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Rotating edge‑field driven 
processing of chiral spin textures 
in racetrack devices
Alexander F. Schäffer1,2*, Pia Siegl3, Martin Stier3, Thore Posske3, Jamal Berakdar1, 
Michael Thorwart3, Roland Wiesendanger2 & Elena Y. Vedmedenko2

Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly 
magnetized state have multiple applications in logic devices, sensors, and as bits of information. 
One of the most promising concepts for applying these bits is the racetrack architecture controlled 
by electric currents or magnetic driving fields. In state-of-the-art racetracks, these fields or currents 
are applied to the whole circuit. Here, we employ micromagnetic and atomistic simulations to 
establish a concept for racetrack memories free of global driving forces. Surprisingly, we realize that 
mixed sequences of topologically distinct objects can be created and propagated over far distances 
exclusively by local rotation of magnetization at the sample boundaries. We reveal the dependence 
between chirality of the rotation and the direction of propagation and define the phase space where 
the proposed procedure can be realized. The advantages of this approach are the exclusion of high 
current and field densities as well as its compatibility with an energy-efficient three-dimensional 
design.

Magnetic logic devices based on magnetic domain walls (DW) were introduced in 20051, where DWs were driven 
by rotating magnetic fields in magnetic stripes. Subsequently, the control of the domain walls by electric currents 
was proposed in memory devices2. Since that time, both driving mechanisms were refined and extended to chiral 
objects3–6. Recently, we have shown theoretically7 that certain topological magnetic structures can be created 
without the help of global fields or currents, only by imposing time-dependent boundary conditions. Particu-
larly, stable spirals of classical spins of different winding numbers can be created in antiferromagnetic chains 
by a local rotation of magnetization at the chain ends. The concept has also been applied to chains of quantum 
spins recently8. This one-dimensional model can be applied to multilayered pillars9 or atomistic magnetic chains 
on substrates10. An appealing idea is to use such constraints to create metastable topological quasiparticles like 
domain walls (DWs), solitons, or skyrmions, in two- or three-dimensional racetracks. A significant decrease 
in energy consumption could be achieved by using similar time-dependent boundary conditions for further 
transfer and storage of magnetic objects created alongside the racetrack. However, it was not clear up to now 
whether the one-dimensional concept7 can be applied to racetracks and whether these magnetic objects—once 
created—can then be transported and deleted by locally manipulating the boundaries without global currents 
or fields. Here, we develop theoretical concepts for the processing of topological magnetic objects in racetracks, 
including their creation, deletion, and transportation using time-dependent boundary conditions only. We espe-
cially consider systems with a relevant Dzyaloshinskii-Moriya interaction (DMI), potentially hosting both chiral 
DWs and skyrmions.

Results
First, we investigate whether local magnetic fields, instead of global effects11, can be used to create non-collinear 
topological magnetic quasiparticles as DWs or skyrmions.  Several approaches could either directly or effec-
tively realize the necessary control about the edge-fields. (1) In toggle magnetoresistive random access memory 
(MRAM), a specific timing sequence of currents in independent signal lines smoothly rotates the writing mag-
netic field in micrometer-sized samples12. (2) The utilization of nanostructured magnets for obtaining smoothly 
rotating magnetic fields with magnitudes on the order of hundreds of mT is demonstrated in ref.13. (3) Another 
possibility to generate strong local effective fields exists in tailoring multilayer systems14. Lo Conte et al. stabilize 
room temperature skyrmions by tuning the interlayer exchange coupling between two magnetic layers. As one 
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of the adjusted parameters is the thickness of a spacer layer between the magnetic layers, this principle could be 
extended to nanostructuring the spacer. Hence the strength of the interaction could be manipulated spatially. 
(4) A different procedure uses current-carrying electronic states in atoms15 or molecules16. These states host 
fully controllable magnetic fields when irradiated by laser fields. In the case of the atomic system, magnetic 
flux densities up to 47 T are predicted15. For both the laser-excited molecular systems and the nanostructured 
magnetic materials, the effective magnetic fields are strongly localized and hence provide promising approaches 
for the local creation of nanometer-sized magnetic textures. We simulate similar, smoothly rotating effective 
magnetic fields locally applied to the edge ( x = 0 ) of a thin magnetic stripe in the xy-plane and with dimen-
sions of 100× 30× 1c3 with c = 0.233nm, as shown in Fig. 1a, and calculate the spin dynamics in the stripe 
by micromagnetic simulations and atomistic Landau-Lifshitz-Gilbert (LLG) approaches (details can be found 
in the Supplementary Material, Sec. A. For the micromagnetic calculations, we conduct simulations using the 
open-source, GPU-accelerated software package mumax317, see “Methods” for details.

The simulations are performed primarily with parameters for the Pd/Fe bilayer on an Ir(111) surface, known 
for hosting nanometer-sized skyrmions at moderate magnetic bias fields (saturation magnetization Msat = 1.1
MA m−1 , interfacial DMI constant D = 3.9mJ m−2 , exchange stiffness Aexch = 2pJ m−1 , uniaxial anisotropy 
constant Ku = 2.5MJ m−3 and Gilbert damping parameter α = 0.1)18. The second model system we consider 
is a Co/Pt multilayer with weaker DMI. The local edge-field rotates in the xz-plane (cf. Fig 1a). Additionally, a 
static background field of Bzstat = 1.5 T was applied to ensure a spin-polarized ground state and the stability of 
both DWs and skyrmions in our calculations. We apply a local edge-field with an amplitude of |B(t)| = B = 10 T, 
rotating once within 500 ps ( ν = 2GHz) and then being deactivated, meaning

 Figure 1b,c show how stable non-collinear magnetic objects are successfully inscribed for matching rotational 
senses of both the field and the intrinsic magnetic chirality determined by the DMI. Chiral DWs and skyrmions 
can be induced by a field applied either to the complete edge (DW) or only to its central two thirds (skyrmion), 
respectively (Fig. 1b,c, cf. lighter and darker green area in Fig. 1a). Once generated, the spin arrangements move 
along the racetrack until they slow down and come to rest at a finite distance from the point of creation. In order 

(1)
B(t < ν−1) = B sin(2πνt)êx +

[

Bz
stat + B cos(2πνt)

]

êz,

B(t ≥ ν−1) = Bz
stat

êz .

Figure 1.   Skyrmion and domain wall creation in a magnetic stripe. (a) Schematics of the rotating effective 
magnetic field applied locally at the edge (green rectangular area) of the system. The time-dependent magnetic 
field rotates along the green arrow in the xz-plane with angle θ . (b) Real-space image of the motion of the 
skyrmion and DW for different time steps. For the skyrmion, the field is applied to two thirds of the width of 
the stripe (bright green area in (a)), in the case of the DW, the full width is affected by the field. The shown 
positions correspond to 250 ps (half a rotation), 500 ps (full rotation), and 750 ps (half a period after turning 
off the time-dependent field). The Gilbert damping parameter is reduced to α = 0.01 in order to emphasize 
the differences in the motions. (c) Distance-time-diagram of a single created DW and skyrmion for a standard 
damping parameter α = 0.1 . System size: 100× 30× 1c3 with material parameters corresponding to Pd/Fe/
Ir(111); c = 0.233nm.
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to emphasize the different dynamics of the DW and the skyrmion, the Gilbert damping parameter in Fig. 1b is 
chosen to be relatively low ( α = 0.01 ), to achieve significant lateral displacements. The positions of both objects 
are shown after half a rotation of the external edge-field (250 ps), after the full rotation (500 ps), and another half 
period after turning off the rotating effective field (750 ps). The displacements of the created quasiparticles for 
α = 0.1 are shown in Fig. 1c, an animated version can be found in the Supplementary Video 1. The path-time 
diagrams demonstrate that the magnetic quasiparticles possess initial momentum and inertia as they continue 
to move after the field has been switched off. As in ref.19, the Thiele equation, customarily used to describe the 
center of mass dynamics of magnetic quasiparticles, may be extended to include higher-order terms like the 
gyrodamping. This is essential for our creation mechanism, as it involves highly non-linear dynamics. However, 
the nature of a quasiparticle model lacks the ability to treat the creation of the skyrmion itself. Therefore we 
employ numerical spin dynamics simulations.

In the following, the control of the magnetic quasiparticles is performed by magnetic fields, localized at an 
optimized number of simulation cells close to one edge of the sample represented by a rectangular slab. This 
control includes displacement operations, which usually are achieved by applying global electrical currents. In the 
first step, we optimized the area where the magnetic field is applied in terms of generating skyrmions or domain 
walls at low field amplitudes. A detailed description of this parameter optimization and the application of more 
sophisticated field distributions are discussed in “Methods” and the Supplementary Material, Sec. B. For a fixed 
area affected by the rotating effective edge-field of 7× 24 simulation cells, the rotation speed (frequency ν from 1 
to 8 GHz) and the amplitude (B from 1 to 5 T) are varied. Based on the magnetic configurations, resulting from 
the rotating effective excitation field and subsequent relaxation, the absolute value of the topological charge |NT| 
(Fig. 2a) and the out-of-plane component of the magnetization m̄z averaged over the sample surface (Fig. 2b) are 
calculated. The topological charge NT is defined as

where

(2)NT =
1

4π

∫

nT(x, y) dxdy ,

Figure 2.   Quasiparticle creation due to a single rotation of a magnetic field localized at the sample edge. 
(a,b) Parameter space diagrams for a single field rotation and subsequent system relaxation. Shown is the 
absolute value of the topological charge |NT| (a), and the vertical magnetization averaged over the sample (b) 
as a function of the frequency and amplitude of the time-dependent driving field. The excited area at the left 
boundary is 7 c × 24 c , and the damping parameter α = 0.1 . (c,d) Absolute value of the topological charge as a 
function of the rotational phase of the local field for Pd/Fe/Ir(111) (c) and Co/Pt (d). System size: 60× 30× 1c3 
for (a–c) and 100× 64× 1cCo

3 for (d), with material parameters corresponding to Pd/Fe/Ir(111) (a–c) and Co/
Pt (d); c = 0.233nm, cCo = 1nm.
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is the topological charge density and m represents the vector field of the magnetization. As expected20, we only 
observe skyrmions and no antiskyrmions11 in the considered parameter regime. Therefore, the sign of the topo-
logical charge only reflects the polarity of the skyrmions, which is fixed by the non-rotating edge magnetization 
of the sample. To avoid confusion, absolute values |NT| are shown in Fig. 2a. By combining both maps, two 
distinct regimes become apparent. For frequencies up to ν ≈ 6.5GHz a pocket forms in a regime of moderate 
field amplitudes in which a well-defined topological charge of |NT| = 1 is measured. This area corresponds to 
the injection of a single skyrmion. For larger amplitudes or higher frequencies, respectively, no skyrmion can 
be inscribed into the system. Remarkably, for even higher amplitudes of the field, another distinguished area in 
the parameter space opens up, where the average magnetization is diminished even more than in the case of the 
skyrmion. It turns out that this blue area in Fig. 2b represents a single created DW without indication in the total 
topological charge. Here, the possibility of the individual creation of magnetic objects with distinct topologies 
opens new technological perspectives. Most interestingly, radially symmetric skyrmions or chiral DWs can be 
inscribed in the same nanostripe setup by solely changing the amplitude of the local effective rotating edge-field. 
This is in contrast to Fig. 1b,c, where we assumed different spatial extensions of the magnetic fields.

As a second model system we use Co/Pt multilayers, in which skyrmions have been observed in the absence 
of global magnetic fields ( Msat = 0.58 MAm−1 , Aexch = 15 pJm−1 , D = 3.5 mJm−2 , Ku = 0.8 MJm−3 , α = 0.3 , 
system size: 100× 64× 1nm3 , cell size: 1 nm3)3,21. In Fig. 2c,d the topological charge is displayed for both mate-
rials as a function of the rotation angle θ (cf. Fig. 1a) of the external field. The rotation frequencies span from 
10 MHz up to 10 GHz for an amplitude of the localized rotating effective field of B = 2.5 T in the case of the Pd/
Fe/Ir(111) system. For Co/Pt an area of 7× 48 simulation cells is excited with a field amplitude of 1 T (see “Meth-
ods” for details on the choice of parameters). Note that due to the non uniform magnetization of the bound-
ary, the topological charge varies smoothly. New quasiparticles are created at rotation angles �ϕPd/Fe ≈ 270◦ ; 
�ϕCo/Pt ≈ 300◦ (where |NT | reaches unity in Fig. 2c,d). Though the material parameters differ significantly and 
we do not apply a static magnetic field for stabilizing skyrmions in the case of Co/Pt, the quasiparticle creation 
is still successful in a similar frequency regime up to the GHz range (Fig. 2d). This indicates that our results are 
not limited to the Pd/Fe/Ir(111) system, but can be applied to various chiral magnets.

In the next step, we investigate whether a created magnetic object can be moved to any position along the 
racetrack using local effective rotating edge-fields. To achieve this goal, continuously rotating fields of different 

(3)nT = m ·

(

∂m

∂x
×

∂m

∂y

)

Figure 3.   Skyrmion and domain wall steered by a continuously rotating effective magnetic field localized 
at the sample edge. Path-time diagrams of the skyrmion (a) and DW (b) propagation for ν = 0.5, 1, 2 GHz, 
respectively (from left to right). Each horizontal line of pixels shows (a) the topological charge density or 
(b) the out-of-plane component of the magnetization, each averaged over cross sections of the nanostripe in 
( ̃nT(x, t) , m̃z(x, t) ). The inverse mean slopes of the curves give the velocities of the quasiparticles. System size: 
200× 30× 1c3 , with material parameters corresponding to Pd/Fe/Ir(111); c = 0.233nm.
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frequencies are applied to the Pd/Fe/Ir(111) nanostripe edge. Here, the excited area is again 7× 24 simulation 
cells large , whereas the amplitude of the field is set to BSk = 2.5 T or BDW = 3.5 T according to Fig. 2b. The path-
time diagrams are shown in Fig. 3 for both the topological charge density in the case of the skyrmion creation 
(Fig. 3a) and the out-of-plane component of the magnetization for DW simulations (Fig. 3b). Both quantities are 
averaged over one cross-section of the stripe ñT(x) = �nT(x, y)�y , m̃z(x) = �mz(x, y)�y  to track the skyrmions and 
DWs along the stripe more easily. For sufficiently large DMI, the created magnetic objects are stable and obtain 
an initial velocity that drives them away from the boundary (see Fig. 3a,b). In contrast to racetrack concepts 
based on electrical currents2,22,23, where a single magnetic object is moved along a racetrack, in our setup, trains 
of quasiparticles are created and moved collectively: at each subsequent 2π rotation of a magnetic field, a new 
quasiparticle is created, while already existing quasiparticles are moved away due to the repulsive interactions 
between them (see Fig. 3a,b). Furthermore, the distance traveled by the created quasiparticles during the crea-
tion time increases linearly with increasing frequency. This can be seen in the path-time diagrams of Fig. 3a,b, 
where the inverse of the linear slope gives the mean velocity of the quasiparticle, which reaches v ≈ 12m s−1 at 
ν = 2GHz. This speed can be further increased by smart combinations of material parameters and frequencies 
of the rotating effective field. The distances traveled by each of the particles suggests a linear speed-frequency 
relation. Additionally, the minor delay in the motion of previously and newly created quasiparticles in the stripe 
implies that the time scale of magnetic interactions is much smaller than that of the driving local edge-field. 
This limits the validity of the suggested linear speed-frequency relation to sufficiently low frequencies or large 
damping parameters. The velocity of propagation decreases when the quasiparticles fill the sample (see right 
panels of Fig. 3a,b for ν = 2GHz). In this regime, the mean distance of skyrmions/DWs is comparable to the 
interaction range of these objects24–27. If the energy barrier given by the repulsion of the quasiparticle from the 
edge is large enough, the packing density of quasiparticles increases as shown in detail in the Supplementary 
Video 2. A difference between skyrmion and DW creation starts to appear at high quasiparticle densities, i.e., in 

Figure 4.   Writing and deleting operations. (a) Mixed sequence of three DWs and three skyrmions generated by 
multiple different field operations in the green area. (b) In-plane component of the rotating effective magnetic 
field with two different amplitudes. (c) Field protocol Bx(t) for two writing operations (red) and one deletion 
operation (blue) with rotational sense opposite to the DMI. (d) Simulated total topological charge (black line) 
as a function of the number of subsequent field operations according to the protocol shown in (c). In the bright 
green area, the simulated topological charge is parallel to the behavior of an ideal system exactly following the 
protocol (red/blue line), therefore indicating high reproducibility. System size: 200× 30× 1c3 , with material 
parameters corresponding to Pd/Fe/Ir(111).
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the 2 GHz panel for t > 4ns. Here the skyrmion injection persists, whereas a maximal possible density of DWs 
is reached and excess DWs are repelled out of the sample after a short backaction. This behavior can be related 
to the smaller feature size of a skyrmion compared to a DW.

So far, we have shown that it is possible to create and move trains of magnetic quasiparticles by local excita-
tions in a controllable way, without currents or global driving fields. Only the local edge-field is necessary for 
creating an object, the intrinsic interactions result in quasiparticle propagation. Because the DMI has a directional 
sense and because the quasiparticles repel each other, the creation of an additional object lets the existing qua-
siparticles move in a given direction with a well-defined velocity. To increase the functionality of the proposed 
current-free racetrack, we check the possibility of using magnetic quasiparticles of different topology as bits of 
information based on our findings in Fig. 2a,b. Figure 4 shows results for different combinations of effective 
rotating edge-fields. Figure 4a is obtained by changing the amplitude of the driving edge-field according to the 
protocol shown in Fig. 4b for the x component of the magnetization (cf. Eq. (1)). Each operation, separated by a 
dashed line in the graphic representation, consists of a single rotation of amplitude BSk or BDW and two periods 
(in units of ν−1 ) of relaxation time with ν = 2GHz (see Supplementary Video 3 for an animated version of the 
resulting magnetization dynamics). Thus, the creation and successful propagation of any mixed sequence of 
DWs and skyrmions are possible.

Finally, we want to study the dynamics of the created magnetic objects if the rotational sense of the local field 
is reversed to potentially delete previously created quasiparticles. Figure 4c shows the field operations considered 
for studying the necessary skyrmion densities to permit reversible creation and annihilation operations. Starting 
from a field polarized state, two writing attempts and one deletion process with opposite chirality are performed 
(see Supplementary Video 4 for an animated version of the resulting magnetization dynamics in a small model 
system). The resulting topological charge of the Pd/Fe stripe after each operation is shown in Fig. 4d along with 
the ideal response according to the discussed protocol. Above a threshold topological charge of |NT| � 10 , the 
skyrmion density is too large to add further quasiparticles successfully. Instead, undesired escapes of skyrmions 
take place (second gray area in Fig. 4d). In contrast, for low skyrmion densities ( |NT| � 5 ) the quasiparticles lose 
contact to the boundary and can not be deleted reliably (first gray area in Fig. 4d). In the bright green region, 
the field protocol is parallel to the writing-deleting events; hence, this area signifies high operational stability.

Discussion
Global current-free writing, propulsion, and deletion of magnetic quasiparticles with distinct topological proper-
ties can be achieved in the same system by local excitations at the boundary of a magnetic racetrack device. The 
proposed procedure relies on internal magnetic interactions instead of global driving currents, which strongly 
decreases the required energy consumption and potentially avoids overheating. By attributing a binary zero to one 
of the two topologically distinct objects, while binary unity to the other, a racetrack memory can be developed 
in a suitable quasiparticle density regime. The main benefit of utilizing two different kinds of quasiparticles is 
avoiding relying on a conserved void between objects of a single species. Due to the thermal motion of magnetic 
quasiparticles24, they naturally distribute uniformly over samples at finite temperatures. Previously, different 
approaches have been developed to evade this problem, e.g., by periodically modifying the energy surface28 
such that objects rest at preferential positions. Therefore, the quasiparticles can no longer move isotropically, 
and, once written, information encoded in occupied and unoccupied positions is conserved. Therefore increased 
energy is needed to move objects at all and the necessary precise tuning of driving forces to move quasiparticles 
to the desired positions. These challenges do not apply to the concept presented here, as the placeholder between 
magnetic objects as bits of information is another magnetic quasiparticle. Additionally, the current-free storage 
concept proposed here is compatible with a three-dimensional design of magnetic networks, which significantly 
increases the information storage capacity.

Methods
Micromagnetic simulations.  The functional derivative of the free energy density F[m] with respect to 
the unit vector field of the magnetization m(r, t) defines the time- and space-dependent effective magnetic field

It is composed of the external field Bext
i (t) , including the rotating edge-field; the exchange interaction field 

B
exch
i = 2Aexch/Msat�mi , with the exchange stiffness Aexch and the saturation magnetization Msat , the demagnet-

izing field Bd
i = MsatK̂ij ∗mj , where we refer to ref.17 for details of the calculation of the demagnetizing kernel 

K̂ , the uniaxial magnetocrystalline anisotropy field Ba
i = 2Ku/Msatmzez , with Ku the anisotropy constant, and 

the field generated by the Dzyaloshinskii-Moriya interaction Bdmi
i = 2D/Msat

(

∂xmz , ∂ymz ,−∂xmx − ∂ymy

)T , 
with D the strength of the interfacial Dzyaloshinskii-Moriya interaction. The effective magnetic field enters the 
LLG equation,

which is solved for every simulation cell i of the discretized magnetization vector field mi . The gyromagnetic 
ratio of an electron is denoted by γ0 = 1.76× 1011(T−1s−1) and α is the Gilbert damping parameter. The integral 
definition of the topological charge NT (Eq. 2) is applied to the discrete lattice system.

Optimization of excitation area.  To optimize the excitation mechanism for the uniformly distributed 
magnetic field restricted to a rectangular shaped area, two benchmarks to rate magnetic field sweeps are defined. 

(4)B
eff
i (t) = B

ext
i (t)+ B

exch
i + B

d
i + B

a
i + B

dmi
i .

(5)ṁi(t) = −
γ

1+ α2

[

mi × B
eff
i + αmi ×

(

mi × B
eff
i

)]

,
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First, the possibility of choosing between skyrmion or DW creation by changing the amplitude of the rotating 
magnetic field should be preserved. Hence we are looking for separate regimes of skyrmion and DW creation. 
Second, the proposed device should work at minimum field amplitudes to ensure low energy consumption. For 
Pd/Fe/Ir(111) the excited area is varied between (1× 2) and (15× 30) simulation cells for a fixed frequency 
of ν = 1GHz. From the obtained 240 B-field sweeps, 53 show both features of skyrmions (topological charge 
|NT| = 1 ) and DWs (average out-of-plane magnetization m̄z < 0.7 ). Afterward, the data set with the lowest 
threshold magnetic field for the DW creation is selected from the filtered data sets. This value is favored over the 
critical skyrmion creation field, as it is the highest necessary field for operating the mixed skyrmion DW track. 
The scan through frequency and field amplitude for the chosen area of excitation of (7× 24) simulation cells is 
shown in Fig. 2a,b of the main text.

The same procedure is applied for the Co/Pt system, where the excited area is altered between (1× 2) and 
(52× 64) simulation cells. Here 32 out of the 352 data sets show indications for both DWs and skyrmions, and 
we identified an area of (7× 48) simulation cells for optimal functionality.

Data availability
Data that support the findings of this work are available from the corresponding author on request.

Code availability
For obtaining the results, we used the open-source, GPU-accelerated software package mumax317 for the micro-
magnetic simulations. The atomistic spin dynamics simulations were executed with a self-developed code. Input 
files are available from the corresponding author on request.
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