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Abstract
Model order reduction (MOR) techniques are often used to reduce the order of spatially
discretized (stochastic) partial differential equations and hence reduce computational
complexity. A particular class of MOR techniques is balancing related methods which
rely on simultaneously diagonalizing the system Gramians. This has been extensively
studied for deterministic linear systems. The balancing procedure has already been
extended to bilinear equations, an important subclass of nonlinear systems. The choice
of Gramians in Al-Baiyat and Bettayeb (In: Proceedings of the 32nd IEEE conference
on decision and control, 1993) is the most frequently used approach. A balancing
related MOR scheme for bilinear systems called singular perturbation approximation
(SPA) has been described that relies on this choice of Gramians. However, no error
bound for this method could be proved. In this paper, we extend SPA to stochastic
systems with bilinear drift and linear diffusion term. However, we propose a slightly
modified reduced order model in comparison to previous work and choose a different
reachability Gramian. Based on this new approach, an L2-error bound is proved for
SPA which is the main result of this paper. This bound is new even for deterministic
bilinear systems.
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1 Introduction

Many phenomena in real life can be described by partial differential equations (PDEs).
For an accurate mathematical modeling of these real-world applications, it is often
required to take random effects into account. Uncertainties in a PDE model can,
for example, be represented by an additional noise term leading to stochastic PDEs
(SPDEs) [11,15,28,29].

It is often necessary to numerically approximate time-dependent SPDEs since ana-
lytic solutions do not exist in general. Discretizing in space can be considered as a first
step. This can, for example, be done by spectral Galerkin [17,19,20] or finite element
methods [2,21,22]. This usually leads to large-scale SDEs. Solving such complex
SDE systems causes large computational cost. In this context, model order reduction
(MOR) is used to save computational time by replacing high-dimensional systems by
systems of low order in which the main information of the original system should be
captured.

1.1 Literature review

Balancing relatedMOR schemeswere developed for deterministic linear systems first.
Famous representatives of this class ofmethods are balanced truncation (BT) [3,26,27]
and singular perturbation approximation (SPA) [14,23].

BT was extended in [5,8] and SPA was generalized in [33] to stochastic linear
systems. With this first extension, however, no L2-error bound can be achieved [6,12].
Therefore, an alternative approach based on a different reachability Gramian was
studied for stochastic linear systems leading to an L2-error bound for BT [12] and for
SPA [32].

BT [1,5] and SPA [18] were also generalized to bilinear systems, which we refer
to as the standard approach for these systems. Although bilinear terms are very weak
nonlinearities, they can be seen as a bridge between linear and nonlinear systems. This
is because many nonlinear systems can be represented by bilinear systems using a so-
called Carleman linearization. Applications of these equations can be found in various
fields [10,25,34]. A drawback of the standard approach for bilinear systems is that no
L2-error bound could be shown so far. A first error bound for the standard ansatz was
recently proved in [4], where an output error bound in L∞ was formulated for infinite
dimensional bilinear systems. Based on the alternative choice of Gramians in [12], a
new type of BT for bilinear systems was considered [31] providing an L2-error bound
under the assumption of a possibly small bound on the controls.

A more general setting extending both the stochastic linear and the deterministic
bilinear case is investigated in [30]. There, BT was studied and an L2-error bound
was proved overcoming the restriction of bounded controls in [31]. In this paper, we
consider SPA for the same setting as in [30] in order to generalize the work in [18].
Moreover, wemodify the reduced order model (ROM) in comparison to [18] and show
an L2-error bound which closes the gap in the theory in this context.

For further extensions of balancing related MOR techniques to other nonlinear
systems, we refer to [7,35].

123



Mathematics of Control, Signals, and Systems (2020) 32:129–156 131

1.2 Outline of the paper

This work on SPA for stochastic bilinear systems, see (1), can be interpreted as a
generalization of the deterministic bilinear case [18]. This extension builds a bridge
between stochastic linear systems and stochastic nonlinear systems such that SPA can
possibly be used for many more stochastic equations and applications.

In Sect. 2, the procedure of SPA is described and the ROM is stated. With this, we
provide an alternative to [30], where BT was studied for the same kind of systems. We
also extend the work of [18] combined with a modification of the ROM and the choice
of a newGramian, compare with (3). Based on this, we obtain an error bound in Sect. 3
that was not available even for the deterministic bilinear case. Its proof requires new
techniques that cannot be found in the literature so far and this is the main result of
this paper. The efficiency of the error bound is shown in Sect. 5. There, the proposed
version of SPA is compared with the one in [18] and with BT [30].

2 Setting and ROM

Let every stochastic process appearing in this paper be defined on a filtered probability
space

(
Ω,F , (Ft )t≥0 ,P

)
.1 Suppose that M = (M1, . . . , Mv)

T is an (Ft )t≥0-adapted
and Rv-valued mean zero Lévy process with E ‖M(t)‖22 = E

[
MT (t)M(t)

]
< ∞ for

all t ≥ 0. Moreover, we assume that for all t, h ≥ 0 the random variable M (t + h) −
M (t) is independent of Ft .

We consider a large-scale stochastic control system with bilinear drift that can be
interpreted as a spatially discretized SPDE. We investigate the system

dx(t) = [Ax(t) + Bu(t) +
m∑

k=1

Nkx(t)uk(t)]dt +
v∑

i=1

Hi x(t−)dMi (t), (1a)

y(t) = Cx(t), t ≥ 0. (1b)

We assume that A, Nk, Hi ∈ R
n×n (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B ∈

R
n×m and C ∈ R

p×n . Moreover, we define x(t−) := lims↑t x(s). The control
u = (u1, . . . , um)T is assumed to be deterministic and square integrable, i.e.,

‖u‖2
L2
T

:=
∫ T

0
‖u(t)‖22 dt < ∞

for every T > 0. By [28, Theorem 4.44] there is a matrix K = (
ki j

)
i, j=1,...,v such

that E[M(t)MT (t)] = Kt . K is called covariance matrix of M .
In this paper, we study SPA to obtain a ROM. SPA is a balancing relatedmethod and

relies on defining a reachability Gramian P and an observability Gramian Q. These
two matrices are selected such that P characterizes the states that barely contribute
to the dynamics in (1a) and Q identifies the less important states in (1b), see [30] for

1 We assume that (Ft )t≥0 is right-continuous and F0 contains all sets A with P(A) = 0.
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estimates on the reachability and observability energy functionals. The estimates in
[30] are global, whereas the standard choice of Gramians leads to results being valid
in a small neighborhood of zero only [5,16].

In order to ensure the existence of these Gramians, throughout the paper it is
assumed that

λ

⎛

⎝A ⊗ I + I ⊗ A +
m∑

k=1

Nk ⊗ Nk +
v∑

i, j=1

Hi ⊗ Hjki j

⎞

⎠ ⊂ C−. (2)

Here, λ (·) denotes the spectrum of a matrix. The reachability Gramian P and the
observability Gramian Q are, according to [30], defined as the solutions to

AT P−1 + P−1A +
m∑

k=1

NT
k P−1Nk +

v∑

i, j=1

HT
i P−1Hjki j ≤ −P−1BBT P−1, (3)

AT Q + QA +
m∑

k=1

NT
k QNk +

v∑

i, j=1

HT
i QHjki j ≤ −CTC, (4)

where the existence of a positive definite solution to (3) goes back to [12,32] and is
ensured if (2) holds.

We approximate the large scale system (1) by a system which has a much smaller
state dimension r 
 n. This ROM is supposed be chosen, such that the corresponding
output yr is close to the original one, i.e., yr ≈ y in some metric. In order to be able
to remove both the unimportant states in (1a) and (1b) simultaneously, the first step of
SPA is a state space transformation

(A, B,C, Hi , Nk) �→ ( Ã, B̃, C̃, H̃i , Ñk) := (SAS−1, SB,CS−1, SHi S
−1, SNk S

−1),

where S = Σ
− 1
2 XT LT

Q and S−1 = LPYΣ
− 1
2 . The ingredients of the balancing

transformation are computedby theCholesky factorizations P = LP LT
P ,Q = LQLT

Q ,

and the singular value decomposition XΣY T = LT
QLP . This transformation does not

change the output y of the system, but it guarantees that the newGramians are diagonal
and equal, i.e., SPST = S−T QS−1 = Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn
being the Hankel singular values (HSVs) of the system.

We partition the balanced coefficients of (1) as follows:

Ã =
[
A11 A12
A21 A22

]
, B̃ =

[
B1
B2

]
, Ñk =

[
Nk,11 Nk,12
Nk,21 Nk,22

]
, H̃i =

[
Hi,11 Hi,12
Hi,21 Hi,22

]
, C̃ = [ C1 C2 ] ,

(5)

where A11, Nk,11, Hi,11 ∈ R
r×r (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B1 ∈ R

r×m and
C1 ∈ R

p×r etc. Furthermore, we partition the state variable x̃ of the balanced system
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and the diagonal matrix of HSVs

x̃ =
[
x1
x2

]
and Σ =

[
Σ1

Σ2

]
, (6)

where x1 takes values inRr (x2 accordingly),Σ1 is the diagonal matrix of large HSVs
and Σ2 contains the small ones.

Remark 1 The balancing procedure requires the computation of the Gramians from (3)
and (4). Practically, one always computes the solution of the equation in (4). The reason
why an inequality is considered is that the proof of the error bound in Theorem 3 does
not need an equality in (4). However, it is essential that we consider an inequality in
(3). In contrast to the equation that may not have a solution, the inequality always has
a solution under the given assumptions, but some regularization is needed to enforce
uniqueness. In particular, one solves an optimization problem like, e.g.,minimize tr(P)

subject to (3). The reason why the trace is minimized is that one wants to achieve small
HSVs, because this ensures a small error according to Theorem 3. We refer to Sect. 5
for more details on the computation of P .

Based on the balanced full model (1) with matrices as in (5), the ROM is obtained by
neglecting the state variables x2 corresponding to the small HSVs. The ROM using
SPA is obtained by setting dx2(t) = 0 and furthermore neglecting the diffusion and
bilinear term in the equation related to x2. Note that the condition dx2(t) = 0 is
almost surely false. However, we enforce it since it leads to a ROM with remarkable
properties. After setting dx2(t) = 0 it is no simplification to not take the diffusion into
account since it would follow automatically that it is zerowithin the resulting algebraic
constraint due to the consideration in [33, Section 2]. Assuming that the bilinear term
is equal to zero in the equation is needed, so that the matrices of the ROM below do
not depend on the control u. The dependence on u is something that is not desired.
With this simplification, one can solve for x2 in the algebraic constraint. This leads to
x2(t) = −A−1

22 (A21x1(t) + B2u(t)). Inserting this expression into the equation for x1
and into the output equation, the reduced system is

dx̄ =
[

Āx̄ + B̄u +
m∑

k=1

(N̄k x̄ + Ēku)uk

]

dt +
v∑

i=1

(H̄i x̄ + F̄i u)dMi , (7a)

ȳ(t) = C̄ x̄(t) + D̄u(t), t ≥ 0, (7b)

with matrices defined by

Ā := A11 − A12A
−1
22 A21, B̄ := B1 − A12A

−1
22 B2, C̄ := C1 − C2A

−1
22 A21,

D̄ := −C2A
−1
22 B2, Ēk := −Nk,12A

−1
22 B2, F̄i := −Hi,12A

−1
22 B2,

H̄i := Hi,11 − Hi,12A
−1
22 A21, N̄k := Nk,11 − Nk,12A

−1
22 A21,

where x̄(0) = 0 and the time dependence in (7a) is omitted to shorten the notation.
This straightforward ansatz is based on observations from the deterministic case (Nk =
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Hi = 0), where x2 represents the fast variables, i.e., ẋ2(t) ≈ 0 after a short time, see
[23].

This ansatz for stochastic systemsmight, however, be false, nomatter how small the
HSVs corresponding to x2 are. Despite the fact that, for the motivation, a possibly less
convincing argument is used, this leads to a viable MOR method for which an error
bound can be proved. An averaging principle would be amathematically well-founded
alternative to this naive approach. Averaging principles for stochastic systems have
for example been investigated in [36,37]. A further strategy to derive a ROM in this
context can be found in [9].

Moreover, notice that system (7) is not a bilinear system anymore due to the
quadratic term in the control u. This is an essential difference to the ROM proposed in
[18]. One can think about a structure preserving version by setting B2 = 0 in (7). This
would lead to a generalized variant of the ROMs considered in [18,33]. The reason
why this simplified method is not studied is, because the error bound in Theorem 3
could not be achieved. We refer to a further discussion below Theorem 3 and to Sect. 5
where (7) is compared numerically with the version obtained by choosing B2 = 0.

Remark 2 Notice that if σr �= σr+1, then (2) implies

λ

⎛

⎝All ⊗ I + I ⊗ All +
m∑

k=1

Nk,ll ⊗ Nk,ll +
v∑

i, j=1

Hi,ll ⊗ Hj,ll ki j

⎞

⎠ ⊂ C−

for l = 1, 2 due to considerations in [6]. This implies λ (All) ⊂ C− and hence
guarantees the existence of A−1

ll for l = 1, 2.

3 L2-error bound for SPA

The proof of the main result (Theorem 3) is divided into two parts. We first investigate
the error that we encounter by removing the smallest HSV from the system in Sect. 3.1.
In this reduction step, the structure from the full model (1) to the ROM (7) changes.
Therefore, when removing the other HSVs from the system, another case needs to be
studied in Sect. 3.2. There, an error bound between two ROM is achieved which are
neighboring, i.e., the larger ROM has exactly one HSV more than the smaller one.
The results of Sects. 3.1 and 3.2 are then combined in Sect. 3.3 in order to prove the
general error bound.

For simplicity, let us from now on assume that system (1) is already balanced and
has a zero initial condition (x0 = 0). Thus, (3) and (4) become

ATΣ−1 + Σ−1A +
m∑

k=1

NT
k Σ−1Nk +

v∑

i, j=1

HT
i Σ−1Hjki j ≤ −Σ−1BBTΣ−1,

(8)

ATΣ + Σ A +
m∑

k=1

NT
k ΣNk +

v∑

i, j=1

HT
i ΣHjki j ≤ −CTC, (9)
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i.e., P = Q = Σ = diag(σ1, . . . , σn) > 0.

3.1 Error bound of removing the smallest HSV

We consider the balanced system (1) with partitions as in (5) and (6). As mentioned
before, the reduced state equation is obtained by approximating x2 through x̄2 :=
−A−1

22 (A21 x̄ + B2u) in the differential equation for x1 and within the output Eq. (1b).
The ROM (7) can hence be rewritten as

dx̄ =
[

A1
[ x̄
x̄2

] + B1u +
m∑

k=1

Nk,1
[ x̄
x̄2

]
uk

]

dt +
v∑

i=1

Hi,1
[ x̄
x̄2

]
dMi , (10a)

ȳ(t) = C
[

x̄(t)
x̄2(t)

]
, t ≥ 0, (10b)

where we define

A1 = [ A11 A12 ] , Hi,1 = [ Hi,11 Hi,12 ] , Nk,1 = [ Nk,11 Nk,12 ] .

Wewant to be able to subtract the ROM (10) from (1). Therefore, we add the following
zero line to (10a)

d0 =
[

[ A21 A22 ]
[ x̄
x̄2

] + B2u − c0 +
m∑

k=1

[ Nk,21 Nk,22 ]
[ x̄
x̄2

]
uk

]

dt (11)

+
v∑

i=1

[
[ Hi,21 Hi,22 ]

[ x̄
x̄2

] − ci
]
dMi

with the compensation terms c0(t) := ∑m
k=1 [ Nk,21 Nk,22 ]

[
x̄(t)
x̄2(t)

]
uk(t) and ci (t) :=

[ Hi,21 Hi,22 ]
[

x̄(t)
x̄2(t)

]
for i = 1, . . . , v. Subtracting (10) from (1) together with (11)

yields the following error system

dx− =
[

Ax− + [
0
c0

] +
m∑

k=1

Nkx−uk

]

dt +
v∑

i=1

[
Hix− + [

0
ci

]]
dMi , (12a)

y−(t) = Cx−(t) = y(t) − ȳ(t), t ≥ 0, (12b)

where we introduce the variables x− =
[

x1−x̄
x2−x̄2

]
and x− = [

x1−x̄
x2

]
. Moreover, adding

(1a) and (10a) combined with (11) leads to

dx+ =
[

Ax+ + 2Bu − [
0
c0

] +
m∑

k=1

Nkx+uk

]

dt +
v∑

i=1

[
Hix+ − [

0
ci

]]
dMi , (13)

setting x+ =
[

x1+x̄
x2+x̄2

]
and x+ = [

x1+x̄
x2

]
.
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Before we prove an error bound based on (12a) and (13), we need to introduce the
vector u0 of control components with a nonzero Nk . This is given by

u0 = (u01, . . . , u
0
m)T , where u0k ≡

{
0 if Nk = 0,

uk else.
(14)

The proof of the error bound when only one HSV is removed can be reduced to
the task of finding suitable estimates for E[xT−(t)Σx−(t)] and E[xT+(t)Σ−1x+(t)]. In
particular, the rough idea is to apply Ito’s lemma toE[xT−(t)Σx−(t)] and subsequently
the lemma of Gronwall. Then, a first estimate for (12b) is obtained, i.e.,

E[xT−(t)Σx−(t)] ≤ −E ‖y − ȳ‖2
L2
t
+ σ 2 f (t),

where f depends on the control u, the state x , the compensation terms c0, . . . , cv and
Σ−1

2 assumingΣ2 = σ I . Of course, the dependence of the above estimate on the state
and the compensation terms is not desired. That is why another inequality is derived
by using Ito’s and Gronwall’s lemma for E[xT+(t)Σ−1x+(t)] which yields

E[xT+(t)Σ−1x+(t)] ≤ − f (t) + 4 ‖u‖2
L2
t
exp

(∫ t

0

∥∥
∥u0(s)

∥∥
∥
2

2
ds

)
.

Combining both inequalities, the result of the next theorem is obtained. A similar idea
was also used to determine an error bound for BT [30]. However, the proof for SPA
requires different techniques to find the estimates sketched above.

Theorem 1 Let y be the output of the full model (1) with x(0) = 0, ȳ be the output of
the ROM (7) with x̄(0) = 0 and Σ2 = σ I , σ > 0, in (6). Then, the following holds:

(
E ‖y − ȳ‖2

L2
T

) 1
2 ≤ 2σ ‖u‖L2

T
exp

(
0.5

∥∥∥u0
∥∥∥
2

L2
T

)
.

Proof In order to improve the readability of this paper, the proof is given in Sect. 4.1
��

We proceed with the study of an error bound between two ROM that are neighboring.

3.2 Error bound for neighboring ROMs

In this section, we investigate the output error between two ROMs, in which the larger
ROM has exactly one more HSV than the smaller one. This concept of neighboring
ROMs was first introduced in [32] but in the much simpler stochastic linear setting.

The reader might wonder why a second case is considered besides the one in
Sect. 3.1 since one might just start with a full model that has the same structure as the
ROM (7). The reason is that it is not clear how the Gramians need to be chosen for
(7). In order to investigate the error between two ROMs by SPA, a finer partition than
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the one in (5) is required. We partition the matrices of the balanced full system (1) as
follows:

A =
[

A11 A12 A13
A21 A22 A23
A31 A32 A33

]
, B =

[
B1
B2
B3

]
, C = [ C1 C2 C3 ] , (15a)

Hi =
[

Hi,11 Hi,12 Hi,13
Hi,21 Hi,22 Hi,23
Hi,31 Hi,32 Hi,33

]
, Nk =

[
Nk,11 Nk,12 Nk,13
Nk,21 Nk,22 Nk,23
Nk,31 Nk,32 Nk,33

]
. (15b)

The partitioned balanced solution to (1a) and the Gramians are then of the form

x =
[ x1
x2
x3

]
and Σ =

[
Σ1

Σ2
Σ3

]
. (16)

We introduce the ROM of truncating Σ3 first. According to the procedure described
in Sect. 2, the reduced system is obtained by setting dx3 equal to zero, neglecting
the bilinear and the diffusion term in this equation. The solution x̄3 of the resulting
algebraic constraint is an approximation for x3. One can solve for this approximating
variable and obtains x̄3 = −A−1

33 (A31x1 + A32x2 + B3u). Inserting this result for x3
in the equations for x1, x2 and into the output Eq. (1b) leads to

d
[ x1
x2

] =
[

Â
[ x1
x2
x̄3

]
+ B̂u +

m∑

k=1

N̂k

[ x1
x2
x̄3

]
uk

]

dt +
v∑

i=1

Ĥi

[ x1
x2
x̄3

]
dMi , (17a)

ȳ(t) = C

[
x1(t)
x2(t)
x̄3(t)

]
, t ≥ 0, (17b)

where
[
x1(0)
x2(0)

]
= [

0
0

]
and

Â =
[
A11 A12 A13
A21 A22 A23

]
, B̂ =

[
B1
B2

]
, Ĥi =

[
Hi,11 Hi,12 Hi,13
Hi,21 Hi,22 Hi,23

]
, N̂k =

[
Nk,11 Nk,12 Nk,13
Nk,21 Nk,22 Nk,23

]
.

We aim to determine the error between this ROMand the reduced system of neglecting
Σ2 and Σ3. This is

dx̄r =
[

Âr

[
x̄r
h1
h2

]
+ B1u +

m∑

k=1

N̂r ,k

[
x̄r
h1
h2

]
uk

]

dt +
v∑

i=1

Ĥr ,i

[
x̄r
h1
h2

]
dMi , (18a)

ȳr (t) = [ C1 C2 C3 ]

[
x̄r (t)
h1(t)
h2(t)

]
, t ≥ 0, (18b)

where x̄r (0) = 0,

Âr = [ A11 A12 A13 ] , Ĥr ,i = [ Hi,11 Hi,12 Hi,13 ] , N̂r ,k = [ Nk,11 Nk,12 Nk,13 ]
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and we define

h(t) =
[
h1(t)
h2(t)

]
= −

[
A22 A23
A32 A33

]−1 ([
A21
A31

]
x̄r (t) +

[
B2
B3

]
u(t)

)
. (19)

In order to find a bound for the error between (17b) and (18b), state variables analogous
to x− and x+ in Sect. 3.1 are constructed in the following and corresponding equations
are derived. For simplicity, we use a similar notation again and define

x̂− =
[

x1−x̄r
x2−h1
x̄3−h2

]
and x̂+ =

[
x1+x̄r
x2+h1
x̄3+h2

]
.

Now, we find the differential equations for x̂− and x̂+. Using (19), we find that

[
A21 A22 A23
A31 A32 A33

] [
x̄r
h1
h2

]
=

[
A21
A31

]
x̄r +

[
A22 A23
A32 A33

]
h

=
[
A21
A31

]
x̄r −

[
A22 A23
A32 A33

] [
A22 A23
A32 A33

]−1 ([
A21
A31

]
x̄r +

[
B2
B3

]
u
)

= −
[
B2
B3

]
u. (20)

Applying the first line of (20), we obtain the following equation

d0 =
[

[ A21 A22 A23 ]

[
x̄r
h1
h2

]
+ B2u − ĉ0 +

m∑

k=1

[ Nk,21 Nk,22 Nk,23 ]

[
x̄r
h1
h2

]
uk

]

dt

+
v∑

i=1

[
[ Hi,21 Hi,22 Hi,23 ]

[
x̄r
h1
h2

]
− ĉi

]
dMi , (21)

where ĉ0 = ∑m
k=1 [ Nk,21 Nk,22 Nk,23 ]

[
x̄r
h1
h2

]
uk and ĉi = [ Hi,21 Hi,22 Hi,23 ]

[
x̄r
h1
h2

]
for i =

1, . . . , v. We add the zero line (21) to the state Eq. (18a) and subtract the resulting
system from (17). Hence, we obtain

dx̂− =
[

Âx̂− +
[

0
ĉ0

]
+

m∑

k=1

N̂k x̂−uk

]

dt +
v∑

i=1

[
Ĥi x̂− +

[
0
ĉi

]]
dMi , (22a)

ŷ−(t) = C x̂−(t) = ȳ(t) − ȳr (t), t ≥ 0, (22b)

where x̂− = [
x1−x̄r
x2

]
. One can see that the output of (22) is the output error that we

aim to analyze. The sum of (17a) and (18a) together with (21) leads to

dx̂+ =
[

Âx̂+ + 2B̂u −
[

0
ĉ0

]
+

m∑

k=1

N̂k x̂+uk

]

dt +
v∑

i=1

[
Ĥi x̂+ −

[
0
ĉi

]]
dMi , (23)
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where x̂+ = [
x1+x̄r
x2

]
. We now state the output error between the systems (17) and

(18) for the case that the ROM are neighboring, i.e., the larger model has exactly one
HSVmore than the smaller one. Similarly as in Theorem 1, the proof relies on finding

suitable estimates for E
[
x̂ T−(t)Σ̂ x̂−(t)

]
and E

[
x̂ T+(t)Σ̂ x̂+(t)

]
, where Σ̂ =

[
Σ1

Σ2

]

is a submatrix of Σ in (16).

Theorem 2 Let ȳ be the output of the ROM (17), ȳr be the output of the ROM (18) and
Σ2 = σ I , σ > 0, in (16). Then, it holds that

(
E ‖ȳ − ȳr‖2L2

T

) 1
2 ≤ 2σ ‖u‖L2

T
exp

(
0.5

∥∥∥u0
∥∥∥
2

L2
T

)
.

Proof In order to improve the readability of this paper, the proof is presented later, see
Sect. 4.2. ��

3.3 Main result

In the following, the main result of this paper is formulated. It is a consequence of
Theorems 1 and 2.

Theorem 3 Let y be the output of the full model (1) with x(0) = 0 and ȳ be the output
of the ROM (7) with zero initial state. Then, for all T > 0, it holds that

(
E ‖y − ȳ‖2

L2
T

) 1
2 ≤ 2(σr+1 + σr+2 + . . . + σn) ‖u‖L2

T
exp

(
0.5

∥
∥∥u0

∥
∥∥
2

L2
T

)
,

where σr+1, σr+2, . . . , σn are the diagonal entries of Σ2 and u0 = (u01, . . . , u
0
m)T is

the control vector with components defined by u0k ≡
{
0 if Nk = 0,

uk else.

Proof We apply the results in Theorems 1 and 2. We remove the HSVs step by step
and exploit the triangle inequality in order to bound the error between the outputs y
and ȳ. We introduce ȳ� as the output of ROM (7) with state space dimension � =
r , r + 1, . . . , n − 1. Notice that ȳr coincides with ȳ. Moreover, we set ȳn := y. We
then have

(
E ‖y − ȳ‖2

L2
T

) 1
2 ≤

n∑

�=r+1

(
E ‖ȳ� − ȳ�−1‖2L2

T

) 1
2
.

In the reduction step from y to ȳn−1 only the smallest HSV σn is removed from the
system. Hence, by Theorem 1, we have

(
E ‖y − ȳn−1‖L2

T

) 1
2 ≤ 2σn ‖u‖L2

T
exp

(
0.5

∥∥
∥u0

∥∥
∥
2

L2
T

)
.
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The ROMs of the outputs ȳ� and ȳ�−1 are neighboring according to Sect. 3.2, i.e., only
the HSV σ� is removed in the reduction step. By Theorem 2, we obtain

(
E ‖ȳ� − ȳ�−1‖L2

T

) 1
2 ≤ 2σ� ‖u‖L2

T
exp

(
0.5

∥∥
∥u0

∥∥
∥
2

L2
T

)

for � = r + 1, . . . , n − 1. This provides the claimed result. ��

The result in Theorem 3 tells us that the ROM (7) yields a very good approximation
if the truncated HSVs (diagonal entries of Σ2) are small and the vector u0 of control
components with a nonzero Nk is not too large. The exponential in the error bound
can be an indicator that SPA performs badly if u0 is very large.

We conclude this section by a discussion on the result in Theorem 3. It is important
to notice that the dependence of the error bound on the system matrices and the
covariance matrix of M is hidden in the HSVs. Those are given by σ� = √

λ�(PQ).
We can see from (3) and (4) that the Gramians depend on (A, B,C, Hi , Nk, K ) and
hence σ� = σ�(A, B,C, Hi , Nk, K ). Consequently, changing the system matrices or
the covariance matrix will change the HSVs too. Now, if K is large, the terms related
to Hi in (3) and (4) become more dominant which results in larger HSVs. According
to Theorem 3 a worse approximation can then be expected. We also observe that the
exponential term in Theorem 3 is related to the bilinearity in the drift. Setting Nk = 0
for all k = 1, . . . ,m the exponential becomes a one. This results in the bound that
is known from the stochastic linear case [32]. Choosing Hi = 0 for all i = 1, . . . , v
yields a bound for the deterministic bilinear case. Notice that in this case, the state
variables of the full and reduced system are not random anymore such that the expected
value is redundant and can hence be omitted. Finally, considering Hi = Nk = 0 leads
to the bound obtained for the deterministic linear case [23].

Since the ROM (7) has a different structure than (1), it is an important question
why we do not use a structure preserving generalization of SPA considered in [18,33].
This variant of SPA is obtained by setting B2 = 0 in (7). Conducting the proof of
the error bound for this simplified method, one would obtain an additional term in the
error bound that depends on Σ1, a possibly large matrix. This indicates that SPA with
B2 = 0 probability performs worse than the version stated in (7). We refer to Sect. 5
where both versions of SPA are compared numerically.

4 Proofs of Theorems 1 and 2

In this section, we present the pending proofs of Theorems 1 and 2.

4.1 Proof of Theorem 1

We derive a suitable upper bound for E[xT−(t)Σx−(t)] first applying Ito’s formula.
Hence, Lemma 1 (“Appendix”) and Eq. (12a) yield
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E

[
xT−(t)Σx−(t)

]
= 2

∫ t

0
E

[

xT−Σ

(

Ax− +
m∑

k=1

(Nkx−uk) + [
0
c0

]
)]

ds

+
∫ t

0

v∑

i, j=1

E

[(
Hix− + [

0
ci

])T
Σ

(
Hjx− +

[
0
c j

])]
ki jds.

(24)

We find an estimate for the terms related to Nk , that is

m∑

k=1

2xT−(s)ΣNkx−(s)uk(s) =
m∑

k=1

2
〈
Σ

1
2 x−(s)uk(s),Σ

1
2 Nkx−(s)

〉

2

≤
m∑

k=1

∥∥∥Σ
1
2 x−(s)u0k(s)

∥∥∥
2

2
+

∥∥∥Σ
1
2 Nkx−(s)

∥∥∥
2

2

= xT−(s)Σx−(s)
∥∥∥u0(s)

∥∥∥
2

2
+

m∑

k=1

xT−(s)NT
k ΣNkx−(s),

(25)

where u0 is defined in (14). Moreover, adding a zero, we rewrite

2xT−(s)Σ Ax−(s) = 2xT−(s)Σ Ax−(s) + 2
[ 0
x̄2(s)

]T
Σ Ax−(s)

= xT−(s)(ATΣ + Σ A)x−(s) + 2
[ 0
x̄2(s)

]T
Σ Ax−(s). (26)

With (25) and (26), (24) becomes

E

[
xT−(t)Σx−(t)

]
≤E

∫ t

0
xT−

⎛

⎝ATΣ+Σ A+
m∑

k=1

NT
k ΣNk+

v∑

i, j=1

HT
i ΣHjki j

⎞

⎠ x−ds

+ E

∫ t

0
2xT−Σ

[
0
c0

] +
v∑

i, j=1

(
2Hix− + [

0
ci

])T
Σ

[
0
c j

]
ki jds

+
∫ t

0
E

[
xT−Σx−

] ∥∥u0
∥∥2
2 ds + E

∫ t

0
2

[ 0
x̄2

]T
Σ Ax−ds. (27)

Taking the partitions of x− and Σ into account, we see that xT−Σ
[
0
c0

] = xT2 Σ2c0.
Furthermore, the partitions of x− and Hi yield

(
2Hix− + [

0
ci

])T
Σ

[
0
c j

]
= (

2Hix− + [
0
ci

])T [
0

Σ2c j

]

= (
2 [ Hi,21 Hi,22 ]

(
x − [ x̄

x̄2

]) + ci
)T

Σ2c j

= (2 [ Hi,21 Hi,22 ] x − ci )
T Σ2c j , (28)
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since [ Hi,21 Hi,22 ]
[ x̄
x̄2

] = ci . Using the partition of A, it holds that

2
[ 0
x̄2

]T
Σ Ax− = 2

[
0 x̄ T2 Σ2

]
Ax− = 2x̄ T2 Σ2 [ A21 A22 ]

(
x − [ x̄

x̄2

])

= 2x̄ T2 Σ2([ A21 A22 ] x + B2u), (29)

because [ A21 A22 ]
[ x̄
x̄2

] = −B2u. We insert (9) and (12b) into inequality (27) and
exploit the relations in (28) and (29). Hence,

E

[
xT−(t)Σx−(t)

]
≤ −E ‖y − ȳ‖2

L2
t
+

∫ t

0
E

[
xT−Σx−

] ∥∥
∥u0

∥∥
∥
2

2
ds

+ E

∫ t

0
2xT2 Σ2c0 +

v∑

i, j=1

(2 [ Hi,21 Hi,22 ] x − ci )
T Σ2c j ki jds

+ E

∫ t

0
2x̄ T2 Σ2([ A21 A22 ] x + B2u)ds.

We define the function α−(t) := E
∫ t
0 2x

T
2 Σ2c0 + ∑v

i, j=1 (2 [ Hi,21 Hi,22 ] x − ci )T

Σ2c j ki jds + E
∫ t
0 2x̄

T
2 Σ2([ A21 A22 ] x + B2u)ds and apply Lemma 3 (‘Appendix’)

implying

E

[
xT−(t)Σx−(t)

]
≤ α−(t) − E ‖y − ȳ‖2

L2
t

+
∫ t

0
(α−(s) − E ‖y − ȳ‖2L2

s
)
∥∥u0(s)

∥∥2
2 exp

(∫ t

s

∥∥u0(w)
∥∥2
2 dw

)
ds.

Since Σ is positive definite, we obtain an upper bound for the output error by

E ‖y − ȳ‖2
L2
t

≤ α−(t) +
∫ t

0
α−(s)

∥∥
∥u0(s)

∥∥
∥
2

2
exp

(∫ t

s

∥∥
∥u0(w)

∥∥
∥
2

2
dw

)
ds.

Defining the term α+(t) := E
∫ t
0 2x

T
2 Σ−1

2 c0 + ∑v
i, j=1 (2 [ Hi,21 Hi,22 ] x − ci )T

Σ−1
2 c j ki jds + E

∫ t
0 2x̄

T
2 Σ−1

2 ([ A21 A22 ] x + B2u)ds and exploiting the assumption
that Σ2 = σ I , leads to

E ‖y − ȳ‖2
L2
t

≤ σ 2
[
α+(t) +

∫ t

0
α+(s)

∥∥∥u0(s)
∥∥∥
2

2
exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)
ds

]
.

(30)

The remaining step is to find a bound for the right side of (30) that does not depend on
α+ anymore. For that reason, a bound for the expressionE[xT+(t)Σ−1x+(t)] is derived
next using Ito’s lemma again. From (13) and Lemma 1 (‘Appendix’), we obtain
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E

[
xT+(t)Σ−1x+(t)

]
= 2

∫ t

0
E

[

xT+Σ−1

(

Ax+ + 2Bu +
m∑

k=1

(Nkx+uk) − [
0
c0

]
)]

ds

+
∫ t

0

v∑

i, j=1

E

[(
Hix+ − [

0
ci

])T
Σ−1

(
Hjx+ −

[
0
c j

])]
ki jds.

(31)

Analogously to (25), it holds that

m∑

k=1

2xT+(s)Σ−1Nkx+(s)uk(s) ≤ xT+(s)Σ−1x+(s)
∥
∥u0(s)

∥
∥2
2 +

m∑

k=1

xT+(s)NT
k Σ−1Nkx+(s).

Additionally, we rearrange the term related to A as follows

2xT+(s)Σ−1Ax+(s) = 2xT+(s)Σ−1Ax+(s) − 2
[ 0
x̄2(s)

]T
Σ−1Ax+(s)

= xT+(s)(ATΣ−1 + Σ−1A)x+(s) − 2
[ 0
x̄2(s)

]T
Σ−1Ax+(s).

Moreover, we have

4xT+(s)Σ−1Bu(s) = 4xT+(s)Σ−1Bu(s) − 4
[ 0
x̄2(s)

]T
Σ−1Bu(s).

We plug in the above results into (31) which gives us

E

[
xT+(t)Σ−1x+(t)

]

≤ E

∫ t

0
xT+

⎛

⎝ATΣ−1 + Σ−1A +
m∑

k=1

NT
k Σ−1Nk +

v∑

i, j=1

HT
i Σ−1Hjki j

⎞

⎠ x+ds

− E

∫ t

0
2xT+Σ−1 [

0
c0

] +
v∑

i, j=1

(
2Hix+ − [

0
ci

])T
Σ−1

[
0
c j

]
ki jds

− E

∫ t

0
2

[ 0
x̄2

]T
Σ−1(Ax+ + 2Bu)ds + E

∫ t

0
4xT+Σ−1Buds

+
∫ t

0
E

[
xT+Σ−1x+

] ∥∥
∥u0

∥∥
∥
2

2
ds. (32)

From inequality (8) and the Schur complement condition on definiteness, it follows
that

[
ATΣ−1 + Σ−1A + ∑m

k=1 N
T
k Σ−1Nk + ∑v

i, j=1 H
T
i Σ−1Hjki j Σ−1B

BTΣ−1 −I

]
≤ 0.

(33)
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We multiply (33) with
[ x+
2u

]T from the left and with
[ x+
2u

]
from the right. Hence,

4 ‖u‖22 ≥ xT+

⎛

⎝ATΣ−1 + Σ−1A +
m∑

k=1

NT
k Σ−1Nk +

v∑

i, j=1

HT
i Σ−1Hjki j

⎞

⎠ x+

+ 4xT+Σ−1Bu. (34)

Applying this result to (32) yields

E

[
xT+(t)Σ−1x+(t)

]
≤ 4 ‖u‖2

L2
t
+

∫ t

0
E

[
xT+Σ−1x+

] ∥
∥u0

∥
∥2
2 ds

− E

∫ t

0
2

[ 0
x̄2

]T
Σ−1(Ax+ + 2Bu)ds

− E

∫ t

0
2xT+Σ−1 [

0
c0

]+
v∑

i, j=1

(
2Hix+− [

0
ci

])T
Σ−1

[
0
c j

]
ki jds.

(35)

We first of all see that xT+Σ−1
[
0
c0

] = xT2 Σ−1
2 c0 using the partitions of x+ and Σ .

With the partition of Hi , we moreover have

(
2Hix+ − [

0
ci

])T
Σ−1

[
0
c j

]
= (

2Hix+ − [
0
ci

])T [
0

Σ−1
2 c j

]

= (
2 [ Hi,21 Hi,22 ]

(
x + [ x̄

x̄2

]) − ci
)T

Σ−1
2 c j

= (2 [ Hi,21 Hi,22 ] x + ci )
T Σ−1

2 c j .

In addition, it holds that

−2
[ 0
x̄2

]T
Σ−1(Ax+ + 2Bu) = −2

[
0 x̄ T2 Σ−1

2

]
(Ax+ + 2Bu)

= −2x̄ T2 Σ−1
2

(
[ A21 A22 ]

(
x + [ x̄

x̄2

]) + 2B2u
)

= −2x̄ T2 Σ−1
2 ([ A21 A22 ] x + B2u) .

Plugging the above relations into (35) leads to

E

[
xT+(t)Σ−1x+(t)

]
≤ 4 ‖u‖2

L2
t
+

∫ t

0
E

[
xT+Σ−1x+

] ∥∥∥u0
∥∥∥
2

2
ds

− E

∫ t

0
2x̄ T2 Σ−1

2 ([ A21 A22 ] x + B2u)ds

− E

∫ t

0
2xT2 Σ−1

2 c0+
v∑

i, j=1

(2 [ Hi,21 Hi,22 ] x+ci )
T Σ−1

2 c j ki jds.

(36)
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We add 2E
∫ t
0

∑v
i, j=1 c

T
i Σ−1

2 c j ki jds to the right side of (36) and preserve the inequal-
ity since this term is nonnegative due to Lemma 2 (‘Appendix’). This results in

E

[
xT+(t)Σ−1x+(t)

]
≤ 4 ‖u‖2

L2
t
− α+(t) +

∫ t

0
E

[
xT+(s)Σ−1x+(s)

] ∥∥
∥u0(s)

∥∥
∥
2

2
ds.

Gronwall’s inequality in Lemma 3 (“Appendix”) yields

E

[
xT+(t)Σ−1x+(t)

]

≤ 4 ‖u‖2
L2
t
− α+(t) +

∫ t

0
(4 ‖u‖2L2

s
− α+(s))

∥∥
∥u0(s)

∥∥
∥
2

2
exp

(∫ t

s

∥∥
∥u0(w)

∥∥
∥
2

2
dw

)
ds.

(37)

We find an estimate for the following expression:

∫ t

0
‖u‖2L2

s

∥∥∥u0(s)
∥∥∥
2

2
exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)
ds

≤ ‖u‖2
L2
t

[
− exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)]t

s=0

= ‖u‖2
L2
t

(
exp

(∫ t

0

∥∥
∥u0(s)

∥∥
∥
2

2
ds

)
− 1

)
. (38)

Combining (37) with (38), we obtain

α+(t) +
∫ t

0
α+(s)

∥
∥∥u0(s)

∥
∥∥
2

2
exp

(∫ t

s

∥
∥∥u0(w)

∥
∥∥
2

2
dw

)
ds

≤ 4 ‖u‖2
L2
t
exp

(∫ t

0

∥
∥∥u0(s)

∥
∥∥
2

2
ds

)
. (39)

Comparing this result with (30) implies

(
E ‖y − ȳ‖2

L2
t

) 1
2 ≤ 2σ ‖u‖L2

t
exp

(
0.5

∥∥∥u0
∥∥∥
2

L2
t

)
. (40)

4.2 Proof of Theorem 2

Wemake use of Eqs. (22a) and (23) in order to prove this bound.We set Σ̂ =
[

Σ1
Σ2

]

as a submatrix of Σ in (16). Lemma 1 (‘Appendix’) now yields
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E

[
x̂ T−(t)Σ̂ x̂−(t)

]
= 2

∫ t

0
E

[

x̂ T−Σ̂

(

Âx̂− +
m∑

k=1

(N̂k x̂−uk) +
[

0
ĉ0

])]

ds

+
∫ t

0

v∑

i, j=1

E

[(
Ĥi x̂− +

[
0
ĉi

])T
Σ̂

(
Ĥ j x̂− +

[
0
ĉ j

])]
ki jds.

(41)

We see that the right side of (41) contains the submatrices Â, B̂, Ĥ , N̂ and Σ̂ . In order
to be able to refer to the full matrix inequality (9), we find upper bounds for certain
terms in the following involving the full matrices A, B, H , N and Σ . With the same
estimate as in (25) and the control vector u0 defined in (14), we have

m∑

k=1

2x̂ T−(s)Σ̂ N̂k x̂−(s)uk(s) ≤ x̂ T−(s)Σ̂ x̂−(s)
∥∥∥u0(s)

∥∥∥
2

2
+

m∑

k=1

x̂T−(s)N̂ T
k Σ̂ N̂k x̂−(s).

Adding the term
∑m

k=1

(
[ Nk,31 Nk,32 Nk,33 ] x̂−(s)

)T
Σ3 [ Nk,31 Nk,32 Nk,33 ] x̂−(s) to the

right side of this inequality results in

m∑

k=1

2x̂ T−(s)Σ̂ N̂k x̂−(s)uk(s) ≤ x̂ T−(s)Σ̂ x̂−(s)
∥∥
∥u0(s)

∥∥
∥
2

2
+

m∑

k=1

x̂T−(s)NT
k ΣNk x̂−(s).

(42)

Moreover, it holds that

x̂T−(ATΣ + Σ A)x̂− = 2x̂T−Σ Ax̂−

= 2
[
x1−x̄r
x2−h1

]T
Σ̂ Âx̂− + 2(x̄3 − h2)

TΣ3 [ A31 A32 A33 ] x̂−.

We derive [ A31 A32 A33 ]
[ x1
x2
x̄3

]
= −B3u by the definition of x̄3. Moreover, it can be

seen from the second line of (20) that [ A31 A32 A33 ] x̂− = 0. Hence,

x̂T−(ATΣ + Σ A)x̂− = 2x̂ T−Σ̂ Âx̂− − 2
[ 0
h1

]T
Σ̂ Âx̂−. (43)

It remains to find a suitable upper bound related to the expression depending on Ĥi .
We first of all see that

v∑

i, j=1

(
Ĥi x̂− +

[
0
ĉi

])T
Σ̂

(
Ĥ j x̂− +

[
0
ĉ j

])
ki j

= x̂T−
v∑

i, j=1

Ĥ T
i Σ̂ Ĥ j ki j x̂− +

v∑

i, j=1

(
2Ĥi x̂− +

[
0
ĉi

])T
Σ̂

[
0
ĉ j

]
ki j .

123



Mathematics of Control, Signals, and Systems (2020) 32:129–156 147

The term
∑v

i, j=1

(
[ Hi,31 Hi,32 Hi,33 ] x̂−(s)

)T
Σ3 [ Hj,31 Hj,32 Hj,33 ] x̂−(s)ki j is nonnega-

tive by Lemma 2 (‘Appendix’). Adding this term to the right side of the above equation
yields

v∑

i, j=1

(
Ĥi x̂− +

[
0
ĉi

])T
Σ̂

(
Ĥ j x̂− +

[
0
ĉ j

])
ki j

≤ x̂T−
v∑

i, j=1

HT
i ΣHjki j x̂− +

v∑

i, j=1

(
2Ĥi x̂− +

[
0
ĉi

])T
Σ̂

[
0
ĉ j

]
ki j . (44)

Applying (42), (43) and (44) to (41), results in

E

[
x̂ T−(t)Σ̂ x̂−(t)

]
≤ E

∫ t

0
x̂T−

⎛

⎝ATΣ + Σ A +
m∑

k=1

NT
k ΣNk +

v∑

i, j=1

HT
i ΣHjki j

⎞

⎠ x̂−ds

+ E

∫ t

0
2x̂ T−Σ̂

[
0
ĉ0

]
+

v∑

i, j=1

(
2Ĥi x̂− +

[
0
ĉi

])T
Σ̂

[
0
ĉ j

]
ki jds

+
∫ t

0
E

[
x̂ T−Σ̂ x̂−

] ∥∥u0
∥∥2
2 ds + E

∫ t

0
2

[ 0
h1

]T
Σ̂ Âx̂−ds. (45)

Using that ĉi = [ Hi,21 Hi,22 Hi,23 ]

[
x̄r
h1
h2

]
, we have

(
2Ĥi x̂− +

[
0
ĉi

])T
Σ̂

[
0
ĉ j

]
=

(
2Ĥi x̂− +

[
0
ĉi

])T [
0

Σ2 ĉ j

]

=
(
2 [ Hi,21 Hi,22 Hi,23 ]

([ x1
x2
x̄3

]
−

[
x̄r
h1
h2

])
+ ĉi

)T

Σ2ĉ j

=
(
2 [ Hi,21 Hi,22 Hi,23 ]

[ x1
x2
x̄3

]
− ĉi

)T
Σ2ĉ j . (46)

It can be seen further that
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2
[ 0
h1

]T
Σ̂ Âx̂− = 2

[
0 hT1 Σ2

]
Âx̂− = 2hT1 Σ2 [ A21 A22 A23 ]

([ x1
x2
x̄3

]
−

[
x̄r
h1
h2

])

= 2hT1 Σ2

(
[ A21 A22 A23 ]

[ x1
x2
x̄3

]
+ B2u

)
(47)

taking the first line of (20) into account. Inserting (46) and (47) into (45) and using

the fact that 2x̂ T−Σ̂
[

0
ĉ0

]
= 2x2Σ2ĉ0 leads to

E

[
x̂ T−(t)Σ̂ x̂−(t)

]
≤

∫ t

0
E

[
x̂ T−Σ̂ x̂−

] ∥
∥u0

∥
∥2
2 ds + α̂−(t)

+ E

∫ t

0
x̂T−

⎛

⎝ATΣ + Σ A +
m∑

k=1

NT
k ΣNk +

v∑

i, j=1

HT
i ΣHjki j

⎞

⎠ x̂−ds,

(48)

where we set α̂−(t) := E
∫ t
0 2x

T
2 Σ2ĉ0 +

(
2 [ Hi,21 Hi,22 Hi,23 ]

[ x1
x2
x̄3

]
− ĉi

)T
Σ2ĉ jds +

E
∫ t
0 2h

T
1 Σ2([ A21 A22 A23 ]

[ x1
x2
x̄3

]
+ B2u)ds. With (9) and (22b), we obtain

E

[
x̂ T−(t)Σ̂ x̂−(t)

]
≤

∫ t

0
E

[
x̂ T−Σ̂ x̂−

] ∥∥∥u0
∥∥∥
2

2
ds + α̂−(t) − E ‖ȳ − ȳr‖2L2

t
.

Applying Lemma 3 (‘Appendix’) to this inequality yields

E

[
x̂ T−(t)Σ̂ x̂−(t)

]
≤ α̂−(t) − E ‖ȳ − ȳr‖2L2

t

+
∫ t

0
α̂−(s)

∥∥∥u0(s)
∥∥∥
2

2
exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)
ds.

Since the above left side of the inequality is positive, we obtain

E ‖ȳ − ȳr‖2L2
t

≤ α̂−(t) +
∫ t

0
α̂−(s)

∥∥∥u0(s)
∥∥∥
2

2
exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)
ds.

We exploit that Σ2 = σ I . Hence, we have

E ‖ȳ − ȳr‖2L2
t

≤ σ 2
(

α̂+(t) +
∫ t

0
α̂+(s)

∥∥∥u0(s)
∥∥∥
2

2
exp

(∫ t

s

∥∥∥u0(w)

∥∥∥
2

2
dw

)
ds

)
, (49)

wherewe set α̂+(t) := E
∫ t
0 2x

T
2 Σ−1

2 ĉ0+
(
2 [ Hi,21 Hi,22 Hi,23 ]

[ x1
x2
x̄3

]
− ĉi

)T
Σ−1

2 ĉ jds+
E

∫ t
0 2h

T
1 Σ−1

2 ([ A21 A22 A23 ]
[ x1
x2
x̄3

]
+ B2u)ds. In order to find a suitable bound for the
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right side of (49), Ito’s lemma is applied to E[x̂ T+(t)Σ̂−1 x̂+(t)]. Due to (23) and
Lemma 1 (‘Appendix’), we obtain

E

[
x̂ T+(t)Σ̂−1 x̂+(t)

]
= 2

∫ t

0
E

[

x̂ T+Σ̂−1

(

Âx̂+ + 2B̂u +
m∑

k=1

(N̂k x̂+uk) −
[

0
ĉ0

])]

ds

+
∫ t

0

v∑

i, j=1

E

[(
Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

(
Ĥ j x̂+ −

[
0
ĉ j

])]
ki jds.

(50)

Analogously to (42), it holds that

m∑

k=1

2x̂ T+(s)Σ̂−1 N̂k x̂+(s)uk(s)

≤ x̂ T+(s)Σ̂−1 x̂+(s)
∥∥∥u0(s)

∥∥∥
2

2
+

m∑

k=1

x̂T+(s)N̂ T
k Σ̂−1 N̂k x̂+(s)

≤ x̂ T+(s)Σ̂−1 x̂+(s)
∥∥∥u0(s)

∥∥∥
2

2
+

m∑

k=1

x̂T+(s)NT
k Σ−1Nk x̂+(s). (51)

Furthermore, we see that

x̂T+(ATΣ−1 + Σ−1A)x̂+ + 4x̂T+Σ−1Bu = 2x̂T+Σ−1(Ax̂+ + 2Bu)

= 2
[
x1+x̄r
x2+h1

]T
Σ̂−1( Âx̂+ + 2B̂u) + 2(x̄3 + h2)

TΣ−1
3

(
[ A31 A32 A33 ] x̂+ + 2B3u

)
.

Since [ A31 A32 A33 ]
[ x1
x2
x̄3

]
= [ A31 A32 A33 ]

[
x̄r
h1
h2

]
= −B3u by the definition of x̄3 and

the second line of (20), we obtain [ A31 A32 A33 ] x̂+ = −2B3u. Thus,

x̂T+(ATΣ−1 + Σ−1A)x̂+ + 4x̂T+Σ−1Bu

= 2x̂ T+Σ̂−1( Âx̂+ + 2B̂u) + 2
[ 0
h1

]T
Σ̂−1( Âx̂+ + 2B̂u). (52)

Finally, we see that

v∑

i, j=1

(
Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

(
Ĥ j x̂+ −

[
0
ĉ j

])
ki j

= x̂T+
v∑

i, j=1

Ĥ T
i Σ̂−1 Ĥ j ki j x̂+ −

v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

[
0
ĉ j

]
ki j

≤ x̂T+
v∑

i, j=1

HT
i Σ−1Hjki j x̂+ −

v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

[
0
ĉ j

]
ki j (53)
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applying Lemma 2 (‘Appendix’). With (51), (52) and (53) inequality (50) becomes

E

[
x̂ T+(t)Σ̂−1 x̂+(t)

]

≤ E

∫ t

0
x̂T+

⎛

⎝ATΣ−1 + Σ−1A +
m∑

k=1

NT
k Σ−1Nk +

v∑

i, j=1

HT
i Σ−1Hjki j

⎞

⎠ x̂+ds

− E

∫ t

0
2x̂ T+Σ̂−1

[
0
ĉ0

]
+

v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

[
0
ĉ j

]
ki jds

− E

∫ t

0
2

[ 0
h1

]T
Σ̂−1( Âx̂+ + 2B̂u)ds + E

∫ t

0
4x̂T+Σ−1Buds

+
∫ t

0
E

[
x̂ T+Σ̂−1 x̂+

] ∥∥∥u0
∥∥∥
2

2
ds. (54)

Similarly to (34), we obtain

4 ‖u‖22 ≥ x̂T+

⎛

⎝ATΣ−1 + Σ−1A +
m∑

k=1

NT
k Σ−1Nk +

v∑

i, j=1

HT
i Σ−1Hjki j

⎞

⎠ x̂+ + 4x̂T+Σ−1Bu.

This leads to

E

[
x̂ T+(t)Σ̂−1 x̂+(t)

]

≤ 4 ‖u‖2
L2
t
+

∫ t

0
E

[
x̂ T+Σ̂−1 x̂+

] ∥∥∥u0
∥∥∥
2

2
ds

− E

∫ t

0
2x̂ T+Σ̂−1

[
0
ĉ0

]
+

v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

[
0
ĉ j

]
ki jds

− E

∫ t

0
2

[ 0
h1

]T
Σ̂−1( Âx̂+ + 2B̂u)ds. (55)

In the following (55) is expressedby termsdependingonΣ2.Weobtain x̂ T+Σ̂−1
[

0
ĉ0

]
=

xT2 Σ−1
2 ĉ0 exploiting the partitions of x̂+ and Σ̂ . The terms depending on Ĥi become

−
v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T
Σ̂−1

[
0
ĉ j

]
ki j

= −
v∑

i, j=1

(
2Ĥi x̂+ −

[
0
ĉi

])T [
0

Σ−1
2 ĉ j

]
ki j
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= −
v∑

i, j=1

(
2 [ Hi,21 Hi,22 Hi,23 ]

([ x1
x2
x̄3

]
+

[
x̄r
h1
h2

])
− ĉi

)T

Σ−1
2 ĉ j ki j

= −
v∑

i, j=1

(
2 [ Hi,21 Hi,22 Hi,23 ]

[ x1
x2
x̄3

]
+ ĉi

)T
Σ−1

2 ĉ j ki j

≤ −
v∑

i, j=1

(
2 [ Hi,21 Hi,22 Hi,23 ]

[ x1
x2
x̄3

]
− ĉi

)T
Σ−1

2 ĉ j ki j (56)

adding 2
∑v

i, j=1 ĉ
T
i Σ−1

2 ĉ j ki j which is positive due to Lemma 2 (‘Appendix’). Fur-
thermore, using the first line of (20), it holds that

−2
[ 0
h1

]T
Σ̂−1( Âx̂+ + 2B̂u) = −2

[
0 hT1 Σ−1

2

]
( Âx̂+ + 2B̂u)

= −2hT1 Σ−1
2

(
[ A21 A22 A23 ]

([ x1
x2
x̄3

]
+

[
x̄r
h1
h2

])
+ 2B2u

)

= −2hT1 Σ−1
2

(
[ A21 A22 A23 ]

[ x1
x2
x̄3

]
+ B2u

)
. (57)

We insert (56) and (57) into (55) and obtain

E

[
x̂ T+(t)Σ̂−1 x̂+(t)

]
≤ 4 ‖u‖2

L2
t
+

∫ t

0
E

[
x̂ T+Σ̂−1 x̂+

] ∥∥∥u0
∥∥∥
2

2
ds − α̂+(t).

With Lemma 3 (‘Appendix’), analogously to (39), we find

α̂+(t) +
∫ t

0
α̂+(s)

∥∥
∥u0(s)

∥∥
∥
2

2
exp

(∫ t

s

∥∥
∥u0(w)

∥∥
∥
2

2
dw

)
ds

≤ 4 ‖u‖2
L2
t
exp

(∫ t

0

∥∥
∥u0(s)

∥∥
∥
2

2
ds

)
. (58)

The relations (49) and (58) yield the claim.

5 Numerical experiments

We conduct a numerical experiment in order to compare several MOR techniques
and to check the performance of the error bound in Theorem 3. We determine three
different ROMs. One is by SPA stated in (7). The corresponding output is denoted by
ȳSP A. Moreover, we study a structure preserving version of SPA that is obtained by
setting B2 = 0 in (7), i.e., (B̄, D̄, Ēk, F̄i ) = (B1, 0, 0, 0). This technique is denoted
by SPA2 and its output is written as ȳSP A2. Notice that this method is a generalization
of the one in [18]. Finally, we deal with BT [30], another structure preserving scheme.
The respective output is ȳBT .
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In particular, we apply the different MOR variants to a heat transfer problem that
was proposed in [30]. We consider a heat equation on [0, 1]2:

∂

∂t
X(t, ζ ) = ΔX(t, ζ ), ζ ∈ [0, 1]2, t ∈ [0, T ],

with Dirichlet and noisy Robin boundary conditions

X(t, ζ ) = u(t) on ΓL := {0} × (0, 1),

∂

∂n
X(t, ζ ) = 1√

2
(u(t) + ẇ(t)) X(t, ζ ) on ΓR := {1} × [0, 1],

X(t, ζ ) = 0 on ∂[0, 1]2 \ (ΓL ∪ ΓR), t ∈ [0, T ],

where u ∈ L2
T is a scalar deterministic input and w denotes a scalar standard Wiener

process. We discretize the heat equation with a finite difference scheme on an equidis-
tant ñ × ñ-mesh. This leads to an n = ñ2-dimensional stochastic bilinear system

dx(t) =
[
Ax(t) + Bu(t) + 1√

2
Nx(t)u(t)

]
dt + 1√

2
Nx(t)dw(t),

y(t) = Cx(t), t ∈ [0, T ],
(59)

where C = 1
n [1 1 . . . 1], i.e., the average temperature is considered. We refer to [5]

or [12] for more details on the matrices A, B and N . There, a similar example was
investigated for deterministic bilinear systems and linear stochastic systems, respec-
tively.

According to (3) and (4), the associated Gramians are the solutions to

AT P−1 + P−1A + NT P−1N ≤ −P−1BBT P−1,

AT Q + QA + NT QN = −CTC . (60)

We multiply (60) with P from the left and the right. Applying the Schur complement
condition on definiteness, (60) can then be equivalently written as the following linear
matrix inequality:

[
AP + PAT + BBT PNT

N P −P

]
≤ 0, (61)

see also [12, Remark III.2]. The matrix inequality (61) now is solved using the LMI-
solver YALMIP [24] minimizing tr(P). LMI-solver are generally not suitable in a
large-scale setting. Therefore, we choose ñ = 10 implying n = 100.

As in [30], set T = 2 and choose two different controls u(t) = ũ(t), û(t),
where ũ(t) = cos(π t) and û(t) = 1√

2
, t ∈ [0, T ]. We derive the ROMs using

SPA, a modified structure preserving version SPA2 and BT based on Q and P .
We determine the reduced systems for r = 3, 6, 9. We have an error bound for
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Table 1 L2T -error of SPA with ROM defined in (7) and the respective error bound for different reduced
order dimensions r , T = 2 and outputs u = ũ, û

r
√
E ‖y − ȳSP A‖2

L2T
, u = ũ

√
E ‖y − ȳSP A‖2

L2T
, u = û EBr

3 1.79e−04 1.36e−04 6.01e−03

6 9.45e−07 6.53e−07 7.57e−05

9 1.64e−08 1.15e−08 2.96e−06

Table 2 L2T -error ofBT studied in [30] and the respective error bound for different reduced order dimensions
r , T = 2 and outputs u = ũ, û

r
√
E ‖y − ȳBT ‖2

L2T
, u = ũ

√
E ‖y − ȳBT ‖2

L2T
, u = û EBr

3 9.75e−04 1.04e−03 6.01e−03

6 6.46e−06 3.46e−06 7.57e−05

9 1.25e−07 7.28e−08 2.96e−06

Table 3 L2T -error of SPA2 with ROM that is obtained by setting B2 = 0 in (7) for different reduced order
dimensions r , T = 2 and outputs u = ũ, û

r
√
E ‖y − ȳSP A2‖2L2T

, u = ũ
√
E ‖y − ȳSP A2‖2L2T

, u = û

3 2.34e−03 2.42e−03

6 1.73e−05 1.86e−05

9 1.52e−07 1.57e−07

SPA (Theorem 3) and BT [30] but none for SPA2. The bound for BT and SPA is

EBr := 2
(∑100

i=r+1 σi

)
‖u‖L2

T
exp

(
0.5 ‖u‖2

L2
T

)
. Notice that u0 ≡ u in this example.

We compute
√
E ‖y − ȳl‖2L2

T
for l = SP A, BT , SP A2 in Tables 1, 2 and 3.

We can see by looking at Tables 1 and 3 that SPA performs clearly better than the
structure preserving variant SPA2. This tells us that it is worth to allow a structure
change since this can lead to better approximations. We can also see that the error
bound for SPA is relatively tight. It is tighter for BT, compare with Table 2. However,
this also means that BT performs worse than SPA. Consequently, SPA is the best
choice for the example considered here.

6 Conclusions

In this paper, we investigated a large-scale stochastic bilinear system. In order to
reduce the state space dimension, a model order reduction technique called singular
perturbation approximation was extended to this setting. This method is based on
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Gramians proposed in [30] that characterize howmuch a state contributes to the system
dynamics or to the output of a system. This choice of Gramians as well as the structure
of the reduced system is different than in [18]. With this modification, we provided a
new L2-error bound that can be used to point out the cases in which the reduced order
model by singular perturbation approximation delivers a good approximation to the
original model. This error bound is new even for deterministic bilinear systems. Its
quality was tested in a numerical experiment.
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A Supporting Lemmas

In this appendix, we state three important results and the corresponding references
that we frequently use throughout this paper.

Lemma 1 Let a, b1, . . . , bv be Rd -valued processes, where a is (Ft )t≥0-adapted and
almost surely Lebesgue integrable and the functions bi are integrable with respect to
the mean zero square integrable Lévy process M = (M1, . . . , Mv)

T with covariance
matrix K = (

ki j
)
i, j=1,...,v . If the process x is given by

dx(t) = a(t)dt +
v∑

i=1

bi (t)dMi ,

then, we have

d

dt
E

[
xT (t)x(t)

]
= 2E

[
xT (t)a(t)

]
+

v∑

i, j=1

E

[
bTi (t)b j (t)

]
ki j .

Proof We refer to [32, Lemma 5.2] for a proof of this lemma. ��
Lemma 2 Let A1, . . . , Av be d1 × d2 matrices and K = (ki j )i, j=1,...,v be a positive
semidefinite matrix, then

K̃ :=
v∑

i, j=1

AT
i A j ki j
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is also positive semidefinite.

Proof The proof can be found in [32, Proposition 5.3]. ��
Lemma 3 (Gronwall lemma) Let T > 0, z, α : [0, T ] → R be measurable bounded
functions and β : [0, T ] → R be a nonnegative integrable function. If

z(t) ≤ α(t) +
∫ t

0
β(s)z(s)ds,

then it holds that

z(t) ≤ α(t) +
∫ t

0
α(s)β(s) exp

(∫ t

s
β(w)dw

)
ds

for all t ∈ [0, T ].
Proof The result is shown as in [13, Proposition 2.1]. ��

References

1. Al-Baiyat SA, Bettayeb M (1993) A new model reduction scheme for k–power bilinear systems. In:
Proceedings of the 32nd IEEE conference on decision and control, pp 22–27

2. Allen EJ, Novosel SJ, Zhang Z (1998) Finite element and difference approximation of some linear
stochastic partial differential equations. Stochast Stochast Rep 64(1–2):117–142

3. Antoulas AC (2005) Approximation of large-scale dynamical systems. Advances in design and control
6. SIAM, Philadelphia

4. Becker S, Hartmann C (2019) Infinite-dimensional bilinear and stochastic balanced truncation with
error bounds. Math Control Signals Syst 31(2):1–37

5. Benner P, Damm T (2011) Lyapunov equations, energy functionals, and model order reduction of
bilinear and stochastic systems. SIAM J Control Optim 49(2):686–711

6. Benner P, Damm T, Rodriguez Cruz YR (2017) Dual pairs of generalized Lyapunov inequalities and
balanced truncation of stochastic linear systems. IEEE Trans Autom Contr 62(2):782–791

7. Benner P, Goyal P (2017) Balanced truncation model order reduction for quadratic-bilinear control
systems. Technical report. arXiv preprint arXiv:1705.00160

8. Benner P,RedmannM(2015)Model reduction for stochastic systems. StochPDEAnalComp3(3):291–
338

9. Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast dynamical systems. A sample-
paths approach. Springer, London

10. Bruni C, DiPillo G, Koch G (1971) On the mathematical models of bilinear systems. Automatica
2(1):11–26

11. DaPratoG,Zabczyk J (1992) Stochastic equations in infinite dimensions. Encyclopedia ofmathematics
and its applications, vol 44. Cambridge University Press, Cambridge

12. Damm T, Benner P (2014) Balanced truncation for stochastic linear systems with guaranteed error
bound. In: Proceedings of MTNS–2014, Groningen, The Netherlands, pp 1492–1497

13. Emmrich E (1999) Discrete versions of Gronwall’s lemma and their application to the numerical
analysis of parabolic problems. Preprint No. 637, TU Berlin

14. Fernando KV, Nicholson H (1982) Singular perturbational model reduction of balanced systems. IEEE
Trans Automat Control 27:466–468

15. Gawarecki L, Mandrekar V (2011) Stochastic differential equations in infinite dimensions with appli-
cations to stochastic partial differential equations. Springer, Berlin

16. Gray WS, Mesko J (1998) Energy functions and algebraic gramians for bilinear systems. Proc Fourth
IFAC Nonlinear Control Syst Des Symp 31(17):101–106

123

http://arxiv.org/abs/1705.00160


156 Mathematics of Control, Signals, and Systems (2020) 32:129–156

17. Grecksch W, Kloeden PE (1996) Time-discretised Galerkin approximations of parabolic stochastic
PDEs. Bull Aust Math Soc 54(1):79–85

18. Hartmann C, Schäfer-Bung B, Thöns-Zueva A (2013) Balanced averaging of bilinear systems with
applications to stochastic control. SIAM J Control Optim 51(3):2356–2378

19. HausenblasE (2003)Approximation for semilinear stochastic evolution equations. PotAnal 18(2):141–
186

20. JentzenA,Kloeden PE (2009)Overcoming the order barrier in the numerical approximation of stochas-
tic partial differential equations with additive space-time noise. Proc R Soc A 2009(465):649–667

21. Kovács M, Larsson S, Saedpanah F (2010) Finite element approximation of the linear stochastic wave
equation with additive noise. SIAM J Numer Anal 48(2):408–427

22. Kruse R (2014) Strong and weak approximation of semilinear stochastic evolution equations. Lecture
notes in mathematics, vol 2093. Springer, Berlin

23. Liu Y, Anderson BDO (1989) Singular perturbation approximation of balanced systems. Int J Control
50(4):1379–1405

24. Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of
the CACSD conference, Taipei, Taiwan

25. Mohler RR (1973) Bilinear control processes. Academic Press, New York
26. Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and

model reduction. IEEE Trans Autom Control 26:17–32
27. Obinata G, Anderson BDO (2001) Model reduction for control system design. Communications and

control engineering series. Springer, London
28. Peszat S, Zabczyk J (2007) Stochastic partial differential equations with Lévy noise. An evolution

equation approach. Encyclopedia of mathematics and its applications, vol 113. Cambridge University
Press, Cambridge

29. Prévôt C, Röckner M (2007) A concise course on stochastic partial differential equations. Lecture
notes in mathematics, vol 1905. Springer, Berlin

30. Redmann M (2018) Energy estimates and model order reduction for stochastic bilinear systems. Int J
Control. https://doi.org/10.1080/00207179.2018.1538568

31. Redmann M (2018) Type II balanced truncation for deterministic bilinear control systems. SIAM J
Control Optim 56(4):2593–2612

32. Redmann M (2018) Type II singular perturbation approximation for linear systems with Lévy noise.
SIAM J Control Optim 56(3):2120–2158

33. RedmannM, Benner P (2018) Singular perturbation approximation for linear systems with Lévy noise.
Stochast Dyn 18(4):1850033

34. Rugh WJ (1981) Nonlinear system theory. The Johns Hopkins University Press, Baltimore
35. Scherpen JMA (1993) Balancing for nonlinear systems. Syst Control Lett 21:143–153
36. Thompson WF, Kuske RA, Monahan AH (2014) Stochastic averaging of dynamical systems with

multiple time scales forced with α-stable noise. SIAM Multisc Model Simul 13(4):1194–1223
37. Xu Y, Duan J, XuW (2011) An averaging principle for stochastic dynamical systems with Lévy noise.

Phys D Nonlinear Phen 240(17):1395–1401

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1080/00207179.2018.1538568

	A new type of singular perturbation approximation  for stochastic bilinear systems
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Outline of the paper

	2 Setting and ROM
	3 L2-error bound for SPA
	3.1 Error bound of removing the smallest HSV
	3.2 Error bound for neighboring ROMs
	3.3 Main result

	4 Proofs of Theorems 1 and 2
	4.1 Proof of Theorem 1
	4.2 Proof of Theorem 2

	5 Numerical experiments
	6 Conclusions
	Acknowledgements
	A Supporting Lemmas
	References





