	NINL	HOXA6	
F3	CDC123	PLEKHN1	DCLK1	RIPOR1	PAQR7	ZNF480	
MYBL1	LEF1	DUSP2	FAM110A	LZTS3	TACC1	ACSS2	
RNF149	LEFTY1	IGHV2-26	ТҮК2	GABARAPL2	SLC47A1	GATA2	
PTGIR	THPO	LAIR1	FAM172A	HS3ST1	TFEB	MTHFS	
PDIA3	IGHV6-1	UGT1A9	CD40	SH2D4A	CUL5	ALDH1B1	
TNKS1BP1	MRGBP	LIME1	SOGA1	THRA	UBQLN1	CCNDBP1	
BYSL	NAMPT	PPIE	CCL2	HCCS	CCDC110	CDH1	
QPCTL	PDIA6	MT1E	MTARC1	SETBP1	EIF1B	RAB11B	
ARHGAP22	EBF2	PPHLN1	NDN	MCCC2	RAB1B	PRKAR2A	
C2orf76	RBL1	C2orf49	IL18R1	IDH3A	ENOX2	SMIM14	
TFE3	IGKV4-1	PAMR1	BNIP3	SPTLC2	TMEM42	SPTY2D1	
IGKV3-11	HOXA3	HYOU1	PPIG	ANXA11	PLEKHJ1	RDH13	
OPN1SW	GJB2	UAP1	LDLRAD4	RMDN3	CCDC28A	CCNI	
SNCG	CCDC71L	PNKD	CPN2	IDH3B	PABPC4L	SDHAF1	
OSTC	DDIT4	F10	FLII	GCDH	ZMYND12	AKT1	
CNPY2	IGHV4-34	STX2	CENPX	SIPA1L1	MED16	MTHFR	
RPS19	FLAD1	TRAF3IP2	FOXJ2	UBE2QL1	ZDHHC7	DCXR	
CYTH4	ACOT7	HECW2	RNF34	PHLDB2	SIK3	SDAD1	
PTPN7	SELENOM	FTH1	TP53I11	CAPN1	PHF2	MYO9A	
CD72	NOL12	RPL4	DDX58	LRRC19	PTPRJ	LRRC57	
MFAP2	RPS10	IGHM	PSMD8	BDH1	WDR7	SUSD6	
RNASEH2B	IGHV4-39	TCF12	TRIP10	PPIP5K1	CRACDL	MCAT	
SLC11A1	CSTA	MAPK8IP3	SHROOM4	RMND5B	GLB1	GPT	
PHF21A	RPS27A	UBXN8	MOB4	CHMP1B	SMIM12	CAPN2	
TUBB	UFC1	LYST	LCA5	PLEKHG3	PPP2R3A	RSPH3	
TNFRSF9	EVI2A	CLDN15	STON1	NUBP1	ACACB	DNASE1L1	
IGHV1-69D	PHLDA2	ENTPD1	SSC4D	PUM1	SCRN1	SDHC	
VMP1	ALG6	ARHGAP23	SLC5A3	CCDC186	HOXA7	ZBTB16	
MOGS	HDAC3	TRBV6-5	MYCT1	ATP6V1E1	SNRNP25	PLD3	
METTL22	IL1RN	LAGE3	POGLUT2	RAB11FIP4	DMGDH	ABR	
TSKU	RPL37	SPINDOC	C2orf72	SCP2	RAPGEF1	CCDC160	
MZF1	CDT1	SLAMF8	C4orf47	NBEA	NUDT14	LSM4	
EMP2	KLHL17	SLC2A5	RPS5	LMF1	HSP90AA1	CYB561D1	
CBFB	SLC35A1	MT1H	WDR46	KIF21A	HAGHL	PNP	
SAA2-SAA4	MBD4	MED26	LYRM1	RNF40	ZNF165	SMAGP	
TRMT2A	Clorf174	SLC29A3	SRRM2	HTATSF1	CDADC1	SH3BGRL2	
ZAP70	TANK	FAM219A	CXCL6	BEX1	FHOD3	EMCN	
METTL5	PSMB2	NSUN6	POP5	TMEM51	NCKIPSD	APH1B	
ARHGAP33	EMG1	RUNX3	MARCKS	FASTKD5	ZNF416	NFE2L2	
EML3	MDFI	PIGZ	CENPN	GABARAPL1	PARP4	FCF1	
SRSF7	ROM1	PLXNA1	SLC1A4	NPNT	PMS2	GOSR1	
POLE	ZNF337	SAC3D1	CPED1	SMIM10L2A	COX7C	FAM76A	
NAA10	IGHV3-66	SYNPO2	NEFL	CACNA1D	PRDX5	STRN	
SEMA4B	NPM1	MFSD10	SLC12A9	CLPB	CERT1	KLF6	
			l				

prognostisc	rognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC			
SFSWAP	CCDC102B	GNL3	LUC7L2	ELAC1	EEF2	ZNRF2		
Clorf21	IL18BP	NSUN2	FAR2	RRAGD	ACSL1	AGPAT3		
ARHGEF1	ELK4	ZNF395	SFXN3	SOS2	GPC4	MPV17L2		
DPP9	ERCC5	SUV39H2	TLR5	ACTR10	MSANTD4	LEMD3		
FN1	RELB	LRRK1	PLAT	TM7SF2	CYS1	HS1BP3		
AHCTF1	SFTPB	CTSZ	STT3A	THUMPD1	EHHADH	STPG1		
PUS1	NEURL1B	FGB	PGBD1	PATZ1	B4GALNT2	SH3GLB2		
CCDC14	VAT1L	H3C10	GPR65	MMP15	PGAP6	NDUFS2		
TYMP	PAQR4	PAM16	ADSS1	LURAP1	USP8	DNAJC1		
NRM	ATP1A3	C12orf76	BCORL1	WDTC1	KIAA1522	SGTA		
IL34	PCNA	LIG1	CEP126	SNRPN	DIAPH1	SLC7A6OS		
GJC1	CALHM2	CEP95	TAF3	ATP1A1	CYCS	VAMP3		
STING1	DENND2A	H2BC12	NKTR	ECI1	NDUFB1	ZNF471		
KCTD15	KIF20B	SAAL1	S100A12	N4BP1	ELP3	NOA1		
ARL4C	MSL1	COL14A1	PDE4B	BORCS7	VGLL4	N4BP3		
FAM193B	ZNF18	OPTN	IGKV6-21	TMEM187	FHDC1	ACMSD		
PLEKHG2	MDK	GC	IL6ST	C6orf136	GFM2	SEPTIN11		
SRM	RARG	NRBP1	CCPG1	C19orf25	FOXO1	NDUFB7		
S100A10	LILRB1	RIOK1	CLNSIA	SCNN1A	FAM122A	SHISA2		
ANP32E	NAV1	PAICS	GAB3	AQP7	ADGRF1	EXPH5		
HK3	PSMD14	TMED9	CHN1	MSI2	PDGFC	TOP2B		
EFEMP1	PSMC5	MTERF3	DES	TJP3	TMEM33	ZSWIM9		
PFKFB4	CXCL8	DUS1L	SAMHD1	THRB	PECR	ILK		
CHMP4A	Clorf162	LAPTM5	RNF220	SDHA	CCDC134	RCBTB2		
LOX	PMAIP1	STARD4	MCAM	EZR	ZFHX3	TMEM80		
RACGAP1	DHX34	BTN2A1	CDH5	TMEM129	AIMP2	ARFGEF1		
RCC2	INTS13	IL12RB1	MAZ	CLDN23	SH3D19	IFRD2		
DGKD	DOK1	BNIP3L	PPIL3	PKHD1	FARP1	PTBP3		
POLA2	ZNF300	ZC3H12A	VCAN	VAMP2	ALG5	LDHB		
KIZ	CEP290	CCDC127	WEE1	SLC25A30	TSPYL5	IQCA1		
MRTO4	FCGR3A	EID3	MTCL1	OXNAD1	MCRIP2	FRAT2		
GABRD	NFIL3	LST1	CDK2AP2	CADPS2	GOLM2	ABHD17B		
HAUS5	S100A11	CPNE5	SPATS2	SNX30	BBOX1	DAG1		
STC2	LRRC37A3	PPM1F	KDM3A	CDH16	METTL14	KIFBP		
ZNF207	CXCL11	ZEB2	GIMAP6	TMEM115	RAB11A	RNF141		
BTBD19	WDR26	INPP5B	EGFL7	ANKMY2	UTP14C	AGO1		
FMNL1	NUP85	SNRNP70	VPS33A	NUDT16	PCK1	ZNF134		
ARID5A	NKG7	SIGLEC9	ZNF224	ZNF610	PATJ	AP2B1		
ARRDC3	KISS1R	PTMS	FBXO46	DNASE1L3	CLIC4	SLC22A12		
SSC5D	ST3GAL2	MEST	DIABLO	ENDOG	MTOR	EPAS1		
INTS6L	ANTXR2	LCP2	ZCCHC8	LMBRD1	MDH2	NOXA1		
OLFML1	MAP3K20	RRP1	SYNGR2	SC5D	CES2	OGG1		
PON2	SEC24D	CD276	ZNF302	FAM120A	GRTP1	REXO4		
IGHG2	PARVG	DKK3	SNAPIN	AHCYL2	FUZ	JAK1		
NFKBIZ	GTF3A	CHSY1	METTL21A	DNAJA4	TMEM203	ATE1		
IGKV1-5	MXRA8	GOLTIA	NOTCH1	FIS1	MRPS35	AKR7A2		
			I					

prognostisc	rognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC			
PFDN2	ZNF354A	GGT5	IFNGR1	GAS8	BAIAP3	C17orf107		
ITIH3	USP13	CDC27	TMTC1	HABP4	SLC25A40	EXOSC7		
UFD1	FAM102B	FHL2	E4F1	TXNRD2	EPN3	ZC3H13		
MTCP1	TRIM27	REN	ABCD1	CCDC25	KLHL8	TAL2		
ETV6	B3GNT4	GOLGA3	COTL1	GNAQ	ZNF112	MCRS1		
SNAI2	SIPA1	TUBG1	PCDHB6	LMTK2	SLC6A20	TXNRD3		
PTGIS	CREB3L3	SASH3	CRIPT	GSTZ1	TMX2	MTMR14		
TOR3A	HOXC6	CPSF1	SLC12A8	INPP5J	VWA5A	LRRC47		
FCGR1A	METTL1	RAB8A	ILF2	PDHA1	ARMCX3	PXMP2		
SHMT2	ZBTB25	TAP1	MAX	MTCH1	PANK4	MYO10		
ISG20	ZNF841	MAP1A	ZC3H11A	GFM1	SLC25A38	CHIC1		
IGHV3-48	SPIN4	ATP10A	MRPL38	ANKRD9	GPRC5C	HELQ		
ISLR	IGKV3D-20	RPL28	RXRA	ZDHHC4	STX17	MTUS1		
MGAT3	C8orf58	MBOAT7	HGF	TBC1D19	ZBTB3	SLC29A2		
MAGOHB	MAP4K4	SAMD9L	TNFAIP6	PLCXD2	SMU1	LIMA1		
LDLRAD3	EEF1B2	SCNN1D	SSRP1	KATNAL2	C12orf75	CMTM8		
SLC25A43	FAM114A1	FKBP1A	AFF3	CLCNKB	KANK3	MIA2		
IGLV1-47	LRG1	GFOD1	WFDC12	ADD1	C8orf82	DNAJC6		
TAP2	SMIM10	TRBV29-1	RELA	FBXO8	CEP104	FMO1		
DDX11	AP4B1	POC5	DGCR8	MTMR12	RBBP8	LYNX1		
NID1	NEDD4	ZSCAN26	ALOX5AP	RDH11	PCBP1	VAMP7		
EIF2B4	PSMB1	CD14	FLNC	HOXB8	RAD54L2	ZNF775		
МҮС	ERGIC2	RPL5	SQLE	ESRRA	SLC44A2	NEMF		
GBP5	THBS2	APOC3	CSF3R	RANBP6	SLC35F5	ANKRD28		
TBX15	GNG2	STK26	SORCS3	ZNF324	CCDC8	SLC38A7		
INHBE	THG1L	RPL19	KRT17	SHROOM2	WDR1	PODXL		
STK17B	GART	SLPI	SREK1	SEC22C	BCAS3	UQCRB		
PDGFRB	OSMR	ITGAM	TSC22D2	SPINT1	SLC25A26	SPCS1		
SERPINE1	OR2I1P	ARHGAP15	CD52	SNX29	FAM189A2	ACY1		
GLMN	FAM160B1	SEPTIN8	SELPLG	MICU2	ZNF837	CABIN1		
IGLL5	SYNJ2	MINPP1	C5orf24	LIFR	SPIN2B	EIF2B2		
CCDC88A	C11orf98	LYVE1	PRPF40A	HERC2	SP2	ABCB1		
BGN	ECM2	HCN2	CASP7	EPS8	PDHX	CAPG		
IGKV1-9	ANO1	UBA6	LTBR	LUZP1	PGM5	RHOBTB2		
TGFB111	IGHV3-33	UBE2G2	LDLR	ATP6V1H	SNN	GTF3C4		
RPL38	INSIG2	ZMYND8	SLC6A9	ZDHHC23	RBM15B	PRR14L		
PML	LRRC17	TRIM62	PSMB6	FLRT3	NDUFAF3	PIP5K1C		
ANXA2R	TMEM138	ITGB1BP1	RPGRIP1L	CYP4V2	CCDC121	MRM3		
SLC2A3	IGHV4-61	ZDHHC17	MYBBP1A	SNX12	GPR107	C4orf33		
RWDD3	KCNMB1	CTSK	POP1	ZNF304	GALK2	SYPL2		
KMO	DAP3	FASN	BZW2	TMEM143	DEFB1	ALDH7A1		
MORC2	EVL	FAM76B	POP7	USP22	INTS9	GON7		
IGLV1-44	MGP	RASL12	TAF1	TRHDE	SMAD4	ALKBH4		
IGKV1-12	TCAF2	PLCB2	PPP4R3B	FABP3	CLUH	MTARC2		
SEC61G	KCMF1	IGHV3-13	TNFAIP3	GLG1	PNMA6A	QRFPR		
LIMK1	TBK1	TCF4	ANXA4	TBC1D13	FIBIN	ST13		
			I					

prognostisc	rognostisch unvorteilhaft im RCC				prognostisch vorteilhaft im RCC			
CARD11	MFSD2A	MUTYH	TUBD1	PHYHIPL	MMGT1	PRKCI		
LY6E	FGA	THUMPD2	IP6K3	WDR48	SDHAF4	EIF4EBP3		
SLA2	PCID2	MAP7D2	SENP6	ISCA2	NMNAT3	MAPK10		
LIF	GNA15	SLC25A28	PCDHB14	NARS1	ARSD	SPON1		
SLC16A1	CNIH4	HNRNPC	GTF2H5	ATP6V1G1	ZNF554	PDXDC1		
KDELR2	ERCC3	ALG9	SEC63	MIEF2	NBR1	CFAP94		
IGLV3-10	OAS2	ADAR	MCMBP	TBC1D5	DDRGK1	COG7		
VOPP1	TFAP4	OST4	SH2B3	TMEM252	ATP6AP2	RNF11		
PAK11P1	ADGRE2	SPRED1	TMSB4X	RAPGEF2	C19orf71	INPP5A		
NCF4	SLC25A37	PRPF38A	CANT1	TMEM61	ZNF543	DHDH		
TRIT1	CST7	PLEKHA5	PLPPR5	DECR1	REEP5	ALCAM		
ZBTB8OS	IGKV1-6	FBN1	DYNLT2B	SORL1	FMC1	UTP3		
COL5A3	CYP1B1	DDX49	IRAK3	NRXN3	ACE2	PAFAH1B1		
EBPL	TRPM2	COPZ1	RPP38	SLC22A2	CDK20	GMPPB		
TEPSIN	HPCAL1	MRPL14	UROS	PCP4	RNH1	ACOT8		
TOX2	СМТМ3	ARHGAP19	HES4	AJAP1	DDX10	CTIF		
TRBV28	BTF3L4	IL1B	C1QTNF3	SALL1	TERF2IP	MYO18A		
RPP40	P3H4	NOL10	KLHL29	SETDB2	ZSCAN31	TBCK		
IRF9	RPS4X	RNF135	ADM	GCNT4	PER3	HPGD		
FXYD1	FBL	SCD	SLC27A3	NDUFAB1	GMPR2	TANGO6		
ST20	SAMSN1	CCDC88B	CCT3	SGMS1	MBTPS1	GID8		
PRR5L	TNFRSF4	TRDC	LRRC41	SATB1	TFAM	RBMS2		
RPL27	IGKV2-30	C2CD2	RNASEH2C	ARHGEF3	MMAA	ZDHHC2		
KNTC1	PCED1B	CWC22	UGGT1	LGR4	RAB11FIP5	GALNT12		
INHBA	LIMK2	ATAT1	ТМСО6	PRRG1	TRIM69	DHRS11		
DACT3	MAPKAPK2	DNTTIP2	NEMP2	NDUFA10	CREBL2	LETMD1		
LOXL3	FKBP7	GMNN	IRF2BP2	MTSS1	SFXN2	TPD52L1		
SBNO2	OSGEP	TSPAN5	SPPL2B	C16orf86	AP5B1	CEP170B		
PARP6	CSNK1E	SMS	TRIM54	CHCHD10	SCD5	HOOK2		
UTP14A	ABCC3	ZSWIM4	ZNF432	FAM200A	TUB	FTCDNL1		
UBE2S	IGHV3-74	CD69	DAPK3	MEGF8	AFTPH	CLDN8		
SMPD4	PSMD12	IDUA	DERL2	ABHD2	ATP5PF	MCUR1		
RER1	TARBP2	EPHB3	EXOSC9	TCAIM	NUP214	ZNF611		
ZNF7	TTC17	ZNF195	CLASP1	LRRC1	STAT5B	FBXL2		
DCBLD1	EDEM2	CLTB	ATP13A1	UCK1	MAL2	C6orf226		
VIM	DXO	ZYX	CSRNP2	FREM2	SMIM10L2	POLDIP3		
KCNK1	PDE1B	SAMD1	SLC44A5	PFKM	B DBP	TIMD4		
MYO1G	TPD52	TENT4A	FRRS1	ALG2	PRKD1	TMBIM1		
CBX4	IGHV4-28	RNF19A	KSR1	ANKDD1B	CBX7	CITED2		
MSRB3	EIF3I	HNRNPA2B	TP11	TRMT2B	GPR143	DNAJA1		
DCLRE1C	CD2	1 VPS16	CORO2A	TMEM184C	DEPDC5	SPINT2		
IGHG4	PLAGL1	SNX10	IL11RA	DCTN1	EXTL3	ECHDC3		
PLXDC1	SH2D1A	KLHL4	GTDC1	VPS37C	CCNG2	DHTKD1		
CCL20	UBE2V2	TTPAL	NPL	NDFIP1	MYO5C	COQ10A		
IGHV3-21	OBI1	CLIC1	RPL13	ATG4D	ATP6V1F	SMIM27		
SH3GL1	ZFP69	SAE1	LSM6	RCL1	UBE3B	FAM135A		

prognostis	sch unvorteilh	aft im RCC		prognostisc	h vorteilhaf	t im RCC
MZT2B	MAPK12	SNRPC	NOD1	ZNF250	SPATA7	C4orf3
COL8A1	CASP2	ALPK2	TERF1	SDC4	RYBP	MNAT1
RHOG	SLC6A1	IGHV1-58	COPS6	COG8	RNF41	FOXO4
PLTP	CDK18	TNFRSF1B	PPWD1	PKIB	YWHAB	DTNB
IGLV3-21	MILR1	NCLN	HEATR6	ANO5	FLVCR2	NDUFA1
AP3S1	SPHK1	FNBP1	FBXO32	COL4A3	ZHX3	CD83
FADS2	CXCL9	HSD17B7	METTL8	ARL6	PROM1	DCAF7
SSR2	HEATR3	THBS1	HACD4	TRPM4	FGF1	GLDC
FAAP100	RPL23A	ENTR1	ZNF143	PDZK1	SPHK2	RNF183
TEAD3	PDCD6	SLAMF7	VCPKMT	NDUFA9	SPTBN1	ZBTB10
WSB1	CAVIN3	RASSF1	RETREG3	MLYCD	TMX4	NFIB
HMGN3	SUMO2	SNRPD2	RARRES2	PRKCE	CCDC85C	CTNND1
CIR1	STK32C	AGAP3	QSER1	DTNA	SLC27A4	SCAMP4
SRSF2	IGHJ2	CNOT2	AGFG1	ANAPC13	HACL1	ARRDC1
CCL8	ZCCHC24	SHISA5	RPL6	CDC37L1	USP51	MANBAL
SULF1	EXT2	COPS3	PCDHB2	CPT1A	DNAJC11	SPOPL
MSH6	DCUN1D3	LMCD1	IFIT2	PIGH	CMC2	DZIP3
RNF128	VAMP4	SIGLEC1	ADCY4	CLMN	GDA	TAOK2
ARPC2	CNN1	NADSYN1	CFD	KBTBD4	SLC49A3	MYLIP
AKAP8L	EIF2S3	KANK2	F12	BRD3	TRAPPC11	ANAPC2
IRF1	IGLV1-40	BHLHE41	BACH1	ISCU	ROGDI	ALDH5A1
GZMB	TTC32	PPP1R15B	MCL1	ZNF443	OCIAD2	MCCC1
MED8	FGD6	BCL2L12	KLC1	DBNDD1	SLC19A2	ZC3H18
FANCL	PHACTR1	AGR2	TULP3	FH	FAM171A1	PMEL
IDO1	IGKJ5	NAT10	SEM1	TRMT9B	COMMD8	NUDT8
NCAPD2	SSR4	IGKV1-27	NSD2	MAP1LC3B	ABLIM1	LENG1
MGME1	SLC25A14	GUK1	CMAS	CHMP5	PPM1H	PPFIA1
СР	NETO2	ARHGEF19	ELFN2	MRFAP1	DYNC2LI1	ERICH5
NXT1	RTN2	CD5	SMIM30	EFHD1	ZFPL1	KLHL2
SLC35G2	WAS	EOGT	CEBPG	SDHB	CYP2U1	PHB
CCDC137	PRELP	PECAM1	ORC3	NIPAL3	KRAS	DAAM1
PHF19	TRMU	E2F1	DR1	LNX1	DYM	ZNF836
Clorf52	MYO9B	ERCC1	KDR	BCAR3	PLXNB1	UGT2B7
LSM12	PELI1	GPRC5A	TTC27	OSBP	ELMO3	PEX3
SLC1A5	NT5DC3	MRPL18	CEP43	PARD6A	TENT5C	ASH1L
SKIL	SHROOM1	TLCD1	RPL9	PRDM4	MACF1	HSPA8
PTGDS	PSMD11	NOLC1	PTEN	SLC16A11	UBXN6	SPAG16
LHFPL6	FEN1	PRTFDC1	BTG3	CREBRF	RABL3	PCMTD2
PIAS3	PRICKLE3	NFYB	IKZF3	PFKFB2	DALRD3	QRSL1
APOL2	H4C3	CUL2	ACAT2	KLF15	MRFAP1L1	ISCA1
TAZ	NOP16	KRT10	UNC93B1	ARHGEF5	TMTC2	TMEM98
TUBB6	ZNF580	RSU1	ERVK3-1	PKP4	NUDT12	ESYT1
TNFAIP8L1	SSR1	CD3G	CYTL1	BAP1	RPS6KA2	ZFP30
RFTN1	PRAF2	LMNB2	GJA4	KBTBD3	NF2	FAM200B
				1		

8.11.5 Mutationen im RANBP3L-Genom

Abbildung 64: Mutationsprofil von *RANBP3L* im RCC.

Mittels der TCGA-Datenbank wurde das Mutationsprofil von *RANBP3L* in KIRC (**A**), KICH (**B**) und KIRP (**C**) untersucht [82, 84] [85] (Datenstand: 1.08.2022).

8.12 Expressionsanalysen in anderen RCC-Datensets

8.12.1 Expression ausgewählter Gene in einem KIRC-änhlichen Mausmodell

Abbildung 65: Expression von *Ranbp3l, Sparc, Col4a1* und *Col4a2* in WT und *Vhl*^{Δ/Δ} *Trp53*^{Δ/Δ} *Rb1*^{Δ/Δ} Mäusen (VpR).

Die NGS-Analysen aus einem KIRC-induzierenden-Mausmodell zeigen im Vegleich zu WT-Kontrolltieren eine signifikante Herunterregulation von *Ranbp3l* sowie eine Hochregulation von *Sparc*, *Col4a1* und *Col4a2* (Mittelwerte \pm SEM (Fehlerbalken), n = 7-12, **, p<0,01, ***, p<0,001, Student's-T-Test, Daten bezogen aus aus [77, 148] [85]).

8.12.2 RANBP3L-Expression im CDC

Abbildung 66: Expression von *RANBP3L* in zwei unabhängigen CDC-Datensätzen. Die Genexpressionsanalysen beider Studien, links [178] und rechts [229], zeigen eine Herunterregulation von *RANBP3L* in dem Nieren-Sammelrohrkarzinom-Subtyp (CDC = *Collecting duct carcinoma*) (Mittelwerte \pm SEM (Fehlerbalken), n = 2-8, **, p<0,01, Student's-T-Test).

A) B) DPI+FLAG

8.13 RANBP3L überexprimierende mpkCCD-Zellen

Abbildung 67: Überepxression von RANBP3L in mpkCCD-Zellen.

A) qPCR Analyse bei 300 mosmol/kg sowie 600 mosmol/kg von Kontrollzellen (mock, grau) und RANBP3L überexprimierenden (OE, grün) mpkCCD-Zellen. Mittelwerte \pm SEM (Fehlerbalken), n =3, n.s, p > 0,05, **, p<0,01, 1-Weg-ANOVA. **B**) Die mpkCCD-Zellen (mock und OE) wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Bei gewünschter Konfluenz erfolgte die Fixierung der Zellen in 5 %iger Formaldehydlösung. Immunfluoreszenzaufnahmen nach Flag-Färbung, gekoppelt mit Alexa Fluor-568, zeigt spezifisches Kernsignal in RANBP3L-überexprimierenden-Zellen. DAPI diente als Kernmarker. Die Färbung der Zellen mit dem FLAG-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die mock- und OE-Probe (OE =*over expression*, unten) aber nicht in Kontrollzellen (mock, oben) (Maßstabsleiste: 500 µm).

8.14 Immunfluoreszenzanalyse von c-JUN und Smad2

8.14.1 c-JUN-Färbung

Abbildung 68: Immunfluoreszenzanalyse von c-JUN in Scr- und R1-mpkCCD-Zellen.

Die mpkCCD-Zellen (Scr und R1) wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Bei gewünschter Konfluenz erfolgte die Fixierung der Zellen in 5 %iger Formaldehydlösung. Immunfluoreszenzaufnahmen nach Färbung von Scr- und R1-mpkCCD-Zellen mit c-JUN Antikörper. Bei 300 momsol/kg ist eine starke Kernlokalisation beider Signale zu erkennen. Dieses ist unter 600 mosmol/kg in Scr-Zellen allerdings nicht mehr nachweisbar. Allerdings zeigen R1-mpkCCD-Zellen auch bei 600 mosmol/kg weiterhin eine starke Kernlokalisation des c-Jun-Signals. Die Färbung der Zellen mit dem c-JUN-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr- und R1-Probe.

8.14.2 Phospho c-JUN-Färbung

Abbildung 69: Immunfluoreszenzanalyse von phosphoryliertem c-JUN in Scr- und R1-mpkCCD-Zellen.

Die mpkCCD-Zellen (Scr und R1) wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Bei gewünschter Konfluenz erfolgte die Fixierung der Zellen in 5 % iger Formaldehydlösung Immunfluoreszenzaufnahmen nach Färbung von Scr- und R1-mpkCCD-Zellen mit phosphoryliertem c-JUN (Antikörper. Bei 300 momsol/kg ist eine starke Kernlokalisation beider Signale zu erkennen. Dieses ist unter 600 mosmol/kg in Scr-Zellen allerdings nicht mehr nachweisbar. Allerdings zeigen R1-mpkCCD-Zellen auch bei 600 mosmol/kg weiterhin eine starke Kernlokalisation des phospho-cJun-Signals. Die Färbung der Zellen mit dem phospho-c-JUN-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr- und R1-Probe.

8.14.3 SMAD2-Färbung

Abbildung 70: Immunfluoreszenzanalyse von SMAD2 in Scr- und R1-mpkCCD-Zellen.

Die mpkCCD-Zellen (Scr und R1) wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Bei gewünschter Konfluenz erfolgte die Fixierung der Zellen in 5 % iger Formaldehydlösung Immunfluoreszenzaufnahmen nach Färbung von Scr- und R1-mpkCCD-Zellen mit SMAD2 Antikörper. Bei 300 momsol/kg ist eine starke Kernlokalisation beider Signale zu erkennen. Dieses ist unter 600 mosmol/kg in Scr-Zellen allerdings nicht mehr nachweisbar. Allerdings zeigen R1-mpkCCD-Zellen auch bei 600 mosmol/kg weiterhin eine starke Kernlokalisation des SMAD2-Signals. Die Färbung der Zellen mit dem SMAD2-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr- und R1-Probe.

8.14.4 Phospho SMAD2-Färbung

Abbildung 71: Immunfluoreszenzanalyse von phosphoryliertem SMAD2 in Scr- und R1-mpkCCD-Zellen.

Die mpkCCD-Zellen (Scr und R1) wurden auf Deckgläsern in 24-*well* Platten ausgesetzt. Bei gewünschter Konfluenz erfolgte die Fixierung der Zellen in 5 % iger Formaldehydlösung Immunfluoreszenzaufnahmen nach Färbung von Scr-und R1-mpkCCD-Zellen mit phosphoryliertem SMAD2 Antikörper. Bei 300 momsol/kg ist eine starke Kernlokalisation beider Signale zu erkennen. Dieses ist unter 600 mosmol/kg in Scr-Zellen allerdings nicht mehr nachweisbar. Allerdings zeigen R1-mpkCCD-Zellen auch bei 600 mosmol/kg weiterhin eine starke Kernlokalisation des phospho-SMAD2-Signals. Die Färbung der Zellen mit dem phospho-SMAD2-Antikörper sowie die Generierung der Immunfluoreszenzbilder erfolgte unter standardisierten Bedingungen mit gleicher Beleuchtungsdauer für die Scr- und R1-Probe.

8.15 Analyse der Mausklinik

		Age [weeks]									
Screens	Methods	7	8	9	10	11	12	13	14	15	16
Behaviour	Openfield										
	Acoustic startle response & PPI										
Neurology	Modified SHIRPA, grip strength										
	Rotarod										
Dysmorphology	Anatomical observation										
Energy Metabolism	Indirect calorimetry										
Cardiovascular	Awake ECG / Echo cardiography										
Clinical Chemistry	IpGTT										
Neurology	Auditory brain stem response (ABR)										
Dysmorphology	X-Ray, DEXA										
Eye	Scheimpflug imaging, Laser-interference-biometry (LIB), Optical coherence tomography (OCT), Virtual drum test										
Clinical Chemistry	Clinical Chemical analysis, hematology										
Immunology	Flow cytometry, plasma (IgE, IL6, TNF, insulin)										
Pathology	Macro & microscopic analysis										

Screening Pipeline

Abbildung 72: Möglicher Analyse-Screen der RANBP3L-defizienten-Maus in der *German Mouse Clinic* Pipeline der Charakterisierung einer neuen *Knockout*-Mauslinie der German Mouse Clinic [181], Datenstand: 1.08.2022.

Eigenständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wortwörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Teile der vorliegenden Arbeit sind in Publikationen und Kongress-Poster eingegangen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Halle (Saale), den

Dmitry Chernyakov

Danksagung

Zum Schluss möchte ich mich noch bei allen Personen bedanken, die mich auf unterschiedliche Art und Weise während der Anfertigung dieser Doktorarbeit unterstützt haben.

Zuerst möchte ich meinen Dank PD. Dr. Frank Erdmann aussprechen, der relativ spontan und sehr bereitwillig die Betreuung dieser naturwissenschaftlichen Arbeit übernommen hat. Danke für die konstruktiven Gespräche, die diese Arbeit deutlich aufgewertet haben!

Mein größter Dank gilt Prof. Dr. Bayram Edemir für die direkte Betreuung dieser Arbeit mit sehr viel Empathie und Geduld. Ebenfalls bedanken will ich mich bei Ihm für sein Vertrauen und die vielen Freiheiten, die ich in der Zeit genießen durfte. Danke für die Offenheit immer neue Sachen ausprobieren zu dürfen. Ebenfalls vielen Dank für die Hilfe beim Schreiben meiner ersten Publikation. Ich habe sehr viel bei dir gelernt. Danke!

Weiterhin möchte ich mich bei allen Bachelor-, Masterstudenten sowie medizinischen Doktoranden bedanken, die während meiner Zeit Teil der AG waren. Alle konstruktiven und auch nicht konstruktiven Gespräche haben viel Spaß gemacht!

Auch bedanken will ich mich bei meinen Ko-Autoren Dr. Dennis Gerloff und Dr. Christoph Schultheiß, die viel Zeit in die Korrekturen des *Papers* gesteckt haben und ohne die es bestimmt länger gedauert hätte es zu publizieren. Danke euch!

Weiterhin Vielen Dank an die gesamte Arbeitsgruppe der KIM IV, die mir stets bei Fragen zur Seite standen und mit denen es immer viel Spaß gemacht hat, im Labor zusammen zu arbeiten.

Ebenfalls gilt mein Dank meiner Familie und allen meinen Freunden, dass ihr mich zu den richtigen Momenten abgelenkt habt, um den Kopf freizubekommen.

Ein besonderer Dank gilt meiner Freundin Anne. Danke fürs zur Seite stehen seit über 5 Jahren und all dem was über diese Arbeit hinausgeht und wirklich zählt.

Lebenslauf

Persönliche Daten

Vorname/ Nachname:	Dmitry Chernyakov 11.03.1994 Brjansk, Russische Föderation deutsch								
Geburtsdatum:									
Nationalität:									
Nationalitat.									
Werdegang									
03/2021 - aktuell	Universitätsklinikum Halle (Saale) wissenschaftlicher Mitarbeiter Schwerpunkt: Etablierung einer CART-Zell-Therapie im anaplastischen Schilddrüsenkarzinom Klinik für Innere Medizin IV AG molekulare Krebstherapie/ Dierks								
12/2017 – 03/2021	Universitätsklinikum Halle (Saale) wissenschaftlicher Mitarbeiter/ Doktorand (Dr. rer. nat.) Doktorarbeit: Untersuchung der Expression und phänotypischen Bedeutung des <i>Ran-binding protein 3-like</i> in innermedullären Sammelrohrzellen der Niere Klinik für Innere Medizin IV AG zelluläre und molekulare Tumorbiologie/ Edemir								
10/2015 – 09/2017	Universität Leipzig Master of Science in Biochemie/ Biomedizin Notenschnitt: 1,4 Masterarbeit: Veränderung von Mikroglia-Zelllinien bei GPR34-Verlust (1,0) Abteilung Molekulare Biochemie, AG Schulz								
10/2012 – 08/2015	 Martin-Luther-Universität, Halle (Saale) Bachelor of Science in Biochemie Notenschnitt: 1,9 Thema: Synthese und biologische Evaluierung potenzieller antiprotozoaler Wirkstoffe (1,2) Abteilung Medizinische Chemie, AG Schmidt 								
08/2004 – 07/2012	Geschwister-Scholl-Gymnasium Magdeburg Abitur Notenschnitt: 2,0								

Halle (Saale), den

Dmitry Chernyakov

Publikationen

Münz, S., Wolf, L., Hoelzle, L., **Chernyakov, D.**, Edemir, B. & Föller, M. Impact of cytotoxic agents or apoptosis stimulants on αklotho in MDCK and NRK-52E and HK2 kidney cells. *Aging*, akzeptiert zur Publikation: 09.08.2022

Chernyakov, D., Groß, A., Fischer, A., Bornkessel, N., Schultheiss, C., Gerloff, D. & Edemir, B. Loss of RANBP3L leads to transformation of renal epithelial cells towards a renal clear cell carcinoma like phenotype. *Journal of Experimental & Clinical Cancer Research*, DOI: 10.1186/s13046-021-01982-y

Groß, A., **Chernyakov**, **D.**, Gallwitz, L., Bornkessel, N. & Edemir, B. Deletion of von hippel–lindau interferes with hyper osmolality induced gene expression and induces an unfavorable gene expression pattern. *Cancers*, DOI: 10.3390/cancers12020420

Manuskripte

Chernyakov, D., Fischer, A., Petrillo, F., Fenton, R. & Edemir, B. The nuclear factor of activated T cells 5 (NFAT5) contributes to the renal cortico-medullary differences in gene expression. *Scientific Reports*, Submission ID: 3120be8b-e121-4aa3-ad0a-040a4cece2c9, eingereicht am 12.08.2022

Petrillo, F., **Chernyakov, D.**, Esteva-Font1 C., Edemir B. & Fenton R. The nuclear factor of activated T cells 5 (NFAT5) contributes to the renal corticomedullary differences in gene expression. *FASEB*, Submission ID: 202200859, in Revision seit 26.07.2022

Kongresse

9th Immunotherapy of Cancer Conference (ITOC9) – 2022

Chernyakov, D. Skorobohatko, O., Edemir, B, Müller T., Alb, M., Trojanowitzsch B., Hudezeck M., Binder, M., Kerstin Lorenz K., Christine Dierks C. ROR1-CAR T-cells as novel treatment strategy for anaplastic thyroid carcinoma, als Poster zugelassen

7. Forschungstag der Universitätsmedizin Halle – 2022

Chernyakov, D. & Edemir, B. SPARC-Defizienz mildert den onkogenen Phänotyp eines RANBP3L-KOs in Sammelrohrzellen der Niere ab

Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Hämatologie und Medizinische Onkologie – 2019

Chernyakov, D., Gallwitz, L., Groß, A., Bornkessel, N. & Edemir, B. RANBP3L deficiency promotes tumorigenic phenotype (**Posterpreis**)

6. Forschungstag der Universitätsmedizin Halle – 2019

Chernyakov, D. & Edemir, B. Verlust von RANBP3L in Sammelrohrzellen der Niere, führt zu einem Nierenkrebs-assoziierten-Phänotyp (**Posterpreis**)

5. Forschungstag der Universitätsmedizin Halle – 2018

Chernyakov, D. & Edemir, B. Charakterisierung von RANBP3L, einem nierenspezifischen Protein

Abstracts

Edemir, B., Petrillo, F., **Chernyakov, D.** & Fenton R. Comprehensive analysis of NFAT5 associated gene expression in the renal collecting duct, *FASEB*, DOI: 10.1096/fasebj.2022.36.S1.0R507

Edemir, B., **Chernyakov, D.**, Fischer, A., Becker F., Gallwitz L., Bornkessel N. & Groß, A. Loss of von Hippel-Lindau protein in renal collecting duct cells is associated with massive changes in gene expression and induces a mesenchymal phenotype, *FASB*, DOI: 10.1096/fasebj.2020.34.s1.02856

Chernyakov, D., Bornkessel N., Fischer, A., Groß, A. & Edemir, B. RanBP3L is a NFAT5 target gene and its deficiency in principal cells promotes epithelial mesenchymal transition through MAPK signalling, *FASEB*, DOI: 10.1096/fasebj.2020.34.s1.00455

Bornkessel N., **Chernyakov, D.**, Groß, A., Gallwitz L., Becker F., Fischer, A. & Edemir, B. Deletion of Elavl1 in renal collecting duct cells is associated with a specific gene expression pattern resulting in major functional changes. *FASEB*, DOI: 10.1096/fasebj.2020.34.s1.02857

Nice to know my kind will be on my side, I don't believe the hype.

twenty one pilots - The Hype