Frame-Coherent 3D Stippling for

Non-Photorealistic Computer Graphics

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

angenommen durch der Fakultit fiir Informatik

der Otto-von-Guericke-Universitit Magdeburg

von M. Sc. Oscar Ernesto Meruvia Pastor
geboren am 14. November 1972 in Mexico, D.F.

Gutachter: Prof. Dr. Thomas Strothotte
Prof. Dr. Eduard Groller
Prof. Dr. Wolfgang Strasser

Magdeburg, den 17. Oktober 2003

Zusammenfassung

Die Dissertation befasst sich mit der Frage, wie nicht-photorealistische gestippelte
Animationen anhand dreidimensionaler Modelle produziert werden konnen. Nicht-
photorealistische Animationsverfahren sollten drei wichtige Konzepte berticksichtigen,
die durch die Anwendung von zweidimensionalen Zeichenstilen auf dreidimension-
ale Modelle entstehen: Framekohirenz, Skalierbarkeit und Formédnderungen. Als Lo-
sung werden Punkthierarchien vorgeschlagen, mit denen die oben genannten Aspekte
in eine einzige Losung integriert werden konnen. Es wird beschrieben, wie solche
Punkthierarchien aufzubauen sind und welche Eigenschaften die Punkte der Hier-
archie haben miissen, um framekohdrente, sichtabhingige, skalierbare Animationen
statischer und dynamischer Modelle zu ermoglichen. Zwei unterschiedliche Verfahren
zum Aufbau von Punkthierarchien werden prisentiert und Anwendungen im Bere-
ich der Animationen fiir das Echtzeit-Stippling statischer Modelle, der Herstellung
von Zeichentrickfilmen, der Archdologie und der medizinischen Illustration werden
erldutert.

Abstract

This thesis deals with the question of how to produce non-photorealistic stippling ani-
mations of 3D models. Non-photorealistic animation techniques ought to take into ac-
count three important issues that arise when applying 2D drawing styles to 3D model
rendering: frame-coherence, scalability and view-dependance, and rendition of ani-
mated models. To deal with these issues, the author proposes point hierarchies as an
integral and modular technique to generate non-photorealistic animations, and de-
scribes how point hierarchies are used to produce stippling animations of static and
animated models which are frame-coherent, view-dependant and scalable. Two dif-
ferent approaches to create such point hierarchies are provided and applications of
animated stippling are shown in the areas of cartoon animation, medical illustration,
real-time rendering, and archaeology.

Foreword

When I started my Ph.D four years ago, I was given the task of further developing
existing work in NPR done here at the Institute of Simulation and Graphics. This
thesis is the result of this request. As I started to write it, I wanted to make it not only
comprehensible for the specialized reader, but also I wanted any interested reader to
understand the place of this work within the area of Non-Photorealistic Rendering /
Computer Graphics, for which the first two chapters were mostly devoted.

For the specialist in Computer Graphics, I also wanted to write a detailed description
of both the challenges that I faced at the beginning of the work, my solutions to these
challenges, and the reason other solutions were not considered or discarded at the time.
The final chapters of the thesis are the results of the work, they deal with the areas of
application and the possibilities which are left open for future research.

There is a number of people who should receive credit for their friendly support and
collaboration during this work. I would like to thank my supervisor Prof. Dr. Thomas
Strothotte, who provided me with a number of challenges, visions and strategic sup-
port during the development of this work, in conjunction with a great deal of research
independence. Also, I would like to thank Prof. Drs. Eduard Groéller and Wolfgang
Strasser, for their careful revision of the dissertation and their valuable comments.

Thanks a lot to Felix Ritter, Ralf Helbing and Nick Halper for their "technical support”
in the form of advices, tips and hints during the development of this work. Whenever
there was a problem with OpenGL, Latex, or with the way the first approximations to
the final solution looked like, I always received help and feedback from them.

Of course, I would like to thank my senior editor and associate, Lourdes Pena Castillo,
who has always been on my side, giving not only "non-technical support" when things
looked not so good, but also technical support in the areas of editing and proof-
reading, improving readability of the dissertation and my other publications.

Many thanks to my mother and brothers, for their unconditional support delivered
from a country far, far away, and to all the friends at the Institute and at the University,
who made life in Magdeburg a lot nicer, with a special mention to Petra Specht who
was there from the first day of my stay on German soil.

Contents

1 Introduction 1
1.1 Combination of 2D Rendering Styles with 3D Graphics. 2
111 Frame-Coherence 2
112 Scalingand Projection, 3
113 Morphing and Animation 4
12 Stippling 5
1.3 Computer-Generated Stippling 8
1.4 Thesis Contributions e 10
1.41 ThesisStructure e 12
2 Non-Photorealistic Rendering Systems for 3D Models 15
21 ParticleSystems Lo L 15
22 Textures. e e e e e e 18
2.3 Silhouettes e 21
2.4 Volume and Point-Based Rendering 22
2.5 Particle Distributions in the Image Plane 24
2.6 Contribution of Point HierarchiestoNPR 25
3 A General Framework for a Particle-Based Non-Photorealistic Render-
ing System 29
3.1 Going from 2D to 3D with Adaptive Point Hierarchies 29
3.1.1 Adaptingto Scaleand Shading 30
3.1.2 AdaptingtoSlope L Lo 34
3.2 AParticle-Based NPRRenderer. 35
3.3 Generation of Point Hierarchies 37
4 On the Generation of Point Hierarchies Using Mesh Simplification and
Subdivision 39
41 Setting up the Connectivity Graph 42
4.2 Mesh Simplification L L Lo Lo 42
4.3 Hierarchical Subdivision 45
4.3.1 Interactive and Local Mesh Refinement 47

ix

Contents

4.4

45

4.6

Improving the Point Distribution 48
4.41 Randomization 49
4.4.2 The Projection Operator 49
Defining the Point Set Hierarchy 52
4.5.1 Additional Vertex Attributes 53
Results e 54
4.61 VisualResults 54
4.6.2 Point Hierarchy Generation Time 55
4.6.3 RenderingTime 60

5 On the Generation of Point Hierarchies Using Patch-Based Point Re-

laxation 61

5.1 Setup and Initial Point Distribution 62

5.2 Primary Relaxation of the Initial Point Distribution 62

5.3 Graph-Based Point Relaxation 64

5.4 Patch Hierarchy Creation 66

5.5 Particle Relaxation by Token Displacement 67

5.5.1 Token Distribution 69

5.5.2 Determining the Set of Neighboring Tokens 69

5.5.3 Computing the Repulsive Forces 70

5.5.4 Determining the Displacement 70

5.5.5 Creation of the Point Hierarchy 71

5.6 Results e 72

5,61 VisualResults 72

5.6.2 Point Hierarchy Generation Time 72

5.6.3 Memory Requirements Lo, 74

5.7 Simplification and Subdivision Versus Token-Based Relaxation 77

5.7.1 GenerationTimes 77

5.72 Memory Requirements 78

5.73 Visual Comparisono 78

6 Particle Distribution of Deformable Models 83
6.1 A Theoretical Model for Frame-Coherent Point Distribution of De-

formableModels 85

6.1.1 Stretching Surfaces 85

6.1.2 ContractingSurfaces 87

6.1.3 Retriangulation During Interactive Stretching 89

6.2 A Practical Model for Stippling Deformable Models 91

6.2.1 Animated Stippling Algorithms 92

622 Results e 94

Contents

7 Informal Assessment on the Applications of Stippling 99
71 ShadingStyles L 99

72 Model Suitability 101

73 Real-TimeRendering 104

7.4 Transparency e e e e 106

8 Stippling in Archaeology 109
8.1 General Comments 112

8.2 Line Drawings on Top of the Stippled Renditions 115

8.3 Animation Versus Single Images 17

8.4 Illuminationand Shading 120

85 DepthCues. 123

8.6 Color Management 124

8.7 ConcludingRemarks 124

9 Conclusions 127
9.1 Future Directions i i i i i 128
9.1.1 Use of the Point Hierarchy for Adaptive Rendering 128

9.1.2 Hardware-Accelerated Visibility Preprocessing 129

9.1.3 Use of Other Rendering Primitives 129

9.1.4 Point-Based Renderingfor NPR 130
Bibliography 131

xi

1 Introduction

Producing photorealistic images (or reproducing reality) has been an ever present as-
piration in the computer graphics community, which has constantly tried to create
computer-generated imagery which resembles reality in such a way that a computer-
generated image cannot be differentiated from a photograph. In the area of Non-
Photorealistic Animation and Rendering (NPAR), graphics researchers pursue several
goals related to the rendition of models in a variety of styles which avert from the
photorealistic.

The fact that the area of Non-Photorealistic Rendering (NPR for short) is defined as
a negation of the photorealistic has given raise to the concern that its field of action
is not well defined. Nevertheless, it is fortunate for some researchers in this field that
the emulation of artistic rendering techniques has fallen directly into the zone of com-
petence of NPR right from the beginning of this discipline. This encompasses all the
graphic arts that have emerged along the development of humanity, such as African
drawings, Chinese and Japanese painting, impressionism, pointillism, cartoon illustra-
tion, Mexican painting and so on. Scientific illustration styles based on pen-and-ink
illustration styles like cross-hatching, hatching and stippling are also included in NPR,
In sum, any illustration style from any time, and any civilization is a valid subject for
NPR.

Researchers in NPR have developed algorithms which let us emulate pencil and char-
coal illustrations, watercolor rendering, and most of the graphic arts previously men-
tioned. A systematic overview of such algorithms and techniques is provided by Strot-
hotte and Schlechtweg [Stroo2], and Gooch & Gooch have provided an overview of
literature on NPR [Gooco1].

The work described in this thesis falls within this context. Our research addresses
a fundamental question in the field of NPR: how to produce animations using NPR
styles in a frame-coherent style. Until recently, little attention has been given to pro-
ducing animation for NPR which is frame-coherent. In this thesis, we want to em-

1 Introduction

phasize the relevance of including frame-coherence as a fundamental attribute of non-
photorealistic animation. In particular, we explore the creation of point hierarchies
for Non-photorealistic Animation and Rendering which are suitable for producing il-
lustrated animations of 3D models with particular emphasis on the reproduction of
the rendering technique known as stippling. !

1.1 Combination of 2D Rendering Styles with 3D
Graphics

In this work, we want to use the stippling style for rendering 3D models. There are a
number of aspects that must be considered when transferring a rendering style which
is originated from 2D into the realm of 3D graphics. This comes from the fact that a
single image is static, while 3D graphics are dynamic by nature. There are a number of
issues related to this unique relationship between 2D artistic rendering styles and 3D
computer graphics. In the following lines we discuss those issues that we have found
to be of most relevance within the context of our work.

1.1.1 Frame-Coherence

Frame-to-frame coherence, also referred to as frame-coherence, is the term that de-
scribes coherence of drawing primitives and objects between subsequent frames of an
animation. Frame-coherence responds to the expectation that a viewer has that dur-
ing an animation, object transitions and depth information varies in a way that corre-
sponds to the real world. Viewers expect frame-coherence in an animation, because
it is in the nature of the real world that objects are not constantly jumping around or
jumping back and forth, appearing and disappearing as a scene evolves.

When dealing with non-photorealistic rendering systems we need to differentiate be-
tween frame-coherence at the object level and frame-coherence at the particle level.
Frame coherence at the object level refers to objects being smoothly displaced across
the frames of an animation, this also includes the object attributes such as shading (in
which case we refer to shading changing smoothly across frames).

Frame-coherence at the particle level implies a higher level of coherence across frames
where not only the object, but also the primitives which are used to give it shape,
color or tone, are frame-coherent. Frame-coherence at the object level does not im-
ply in any way frame coherence at the particle level. To more clearly illustrate this

I'The difference between the terms NPR and NPAR is that NPAR includes animation or animated
models, where NPR alone describes mostly single rendition and static models. For simplicity, many
researchers use the term NPR to refer to NPAR.

1.1 Combination of 2D Rendering Styles with 3D Graphics

Figure 1.1: Lack of frame-coherence at the stroke level during an animation: while the
box objects are slightly different, the strokes that are used to shade them have noticeably
changed [HagaO1].

difference between the two types of frame coherence we have Figure 1.1 and Video
1-WalkingBoxes?.

In Video 1 we observe that the animation is coherent with respect to the shading level
and the model displacement (spatial-temporal coherence), but if we look at the indi-
vidual strokes on the surface of the objects, we notice how they change even when
an object stops moving. Figure 1.1 shows two consecutive frames of Video 1. We can
observe that strokes of the object on the left are not in the same orientation than the
strokes of the object on the right. The video shows that animations which do not
enforce frame-coherence at the particle level are noisy, and this noise has a negative
effect on the perception of the animation by the user, in a similar way as the lack of
frame-coherence at the object level affects the user experience in virtual environments
[Mackog3, Wareg4, Elligg]. The issue of having two different types of frame-coherence
arises only in non-photorealistic rendering, because photorealistic rendering is meant
to be fully frame-coherent.

1.1.2 Scaling and Projection

Another natural attribute of computer graphics is scalability. In 3D graphics, we model
objects from the real world and take for granted that is it possible to view the models
within a wide range of scales. It is normal for a modeler for example to scale up, or

2The animations mentioned in this thesis are included in the electronic version delivered with this
work and are also publically available under http://isgwww.cs.uni-magdeburg.de/~oscar/.

http://isgwww.cs.uni-magdeburg.de/~oscar/

1 Introduction

zoom in, a certain part of a model work on it, and then scale the model so that it fits in
the entire screen and judge the aspect of his modifications. It is normal for engineers
or scientists to take a closer look at modeled parts of factories or molecules to figure
out their role as part of a whole.

In NPR scalability is a seemingly difficult issue, because 2D illustrations are typically
not scalable in the way 3D models are, with the exception of the work of Salibury et
al., who considered scalable rendering of pen-and-ink illustrations [Salig6]. That not
being enough, a 2D artistic image does not provide many clues as to what an artistic
image of a 3D model should look like, because the rendering styles have evolved under
precisely opposite premises: images and paintings try to capture a world which exists
in 3D and figure out ways to adequately represent it in 2D, even at the expense of
distorting some parts of the models or objects so that they can be adequately perceived
in the mind of a viewer and even when they cannot really exist as such in 3D (take
cubism as an example) [Coop9s].

Another issue present while scaling NPR imagery is to decide how the individual
strokes should be scaled. It is a matter of artistic nature to decide how individual
strokes should scale. A simple solution would be to represent strokes as objects in 3D
space which would scale together with the object. Unfortunately, this approach does
not work successfully in NPR, because a user does not expect a stipple dot to grow
to the size of a large circle in the middle of the screen, or a line stroke to grow into a
large polygon which has no artistic expression anymore. This is the reason why we pro-
pose the regulation of the presence of the drawing primitives using a point hierarchy
to indicate the size of the stipples at different levels of detail.

1.1.3 Morphing and Animation

Another possibility available in 3D graphics is that of having objects change in shape.
This happens for example, in character animation, in the visualization of simulations
of objects being deformed, model morphing or during interaction with deformable
objects. This is also a novel aspect to think of in NPR graphics, because the traditional
techniques do not provide hints as to how a rendering style should be modified to
account for morphing. It is not clear whether strokes should appear or vanish during
the deformation, or whether the strokes should maybe adapt to the deformation to
some extent. As with the previous issues, what should occur to the individual strokes
or stipples during deformation, is a question of artistic preference.

1.2 Stippling

1.2 Stippling

Stippling is the art of painting with dots. Stippling belongs to the group of pen-and-
ink illustration techniques, together with hatching and cross-hatching. This technique
is used in scientific illustration, archaeology, and for artistic illustrations. A definition

Figure 1.2: Stippled drawings made by scientific illustrators and artists. In the figure at
top-left and bottom right, artists use line drawings to emphasize relevant features of the
models. On the top-left: image by Hodges, next two images are by Ron C. Guthrie, Image
on the bottom right by JandJ Designs.

of stippling [Riggg9g] says: " stippling is a drawing technique in which dots rather than
lines form an image. Groups of small dots placed close together will read as a patch
of gray tone from a distance. By altering the size and spacing of the dots, it is possible
to create a full tonal (or value) range. ... Stippling is useful as a texture-producing
technique, and colored stippling is used for the pointillist technique of color mixing".
The tools required to produce stippled drawings are simple, one only needs a point
pen, ink, and appropriate paper.

The set of images in Figure 1.2 show stippled illustrations from various artists. These
images show that almost any topic of nature and the arts can be a subject for stippling.

1 Introduction

Figure 1.3: Stippled drawing and detail by George Robert Lewis. Notice the regular
spacing between dots and the silhouette on the image on the right which lifts up the
object from the background [Hodg88].

The common denominator in stippled images is that dark tones are obtained by plac-
ing together a large amount of dots and that light tones are obtained by placing a few
dots which are also regularly spaced, as shown in the detail on the right side of Figure
1.3.

In scientific illustration [Hodg88], Hodges describes a process of stippling which in-
volves carefully distributing a group of dots and then evaluating the areas which re-
quire more dots and filling in as required. Another characteristic of this style is that
stippled images do not scale well. In fact, Hodges mentions that a stippled image can
only be successfully reproduced within a small range. Stipples cannot be too small,
because they would vanish if the image is scaled down. When a stippled image is ex-
cessively scaled down the collection of dots tends to combine with each other and a
uniform grey tone replaces the individual dots.

Stippling is also used in conjunction with other rendering styles. For instance, many
stippled drawings are outlined to enhance the profile of the rendered objects, which

1.2 Stippling

happens commonly in scientific illustration (as in Figure 1.3). Line strokes can also be
used in conjunction with stippling as shown in the insect drawing in Figure 1.2.

Figure 1.4: Pointillist paintings by Georges Seurat: On the left, “Port-en-Bessin” (1888).
On the right, "The Siene at La Grande Jatte, Spring” (1888) (Original Sizes: 83x66cm, detail
sizes: 18x33cm).

Traditional stippling is done in black-and-white, and some stippling artists describe
their work as pointillism. The technique called pointillism was introduced in the
end of the 19th century, and is represented in the works of neo-impressionist painters
Georges Seurat and Paul Signac. Pointillism is defined as ”a technique whereby solid
forms are constructed by applying small close-packed dots of unmixed color to a white
background”. Figure 1.4 (top row), shows examples of paintings in the pointillist style.
We have included details of these images in the bottom row to illustrate the individual
dots which make up the images (we indicate the original measures of the paintings
as width * height). Stippling and pointillism are closely related, but a fundamental
difference is that in stippling shading is given by the density of dots in a region, while

1 Introduction

in pointillism, dot density is mostly uniform and shading is given by the darkness of
the selected color.

1.3 Computer-Generated Stippling

Since the early 1990’s, graphics researchers have worked on the emulation of the
stippling technique. In a paper on Computer-Generated Pen-and-ink illustration
[Winkg4], Winkenbach and Salesin propose the use of stroke textures to represent both
texture and tone in a texture array (see Figure 1.5).

Figure 1.5: Stroke textures can provide both tone and texture [Wink94].

In their approach, the stippling style is implemented using textures filled randomly
with an ever increasing amount of stipples that represent different levels of darkness.
The issue of how stroke textures should be scaled is also discussed, but the emphasis of
the work is on solving level of detail issues for complex stroke textures that represent
objects like brick walls or the windows in a house in the style of pen-and-ink illustra-
tions.

The same authors also proposed a way to produce stippled and hatched images us-
ing parametric surfaces [Winkg6]. The amount of stippling in a certain region of the
image depends directly on the desired shading tone. The authors emphasized the pro-
duction of highly detailed single illustrations in the pen-and-ink style, Thus, issues
on frame-coherence are not discussed. In Figure 1.6 we see an image produced for
parametric surfaces where the stipples are randomly distributed in the shaded areas.
The feeling of a rough surface is conveyed by the random distribution of the dots in
the shaded areas. In addition, the overall distribution of the stipples, where no sharp
boundaries are shown, indicates a surface with low reflectance (non specular).

Deussen et al. [Deusoo] found that one important feature of stippled images is that
points in stippled images are evenly distributed and match the underlying shading

1.3 Computer-Generated Stippling

Figure 1.6: Computer-generated illustration of a Ceramic Jug and Bowl by Winkenbach
and Salesin [Wink96].

tone. Contrary to a point distribution produced randomly, a regular point distribu-
tion in a stippled image conveys a cleaner look to the image. They proposed a system
based on point relaxation using Voronoi diagrams. In their approach a grey scale im-
age is rendered in the stippling style by first distributing points at random on a canvas
in such a way that the stipples matched the target shading level. After that, the Voronoi
diagram of the distributed particles is computed. A Voronoi diagram is a space parti-
tion scheme on the image plane where each particle (or stipple in this case) is contained
in a 2D cell. The cell includes all those points which have the particle of the cell as its
closest neighbor. The cell is limited by those points which are at equal distance from
one or more particles. In the approach of Deussen et al., the center of the cells in the
Voronoi diagram are iteratively relaxed, which means that the stipples in the Voronoi
cells are subject to the influence of their neighbors and are lightly displaced as a result
of repelling forces exerted by its neighbors. After several iterations, a set of evenly space
stipple points is obtained (see Detail in Figure 1.7).

The system of Deussen et al. includes a tool to help artists control the boundaries of
the stippled regions and retouch the image to produce a better looking image. In a
similar approach, Secord presented a method which was also based on the relaxation
of Voronoi cells [Secoo2a]. In this system, the user only needs to setup a couple of
parameters about the stipple quantity and size so that images at different scales can
also be automatically produced. An advantage of this approach is that this stippling
systems can use any grey scale image as input, not only 3D model renditions. On the

1 Introduction

Figure 1.7: On the top, a computer-generated stippled image produced by Voronoi
relaxation, on the bottom a detail of the grass-hopper’s head (images by Deussen et al.
[Deus00]).

other side, these systems are designed to produce single images, so they can hardly be
used in the production of animation sequences, because they lack frame-coherence.

1.4 Thesis Contributions

This work presents point hierarchies as a solution for producing non-photorealistic
animations. The point hierarchies presented in this work are meant as an integral
solution to the problem of distributing particles on the surface of 3D models. The use
of point hierarchies in the framework here presented, allows the production of view-
dependent, frame-coherent animations of static and animated models. In addition,
there is an emphasis in producing appropriate point distributions on the surface of the
model such that the point distribution successfully emulates drawing in the stippling
style.

In the following lines we provide an overview of the work developed in the context of
this thesis:

10

1.4 Thesis Contributions

Development of a large number of functions to inspect the geometry of the input
models. We have developed a library of functions and modules which allow us to
produce several applications which assist the task of generating point hierarchies
and animations in the stippling style.

File conversion tools which allow the manipulation of models and the import and ex-
port of polygonal models into our systems’ file format, Open Inventor: We have
developed modules to convert quad-based models into triangular-based models,
to convert between VRML formats to Open Inventor, to revert the face-ordering,
and to convert output produced by 3D Studio Max animations to the Open In-
ventor format. With these conversion tools it is possible to convert animations
created with the external software 3D Studio Max into the native format of our
application (Open Inventor). Our internal graph model represents 3D models
as a mesh of triangular faces, thus, we need to convert models in other formats,
such as quads or other polygonal representations into triangular meshes.

Modules for Mesh inspection We have produced modules to perform basic mesh
inspection tasks, for modifying input meshes, for computing normals in both
flat-shading and gouraud-shading styles [Foleg3], and for consulting informa-
tion about mesh connectivity such as vertex and edges connectivity and similar
which are required for performing other tasks described below. We have used
as our base connectivity data structure the directed graphs implemented in the
Leda Algorithms Library [Mehloo].

Applications and Modules for mesh simplification and subdivision We have pro-
duced two main applications which we use to generate point hierarchies. The
first application produces point hierarchies based on mesh simplification and
mesh subdivision. We have produced the modules required to perform these
tasks separately and we have developed several applications which perform ei-
ther simplification and subdivision and one application which combines both
approaches to produce seamless point hierarchies by mesh simplification and
subdivision. The mesh simplification modules is based in the idea of Progres-
sive Meshes [Hopp96, Hoppgy], while the mesh subdivision module was inde-
pendently developed.

Modules for Surface Subdivision We have developed applications to perform sur-
face subdivision of polygonal meshes. Our surface subdivision algorithms cre-
ate closed regions which we call polygonal patches, and are our original work
[Meruo2a]. These polygonal patches are used for visibility preprocessing and
for creating patch hierarchies and performing patch-based token relaxation, as
described below.

Applications and Modules for Patch-based Token Relaxation An alternative ap-
proach for creating point hierarchies is by performing point relaxation and

11

1 Introduction

patch-based token relaxation based on the work of Turk [Turko1, Turkg2]. In
this approach, we first create patch hierarchies by means of patch fusion pro-
cedures and then we use these patch hierarchies to distribute tokens over the
surface of a model based on existing schemes for point relaxation, which is our
original idea.

Applications and Modules for producing Stippling Animations We have developed
tools to capture key-frame information and to generate off-line animations of
stippled models. Our modules are distributed among several applications. The
first is the key-frame capturing tool, which allows the user to produce files which
encode an animation sequence based on changes in illumination and camera
positioning. During oft-line rendering, our applications make use of the key-
frame files to produce animation sequences by interpolating the information
contained in the key-frame files. For the case of animated models, the key frame
files also contain pointers to the shape of the model at the given key frame.

Applications for performing Real-Time Stippling In the context of this work, an ap-
plication which makes use of the point hierarchies created by either simplifica-
tion and subdivision or token relaxation was implemented. The application runs
on computers equipped with hardware graphics acceleration cards and shows
several models which have been imported to that application, including models
from archaeology.

Stippled Animations and Illustrations The group of modules and applications we
have developed in the context of this work has enabled us to find a systematic
way to produce illustrations and animations of static and animated models in the
stippling style. We have made experiments with several models and have proven
the generality of our techniques, which means that we can use any polygonal
model and apply our rendering techniques.

1.4.1 Thesis Structure

We have structured the presentation of our work in eight additional Chapters. In Chap-
ter 2 we describe systems which integrate non-photorealistic rendering styles with 3D
graphics, and describe how they address the issues of frame-coherence, scalability and
morphing and to which extent. In Chapter 3 we provide a solution to deal with these
issues. We present a general framework to produce NPR animations using point hierar-
chies and describe how point hierarchies deal with the problems mentioned before in
an integral way. We also explain how it is possible to decouple the process of point hier-
archy creation from the actual rendering and how stippling can be used in conjunction
with other rendering styles, traditional and non-photorealistic.

12

1.4 Thesis Contributions

We have developed two solutions to create point hierarchies suitable for use in NPR. In
Chapter 4 we describe the first solution method, where point hierarchies are created by
means of mesh simplification, subdivision and randomization. Work described in this
Chapter has been published in the IEEE Computer Graphics and Applications Special
Issue on Non-Photorealistic Rendering, which came out of the press in the July/August
2003 issue of the magazine [Meruo3s].

In Chapter 5 we describe our second solution method to create point hierarchies,
which is based on point relaxation. The technique was developed with the purpose
of improving the point distribution, and is based on point relaxation. Point relaxation
has been used in other two dimensional stippling systems, as well as for texture synthe-
sis and for performing mesh simplification. The technique is described as Token-Based
Patch Relaxation, but for simplicity we refer to it as Patch Relaxation or Token Relax-
ation.

In Chapter 6 we describe how point hierarchies can be used to produced stippled ren-
ditions of animated models which maintain scalability and frame-coherence. Here we
describe the issues of point distribution under deformations, and how to adapt the
point hierarchy to these deformations, presenting both a theoretical and a practical
solution. Since we address the problem of animations in NPAR, we have included a
set of animations which are part of the documentation of our work. Our animations
are available in the electronic version of this work, and also on the web site of the
Department of Simulation and Graphics of the University of Magdeburg.

In Chapter 7 we present an informal analysis on the applications of stippling by using
point hierarchies and deal with such issues as model suitability, shading styles, and an-
imation effects. Stippling is a technique used frequently in Archaeology to document
findings from the excavation sites. In Chapter 8 we describe our collaboration with the
Office of Archaeology of the State of Sachsen-Anhalt, where we took objects found in
their excavation sites, scanned them in 3D and produced stippled drawings for their
assessment. In this collaboration we received valuable feedback as to the feasibility of
applying our rendering technique to archaeological models.

In the last Chapter (Chapter 9) we summarize our results and present interesting di-
rections of future work, with an emphasis on those aspects which have more relevance
to the area of NPAR.

13

2 Non-Photorealistic Rendering Systems
for 3D Models

In the previous Chapter, we mentioned three main issues that need to be considered
when using 2D rendering styles for 3D models: frame-coherence, scaling and morph-
ing. Several researchers have proposed different solutions to deal with these aspects.
We can group these solutions according to the structures used to represent and place
primitives in NPR as follows: particle systems, textures, silhouettes, volume and point-
based renderers, and image-based particle systems. In this Chapter we describe these
methods and the benefits and disadvantages that they have, and put our technique in
the context of these solutions.

2.1 Particle Systems

A particle system is a collection of points located on the surface of a 3D model. Each
point indicates the position where a drawing or rendering primitive should be drawn.
The rendering primitive can be a paint stroke or a line stroke, a stipple dot, or a small
graphical element.

The seminal piece of work on particle systems for NPR is that of Barbara Meier
[Meieg6], Painterly Rendering. In this work, the concept of a particle system where
particles are randomly distributed on the surface of a 3D model is presented. The
reason that Meier used particles in her system was that particles satisfy the require-
ment of frame-coherence. Since the particles are attached to the surface of a model,
the particles move along with the model as it moves, or as the scene changes. Meier
used the particles to distribute small paint strokes on the surface of the model, the
paint strokes simulated different effects, such as watercolors and oil painting. Each
paint stroke is represented using a textured surface. The overall system combines three
different inputs: one was the particles system, which determined the position of the

15

2 Non-Photorealistic Rendering Systems for 3D Models

-y
F)
F r o
Particle
— —_—
@ Placer

Geometry

Reference Pictures

Camera
Transform
Color
{ ; Output Image
£ 1 HJJJ Painterly
» rrﬁ:f 4 ”} Orientation_— g \ ReNderer
TN

4 *
. e

- .

Size “""-g--..':'“" =

\ Brush Image

Figure 2.1: Structure of the particle system for painterly rendering by Meier [Meie96].

individual strokes; the other was the painting strokes and the last element corresponds
to lighting (see Figure 2.1). The major contribution of Meier was the realization that
one way to obtain frame-coherence in NPR is to attach particles to the surface of the
model. The initial work presented by Meier, however, was not complete in the sense
that while the particle system presented by her did achieve frame-coherence, it was not
scalable, which means that the models could only be seen at a given distance, but not

at arbitrary viewing distances.

7

Figure 2.2: Left: sample graphtals composed of several primitives. Right: A ‘tuft’ ren-
dered at two levels of detail [Mark00].

16

2.1 Particle Systems

Figure 2.3: Groups of graphtals at different levels of detail [Mark00].

This problem was addressed in the work of Markosian et al. [Markoo], where particles
are used to define the position of small graphical objects, denominated graphtals or
geographtals. Graphtals are used to represent cartoon-like illustrations of a landscape.
Let us assume one of the elements of this landscape is a grass patch. A grass patch
can be clearly appreciated in a scene at a certain distance, but if the user moves farther
from the point where the grass is placed, the representation for the grass needs to
change, since it occupies a decreasingly small region of the entire scene. This is done
by creating several representations, or levels of detail (LODs), for the grass patch and
other objects in the scene. Figure 2.2 shows two different graphtals on the left, while a
graphtal at two levels of detail is shown on the right. Using this approach, a complete
scene can be described at several levels of detail, as is shown in Figure 2.3. Markosian
et al. included a scaling attribute for each graphtal which is used in combination with
the change in viewing distance to determine the level-of-detail to be chosen.

In most cases, rendering primitives in NPR can not be scaled up (or zoomed in) be-
yond a certain screen-space threshold. This is because drawing primitives are not
meant to be seen from too close, otherwise its lack of detail becomes apparent, and
this has a negative impact on the esthetic perception of the object (imagine for exam-
ple, the Graphtals in Figure 2.2 seen at a close distance). For this reason, Kaplan et
al. [Kaploo] presented a particle system where the rendering primitives scale up to
a certain maximum size in the image space. To fill the area not covered by existing
primitives, new rendering primitives appear on the surface of the model as the viewer
zooms into the model. In their implementation, particles are randomly distributed on
the surface of the model, and are given specific radius values which are used in con-
junction with the scaling and projection values. The number of particles is controlled
interactively by the user during an interactive session, and newly added particles are
given lower relevance values than existing ones, so that they are rendered only after
particles on higher levels are rendered. In addition, they suggest changing the shape
of the rendered primitives to achieve different effects (see Figure 2.4). The system of
Kaplan has the advantage that it addresses the problem of scaling by automattically
controlling the amount of visible primitives. However, generating additional primi-
tives is not automatically done, and the distribution of primitives on the surface of

17

2 Non-Photorealistic Rendering Systems for 3D Models

Figure 2.4: Effects obtained by changing primitive shape, by Kaplan et al. [Kapl00].

the model is random, while some drawing styles, like stippling, require having regular
spacing between stipple dots.

2.2 Textures

Texture mapping has been widely used in 3D graphics to provide more detail to the sur-
face of models, often to increase the look of realism of a model. An additional function
of a texture is to replace model geometry with images. The result is a model that has a
detailed look, but at the same time has a low polygon count and can thus be rendered
rapidly. A texture is an image which is mapped to the surface of a model. Textures
were originally meant as a replacement of complicated geometry that make a model
look more realistic, but in NPR, textures contain strokes or drawing primitives which

18

2.2 Textures

are rendered on the surface of a model. Using textures to emulate non-photorealistic
styles is part of the seminal work in this area [Winkg4]. An advantage of using textures
is that since textures are fixed to the model surface, they satisty the frame-coherence
requirement for NPR styles. In addition, textures can be rendered rapidly, since there
is special hardware for rendering textures in current graphics cards.

There is a large set of techniques which rely on texture-mapping hardware to produce
NPR renditions in styles like charcoal rendering and pen-and-ink illustration. Among
the first publications that describe the use of textures for NPR is the one by Winken-
bach and Salesin [Winkg4], where the use of an array of prioritized stroke textures was
presented. The idea here is that a texture can be represented at several levels of detalil,
and it is possible to create a hierarchy of textures to represent rendering styles related to

hatching and cross-hatching. The original work of Winkenbach and Salesin proposed
the use of several textures at different levels to adapt to changes in the viewing angle.
The different levels of the textures are stored in mip-maps which contain the texture at
different levels of detail. Nowadays, texture mapping hardware allows the combination

of several textures in real-time. This has found use in the work of Praun et al. [Prauo1]

who propose the use of tonal-art-maps to re-create NPR hatching styles. Tonal-art-
maps solve the question of scaling and shading by using a two dimensional array of
textures instead of a one-dimensional array as the one proposed by Winkenbach and
Salesin (see Figure 2.5).

Figure 2.5: The Tonal Art Maps by Praun et al. [Prau01] ensure frame-coherence at the
stroke level and take into account changes in shading and scaling.

This separation of scaling and shading gives freedom for the creator of the texture
to define the aspect that a model should have when changes in scale, shading, or a
combination of them, occur. The strokes in the tonal-art-maps of Figure 2.5 are placed
such that a stroke is present in all the textures on the right of it and in all the textures
below it. This enforces frame-coherence at the particle level, because the strokes will
appear and are removed in a sequential way, according to shading and scale. Figure 2.6
illustrates several models rendered using Tonal-art-maps.

Having said that, it might look like textures could also be used for stippling, since
they are also constituted in a hierarchical structure, and are frame-coherent. In fact,

19

2 Non-Photorealistic Rendering Systems for 3D Models

Figure 2.6: Examples of models drawn in several NPR styles using Tonal Art Maps
[Prau01].

some authors have presented proposals to emulate the stippling style using textures
[Prauo1, Winkg4], however the resulting images have not yet achieved anywhere near
the level of quality that images in the traditional stippling style have. An example of a
texture that aims at emulating the stippling style is shown at the lower bottom (center)
of Figure 2.6. By inspecting this image we can notice that the overall aspect of the
model is more that of a granite block, and the spacing among dots is rather random. A
big problem with texturing is that is is hard to create and mix high resolution textures
at different levels of detail. This problem likely arises from the way textures are mapped
to the surface of 3D models.

Textures are normally subject to several hardware-based filtering processes during
which they lose resolution. If the texture’s resolution is high, the effects of these trans-
formations are not noticeable, but if the model is zoomed-in, the texture will at some
point lose resolution. The column on the left of Figure 2.7 illustrates how textures lose
detail when seen at a close distance. In the case of stipples, however, we cannot afford
to have large dots when the object is seen at a close distance, because the dots would
become circles.

20

2.3 Silhouettes

Figure 2.7: Non-photorealistic scene based on stroke textures by Freudenberg et al.
[Freu02].

2.3 Silhouettes

Silhouettes are an essential part of NPR renditions. The reason for this is that silhou-
ettes enhance the shape of the model, separating it from the background. There are a
number of techniques which deal with the generation of silhouettes using 3D geome-
try. In the work of Isenberg et al. [Iseno3], a guide for NPR developers is presented
which describes a number of techniques available to produce silhouettes.

Most silhouettes are generated as a set of lines of constant width which delimit the
boundaries of a 3D model. There are also stylized silhouettes, which are rendered
as paint strokes and can be used to enhance the artistic look of non-photorealistic
renditions. The work of Kalnins et al. [Kalnoz2] integrates several real-time rendering
techniques in a complete NPR painting system which enables artists to produce NPR
styles interactively. In Figure 2.8 we show a set of cups obtained by having artists
anotate on the same 3D cup model. Notice that all cups have stylized silhouettes, and
the variety of stylies which can be obtained by using different colors and styles.

21

2 Non-Photorealistic Rendering Systems for 3D Models

Figure 2.8: Cups obtained by the interactive painting system Wysiwyg NPR [Kaln02].

2.4 Volume and Point-Based Rendering

Point-based rendering has emerged recently as a feasible rendering technique which
can efficiently deal with large complex models. In principle, point based rendering
works under the premise that many existing models contain large amounts of points
and that it is possible to render the model as a cloud of points rather than as a mesh of
polygons. For this reason, most sample models for point based rendering are obtained
from 3D scanned objects, since it is common that large point clouds are generated
when using this technique.

The work of Pfister et al. [Pfisoo] and Zwicker et al. [Zwico1] concentrated in pro-
ducing photorealistic representations of objects using points and surfels as rendering
primitives. In addition, point-based rendering is scalable, can be performed in real-
time and can be combined with polygonal rendering. Dachsbacher et al. [Dacho3] pre-
sented Sequential Point trees, an approach which makes use of a point tree hierarchy
which makes it possible to render several objects with hundreds of thousands of points
at interactive rates, by means of the reordering of a point hierarchy in a sequential ar-
ray. Rusinkiewicz and Levoy presented QSplats, a technique which permits rendering
of scanned model containing millions of points at interactive rates [Rusioo].

22

2.4 Volume and Point-Based Rendering

Figure 2.9: Examples of volume rendering using Stippling Techniques [Lu02].

Little research has been done to combine point-based rendering and non-photorealistic
rendering. However, this might change soon. Lu et al. [Luo2] have recently presented
a point-based rendering system to obtain stippled renditions of volumetric data (the
information about an object is represented by a three-dimensional array of data). In
this approach, a point hierarchy is produced using a spatial partition scheme (an oc-
tree). The approach consists in controlling the size of the stipples according to their
level at the octree and information computed from the volumetric data. Stipples are
rendered in 3D space, and the system can control the stipple density according to the
viewing parameters, when the user zooms in, more stipples are generated, and when
the user zooms out fewer stipples appear, in this way, their renditions are scalable
and frame-coherent (see Figure 2.9, left). In addition, their system takes advantage
of hardware acceleration to render models at interactive rates. However, the fact that
there is no underlying polygonal mesh makes it difficult to discern between different
layers of the input model, because these layers overlap in the screen plane (see Fig-
ure 2.9, right). Another system for the visualization of volumetric data is presented
by Lum and Kwan-Liu [Lumoz], who illustrate other non-photorealistic styles (see
Figure 2.10), like Gooch and Gooch warm and cold-color schemes [Goocg8], and hy-
brid scenes with photorealistic and non-photorealistic styles which yield impressive
results.

There is a strong relationship between point-based rendering and non-photorealistic
rendering, which consists in that point-based rendering systems can be modified to
produce point-based stippled renditions, as discussed in the last Chapter of this thesis.
However, stippling is not the only rendering style which could be applied to point-
based systems, since other primitive shapes could be used, as shown by the work of
Kaplan et al. (Figure 2.4).

23

2 Non-Photorealistic Rendering Systems for 3D Models

Figure 2.10: Non-photorealistic volume rendering by Lum and Kwan-Liu. On the left,
the skin surface is made visible using gradient based feature enhancement. On the right,
skin and flesh are rendered in a more photorealistic style, while the bones are rendered
using non-photorealistic techniques [Lum02].

2.5 Particle Distributions in the Image Plane

An alternative approach to texture mapping and to particle systems is the possibility of
enforcing frame coherence on the image plane. Secord et al. [Secoo2b] have explored
the possibility of distributing particles in a frame-coherent way on the image plane. Un-
der this approach, a 3D model is rendered as a grey-scale image, and after each frame is
rendered, a particle distribution tries to enforce frame coherence between subsequent
frames. A similar approach is presented by Haga et al. [Hagao1], where a technique
that also performs image-based coherence is presented. In this approach, a stroke cen-
ter which determines the location of a stroke is defined. This center is updated from
frame to frame according to the movement of the object, giving the frame coherence.
In this system, strokes fade in and out of the image smoothly, However a problem with
frame-coherence appears because the stroke orientation is a function of the model sur-
face normal with respect to the screen plane, which leads to strong variation of stroke
orientation as the model moves. An additional problem that reduces frame coherence
is that the life of the particles is short, and new particles do not emerge at the location
where previous particles were located, which introduces noise in the animations.

The main advantage of using image-based approaches to obtain frame-coherence is
that tone is guaranteed to be kept, which is not the case for particle-based systems, as

24

2.6 Contribution of Point Hierarchies to NPR

it will be later discussed. Another advantage is that it is not necessary to preprocess
the 3D models for the purpose of the particle distribution. A third advantage is that
the distribution of particles occurs in the 2D plane and is fast since the number of
strokes/particles is defined by the size of the image and not by the complexity of the
underlying model.

A disadvantage of carrying out the particle distribution in the image plane is that even
when frame-coherence in the image plane is enforced, the particles do not necessarily
move correspondingly to the surface of the model. This can be understood as having
particles ’float’ on the surface of the model. This effect is interesting per se, but is
somewhat counterintuitive, because it does not quite correspond to what is expected
to occur in the real world. Video 2-Fast Primitive Distribution shows these effects, and
we can observe that the rendered strokes displace as if they were floating on the surface
of the model. In addition, the orientation of the strokes is not constant with respect
to the surface of the model, which also undermines the coherence between the stroke
orientation and the model surface. As a counterexample, texture-based NPR systems
enforce frame coherence also with respect to the surface of the model, because the
orientation of the strokes is fixed with respect to the model’s surface.

The question that image-based particle distribution systems makes us arise is whether
it is possible to obtain regular point distributions in 2D by distributing points regularly
on the surface of a 3D model. This is a question that we are confident will be answered
throughout this work.

2.6 Contribution of Point Hierarchies to NPR

In this thesis we depart from the concepts present in the literature previously men-
tioned to create a point hierarchy which is appropriate for stippling and other NPR
styles.

Taking into account the three main aspects that need to be taken into account when
choosing a rendering technique for NPAR, namley frame-coherence at the particle
level, scalability and the possibility of applying deformations to 3D models, we have
decided to develop a hierarchical particle system where each particle is a point in 3D
space. A particle system inherently provides full frame-to-frame coherence, and in our
case, is used both for controlling the stipple density (according to the desired shading
tone) and for controlling the number of particles used for rendering (as the model is
scaled, or the viewing distance or screen projection of the model changes). Further-
more, by slightly changing the coordinate system of the points in the hierarchy, we can
use it for animated and deformable models. In addition, to enforce a regular point

25

2 Non-Photorealistic Rendering Systems for 3D Models

distribution, as it is done in image-based stippling, the point hierarchy creation ap-
proaches presented throughout this work are constructed in a way that enforce appro-
priate spacing among the point particles. This requirement of the spatial distribution
of particles is unique to the purposes of stippling. However, once created, the particles
could be of use for other non-photorealistic rendering styles, because the particle sys-
tem is one component of the rendering system, and it could be used in conjunction
with other rendering primitives as well, in the way of Kaplan et al [Kaploo].

Our choice of using the point hierarchies instead of textures let us dynamically control
the number of particles we want to render. We have full control of the stipple dot size
at every frame, and can regulate the maximum size of a dot, even as the model is seen
from a short viewing distance.

Figure 2.11: Examples of the rendering styles obtained with the particle system of Cor-
nish et al. [Corn01].

In this thesis, we present two new and different approaches to generate particle systems
for NPR, where the spatial distribution of the particles is taken into account during the
creation of the point hierarchy. The first approach is inspired in the work done by Cor-
nish et. al. [Corno1], who presented a system for interactive rendering of complex
models based on the mesh simplification system of Luebke and Erikson[LueEri:97]. In
Cornish’s system, strokes to be rendered were derived through dynamic mesh simpli-
fication. When a model is seen from far away, a screen-space-based threshold deter-
mines if an edge is to be visible or not. The edges are used as the locations of stroke
lines which result in the images presented in Figure 2.11. Our work differs from that of
Cornish in two main aspects. First, we can process both coarse and highly tessellated
models. With our system, point hierarchies of any size are created through mesh sim-
plification and subdivision, regardless of the degree of tessellation of the input model,
where in the case of Cornish, the size of the point hierarchy is determined by the num-
ber of polygons of the input model. This let us produce stippled renditions in situ-
ations where the original amount of vertices in the model is not sufficient to fill the
canvas with the appropriate number of stipples (see Chapter 4). The second difference
is that we flatten the point hierarchy in a sequential point array, which permits fast
hardware processing for performing real-time stippling with a large number of dots
using graphics accelerators, as described in Chapter 7.

26

2.6 Contribution of Point Hierarchies to NPR

The second approach that we use to create well-spaced point hierarchies is also in-
spired from the literature on level of detail, but in this case is related to the creation of
levels of detail by mesh re-tiling and point relaxation. In 1991-1992, Turk presented a
system to create regularly distributed point sets on the surface of a model to generate
synthetic textures [Turkg1] and to perform mesh simplification [Turkg2]. Inspired by
this approach we present a way to distribute points on the surface of a 3D graph by to-
ken distribution. Figure 2.12 shows a stippled rendition produced using our rendering
system. Note that the image at the bottom is not a detail taken from the image at the
top, but the rendition our system produces as the viewer zooms at the model, filling in
the shaded areas with additional stipples. The token relaxation approach emphasizes
appropriate spacing among stipple dots at each level of the point hierarchy. The main
visual difference between the approach of point hierarchies created by mesh simpli-
fication and subdivision and those created by token relaxation appears at the lowest
level of the point hierarchy (this is descibred in Section 5.7.3). Our token relaxation ap-
proach also illustrates how point hierarchies can be created with different approaches,
mostly related to mesh simplification and mesh compression [Allio1], and show that
additional approaches for creating point hierarchies are still open for research.

27

Non-Photorealistic Rendering Systems for 3D Models

Figure 2.12: With our system, it is possible to produce adaptive stippled renditions for
3D models. As the user zooms at the dragon (top), more dots appear to maintain the
tone and stippling style (bottom) (original sizes: 800x600).

28

3 A General Framework for a
Particle-Based Non-Photorealistic
Rendering System

In the first part of this Chapter we describe how to distribute points on the surface
of a model in a way that the particle distribution adapts to changes in shading, scale,
and viewing angle. In the second part of this Chapter, we describe how to construct
a non-photorealistic renderer to produce a stippled rendition by taking as input a 3D
model and a point hierarchy obtained from the 3D model.

3.1 Going from 2D to 3D with Adaptive Point
Hierarchies

In this section we explore the relationship between stippling in the plane (2D stippling)
and stippling in 3D as the model is moved and the viewing conditions are changed, in-
cluding scaling, slope and lighting. This discussion will help us determine which func-
tions can be used to approximate stippling using point distributions in 3D space.

When we have a stipple distribution on a plane, and we want to keep a constant tone
on the surface of a model, the stipple density must somehow be regulated. In the fol-
lowing section, we consider how to regulate stipple density in relationship with scaling
and shading. Later, we consider controlling stipple density for changes in the viewing
direction.

29

3 A General Framework for a Particle-Based Non-Photorealistic Rendering System

0.0.0.0\ .°.o.

Figure 3.1: Scaling with points of fixed size. The images on the right are scaled-down
versions of the image on the left. In the bottom, points have been removed from the
image.

3.1.1 Adapting to Scale and Shading

If we scatter a number of stipple dots of fixed size on a square face in 3D and scale
it, the overall darkness of the image will vary as an inverse of the scaling, when the
model is small, points will be placed close together producing a dark tone and when
the model is large, points are more spaced and the overall tone becomes lighter. This
is shown in the image on the top right side of Figure 3.1. On the other hand, the image
on the bottom right of the Figure shows how the initial tone available on the left side
can be maintained by removing some stipples from the original image. To preserve
tone independent of scaling, we want to control automatically the amount of stipples
rendered on a certain region, while maintaining tone constant as the model is scaled
up and down.

When using particles on the surface of a 3D model, it is important to keep a constant
target tone by controlling the amount of stipples rendered. For this, we must define a
function that let us compute which points should be discarded as a model changes in
scale.

To define this function we make use of the following definitions:

1. targetTone is a variable which goes from zero to one, if targetTone is zero, then a
totally white tone is indicated or desired, if targetTone is one, then a totally black
tone is desired.

30

3.1 Going from 2D to 3D with Adaptive Point Hierarchies

2. PtSize indicates the point’s diameter in pixels. PtSize must be kept relatively
small, since a large point size will produce a circle instead of a stipple. In gen-
eral, we limit its size (MaximumP1Size) to a user-defined value which is typically
around 3.0, but this value greatly depends on the size of the rendition relative to
the resolution of the output device.

3. CanvasArea indicates the size of the canvas in pixels.

The actual tone in a stippled image is the average of points over a certain region. The
following formula gives us the shading tone obtained by distributing points of a given
size on a canvas:

. numberOfPoints
actualTone = PtSize %

CanvasArea

Let us assume for a moment that we have scattered a limited set of regularly distributed
points on the canvas, and we need to decide (on a point-by-point basis) which points
in this set should be drawn, as a function of the targetTone at each point’s location.

First, we need to determine the region that a point covers with respect to the Can-
vasArea and the other points:

CanvasArea

RegionOfInfluence = SumberOfPoints

Then, we can determine what is the tone given by a full point in comparison with the
area covered by its region of influence:

PtSize

GivenTone =
fventone RegionOfInfluence

We can estimate for an individual point whether a point can be lit or not, using the
following algorithm by comparing the target tone value with the tone value that a full
pixel would give:

if (targetTone > GivenTone)
then outputPtSize = maximum point size
else outputPtSize = 0

Algorithm 3.1: Discrete point selection for rendering.

31

3 A General Framework for a Particle-Based Non-Photorealistic Rendering System

The function previously described is a discrete function to determine the point size.
The result of using such a function during interactive rendering is that points pop in
and out of the image, which is an artifact that introduces noise.

To produce smooth transitions of point size we can modify the previous function and
set it as a function of the proportion of the difference between the target tone with
respect to the tone given by a full point:

if (targetTone/GivenTone > smoothSlope)
then outputPtSize = 1.0
else if (targetTone/GivenTone < 1.0)
then outputPtSize = 0.0
else outputPtSize =
(targetTone-GivenTone) /GivenTone /(smoothSlope-1)
simplifying:
((targetTone/GivenTone)-1)/(smoothSTope-1)
outputPtSize = outputPtSize * MaximumPtSize

Algorithm 3.2: Smooth point rendering doing point size interpolation.

In this algorithm, smoothSlope (a user parameter restricted to values higher than one)
indicates the proportion in which targetTone must exceed the value of givenTone such
that the point reaches its maximum size. Ideally, the transition should be fast, so
smoothSlope should be small, but if the transition is too fast, the points will suddenly
pop in or out of the image.

While the target tone is not guaranteed to be correct for values other than zero and
the maximum point size, we obtain in exchange a smooth transition for enabling and
disabling points, which is more important than obtaining an exact point transition.

This algorithm takes into account scaling, as long as the value in CanvasArea is the
projection of the square face on the output image or output window. If CanvasArea is
considered a dynamic variable under this assumption, the algorithm works appropri-
ately during scaling.

Up to this point, we have worked on the assumption that we have a constant set of
input points. This constant set of input points are appropriate to render only a small
spectrum of targetTones. If the canvas area is small, all the points in the set will exceed
the target tone, and none will be rendered. On the other side, if the canvas area is large,
all the points in the set will be below the target tone and will be set to their maximum
size.

It is clear now that we need additional sets of points to cover different shading tones.
For example, a set of two points of size 1 on a canvas of area 10 is adequate to provide

32

3.1 Going from 2D to 3D with Adaptive Point Hierarchies

shading of 0.20 black/white, but if the canvas is of area 100, we will need a set of ap-
proximately 20 points of the same size to represent the same shading tone as before.

For this reason, we need to distribute several groups of points on the surface of the
model, in such a way that a small group of points provides appropriate shading for a
small canvas, and a large group of points provides appropriate shading for a large can-
vas. Every group of points should be evenly distributed on the surface of the model.
In addition, to ensure frame-to-frame-coherence, we must make sure that the groups
grow incrementally. This means that the points in the smallest groups should be in-
cluded in the following group. Otherwise, we will have an excess of points i.e., darker
tones as expected.

In this work, we call this arrangement of points a point hierarchy. The point hierar-
chy contains points which correspond to different scales or shading tones. It contains
different groups of points distributed over the same surface to successfully represent
different levels of targetTone. In our case, we can differentiate the group of points by
grouping them on the region of influence they cover. Points which cover large regions
of the canvas are at the highest levels of the hierarchy, and additional points, which
cover smaller regions of the canvas are further down the hierarchy.

l i L1

Figure 3.2: The same point hierarchy is used to accommodate changes in scale while
preserving the target tone (upper row), and changes in shading by reducing the point
density (lower row).

Using the algorithm previously described, we have a way to distribute points on a
canvas where the targetTone and the scale can be arbitrarily modified using the same
point hierarchy. Figure 3.2 illustrates this, in the upper row, we scale down the square
face, and remove some points to keep the initial tone. In the lower row, we have a
canvas of constant size, and remove the same points to achieve lighter tones.

33

3 A General Framework for a Particle-Based Non-Photorealistic Rendering System

3.1.2 Adapting to Slope

An additional consideration now arises with respect to the slope, or angle of inclination
of the points.

When a square polygon covered with stipple dots is rotated around an axis perpendic-
ular to the face normal, linear patterns arise in the distribution of the dots, even if the
point density on the face is regular (see Figure 3.3).

If we want to avoid the presence of these patterns, the point density should adapt to
the axis and the angle of rotation. For example, if the axis of rotation is on the X-axis,
the points should probably vanish in such a way that they avoid the formation of the
vertical linear patterns on the projected images shown in Figure 3.3.

i °) ° .oo.
° ° ° e o °
° vy °
° ° ° ®e o
° °
o ® ® ...
Rotate
° ° 'Y ° ® g o ©
° °
[® ® o
° ® ° ¢ o'o.
Rotate%ix
° e ® o ° .. °
[])) °
[] [] [}
® ® () ()
°
.. [) b Y []

Figure 3.3: Effect of rotations on the point distribution in the image plane. The image
on the top left illustrates a face covered with a random point distribution with regular
spacing. Images on the top right and bottom left show the linear patterns which result
from rotating the face around the X- and Y-axis.

In general, we need to make point distributions which are tailored to the rotations

depending on the axis of rotation, and apply them only in the case of rotation on this
axis. But the question then becomes, what attributes must we give to the points so

34

3.2 A Particle-Based NPR Renderer

that they behave appropriately under each combination of scaling and rotation. The
situation becomes more complicated when we consider that rotations around X and
Y are only two standard rotation types, but in fact, there is an infinite set of rotations
which can be used to rotate the input polygon. A possible solution would be to have
a dynamic evaluation procedure where the stipples are removed using a mathematical
expression or a function which determines for a combination of shading tone, scale
and viewing angle, the size of the stipple. In the frame of this work, we explored
several functions that could be used to do this. However, a general solution was not
found.

Another option could be to assign attributes to each point in the hierarchy to consider
each possible rotation. This, however, is not an efficient solution because the set of
attributes per point would be large.

We propose the use of a linear solution which is applied on all points which considers
only the deviation of the face with respect to the standard orientation (which is front-
facing):

NewRegionOfInfluence = RegionOfInfluence * FaceNormal.dot.ViewingVector

In this case, every point will adapt to some extent to the changes in rotation, eliminat-
ing the points as the face is rotated. However, this will not prevent the appearance of
some linear patterns when faces are quite sloped with respect to the normal position,
leading to the effect mentioned in Figure 3.3.

3.2 A Particle-Based NPR Renderer

There are two parts to a particle-based NPR renderer, the first is the creation of a point
hierarchy, and the second is the rendering stage, where the point hierarchy is used to
produce stippled renditions. These two stages are divided for the sake of flexibility and
modularity: since particle generation is a time-consuming process and point rendering
can be done in real-time, both processes are performed separately; in addition, the
point hierarchy can be created using different approaches, and can be described in a
standard file format which is used later by the rendering system.

The point hierarchy consists of points in 3D space scattered over the surface of the
model, each containing its hierarchy attributes. During rendering, the input model is
rendered using a plain color and the z-buffer. The model is rendered slightly behind
the particles (using constant offset values), so that the particles which are on the visible
surface of the model are not occluded by the surfaces of the model where they lie.

It is a task of the renderer to evaluate the point hierarchy and to determine which
particles are visible and what their size should be, according to the lighting conditions,

35

3 A General Framework for a Particle-Based Non-Photorealistic Rendering System

Point
Hierarchy

Point Hierarchy
Creation

Viewing

Input Model
Paramters

Rendering Module
Standard Silhouete Point Resolution
Rendering Detection Module
\

Color, Depth Scene
Shading Composition

A J

Output Image

Figure 3.4: Rendering pipeline for producing renditions with a point hierarchy.

viewpoint, and screen-space projection. For this, each point in the hierarchy must be
assigned a "relevance" value (also called radius) which is used by the renderer. This
value is normally a floating-point value (for real-time rendering), but it can also be
computed from a collection of points in the neighborhood of the particle set (which is
useful for animated stippling).

For animated models and morphing, the particles should be defined relative to the
surface of the input polygons where they lie on. In this case, the rendering system
is able to transform the coordinates of the particles according to the change in the
coordinates of the input polygon.

To enhance the profile of the model, a silhouette rendering algorithm is also included
which renders edges that connect front and back facing polygons of the input model.
This is the basic algorithm, however, research in NPR also has focused in producing
stylized silhouettes effects, and there is a number of algorithms for silhouette render-
ing. Isenberg et al. have produced a compilation of such algorithms which can be of
interest for the reader [Iseno3].

In Figure 3.4 the general rendering pipeline for a particle hierarchy is shown. Mixed
rendering styles are produced by using the particle system to stipple certain parts of
the model, while other parts are rendered using other rendering techniques.

The particle renderer takes as input the point hierarchy and the rendering parameters.
The rendering parameters (see Figure 3.5) include information about the model itself,

36

3.3 Generation of Point Hierarchies

the location of the particles on the model, the rendering parameters such as light di-
rection, viewing distance, and viewport size, to determine the size of each individual
particle. As indicated, a relevance value is an important parameter used to decide the
size of a point with respect to other points. Figure 3.5 illustrates the point resolution
module, which is part of the whole rendering pipeline.

Y
Point Relevance Value
Viewing Distance
Normal Orientation
ot iiéeoﬁﬁz?lution — Output Point Size
Light Direction
Viewport Size
-~

Figure 3.5: Particle rendering module and its inputs.

3.3 Generation of Point Hierarchies

In this section we describe how polygonal mesh simplification algorithms, which deal
with level-of-detail generation and mesh compression, are suitable for the production
of point hierarchies. Mesh simplification techniques are meant to save rendering time
by sending the minimum amount of polygons to the graphics engine, while preserv-
ing the visual aspect of a model. A polygonal model’s Level-of-Detail describes the
amount of geometric complexity that a model has, which is commonly measured by
the number of polygons the model has at a given level.

Level-of-Detail representations are produced in most cases by analyzing the geometry
of the input model and by simplifying it using a wide range of simplification operators.
In fact, there is a large number of simplification techniques, which vary considerably
among each other For example, one technique may decide to collapse the longest edges
of a polygonal mesh as its basic simplification operator, while other technique may
decide to cluster a number of vertices using regularly spaced voxels as a simplification
step.

37

3 A General Framework for a Particle-Based Non-Photorealistic Rendering System

In several cases, the result of this simplification is the production of a mesh hierarchy,
which contains all the different levels of detail of a model, and a mapping, used at the
rendering stage, that defines how to produce a transition between different LODs.

It is important to have smooth transitions between levels of detail, because this reduces
the presence of popping artifacts, which refers to noticeable differences between levels
of detail that appear when switching between levels of detail during interaction.

There are several aspects where the mesh simplification theory coincides with the pro-
duction of point hierarchies:

1. There is a parallel between a LOD sequence and a point hierarchy: while a low
LOD is a representation of a model with few polygons, a higher level in the point
hierarchy requires just a few number of particles to be spread over the surface of
a model. High levels of detail correspond to the lower levels of a point hierarchy
and are obtained by visiting the lower levels of the mesh simplification tree.

2. Another aspect is that both areas are bound by the requirement of coherence
between different levels of the hierarchy. While the levels of detail of a polygonal
mesh have to coincide between each other to enforce smooth transitions, there
must be a degree of coherence between the levels of the particle hierarchy, so that
frame-coherence at the particle level is kept while scaling the point hierarchy, or
while varying the shading tone of a surface.

3. A third aspect is the preservation of features versus the distribution of points
on the surface of a model. Most LOD techniques emphasize the production of
levels of detail where the lower detail representations are meant to keep features
which are present at higher levels of the hierarchy to the highest degree possible.
Nevertheless, other LOD techniques are meant to reduce uniformly the polygon
count and keep a regularly tessellated mesh at different levels-of-detail. Regu-
larly tessellated meshes are preferred in graphics because they reduce the risk of
having floating-point inaccuracies when computing other geometric attributes
of the mesh (like the normals of the faces, for example). The parallel between
regularly tessellated meshes and point hierarchies is present when a mapping
from the polygon mesh to the points of a point hierarchy is defined. This con-
nection highly depends on the technique used to distribute points on the surface
of the mesh.

In sum, mesh simplification techniques can be used as a ground to produce point hier-
archies suitable for Non-Photorealistic Animation and Rendering. The large amount
of available techniques also provides a number of possibilities to produce point hi-
erarchies that cover the requisites of frame-coherence, scalability, and regular point
distribution. In the following chapters we discuss in detail two techniques inspired
by literature on level-of-detail and mesh simplification which are implemented within
this context to produce point hierarchies.

38

4 On the Generation of Point Hierarchies
Using Mesh Simplification and
Subdivision

In scientific illustration Hodges [Hodg88] points out that artists create stippled draw-
ings by first placing some groups of dots in a region of interest and then filling in until
the desired tone is achieved. We follow the strategy proposed by Hodges by creating
a hierarchy of vertices in 3D space which represent point locations on the surface of
the model. The point hierarchy here presented is defined in such a way that spacing of
points is taken into account when adding and removing points: new points (which are
inserted lower in the particle hierarchy) are placed at locations roughly in the middle
of existing points. Alternatively, when points are removed from the surface of a model,
points at the bottom of the hierarchy vanish first. In Figure 4.1 we illustrate how the
concept of regular spacing of points is taken from the one dimensional case to the three
dimensional case. On the left side of the image, we can observe how relevance values
can be assigned to the points according to their hierarchy level. This distance is a key
value used to determine whether a point should be rendered or not. On the right side
of the image, it is possible to observe that if we consider the vertices of a polygonal
mesh as potential point locations, a mesh simplification and subdivision approach can
be used to produce a point hierarchy in 3D space. Points in the higher levels of the
hierarchy are sparsely distributed, and new points are added between existing ones.

In some cases, the number of vertices in the input model is so high that we have to dis-
card many of them to produce a light shading tone. To discard vertices from a highly
tessellated model we perform mesh simplification. Mesh simplification approaches,
such as progressive meshes by Hugues Hoppe [Hopp96] and view-dependent polygonal
simplification by David Luebke [Luebgy], generate simplification hierarchies which are
used to produced continuous levels of detail transitions by traversing a simplification
tree created by applying a series of edge-collapse operations on the edges of an input

39

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

R

Simplification

i

T - T T TLeveIl

N i B 2 A SO

Gl

Subdivision
R=0.25

RASSASARASALEILE

Figure 4.1: Point hierarchies for the one- (left), two- (middle) and three dimensional
cases (right). Points at the lower levels of the hierarchy have smaller radius values, which
determines their relevance in the hierarchy. For 3D models, a continuous level of detail is
created using mesh simplification and subdivision.

mesh. The model is iteratively simplified from its most complex level-of-detail by
using simplification operations until a few polygons in the model are left. A vertex hi-
erarchy is the result of this sequence of operations, the lower levels of the tree represent
the edges that were initially simplified, and the higher level represent subsequent edge
simplifications that were done on top of previous simplification operations (see Figure

4.2).

MO Vi Va Vs
V%f__7|v Tl
10 / 11 4 5 8 9 /

12 13

\ \' \' /

Figure 4.2: Vertex hierarchy created through simplification for progressive meshes. M°
represents vertices at the lowest level of detail, M represents vertices of the original mesh.
[Hopp96].

The idea of using a mesh simplification approach for NPR was presented by Cornish et

al. [Corno1]. Cornish et al. takes the simplification system of Luebke, and applies it to
an input model to create a hierarchy of edges. This hierarchy of edges produced by the

40

simplification stage is used for rendering in such a way that edges which are lower in
the hierarchy, appear last and vanish first than edges which are higher in the hierarchy.
In our approach, we use the edge-collapse operation defined by Hoppe in Progressive
Meshes and create a vertex hierarchy, based on the sequence of refinement operations
applied to the input model.

Depending on the viewing distance and the number of polygons in the input model,
the number of vertices of the input model might not be enough to cover dark areas. To
fill these areas, additional vertices are generated on the surface of the model by mesh
subdivision. After each simplification and each refinement step, the resulting vertex
is assigned a relevance value (alternatively, a list of neighbors) that we use to decide
which points should be included in a particular rendition.

To ensure that the appropriate level of detail is obtained at most viewing ranges, mesh
simplification and mesh subdivision are combined to provide seamless levels of detail
regardless of the resolution of the input model (see Figure 4.1, right). Vertices at the
top of the hierarchy are the initial group of dots spatially distant from each other;
the vertices down the hierarchy fill-in the space between existing vertices, so that new
points always come up to fill-in uncovered regions of the canvas until the desired tone
is achieved. This initial approach for frame-coherent stippling was presented in frame-
coherent rendering [Meruo2b].

An additional stage introduced to improve point distribution is mesh randomization,
which has the goal of reducing the presence of visible linear patterns embedded in
the geometry of the input model. Linear patterns can also result during the process
of mesh subdivision. To avoid these patterns, randomization is applied on vertices
produced by mesh subdivision.

We have implemented a system that integrates these steps and generates a point hierar-
chy as follows:

1. Compute a connectivity graph to operate on the input polygonal mesh.

2. Apply a randomize phase on the vertices of the input mesh to reduce the pres-
ence of regular patterns in the point distribution (see Section 4.4).

3. Perform mesh simplification on the input mesh, creating a hierarchy for the
vertices in the input mesh.

4. Perform mesh subdivision on the input mesh, up to a desired level of detail,
or a desired point count, expanding the existing point hierarchy with the new
vertices.

We describe each stage in detail in the following sections; the complete rendering sys-
tem is described in [Meruo3].

41

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

4.1 Setting up the Connectivity Graph

To generate the point hierarchy, a connectivity graph based on the input polygonal
mesh is created. The graph data structure we use is a Leda [Mehloo] directed graph
where every face is made up of three edges. The edges store the connectivity informa-
tion of vertices in the input mesh. Each edge contains a source and a target vertex,
according to the orientation of the faces (either clockwise or counterclockwise). Ad-
jacent faces are related to each other by assigning to each edge connecting the same
vertices a pointer to the edge owned by the adjacent face (the edge reversal). Figure 4.3
illustrates the graph structure corresponding to a sample patch of polygons.

%A/

Figure 4.3: Conversion of a polygonal patch in a directed graph. Notice that each face
has its own set of edges. As an example, the edges in face F1 are dashed. The direction
of the edges depends on the ordering of vertices in the input models (counterclockwise
in this case). Adjacent edges are reversals of each other.

The graph stores information about the vertices in the data structures graph Node
and VertexInfo. Information about the edges is stored in graph Edge and Edgelnfo.
Data specific to the faces is stored in Facelnfo. This information is used for mesh
simplification, subdivision, randomization, and vertex projection. Table 4.1 contains a
list of these structures with its most important components.

4.2 Mesh Simplification

In mesh simplification we create a vertex hierarchy by applying a series of edge collapse
operations in the input mesh until the model is simplified to a few vertices. The op-
erator that we use for mesh refinement is a variant of edge collapse (ecol) introduced
by Hoppe [Hoppg6] where one of the vertices is removed by displacing its connected
edges to the other vertex (see Figure 4.4).

The following algorithm is used to simplify the model:

42

4.2 Mesh Simplification

Graph Node
1. A pointer to VertexInfo
2. A list of incoming edges (edges directed towards the node)
3. Alist of outgoing edges

Graph Edge
1. A pointer to Edgelnfo
2. A pointer to the edge’s source node
3. A pointer to the edge’s target node
4. A pointer to the reversal of the edge

VertexInfo
1. VertexID
VertexNormal
VertexCoordinates in space
Facelnfo pointer to a face in the input model
A list of its relevant neighbors
Relevance value (Point Radius)

SN A Sl

Edgelnfo
1. A pointer to Facelnfo where the vertex lies
2. A pointer to the parent VertexInfo node in the point hierarchy
3. The edge’s length in object space

Facelnfo
1. The face Normal
2. A list of the edges of the graph that make up the face

Table 4.1: Contents of the data structures that make up the connectivity graph used for
mesh simplification, subdivision and randomization.

while not all edges have been simplified:
1. find the longest edge eLongest in the mesh
2. select one of the vertices of eLongest for removal
3. save a list of the nodes connected to the vertex that will be removed (the relevant
neighbors)
4. collapse eLongest by removing the selected vertex using ecol

Algorithm 4.1: Simplification of the input model.

By performing mesh simplification we can take models of complex geometry and ren-
der few points on top of them by using the vertices at the top of the hierarchy (see
Figure 4.5).

In the frame of this work, we also implemented a version of View-Dependant sim-
plification of Polygonal Meshes [Hoppgy], where the vertex hierarchy is used during

43

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

Ecol

Figure 4.4: The edge collapse operation used in mesh simplification [Hopp96].

T
7 ‘An‘;&'

Figure 4.5: Wireframe view of the original bunny model (left) and the model after a
series of simplification steps (right).

rendering to guide the process of refinement present in the output mesh. During ren-
dering, the degree of refinement allowed is made dependent on three parameters:

1. viewing frustum, which permits simplification of edges which fall outside the
viewing region.

2. surface orientation, for simplifying edges which belong to back-facing faces.

3. screen-space geometric error, for simplifying edges which are small enough on
screen-space to be removed without affecting the resulting rendition.

The implementation of Progressive Meshes(PM) was useful to find appropriate crite-
ria for point size resolution during rendering. However, Progressive Mesh simplifica-
tion involves the overhead of continuously updating the geometry during rendering.
In addition, mesh simplification occurs within a selective refinement framework, which
establishes a set of legality conditions for the edges that can be collapsed or expanded
during PM rendition (such as the presence of all the original faces previous to an edge
collapse operation) [Hoppgy]. This set of legality conditions is necessary for recon-
structing adequately the geometry of the input mesh at different levels-of-detail, but
has a negative influence on the distribution of points for NPR, because it creates a

44

4.3 Hierarchical Subdivision

point distribution that does not necessarily fit the desired shading when using points
as stipple locations. Due to this severe drawback, we do not use the legality conditions
presented by Hoppe.

Figure 4.6: A sphere refined using view-dependent refinement of progressive meshes
to preserve contour and detail on the visible side of the sphere [Hopp97]

In Figure 4.6 we observe that parts where the mesh does not require any detail, for
example the back part of the sphere, still contain a significant number of vertices, these
vertices are not necessary for a particle renderer, but are necessary for incremental
addition or removal of detail during interaction.

The overhead of updating the geometry present in mesh-simplification techniques is
not present when using particle rendering systems, because the geometry of the model
does not need to be reconstructed for the purposes of particle distribution when using
static models. In our implementation, the rendering system only needs to control the
presence and size of the particles on the surface of the model, for this reason, the only
parameter that is required to produce a point hierarchy after a refinement operation is
a list of neighboring nodes, or alternatively, the average of the distance to these nodes,
obtained after each refinement step.

4.3 Hierarchical Subdivision

We generate the point hierarchy by subdividing (refining) an input 3D model itera-
tively until a user-defined number of vertices in the model has been reached, or when
the longest edge in the refined model falls under a certain threshold in object space.
The operator that we use for mesh subdivision is an edge-split that creates a point
around the middle of two vertices of the edge to be split (see Figure 4.7).

The base algorithm used to generate new points during mesh subdivision is the follow-
ing:

45

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

7 A

Refine

Figure 4.7: The refinement operation used in mesh subdivision.

while the target vertex count has not been reached:
1. find the longest edge eLongest in the mesh
2. apply the subdivision operator on eLongest
3. save a list of the nodes connected to the newly created vertex
4. compute the normal and other information for the new vertex

Algorithm 4.2: Generation of new vertices using mesh subdivision.

The longest edge is taken to avoid creating extremely thin triangles, which would ap-
pear if only a specific region of a model is refined.

Y s
: LR S
= I e e N
Z N
=7

R
SR

vé&k
SRR
S KR RS
RSN A R

VA
=
AV

RO 028
S
R TAN

=

A
o

Figure 4.8: Wireframe view of the original teapot model (left) and the model after a
series of refinement steps (right).

Figure 4.8 shows a wireframe view of the teapot before and after mesh refinement. It is
important to notice that this approach increases the geometric complexity of a model
in a dramatic way. As an example, if we take an input model with N faces and subdivide
all its edges, we obtain 4 x N faces, and the average edge length is reduced to the half
of its previous value. If we wanted to halve again the average edge length, 4 * 4 + N
faces would be produced. This indicates that the growth of faces is exponential with
respect to the inverse of the average edge length. To control the geometric growth of

46

4.3 Hierarchical Subdivision

our model during refinement, we prefer to set a refinement limit by defining a target
number of vertices rather than by setting a threshold on the longest edge of the refined
model.

4.3.1 Interactive and Local Mesh Refinement

An initial proposal for our particle rendering system deals with the idea of refining
the model during user interaction. If the rendering system detects that the level-of-
detail, or the amount of particles in the system is not enough to provide an adequate
shading tone, more particles are generated through additional mesh refinement. In
this approach the model is not refined more than it is necessary. In addition, the
system contemplates local refinement, which means that only specific regions of the
model where refinement is needed are refined.

Local refinement consists of refining only those edges in the model which are visible
and which pass a series of tests, the most important of which is the screen-space pro-
jection of the edge. If the length of a visible edge in screen-space is found above a
computed threshold, then it is refined. However, if edges are arbitrarily refined, the
chance that long triangles appear is high, because neighboring triangles might not be
tessellated at the level of detail of the new length. The order of refinement determines
the quality of the triangulation. This is illustrated in Figure 4.9. The problem with
having thin triangles is that they favor the presence of errors in the projection stage,
because it is harder to project a ray on a thin triangle than to project a ray in a regular
triangle, due to the loss of floating-point precision.

To perform appropriate local refinement we introduce a legality condition to deter-
mine when a polygon can be refined. Our legality condition leads to the recursive
function refineLocal():

refineLocal(inputEdge)
1. find the longestEdge at the faces bound to inputEdge or its reversal.
2. iflongestEdge is inputEdge apply the subdivision operator on inputE and exit.
3. else refineLocal(longestEdge)
4. repeat from step 1.

Algorithm 4.3: Constrained mesh subdivision for local mesh refinement.

The algorithm avoids the creation of thin triangles during refinement, because it en-
forces subdivision of the longest edges in the triangle before subdivision of the shortest
edges occur. On the right side of Figure 4.9 a mesh refined with this subdivision strat-
egy is shown.

47

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

NN
y7ad

Figure 4.9: Local refinement strategies. On the left, the original mesh, with the region
to be refined enclosed in a circle. In the middle, refinement starting by the shortest edge
in the region. On the right, refinement using legality conditions in refinelocal().

The interactive mesh refinement system has inherent drawbacks. The first is that the
geometry of the refined model must be kept in memory during rendering. If we con-
sider that the geometry of the model grows exponentially during refinement, we find
that memory resources become rapidly scarce. The second drawback is that the ren-
dering system needs to continually monitor the existing edges of the mesh and test
which edges require refinement. This monitoring process requires extra processing
time which affects interaction and is directly dependent on the complexity of the re-
fined model. The third and most important drawback is that mesh refinement is a
time-consuming task. While refinement occurs, the interaction with the user stops.
In sum, all the drawbacks that are present in the interactive refinement system reveal
that it is not viable in terms of computational complexity and existing computational
resources. We separate point hierarchy generation from rendering, as described in the
rendering framework in Chapter 3, which makes it possible to have interactive render-
ing of particles systems, as will be shown later in this thesis.

4.4 Improving the Point Distribution

The distribution of vertices in the original model is most of the times quite regular.
This becomes noticeable when we render each vertex as a point and is a problem be-
cause linear patterns are introduced in the final rendition which are not desirable from
an esthetic point of view. In addition, the subdivision operator also tends to generate
linear point distributions, since it creates vertices along existing edges of the model.

To reduce the presence of these patterns, "randomize and project” operations are ap-

plied to the vertices of the input model before proceeding to mesh simplification and
to the vertices generated by mesh subdivision.

48

4.4 Improving the Point Distribution

7 TSA

Randomize

Figure 4.10: The random operator displaces the input vertex to a new location within
the neighboring faces.

4.4.1 Randomization

The randomize operator receives as input the vertex to be moved and the set of faces
sharing the vertex.

The vertex is displaced within the region enclosed by these faces, we first select a neigh-
boring face at random and then displace the vertex to a point in this face which falls
within a range that covers a small region (user-defined) between the input vertex and
the other vertices of the face (see Figure 4.10). The region cannot be the whole face,
because we could displace the vertex to a position too close to the other vertices and
we would generate thin polygons, which we want to avoid in general.

Figure 4.11 illustrates the effect of the randomize operator on the overall point distri-
bution. The image on the top left shows the original vertex distribution of the bunny
model. The following images show the effects of the randomize operator at increas-
ing degrees of randomization: the range of the randomization takes place within 15%,
35%, and 75% of the distance from the input vertex to the other vertices of the selected
face.

4.4.2 The Projection Operator

A side-effect of the randomization operator is that the randomized mesh does not co-
incide with the input mesh. Figure 4.12 illustrates this situation. The image on the left
shows a sample input mesh, whose edges represent faces of the model which are seen
from above and are oriented outwards. In the center image, the vertices of the input
mesh have been displaced on the faces of the input model using the randomize oper-
ator. The edges connecting the randomized vertices are not aligned with the surface
of the input mesh, because the randomized vertices do not coincide with the input
vertices.

49

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

Figure 4.11: Effects of randomization on the point distribution. On the top left, the
original vertex distribution in a close-up of the bunny model. The following images show
the effect of the randomize operator set at increasing degrees of randomization.

Because each randomization operation can potentially displace an existing vertex to
the inner region of a convex model (or to the outer region of a concave model), and
each subdivision operation can generate vertices which do not lie on the surface of
a model, a projection operation is applied after each randomization operation in a
processing stage previous to mesh simplification and after each subdivision operation
during mesh refinement. In the central image of Figure 4.12 a new vertex Vn is shown,
inserted during mesh refinement. Vn lies on the inner part of the input model and
would be occluded by the faces of the model, because the model itself and the random-
ized vertices, which represent the particle system, are rendered using the z-buffer to
determine visibility.

The only case where a randomized or a newly created vertex is guaranteed to lie on
the surface of the input model is when all the vertices of the polygon fan around it are
coplanar and lie on the surface of the model. Otherwise, the vertex has to be projected
back on the surface using a projection operator.

The projection operator implemented in our system defines a projection ray depart-

50

4.4 Improving the Point Distribution

vn
~ TS=a 7 ™= vn
Randomize Project

Figure 4.12: Effect of randomization on the input mesh and its correction through the
projection operator.

5,
e ~
e

Figure 4.13: The projection operator takes a randomized vertex and displaces it to the
surface of the input model. In this illustration, black lines represent the input model and
thin lines represent the particle mesh.

ing from the input vertex towards the direction of the sum of normals of the vertices
connected to the input vertex (see Figure 4.13). The faces of the input model which
are connected to the neighbor vertices are tested for intersection with the projection
ray. If more than one intersection is found, we select the one that lies closest to the
input point and which is not invalid. An invalid projection is one that creates a fold in
the particle mesh, which can occur if the vertex is projected past an edge that connects
two neighbors of the input vertex. In the case of an invalid projection, we have chosen
to discard the operation. Invalid projections are typically the result of floating point
inaccuracies, which mostly occur when the model is highly tessellated. We have found
that invalid projections rarely occur and can be undone without affecting the overall
result.

Prior to mesh simplification, we randomize the vertices of the input model using the
following algorithm which makes use of two meshes. The first is the polygonal mesh
of the input model Mi, which contains the original geometry of the input model, and
the second is the mesh which contains the randomized vertices Mr:

51

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

duplicate input Mesh Mi and produce Mr
for all vertices Vi in Mr:
1. randomize the current vertex Vi
2. project Vion the input mesh Mi

Algorithm 4.4: Initial randomize and projection algorithm.

The modified algorithm to perform mesh refinement with randomization and projec-
tion follows:

while the target vertex count has not been reached:

1. find the longest edge eLongest in the mesh of randomized nodes
apply the subdivision operator on eLongest
randomize the newly created vertex Vn
project Vn on the input mesh
if the projection is not valid, discard projection and continue
save a list of the nodes connected to the newly created vertex
compute the normal and other information for the new vertex

RN SIS

Algorithm 4.5: Mesh refinement and randomization.

The computational cost of randomization and projection is high, because each newly
created vertex has to be projected on the mesh and because the operation has to be
validated. However, randomization and projection are essential to obtain point dis-
tributions that are esthetically admissible, as the ones shown in the bottom of Figure
4.12.

4.5 Defining the Point Set Hierarchy

A point covers an area of influence which extends beyond its projection in the image
plane, and is determined by its size with respect to the canvas size, as described in
Chapter 3. The amount of points in a certain region determines the region’s amount
of darkness, as shown in the work of Deussen et al. [Deusoo] and Secord [Secoo2a].
In our approach, a region of influence of a point is defined in object space by the set of
its nearest neighbors. During rendering, a relevance function can be defined where a
particle is drawn depending on the desired darkness at the vertex and the screen-space
distances between the vertex and a group of relevant neighbors.

The process of mesh simplification creates a point hierarchy where the vertices higher
in the hierarchy have more priority than the vertices lower in the hierarchy. We imple-
ment this relevance concept by storing on each point, a list of the neighboring nodes
present before the vertex is removed by simplification. A relevance value, also called

52

4.5 Defining the Point Set Hierarchy

radius’ can be computed from this list of neighbors by averaging the distances in ob-
ject space from the vertex that is to be removed to the relevant vertices. Because the
spacing between remaining vertices constantly increases during simplification, the ver-
tices which are higher in the hierarchy have larger relevance values than the vertices
located lower in the hierarchy. Figure 4.14 shows the relevant edges and the definition
of the relevance radius for a given node.

)
~ TS @
Set
Radius @

Figure 4.14: The vertices connected to a point affected by an edge collapse or an edge
split are saved in the list of relevant neighbors of the resulting vertex, and determine the
radius associated with the point.

In an analogous way to what is done in simplification, mesh subdivision creates a point
hierarchy where the newly inserted vertices are located lower than existing vertices.
The list of relevant neighbors for a vertex generated by mesh refinement is saved after
applying either the subdivision, randomization and projection operations for a new
vertex. Since new vertices are created between existing ones, the average distance to
their neighbors is smaller than the distance of existing vertices. A continuum of rele-
vance values from newly created vertices to simplified vertices created during simplifi-
cation is produced in this way. The rendering system can decide whether it takes into
account the vertex list of relevant neighbors, as is the case in off-line rendering system,
or whether it takes a unique relevance value, as in the case of real-time rendering.

4.5.1 Additional Vertex Attributes

Since all vertices in the point hierarchy lie on the surface of the input model, we can
define a mapping between each vertex in the hierarchy and the polygon in the input
model where the vertex lies. We do this by defining the barycentric coordinates of the
vertex with respect to the corresponding face in the input model (which we call the
host face), and save this information in the vertex. This is used for animated stippling.
Last but not least, each vertex is assigned a normal which can be obtained either by
interpolating the normals of the neighboring vertices (for gouraud shading) or by con-
sulting the normal of the host face (for flat shading). After the mesh simplification and

53

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

subdivision stages have taken place, each point contains the information described in
Table 4.1.

To make use of the point hierarchy, the renderer decides to draw points with shorter
edges (or shorter radius) only after points with larger edges (or larger radius) have been
drawn, assuming these points lie on an evenly shaded surface (one which has constant
tone). If this is not the case, the rendering algorithm determines for each point the
required distance that will allow it to show up in the image, depending on the desired
darkness at the point’s position. Since both mesh simplification and subdivision are
driven by spatial criteria (closest vertices in object space are removed first, and new
points are placed roughly in the middle of existing points), points down the hierarchy
appear or vanish between existing points during rendering.

4.6 Results

In this section, we present we present stippled renditions and frames from stippling
animations obtained using the point hierarchies generated by mesh simplification and
subdivision. In addition, we present statistical results which describe the performance
of our rendering system.

The animations were produced using offline renderers embedded in a key-frame based
animation software we have produced exclusively for the stippling system. The key
frame files contain information about light and camera position, timing, and in the
case of animated models, vertex arrays which determine the shape of the object at
each key frame. Our software produces a sequence of images by linear interpolation
of the information from the key frames. Further discussion on how point hierarchies
are used for stippling animated models is presented in Chapter 6. The animations
referred in this thesis and other additional animations are publicly available under
http://isgwww.cs.uni-magdeburg.de/~oscar/.

4.6.1 Visual Results

The point hierarchy has been successfully used for producing stippled renditions at
different scales. In Figure 4.15 we show the horse model at several resolutions.

In addition, in Figures 4.16 through 4.18, we show examples of our stippled renditions
of some of the models described in Table 4.2. In Figure 4.16, we observe two images of
the Brain model where the images have been scaled down to show a small point size.
figure 4.17 illustrates the bunny model with a larger point size. The difference between
the bunny on the top and the bunny on the bottom is the degree of saturation or dark-
ness of the regions which are meant to be black. The number of stipples for the bunny

54

http://isgwww.cs.uni-magdeburg.de/~oscar/

4.6 Results

Figure 4.15: This sequence shows how stipple density increases to fill-in shaded areas
as the horse model increases in size (Original sizes: 205x173, 237x205, 295x257 and
463x392).

on the top is 2,578, while the bunny on the bottom was rendered using 11,500 points
(see Chapter 8 for further discussion on this issue). We control the degree of saturation
by specifing a lowest value for the distance between stipples, so that no stipples can be
too close together for the darkest tone. A side effect is that the degree contrast between
regions of the rendition decreases. In Figure 4.18, we show two images of the horse
model, rendered using a small point size. Again, the image of the horse on the bottom
has a strong contrast, which was achieved by setting the light source as coming from
its left side, not by changing the degree of saturation.

Videos 3-teapot Gouraud and 4-brainHiRes show animations of the teapot and the
brain models obtained using our technique. All animations produced are frame co-
herent and have points smoothly fading in and out of the renditions as shading and
scale change. When point size is small (1.0 or less), some vibration appears in the ani-
mations. This is due to the effect of aliasing: since small points have to move between
existing pixels, the points are not consistently represented by the output device due to
the relatively coarse resolution of current displays, this effect is reduced by applying sev-
eral rendering passes with the camera being moved slightly (OpenGL antialiasing).

4.6.2 Point Hierarchy Generation Time

In Table 4.2 we show performance statistics related to the generation of point hierar-
chies using mesh simplification and subdivision using an SGI Onyx 2 with two proces-
SOrS.

From Table 4.2, we can observe that the time required for creating point hierarchies
depends on the complexity of the input models, in terms of polygon count. In the
case of simple models (less than 10,000 polygons), the system can easily generate tens
of thousands of points in less than two minutes using mainly mesh subdivision. In

55

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

Figure 4.16: Frames from our stippled renditions of the brain model (Original sizes:
602x501 & 730x554).

56

4.6 Results

Figure 4.17: On the top, we show a rendition of the Stanford bunny where the darkest
tone is not totally black, while the image on the bottom shows the darkest tone possible
and a higher contrast (Original sizes: 455x425).

57

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

Figure 4.18: Stippled renditions of the horse model illustrating changes in position and
illumination. (Original sizes: 578x477 & 335x479)

58

4.6 Results

59

S— — - - qIN9Z S 1T S91 pqns x durg 000°‘0Z | ZAA VA dng jreayq
wot - socwg | socwr | QIN¢9¢ s — g uoneoyrduwig 700007 00o0‘oot JTBSOIN
S0S w9 — Sth wis S6 Wt qQIN©9T SSt s€'9 uoneoyrdwig (VAR 441 FEeggT urergq
$6S w¢ - $6T wg sg¢ qQINT6T $9 stc uonesyrdurg 17098 g/o‘c/t | 3rpugA3dig
s6v wie | showr | sgc wir S/t qIN9ST sot $T8'T Pqns x durg 000‘0T1 oto‘9g | TuSNUgA331q
sSt wie st¢ soF wit sST qNehT s g€ S/¢ Pqns x durg 000001 99696 sI0Y
SIE WIT SgS SOT Wit S/1 qnsht ST¢ stc Pqns x durg 000°0TI 65169 Auung
STI WIT — sot wit %4 qQINT6 %4 SQ'1 uoneoyrdurg sgtegl 99696 JSIOY
S6S Wt $9T SOT Wl /1 qNror slT S6°T pang x "durrg | 00o0‘0” 6569 Auung
s€€ Wit - SOT Wt /1 qQINTL s¢T $S1 uonesyrdurg regve 65769 Auung
ST WL S61T ST 84 qINSS ST $Q°0 UOISTAIpQNG 000%¢ 75Q°C SJUIA JIed
49 S0S ST ST qIN9S8 SO'T $6°0 UOISIATPQNG 00008 Q48 puey
sob st ST ST qNst $S9'0 0] UOISTAIpqNS 000°0¥ Y991 3[IP0d0ID)
sty S6¢ ST ST Q. SQT s¥/'0 UOISTAIpqNS 0000/ 9Stc jodeay,
JuuLy, urly, Ly, suri], | paxmbay | Sundpusy | Suropusy POYIIN parerouad
[e101, | ‘atpqng | Jidung | dmjag | Arowopy aur-po ur-uQ UOT)RIdUIL) syurod suo34joq [PPOIN

Statistics for creating Point Hierarchies by Mesh Simplification and Subdivision

Table 4.2

4 On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision

these models, almost 100% of the total time used for generating the point hierarchy is
spent in mesh subdivision. For the largest models (200,000 polygons and above), only
simplification is performed, since the number of existing points is more than enough
to obtain stippled renditions which are scalable in a number of cases, and no subdivi-
sion is required. For models of middle scale (between 10,000 and 200,000 polygons),
a mix between simplification and subdivision is performed to obtain point hierarchies
with some 70- to 100-thousand points. The time spent between mesh simplification
and mesh subdivision in these cases tend to be dominated by mesh simplification. For
example let’s take the case of the small piggy-bank model (PiggyBnkSml), which has
roughly 43,000 vertices, but is subdivided to obtain 120,000 vertices. That is, during
subdivision, 80,000 points are generated. The timing results reveal that the system
spent 57% of the time during mesh simplification and 43% during subdivision, al-
though two thirds of the points were generated using mesh subdivision. In the case of
the Horse model with 100,000 points, 50% of the points were generated using mesh
simplification and the rest using mesh subdivision. However, the time required for
mesh simplification was 75% of the total, which reveals that the simplification task
tends to dominate over the subdivision task.

4.6.3 Rendering Time

We measured rendering times for on-line (on-screen) and off-line rendering (render-
ing an image to be stored in a file). On-line rendering times are acceptable for some
tens of thousands of points, which means that the user can still manipulate the model
and wait to see the results. For models containing 100,000 points and above, on-line
manipulation becomes impossible in the SGI platforms. It is important to notice that
several user studies demonstrate that interactive applications require a refresh rate of
30 frames per second, while 60 frames per second is standard in existing real-time in-
teractive environments. Since we compute the point size by software, it is practically
impossible in our system to achieve such high frame rates for point sets having above
10,000 points. On the other haned, in Chapter 7 we describe an implementation of
point hierarchies using vertex programs, which makes possible the rendition of stip-
pled models at interactive rates.

Our recorded animations make use of offline rendering, which takes more or less 60%
additional time for the creation and storage of each individual image for an image
which has the same size as the viewport on the display (typically 440x358 pixels). How-
ever, off-line rendering takes much longer time when the output resolution of the im-
ages is large, and this effect is enhanced when the input model itself is large. With
respect to rendering times Table 4.2 also shows that the very largest models constitute
a problem in memory resources and time required for point hierarchy creation. For ex-
ample, in the case of the Mosaic model, which contains 400,000 polygons, the on-line
rendering times peaks to 8 seconds.

60

5 On the Generation of Point Hierarchies
Using Patch-Based Point Relaxation

In this Chapter, a description of an alternative approach to create point hierarchies
by point relaxation is described. The initial proposal to generate regular point dis-
tributions by relaxation was done by Deussen, who pointed out that the work done
by Turk for Re-tiling of Polygonal Meshes [Turkgz2] could be useful in the context of
stippling. In fact, the point distributions obtained for polygonal re-tiling and texture
synthesis using reaction-diffusion [Turkg1] are evenly spaced and are thus interesting
for producing high-quality stippling renditions, which is our main motivation.

In the technique proposed by Turk, a set of points is randomly distributed on the sur-
face of a polygonal model. This set of points is distributed by relaxation on the surface
of the model by having points repel one another. The neighborhood information is
obtained by regular spatial subdivision, and the points are projected in a plane before
computing the forces that the neighboring points exerted on a given point. Points
are displaced by moving them on the surface of the polygonal mesh, which involves
translating a point from polygon to polygon, as a result of the repulsion forces.

The approach we present is based on the work of Turk previously mentioned, but we
have modified the algorithm as follows:

1. We have a graph-based approach to distribute points at the higher levels of the
point hierarchy, instead of using the original model surface: We simplify the
approach of Turk by performing relaxation of points only between the nodes of a
graph, which eliminates the need of performing geometrical operations required
by Turk’s approach. In addition, the graph where the points are defined often
has fewer nodes as the polygonal mesh of the input model, which also results in
a fast relaxation process when generating the higher levels of the point hierarchy.

2. We avoid the use of a regular point space subdivision scheme to save memory
resources: In our approach, the set of neighboring points for the purposes of

61

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

relaxation is determined by inspection of the region around a polygon or a patch
using connectivity information. In the approach of Turk a space-subdivision
data structure is used to determine the set of neighboring points.

3. We avoid polygonal re-tiling, since it is not necessary to generate geometric levels
of detail to create the point hierarchy.

We have implemented a system that generates a point hierarchy by point relaxation as
follows:

1. Compute a connectivity graph to operate on the input polygonal mesh.
2. Randomly distribute a set of points on the surface of the input model.
3. Apply a relaxation phase on the initial point distribution (see section 5.2).
4. Create a patch hierarchy by iterative patch fusion.
5. For each level of the patch hierarchy:
a) Perform particle relaxation by token (point) displacement.
b) Compute the point radius for the particles at the current level.

We describe each stage in detail in the following sections.

5.1 Setup and Initial Point Distribution

The first step for point relaxation is to compute a connectivity graph in the same way
as done for mesh simplification and subdivision presented in Chapter 4. This con-
nectivity graph is used to create the lowest level of the patch hierarchy. At the lowest
level of the patch hierarchy, the term polygon and patch can be used interchangeably,
because each polygon is considered a patch, such that the initial patch distribution is
the polygon mesh itself. After the initial polygon mesh is computed, each polygon is
assigned a random point on its surface, which we refer to as the polygon ’center’, and
indicates the location of a potential particle.

5.2 Primary Relaxation of the Initial Point
Distribution

An artifact which emerges when assigning one stipple to each polygon in the input
model is the presence of linear patterns that emerge as a reflection of the tessellation

62

5.2 Primary Relaxation of the Initial Point Distribution

LS e Col
BRI S
YAYSY, ﬂw*&%%‘%’%b¢n

e ?-;nw.vp SIS
: Y v va T S s A
STV, F' TR o e N AV,
AL ‘F‘?:.w SN

S eﬁ‘ 2§

RN SNERIEAS
A PRI
T

2 ‘\7"‘5‘:{2\‘79'

Tl b,

T

Figure 5.1: Point distribution in irregular meshes. The image on the left shows linear
patterns formed along the zones of higher tessellation of a sample model. On the right,
we observe the wireframe view which explains these patterns. In both images, a point
has been randomly placed at each face (original sizes: 600x489 & 700x571).

of the input model. Areas which contain a higher density of points are visible in the
zones of higher tessellation of irregularly tessellated meshes(see Figure 5.1).

One way to solve the presence of this artifacts is to apply mesh subdivision until the
mesh is regularly tessellated with small polygons. However, if the input mesh already
has a large vertex count (we refer in this case to models that have 400,000 triangles or
more), it is not practical to further increase the number of polygons of the model.

A better solution is to perform point relaxation on the initial point distribution to im-
prove the spacing between these points. Our approach consists of applying a number
of relaxation iterations on the initial point distribution, which also reduces the noise
artifacts typically present in random point distributions. Our goal is to improve the
aspect of the initial point distribution, such that the stipples are regularly distributed
at the lowest level of the point hierarchy. The relaxation algorithm we use is the follow-
ing:

loop until a target number of iterations is performed
for each polygon in the input mesh
retrieve point Pt associated with the polygon
determine neighbor points of Pt
compute and store the repulsive forces that the neighbor points exert on Pt
for each point Pt in the input mesh
displace Pt on the surface of the model according to the repulsive forces.

Algorithm 5.1: Relaxation of the initial point distribution.

63

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

This algorithm is basically the one presented by Turk. However, contrary to Turk, we
do not use regular spatial subdivision to determine the location of neighboring points.

We use the connectivity information of the input model to determine the neighboring
points using the following algorithm:

for each vertex Vt in the input polygon Poly
retrieve the list of polygons connected to V't
insert in the list of relevant neighbors of Poly all the polygons sharing vertex Vt, re-
moving duplicates and Poly itself

Algorithm 5.2: Retrieving the neighbouring vertices of a given polygon.

During relaxation, the points will start repelling each other. If the forces applied by
the neighbors of a given point push it outside of the boundaries of its host polygon
we let it ’jump’ to the neighboring triangle. To determine the position of the vertex in
the new polygon, we produce a displacement vector in the direction of the repulsing
force, using a projection such that the vertex is displaced on the surface of the new face.
Finally, we set the new face where the vertex lies as the new host face, and include the
vertex on the list of contained points for the host face and remove it from the previous
face where the point came from. The algorithm to retrieve the neighboring points is
modified such that the relevant neighbors is the set of all the points in the neighboring
polygons and all the other points which share the same host face.

We have found that the appropriately spaced point distributions are obtained after
some 5 to 15 iterations are done, after that, the effect of the iterations is not visually
significant, i.e. the points are already relaxed. We want to minimize this number of
iterations, since the time required for the initial relaxation is directly dependent on the
number of initial iterations. In Figure 5.2 we show the initial point distribution and
the point distribution after some iterations.

5.3 Graph-Based Point Relaxation

To create a point hierarchy using relaxation, we present a graph-based approach where
point relaxation occurs iteratively on each level of a patch hierarchy.

The patch hierarchy is created by patch fusion (described in section 5.4), starting from
the lowest patch level, the one obtained during setup. The patches created at each level
of the hierarchy are used as the "playing field’ where tokens are going to be distributed
and relaxed. The ’playing field’ is a graph whose nodes are points in 3D space located
on the surface of each patch (we refer to each of these points as the ’center’ of the

64

5.3 Graph-Based Point Relaxation

Figure 5.2: Effects of the primary relaxation on the point distribution. On the top left,
the original vertex distribution in a close-up of the bunny model. The following images
show the effect after 5, 10, and 15 relaxation iterations.

patch), and whose edges are formed between each pair of patch centers that belong to
neighboring patches (see Figure 5.5).

After obtaining the graph, we proceed to distribute a number of "tokens’ within the
nodes of the graph. These tokens represent point particles that are going to be the
subject of the relaxation process, which is explained in section 5.5.

The relaxation process is done first on the highest level of the point hierarchy. Once the
relaxation of the tokens has been finished at a certain patch level, we fix the tokens on
the surface of the model, go down one level in the patch hierarchy, generate additional
tokens and repeat the relaxation process on the new tokens. This is done until all levels
of the patch hierarchy have been traversed.

After each relaxation step, we assign to each of the relaxed points a radius value which
indicates the average of the distances to its neighbors. The particles that are distributed
at the higher levels of the hierarchy have longer radius values than the particles relaxed

65

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.3: Patch hierarchies on the horse model. The first image (from left to right)
shows the model with 25 patches, the second and third models have their surface subdi-
vided in 350 and 6144 patches, respectively.

at lower levels of the hierarchy. This information is saved in a file and used in the
real-time, animated stippling stage.

5.4 Patch Hierarchy Creation

The patch creation approach we use was originally developed for visibility preprocess-
ing. [Meruo2a] We use a variation of this approach to produce patch hierarchies in-
tended specifically for point relaxation. The initial patch list is constructed from the
graph connectivity information of the input model: each polygon becomes a patch,
and the polygons which share an edge with a given polygon are inserted in the list of
neighboring patches of this polygon.

The patch hierarchy creation works by iterative fusion of the patches available at a
given level, starting from the level where each polygon in the input model is considered
a patch.

Initially, all the patches of a given level are stored in a binary search tree (BST) ordered
by the amount of surface they cover. In each fusion step, the smallest patch found in
the BST is combined with a number of neighbors (four in our case), creating a patch
at the next level. To select which neighbors will be combined with the smallest patch,
we choose those neighbors that minimize the span of the bounding box of the original
patch (my measuring the lenght of the line which joins the minimum and maximum
points of the box), with the restriction that only patches at the same level can be fused
together. After a patch is combined with another, the patch connectivity information
needs to be updated. This is done by adding the neighbors of the old patch in the list
of the neighbors of the new patch and by removing duplicates as well as by updating
the information of the old neighbors of the removed patch with the identification of
the newly created patch.

66

5.5 Particle Relaxation by Token Displacement

Level0 ,F

Level 1

Level 2

Levels © 000 0 0 € ©0 © © G ®© 0 00 o 000 © 0 00 © o o

Figure 5.4: lllustration of a point hierarchy resulting from the patch hierarchy. At the
lowest level of the hierarchy, there is a one-to-one correspondence between a point and
a patch.

This connectivity information is used for creating the next level in the patch hierarchy,
and to guide the process of particle relaxation. The patches that were combined are
removed from the BST and the next smallest patch available is used at the next fusion
step until all patches of a given level have been removed from the BST.

The patch hierarchy creation process finishes once a certain number of target patches
at the highest level are reached or after a certain number of levels have been produced.
In our case we stop when we have less than 10 patches at a certain level, which means
that we have no more than 10 stipples at the highest level of the particle hierarchy. In
Figure 5.3 we show a series of patch hierarchies for the horse model.

A patch hierarchy is initialized with patch ’center’ values by randomly assigning one
point to each of the patches at the lowest level (which are the base polygons of the
model). Patches of the higher levels are associated with points selected from their
descendants. For example, in Figure 5.4, the patch E that joins patches A, B, C and D,
has as ’center’ either A, B, C, or D’s ’center’ values.

5.5 Particle Relaxation by Token Displacement

Now we are ready to carry out a token relaxation process to distribute particles on the
surface of the model. The goal of the relaxation process is that the distribution of the
particles does not conform with any linear or regular pattern, and that the spacing
among particles is regular at each level of the point hierarchy.

We perform the process of particle relaxation as a token distribution approach. A
token represents the place where a rendering particle is located. We borrow the term
token from the computer networks literature, where a token is passed along the nodes

67

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.5: Left: a sample patch array showing the points on the patches. Right: the
graph obtained from the patch array based on the neighbors information.

of a graph and does not belong to any specific node until relaxation finishes. The
graph where the tokens are distributed is defined by a list of all the patches and their
connectivity information at a given level: the nodes are the points in 3D associated
with each patch and the edges are formed by the list of neighboring patches of each
patch in the list (see Figure 5.5).

The relaxation process starts by pseudo randomly distributing tokens among the nodes
of the graph. After that, tokens are brought apart from each other by iteratively apply-
ing a relaxation step where each token is pushed away by the tokens in its neighbor-
hood. At each iteration, we count how many tokens were actually displaced (changed
their position in the graph). Relaxation stops when the displacement count is zero or
when we detect this count has stopped decreasing. In summary, our algorithm for the
relaxation process is as follows:

distribute tokens on the graph
loop until the displacement count stops decreasing
for each token T on the graph
determine neighbor tokens of T
compute the repulsive forces that the neighbor tokens exert on T
determine whether the token needs to be displaced, and in this case, which of
the neighbor nodes should receive the token based on the repulsive forces
for each token T on the graph
if the token needs to be displaced, displace the token T to the new host node, and
increase the displacement count

Algorithm 5.3: Graph-based token distribution.

In the next sections, we describe each step of this algorithm in more detail.

68

5.5 Particle Relaxation by Token Displacement

5.5.1 Token Distribution

Initially, we randomly select, for each patch at a given level in the hierarchy, one descen-
dant found n-levels below in the patch hierarchy, and assign this descendant a token
(as an example, node G in Figure 5.4 is a descendant located three levels below node
F). The goal of using patches at lower levels in the hierarchy is to relax the tokens in

Figure 5.6: Left: a sample graph where some tokens have been distributed among the
nodes of the graph (nodes with a token are shown in black). Right: the token distribution
after relaxation.

a graph with such a number of extra nodes, that there is enough room for the tokens
to be freely displaced. In our case, we have chosen 7 to be 3, so that each selected
descendant is displaced within a graph containing approximately 4° nodes without a
token.

Figure 5.6 illustrates a possible token distribution on a graph. If we had many more
tokens in the graph, it would be much harder to evenly distribute the tokens, since
there would be just too few positions where the tokens could be moved to.

5.5.2 Determining the Set of Neighboring Tokens

The first step to perform relaxation on a given token is to determine which tokens
are located in its neighborhood and store them in a list. First, we include in the list
the tokens of the patches which are neighbors of the high-level patch which currently
holds the token. After that, each token explores its neighborhood using the patches
at the lowest patch level where the tokens are located. In this case, we explore the
immediate neighboring patches and we also visit all the descendants of its ascendants,
up to two levels higher in the hierarchy. Each node in this set is queried as to whether
the node is host of a token. All the nodes which are hosting a token are inserted in
the list of neighbor tokens, which is used to compute the repulsive forces exerted on

69

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

the original token. An alternative approach to find the list of neighbors is to visit all
nodes which are within a certain distance from the node. We have tried this using a
Breadth-first search algorithm which operates only within a certain radius of action
and traverses the graph from the token outwards, but this was more time-consuming
than visiting the set of descendants of the ascendants.

5.5.3 Computing the Repulsive Forces

To compute the repulsive forces, we use those tokens in the list of neighbor tokens
which are within a region of influence determined by a repulsion radius. The repulsion
radius is obtained as:

repulsionRadius = ky/a/n

where k is a constant which varies from 1 to 2 (a value of 1 is sufficient for closed
models, a value of 2 enlarges the area of influence and is more appropriate for open-
ended models), a is the area of the surface of the input model and n is the number of
tokens being distributed.

We compute the repelling forces ForceVec by computing the vectors NT_Vec which
go from the position of the neighboring tokens N to the input token T, and then scaling
each of these according to their distance, and in proportion of the repulsion radius,
using the formula

ForceVec = (repulsionRadius — [NT_Vec|) * NT_Vec/INT_Vec|

After that, we average all the neighboring forces and produce a vector in 3D which in-
dicates the direction of the overall force that the neighbors within the repulsion radius
exert on the input node T.

5.5.4 Determining the Displacement

If the overall force is different from zero, we need to determine which of the empty
neighbors around T is the best candidate for where the token should be moved. This
is done by computing the dot product between the computed force and the vectors
leaving from the host node to its neighbors. The neighbor which maximizes this dot
product is the one chosen as the candidate to where the token should be passed. This
candidate node is stored as the node that will hold the token, and another token is
processed.

Once the displacement of each token is computed, the actual displacement of the to-
kens is done. Figure 5.6 illustrates this relaxation process. Since the tokens are re-
stricted to move on the graph, a token can constantly jump back and forth between

70

5.5 Particle Relaxation by Token Displacement

Figure 5.7: On the left, the bunny model with 1500 points. On the right, the bunny with
the same points after relaxation.

two nodes in search of the optimal position. Hence, the relaxation process stops once
the total energy (the sum of all the forces exerted on all the tokens) has stopped decreas-
ing, when we consider the system has reached stability. Most of the time our system
reaches a point of stability (the displacement count stops decreasing) within less than
30 iterations on any given level. In Figure 5.7, we see the initial point distribution and
the result of the relaxation process after the system has reached stability.

5.5.5 Creation of the Point Hierarchy

We have so far described how we can distribute particles on the surface of a model
for a specific patch level. To create a point hierarchy, we follow the idea proposed
by Turk [Turkg2] for mesh re-tiling. We start the relaxation process with the patches
at the highest hierarchy level, then we fix the results of the relaxation and proceed
to distribute and relax tokens at the next level, until we have traversed the complete
hierarchy. The algorithm of this process is the following:

while not all patch levels have been expanded:
1. select a number of tokens for each patch on the highest level of the hierarchy.
2. perform graph-based relaxation.
3. fix the relaxed tokens on the graph and on the patch hierarchy.
4. expand the patches’ graph by introducing all the descendants from the patches at
current hierarchy level.
5. if not all patch levels have been expanded, iterate from step two.

Algorithm 5.4: Creation of the point hierarchy using patch-based token relaxation.

71

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.8 shows a sequence of levels of the point hierarchy for the hand bones model
after relaxation. In addition, the accompanying videos illustrate how this graph-based
relaxation process works. In Video 5-HorseRelaxation we show an interactive ses-
sion where the user generates a series of points and indicates that they should be re-
laxed, after some iterations the user fixes the points, generates new ones and starts
relaxation again (the user interaction has an illustrative purpose only). In Video 6-
HorsePtHierarchy we show the session where the complete point hierarchy is automat-
ically generated for the horse model. Notice that the session has been shortened to
show only the patch hierarchies at different levels, in reality, the first levels of the point
hierarchy are computed very fast, because they contain few elements. As the point
hierarchy is created, the relaxation consumes more time.

5.6 Results

Similar as in Chapter 4, here we present stippled renditions and frames from stippling
animations obtained using the point hierarchies generated by the method presented in
this Chapter. We also present statistics on the performance of our system for creating
point hierarchies by means of token-based relaxation.

5.6.1 Visual Results

In Figures 5.10 through 5.13, we present frames from our animations produced using
token-based relaxation. In addition, in Figure 5.9 we show the bunny model at several
resolutions. The point distribution obtained by means of token relaxation is similar
to that obtained by mesh simplification and subdivision. In general, we can observe
in the Figure showing the bunny at several resolutions that the point distribution is
kept regular in most cases. In addition, it is not possible to identify linear patterns at
levels of the hierarchy different from the last one. The last level of the hierarchy will be
compared in more detail in the Section 5.7. Video 7-point distribution shows the point
distribution obtained by relaxing points at a certain level for the horse model. Points
are evenly distributed on the surface of the model.

5.6.2 Point Hierarchy Generation Time

In Table 5.1 we present our statistiacl results. We have split the time required for the
primary relaxation (column 5) and the time required for the actual patch-based token
relaxation (column 6) and observe that the time spent during primary relaxation is
normally less than the time spent for the token relaxation.

72

5.6 Results

Figure 5.8: Four levels of the point hierarchy after patch-based relaxation, the hand-
bones model is shown with 332, 1,192, 4,277 and 15,184 points respectively (original
sizes: 527x535).

It is important to note that in our results, we applied a constant number of six primary
relaxations on all input models. We did this, because we observed that this number of
iterations offered a good compromise between point distribution and time required to
perform the relaxations. Initially, we had designed the primary relaxation technique
as an additional way to improve point distributions. For the token-based relaxations,
we set a maximum of 50 iterations per level, or a maximum of 15 iterations without
decrease in the total tension between the relaxed particles. This limits were set so, after
observing that for most cases, the system reached stability, or no improvement after
some 15 iterations are performed for a given level. However, the maximum limit of 50
iterations could be reduced to reduce point hierarchy generation time.

73

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.9: This sequence shows how stipple density increases to fill-in shaded areas
as the bunny model increases in size (original sizes: 201x195, 279x261, 476x452 and
608x579).

Model Points Memory | Setup | Primary. | Patch | Total
Generated | Required | Time Relax. Relax. | Time

Bunny 69,451 48 MB 228 528 1m 03S | 2m 158
PiggyBnkSml 86,040 59 MB 18s 1m 6s 2m16s | 3m 40s
Horse 96,966 66 MB 28s 528 2m 23S | 3m 43S
PiggyBnkLrg 172,078 110 MB 418 1m 44s 4m 32s | 6m 57s
Kachel 400,000 247 MB | 2m 8s 8m 458 | 11m 40s | 22m 138
Dragon 870,877 51 MB 5m 50Ss | 35m 10S 34m 1th 15m

Table 5.1: Statistics for creating point hierarchies by patch-based point relaxation.

5.6.3 Memory Requirements

An advantage of the technique presented in this Chapter with respect to the technique
presented in Chapter 4, is that it requires less memory resources, which makes it more
easy to handle large models. Table 5.2 illustrates the resolutions of the models and the
number of points that were actually rendered for the total model at each resolution
for the dragons in Figure 5.14. This number refers to the total of points used to render
the model, not the total number of visible stipples. The time required to render each
of these images was approximately one minute when rendering online and 3 minutes
when rendering offline.

74

5.6 Results

ot e — = O

Figure 5.10: Stippled renditions of the mosaic model (original sizes: 441x502 & 409x541).
75

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.11: Stippled renditions of the hand-bones model trying to grab the medieval
piggy-bank (original sizes: 622x559 & 409x541).

76

5.7 Simplification and Subdivision Versus Token-Based Relaxation

Resolution | Rendered Points
320X240 12,753
640%x480 61,353
1000%X750 123,737
1280%x960 165,963

Table 5.2: Image resolution and total number of rendered points for the Dragon model
shown in Figure 5.14.

5.7 Simplification and Subdivision Versus
Token-Based Relaxation

In this section we present a comparison between our two approaches for creating point
hierarchies, we compare threes aspects: hierarchy generation times, memory require-
ments and visual aspects.

5.7.1 Generation Times

A comparison of the system performance between our two point generation tech-
niques can be done by taking a look at Table 4.2 and Table 5.1. All the models reported
in Table 5.1 have also been tested in Table 4.2. When we compare the total time re-
quired by mesh subdivision and relaxation with the time required for patch relaxation
it becomes clear that for small models, there is little difference in point hierarchy gen-
eration time. However, this difference becomes more accentuated as the size of the
model increases. If we consider the total point generation time, we observe that the
time required for patch relaxation is 35 to 100 per cent more than the time required
for mesh simplification and subdivision. However, the number of points generated
differs among both approaches: in the case of mesh simplification and subdivision,
the generated point count is pretty much related to the vertex count, and is thus the
vertex count (when no subdivision is performed). On the other hand, the number
of points generated using patch relaxation depends on the number of polygons in the
input model. Thus, the latter point hierarchies contain roughly two times more points
than point hierarchies obtained by mesh simplification, which compensates the extra
amount of time required by patch relaxation to generate point hierarchies. Based on
the complexity of the model, the user can choose either technique, for very large mod-
els, the point-relaxation algorithm offers a memory-efficient solution, while for simple
to large models, mesh simplification and subdivision is a better choice.

77

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

5.7.2 Memory Requirements

An advantage of the patch-based relaxation technique with respect to mesh subdivision
and simplification is the reduction in the amount of memory required to create the hi-
erarchies. This reduction occurs because we require less data structures to perform the
process of relaxation than we do to perform mesh simplification and subdivision. This
reduction in memory resources is important, since it allows us to create point hierar-
chies for larger models, like the Dragon (see Figure 5.14), which has roughly 800,000
polygons, for which we required approximately 515Mb of storage in main memory,
while for mesh simplification and subdivision we require a bit less than 1 Gigabyte of
memory, but then memory paging becomes a problem, since current SGI platforms
have approximately 1 Gigabyte of Memory, and the system starts becoming unable to
handle the memory requests.

5.7.3 Visual Comparison

The most visible difference in the point distributions obtained with both approaches is
noticed when models are shown at a close distance (see Figure 5.15). In these situations,
the points at the lowest levels of the hierarchy are visible, and the point distributions
and patterns at this level become visible. In Figure 5.15 we have close-ups of the bunny
model rendered using both techniques. For purposes of illustration, we have deacti-
vated the stippling effect, such that all available points are visible. The model on the
left has 34,834 stipple points (no subdivision was perfomed) and the model on the
right has 69,459 points, which corresponds to the number of faces of the bunny model.
The best point distribution in this case is obtained by point relaxation, since random
point distribution is noisy. It is interesting to notice that using point relaxation other
patterns appear which are similar to point relaxation techniques which operate in 2D
(see Chapter 1) in the work of Deussen et al. [Deusoo], and in the work of Secord
[Secoo2a].

78

5.7 Simplification and Subdivision Versus Token-Based Relaxation

Figure 5.12: Stippled renditions of the horse and bunny models (original sizes: 553x450
& 451x428).

79

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.13: Stippled rendition of the hand bones model (original size: 551x712).

80

5.7 Simplification and Subdivision Versus Token-Based Relaxation

Figure 5.14: Dragon model rendered at several scales (for original sizes see Table 5.2).

81

5 On the Generation of Point Hierarchies Using Patch-Based Point Relaxation

Figure 5.15: Comparison between point hierarchies by mesh simplification and subdivi-
sion and token relaxation. On the left, we show the points at the lowest level of detail
for the first technique. On the right, we show the points at the same level for the second
technique, with six initial relaxation steps. The bottom row shows a detail of the point
distribution in the region of the bunny’s eye.

82

6 Particle Distribution of Deformable
Models

Most of the non-photorealistic techniques which have been applied to models in 3D
space are applied to static models, but relatively little work has been done to apply non-
photorealistic effects to animated models [Kalno2]. The challenge lies again in scaling
and in defining how non-photorealistic particles or strokes should adapt to changes in
the shape of a polygonal mesh.

In this Chapter we describe solutions we have developed to distribute particles on the
surface of deformable models. First, we describe a solution for the problem of control-
ling the density of particles for deformable models, and we describe why this solution
is computationally prohibitive. In the second section, we describe an alternative solu-
tion to the problem of particle distribution on the surface of the models, which offers a
good compromise between stippling behavior under deformations and computational
cost.

In this discussion, we assume as input a set of polygonal meshes which have the same
topology, but different geometry. This convention includes several animation formats.
The most simple one is to have one polygonal mesh and two sets of vertices, the source
vertex positions and the target vertex positions. In this case we only need to interpolate
between both positions to obtain an animation. Another convention is to have an
input mesh and a vector field which indicates the directions of the vertices at each time
step. Most animation software, however, make use of a skeleton which is attached to
the input model and which is distorted as a simplified version of the complete model.
Depending on the control variables, the skin, i.e., the input model, will be deformed
as a function of the skeleton.

Animations can also be done using mesh morphing. In mesh morphing, the topol-
ogy of the mesh is not necessarily preserved [Alexo1]. This introduces a challenge,
because the correspondence between faces of the input and the target model might

83

6 Particle Distribution of Deformable Models

be lost. Hence, if a morphing system is used to produce the animation, an important
requirement is that a face correspondence is defined for the morphing. Once a face
correspondence exists, we can map particles on the surface of the input model using
barycentric coordinates.

Figure 6.1: The points on the surface of the triangle are defined using barycentric coor-
dinates, that is, they are defined relative to the vertices of the triangle. As a result, the
points on the surface move along with the triangle as the position of its vertices changes.

To attach the particles to the surface of the mesh during the animation, we redefine
the positions of the points in the hierarchy using barycentric coordinates (see Figure
6.1). In the barycentric coordinate system the position of the points contained in the
plane of a triangle are defined with respect to the vertices of the triangle. Using this
coordinate system we can displace the vertices of the triangular mesh in 3D space, and
then recompute the positions of the particles as a function of these vertices.

Since normally there are several particles per face, each point in the particle set con-
tains an index to the face of the model where the point lies (the host face for that
particle) and the barycentric coordinates of the point within that face. At each step
in the animation, the point coordinates are recomputed using the barycentric coordi-
nates and the vertex positions of the host face. The effect achieved is that particles
behave like an elastic texture attached to the model’s surface. If we did not make use
of barycentric coordinates, the model geometry would be changing, but the particles
would stay in they same place as before an would slowly be detached from the surface
of the model.

84

6.1 A Theoretical Model for Frame-Coherent Point Distribution of Deformable Models

6.1 A Theoretical Model for Frame-Coherent Point
Distribution of Deformable Models

In this section we present an approach to provide view-dependent frame-coherent stip-
pling on the surface of a model under extreme deformations. The approach presented
here has been implemented in a pilot program to test the feasibility of our approach.
This approach is computationally expensive, since it assumes the use of Voronoi dia-
grams on the surface of a 3D model which contains a large number of points.

Recall from Chapter 1 that a Voronoi diagram is a space subdivision scheme where
a surface which contains a number of points or centers is subdivided in cells called
Voronoi regions or Voronoi cells. Each cell contains a central point, and the cell con-
tains the set of all points in the surface which are closest to that central point. Thus, the
boundaries of the cell are determined by those points which are at an equal distance
from two or more central points. Computing the Voronoi regions on a 2D surface
is a computationally expensive task: there are a number of algorithms to compute
the Voronoi diagram [New 01, Aureg1, Aureoo], but the plane sweeping algorithm is,
according to DeBerg et al. [Bergoo], an optimal algorithm for the 2D case, with com-
plexity O(Nlog(N)) where N is the number of points. Algorithms for computing 3D
Voronoi diagrams are discussed in more detail later in this Chapter.

Initially, we distribute a set of points over the surface of a 3D model. Each point
represents a potential stipple and is the center of a Voronoi region. As the model is
stretched and compressed, Voronoi regions are subdivided and blended together in
a view-dependent way: Blending of cells occurs when the cells are squeezed together,
and subdivision occurs when the cells are stretched along a given direction. Our goal
is to keep the particle density constant as the model is being distorted under these
conditions. To simplify our discussion, we assume that we are handling a front-facing
square, which is subject to distortion. To maintain a constant particle distribution, we
need to insert or remove particles from the surface of the model, depending on the
nature of the distortion: when cells are squeezed together, points are removed and the
Voronoi diagram is updated. Conversely, when cells are stretched, new points (cell
centers) are generated and the Voronoi diagram is updated accordingly.

6.1.1 Stretching Surfaces

We first illustrate the case where a cell is subdivided due to stretching, because it is the
most intuitive case. Figure 6.2 left, shows a model where a surface is split in a regular
grid of Voronoi regions. In the middle, we observe the initial surface stretched along
the X-axis. On the right, we observe two diagrams. The diagram on the top shows an
scheme where the cells in the middle are divided in half, each giving origin to a new

85

6 Particle Distribution of Deformable Models

cell. The center of each cell is displaced to a location close to the geometrical center
of the newly generated cell. The diagram on the bottom shows another subdivision
scheme. In this scheme, new cells are generated between the boundaries of existing
cells, exactly at the positions which are farthest from existing points. As a new cell is
generated, a new Voronoi diagram is computed based on the new point distribution.

60000
AR
O T Es &N 000000

Figure 6.2: Point distribution for stretching surfaces. In the middle, the input surface
shown on the left has been stretched without adapting point density. On the top right,
the original cells are divided to give origin to new cells. On the bottom right, new cells
are generated in the areas between existing cells. Newly generated cells have their point
centers in a gray tone.

By comparing both approaches, we prefer the approach in the bottom, because it en-
forces frame-coherence: In the first approach, cells are subdivided and their centers
have to be relocated. In the second approach, existing point centers remain in their
previous locations and new centers appear between existing ones, which enable frame
coherence. In addition the approach illustrated in the bottom eliminates the formation
of linear patterns.

Figure 6.2 illustrates stretching only on the X-axis, but stretching can occur in any
direction, with the corresponding distortion of the Voronoi diagram. Two rules can
be used to split a cell based on its shape when projected on the screen. If the cell
elongates significantly in any direction as a result of the deformation, the first rule is to
split the cell by its half with a cut perpendicular to the direction of elongation (Figure
6.2, top right). The second rule indicates that a new cell is generated along the axis of
elongation between existing cells, as far as possible from existing cell centers (Figure
6.2, bottom right). Both rules ensure that the spacing of the stipples on the screen
plane is kept regular, regardless of the direction of deformation.

86

6.1 A Theoretical Model for Frame-Coherent Point Distribution of Deformable Models

6.1.2 Contracting Surfaces

As can be seen from our previous discussion, generating new points for filling in exist-
ing cells can be carried out in an intuitive way. However, the opposite task of removing
particles from a contracting surface is less intuitive than the task of expanding. The
question here is, which of the existing points can be removed from the structure, or
in other words, what is a good order in which to remove points. In Figure 6.3 we can
notice that without a specific hierarchy among existing particles, little can be done to
remove cells in a consistent way. To deal with this issue, we start by hypothesizing that
some sort of alternation is required to select points from the existing set. We also be-
lieve that this selection should ideally produce the inverse result of the process of point
generation illustrated in Figure 6.2.

We have two scenarios: In the first, we have a point distribution which is the result of
a point generation process. In this case, we can assign the new particles an attribute
or an identification field which signals that the particle is among the first ones to be
removed in case of a compression in the X-axis. This attribute can be a number or
a floating point threshold value. In the second scenario, the original model is the
input and needs to be compressed on the X-axis without any previous information
and without the presence of a hierarchy.

00000
e
00000

Figure 6.3: The compressing process should find a way to remove points to achieve an
even point distribution, the inverse to what is done under stretching.

In this case, we need to make use of a strategy that puts cells together in an ordered
way. To deal with these cases, we have designed the following algorithm:

37

6 Particle Distribution of Deformable Models

Input: Graph(Cells, cellNeigbhorEdges) and startCell € Cells
insert(queue,startCell)
while size(queue)>0 {
cell = queue.pop()
test RemovalFromGraph(cell)
if RemovedFromGraph(cell) then update(Graph)
explored(cell) = TRUE;
for(neigbhorCell,cell) € cellNeigbhorEdges {
if explored(cell) = FALSE then
insert(queue,neighborCell)
}
}

Algorithm 6.1: Algorithm for point removal during contraction.

This algorithm is a variant of the Breadth-First-Search Algorithm (BFS) and it has
complexity O(cellNeigbhorEdges+removedCells) in the graph, since each neigh-
bor cell is visited only once, and each removal Operation requires updating the graph
if the cell is removed.

The test for removal is designed to remove cells according to the contraction. If the
cell is compressed along a given direction, the cell takes an elongated shape perpen-
dicular to that direction (as in Figure 6.3) and needs to be fused with a neighbor on
the elongated side. For this, the test needs to identify the extents of the cell after the
compression, such that if the cell becomes too narrow, it is removed from the graph.
Updating the graph is a task which is not too complicated, since the graph only needs
to be updated in the neighborhood of the removed cell, which means updating the
connvectivity information for a limited number of cells (the cell neighbors).

The presented algorithm has the advantage that is it fast (it runs in linear time), but
has a potential drawback: lack of frame-coherence. Lack of frame-coherence occurs if
the cells in the graph are not consistently removed at each animation iteration, which
gives place to a complete different point distribution at each rendered frame. The
requirement that the first cell is chosen consistently could be satisfied by assigning a
unique identification number to each of the cells, and then by starting the analysis with
the cell with the highest number, creating an artifical priority ordering. If we need to
choose among different cells, we can test the cell with the highest priority. In this case,
however, we need to replace our original queue with an ordered heap, which leads us
to an algorithm similar to Dijkstra’s algorithm for finding the shortest paths:

88

6.1 A Theoretical Model for Frame-Coherent Point Distribution of Deformable Models

Input: Graph(Cells, cellNeigbhorEdges) and startCell € Cells
for cell in Cells {
idNumber(cell) = count;
}
insert(heap,startCell)
while size(heap)>0 {
cell = heap.popMaxCell()
test RemovalFromGraph(cell)
if RemovedFromGraph(cell) then update(Graph)
explored(cell) = TRUE;
for(neigbhorCell,cell) € cellNeigbhorEdges {
if explored(cell) = FALSE then
insert(heap,neighborCell)
}
}

Algorithm 6.2: Algorithm for ordered point removal during contraction using a heap.

According to [Mitzo3], the complexity of Dijkstra’s algorithm is bound by the
implementation of the heap. If we implement the heap as a linked list, the
complexity is O(graphCells?), if it is implemented as a binary heap, then it is
O(neighborCellEdges * log(graphCells)). However, since we are considering hun-
dreds of thousands of cells which need to be updated during the animation, this would
be prohibitive.

6.1.3 Retriangulation During Interactive Stretching

According to the computer geometry literature, the Delaunay triangulation is the dual
of the Voronoi diagram, and it is obtained by drawing a line segment between two
Voronoi vertices if their Voronoi regions have a common edge. As mentioned by Van
Laerhoven [Laero3], there is a natural bijection between the two which reverses the
face inclusions. This is illustrated in Figure 6.4.

A Delaunay triangulation exists when the vertices of a mesh are joined by triangles
such that the circles which pass through the vertices of each triangle do not contain
any of the other vertices available in the mesh. In addition, these vertices connect the
cell centers of a Voronoi diagram . According to Attali and Boissonnat [Attao2], the
task of computing such a triangulation in 3D can be of complexity O(n?), and the
number of tethraedra (polygon cells) can be quadratic. Hence, having to compute
the triangulation for a set of hundreds of thousands of points at each frame of an
animation is prohibitive.

89

6 Particle Distribution of Deformable Models

Figure 6.4: Sample Delaunay triangulation (drawn with thick lines) and its dual, the
Voronoi diagram (drawn with thin lines) [Fili96].

We produced a pilot program to test the possibility of dynamically computing an ap-
proximation of the Delaunay triangulation of the model depending on model defor-
mation. In this program, we take the input mesh and its connectivity information.
The user is given the possibility to stretch or compress the input model on the X- or Y-
axis in model space. As the model is compressed or stretched, the connectivity infor-
mation is updated. Every edge which is bound to two adjacent faces is tested against
the edge joining the vertices of the faces it binds which are not connected to the edge.
If this edge is shorter than the edge being tested, the edges are swapped, i.e. the edge
which joins the vertices not connected to the input edge becomes the edge which joins
the two faces, and the edge being tested is removed. This is done for every edge in the
input mesh.

Figure 6.5 shows two snapshots of the interactive remeshing program. On the left,
we show the original model. On the right, we show the effect of two distortions: the
distortion on the top illustrates an expansion along the X-axis and a compression along
the Y-axis. The distortion on the bottom illustrates an expansion along the Y-axis. In
both cases it is possible to reorganize the polygonal mesh to approximate a Delaunay
triangulation.

However, the retriangulation could only be successfully accomplished on flat parts of
the model’s surface. Whenever we tried to adjust triangulation for an edge connecting
faces that were non-planar, an artifact was introduced in the model. Figure 6.6 illus-
trates the artifacts that are introduced when a 3D mesh is retriangulated around faces
which are not coplanar. Due to these disadvantages, this algorithm was not inserted in
our system.

The reason we had artifacts which produced counterintutitive cracks is that we did
not consider the interaction between convex and concave shapes. During interactive

90

6.2 A Practical Model for Stippling Deformable Models

= =

B S N TE AN

___,__’\A_—’(
/—* R =S ES N
- =

e %f%i «T/\/T%\:;
PSRRI

=

Figure 6.5: Retriangulation of a polygonal mesh (left) under interactive deformation. On
the top right, we observe the input mesh expanded along the X-axis. On the bottom
right, we observe the input mesh expanded along the Y-axis. The circled areas show
changes in the triangulation as a result of the deformation.

deformation a surface which is mostly flat can be stretched along an axis which will
make it look like a peak, and the distances which should be considered for such sur-
faces are not the euclidean distances, but the geodesic distances, since these are the
real distances between particles on the surface of the model. Due to the complexity of
this task, we decided to stop the development of this program, since a view-dependent
modification of the mesh using a dynamic Delaunay retriangulation based on geodesic
paths seemed too much of a complex task. Instead we looked for an alternative solu-
tion, which offered us a compromise between computational cost and our goals as to
the particle distribution.

6.2 A Practical Model for Stippling Deformable
Models

As we have observed before, the process of performing view-dependent distribution
for animated models can be seen as a process of view-dependent retriangulation of a
mesh which contains as many vertices as stipples are rendered. We have discarded this
solution due to the prohibitive amount of time it requires for processing large point
datasets. In the following discussion, we describe an alternative approach, animated
stippling, a technique that allows us to use the point hierarchies described in Chap-

91

6 Particle Distribution of Deformable Models

=
3
1
T
~h

=

|___\
[— . --
i

S

Figure 6.6: Artifacts of retriangulation on 3D models. The image on the left shows
an extrusion of a 3D model without retriangulation. The image on the right shows the
extruded model with some vertices retriangulated. The small peaks on both sides of the
mountain are the result of the retriangulation.

ter 4 and 5 to stipple animated models using a linear amount of time and memory
resources.

6.2.1 Animated Stippling Algorithms

We have found that stippling as a rendering style is well suited for producing computer
animations, because the point hierarchy described in Chapter 3 can be used as an elas-
tic texture which is attached to the surface of the model. To achieve this effect under
animated stippling, we take as input the original model and the point hierarchy and
use the barycentric coordinates of each point to recompute the position of the particles
under deformation. Algorithm 6.3 describes the basic approach for animated stippling.

In animated stippling, we use the same rendering function as the one used for con-
ventional and real-time rendering, where each point is assigned either a set of relevant
neighbors or a relevance value which will enable the renderer to determine whether a
point should be visible or not. Animations produced using Algorithm 6.3 already give
the effect of stipples being attached to the surface of the model as an elastic texture.

92

6.2 A Practical Model for Stippling Deformable Models

input: modelGraph(Vertices,modelNormals, Edges),
AnimationFrames, pointHierarchy(points,baryCoords)
for frame € AnimationFrames:
updateVertices(frame, modelGraph,Vertices)
updateNormals(modelGraph,modelNormals)
for point € pointHierarchy {
pointCoords = getCoords(baryCoords,Vertices)
pointNormal = getNormal(baryCoords,modelNormals)

}

render(pointHierarchy)

Algorithm 6.3: Use of barycentric coordinates to produce animated stippling.

However, the point density in these models is left untouched during deformations. If
we were to perform extreme deformations on the model, the particle density will not
adapt to the deformations, since it directly depends on the nature of the distortion:
if the model is compressed, the point density increases, and the renditions become
darker; conversely, if the model is stretched, less stipples appear, and the renditions
become relatively lighter shaded.

The reason for this is that as the model is stretched or compressed, the relevance values
for each point in the hierarchy are not scaled with the distortion. If this scaling does not
take place, the relative radiae of the stipples with respect to the distortion change, such
that for a given surface and without any change in the rendering variables (specially
the target shading tone) more stipples appear on the same surface boundaries when
the model is contracted and less stipples appear when the model is contracted. To
counter this effect, we need to modify or adapt the point hierarchy such that the point
density corresponds to the new shape of the model. In particular, we need to modify
the relevance values of each point according to the deformations.

The solution we have developed to compensate for the changes in point density due to
deformation is to use the set of relevant neighbors of each point to dynamically re-scale
its relevance value. Recall from Chapter 4, Section 5 that the relevance value is obtained
as the average of the distances to the relevant neighbors of a particular point. Under
our approach, we can go back to this set of relevant neighbors and recompute the
relevance value out of this set of relevance neighbors. The only consideration we need
to make is to recompute the relevance values once we have updated the barycentric
coordinates of the points in the mesh. This is shown in Algorithm 6.4.

By defining the set of relevant neighbors in barycentric coordinates, the position and
the radius of the particles can adapt to mesh deformation to some extent. The point
density varies proportionally to the distance from the particle to the original neighbor-
ing points, as illustrated in Figure 6.7. While this introduces an additional computa-

93

6 Particle Distribution of Deformable Models

input: modelGraph(Vertices,modelNormals, Edges),
AnimationFrames, pointHierarchy
for frame € AnimationFrames:
updateVertices(frame, modelGraph,Vertices)
updateNormals(modelGraph,modelNormals)
for point € pointHierarchy {
pointCoords = getCoords(baryCoords,Vertices)
pointNormal = getNormal(baryCoords,modelNormals)
pointRelevanceValue = getRV(Vertices,pointHierarchy)

}

render(pointHierarchy)

Algorithm 6.4: Accounting for mesh deformation during animated stippling.

Figure 6.7: On the left, two sample points A and B are given a radius value which is the
average distance to its relevant neighbors (the dark points). On the right, we observe
the two points with their new average radius after the distortion has taken place. Since
the distance to their neighbors has changed after the transformation, the values for the
radius of the particle points also change, but in different proportion for each point.

tional effort during rendering, this step ensures that the particle hierarchy originally
computed is kept consistent as deformations take place.

6.2.2 Results

We have produced several stippling animations using this technique. Videos of these
animations can be observed at http://isgwww.cs.uni-magdeburg.de/~oscar/. In Figures
6.8 through 6.10 we show frames of the animation sequences produced with this tech-
nique.

94

http://isgwww.cs.uni-magdeburg.de/~oscar/

6.2 A Practical Model for Stippling Deformable Models

In Video 8-cocodrilo we show an animated cartoon crocodile character who suddendly
gets angry as the lighting changes and leaves him on the dark, the light source has been
purposely placed behind the model, to enhance the stippling effect as the light position
changes (see bottom image of Figure 6.8).

Video 9-closing hand shows a human hand as it opens and closes, and video 10-thumbs-
up shows the same hand making a thumbs-up sign. For the hand animations, the de-
formation is greater than in the case of the crocodile. However, in both cases, the stip-
pling still adapts nicely to the deformations and also responds adequately to changes
in shading.

Video 11-beating heart shows our animation of the beat of a heart, which can be looped
to have a continous heart-beat motion (see Figure 6.10). The animation of the heart is
not physically based, it is modelled by an artist after the real heart-beat motion. Two
animations were produced for the heart, one with the original model rendered opaque,
and another with the lower heart shell being indicated only by the presence of stipples
on its surface, which allows the viewer to take a look into the heart chambers (see
Figure 7.7 in Chapter 7).

There is a still a drawback in our solutions which emerges from the simplicity of our
model. In the case of extreme distortions along a specific axis, the point distribution
will not be optimal. This occurs because the original point distribution is uniform,
and the resulting point distribution is not. The effect is that some stripes of points will
appear as the model is stretched. This occurs because the point density along the axis
of distortion is different than the point density along the other axis of distortion. For-
tunately, this effect is only visible under extreme cases, and was not noticeable within
the set of animations we have explored.

95

6 Particle Distribution of Deformable Models

Figure 6.8: Frames from our animation "Upsetting the crocodile” (original sizes:
700x380).
96

6.2 A Practical Model for Stippling Deformable Models

Figure 6.9: Frames from our animations "Closing hand" and "Thumbs up" (original sizes:
400x450).

6 Particle Distribution of Deformable Models

Figure 6.10: Frames from our animations of a beating heart (original sizes: 600x500).

98

7 Informal Assessment on the Applications
of Stippling

In this Chapter we make an in-depth discussion on the limitations and applications of
frame-coherent stippling. We present several results of stippling applied to different
models and under different contexts, and discuss the limitations of our implementa-
tion and its advantages when applied on several models. We do not include the specific
application of 3D stippling for archaeology, because we will discuss this as a special case
in Chapter 8.

The discussion presented in the following stems from informally received feedback,
and from our personal appreciations. It is a discussion on the possible uses and limita-
tions of stippling from the point of view of the author, and is meant to provide insight
to what can and what cannot be done with 3D stippling.

We discuss stippling under different viewpoints, and we divide our observations in
the following themes: shading styles, model suitability, real-time rendering and use of
transparency.

7.1 Shading Styles

The first models we tried for stippling were the Utah Teapot and the Stanford Bunny.
Stippling worked quite well for the Utah Teapot. With this model, we explored the
possibility of applying different shading styles with stippling. We first tried flat shading,
which works quite well for models with sharp edges. Then we tried phong shading
[Foleg3], which works well for round-shaped models, since it reduces the effect of
tessellation (see Figure 7.1).

When using particles for stippling, we assign to each particle a unique normal. To
render the model using flat shading we assign the normal of each face to each stipple

99

7 Informal Assessment on the Applications of Stippling

W
-te .-'n‘-‘;ﬂ_

".;.!-":-"’:: A v T ol
PRt LERTH Y.

i

Figure 7.1: Changing shading styles. On the top, the Teapot model rendered using flat
shading. On the bottom, the Teapot model rendered with phong shading (original size:

630x450).

100

7.2 Model Suitability

lying on that face. For phong shading, the normal is obtained by interpolation among
the normals of the faces connected to each vertex of the face where the stipple lies
(which is the basis for gouraud shading [Foleg3]).

Figure 7.2: The upper part of the bottle model would be optimally rendered using
gouraud or phong shading, while the bottle’s grid would be better represented using
flat shading.

For some models, a combination of flat and gouraud shading is ideal, since many
models contain both rounded and sharp surfaces. We have such a model in Figure 7.2.
The upper part of the bottle is a rounded surface and would be optimally shaded using
gouraud or phong shading, while the grid on the side of the bottle needs to be shaded
using flat shading, since it contains sharp edges where the illumination needs to be
separated. To combine both shading styles, we need to use single normals per vertex
per face. That is, each vertex at each face must have its own normals. If the vertex
belongs to a sharp edge, then each vertex at each face should be oriented according to
the normal of the face. If the vertex belongs to an edge which is not sharp, then the
normal at the vertex should be the same for all the faces in the vertex.

7.2 Model Suitability

Not all 3D models are well suited for stippling. This is an esthetic consideration rather
than a scientific one, which has come out consistently as the stippling technique has
been presented to people in the field of computer graphics who have observed our
work.

101

7 Informal Assessment on the Applications of Stippling

Figure 7.3: Dragon model (original size: 1000x750).

102

7.2 Model Suitability

Objects which are definitely good for stippling are the ones associated with pottery
or ones which have a stone-made look. For example, the teapot and objects from
archaeology. A model which came out particularly well after applying our stippling
technique is the model of a Chinese Dragon (Figure 7.3), which is a pretty large model
publicly available from the Georgia Tech repository of large models. The horse model
shown in Chapters 4 and 5 also turned out very pleasing when stippled.

Stippling enhances the aspect of this model by conveying it the aspect of being carved
out of stone, which is credible also because of the nature of the model. Here we find
a potential application for the entertainment industry: it is possible to have an object
which initially looks like a static model made out of stone, which suddenly comes to
life during the animation.

The original stippling technique is meant to produce black and white illustrations. In
this thesis, however, we have taken the freedom to try colored stippling, obtaining
interesting results in some cases. For example, we produced a toy-crocodile animation
(Figure 7.4), where the crocodile has bright green skin, cartoon-like eyes and a red
mouth. This was covered with dark green stipples, and the animation obtained was
found entertaining. We observed this during a number of presentations and demos
given, where people always smiled when looking at the animation. This leads us into
believing that stippling has also an application as a rendering style for shading cartoon-
like characters.

Figure 7.4: Stippling of a model in a toon style (original size: 700x450).

103

7 Informal Assessment on the Applications of Stippling

Some biological models, like the human brain or the human hand, convey a look which
was not wellcome by all viewers. Some comments we received were that it is not nor-
mally expected to see the human brain covered with dots. On the other hand, bone
models like the pelvis (Figure 7.5) and the hand-bones model turned out quite well (see
Figure 5.13 in Chapter 5). In fact, bones are in most cases illustrated using the stippling
style in archaeology (see Chapter 8).

Point size is a relevant factor: if points are very large (GL Point size 3.7 and larger), the
model looks abrupt or coarse; on the other hand, when points are small, the model
looks smooth. Figure 7.6 shows this. On the left side, the hand is shown using large
stipples, and it has an unpolished look, even a look of sickness, while the hand shown
on the right side (with GL Point size 2.5) has a smoother, finer aspect which corre-
sponds to some extent with the smoothness of the skin.

Simple and flat objects do not benefit from stippling in a significant way from our
point of view. For example we tried stippling the model of a cube, and it didn’t look
specially interesting. Other objects like satellites do not make sense when drawn in the
stippling style, because stipples can hardly convey the look of metal or manufactured
pieces.

7.3 Real-Time Rendering

A relatively recent advance in Graphics Hardware is the availability of Vertex Programs
(also known as Vertex Shaders) and Pixel Shaders [Lindo1] as a new addition to the
Graphics Pipeline. A vertex program is a piece of computer code which is programmed
under certain restriction of memory available and possible length which has the advan-
tage of being able to be executed in parallel for a large number of vertices within the
GPU (Graphics Processing Unit). Because the point size now can be computed in
parallel for hundreds of thousands of points, the graphics system can produce stippled
renditions at interactive frame rates (see Table 7.1). Our results show that up to 100,000
points can be sent to the GPU and we can achieve frames rates close to 60 frames per
second (fps). For a larger number of points, performance decreases to 30fps, and for
the Kachel model, with around 400,000 points, it is not possible to hold real-time
frame rates anymore, with the frame rate decreasing to 1.3 frames per second. Video
12-realtime Stippling shows the interaction with the real-time stippling system with the
Bunny, Horse and Brain Models.

104

7.3 Real-Time Rendering

604x456 &

original sizes:

(

Stippled renditions of a pelvis bone model

Figure 7.5
467x436).

105

7 Informal Assessment on the Applications of Stippling

Figure 7.6: Effects of point size on the overall impression the image conveys. The hand
model shown on the left has point of size 3.7, while the one on the right has point size
2.5 and looks smoother.

Model Rendered Points | Frame Rate
Horse 96,966 59.0 fps
Bunny 69,451 56.0 fps
Brain 288,334 31.5 fps
Spar Pot L 172,078 26.0 fps
Mosaic 400,000 1.3 fps

Table 7.1: Rendering times for the real-time stippling system.
7.4 Transparency

Stipples are suitable for conveying transparency. In the work of [Lumoz2] stipples are
used for volumetric rendering, where the volumes are rendered as semi-transparent
objects. In our case, we have discovered that stippling is well suited for conveying
transparent surfaces as well. The fact that a stipple covers a very small part of the
surface of the model makes this possible. In Figure 7.7 we show an object rendered
with transparency in our real-time system. The transparency was achieved simply by
avoiding rendering the faces that correspond to the heart shell, and rendering only the
stipples which correspond to those faces.

Impressive effects of stippling for semi-transparent surfaces are obtained by mixing
opaque objects with semi-transparent stippled surfaces. In Figure 7.7 we show a frame
from our beating heart animation with stipples replacing the outer shell of the heart
for a transparency effect. This animation lets us take a look at the inner parts of a beat-

106

7.4 Transparency

ing heart, while the stipples convey the outer surface of the heart. Not only that, stip-
ples also illustrate how the outer layer stretches as the beating of the heart takes place.
This reveals the potential of using this technique for producing animated medical il-
lustrations. To our knowledge, this effect cannot be conveyed with conventional trans-
parency techniques because semi-transparent surfaces have no distinguishing marks
on them which could help us appreciate the stretching on such layers. To appreciate
the transparency effect obtained using stipples, we have produced Video 13-stippled
heart with transparency, which should be compared with Video 14-beating heart with
transparency, where an animation of the beating heart with stipples is provided. In
addition, a way to attach distinguishing marks to a transparent surface could be to put
a texture on the surface, and then render it with a semi-transparency attribute, but this
falls outside of the scope of this thesis.

In the case of the beating heart model, we can also observe that plain stippling of the
heart surface does not significantly improve the aspect of the model. What is more,
under some views, the shape of the heart conveys even an unintended look (that of a
strawberry) for points placed over a opaque red surface. Most likely, the reason that
some people might have this perception is that we have mental images of objects, and
in this case, the resulting image matches the mental images that many persons have of
a strawberry drawn in a cartoon-like style.

107

7 Informal Assessment on the Applications of Stippling

Figure 7.7: Frames from the animation "Transparent beating heart" using stipples to con-
vey the shape of the exterior of the heart, while the user can look at the heart chambers

(original sizes: 600x500).
108

8 Stippling in Archaeology

An important application for the stippling technique is found in archaeology, where
stippling is used to illustrate the objects found during excavations. As part of our
research, we wanted to explore the application of our rendering technique for actual
objects which proceed from true archaeological findings. For this, we contacted the
Head Archaeologist of the Bureau for Archaeology in Saxony-Anhalt (the Landesamt
fiir Archédologie Sachsen Anhalt), Hr. Kuhn and his team, who currently work (2002-
2003) at excavations taking place at the Dom Square in the city of Magdeburg.

In this Chapter we describe this collaboration and what we have learned from the in-
teraction with the archaeologists and from the material they have provided us with.

We started by showing them some of our stippling animations applied on generic mod-
els like the teapot and the stanford bunny. The animations looked interesting to them,
and made them willing to cooperate with us using objects from their excavation site.

The cooperation was then designed as follows: we received objects from their archaeo-
logical findings and we reproduced them as 3D models using a 3D scanner. After that,
we applied our stippling techniques on the models and asked them for feedback about
the results.

The 3D scanning was achieved with help from the Fraunhofer Institute for Factory
Operations and Automatization in Magdeburg!. Two objects were 3D-scanned for us
by the Fraunhofer Institute for Factory Operations and Automatization in Magdeburg.
The first object is a mosaic piece (a glazed tile, known in german as Kachel) used as
decoration of a heating oven commonly used in the rooms of old houses. This piece
is dated from the 16th. century and its measures are 17cm wide, 19.5cm high and 4cm
deep (see Figure 8.1). The second object is a piggy-bank (germ. Sparbiichse) from the
middle ages (14-15th. century), which rather looks like a savings pot with a diameter
of approximately 8cm and a height of 7cm (see Figure 8.2). Other objects were also

1Hr. Erik Trostman

109

8 Stippling in Archaeology

considered for scanning, but since the surfaces have only smooth reliefs, the scanning
was not done. This was rather a technical limitation which was due to the lack of
dedicated resources for the project. In Figure 8.3 we show one of the objects that was
not scanned due to this limitation. We introduce this Figure because we will discuss
aspects related with this and similar objects later.

The mosaic model was scanned at a resolution of 400,000 polygons, while the piggy
bank was scanned at a resolution of 200,000 polygons.

Since the mosaic model is colored, we took a picture of the model and attached it to
its surface using a planar projection. To do this, we first had to distort the image to fit
onto the surface of the model, because the original picture did not correspond to the
proportions of the object. This is most likely due to the fact that the camera obtains
images through perspective projection, and the mosaic model had significant changes
in depth.

After the objects were scanned, we applied the point relaxation technique on the input
mesh and obtained the point hierarchies for them. The time required to process these
models are shown in Table 5.1.

At the beginning of April 2003, a visit from the archaeologists was arranged where they
had the opportunity to observe the real-time implementation of both input models,
where the real-time version of the mosaic was in the traditional black-and-white rep-
resentation, and could give us some relevant feedback. The images the archaeologists
observed are shown in Figures 8.6 through 8.8. We show some samples of the real-time
renditions of the mosaic model that our users (the archaeologists) observed. We also
presented them a hybrid rendering style where we put stipples on the surface of the
model with the texture obtained previously. This images is shown in Figure 8.8.

110

Figure 8.1: Photograph of the glazed mosaic tile (original size: 17x19.5cm).

111

8 Stippling in Archaeology

Figure 8.2: Photograph of the piggy bank (original diameter: 8cm, height: 7cm).
8.1 General Comments

The overall results is that they were impressed by the quality of the images and they
found the work interesting. An initial thought that was expressed is that the results
were impressive and that fulfilled their expectations.

To provide a point of reference for comparison, the Head Archaeologist provided us
an illustration of the mosaic model done by a specialized technical illustrator®. This
illustration is shown in Figure 8.4, and we will refer to this drawing as the ’scientific
illustration’. It is important to notice that, within the context of this thesis, we want to
reproduce stipple drawings in the way human artists do. Not to replace them, rather
than that, an important motivation can be stated as the possibility of providing a new
rendering style for 3D models for animations which is frame-coherent and complies
with the restrictions derived from the stippling drawing style. Having said that, the
discussion on how to produce similar results to the ones obtained by artists can con-
tinue.

As general information about the nature of the illustrators goals and performance we
have been told by the archaeologists that an artist can produce the illustration of the

2Pr. Spring

112

8.1 General Comments

Figure 8.3: Photograph of a pot fragment which was not scanned (original size: 7x6cm).

mosaic in one or two days and that in general, an illustrator is able to draw 30 to 40
pieces (fragments) each day, which is more than we had initially expected. We pre-
sume that the reason the mosaic drawing takes significantly more time than the small
fragments is that it requires more dedication, since in such cases the artist produces
preliminary versions or sketches before producing the final version. It is important
also to notice that the technical illustrator has accumulated experience of several years
(in the case of the medieval mosaic illustration, the artist had 3 years of experience at
the time of production).

The process of making a stippled drawing includes several previous drawings until the
final drawing is done, as is common in other artistic techniques. It is also interesting
to discover that for the archaeologists the objects themselves are not of interest, what
is important is the presence of decorations and the description of the form of the
objects (the profile). These decorations and the form of the profile of the objects help
archaeologists to determine the age of the archaeological site®. These findings are not
the goal of the investigation per-se; rather, they indicate the approximate age of the
exploration site.

>Hr. Kuhn, personal communication

113

8 Stippling in Archaeology

Magdeburg/MD

Fst.

Fund- Nr.:

M1

04 0401 M SPRING

Figure 8.4: A stippled drawing of the mosaic done by a technical illustrator (Saxony-
Anhalt Office of Archaeology, original size 17x19.5cm).

114

8.2 Line Drawings on Top of the Stippled Renditions

Magdeburg/MD
Fst.:Landtag/ Westfiigel
Fund- Nr.:1

MI1:1

04.04 01 M SPRING

Figure 8.5: A stipple drawing of the object in Figure8.3 (original drawing size: 11 x
6.5cm).

8.2 Line Drawings on Top of the Stippled
Renditions

The first issue that was commented was that the artistic drawing has an element of
interpretation, which means that the illustrator explores the object and decides which
information needs to be transmitted and how it is to be conveyed. This interpretation
element is often expressed through the introduction of lines in the drawings, and some-
times by the increase of stipples to enhance shape in some regions of the illustration.

In addition, the artist pays much attention to detail in the object being drawn. Detail
amplification is a strong element which was also acknowledged by the archaeologists
themselves, who mentioned that the artist does not only perform visual inspection, but
also they touch and feel the surfaces by tact to decide what to render. For example, this
detail amplification is observed in the ornaments in the hat of the character shown in
Figure 8.4, which are in reality incomplete and subtly noticeable in the original object.
This effect is also shown in Figure 8.5, where we observe a stippled rendition of the
object shown in Figure 8.3.

There are some options that can be used to overcome these problems, the first is to
use specific algorithms to enhance some sharp edges and silhouette edges. In Figure

115

8 Stippling in Archaeology

=1oix]
Stipples:400000
Faces:400000
fps: 1.80 -~

Figure 8.6: Snapshot from the real-time stippling system using the Kachel model (origi-
nal size: 810x846).

8.9, we illustrate how sharp edges are used to emphasize parts of the model with high
curvature. A side effect of introducing this feature lines is that the drawing has cer-
tain noise, which interferes with the stippling effect. These results are similar to those
of enhancing features using gradient information, presented by Lum and Kwan-Liu
[Lumoz2]. The other option is to encourage user-interaction. In a similar way as in
the approach proposed by Buchanan and C. Sousa [Buchoo], An artist could take the
3D model and determine lines which should always be present in the model. In the
approach presented by Buchanan these lines would be placed on top of existing edges,

116

8.3 Animation Versus Single Images

SLIEY
Stipples: 172078
Faces: 172078
fps: 26.00

Figure 8.7: Snapshot from the real-time stippling system using the Piggy-bank model
(original size: 807x626).

and are denominated as ’artists edges. Such a system would be similar to existing 3D
painting tools, such as Tarzan’s Deep Canvas [Danigg, Igaro1], but in general the so-
lution of having to draw on the 3D model was not received with much enthusiasm.
Another approach is to use curvature information and store it in the stipples. Areas
with high curvature could be enhanced over areas of low curvature by increasing the
relevance of points located in these areas.

8.3 Animation Versus Single Images

An interesting aspect noticed when talking to the archaeologists was that they were
interested in specific views for still frames.

It was our perception that the archaeologists were not too excited about the fact that
they could interact with the model in real time and change several parameters arbi-
trarily, or in the possibility of using the interactivity and playing with the model. Fur-

117

8 Stippling in Archaeology

-
.
-

Figure 8.8: The Mosaic model with texture and stipples (original size: 563x640).

thermore, it was our perception that there were specific views which were interesting
to them. They would go and ask for a specific point size in a certain moment and
then say: "that’s an image that fulfills my expectations". So they thought about the real
time interaction more as a tool to determine specific images and views which are at-
tractive for them. In addition, the archaeologists clearly stated that for the purpose of
scientific exchange and publication, they definitely prefer the human-made technical
illustrations.

118

8.3 Animation Versus Single Images

Figure 8.9: The Mosaic model with (top) and without (bottom) curvature enhancement
using sharp edges, notice how more details related to the shape of the object appear
in the image at the top, while the image at the bottom looks cleaner (original sizes:
630x736).

119

8 Stippling in Archaeology

A reason for this preference might be that the archaeologists are used to communi-
cate their findings using single drawings and not interactive 3D tools. It is the task of
the illustrator to convey all the relevant features of the object in one front view and
in some cases an additional profile view, and it is expected from the archaeologists
to interpret these illustrations. Such illustrations constitute the language that they
have been using for centuries (which in addition, gives them the possibility to analyze
material from other times). Another factor that might influence the attitude of the
archaeologists towards our system might be the fact that the availability of the tech-
nology is limited, such that nowadays it cannot be expected that most archaeologists
have a powerful computer as part of their standard equipment, which in the end, also
limits its attractiveness for common use. On the other hand, an immediate applica-
tion they found for the system was the production of images for their internet website
www.archlsa.de(2003).

8.4 lllumination and Shading

An interesting point indicated by our users is that dark areas should be avoided in
general. This is regardless of whether the areas are in the shadowed regions or not.
This is a requirement which is traditionally not considered in the graphics community,
where the convention is that shading is strictly depending on illumination. A reason
that dark areas are avoided by technical illustrators might be that dark areas provide
no information for the scientist or the viewer. Regardless of whether an area should be
lit or not from the point of view of the light models commonly used in 3D Graphics
(flat and phong shading, radiosity), archaeologists expect to obtain information from
the illustration. An area which is completely dark due to the light position may be
correctly shaded from the graphics point of view, but is not interesting for them.

A first approach to reduce the saturation in the dark areas of our renditions is to set
a limit for the darkest tone possible. This approach is shown in Figure 8.10. The
illustration of the mosaic tile has lost contrast and some features of the character are
harder to recognize due to the lack of contrast. On the other hand, the illustration of
the piggy bank still looks dark in some areas, but is not completely black, achieving
the desired effect.

Another approach is to have a static illumination model with multiple light sources,
where the features which are important are enhanced for specific views of the model.
Having several light sources is done in photography, where several light sources are
projected on a static object to obtain an image for a magazine or for advertising. In
addition, Hamel [Hameoo] suggests the use of several light sources for producing non-
photorealistic renditions. In our system, we have a unique light source, but the system
could be extended by adding an additional lighting system with several light sources.

120

www.archlsa.de

8.4 Illumination and Shading

Dot e ehets .g.-r.-—.._‘...-l...-."' -

Figure 8.10: Setting a limit on the darkness of the stippled renditions: at the top, the
mosaic model (to be compared with images in Figure 8.9). At the bottom, the Piggy bank
model. Compare with the rendition in Figure 8.7 (original sizes: 630x745 and 483x510).

121

8 Stippling in Archaeology

FO
FR

PLF— g . @ £y
HGF : S\

| G
FM oc CF SF FC

Figure 8.11: At the top, a photograph of the ear region of an Eocen whale from Pak-
istan. At the bottom, a human-made stipple drawing of enlarged area of interest, clearly
showing morphological details without the discoloration and crack and chip distractions
of the original specimen. Photo by George Junne. Drawing by Karen Klitz, courtesy of PD.
Gingerich [Hodg88] (original sizes: 826x655 and 800x715).

122

8.5 Depth Cues

In Figure 8.1, bottom we observe the stippled rendition an artist made out of a region
of the bone of a prehistoric whale (bone photograph shown at the top). Notice that
there is not a unique light source in the drawing, instead, light sources are locally
applied to specific pieces of the bone and dark areas are avoided, with the exception
of the cavities illustrated at the center right of the illustation. Notice also, that this
configuration of light sources is appropriate for this view of the model, which lead
us to believe that the task of dynamically illuminating a moving model requires the
combination of both local light sources and overall illumination criteria, such as that
suggested by Hamel [Hameoo].

8.5 Depth Cues

Some stipple drawings make use of a depth cueing technique where parts of the model
which correspond to holes or cavities are indicated through an increase in point den-
sity. Notice for example the cavities on the base of the columns on the left and right
sides of the mosaic. This technique corresponds only partially to a physical illumina-
tion model, because the cavities are generally illustrated with a higher point density
as other surfaces in general and are not entirely due to self-occluding geometry. A
way to account for these changes in illumination could be to use radiosity equations
to compute the illumination and reflection in a more exact way. We leave this as a
recommendation for future work.

Another example where depth cues are significant is found in the difference between
the character’s background plane and its body, specially in the transition from the
background to the upper body, specially the region that corresponds to the shoulders.
In this case, the artist decided to leave the upper body part (with exception from the
center of the body where some decorations appear) almost without stipples, which
produces a strong differentiation between the background and the character. A sugges-
tion to go in the direction of conveying such attributes in such an image, is the intro-
duction of a relevance map which determines which parts of the model should have
darker tonalities. Relevance maps are present in the literature on non-photorealistic
rendering, and could be at least of partial help. An operator which determines shading
according to the actual depth in a model could also be introduced, although it is very
unlikely that a naive depth-dependent operator will work properly. Depth cues in this
case are a mixture between color properties, and local depth differences. This means
that the dot density is not dependent on the actual depth of a surface, but instead is
dependent on the dot density around the cavity, and its purpose is to indicate that a lo-
cal change in depth occurs and not to globally indicate the depth of the surface. As an
example to illustrate our hypothesis, the shoulders of the character have a dot density
which is almost as sparse as the frame of the image. In reality, both surfaces are not at

123

8 Stippling in Archaeology

the same height, so the similarity in shading must be explained by other factors, such
as color, as will be discussed in the next section.

8.6 Color Management

The piggy bank model did not originate as many comments as the mosaic tile model.
There might be two reasons for this: one is the simplicity of the model with respect
to the mosaic, and the second is that the object has a uniform color. It seems that for
black and white objects with simple geometry (in the sense of a lack of decorations),
the stippling system satisfied the archaeologists expectations. On the other hand, ren-
dering a colored object using black-and-white tones is perhaps one of the situations
where the interpretation of the artist plays a determinant role in the aspect of the final
rendition. In the mosaic image, in some parts the geometry does not change, but the
color does, so the artist decided to include more stipples for the darker colors. This has
the risk of introducing some ambiguity in the image, since an observer may think that
the presence of an increase of dot density indicates a cavity where in fact only a change
in color is being illustrated. In the case of the upper body of the character, the artist
even decided to change the color of the original object in order to enhance the differ-
ence in geometry. An appropriate color scheme that changes colors in the way an artist
does is a task that could be suggested as common work between researchers in artificial
intelligence and computer graphics, as a topic for the Smart Graphics community.

In addition, it is worth mentioning that for a colored model, we might try to use
a pointillist style (see Chapter 1). This could be done if the texture information is
mixed with the particle system. Finally, another possibilty to be explored is to use an
alternative texture consisting only of bright colors and combine it with the stipples.
This option would eliminate some of the darkness present in Figure 8.8, where stipples
vanish in the colored areas.

8.7 Concluding Remarks

The collaboration with the archaeologists was useful and gave us an understanding of
how they see our tools in their area of application. It was also very helpful for us to ob-
tain new information with respect to the user expectations of a stippled drawing, the
most interesting being that shading does not have to correspond to the conventions we
assume for shading (the use of phong, gouraud or flat shading), and that it is more in-
teresting to obtain information from the images, which suggests that more work needs
to be done to consider the issue of user-oriented non-photorealistic illumination.

124

8.7 Concluding Remarks

It is also interesting to notice that the real-time system presented at one moment was
identified or considered as the preliminary work with respect to the mosaic with color.
Instead, we as authors think of real-time rendering as a final product, and the stippling
with colors as an additional product. But is interesting to see that a rendition with
colors can be considered as a step ahead of a rendition in black and white per se.

In addition, there was no mention of artifacts like linear patterns or problems with
flickering effects. This indicates that central technical challenges addressed in this
thesis, namely frame-coherence and appropriate point distribution, were successfully
dealt with.

The challenges that emerged from the collaboration with the archaeologists can be
summarized as follows:

e Avoidance of dark areas: perform specific control of illumination, even when
they are in the shadowed regions, as discussed in Section 8.4.

e Detail enhancement: perform silhouette detection and use sharp edges to im-
prove the aspect of the stippled rendition Also, silhouettes permit enhancement
of interesting features, which could be indicated by a technical illustrator or an
archaeologist, such that these details are always part of the final rendition, in a
similar way as suggested by Buchanan and Costa Sousa [Buchoo].

e Develpoment of an interface for multiple light source defintion: currently, our
real time application allows the user to control a number of parameters dur-
ing interaction, like point size, scale, and spacing. However, the user should
be able to have an interactive tool for placing additional light sources and con-
trol their position and orientation. In addition, the user should be able to indi-
cate which features are most relevant, perhaps with help of a 3D painting tool
[Igaro1, Kalnoz], or an indication map [Winkg4].

e Depth-cue enhancement: several renditions focus on emphazising the overall
shape of the model, and enhance features like holes or cavities in the drawing.
Providing automatic software tools to identify such areas is challenging, and it
is likely that the task of identifying interesting features could also be done by
an illustrator who could make a judgment on which cavities are relevant for the
purposes of the illustration. In this case, an interaction tool designed to indicate
such areas might be also a viable solution for this problem.

125

9 Conclusions

The advent of non-photorealistic rendering in computer graphics has arisen several
questions related to the creation of algorithms which bring traditional artistic and
scientific drawing styles to the digital world by using them for enhancing 3D computer
graphics. The fact that these styles are designed and meant as single prints, drawings
or illustrations brings a number of challenges which appear as we want to use these
styles in 3D.

We have identified three main issues that must be adressed when doing this transition
from 2D to 3D graphics: frame-coherence, view-dependent scaling and projection,
and possibility of doing morphing and animation using NPR styles. Frame-coherence
is neccessary to produce smooth animations and to avoid flickering artifacts which are
perceived as noise. View-dependent scaling and projection is necessary to maintain
the intended style as objects move. Morphing and animation gives us the possibility of
using non-photorealistic styles for animated models.

Our main motivation in this thesis was to deliver a solution to solve the problems
which appear when trying to bring 2D drawing styles to 3D graphics. Our work shows
that point hierarchies constitute a valuable tool for creating view-dependent, frame-
coherent animations of static and animated 3D models in the stippling style.

By using point hierarchies, we ensure:

1. An adequate particle distribution and regular spacing over the surface of a
model.

2. An appropriate behaviour of the particles under morphing and model anima-
tion.

3. Smooth particle insertion and removal during an animation when adapting to
changes in scale and projection on the screen.

127

9 Conclusions

We have concentrated our efforts exploring animation in the stippling style, however,
point hierarchies have a strong potential to be used in conjunction with other render-
ing styles. As one of the anonymous reviewers of our paper in the Computer Graphics
& Applications Special Issue on Non-photorealistic Rendering [Meruo3] puts it: "This
technique complements a host of previous work in non-photorealistic systems includ-
ing pencil sketching, pen and ink, charcoal, watercolor, and cartoon rendering. Each
of these papers has contributed positively to the body of literature and collection of
techniques available to computer graphics specialists and software developers creating
NPR systems. Somebody out there is thinking about this very problem and this paper
attempts to deliver a solution to the practitioner."

In addition, we have presented two approaches for producing point hierarchies. Both
of these techniques are inspired in research related to level-of-detail, where vertex hier-
archies are generated for 3D mesh simplification.

We would like to emphasize that it is the sum of all the parts which is unique to our
work, our solution is in reality a modular one: a user can decide whether to use an
alternative point hierarchy creation algorithm, add additional attributes to the points
in the hierarchy, make a real-time implementation with additional special effects, or
modify the behavior of the point hierarchy under deformations.

9.1 Future Directions

We see the following opportunities for extending this work:

9.1.1 Use of the Point Hierarchy for Adaptive Rendering

We create and make use of the point hierarchy to decide when and where to place
stipples on the surface of a model. However, during rendering, the complete point
hierarchy is traversed, where not all points within this hierarchy are rendered. A more
efficient approach is to traverse only the sections of the point hierarchy which are nec-
essary to produce the stippled rendition. This can be done in several ways: by view-
frustum culling, backface culling, and screen-space or distance-based culling. These
culling techniques are derived from the literature on level-of-detail, where the resolu-
tion of a model is dynamically controlled according to these and other heuristics. In
[Dacho3] an approach is presented which permits the use of hardware-acceleration to
perform these optimizations in the Graphics Processing Unit and permits the rendi-
tion of point sets containing millions of points distributed in several models. Imple-
menting similar optimizations in our real-time rendering system is possible and would
improve significantly its performance.

128

9.1 Future Directions

9.1.2 Hardware-Accelerated Visibility Preprocessing

An additional way to reduce the number of points sent to the graphics engine is to
determine a priori which parts of the model are visible and then send to the graphics
engine only those particles which lie on the surface of the visible parts.

To achieve this, some preprocessing needs to be done. First, it is necessary to divide
the model into parts. These parts can also be the surface patches, generated by patch
fusion, as done for visibility-preprocessing based on ID-bitfields [Meruoz2a]. Second,
it is necessary to organize the points of the patch hierarchy according to the parts of
the model where the particles lie. This can be done using a sorting algorithm that
traverses the point hierarchy. During rendering, two passes are needed. In the first
rendering pass, the model is rendered with each part encoded in a unique color. After
that, the color buffer is consulted and we determine which parts are visible. In the sec-
ond rendering pass, we send the particles belonging to the visible parts to the graphics
engine.

9.1.3 Use of Other Rendering Primitives

So far, we have done experiments rendering stipples. However, much work in NPR
is based on pencil and paint strokes, or other rendering primitives. We believe that
the approach here presented can also be used to generated drawings in other non-
photorealistics styles using stroke or paint primitives, among others, which would al-
low for new effects in NPR animation.

One way to do this is to replace stipples with textured quad primitives, where the tex-
ture represents a paint stroke, as in the work done in painterly rendering [Meieg6].
The quad primitives may contain paint strokes, brush strokes or other basic shapes.

Another way to use point hierarchies with other rendering styles is to use the points
as the starting position for line strokes, as has been done for the case of image-plane
frame coherence. In this case, the point determines the center of a line stroke, and
the line stroke extends on the surface of the model according to a certain direction
vector.

In this category, we can also include the use of colored point primitives. We could use
the point hierarchy to emulate the pointillist painting style which was developed by
the impressionists (see Section 1.3). In this case, however, the point density is handled
in a different way than in the case of traditional stippling presented here. In the case of
stippling, shading is given by the density of stipples. In the case of pointillism, images
are completely saturated by dots, and shading and color is given by the hue, saturation
and darkness of each dot in the image.

129

9 Conclusions

9.1.4 Point-Based Rendering for NPR

As mentioned in Chapter 2, little research has been done to bring together point-based
rendering with nonphotorealistic rendering. With new developments in Graphics
Hardware, it is now possible to render large amounts of points in real-time. In fact,
current development in vertex and pixel shaders has shown that it is possible to obtain
a variety of non-photorealistic rendering styles for polygonal-based models, and this
gives us confidence to suggest that it should be also possible to generate point-based
stippled drawing and other point-based NPR styles using point-hierarchies (as in the
case of Q-splats [Rusioo]). This would open the field fur the use of stippling for mas-
sively large point sets. All the elements are present in the literature, and it could be a
promising area for further development.

130

Bibliography

[Alexo1]

[Allio]

[Attaoz]

[Aureoi]

[Aureoo]

[Bergoo]

[Buchoo]

[Coop9s]

Marc Alexa. “Mesh Morphing STAR”. Eurographics 2001 State of The Art
Reports; Computer Graphics Forum, 21(2), pp. 173—196, http://www.igd.fhg.
de/~alexa/paper/index.html, 2001.

Pierre Alliez and Mathieu Desbrun. “Progressive Compression for Loss-
less Transmission of Triangle Meshes”. SIGGRAPH 2001 Conference Pro-
ceedings, pp. 195202, http://doi.acm.org/10.1145/383259.383281, 2001.

Dominique Attali and Jean-Daniel Boissonnat. “A Linear Bound on the
Complexity of the Delaunay Triangulation of Points on Polyhedral Sur-
faces”. Research Report 4453, INRIA, http://www.inria.fr/rrrt/rr-4453.html,
2002.

E Aurenhammer. “Voronoi diagrams — a Survey of a Fundamental Geo-
metric Data Structure”. ACM Computing Surveys, Vol. 23, No. 3, pp. 345—
405, Habilitationsschrift. [Report B 90-09, FU Berlin, Germany, 1990],
1991.

E Aurenhammer and R. Klein. “Voronoi diagrams” Handbook
of Computational Geometry, Chapter V, pp. 201—290. Elsevier Sci-
ence Publishing, [SFB Report Foo3-092, TU Graz, Austria, 1996],url-
http://www.igi.tugraz.at/auren/ , 2000.

Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld, and Mark Over-
mars. Computational Geometry: Algorithms and Applications, chapter 7,
pp- 145-161. Springer Verlag, http://www.cs.uu.nl/geobook/, 2000.

John W. Buchanan and Mario C. Sousa. “The Edge Buffer: a Data Struc-
ture for Easy Silhouette Rendering”. Proc. of the 1st. International Sym-
posium on Non-photorealistic Animation and Rendering, pp. 39—42, http:
//doi.acm.org/10.1145/340916.340921, 2000.

Philip Cooper. Cubism. Phaidon Press, http://tiger.towson.edu/users/
kmclew1/, 1995.

131

http://www.igd.fhg.de/~alexa/paper/index.html
http://www.igd.fhg.de/~alexa/paper/index.html
http://doi.acm.org/10.1145/383259.383281
http://www.inria.fr/rrrt/rr-4453.html
http://www.cs.uu.nl/geobook/
http://doi.acm.org/10.1145/340916.340921
http://doi.acm.org/10.1145/340916.340921
http://tiger.towson.edu/users/kmclew1/
http://tiger.towson.edu/users/kmclew1/

Bibliography

[Corno1]

[Dacho3]

[Danig9]

[Deusoo]

[Ellig9]

[Filig6]

[Folegs]

[Freuo2]

[Gooc98]

132

Derek Cornish, Andrea Rowan, and David Luebke. “View-Dependent Par-
ticles for Interactive Non-Photorealistic Rendering”. GI 2001, pp. 151158,
http://www.graphicsinterface.org/proceedings/2001/158/, June 2001.

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. “Se-
quential Point Trees”. SIGGRAPH 2003 Conference Proceedings (to appear),
http://wwwpg.informatik.uni-erlangen.de/Research/Rendering/SPT, 2003.

Eric Daniels. “Deep canvas in Disney’s Tarzan”. ACM SIGGRAPH 99 Elec-
tronic Art and Animation Catalog, p. 124, http://doi.acm.org/10.1145/312379.
312887, 1999.

O. Deussen, S. Hiller, C.W.A.M van Overveld, and T. Strothotte. “Floating
Points: A method for Computing Stipple Drawings”. Computer Graphics
Forum, Vol. 19, No. 3, pp. 40—51, http://www.eg.org/EG/CGF/volumeig/
issue3, 2000.

S. Ellis, B.D. Adelstein, S. Baumeler, G.]. Jense, and R.H. Jacobi. “Sensor
Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Track-
ing in Virtual Environments”. Proceedings of the Virtual Reality *99 Confer-
ence, pp. 218—221, http://human-factors.arc.nasa.gov/ihh/spatial/papers/
pdfs_se/Ellis_1999_VR_3D_Tracking.pdf, 1999.

Mark Filipiak. “Report on Mesh Generation, 3.2.4 Delaunay Triangu-
lation”. Technical Watch Report 4453, Edinburgh Parallel Computing
Centre (EPCC), http://www.epcc.ed.ac.uk/overview/publications/
training_material/tech_watch/96_tw/tw-meshgen/MeshGeneration.
book_1.html, 1996.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F
Hughes. Computer Graphics: Principles and Practice, pp. 376—
381. Addison-Wesley Systems Programming Series, Don Mills, On-
tario, http://www.awprofessional.com/catalog/product.asp?product_id=
{25B96B4D-%59FA-4E13-BB7F-A1064EF55963}, 1993.

Bert Freudenberg, Maic Masuch, and Thomas Strothotte. “Real-Time
Halftoning: A Primitive For Non-Photorealistic Shading”. Rendering Tech-
niques 2002, Proceedings 13th Eurographics Workshop, pp. 227—231, http:
/lisgwww.cs.uni-magdeburg.de/~bert/, 2002.

Amy A. Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. “A
Non-Photorealistic Lighting Model for Automatic Technical Illustration”
SIGGRAPH’98 Conference Proceedings, Computer Graphics Proceedings,
Annual Conference Series, pp. 447—452, http://doi.acm.org/10.1145/280814.
280950, 1998.

http://www.graphicsinterface.org/proceedings/2001/158/
http://www9.informatik.uni-erlangen.de/Research/Rendering/SPT
http://doi.acm.org/10.1145/312379.312887
http://doi.acm.org/10.1145/312379.312887
http://www.eg.org/EG/CGF/volume19/issue3
http://www.eg.org/EG/CGF/volume19/issue3
 http://human-factors.arc.nasa.gov/ihh/spatial/papers/pdfs_se/Ellis_1999_VR_3D_Tracking.pdf
 http://human-factors.arc.nasa.gov/ihh/spatial/papers/pdfs_se/Ellis_1999_VR_3D_Tracking.pdf
http://www.epcc.ed.ac.uk/overview/publications/training_material/tech_watch/96_tw/tw-meshgen/MeshGeneration.book_1.html
http://www.epcc.ed.ac.uk/overview/publications/training_material/tech_watch/96_tw/tw-meshgen/MeshGeneration.book_1.html
http://www.epcc.ed.ac.uk/overview/publications/training_material/tech_watch/96_tw/tw-meshgen/MeshGeneration.book_1.html
http://www.awprofessional.com/catalog/product.asp?product_id={25B96B4D-% 59FA-4E13-BB7F-A1064EF55963}
http://www.awprofessional.com/catalog/product.asp?product_id={25B96B4D-% 59FA-4E13-BB7F-A1064EF55963}
http://isgwww.cs.uni-magdeburg.de/~bert/
http://isgwww.cs.uni-magdeburg.de/~bert/
http://doi.acm.org/10.1145/280814.280950
http://doi.acm.org/10.1145/280814.280950

Bibliography

[Gooco1]

[Hagao1]

[Hameoo]

[Hodg88]

[Hoppy6]

[Hoppy7]

[Igaro1]

[Iseno3]

[Kalnoz]

[Kaploo]

[Laero3s]

Bruce Gooch and Amy Gooch. Non-Photorealistic Rendering. A. K. Peters,
Ltd., http://www.akpeters.com/book.asp?bID=131, July 2001.

Toshiyuki Haga, Henry Johan, and Tomoyuki Nishita. “Animation
Method for Pen-And-Ink Illustrations Using Stroke Coherency”. CAD
/ Graphics’2001, http://nis-lab.is.s.u-tokyo.ac.jp/~haga/study.html, August
2001.

Jorg Hamel. A New Lighting Model for Computer Generated Line Draw-
ings. Ph.D. thesis, Otto-von-Guericke-Universitit Magdeburg, Magde-
burg, Germany, 2000.

Elaine R.S. Hodges. The Guild Handbook of Scientific Illustration. Wiley
Europe, http://he-cda.wiley.com/WileyCDA/HigherEdTitle/productCd-
0471360112.html, 1988.

Hugues Hoppe. “Progressive Meshes”. SIGGRAPH 96 Conference Proceed-
ings, pp. 99—108, http://doi.acm.org/10.1145/237170.237216, 1996.

Hugues Hoppe. “View-dependent Refinement of Progressive Meshes”. SIG-
GRAPH 97 Conference Proceedings, pp. 189—198, http://doi.acm.org/10.1145/
258734.258843, 1997.

Takeo Igarashi and Dennis Cosgrove. “Adaptive Unwrapping for Interac-
tive Texture Painting”. Proceedings of the 2001 Symposium on Interactive 3D
Graphics, pp. 209—216, http://doi.acm.org/10.1145/364338.364404, 2001.

Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg, and
Thomas Strothotte. “A Developer’s Guide to Silhouette Algorithms
for Polygonal Models” IEEE Computer Graphics and Applications Spe-
cial Issue on Non-photorealistic Rendering, http://csdl.computer.org/comp/
proceedings/pg/2003/2028/00/20280424abs.htm, July /August 2003.

Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowal-
ski, Joseph C. Lee, Philip L. Davidson, Matthew Webb, John E. Hughes,
and Adam Finkelstein. “WYSIWYG NPR: Drawing Strokes Directly on
3D Models”. SIGGRAPH 2002 Conference Proceedings, pp. 755-762, http:
//doi.acm.org/10.1145/566570.566648, 2002.

Matthew Kaplan, Bruce Gooch, and Elaine Cohen. “Interactive Artis-
tic Rendering”. Proceedings of the First International Symposium on Non-
photorealistic Animation and Rendering, pp. 67—74, http://www.cs.utah.
edu/npr/papers.html, 2000.

Kristof Van Laerhoven. Voronoi Diagrams ¢ Delaunay Triangulation. Com-
puting Department, Lancaster University, UK, http://www.comp.lancs.ac.
uk/~kristof/research/notes/voronoi, 2003.

133

http://www.akpeters.com/book.asp?bID=131
http://nis-lab.is.s.u-tokyo.ac.jp/~haga/study.html
http://doi.acm.org/10.1145/237170.237216
http://doi.acm.org/10.1145/258734.258843
http://doi.acm.org/10.1145/258734.258843
http://doi.acm.org/10.1145/364338.364404
http://csdl.computer.org/comp/proceedings/pg/2003/2028/00/20280424abs.htm
http://csdl.computer.org/comp/proceedings/pg/2003/2028/00/20280424abs.htm
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/566570.566648
http://www.cs.utah.edu/npr/papers.html
http://www.cs.utah.edu/npr/papers.html
http://www.comp.lancs.ac.uk/~kristof/research/notes/voronoi
http://www.comp.lancs.ac.uk/~kristof/research/notes/voronoi

Bibliography

[Lindo1]

[Luoz]

[Luebyy]

[Lumoz]

[Macko3]

[Markoo]

[Mehloo]

[Meieg6]

[Meruoza]

[Meruo2b]

[Meruo3s]

134

Erik Lindholm, Mark J. Kilgard, and Henry Moreton. “A User-
Programmable Vertex Engine”. SIGGRAPH 2001 Conference Proceedings,
Pp- 149—158, http://doi.acm.org/10.1145/383259.383274, 2001.

Aidong Lu, Christopher Morris, David Ebert, Penny Rheingans, and
Charles Hansen. “Non-photorealistic Volume Rendering Using Stippling
Techniques”. IEEE Visualization 2002 Conference Procedings, http://www.
cs.umbc.edu/~rheingan, 2002.

David Luebke and Carl Erikson. “View-Dependent Simplification of Arbi-
trary Polygonal Environments”. SIGGRAPH 97 Conference Proceedings, pp.
199—208, http://doi.acm.org/10.1145/258734.258847, 1997.

Eric B. Lum and Kwan-Liu Ma. “Hardware-Accelerated Parallel Non-
Photorealistic Volume Rendering”. Proc. of the 2nd. International Sym-
posium on Non-photorealistic Animation and Rendering, pp. 67—ff, =
http://doi.acm.org/10.1145/508530.508542, 2002.

I. Scott MacKenzie and Colin Ware. “Lag as a Determinant of Human
Performance in Interactive Systems”. Proceedings of ACM INTERCHI 93
Conference on Human Factors in Computing Systems, pp. 488—493, http://
doi.acm.org/10.1145/169059.169431, 1993.

Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Loring S. Holden,
J. D. Northrup, and John F. Hughes. “Art-Based Rendering with Contin-
uous Levels of Detail”. Proc. of the 1st. International Symposium on Non-
Photorealistic Animation and Rendering, pp. 59—66, http://doi.acm.org/10.

1145/340916.340924, 2000.

Kurt Mehlhorn and Stefan Naher. LEDA : A Platform for Combinatorial
and Geometric Computing. Publisher: Cambridge University Press, http:
/[www.algorithmic-solutions.com, February 2000.

Barbara J. Meier. “Painterly Rendering for Animation”. SIGGRAPH
96 Conference Proceedings, pp. 477—484, http://doi.acm.org/10.1145/237170.
237288, 1996.

Oscar Meruvia. “Visibility Preprocessing Using Spherical Sampling of
Polygonal Patches” Eurographics’2002 Short Paper Proceedings, http://
isgwww.cs.uni-magdeburg.de/~oscar/, 2002.

Oscar Meruvia and Thomas Strothotte. “Frame-Coherent Stippling”. Eu-
rographics’2002 Short Paper Proceedings, http://isgwww.cs.uni-magdeburg.
de/~oscar/, 2002.

Oscar Meruvia, Bert Freudenberg, and Thomas Strothotte. “Real-Time,
Animated Stippling”. IEEE Computer Graphics and Applications Special Is-

http://doi.acm.org/10.1145/383259.383274
http://www.cs.umbc.edu/~rheingan
http://www.cs.umbc.edu/~rheingan
http://doi.acm.org/10.1145/258734.258847
=
http://doi.acm.org/10.1145/169059.169431
http://doi.acm.org/10.1145/169059.169431
http://doi.acm.org/10.1145/340916.340924
http://doi.acm.org/10.1145/340916.340924
http://www.algorithmic-solutions.com
http://www.algorithmic-solutions.com
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/237170.237288
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/

Bibliography

[Mitzo3]

[New o1]

[Pfiso0]

[Prauoi]

[Riggog]

[Rusioo]

[Salig6]

[Secooza]

[Secoo2b]

[Stroo2]

sue on Non-photorealistic Rendering, http://isgwww.cs.uni-magdeburg.de/
~oscar/, July / August 2003.

Michael Mitzenmacher. Lecture Notes on Data Structures and Algorithms:
BEFS and Shortest Paths. Computer Science, Harvard University, USA, http:
/Iwww.fas.harvard.edu/~libcsi124/cs124/intro.htm, 2003.

State University of New York. The Stony Brook Algorithm Repository:
Voronoi Diagrams ¢ Delaunay Triangulation. Department of Computer
Science State University of New York, Stony Brook, NY 11794-4400, http:
/Iwww.cs.sunysb.edu/~algorith/files/voronoi-diagrams.shtml, 2001.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
“Surfels: surface elements as rendering primitives”. SIGGRAPH 2000 Con-
ference Proceedings, pp. 335—342, http://doi.acm.org/10.1145/344779.344936,
2000.

Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. “Real-
Time Hatching”. SIGGGRAPH 2001 Conference Proceedings, pp. 581586,
http://doi.acm.org/10.1145/383259.383328, 2001.

Heather Riggs. Tales to Tell - Kent Goodliffe. Springville Museum of Art &
Springville High School, Utah, http://www.shs.nebo.edu/museum/swap/
ttgoodliffeact.html, 1999.

Szymon Rusinkiewicz and Marc Levoy. “QSplat: a multiresolution point
rendering system for large meshes”. SIGGRAPH 2000 Conference Proceed-

ings, pp. 343—352, http://doi.acm.org/10.1145/344779.344940, 2000.

Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin.
“Scale-Dependent Reproduction of Pen-and-Ink Ilustrations” SIG-
GRAPH 96 Conference Proceedings, pp. 461—468, http://doi.acm.org/10.
1145/237170.237286, 1996.

Adrian J. Secord. “Weighted Voronoi Stippling”. Proc. of the 2nd Inter-
national Symposium on Non-Photorealistic Animation and Rendering, pp.
37—43, http://www.cs.ubc.ca/~ajsecord/publications.html, 2002.

Adrian J. Secord, Wolfgang Heidrich, and Lisa Streit. “Fast Primitive Distri-
bution for Illustration”. Proc. of the 13th Eurographics Workshop on Render-
ing, pp. 215226, http://www.cs.ubc.ca/~ajsecord/publications.html, 2002.

Thomas Strothotte and Stefan Schlechtweg. Non-Photorealistic Computer
Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann
Publishers, http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-
55860-787-0, April 2002.

135

http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/
http://www.fas.harvard.edu/~libcs124/cs124/intro.htm
http://www.fas.harvard.edu/~libcs124/cs124/intro.htm
http://www.cs.sunysb.edu/~algorith/files/voronoi-diagrams.shtml
http://www.cs.sunysb.edu/~algorith/files/voronoi-diagrams.shtml
http://doi.acm.org/10.1145/344779.344936
http://doi.acm.org/10.1145/383259.383328
http://www.shs.nebo.edu/museum/swap/ttgoodliffeact.html
http://www.shs.nebo.edu/museum/swap/ttgoodliffeact.html
http://doi.acm.org/10.1145/344779.344940
http://doi.acm.org/10.1145/237170.237286
http://doi.acm.org/10.1145/237170.237286
http://www.cs.ubc.ca/~ajsecord/publications.html
http://www.cs.ubc.ca/~ajsecord/publications.html

Bibliography

[Turko1]

[Turkg2]

[Wareg4]

[Winkg4]

[Winkg6]

[Zwico1]

136

Greg Turk. “Generating Textures on Arbitrary Surfaces Using Reaction-
Diffusion”. SIGGRAPH 91 Conference Proceedings, pp. 289—298, http://doi.
acm.org/10.1145/122718.122749, 1991.

Greg Turk. “Re-Tiling Polygonal Surfaces”. SIGGRAPH 92 Conference Pro-
ceedings, pp. 5564, http://doi.acm.org/10.1145/133994.134008, 1992.

Colin Ware and Ravin Balakrishnan. “Reaching for Objects
in VR Displays: Lag and Frame Rate”. ACM Transactions
on Computer-Human Interaction, Vol. 1, No. 4, pp. 331-356,
http://www.acm.org/pubs/articles/journals/tochi/1994-1-4/p331-ware/p331-
ware.pdf, 1994.

Georges Winkenbach and David H. Salesin. “Computer-Generated Pen-
and-Ink Illustration”. SIGGRAPH 94 Conference Proceedings, pp. 91-100,
http://doi.acm.org/10.1145/192161.192184, 1994.

Georges Winkenbach and David H. Salesin. “Rendering Parametric Sur-
faces in Pen-and-Ink”. SIGGRAPH 96 Conference Proceedings, pp. 469—476,
http://doi.acm.org/10.1145/237170.237287, 1996.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. “Surface Splatting”. SIGGRAPH 2001 Conference Proceedings, pp.
371-378, http://www.cg.inf.ethz.ch/Downloads/Publications/Papers/2001/
p_Zwio1b.pdf, 2001.

http://doi.acm.org/10.1145/122718.122749
http://doi.acm.org/10.1145/122718.122749
http://doi.acm.org/10.1145/133994.134008
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/237170.237287
http://www.cg.inf.ethz.ch/Downloads/Publications/Papers/2001/p_Zwi01b.pdf
http://www.cg.inf.ethz.ch/Downloads/Publications/Papers/2001/p_Zwi01b.pdf

List of Algorithms

3.1
3.2
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5-4
6.1
6.2
6.3

6.4

Discrete point selection for rendering.
Smooth point rendering doing point size interpolation.
Simplification of the inputmodel.
Generation of new vertices using mesh subdivision..
Constrained mesh subdivision for local mesh refinement.
Initial randomize and projection algorithm.
Mesh refinement and randomization.
Relaxation of the initial point distribution.
Retrieving the neighbouring vertices of a given polygon.
Graph-based token distribution. Lo L.
Creation of the point hierarchy using patch-based token relaxation. . .
Algorithm for point removal during contraction.
Algorithm for ordered point removal during contraction using a heap.
Use of barycentric coordinates to produce animated stippling.

Accounting for mesh deformation during animated stippling.

68
71
88
89
93

94

137

List of Tables

4.1

4.2

5.1
5.2

7.1

Contents of the data structures that make up the connectivity graph

used for mesh simplification, subdivision and randomization. 43
Statistics for creating Point Hierarchies by Mesh Simplification and
Subdivision e 59

Statistics for creating point hierarchies by patch-based point relaxation. 74
Image resolution and total number of rendered points for the Dragon
model shown in Figures.a4. oo oL 77

Rendering times for the real-time stippling system. 106

139

List of Figures

1.1

1.2

1.3

1.4

1.5
1.6

1.7

2.1

2.2

2.3
2.4
2.5

2.6

Lack of frame-coherence at the stroke level during an animation: while
the box objects are slightly different, the strokes that are used to shade
them have noticeably changed [Hagao1]..
Stippled drawings made by scientific illustrators and artists. In the
figure at top-left and bottom right, artists use line drawings to empha-
size relevant features of the models. On the top-left: image by Hodges,
next two images are by Ron C. Guthrie, Image on the bottom right by
Jand] Designs.
Stippled drawing and detail by George Robert Lewis. Notice the regu-
lar spacing between dots and the silhouette on the image on the right
which lifts up the object from the background [Hodg88].
Pointillist paintings by Georges Seurat: On the left, "Port-en-Bessin”
(1888). On the right, "The Siene at La Grande Jatte, Spring” (1888)
(Original Sizes: 83x66cm, detail sizes: 18x33cm).
Stroke textures can provide both tone and texture [Winko4].
Computer-generated illustration of a Ceramic Jug and Bowl by
Winkenbach and Salesin [Winko6].
On the top, a computer-generated stippled image produced by
Voronoi relaxation, on the bottom a detail of the grass-hopper’s head
(images by Deussen et al. [Deusoo]).

Structure of the particle system for painterly rendering by Meier
[Me1e96]. . v . v v o e e e e e e e e
Left: sample graphtals composed of several primitives. Right: A ‘tuft’
rendered at two levels of detail [Markoo].
Groups of graphtals at different levels of detail [Markoo].

Effects obtained by changing primitive shape, by Kaplan et al. [Kaploo].

The Tonal Art Maps by Praun et al. [Prauo1] ensure frame-coherence

at the stroke level and take into account changes in shading and scaling.

Examples of models drawn in several NPR styles using Tonal Art Maps
[Prauoi]. o o e e e

10

16
16
17
18

19

20

141

List of Figures

142

2.7

2.8

2.9
2.10

2.11

2.12

3.1

3.2

3.3

3.4
3.5

4.1

Non-photorealistic scene based on stroke textures by Freudenberg et
al. [Freuo2]. e

Cups obtained by the interactive painting system Wysiwyg NPR
[Kalnoz]. o e e

Examples of volume rendering using Stippling Techniques [Luo2].

Non-photorealistic volume rendering by Lum and Kwan-Liu. On the
left, the skin surface is made visible using gradient based feature en-
hancement. On the right, skin and flesh are rendered in a more pho-
torealistic style, while the bones are rendered using non-photorealistic
techniques [Lumo2]. L

Examples of the rendering styles obtained with the particle system of
Cornishetal. [Corno1].,

With our system, it is possible to produce adaptive stippled renditions
for 3D models. As the user zooms at the dragon (top), more dots ap-
pear to maintain the tone and stippling style (bottom) (original sizes:
800X6000). . v v v v e e e e e e e e e e e

Scaling with points of fixed size. The images on the right are scaled-
down versions of the image on the left. In the bottom, points have
been removed from theimage.

The same point hierarchy is used to accommodate changes in scale
while preserving the target tone (upper row), and changes in shading
by reducing the point density (lowerrow).

Effect of rotations on the point distribution in the image plane. The
image on the top left illustrates a face covered with a random point
distribution with regular spacing. Images on the top right and bottom
left show the linear patterns which result from rotating the face around
theX-and Y-axis.

Rendering pipeline for producing renditions with a point hierarchy.

Particle rendering module and itsinputs.

Point hierarchies for the one- (left), two- (middle) and three dimen-
sional cases (right). Points at the lower levels of the hierarchy have
smaller radius values, which determines their relevance in the hierar-
chy. For 3D models, a continuous level of detail is created using mesh
simplification and subdivision.

Vertex hierarchy created through simplification for progressive
meshes. MY represents vertices at the lowest level of detail, M rep-
resents vertices of the original mesh. [Hoppo6].

30

List of Figures

43

4.4
4.5
4.6
4.7

4.8

4.9

4.10

4.11

4.12

4.13

414

4.5

4.16

4.17

4.18

Conversion of a polygonal patch in a directed graph. Notice that each
face has its own set of edges. As an example, the edges in face F1 are
dashed. The direction of the edges depends on the ordering of vertices
in the input models (counterclockwise in this case). Adjacent edges

are reversalsof eachother., 42
The edge collapse operation used in mesh simplification [Hoppg6]. . 44
Wireframe view of the original bunny model (left) and the model after

a series of simplification steps (right). 44

A sphere refined using view-dependent refinement of progressive
meshes to preserve contour and detail on the visible side of the sphere

[Hoppoy] - « « v o o o 45
The refinement operation used in mesh subdivision. 46
Wireframe view of the original teapot model (left) and the model after

a series of refinement steps (right). 46

Local refinement strategies. On the left, the original mesh, with the
region to be refined enclosed in a circle. In the middle, refinement
starting by the shortest edge in the region. On the right, refinement

using legality conditions in refinelocal(). 48
The random operator displaces the input vertex to a new location
within the neighboring faces. 49

Effects of randomization on the point distribution. On the top left,
the original vertex distribution in a close-up of the bunny model. The
following images show the effect of the randomize operator set at in-

creasing degrees of randomization. 50
Effect of randomization on the input mesh and its correction through
the projection operator. oL 51

The projection operator takes a randomized vertex and displaces it to
the surface of the input model. In this illustration, black lines represent
the input model and thin lines represent the particle mesh. 51
The vertices connected to a point affected by an edge collapse or an
edge split are saved in the list of relevant neighbors of the resulting
vertex, and determine the radius associated with the point.. 53
This sequence shows how stipple density increases to fill-in shaded
areas as the horse model increases in size (Original sizes: 205x173,

237X205, 295%257 and 463X392). i e e e e e e 55
Frames from our stippled renditions of the brain model (Original sizes:
602X501 & 730X554). « v v v v e e e e e e e e e e e e e e 56

On the top, we show a rendition of the Stanford bunny where the dark-
est tone is not totally black, while the image on the bottom shows the

darkest tone possible and a higher contrast (Original sizes: 455x425). . 57
Stippled renditions of the horse model illustrating changes in position
and illumination. (Original sizes: 578x477 & 335%x479) 58

143

List of Figures

144

5.1

5.2

53

5-4

5-5

5.6

5.7

5.8

5-9

5.10

5.11

5.12

5.13
5.14

Point distribution in irregular meshes. The image on the left shows lin-
ear patterns formed along the zones of higher tessellation of a sample
model. On the right, we observe the wireframe view which explains
these patterns. In both images, a point has been randomly placed at
each face (original sizes: 600x489 & 700X571). 63

Effects of the primary relaxation on the point distribution. On the top
left, the original vertex distribution in a close-up of the bunny model.
The following images show the effect after 5, 10, and 15 relaxation iter-
aAtiONS. . . . o e e e e e e e e e e e e e 65

Patch hierarchies on the horse model. The first image (from left to
right) shows the model with 25 patches, the second and third models
have their surface subdivided in 350 and 6144 patches, respectively. . . 66

[llustration of a point hierarchy resulting from the patch hierarchy. At
the lowest level of the hierarchy, there is a one-to-one correspondence
between a pointandapatch. 67

Left: a sample patch array showing the points on the patches. Right:
the graph obtained from the patch array based on the neighbors infor-
MAtION. . . . v v v vt e e e e e e e e e e e e 68

Left: a sample graph where some tokens have been distributed among
the nodes of the graph (nodes with a token are shown in black). Right:
the token distribution after relaxation. 69

On the left, the bunny model with 1500 points. On the right, the bunny
with the same points after relaxation. 71

Four levels of the point hierarchy after patch-based relaxation, the
hand-bones model is shown with 332, 1,192, 4,277 and 15,184 points
respectively (original sizes: 527X535). 73

This sequence shows how stipple density increases to fill-in shaded
areas as the bunny model increases in size (original sizes: 201x195,

279X261, 476X452 and 608X579). . . . v . v i i e e e e 74
Stippled renditions of the mosaic model (original sizes: 441x502 &
409X541). v v v e e e e e e e e e e e e e e e e e e e 75
Stippled renditions of the hand-bones model trying to grab the me-
dieval piggy-bank (original sizes: 622x559 & 409x541). 76
Stippled renditions of the horse and bunny models (original sizes:
553X450 & 451X428). . . . i i e e e e e e e e e e e e e e 79
Stippled rendition of the hand bones model (original size: 551x712). . . 80

Dragon model rendered at several scales (for original sizes see Table 5.2). 81

List of Figures

5.15

6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1

Comparison between point hierarchies by mesh simplification and
subdivision and token relaxation. On the left, we show the points at
the lowest level of detail for the first technique. On the right, we show
the points at the same level for the second technique, with six initial re-
laxation steps. The bottom row shows a detail of the point distribution
in the region of the bunny’seye., 82

The points on the surface of the triangle are defined using barycentric
coordinates, that is, they are defined relative to the vertices of the trian-
gle. As a result, the points on the surface move along with the triangle
as the position of its vertices changes. 84
Point distribution for stretching surfaces 86
The compressing process should find a way to remove points to
achieve an even point distribution, the inverse to what is done under

stretching. L 87
Sample Delaunay triangulation (drawn with thick lines) and its dual,
the Voronoi diagram (drawn with thin lines) [Filig6]. 90

Retriangulation of a polygonal mesh (left) under interactive deforma-
tion. On the top right, we observe the input mesh expanded along
the X-axis. On the bottom right, we observe the input mesh expanded
along the Y-axis. The circled areas show changes in the triangulation
as a result of the deformation. 91
Artifacts of retriangulation on 3D models. The image on the left shows
an extrusion of a 3D model without retriangulation. The image on
the right shows the extruded model with some vertices retriangulated.
The small peaks on both sides of the mountain are the result of the
retriangulation. L L 92
On the left, two sample points A and B are given a radius value which
is the average distance to its relevant neighbors (the dark points). On
the right, we observe the two points with their new average radius after
the distortion has taken place. Since the distance to their neighbors
has changed after the transformation, the values for the radius of the
particle points also change, but in different proportion for each point. 94
Frames from our animation "Upsetting the crocodile" (original sizes:

7O0X380). v v v e e e e e e e e e e e e e e e 96
Frames from our animations "Closing hand" and "Thumbs up" (origi-
nal sizes: 400X450). . . . v i i e e e e e e e 97

Frames from our animations of a beating heart (original sizes: 600x500). 98

Changing shading styles. On the top, the Teapot model rendered using
flat shading. On the bottom, the Teapot model rendered with phong
shading (original size: 630X450). 100

145

List of Figures

146

7.2

73
7.4
75

7.6

77

8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8
8.9

8.10

8.1

The upper part of the bottle model would be optimally rendered us-
ing gouraud or phong shading, while the bottle’s grid would be better
represented using flat shading. 00 L.
Dragon model (original size: 1000x750).
Stippling of a model in a toon style (original size: 700x450).
Stippled renditions of a pelvis bone model (original sizes: 604x456 &
467X430). v i e e e e e e e e e e e e e e
Effects of point size on the overall impression the image conveys. The
hand model shown on the left has point of size 3.7, while the one on
the right has point size 2.5 and looks smoother.
Frames from the animation "Transparent beating heart" using stipples
to convey the shape of the exterior of the heart, while the user can look
at the heart chambers (original sizes: 600x500).

Photograph of the glazed mosaic tile (original size: 17x19.5cm).
Photograph of the piggy bank (original diameter: 8cm, height: 7cm). .
Photograph of a pot fragment which was not scanned (original size:

A stippled drawing of the mosaic done by a technical illustrator
(Saxony-Anhalt Office of Archaeology, original size 17x19.5cm).
A stipple drawing of the object in Figure8.3 (original drawing size: 11 x
G.5CIM). v v e e e e e e e e e e e e e e e e e e
Snapshot from the real-time stippling system using the Kachel model
(original size: 810X846).
Snapshot from the real-time stippling system using the Piggy-bank
model (original size: 807x626).
The Mosaic model with texture and stipples (original size: 563x640).

The Mosaic model with (top) and without (bottom) curvature en-
hancement using sharp edges, notice how more details related to the
shape of the object appear in the image at the top, while the image at
the bottom looks cleaner (original sizes: 630x736).
Setting a limit on the darkness of the stippled renditions: at the top,
the mosaic model (to be compared with images in Figure 8.9). At the
bottom, the Piggy bank model. Compare with the rendition in Figure
8.7 (original sizes: 630x745 and 483X510).
At the top, a photograph of the ear region of an Eocen whale from
Pakistan. At the bottom, a human-made stipple drawing of enlarged
area of interest, clearly showing morphological details without the dis-
coloration and crack and chip distractions of the original specimen.
Photo by George Junne. Drawing by Karen Klitz, courtesy of P.D. Gin-
gerich [Hodg88] (original sizes: 826x655 and 800x715).

106

114

115

116

122

	Introduction
	Combination of 2D Rendering Styles with 3D Graphics
	Frame-Coherence
	Scaling and Projection
	Morphing and Animation

	Stippling
	Computer-Generated Stippling
	Thesis Contributions
	Thesis Structure

	Non-Photorealistic Rendering Systems for 3D Models
	Particle Systems
	Textures
	Silhouettes
	Volume and Point-Based Rendering
	Particle Distributions in the Image Plane
	Contribution of Point Hierarchies to NPR

	A General Framework for a Particle-Based Non-Photorealistic Rendering System
	Going from 2D to 3D with Adaptive Point Hierarchies
	Adapting to Scale and Shading
	Adapting to Slope

	A Particle-Based NPR Renderer
	Generation of Point Hierarchies

	On the Generation of Point Hierarchies Using Mesh Simplification and Subdivision
	Setting up the Connectivity Graph
	Mesh Simplification
	Hierarchical Subdivision
	Interactive and Local Mesh Refinement

	Improving the Point Distribution
	Randomization
	The Projection Operator

	Defining the Point Set Hierarchy
	Additional Vertex Attributes

	Results
	Visual Results
	Point Hierarchy Generation Time
	Rendering Time

	On the Generation of Point Hierarchies Using Patch-Based Point Relaxation
	Setup and Initial Point Distribution
	Primary Relaxation of the Initial Point Distribution
	Graph-Based Point Relaxation
	Patch Hierarchy Creation
	Particle Relaxation by Token Displacement
	Token Distribution
	Determining the Set of Neighboring Tokens
	Computing the Repulsive Forces
	Determining the Displacement
	Creation of the Point Hierarchy

	Results
	Visual Results
	Point Hierarchy Generation Time
	Memory Requirements

	Simplification and Subdivision Versus Token-Based Relaxation
	Generation Times
	Memory Requirements
	Visual Comparison

	Particle Distribution of Deformable Models
	A Theoretical Model for Frame-Coherent Point Distribution of Deformable Models
	Stretching Surfaces
	Contracting Surfaces
	Retriangulation During Interactive Stretching

	A Practical Model for Stippling Deformable Models
	Animated Stippling Algorithms
	Results

	Informal Assessment on the Applications of Stippling
	Shading Styles
	Model Suitability
	Real-Time Rendering
	Transparency

	Stippling in Archaeology
	General Comments
	Line Drawings on Top of the Stippled Renditions
	Animation Versus Single Images
	Illumination and Shading
	Depth Cues
	Color Management
	Concluding Remarks

	Conclusions
	Future Directions
	Use of the Point Hierarchy for Adaptive Rendering
	Hardware-Accelerated Visibility Preprocessing
	Use of Other Rendering Primitives
	Point-Based Rendering for NPR

	Bibliography

