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Abstract
Aiming at simulating elastic rods, we discretize a rod model based on a general theory
of hyperelasticity for inextensible and unshearable rods. After reviewing this model
and discussing topological effects of periodic rods, we prove convergence of the dis-
cretized functionals and stability of a corresponding discrete flow. Our experiments
numerically confirm thresholds, e.g., for Michell’s instability, and indicate a complex
energy landscape, in particular in the presence of impermeability.

Mathematics Subject Classification 65N12 · 57M25 · 65N15 · 65N30 · 74K10

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
2 Elastic rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
5 Iterative minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

1 Introduction

Long slender objects—such as springywiresmade of plastic ormetal—can be approx-
imated by curves. In many cases, equilibrium shapes are characterized in terms of the
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662 S. Bartels, Ph. Reiter

bending energy, i.e., (half of) the total squared curvature. The latter has a long history,
dating back to Bernoulli, and can be seen as the starting point of elasticity theory.

The bending energy depends just on the centerline of an object and does not incor-
porate other physical effects such as twisting, friction, or shear. For instance, only
relying on the bending energy one cannot explain why a telephone cable tends to curl.
It also does not preclude self-penetration.

In this paper we extend the study of inextensible elastic curves by the first author [4]
to inextensible and unshearable elastic rods. To this endwe discretize theminimization
problem

⎧
⎪⎪⎨

⎪⎪⎩

Minimize Irod[y, b] = cb
2

∫ L

0
|y′′|2 dx + ct

2

∫ L

0

(
b′ · (y′ × b)

)2 dx

in the set A = {(y, b) ∈ H2 × H1 : L rod
bc [y, b] = �rodbc ,

|y′| = |b| = 1, y′ ⊥ b
}
.

(Prod)

and devise a numerical scheme in order to simulate a suitable H2-like gradient flow.
Here cb, ct > 0 are bending and torsion rigidities that are determined by the Lamé

coefficients of the material and geometrical properties of the rod. Furthermore, L rod
bc :

H2× H1 → Y encodes the boundary data �rodbc in some finite-dimensional linear space
Y . We assume that it only involves linear combinations of boundary points of y, y′,
and b. Therefore L rod

bc is continuous with respect to weak convergence in H2 × H1.
In particular L rod

bc can be used to incorporate periodicity in case of a closed curve y.
For ease of readability, we will rescale Irod by 1/ct from now on and abbreviate

κ = cb/ct.

Wewill always assumeA to be nonempty which is guaranteed if the boundary data
�rodbc is compatible with the frame condition and implies that the distance between the
endpoints is strictly less than L . Any boundary data on a frame F can be matched
by adjusting a reference frame F0 using a suitable cumulative angle function ϕ (see
Sect. 2.3 below).

Elastic rods

Based on the work of Mora and Müller [52] for general rods, the minimization prob-
lem (Prod) can be rigorously derived from a general three-dimensional hyperelastic
model, see [5] for a short formal derivation. In the situation of rods with circular cross-
section, made of some isotropic and homogeneous material, we find that cb ≥ 2ct .
According to Coleman and Swigon [16, p. 195] there is some indication that values
less than κ = 3

2 are appropriate for modeling DNA.
The study of elastic rods has a long history. It is closely related to elasticae, i.e.,

stationary points of the bending energy, see Levien [43] and references therein. A
comprehensive presentation on the subject from the perspective of elasticity theory is
provided by Antman [1].
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Numerical solution of a bending-torsion model for… 663

We find applications in different fields such as the modeling of coiling and kinking
of submarine cables (Zajac [76]; Goyal et al. [32,33]), cell filaments (Manhart et
al. [46]), computer graphics (Bergou et al. [8]; Spillmann and Teschner [65]), and
biomechanics [58]. Modeling in molecular biology and engineering has stimulated a
lot of activity in this field as well.

A prototypical model for DNA supercoiling which has received considerable atten-
tion is the twisted elastic ring investigated by Maddocks in various collaborations
[23,38,45,47,48]. The solution of the corresponding minimization problem leads to
an intrinsically straight uniform rod with equal bending stiffness. The analysis bases
on Hamiltonian formulations of rod mechanics. The general idea is to impose a twist
rate β on a unit loop.

For small values of β the round circle (with a uniform twist) remains an equilib-
rium. This phenomenon is known as Michell’s instability [50], see Goriely [29] and
references therein. Larger perturbations lead to instability and bifurcation phenomena,
cf. Goriely and Tabor [30,31].

Ivey and Singer [37] reconsidered the problem from a variational point of view,
obtaining a complete description of the space of closed and quasiperiodic minimizers.
Recently, a reformulation in terms of symplectic geometry has been given byNeedham
[53]. Regarding the discretization of elasticae we refer to Scholtes et al. [63].

Discretization

We aim at numerically detecting configurations of framed curves with low bending
and twisting energy. For this we consider the gradient flow of the energy functional
in (Prod), a weighted sum of an elastic bending energy term and a functional that tracks
the twisting of the frame about its centerline.

We implement a constraint ensuring that the curves stay close to arclength
parametrization if the initial curve is arclength parametrized. Moreover the bend-
ing energy can be replaced by the squared L2 norm of the second derivative of the
curve which is a crucial point in the analysis of the discretization.

Related discretization approaches and the corresponding approximation results
have been obtained by Le Tallec, Mani, and Rochinha [42] and Arunakirinathar and
Reddy [2]. Here, we devise a discretization based on a reformulation of the energy
functional that provides coercivity properties also when the frame constraints are only
approximately satisfied.Moreover, the reformulation allows us to develop a fully prac-
tical and stable method for the iterative solution of the discrete variational problem.

The design of physically meaningful discretizations of rod models where twist is
often modeled in terms of rotations is subject of continuing research in mechanical
engineering. For instance, objective and path-independent interpolation strategies for
so-called geometrically exact beams, including orthogonal (see, e.g., [62]) and non-
orthogonal (see. e.g., [60]) interpolations of quaternions have been discussed. The
situation becomes more involved on curved initial geometries [49]. An outline on
major contributions to beam formulations can be found in [19].
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664 S. Bartels, Ph. Reiter

Gradient flows

Recently, gradient flows involving the bending energy have received much attention,
with respect to rigorous analysis, see Dziuk et al. [25], as well as regarding discretiza-
tion aspects, see Deckelnick and Dziuk [22], Barrett et al. [3], Bartels [4], Dall’Acqua
et al. [20], Pozzi and Stinner [57]. Lin and Schwetlick [44] also include frames in their
model. A Newton scheme has been used in [42] to determine stationary configurations
for the bending torsion model considered in this article.

Impermeability

Based on earlier work aiming at modeling DNA plasmids [15,18,71,73], Coleman
and Swigon [16] take self-contact phenomena into account and discuss the interaction
between certain topological quantities such as writhe, excess link, and the number of
self-contact points. In [17] they include the case of (two-bridge) torus knots. In contrast
to a related approach by Starostin [66] they impose a (small) positive thickness.

The corresponding case of open curves with appropriate boundary conditions has
also been studied by several authors. Van der Heijden et al. [74] provide a compre-
hensive study of jump phenomena in clamped rods with and without self-contact. A
more detailed classification of the respective equilibrium configurations is given by
Neukirch and Henderson [54]. Clauvelin, Audoly, and Neukirch [14] modeled the
situation of a small loosely knotted arc with open end-points and studied the shape
of the set of self-contact and the influence of twist applied to the end-points as well.
Starostin and van der Heijden [67] model the situation of so-called two-braids, i.e.,
structures formed by two elastic rods winding around each other, which also covers
the case of (2, b)-torus knots [68,69]. The dynamic evolution of intertwined clamped
loops subject to varying loads has been addressed by Goyal et al. [32,33].

Some of the above-mentioned models involve initial assumptions on the geom-
etry, especially regarding the contact situation, focussing on explicit constructions
for modeling and simulation. Our approach of treating (Prod) does not rely on any
precondition.

We will redefine (Prod) in Sect. 6.6 to incorporate impermeability. To this end, we
rely on the tangent-point energies whose impact on the evolution of (unframed) curves
has been discussed in [6]. We thereby extend a regularization ansatz due to von der
Mosel [75] with O’Hara’s energies [55] in place of the tangent-point functional. In
fact, one might conjecture that any self-avoiding functional will qualitatively produce
the same results.

Computationally, this case is particularly challenging since strong forces related
to bending effects have to by compensated by repulsive forces related to the tangent-
point functional to avoid self-intersections. Regularization approaches guaranteeing
global injectivity have been successfully implemented in different fields, see Krömer
and Valdman [39] for an example in the context of elasticity.

The existence of curves minimizing (Prod) follows via the direct method of the cal-
culus of variations or, equally, from the Gamma-convergence (Proposition 1) together
with the coercivity of the functionals. In the presence of uniform thickness bounds,
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however, we cannot rely on these reasoning, see Gonzalez et al. [28]. While (Prod)
covers the “uniform symmetric case” of the Kirchhoff rod, which constitutes maybe
the simplest model that involves both bending and twisting, the setting discussed in
[28] offers more flexibility and especially also covers the cases of extensible shear-
able rods. Schuricht and von der Mosel [64] derived the Euler–Lagrange equations for
elastic rods with self-contact. A similar approach has been followed by Hoffman and
Seidman [34,35].

The evolution of impermeable rods preserves isotopy classes, so topology aspects
come into play. Here we will encounter a more involved picture compared to the
analysis of the twist-free setting, see Langer and Singer [40] and Gerlach et al. [26].
A complete characterization of minimizers is wide open.

Outline

We review the geometry of elastic rods in Sect. 2. In Sect. 3we derive an approximation
result (Lemma 1) that is used in Sect. 4 in order to prove Gamma-convergence of the
discrete problem to the continuous one (Proposition 1). We prove stability of the
numerical scheme in Sect. 5 (Proposition 2). Several experiments discussed in Sect. 6
indicate a complex energy landscape.

Notation

The inner products corresponding to L2, H1, H2 are denoted by (·, ·), (·, ·)H1 , and
(·, ·)H2 , respectively. The norms are written accordingly. Constants may change from
line to line.

2 Elastic rods

Here we provide a short presentation of the geometry of elastic rods which is inspired
by Langer, Singer and Ivey [37,41]. It is not essential for the analysis of the numerical
scheme in the subsequent sections but sheds some light on the interpretation of the
experiments in the last section.

2.1 Framed curves

A rod is modeled by a curve y : [0, L] → R
3 which corresponds to its centerline

and an orthonormal frame F : [0, L] → SO(3) whose columns F = [t, b, d] are
called directors. Of course, d = t × b where × denotes the vector cross product. In
the following we consider y ∈ H2 and F ∈ H1.

We will assume that the first column of F coincides with the unit tangent t(x) =
y′(x)

/∣
∣y′(x)

∣
∣ , x ∈ [0, L]. The idea is that the directors b and d track the twisting of

the material about the centerline.
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666 S. Bartels, Ph. Reiter

The assumed energy regime for bending stiffness in (Prod) imposes inextensibility
as a physical property. Therefore we can prescribe arclength parametrization which
leads to the unit tangent vector t = y′ and the curvature k = ∣

∣t ′
∣
∣ = ∣

∣y′′∣∣.
Our analysis also covers the case of closed rods where [0, L] is understood to be

the periodic interval R/LZ. We will realize the latter by imposing suitable (periodic)
boundary conditions at 0 and L . In general a twist-free frame (see Sect. 2.3 below)
of a closed curve will not close up, i.e., there can be a discontinuity at one point of
R/LZ. One has to take care of this fact when defining boundary conditions.

An important frame that will always be well-defined and continuous for sufficiently
smooth (both open and closed) curves y with nonvanishing curvature is the Frénet
frame where bF = t ′/

∣
∣t ′
∣
∣.

A rod is assumed to have some small diameter which can be considered infinitesi-
mal; however, self-penetrations are not excluded at this stage (see Sect. 6.6 below for
a discussion on modeling impermeability).

2.2 Twist rate

Using the orthonormality of the frame, we may express the variation of the director b
by

b′ = (b′ · t)t + (b′ · b)b + (b′ · d)d = −(b · y′′)t + (b′ · d)d.

The first term tracks the change of b that is imposed by the spatial behavior of the
curve. It is just a component of the curvature vector as y′′ = (y′′ · b)b + (y′′ · d)d.
Only the second one actually provides information about the twisting of the frame
about the centerline. Therefore we will call b′ · d the twist rate of the frame.

We may also characterize a frame by a 9 × 9 linear system, namely

⎛

⎝
t
b
d

⎞

⎠

′
=
⎛

⎝
0 kb1 kd1

−kb1 0 β1
−kd1 β1 0

⎞

⎠

⎛

⎝
t
b
d

⎞

⎠

for scalar coefficient functions kb, kd , and β where 0,1 ∈ R
3×3 denote the zero and

identity matrices. Here kb = y′′ ·b and kd = y′′ ·d are the components of the curvature
k of y and β = b′ · d is the twist rate. For instance, the Frénet frame is characterized
by kd ≡ 0.

Amore detailed discussion of the impact of the twist rate is given in Sect. 2.4 below.

2.3 Reference frame

For any curve y, a point ξ ∈ [0, L], and b̂ ∈ S
2, b̂ ⊥ y′(ξ), we obtain by integration

a unique frame F0 = [t0, b0, d0] for y with F0(ξ) = [y′(ξ), b̂, y′(ξ) × b̂] whose
twist rate is constantly zero. We call it synonymously a Bishop frame, natural frame,
reference frame, or twist-free frame for y as it is a frame in rest position subject to a
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fixed curve. Therefore, up to a rotation of the initial vector b̂ (which corresponds to
an element of S

1) there is a unique twist-free frame for any given curve.
A twist-free frame F0 provides a useful reference configuration. Denoting the

(cumulative) angle between the director b of any other frame and b0 by ϕ, we arrive
at b = (cosϕ)b0 + (sin ϕ)d0 and d = −(sin ϕ)b0 + (cosϕ)d0. Consequently, the rate
of change of ϕ is just the twist rate

ϕ′ = b′ · d = β. (1)

Two frames that just differ by a constant angle ϕ may be considered equivalent,
in particular when modeling rods with a circular diameter where there is no natural
choice of a director. This is of course different for small ribbons with lateral extension
in a particular direction.

Note that even for closed curves with frames that close up, ϕ(L) − ϕ(0) does not
need to be an integer multiple of 2π , unless the twist-free reference frame closes up.
The latter applies in particular to rods with planar centerline where the vector being
perpendicular to the respective plane provides a “canonical” twist-free frame.

In general, there is no direct correlation betweenϕ(L)−ϕ(0) and the angle enclosed
by b(0) and b(L). One can think of a revolute joint that controls the latter angle.

2.4 Total twist

An important quantity, in the literature often simply referred to as “twist”, is the total
twist (more precisely, total twist rate)

Tw(y, b) = ϕ(L) − ϕ(0)

2π
= 1

2π

∫ L

0
ϕ′(s) ds = 1

2π

∫ L

0
β(s) ds

= 1

2π

∫ L

0
b′(s) · d(s) ds = 1

2π

∫ L

0
det

(
y′(s), b(s), b′(s)

)
ds

where s is an arclength parameter and the last expression is parametrization invariant.
As the first identity suggests, the total twist can be interpreted as the number of

rotations the director b (or, equivalently, d) performs about the curve, i.e., the centerline
of the rod.

The total twist takes integer values on any closed curve for which both frame and
twist-free reference frame close up (i.e., there are no discontinuities of the frames as
periodic functions on R/LZ). In particular, this holds for any planar closed curve
with a closed frame. In the latter case we can even compute the total twist by counting
signed crossings of the corresponding link as follows.

A given (sufficiently smooth) embedded closed curve y togetherwith a closed frame
[y′, b, y′ ×b] defines a link consisting of y and y +εb for some small ε > 0. Its Gauss
linking number amounts to half of the sum of all signed crossings of y and y + εb
with respect to a (regular) projection direction.
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For embedded closed curves, the Gauss linking number decomposes into the sum of
the total twist and the writhe functional. This identity has been derived by Călugăreanu
[12,13]; see Moffatt and Ricca [51] for an account on the history of this result.

Writhe vanishes on planar (and spherical) embedded curves. Consequently, the total
twist will be close to the Gauss linking number for embedded curves that are nearly
planar. This applies to several situations in Sect. 6.

2.5 Energies

We assume that the behavior of the rod is driven by a linear combination of the
bending energy (half of the total squared curvature) and the twisting energy (half of
the total squared twist rate), cf. Mora and Müller [52]. More precisely we consider the
functional

(y, b) �→ cb
2

∫ L

0
k(s)2 ds + ct

2

∫ L

0
β(s)2 ds (2)

where s is an arclength parameter, k(s)denotes the curvature of y at y(s), and cb, ct > 0
are material constants. Minimizers are called elastic rods.

As mentioned in the introduction, we rescale the energy functional by 1/ct and
define κ = cb/ct.

At the end of this section, we will briefly discuss two related minimization issues.

2.6 Optimal frames

For a given curve y, we may consider the problem to find a director b minimizing
Irod[y, ·] subject to the boundary condition L rod

bc [y, b] = �rodbc .
In first place, if b is a stationary point of Irod[y, ·] for some fixed y then

β ≡ ϕ′ ≡ 2π
L Tw(y, b) (3)

is constant due to du Bois-Reymond’s lemma. According to the Cauchy–Schwarz
inequality, the twisting energy is bounded below by 2π2

L Tw(y, b)2. This minimum
is attained if and only if (3) holds such that the twisting energy then amounts to
2π2

L Tw(y, b)2 = L
2 β2. In particular, we can check whether a given rod has a uniform

twist rate by computing the quotient of total squared twist rate over squared total twist
rate.

Note that for any global minimizer (y, b) of Irod, the director b is a global minimizer
of Irod[y, ·] as well.

In case L rod
bc [y, b] does not impose a condition on b at both points 0 and L , mini-

mizing Irod[y, ·] is equivalent to constructing a twist-free frame.
Otherwise we face a clamped problem, i.e., b has to satisfy b(0) = b̂− and b(L) =

b̂+ for b̂−, b̂+ ∈ S
2, b̂− ⊥ y′(0), b̂+ ⊥ y′(L). (If the boundary condition just forces

the frame to close up, i.e., b(0) = b(L), we may just let b̂− = b̂+ for an arbitrary
vector perpendicular to y′(0) and y′(L).) In this case there is a global minimizer
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bmin with constant twist rate (3). Using a twist-free reference frame F0 = [y′, b0, d0]
with b0 = b̂− we have ϕ(0) = 0 and ϕ(L) ∈ (−π, π ]. If ϕ(L) 	= π there is a unique
minimizer b with twist rate ϕ′ ≡ ϕ(L)

L . If ϕ(L) = π there are precisely twominimizers
with twist rate ϕ′ ≡ ±π

L .
Topological restrictions can enforce arbitrary angles ϕ(L) ∈ R, however, this does

not apply to (Prod) which does not preserve this sort of condition throughout the evo-
lution. Keeping track of topology enforces modeling impermeability—quite a natural
feature which we will address in Sect. 6.6.

2.7 Releasing total twist

In light of Sect. 2.6 we must have |Tw(y, b)| ≤ 1
2 for any global minimizer (y, b)

of Irod. In general, we have

|Tw(y, b)|2 ≤ L

2π2 · 1
2

∫ L

0
(b′(s) · d(s))2 ds,

however, the absolute value of the total twist does not have to be decreasing throughout
the evolution.

At the final stage of an evolution of a closed curve (the frame does not have to
close up), all we can hope for, however, is |Tw(y, b)| ≤ 1. We briefly explain how this
bound can be realized.

One can change the Gauss linking number of a given (embedded) rod by ±2 by
locally forming a small loop, performing a suitable self-penetration and moving the
curve back to the original position. The value of the writhe functional is not affected
as it only depends on the curve, not on the frame. So we have changed the total twist
by ±2 as well according to the Călugăreanu identity (cf. Sect. 2.4).

A self-penetration of the curve will in general lead to a change in topology resulting
in a discontinuity of the linking number.While the total twist is continuous throughout
the evolution, the writhe functional is not well-defined on non-embedded curves and
thereby compensates the change of the linking number.

An evolution does not necessarily realize the bound |Tw| ≤ 1. First of all, it is in
general unclear whether it will in fact converge to a (local) minimizer at all. Another
obstruction is discussed in the next section.

2.8 Michell’s instability

Among all closed curves, the round circle framed by its Frénet normal vector is the
unique global minimizer of Irod (up to a constant rotation of the frame).

It is a remarkable fact that the round circle remains a minimizer (at least a local
one, cf. Sect. 2.7) when we add some twist by increasing the (constant) twist rate β

(which results in a discontinuity of the frame at one point). This phenomenon which
is referred to as Michell’s instability has been discovered 130 years ago [50] and then
been rediscovered several times, see Goriely [29] for more details.
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Zajac [76] has found the threshold β∗ = 2π
√
3κ/L that separates the stable and

unstable regime. As before, L denotes the length of the curve. More precisely, the
circular rod is stable as long as |β| < β∗ and unstable if |β| > β∗. The dependency
on κ = cb/ct is quite intuitive: If κ is very big, the bending energy dominates which
always prefers the circle. A proof of Zajac’s result adapted to our setting can be found
in Ivey and Singer [37, Sect. 6].

Values ofκ < 1
3

√
3 ≈ 0.5774 lead to an initial twistβ∗ < 2π

L . Starting an evolution
with βini ∈ (β∗, 2π

L

)
, we have |Tw| = Tw < 1. Therefore the rod cannot reduce twist

by self-penetration, sowewillmerely face some buckling of the rod—which is difficult
to detect numerically. In Experiment 6.2 we chose κ = 3

2 , for which we measure a
drastic change of the twisting energy by self-penetration of the curve.

Interestingly, Michell’s instability does not occur for initially curved curves, see
Olsen et al. [72] and Hu [36].

3 Density

We can smoothly approximate any framed curve inA, i.e.,A∩ (C∞ × C∞) is dense
in A with respect to the H2 × H1-topology, preserving given boundary conditions.

Lemma 1 For any rod (y, b) ∈ A and ε > 0 there is another rod (yε, bε) ∈ A ∩
(C∞ × C∞) with ‖yε − y‖H2 ≤ ε and ‖bε − b‖H1 ≤ ε.

Proof Our strategy is as follows. We first construct smooth approximizers (yδ, bδ) ∈
C∞ × C∞. In a second step we correct the boundary values by adding (smooth)
functions vδ and cδ . The newcurve yδ+vδ will not have length L .We balance the length
by adding another smooth functionwδ compactly supported in (0, L)\supp vδ .Nowwe
reparametrize the curve yδ+vδ+wδ to arclength and apply the same reparametrization
to the vector field bδ + cδ . Renormalizing it by the usual Gram–Schmidt scheme
produces the required director.

We choose δ ∈ (0, δ0] for some δ0 ∈ (0, 1] which will be fixed later on
only depending on (y, b) and ε. Using a standard mollifier, we obtain (yδ, bδ) ∈
C∞((0, L), R

3) × C∞((0, L), R
3) with ‖yδ − y‖H2 ≤ δ and ‖bδ − b‖H1 ≤ δ.

In order to match the boundary conditions, we subtract suitable functions. More
precisely, we let

ȳδ = yδ + vδ = yδ − (yδ(0) − y(0))ζ0 − (y′
δ(0) − y′(0))ζ1

− (yδ(L) − y(L))ζ0(L − ·) + (y′
δ(L) − y′(L))ζ1(L − ·),

b̄δ = bδ + cδ = bδ − (bδ(0) − b(0))ζ0 − (bδ(L) − b(L))ζ0(L − ·)

where ζ0, ζ1 ∈ C∞([0, L]) fulfill ζ j (0) = δ j,0, ζ ′
j (0) = δ j,1, ζ j

∣
∣[μ,L] ≡ 0, j = 0, 1,

for some μ ∈ (0, L/2) to be determined later.
By construction we have L rod

bc [ȳδ, b̄δ] = L rod
bc [y, b] = �rodbc as well as

‖ȳδ − yδ‖H2 ≤ Cμ ‖yδ − y‖C1 ≤ CμC̃δ,
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∥
∥b̄δ − bδ

∥
∥

H1 ≤ Cμ ‖bδ − b‖C0 ≤ CμC̃δ

where Cμ only depends on μ and C̃ > 0 on the embedding H1 ↪→ C0.
Now we prepare the length correction. If |y(L) − y(0)| = L , the curve y just

parametrizes the segment from y(0) to y(L), so y ∈ C∞ and we only have to treat
the director b (which can be done similarly as outlined below). If |y(L) − y(0)| < L
we infer from H2 ⊂ C1 that y ∈ A cannot only move on a straight line. So we
may assume that there is some constant unit vector v ∈ S

2, v ⊥ (y(L) − y(0)) (this
condition is empty for closed curves), such that y′ · v > 0 on some closed interval
I+ ⊂ [0, L]. Due to the fact that

∫ L
0 y′(x) · v dx = (y(L) − y(0)) · v = 0 there has

to be another closed interval I− ⊂ [0, L] on which y′ · v < 0. Diminishing I± if
necessary, they have positive distance to the boundary points 0 and L . Now we may
choose μ ∈ (0, L/2) such that they are both contained in (μ, L − μ).

As the intervals are closed there is some λ ∈ (0, 1
2 ] such that ±y′ · v ≥ 2λ on I±.

Diminishing δ0 if necessary, we may assume that±y′
δ ·v ≥ λ on I± for all δ ∈ (0, δ0].

The length correction function will be defined by wδ = ωδφv for some ωδ ∈ R to
be defined later and φ ∈ C∞([0, L]) is compactly supported in (0, L) with ±φ′ ≥ 0
on I± and φ′ ≡ 0 elsewhere, but φ 	≡ 0.

The idea is that by choosing ωδ accordingly, we can correct the length of (yδ and)
ȳδ by an amount between [−α, α] where α > 0 does not depend on δ (nor δ0). As
L [ȳδ] → L for δ ↘ 0 we can perform the length correction if δ0 is small enough.
Furthermore, ωδ → 0 as δ ↘ 0.

To make this more precise, let w = ωφv for some ω ∈ R with

|ω| ≤ λ

‖φ′‖C0
.

As y′
δ · vφ′ is bounded below by λ

∣
∣φ′∣∣ on [0, L], we obtain

∣
∣y′

δ + w′∣∣2 − ∣
∣y′

δ

∣
∣2

ω
= 2y′

δ · vφ′ + ωφ′2 ≥ 2λ
∣
∣φ′∣∣− |ω| φ′2 ≥ λ

∣
∣φ′∣∣ ,

∣
∣y′

δ + w′∣∣+ ∣
∣y′

δ

∣
∣ ≤ 2

∣
∣y′

δ

∣
∣+ ∣

∣w′∣∣ ≤ 2
(
1 + ∣

∣y′
δ − y′∣∣)+ |ω| ∣∣φ′∣∣

≤ 2
(
1 + C̃δ0

)+ λ ≤ 2
(
2 + C̃

)
,

∣
∣y′

δ + w′∣∣− ∣
∣y′

δ

∣
∣

ω
≥

∣
∣y′

δ + w′∣∣2 − ∣
∣y′

δ

∣
∣2

ω
(∣
∣y′

δ + w′∣∣+ ∣
∣y′

δ

∣
∣
) ≥ λ

∣
∣φ′∣∣

2
(
2 + C̃

) .

Therefore,

∣
∣y′

δ + w′∣∣

⎧
⎪⎨

⎪⎩

≤ ∣
∣y′

δ

∣
∣− |ω| λ|φ′|

2(2+C̃)
if ω ≤ 0,

≥ ∣
∣y′

δ

∣
∣+ |ω| λ|φ′|

2(2+C̃)
if ω ≥ 0.
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Recalling that vδ and w have disjoint support, we infer

∣
∣y′

δ + v′
δ + w′∣∣

⎧
⎪⎨

⎪⎩

≤ ∣
∣y′

δ + v′
δ

∣
∣− |ω| λ|φ′|

2(2+C̃)
if ω ≤ 0,

≥ ∣
∣y′

δ + v′
δ

∣
∣+ |ω| λ|φ′|

2(2+C̃)
if ω ≥ 0,

which allows for the desired length correction depending on the sign of ω. More pre-
cisely, we can change the length of yδ + vδ by at least ±α

where α = λ2‖φ′‖L1

2(2+C̃)‖φ′‖C0
. Diminishing δ0 if necessary, we can ensure that

|L (yδ + vδ) − L| ≤ α. So we can find ω = ωδ such that the curve ¯̄yδ = yδ +vδ +wδ

has length L with L rod
bc [ ¯̄yδ, b̄δ] = �rodbc .

The embedding H1 ↪→ C0 guarantees that the curve ¯̄yδ is immersed andmin
∣
∣b̄δ

∣
∣ ≥

1
2 if δ0 is small enough. Sowemay apply the reparametrization operator fromLemma 2

and let qyδ = ¯̄yδ ◦ ψ−1
¯̄yδ

and qbδ = b̄δ ◦ ψ−1
¯̄yδ
. We still have min

∣
∣
∣qbδ

∣
∣
∣ ≥ 1

2 . Now

∥
∥ ¯̄yδ − y

∥
∥

H2 ≤ ‖yδ − y‖H2 + ‖vδ‖H2 + ‖wδ‖H2 ≤ δ + CμC̃δ + ωδ ‖φ‖H2

and
∥
∥b̄δ − b

∥
∥

H1 tend to zero as δ ↘ 0. Using the continuity of the reparametrization
and

∣
∣y′∣∣ ≡ 1 we find that

∥
∥
qyδ − y

∥
∥

H2 tends to zero as well. Choosing δ0 sufficiently
small, we may assume that

∥
∥
qyδ − y

∥
∥

H2 ≤ ε and
∥
∥b̄δ − b

∥
∥

H1 ≤ ε
4 , and additionally

∥
∥
∥qbδ − b̄δ

∥
∥
∥

H1
≤ ε

4 since ψ ¯̄yδ
→ id[0,L] with respect to H2-convergence. Note that

(qyδ, qbδ) are still C∞-smooth with L rod
bc [qyδ, qbδ] = �rodbc .

It remains to correct the director. To this end, we let b̃δ = qbδ −
(
qbδ · qy′

δ

)
qy′
δ . We

have
∥
∥
∥b̃δ − qbδ

∥
∥
∥

H1
≤ ε

4 and
∥
∥ b̃δ

/∣
∣̃bδ

∣
∣ − b̃δ

∥
∥

H1 ≤ ε
4 if δ0 is sufficiently small. Indeed,

using Leibniz rule ‖vw‖H1 ≤ ‖v‖H1 ‖w‖H1 and the fact that both
∥
∥
qyδ − y

∥
∥

H2 and∥
∥
∥qbδ − b

∥
∥
∥

H1
get arbitrarily small provided δ0 is chosen accordingly, the same applies

to
∥
∥
∥b̃δ − qbδ

∥
∥
∥

H1
=
∥
∥
∥

(
qbδ · qy′

δ

)
qy′
δ

∥
∥
∥

H1
=
∥
∥
∥

(
qbδ · qy′

δ − b · y′)
qy′
δ

∥
∥
∥

H1

≤
(∥
∥
∥qbδ − b

∥
∥
∥

H1

∥
∥
qy′
δ

∥
∥

H1 + ‖b‖H1

∥
∥
qy′
δ − y′∥∥

H1

) ∥
∥
qy′
δ

∥
∥

H1

≤
(∥
∥
∥qbδ − b

∥
∥
∥

H1

(∥
∥y′∥∥

H1 + ε
)+ ‖b‖H1

∥
∥
qy′
δ − y′∥∥

H1

) (∥
∥y′∥∥

H1 + ε
)
,

and
∥
∥
∥
∥
∥

b̃δ
∣
∣̃bδ

∣
∣

− b̃δ

∥
∥
∥
∥
∥

H1

=
∥
∥
∥
∥
∥

b̃δ · 1 − ∣
∣̃bδ

∣
∣

∣
∣̃bδ

∣
∣

∥
∥
∥
∥
∥

H1

≤ ∥
∥b̃δ

∥
∥

H1

∥
∥
∥
∥
∥

|b| − ∣
∣̃bδ

∣
∣

∣
∣̃bδ

∣
∣

∥
∥
∥
∥
∥

H1

≤ (‖b‖H1 + ε
)
∥
∥
∥
∥
∥

〈
b̃δ + b, b̃δ − b

〉

∣
∣̃bδ

∣
∣+ |b|

∥
∥
∥
∥
∥

H1

∥
∥
∥
∥
∥

1
∣
∣̃bδ

∣
∣

∥
∥
∥
∥
∥

H1
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≤ (
2 ‖b‖H1 + ε

)2

∥
∥
∥
∥
∥

1
∣
∣̃bδ

∣
∣+ |b|

∥
∥
∥
∥
∥

H1

∥
∥
∥
∥
∥

1
∣
∣̃bδ

∣
∣

∥
∥
∥
∥
∥

H1

∥
∥b̃δ − b

∥
∥

H1 .

Arguing as above, we find that the term
∥
∥1
/∣
∣̃bδ

∣
∣
∥
∥

H1 is uniformly bounded. In fact,

from
∣
∣
∣qbδ · qy′

δ

∣
∣
∣ =

∣
∣
∣qbδ · qy′

δ − b · y′
∣
∣
∣

δ↘0−−→ 0 we infer
∣
∣̃bδ

∣
∣ ≥ 1

4 if δ0 is sufficiently small.

This allows for bounding
∥
∥
∥
(
1
/∣
∣̃bδ

∣
∣
)′∥∥
∥ as well. In the samewaywe prove boundedness

of
∥
∥1
/(∣
∣̃bδ

∣
∣+ |b|)∥∥H1 . Letting (yε, bε) = (

qyδ0 , b̃δ0

/∣
∣̃bδ0

∣
∣
) ∈ A ∩ (C∞ × C∞)

finishes the proof. ��

Let H2
r ((0, L), R

3) denote the (open) subset of regular (i.e., non-vanishing deriva-
tive) curves in H2((0, L), R

3).

Lemma 2 The operator H2
r ((0, L), R

3) → H2
r ((0, L), R

3) defined by

y �→ y ◦ ψ−1
y where ψy(x) = L

L [y]L
[

y|[0,x]
]

that reparametrizes an immersed curve to constant speed is continuous with respect
to the H2-norm. Moreover, y ◦ ψ−1

y ∈ C∞ if y ∈ C∞ is immersed.

A proof can be found in [59, Appendix]; the argument applies without rescaling
and the additional requirement of embeddedness. It applies to non-periodic intervals
[0, L] as well. The last statement can be derived from the formula.

4 Discretization

Our discretization is based on cubic and linear finite element spaces. We consider a
partition of [0, L] by a set of nodesNh that contains the endpoints 0 and L . We define
nodal bases (ϕz)z∈Nh

and
(
ψz, j

)

z∈Nh
, j = 0, 1 with the following properties. If z± ∈

Nh are neighboring nodes of z ∈ Nh then ϕz andψz, j are supported in [z−, z+]. On the
intervals [z−, z] and [z, z+] the functions ϕz are (affine) linear with ϕz(z) = 1 while
ψz, j are cubic polynomials satisfying ψz, j (z) = δ j,0 and ψ ′

z, j (z) = δ j,1, j = 0, 1.

We define nodal interpolation operators on C0([0, L]) and C1([0, L]) respectively by
letting

I1,0
h v =

∑

z∈Nh

v(z)ϕz,

I3,1
h w =

∑

z∈Nh

(
w(z)ψz,0 + w′(z)ψz,1

)
.
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Furthermore, we will employ the averaging operator Qh which is piecewise defined
on any element [z, z′] (i.e., z, z′ ∈ Nh are neighboring) by

Qhv(x) = 1

z′ − z

∫ z′

z
v(ξ) dξ, x ∈ (z, z′).

We have ‖v − Qhv‖L∞ ≤ Chα [v]C0,α for all v ∈ C0,α , α ∈ (0, 1] and ‖Qhvh‖L∞ ≤
‖vh‖L∞ for all piecewise linear functions vh subject to Nh .

Both for the discrete approximation result and the stability of our numerical scheme
presented in Sect. 5 below it is crucial to exploit the structure of the dimensionally
reduced functionals.

To identify convex and concave terms, we observe that the orthonormality of the
frame F = [t, b, d] implies b′ · b = 0 and b′ · t = −b · t ′. Therefore the integrand of
the twisting functional becomes (b′ · d)2 = ∣

∣b′∣∣2 − (b · t ′)2.
To obtain a coercivity property (under the restriction ‖bh‖L∞ ≤ 1) we set

θ = min
{κ

2
, 1
} ∈ (0, 1] (4)

which ensures κ ≥ 2θ . This will allow for controlling (part of) the second term of
Irod[y, b] by the first one even if κ < 2. Now we decompose

Irod[y, b] = κ

2

∫ L

0
|y′′|2 dx + 1

2

∫ L

0
(b′ · d)2 dx

= κ

2

∫ L

0
|y′′|2 dx + θ

2

∫ L

0
|b′|2 dx − θ

2

∫ L

0
(b · y′′)2 dx

+ 1 − θ

2

∫ L

0
(b′ · (y′ × b))2 dx .

By V h
rod ⊂ H2 × H1 we denote the cross product of piecewise cubic and piecewise

linear functions subject toNh . With the product finite element space V h
rod and the oper-

ator Qh we consider the following discretization of the minimization problem (Prod)
in which the pointwise orthogonality relation y′ · b = 0 is approximated via a penalty
term. To this end we discretize the minimization problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize I h,ε
rod [yh, bh] = κ

2

∫ L

0
|y′′

h |2 dx + θ

2

∫ L

0
|b′

h |2 dx

−θ

2

∫ L

0
(Qhbh · y′′

h )2 dx + 1

2ε

∫ L

0
I1,0

h [(y′
h · bh)2] dx

+1 − θ

2

∫ L

0
(b′

h · (y′
h × Qhbh))2 dx

in the set Ah = {(yh, bh) ∈ V h
rod : L rod

bc [yh, bh] = �rodbc ,

|y′
h(z)| = |bh(z)| = 1 f.a. z ∈ Nh

}
.

(Ph,ε
rod)
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The operators Qh and I1,0
h are included in a way that leads to a simple assembly of

the corresponding matrices and avoids quadrature.
Note that the constraints are imposed on particular degrees of freedomwhichmakes

the method practical. In order to ensure Ah 	= ∅, the distance between the endpoints
of yh must be less than L and the spatial mesh has to be chosen sufficiently fine.

For establishing the Gamma-convergence result, it is useful to write

Irod[y, b] = κ − θ

2

∥
∥y′′∥∥2 + θ

2

∥
∥b′∥∥2 + θ

2

∥
∥Pb y′′∥∥2 + 1 − θ

2

∥
∥b′ · (y′ × b)

∥
∥2 ,

I h,ε
rod [yh, bh] = κ − θ

2

∥
∥y′′

h

∥
∥2 + θ

2

∥
∥b′

h

∥
∥2 + θ

2

∥
∥PQhbh y′′

h

∥
∥2

+ 1 − θ

2

∥
∥b′

h · (y′
h × Qhbh)

∥
∥2 + 1

2ε

∫ L

0
I1,0

h [(y′
h · bh)2] dx

where Pb and PQhbh denote the square roots of the positive semidefinite matrices
1 − b ⊗ b and 1 − Qhbh ⊗ Qhbh respectively.

The only difference to Irod is the penalization term and the fact that b is replaced
by Qhbh in the third term and once in the fourth term.

Our first task is to show that minimizers of I h,ε
rod within Ah approximate Irod-

minimizers within A. In the following statement, we assume that Irod and I h,ε
rod attain

the value +∞ outside of A and Ah , respectively.

Proposition 1 As ε, h ↘ 0, the functional I h,ε
rod Gamma-converges to Irod with respect

to the weak H2 × H1-topology.

Note that there is no restriction on the ratio of ε and h.
Le Tallec et al. [42, Thm. 1] have derived a related result using different

arguments. They show that any isolated minimum of the continuous problem is
the strong limit of a sequence of local minima of the finite element problem.
To approximate rods within finite element spaces, they consider interpolants and then
correct the orthogonalities by an iterative scheme [42, Thm. 2]. Thereby they obtain
admissible rods only in the limit. Although we could employ the latter result in the
following proof, we prefer Lemma 1 which provides a constructive argument.

Proof To establish the Lim-inf inequality, we consider an arbitrary sequence
((yh, bh))h>0 ⊂ Ah and (y, b) ∈ H2 × H1 with yh⇀y in H2 and bh⇀b in H1

as h ↘ 0. In particular, we have yh → y in C1 and bh → b in C0.
We have to show that if lim inf(h,ε)↘0 I h,ε

rod [yh, bh] < ∞ then the limit point (y, b)

belongs to A (such that the formula for Irod is applicable) and the lim inf-inequality
holds.

As the mesh size tends to zero as h ↘ 0, the condition
∣
∣y′∣∣ = |b| = 1 is sat-

isfied everywhere due to the uniform convergence y′
h → y′, bh → b. Furthermore

L rod
bc is continuous with respect to weak convergence. It remains to verify that b is

perpendicular to y′. By the interpolation estimate we have

∥
∥
∥
(
y′

h · bh
)2 − I1,0

h

[(
y′

h · bh
)2
]∥
∥
∥ ≤ Ch

∥
∥
∥
∥

((
y′

h · bh
)2
)′∥∥
∥
∥
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≤ Ch
∥
∥y′

h

∥
∥

L∞ ‖bh‖L∞
∥
∥y′

h

∥
∥

H1 ‖bh‖H1 .

As y′
h · bh → y′ · b in C0, we infer

∫ L

0
I1,0

h

[(
y′

h · bh
)2
]
dx →

∫ L

0

(
y′ · b

)2 dx .

As all terms of I h,ε
rod are non-negative, the term ε−1

∫ L
0 I1,0

h

[(
y′

h · bh
)2
]
dx is uni-

formly bounded which implies
∫ L
0

(
y′ · b

)2 dx = 0. This gives y′ ⊥ b, so (y, b) ∈ A.
We use ‖Qhbh + b‖L∞ ≤ 2 to derive

∥
∥Pb y′′

h

∥
∥2 = ∥

∥PQhbh y′′
h

∥
∥2 − ∥

∥b · y′′
h

∥
∥2 + ∥

∥Qhbh · y′′
h

∥
∥2

≤ ∥
∥PQhbh y′′

h

∥
∥2 + 2 ‖Qhbh − b‖L∞

∥
∥y′′

h

∥
∥2 .

The second term on the right-hand side tends to zero as h ↘ 0 due to the boundedness
of weakly converging sequences and

‖Qhbh − b‖L∞ ≤ ‖Qhbh − bh‖L∞ + ‖bh − b‖L∞ ≤ C
√

h + o(1). (5)

This estimate also yields y′
h × Qhbh → y′ × b in L2 which implies b′

h · (y′
h ×

Qhbh)⇀b′ · (y′ × b) (weakly) in L2 as h ↘ 0.
Now the lim inf-inequality follows from the lower semicontinuity of the L2-norm

and the fact that the penalization term is non-negative (since it is the linear interpolation
of a non-negative term).

We turn to the Lim-sup inequality. Let (y, b) ∈ A and δ ∈ (0, 1]. Of course,
Irod[y, b] < ∞. We aim at constructing a recovery sequence. We apply Lemma 1 to
obtain (ỹδ, b̃δ) ∈ A ∩ (C∞ × C∞) with ‖ỹδ − y‖H2 ≤ δ and ‖b̃δ − b‖H1 ≤ δ. We

let (yh, bh) =
(
I3,1

h ỹδ, I1,0
h b̃δ

)
. Owing to the smoothness of the regularized rod, we

have ‖yh − ỹδ‖H2 ≤ Cδh and ‖bh − b̃δ‖H1 ≤ Cδh. In particular, (yh, bh) ∈ Ah . We
have to bound I h,ε

rod [yh, bh] − Irod[y, b] above by an expression that tends to zero. For
the first three terms of I h,ε

rod [yh, bh], we obtain
∥
∥y′′

h

∥
∥2 − ∥

∥y′′∥∥2 ≤ ∥
∥y′′

h + y′′∥∥ ∥∥y′′
h − y′′∥∥

≤ (
2
∥
∥y′′∥∥ + δ + Cδh

)
(δ + Cδh) ,

∥
∥b′

h

∥
∥2 − ∥

∥b′∥∥2 ≤ (
2
∥
∥b′∥∥ + δ + Cδh

)
(δ + Cδh) ,

∥
∥PQhbh y′′

h

∥
∥2 − ∥

∥Pb y′′∥∥2 ≤ ∥
∥y′′

h

∥
∥2 − ∥

∥y′′∥∥2 + ∥
∥b · y′′∥∥2 − ∥

∥Qhbh · y′′
h

∥
∥2 .

For the last two terms in the previous line, we infer

∥
∥b · y′′∥∥2 − ∥

∥Qhbh · y′′
h

∥
∥2 ≤ ∥

∥Qhbh · y′′
h + b · y′′∥∥ ∥∥Qhbh · y′′

h − b · y′′∥∥

≤ (
2
∥
∥b · y′′∥∥ + ∥

∥Qhbh · y′′
h − b · y′′∥∥) ∥∥Qhbh · y′′

h − b · y′′∥∥
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and, recalling (5),

∥
∥Qhbh · y′′

h − b · y′′∥∥ ≤ ‖Qhbh − b‖L∞
∥
∥y′′

h

∥
∥ + ∥

∥y′′
h − y′′∥∥

≤
(

C
√

h + δ + Cδh
) (∥
∥y′′∥∥ + δ + Cδh

)+ δ + Cδh.

We treat the fourth term of I h,ε
rod [yh, bh] similarly as above. More precisely, we infer

∥
∥b′

h · (y′
h × Qhbh)

∥
∥2 − ∥

∥b′ · (y′ × b)
∥
∥2

= ∥
∥b′

h · (y′
h × Qhbh) + b′ · (y′ × b)

∥
∥
∥
∥b′

h · (y′
h × Qhbh) − b′ · (y′ × b)

∥
∥

≤ (∥
∥b′

h

∥
∥
∥
∥y′

h

∥
∥

L∞ ‖bh‖L∞ + ∥
∥b′∥∥) ·

· (∥∥b′
h − b′∥∥ ∥∥y′

h

∥
∥

L∞ ‖bh‖L∞ + ∥
∥b′∥∥ ∥∥y′

h − y′∥∥
L∞ ‖bh‖ + ∥

∥b′∥∥ ‖Qhbh − b‖) .

Finally we deal with the penalty term. Due to ỹδ
′ ⊥ b̃δ we find that y′

h(z) · bh(z) = 0

for all z ∈ Nh . Therefore I1,0
h

[(
y′

h · bh
)2
]
(x) = 0 for all x ∈ I which implies that

the penalty term vanishes on the entire sequence. ��

5 Iterativeminimization

We linearize the pointwise constraints in our iterative algorithm for computing mini-
mizers of I h,ε

rod . Let Th be a partition of [0, L] with respect to the set of nodes Nh . By
Sm,k(Th) we denote the set of Ck([0, L]) functions whose restriction on any subin-
terval from Th is a polynomial of degree at most m.

For a vector field yh ∈ S3,1(Th)3 we set

Fh[yh] = {wh ∈ S3,1(Th)3 : L rod
bc,y[wh] = 0, y′

h(z) · w′
h(z) = 0 f.a. z ∈ Nh}

while for a vector field bh ∈ S1,0(Th)3 we define

Eh[bh] = {vh ∈ S1,0(Th)3 : L rod
bc,b[vh] = 0, vh(z) · bh(z) = 0 f.a. z ∈ Nh}.

The functionals L rod
bc,y and L rod

bc,b are the components of L rod
bc corresponding to the

variables y and b, respectively, assuming for simplicity that the boundary conditions
can be appropriately separated.

We recall that the discretized functional with penalized orthogonality relation is
defined as

I h,ε
rod [yh, bh] = κ

2

∫ L

0
|y′′

h |2 dx+θ

2

∫ L

0
|b′

h |2 dx

− Gh[yh, bh] + Ph,ε[yh, bh] + Nh[yh, bh]

123



678 S. Bartels, Ph. Reiter

with the functionals

Gh[yh, bh] = θ

2

∫ L

0
(Qhbh · y′′

h )2 dx,

Ph,ε[yh, bh] = 1

2ε

∫ L

0
I1,0

h [(y′
h · bh)2] dx,

Nh[yh, bh] = 1 − θ

2

∫ L

0
(b′

h · (y′
h × Qhbh))2 dx

which are all separately convex, i.e., convex as functions in yh for fixed bh and vice
versa.

Because of the requirement 0 < θ ≤ κ/2, the functional I h,ε
rod is coercive on the

set of functions (yh, bh) with ‖bh‖2L∞ ≤ 3/2. The nonlinear term Nh does not occur
if κ ≥ 2. In this case the negative contribution in the energy functional −Gh can
be treated using its separate concavity properties. Otherwise, an inductive argument
is used in the stability analysis which requires a different treatment. We generate a
sequence (yk

h , bk
h)k=0,1,... that approximates a stationary configuration for I h,ε

rod using
a discrete gradient flow that is determined by the metrics (·, ·)� and (·, ·)†. These can
be chosen quite general, however, our stability result relies on certain embeddings,
see (7) below. To allow for an implicit or explicit treatment of some terms, depending
on the value of κ, we let

k̃ : N → N0

be either the identity k̃(k) = k or a negative shift k̃(k) = k − 1, corresponding to an
explicit or implicit treatment of the derivative of Gh with respect to b.

The backward difference quotient of a function ak is dt ak = τ−1
(
ak − ak−1

)
,

which gives rise to the identity

2(ak, dt a
k) = dt |ak |2 + τ |dt a

k |2 (6)

that will be used frequently.

Algorithm 1 (Gradient descent for elastic rods) Choose an initial pair (y0h , b0h) ∈ Ah

and a step size τ > 0, set k = 1.

(1) Compute dt yk
h ∈ Fh[yk−1

h ] such that for all wh ∈ Fh[yk−1
h ] we have

(dt yk
h , wh)� + κ([yk

h ]′′, w′′
h) + ∂y Ph,ε[yk

h , bk−1
h ;wh]

= ∂yGh[yk−1
h , bk−1

h ;wh] − ∂y Nh[yk−1
h , bk−1

h ;wh].

(2) Compute dt bk
h ∈ Eh[bk−1

h ] such that for all rh ∈ Eh[bk−1
h ] we have

(dt b
k
h, rh)† + θ([bk

h]′, r ′
h) + ∂b Ph,ε[yk

h , bk
h; rh]

= ∂bGh[yk̃
h , bk−1

h ; rh] − ∂b Nh[yk−1
h , bk−1

h ; rh].
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(3) Stop the iteration if ‖dt yk
h‖� + ‖dt bk

h‖† ≤ εstop; otherwise, increase k → k + 1
and continue with (1).

Note that the Nh-terms on the right-hand sides vanish in case θ = 1 which corre-
sponds to κ ≥ 2.

It is useful to view dt yk
h and dt bk

h as the unknowns in Steps (1) and (2) instead of
yk

h = yk−1
h + τdt yk

h and bk
h = bk−1

h + τdt bk
h . The algorithm exploits the fact that

the penalty term Ph is separately convex while −Gh , the nonquadratic contribution
to the torsion term, is separately concave. Therefore, the decoupled semi-implicit
treatment of these terms is natural and unconditionally energy stable if θ = 1, i.e., in
the bending-dominated case.

Proposition 2 (Convergent iteration) Assume that we have

‖w′′
h‖ ≤ c�‖wh‖�, ‖r ′

h‖ ≤ c†‖rh‖†,
‖w′

h‖L∞ ≤ c�‖wh‖�, ‖rh‖L∞ ≤ c†‖rh‖† (7)

for all (wh, rh) ∈ V h
rod with L rod

bc [wh, rh] = 0. For any (y0h , b0h) ∈ V h
rod there is a

constant c0 ≥ 0 with the following property. Algorithm 1 is well defined and produces
a sequence (yk

h , bk
h)k=0,1,... such that for all L ≥ 0 with a constant c0 ≥ 0 we have

I h,ε
rod [yL

h , bL
h ] + τ(1 − c0τ)

L∑

k=1

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

) ≤ I h,ε
rod [y0h , b0h],

for all τ ∈ (0, τm) where

(a) c0 = 0 and τm = ∞ if θ = 1 and k̃ = k,
(b) c0 > 0 and τm = 1/(2c0) if θ ≤ 1 and k̃ = k − 1.

In both cases, additionally assuming in (a) that I h,ε
rod [yk

h , bk
h] ≥ 0 for all k =

0, 1, . . . , L, the unit-length violation is controlled via

max
k=0,...,L

(
‖|[yk

h ]′|2 − 1‖L∞ + ‖|bk
h |2 − 1‖L∞

)
≤ τc�,†e0,h,

where e0,h = I h,ε
rod [y0h , b0h] < ∞ and c�,† > 0 only depends on the metrics.

Remark 1 In case θ = 1 and k̃ = k, i.e., in case of low torsion rigidity, our stability
result is conditional in the sense that we assume that the discrete energies remain
nonnegative. In this case it suffices to require the second line of (7). Moreover, if
we even replace it by ‖w′

h‖ ≤ c�‖wh‖� and ‖rh‖ ≤ c†‖rh‖† the estimates for the
constraint violation still hold in L1 instead of L∞.

In general, condition (7) can be satisfied if ‖·‖� and ‖·‖† are H2- and H1-seminorms
and if L rod

bc imposes suitable Dirichlet conditions on one endpoint of the interval. An
L2-gradient flow, however, requires stronger assumptions on the step size.
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Proof of Proposition 2 (a) We first consider the case θ = 1 and k̃ = k so that the
nonlinearities related to the operator Nh disappear and the asserted estimate holds
with c0 = 0. For this we note that the functional Gh is separately convex, i.e., convex
in yh and in bh . Therefore, we have that

∂yGh[yk−1
h , bk−1

h ; yk
h − yk−1

h ] + Gh[yk−1
h , bk−1

h ] ≤ Gh[yk
h , bk−1

h ],
∂bGh[yk

h , bk−1
h ; bk

h − bk−1
h ] + Gh[yk

h , bk−1
h ] ≤ Gh[yk

h , bk
h],

which by summation leads to the inequality

∂yGh[yk−1
h , bk−1

h ; dt yk
h ] + ∂bGh[yk

h , bk−1
h ; dt b

k
h] ≤ dt Gh[yk

h , bk
h].

Similarly, the functional Ph,ε is separately convex and we have

∂y Ph,ε[yk
h , bk−1

h ; dt yk
h ] + ∂b Ph,ε[yk

h , bk
h; dt b

k
h] ≥ dt Ph,ε[yk

h , bk
h].

We choose wh = dt yk
h and rh = dt bk

h in the equations of Steps (1) and (2) of Algo-
rithm 1 and find that (using (6))

‖dt yk
h‖2� + ‖dt b

k
h‖2† + dt

(κ

2
‖[yk

h ]′′‖2 + θ

2
‖[bk

h]′‖2)+ dt Ph,ε[yk
h , bk

h]

+ τ
(κ

2
‖[dt yk

h ]′′‖2 + θ

2
‖[dt b

k
h]′‖2)

≤ ∂yGh[yk−1
h , bk−1

h ; dt yk
h ] + ∂bGh[yk

h , bk−1
h ; dt b

k
h] ≤ dt Gh[yk

h , bk
h].

Since for θ = 1 we have that

I h,ε
rod [yk

h , bk
h] = κ

2
‖[yk

h ]′′‖2 + 1

2
‖[bk

h]′‖2 − Gh[yk
h , bk

h] + Ph,ε[yk
h , bk

h]

we deduce the asserted estimate. The nodal orthogonality conditions encoded in the
spaces Fh[yk−1

h ] and Eh[bk−1
h ] lead to the relations

|[yk
h ]′(z)|2 = |[yk−1

h ]′(z)|2 + τ 2|[dt yk
h ]′(z)|2,

|bk
h(z)|2 = |bk−1

h (z)|2 + τ 2|dt b
k
h(z)|2

for all z ∈ Nh . Repeated application leads to

∥
∥|[yk

h ]′(z)|2 − 1
∥
∥

L∞ + ∥
∥|bk

h(z)|2 − 1
∥
∥

L∞ = τ 2
k∑

�=1

(
‖dt b

�
h(z)‖2L∞ + ‖[dt y�

h]′‖2L∞
)
.

Using (7) and the previously established bound for the discrete time derivatives proves
the estimate for the constraint violation if θ = 1 provided that the discrete energies
I h,ε
rod [yk

h , bk
h] remain nonnegative so that the right-hand side is controlled by the inital

discrete energy.
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(b) We next turn to the case θ ≤ 1 and k̃ = k − 1 and argue by induction over
L ≥ 0. Assume that the estimates have been established for some L̃ = L − 1 ≥ 0
with c0 ≥ c�,†e0,h (independent of L); the estimates trivially hold for L = 0. Let
0 ≤ k ≤ L and choose wh = dt yk

h and rh = dt bk
h in Algorithm 1. From c0τ ≤ 1/2

we infer

‖[yk−1
h ]′‖2L∞ ≤ 3/2, ‖bk−1

h ‖2L∞ ≤ 3/2. (8)

Since 0 < θ ≤ κ/2 and ‖Qhrh‖Ls ≤ ‖rh‖Ls , 1 ≤ s ≤ ∞, the second estimate
implies that

∣
∣Gh(yk−1

h , bk−1
h )

∣
∣ ≤ 3κ

8
‖[yk−1

h ]′′‖2. (9)

In particular, we find the restricted coercivity bound

κ

8
‖[yk−1

h ]′′‖2 + θ

2
‖[bk−1

h ]′‖2 ≤ I h,ε
rod [yk−1

h , bk−1
h ] ≤ e0,h . (10)

Arguing as above, i.e., choosing wh = dt yk
h and rh = dt bk

h in Algorithm 1, we find
that

‖dt yk
h‖2� + ‖dt b

k
h‖2† + dt

{
κ

2
‖[yk

h ]′′‖2 + θ

2
‖[bk

h]′‖2 + Ph,ε[yk
h , bk

h]
}

≤ G ′
h[yk−1

h , bk−1
h ; dt yk

h , dt b
k
h] − N ′

h[yk−1
h , bk−1

h ; dt yk
h , dt b

k
h].

(11)

We note that

G ′
h[yh, bh;wh, rh] = θ

∫ L

0
(Qhbh · y′′

h )
[
Qhbh · w′′

h + Qhrh · y′′
h

]
dx,

N ′
h[yh, bh;wh, rh] = (1 − θ)

∫ L

0
(b′

h · (y′
h × Qhbh))

[
b′

h · (w′
h × Qhbh)

+ r ′
h · (y′

h × Qhbh) + b′
h · (y′

h × Qhrh)
]
dx

and use Hölder inequalities, e.g., to bound

∣
∣G ′

h[yh, bh;wh, rh]∣∣ ≤ θ‖Qhbh‖2L∞‖y′′
h ‖‖w′′

h‖ + θ‖Qhbh‖L∞‖Qhrh‖L∞‖y′′
h ‖2.

Noting the inequalities (7) and the bounds (8) and (10) as well as the Young inequality
we deduce that

‖dt yk
h‖2� + ‖dt b

k
h‖2† + dt

{
κ

2
‖[yk

h ]′′‖2 + θ

2
‖[bk

h]′‖2 + Ph,ε[yk
h , bk

h]
}

≤ D′
0,h + 1

2

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

)
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where D′
0,h only depends on κ, θ , and e0,h , but in particular not on k. We consider the

reduced energy functional

Î h,ε
rod [yk

h , bk
h] = κ

2
‖[yk

h ]′′‖2 + θ

2
‖[bk

h]′‖2 + Ph,ε[yk
h , bk

h]

and note that because of (9) we have

Î h,ε
rod [yk−1

h , bk−1
h ] ≤ 4I h,ε

rod [yk−1
h , bk−1

h ]. (12)

We thus deduce from the estimate

1

2

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

)+ dt Î h,ε
rod [yk

h , bk
h] ≤ D′

0,h

that, imposing the condition 2c0 ≥ D′
0,h which implies τ D′

0,h ≤ 1,

τ

2

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

)+ Î h,ε
rod [yk

h , bk
h] ≤ τ D′

0,h + 4e0,h ≤ 1 + 4e0,h =: D0,h .

This estimate and the unrestricted coercivity of Î h,ε
rod imply that

‖[yk
h ]′′‖ + ‖[bk

h]′‖ ≤ D1,h . (13)

In the considered one-dimensional setting these bounds imply the L∞ estimates

‖[yk
h ]′‖L∞ + ‖bk

h‖L∞ ≤ D′
1,h .

To obtain the asserted full energy law we find immediately from (11) that

‖dt yk
h‖2� + ‖dt b

k
h‖2† + dt I h,ε

rod [yk
h , bk

h]
≤ dt Nh[yk

h , bk
h] − N ′

h[yk−1
h , bk−1

h ; dt yk
h , dt b

k
h]

−dt Gh[yk
h , bk

h] + G ′
h[yk−1

h , bk−1
h ; dt yk

h , dt b
k
h].

By the mean value theorem the terms on the right-hand side are equal to

τ N ′′
h [ξ (1)

h , η
(1)
h ; dt yk

h , dt b
k
h; dt yk

h , dt b
k
h] − τG ′′

h[ξ (2)
h , η

(2)
h ; dt yk

h , dt b
k
h; dt yk

h , dt b
k
h],

where, e.g.,

∂b∂y N [yh, bh;wh, rh]

= (1 − θ)

∫ L

0

(
r ′

h · (y′
h × Qhbh) + b′

h · (y′
h × Qhrh)

)(
b′

h · (w′
h × Qhbh)

)

+ (
b′

h · (y′
h × Qhbh)

)(
r ′

h · (w′
h × Qhbh) + b′

h · (w′
h × Qhrh)

)
dx .
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The nodal values of ξ
(�)
h and η

(�)
h , � = 1, 2, are convex combinations of yk−1

h and yk
h

and bk−1
h and bk

h , respectively, and using their uniform bounds (8), (10), and (13) in
combination with (7) we find that

τ N ′′
h [ξ (1)

h , η
(1)
h ; dt yk

h , dt b
k
h; dt yk

h , dt b
k
h] ≤ τcN ′′ D2,N

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

)
,

τ |G ′′
h[ξ (2)

h , η
(2)
h ; dt yk

h , dt b
k
h; dt yk

h , dt b
k
h]| ≤ τcG ′′ D2,G

(‖dt yk
h‖2� + ‖dt b

k
h‖2†

)
.

With c0 ≥ cN ′′ D2,N + cG ′′ D2,G we deduce the asserted estimate after multiplication
by τ and summation over k = 1, 2, . . . , L . The second estimate is established as in
(a), provided the step size τ is bounded accordingly; the non-negativity of the discrete
energy is guaranteed by (12). Note that all constants are formulated in terms of the
initial discrete energy and generic constants related to parameters and functionals.
Since the intermediate bound (13) is replaced by the bound (10) in the induction step,
all estimates are re-initialized, and the condition on τ does not change with the number
of induction steps. ��

6 Experiments

Here we report on some numerical experiments. The parameters that have been used
are shown in Table 1. The length of the curve is denoted by L , the number of nodes
by N , the maximum step size hmax is normally close to L/N where L is the length
of the curve. Except for Experiment 6.1, the initial curve has constant twist rate βini.
While the director b will always be clamped on both ends of the rod, the boundary
conditions (bc) for the curve are either periodic (p) or clamped on both ends (c).
Unless otherwise stated the penalization parameter has been chosen to be ε = 2π

N . We
always use the time step size τ = 1

8hmax. In some cases we also added some small
perturbation to the initial curve which is specified in the text.

We briefly comment on the legend of the corresponding energy plots where the
horizontal axis shows the iteration steps of the evolution. Of course, “bending” refers
to the scaled bending energy κ

2

∥
∥y′′

h

∥
∥2

L2 , “twisting” to the scaled twisting energy

Table 1 Modeling and discretization parameters for the experiments presented in Sect. 6

Section L N κ βini hmax ε bc �

6.1 2π 100 2 ∗ 0.0628 0.0628 c –

6.2 2π 400 3/2 ∗ 0.0157 10−5 p –

6.3 2π 400 2 5 0.0157 0.0010 p –

6.4 4K (m) 400 ∗ 0 0.0232 0.0232 p –

6.5 ∗ 400 2 4 0.0351 0.0010 c –

6.6 (a) 2π 800 2 5 0.0079 0.0079 p 0.1

6.6 (b) ∗ 400 2 4 0.0351 0.0010 c 0.1

An asterisk refers to details given in the corresponding text
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θ
2

∥
∥b′

h

∥
∥2 − θ

2

∥
∥Qhbh · y′′

h

∥
∥2 + 1−θ

2

∥
∥b′

h · (y′
h × Qhbh)

∥
∥2 while “total twist” means

the functional Tw defined in Sect. 2.4, “potential” to the tangent-point energy (see
Sect. 6.6), “penalizing” to Ph,ε, and “total” is I h,ε

rod .
In general the total twist is scaled differently, i.e., there is a second axis on the right

margin of the energy plots while all other values refer to the axis on the left margin of
the coordinate system. A coloring of a curve represents curvature values.

For typical discretizationswith 400 nodes the overall runtime of our implementation
in Matlab on a notebook (1.6 GHz DualCore, 8 GB RAM) took about 2 1

2 minutes per
10,000 iteration steps. An impermeable rod in Experiment 6.6, with an assembly of the
self-avoidance potential in C, requires about 42 minutes per 10,000 iteration steps. For
800 nodes we observed a runtime of 61

2 minutes and almost three hours, respectively.
Wewould like to stress thatwe observe energymonotonicity for all our experiments,

confirming the stability features discussed in Proposition 2. In particular, we did not
observe difficulties related to negative energy values in the implicit case k = k̃.

6.1 Uniform twist rate

According to Sect. 2.6, stationary frames have constant twist rate. We expect that a
non-uniform twist configuration will become constant within the evolution.

We start with a straight line curve of length 2π with uniform twist rate 4 on [0, π
2 ]

and 0 on [π
2 , 2π ]. No perturbation of the initial rod was used.

Initial stage and some intermediate steps from the evolution are visualized in Fig. 1.
After 4000 steps the twist rate is nearly constant and amounts to 1.

All energy values are neglectable except for the twisting energy which virtually
coincides with the total energy. Furthermore, at initial and final step the twisting
energy data matchs quite closely the expected values of 1

2

∫ 2π
0 β(s)2 ds which amount

to 4π and π .

1

100

400

1000

4000

Fig. 1 (Experiment 6.1) Left—states of the evolution at several iteration steps. The initial rod consists of a
straight line, framed with a non-uniform twist rate. Right—the twisting energy exhibits the dissipation of
the twist rate after about 4000 iteration steps while the total twist is constant
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10000 50000 80000 90000

100000 112000 113000 114000

115000 120000 140000 200000

Fig. 2 In Experiment 6.2 we start the evolution with a round circle, framed with uniform twist rate βini =
4.2 > β∗. The total twist is reduced by self-penetration in the course of the evolution around iteration
step k = 112,500. It ends with another round circle, situated in a different plane

Looking at the following experiments whose initial configurations all have a uni-
form twist rate, we find this property being violated in the course of the iteration. In
first place, this is due to the spatial behavior of the curve which does not seems to allow
for an simultaneous reaction by the director. Eventually, uniform twist rate is restored,
at least when the evolution has reached a stationary configuration, cf. Sect. 2.6.

We can test for uniform twist rate by computing the quotient of 2π2

L Tw2 over the
twisting energy. As to Experiments 6.2 to 6.4, throughout the evolutions this number
stays close to 1 for most of the time where we detect a relative deviation below 1

200 .
The twist rate for Experiment 6.3 is plotted in Fig. 5 (right). In Experiment 6.4 we
ignore the initial steps where the twist is zero. In the other cases, we also see that the
twist rate eventually dissipates but it can last a relatively long time.

6.2 Michell’s instability

Weaim at experimentally confirmingZajac’s thresholdβ∗ = 2π
√
3κ/L , see Sect. 2.8.

We consider the initial curve y(s) = (cos s, sin s, 0)� with the director

b(s) = cos(βinis)

⎛

⎝
− cos s
− sin s

0

⎞

⎠+ sin(βinis)

⎛

⎝
0
0
1

⎞

⎠ , s ∈ [0, 2π ].

In order to break symmetry which seems to prevent rod configurations from leaving
even energetically unfavorable states, a slight perturbation has been applied to the
initial curve, namely

s �→ 1
1000 sin(7s) (14)
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Fig. 3 (Experiment 6.2) Left—in order to experimentally confirmZajac’s threshold, we repeat the evolution
depicted in Fig. 2 above for different twist rates βini > β∗. The evolutions turn out to be very similar;
essentially they only differ in speed. The (logarithmically scaled) twisting profiles reveal a drastic reduction
of the twisting energy (due to the self-penetration of the curve). The smallest iteration step at which the
twisting energy is below 27

4 π serves as a threshold for the speed of the evolution. Right—the energy plot
for the evolution from Fig. 2 where βini = 4.2. Here the twisting energy decay occurs around iteration step
114,200

perpendicularly to the plane (i.e., in z-direction); the frame is corrected accordingly.
In order to quantitatively verify Zajac’s threshold, we had to choose a rather high

penalty coefficient, namely ε = 10−5. For κ = 3/2, we obtain

β∗ = 3
2

√
3 ≈ 2.5981.

In Fig. 3 (left) we plot the twisting energy of several evolutions using logarithmic
scales on both axes. From top to bottom, the profiles correspond to initial values of

βini = β∗ + 2�

10 for � = −1, 0, 1, 2, 3, 4. More precisely, we plot the twisting energy
of the evolutions corresponding to different values of βini minus the twisting energy
of the configuration at β∗, i.e., 1

2

∫ 2π
0 β(s)2 ds − 27

4 π , which seems to be stationary.
Of course, values less than 27

4 π ≈ 21.2058 are ignored.
Experimentally we find that evolutions for different initial values of βini seem to

be very similar and essentially only vary in speed. The region of iteration steps where
the twisting energy drastically falls is a good indication for the latter. There is one
caveat—probably due to symmetry it turned out that the evolution corresponding to
the initial values βini = 3 is remarkably slower than expected. Therefore we chose
βini = 2.98 instead.

The plot in Fig. 3 (left) indicates a reciprocal dependence of the evolution speed on
βini − β∗. For values βini ≤ β∗ the initial configuration remained unchanged (at least
until step k = 5 · 106). This confirms Zajac’s threshold as desired.

We show a typical full energy profile in Fig. 3 (right) for the initial value βini =
4.2. Some iteration steps are visualized in Fig. 2. The corresponding plots for the
other initial values of βini essentially differ by the scaling of the horizontal axis and
the simulations looks very similar. Initial and final stage are round circles which
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1 1000 30000 40000

45000 46000 46200 46300

46400 46500 46600 46700

46800 47000 48000 48400

48800 49100 49500 50000

51000 55000 60000 100000

Fig. 4 Evolution of a round circle twisted by five full rotations in Experiment 6.3. Twist is reduced due to
self-penetrations of the rod around iteration steps k = 46,400 and k = 48,800. Initial and final curves are
round circles which appear to lie in the same plane. Plots of energy profile and twist rate are shown in Fig. 5
below

correspond to the (unique) global bending energy minimum of L = 2π among all
closed curves.

Note that the total twist is reduced by precisely 2 from βini = 4.2 to β = 2.2. In
light of Sect. 2.7 a second reduction would be possible as well. However, in contrast
to Experiment 6.3 below, the gradient of the energy does not seem to be steep enough
to invest the amount of additional bending required for another self-penetration. As
2.2 < β∗ the evolution becomes stationary due to Michell’s instability.

6.3 Reducing twist by self-penetration

We repeat the experiment from Sect. 6.2 withκ = 2 and βini = 5, i.e., for a continuous
frame. Here we have β∗ ≈ 3.4641. The same slight perturbation has been added to
the initial curve as before in (14).

In this case we observe twist reduction by two consecutive self-penetrations
although the evolution could possibly stop after the first one since the twist value
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Fig. 5 (Experiment 6.3) Left—the energy plot reveals two peaks of the bending profile corresponding to
the two self-penetrations. The energy profile is virtually constant for the iteration steps outside the range
shown here. Right—plot of the twist rate β for the iteration steps visualized in Fig. 4. Apart from the
initial configuration, the twist rate is non-uniform throughout the evolution. It eventually dissipates around
iteration step 100,000

1000 20000 30000 35000

40000 45000 50000 60000

Fig. 6 Evolution of a twist-free planar elastic figure eight from Experiment 6.4 with κ = 0.7. The initial
curve is (almost) planar and evolves to a circle in a plane which seems to be perpendicular to the initial
configuration. The corresponding frame performs one full rotation. Obviously the bending forces dominate
in this case. The energy plot is shown in Fig. 7 (right)

is then already below the threshold β∗. Obviously, the gradient of the energy of the
noncircular configuration around iteration step k = 48,000 is so steep that Michell’s
instability does not play any role here.

The evolution is visualized in Fig. 4 and the energy values are plotted in Fig. 5 (left).
As the initial and final configurations are circular and the frame closes up (because
of βini ∈ Z), the total twist is integer at the beginning and end of the evolution (cf.
Sect. 2.4).

The twist rate, however, does not stay uniform throughout the evolution as can be
seen from Fig. 5 (right). Eventually the twist will be balanced similarly to Experi-
ment 6.1.

6.4 Planar figure eight

Any closed planar elastica (i.e., a critical point of the bending energy) is either a circle
or a planar figure-eight curve, possibly several times covered, cf. Sachkov [61].
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Fig. 7 (Experiment 6.4) Left—aiming at experimentally confirming the threshold κ = 1
2 , we study (semi-

logarithmically scaled) profiles of twisting energy and total twist for several evolutions of the figure-eight
curve. The smallest iteration step at which the total twist is above 1

2 serves as a threshold for the speed of
the evolution. Right—energy plot for the evolution in Fig. 6 where κ = 0.7

Explicit formulae for elastica based on special functions have been computed in
the 19th century, see the references in Levien [43]. Here we make use of an arclength
parametrization given by Dall’Acqua and Pluda [21] which relies on earlier work by
Djondjorov et al. [24], namely

y(s) =
(
2E(am(s, m), m) − s

2
√

m cn(s, m)

)

, s ∈ R/4K (m)Z.

Here E denotes the incomplete elliptic integral of the second kind and K the com-
plete elliptic integral of the first kind while am is the Jacobi amplitude function
and cn the elliptic cosine function, cf. [21]. The (signed) curvature amounts to
s �→ −2

√
m cn(s, m). The figure-eight curve corresponds to m ≈ 0.82611 which

is the uniquely defined number in (0, 1) with 2E(π
2 , m) = K (m) ≈ 2.321.

In order to break the symmetry which may result in an unstably stationary con-
figuration, a slight perturbation similarly to (14) has been added to the initial curve,

namely s �→ 1
1000 sin

(
7 · 2π

4K (m)
s
)
, perpendicularly to the plane (i.e., in z-direction);

the frame is corrected accordingly.
According to Ivey and Singer [37, Sect. 7] the twist-free planar figure-eight is stable

if κ = cb/ct < 1
2 and unstable if κ > 1

2 .
We performed several evolutions whose energy plots are depicted in Fig. 7 (left). As

in Experiment 6.2, the evolutions are very similar and essentially only differ in speed.
In each case the total twist is raised from zero to one which is still in accordance with
the bound |Tw| ≤ 1 in Sect. 2.7. Mind the semi-logarithmic scaling of the horizontal
axis. Negative values of the twisting energy are due to discretization errors and tend
to zero when choosing a larger number of nodes.

Snapshots of the evolution for κ = 0.7 can be found in Fig. 6. We observe an
evolution to a round circle with one full twist. For the same reason as in Experiment 6.3
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1 2000

4000 5000

6000 7000

7500 8000

9000 11000

14000 16000

17000 18000

20000 25000

40000 100000

Fig. 8 Evolution of an open clamped rod from Experiment 6.5. The total twist amounts to 8 initially and is
then reduced to about 2 by two self-penetrations which occur around iteration steps 6000 and 16,500. The
energy plot is shown in Fig. 9 below
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Fig. 9 Energy plot for the
evolution from Experiment 6.5.
Reduction of twist occurs
following the self-penetrations
of the curve. Total twist attains
the values of 5 and 3 around
iteration steps 7200 and 18,800
respectively. The energy profile
is virtually constant for the
iteration steps ≥30,000

1 2000 2500 3000

3300 3500 4000 4500

Fig. 10 In the first part of Experiment 6.6 we repeat Experiment 6.3 in the presence of impermeability. As
self-penetrations are excluded, we observe the formation of coilings. The energy plot is shown in Fig. 12
(left)

we face integer values of Tw at beginning and end of the evolution. The full energy
plot is depicted in Fig. 7 (right).

The parameters κ of the profiles shown in Fig. 7 (left) amount to κ = 1
2 + 2�

10 for
� = −2,−1, 0, 1, 2, 3, 4. The red solid line corresponding to κ = 0.52 is just about
to lift at the right margin. The speed of the evolution seems to reciprocally depend on
κ − 1

2 , suggesting that the evolutions for κ ≤ 1
2 will be stationary. This confirms the

threshold by Ivey and Singer as desired.

6.5 Open clamped rods

We can also simulate the evolution of open rods. Our initial curve is planar, namely

y(s) =
( 1

2 s
cos s − 1

)

, s ∈ [0, 4π ].
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1 500

2000 3000

4000 5000

6000 7000

7500 8000

9000 10000

12000 14000

16000 16500

17000 17500

18000 20000

25000 40000

50000 100000

Fig. 11 In the second part of Experiment 6.6 we repeat Experiment 6.5 in the presence of impermeability.
As self-penetrations are excluded, we observe the formation of a plectoneme. The viewer’s position has
been rotated by 90◦. The energy plot is shown in Fig. 12 (right)
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(a) (b)

Fig. 12 Energy plots for Experiment 6.6 (a) and (b)

This curve is not parametrized by arclength, with the notation of elliptic integrals
introduced in Experiment 6.4 we have L = 4

√
2E(π

2 ,−2) ≈ 12.357. No perturbation
of the initial rod was used.

Choosing βini = 4 gives an initial total twist of 8 according to Sect. 2.4.
The evolution is depicted in Fig. 8, the corresponding energy plot can be found in

Fig. 9. It seems to become stationary after 30,000 steps although the total twist could
be further reduced, see Sect. 2.7 (Figs. 10, 11).

6.6 Implementing impermeability

In order to preclude rods from self-penetrations we consider the modified total energy
Irod + �TP where � ≥ 0 and TP denote the tangent-point functional

y �→ 1

2qq

∫ L

0

∫ L

0

ds ds̃

r(y(s̃), y(s))q
, q > 2. (15)

Here s, s̃ denotes arclength parameters, and r(y(s̃), y(s)) is the radius of the circle
that is tangent to y at the point y(s̃) and that intersects with y in y(s).

As many so-called knot energies [56], the tangent-point energies provide a mono-
tonic uniform bound on the bi-Lipschitz constant. This implies in particular that the
energy values of a sequence of embedded curves converging to a curve with a self-
intersection will necessarily blow up.

The tangent-point energies have been proposed by Gonzalez and Maddocks [27];
the scale invariant case q = 2 has already been introduced by Buck and Orloff [11].
They are defined on (smooth) embedded curves y : [0, L] → R

n and take values
in [0,+∞], see Strzelecki and von der Mosel [70] and references therein. Blatt [9]
has characterized the energy spaces in terms of Sobolev–Slobodeckiı̆ spaces; regularity
aspects are discussed in [10].

More information on the discretization of the tangent-point functional can be found
in [6,7]. We cut out a strip of radius 2hmax off the diagonal in [0, L]2.
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We repeat Experiments 6.3 and 6.5 in the presence of self-avoidance. No perturba-
tion was added to the initial curves. The parameters are chosen similarly, see Table 1.

Note that for closed curves with a closed frame the linking number is preserved
throughout the evolution. Changes of the total twist will be entirely compensated by
the writhe functional.
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