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1 Zusammenfassung

Wahrnehmungsbasierte Entscheidungsfindung ist eine komplexe Aufgabe, die

sich aus mehreren Teilprozessen zusammensetzt, von der Wahrnehmung von

Reizen über die Berechnung von Entscheidungen bis hin zur Ausführung der

Handlung. An diesen vielfältigen Prozessen sind verschiedene Gehirnregionen

und -netzwerke beteiligt. In dieser Arbeit habe ich mich auf die Beta-Power-

Lateralisierung (BPL) konzentriert. Dieses Elektroenzephalogramm(EEG)-

Signal resultiert aus einer asymmetrischen Beta-Power Reduktion, die in der

kontralateralen Hemisphäre stärker ist als in der ipsilateralen, bezogen auf die

kommende Bewegung. Dieses Signal baut sich robust an Elektroden über dem

motorischen Kortex vor einer unimanuellen Reaktion auf.

Hier habe ich untersucht, inwieweit diese Lateralisierung mit der Entschei-

dungsverarbeitung zusammenhängt. Dabei habe ich den zeitlichen Verlauf

des Signals in Abhängigkeit von Entscheidungsvariablen wie den Antwortzeit-

punkt und die Evidenzstärke untersucht. Insbesondere habe ich dabei er-

wartet, dass ein neuronales Korrelat der Entscheidungsfindung zeitlich von

einem eher handlungsvorbereitenden Signal abgekoppelt werden kann. Des

Weiteren habe ich die Hypothese aufgestellt, dass sich die Dringlichkeit einer

Entscheidung in den Schwankungen der Signalamplitude widerspiegelt, die

notwendig ist, um eine Entscheidung zu treffen. Außerdem habe ich angenom-

men, dass ein entscheidungsverarbeitendes Signal die Stärke der Evidenz ab-

bildet, die zu einem bestimmten Zeitpunkt während der Verarbeitung gesam-

melt wurde.

Um diese Annahmen zu testen, habe ich drei Verhaltensexperimente mit gesun-

den Teilnehmern durchgeführt während ein 64-Kanal-EEG abgeleitet wurde.

Dreißig Probanden haben zunächst die ”Random-Dot-Motion” (RDM) Auf-

gabe in zwei Sitzungen (unmittelbare Antworten vs. forcierte Antwortverzöge-

rung) ausgeführt. Die Reize variierten zufällig zwischen sechs Evidenz-Stufen

(1,6 % - 51,2 % Bewegung in eine kohärente Richtung). In einem weiteren Ex-

periment führten dreißig Teilnehmer ein einfaches Reaktionszeitparadigma mit

variabler Antwortverzögerung (300-1300 ms) durch. Die Probanden mussten

auf einen direktiven Pfeilreiz reagieren sobald ein Reaktionshinweis erschien.

Weitere 34 Teilnehmer haben zweimal die ”Token-Aufgabe” bearbeitet. Diese

Aufgabe präsentiert schrittweise Evidenz und erlaubt Antworten zu selbstbes-

timmten Zeitpunkten, wobei schnellere Antworten in einigen Bedingungen mit
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Zeitersparnissen oder monetär belohnt wurden.

Mithilfe von Regressionen auf Einzeldurchgangsebene fand ich heraus, dass sich

der Startzeitpunkt der BPL von dem eines motorischen Vorbereitungssignals

unterscheidet und auch nicht durch eine erzwungene Handlungsverzögerung

beeinflusst wird. Insbesondere bei der Token-Aufgabe, aber teilweise auch bei

der RDM, zeigte sich, dass die BPL mit der Menge der gesammelten Evi-

denz für die zukünftige Entscheidung einige Zeit vor Beginn der motorischen

Vorbereitung variierte. Schließlich zeigte sich, dass Entscheidungen unter Zeit-

druck durch einen veränderte BPL-Verlauf gekennzeichnet waren.

Insgesamt deuten diese Ergebnisse darauf hin, dass die BPL eine wichtige Rolle

bei der Entscheidungsfindung spielt. Sie scheint entscheidungsrelevante Vari-

ablen während der gesamten Verarbeitung online zu kodieren und die gewählte

Option mit der bevorstehenden Handlung zu verknüpfen. Somit könnte die

BPL möglicherweise als Auslesesignal für die Entscheidungsentwicklung di-

enen.
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2 Abstract

Perceptual decision-making is a complex task that consists of several sub-

processes from the perception of stimuli to the deliberation process to the

implementation of the action. A wide range of brain regions and networks

are involved in these diverse processes. In this work, I focused on beta-power

lateralization (BPL), an electroencephalogram (EEG) signal that results from

asymmetric beta power reduction, which is stronger over the contra- than the

ipsilateral hemisphere with respect to the movement. This signal robustly

builds up at motor cortical electrodes prior to a unimanual response.

Here, I investigated the extent to which this lateralization is related to decision

processing. I examined its variability as a function of decision variables such

as timing and evidence. In particular, I expected that a neural correlate of

decision making can be temporally disentangled from a more action-related

signal. Furthermore, I hypothesized that the urgency of a decision would

be reflected in the variation in signal amplitude necessary to commit to a

choice. Finally, I expected that a decision-tracking signal encodes the amount

of evidence accumulated at a given time during processing.

To test these assumptions, I conducted three decision-making experiments with

healthy human participants and 64-channel EEG recordings. First, thirty par-

ticipants performed the ’random dot motion’ task in two sessions (immediate

responses vs. fixed response delay). The dot stimuli varied randomly be-

tween six levels of evidence (1.6 % – 51.2 % motion into a coherent direction).

Second, thirty humans performed a simple delayed response paradigm with

variable response delay latencies (300 - 1300 ms). They had to respond to

a directive arrow stimulus as soon as the imperative response cue occurred.

Third, 34 participants were asked to perform the ’Token Task’ twice (without

vs. with monetary reward). This task presented evidence in a discrete manner

and allowed responses at self-determined times with fast responses being re-

warded in certain conditions. I explored the relevance of the manipulations as

well as reaction times for the dynamics of the BPL by using a novel single-trial

regression approach.

Using single-trial regression analyses, I found that BPL differed from a motor

preparation signal in onset times and was not affected by a forced response

delay (fixed and variable). In particular, in the Token Task, but also to some
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extent in the RDM, BPL was found to vary with the amount of accumulated

evidence for the ‘choice to-be’ some time before motor preparation began.

Finally, I found that urgent decision making was reflected by altered BPL

dynamics related to response timing.

Overall, these results suggest that BPL plays a crucial role in decision making.

It appears to encode decision-related variables throughout processing and to

link the choice to the upcoming action. Thus, the BPL could potentially serve

as an online read-out of decision development.
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3 Theoretical Background

We are exposed to a constant stream of information that we have to process

and react upon, sometimes under strong time pressure. In cognitive psychology

such tasks have been summarized under the generic term decision making.

Everyday, we encounter these cognitive demands, for example in road traffic:

visual input from the traffic light or a street sign, auditory input from an

emergency siren or a beeping car. All this information must be processed and

appropriate actions need to be selected and finally carried out. Our behavior

is thus controlled by latent decisions that result from complex computations of

our brain. Perceptual decision-making, i.e. decisions based on sensory input,

involves a categorical judgment of the information entering the brain (Gold &

Shadlen, 2000). Imagine a pedestrian trying to cross a busy road. She has to

process a lot of information about approaching cars, their speed, acceleration,

distance, the width of the road, maybe she observes other pedestrians for

reference or even different types of vehicles. She perceives all this information,

categorizes it and decides if and when to cross the street. Such a decision task

is usually subject to additional environmental conditions such as urgency or

perceptual uncertainty.

In experimental settings, decisions are often less complex and external influ-

ences can be carefully controlled or intentionally manipulated. Nevertheless,

the tasks require similar cognitive functions: intentionally discriminating be-

tween the presence or identity of environmental stimuli (Ding & Gold, 2013)

by comparing the evidence for the available options (Gold & Shadlen, 2000).

It starts with stimulus perception, where information is collected and evi-

dence for the available options is accumulated. Then, a variable policy is

required for ending this process with a commitment to a choice or plan of

action (Drugowitsch et al., 2012) which consequently guides behavior (Ding

& Gold, 2013). In other words, perception involves the representation, selec-

tion and accumulation of sensory input (Newman et al., 2017). Information

needs to be encoded and integrated into a decision variable (O’Connell et al.,

2012). Finally, an appropriate action has to be selected, prepared, and exe-

cuted (Newman et al., 2017). Interestingly, these sub-processes do not require

strict temporal order or distinct neural areas. Instead, functions partially over-

lap in space (e.g. Hunt et al., 2013) and feedback loops within and between

brain regions (Siegel et al., 2015) oppose the idea of strictly sequential pro-
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cessing cascades (Sternberg, 1969). This presents a particular challenge when

studying isolated sub-processes and requires careful experimental design and

interpretation of results. One of such spatial intersections of cognitive tasks

will be considered within this thesis. I will present work on signals over the

motor cortex and to what extent they represent information integration, action

selection, and motor preparation processes.

In the first chapter, I will provide a theoretical overview of the role of evidence

accumulation and urgency in perceptual decision-making. Next, I will intro-

duce and describe the analysis of lateralization signals over motor cortex, the

neural system of interest in this project. This motivates the research ques-

tions and hypotheses of this thesis, which will be investigated in two empirical

chapters. A first set of studies involves two perceptual decision-making exper-

iments where fixed and flexible response delays were enforced to disentangle

motor from decision related processing. I recorded electroencephalography

(EEG) over the motor cortex to study the relevance of motor cortical signals

during decision making. In the second study, I used a paradigm that provided

evidence in a slow and discrete manner while response urgency was enhanced

to investigate urgency effects on decision making. In the final chapter, I will

summarize the findings of both studies and discuss their implications in light

of the current literature.

3.1 Evidence accumulation in perceptual decision-making

Decision making literature refers to ’evidence’ as the perceptual input that

provides us with information about features we try to identify or discriminate.

Therefore, we need to have a motivation and goal to which we gather rele-

vant information that helps us to come to a solution - to make a decision.

This gathering of information and its termination is indispensable for decision

making, the latter I will turn to in the next section. First, I will consider

the process of evidence accumulation, which can be illustrated by the follow-

ing scenario. There is a person approaching and one needs to quickly decide

whether one knows this person to act appropriately. Thus, one will gather in-

formation about facial features, eyes, nose, mouth, and potentially even listen

to their voice, observe their gait, or perceive a particular smell. This input

from different modalities is collectively gathered over time to provide evidence

for the identity of the person and helps us decide whether or not we know the

person. After some time, one option will be favored over the other and finally
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Figure 1. Simple Drift Diffusion Model as an example for the evidence accumu-
lation account in decision making. The accumulator starts with a bias (z) towards
option 2 (blue), and then slowly accumulates evidence (v= drift rate) for option
1 (red) until it reaches the decision threshold (a1) after some time. In behavioral
terms this could be the decision process of an agent, who initially tended towards
blue. During stimulus presentation, however, the agent receives increasing input in
favor of red, and at some point information is sufficient to choose red.

there will be sufficient evidence to commit to a choice. This accumulation of

evidence takes place at the order of hundreds of milliseconds but is a highly

adaptive and sensitive mechanism.

This idea of evidence accumulation has been formalized by a class of compu-

tational models. Currently, the drift-diffusion model (DDM; Ratcliff, 1978;

Ratcliff & McKoon, 2008) is most commonly used to describe the process for

two-alternative forced choices. It understands evidence accumulation in deci-

sion making as a continuous random walk towards either one of the alternatives

(see Figure 1). The accumulator unit integrates evidence for both options and

gradually builds up as one choice option surpasses the other. The slope of

this accumulation process is described by the drift rate (v). Upon reaching

one of the thresholds (a) the decision for the corresponding option is made.

Sometimes, also starting point biases (z) by prior information or expectation

are included.

A number of neural correlates were identified to be involved in evidence accu-

mulation or its integration. This process does not take place within a strict

sequence or distinctly specialized areas (see above), but rather within a dis-

tributed neural network and through temporally overlapping activation. As
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perceptual decision-making is most often studied within the visual modality,

I will consider the visual system when describing perceptual areas. However,

other perceptual regions may show a similar functional discrimination when

stimuli are within the respective modality. Moving stimuli are processed in

middle temporal area (Parker & Newsome, 1998) and single unit recordings

revealed that single neurons’ activity in this region encode evidence strength

(Britten et al., 1992). Moreover, high frequency oscillations (high gamma) in

human visual area 5 (functional equivalence to middle temporal area in mon-

keys) are modulated by evidence strength and seem to reflect sensory evidence

accumulation (Siegel et al., 2007). Besides, higher-level functions (Tranel et al.,

2003) were related in a line of studies to a consistent positive peak of averaged

population activity (from EEG recordings) in centro-parietal regions. This

centro-parietal positivity (CPP) varied in strength with reaction time (RT)

and sensory evidence (Kelly & O’Connell, 2013; Twomey et al., 2016) and was

interpreted as a domain general neural marker for the integration of evidence

(O’Connell et al., 2012; Twomey et al., 2016). Moreover, sensori-motor re-

gions were found to reflect or integrate evidence strength over time. Initially,

studies in monkeys showed that output regions such as frontal eye field (FEF;

Gold & Shadlen, 2000, 2003) and the lateral intraparietal area (LIP; Shadlen

& Newsome, 2001; Roitman & Shadlen, 2002; Kiani & Shadlen, 2009) varied

their activation with stimulus features over time, suggesting that they inte-

grate the accumulated evidence. In humans, similar activity was shown over

motor cortical areas. Donner et al. (2009) used MEG to reveal that beta power

lateralization (BPL) integrates evidence strength. Others observed such func-

tionality in contralateral (with respect to the choice) beta activity (O’Connell

et al., 2012) or described that expectations modulated alpha and beta power

motor lateralization (De Lange et al., 2013). Slower fluctuations in motor areas

(measured as event-related potentials [ERP]) were also suggested to relate to

evidence accumulation. The lateralized readiness potential (LRP, de Jong et

al., 1988; Gratton et al., 1988) reflected prior beliefs, decision thresholds and

accumulation rates (Van Vugt et al., 2014). Taken together, evidence represen-

tations are spread over a variety of cortical regions, from classical perceptual

to motor regions. In this thesis, I will particularly shed light on the relevance

and distinction of signals recorded over the motor cortex.

An established task to investigate evidence accumulation in perceptual decision-

making in the laboratory is the random dot motion task (RDM). The stimuli
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were initially used to investigate neural correlates of motion stimulus percep-

tion in middle temporal area (Britten et al., 1992; Newsome & Paré, 1988) and

proved particularly useful as a perceptual decision task later on. Stimuli in this

paradigm are dots moving within a fixed aperture. The subject needs to detect

the direction of coherently moving dots. The motion feature of the stimulus

is particularly advantageous for manipulating evidence strength. Even though

in static displays evidence can by varied, too, the random dot kinematogram

appears particularly suitable. It has the opportunity to present fine-grained,

almost continuous, modulations in physical stimulus strength by simply adapt-

ing the proportion of dots moving into one coherent direction. All other dots

move randomly and present noise that can be more or less dominant. Hence,

with this task I was able to manipulate physical evidence strength in order to

observe similar variations in neural activation, but also effects on behavioral re-

sponses. The detailed knowledge of how and where evidence is accumulated in

the brain in various contexts is vital for our understanding of decision making

as it makes up an indispensable task during decision computation.

3.2 Urgency in perceptual decision-making

Evidence accumulation takes time but it also needs to terminate at some point.

The decision maker must complete the accumulation and select an option to

adaptively interact with its environment. Some authors (Klaus et al., 2019;

Khalighinejad et al., 2020, 2022) argued that choosing when to act is a second

decision. While this strong claim may be debated, it seems obvious that some

policy on finishing the decision process is inevitable and could be influenced

from the task or situational context. The relationship between accuracy and

speed is of central importance here. The notion of the speed-accuracy trade-

off (SAT) describes the conflict between accuracy and speed. Behaviorally it

manifests itself in reduced accuracy when reactions are fast, and vice versa.

This corresponds to assumptions within accumulation models, which state

that one cannot acquire as much evidence within this shorter amount of time

compared to longer RTs. Thus, we base our choices on less information, which

is more error-prone (Schouten & Bekker, 1967; Wickelgren, 1977). It follows

that the SAT is directly related to the termination policy of the decision in that

speed or accuracy will be favored by terminating the decision process sooner

or later (i.e. Reddi & Carpenter, 2000; Drugowitsch et al., 2012). In the

example scenario of deciding about the familiarity of a person, speed pressure
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would be imposed if this person was already very close once the decision maker

notices that an action is required. Possibly, the short amount of time does not

allow for noticing every detail of their appearance before a reaction (and a

decision) is expected. Thus, it is more likely to make a wrong choice and

act inappropriately as compared to a situation where there is a lot of time to

observe this person.

Even though, performance decreases with speed, decisions are often made in

a haste. One reason is the internal urge to terminate the decision process,

which can vary between humans (Yau et al., 2021; Carland et al., 2019). An-

other reason, as in the given example, are external deadlines that require fast

reactions (Wickelgren, 1977). Yet another cause, particularly in laboratory

settings, are rewards or instructions for speeded responses (Wickelgren, 1977).

Hence, there can be several reasons to finish the decision process before the op-

timal choice has been prepared. All of the aforementioned reasons are related

to urgency which affects cognitive processing and eventually the outcome of

the decision (Thura et al., 2012). Such a sense of urgency can be described as

time pressure to commit to a decision as soon as possible. When time elapses

urgency increases (Drugowitsch et al., 2012). Humans perceive such passage

of time and as a result the pressure to respond increases. This is an adap-

tive mechanism as one cannot endlessly ruminate about a decision. However,

in some pathological conditions, e.g. obsessive-compulsive behavior (Banca

et al., 2015; Hauser, Moutoussis, Iannaccone, et al., 2017), this ability is in

fact suspected to be dysfunctional. Also in normally functioning brains, there

is emerging evidence for interindividual variability, as in trait-urgency (for a

review see Carland et al., 2019) or a link to the personality trait ”need for

closure” (Evans et al., 2017), that also affects decision processes. It is crucial

to understanding the underlying mechanisms for explaining those behavioral

variations. Several decision making models already exist to explain the effect

of urgency on decision making.

As I briefly stated above, under the assumptions of accumulation models (see

Evidence accumulation in perceptual decision-making) it is typically assumed

that the decision threshold is reduced in contexts with speed-emphasis (Reddi

& Carpenter, 2000; Drugowitsch et al., 2012). This would explain shorter

RTs and lower accuracy. In situations with a response deadline or urgency

related to elapsing time, one could assume a hazard function of time during



FROM CHOICE TO ACTION 11

non-performance (Katsimpokis et al., 2020). Such a hazard function has been

incorporated into accumulation models by a collapsing bound (Drugowitsch et

al., 2012). The threshold is not anymore static but decreases as a function of

time spent on the decision. Drugowitsch et al. (2012) found such a mechanism

expressed in monkey LIP neurons caused by an external urgency signal. The

authors further showed that this urgency signal is in fact independent of the

coherence level, i.e. task difficulty. Others suggest an independent urgency

signal to play a major modulatory role in decision outcome. This was for-

malized by the urgency-gating model (UGM; Cisek et al., 2009). The authors

postulate that the decision variable and its neural correlates are a product of

the current stimulus information (perceptual evidence signal) and an indepen-

dent urgency signal. This urgency signal increases linearly with elapsing time.

Thura and Cisek (2016) suggest that fast decisions are produced through a

heightened starting point and steeper build-up of neural activity in the motor

system, for both decision and movement related activity. Such an adjustment

of the drift rate offers an alternative account to the proposed threshold col-

lapse by Drugowitsch et al. (2012). There is some debate about the necessity

of accumulating evidence (Winkel et al., 2014) or whether urgency is sufficient

to drive the decision signal (Cisek et al., 2009). Interesting for this discus-

sion may be the dissociation between situational factors. Katsimpokis et al.

(2020) found that response deadlines influence the drift rate whereas speed

instructions induce threshold regulations.

Urgency does not only impact deliberation time, but also movement time has

been linked to speed pressure (Shadmehr et al., 2010). Following this, Thura et

al. (2014) suggested to measure movement time (MT, reaching movements) to

operationalize response vigor. They observed a relationship between urgency

and the vigor of movement in monkeys (Thura et al., 2014) as well as in humans

(Thura et al., 2014; Thura & Cisek, 2016).

It was suggested, that an urgency signal originates in the Globus Pallidus inter-

nus (GPi; Thura & Cisek, 2017), an output unit of the basal ganglia. Research

shows that inactivation of this region in monkeys increases their MT, i.e. vigor

(Desmurget & Turner, 2010), indicating a lack of the urgency signal (Thura

et al., 2014). In humans with Parkinson’s Disease, a pathology characterized

by reduced basal ganglia activity, rapid movement is impaired (Mazzoni et

al., 2007) which hints at a relevant role of this area in urgency processing.
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Furthermore, neural activity patterns in the GPi resemble the hypothetical

build-up of urgency (Thura & Cisek, 2016) and can be modulated by speed

or accuracy emphasis (provoking more or less urgency) in the task (Thura &

Cisek, 2017). Others have shown that the subthalamic nucleus, also a structure

of the basal ganglia, modulates decision thresholds and is therefore involved

in dynamical adjustments of SAT (Frank, 2006; Cavanagh et al., 2011; Herz

et al., 2018). Deep brain electrodes in humans revealed a link between local

field potential power in the subthalamic nucleus and behavioral slowing after

errors (Siegert et al., 2014). Others (Zaehle et al., 2017) reported a causal

relationship between subthalamic nucleus stimulation and impulsivity regula-

tion. Interestingly, beta power in the subthalamic nucleus was phase-coupled

to motor cortical beta power and modulated SAT (Herz et al., 2017). Together,

these findings suggest that speed or urgency modulations in decision making

are based on cortical and subcortical structures as well as their connections.

Their exact mechanism, however, remains to be understood. Interestingly, re-

cent findings (Derosiere et al., 2022; Reynaud et al., 2020; Codol et al., 2020)

contradict the ”shared regulation” hypothesis (Thura et al., 2014) that deci-

sion and movement time underlie the same urgency regulation. These studies

lack an effect of speed-pressure on vigor. Thus, whether decision and action

time are regulated by the same or different mechanism and sources remains

unclear.

With the emergence of the urgency account, a new paradigm was introduced

to better understand how urgency influences the decision process - the Token

Task (Cisek et al., 2009). This task requires the participant to decide whether

more tokens will end up in a left or right goal. All tokens are visible at all times

and move one by one from a central pool to their lateral goal. This sequential

presentation of information offers the opportunity to carefully manipulate the

amount of evidence given to an observer. The designer of the token sequences

can make use of the ground truth of the current evidence (at each moment in

time) for each goal. This makes it possible to present different scenarios such

as misleading or biased sequences. The original version of the task also allows

for manipulating the SAT by offering time savings for fast decisions. Thus, this

task offers some advantages over the classical RDM paradigm if one aims to

study urgency and evidence accumulation in perceptual decision-making.
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3.3 Signals over motor cortex in perceptual decision-making

As stated above, the motor cortex received increasing attention in current

cognitive neuroscience literature. Several motor cortical signatures are of in-

terest when studying decision making and action preparation. One of the

most famous EEG signals over motor cortex is the readiness potential. The

evolving negativation of scalp potentials was first reported and termed ”Bere-

itschaftspotential” (readiness potential) by Kornhuber and Deecke (1965). It

emerges around two seconds before voluntary hand movements (Shibasaki &

Hallett, 2006) and is most dominant at electrodes above mesial motor cor-

tical areas (Schurger et al., 2021). The readiness potential consists of two

components. The first component has a wide symmetrical distribution over

the scalp but is strongest at electrode Cz (Shibasaki & Hallett, 2006). This

initial deflection comes from activity in supplementary motor area and premo-

tor cortex (Schurger et al., 2021) and is accordingly understood as marking

the onset of movement planning and preparation. The late component starts

around 400 ms before the movement Kornhuber and Deecke (1964) and is

marked by a sudden increase in slope. This negative ramping signal appears

maximal contralateral to hand movement (electrodes C1/C2) and originates in

primary motor cortex (M1; Shibasaki et al., 1981). Note that the exact timing

and distribution varies a lot according to task type, requirements, as well as

individuals (Schurger et al., 2021). Importantly, single-hand movements are

preceded by this negative potential over motor cortex in both hemispheres, but

the strength of the late component (>= 400 ms pre-movement) differs between

hemispheres (Deecke et al., 1976).

More than a decade later, this asymmetry in motor cortical negativation be-

fore movements was studied more thoroughly (de Jong et al., 1988; Gratton et

al., 1988). The lateralized readiness potential (initially termed corrected mo-

tor asymmetry by de Jong et al., 1988) labels a stronger negativation over the

motor cortex contralateral to the effector compared to the ipsilateral hemi-

sphere. It was suggested to be a direct consequence of the late part of the

readiness potential and originates also in M1 (for a review see Eimer, 1998).

The timepoint at which the readiness potential diverges between hemispheres

was understood to reflect the moment of determination for one response side

(Kutas & Hillyard, 1980). Today, this slow difference in scalp potentials is

often used as a measure of response activation and widely studied in different
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contexts mostly using reaction time tasks (Smulders & Miller, 2012). It marks

the onset of movement preparation once the selection process, i.e. decision

making, is concluded (Kutas & Donchin, 1974; Gratton et al., 1988; Haggard

& Eimer, 1999; Kelly & O’Connell, 2013). This, in fact, discriminates the

LRP from the readiness potential, which is generally assumed to be specific

to voluntary movements and reflects a general preparedness to act (Travers &

Haggard, 2021).

Another approach to analyzing scalp potentials is by defining their oscillation

frequency and computing the power of each frequency within the signal (see

computational details below). Such neural oscillations are linked to specific

brain states, functions and regions (first described by Berger, 1929). One

widely studied frequency band spans 13-30 Hz, the beta-band. This rhythm

has been linked to motor functions for decades. Traditionally, beta-band

oscillations were considered to maintain an idling state in the motor cortex

(Pfurtscheller et al., 1996), thus preventing any movements during inactivity.

The reduction of beta power would according to this view release a ’break’ and

open up the possibility to act. Today, beta-band oscillations are considered to

preserve the current state of the system during inactivity, while attenuation

in beta power makes new movements possible (for a review see Engel & Fries,

2010). This hypothesis states that performing any new voluntary movement

requires a reduction in beta power (Gilbertson et al., 2005; Androulidakis et

al., 2007). Along these lines, beta power was found to decrease after response

cue onset (Tzagarakis et al., 2010).

Interestingly and analogous to the low-frequency averaged signals described

above (i.e. the readiness potential and the LRP), beta power appears to lat-

eralize prior to one-sided responses (Jasper & Penfield, 1949; Pfurtscheller,

1981). Beta power decreases more strongly in the contralateral than in the

ipsilateral hemisphere with respect to the response side (Donner et al., 2009;

O’Connell et al., 2012; De Lange et al., 2013). Similarly to LRP, BPL was

associated with motor selection in decision making tasks (Kaiser et al., 2001;

Doyle et al., 2005). Its robust link to motor output was confirmed when no

overt responses to a decision were required and BPL disappeared (Twomey et

al., 2016; O’Connell et al., 2012). Thus, it is most likely an effector specific

motor preparatory signal. However, it was also shown that BPL amplitude

correlated with integrated sensory evidence over a period of time before the
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response (Donner et al., 2009). Moreover, BPL was shown to scale with RT

and sensory evidence (O’Connell et al., 2012; De Lange et al., 2013). Thus,

it was interpreted that this lateralization does not merely represent the final

motor selection, but reflects also some decision related variable.

Neural correlates reflecting a decision variable should possess certain features

if understood in terms of evidence accumulation theories (see Section 3.1). In

the following, I will describe some characteristics that could make beta os-

cillations a promising candidate for transferring decision information. First,

a beta power reduction (inversely) builds up towards a peak just before the

response (Kaiser et al., 2001). The authors suggest that such reduced beta

power could indicate the time needed for selecting a motor response. Addi-

tionally, beta-band power decreased not only after cue, but even further after

target presentation (Tzagarakis et al., 2010), indicating that not merely mo-

tor preparation is encoded. Second, the rate of this increase in lateralization

(slope) varies with stimulus strength if it encodes accumulation of evidence

(De Lange et al., 2013). The authors observed for pre-response, but not post-

stimulus, that BPL slope varied with stimulus intensity. Others, in contrast,

did not find evidence for such an association (Twomey et al., 2016). Third,

the latency and amplitude of the peak are relevant parameters as they mark

the decision threshold of the accumulator. The time of the peak of contralat-

eral beta (O’Connell et al., 2012) and BPL (Fischer et al., 2018) was shown

to be tightly linked to or at RT, respectively. In contrast, beta power peak

amplitude was constant regardless of RT (O’Connell et al., 2012) and BPL

peak amplitude did not vary with stimulus strength (Twomey et al., 2016).

Moreover, a variety of uncertainty levels yielded no peak amplitude differences

of beta power (Tzagarakis et al., 2010). Thus, the peak of contralateral beta

power or BPL could be indicative of a response threshold. Finally, the onset

latency of a decision signal could be predictive of its function. Tzagarakis et al.

(2010) reported that beta power changed approximately 120 ms after cue onset

even before response target appearance. Its lateralization appeared even sev-

eral seconds before response onset (Donner et al., 2009) and the starting point

was influenced by prior expectations, a relevant variable for decision making

(De Lange et al., 2013). To sum up, there is converging evidence that beta

power and specifically its lateralization could hold online decision information

within the motor cortex. Before turning to the main hypotheses, I will shortly

introduce by what means I processed the lateralized EEG signals of interest
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for the present studies.

3.4 Processing and analysis of lateralized neural signals

The neural signals that are relevant for this thesis were analyzed by specific

methods that I will briefly introduce in this section and describe in more

detail in the methods sections of the two main chapters (Motor cortical signals

reflecting decision making and action preparation & Beta power lateralization

reflects urgency-related response timing during evidence accumulation ).

Electrode Sites. As this thesis focuses on signals related to finger move-

ments, I was interested in electrode locations capturing pre- and primary motor

cortical sources. The late readiness potential for hand movements originates

primarily from tangential sources in M1 (Nagamine et al., 1996) in the precen-

tral gyrus. The somatotopy of M1 could be advantageously used for locating

electrodes directly over hand areas. However, spatial specificity is rather low

for EEG recordings (i.e. volume conduction), thus electrode sites are usually

selected based on the largest signal strength or previous research. For LRP,

C3’ and C4’ (1 cm anterior to C3/C4) or C3 and C4 have been most commonly

used (e.g. de Jong et al., 1988; Eimer, 1998; Haggard & Eimer, 1999; Gratton

et al., 1988). Yet, in the vast amount of LRP research there have been a vari-

ety of electrode sites used, which also yielded adequate results. The electrode

selection for the present experiments was based on previous research, finding

strongest BPL in postero-central electrodes (Fischer et al., 2018). The authors

used the average of C3 and CP3 for left hemisphere and C4 and CP4 for right

hemisphere activity, which I adopted for both motor cortical measures, LRP

and BPL.

LRP computation. For the computation of the LRP, different methods have

been described (Eimer, 1998). Here I implemented the averaging method

(Coles, 1989). For right hand responses I subtracted the left hemisphere ERP

from the right hemisphere ERP and vice versa for left hand responses. The

resulting difference signals were then averaged (taking the sum and dividing

by two). This method renders the LRP a negative deflection before the re-

sponse and its amplitude is half the size of the amplitude obtained by another

technique (double subtraction, de Jong et al., 1988). This negative polarity of

the difference signal (contralateral to response hand stronger negativity than
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ipsilateral) corresponds to the polarity of the BPL, and facilitates comparisons

between those measurements.

BPL computation. For acquiring oscillatory lateralization there were sev-

eral steps involved. Firstly, I computed the Time-Frequency (TF) spectra for

each electrode of interest and trial. The data was then sorted by contra- and

ipsilateral activity, such that C3 and CP3 TF data was re-coded into ipsilateral

for left-hand responses and contralateral for right-hand responses. Whereas,

C4 and CP4 TF data were considered contralateral for left-hand trials and

ipsilateral for right-hand trials. In other words, I re-categorized the electrode

data from their specific hemispheric location into their output-related location

(ipsi- or contralateral to response side). Then, it was possible to subtract ipsi-

from contralateral activity for each location (C and CP) and trial. Eventually,

I averaged across positions (i.e. (Cipsi + CPipsi)/2 and (Ccontra + CPcontra)/2)

and trials. This rendered a lateralization signal with growing negative de-

flection before the response and I was able to compare its parameters to the

LRP.

Determining onset latencies within a timeseries. Several parameters of

ERP and power timeseries can be modulated by experimental manipulations

or differ between groups. In the first part of this project, I aimed at differenti-

ating the onset latencies of the ramping signals. Primarily, I was interested in

differences in onset latencies between task conditions. Onset latency is often

defined as the moment in time at which a signal starts to deviate from zero

(Smulders & Miller, 2012). However, this involves the risk of capturing ran-

dom fluctuations or even more local peaks and troughs of a curve. In order to

account for the noisiness and interindividual differences in lateralization trajec-

tories, I applied a jackknife-based method (Miller et al., 1998; Ulrich & Miller,

2001). Separately for each condition, I composed ’new’ samples by averaging

all but one of the original samples (i.e. participants). This was done for every

sample, resulting in a set of averages - the new sample set. This step reduced

noise in the timeseries data, but required stricter control during significance

testing (Ulrich & Miller, 2001), which I will describe in detail in study 1 (Mo-

tor cortical signals reflecting decision making and action preparation). Next,

I defined the onset of the timeseries peak (negative for the lateralization) by

setting a criterion (certain percentage of the maximum peak amplitude) and

then identified the timepoint, through interpolation, at which this criterion
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was first crossed (Miller et al., 1998). Similarly, this technique can be used to

measure peak latencies as well as slopes. Here, however, I focused on the onset

time of lateralization and its difference between conditions.

Single-Trial Regression. To disentangle different factors and their specific

influence on the temporal evolution of the timeseries data, I applied a single-

trial regression approach (Fischer & Ullsperger, 2013; Fischer et al., 2016,

2018). This method is beneficial for a number of reasons. First, it allows to

discriminate the influence of a variety of independent predictors, while simul-

taneously controlling for nuisance variables. Second, it is possible to observe

their individual influence over the course of time and preserving the high tem-

poral resolution of the EEG. This permits a fine-grained analysis of predictive

strength at specific timepoints with respect to particular events. Third, this

method enables us to capture changing variables within a given trial. In tradi-

tional trial averaging approaches it is not possible to take such dynamics into

account. The present method, however, enabled me to discretely explore the

changing influence of evidence strength over the course of a trial (in Exp.3). I

epoched data locked to the moment of evidence change. The resulting design

matrix did not include a row per trial as would be usually the case for gen-

eral linear models (GLM) in fMRI or in the GLM for EEG analyses described

by Fischer and Ullsperger (2013). Rather it involved several epochs per trial.

The model included predictors related to the change in information that was

presented along with trial-wise and block-wise regressors. Thus, I was able to

detect dynamic changes within each trial while simultaneously taking other

static variables into account. More details on these variables follow in the next

sections, where I will derive my main research objectives and hypotheses from

the literature described above.

4 Research Questions

Decision making is not only a highly complex process and possibly a ”win-

dow on cognition” (Shadlen & Kiani, 2013), it is also a remarkably distributed

task. It involves multiple cortical areas and occurs on different, partially over-

lapping, time scales. One of the central sub-processes is the accumulation of

evidence, which is not yet understood in all its facets, but almost certainly

plays a role from perceptual to sensori-motor areas. Another key factor in

decision making is the time at which a decision must be completed. Urgency
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appears to be an adaptive mechanism for regulating decision timing but its ac-

tual mode of action, particularly its effect on evidence accumulation, remains

elusive. A possible region where urgency and accumulation of evidence could

influence decision making is the motor cortex, maybe reflected in beta oscilla-

tions and their lateralization. These signals appear to be promising candidates

for determining the current decision state in human motor cortex. By using

novel trial-by-trial analysis techniques I am able to not only disentangle the

timing and differential influence of multiple predictors, but also to account for

dynamic and constant factors within each trial.

The goal of this work is to increase our understanding of evidence accumulation

and urgency during perceptual decision-making and mutual interplay between

both. For gaining more insight into the decision process I will investigate the

role of lateralized beta power recorded over motor cortex. Specifically, the

following questions are still open in the literature and will be addressed by the

studies within this thesis:

1. What is the role of BPL during the decision process - more than mere

action preparation?

2. Does BPL reflect online integration of accumulated evidence as the basis

for motor output selection?

3. What role does urgency play in decision making? Specifically, does ur-

gency have an effect on evidence accumulation?

4. Is there an effect of urgency on evidence accumulation in beta power over

sensori-motor areas?

5 Hypotheses

With these questions in mind, I will now turn to what I expect to find based

on the literature to date. There is already first evidence that BPL is not

merely related to action preparation. Initially, this was discussed in a study

that described the strength of such hemispheric asymmetry to be related to

the integration of evidence over time (Donner et al., 2009). Others reported

that BPL was modulated by stimulus properties, i.e. congruency (Fischer et

al., 2018). More so, the beta rebound after response was found to bias the

upcoming choice (Pape & Siegel, 2016). Thus, BPL parameters have been

linked to different decision related variables. Further, it was shown that BPL
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peak latency is tightly coupled to RT (Fischer et al., 2018) and peak amplitude

does not vary with evidence strength (Twomey et al., 2016) rendering it a

candidate for encoding a decision threshold. Contradictory evidence, however,

was published regarding the slope parameter, with one study showing a scaling

of slope by strength of the stimulus (De Lange et al., 2013), while another could

not show this effect (Twomey et al., 2016).

Thus, there are converging, and contradicting, findings as to whether BPL

does not merely reflect action preparation but extends to decision related pro-

cessing. In the present work, I will test this hypothesis by comparing onset

latencies of BPL under different delay conditions and make comparisons to an-

other motor cortical signal. I expect that a decision-related signal would not

delay its onset in delayed response conditions. Rather, if decision information

flows continuously into motor cortex (e.g. Coles et al., 1985; Selen et al., 2012)

and BPL could serve for ”read-out” (Fischer et al., 2018), one would assume

this signal to emerge some time shortly after stimulus onset regardless of an

instructed response delay. Even though there are contradicting findings con-

cerning the scaling of evidence strength on the slope of BPL (Twomey et al.,

2016; De Lange et al., 2013), activity in monkey motor preparation cells was

consistently observed to vary with evidence strength (Gold & Shadlen, 2007;

Kiani & Shadlen, 2009; Shadlen & Newsome, 2001). Thus, for a signal en-

coding decision information, I expect its slope to scale with stimulus strength.

This would indicate a faster development of the decision variable (i.e. evidence

accumulation) when strong evidence is presented.

In the second part, I will examine the influence of urgency on decision making

and its potential reflection in BPL. If urgency reduced the response thresh-

old, corresponding to collapsing bounds (Drugowitsch et al., 2012), the peak

amplitude would be expected to be attenuated in high urgency trials and less

evidence would suffice to commit to a choice. This, in turn, would support

the notion that BPL reflects a decision variable in motor cortex supporting

the evidence accumulation account. Moreover, such a finding could increase

our understanding about the location of SAT modulations within the cortex.

Moreover, if changes in the slope in BPL associated with urgency manipula-

tions were found, this study could support the idea that the pace of evidence

accumulation increases with time pressure. This finding would give support to

the urgency account of decision making, which predicts an urgency signal to
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affect the momentary weighting of evidence (Cisek et al., 2009). This, in turn,

would lead to a steeper increase when speed pressure is high.

In sum, I aim to explore the functional role of BPL and expect it to be involved

in decision processing by transferring decision evidence as well as encoding ur-

gency. The following studies will shed light onto several open questions related

to decision computation and the meaning of BPL within this context.
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The following chapter is based on an article published in NeuroImage:

Rogge J, Jocham G & Ullsperger M (2022). Motor Cortical Signals Reflecting

Decision Making and Action Preparation. Neuroimage, 263, 1-15.

doi: 10.1016/j.neuroimage.2022.119667.

6 Motor cortical signals reflecting decision making and action

preparation

To act adaptively within our environment, our decisions need to be translated

into motor behavior. Neural oscillations in the beta frequency range (13 - 30

Hz) have been associated with an inhibited state of the motor cortex during

rest (Engel & Fries, 2010; Pfurtscheller et al., 1996). In agreement with this,

pre-movement reductions in beta power in pre- and primary motor areas have

been observed consistently. This presumably facilitates, or enables, motor

responding.

For unimanual actions this reduction is greater in the hemisphere contra- versus

ipsilateral to the effector side (Jasper & Penfield, 1949; Pfurtscheller, 1981)

and, thus, appears to reflect motor selection processes (Doyle et al., 2005;

Kaiser et al., 2001). This lateralization of beta power builds up until the

action is executed (Kaiser et al., 2001). A similar attenuation of power has been

described in the alpha frequency range (Jasper & Penfield, 1949; Pfurtscheller,

1981; Pfurtscheller & Berghold, 1989).

In addition to motor preparation, alpha and beta power in motor cortical areas

also appear to reflect the emergence of a categorical choice. During perceptual

decision-making, lateralization of alpha and beta power indicates the upcoming

decision several seconds before the overt movement, when choices were mapped

to left- or right-hand button presses (Donner et al., 2009). Moreover, beta

power lateralization (BPL) was associated with decision-related variables such

as stimulus strength (O’Connell et al., 2012), choice alternation (Pape & Siegel,

2016), and accuracy (Fischer et al., 2018). Similarly to BPL, alpha power

lateralization (APL) has, in addition to action preparation, been related to

the formation (Donner et al., 2009) and urgency (Murphy et al., 2016) of a

decision.

On top of these changes in oscillatory activity, a slow event-related potential of
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very low frequency, the lateralized readiness potential (LRP) has been shown

to immediately precede unilateral movements. It is generally conceived as a

slow action preparation mechanism (Gratton et al., 1988; Haggard & Eimer,

1999; Kutas & Donchin, 1974), but others also demonstrated an influence of

evidence strength on the LRP (Kelly & O’Connell, 2013).

The question arises whether the functional roles of these lateralization signals

during decision and response processing can be distinguished. Here, we aim at

investigating to what extent these signals are related to decision making and

motor preparation, respectively. On the one end of the dimension between

decision- and motor-related would be a signal emerging as soon as sensory ev-

idence is presented (with some lag for mere sensory processes), whereas on the

other end there would be a signal that emerges just prior to the response. On

the basis of previous findings, we hypothesized that APL and BPL incorporate

the accumulation of sensory evidence up to a threshold, at which a categorical

commitment to one choice alternative is made. These signals are expected

to appear earlier in the processing phase. In contrast, we hypothesized that

the LRP is less determined by the accumulation of evidence and instead more

closely related to preparing the motor command, thus appearing locked to the

response.

In two studies, we imposed a delay between presentation of the stimulus and

an imperative cue that prompted participants to respond. This allowed us to

separate the decision from motor processing temporally. Furthermore, a signal

reflecting the accumulation of sensory evidence would be expected to show a

ramping that is steeper when the quality of sensory evidence is high (Donner et

al., 2009; Gold & Shadlen, 2007; Kiani & Shadlen, 2009; O’Connell et al., 2012;

Ratcliff, 1978; Selen et al., 2012; Shadlen & Newsome, 2001; Werkle-Bergner

et al., 2014). Thus, we expected APL and BPL, but not the LRP, to display a

ramping that scales with evidence strength. We therefore examined at which

time during the decision process the two types of signals (APL/BPL vs. LRP)

become evident, to what extent they persist during the delay period, and how

their onset and slope are modulated by the strength of sensory evidence.

In brief, we find that, when a delay is imposed between stimulus display and

an imperative cue, both APL and BPL emerge soon after stimulus onset.

In contrast, the LRP only emerges later, after participants are prompted to

respond.
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6.1 Material and Methods

6.1.1 Ethical approval

The studies conformed to the standards set by the Declaration of Helsinki

and was approved by the Ethics Committee of the University of Magdeburg

(Registration Number: 40/18). We obtained written informed consent from

all participants.

6.1.2 Participants

Experiment 1. We recorded EEG in 34 human volunteers. The data of four

were excluded due to technical problems during the EEG recordings. The re-

maining 30 participants (12 females) were between 20 and 30 (mean ± SEM,

24.4 ± 0.5) years of age. Twenty-seven participants were right-handed (Ed-

inburgh Handedness Score: 81.81 ± 4.6; left-handed participants scored on

average -52.62 ± 6.0 on the handedness measurement).

Experiment 2. We recorded EEG in 32 healthy human volunteers, two of

them were excluded due to technical problems during the EEG recordings. The

remaining 30 participants (14 females) were between 20 and 35 (mean ± SEM:

26.93 ± 0.76) years of age. One volunteer reported a diagnosis of Asperger’s

Syndrome and depression and another one indicated anxiety and depression

disorder, 16 and 3 years before the study was conducted, respectively. All

of the participants were right-handed (Edinburgh Handedness Score: 79.68 ±
4.11).

Both Experiments. The following criteria were met in both experiments.

All participants had completed high school and attended or finished univer-

sity education. They were native speakers or fluent in German or English.

Instructions were given to them in the dominant language. The majority

of participants had no neurological or psychiatric illness and was not taking

psychoactive drugs (exceptions above). All of them had normal or corrected-

to-normal vision. All of them were näıve to the respective task, reported to

feel concentrated/comfortably awake and had slept sufficiently (five to nine

hours) the night before. The participants received monetary or credit point

compensation for study participation.
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ITI = 250 – 750 ms

Delay= 300 – 1300 ms

R deadline = 400 – 1400 ms

Feedback = 750 ms

Total:
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☺
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Figure 2-1. Random Dot Motion Task (A) and Delayed Response Task (B). A:
Participants performed two versions of the random dot motion task. In ’Immediate’,
they were free to respond whenever they wanted (within a window of 1700 ms). In
’Delay’, participants were only allowed to respond after an imperative cue which
appeared 1400 ms after stimulus onset. Motion coherence levels varied randomly
between 1.6 and 51.2% of dots moving either left or right. B: In the delayed response
task, at trial start, participants were required to depress two keys with their left
and right index fingers, respectively. A target (grey arrow) indicated the response
(release key and press a button at the indicated side) that had to be excecuted after
an imperative cue (arrow turning green). The response window varied randomly
from trial to trial, depending on the length of the delay. Feedback was given after
the response.

6.1.3 Random Dot Motion Task

The random-dot motion discrimination (RDM) paradigm was adjusted to in-

volve a delay manipulation. Participants were asked to detect the direction of

coherent motion within a noisy display of moving dots as fast and as accurately

as possible (Figure 2-1A). Responses were given with the left or right thumb

on a customized response box.

Stimuli. We presented the task to the participants with the Psychophysics

Toolbox 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in MATLAB

2012a (MATLAB, 2012). Participants’ seating position was fixed at a distance

of 100 cm away from a 22-inch LCD monitor with a refresh rate of 60 Hz. The

parameters of the stimulus display were adjusted based on (Pilly & Seitz, 2009).

The dots were presented in light gray (RGB: 224, 224, 224), in front of a black

(RGB: 0,0,0) background. They were bounded within a circular aperture with

a diameter of nine degrees of visual angle, which was placed at the center of
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the screen. The dot diameter was three pixels and 254 dots were on screen per

frame. We used a Brownian Motion dot kinematogram. Signal and noise dots

were randomly selected at every frame. All dots moved with the same speed

(6.47 visual degrees per second; 4.65 pixels per frame), but motion direction

was random for noise dots. Only a proportion of the dots (signal dots) moved

coherently in one of the two pre-defined directions: -90 deg (leftward) and +90

deg (rightward). The proportion of signal dots varied pseudo-randomly from

trial to trial between six different coherence conditions (0.016, 0.032, 0.064,

0.128, 0.256, or 0.512), subject to the constraint that the coherence level was

not allowed to repeat between consecutive trials, if the motion was into the

same direction. A fixation dot (diameter = six pixels) was placed at the central

point of the screen and aperture. It was present throughout the trial to keep

the gaze fixed at the center and avoid eye movements elicited by the moving

stimuli.

Task Design and Experimental Procedure. The experiment consisted of

two sessions on separate days with a break of one day in between. In one session

(Immediate), participants were asked to respond fast and accurately while the

stimulus was presented. In the other session (Delay) participants were required

to withhold their response until a response cue appeared (fixation cross at the

center of the screen) and then had to respond as fast as possible.The order of

the sessions was counterbalanced and pseudo-randomized between participants

(Immediate first, N = 16). The immediate task took 41.55 ± 0.88 minutes

and the delay task took 58.13 ± 0.56 minutes on average. Thirteen volunteers

participated before noon, and seventeen after noon.

6.1.4 Delayed Response Task

Task. In the delayed response task (DRT) participants were asked to make

responses by the release of a key and a subsequent press of a laterally placed

distant key with the index finger (Figure 2-1B). Each trial went off as fol-

lows, participants initiated the trial by pressing both central buttons of the

response set-up. A target arrow appeared in gray at the center of the screen

with some jitter (ITI: 250 - 750 ms) and provided information about which

finger to use. The target was either pointing towards left, right, or both sides.

In the case of a double-sided arrow, participants were allowed to choose the

response side themselves. After a variable delay time (300 - 1300 ms) the



FROM CHOICE TO ACTION 27

arrow turned green, the imperetaive cue, upon which the response had to be

executed (Figure 2-1B). Participants were asked to respond as fast as possi-

ble on the side indicated by the target. Responses had to be made within a

limited time window, the duration of which was dependent on the delay time.

The total duration (target arrow + response time window) always added up

to 1700 ms. The actual response deadline was only implicitly given because

the arrow stimulus could remain on screen for another 200 ms. After the re-

sponse or after the deadline they received feedback after a 200 ms interval.

Participants learned about their performance by a green smiley, red frowney,

or verbal information (’too fast’, ’too slow’, ’wrong button’) for correct, wrong

or false alarms, or misses, respectively. A fixation cross appeared at the center

of the screen and participants could self-initiate the next trial by pressing and

holding both central keys. We presented the task to the participants with the

same equipment used for Experiment 1.

Task Design and Experimental Procedure. The delay time, and thus also

the available response time, were pseudo-randomized with an equal number

of trials from 10 delay bins, each spanning 100 ms intervals. Delay times

from one bin did not directly repeat one another and an equal number of left,

right and double-sided stimuli was presented for each delay bin. In total, 540

trials were presented to each participant, 90 of which were NO-GO trials (no

response cue appeared). These trials will not be considered in the following

analyses. If participants had more than 10% of unusable trials (misses or

false alarms), they had to repeat these at the end of the experiment until we

recorded at least 486 trials. The task was divided into two parts, separated by

a self-paced break. Additionally, after every block of 22 trials, feedback was

provided that informed participants about their previous performance score

(percentage correct within the previous block). The experiment started with

a training block of 30 trials to familiarize participants with the stimuli and

response movement. They were required to respond correctly in at least 80%

of the trials to start the actual experiment. The task lasted on average 44.36 ±
0.61 minutes and was performed in the morning (N = 21) or in the afternoon

(N = 9).
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6.1.5 EEG Data Acquisition and Preprocessing

We used a customized 61-electrode EEG layout produced by EasyCap (Easy-

Cap GmbH, Herrsching-Breitbrunn, Germany), with sensors (Ag/AgCl) placed

in rings equidistantly circling Cz to record electrical brain potentials. Addi-

tionally, there were two ocular electrodes placed centrally below each eye and

two electrodes measuring electrocardiography. The online reference was at po-

sition CPz, the ground was placed between AF4 and Fz. We applied standard

electrode gel to reduce impedance rates to below 10 kΩ. We recorded at a

sampling rate of 500 Hz using two BrainAmp Amplifiers and the BrainVision

Recorder 1.20 (Brain Products GmbH, Gilching, Germany).

EEG data were preprocessed offline using customized MATLAB (MATLAB,

2018) scripts and the EEGLAB toolbox (Delorme & Makeig, 2004). We first

applied a high-pass (0.1 Hz) and subsequently a low-pass filter (40 Hz). Af-

terwards, we epoched data from -2000 ms to 4000 ms (-2000 ms to 5000 ms

in Exp. 2) relative to stimulus onset. A customized adaptive artifact removal

procedure was used to identify outlier epochs. A maximum of five percent and

minimum of ten trials were removed by the algorithm if they exceeded a num-

ber of standard deviations (EEGLAB function pop jointprop()).The number of

standard deviations (initial SD = 5) was iteratively adjusted (stepsize of 0.1)

until the minimum and maximum criteria were met. We used these criteria

to ensure that the algorithm (Fischer et al., 2018) finds a reasonable (not too

conservative, not too liberal) SD value for the artefact rejection. Through the

adaptive artifact rejection algorithm, we identified on average 12.90 ± 0.42

(Exp. 2) artefactual trials before ICA.

Next, we re-referenced the data to common average. For adaptive mixture

independent component analysis (AMICA 1.5, Palmer et al., 2012), we pre-

pared the data with a high-pass filter at 1 Hz and performed dimensionality

reduction to 40 components by principal component analysis. In Exp. 2, we

limited iterations to 500 in order to avoid overfitting. Manual selection yielded

between one and four (between one and seven in Exp. 2) artefactual compo-

nents (eye blinks, horizontal eye movements and heart beat components) for

each dataset. The resulting ICA-weights were applied to the original data (0.1

- 40 Hz).

After component rejection, and subtraction of average baseline activity (350 to
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100 ms prior stimulus onset) from the time series per epoch, we ran a second

adaptive artifact rejection routine to clean the signal from remaining noise

epochs separately for left- and right-hand responses. There was no minimum

amount of trials to reject, but a maximum of five percent of trials within each

category. We started with a cut-off of 4.5 standard deviations. On average

we rejected 39.83 ± 0.56 epochs at an SD of 6.02 ± 0.06 (Exp. 2: 21.27 ±
0.63 trials at 5.80 ± 0.12 SD). Finally, the reference channel was added to the

data.

6.1.6 Data Analyses

All data were analyzed using customized MATLAB scripts. We considered

significance levels of p < .05 for all analyses unless stated otherwise.

Psychophysical Analysis. In Experiment 1, reaction times (RT) and accu-

racy were analyzed separately for the two conditions (Immediate and Delay).

To account for the general skewness of reaction times we log-transformed the

raw RT for all analyses. For both, RT and accuracies, the main interest was in

the difference between coherence levels. For an analysis of the psychophysical

relationship between coherence level and accuracy, we used signed coherence

values: coherence levels for leftward dot motion trials were multiplied by -1.

Thereby, we obtained an index of evidence for rightward motion, with nega-

tive values indicating counter-evidence. Accuracy was then operationalized by

the proportion of right-hand responses (pR) per signed coherence level. This

means for coherence levels < 0 (leftward motion), lower values of pR corre-

spond to higher accuracies (and vice versa for coherence levels > 0 [rightward

motion]).

In order to compare differences in accuracy as a function of sensory evidence

strength between Immediate and Delay, we fitted a logistic sigmoid to partici-

pants’ choice data. For each trial, the probability pR to select the right option

is given by:

pR =
1

1 + e
COH−b

τ

, (1)

Where COH is the signed coherence (see above), the slope parameter τ de-

fines participants’ sensitivity to the sensory evidence (motion strength) and

the bias term b accounts for unspecific biases towards the left or right hand,

independent of sensory evidence.
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In Experiment 2, we defined response time (RT) as the time from stimulus onset

to release of the central key, and movement time (MT) as the time elapsed from

releasing the central key to pressing the lateral target key. Both, RT and MT

were log-transformed in order to account for their skewed distributions. Data

were split into four evenly spaced bins along the range of delay times. On

average the bins contained 66.70 ± 1.00 short, 67.87 ± 0.90 medium-short,

64.57 ± 1.10 medium-long and 37.37 ± 2.49 long trials. Average delay times

were 436 ± 1.31 ms, 685 ± 1.23 ms, 931 ± 1.58 ms, and 1150 ± 4.35 ms,

respectively. In the following sections, we will refer to the them with bin 1-4.

We used one-sided t-tests for our directional reaction time hypotheses.

Multiple Regression on RT and Choice. For data of Experiment 1, we ran

linear regression models (Equation 2) separately for each session to determine

the factors influencing RT. We restricted the analyses to correct trials and set

up the following linear model:

Y = β0 + β1 ∗ COH + β2 ∗REP + β3 ∗RTprev + β4 ∗ CORprev + ε (2)

Where the dependent variable Y is the (log-transformed) RT, β0 is a bias term,

COH is the (log-transformed) coherence, REP indicates whether the response

on the current trial is a repetition with respect to the previous trial, RTprev=

(log-transformed) RT in the previous trial, and CORprev indicates whether the

choice on the previous trial was correct.

To determine which factors guided selection of the left vs. right choice option,

we used the following logistic regression model:

Y = β0 + β1 ∗ COH + β2 ∗ CRrep + β3 ∗RT + β4 ∗ COR + ε (3)

Where the dependent binary variable Y is the choice of the left or right option,

β0 is a bias term, COH is the signed log-transformed coherence, the binary

regressor CRrep indicates whether the participant chose the right option on

the previous trial (positive weights for this regressor indicate a response rep-

etition bias), RT is the (log-tranformed) RT on the current trial, and COR

indicates whether the choice on the current trial is correct or not. We excluded
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the first trial of each block and those with an invalid preceding trial (misses

and premature responses). The resulting regression weights were tested for

significance using one-sample t-tests against 0. P-values were corrected by

family-wise error rate to reduce the risk of type-I error.

LRP Analyses. For LRP analyses, we epoched data locked to onset of stimu-

lus, response and imperative cue (the latter for the delay session only). Epochs

ranged from -200 ms prior to until 700 ms after the stimulus (Exp. 2: -200 to

700 ms), from -500 ms prior to 200 ms (Exp. 2: -700 to 150 ms) after the cue

and from -200 ms prior to 200 ms (Exp. 2: -150 to 200 ms) after the response,

respectively. The LRP was computed from the average of electrodes over right

hand motor areas: C3, CP3 (rEL), and left hand motor electrodes: C4, CP4

(lEL). The hemispheric difference was calculated by subtracting the averaged

ipsilateral from the contralateral activation:

LRP =
lEL(rPress)− rEL(rPress) + rEL(lP ress)− lEL(lP ress)

2
, (4)

with rPress referring to trial with right hand responses and lP ress referring

to trials with left hand responses.

LRP timeseries were first computed including averages of all correct trials

and then averaged over participants. For the analysis of differences related to

coherence (Exp.1), we pooled coherence levels into three conditions, low (0.016

and 0.032), medium (0.064 and 0.128) and high (0.256 and 0.512). For Exp.

2, we computed LRP timeseries also for each delay bin (see Psychophysical

Analysis). The pooling was done to increase signal-to-noise ratios.

In order to validate the presence of LRP, we performed significance testing

in the stimulus-locked time window -100 to +600 ms and the response-locked

time window -500 to +100 ms. We averaged the amplitudes of time bins (100

ms) within each subject and tested against zero with one-sample t-tests. The

resulting p-values were corrected using the false discovery rate (fdr) proce-

dure with adapted q-values (depending on the number conditions and locks

[stimulus-locked and response-locked]):

qfdr =
0.05

Ncond ∗ 2
. (5)
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We additionally performed Bayesian statistics (bayesFactor Toolbox for MAT-

LAB) for each of the tests and report the resulting bf10 values to inform about

the likelihood of our findings. Values between 0.33 and 3 are considered weak

or no evidence. We report moderate (>3), strong (>10), very strong (>30)

and extreme (> 100) evidence for the effect. We also report moderate (<1/3)

and strong (<1/10) evidence for the null hypothesis.

Time-Frequency Analyses. In Experiment 1, we epoched the timeseries

from -500 ms prior to 2500 ms after stimulus onset, -2000 ms prior to 500 ms

after the response time as well as from -2250 prior to 750 ms after cue onset (for

Delay). In Experiment 2, epochs were -200 to 700 ms (stimulus-locked), -150 to

200 ms (response-locked), and -700 to 150 ms (cue-locked). The following pro-

cedure was applied in both experiments. Only correct trials were included. The

time-domain EEG data of all electrodes were transformed by Morlet wavelet

convolution to receive time-frequency data. Individual trials were decomposed

into a power spectrum with 27 linearly spaced frequencies between 5 and 30

Hz (1 Hz increase per step) with wavelets of six cycles. The resulting time-

frequency power was log-transformed but remained baseline-free. The differ-

ence timelines (APL/BPL) did not require a baseline correction, as baseline

difference was expected (and confirmed by our data) to fluctuate around zero.

For specific analyses of APL and BPL over motor cortex, we averaged mo-

tor electrode pairs per hemisphere (C3 + CP3 [lEL]; C4 + CP4 [rEL]) and

computed the trial-wise lateralization. Frequency-band-specific power lateral-

ization was calculated by averaging over frequencies: 13 − 30 Hz for BPL and

8 − 12 Hz for APL, then taking trial averages and finally averaging over par-

ticipants. For single-trial regression analyses (see below), we preserved APL

and BPL per trial and participant.

Onset latencies. We quantified onset latencies of LRP, BPL and APL with

a jackknife approach (Miller et al., 1998) in order to find a valid timepoint in

signals with low signal-to-noise ratios. We constructed sub-samples by a leave-

one-out approach (for more details see Miller et al., 1998). For BPL and APL,

we identified the peak amplitude of each sub-sample after stimulus onset and

the time-point at which 50% of this amplitude was exceeded. We used an 80%

cut-off for coherence condition analyses because signal-to-noise ratios were low

and we wanted to avoid noise-related local minima before the actual onset of

lateralization. For LRP, we defined the peak amplitude before the response
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and identified the timepoint at which 90% of this amplitude was reached, as

recommended by Miller et al. (1998). The resulting onset timepoints were

then compared between sessions (Immediate vs. Delay) and coherence lev-

els. Importantly, significance testing after jackknifing requires conservative

correction of F- and t-statistics. For coherence (Experiment 1 ) and delay bin

(Experiment 2 ) comparisons, we followed the guidelines introduced by (Ulrich

& Miller, 2001) for factorial designs, dividing the F-statistic by (n − 1)2 and

correspondingly adjusting the p-values. This procedure, however, does not

yield any interpretable variance measures. Thus, we will neither report nor

display variance values.

Single-trial regression. To investigate the contribution of other factors,

above and beyond motor responses, to APL/BPL, we used robust linear regres-

sion (MATLAB function: ’robustfit.m’) and set up two general linear models

(GLM).

To identify the spatial distribution of lateralization, we ran regressions, sepa-

rately on the time courses of beta and alpha power of all available electrodes.

The GLM for Experiment 1 included the predictor response side (HAND; left

= -1, right = +1), while accounting for coherence (COH), log-transformed RT

(RT ), and repetition of the response side (REP ):

Y = β0 + β1 ∗HAND + β2 ∗ COH + β3 ∗RT + β4 ∗REP + ε, (6)

where Y is the beta or alpha power, respectively, at each electrode and time-

point.

The GLM for Experiment 2 included delay duration (DEL), log-transformed

RT (RT ), log-transformed MT (MT ) and response hand (HAND [left = -1;

right = +1]):

Y = β0 + β1 ∗DEL+ β2 ∗RT + β3 ∗MT + β4 ∗HAND + ε, (7)

where Y is alpha and beta power of all electrodes and timepoints. The models

(Equations 6 & 7) allowed us to quantify timepoints of significant lateral-

ization by using the regressor HAND and its effect on the single channels,

orthogonal to other task-related variables. Importantly, left hemisphere (con-

tralateral) lateralization was expected to be stronger (more negative) in right-
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handed responses (+1) than left-handed responses (-1), thus leading to nega-

tive regression-weights, and vice versa for right hemisphere electrodes. Next,

we investigated at which timepoints the lateralization of beta and alpha power

over motor cortex was predicted by regressors of interest. The GLM for Ex-

periment 1 included coherence level (COH), log-transformed RT (RT ) and

response repetition (REP ):

Y = β0 + β1 ∗ COH + β2 ∗RT + β3 ∗REP + ε, (8)

where Y is beta or alpha power lateralization at each timepoint. For Experi-

ment 2, we used the same model as above (Equation 7), where Y the BPL and

APL at each timepoint. All GLMs were prepared as described above (Time-

Frequency Analyses). The regression time windows in Experiment 1 were -400

to 1500 ms (Exp. 2: -50 to 1500 ms), -1500 to 900 ms (Exp. 2: -500 to

500 ms) and -1200 to 750 ms (Exp. 2: -1500 to 50 ms), for stimulus-locked,

cue-locked and response-locked, respectively. We used a robust regression fit

to reduce outlier impact. The models were fit at every time point (step size =

2 ms) smoothed over 4 time points before and after. The resulting time series

of regression weights were down-sampled by a factor of 5. This resulted in a

100 Hz time series of regression weights per participant for each electrode, re-

gressor, frequency band and condition (Exp. 1: Immediate and Delay). These

timeseries were averaged over participants and tested for significance at each

time point with a one-sample t-test against 0. Significance levels were adjusted

by false discovery rate to control for multiple comparisons.

Additionally, we performed cluster-based permutation analyses to ensure that

we only interpret relevant time windows. Firstly, all single timepoints (without

significant neighbor) were disregarded. Secondly, we ran 1000 permutations for

each timeseries where we randomly shuffled the signs of the values to create an

empirical H0 distribution and critical t-values. Clusters with a t-mass larger

than that of the null-distribution were considered significant.

6.2 Results

6.2.1 Coherence and delay affect accuracy and reaction time

In Experiment 1, overall, reactions were faster in Delay (mean ± SEM, 254.5

ms ± 10.0 ms) than in Immediate trials (812.5 ms ± 40.7 ms; t(29) = 13.1363,



FROM CHOICE TO ACTION 35

av
er

ag
e 
	

β
-w

ei
g
h
ts
	

logRT (immediate)D logRT (delay)E

R
EP

COH

R
T pr

ev

C
O

R pr
ev

R
EP

COH

R
T pr

ev

C
O

R pr
ev

0.2

0.1

0

- 0.1

0.3

0.2

0.1

0

1.
6

6.
4

12
.8

25
.6

51
.2

0

200

400

600

800

1000
R

e
a
ct

io
n
 T

im
e
 (

in
 m

s)

A

-5
1.

2

-2
5.

6
-6

.4 6.
4

25
.6

51
.2

signed coherence ( in % )

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
R

ig
h
t 

H
a
n
d
 R

e
sp

o
n
se

s

model
data

C

-5
1.

2

-2
5.

6
-6

.4 6.
4

25
.6

51
.2

signed coherence ( in % )

0

0.2

0.4

0.6

0.8

1
right S timleft S timB

P
ro

p
o
rt

io
n
 o

f
R

ig
h
t 

H
a
n
d
 R

e
sp

o
n
se

s

immediate
delay

slope bias

0.080.08

0.04

0

coherence ( in % )

G RHand (delay)RHand (immediate)

R
T

C
O

R

COH

C
R pr

ev

- 1

0.5

0

- 0.5

1

R
T

C
O

R

COH pr
ev

- 0.4

0.8

0.4

0

1.2

C
R

F

H

Figure 2-2. Behavior in the random dot motion task. A: Response times decreased
with stronger evidence in Immediate (blue) and to a lesser extent in Delay (red). B:
Psychometric functions plotting the probability of choosing right as a function of the
evidence in favor of the right choice. C: Choice data (from B) and fit of logistic sig-
moid. Inset shows the fitted slope and bias term. D, E: Averaged regression weights
of the linear multiple regression analysis for log-transformed RT with predictors
log-transformed coherence (COH) and bias regressors response repetition (REP ),
log RT (RTprev) and accuracy (CORprev) in the previous trial in the Immediate
(D) and the Delay (E) session. F, G: Averaged regression weights of the logistic
regression for response side (L= -1, R= 1) with predictors signed log-transformed
coherence (COH), response repetition (CRrep), log RT (RT ), and accuracy (COR)
in ’Immediate’ (F) and ’Delay’ (G). H: Time-frequency spectra at electrodes over
motor regions (see text for details), difference contra- minus ipsilateral to response
side. Upper row = Immediate, lower row = Delay. Left panels show stimulus-locked,
right panels show response-locked data, middle panel (delay condition only) shows
data locked to response cue. Error bars represent SEM.

p < .001, one-sided paired t-test). We expected evidence strength to increase

accuracy in both the immediate and delayed task, while reduced RTs were only

expected in immediate trials. First, we examined the effect of coherence on RT

in correct trials. In both task variants (Figure 2-2A), participants responded

faster at high compared to low coherence levels (Immediate: F (5,145) = 102.85
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pcorr < .001; Delay: F (5,145) = 17.712, pcorr < .001, rmANOVA). While

this was hypothesized for immediate responses, we had not expected such

an effect for Delay. Post-hoc tests revealed that, in the delay variant, the

significant differences in RT occurred mainly between low and medium to high

coherence levels (coherence levels from low [1] to high [6]: 1−4, 1−5, 2−3,

2−4, 2−5, 3−4, 3−5, pcorr < .05, paired t-test with Scheffé correction). In

contrast, in the immediate variant, RT differences were present between all

coherence levels (pcorr < .01), except level 1 and level 2 (pcorr = .04578). In

the immediate variant, RTs were determined by decision time varying with

evidence strength and non-decision time, i.e., early stimulus processing, motor

preparation and execution. In contrast, in the delay variant decision making

was nearly completed before the response cue such that RTs were mainly

influenced by stimulus processing of the response cue, movement preparation

and execution.

Next, we assessed the effects of coherence on decision accuracy (Figure 2-2B).

As expected, the proportion of right responses increased with higher sensory

evidence (coherence) in favor of the right option (Differences in accuracy be-

tween signed coherence levels: Immediate: F (11,319) = 459.08, pcorr < .001;

Delay: F (11,319) = 606.11, pcorr < .001, rmANOVA). Unexpectedly, overall

accuracy was slightly higher in Delay compared to Immediate (0.8287 ± 0.0086

vs. 0.8068 ± 0.0094, t(29) = -2.8420, p < .01, paired t-test). This effect could

be driven by the higher likelihood of premature responses in the immediate

condition. In the delay version participants were inherently forced to wait with

their responses and, thus, were less likely to respond before having finished ev-

idence accumulation. However, this comparison did not take into account the

effect of task variant (Immediate vs. Delay) on the psychophysical relationship

between coherence level and accuracy. When we fitted a sigmoid function to

the choice data, we found that neither the unspecific bias nor the slope param-

eter tau differed significantly between task variants (b: -0.0069 ± 0.0422 vs.

-0.0038 ± 0.0336, t(29) = -0.6399, p = 0.5272; τ : 0.0576 ± 0.0050 vs. 0.0495

± 0.005, t(29) = 1.5882, p = 0.1231, paired t-test, Figure 2-2C, inset) differed

significantly between task variants. Thus, the degree to which increasing sen-

sory evidence improved accuracy was not changed by implementing a delay

period in this task.
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Figure 2-3. Behavior and Lateralization spectra in the delayed response task. A:
Movement (top) and Reaction (bottom) times by delay duration: Delay durations
were pooled into short [1], medium-short [2], medium-long [3], and long [4] bins. Re-
action and movement times decreased with longer delay times (= less time available
for response). B: The spectral pattern of lateralized power (contra- minus ipsilateral
to response side) at electrodes over motor regions (see text for details), for all trials.
The left panel shows stimulus-locked data, the middle panel shows data locked to
the imperative cue, and the right panel shows response-locked data.

6.2.2 Response deadline effect on reaction and movement time

In the delayed response task (Experiment 2 ), we expected a decrease in both

reaction and movement times with increasing delay. The delay manipulation

did not only prolong waiting time, but also reduced the available time to

execute the response. As expected, mean RT (± SEM) differed between delay

bins (Figure 2-3 A [bottom], bin 1 to 4: 350.22 ± 10.25 ms, 326.52 ± 7.30

ms, 322.97 ± 6.32 ms, 314.29 ± 5.17 ms; F (3,87) = 17.466, pcorr < .001,

rmANOVA). Post-hoc t-tests revealed that this effect was mainly driven by

a difference between the first bin and all other bins (1−2; 1−3; 1−4: pcorr

< .01, paired t-test with Scheffé correction). Moreover, we observed reduced

movement times for the longest delay times (Figure 2-3A [top], bin 1 to 4:

255.74 ± 10.58 ms, 260.08 ± 10.40 ms, 258.75 ± 9.81 ms, 235.92 ± 9.04

ms; F (3,87) = 38.595, pcorr < .001, rmANOVA; paired t-test [Scheffé]: 4−1,

4−2, 4−3: pcorr < .001). Hence, particularly after a long waiting period,

movements appear speeded. This is in line with our hypothesis that the vigor

of movements (here the movement time) increases with higher urgency or time

pressure. Overall, these findings complement our results of the RDM paradigm

(Experiment 1 ). We demonstrate that delaying a response reduces RT and

increases urgency, and thus, such delay tasks decouple stimulus processing

time from action preparation and execution time.



FROM CHOICE TO ACTION 38

6.2.3 Other factors guiding performance

To investigate the orthogonal contribution of other factors (in addition to

motion coherence) in greater detail, we applied multiple linear/logistic regres-

sion to the RT and choice data (Experiment 1 ) of immediate and delay trials

(Figure 2-2 D-G). As expected from the analyses above (Figure 2-2 A, B),

coherence significantly affected RT and choice in both the Immediate (pcorr <

.001 for both RT and choice; one-sample t-test, Table 1) and the Delay (RT:

pcorr = .0083; choice: pcorr < .001) version of the task. These results confirm

the above-mentioned effect of sensory evidence strength on decision-making

performance even under conditions with a response delay. Further, the anal-

yses revealed an alternation bias, meaning that participants had a tendency

to switch response side from trial to trial (e.g. left followed right response),

independent of the stimulus direction (Immediate: pcorr < .001; Delay: pcorr =

.046) and consecutive choices made with the same hand were significantly

slower even in the delay variant (both task variants: pcorr < .001). Further-

more, the regression revealed that participants’ RTs were slowed down on trials

following a correct compared to an incorrect response on the previous trial in

both task variants (Immediate: pcorr = .0012; Delay: pcorr = .008), indepen-

dent of sensory evidence. This effect can be due to our task environment,

involving long response-stimulus intervals, no feedback and frequent errors.

These factors were shown to reduce, remove or invert the commonly observed

post-error slowing effect (for a review, see Danielmeier & Ullsperger, 2011).

Finally, there was an autocorrelation in RTs, as evident from a positive effect

of the previous trial’s RT (both task variants: pcorr < .001). This means, that

participants had the tendency to stay in one ’speed-mode’ for consecutive tri-

als even in trials with a response delay. Importantly, choice direction was not

biased by the current accuracy or reaction time (all pcorr > .05).

6.2.4 Lateralization dynamics throughout fixed and flexible delay

periods

To understand where on the spectrum from decision-related to motor activity

BPL, APL, and LRP lie, we first explored the dynamics of these signals within

the delay period and compared onset times between the immediate and delayed

tasks.

In both experiments, the difference (contra- minus ipsilateral) time-frequency
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Table 1

Average regression weights for multiple linear regression on RT and Choice

Predictor Condition RT-Model Choice-Model

COH

Immediate -0.128 ± 0.011*** 0.967 ± 0.055***

Delay -0.028 ± 0.009** 1.090 ± 0.045***

RTprev / RT

Immediate 0.210 ± 0.024*** -0.566 ± 0.264

Delay 0.310 ± 0.017*** -0.046 ± 0.077

REP / CRrep

Immediate 0.054 ± 0.008*** -0.574 ± 0.131***

Delay 0.056 ± 0.009*** -0.390 ± 0.151*

CORprev /COR

Immediate 0.018 ± 0.005** -0.092 ± 0.221

Delay 0.033 ± 0.012** -0.268 ± 0.202

Note. Mean regression weights ± SEM.

* p < .05, ** p < .01, *** p < .001; one-sample t-test
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plots (Figure 2-2G & Figure 2-3B) show that lateralization occurred over a

broad range of frequencies (alpha and beta band) following stimulus onset.

Importantly, this lateralization emerged as early in the delay task as in the

immediate task (Experiment 1 ) and was maintained throughout the trial up

to the motor response. This finding was supported in Experiment 2, where

lateralization in alpha and beta range becomes evident before the response

cue.

To be able to compare the temporal dynamics of APL and BPL to the LRP

(Figures 2-4 and 2-5 A-C), we averaged across frequencies for alpha (8 - 12

Hz) and beta band (13 - 30 Hz). Firstly, we found that BPL in Experiment

1 emerged already about 400 ms after stimulus onset, before presentation
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Figure 2-4. A-C: Temporal dynamics of BPL (A), APL (B) and LRP (C) in
the Immediate (blue) and Delay (red) condition, averaged over all correct trials.
Panels show stimulus-locked (left), cue-locked (center), and response-locked (right)
lateralization. Time courses show BPL and APL to emerge after stimulus onset
with a peak just before the response in both task variants. In contrast the LRP did
not emerge until the imperative cue, evolves steeply and peaks shortly before the
response. Horizontal bars at the bottom of each panel (C, F) mark time windows
that differ significantly (fdr-correction) from zero and display strong (bf10 > 10)
to extreme (bf10 > 100) evidence for H1. Onset latencies are displayed without
variances (non-interpretable) for Immediate and Delay for all correct trials (vertical
colored dashed lines). D-F: Same as in A-C, but separated by coherence level (low,
medium and high). Shaded areas represent SEM.
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of the response cue and was maintained throughout the delay time until a

response was initiated (Figure 2-4A). Stimulus-locked BPL onset latencies did

not differ between Immediate and Delay (405.16 ms vs. 558.10 ms; t(29) =

D

E

C F

A

B

Figure 2-5. Lateralization of beta and alpha power, and LRP during flexible delay
times. A, B: The lateralization evolved after stimulus onset across the frequencies of
beta and alpha band over all correct trials. Topographies at relevant times (lateral-
ization onset, cue presentation and response) show fdr-corrected regression weights
of lateralization (Hand regressor in GLM with beta/alpha power as a predictor).
The shaded area at the bottom marks significant [cluster-based permutation] time
windows of lateralization (darker shading == more electrodes with an effect) given
by single-trial regression on C3, C4, CP3, CP4. C: The LRP evolved later after
imperative cue presentation peaking shortly before the response. Horizontal bars at
the bottom of each panel mark time windows that differ significantly (fdr-correction)
from zero and display strong (bf10 > 10) to very strong evidence (bf10 > 30) for H1.
D, E: BPL and APL dynamics were explored for different delay durations (short [bin
1], medium-short [bin 2], medium-long [bin 3], long [bin 4]). The onset of lateraliza-
tion is locked to stimulus onset. Vertical dotted lines mark the stimulus-locked onset
latency produced by a jackknife averaging procedure, variances are not displayed as
they are not interpretable when using this method. Stimulus-locked onset latencies
did not differ between delay bins, whereas cue-locked onsets tended to vary with de-
lay duration (inset). F: Different delay durations did not affect the response-locked
onset of LRP (vertical dotted green lines). Horizontal bars at the bottom of each
panel mark time windows that differ significantly from zero (stim-lock: all pcorr <=
.0017, bf10 > 20.6251; resp-lock: all pcorr <= .0005, bf10 > 38.844). Shaded areas
represent SEM..
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0.8192, pcorr = 0.2097, paired t-test; Figure 2-4A).

Single-trial regression analyses (Figure 2-6A, B; upper panels) showed sig-

nificant lateralization time periods per electrode. The response-side regressor

(HAND) was expected to correlate negatively with left hemisphere beta power

and positively with right hemisphere beta power throughout stimulus process-

ing. Beta power lateralized significantly in electrodes above motor cortex C3

and C4 after stimulus onset regardless of the task variant (horizontal shades
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Figure 2-6. Regression weights from response side and coherence regressors. A, B:
Regressing response side (left < right) onto beta (top) and alpha power (bottom)
time courses revealed continuous significant lateralization over motor cortical elec-
trodes (example results shown for C3 and C4) starting after stimulus onset through-
out the delay period until just after response execution (horizontal shades reflect
significant timewindows [cluster-based permutation]) for Immediate (A) and Delay
(B). Topographies illustrate the fdr-masked regression weights of the lateralization
effect over motor cortices at several timepoints. C, D: Regression weights from re-
gressing coherence strength onto BPL (top) and APL (bottom) for stimulus (left)
and response-locked (right) time courses, with significant [cluster-based permuta-
tion] timewindows marked by the shaded bar in the bottom. Negative regression
coefficients for BPL and APL in the delay task variant around 500 - 600 ms af-
ter stimulus onset are presumably related to earlier onset times for higher sensory
evidence. Shaded areas represent SEM
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and topographies in Figure 2-6A, B; stimulus-locked onset of significance for

Immediate: +410 ms [C3], +390 ms [C4] and Delay: +470 ms [C3], +380 ms

[C4]). Moreover, lateralization remained stable throughout stimulus process-

ing and delay period until shortly after the response (response-locked offset of

significance for Immediate: +70 ms [C3], +240 ms [C4], and Delay: +90 ms

[C3], +220 ms [C4]). Thus, onset latency and the continuous dynamics ap-

peared comparable between the two task variants. This finding is particularly

interesting given that, in Delay, the signal emerged several hundred millisec-

onds before participants were allowed to respond. This renders the BPL signal

dissociable from a motor preparation signal.

The early lateralization effect extended to alpha range frequencies (Figure 2-

4B), which showed a temporal pattern comparable to BPL. Here, however, on-

set latencies differed slightly between Immediate and Delay (471.98 vs. 539.82

ms [post-stimulus]; t(29) = 1.7874, pcorr = 0.0422, paired t-test). Nevertheless,

the onset of significant APL is earlier than 550 ms after stimulus onset, long

before presentation of the response cue in Delay. Single-trial regression re-

vealed similar effects compared to the findings reported for BPL (Figure 2-4A,

B; lower panels). Lateralization occurred after stimulus onset for Immediate

(C3: +480 ms, C4: +410 ms) and Delay (C3: +420 ms, C4: +420 ms) and

was maintained until just after the response was executed (Immediate: +50

ms [C3], +250 ms [C4]; Delay: +120 ms [C3], +300 ms [C4]).

Comparable to Experiment 1, we found in Experiment 2 that APL/BPL al-

ready emerged 400-600 ms after stimulus onset, several hundred ms prior to

the imperative cue (Figure 2-5A, B). Single-trial regression analyses revealed

that, long before the imperative cue appears, beta and, to a lesser extent,

alpha power lateralized in sensori-motor areas (shaded horizontal areas and

topographies; beta: 290 ms [post-stimulus] to 30 ms [post-response] and al-

pha: -120 to 210 ms [peri-cue]). Moreover, the onset latency after stimulus

onset (left panels) of the lateralization did not change with changing delay

times in beta (Figure 2-5D; bin 1 to 4: 398.49 ms, 388.79 ms, 483.13 ms,

373.23 ms; F (3,116) = .7637, pcorr = .5167, rmANOVA) and alpha frequency

range (Figure 2-5E; bin 1 to 4: 462.45 ms, 472.79 ms, 548.44 ms, 637.43 ms;

F (3,116) = .0379, pcorr = .9901, rmANOVA). In cue- and response-locked tra-

jectories of BPL, we observed that onset times varied with respect to delay

duration (Figure 2-5D, inset): for short delays (bin 1) lateralization started
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only briefly before imperative cue onset (bin 1: -43.12 ms) and longer delays

were associated with earlier lateralization relative to the cue (bin 2: -98.73

ms; bin 3: -285.78 ms; bin 4: -621.34 ms; F (3,116) = 2.6922, pcorr = .0494,

rmANOVA). In sum, these temporal dynamics suggest that APL and BPL are

not bound to response execution, but rather to the time when sensory evidence

drives a decision, corroborating our results from Experiment 1.

In contrast to BPL/APL, the LRP increased shortly and sharply after the

onset of the imperative cue and peaked just before response initiation (Imme-

diate: -400 to 2 ms, all p < .0019, all bf10 >=19.2577; Delay: -200 to 2 ms,

all p < .000817 all bf10 >= 39.6274; one-sample t-tests with fdr-correction;

Figure 2-4C). It was not present yet during the time of stimulus viewing and

decision formation, except for a small and transient lateralization briefly after

the stimulus, which reached fdr-corrected significance in the immediate con-

dition only (Immediate: 302 to 500 ms, all p <.00001, all bf10 >=2112.0349;

Delay: -98 to 600 ms, smallest uncorrected p-value = .0062, all bf10 <= 6.8044;

one-sample t-tests; Figure 2-4C, left panel) that seemed to be driven by trials

with maximal coherence (Immediate/high: 202 to 500 ms, all p <.00054, all

bf10 <=57.5512; Delay/high: 302 to 400 ms, p < .000007, bf10 = 3209.2161;

one-sample t-tests with fdr-correction; Figure 2-4F). We found no evidence for

a difference in response-locked onset latency between Immediate and Delay

(-93.81 ms vs -95.61 ms [pre-response]; t(29) = -0.2966, pcorr = 0.6155, paired

t-test). These trajectories clearly differ from BPL and APL dynamics dur-

ing stimulus processing, hence pointing at different functional roles of these

lateralization signals.

Likewise, the LRP in the simple delayed response task (Figure 2-5C, F) showed

a trajectory that is highly similar to the one observed in Experiment 1. There

was an initial transient deflection after stimulus onset (202 to 400 ms, all

p < .0027; one sample t-tests with fdr-correction, bf10 >= 14.4519), driven

by the medium-short delays (bin 2: 202 to 400 ms, all p < .0017, bf10 >=

38.9540). Primarily, however, the LRP displayed a short and steep peak just

before response execution (-200 to -2 ms, p < .0032,bf10 >= 12.004), which was

present in all delay bins within the timewindow from -100 ms to response (all

p < .0021, one sample t-tests with fdr-correction, all bf10 >= 167.25, Figure 2-

5F [horizontal bars]). Onset times of the peak did not differ between delay

bins (bin 1: -75.67 ms, bin 2: -67.74 ms, bin 3: -74.19 ms, bin 4: -67.79 ms;
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F(3,116) = 0.0817, pcorr = 0.9698, rmANOVA, Figure 2-5F [vertical dotted

lines]). Thus, in agreement with our hypothesis, we conclude the LRP is not

directly affected by stimulus properties or waiting time, but reflects a general

motor preparation process.

6.2.5 Evidence strength modulates Beta and Alpha power lateral-

ization in delay

Next, we asked whether differences in temporal patterns could also be observed

between different coherence levels (Experiment 1 ) as would be expected if the

strength of lateralization encoded evidence accumulation. APL and BPL dif-

fered slightly depending on variations in evidence strength (Figure 2-4D, E).

Temporal dynamics of BPL and APL in the decision phase (after stimulus on-

set) revealed an earlier onset for the highest coherence bin compared to lower

coherences (Table 2). The differences in stimulus-locked onset latency in the

alpha-band for Delay were significant (Fcorr(2,87) = 5.7511, pcorr = 0.0045,

Figure 2-4E, repeated-measures ANOVA). This effect was driven by the signif-

icantly shorter onset latency for high compared to medium and low evidence

strength (low vs. high: 1205.5 vs. 544.04 ms; medium vs. high: 1195.20

vs. 544.04 ms, post-hoc corrected Scheffé interval). The other comparisons

of coherence on onset times were not significant (all pcorr > 0.13, repeated-

measures ANOVA; Figure 2-4D, E). Nonetheless, the observed trend supports

our hypothesis about the influence of sensory evidence on lateralization dynam-

ics. In contrast, during the motor preparation phase (pre-response) we could

not find such differing APL/BPL dynamics between coherence levels, which

further supports the idea that motor preparation is not affected by sensory

evidence.

Single-trial regression analyses further support our hypotheses. Most impor-

tantly, we found that the coherence regressor significantly modulated APL and

BPL trajectories in the delayed variant of the task (Figure 2-6D, left panels).

The effect occurred several hundred milliseconds after stimulus onset (BPL:

+480 to +640 ms, APL: +490 to +760 ms) and can be attributed to later

lateralization onset times in lower coherence conditions. This was not found

in immediate trials (Figure 2-6C, left panels), in which lateralization strongly

varied with reaction times (Figure 2-7D).

In comparison, LRP dynamics were not consistently modulated by sensory
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Table 2

Average (± SEM) onset latencies (stimulus-locked) for beta and alpha power
lateralizations

Coherence bin

low medium high

BPL

Immediate 421.75 490.05 655.7

Delay 525.92 1237.40 1246.80

APL

Immediate 546.17 594.21 643.62

Delay** 544.04 1195.20 1205.5

Note. Mean onset times for the conditions in milliseconds after stimulus onset

without variance (non-interpretable).

** pcorr < .01, rmANOVA

evidence strength (Figure 2-4F). There was no effect of coherence on onset

latency in Immediate (pre-response: -94.80 ms [low], -85.50 ms [medium], -

99.67 ms [high]; ANOVA: Fcorr(2,87) = 0.6414, p = 0.5290) and Delay (pre-

response: -78.03 ms [low], -100.62 ms [medium], -97.24 ms [high]; ANOVA:

Fcorr(2,87) = 0.6390, p = 0.5303).

However, significance testing of pre-response time windows in Delay revealed

a significant LRP deflection only for low evidence strength (-200 to -2 ms, all

p < .00052, one sample t-tests with fdr-correction, bf10 >= 59.4456), whereas

in Immediate, the LRP was present for all coherence bins (low: -200 to -2

ms, all p < .00008, all bf10 >= 320.4341; medium: -200 to -2 ms, all p <

.00006, all bf10 >= 52.5054; high: -300 to -2 ms, all p < .00014, all bf10 >=

192.8852).

6.2.6 Response alternation biased by Beta- and Alpha-power lat-

eralization

As we observed an alternation bias in choice behavior in Experiment 1 (see

Other factors guiding performance), we explored the relationship between re-

sponse alternation and lateralization time courses. First, we qualitatively ob-

served differences in lateralization strength and direction leading up to the



FROM CHOICE TO ACTION 47

response (Figure 2-7A). Specifically, beta, and, to a lesser extent, alpha power

showed lateralization of opposite polarity (against the upcoming choice direc-

tion) in repeat trials. Eventually, just before the response or shortly after

(Immediate BPL), both trial types lateralized towards the correct hemisphere
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Figure 2-7. BPL and APL are modulated by response alternation and RT. A: In
both conditions (blue = Immediate, red = Delay), BPL (top) and APL (bottom)
amplitudes and trajectories leading up to the response differ in trials requiring a
response alternation (dark), compared to those with same side responses (light). B:
Regression weights reveal significantly (shaded horizontal bar, cluster-based permu-
tation) stronger lateralization in alternation trials up until response execution in
both conditions and frequency bands. C: A median split of reaction time reveals
later onset and later peak latencies for slow responses compared to fast responses
in both conditions and frequency bands. D: The regression weights for RT show
that differences occur during the time of stimulus viewing (post-stimulus, pre-cue)
up until the response. Shaded areas represent SEM.
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(contra - ipsi, negative difference in log-power) with similar amplitude. We for-

mally tested these observations using the regression weights of the Response

Repetition regressor in the multiple single-trial regression (Figure 2-7B). Alpha

(lower panels) and beta power lateralization (upper panels) in both Immediate

and Delay were significantly biased towards response alternation throughout

the trial, until just before response execution (Immediate: -110 ms [BPL], -30

ms[APL]; Delay: -50 [BPL], -130 [APL]), independent of RT and coherence.

It appears that the effect of beta rebound (details in the discussion) from

the previous trials impinges on the current lateralization in repetition trials

long throughout the trial and thus biases toward alternating responses, as we

described in the behavioral data.

6.2.7 BPL and APL are modulated by reaction time

Finally, we tested the relationship between BPL/APL dynamics and response

speed in Experiment 1. Qualitatively, we observed differences in onset and peak

latency for both lateralization signals (Figure 2-7 C) when comparing high and

low RT trials. We quantified these differences using the regression coefficients

of the RT regressor (Figure 2-7 D). In the immediate task variant, there was

a significant RT effect from +330 to +540 ms (BPL) and from +300 to +560

ms (APL) after stimulus onset. This difference can be explained by later onset

times in slow response trials, independent of evidence strength. Similarly, we

could show, that, in the delay variant prior to and throughout imperative cue

presentation (-370 to +120 ms [BPL] and -500 to +170 ms [APL]) variations

related to RT were present. Importantly, these effects were independent of

sensory evidence strength. Opposite effects (negative regression coefficients)

occurring later in the delayed trials (post-response) could be attributed to a

later return to baseline or beta rebound after response execution.

6.3 Discussion

We used two different perceptual decision-making paradigms which varied in

the amount of time that was allowed for making a decision and the timepoint at

which participants were allowed to express their choice. On the one hand, the

RDM task either permitted self-determined duration of evidence accumulation

(stimulus viewing) or enforced a fixed time for stimulus viewing, which allowed

for relatively long duration of evidence accumulation. On the other hand, the

delayed response task inherently required only short evidence accumulation
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(low uncertainty of the choice) but forced the volunteer to wait for a variable

time with the output of their decision (motor response). These variations in

the temporal structure of the task aimed at separating evidence accumulation

from activity related to movement preparation and execution in the motor

cortex.

We found that, as expected, sensory evidence strength of a stimulus improves

perceptual decision-making performance and this effect tends to be reflected

in the temporal evolution of BPL and APL. Importantly, effector-specific lat-

eralization develops already several hundred ms before presentation of an im-

perative cue and persists until the response is executed. In contrast, the LRP

occurred markedly later, upon the onset of the imperative cue, regardless of

condition and experiment. Moreover, we could show that BPL and APL are re-

lated to choice alternation biases across successive trials and thereby influence

choice selection.

First of all, we validated that stronger evidence due to higher motion coherence

(i.e., lower uncertainty) leads to faster and more accurate decisions, as has been

described previously, (De Lange et al., 2013; Gold & Shadlen, 2000, 2003; Kelly

& O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2016). Further, we

confirmed that our manipulation allows us to temporally separate decision and

motor processes. Enforcing a delay before response execution did not change

accuracy, but reduced reaction times, consistently. This suggests that decision

processes were completed (in conditions with medium to high evidence) upon

the presentation of an imperative cue. Motor preparation and execution, whose

implementation time was not affected by coherence, followed afterwards.

Furthermore, we found that after longer delays not only reaction times but

also movement times decreased. If we assume that movement time serves

as a proxy for vigorous behavior, we here find support for the hypothesis

that urgency increases vigor as has been postulated by Thura et al. (2014).

Perhaps, a global arousal due to an upcoming spatially unspecific urgency

signal increases motor excitability (see below) and thus leads to more vigorous

responses. The same authors (Thura & Cisek, 2016) found PMd and M1 cells

to up- or downscale activity with elapsing time. This urgency signal originated

in subcortical regions, potentially in the GPi (Thura & Cisek, 2016).

In line with our predictions for APL and BPL, we demonstrated that effector-
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specific lateralization occurs already before imperative cue presentation and

persists until the response is executed. The implementation of a forced delay

period before the motor response allowed us to assess to what extent these

signals are more closely related to decision- or motor processes. We thus argue

that alpha and beta power lateralize already during decision time. Hence, we

assume that decision-related information is conveyed to motor cortical areas

prior to response preparation and upheld until the response is prompted. Pre-

vious results (Kaiser et al., 2001) already suggested that the timing of beta

power reduction may be an index for the duration of motor response selection

(Alegre et al., 2003) and report such a power reduction even before stimulus

presentation when temporal predictability was ensured. Lateralization of beta

power in the present study appeared even with unpredictable imperative cues.

Similarly, Twomey et al. (2016) reported ongoing BPL throughout a delay.

One could argue that a fixed delay duration as in Experiment 1 could make

motor preparation before the imperative cue adaptive to the task. However,

we find similar results in the second experiment, where the delay was unex-

pectable and responses potentially unnecessary (NO-GO trials). In such a

setting, it would be adaptive to wait with motor preparation until the imper-

ative cue appears, given that the response window is long enough. However,

it was also shown that BPL did not appear if response requirements were un-

known (Twomey et al., 2016). Thus, we understand the signal as depending

on action selection.

Concerning the onset times of the signal, it is important to note that lat-

eralization of oscillatory power and LRP differ consistently. LRP occurred

robustly, regardless of condition and experiment, only near the onset of the

imperative cue, indicative of a signal responsible for motor preparation. Only

a small temporary deflection towards the correct side, time-locked to stimulus

presentation was observable in the immediate task when coherence was maxi-

mal, and in the delayed response task. Similar observations in LRP (Scheibe

et al., 2009) were interpreted as a primer for the motor system. One could

speculate that the strong decision signal resulting from unambiguous evidence

carried over and triggered a partial motor activation. However, this early mo-

tor preparation would not occur under uncertain conditions, as Scheibe et al.

(2009) already demonstrated. With upcoming motor output, we found LRP

dynamics robustly bound to the response and thus temporally separable from

BPL and APL trajectories. We conclude that additional information is en-
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coded to some degree in APL and BPL. We hereby extend existing evidence

about a hypothetical decision variable, which tracks the amount of incoming

evidence and is computed elsewhere in the brain, reflected, e.g., in the centro-

parietal positivity (O’Connell et al., 2012; Twomey et al., 2016). This signal,

in turn, feeds into the motor system during stimulus viewing some time before

responses need to be executed. We show (Figure S2-1) that CPP and BPL

emerge around the same time after stimulus onset, regardless of the response

delay. Unfortunately, we could not demonstrate a relationship on a single-

trial level as signal-to-noise ratios were insufficient for this kind of analysis.

The determination of onset latencies requires averaging over trials. This pro-

cess questions the traditional view of a strictly sequential cascade of decision

making (Sternberg, 1969). It opens the opportunity for temporal and spatial

flexibility in neural mechanisms leading to motor output.

Importantly, both, the peak of beta lateralization (Fischer et al., 2018) and the

LRP (Van Vugt et al., 2014), have been considered to index a motor thresh-

old. Many decision-making models (e.g. drift diffusion models) assume such

a boundary that would typically mark the release of a motor response. Thus,

peaks of such ”ramping-to-threshold” signals were expected to fall into a win-

dow around 20 ms (i.e. the time to for a cortical motor signal to reach the

effector) before response execution. Here we found that, on the one hand, BPL

can peak already some hundreds of milliseconds before response execution. In

the delayed tasks, however, a peak could not be clearly defined as the signal

was rather marked by a prolonged plateau phase and even a slow return to

baseline (shorty before the response). The LRP, on the other hand, clearly

peaked just before the response regardless of condition and task. In contrast,

Fischer et al. (2018) reported that peaks of BPL matched exactly the time of

response initiation. This could be more likely in speeded forced-choice reaction

time tasks with very short reaction and evidence accumulation times, such as

the Flanker Task. In these cases, decision and motor processes are overlapping

and difficult to separate. Implementation of a delay in our tasks, however, dis-

entangled these two functions and revealed the individual temporal dynamics

of APB/BPL and LRP. Thus, we hereby challenge the previous assumptions

of a single motor threshold. We speculate that even though a preparation

of a motor response is reflected by BPL, we cannot necessarily use its peak

as the threshold for initiation of an overt response. It could potentially indi-

cate a heightened excitability of the motor system, which then needs a final
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trigger signal to release the action, perhaps reflected by the LRP. However,

Van Vugt et al. (2014) and Kelly and O’Connell (2013) found the early LRP

to scale with evidence strength, which would argue against it being a merely

motor-related signal. It is worth noting, however, that the LRP was mea-

sured at non-conventional frontocentral electrodes (CF3 and CF4) in Kelly

and O’Connell (2013), which could thus reflect contributions of non-motor

dynamics. Nonetheless, Van Vugt et al. (2014) also suggest that the LRP

is driven by accumulator units, which we suspect may be reflected by BPL.

Possibly, motor actions are already prepared in parallel to evidence accumula-

tion but not measurable at population level. Indeed, it has been shown that

preparatory activity in motor cortical areas cancels out at the population level

(Kaufman et al., 2014). Only when an action is executed, activity moves from

this null space into an output-potent pattern. We speculate that the onset of

the LRP marks this transition between patterns. Along these lines, variability

in motor excitability has been shown to be task-dependent and indicative of

the motor preparation state (Klein-Flügge et al., 2013). More specifically, it

was found that cortico-spinal excitability is modulated by the evidence in favor

of a particular choice (Klein-Flügge & Bestmann, 2012). Furthermore, a neg-

ative relationship between oscillatory brain activity and cortical excitability

has been shown previously for alpha band in occipital cortex (Samaha et al.,

2017), somatosensory regions (Ploner et al., 2006) and motor cortex (Sauseng

et al., 2009) and for beta in posterior parietal cortex (Samaha et al., 2017)

and somatosensory areas (Ploner et al., 2006). Thus, it seems conceivable,

that beta power likewise inversely modulates excitability of the motor system

and thereby makes action initiation more likely.

Common computational models reflect evidence accumulation by an up- or

downward ramping (depending on the signal) to a threshold (e.g., drift-diffusion

models). In biophysical models of decision making, as in recurrent cortical net-

work models (Wang, 2002), reaching this threshold corresponds to the network

reaching a stable attractor state. The network remains in this attractor state

until an action is initiated. The dynamics of BPL/APL we observed, namely

a ramping to plateau that persisted throughout the delay until a response

was carried out, is thus reminiscent of such attractor dynamics. However,

there remains some uncertainty about the representation of evidence strength

within the motor system. Even though we found sensory evidence strength

to modulate BPL and APL ramping in delayed trials, the effect could not be
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observed in immediate trials. In contrast, other studies (De Lange et al., 2013;

O’Connell et al., 2012) report stronger differences in BPL slopes depending

on the decision difficulty (strength of evidence). Even others report that BPL

reflects evidence as well as evidence update (Gould et al., 2012) and also the

value of the choice (Hunt et al., 2013). Similarly as in our study, Twomey et

al. (2016), however, showed no effect of coherence on slope and peak amplitude

of BPL. Thus, the question remains why findings related to the functional rel-

evance of BPL are so diverse. One methodological concern is the diversity in

lateralization between participants as well as the noisiness of the data within

each trial. This in turn, reduced the power of the tests and might hide rele-

vant effects. Therefore, it seems important that future studies further explore

interindividual differences in lateralization and behavioral consequences in a

larger sample.

Furthermore, we could show a reversed beta-power lateralization after the

response (beta rebound), which biases subsequent responses towards alterna-

tion. In this study, we could extend the findings of Pape and Siegel (2016) by

showing that this bias is only resolved shortly before the upcoming response

initiation. If, indeed, alpha and beta activity over motor cortices reflects ex-

citability of the motor system, this would indicate that, following a response,

the excitability of the motor cortex contralateral to the effector is reduced.

Under certain circumstances, such inhibition of repetition could be adaptive,

e.g., to favor exploration over exploitation or to avoid muscle fatigue (Pape &

Siegel, 2016).

Moreover, we found that the frequency at which there was motor cortex lat-

eralization extends to the alpha band. Few previous studies show that alpha

power decreases (Murphy et al., 2016) and lateralizes (Donner et al., 2009),

along with beta power, prior to response execution in decision-making tasks.

In the present study, we explored APL and BPL separately. Alpha activity

differed only slightly from BPL by being more prominent in the RDM (fixed

delay) and less robust in the delayed response task (flexible delay) compared

to BPL. We speculate that the predictability of the delay time modulates

APL. Alpha power reduction has previously been described as unspecific pre-

activation, independent of force, speed and muscle group (Pfurtscheller et al.,

1998). In the framework of perceptual attention and visual processing, alpha

power reductions were associated with covert spatial attention (Barne et al.,
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2020). They have been proposed to reflect increased excitability rather than

improved accuracy (Lange et al., 2013). In motor cortex, lateralized alpha

reductions would, according to this view, release from inattentiveness of the

to-be-chosen effector and increase general excitability for the upcoming motor

output. Consistent with this idea, Bergmann et al. (2019) related motor corti-

cal alpha power to pulsed facilitation of cortical excitability. Taken together,

APL appears as a rather general decision signal, while BPL is potentially

more sensitive to external influences such as the decision context; but a strict

separation of their functional roles appears difficult.

Overall, our results indicate that current hypotheses regarding the function

of BPL may need to be reconsidered. One recent finding (Okazawa et al.,

2021) supports the idea that a relationship between evidence and neural signal

might be non-linear as representations switch over time, from decision variable

to choice. Alternatively, a decision variable might not simply encode evidence

strength or certainty (Gold & Shadlen, 2007) of the decision but instead index

a readiness to select an option and carry out a subsequent response. This pre-

paredness is probably not only affected by the level of evidence that has been

accumulated but also by the time that has passed. Such an ”urgency factor”

has previously been described to impact reaction times (Reddi & Carpenter,

2000) by reducing the decision threshold, and it may well have modulated the

lateralization trajectories in our experiments. Our participants knew, that the

time to select a choice and perform a response is more or less limited. They

may have been urged to respond prematurely, and potentially our EEG signals

were modulated by an additional urgency signal arriving at the motor cortex

(Cisek et al., 2009; Thura et al., 2012). Indeed, Kelly et al. (2020) developed a

model that used neural data (i.e., alpha and beta amplitudes) to find evidence

for the impact of time pressure on the duration of motor preparation as well

as changes in drift rates. Thus, future research might address the effect of

urgency on lateralization signals in order to understand how it is integrated

into the decision variable arriving at the motor cortex.

Taken together, we could separate functions of motor cortical lateralization

and suggest that evidence strength modulates cortical excitability. We propose

that a better understanding of this process will eventually give researchers an

opportunity to use an online index of the current decision stage. Such an index

might be valuable in understanding pathological decision making, as well as
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healthy behavior under various conditions and in different tasks.
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6.4 Supplemental Material 1

A B

C D

Figure S2-1. CPP and BPL. CPP (dark, average of electrodes Pz, CPz, CP1,
CP2) and BPL (light) averaged across all trials and participants for Immediate (A)
and Delay (B). Both signals appear after stimulus onset without a dominant lag
between them, regardless of the task variant. In Delay, however, BPL is prolonged
and returns to baseline much later than in Immediate. C,D: CPP (dashed) and
BPL (solid) averaged across coherence bins and participants for Immediate (C) and
Delay (D). Shaded areas reflect SEM.
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7 Beta power lateralization reflects urgency-related response

timing during evidence accumulation

In our dynamic environment we constantly have to make decisions, often in

uncertain contexts or under time pressure. For example, if one wants to cross

a busy street it is necessary to observe the scene including cars, bikes and

traffic signs in order to determine when and where to finally walk across. Such

perceptual decisions are choices that are primarily based on sensory input.

Gathering such information for perceptual decision-making is called evidence

accumulation. In a similar situation, if one is already late for work, decision

performance potentially becomes compromised by time pressure. This speed-

accuracy trade-off (SAT) results from the fact that decision making takes time,

and shortening the decision time compromises the quality of the decision out-

come.

In two-alternative forced choice tasks sensory information is integrated over

time until it reaches a decision threshold (Bogacz et al., 2006). This assump-

tion is based on evidence-accumulation theories. In accumulation-to-bound

models, such as the drift-diffusion model (DDM; Ratcliff, 1978), the process of

accumulating evidence throughout deliberation time is formalized. SAT adap-

tations occur when hasty decision contexts lead to changes in decision policy

such that speed is favored over accuracy (e.g. Bogacz et al., 2010; Derosiere et

al., 2022; Wickelgren, 1977). It has been shown, that it is possible for humans

to adapt their SAT within very short timescales (even within one decision)

by adjusting their accuracy criterion (Derosiere et al., 2022; Ditterich, 2006).

Theoretically, urgency in decision formation could be realized by a reduction in

decision thresholds or increased drift rates reflecting a steeper integration pro-

cess. Theories involving evidence accumulation typically assume a collapsing

threshold over time as prolonged evidence accumulation is costly (Drugowitsch

et al., 2012). Empirical observations in humans (Drugowitsch et al., 2015) and

monkeys (Gold & Shadlen, 2002) confirmed that reward rate was maximized

(sufficient evidence, without being too time consuming) by selecting the deci-

sion threshold. Others (Purcell & Kiani, 2016) found even a collapsing bound

over the course of several trials as a function of the urgency to switch envi-

ronments. However, population and single cell activity in pre- and primary

motor areas also reflected an increasing slope and baseline over time (Thura

et al., 2014). This finding strengthens the assumptions of the urgency gating
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model (UGM). The authors assume that in motor cortex the sensory evidence

of a decision is encoded on a momentary basis (Cisek et al., 2009; Thura et

al., 2014). Instead of building-up or integrating observed evidence over time,

the decision signal unfolds based on the strength of current evidence and an

independent urgency signal (Cisek et al., 2009; Thura et al., 2014). As a con-

sequence, SAT is realized through adaptations of the urgency signal (Thura et

al., 2012) and a decay in the accuracy criterion over time (Cisek et al., 2009). A

model that incorporates assumptions of both, the evidence accumulation and

the urgency-signal account, is a non-stationary DDM where a time-variant

gain mechanism influences drift rate instead of a decision threshold during ev-

idence accumulation (Ditterich, 2006). This model was found to correspond to

activity in lateral interparietal neurons of monkeys (Ditterich, 2006). Interest-

ingly, Winkel et al. (2014) empirically compared the predictions of the UGM

to assumptions made by the DDM and suggested that evidence accumulation

was not replaced by urgency in decision making. Alternatively, it has been

proposed that neural circuits involved in temporal integration of evidence and

“the cost of time” operate separately (Farashahi et al., 2018). Thus, it remains

debated how urgency and evidence accumulation affect decision processing and

where these factors are reflected in neural signals.

There is a growing body of evidence suggesting that decision-related variables

are represented in parietal regions and then forwarded to and encoded in motor

cortex. In support of this idea are EEG signals over parietal (i.e. CPP) and

motor areas (beta power over contralateral hemisphere) which corresponded

to features of the hypothetical decision variable (O’Connell et al., 2012). In

monkeys, lateral interparietal neurons associated with eye movement prepa-

ration revealed consistently parameters of a decision variable with firing rates

predicting upcoming choice and scaling with the strength of the presented ev-

idence (Bennur & Gold, 2011; Gold & Shadlen, 2001; Roitman & Shadlen,

2002; Shadlen & Newsome, 2001). Also neurons in pre- and primary motor

cortex displayed activity that scales with evidence strength and time (Thura

et al., 2014). The human motor system, probed via reflexes, was shown to

be continuously modulated by time and evidence strength (Selen et al., 2012).

This supports the idea that evidence signals are gradually pushed forward to-

wards motor regions, increasing its excitability (Selen et al., 2012). Moreover,

hasty decision policies differentially enhanced activity in the outcome relevant

hemisphere even for distant effectors (Derosiere et al., 2022). The origin of
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temporal adaptation signals has been suggested in basal ganglia structures,

specifically in the GPi (Thura & Cisek, 2017, 2016) and the subthalamic nu-

cleus (Frank, 2006). Specifically, beta oscillations in subthalamic nucleus have

been associated with muscle activity (Reck et al., 2009). It seems plausible

that they project information to motor cortex, where it could potentially be

read-out as beta power reduction before movements. Slower cortical signals

like the contingent negative variation (CNV) could also play a role as they

were shown to relate to beta and alpha power reductions (Funderud et al.,

2012). These slow drifts leading up to an event have been associated with

movement (Scheibe et al., 2009) and event anticipation (Funderud et al., 2012;

van Rijn et al., 2011). Even more relevant in this context appears the beta

power lateralization (BPL), which could be a good candidate for reading out

current decision processing in the motor cortex. It represents the difference

in beta-power reduction between ipsi- and contralateral motor regions, corre-

sponding to the motion side, before unimanual movements. This difference

was shown to encode the integral of the evidence represented in visual areas

(Donner et al., 2009) and manifested as an early build-up compared to a more

motor-related signal (the lateralized readiness potential, Rogge et al., 2022).

Moreover, BPL onset was shown to occur locked to stimulus onset, indepen-

dent of a response delay (Rogge et al., 2022), which indicates an association

with decision processing. Important to note, however, is that the emergence of

BPL depended on stimulus-effector coupling and remained present after stim-

ulus offset, suggesting more outcome related activity compared to the parietal

signal (Twomey et al., 2016). In fast decision making tasks, the peak amplitude

of the BPL has been proposed to characterize the decision threshold (Fischer

et al., 2018). Alternatively, the slope of the BPL could represent the drift rate

of the decision variable in the DDM, which was previously described for CPP

and contralateral beta (Kelly et al., 2020; O’Connell et al., 2012).

In the present study, we focus on sequential evidence presentation and ur-

gency manipulations in perceptual decision-making and their effects on BPL

dynamics. The understanding of such mechanisms is important for the com-

prehension of functional decision making. In particular the role of the motor

cortex in decision processing remains poorly understood even though it ap-

pears to be a central region where latent cognitive processes are transferred

into observable motor output activity. We hypothesize that BPL tracks ev-

idence accumulation and encodes an urgency signal. Specifically, we expect
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that urgency reduces the peak amplitude of the BPL corresponding to a re-

duced decision threshold (e.g. Fischer et al., 2018) or evokes speeded evidence

accumulation, which would indicate an increase in ramping over time as sug-

gested by Cisek et al. (2009) and Ditterich (2006). Both alternatives would

strengthen the perspective that the BPL is a simple non-invasive measure of

choice development.

In order to induce urgency, we rewarded fast reactions in two ways: we pro-

vided time savings and/or a monetary bonus. It has previously been shown

that time on the experiment was rewarding enough to speed up the reactions

from participants (Cisek et al., 2009) in a sequential sampling paradigm. This

paradigm also allowed us to explore the effect of accumulated as well as mo-

mentary evidence on behavior and different neural correlates.

In brief, we found that evidence accumulation and the update of evidence were

reflected in BPL dynamics. However, this effect was not directly influenced by

speed manipulations. Yet, we found that speed rewards modulated reaction

times (RT) via a speed-accuracy trade-off. Additionally, response timing was

associated with BPL strength after stimulus presentation. The results of this

study will contribute to our understanding of how decision making is tracked

in the motor cortex and provide evidence for the relevance of BPL during

decision processing.

7.1 Material and Methods

7.1.1 Participants

We recorded EEG in 35 volunteering healthy humans. The data of one partici-

pant was excluded because of previous experience with the task. The remaining

34 subjects (21 female) were between 18 and 37 (mean ± SEM = 25.79 ± 0.76)

years of age. All participants had finished school with Abitur or equivalent (12

to 14 years), of those nine received university degrees, and nine had completed

an apprenticeship (practical training). All participants were native speakers or

fluent in German or English. Instructions were given to them in the dominant

language (English: N = 1). All, but three participants reported no neurologi-

cal or psychiatric illness and were not taking psychoactive drugs. One person

was diagnosed with adjustment disorder two years before study participation,

and two were migraine patients under medication without incidence in the

week before the experiments. All subjects had normal or corrected-to-normal
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Figure 3-1. Token Task and Trial Sequences. (A) Example trial with correct
right-hand press. After a random inter-trial interval (ITI = 250 – 750 ms), one after
another, with an inter-stimulus interval (ISI) of 200 ms, each token moves from a
central pool to a lateral target (white circles). The participant can respond at any
time during the trial and indicate their choice. After the response, all remaining
tokens move into their respective goal at slow (170 ms) or fast (20 ms) pace resulting
in long vs. short post-decision intervals (PDI). Feedback is presented for 400 ms
informing the participant about the correctness of their choice. (B) Specific trial
types (informative and misleading) were pre-defined by the development of success
probability over the course of the trial. Individual trial sequences are displayed in
blue, one specific example is marked with a black dotted line for each type. The
uncertainty area (green) covers a range (0.3-0.7) around chance level (0.5). The red
dotted line displays a cut-off for misleading trials, where three tokens or more have
to be below 0.2 success probability.

vision. Most participants were right-handed (N = 29, Edinburgh Handedness

Score: mean ± SEM = 82.04 ± 3.27), left-handed participants scored on av-

erage –81.38 (SEM = 10.15), on the handedness measurement. All subjects

were näıve to the task. They received monetary or credit point compensation

for study participation. The study was approved by the Ethics Committee of

the University of Magdeburg.

7.1.2 Task

We implemented a customized version of the Token Task (Cisek et al., 2009;

Figure 3-1). Initially, a central pool of fifteen tokens (dots) was presented to

the participants. One after another the tokens moved into one of two lateral

targets. Participants were asked to decide as fast and as accurately as possible

which of two targets most tokens would end up in. Responses were given with

the left or right thumb, corresponding to their choice, on a customized response

box.
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Stimuli. We presented the task to the participants with the Psychophysics

Toolbox 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in MATLAB

2012a. Their seating position was fixed at a distance of 100 cm away from

a 22-inch LCD monitor with a refresh rate of 60 Hz. The participants were

presented with a white fixation cross (RGB: 0.9, 0.9, 0.9; diameter: 20 px) at

the center of the screen with dark grey background (RGB: 0.2, 0.2, 0.2). This

indicated the moment when a participant was allowed to start the trial. Upon

pressing the central button of the response box, the trial was self-initiated.

After a random intertrial interval (ITI; jitter between 250 and 750 ms) the

pool of tokens (diameter: 15 px) were displayed in yellow (RGB: 1.0, 0.8, 0.0)

within a fixed circular boundary (200 px diameter) around the center of the

screen. Simultaneously, two white circles appeared laterally (diameter of 200

px, at 40 [left] and 60% [right] of maximal screen width, centered along the

vertical axis) which marked the targets for the tokens. The fixation cross re-

mained on screen to avoid eye movements throughout the trial. Every 200 ms

(interstimulus interval, ISI) one token moved into its designated target, the

locations within the target were randomized but tokens were not allowed to

cover each other. Once a response was made, the circle of the chosen target

side turned black (RGB: 0.9, 0.9, 0.9) and the remaining tokens moved into

their target at a pace of either 170 or 20 milliseconds, depending on the current

time condition (see below). After a short delay of 300 ms after all remaining

tokens had moved to their targets feedback was given for 500 ms. The chosen

target circle turned green (RGB: 0.5, 0.8, 0.2) or red (RGB: 1.0, 0.0, 0.0) and

a green thumb up/red thumb down (correct/error) or a number indicating the

points appeared in green (correct) or red (error), respectively for NO MONEY

and MONEY. We designed two specific trial types: misleading trials and in-

formative trials. Their characteristics were based on the development of the

success probability (Equation 9 and Figure 3-1) throughout the trial. Success

probability measures the objective likelihood for choosing the correct target

and dynamically changes with every token movement (Cisek et al., 2009).

p(R|NR, NL, NC) =
NC !

2NC

min(NC ,7−NL)∑
k=0

1

k!(NC − k)!
(9)

We restricted directional trials to not decrease their success probability after

they crossed the upper limit of an uncertainty window (0.3 – 0.7). In order
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to obtain independent trials, the sequence of the first seven tokens had to be

unique. For misleading trials, we had the same restriction and additionally

required the sequences to stay below 0.2 success probability for at least three

token movements. As such, they really mislead the observer to the opposite

(incorrect) target in the initial phase of the trial and only later reveal the

correct choice. These definitions led to twenty different sequences of left/right

token movements for each of the two trial types, directional and misleading

trials. Other sequences (random) were selected randomly and only restricted

in that they were not allowed to fit the other categories.

Task Design and Experimental Procedure. We invited the subjects twice

into the laboratory. On average session 1 lasted 45.98 minutes (SEM = 0.36)

and session 2 lasted 42.38 minutes (SEM = 0.66). In the first session they re-

ceived no financial incentive (NO MONEY), in the second session they could

earn bonus money for fast and correct responses (MONEY). An icon reminded

the participant of the current reward condition and was visible at all times

during the experiment in the top right corner of the screen. The order of the

sessions was fixed for all participants. During MONEY, participants earned

points depending on their response speed. Starting with 15 points, the number

of points decreased by one with every token that moved into its target position.

Wrong answers always ended up with 0 points. The reward points accumulated

across the session were translated into a bonus payment (14 points == 3 cents).

On average participants received a bonus of 4.31 EUR (SEM = 0.17). Partici-

pants were instructed before session 1, that they had to achieve an accuracy of

60% in both sessions for receiving their bonus in the end. Thereby, we wanted

to restrict guessing strategies and increase motivation to perform well during

the first session. Most participants reached the minimum accuracy for both

sessions. Eventually, regardless of their performance, they received this bonus

money. Within each session, there were eight blocks, which were alternat-

ing between fast and slow pace duration, respectively shorter or longer PDI.

The starting condition was randomly selected and counterbalanced between

participants (NFAST = 17; NSLOW = 17). The type was always instructed

before starting the new block and an indicating icon (FAST = rabbit, SLOW

= turtle) was visible at all times during the trial in the upper left corner of

the screen. During FAST, participants could save time when they responded

earlier, as a fixed number of trials needed to be completed throughout the

experiment. This option for saving time was instructed before the experiment
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and participants could familiarize themselves with the pace during practice

trials. After each block participants received feedback about how much time

within the experiment had passed via a progress bar, how many points they

had collected in the current block and how much bonus money they had earned

up until that moment. In sum, we had four different incentive conditions: time

savings, monetary reward, both or neither. Each block consisted of eighty tri-

als, forty of which were the predefined sequences (misleading and directional,

Figure 3-1). The remaining forty trials were filler trials (random) to avoid

learning or recognition. The order of trials was pseudo-randomized as we did

not allow more than two repetitions of the same trial type with the same tar-

get. Before each session, participants were allowed to familiarize themselves

with the task. They practiced eight or 16 (session 2) random FAST (50%) and

SLOW trials.

7.1.3 EEG Data Acquisition and Preprocessing

We collected electrical brain potentials with a customized 61-electrode cap

(EasyCap GmbH, Herrsching-Breitbrunn, Germany). Passive sensors (Ag/

AgCl) were placed in rings equidistantly around Cz. We added four external

electrodes, two ocular electrodes were placed centrally below the eyes and two

ECG channels were fixed on the left upper chest. The electrode at position

CPz served as the online reference, and a ground electrode was placed between

AF4 and Fz. Impedance rates were reduced below 10 kΩ by skin scrubbing and

applying standard electrode gel. We recorded with 500 Hz sampling rate using

two BrainAmp Amplifiers and the BrainVision Recorder 1.20 (Brain Prod-

ucts GmbH, Gilching, Germany). The raw EEG data for each participant and

session were offline pre-processed by using customized scripts in MATLAB

2017a (server) and 2018a as well as the EEGLAB toolbox (Delorme & Makeig,

2004). We first applied a high-pass filter of 0.1 Hz and then a low-pass filter

of 42 Hz. Afterwards, we re-referenced all electrodes to common average. The

continuous signal was then epoched around 500 ms before and 5000 ms after

trial onset (fixation cross). We applied an adaptive detection procedure to

detect artefactual epochs using the EEGLAB function pop jointprop(). This

algorithm finds a minimum of ten epochs and maximally 5% of trials that are

above a certain number of SD away from the mean. It starts with 4.5 standard

deviations and iteratively adjusts the size by 0.1 to meet the criteria. On av-

erage we rejected 28.09 ± 0.4 trials at 5.56 SD. We identified specific artefacts
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from eye movements and muscle contraction with an adaptive mixture inde-

pendent component analysis (AMICA 1.5, Palmer et al., 2012). For cleaner IC

decomposition, we filtered the data more conservatively (high-pass: 1 Hz) and

demeaned it prior to ICA. The resulting independent components were manu-

ally selected for rejection. The selection procedure was supported by using the

ICLabel plugin (Pion-Tonachini et al., 2019). The selected IC components (N

= 6.87 ± 0.32) were removed after the reference was added back to the data.

Then, we removed the ocular channels and ran another adaptive artefact cor-

rection without a minimum rejection criterion. On average we rejected 24.87

± 0.4 trials at 6.57 SD. Finally, we baseline corrected the epochs from 0 to 200

milliseconds after the fixation cross.

7.1.4 Data Analyses

All analyses were done using MATLAB 2018a or MATLAB 2017a (on server).

We considered significance levels of p < .05 unless otherwise stated. We ex-

cluded misses, premature responses, first and last trials of each block. Reaction

times were log-transformed per subject for all analyses. The datasets of each

session (NO MONEY, MONEY) were treated independently, and were only

compared with each other in second-level analyses.

Behavior. To validate the effect of urgency manipulations (time and mone-

tary incentives) we explored RT and accuracy between the different conditions.

We ran a repeated-measures ANOVA on RT and the proportion of correct tri-

als (Pcor with MONEY (monetary incentive, yes or no), TIME (fast or slow

block) and TRIAL (informative, misleading, or random) as factors. To vali-

date the speed-accuracy across all participants, we correlated RT with Pcor.

We also wanted to know whether the speed-accuracy trade-off was related to

speed incentive and occurring within participants. Thus, we computed the

difference (∆) in RT and Accuracy between NO MONEY and MONEY and

between FAST and SLOW, for each participant. Then, we correlated ∆ RT

and ∆ Pcor.

Next, we wanted to know whether the normative evidence (success probabil-

ity, Equation 9) or an approximation of evidence – the sum log likelihood

ratio (SLLR, Equation 10, Cisek et al., 2009) explains behavioral observations

better. The SLLR is a simple estimation of sensory evidence:
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Es(n) =
n∑

j=1

log(p(ej)|S)

(p(ej|U))
, (10)

where p(ej|S) is the likelihood of a specific token event ej during correct trials,

and p(ej|U) is its likelihood during trials in which it is not correct. This, simply

speaking, results in a momentary ratio of tokens within each target.

For finding the better fitting evidence measure, we ran two simple regression

models with the following GLM:

Y = β0 + β1 ∗ Evidence+ ε, (11)

where Y is the RT and the predictor Evidence was either SP (Equation 9) or

SLLR (Equation 10) at the estimated moment of the choice (two tokens prior

to response). This token was selected as an approximation based on average

simple reaction times (279 ms, SD = 45 ms) observed by Cisek et al. (2009).

The token directly preceding the response (up to -200 ms) was unlikely to be

considered for the choice as simple response preparation and execution would

take more than 200 ms. We compared the resulting regression weights and

R2-values per participant and session between models using paired-samples

t-tests to evaluate the fit of the models.

Further, we wanted to explore whether heuristics and other factors had addi-

tional effects (above evidence) on choices and decision time. Firstly, we ran

this GLM on RT:

Y =β0 + β1 ∗ EV IDENCE + β2 ∗ UPDATE+

β3 ∗ TIME + β4 ∗MONO + β5 ∗ CORRECT + ε
(12)

where Y is RT and the predictors were SLLR for the correct side at the mo-

ment of choice (EV IDENCE), whether the pre-choice update of evidence

was towards the choice side UPDATE), FAST or SLOW block (TIME), how

many tokens went into one direction before the choice (MONO), and whether

the response was correct (CORRECT ). Secondly, we ran a logistic GLM on

the choice:
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Y =β0 + β1 ∗ EV IDENCE + β2 ∗ UPDATE+

β3 ∗ TIME + β4 ∗MONO + β5 ∗ CORRECT + ε
(13)

where Y is the response side (Right = 1, Left = 0). The predictors were evi-

dence (SLLR) for the right-hand side (EV IDENCE), whether the pre-choice

token was towards the right-hand side (UPDATE), FAST or SLOW block

(TIME), how many tokens went towards the right target before the choice

(MONO), and whether the response was correct (CORRECT ). All regression

models included error and correct trials. We only excluded additional trials in

which the previous trial had a missed or premature response. Significance of

the regression weights was tested against zero per regressor. In second-level

analyses, we compared regression weights of each regressor from the model for

data of NO MONEY to MONEY with a paired-sample t-test. All p-values

were corrected for multiple comparisons using the false discovery rate (FDR)

method.

Time-frequency signal. The following transformations were ran on stimulus-

, response-, and token-locked data (epoch limits were the same as above). Note,

that for token-locked, we extracted several epochs out of the initial trial, thus

we will not refer to trial-wise, but epoch-wise analyses in the following. We

used Morlet wavelet transformation with six cycles to receive time-frequency

data of all electrodes. We defined 27 linearly spaced frequencies from 5 to 30

Hz. The resulting power per frequency and time was log-transformed and base-

line free. For further analyses (see Single-Trial Regression) we collapsed over

our frequency band of interest: beta power (13-30 Hz). As we were interested

in the motor cortical lateralization of beta-power, we computed the epoch-wise

difference (contra minus ipsilateral to the effector) in power between two mo-

tor electrode pairs (C3 & C4, CP3 & CP4). Then we averaged the ∆-power

over electrode pairs. This resulted in one BPL timeline per epoch. We used

this outcome to compute single-trial regressions. For exploratory purposes, we

also averaged the BPL epoch dynamics over selected conditions (i.e. MONEY,

TIME, RT, EVIDENCE, UPDATE) and over participants.

Time-domain signal. We performed two-fold transformations on the time-

domain signal. Firstly, we considered epochs locked to the stimulus (-200 to

1000 ms) and to the response (-900 to 300 ms). Regions of interest were central
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midline electrodes: Fz, Cz, CPz, Pz. We averaged trials according to different

conditions and outcomes: NO MONEY vs. MONEY session, SLOW vs. FAST

block, and high (NO MONEY: mean ± SEM = 3014.30 ± 3.49 ms; MONEY:

2645.01 ± 7.99 ms) vs. low (NO MONEY: 2446.99 ± 5.41 ms; MONEY:

1816.77 ± 15.25 ms) RT (based on a median split within participants). Sec-

ondly, we divided the trial epochs into new epochs locked to token-onset (0

to 600 ms). This aggregated the number of epochs up to 15 times (number

of tokens within one trial), but post-response tokens were excluded. Here, we

were able to explore effects directly related to the current state of evidence,

both the momentary evidence update (pro vs. contra choice) and the evidence

accumulated up to this point. The latter was split into to three evidence bins

for averaging purposes: contra (SLLR < 0), low (SLLR > 0 and SLLR < 0.8),

high (SLLR > 0.8). The token-locked signals were used for further single-trial

analyses.

Single-trial regression. Our main goal in this study was to investigate the

individual contribution of urgency and evidence on BPL. Specifically, we used

a single-trial regression approach to explore the effect of different factors on

these signals over time. Because we wanted to see the effect of the changing

evidence within the trial, we used token-locked epochs (locked to the moment

when evidence changes). Note, this includes overlaps of different epochs, as

the token-to-token interval was 200 ms. The regression was run on the whole

epoch from token-onset until 600 ms post-token. Input data (ERP, beta power,

BPL) was first smoothed over 8 ms (4 timepoints) and the output was down-

sampled to 100 Hz. All models involved a robust regression fit to reduce the

impact of outliers and were computed separately for each session (NO MONEY

and MONEY) for each participant. We excluded token-epochs that appeared

after the overt response in all models. First, we ran models for all electrodes

including only correct trials:

Y =β0 + β1 ∗ EV Iright + β2 ∗ UPDright+

β3 ∗ TIME + β4 ∗RT + β5 ∗ TOKEN + ε,
(14)

where Y is the beta power over the course of the epoch. We included the

following regressors: evidence for the right side (EV Iright), evidence up-

date (UPDright), Time Condition (Time), log-transformed RT (RT ), and
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we controlled for token number within the trial (TOKEN). Secondly, we ran

regression models on the BPL signal. Here, we included correct and error

trials.

Y =β0 + β1 ∗ EV Iresponse + β2 ∗ UPDresponse+

β3 ∗ TIME + β4 ∗RT + β5 ∗ TOKEN + ε,
(15)

where Y equals BPL and accumulated evidence (EV Iresponse) and the momen-

tary evidence update (UPDresponse) are coded relative to the response. All

other regressors remained the same as above (Equation 14). Thirdly, we ran

the same model on the time-domain EEG data (token-locked) of all electrodes,

but excluded error trials. Each model yielded a timeseries of regression weights

for each participant and per electrode, and reward condition (NO MONEY and

MONEY). At each timepoint, we tested for significant deviation from zero with

a simple one-sample t-test. We applied FDR-correction to correct for multiple

comparisons. Finally, we applied cluster-based permutation tests to ensure

that only robust time windows are interpreted. Therefore, we first excluded

all single timepoints (without significant neighbor). Then, we performed 1000

permutations for each timeseries with randomly shuffled signs to produce an

empirical H0 distribution and critical t-values. Original clusters which had

a t-mass that was larger than that of the null-distribution were considered

significant.

BPL Amplitude. For testing whether the BPL peak amplitude varies with

response times we used simple linear regression models per subject:

Y = β0 + β1 ∗BPLpeak + ε, (16)

where Y equals the (log-transformed) RT per trial. The predictor (BPLpeak)

was the average BPL amplitude over the time window from -200 ms to -50 ms

before the response. The resulting regression weights (per subject) were tested

for significance with a simple one-sample t-test.

7.2 Results

The present experiment was designed to investigate the effect of time pres-

sure on decision-making performance and BPL, a neural correlate related to
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evidence accumulation and motor output preparation. With our design, we ex-

pected to induce a speed-accuracy trade-off by using temporal and monetary

rewards for speeded reactions. We also expected to find, that an estimation of

evidence better represents behavior than the normative evidence strength. We

further hypothesized that other decision-making strategies (heuristics) would

influence decision outcome and time and that their utilization differed de-

pending on urgency. Furthermore, we expected that BPL dynamics would be

influenced by evidence and heuristics as well as a variation with RT. More-

over, we performed exploratory analyses on global beta power reductions and

midline electrode ERPs.

7.2.1 Speed-accuracy trade-off

To validate our urgency manipulations, we first analyzed whether partici-

pants show a speed-accuracy trade-off related to the incentives we provided

for speeded responses. Reaction time (RT) and the proportion of correct trials

(Pcor) decrease with the amount of incentives that were provided for speeded

responses (RT: TIME: F (33, 1) = 11.873, p = .0016, MONEY: F (33, 1) =

72.349, p < .001, TRIAL: F (66, 2) = 24.073, p < .001; Accuracy: all p < .001;

rm-ANOVA; Figure 3-2A, B). The reward types appear to be additive in their

effect on RT and accuracy, the more reward we offered, the faster partici-

pants responded. Monetary bonus alone seems to motivate stronger response

speeding than time savings alone (average difference ± SEM in informative

trials: MONEY: 510.1 ± 9.9 ms; TIME: 146.3 ± 7.6 ms; p < .001; paired-

samples t-test). Furthermore, RT is higher and accuracy is lower in mislead-

ing trials, compared to informative trials, which was intended by the design

(average difference ± SEM: RT: -34.2 ± 2.2 ms, p = 0.0133; Pcor: 0.5188

± 0.003, p < .001; paired-sample t-tests). Those trials initially mislead the

evidence towards the wrong target and only later in the sequence provide

evidence for the correct side. This leads to more errors in general and partic-

ularly in fast response trials. Across all trial types, we find an inter-subject

speed-accuracy trade-off (SAT) in all reward conditions (NO MONEY-SLOW:

ρ = 0.7891, p < .001, NO MONEY-FAST: ρ = 0.7858, p < .001, MONEY-

SLOW: ρ = 0.8988, p < .001, MONEY-FAST: ρ = 0.9041, p < .001; Figure 3-

2C). Moreover, intra-individual speed-accuracy adjustments are related to the

reward we were offering for speeded responses. Within-subjects adaptations

in RT (∆ RT) correlate with adaptations in accuracy (∆ Pcor) related to



FROM CHOICE TO ACTION 71

monetary as well as time incentives (TIME: ρ = 0.8953; p < .001; MONEY:

ρ = 0.8765; p < .001; Figure 3-2D).
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Figure 3-2. Speed-Accuracy Trade-off. Reaction times (A) and accuracy (B) by
trial (informative, misleading, random) and incentive type (money and time). Dots
represent individual participant average across the respective trials. Per participant
accuracy (C) as a function of reaction time displayed separately for each reward
condition. Per participant change in accuracy (D) as a function of change in RT
for TIME (blue) and MONEY (red). Inter- (C) and intraindividual (D), speed-
accuracy trade-off related to reward manipulations. Grouped boxplots were created
using MATLAB scripts from Danz (2021).

7.2.2 Errors and Heuristics

Next, we aimed at strengthening our claim that speeded responses were re-

lated to our manipulation by inspecting the amount of misses and premature

responses (Figure S3-1A, B). In unrewarded trials there were more missed trials

as compared to the rewarded condition (TIME: F (33, 1) = 13.034, p = 0.0010;

MONEY: F (33, 1) = 39.194, p < .001; rm-ANOVA). This is to be expected

as speed was emphasized in rewarded conditions and thus misses were less

likely. The opposite pattern was expected for premature responses, with more

early presses in rewarded trials. We, however, could not find a clear differ-

ence between the conditions (TIME: F (33) = 1.9389, p = .1731; MONEY:

F (33, 1) = 4.028, p = .0530; rm-ANOVA). Further, we explored potential re-

sponse side biases (choices, Figure S3-1C) and found that in NO MONEY,

responses were biased towards the left (L/R < 0.5), whereas in MONEY there
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was less bias in choices (F (33, 1) = 7.1489, p = .0116; rm-ANOVA). Temporal

reward did not have an effect on choice bias (F (33, 1) = 0.4442, p = .5096; rm-

ANOVA). Together, these results support our expectations that stronger incen-

tives enhance speed pressure and therefore reduce misses and increase prema-

ture responses in rewarded conditions. To parse out the influences on decision

time and outcome, we wanted to inspect potential strategic variables that could

be used to arrive at a decision. Thus, we explored potential heuristics that par-

ticipants could use to make their choices. We first considered the monotony of

the sequence, i.e. the number of tokens moving onto the eventually chosen di-

rection prior to the choice. The results suggest less monotony prior to choices

within rewarded conditions (TIME: F (33, 1) = 4.7678, p = .0362; MONEY:

F (33, 1) = 31.909, p < .001; rm-ANOVA; Figure S3-1D). This could be due

to lower RTs in these conditions as trials do not allow as much monotony

as in low reward trials. Using multiple regression analyses (see Heuristics

influence RT and Choices), we examined the independent effects of these pre-

dictors. Secondly, we explored whether or not a choice followed the direction

of the pre-choice token (time of choice minus two tokens), we will call this

evidence update from here on. We found, that monetary reward, but not

temporal reward, increased the proportion of trials in which the final token

side (update) was chosen (TIME: F (33, 1) = 0.1864, p = .6687; MONEY:

F (33, 1) = 38.689, p = .0062; rm-ANOVA; Figure S3-1E). In sum, we show,

that increased use of heuristics due to urgency might play a role in decision

formation. We followed up on these findings with multiple regression analyses

(see Heuristics influence RT and Choices).

7.2.3 Normative or Estimated Evidence?

Next, we looked into the relevance of different evidence variables. We aimed to

find out whether the normative evidence or an estimation of evidence explains

behavior best. The first measure is the success probability (SP), which is the

variable we used to pre-define informative and misleading trial sequences. It

takes into account the number of tokens that are still going to move and is thus

a precise value of the likelihood for being correct. The second measure is the

sum log likelihood ratio (SLLR), which considers only the previously observed

token movements (as if we count the number of tokens on each side and take the

ratio, while accounting for the likelihood of a left/right win for the movement

to the respective side). We found that both types of evidence at the moment
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of choice are reduced in urgent trials (SP: TRIAL: F (66, 2) = 124.02, p <

.001,TIME: F (33, 1) = 9.9585, p = .0034, MONEY: F (33, 1) = 34.731, p <

.001; SLLR: TRIAL: F (66, 2) = 134.72, p < .001, TIME: F (33, 1) = 5.185, p =

0.0293, MONEY: F (33, 1) = 30.067, p < .001, rm-ANOVAs; Figure 3-3A, B).

This goes along with a previously observed shift towards faster, less accurate

decisions in rewarded trials. An exception are the results in misleading trials.

Here, lower evidence at the moment of choice was found in low rewarded trials

compared to trials with high rewards. This reflects that evidence only slowly

turns towards the wrong side. Thus, in very fast (and urgent) trials, misleading

evidence might not have reached its peak yet, whereas in slower (less urgent)

trials participants potentially responded later at a moment of strongest mis-

information.

In order to find the measurement that better explains our observed decision

times, we ran simple regression models and compared the regression weights

model fits. We found that on average over participants, beta weights for SLLR

were stronger (more negative) than for SP in both sessions (NO MONEY:

p = 2.2467e−16, MONEY: p = 2.4061e−13, paired-samples t-test; Figure 3-

3C). Additionally, the model fit (R2) of the models with SLLR as a predictor

was significantly higher than of the SP-model in both sessions (NO MONEY:

p = 6.2737e−12, MONEY: p = 0.0019, paired-samples t-tests; Figure 3-3D).

These results suggest that higher evidence for the choice predict faster re-

sponses when considering trial-wise adaptations. Firstly, these responses can

be explained by evidence strength within each urgency condition. However,

when comparing between conditions (see above) urgency encourages faster de-

cisions at low evidence strength. Secondly, the stronger beta weights and model

fit suggest that SLLR better predicts behavior (RT) in the present task. Thus,

we decided to continue using SLLR in the following analyses. Importantly,

we need to point out that the variations between conditions and trial types

(Figure 3-3A, B) in evidence strength at the choice and the rather low model

fit (Figure 3-3C) suggest that neither evidence measure can be the only driving

factor for defining the moment of choice. More specifically, evidence strength

itself does not represent a threshold that is needed to initiate a response. It

is more likely that there are other influential variables and heuristics that

influence the moment of response or modulate the response threshold.
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Figure 3-3. Evidence and heuristics. (A) Average sum log likelihood ratio for
the choice and (B) success probability for the choice at the time of the response by
condition and trial type. (C) Average regression weights per regression model, one
per factor (SLLR [purple] and SP [green]) and reward (MONEY vs. NO MONEY)
condition. (D) Average model fit (R2) per model organized as in C. Individual
participant results are displayed with dots, lines link the values belonging to one
participant. Regression weights of multiple regression analyses for RT-models (E)
and CHOICE-models (F) with pale colors representing the results from NO MONEY
and bright colors are from MONEY. Dots are regression weights from each individual
participants. Cross-correlations between predictors can be found in Figure S3-2.

7.2.4 Heuristics influence RT and Choices

In order to understand what variables, besides evidence, influence behavior we

performed multiple regression analyses. We will first consider influential factors

on reaction time and in separate models the effect on the choice outcome. Here,

we will also follow up on the potential relevance of heuristics (see Errors and
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Heuristics) to understand their independent effect on choice time and outcome.

We ran all analyses separately for both sessions (Figure 3-3E, F & Figure S3-2)

and tested the regression weights for significance against zero.

RT-Models. This set of models was designed to explore the effects of differ-

ent factors on response times (Equation 12). We included evidence strength

and several heuristics to understand their relative contribution to explain de-

cision time. Note, that negative regression weights mean that lower values

of the regressor are associated with slow response trials (higher RT). The

amount of evidence (SLLR for the choice) at the choice explains a significant

amount of variance in RT in both, NO MONEY and MONEY (pcorr < .01,

one-sample t-test), even if we account for several other factors. In slow re-

sponse trials, evidence strength at choice was lower, whereas fast responses

were performed at higher evidence strength. This could mean, that the re-

sponse threshold decreases after some time and therefore later reactions tend

to be performed at lower evidence. Also evidence update (whether or not, the

token preceding the choice moved towards or against the choice direction), ex-

plains a significant amount of variance in RT in the first session (NO MONEY:

pcorr < .01), but not in the second (MONEY: pcorr = .3165). Thus, an up-

date pro-choice was more likely in slower responses, which could be explained

by more reliance on this heuristic later in the trial. Participants might show

increasing urgency over the course of the trial, and thus utilize simplification

strategies in order to make a choice. The lack of this effect in MONEY trials

could be related to the high variance in regression weights between partici-

pants. This regressor seems to reflect a variable that strongly differentiates

decision-making strategies: participants attached more or less weight to the

information given by only the pre-choice token. These strategic differences be-

came observable in the much more critical session (MONEY), where individual

responses were directly translated into monetary gain. Next, the Time con-

dition was predictive of RT (trend in MONEY), with faster responses in the

FAST condition, and slower responses in SLOW (NO MONEY: pcorr < .001;

MONEY: pcorr = .0091, αcorr = .006). This effect confirms our initial finding

(see Speed-accuracy trade-off) that time savings encourage urgent reactions.

Additionally, the models reveal that monotony is a significant predictor in NO

MONEY (pcorr < .001), but not in MONEY (pcorr = .1379). There were more

previous tokens moving monotonously into the choice direction in trials with

slower responses. This heuristic, similar to evidence update, could become
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only relevant later in the trial when participants need other information than

evidence to make their choice under time pressure. Potentially, this strategy

was overcome by the generally faster responses in MONEY, such that this

heuristic was not necessary to use. The last regressor Correct confirms that

speeded trials are less accurate (both: pcorr < .001). This effect holds on a

single-trial level independent of reward condition.

Additionally, we formally wanted to compare the effects between NO MONEY

and MONEY. We show that the strength of the regression weights differs only

for evidence (pcorr = .0018; all other: pcorr > .1263, paired-samples t-test). In

line with our hypothesis, decision times depend less on evidence estimations

in MONEY, compared to trials without monetary rewards. In sum, we found

that, additional to the estimated evidence, other factors and heuristics appear

to influence the time for committing to a choice. Importantly, monetary reward

(urgency) seems to affect the utilization of evidence for decision timing.

CHOICE-Models. With the following model we aim to explain what fac-

tors influence choice direction. We used multiple logistic regression analyses

to explore to what extent evidence strength and heuristics affect the decision

outcome (left or right hand choice, Equation 13). Note, negative regression

weights mean that lower values of the regressor are more likely in right hand

responses. First of all, estimated evidence at the moment of choice strongly

influences the choice (both sessions: pcorr < .001, one-sample t-test): the more

evidence towards the right the more likely a right hand response and vice

versa for left hand responses. Interestingly, the recent update of evidence, i.e.

whether or not the pre-choice token moved towards the left or right, inversely

influences the choice direction (both sessions: pcorr < .001). This means, after

a pre-choice token towards the right, choices towards the left were more likely.

This effect could potentially be explained by our choice of the pre-choice token

(two tokens prior to response). Not in every trial or individual, this token

necessarily reflects the one bit of information that appeared just before the

subject committed to the choice. Thus, we just have an estimation of the pre-

choice information and need to be careful with interpretations. As expected,

the third factor Time condition does not show any choice bias in both ses-

sions (pcorr > .1692). The heuristic variable monotony explains a significant

amount of variability in choices (both sessions: pcorr < .001). This means

over and above estimated evidence and update, monotony of the sequences
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was guiding the choice direction. Finally, we can derive from the model in

MONEY that there is some bias towards incorrect in right hand side choices

(pcorr < .001), which is not present in NO MONEY (pcorr = .9990). Perhaps,

uncertain choices, that were more error-prone, tended to be performed with

the dominant (right) hand. However, this remains speculation. Finally, we

compared the regression weights between the two models in order to discern

any urgency effect driven by monetary reward. We found no differences in

most of the factors (pcorr > .01, paired-samples t-test), except for a trend in

monotony (pcorr = .0064, alphacorr = .0020), which suggests that a utilization

of this heuristic could be more weighty under urgency. Together, we found

that, besides the strength of accumulated evidence, the previous update and

monotony of the sequence guide choice outcomes to some extent. The data sug-

gest that under urgency (MONEY) choice outcomes are more strongly affected

by a heuristic (monotony) than in contexts with low urgency (NO MONEY).

However, the speed of responses (see above) under urgency seems to be driven

by evidence and reward rather than monotony. In contrast, under low urgency

the generally later responses offer more flexibility for response time adaptations

and seem to be also affected by the monotony of the sequence.

7.2.5 Influential factors on global beta power

Next, we wanted to explore to what extent task variables are associated with

whole-brain beta power. In particular, we used single-trial regression anal-

yses to explain lateralized as well as midline beta-power modulations by ac-

cumulated (estimated) evidence, evidence Update, Time condition, RT and

time on trial (Token Number). The outcome of the model was the respective

time-series, locked to the each event of token-movement, i.e. when a token

moved to its target within a trial. Thus, we do not remain in trial-space of

regression analyses, but the epochs consist of several time windows from each

trial. Firstly, we show that evidence (for the right response) is predictive of

hemispheric lateralization (i.e. left motor cortical electrodes have negative re-

gression weights, thus show stronger beta power reduction in right hand trials

compared to left hand trials and vice versa for right hemisphere electrodes,

Figure 3-4A). This effect appears significant from around token onset time

to 450-600 ms after token onset for relevant motor electrodes C3, C4, CP3,

CP4 (specific times can be found in shadings in Figure 3-4). Importantly,

this prominent contrast between left and right hemisphere electrodes not only
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reflects the lateralization after stimulus presentation but highlights that the

strength of lateralization depends on the strength of evidence. This would not

be possible to show by merely comparing averaged epochs, but requires to con-

trol for other task effects (e.g. Token Number), as we have done here with this

single-trial regression approach. Secondly, we wondered whether there was an

effect of the immediately preceding token (Update: pro or contra right hand)

on beta-power. This regressor does not take into account the evidence history

and thus not the full information presented on screen, but rather presents a

heuristic that just considers the isolated novel information of the previous to-

ken move. Therefore, it can be understood as the momentary evidence. The

regression weights represent again a distinctive motor lateralization. However,

in comparison to Evidence, the Update regression weights are initially oppo-

site to the choice direction (significant only in MONEY) and only sometime

later after the token move take effect on the lateralization in the output di-

rection (Figure 3-4B). Thirdly, Time does not have an effect on beta power

at any electrode and time point, in both conditions (Figure S3-3A). Fourthly,

in contrast, Reaction Time is reflected in central to central-posterior regions

over the whole course of the epoch in both conditions (Figure 3-4C). Negative

regression weights mean stronger beta power in faster trials. This points at a

relevance of beta power in urgency as in fast response trials beta power appears

to decrease faster and more strongly. Finally, we controlled for the effect of

the ‘time on trial’ (Token Number). As expected, there is a strong and global

effect (most pronounced over motor electrodes) throughout the full course of

the epoch (Figure 3-4D). Beta power decreases with increasing number of to-

ken, which inherently means ongoing time in the trial and upcoming response

initiation. This effect displays the downward ramping nature of beta power in

preparation of a response throughout a trial.

7.2.6 Evidence and Update influence Beta Power Lateralization

Next, we investigated beta power lateralization and influential factors in detail.

Therefore, we first considered time courses of the last ˜4 token moves before

the response obtained by response-locked averaging (Figure 3-5). We found

beta-power and its hemispheric lateralization ramping downwards over the

course of the trial (Figure 3-5A, B, C). The peak of lateralization was present

just before the response and the onset and slope appeared to differ slightly

between the sessions (MONEY vs. NO MONEY, Figure 3-5C). When sorting
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BPL trajectories by TIME condition (FAST vs. SLOW blocks, Figure 3-5D),

we can observe minor differences between the blocks within MONEY, such that

BPL onset builds-up steeper and closer to the response in fast trials, which

we could not confirm with single-trial regression analyses (see below). The

observation of BPL dynamics for slow and fast responses (high vs. low RT,

Figure 3-5E) reveals that trajectories in slower trials appear non-lateralized

for longer and end up with a lower peak amplitude than fast responses. We

confirmed a difference in BPL amplitude before the response related to RT by

running a single-trial linear regression model (Equation 16) per participant.

The resulting regression weights reveal a significant effect of strength of BPL

prior to the response on RTs in both reward conditions (NO MONEY: t(33) =

2.7244, p = 0.0102; MONEY: t(33) = 3.0006, p = 0.0051; one-sample t-tests).
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Figure 3-4. Factors influencing Beta Power at whole head and electrodes of interest.
Token-locked time courses of the regression weights for Evidence for right hand
response (A), Update (B), RT (C), Token Number (D) for relevant electrodes for
both sessions, NO MONEY (blue) and MONEY (red). Dashed lines represent time
courses for left hemisphere electrodes C3 (A) and CP3 (B), solid lines are from right
hemisphere electrodes: C4 (A) and CP4 (B). Significant time windows (cluster-
based permutation) are marked with the shading below each panel, separately for
each electrode of interest. Time was non-significant at all times and is plotted in
Figure S3-3. Topographies display whole head distribution of regression weights at
interesting time points. Shade around the line represents SEM.
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Figure 3-5. Beta Power Lateralization (BPL). (A) Response-locked average over
contra- and ipsilateral beta power (13 - 30 Hz) ramps downwards at motor cortical
electrodes (C3, C4, CP3, CP4) for both, NO MONEY (blue) and MONEY (red).
(B) Lateralization (contra- minus ipsilateral to the effector) time-frequency plots
show peak lateralization in beta band just before the response in both sessions (left:
NO MONEY, right: MONEY). (C) BPL increases (contra < ipsi) over time towards
response with slightly different trajectories in NO MONEY and MONEY. (D) BPL
averaged over slow and fast trials (Time condition) and (E) averaged over trials with
low and high RT (fast vs. slow response). A regression model reveals that peak
amplitude (-200 to -50 ms before response, shaded bar at the bottom) varies with
RT. Shaded areas represent SEM.

Together, these observations indicate that BPL trajectories are modulated by

reward manipulations and relate to reaction times. In order to further test

these claims and to understand the individual contribution of different factors

we applied a single-trial regression approach with multiple predictors.

We developed a GLM with variables that are potentially influential for lat-

eralization strength and latency. We ran this model on token-locked BPL to

account for the changing evidence over the course of a trial. We included

regressors Evidence, Update, Time Condition, RT and Token Number and

computed regression weights for each factor over the course of the epoch (Fig-

ure 3-6 & Equation 15). Firstly,the regression weights show that the amount

of Evidence (SLLR) has an effect on lateralization after a piece of information

was presented (token move; Figure 3-6A). These negative beta-weights display
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that stronger lateralization (negative) corresponds to higher evidence values,

over and above the effects from token number and RT. Second-level analyses

reveal no differences between beta-weights in NO MONEY vs. MONEY (all

p > .05, paired t-test over timepoints 0 - 300 ms post-token). Secondly, we

found that Update modulates BPL two-fold (Figure 3-6B): An initial instance

occurs early after token movement in the opposite direction (stronger lateral-

ization after contra choice information). A second modulation appeared later

on, indicating that lateralization around this time is stronger after pro-choice

tokens (negative regression weight). We ran second-level analyses over the

whole course of the epoch to compare between the two sessions and found that

the regression weights of Update tended to be more influential in MONEY

at 110-120 ms and at 280 ms post-token (puncorr <= .05, paired t-tests). By

exploring the averaged token-locked BPL signal (Figure 3-6B, right panel), we

found that the first period accounts for a stronger effect of Update in MONEY

compared to NO MONEY. The second period reflects an earlier onset of the

Update effect in MONEY compared to NO MONEY. Taken together these

results reflect potential differences in utilizing and reflecting heuristics under

time pressure. In contrast to our expectations, Time had no effect on BPL at

any timepoint over and above any of the other factors (Figure S3-3B). Perhaps,

reaction time explained most variability that was related to this manipulation

(TIME: FAST vs. SLOW). We can show, that RT appears as an influential

factor consistently throughout the epoch (Figure 3-6C). This means that in

fast response trials, BPL is more pronounced compared to slow response tri-

als. In other words, in trials with long RT lateralization towards the chosen

response is lower (more positive BPL) arising from later onset and lower peak

amplitude in those trials (Figure 3-5E). This points at a potential relevance

of urgency in BPL. Reduced RTs are descriptive of rewarded (urgent) condi-

tions (see Speed-accuracy trade-off) and following from this, it could be that

speed contexts affect BPL ramping which in turn speeds up responses. Finally,

we confirm the effect of an ongoing downward ramping lateralization over the

course of the trial in both sessions as Token Number is inversely related to

BPL (Figure 3-6D).
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Figure 3-6. Factors influencing BPL. Left panels show token-locked time courses
of regression weights for Evidence for the choice (A), Update (B), RT (D), Token
Number (E) for both sessions (NO MONEY = blue and MONEY = red). Significant
time periods (cluster-based permutation) are shaded below each panel. The regressor
Time did not reveal any effect (Figure S3-3). For predictors Evidence and Update,
we compared regression weights between both sessions at timepoints of interest (grey
shaded area marks time periods with significant differences [uncorrected]) between
NO MONEY and MONEY. Shaded areas around the lines represent SEM. Right
hand panels display averaged token-locked BPL sorted by evidence strength (contra
vs. low vs. high evidence for the choice), update direction (contra vs. pro choice
direction), RT (low vs. high; median split) and Token Number within the trial (early
vs. late; median split).
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7.2.7 Influencing factors on central midline time-domain event-

related potentials

-6 0 6-6 0 6 -6 0 6

200
ms
 0
ms
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Figure 3-7. Midline electrode potentials by reward condition. The plots show ERPs
locked to first token onset (stimulus, left panels), response (middle) and locked to
each token onset (right). In midline electrodes and throughout the trial, MONEY
(red) shows a consistently stronger negativation than NO MONEY (blue). Topogra-
phies show frontocentral to centroparietal negativity at 200 ms post-stimulus onset,
at response onset and 100 ms post-token presentation.

Next, we asked whether reward and evidence and response time affected central

midline ERPs (e.g. CNV). We observed qualitative differences and quantified

the effects with single-trial regression analyses. Firstly, monetary reward re-

veals a stronger negativity over fronto-central and centro-parietal electrodes

(stimulus-, response- and token-onset locked) compared to trials without mon-

etary reward (Figure 3-7). Secondly, we observed a consistent effect of evidence

strength on midline electrode negativation throughout the post-token period

(Figure 3-7). High accumulated evidence for the response as well as an immedi-

ate evidence update for the choice increase negativity after token presentation.

Thirdly, we observe slight differences between fast and slow (response time and

time incentive, Figure S3-5) trials with a steeper slope of negativation in fast

trials mainly over frontocentral and central regions. Upon response this differ-

ence disappears. For formal analyses of these observations, we used a single-

trial regression approach which reveals independent effects of each regressor on

the token-locked time-series of the midline electrodes (Figure 3-8). We found

an effect of accumulated evidence on central midline electrodes around 300 –

600 ms post-token, but only under monetary reward. This effect reveals that

less negativation occurs with stronger evidence, independent of update, reac-
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tion time and reward condition (Figure 3-8A). The immediate evidence update,

in contrast, shows intermittent effects on more posterior electrode negativation

around 350 – 550 ms post-token in both sessions (Figure 3-8B). Time reward

appears relevant in NO MONEY over the course of the token-locked epoch in

the frontal central electrode, showing reduced negativation in fast compared

to slow trials (Figure 3-8C). Negativation in frontal and frontocentral (only

MONEY) electrodes appears to vary with RT over the course of the epoch.

Stronger negativation in slower trials regardless of evidence, reward and ‘time

on trial’ (Figure 3-8D). Token number (time on trial, Figure 3-8E) affects neg-

ativation over midline electrodes in both sessions throughout most of the epoch

in that more time on trial leads to more negativation (drift over the trial up

to response) which we also show in Figures S3-5 and 3-7.

7.3 Discussion

In this study we aimed at exploring the roles of evidence accumulation and

urgency in perceptual decision-making and finding their neural underpinnings.

In a slow perceptual decision-making paradigm, we manipulated the evidence

given at each time and the amount of time pressure to respond. We found

that under urgency evidence strength became less relevant for decision time

and responses were faster and less correct independent of trial difficulty. Par-

ticipants relied more on simplified evidence measures than objective evidence

and also utilized heuristics such as the most recent update of evidence for

their decisions. The relevance of evidence update became evident in beta

power over fronto-lateral electrodes and in the difference between hemispheres

(BPL). This effect, however, occurred with a delay after accumulated evidence

was reflected. These neural signatures did not appear to be directly affected

by urgency – neither temporal nor monetary reward. However, reaction times

varied systematically with lateralization dynamics as well as urgency.

Decisions based on simplified evidence accumulation and heuristics.

Firstly, instead of normative evidence participants based their decisions on an

estimated evidence value (sum log likelihood ratio), which has been introduced

by Cisek et al. (2009). A simplified evidence measure appeared to be more fea-

sible to be computed online and good enough for performance in this dynamic

task. Moreover, we found that other sources of information were utilized for

predicting and timing choices, such as the recent update of evidence. It seems
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Figure 3-8. Whole-head EEG single-trial analyses. Regression weights over all elec-
trodes (fdr-corrected topographies, referenced at Cz) at specific timepoints (token
onset, 300 ms and 500 ms post-token) for the Regressors (A) Evidence, (B) Evidence
Update, (C) Time Condition, (D) RT, (F) Token Number. Upper topographies (blue
box) for NO MONEY and lower topographies (red box) for MONEY. Panels below
display the regression-weight dynamics over the course of the epoch (0 to 600 ms
post-token) for central midline electrodes (FCz, Cz, CPz, Pz; from top to bottom).
Models were run separately for NO MONEY (blue) and MONEY (red). Shadings
around the lines are SEM, shaded bars mark significant (cluster-based permutation)
time windows.

that not only the overall evidence plays a role in decision making but also

short-term information influences choices. The present findings relate to both,

the urgency and the accumulation account of decision processing. We found
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support for predictions of the urgency account (Cisek et al., 2009; Thura et al.,

2014) which emphasizes the importance of momentary evidence, here evidence

update, for decisions. At the same time, our data support the assumptions

made by accumulation theories as we present a parametric influence of accu-

mulated evidence on choices. We therefore do not conclusively support one or

the other hypothesis, but rather propose, that both account for aspects that

drive decisions.

Importantly, we also found that monetary reward for speed tended to make

normative, well-informed decisions less likely. Our results indicate, that the

speed of responses came at the cost of accuracy by reducing the effort that was

put into evidence accumulation and partially relying more on easier available

information. Recently it was suggested that urgent decision-making was par-

ticularly driven by the actual stimulus, than by a strategy underlying cognitive

control (Poth, 2021). This corresponds to our study where resting a decision

upon momentary evidence update appeared more likely under speed pressure.

In contrast, a strategy underlying cognitive control may involve decisions based

on the accumulated evidence and thus making a more informed but potentially

time consuming choice. Consistently, we found that both pieces of informa-

tion were relevant for decision timing and choices, but emphasis on heuristics

tended to be stronger in speeded compared to accuracy conditions.

BPL – a neural correlate for integrating evidence. Most importantly,

evidence accumulation over time plays a role in all conditions and is also rep-

resented in neural activity. Particularly, BPL was of interest in the present

study. Even though, in an earlier study we found no evidence for scaled ramp-

ing trajectories in fast decision making tasks, e.g. the random dot motion

paradigm (Rogge et al., 2022), the present results show that, indeed, BPL

varies with evidence strength. The paradigm in this study is different in that

it provides sequential evidence and offers a better window into the presented

evidence strength at any moment in time. This slow evidence accumulation

process appears to be reflected in beta activity over motor cortex and its lat-

eralization strength. Thus, we further strengthen the idea that BPL is not

a mere motor preparation signal but tracks decision making online to guide

upcoming action selection (Fischer et al., 2018; Hunt et al., 2013).
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Different kinds of urgency and boundary collapse. Urgency-related be-

havioral adaptations can occur due to different modes of speed pressure: in-

structions, deadlines or even an internal sense of time. Katsimpokis et al.

(2020) described that different consequences are expected in tasks involving

response deadlines compared to those involving a speed instruction (context).

The former type of urgency builds up over time, whereas the latter leads to

neural adaptation even before or throughout processing and remains rather

constant over time. Deadlines would ultimately lead to long RTs with re-

sponses at low evidence, whereas context fosters premature responses. In our

task, we applied both, urgency through context and deadlines. The urgent

context was given by offering different reward options such as time savings

and monetary bonus for faster response (the context was known in advance).

Deadlines were implicitly induced by presenting a fixed amount of tokens and

requiring the participant to decide and respond within the presentation time.

Accordingly, we observed urgency to be evident in speeded responses at low

evidence, but also by slow RTs at low evidence strength (i.e. urgency by dead-

line). Such complex interplay of decision time and evidence at the moment

of choice associated with different types of urgency complicates the definition

of a decision threshold – behaviorally as well as for a neuronal correlate. We

cannot conclusively define whether decision time is based on dynamic bounds

or static bounds with evidence gain modulations. Similarly, decision making

models do not agree about incorporating speed adjustments into their mech-

anism. Some models involve dynamic bounds, which comprise of a decision

threshold that is not defined by a fixed value of evidence but instead collapses

over time at some (variable) rate. This has been considered in DDMs with

collapsing bounds (e.g Drugowitsch et al., 2012) and models involving an in-

dependent urgency signal (Cisek et al., 2009; Hanks et al., 2014; Thura et al.,

2014). Others suggest that starting points of evidence integration are biased

depending on decision contexts (speed or accuracy) and that the gain of the

decision variable could be increased (Hanks et al., 2014; Heitz & Schall, 2012).

The authors propose that this effect results from modulatory recurrent net-

work activity that is up-/down-regulated based on the context (for a review,

see Standage et al., 2014).

Interestingly, adaptations in decision bounds have been related to interindi-

vidual differences, such as Need for Closure (Evans et al., 2017). Moreover,

behavioral consequences of urgency (speeded decisions at low accuracy) were
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conceptually related to behavioral phenotype of (trait-) impulsive individuals

(Carland et al., 2019). Personality traits might, thus, affect our immediate de-

cision making alongside long-term behavioral effects. Given these tendencies,

it seems important to control for such effects in future studies.

Urgency Representations and BPL. Next to better understand behav-

ioral consequences of speeded decision making, we considered neural correlates

that were potentially affected by urgency. We were particularly interested in

the effect of urgency on information integration in motor areas. Importantly,

we did not find compelling evidence for the direct effect of urgency manipu-

lations on the neural build-up of beta power reductions and BPL. We could

show, however, that signal strength increases over time. This is consistent with

other studies showing neural build-up activity as time elapses in cerebellum

(Gao et al., 2018; Lin et al., 2020), prefrontal cortex (Jech et al., 2005), lateral

intraparietal area (Churchland et al., 2008; Janssen & Shadlen, 2005; Leon &

Shadlen, 2003) and motor cortex (Renoult et al., 2006). Interestingly, the nora-

drenergic system might be relevant too as pupil size increases over time (Joshi

& Gold, 2020). As such long-range effects of urgency were found, it is surpris-

ing that we cannot observe an effect on BPL in the current study. One reason

could be that a lot of variance was explained by RT. This predictor is promi-

nent over time and RT itself is also related to urgency manipulations (i.e. lower

RTs in urgent trials compared to no urgency). Therefore, we speculate that

the reduction in RT is an expression of urgency, and RT, but not our manip-

ulations directly, varies with beta power reductions and BPL. Similarly, clear

variations in neural ramping by RT were previously found in BPL (Fischer et

al., 2018) and other signals, such as pre-saccadic lateral intraparietal neuronal

firing rates in monkeys (Hanks et al., 2014), CPP (Kelly & O’Connell, 2013;

O’Connell et al., 2012), contralateral beta power reductions over motor cortex

(O’Connell et al., 2012), alpha power and alpha power lateralization (Murphy

et al., 2016). These variations have been interpreted in terms of starting point

biases depending on speed (Fischer et al., 2018) and global gain activity un-

der speed pressure (Murphy et al., 2016). Importantly and congruent with

our results, RT modulations by motor desynchronization were independent of

physical evidence (O’Connell et al., 2012). Thus, we conclude that our results

are consistent with previous studies suggesting that urgency relates to RT

changes which are reflected in neural activity. The lack of a direct effect of our

urgency manipulation (financial and temporal rewards) could be due to too
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low efficiency as Murphy et al. (2016) has previously suggested. Particularly,

punishments were claimed to be more effective and should be considered for

future tasks. The authors added that mild time-dependencies could potentially

not be detected in single-trial analyses. In the case of BPL, low signal-to-noise

ratio might explain the lack of findings. We noted similar difficulties in previ-

ous work (Rogge et al., 2022). This might be less of an issue in time-domain

and averaged signals. We therefore included additional analyses for exploring

other neural correlates that are potentially related to evidence and urgency

integration during decision making.

Effects of urgency on time-domain scalp potentials . Exploratory anal-

yses revealed the influence of task manipulation on time-domain EEG corre-

lates. Of particular interest was the CNV, a signal over central electrodes,

which was previously shown to reflect response planning (Scheibe et al., 2009)

and event anticipation (Funderud et al., 2012; van Rijn et al., 2011). Impor-

tantly, the CNV has been related to alpha and beta power reductions during

motor preparation, where particularly high alpha power was suggested to drive

the late part of the CNV (Funderud et al., 2012). We also found negativation

over central electrodes, which builds up towards the onset of each token (ev-

ery 200 ms) and additionally presents a slow drift over the course of the trial

with highest amplitudes just before the response. Similarly, the CNV ramps

up before imperative stimuli. Thus, the present signal is comparable to the

CNV, even though our paradigm is not a classic task to evoke a CNV. Most

interestingly, however, is that time incentive (in NO MONEY) seems to dimin-

ish the strength of this signal over electrode FCz. Thus, more fronto-central

regions might be relevant in urgency encoding that is evoked by the current

speed context. This holds at least for trials in which urgency is not dominantly

driven by financial reward and thus time savings might be motivating enough

to adapt cognitive processing. This finding is in line with the idea of global

gain modulation by Murphy et al. (2016). A very general increase in brain

activity as a result of urgent context could also affect classical ERPs and thus

indicate an increase of the general level of expectation and responsiveness as

indexed by the CNV. Overall, little is known about the effect of urgency on

ERPs in general. However, with single-trial analyses they could potentially

serve as a robust non-invasive marker of decision making to gain insight into

the effects of urgency.
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Conclusion. Taken together, we find that slow evidence accumulation is re-

flected in beta power attenuation and its hemispheric lateralization after stim-

ulus presentation. Additionally, other decision variables are encoded in BPL

and drive behavior. Particularly, the update of evidence (most recent stimu-

lus) appears relevant for choices and choice timing. Even though, we did not

find that time pressure affects how evidence is tracked in the motor cortex,

we could show that response times themselves are an expression of urgency

and those vary strongly and consistently with BPL. Thus, our study adds to

existing understanding of the BPL during decision formation, and provides

insight into the role of urgency in decision making. Further research is needed

to disentangle the relevance of different types of urgency during the decision

process and to understand how it is essentially encoded to inform adaptive

response times. Finally, this study was crucial for refining a paradigm that

could eventually be used while recording subcortical activity, for example from

dystonic patients receiving deep brain stimulation in the GPi (Hu & Stead,

2014). This brain structure seems to be of particular interest because urgency-

related activity was previously recorded (Thura & Cisek, 2017, 2016). Such a

study could shed light on causal effects of subcortical structures on decision

and urgency processing.
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Figure S3-1. Errors and Heuristics. Proportion of missed (A) and premature (B)
responses in different conditions. Potential biases and heuristics, that could affect
choices and reaction times, were the proportion of choices (C), the monotony of the
sequence prior to the response (D) and the proportion of responses that were in the
same direction as the previous token (update). We collapsed over all trial types.
Individual dots display within-participant average.
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Figure S3-2. Correlation matrices for multiple regression on behavior (Figure 3-3).
The averaged correlation strength between all regressors for the RT- (A) and the
CHOICE-Models (B), where the top panels are for NO MONEY and bottom panels
represent results from MONEY.
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Figure S3-3. Regression weights for Time condition. (A) Time reward does not
have an effect for 600 ms after the token presentation on the Beta Power at motor
electrodes (C3, C4) in neither condition (NO MONEY = blue, MONEY = red).
(B) The same lack of effects for regression on the beta power lateralization. (C)
Averaged token-locked BPL sorted by Time condition (SLOW vs. FAST). These
results complement Figures 3-4 and 3-6, respectively.
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Figure S3-4. Token-locked ERPs by Evidence and Update. Timelines show ERPs
of midline electrodes (FCz, Cz, CPz, Pz) up to 600 ms post-token separately for
reward condition (NO MONEY = blue vs. MONEY = red). (A) Accumulated
evidence (contra vs. low vs. high in choice direction) reveals stronger negativation
(up) for high evidence compared to low and contra evidence (the latter two are
almost on top of each other). Almost no differences can be observed related to (B)
evidence update (contra vs. pro choice). Topographies display whole-head potentials
100 ms after token presentation.
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A B

Figure S3-5. Response-locked ERPs by RT and Time. Timelines show ERPs of
midline electrodes (FCz, Cz, CPz, Pz) locked to response onset separately for reward
condition (NO MONEY = blue vs. MONEY = red), (A) RT (slow = light vs. fast
= dark) and (B) Time incentive (SLOW = light vs. FAST = dark). Topographies
display scalp potentials at the time of the response.
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8 General Discussion

With the work presented here, I aimed at increasing our understanding of the

role of lateralized beta power during decision making. I asked which decision-

related variables are encoded by the BPL and whether it tracks ongoing pro-

cessing throughout deliberation time. Moreover, I explored whether urgency

influences evidence accumulation and whether this can be read-out from BPL

trajectories.

In three studies, I recorded EEG while participants performed different forced-

choice perceptual decision tasks. The paradigms varied in the amount of time

that was allowed for the response (no vs. fixed vs. flexible delay between stim-

ulus presentation and response cue, Exp. 1 & 3, Exp. 1, Exp. 2, respectively).

In addition, the speed of reaction was emphasized to different degrees, with

one task including a response deadline (Exp. 2), another (Exp. 3) involving

rewards for fast reactions and yet another task (Exp. 1) allowing sufficient

time for responding without any speed reward. Furthermore, the paradigms

differed in how evidence for the choices was presented to the participants. In

one task (Exp 2.) evidence was presented immediately without distractors or

noise. In Experiment 1 participants saw immediately all evidence available for

the given trial but with more or less noise. In the final task (Exp.3) information

was presented sequentially, piece by piece.

I found several influential factors modulating BPL trajectories. Firstly, re-

sponse delay variations in Experiments 1 & 2 revealed that BPL onset oc-

curred consistently before the response cue regardless of fixed or flexible delay

times. Furthermore, BPL trajectories clearly differed from the LRP dynam-

ics. BPL emerged consistently locked to stimulus onset, similarly to no delay

trials, whereas LRP onset varied systematically related to response cue times.

Secondly, evidence presentation affected BPL dynamics. I found that stimulus

strength modulated BPL amplitudes (Exp. 1) and that the momentary BPL

strength related to both accumulated evidence and current evidence updating

(Exp. 3). Thirdly, I could not find evidence for a direct link between urgency

and BPL strength or evidence accumulation (Exp. 3). However, I observed

an indirect effect: External speed pressure (rewards) affected behavior in that

it decreased reaction times (Exp. 2 & 3); RTs in turn consistently explained

variations in the build-up of BPL (Exp. 1 - 3).
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In light of these findings, I will discuss the functional role of BPL in the decision

process and speculate about perspectives in the following sections.

8.1 Can we use BPL as an online read-out for decision processing?

The presented work emphasizes the relevance of BPL as a window into decision

processing. In particular the BPL appears to build a bridge from choice devel-

opment to corresponding action implementation in specific decision contexts.

I assume a predominantly effector-independent decision variable to develop

elsewhere in the brain, perhaps reflected by the CPP (O’Connell et al., 2012).

The BPL appears to represent this information in the motor output frame

by tracking the variable online instead of in an all-or-nothing manner after

choices are completed. This dynamic account seems to be adaptive in that it

saves time and effort after decision termination as the motor system is already

prepared for the intended motor execution.

How and what kind of evidence/decision information is being tracked by the

BPL remains elusive. The present studies suggest that slow external evidence

presentation can be encoded as an accumulated and momentary value of ev-

idence in BPL. However, it seems less consistently observable when evidence

is presented in a quickly rather than discretely. Therefore, I cannot strictly

support one or another theory of decision making. While others claim only

momentary evidence plays a role (Cisek et al., 2009) or merely accumulated

evidence (Winkel et al., 2014), I propose that those frameworks are not mutu-

ally exclusive. Instead, they tend to uncover separate aspects of the complex

decision-making process. I speculate that different tasks, such as the RDM

task at hand and the Token Task, require different modes of processing to

some extent. One task presents all evidence at once with different degrees of

uncertainty and the decision maker has to infer evidence from a noisy stimulus,

whereas in the other task evidence is presented without noise but step-wise.

Thus, the accumulation process unfolds based on the external stimulus. Both

tasks involve different kinds of uncertainty (perceptual vs. uncertainty re-

lated to expectation) which potentially require distinct processing mechanisms.

Therefore, different results can be expected in terms of evidence tracking in

these tasks. One option to potentially overcome this difference would be to

present only the most recent token direction in the last paradigm (Exp. 3).

This would require the decision maker to keep an internal representation of

the evidence presented without a physical presentation of the current amount
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of evidence. However, I did not select such a stimulus as this could be con-

founded by working memory processes and it does not provide an analogue to

the RDM stimulus.

One commonality of all the presented tasks is the response delay. Depending

on the task it was enforced or voluntary, fixed or flexible in time. Impor-

tantly, BPL occurs across all tasks, regardless of the type of delay, soon after

stimulus onset and remains present until a response is initiated. Thus, BPL

is not only a robust signal during decision processing but its continued pres-

ence throughout delay suggests further functionalities. One could understand

the prolonged plateau during the ’wait-to-respond’ phases as a kind of motor

working memory. Along these lines, other studies (Spitzer et al., 2010; Spitzer

& Blankenburg, 2011) found that beta-band power in prefrontal regions is re-

lated to somatosensory working memory. Conceptually, this would mean that

after a choice has been made and decision making as well as the tracking of the

decision variable are complete, the motor cortex remains in its state to enable

an action as soon as it is required. Thus, the peak of the BPL does not neces-

sarily indicate the time of response initiation as was suggested by Fischer et al.

(2018) but rather marks the moment of terminated decision making (readiness

to respond). Another trigger, however, would be needed to initiate the final

action execution. From the present results, it becomes likely that the LRP

is a potential candidate to mark this moment. It emerges after response cue

onset and shows a steep and transient peak which is tightly linked to response

onset. One could further speculate, that BPL serves as a gate for this final

response trigger. BPL could, metaphorically speaking, act like a brake that is

released but requires an additional acceleration force to finally carry out the

action.

Such a gating task could also lead to speed-related adaptations: Once responses

are allowed to be executed their implementation could be modulated by such a

gating mechanism. The actual regulation of the speed of the response is prob-

ably encoded in basal ganglia (Frank, 2006; Thura & Cisek, 2017). However,

the final implementation of more or less speeded actions could possibly be read

out at the cortical level by BPL trajectories. The present results reveal that

the strength of BPL differed according to the length of reaction times. Thus,

it appears to relate to speed adjustments and might give insight into online

processing of speed adjustments. On the other hand, I did not find direct ef-
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fects of rewards for fast reactions, although I did find behavioral adjustments.

This is not necessarily in opposition of our conclusion. Rather, it shows, that

reaction times are directly related to BPL, whereas external speed manipu-

lations may correlate more directly with subcortical structures that regulate

speed adjustments. Sudden changes in speed regimes midway through pro-

cessing, as was previously demonstrated using evidence strength (O’Connell

et al., 2012), could deliver more insight into the direct relation between speed

instruction and BPL strength. The discrete presentation of evidence, as in the

Token Task, could also be beneficial for such purposes, as different levels of

evidence could be explored in depth at such moments of interruption.

In conclusion, BPL is a promising candidate for online read-out of the cur-

rent state of the decision, which is in line with suggestions by Hunt et al.

(2013) and Fischer et al. (2018). Presumably, it provides a bridge between

decision processing and motor execution by encoding decision- and output-

relevant variables.

8.2 Is decision making a sequential process?

From the presented results on BPL over motor cortical regions I infer that

decision-related information is tracked in the output frame of reference. This

means that at any moment during deliberation time the current state of the

decision is encoded by the sign of the lateralization. If the preliminary choice

would have to be put into action, one could potentially derive which effector

will be used (and thus which choice was dominant at that moment). This,

in turn, means that motor cortices not only become involved in the decision

process once a choice is finalized. This area appears to play an important role

from much earlier on (in Exp. 1 and 2 around 400 ms post-stimulus) by track-

ing a hypothetical decision variable. In contrast, sequential accounts pose that

processing stages occur in succession but might not be completely independent

(Sternberg, 1969). Here, however, we found evidence for parallel processing

theories because activity over motor cortex was recorded before motor out-

put was required. Similarly, Hunt et al. (2013) concluded that value-guided

choices involved parallel processing and Siegel et al. (2015) described the par-

allel activity in several cortical regions and the relevance of feedback loops for

sensori-motor choices. The continuous flow of information theory (Eriksen &

Schultz, 1979; Coles, 1989) describes that information processing does not oc-

cur sequentially, one sub-function after the another, but that processing stages
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overlap. In these studies, visual detection tasks revealed that the motor system

was ’primed’ for several response options early during visual processing. Over

time the alternatives became more and more restricted.

The present results support the idea that information ’leaks’ into motor cor-

tical regions throughout processing and therefore aid action preparation or

enhance excitability prior to choice commitment. Similarly, Klein-Flügge and

Bestmann (2012) previously suggested that corticospinal excitability increased

in parallel to decision processing. Consistent with this, I argue that BPL is

an inverse correlate of motor cortical excitability that represents the current

decision state. Note, that the present results are insofar limited as they do

not allow for causal inferences. Here, I present strong links to different deci-

sion variables, a robust temporal association with the deliberation time and

a dissociation from a signal that tends to merely prepare the action, i.e. the

LRP. Together, these findings robustly support a parallel processing account,

but whether evidence accumulation/decision processing causes the lateralized

activity cannot be answered here. Future research should approach this ques-

tion by using physical perturbation of motor cortical excitability (TMS) and

explore influences on BPL trajectories.

The importance of such a mechanism becomes clear when we look at decisions

under time pressure. In those situations, decision making could benefit greatly

if excitability is indeed enhanced prior to response preparation. This mecha-

nism appears to promote processing efficiency and could lead to greater rewards

or lower losses. In natural environments, for example in foraging tasks, rewards

might diminish with elapsing time (competitors) while time itself is costly as

the agent looses the opportunity to forage elsewhere. Therefore, a mechanism

that shortens the time from choice to action without loss of accuracy appears

to be generally adaptive and probably evolutionary preferred.

In sum, the presented studies present evidence against a full sequential pro-

cessing mode. Rather, decision variables are reflected simultaneously in a

variety of brain regions, and processing appears to be parallel, at least to some

degree.

8.3 How to find a representation of urgency in the cortex?

In light of the present results, one particular question remains to be answered:

Can I find a direct cortical representation of the speed-accuracy trade-off, and
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if so where and how is it encoded? In contrast to the hypotheses, I found no

direct link between urgency manipulations or the resulting SAT on the strength

of BPL in the present studies. One potential reason for the missing effect is the

strong relationship between response times and BPL (see detailed discussion

in Urgency Representations and BPL). In the following, I would like to give

suggestions on how this problem could be addressed. Future studies should aim

at disentangling the response speed from the influence of urgency. For that it

would be useful to explore similar reaction times at different levels of urgency.

An experiment could be designed such that urgency is manipulated by different

deadlines at similar difficulty. In speed trials, where time is running out fast

(i.e. early deadline), a response at 200 ms is rather urgent whereas in trials

with late deadlines a response at the same time would be less urgent.

Additionally, the effects of response vigor on cortical signals open many oppor-

tunities to be explored in more depth. It was previously suggested that vigor

is a behavioral implementation of urgency (Thura et al., 2014). Thus, if neural

signal strength correlated with the magnitude of vigor conclusions about an

alternative or additional mechanism through which urgency is encoded in the

cortex could be drawn. So far the link was described between experimental ma-

nipulation (urgency by context) as well as time-on-trial (urgency by deadline)

and behavioral invigoration (saccade timing). The origin of urgency and thus

the invigoration of movements was suggested in basal ganglia output activity

via the GPi (Carland et al., 2019). To my knowledge, this signals’ cortical

implementation into the decision signal has not yet been described. Therefore,

it would be interesting to correlate subcortical SAT-adaptation signals, i.e.

record GPi activation with deep brain stimulation electrodes, with the corti-

cal signal related to decision implementation into the action (i.e. the BPL).

At the same, time variations in vigor should be correlated with both signals’

amplitudes to directly link the behavioral output to the neural correlates. It

would be possible to measure the amount of vigor in humans by the velocity

of the response action (as was done in the present Exp 2.), but probably also

by the compression force exerted on a response device.

Together, the present findings cannot conclusively answer where and how ur-

gency is implemented in the cortical representation of decision making. How-

ever, future studies can use previous findings as well the present results to

develop new experimental designs to better understand the role of urgency in
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decision processing.

8.4 Relevance of BPL for clinical settings

I presented a neural correlate that can potentially serve a an online read-out

of current decision processing. It seems likely that future research could exam-

ine such markers to gain insight into dysfunctional decision-making processes.

Executive functions are compromised in many psychiatric and neurological

disorders but often individually affected sub-functions are not specifically de-

termined. However, specialized treatments could serve the patients’ recovery

well. Thus, more fine-grained diagnostics are needed (Müller & Klein, 2019).

If we understand the sub-skills, their neural underpinnings and behavioral

signature, we could develop better diagnostic tools. In the current context,

it was already shown that compulsive behavior or pathology (Banca et al.,

2015; Rotge et al., 2008; Hauser, Moutoussis, Iannaccone, et al., 2017; Hauser,

Moutoussis, Dayan, & Dolan, 2017) and substance abuse (Redish et al., 2008)

potentially relate to dysfunctional evidence accumulation resulting in delayed

or impulsive decision termination, respectively. I suggest that a neural marker

of evidence processing, such as the BPL, could improve individualized diagnos-

tics of executive functions. The non-invasive recording of online task processing

could provide an insight into dysfunctional patterns of evidence accumulation.

Furthermore, tasks that target very particular sub-functions are necessary to

aid diagnostics. For example, specific paradigms requiring decision making and

evidence accumulation, like the ones presented here, could be adapted for clin-

ical test batteries. Accuracy and reaction times would give first insights into

performance deficits at one particular function. EEG measurements of neural

correlates could further complement initial behavioral test results.

8.5 Conclusion

Commitment is only meaningful insofar as an action is initiated.

(Thura et al., 2014)

This quote concisely illustrates the tight link between decision and action. The

work I presented here tries to uncover a neural correlate of this link.

I found that BPL uniquely represents decision information within the action

frame of reference. It seems that decision information is forwarded to motor

cortex continuously throughout the deliberation process. Therefore, we can
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gain insight into the current state of the decision.

To date there is plenty of evidence related to decision variables elsewhere in

the brain and many findings are based on animal models. However, human

decision making processing remains partially elusive. Most importantly, we do

not know exactly how choices turn into actions.

Here, I presented a neural correlate that could serve as a link between decision

processing and action by incorporating several relevant pieces of information

from different brain areas. Thereby, it reflects the readiness of the motor cortex

to prepare for a particular action. It builds the bridge from top-level decision

processing to downstream motor preparation and execution units.
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Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception

following lesions of the middle temporal visual area (MT). J. Neurosci., 8 (6),

2201–2211.

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-

to-bound signal that determines perceptual decisions in humans. Nat. Neu-

rosci., 15 (12), 1729–1735.

Okazawa, G., Hatch, C. E., Mancoo, A., Machens, C. K., & Kiani, R. (2021). Rep-

resentational geometry of perceptual decisions in the monkey parietal cortex.

Cell , 184 (14), 3748–3761.e18.

Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2012). AMICA: An Adaptive

Mixture of Independent Component Analyzers with Shared Components. Tech

Rep., 1–15.

Pape, A. A., & Siegel, M. (2016). Motor cortex activity predicts response alternation

during sensorimotor decisions. Nat. Commun., 7 (1), 1–10.

Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: probing the

physiology of perception. Annu. Rev. Neurosci., 21 , 227–277.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Trans-

forming numbers into movies. Spat. Vis., 10 (4), 437–442.

Pfurtscheller, G. (1981). Central beta rhythm during sensorimotor activities in man.

Electroencephalogr. Clin. Neurophysiol., 51 (3), 253–264.

Pfurtscheller, G., & Berghold, A. (1989). Patterns of cortical activation during plan-

ning of voluntary movement. Electroencephalogr. Clin. Neurophysiol., 72 (3),

250–258.



FROM CHOICE TO ACTION XXI

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Post-movement beta syn-

chronization. A correlate of an idling motor area? Electroencephalogr. Clin.

Neurophysiol., 98 (4), 281–293.

Pfurtscheller, G., Zalaudek, K., & Neuper, C. (1998). Event-related beta synchro-

nization after wrist, finger and thumb movement. Electroencephalogr. Clin.

Neurophysiol., 109 (2), 154–160.

Pilly, P. K., & Seitz, A. R. (2009). What a Difference a Parameter Makes: a

Psychophysical Comparison of Random Dot Motion Algorithms. Vision Res.,

49 (13), 1599–1612.

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An au-

tomated electroencephalographic independent component classifier, dataset,

and website. Neuroimage, 198 , 181–197.

Ploner, M., Gross, J., Timmermann, L., Pollok, B., & Schnitzler, A. (2006). Os-

cillatory activity reflects the excitability of the human somatosensory system.

Neuroimage, 32 (3), 1231–1236.

Poth, C. H. (2021). Urgency forces stimulus-driven action by overcoming cognitive

control. Elife, 10 (e73682), 1–14.

Purcell, B. A., & Kiani, R. (2016). Hierarchical decision processes that operate over

distinct timescales underlie choice and changes in strategy. Proc. Natl. Acad.

Sci. U. S. A., 113 (31), E4531–E4540.

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev., 85 (2), 59–108.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data

for two-choice decision tasks. Neural Comput., 20 (4), 873–922.

Reck, C., Florin, E., Wojtecki, L., Groiss, S., Voges, J., Sturm, V., . . . Timmer-

mann, L. (2009). Differential distribution of coherence between beta-band

subthalamic oscillations and forearm muscles in Parkinson’s disease during

isometric contraction. Clin. Neurophysiol., 120 (8), 1601–1609.

Reddi, B. A., & Carpenter, R. H. (2000). The influence of urgency on decision time.

Nat. Neurosci., 3 (8), 827–830.

Redish, A. D., Jensen, S., & Johnson, A. (2008). A unified framework for addiction-

Vunerabilities in the decision process. Behav. Brain Sci., 31 , 415–487.

Renoult, L., Roux, S., & Riehle, A. (2006). Time is a rubberband: Neuronal activity

in monkey motor cortex in relation to time estimation. Eur. J. Neurosci.,

23 (11), 3098–3108.

Reynaud, A. J., Saleri Lunazzi, C., & Thura, D. (2020). Humans sacrifice decision-

making for action execution when a demanding control of movement is re-

quired. J. Neurophysiol., 124 (2), 497–509.

Rogge, J., Jocham, G., & Ullsperger, M. (2022). Motor cortical signals reflecting

decision making and action preparation. Neuroimage, 263 , 1–15.



FROM CHOICE TO ACTION XXII

Roitman, J. D., & Shadlen, M. N. (2002). Response of Neurons in the Lateral

Intraparietal Area during a Combined Visual Discrimination Reaction Time

Task. J. Neurosci., 22 (21), 9475–9489.

Rotge, J. Y., Clair, A. H., Jaafari, N., Hantouche, E. G., Pelissolo, A., Goillandeau,

M., . . . Aouizerate, B. (2008). A challenging task for assessment of checking

behaviors in obsessive-compulsive disorder. Acta Psychiatr. Scand., 117 (6),

465–473.

Samaha, J., Gosseries, O., & Postle, B. R. (2017). Distinct oscillatory frequencies

underlie excitability of human occipital and parietal cortex. J. Neurosci.,

37 (11), 2824–2833.

Sauseng, P., Klimesch, W., Gerloff, C., & Hummel, F. C. (2009). Spontaneous

locally restricted EEG alpha activity determines cortical excitability in the

motor cortex. Neuropsychologia, 47 (1), 284–288.

Scheibe, C., Schubert, R., Sommer, W., & Heekeren, H. R. (2009). Electrophys-

iological evidence for the effect of prior probability on response preparation.

Psychophysiology , 46 (4), 758–770.

Schouten, J. F., & Bekker, J. A. (1967). Reaction time and accuracy. Acta Psychol.

(Amst)., 27 , 143–153.

Schurger, A., Hu, P. B., Pak, J., & Roskies, A. L. (2021). What Is the Readiness

Potential? Trends Cogn. Sci., 25 (7), 558–570.

Selen, L. P., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the mo-

tor system: Reflex gains track evolving evidence leading to a decision. J.

Neurosci., 32 (7), 2276–2286.

Shadlen, M. N., & Kiani, R. (2013). Decision Making as a Window on Cognition.

Neuron, 80 (3), 791–806.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in

the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol., 86 (4),

1916–36.

Shadmehr, R., De Xivry, J. J. O., Xu-Wilson, M., & Shih, T. Y. (2010). Temporal

Discounting of Reward and the Cost of Time in Motor Control. J. Neurosci.,

30 (31), 10507–10516.

Shibasaki, H., Barrett, G., Halliday, E., & Halliday, A. M. (1981). Cortical potentials

associated with voluntary foot movement in man. Electroencephalogr. Clin.

Neurophysiol., 52 (6), 507–516.

Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clin.

Neurophysiol., 117 (11), 2341–2356.

Siegel, M., Buschman, T. J., & Miller, E. K. (2015). Cortical information flow

during flexible sensorimotor decisions. Science, 348 (6241), 1352–1355.

Siegel, M., Donner, T. H., Oostenveld, R., Fries, P., & Engel, A. K. (2007). High-



FROM CHOICE TO ACTION XXIII

Frequency Activity in Human Visual Cortex Is Modulated by Visual Motion

Strength. Cereb. Cortex , 17 (3), 732–741.
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