Efficient Similarity-based Operations
for Data Integration

Dissertation zur Erlangung des akademischen
Grades Doktoringenieur (Dr.-Ing.)

angenommen durch die Faultat Informatik der
Otto-von-Guericke-Universitat Magdeburg

von Diplominformatiker Eike Schallehn,
geboren am 22.9.1971 in Schdnebeck

Gutachter:
Prof. Dr. Gunter Saake
Prof. Dr. Kai-Uwe Sattler
Dr. Ralf-Detlef Kutsche

Promotionskollogium in Magdeburg
am 26. Marz 2004

Zusammenfassung

Das Forschungsfeld der Datenintegration ist ein Gebiet mit wachsender praktisch-
er Bedeutung, besonders unter Beriicksichtigung der wachsenden Verfuigbarkeit
grolRer Datenmengen aus mehr und mehr Quellsystemen. Entsprechend beinhaltet
gegenwartige Forschung die Losung von Problemen zur Beseitigung von Konflik-
ten auf der Datenebene, welche in dieser Dissertation betrachtet werden.

Die Behandlung von Diskrepanzen in Daten ist immer noch eine groRe Her-
ausforderung und zum Beispiel relevant zur Beseitigung von Duplikaten aus se-
mantisch Uberlappenden Datenquellen als auch zur Verbindung komplementarer
Daten aus verschiedenen Quellen. Entsprechende Operationen kdnnen meist nicht
nur auf Wertegleichheit basieren, da nur in wenigen Féllen Uber Systemgrenzen
hinweg glltige Identifikatoren existieren. Die Verwendung weiterer Attributwerte
ist problematisch, da fehlerhafte Daten und unterschiedliche Darstellungsweisen
ein hdufiges Problem in diesem Kontext sind. Deshalb miissen solche Operation
auf der Ahnlichkeit von Datenobjekten und -werten basieren.

Der Begriff der Ahnlichkeit ist selber problematisch beziiglich seiner Ver-
wendung und der Grundlagen seiner Bedeutung. Erfolgreiche Anwendungen
haben oft eine sehr spezifische Sichtweise auf AhnlichkeitsmaRe und -pradikate,
welche einen eingeschrankten Fokus auf den Kontext der Ahnlichkeit im gegebe-
nen Szenario widerspiegelt. Um dhnlichkeitsbasierte Operationen fir die Daten-
integration bereitzustellen, bendtigen wir eine umfassendere Sichtweise, die
auch geeignet ist, um zum Beispiel verschiedene generische und angepafite
Ahnlichkeitsmafe, die in einem gegebenen Datenintegrationssystem anwendbar
sind, zu kombinieren.

Dieser Probleme wird sich in der vorliegenden Dissertation angenommen,
indem &dhnlichkeitsbasierte Operationen entsprechend einem leichtgewichtigen,
generischen Rahmen bereitgestellt werden. Die dhnlichkeitsbasierte Selektion,
der Verbund und die Gruppierung werden beztiglich ihrer allgemeinen Semantik
und besonderer Aspekte der zugrundeliegenden Ahnlichkeitsrelationen diskutiert.
Entsprechende Algorithmen fir die Datenbearbeitung werden fiir materialisierte
und virtuelle Datenintegrationsszenarien beschrieben. Implementierungen wer-
den vorgestellt und beziiglich der Anwendbarkeit und Effizienz der vorgestellten
Ansétze evaluiert.

Auf der Pradikatebene konzentriert sich die Dissertation auf die Ahnlichkeit
von Zeichenketten, und zwar basierend auf der Levenshtein- oder Editierdistanz.
Die effiziente Bearbeitung von ahnlichkeitsbasierten Operationen hangt in erster
Linie von der effizienten Auswertung von Ahnlichkeitspradikaten ab, was fiir Zei-
chenkettendhnlichkeit basierend auf Indexunterstiitzung in materialisierten und
durch Preselektion in virtuellen Integrationsszenarien dargestellt wird.

Efficient Similarity-based Operations
for Data Integration

Eike Schallehn

March 29, 2004

Abstract

The research field of data integration is an area of growing practical importance,
especially considering the increasing availability of huge amounts of data from
more and more source systems. According current research includes approaches
for solving the problem of conflicts on the data level addressed in this thesis.

Dealing with discrepancies in data still is a big challenge, relevant for instance
during eliminating duplicates from semantically overlapping sources as well as
for combining complementary data from different sources. According operations
most often cannot only be based on equality of values, because only in rare cases
there are identifiers valid across system boundaries. Using other attribute values
is problematic, because erroneous data and varying conventions for information
representation are common problems in this field. Therefore, according operations
have to be based on the similarity of data objects and values.

The concept of similarity itself is problematic regarding its usage and founda-
tions of its semantics. Successful applications often have a very specific view of
similarity measures and predicates that represent a narrow focus on the context of
similarity for this given scenario. To provide similarity-based operations for data
integration purposes requires a broader view on similarity, suitable to include for
instance a number of generic and tailor-made similarity measures useful in a given
data integration system.

These problems are addressed in this thesis by providing similarity-based op-
erations according to a small, generic framework. Similarity-based selection, join,
and grouping operations are discussed regarding their general semantics and spe-
cial aspects of underlying similarity relations. According algorithms suitable for
data processing are described for materialised and virtual integration scenarios.
Implementations are given and evaluated to prove the applicability and efficiency
of the proposed approaches.

On the predicate level the thesis is focused on string similarity, namely based
on the Levenshtein or edit distance. The efficient processing of similarity-based
operations mainly depends on an efficient evaluation of similarity predicates,
which is illustrated for string similarity based on index support in materialised
and pre-selection in virtual data integration scenarios.

Contents

1 Introduction

1.1 Motivation.
1.2 Structureofthe Thesis
1.3 Contributionsofthe Thesis
2 Data Integration Approaches
2.1 Introduction
2.2 Characteristics of Data Integration
2.2.1 Heterogeneity o
222 Distribution L
223 AUtonomy ...
2.3 Data Integration Approaches
2.3.1 \Virtual Data Integration
2.3.2 Materialised Data Integration
24 Conclusions
3 Concepts of Similarity
3.1 Introduction
3.2 Modelsof Similarity
3.2.1 Similarity Measures and Predicates
3.2.2 Metrics as Similarity Measures
3.2.3 Problems with CommonModels
3.3 StringSimilarity
34 Conclusions
4 Similarity-based Operations
4.1 Introduction
4.2 Similarity Predicates
4.3 Similarity-based Operations

4.3.1 Similarity-based Selection
4.3.2 Similarity-based Join oL L

Vi

4.3.3 Similarity-based Grouping
44 Conclusions

Similarity Operations for Materialised Data

5.1 Introduction

5.2 Principles of the Implementation and Optimisation
5.2.1 A Trie-based Similarity Predicate for Strings

5.2.2 Similarity-based Join
5.2.3 Similarity-based Grouping
5.3 Implementation using Oracle8i
54 Evaluation
55 Applications. oo
56 Conclusions

Re-writing Similarity-based Queries

6.1 Introduction,

6.2 Mapping Similarity predicates

6.2.1 Substring Decomposition.
6.22 qg-samples,

6.2.3 Tokens
6.3 Managing Selectivity Information
6.4 Similarity-based Operations
6.4.1 Similarity-based Selection
6.4.2 Similarity Join

6.5 Evaluation.
6.6 Conclusions

Conclusions
7.1 Summary of Contributions
7.2 Outlook and Open Problems

CONTENTS

List of Figures

11
1.2

2.1
2.2
2.3

3.1

3.2
4.1

4.2

5.1
5.2
5.3
5.4

5.5
5.6
5.7

5.8

5.9

6.1
6.2
6.3
6.4
6.5

Example data and result for a similarity join 6
Example data and result for similarity-based duplicate elimination 7

General architecture of a multi-database system 22
Classification of MDBMS according to Sheth and Larson 23
Principal mediator architecture 25

Usage of similarity for identification and abstraction of real world

objects 32
Distances in a weighted directedgraph 43
Derived equivalence relation for a given similarity relation (a) by

(b) transitive and (c) strict similarity 61
Application of the grouping operator 63
Building groups applying index support 74
Example inputrelation 77
Grouping with exact match and thresholdk=1 77
Grouping with varying thresholds k > 1 and the naive approach of

pairwise COmparisons e 78
Grouping with varying percentage of duplicates in the test data sets 79
Results for varying thresholds k > 1 for a similarity join. 79
Edit distance distribution of random strings in the test data set

with 20% duplicates of Kpex =2 L. 82
Edit distance distribution in an integrated and sampled data set on

culturalassets 83
Relative edit distance distribution. 83

Number of distinct g-grams for varying g in the King James Bible 90

Finding selective substrings fork =2, hencen=k+1=3 91
Finding selective 3-samples fork =2, hencen=k+1=3 93
Duplicate distribution in testdataset 102
Average selectivity for varyinggandk 103

Vil

VIl LIST OF FIGURES

6.6 Cumulative selectivity distribution for varyinggand k. 104
6.7 Quality of selectivity estimationforq=3andg=5 105
6.8 Applicability for varyinggandk 106
6.9 Sample size estimationerrors L. 106
6.10 Quality of the pre-selection decisions. 107
6.11 g-gram table sizes vs. pruning limits 108

6.12 Quality of pre-selection vs. pruning limits 108

Chapter 1

| ntroduction

The ever-growing importance of information in our life, described by the debat-
able notion of the Information Society and mainly driven by the tremendous suc-
cess of new technologies like the Internet and the Web, has not only changed the
way we live but also the direction of information and computer science. The In-
formation Society was defined by the IBM Community Development Foundation
in the 1997 report [Fou97] as follows:

A society characterised by a high level of information intensity in the
everyday life of most citizens, in most organisations and workplaces;
by the use of common or compatible technology for a wide range of
personal, social, educational and business activities, and by the ability
to transmit, receive and exchange digital data rapidly between places
irrespective of distance.

And yes, the availability of general and specialised information has increased
by magnitudes. More information is stored in more local information systems in
companies, institutions, and by private persons. Often these information are made
globally available via the Internet. Heritage information like books, newspapers,
music, cultural assets, card indexes, and more stored for centuries on other media
are conditioned and transformed to digital media for better availability. Informa-
tion has gained a higher reputation as a productivity factor, making the notion of
information as commodity more common. Trading almost all kinds of goods using
information technology became know as eCommerce and is howadays common
practice. In the private sector new information technologies lead to new levels
in communication and entertainment. And though the turbulences of the early
phases during the mid-1990s have calmed down a little bit, the trend of an on-
going deeper penetration of our life with information and according technologies
will certainly persist.

2 CHAPTER 1. INTRODUCTION

But, while there is more and more information available from more and more
sources, the actual information needs of users are and will remain constrained by
human abilities of perception. Actually, we are only able to process a very lim-
ited amount of data required to cope with a certain task. So the best profit we
can make from the wealth of information available is the improved likelihood of
finding information that suit our needs. The downside of a high level of avail-
ability of information is the effort required to find or condense that small piece of
information users are after.

Nevertheless, the above conflict to some degree marked a turning point for
some research areas in information and computer science. The research focus
shifted from how to make information available towards how to make informa-
tion useful. For years, the main concern in research on data management and
information systems was to efficiently store, access, and transfer data. After these
questions for the most part were solved, enabling us to provide information with
a quality and quantity that some years earlier only few would have dared to dream
of, other questions became more important: Where can | find needed informa-
tion? How can | access these information? How can | make use of the load of
information provided? How can | decide if it is even useful? How can | present
the information in a way that suits my needs? In other words, technologies to map
the huge quantity of available information to the actually small information need
were required.

One of the main problems with the created information jungle is the great
number of different sources we may use or even have to use to fulfil our informa-
tion requirements. This is especially true in global scenarios like the Web, where
even experts may not be aware of all relevant sources and the kind and quality
of information they provide. While this is considered less problematic in local
scenarios, it is still a difficult problem to fully understand the meaning and re-
lationships of information stored in different systems. And in addition, in both
scenarios we have to deal with a multitude of technologies, interfaces, languages,
etc. on various technical levels to access the systems of interest. Though stan-
dards exist, there are a number of them for each application and compliance is
often limited.

These problems are addressed in the area of information system and data in-
tegration, where the main focus is on concepts for resolving conflicts on different
levels of data access and data representation between heterogeneous information
systems. The main objective of the integration task is to provide the user a sin-
gle point of access to relevant information from several sources. To achieve this,
data can either be gathered and physically stored in one place, or an integrated
system may provide a virtual integration by providing a unified access, internally
mapping queries to and results from the originate systems.

Though there are no generally agreed upon dimensions of integration, in this
thesis physical versus virtual integration is used as an important distinction. For
a coarse classification a further characteristic is the degree of stucturedness in the
data to be integrated, ranging from highly structured data found for instance in
business information systems based on relational databases, to Web sites repre-
senting weakly structured or unstructured documents. Furthermore, the local and
organisational scope of the integration is used as a dimension, i.e. whether the
information sources exist in a more local, e.g. a company, or global context, e.g.
the Web. The scope dimension has a significant impact on a number of impor-
tant aspects of an integrated systems like the autonomy of the source systems, the
degree of data-level conflicts, performance considerations, etc.

From a very broad perspective, materialised integration systems range from
data warehouses (highly structured, data, local source systems) that store con-
densed business data mainly for usage by the management, to Web search engines
(unstructured data, global source systems), which gather textual information to
allow a search over web documents providing only links to the sources as a re-
sult. Virtual integration systems include meta search engines (semi-structured
data, merely global source systems) offering integrated access to databases avail-
able over the Web serving a special purpose. Federated databases (highly struc-
tured data, merely local source systems) are less common, mostly due to the often
high complexity of this kind of integration and the very few commercial tools and
solutions available, e.g. the IBM Information Integrator.

To somewhat narrow the focus of this thesis, the research presented here deals
mostly with structured data as found in databases, as well as mediated and feder-
ated systems. Semi-structured data is considered, as far as a schema for querying
and presenting the data can be derived, though the process of finding and using
this schema is not a key issue in this thesis. Distinctions along the dimensions
of physical/virtual and global/local integration have a profound impact on ap-
proaches presented within this thesis, even causing different approaches suitable
in respective scenarios.

The integration approaches mentioned so far, and others discussed later on,
solve some of the pressing problems mentioned above. A user no longer has to
worry, where to find the information and how to access them. Relying on the
designers, implementors, and administrators of an integrated system, the informa-
tion is now available in one place — physically or virtually — and using one uniform
representation.

But considering only the access aspects of integration does not fully solve the
problem of providing information according to user needs. The amount of infor-
mation available is still huge, even bigger when data sets from various sources are
combined. The content of various sources may overlap, presentations of data val-
ues may vary due to different conventions, and finally, erroneous data is a common

4 CHAPTER 1. INTRODUCTION

problem in local databases making their integration even harder. Furthermore,
relationships within data sets, locally expressed using unique identifiers, cannot
easily be resolved, because these identifiers very often do not carry any meaning
in a global scope.

Hence, making it possible to work with an integrated set of data itself is a dif-
ficult part of the integration process, requiring new approaches in data processing,
and thus, inspired research in various directions. The motivation of the research
presented in this thesis derives from the high degree of vagueness in integrated
data sets existing due to the previously mentioned reasons. One way to deal with
this problem is to introduce new operations that explicitly address imprecise, er-
roneous, and only weakly related data to present a more consistent or condensed
view to the user.

To provide such operations, the concept of similarity gained interest in data
integration and data management in general. Instead of relying on the equality
of data values, which forms the basis of data models and according operations
in current data management, data can be queried, linked, condensed, or cleaned
based on similarity to or between values or more complex objects. Actually, here
the notion of similarity is not without problems, because we may talk about real
similarity between different objects, as well as similarity of different represen-
tations of the same real-world object. The former can apply where data has to
be condensed, e.g. for analytical processing, or linked according to some loose
relationship. The latter is a very common problem in data integration, known as
entity identification, record linkage, or the same-object problem, where different
sources often provide overlapping information on objects in a common scope of
interest.

The term similarity itself raised some interesting questions, because its usage
and definition in sciences like psychology, mathematics, philosophy, etc. varies
widely, sometimes even within one area. Furthermore, while equality is a rela-
tionship independent of the application domain, a similarity relationship or a sim-
ilarity measure in most cases is specific to the application, to the objects, or actual
attributes to be compared. The current usage of the term in computer science,
having its roots in fields like information retrieval and knowledge-based systems,
most often has a very narrow focus. This may be suitable in some applications, but
to efficiently support data integration scenarios requires a closer look at various
aspects of similarity.

So, to provide new operations based on similarity we have to consider the
characteristics of the relationship, and, based on this, integrate the operations in a
framework for similarity-based query processing. Building on this general view,
the special requirements in certain integration scenarios, e.g. as part of a middle-
ware in a virtual integration or as an extension to database management systems
for a physical integration, have to be considered. A further key aspect of offering

1.1. MOTIVATION 5

similarity-based operations is their efficiency. At first, this is due to the nature
of similarity, which in general requires more effort to decide about its existence
between objects than equality. Secondly, the target integration scenarios, as pre-
viously mentioned, often have to deal with huge amounts of data gathered from
numerous sources, this way exceeding the requirements of conventional query
processing.

1.1 Motivation

In the past few years, there has been a great amount of work on data integration.
This includes the integration of information from diverse sources in the Internet,
the integration of enterprise data in support of decision-making using data ware-
houses, and preparing data from various sources for data mining. As a motivating
example in this section requirements of a mediator-based integration scenario are
outlined. The system is intended to provide integrated information on cultural
assets drawn from various systems available over the Internet.

Some of the major problems in this context — besides overcoming structural
conflicts — are related to overcoming conflicts and inconsistencies on the data
level. This includes the elimination of duplicate data objects caused by semantic
overlapping of some sources, as well as establishing a relationship between com-
plementary data from these sources. Both aspects are illustrated in the following.

The implementation of operations dealing with conflicts on the data level has
a significant difference to usual data management operations: only in some rare
cases we can rely on equality of attributes. Instead we have to deal with discrep-
ancies in data objects representing the same or related real-world objects which
may exist due to input errors or simply due to the autonomy of the sources. Fur-
thermore, the amount of data to be processed in integration scenarios can be equal
to or even greater than from a single source, so, efficiency of the implementation
becomes a critical issue. While for this motivating example only the principal re-
quirements are outlined, the focus of this thesis will be on providing the required
operations in a way that suits the probably large data volumes and user expecta-
tions regarding the performance of an integrated system.

As an example for a similarity join consider an information system on art
objects providing information for instance on paintings and their creators. One
source may provide a plain collection of these items, but we intend to present
additional biographical information on the artists given by a standard catalogue
integrated from another source. The example shown in Figure 1.1 demonstrates
three problems common in this application domain.

First, due to language issues a number of different spellings or transcriptions
of names may exist, like in the case of ‘Albrecht Diirer’ or ‘llya Repin’. Secondly,

6 CHAPTER 1. INTRODUCTION

Paintings Artists

Artist Title Name Birth | Death
Ilja Repin Barge Haulers on the Volga Albrecht Diirer 1471 | 1528
Vincent vanGogh | Drawbridge with Carriage Vincent van Gogh 1853 | 1890
Albrecht Duerer A Young Hare Ilya Repin 1844 | 1930
El Greco View of Toledo Dominico Theotocopuli | 1541 | 1614

Title Artist Birth | Death

Barge Haulers on the Volga | llya Repin 1844 | 1930

Drawbridge with Carriage Vincent van Gogh | 1853 | 1890

A Young Hare Albrecht Direr 1471 | 1528

View of Toledo El Greco 1541 | 1614

Figure 1.1: Example data and result for a similarity join

a common problem in many application domains are inconsistencies due to typing
errors, like in this case the incorrect writing of “Vincent van Gogh’. Whereas both
these problems could be handled by string similarity, the problem of pseudonyms
— or more generally synonyms — as demonstrated by the example artist name ‘Do-
minico Theotocopuli’, better known to the world as “‘El Greco’, can be solved by
applying thesauri during the join on the artist name.

Efficiently performing such a similarity join in a locally materialised database
itself is a challenging task and topic of current research. This includes for instance
results presented in Chapter 5 of this thesis. Yet, we assumed a virtually integrated
scenario where the data resides in different Web databases accessible only through
possibly very limited query interfaces. In this case, finding the correct entry for
an artist for each painting based on possibly conflicting representations of their
names is an even harder problem. This issue is addressed in Chapter 6 of this
thesis.

Figure 1.2 demonstrates another problem during data integration, namely the
identification and reconciliation of tuples representing the same real-world entity.
Assume the input relation of the according operation represents the combined
information on paintings from a number of source systems, which may overlap
semantically and provide incomplete or imprecise information. In addition to
the problems mentioned above, the example illustrates that a complex similarity
description involving a number of attributes is required. Conflicts between data
values may appear in some fields like the artist name, the title of the painting, or
the year of creation, and maybe there are conflicts in all of them.

Furthermore, we have to deal with the fact that more than two tuples may rep-
resent the same object, and among these representations may exist varying degrees
of similarity. Yet, all of them have to be identified to relate to the same real-world

1.2. STRUCTURE OF THE THESIS

Self-Portrait at 28
Self-Portrait at 28
Self Portrait at 28

Fifteen Sunflowers
Fifteen Sunflowers

Albrecht Direr
Albrecht Duerer
Albrecht Diirer

Vincent van Gogh
Vincent van Gogh

1500

1500

1888
1889

Self-Portrait at 28

Fifteen Sunflowers
Fifteen Sunflowers

Albrecht Diirer

Vincent van Gogh
Vincent van Gogh

Title Aurtist Year
Resurrection El Greco 1579 - -

. L Title Acrtist Year
Resurrection Dieric Bouts 1460 Resurrection ETGreco 1579
The Holy Trinity El Greco 1577 Resurrection Dieric Bouts 1460
The Holy Trinity El Greco 16th cen. The Holy Trinity El Greco 1577

1500

1888
1889

Figure 1.2: Example data and result for similarity-based duplicate elimination

entity, so, we have to provide means to establish a single representation of iden-
tified objects, which for instance can be done based on additional information on
data quality of the integrated sources.

Finally, the example shows that decisions based on complex similarity condi-
tions are not trivial. Though the data on the paintings by Vincent van Gogh may
look alike, the according tuples actually represent two different paintings. Hence,
the design of similarity predicates and complex similarity conditions as part of the
design of the integrated system is a complex task involving the analysis of falsely
identified and falsely unidentified objects.

Duplicate elimination is not only required during the integration of query re-
sults in virtual integration, but it is also a sub-task of data cleaning in materialised
scenarios that comprises further tasks for improving data quality like transfor-
mation, outlier detection etc. Assuming SQL-based integration systems, the nat-
ural choice for duplicate elimination is the gr oup by operator using the key
attributes of the tuples in combination with aggregate functions for reconciling
divergent non-key attribute values. However, this approach is limited to equality
of the key attributes — if no unique key exists or the keys contain differences, tu-
ples representing the same real-world object will be assigned to different groups
and cannot be identified as equivalent tuples. To base the grouping on similarity
implies an at least atransitive similarity relation, which has to be dealt with during
query processing. These problems are addressed in Chapter 5 of this thesis.

1.2 Structure of the Thesis

The work presented in this thesis is structured with the general intention to pro-
vide a reader having a solid comprehension of database and information systems
all the necessary information to fully understand the scope and contents of the de-
scribed research results. Literature references are used to refer to sources of given

8 CHAPTER 1. INTRODUCTION

descriptions or to satisfy further interest in mentioned topics beyond the scope
necessary to understand the content of this thesis.

Chapters 2 and 3 will give overviews of the two underlying areas of data inte-
gration and research on similarity. This includes positioning this work according
to related research and introducing the vocabulary of concepts used throughout
the thesis. Chapter 4 has a bridging function between the foundations presented
in the two previous chapters and the own contributions which are described in the
later Chapters by providing an own view on similarity-based operations. Then, the
main research results are described in Chapters 5 and 6. Accordingly, the structure
of the thesis in more detail is as follows.

After this short introduction to the motivation, structure, and contributions of
the thesis, Chapter 2 gives an overview of data integration based on the current
state of the art. Typical aspects of data integration and resulting problems are
introduced based on the commonly considered characteristics of heterogeneity,
distribution, and autonomy. Important aspects of according research fields like
schema integration and query processing in distributed, heterogeneous environ-
ments are shortly described. Then, major approaches like Federated database
management systems, Mediators, and Data Warehouses are positioned according
to the previously introduced characteristics and related to the contributions of this
thesis.

In Chapter 3 an overview of concepts of similarity is given, by first describing
the importance, the research background, and some fundamental problems with
the comprehension of similarity. Then, terms such as similarity measures, rela-
tions, and predicates are defined. The common understanding of similarity mea-
sured using distances in metric space as well as the according properties, prob-
lems, and implications are discussed. Because the work presented in the later
chapters is mainly focused on string similarity predicates, these and related as-
pects are introduced separately.

As previously mentioned, Chapter 4 can be seen as an introduction to the
own contributions of the thesis by providing the framework for the operations de-
scribed in the latter chapters and introducing the problems at hand during their
implementation. For this purpose, the possible levels of similarity support in data
management solutions are discussed and the focus of the thesis is fixed accord-
ingly. Then, the semantics of similarity predicates as well as operations, namely
selection, join, and grouping, are specified.

Chapter 5 and 6 are the chapters describing the main contributions of the the-
sis. Both chapters can be distinguished by the kind of integration scenario they
target. Results presented in Chapter 5 described operations where the data to be
processed is materialised, either because a materialised integration approach —
like for instance a Data warehouse — was used, or because the operations work on
temporarily materialised, intermediate results. Chapter 6 describes an approach

1.3. CONTRIBUTIONS OF THE THESIS 9

generally applicable in virtual integration scenarios, where global similarity pred-
icates can be transformed for evaluation during distributed query processing.

The approach presented in Chapter 5 is based on string similarity predicates
and their efficient processing applying tries. Accordingly, the implementation
of the join and grouping operations are described for such predicates or more
complex similarity conditions. Furthermore, the implementation was evaluated
and further aspects and applications were considered.

Chapter 6 follows a different approach by considering the evaluation of string
similarity predicates during distributed query processing with source systems pro-
viding limited query capabilities. For this purpose, query predicates are trans-
formed as part of query re-writing based on gathered substring selectivity statis-
tics to grant efficiency. Furthermore, implementations for the selection and join
operations are outlined and their efficiency is evaluated.

In Chapter 7 the thesis is concluded by a summary, and an outlook on direc-
tions of possible further work is given.

1.3 Contributions of the Thesis

As mentioned in the previous section, the main contributions of this thesis are
described in the Chapters 4, 5, and 6. The novel aspects outlined in these chap-
ters are described here in more detail. Furthermore, some research results were
previously published and are listed here with the respective references. Results
of joint work with Ingolf Geist are included for reasons of completeness of the
description of the approaches. This is marked accordingly within the chapters and
furthermore pointed out in the following short description.

Chapter 4 — Similarity-based Operations: while the most part of this chapter
describes foundations of similarity-based operations that were used ac-
cordingly in previous approaches, the description of the semantics of a
similarity-based grouping operation is new. It is therefore described in more
detail and includes a thorough discussion of dealing with atransitivity which
may occur due to the usage of similarity predicates. Furthermore, complex
similarity conditions and special aspects of similarity relations are most of-
ten neglected in related research. The according research results were pre-
viously published for instance in [SSS01] and in [SSS02].

Chapter 5 — Similarity-based Operations for Materialised Data: the chapter
describes novel algorithms for implementing similarity-based join and
grouping operations in materialised data integration scenarios. The opera-
tions were implemented accordingly as part of a mediator query engine and,
alternatively, using the extensibility interfaces of the database management

10 CHAPTER 1. INTRODUCTION

system Oracle8i. Because efficient support for string similarity is often re-
quired in data integration, an approach for index-based approximate string
matching described in [SM96] by Shang and Merret was used, and is the
first application of such an index in the context of providing similarity-based
operations. To prove the applicability and investigate aspects of using the
index-supported string similarity predicate, the results of the evaluation re-
garding the implementation based on Oracle8i are described. Furthermore,
the application of extended aggregation functions for data reconciliation is
outlined. Finally, aspects of designing and adjusting similarity measures
based on similarity distributions within data sets are discussed. These re-
sults were previously published for instance in [SSS04] and in [SS03].

Chapter 6 - Re-writing Similarity-based Queries for Virtual Integration: in
this chapter a novel approach for processing operations based on string
similarity predicates during distributed query processing in virtual data
integration is introduced. To the best of the authors knowledge, there is no
other approach targeting the same problem for this application scenario.
The processing of the operations is based on pre-selection strategies
mapping string similarity predicates to disjunctive substring predicates
which are suitable for source systems with limited query capabilities. To
grant efficiency of this approach, the mapping must be based on substring
selectivity information. This mapping is described in detail. An according
management of statistic information on substrings and the estimation
of selectivities described is based on joined work with Ingolf Geist, as
well as the evaluation of corresponding aspects. Furthermore, based on
predicate mappings the implementations of similarity-based selection and
join operations are described. Finally, the approach is evaluated regarding
applicability and performance, the latter measured in terms of the quality
of the created pre-selections. The approaches presented in this chapter
represent the newest research results of the thesis and were therefore not
previously published.

To summarise, the work presented in this thesis targets the inclusion of
similarity-based concepts into data processing in integration scenarios. This prob-
lem is addressed on a predicate and operational level. Operations based on pos-
sibly complex similarity conditions are introduced, suitable for a wide range of
applications. Aspects of the implementation of such operations are described for
materialised and virtual integration scenarios. For evaluation purposes the focus
was on string similarity predicates, because there is a general lack of support for
these in current data management as well as only partial solutions provided by
current research.

Chapter 2

Data I ntegration Approaches

The integration of data sources and information systems has gained a growing in-
terest in research and practice over the last twenty years. As outlined before, this
development was driven by the growing number of systems in a local and global
scope like enterprises and the World Wide Web, respectively, and the growing data
volume within these systems. While the problem of integration is addressed on
various levels, in this thesis we will focus on data integration. Application integra-
tion, which is a current topic most of all in enterprise scenarios, is not addressed
here. This chapter will give a short overview of problems and approaches in data
integration necessary to position the presented contributions.

2.1 Introduction

While database systems were intended to have an integrative character themselves
by providing a storage solution for many local applications, the integration aspect
never played the designated role. The main reasons for this were the diversity
of different systems satisfying special requirements, organisational and strategic
decisions during system installation or implementation, as well as aspects of dis-
tribution and connectivity of the embedding infrastructures. The result were insu-
lar solutions tailor-made for specific tasks, limited user groups, and content of a
constricted scope.

When the potential need of new applications for more general tasks, more and
different user groups, and broader content scopes became obvious shortly after
database systems were adopted successfully, the idea of data integration was born
in the late 1970s. Terms like federated and multi-database systems were first men-
tioned by Hammer and McLeod in [HM79] and Adiba and Delobel in [AD77],
respectively. Obviously, the task at hand was — and still is — extremely complex,
while the actual need to do data integration only grew slowly in the 1980s. At this

11

12 CHAPTER 2. DATA INTEGRATION APPROACHES

time, it inspired research, mainly intended to fully subsume the aspects of data
integration. Furthermore, the schema integration necessary to provide a unified
access to heterogeneous data became a first research focus. The work by Sheth
and Larson described in [SL90] not only introduced influential system and schema
architectures for federated database systems, but also summarised early research
and the terminology used in data integration.

In the 1990s data integration finally became a major research topic, driven
mainly by the previously mentioned requirements resulting from a better availabil-
ity of data. As data integration became more relevant in practice, the focus shifted
toward architectural issues and query processing. Furthermore, the Web and XML
required new ways to deal with unstructured and semistructured data. Distributed,
multi-tier, and heterogeneous architectures became more easily manageable with
technologies like CORBA, DCOM, and Java. Data Warehouses arose as a very
successful data integration application, urgently requiring practical solutions for
some problems that were until then only discussed theoretically. Apart from spe-
cific solutions in the latter area, IBM’s DB2 DataJoiner ([GL94]) — nowadays
integrated with research results from the Garlic project ([TAH"96]) and known
as the DB2 Information Integrator — was the first successful product for database
integration.

In the late 1990s up to current day, new research is moving towards a so-
called semantic integration, which is incorporating domain knowledge and ad-
vanced meta data into the integration process and integrated systems. From an
architectural point of view, XML and Web Services provide a reasonable infras-
tructure for integration in a global scope. Furthermore, a number of applications,
for instance from the fields of eCommerce, Life sciences, Digital Libraries, etc.,
drive the implementation of previously theoretic or experimental integration ap-
proaches.

Though a great amount of research went into data integration and many aspects
were covered over the last decades, the complexity resulting from combining ap-
proaches according to the requirements of real-world applications is still huge.
Therefore, applications of data integration are often very limited in their function-
ality and can only partially be supported by tools and standard components.

2.2 Characteristics of Data Integration

There are several attempts at giving classifications for data integration approaches
according to certain characteristics, criteria, or dimensions. In [SL90] Sheth and
Larson introduced the often cited dimensions of distribution, heterogeneity, and
autonomy. According to these dimensions they distinguished integrated database
systems such as Multi-database systems and Federated database systems from

2.2. CHARACTERISTICS OF DATA INTEGRATION 13

classical approaches like centralised or distributed databases and further refine the
classification of integrated systems.

While on the one hand it can be argued that these dimensions are not orthogo-
nal, such as heterogeneity most often is the result of autonomy, especially design
autonomy, there are also a number of more recent integration approaches such
as Data Warehouses introduced by Inmon and described in [Inm96], Mediators
introduced by Wiederhold in [Wie92], and others that can hardly be classified
considering only these three aspects.

Instead of providing new “dimensions” or a new classification, we will discuss
characteristics necessary to position the work presented here and relate it to the
relevant integration approaches.

2.2.1 Heterogeneity

The heterogeneity of integrated data sources is by far the most important aspect of
data integration, because it causes most of the problems that have to be overcome
to provide an integrated access to sources. As such, heterogeneity includes dif-
ferences of source systems ranging from a hardware level to the semantics of the
data to be integrated. Therefore, a number of slightly different classifications ex-
ists, sometimes only covering a certain scope of interest, described for instance in
[SL90, SP91, Wie93, BKLW99]. Based on these we present a rather rough clas-
sification, where one class of heterogeneity may imply heterogeneity on another
level, such as the usage of different systems may imply different data models,
which provide diverging modelling constructs resulting in diverging schemas.

System or technical heterogeneity: this comprises differences in source sys-
tems resulting from the hardware and software infrastructures such as:
e hardware
networks and their infrastructures
protocols and middle ware
database systems and other storage solutions
data models
languages and interfaces

These problems can be addressed to some degree based on standard pro-
tocols and interfaces. The mapping to different languages and interfaces
can on the other hand become very problematic, if for instance interfaces
are very limited, such as for databases accessible only through Web inter-
faces. This problem is relevant for the thesis by mapping similarity queries
to standard interfaces as described in Chapter 6.

14 CHAPTER 2. DATA INTEGRATION APPROACHES

Schematic heterogeneity: this mainly results from the Design autonomy across
different systems or their differing data models. Depending on the require-
ments leading to a certain design and the structural primitives offered by a
data model, the same real-world aspect may be represented in various ways.
This leads to conflicts outlined for instance by Spaccapietra and Parent in
[SPD92] and Kim and Seo in [KS91]. Overcoming these heterogeneities
was a major focus of research in schema integration discussed later on. For
this thesis for the most part schemas are assumed to be integrated before a
further resolution of heterogeneities on the data level takes place, whereas
this latter resolution is the main concern here.

Semantic heterogeneity: while the previous two classes of heterogeneity result
from decisions regarding the environment local systems run in and regard-
ing the design of a system itself, semantic heterogeneity results from the us-
age of the system. It concerns different interpretations and meanings of data
values, objects, schema elements, and the overall scope of the data in sev-
eral systems as well as the relations between different interpretations. While
semantic heterogeneity on the schema level is addressed during schema in-
tegration, this thesis deals mainly with semantic heterogeneities on the data
level, where an interpretation is necessary for identifying representations of
real-world objects or their relationships. Due to differing representations
this interpretation often has to be based on similarity, which is the main
topic of this work.

Schematic heterogeneities are addressed through schema integration techniques
and according processes to design an integrated schema, which were widely cov-
ered by research. Schema integration techniques can for instance be based on
assertions between schemas (Spaccapietra et al. in [SPD92] and others) and ac-
cording view definitions, or advanced modelling concepts in object-oriented data
models (for instance upward inheritance as described by Schrefl and Neuhold in
[SN90] and others). Because schema integration like schema design in general is
characterised by several degrees of freedom, quality criteria for schema integra-
tion are completeness, correctness, minimality, and understandability.

A further classification of view-based approaches is given by local as view
versus global as view approaches, depending on whether the global schema is de-
fined as a view on the local schemas or vice versa as described by Garcia Molina
etal. in [GPQ™94] and Levy et al. in [LRO96], respectively. Both approaches are
quite different regarding necessary efforts for query processing and the mainte-
nance of the integrated system. Anyway, all schema integration approaches yield
some kind of mapping between local source schemata and a global schema, which
is used for query re-writing and result transformation in a virtual integration sce-
nario, or only for transforming extracted data sets in a materialised integration.

2.2. CHARACTERISTICS OF DATA INTEGRATION 15

A rough classification for schema integration processes is given by the dis-
tinction between top down versus bottom up schema integration, as for instance
described by Sheth and Larson in [SL90]. The distinction made in this classi-
fication is based on whether the target schema is designed to suite the needs of
certain global applications (top down), or if it should fully represent the set of in-
tegrated schemas. Another field of interest is the necessary evolution of integrated
schemas. As we assume schema integration problems to be resolved in a design
phase and before the operations proposed here are applied, a further discussion
of this wide field is beyond the scope of this short introduction. For far more de-
tailed overviews we refer to descriptions by Ram and Ramesh in [RR99] in the
collection edited by EImagarmid et al. [MRJ99], Conrad in [Con97] (in German),
Rahm and Bernstein in [RB01], Ozsu and Valduriez in [OV99], Batini et al. in
[BLN86], and Sheth and Larson in [SL90].

Closely related to heterogeneity is the demand for transparency in the resulting
integrated system. Related to data integration transparency refers to the charac-
teristic that the integrated access should be provided through a unified interface
hiding all the previously mentioned heterogeneities from the user. In a very strict
sense, when accessing the integrated data set the user should not be aware of

e the origin of the data,

e any aspect related to retrieving the data,

e necessary transformations or condensations, and
o the reconciliation of possible conflicts.

Contrary to the need of transparency in some integration applications there is
a demand for the traceability of data, i.e. the user may have an interest in some of
the aspects mentioned above. Typical questions can be: where does the data come
from? Are there any costs involved or how long does it take to retrieve the data?
How were the data changed on the way or are there more details available when
accessing the separate systems? A typical example where traceability plays an
important role are Data warehouses. In an ideal solution, information regarding
the origin of data and performed transformations is stored as metadata within the
warehouse with the intention to draw plausible conclusions about the quality of
derived information.

Whether transparency or traceability is more important in a specific real-world
scenario heavily depends on the given requirements for this application. This the-
sis deals mostly with the resolution of semantic heterogeneities by applying op-
erations for the identification of conflicts and their reconciliation. Because these
operations are based on similarity, there is a probabilistic aspect about it, e.g. a

16 CHAPTER 2. DATA INTEGRATION APPROACHES

decision whether objects in several databases represent the same real-world en-
tity can only be made with a derivable degree of certainty, resulting in a number
of false matches and false non-matches. Therefore, traceability may be a strong
requirement when such operations are applied. For instance, the user can be in-
formed about the quality of the presented data or even be given details of the
original data and drawn conclusions.

2.2.2 Distribution

Another typical characteristic of data integration is the physical distribution of
data across various hosts running their own data management systems. This aspect
of distribution is shared with more common solutions like distributed databases,
where heterogeneity and autonomy do not play such an important role, and the
distribution is merely a result of a distribution design targeting improved perfor-
mance, scalability, and reliability. Contrary to this approach, the physical distri-
bution of data in data integration is the initial situation, where the source systems
were primarily designed to serve some local application. Nevertheless, both ap-
proaches may share further characteristics like

e transparency regarding several aspects like the physical location of data,

e some aspects of autonomy discussed later on,

e distributed query processing, though with quite different requirements, and
e independence of hardware, software, and network aspects

as described for instance by Date in [Dat90].
Dealing with distributed data sets in data integration spawned two basic ap-
proaches characterised by the physical location of the integrated data set.

Materialised integration copies data from the source to an integrated data set
managed by one system. Typical representatives of such an approach would
be Data warehouses or some archives of Digital libraries. The advantages of
this approach mainly result from the possibility to do local query process-
ing on the integrated data set. This is strictly necessary for data intensive
operations, as for instance in Online analytical processing (OLAP). The
major disadvantage comes with the autonomy of the data sources, where
even in local scenarios like an enterprise Data warehouse the extraction,
transformation, and loading (ETL) of data causes huge organisational ef-
forts in addition to the necessary technical efforts, which include schema
integration and are comparable to virtual data integration. Furthermore,

2.2. CHARACTERISTICS OF DATA INTEGRATION 17

the maintenance of integrated materialised data sets is a complex task, in-
volving non-standard operations and application-specific tasks, for instance
related to data cleaning. In global scenarios this approach is therefore often
prohibitive, unless it relies on standards like for instance Dublin core and
the MARC format for bibliographic metadata and the protocol of the Open
archive initiative (OAl) for their exchange in the field of Digital libraries.

Virtual integration leaves the data in the component systems and provides an
integrated access in terms of a complex distributed query processing, con-
sisting of re-writing every query for the source systems and retrieving, trans-
forming, merging, and reconciling the returned query results. This dis-
tributed query processing in heterogeneous environments is a very com-
plex task, especially when complex schemas and large data volumes are
involved. Its characteristics are quite different from local query processing,
and therefore it is hardly supported by standard data management solutions.
Though there are prototypes and commercial products like the previously
mentioned IBM Information Integrator, the high degree of heterogeneity in
any given application scenario often makes tailor-made solutions a require-
ment. Contrary to physical data integration, virtual data integration avoids
redundancy, provides up-to-date results, and is applicable in scenarios with
highly autonomous sources.

As this is not a black and white world, there are mixed approaches. In virtual
integration a temporary or persistent materialisation of data is often considered,
for instance for caching and archiving query results to improve the efficiency of
query processing. On the other hand, in materialised integration it may become
necessary to access the the original data to get a more detailed or more recent view
of the data, such as provided by Drill through operations in Data Warehouses.

Materialised data integration is addressed in Chapter 5 where semantic hetero-
geneities can be resolved after data is extracted from the source systems as part
of the transformation and cleaning steps. As an example, in a Data warehouse
environment this is typically done in a staging area, which is a physically mate-
rialised database itself and is usually managed by one database management sys-
tem. Therefore, various optimisations are conceivable, such as using index struc-
tures, statistics on data, and special algorithms. The approach presented in this
thesis applies trie index structures for the evaluation string similarity predicates
in a more general framework for similarity-based operations. Furthermore, exten-
sibility interfaces of database management systems — though not standardised —
are used to integrate the proposed operations more tightly with the conventional
aspects of data processing. All this is possible because

o the full integrated set of data and all its characteristics are known to the

18 CHAPTER 2. DATA INTEGRATION APPROACHES

system and
e all query processing takes place within one system.

Unfortunately, these two advantages do not hold if the integration is virtual and
every query has to be processed by several systems.

The research on distributed query processing in virtually integrated hetero-
geneous systems has gained some interest since the early 1990s, but there are
still a number of issues unresolved. Based on discussions by Sheth and Larson
in [SL90], Kossmann in [Kos00], and by Ozsu and Valduriez in [O\V99] the fol-
lowing reasons for the complexity of this task must be considered:

1. Query re-writing as well as the transformation of query results has to be
based on schema mappings resulting from schema integration as a design
step. These transformations can be complex and may not be supported by
standard operations as for instance provided by SQL.

2. Due to association autonomy discussed later on and heterogeneous data
models, languages, and interfaces the query capabilities of integrated
sources may differ.

3. The costs for evaluating queries and transferring query results may differ
between systems. Furthermore, it is hard to estimate these costs, so a global
query optimisation is more problematic than in local or homogeneous, dis-
tributed scenarios.

4. The transfer of data via networks represents an even more narrow bottleneck
than 10 operations on secondary storage. Therefore, the minimisation of
network traffic becomes a main goal during query optimisation, and special
algorithms for pipelined and parallel data processing are required.

5. The lack of statistical data necessary for query optimisation causes further
problems for query optimisation.

6. Due to communication autonomy discussed below component system may
or may not be available for query processing, or may even disconnect during
processing a certain query.

7. Further problems are caused by execution autonomy, where for complex
queries a transactional context may be lost when a global query translates
to a number of queries to one component system.

2.2. CHARACTERISTICS OF DATA INTEGRATION 19

The work presented in Chapter 6 of this thesis deals with specialised opera-
tions that have to be executed as distributed queries in such an heterogeneous en-
vironment. According to the previously listed challenges in distributed query pro-
cessing in virtual data integration, the two main problems of providing similarity-
based operations are query capabilities and efficiency.

Query capabilities: apart from the fact that query interfaces available for data
integration may be restricted to a very limited functionality, for instance if
only provided through a Web form as an interface to a Web database, ad-
ditionally, the support for similarity-based functionality in most data man-
agement solutions is per se either marginal, intended only for for certain
applications like multimedia retrieval, or simply not existent.

Efficiency: similarity-based predicates by default involve a larger search space
depending on the “looseness” of the predicate, because not only exact but
also approximate matches have to be considered. If the similarity predicate
cannot be evaluated locally, the complete search space or a best possible ap-
proximation of this space has to be transferred for global query processing.

The approaches presented in this thesis address these problems for string similar-
ity predicates by mapping similarity predicates to standard predicates and min-
imising the required data transfer by means of an efficient pre-selection based on
statistics on substring selectivity.

2.2.3 Autonomy

The third important characteristic of data integration, and in most classifications
considered as one of the three dimensions along with distribution and heterogene-
ity, is the autonomy of data sources. The autonomy is concerned with the control
aspect and reflects the independence between source systems as well as between
these systems and an integration layer regarding several aspects concerning the
design, implementation, and operation of the systems. \eijalainen and Popescu-
Zeletin in [VPZ88] considered the following kinds of autonomy.

Design autonomy reflects the independence during the design process of a sys-
tem and implies independence of
e the data management system and the data model,
e the schema and according constraints,
e provided operations, and
e the universe of discourse and semantics of the data.

20 CHAPTER 2. DATA INTEGRATION APPROACHES

The majority of previously discussed heterogeneities exist due to this design
autonomy.

Communication autonomy refers to the ability of a source system to decide
about communication with other systems, i.e. if, when, and how it responds
to requests. This can also be interpreted as the ability of source systems to
leave or join an integrated systems at any time.

Execution autonomy is given, if integrated systems are able to independently
decide about the way, time, and order of execution of operations. Execution
autonomy is for instance problematic for a global consistency management
in integrated scenarios.

In [AB89] Alonso and Barbara discussed an additional aspect of autonomy,
that is of great importance for the work presented here, and was added to the three
previously mentioned by Sheth and Larson in the most often referred classification
in [SL90].

Association autonomy represents the ability of a system to independently decide
about the degree of sharing its functionality with other systems. This com-
prises the data managed by the system, where only part of the schema or a
subset the actual contents may be available to other systems, as well as the
operations to work on it.

As such, the autonomy in general can be considered the cause for all the chal-
lenges that make data integration such a complex task. Design autonomy leads
to system and schematic heterogeneities. Communication, execution, and asso-
ciation autonomy make the processing of global operations a very complex task
as described before. Execution autonomy is critical, when a global transactional
context is required and especially if update operations must be supported. Such
access characteristics are beyond the scope of this work, and we refer to Chrysan-
this and Ramamritham who give overviews of the related problems in [MRJ99]
and [RC96].

Furthermore, autonomy is a characteristic and requirement of integrated
sources, that must not be violated if no further agreement on control sharing ex-
ists. If such an agreement exist, we talk about co-operative sources, where the
co-operation may be based on a common interest to take part in an integrated so-
lution, for instance to make the local data available to a broader audience. Such a
situation obviously exists for Data warehouses, where the provision of global data
for analytical purposes is in the interest of the enterprise and its economic ob-
jectives. Co-operative approaches ease some of the problems in data integration,
because for instance heterogeneities are often more easily resolvable on the source
side. Agreements on a weaker autonomy of component systems may include

2.3. DATA INTEGRATION APPROACHES 21

e the provision of suitable interfaces and protocols for existing data access
operations,

local support for only globally required operations,

interfaces and protocols for coordinating distributed operations,

active communication mechanisms from a source to an integrated system,
and

the exchange of metadata and statistical information about the managed
data.

For the work presented in this thesis, and here especially Chapter 6, the main inter-
est is in provided interfaces and operations as well as statistical information about
data. The former refers to query capabilities as discussed before in the context
of distributed query processing. Statistical information are used in the proposed
approach for estimating the selectivity of queries and can be created from source
data sets. If sources are not co-operative this information has to be gathered from
query samples, which slightly decreases the accuracy and efficiency.

2.3 Data Integration Approaches

Based on the characteristics outlined in the previous section this section will give
a short overview of relevant approaches and the aspects that apply for these sys-
tems. The approaches draw mainly from research on database integration, but also
include research from a more general perspective of information system integra-
tion.

2.3.1 Virtual Data Integration

The earliest work on data integration focused on the virtual integration of data,
because of the soundness of the approach avoiding redundancy while providing
access to an up-to-date view of the data from the source systems. Inspired by
the conceptual clarity which lead to the success of database management systems
— and here especially the relational systems — research first dealt with concep-
tual questions regarding schema integration, the integration process, and query
languages suitable to address the specific requirements in distributed heteroge-
neous query processing. This research was mostly done related to the concept of
federated databases and multi-databases. While often argued to be a concurrent
approach, mediators introduced by Wiederhold in [Wie92] rather present an ar-
chitectural point of view on data integration, which is applicable to a number of

22 CHAPTER 2. DATA INTEGRATION APPROACHES

Multi-database or
Federated database
system

Global Global
queries results

Multi-database management system or
Federated database management system

Re-written Local

queries results
Component Component Component
Database Database Database
System 1 System 2 System n

DBMS 1 DBMS 2 DBMS n

Figure 2.1: General architecture of a multi-database system

approaches and proved to be very successful. So instead of providing a classifica-
tion, the following two sections present different points of view on data integra-
tion.

Multi-databases and Federated Databases

Earliest research on data integration was done in the field of multi-database and
federated database systems. Both approaches provide an integration layer on top
of existing database management systems differing only in the degree of auton-
omy of the integrated systems. The overall goal is to provide the users of the
multi-database system a uniform, transparent, and full access to the integrated
data sets from various source databases, using standard database interfaces and
languages.

According to Sheth and Larson in [SL90], multi-database systems (MDBMS)
integrate a number of component database management systems, which may be
of the same (homogeneous MDBMS) or different kind (heterogeneous MDBMS).
This, according to Sheth and Larson, explicitly includes components systems
which may be distributed or multi-database systems themselves. A very abstract
depiction of the according architecture is given in Figure 2.3.1.

A multi-database system is a federated database system, if the component
system are highly autonomous according to the description in the previous sec-
tion, i.e. they serve local applications and users and independently decide about
processing of operations, their system communication, etc. In contrast to data
sharing in federated database systems, the component systems in a non-federated

2.3. DATA INTEGRATION APPROACHES 23

Multi-database

systems
Non-federated Federated
multi-database database
systems systems
Loosely coupled Tightly coupled
FDBS FDBS

\

Single Multiple
Federation Federation

Figure 2.2: Classification of MDBMS according to Sheth and Larson

MDBMS also share the control for their operations with the integration layer. A
further classification of federated database systems is given by the responsibility
for creating and maintaining the component systems, i.e. an FDBMS is tightly
coupled if administrators control the access to the component systems or loosely
coupled if this is the responsibility of the users of the federation. Depending
on whether the federation is capable of providing only one or several integrated
schemas, a further classification of tightly coupled systems to single and multiple
federations is considered.

This classification by Sheth and Larson is based solely on the autonomy aspect
and shown in Figure 2.3.1. There are other classifications based on other aspects
or including more recent approaches, but for the remainder of this discussion we
will stay with this classification.

From a conceptual point of view, the next addressed issue was providing
means to address schematic heterogeneities in the component schemas. Also in
[SL90] Sheth and Larson introduced the well accepted 5-level schema architec-
ture for data integration as the counterpart to the 3-level schema architecture in
centralised DBMS. In addition to the latter, the three lower levels of the former
address the extraction and transformation aspects of schemas of the component
systems. Furthermore, Sheth and Larson gave abstract descriptions of architec-
tural aspects regarding query and result transformation, thus providing the frame-
work for the design of these mappings during schema integration.

Federated and multi-database systems inspired research in different directions
which were shortly discussed before or are not discussed here in detail, but include
for instance

24 CHAPTER 2. DATA INTEGRATION APPROACHES

e schema integration,

e multi-database query languages,

e query processing and optimisation in multi-database systems,
e transaction processing across component systems,

e the evolution of integrated systems, and

o the integration of non-database systems.

Of these directions, this thesis will deal will aspects of query processing and op-
timisation regarding necessary extensions to support similarity-based operations.
Furthermore, the proposed operations will be described as extensions to SQL, to
provide a possible integration with a multi-database query language.

Mediators

Mediators as introduced by Wiederhold in [Wie92] and later on refined in [Wie94]
and [WG97] are often seen as a concurrent approach to federated databases, be-
cause the concept of a mediator in deed differs regarding some aspects and was
subsequently assigned some differing properties to distinguish it from other ap-
proaches. Yet, the concept is rather complementary because it addresses issues
of data integration from the broader perspective of information system integra-
tion, this way adding some relevant aspects discussed below. Furthermore, it is
developed around a very abstract architectural approach of mediators and source
wrappers, the latter covering the lower levels of heterogeneities and this way real-
izing a separation of concerns.

According to [Wie92] Wiederhold described the general intention behind me-
diator architectures as follows:

In order to provide intelligent and active mediation, we envisage a
class of software modules which mediate between the workstation
applications and the databases. These mediators will form a distinct,
middle layer, making the user applications independent of the data
resources.

These mediator components were complemented by wrappers for source systems,
covering interface and language heterogeneities. Furthermore, more complex, hi-
erarchical mediator architectures were envisioned, to support different levels of
integration. The principal architecture is shown in Figure 2.3.1.

Though it was this architecture that proved most influential and later on was
adopted to several integration approaches including federated databases, where

2.3. DATA INTEGRATION APPROACHES 25

Application - -
Application Application
Layer
Mediator Mediator Mediator
Mediation
Layer
Mediator Mediator
‘ Wrapper 1 ‘ ‘ Wrapper 2 ‘ ‘ Wrapper 3 Wrapper n
Foundation Source 1 (DBS) Source 2 (DBS) | | Source 3 (Web) Source n (DBS)

Figure 2.3: Principal mediator architecture

—

the integration layer now consisted of components providing functionality con-
forming to mediators and wrappers, the research on mediators raised a number of
other interesting questions

Semantic integration: the importance of knowledge about integrated data sets
and the way they are created and used was always pointed out by Wieder-
hold and subsequent research. In deed, managing this knowledge as part of
an integration system is a key advantage in dealing with the complexity of
data integration and later on branched numerous research activities.

Query capabilities: because mediators are seen in the broader context of infor-
mation system integration, the aspects of association autonomy as well as
interface and language heterogeneities had to be dealt with more explicitly.

Data quality: from an information system point of view the quality of data in in-
tegrated data sets is very problematic and therefore plays an important role.
Research on mediators right from the beginning included related aspects of
semantic heterogeneities like data quality, uncertainty, and differing levels
of abstraction in integrated data sets.

Like multi-database systems, mediator-based systems require a uniform
schema resulting from schema integration, and based on that, distributed query
processing can take place. As previously mentioned, there are a number of prop-

26 CHAPTER 2. DATA INTEGRATION APPROACHES

erties assigned to mediators, that were not necessarily intended in the original
concept, such as

e mediators only provide read access to integrated data sets,
e schema integration must take place in a top-down fashion,

e mediator based integration is best suitable for the integration of non-
database systems,

e mediators and especially wrappers are “hard-coded” and not application-
independent,

e etc.

In deed, this were characteristics of some successful applications of the mediator
concept, but rather than continuing the discussion about general properties we will
focus on the architectural and further aspects mentioned before when referring to
mediator-based systems.

For the work presented in this thesis aspects of query capabilities and data
quality addressed in the context of mediators play the most important role. Wrap-
pers are intended to provide a description of the query capabilities to the mediator,
which then can consider these descriptions during query re-writing. This approach
is applied in Chapter 6 for mapping similarity-based predicates on string attributes
to standard functionality provided by most databases and information systems.
The main intention of using similarity-based operations lies in the improvement
of data quality by automatically finding related or matching data across various
sources.

2.3.2 Materialised Data I ntegration

Despite the soundness of virtual data integration, in the 1990s an alternative con-
cept of data integration became most popular in practice. Especially in local sce-
narios like enterprises and other organisations, some aspects of autonomy did not
play such an important role anymore, and the complete materialisation of inte-
grated data sets were established as a pragmatic solution to integration problems.
This way, not only the complexities of distributed query processing in heteroge-
neous environments was avoided, but the materialisation also granted the nec-
essary efficient query processing on huge integrated data sets required in many
integrative applications.

On the other hand, physical data integration shares many other aspects with
virtual integration approaches, such as

2.3. DATA INTEGRATION APPROACHES 27

e the resolution of system heterogeneities during the import of data from in-
tegrated component systems,

e the resolution of schematic heterogeneities through schema integration and
the application of resulting mappings during a transformation step,

e the resolution of semantic heterogeneities during a data merging or data
cleaning step, and

e concepts to deal with the communication and association autonomy of
sources during the import of data.

Furthermore, physical data integration is only applicable where the resulting re-
dundancy and the limited up-to-dateness is acceptable in a given application sce-
nario. Though the general approach of physical data integration can be and was
applied in numerous applications, the field drawing most attention was the re-
search on and practical experience made with Data warehouses as introduced
by Inmon and described for instance in [Inm96], which is later on described in
more detail. Another interesting application exists in the area of integrating semi-
structured data from Web sources by extracting their contents as for instance de-
scribed by May et al. in [MHLL99].

Data Warehouses

The general idea behind Data warehouses is to provide access aimed at analytical
operations for management decision support on an integrated data set covering
data from multiple operative systems within enterprises or organisations. Because
these integrated data sets can be huge and analytical operations often have to work
on large subsets of the integrated data, a virtual integration does not seem appro-
priate due to reasons of efficiency.

For the import in a first step data is extracted from each source system to a
so-called staging area. The extract either comprises the full set of data or the
delta since the last extraction took place. Database systems nowadays provide
mechanisms for the efficient export, import, or replication of data, which can
be applied during this step. The staging area is a database, where all necessary
transformations take place, including

e structural integration according to a schema resulting from schema integra-
tion according to virtual integration,

e data cleaning to grant data quality of the integrated data set by removing or
repairing implausible or obviously erroneous data, and

28 CHAPTER 2. DATA INTEGRATION APPROACHES

e data matching, merging, and grouping to reconcile overlapping or related
data sets or achieve a common level of abstraction.

The latter aspects of data matching, merging, and grouping are most often consid-
ered part of data cleaning, but are described here separately because they are of
special interest for this thesis as discussed later on.

Schema integration for Data warehouses usually is driven by requirements of
the analytical applications and, hence, is carried out in a top-down fashion. In a
next step, the transformed, cleaned, and merged data set is brought into a sepa-
rate database forming the basis for the analytical data processing such as Online
analytical processing or data mining techniques.

Techniques proposed in this thesis, and here especially Chapter 6, can be ap-
plied for the previously mentioned tasks of data matching, merging, and grouping.

Data matching is used to find objects representing the same or related real-world
objects. Most often there are no common identifiers usable for this task
and imprecise or erroneous data values make an equality based matching
impossible. For same objects data merging can take place, and for related
objects references or foreign keys can be adjusted.

Data merging is necessary, if objects from different sources representing one
real-world object are identified during the matching phase, a common, rec-
onciled representation has to be derived based on the possibly conflicting
data values.

Data grouping or householding is used to condense data from source systems
or relate it to some more abstract concept in the integrated schema to reach
a common level of granularity in the integrated data set.

These problems, also referred to as record matching, entity identification, the
merge/purge problem etc., were addressed in research related to data cleaning and
Data warehouses as for instance by Calvanese et al. in [CdGL99], Galhardas
et al. [GFSS00], Monge and Elkan [ME96], Hernandez and Stolfo in [HS95],
etc. Furthermore, commercial tools provide specialised solutions for very specific
tasks like for instance customer address matching.

2.4 Conclusions

This chapter gave a short overview of problems and approaches in data integra-
tion, as far as they are related to the research presented in this thesis. This includes
the origins of problems resulting from characteristics like heterogeneity, distri-
bution, and autonomy on the most general level of abstraction. In this context,

2.4. CONCLUSIONS 29

aspects of typical techniques to address these problems like architectural consid-
erations, schema integration, and distributed query processing in heterogeneous
environments were described. Furthermore, an overview of existing data integra-
tion approaches was given based on the general distinction between virtual and
materialised integration.

As this thesis deals with similarity-based operations in data integration related
to various problems and applicable in a number of approaches, the research re-
sults presented in the latter chapters were positioned accordingly. Here, the main
focus was on aspects of distributed query processing in heterogeneous environ-
ments and specific aspects resulting from either virtual or materialised integration
approaches.

The current situation regarding data integration is characterised by research
results covering most critical aspects of the problem on all different levels. Of-
ten there are a number of concurrent solutions, as for instance regarding the well
studied problem of schema integration. Unfortunately, the complexity of the over-
all problem spawned many solutions addressing partial problems, which are not
necessarily orthogonal and cannot easily be combined. Successful systems such
as research prototypes or the very few commercial solutions therefore are often
limited in their functionality and tailor-made for certain applications or suitable
only for constricted classes of applications.

Accordingly, there are no standards for data integration, so, the work presented
in this thesis cannot be described based on such standards and rather relates to
common knowledge or certain approaches in the field. Furthermore, like previous
research results the techniques proposed here provide solutions for another partial
problem, leaving other aspects aside.

Summarised, the area of data integration remains an active research field,
where the current focus is on filling the gaps regarding certain open problems,
like in this thesis, or applying new technologies which are better suitable to pro-
vide stable solutions. For the future, the many parts of the puzzle resulting from
research must be put together to form a more coherent picture of the overall task
of data integration driven by real-world applications.

30

CHAPTER 2. DATA INTEGRATION APPROACHES

Chapter 3

Conceptsof Similarity

To provide data processing operations based on similarity, one first has to gain
a certain understanding of the characteristics of similarity. While there is a gen-
eral acceptance of the importance of similarity in various sciences, there also is
an obvious lack of common foundations and definitions of the term. Wherever
similarity as a concept is used successfully, it is seen from a very specialised point
of view. Its formalisations and properties used in one context often are debatable
or not useful in another. This chapter discusses different views on similarity, ex-
plicitly not intending to provide a new generalised view, but instead discussing
implications of certain aspects and adjusting the focus for the usage of similarity
in data integration.

3.1 Introduction

The importance of similarity in our daily life is often underestimated, but it is
clearly pointed out in the field of cognitive sciences, comprising psychological and
philosophical aspects. Not only that a main inspiration for similarity in computer
science is the research done in the field of psychology, but there are also parallels
of the way information has to be processed based on similarity by computers and
humans. To achieve the capabilities humans have in processing information from
the real world and to bridge communication gaps between men and computer
similarity will have to play a key role.

The most important application of similarity is taking place in the human
brain every millisecond when incoming sensual information is processed. In 1890
William James stated the following ([Jam90]):

This sense of sameness is the very keel and backbone of our thinking.

As Robert Goldstone pointed out in [Gol99] intellectual and cognitive processes
have to be based on similarity, because we only can store and perceive varying

31

32 CHAPTER 3. CONCEPTS OF SIMILARITY

284 Bath Road
Bristol, UK

Abstract Buildings
concept 9 Identified

object

Cerebral
representation

Cerebral
representations

Human
cognition

Human
cognition

Real world
objects

Real world
object

(a) Abstraction (b) Identification

Figure 3.1: Usage of similarity for identification and abstraction of real world
objects

or incomplete representations of aspects of the world. Of course humans are able
to recognise a person they have met before, but for every new meeting this other
person and the new perception of her or him has changed more or less. So the
human brain has to be able to map the perceived to the stored representation, or
as Sir W. Hamilton put it in [Ham]:

Identity is a relation between our cognitions of a thing, not between
things themselves.

Besides the identification, where two representations refer to the same object in
the real world, similarity is also applied in other intellectual processes like associ-
ation, classification, generalisation, etc., where representations refer to an abstract
relationship or concept based on context-specific commonalities. These two as-
pects of similarity are illustrated in Figure 3.1. In the following sections we will
see that similarity is used in computer science in corresponding ways.

Before we have a closer look at certain characteristics of similarity and sim-
ilarity models, we have to consider the common human comprehension of the
word similar. Deriving from the Latin word similis meaning like or resembling,
the word similar is most often used intuitively to compare or relate objects re-
garding certain common aspects. Yet, these aspects are often left unspecified or
are given based on a very loose terms. Hence, in dictionaries one will find de-
scriptions of similar and similarity like the following from the Oxford English

3.1. INTRODUCTION 33

Dictionary ([Tho95]):
similar:

1. of the same kind in appearance, character, or quantity, without
being identical.

2.

This very loose description of the usage of the term already raises two interesting
points. At first, similarity between things, persons, concepts, etc. is based on
equality of certain aspects or their abstraction. Secondly, the proposition that
identical objects cannot be similar, challenges many of the theories introduced
later on. Actually, one can find a contradiction within the very same source, when
looking up identity:

identity:

3. aclose similarity or affinity.

The relation between similarity and identity — whether it is independence, com-
plementation, or implication in any direction — is discussed later on in more detail,
and one will see that all propositions may make sense under more specific condi-
tions.

Another description of the term similar is given in The American Heritage
Dictionary of the English Language ([Mor96])

similar:

1. related in appearance or nature; alike though not identical.
2.

Here, something is related to something else by being similar, hence, similarity
is explicitly considered as a — probably binary — relation. Two non-identical ob-
jects are similar if some unspecified condition on common aspects holds. While
this certainly reflects a common usage of the term, another understanding that is
widely used in research on similarity issues considers similarity as a measure of
likeness between objects. For example, a simple similarity measure is the num-
ber of features two objects have in common — the greater this value is, the more
similar the two objects are. In this case not only the fact that objects are similar is
of interest, but also the quantifiable degree of similarity. Both points of view are
useful, and similarity measures are actually a common way to specify the above
mentioned conditions of a similarity relation.

34 CHAPTER 3. CONCEPTS OF SIMILARITY

One major problem of similarity is that it heavily depends on the context of
usage. From a quite pessimistic point of view the philosopher and linguist John
R. Searle wrote in [Sea79]:

Similarity is a vacuous predicate: and any two things are similar in
some respect or another. Saying that the metaphorical “S is P” implies
the literal “S is like P” does not solve our problem. It only pushes it
back a step. The problem of understanding literal similes with the
respect of similarity left unspecified is only a part of the problem of
understanding metaphor. How are we supposed to know, for example,
that the utterance “Juliet is the sun” does not mean “Juliet is for the
most part gaseous”, or “Juliet is 90 million miles from the Earth”,
both of which properties are salient and well-known features of the
Sun.

Given Shakespeare’s play “Romeo and Juliet” plus some knowledge of human
social interaction as the “respect of similarity” the cited metaphor becomes un-
derstandable. Contrary to equality relationships for similarity relationships one
has to be more specific about the conditions under which the relationship holds.
Furthermore, these conditions can be specific not only to certain classes of com-
pared objects but also to single instances, which makes the usage of similarity
even more difficult. This problem is outlined from a psychological point of view
by Medin et al. in [MGG93] and from a philosophical perspective by Goodman
in [Goo72].

Unfortunately, there is no such thing as a general theory of similarity in math-
ematics. The most common usage is related to geometrical shapes, where a binary
relationship between two shapes exists if a limited set of transformations, e.g. di-
lation, rotation, expansion, reflection, etc. depending of the kind of similarity,
can be applied to transform one object to the other. Sometimes these transforma-
tions are referred to as similarities [Wei99]. Another occurrence of the term is
related to self-similarity and fractals [Wei99, Hut81]. But, just like the former this
is a rather specialised application of similarity instead of a general view on the
concept. Nevertheless, mathematics provide the foundations of popular similarity
measures like the distance in metric spaces described in the following section.

For a first summary, while it is hard to overestimate the importance of similar-
ity, there are major problems with the very foundations of similarity as a concept.
Its relationship to other important concepts like identity varies depending on the
usage. The term is ambiguously used for relationships as well as for measures of
similarity. Similarity depends heavily on the context of its usage, and very often
it is not easy to specify this context. These problems and more specific ones de-
scribed in the following sections constrained a wider usage of this generally very
useful concept in computer science. Therefore, when introducing various models

3.2. MODELSOF SIMILARITY 35

of similarity in the following sections we have to be very careful with the term
itself and related terms.

3.2 Models of Similarity

Just as the common understanding of the term similarity varies, there is a number
of contradicting formalisations of similarity and its characteristics. Therefore,
throughout this paper we will use rather loose definitions of terms separated from
certain characteristics that may or may not apply in certain scenarios.

For this purpose, basic concepts and terms are discussed and formalised. Met-
rics as a general concept for measuring similarity and their shortcomings regard-
ing some aspects of similarity are described. Related to this discussion, various
specific measures of similarity are described. A rough classification of models for
measuring similarity was given by Goldstone in [Gol99] as

e geometrical models,

e featural models,

e alignment-based models, and
e transformational models.

The focus in this section will be on geometrical, featural, and especially on trans-
formational models. Geometrical models are the currently most often used ap-
proach in computer science, while featural models as used in psychology are
closer to the human understanding of similarity. Transformational models are
applied for instance in approximate string matching which is most relevant for the
research presented in this thesis. Therefore, string similarity is discussed in more
detail in the next section.

3.2.1 Similarity Measuresand Predicates

At first, we have to draw a clear distinction between similarity measures and a
similarity relation. Given two objects a and b from not yet further defined domains
A and B, respectively, we define a similarity measure as follows:

Definition 3.1 A similarity measure is a non negative function sim: AxB — R
expressing the similarity between two objects a € A and b € B. If A=B and the
similarity measure is sim : A x A — R™ we call it a similarity measure on A.

36 CHAPTER 3. CONCEPTS OF SIMILARITY

This definition explicitly includes the dissimilarity or distance between two
objects, because an interpretation of the result of the function is not yet specified.
Typical interpretations of similarity measures are:

A normalised similarity measure: sim: A x B — [0,1] where sim(a,b) = 0 if
the objects are least similar and sim(a,b) = 1 if the objects are most similar
or identical, depending on the context of usage.

A distance or dissimilarity measure: dist : A x B — [0,00] or dist : Ax B —
[0, maxDistance] where dist(a,b) = 0 if the objects are most similar, and
dist(a,b) = maxDistance if the objects are most dissimilar.

We will see that the concept of a distance measure is used very often — for
instance in metric dimensional scaling — because the distance of two objects can
be measured more easily than their commonalities. Nevertheless, transformations
between different interpretations are possible, like for instance for the two previ-
ously mentioned sim(a,b) =1— %ﬁ’gm orsim(a,b) = if amaximum
distance is not known.

An often used normalised similarity measure from the area of Information
retrieval is the cosine similarity defined for two vectors x = (X1,X2,...,Xn) and

y=(Yy1,¥2,...,¥n) as

1+d|st(a b)

ZI 1lel

\/ZI 1X2 \/ZI 1y|

Because document vectors in Information retrieval are representations of the fre-
quency of terms in the document compared to the frequency in the overall col-
lection, the vectors are considered to be in the positive sector. Accordingly, the
function returns 1 whenever the angle between two vector representations is 0 and
returns O if the vectors are orthogonal, i.e. the vector representations of texts share
no common terms ([BYRN99]).

Apart from the interpretation of the result there is much more left unspecified
in this definition. Usually definitions include a set of characteristics of the func-
tion like symmetry or the triangular inequality that are only applicable for certain
measures described later on. Furthermore, we did not yet specify the context of
similarity and how the similarity is measured.

To provide similarity based operations we will require similarity relations be-
tween objects and according similarity predicates.

sim(x,y) =

Definition 3.2 A similarity relation is a binary relation SIM C A x B, where
(a,b) € SIM if two objects a and b are similar.

3.2. MODELSOF SIMILARITY 37

Definition 3.3 A similarity predicate SIM(a,b) or a ~ b is a two-valued logic
operator deduced by a similarity relation, i.e. a~ b < (a,b) € SIM.

Instead of measuring the similarity or dissimilarity of objects, given a simi-
larity relation and the deduced predicate we can explicitly say that two objects
actually are similar, again, not yet considering he context and the criteria the rela-
tion is based on. Nevertheless, for future usage we will mostly rely on similarity
predicates which are defined based on similarity measures. A common way to
specify similarity predicates this way is to introduce a threshold for the similarity
measure. For the previously mentioned interpretations of similarity measures, the
according predicates are:

Normalised similarity predicate: a~ b < sim(a,b) > t,
where sim(a, b) is a normalised similarity measure and t € R™ is a similarity
threshold 0 <t < 1 meaning the closer t is to 1 the more similar the objects
have to be and the more rigid is our similarity predicate.

Distance or dissimilarity predicate: a~ b < dist(a,b) <Kk,
where dist(a,b) is a distance or dissimilarity measure and k € R* is a dis-
tance threshold 0 < k < o expressing the required closeness of objects, i.e.
the closer k is to O the more rigid is our similarity predicate.

Normalised similarity measures can further directly be used to specify pred-
icates in a fuzzy logic, where the result of the logic operator returns a degree of
truth between 0 and 1.

Fuzzy similarity predicate: a ~ b :=sim(a,b),
where the result is the degree of similarity between the objects.

Such an interpretation can for instance be used for duplicate detection based on
similarity between different representations, where the result of the predicate is
interpreted as the probability of sameness. Furthermore, such an approach is use-
ful when specifying logic expressions to describe the similarity between more
complex objects based on the similarity of components such as attributes as well
as contained or related objects. In this case, several fuzzy similarity predicates
can be combined using standard logical operators. Using the previously intro-
duced two-valued predicates would require specifying a threshold for each atomic
predicate.

3.2.2 Metricsas Similarity Measures

The most common usage of similarity measures refers to distances in metric space
defined as follows based on [Wei99].

38 CHAPTER 3. CONCEPTS OF SIMILARITY

Definition 3.4 A metric space is a set S with a global distance function (the metric
g) which for every two points a,b € S, gives the distance between them as a non-
negative real number g(a,b) € R*. A metric space must also satisfy

1. Va,b € S:g(a,b) =0« a= Db (Constancy of Self-similarity)
2. Ya,b e S:g(a,b) =g(b,a) (Symmetry)
3. Va,b,c € S:g(a,b)+g(b,c) > g(a,c) (Triangular Inequality)

Accordingly we define a similarity metric, which is a special case of the dis-
similarity or distance measure introduced before:

Definition 3.5 A similarity metric is a similarity measure that satisfies all axioms
for a metric.

Other related terms for a metric are:

Positivity: Va,b e S:g(a,b) >0,
which conforms to the definition of a metric as a non-negative function.

Minimality: Va,b € S:g(a,b) >g(a,a) < a#b,
which results from the constancy of self-similarity and positivity.

The typical example for a metric space is the n-dimensional Euclidean space
R", consisting of all points (x1,X2,...,Xn) € R", and the Euclidean metric or dis-
tance. As the points in the Euclidean space are represented by n-dimensional
vectors, the Euclidean space is also referred to as vector space or n-dimensional
space. A generalised form of metrics for the Euclidean Space is the Minkowski
distance. The Manhattan or City-block distance like the Euclidean Distance is
a specialisation of the Minkowski distance. There are other distance measures
for Euclidean Spaces, some of them satisfying the condition for metrics, e.g.
the Chebyshev distance. The previously mentioned metrics for any two points
X = (X1,X2,...,Xn) andy = (y1,Y2,.-..,Yyn) are defined as the following functions.

Minkowski distance: disty(x,y) = SiLq ¥/|xi —VilP,
describes a general class of distance measures of various orders p € N*,
also called L distance.

Euclidean distance: distz(X,y) = S 4/ |Xi —Vil2,
Minkowski distance with p = 2, or L, distance.

Manhattan distance: disti(x,y) =S4 [Xi — Vil,
Minkowski distance with p = 1, or L4 distance.

3.2. MODELSOF SIMILARITY 39

Chebyshev distance: diste(X,y) = max',|Xi —Vil,
maximum distance in any dimension, and the upper bound for Minkowski
distances of growing order p.

Because metrics in vector spaces are an useful and easy to understand measure
for similarity, or, more precisely, dissimilarity between objects, early research on
similarity in psychology and computer science was based on vector spaces. As
the objects considered were merely not points in such a space, a key aspect of
measuring similarity was mapping objects to vector representations in any given
space. Examples for such mappings are multi dimensional scaling, described later
on and used for instance in early psychological research, as well as the extraction
of feature vectors from multi-media data in computer science.

But metric spaces do not only include spaces of a fixed dimensionality. Ev-
ery set with a distance measure satisfying the metric axioms is a metric space,
e.g. the edit or Levenshtein distance for strings first described in [Lev66]. It is
defined as the minimal number of insertions, deletions, or substitutions of single
characters necessary to transform one string to another. If x; = x[1]x[2]...X][i]
and yj = y[1]y[2]...y[]j] are strings with all characters x[k] € ¥,1 <k <'i and
y[l] € 2,1 <| < j over one alphabet Z, the edit distance of the two strings can
be computed as follows:

(0 ifi=j=0
00 ifi<Ovij<O
edist (x,y;) = ¢ ediSt(Xifl-,yj,]_) if X[i] = y[i]
edISt(Xi,yj_l)—i—l
min | edist(xi—1,Yj) +1 else
{ edist(Xi—1,yj—1) +1

In the original paper Levenshtein shows that this distance measure satisfies the
metric axioms and, therefore, is a metric on the set of all strings over a given al-
phabet. While similarity based on distance in Euclidean spaces is often referred to
as Geometrical similarity, the Levenshtein distance and and similar edit distance
approaches for graphs and composite objects are referred to as Transformational
similarity according to a classification given by Goldstone in [Gol99].

The first use of geometrical models for analysing similarity was in psychol-
ogy. Perceptual stimuli were considered measurable in several dimensions and
the distance between measured values was used as a measure of similarity of the
stimuli. General problems of measurement were for instance discussed by Stevens
in [Ste46]. In 1950 Attneave stated in [Att50]:

The question "What makes things seem alike or seem different?” is

40 CHAPTER 3. CONCEPTS OF SIMILARITY

one so fundamental to psychology that very few psychologists have
been naive enough to ask it.

Furthermore, in the same publication he argued for the Manhattan distance be-
tween measurable stimuli, while Torgerson argued for the Euclidean distance in
[Tor52]. Inthis latter publication Torgerson first applied Multidimensional scaling
(MDS), an overview of which is given in [LH82], to a special case of similarity
analysis. Instead of actually measuring the stimuli very often only information on
the distance between objects is available. To derive a representation in a Euclidean
space MDS can be applied on a computable distance metric, similarity matrices,
or confusion matrices, the latter two resulting for instance from experiments. The
mapping is done by continuously adjusting coordinates and this way minimising
the stress of the resulting space, where the stress is a measure for the differences
between real distances and distances in the mapped space. The result of MDS is a
representation of all the objects from the input set as points in a space of dimen-
sion n, where n is an input parameter. If n is equal to the number of objects, an
optimal solution without stress is always possible.

This work on scaling and metric spaces by Torgerson (see also [Tor58, Tor65])
and later on by Shepard ([She62a, She62b]) was most influential on following
geometric views on similarity, including the discussion on the usability of various
metrics under various circumstances, e.g. the correlation between dimensions. A
comprehensive overview of geometric models of similarity used in psychology, as
well as others described later on, is given by Navarro in [Nav02].

In computer science the research on similarity is mostly based on Euclidean
spaces. Such spaces of a fixed dimensionality n can be indexed efficiently us-
ing well-known techniques like R-trees and derivatives ([Gut84, SRF87], Grid
Files ([NHS84]), z-ordering ([Ore90], etc., due to the neighbourhood preserving
nature of these structures. The usability of these approaches, though, is limited
by the number of dimensions n. This effect is known as the Curse of dimen-
sionality. Mapping objects to a Euclidean space is for instance addressed for
complex data objects such as multimedia data through terms of Feature extraction
([Kit86, Jag91], where certain measurable aspects of objects are used to derive the
vector representation directly from one object. A concurrent approach is based on
the previously mentioned Multidimensional scaling, which itself is computation-
ally expensive and not suitable for large datasets. Therefore, Faloutsos et al. in
[FL95] described FastMap, also deriving a Euclidean representation of objects
for which a distance function or matrix is given, but applying some reasonable
simplifications. Jin et al. in [JLMO3] use this approach for approximate string
matching.

There are several advantages of similarity metrics resulting from the metric
axioms, especially when the metrics are used for data processing. Considering the

3.2. MODELSOF SIMILARITY 41

definition of similarity relations described before, the constancy of self-similarity
and the symmetry directly translate to a reflexive and symmetric similarity rela-
tion. For similarity based operations that would mean, we do not have to check
whether an object is similar to itself, and if the similarity of object a to object b
also exists from object b to object a. Current data processing is often based on
equivalence relations, which are reflexive, symmetric, and transitive. All the opti-
misations resulting from the former two properties can be applied, if a similarity
operation is based on a similarity metric.

Unfortunately, similarity relations are in general not considered transitive. The
triangular inequality can be considered a mitigation of transitivity for distance
measures by at least preserving the neighbourhood of different objects, which is
useful for efficient access to similar objects. For instance, this is used by index
structures conserving the notion of closeness that is expressed through the trian-
gular inequality, as mentioned above. Nevertheless, transitivity does not hold for
similarity relations. Considering the previously introduced derivation of similarity
predicates and relations from a distance measure as

(a,b) € SIM & dist(a,b) < k
we immediately see that symmetry and reflexivity hold for the relation SIM, i.e.

(a,a) € SIM & dist(a,a) =0 <k
(a,b) € SIM < (b,a) € SIM < dist(a,b) = dist(b,a) <k

which always evaluate to true if dist is a metric. Considering three objects a, b
and ¢ where the relation holds for a and b as well as for b and c, i.e.

dist(a,b) < kv
dist(b,c) <k =
dist(a,b) +dist(b,c) < 2k

and now additionally consider the triangular inequality
dist(a,c) < dist(a,b) +dist(b,c) < 2k
transitivity obviously does not hold for the derived similarity relation SIM. Hence,

in this case SIM is a reflexive, symmetric, atransitive relation.

3.2.3 Problemswith Common Models

At this point we are at the most common understanding of the terms related to
similarity: similarity is expressed by distance measures which are metrics, i.e.
they satisfy the metric axioms of constancy of self-similarity, symmetry, and the

42 CHAPTER 3. CONCEPTS OF SIMILARITY

triangular inequality. Similarity relations are reflexive, symmetric, and atransitive.
Most definitions refer to these properties.

Nevertheless, there are problems with these models and almost all properties
were refuted by results of psychological experiments and diverging properties of
specific similarity measures and similarity relations. Obviously, the real compre-
hension of similarity is less rigid than the properties introduced so far. The con-
stancy of self-similarity, symmetry, and the triangular inequality were attacked
by psychological research, for instance by Krumhansl in [Kru78] and Tversky
in [Tve77]. If these do not hold, we also have to reconsider the symmetry and
reflexivity of similarity relations.

Though often neglected, these observations are relevant in data processing. As
a motivation, we have to remember that similarity always depends on the context
of similarity, which in data processing may be a given application or value do-
main. For such a context a specific similarity measure can be used, which may
be provided by the designer or the user of the given application, for instance as a
user-defined function. As shown later on, it is easy to specify a similarity predi-
cate that is neither reflexive nor symmetric, and still may make perfect sense for a
certain application.

The model developed by Tversky is a featural model of similarity according
to the classification by Goldstone in [Gol99]. Instead of representing stimuli by
a number of measurable or derivable coordinates to some Euclidean space, he
characterised them by a set of features that they possess. Let 4 and B be the set
of features of objects a and b, respectively, then Tversky described the similarity
of aand b in his Feature contrast model ([Tve77]) as a similarity measure

sim(a,b) = f(4ANB) —af(4—B)-Bf(B—A)

where a,3 > 0 and f is a non-negative function. Tversky showed that this model
is closer to the human cognition of similarity. Results of psychological exper-
iments had shown tendencies towards asymmetric similarities, which could not
be represented by geometrical models based on metrics. A typical experimen-
tal result was that variants were considered more similar to a prototype than vice
versa. Santini and Jain applied and refined Tversky’s feature contrast model for
similarity based operations on image data in [SJ97].

In [Kru78] Krumhansl argued that the constancy of self-similarity does not
hold if a distance function also considers the density of stimuli, which was shown
to have an impact on the dissimilarity by experimental results. The triangular
inequality was refuted by Ashby and Perrin in [AP88] as well as Tversky and Gati
in [TG82]. In the latter article Tversky and Gati introduced weaker properties
of distance functions in a fixed dimensional feature space as an alternative to the
metric distance axioms. These so called Monotone proximity structures have the
following properties satisfied by most distance measures:

3.2. MODELSOF SIMILARITY 43

Dominance: the distance between two objects is greater than the distance be-
tween their projections on the coordinate axes. This is a weaker form of the
triangular inequality.

Consistency: the ordinal relation of distances between objects in one dimension
is independent of the values in the other dimensions.

Transitivity: if the projection of an object b on one dimension is between the
projections of objects a and c, written as a|b|c, and furthermore c is between
b and d, that means b|c|d, then a|b|d and a|c|d also hold.

This framework is less rigid than the metric axioms and better explains the hu-
man cognition of similarity, while still preserving the intuitive notion of closeness
through the ordinal relations of dissimilarities along dimensions. Unfortunately,
monotone proximity structures and their implications are not well researched, es-
pecially in computer science.

Figure 3.2: Distances in a weighted directed graph

Again, it is not the intention of this work to provide a new framework for sim-
ilarity or show that any of the above mentioned approaches is correct in all given
scenarios. Instead, we will discuss what implications the presence or absence of
certain properties of similarity measures and similarity relations has on similarity-
based operations. Missing metric axioms, for instance, may easily be the case for
application-specific similarity measures. As a somewhat malicious example con-
sider the weighted directed graph depicted in Figure 3.2. If we define a distance
measure between nodes in this graph as the minimum sum of edge weights of all
paths from one node to another or as c when no such path exists, we see that con-
stancy of self-similarity and symmetry do not hold, because dist(a,a) = 1 while
dist(b,b) = 5, and dist(a,b) = 2 while dist(b,a) = 3. If we change our distance
measure to not consider paths, but only direct edges, we also lose the triangular
inequality, because dist(a,c) = 5 while dist(a,b) + dist(b,c) = 4. In this case,
monotone proximity structures would not help either, because the model is not
geometric. Multidimensional scaling or FastMap cannot yield meaningful results,

44 CHAPTER 3. CONCEPTS OF SIMILARITY

because the definition of the distance as o for non-existing paths makes the ap-
proach useless. Yet, if we consider the edge weights as transformation costs, a
query like “find all nodes similar to a, i.e. nodes that can be the result of (a single
or multiple) transformations with costs less than 3” is meaningful and would yield
the result {a, b}.

Regarding the properties of similarity predicates, symmetry and reflexivity do
not hold if the predicate is specified based on a distance measure, which does
not provide constancy of self-similarity and symmetry. Consider objects X and Y
representing sets, for instance of features or information retrieval terms. If we use
a similarity measure like

. XNy
S|m(X,Y):| |Q| |

to find objects similar to X, i.e. those who share a considerable number of ele-
ments with X, the similarity measure is asymmetric. This is because we do not
take the cardinality of Y into account, where Y may contain many more elements
not in X. One might argue, that the often used Jaccard set distance

XNy
O Xuy|

sim(X,Y)

might be a better choice. Yet, the above scenario is commonly used in Informa-
tion retrieval, where X represents a query and Y represents a document, and the
symmetry of the predicate is of no concern. Also, in data integration scenarios we
may not have full access to the set of queried objects, so we again would have to
use the former approach.

Furthermore, we may not at all want our similarity relation to be reflexive, i.e.
we do not want identical objects to be considered as similar. Looking for objects
which are similar to object X, we may not want the object itself as part of the
result. As an example consider record linkage in a Data Warehouse, where it is
not necessary to link a record with itself, but rather only with these records, which
are actually similar and not identical.

Finally, dealing with the context-specific nature of similarity requires similar-
ity measures suitable for very specific applications. A common way to provide
such tailor-made similarity measures is to implement user-defined functions ac-
cording to the previously given definition of a similarity or distance measure. But
because the efficient evaluation of predicates based on such measures to a high
degree depends on according index support, which in theory can be given if for
instance the triangular inequality holds, the implementation can be very problem-
atic. Inthis case, a possible implementation of the similarity measure can be based
more primitive predicates.

3.3. STRING SIMILARITY 45

As an example, consider the matching of person names, such as “Albrecht
Durer”, “Albrecht Duerer”, “A. Durer”, and “Direr, Albrecht”. Though all names
probably refer to the same German renaissance artist, using for instance the string
similarity will only help with the former two representations. But because we
know about the semantics of an attribute ARTI ST_NAME, we may use techniques
introduced in the following Section 3.3 to address for instance the problems of
the German umlauts or abbreviations of first names. Furthermore, we can apply
elementising to get tokens representing first or last names, and then use these
for index based similarity lookup based on the standard edit distance to grant
efficiency of predicate evaluation. This way techniques introduced in Chapters 5
and 6 can be used.

3.3 String Similarity

The similarity of strings is most important considering the fact that most conven-
tional applications deal with simply structured data either expressed as string or
numerical data values. Though the problems of string similarity and approximate
string matching have been a topic of research for a very long time, there still is
very little support for these concepts in current data management solutions. Likely
reasons for this are problems of

e efficiency, because as though there are means for approximately matching
strings, efficient support for such operations is either too complex or still in
its infancy, and

o the context-specific aspects of approximate string matching, where efficient
solutions often have to be based on the semantics of a string attribute con-
sidered in a predicate.

For instance, the SQL standard only supports phonetic similarity through the
Soundex coding introduced in [OR18] as early as 1918 by Odell and Russel,
and matching strings with patterns according to regular expressions. For the lat-
ter, commercial database management systems mostly fail to support the efficient
processing of such predicates.

Nevertheless, there are numerous applications of approximate string matching,
for instance related to data integration, text retrieval, signal processing, computa-
tional biology, and many more. Overviews of according research are given for
instance by Hall and Dowling in [HD80], Jokinen et al. in [JTU96], and more
recently by Navarro in [Nav01], on all of which the overview given here is based.

While the approaches presented in Chapters 5 and 6 are applying distance
measures for strings like the Levenshtein distance already introduced in Sec-
tion 3.2.2 and discussed in more detail later on, there are a number of techniques

46 CHAPTER 3. CONCEPTS OF SIMILARITY

for transforming string values to canonical forms which may be helpful in certain
application scenarios either for reducing the problem of approximate string match-
ing to equivalence matching, or as pre-processing steps for similarity matching.
Basically, such transformations are applied before internally processing, storing,
or indexing strings. Transformations for canonising include for instance:

Character transformations: this includes for instance commonly used transfor-
mations to derive a canonical string representation like lower or upper case
letters and the removal of special characters like white spaces or dashes. As
an example consider the the transformation of “Multidatabase” and “multi-
database” to the internal representation as “multidatabase”.

Elementising: the deconstruction of complex strings to atomic elements like
words also referred to as tokenising is sometimes required to perform fur-
ther transformations like stemming, translation, etc. Furthermore, certain
similarity measures on strings can be based on their decomposed represen-
tation, as for instance described by Lujan-Mora and Palomar in [LMPO1a].

Stemming: the reduction of words to a common root based on syntactical rules
as outlined for instance in [BYRN99] is common practice in the field of In-
formation retrieval. This allows for instance the matching of “respectively”
and “respective” based on their common root “respect”.

Translation: though the automatic translation of texts still is problematic, the
translation of shorter string values expressed in possibly varying languages
may make sense to a certain degree. This translation can be based on dictio-
naries or specialised mapping tables. As an example consider a categorical
attribute of publication types in a German Digital library with values like
“Buch”, “Artikel”, and “Konferenzband” which can be mapped to the ac-
cording English terms “book”, “article”, and “proceedings”, respectively.

Substitution of alternative spellings: multi-lingual and other language issues
may lead to varying spellings of words, such as the difference between En-
glish and American spelling or the new German orthography introduced
in the 1990s. An example would be “materialisation” or “materialization”
in either English or American spelling, respectively, which can be resolved
based on rules. Also, names of persons, places, etc. may have different tran-
scriptions, like for instance “Al-Kaida” and “Al-Qaida”, where mappings or
thesauri seem more appropriate.

Substitution of synonyms: the replacement of certain terms with a most com-
mon term describing a class of real-world entities based on thesauri can
be applied in various scenarios. This allows for instance the matching of

3.3. STRING SIMILARITY 47

“alike” and “akin” based on the more common word “similar”. The problem
of synonyms is addressed extensively in the field of Information retrieval as
outline for instance in [BYRN99].

Abbreviation expansion or reduction: a common problem in string matching
is the matching of terms to according abbreviations or between diverging
abbreviations. This can be done applying mappings or rules for the expan-
sion from or reduction to abbreviations. The information loss and possibly
resulting ambiguity make this a hard problem.

Phonetic transformation: the previously mentioned Soundex coding as well as
derived methods transform words to equivalence classes of similarly sound-
ing words. Though this is helpful to deal with erroneous data input, the
transformed representation can only be used for equivalence matching and
no further processing.

All these techniques in general imply an equivalence relation, though for instance
the replacement of synonyms or abbreviations may lead to problems resulting in
similarity relations. Though a number of problems can be resolved applying these
techniques, the general problem of approximate string matching still persists, re-
sulting in a similarity relation between string representations.

The majority of problems addressed by approximate string matching result
from erroneous or imprecise data, though some of the basic problems mentioned
above, like for instance alternative spellings, character transformations, word stem
matching, or phonetic matching can partially be dealt with based on string simi-
larity. The approximate string matching problem is defined by Navarro in [Nav01]
from a text retrieval point of view as follows:

Definition 3.6 Let X be a finite alphabet of size || = 0. Lett € Z* be a text
of length n = |t|. Let p € Z* be a pattern of length m = |p|. Let k € R be the
maximum error allowed. Letd : 2* x Z* — R be a distance function. The problem
of approximate string matching in texts is: given t, p, k, and d, return the set of
positions j such that there exists i such that d(p, t[i]..t[j]) <k.

Rather than finding positions within texts, we focus on finding similar strings in
sets, which may for instance be the values of a string attribute in a relation. Hence,
our definition is slightly modified.

Definition 3.7 Lets € =* be a search string and T C 2% be a set of strings over
the same alphabet. The problem of approximate string matching in string sets is:
givens, T, k, and d, return the set of all stringst € R such that d(s,t) < k.

48 CHAPTER 3. CONCEPTS OF SIMILARITY

Suitable distance measures for string values are transformational measures ac-
cording to the classification given by Goldstone in [Gol99], i.e. they measure the
dissimilarity in terms of operations necessary to transform one string to another.
Various distance measures can be distinguished based on

e the kinds of operations allowed, and
e the costs assigned to these operations.

Typical operations are the deletion, insertion, replacement, or transposition of
characters. Other considered operations for instance include reversals or the per-
mutation of complete substrings, such as for instance the Block edit distance in-
troduced by Tichy in [Tic84]. Similarly, Ukkonen in [Ukk92] described similarity
of strings in terms of common substrings of a fixed length called g-grams, which
are used for a related purpose in Chapter 6. The most common string distance
measures are based on the typically considered operations mentioned above.

Levenshtein distance: the Levenshtein or simple edit distance edist introduced
formally in Section 3.2.2 considers the minimal number of
e insertions — edist(‘ac’,’abc’) = 1,
e deletions — edist(‘abc’,’ac’) = 1, and
e substitutions — edist(‘abc’,/adc’) = 1

to transform one string to another.

Extended edit distance: A commonly used extension of the Levenshtein dis-
tance also considers transpositions, i.e.

edist(‘ab’,/ba’) =1

because it covers typical typing errors. This extended version like the simple
edit distance is a metric.

Hamming distance: the Hamming distance described for instance by Kruskal
and Sankoff in [KS83] only allows substitutions and, therefore, is used
mostly for strings representing specific sequences and not natural language.

Episode distance: the Episode distance introduced by Das et al. in [DFGG97],
similarly to the Hamming distance was designed for strings representing
sequences, e.g. of events in a temporal space. It allows only insertions and,
therefore, is not a symmetric measure and no metric.

3.3. STRING SIMILARITY 49

Longest common subsequence distance: introduced by Needleman and Wun-
sch in [NW70] the longest common subsequence distance targets specific
sequences in computational biology. It allows only insertions and dele-
tions, representing the distance as the number of unpaired characters in both
strings. This measure satisfies the metric axioms.

All these distance measures in their common form use fixed costs of 1 for all
operations. More specific distance measures may assign costs to operations on
various levels, to better reflect the actual difference of both strings. This includes
the following costs.

Operational costs which are assigned to deletions, insertions, etc. without fur-
ther considering the characters or their context they are applied on. This
makes sense, because the errors addressed by the operations have varying
statistical frequencies, e.g. false characters appear more often in strings than
missing or added characters.

Character costs refine operational costs by assigning costs for certain transfor-
mations based on the considered characters. This reflects phonetic, linguis-
tic, or mistyping aspects, e.g. it is more likely to replace an ’n” with an 'm’
because of their phonetic similarity than ’t” and 'm’.

Context-specific costs as a further extension also consider the context of a char-
acter for deriving the costs of an applicable operation. For example, “Saun-
ders” is less different from “Sanders” than “Sanderus”, because the insertion
of a vowel next to another vowel implies a greater phonetic similarity than
the introduction of a new syllable by inserting it between consonants.

Though very helpful to better express the actual similarity, such costs are often
neglected in research. A careful assignment of costs does not impact the overall
concepts of the distance measures and can be integrated with existing algorithms.
Nevertheless, problems such as asymmetry etc. can be introduced, e.g. if the
insertion and deletion costs do not match.

A detailed description of efficient algorithms, for instance based on dynamic
programming and bit parallelism, is beyond the scope of this work and we refer the
reader to Jokinen in [JTU96] and Navarro in [Nav01]. Furthermore, approximate
string matching using indexes is a rather new research field, but mainly addressed
from an Information retrieval point of view dealing with longer texts, e.g. Navarro
and Baeza-Yates in [NBY99] and Ukkonen in [UKk93]. A similar approach by
Shang and Merret described in [SM96] is applied in Chapter 5 to support string
similarity-based operations in materialised data sets.

50 CHAPTER 3. CONCEPTS OF SIMILARITY

3.4 Conclusions

This chapter gave an overview of similarity, its general importance, as well as
the problems that still hinder its broad application in computer science. For com-
puter systems to come near the human capabilities of cognition and intellectual
processes requires a better integration of similarity-based concepts. This is very
problematic, mainly due to the currently limited understanding of the nature of
similarity and the strong dependence on a context of similarity that may vary
widely for every application.

In this chapter quite loose definitions and descriptions of similarity measures,
relations, and predicates were given to allow a great number of applications. The
properties of these concepts that may or may not hold were discussed and the
consequences were to some degree left open for further discussion in this thesis
and related work. On the other hand, the importance of fixed properties such as
established through the usage of distances in metric space, which are the current
state of the art for similarity-based operations in computer science, was pointed
out.

Some commonly used similarity measures were introduced to illustrate the
mentioned concepts and related aspects. A special focus was on similarity mea-
sures for string data values, which are used throughout this thesis to define simi-
larity predicates and discuss aspects of operations based on these predicates. Ac-
cordingly the problem of approximate string matching based on string similarity
was described.

The research on similarity and its integration in computer science remains a
challenging area with many problems currently unresolved. Just as the current
view on similarity applied in data management draws heavily from early research
done in the field of psychology, open problems more recently addressed in the lat-
ter area are only rarely considered in computer science. Furthermore, even on the
most general level similarity relations and the often implied probabilistic aspects
do not well integrate with current data management solutions, which are based
on equivalence relations and the assumption of data representing unquestionable
facts. Therefore, further research on a conceptual framework addressing these
issues is required.

Chapter 4
Similarity-based Operations

In recent years the concept of similarity has found its way into computer science
via various areas, mainly driven by new applications working with complex or
imprecise data. All these applications share the need to improve the abilities of
data processing towards human cognition and intellectual processes. Therefore,
the usage can roughly be distinguished according to the two main areas of the
usage of similarity in human cognition described in Section 3.1. Again, we have
to consider real world objects and their representations. The latter this time exist
in computer memory and are referred to for reasons of simplicity as objects.

Identification: objects may be representations of the same real world object, yet
the representations may differ due to different formats, precisions, input
conventions, etc. or incomplete and erroneous data. In this case the identi-
fication has to be based on similarity. As data is becoming more complex
and the availability from various sources increases, similarity-based identi-
fication becomes more and more essential.

Abstraction: though objects may not be representations of the same real world
objects, they may be related by some derivable abstract concept represent-
ing user information requirements. This includes finding relations between
objects, classification, generalisation, clustering, etc. based on similarity.

To support this usage, suitable operations have to be provided by the systems.
This problem concerns for instance

e database management systems,
e data integration solutions,
e information and multi-media retrieval systems,

e expert systems,

51

52

CHAPTER 4. SIMILARITY-BASED OPERATIONS

and others, where the focus here will be on the former two. Therefore, the fol-
lowing discussions as well as the remainder of this thesis will heavily lean on
concepts from database theory such as operations from the relational algebra.

This chapter will describe some of the foundations of similarity-based opera-

tions introduced in Chapters 5 and 6 and relate it to other approaches addressing
the same or other relevant issues.

4.1

Introduction

Similarity as outlined in Chapter 3 requires severely different techniques than
those used commonly in current systems to address the following issues:

e similarity relations contrary to equivalence relations on which for instance

the relational model is based, do have distinct properties like atransitivity,
and even symmetry and reflexivity may not hold,

e it heavily depends on the context of similarity, which is in most cases very

specific to the current application and may be very complex to describe,

e the usage of similarity introduces a probabilistic aspect if for instance the

measured similarity is used as a degree of truth for identification purposes.

Therefore, we consider the following levels of support for similarity-based opera-

tions.

Level 1 - Predicates: similarity predicates are used to decide about the similarity

of data values and this way or through their logical combination about the
similarity of objects like tuples. Similarity predicates therefore must com-
prehensively describe the context of similarity. The support for similarity
predicates is currently becoming state of the art for instance by means of
multi-media, spatial, and information retrieval extensions to database man-
agement systems. On the other hand, support for the similarity of simple
data types like strings as described in Section 3.3 is not part of core database
functionality. Because such support is a strong requirement in data integra-
tion, it is the major focus of this thesis.

Level 2 - Operations: due to the specific properties of similarity relations, oper-

ations usually based on equivalence relations must be revisited and adjusted
to atransitivity and the possible occurrence of asymmetry and irreflexiv-
ity. Furthermore, the efficient processing of operations based on similarity-
predicates may require the application of different algorithms and index
structures on an internal level. From a database point of view this concerns

4.2. SIMILARITY PREDICATES 53

selection, join, and grouping operations. For the latter, apart from handling
atransitivity etc. the implicitly specified equivalence predicate must be re-
placed by an explicit similarity predicate. The impact of similarity relations
on database operations is currently rarely considered in existing systems,
mainly because a limited view on similarity and according operations — ba-
sically only selections — are supported.

Level 3 - Query and data model: the introduction of probabilistic aspects may
require changes or extensions to the underlying query and data model of
the system to express the possible vagueness of facts derived by similarity-
based operations. Though this is currently not addressed in existing sys-
tems and, furthermore, not a focus of this thesis, the problem was addressed
in research. In [DS96] Dey et al. propose an extended relational model
and algebra supporting probabilistic aspects. Fuhr describes a probabilistic
Datalog in [Fuh95]. Especially for data integration issues probabilistic ap-
proaches were verified and yielded useful results, as described by Tseng et
al. in[TCY92].

Each level builds on the respective lower levels, such as similarity based opera-
tions only can be applied based on actual similarity predicates, and a probabilistic
data model does only make sense, if according operations are supported. On the
other hand, the support of one level does not necessarily imply any higher lev-
els. Though similarity predicates to some degree may be supported by database
systems, the processing of operations can be carried out in a conventional way,
possibly with decreased efficiency or accuracy. And, similarity-based operations
as proposed in this thesis can be used without any explicit modifications to the
data model. So, the focus of this thesis will be on the levels 1 and 2 described
above and introduced in more detail in the following sections.

4.2 Similarity Predicates

Similarity predicates were already introduced and described in Section 3.2 as

e basic similarity predicates conforming to a two-valued logic returning either
true or false and may be derived from similarity or distance measures by
applying a certain threshold, or alternatively as

e fuzzy similarity predicates returning a degree of truth between 0 and 1.

While the former can be supported by current database management systems, the
latter require extended operations and implementations and possibly extended,
probabilistic data models.

54 CHAPTER 4. SIMILARITY-BASED OPERATIONS

In this section the semantics of similarity predicates are described as exten-
sions to the standard relational algebra assuming the following basic notations:
let r be a relation with the schema R = {A1,...,An}, t" € ris a tuple from the
relation r and t"(A;) denotes the value of attribute A; of the tuple t".

If we furthermore distinguish between predicates defined between attributes,
used for instance in join conditions, and those defined between an attribute and
a constant value, as typically used in selection conditions, basic similarity predi-
cates <sim_pred> can be specified as follows.

sim(A;,const) > |
dist(A;, const)) <k
sim(Aj, Aj) >
dist(Aj, A ,)gk

<sm_pred>:=

where the predicate is specified using either a normalised similarity or a distance
measure according to the description in Section 3.2. The semantics of the similar-
ity and distance predicates are as follows.

o Normalised similarity predicate on attribute and constant value:
<sim_pred> (t) < sim(t(Aj),const) > |

e Distance predicate on attribute and constant value:
<sim_pred> (t) < dist(t(A),const)) <Kk

e Normalised similarity predicate on attributeS'
<sim_pred> (t",t3%) < sim(t"(A),t3(A))) >

e Distance predicate on attributes:
<sim_pred> (t",t%) < dist(t"(A), t3(A})) <k

The last two cases explicitly include the r = s and even i = j. The latter is
for instance useful when expressing a predicate for similarity-based grouping
as introduced below, where the implicit equality predicate given in the conven-
tional GROUP BY-clause must be replaced by a similarity predicate. We use
sim(t"(Ai)) > I and dist(t"(A;)) < k as shorthands for such predicates on one at-
tribute within one relation.

Due to being based on two-valued logic, conventional predicates based on
operators such as equality =, inequality #, or order comparison <, <,>, >, etc.
can be considered conceptually on the same level. We use <conv_pred> as a
shorthand for such conventional predicates. Both kinds can be combined freely
through logical operators V, A, and —. We refer to conditions containing at least

4.2. SIMILARITY PREDICATES 55

one similarity predicate as similarity conditions <sim_cond>, i.e.

<sm_pred>

. - <sim_cond>
<sim_cond>:=)
<sim_pred>

<sim_cond> 6 {<conv_pred>
where 8 € {A,V}. A special case considered for purposes of the evaluation of
predicates during query processing are conjunctive similarity conditions, where
only the logical conjunction operator 8 = A is used to combine predicates.

This basic concept of similarity predicates can be used in most current
database management systems by applying user-defined functions for implement-
ing similarity or distance measures. Yet, the recognition or explicit qualification
of these similarity predicates is necessary if special support for similarity-based
operations through algorithms and indexes is intended.

If this is the case, further considerations regarding the properties of the applied
measure are required. Similarity predicates which are not reflexive or symmetric
have a severe impact on the operations they are used in. Atransitivity must gener-
ally be considered. The consequences of this are discussed in relation to the oper-
ations later on. But, at this point it is necessary to mention that these aspects must
be known to the system performing according operations. For system-defined
predicates this is straightforward. For user-defined predicates, which will often be
required due to the strong context dependence of similarity, there must be ways to
declare these properties to the system.

Because the previous definition of predicates is an extension of the standard
relational algebra, we do not have to deal with probabilities in conditions — by
using a similarity threshold we can always rely on boolean values of true or false
for such predicates and derived complex conditions. The alternatively considered
approach of using fuzzy similarity predicates returning a degree of truth between
0 and 1 would require a special handling of complex conditions, for which a prob-
abilistic result must be derived. Given two fuzzy predicates p and g, two often
used ways of computing this score are:

Minimum/maximum combination which is for instance applied during query
optimisation when dealing with selectivities in commercial database man-
agement systems:

P(pAg) = min(P(p),P(q))
P(pvg) = max(P
P(-p) = 1-P(

56 CHAPTER 4. SIMILARITY-BASED OPERATIONS

Probabilistic combination assuming independence between the predicates as
for instance used in Information retrieval, probabilistic database approaches
like the one by Fuhr in [Fuh95], or data integration approaches like Cohen’s
WHIRL described in [Coh98]:

P(pAg) = P(
P(pvg) = 1
P(=p) = 1-P(p)

Throughout this thesis the latter approach is used. A discussion of the approaches
regarding data integration is given by Cohen in [Coh98]. The integration of pred-
icates which are not fuzzy can easily be done by assigning the values 0 and 1 if
the result is false or true, respectively.

The score of such a complex condition including fuzzy predicates is again be-
tween 0 and 1 and can for instance be used to specify a global threshold for the
condition instead of the single fuzzy predicates. To gain the expressive power
when using thresholds for each fuzzy predicate a weighting of predicates would
have to be introduced. Alternatively, the score can be used for further process-
ing, such as for ranking the results for an output, or for ordered and pipelined
processing in following operations.

4.3 Similarity-based Operations

Based on similarity predicates as the common notion of similarity on the data
level, similarity-based operations can be introduced. In principle, only predicate-
based operations like the 6-join and selection have to deal with aspects of sim-
ilarity. On the other hand, operations like the natural join, grouping, and union
with duplicate elimination are based on implicit equivalence relations within the
domains of all attributes of a relation, single attributes, or two attributes of the
same name. In this section we describe the basic semantics of similarity based
operations discussed in Chapters 5 and 6, i.e. selection, join, and grouping as
known from the relational algebra or according extensions. Though aspects of
a similarity union in conjunction with similarity-based duplicate removal were
considered during early research related to this thesis, the concept of grouping
and aggregation better fit the two aspects of duplicate detection and the according
reconciliation of discrepant values.

4.3. SIMILARITY-BASED OPERATIONS 57

4.3.1 Similarity-based Selection

Selections based on similarity conditions including basic similarity predicates,
which are mainly used in this thesis, have the general form

OsimconaT(R) :={t |t € rA <sm_cond> (t) = true}

To simplify discussions in the later Chapters of the thesis similarity conditions
are either seen as conjunctive similarity conditions — for instance as a result of
a transformation to a disjunctive normal form without losing the generality of
the approach — or as simple constant selection. Then, a conjunctive similarity
selection is

Opn, smpreor; T (R) :={t [t € rAVi=1..n: <sim_pred>(t) = true}

Regarding complex similarity conditions, another aspect typical to the eval-
uation of similarity predicates has to be pointed out. A common approach to
efficiently process similarity-based operations is to provide a pre-selection which
is specified as part of the condition but evaluated before the probably expensive
evaluation of the similarity predicates takes place. This is even more effective if
the pre-selection predicate is supported by a conventional index structure. The
pre-selection in the most simple case can be specified by a user familiar with the
internal processing of the query. A number of research approaches, including the
one presented in Chapter 6 of this thesis, consider the automatic expansion of sim-
ilarity predicates to similarity conditions including pre-selection predicates which
can be evaluated efficiently.

Similarity predicates may include the similarity between attributes, as later on
used for similarity joins, or as predicates comparing attribute values to a constant
specified within the query according to constant selections in the relational alge-
bra. Such similarity constant selections on an attribute A € R of relation r(R) are
either based on a similarity measure

Osim(Acongant)>tF (R) := {t [t € r Asim(t(A),constant) > I}
or on a distance measure
Ogist(Acongant)<kl (R) := {t [t € r Adist(t(A), constant) < k}

as introduced above.

The latter conforms to a range or €-range query as known from spatial data
access and information and multimedia retrieval. Other approaches in these fields
related to similarity selections are nearest neighbour queries and k-nearest neigh-
bour queries, which are also based on distance measures and described for in-
stance in [SL91] and [BYRNZ99]. Instead of returning reasonably similar or close

58 CHAPTER 4. SIMILARITY-BASED OPERATIONS

objects, such queries return either the 1 or k closest objects to a query point,
in our case represented by the constant value. A more recent type of distance-
based queries are skyline queries as described for instance by Kossmann et al.
in [KRRO2], where the result of a query is a set of objects and each of them
represents an optimal solution regarding a combination of criteria expressed as
dimensional values.

Another aspect typical to information and multimedia retrieval is to apply the
fuzzy nature of similarity predicates by not presenting a boolean result, i.e. tuples
either are or are not element of an unordered result set, but instead use the result
of predicate evaluation to present a possibly truncated ordered result list. In this
case, thresholds are not part of the predicate as in our notion of fuzzy similarity
predicates, and the algorithms and operations have to be adapted to this modifica-
tion of the retrieval data model. An overview of according techniques is given for
instance in [BYRN99].

Finally, for a similarity-based selection the consequences of properties a sim-
ilarity measure used to specify a predicate has have to be considered. While on
the conceptual level neither the lack of constancy of self-similarity and symme-
try nor violations of the triangular inequality have any consequences regarding
the semantics of the operation, a missing notion of closeness as for instance ex-
pressed through the triangular inequality or by monotone proximity structures as
introduced in Section 3.2.3 may hinder the efficient processing of the predicate,
because supporting index structures are not conceivable in this case.

4.3.2 Similarity-based Join

Based on similarity conditions introduced above the semantics of a similarity join
between two relations ri(R1) and rz(R2) can be described in a straightforward
way for a given similarity condition <sim_cond> as

r18gm.cong 12 := {t | t(R1UR2) A
derq: tl(Rl) = t(Rl) Adtrery: tl(Rz) = t(Rz) A
<sim_cond> (t1,tz) = true}

This simply means, the concatenation of a pair of tuples from the relations rq
and ry appears in the result of the join operation if the similarity condition is
fulfilled for these two tuples. There is a slight simplification in this description by
assuming non-overlapping schemas R1 and R», which can always be realised by
considering the relation name as part of the attribute namespace. The semantics
of a similarity join as given above conforms to a 8-join, only differing in the kind
of predicates allowed.

4.3. SIMILARITY-BASED OPERATIONS 59

Just like for selections we consider the following cases of simplified join con-
ditions consisting of only one similarity or distance predicate, i.e.

Nfsgmaa)s>if2:={t| t(R1UR2)A
Ai e R1AAj ER2A
dty erp:t1(R1) =t(R1)) Adta € ra 1 t1(R2) =t(R2) A
sim(Aj,Aj) > 1}

and

r¥ais(a.an<k2:={t| t(RIUR2)A
Ai € RiAAj €RoA
dty e rpita(Ry) =t(R1) Atz €ra 1 t1(R2) =t(R2) A
dist(A,Aj) <k}

respectively. When similarity joins are addressed in research, as for instance in the
approaches described later on, the description most often refers to these limited
interpretations, basically because most research is focused on the evaluation of
one specific similarity predicate. Though the research presented in this thesis is
also focused on specific predicates, namely string similarity as expressed based on
the edit distance, in Chapter 5 a discussion of complex join conditions is included.

Spatial and similarity joins were first addressed for data values that either rep-
resented points in a multidimensional metric space or could be mapped to such a
space, e.g. by Brinkhoff et al. in [BKS93] and Shim et al. in [SSA02]. A recent
overview is given by Koudas and Sevcik in [KS00]. Based on Fuhr’s probabilistic
Datalog ([Fuh95]) in [Coh98] Cohen described an approach for performing joins
based on textual similarity, contrary to the similarity of shorter strings used in
this thesis. In [GIJ*T01] and [GIKS03] Gravano et al. present and refine an ap-
proach to perform joins based on similarity of string attributes through efficient
pre-selections of materialised g-grams.

Contrary to the previously introduced selection, the properties of similarity
measures used to specify predicates for a join may have a severe impact on the
semantics of the operation, mainly due to missing constancy of self-similarity and
symmetry. If a similarity measure is defined in a way such that the constancy of
self-similarity does not hold, the resulting similarity relation may not be reflexive,
i.e. X =y # SIM(x,y) and this way one object may or may not match itself,
which for instance can occur during self-joins. Furthermore, irreflexivity, i.e. x =
y = =SIM(x,y), may be a requirement, if similarity should be handled separately
from identity as described in Section 3.2.3. This requires slight modifications and
a minor lack of optimisation opportunities during join processing.

60 CHAPTER 4. SIMILARITY-BASED OPERATIONS

The asymmetry of a similarity measure is far more problematic, because it
may imply an asymmetric similarity relation resulting in the following semantic
problem of the similarity join:

18 gm_conet 2 72X gm_cones I'1

Many known optimisations are based on the commutativity of the join operator,
for instance changing the join order for multi-way joins or choosing a small input
relation as the left operand for index-based joins. This may not be possible, if an
asymmetric similarity measure is involved.

Therefore, the system processing similarity-based joins needs to be aware of
the properties of the underlying similarity relation either by declaration or by im-
plicitly assuming the worst case for similarity-based operations.

4.3.3 Similarity-based Grouping

The semantics of the grouping operator are defined based on an extension of the
relational algebra for standard grouping as presented in [EN94]:

<grouping_attrs> F [<aggr-func lis>](r)

Here <grouping attrs> is a list of attributes used for grouping relation r,
<aggr_func_list> denotes a list of aggregate functions (e.g., count, avg, min, max
etc.) conveyed by an attribute of relation r. Because the proposed operation is
intended for data integration scenarios, advanced aggregation functions suitable
for the reconciliation of discrepant values are discussed later on in this thesis.
As a further simplification, we assume that the name of an aggregated column is
derived by concatenating the attribute name and the name of the function. An
aggregate function f is a function returning a value v € Dom for a multi-set of
values vy,...vm € Dom:

f({vy,...,vm}) =V

where Dom denotes an arbitrary domain of either numeric or alphanumeric values
and the brackets { ...} are used for multi-sets.

We extend this equality-based grouping operator F with regard to the group-
ing criteria by allowing a similarity condition and call this new operator I':

<sim_cond> T [<aggr-func_list>](r)

This operator again has a list of aggregate functions <aggr_func_list> with the
same meaning as above. However, the grouping criteria <sim_cond> is now a
complex similarity condition as introduced above.

4.3. SIMILARITY-BASED OPERATIONS 61

Lo e fe

Figure 4.1: Derived equivalence relation for a given similarity relation (a) by (b)
transitive and (c) strict similarity

The result of I is a relation r’ where the schema consists of all the attributes
referenced in <sim_cond> in equality predicates and the attributes named after
the aggregates as described above. Contrary to the usual grouping operator, if a
similarity predicate is specified in the grouping condition the according attribute
values also have to be reconciled during aggregation, because of the conflicting
values.

The relation r’ is obtained by the concatenation of the two operators y and
U which reflect the two steps of grouping and aggregation. The first operator
Y<sim.cond>(r) = G produces a set of groups G = {Gy,...,Gm} from an input
relation r. Each group is a non-empty set of tuples with the same schema R of the
input relation r. The second operator Wa,,... A <aggr.funclist>(G) = I’ aggregates
the attribute values of all tuples from each group and produces exactly one tuple
for each group of G according to the given aggregate functions. Thus, it holds
VG € G with G = {t8, ..., t$} there is exactly one tuple t” & r' with

Vi=1..1:t"(A) =tS(A) =tS(A) = --- = tS(A))

where Ay, ..., A are attributes referred by the equality predicates of the similarity
condition, (i.e., for these attributes all tuples have the same value), and for the
remaining attributes either referenced in a similarity predicate or not referenced
in the grouping condition

Vi=1..m:t"(A) = f({tS(A)),.. tSA)D)

where fq,..., fy are aggregate functions from <aggr_func_list>. Based on these
two operators we can define the I operator for similarity-based grouping as fol-
lows:

<sim_cond> T [<aggr-func-list>](r) — WA,.,....A,<aggrfunc_list> (Y<sim_cond (1))

Except for the different handling of attributes referenced in similarity predicates,
so far this corresponds to the semantics of the standard grouping operation.

But, we have not yet dealt with the fact, that the partitioning of the input rela-
tion r into the set of groups G implies the requirement of an equivalence relation

62 CHAPTER 4. SIMILARITY-BASED OPERATIONS

EQ within r, though the similarity condition <sim_cond> may imply a similarity
relation SIM that will not provide transitivity. Therefore, throughout this the-
sis we use the simple strategy of constructing an equivalence relation SIMgg by
building the transitive closure SIMgq := SIM™, i.e. the partitions of our relation
rin G are maximal sets of tuples that are similar according to <sim_concd>> either
directly or indirectly. A more rigid but still simple approach considered during
early research on this thesis is to establish SIMgq such that pairwise similarity of
all objects in a partition is required. We refer to the latter as the strict strategy.
Both strategies are outlined in Figure 4.1. As an example, consider the strings
“ODBMS”, “OODBMS”, and “DBMS”. With an allowed edit distance threshold
of 1 they would all be found similar, if we apply the transitive closure strategy,
but this would not be the case if the strict strategy is applied, because “DBMS”
and “OODBMS” have a distance of 2 without the connection via “ODBMS”. Re-
lated to entity identification, record linkage, etc. a number of other approaches to
address this problem were considered. Centroid or density-based clustering tech-
niques proved to be useful strategies for dealing with atransitivity and provide a
high level of accuracy, as for instance described in [LMPO1b] and [ME97].

According to the transitive partitioning strategy, we can further refine the se-
mantics of our similarity-based grouping operator. All tuples tiG ofagroupGe G
have to be transitively similar to each other regarding the similarity condition
<sim_cond>:

VG € G 1 WtC,t8 € G 118 € tiM_gim cond (t°)

where tSim.sm_cona> (t) denotes the set of all tuples which are in the transitive
closure of the tuple t with regard to sim_cond:

tSiM<sm._cond> (t) = {t' | sm_cond(t,t") = true v
3t” € tsimMsim cona> (t) : Sm_cond(t’,t") = true}

and no tuple is similar to any other tuple of other groups
VGi,Gj € G,i# | S e G A €Gj:
sm_cond(t%,t77) = true

Figure 4.2 illustrates the application of these operators for a simple example
query:
diff (Aq) < 0.2 [av9(A1), min(A2)](r)
The input relation r based on a schema R consisting of two attributes A1, A> has

to be grouped by similar values of A1, e.g. using the approximation condition
“diff (A1) <0.2".

4.4. CONCLUSIONS 63

Al | A A A
10| 5 Gy 10| 5 Aavg | Agmin
11| 6 | vy 11| 6 | y

— — | 105 5
20| 7 20| 7 51 7
21| 8 Gy 21| 8 i
22| 4 22| 4

Figure 4.2: Application of the grouping operator

In the first step, the y operator produces two groups G; and G,. Let us now
assume an aggregation function list “avg(A1),min(A2)”. Then, the W operator
derives for each of these groups a single tuple as shown in the table at the right-
hand side.

The importance of extended concepts for grouping and aggregation in data
integration was emphasised by Hellerstein et al. in [HSC99]. Though the problem
of atransitivity during duplicate detection was for instance addressed by Galhardas
et al. in [GFSS00], the work presented in this thesis is the only one based on
an extended grouping operator. User-defined aggregation (UDA) are part of the
current version of the SQL standard and are now supported by several commercial
database systems, e.g. Oracle9i, IBM DB2, Informix. In [WZ00] the SQL-AG
system for specifying UDA is presented, which translate to C code and the usage
of this approach called AXL in data mining is discussed. The approach presented
here builds on this work for the purpose of data reconciliation as described in
Chapter 5.

4.4 Conclusions

In this chapter the foundations for similarity-based operations described regarding
their implementation and efficiency in Chapters 5 and 6 were introduced. First, a
general introduction to the purpose and level of support for such operations was
given. It was pointed out, that in this thesis similarity is addressed on the predicate
and operation level and further aspects of data models supporting similarity and
probabilistic aspects are beyond the scope of the presented work.

Based on a general introduction given in Section 3.2 the scope for similarity
predicates considered in the later chapters was adjusted. Furthermore, the spec-
ification of complex similarity conditions and aspects of their evaluation were
described. For this purpose, special requirements regarding fuzzy predicates were
included in the discussion.

Based on similarity predicates and similarity conditions, a number of

64 CHAPTER 4. SIMILARITY-BASED OPERATIONS

similarity-based operations and their semantics were described as extensions to
the relational algebra. This includes similarity-based selection, join, and group-
ing.

A simple formal description of the semantics of similarity-based selections
was given and related to other approaches for similarity- and distance-based
queries. The semantics of the join operation introduced subsequently are quite
straightforward, too, but here the effect of the properties of similarity relations
such as possible irreflexivity and asymmetry have to be considered.

Atransitivity, which is a typical property of similarity relations, is especially
critical for similarity-based grouping. This operation, which was also formally
described, is an approach to address problems of duplicate identification and rec-
onciliation between conflicting data values.

The view on similarity predicates and similarity-based selections and joins
presented in this chapter mostly conforms to a condensation of approaches cur-
rently considered and referred to in the respective sections. The introduction of
similarity-based grouping is new and, therefore, was discussed in more detail.

Chapter 5

Similarity-based Operations for
Materialised Data

In the previous chapter the foundations of similarity predicates and similarity-
based operations were introduced. In this chapter implementations of two of these
operations — join and grouping — are introduced for the specific case of materi-
alised data sets. While on the one hand extensions to query languages are pro-
posed and used to illustrate possible queries, and were also implemented as part
of the query language FRAQL introduced by Sattler et al. in [SCS00], the actual
implementation described was done using the extensibility interface of the com-
mercial DBMS Oracle8i. Furthermore, a string similarity predicate supported by
a trie index with specialised algorithms to support similarity-based lookup is used.
Based on this implementation the operations are evaluated and general aspects of
the efficiency of similarity-based operations are discussed. Moreover, further con-
siderations regarding the usage of similarity predicates and reconciliation aspects
are described.

5.1 Introduction

The target scenario of the implementations presented in this Chapter are materi-
alised integration scenarios, i.e. the input data of the operations is either

o fully materialised on secondary storage managed by a database management
system, such as for instance it would be the case in a staging area of a Data
warehouse system, or

e materialised in main memory as a temporary result of previous operations,
which may include results of distributed query processing in virtual integra-
tion scenarios.

65

66 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

Nevertheless, contrary to the approach presented in Chapter 6 the evaluation of
the operation and the underlying similarity predicates cannot be processed in a
distributed way across various data sources.

Accordingly, the operations can be used in the same way in centralised DBMS
as well as virtual integration solutions like FDBMS or mediators. Both approaches
were implemented during the research on this thesis, but only the former is pre-
sented here in detail and used for evaluation purposes. On the other hand, the
proposed join and grouping operations have a significant difference to common
operations used in database management systems: we can rely on equality of at-
tribute values only in some cases, and have to deal with discrepancies in data
objects representing the same or related real-world objects. Such discrepancies
can exist due to errors made during data input or different conventions for data
representation, and have to be addressed on the predicate level and by specifying
possibly complex similarity conditions as introduced in Section 4.2.

As such, the implementation of the proposed similarity-based operations can
for instance be used for duplicate elimination as a sub-task of data cleaning. As-
suming SQL-based systems, the natural choice for duplicate elimination is the
GROUP BY operator using the key attributes of the tuples in combination with
aggregate functions for reconciling divergent non-key attribute values. However,
this approach is limited to equality of the key attributes and, therefore, has to
be extended according to the description given in Chapter 4. The same is true
for linking complementary data, which in a SQL system would be done based
on equality by the j oi n operator. Both operations are based on extended con-
cepts for similarity-based predicates. Major concerns to be considered during
their implementation are the new requirements resulting from the characteristics
of similarity relationships, most of all atransitivity, and support for the efficient
processing of similarity predicates.

As outlined before, efficiency of operations and especially similarity-based
operations used in data integration is very important, because the amount of data
to be processed can be equal to or even greater than from a single source. Apart
from the used algorithms to implement a certain operation, the efficiency mainly
depends on the evaluation of similarity-predicates. For certain predicates such as
the one based on the string edit distance used here, index support is possible, be-
cause the metric axioms and most of all the triangular inequality and its implied
notion of closeness provide the basis for access paths. Yet, the measurable com-
plexity of similarity-based operations contrary to according algorithms and index
structures of operations based on equivalence relations also depends on other cri-
teria such as the similarity or distance threshold applied in a predicate. This is
outlined in more detail in the evaluation presented in Section 5.4 of this chapter.

Concurrent and related approaches to the work presented in this chapter in-
clude the WHIRL system and language providing similarity-based joins described

5.1. INTRODUCTION 67

in [Coh98] by Cohen, which is based on Fuhr’s work on a probabilistic Dat-
alog described in [Fuh95]. The WHIRL system uses text-based similarity and
logic-based data access as known from Datalog to integrate data from heteroge-
neous sources. Cohen describes an efficient algorithm to compute the top scoring
matches of a ranked result set. The implementation of the similarity predicate
uses inverted indices common in the field of information retrieval.

Contrary to the WHIRL approach, the approach presented here is based on the
similarity of string attributes, as introduced in Section 3.3 of this thesis. Though
the concept of string similarity is covered by comprehensive research, the efficient
and index-based evaluation in large data sets — for instance managed in database
management systems — is a current research topic. In [GIJT01] Gravano et al.
present an approach concurrent to the one presented here, where for similarity-
based joins on string attributes an efficient pre-selection based on g-grams is used
for optimisation. In short, the approach is based on down-sizing the data sets
on which a similarity predicate is evaluated by first doing an equality-based join
on substrings of fixed length q. The authors extend and modify this approach
to support string tokens based on techniques similar to those used by Cohen in
[Coh98] in [GIKS03]. Both approaches require fully materialised data sets and
index structures, hence they are not applicable in virtual integration scenarios and
introduce a huge space overhead.

Though the basic framework of predicates and operations described in Chap-
ter 4 is not limited to string based predicates, we implemented an edit distance
string similarity predicate using a trie as an index structure based on results by
Shang and Merret described in [SM96] for evaluation purposes.

Other work related to the contents of this chapter which was not previously
mentioned regards duplicate detection, which is addressed in various research ar-
eas like database and information system integration [ZHKF95, LSPR93], data
cleaning [CAGL 199, GFSS00], information dissemination [YGM95], and others.
Early approaches were merely based on the equality of attribute values or derived
values. Newer research results deal with advanced requirements of real-life sys-
tems, where identification very often is only possible based on similarity. Those
approaches include special algorithms [ME96, HS95], the application of methods
known from the area of data mining and even machine learning [Li95]. Other
interesting results came from specific application areas, like for instance digital
libraries [GBL98, Hyl96]. While these approaches are mostly very specific re-
garding certain applications, the goal here is to provide a more general view on
the process of duplicate detection, that may well include these approaches on the
predicate level.

An overview of problems related to entity identification is given in [Ken91]. In
[LSPR93] Lim et al. describe an equality based approach, include an overview of
other approaches and list requirements for the entity identification process. Monge

68 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

and Elkan describe an efficient algorithm that identifies similar tuples based on
a distance measure and builds transitive clusters in [ME97]. In [GFSS00] Gal-
hardas et al. propose a framework for data cleaning as a SQL extension and
macro-operators to support among other data cleaning issues duplicate elimina-
tion by similarity-based clustering. The similarity relationship is expressed by
language constructs, and furthermore, clustering strategies to deal with transitiv-
ity conflicts are proposed. Lujan-Mora and Palomar propose a centroid method
for clustering in [LMPO1b]. Furthermore, they describe common discrepancies in
string representations and derive a useful set of pre-processing steps and extended
distance measures combining edit distance on a token-level and similarity of to-
ken sets. In [HS95] Hernandez et. al. propose the sliding window approach for
similarity-based duplicate identification where a neighbourhood conserving key
can be derived and describe efficient implementations.

5.2 Principles of the Implementation and Optimisa-
tion

In this section the principles of the implementation and optimisation of similarity-
based join and grouping operations introduced in Chapter 4 are outlined for the
previously described scenario of materialised data integration. For an efficient
realisation dedicated plan operators are required, which implement the described
semantics. That means for instance for the similarity join, even if one formulates
a query as follows

sel ect *
fromrl, r2
where edist(rl.title, r2,title) <2

the similarity join implementation exploiting special index support and con-
sidering the special semantics of the predicates has to be chosen by the query
optimiser instead of computing the Cartesian product followed by a selection. In
the case of similarity grouping, a simple user-defined function is not sufficient as
grouping function, because during similarity grouping the group membership is
not determined by one or more of the tuple values but depends on already created
groups. In addition, processing a tuple can result in merging existing groups.

Thus, in the following the implementation of these two plan operators
SIMJOIN and SIMGROUPING are described, assuming that the query optimiser is
able to recognise the necessity of applying these operators during generating the
query plan. This could be supported by appropriate query language extensions,
e.g. for the similarity join

5.2. PRINCIPLES OF THE IMPLEMENTATION AND OPTIMISATION 69

sel ect *
fromrl simlarity join r2
on edist(rl.title, r2,title) <=2

and for the similarity grouping this could be formulated as follows:

sel ect *
fromrl
group by simlarity on edist(title) <= 2

For evaluation purposes we used an index-supported similarity predicate on
string attributes using edit distance and tries, that is also described briefly. The
following description refers to conjunctively combined, reflexive, and symmetric
similarity predicates and the transitive closure strategy for the grouping opera-
tor introduced in the previous chapter. More complex similarity conditions and
required changes are briefly discussed.

52.1 A Trie-based Similarity Predicate for Strings

At first, the edit distance predicate and an according index structure used through-
out this chapter is shortly introduced. In this approach a similarity predicate con-
sists of a distance measure and an according threshold. Hence, the index lookup
performed requires the actual value t"(A;) of an involved attribute A;, the indexed
attribute Aj and the threshold k as

dist(t' (A1), t5(A)) < k

where i = j and r = s are included as special cases, applicable for instance for
grouping predicates. Currently, for the implementation given here the focus is on
edit distances as the primary similarity measure. For this purpose, the approach
proposed in [SM96] of using a trie in combination with a dynamic programming
algorithm for computing the edit distance was adopted.

The main idea of their approach is to traverse the trie containing the set of
string attribute values of all tuples indexed in the trie in depth-first order trying
to find a match with the search pattern, i.e., the attribute value of the currently
processed tuple (Algorithm 1). Because the similarity predicate does imply an
approximate match with a maximum of k differences instead of an exact match,
we must not stop the traversal after a mismatch is found. Instead, an edit operation
(insert, remove, or replace) is assumed and the search is continued in the child
nodes of the current trie node. The current number of found differences is stored
for each search path. Only after exceeding the given threshold, the traversal of a
given path can be stopped, and the search can go back to the next sub-trie. Hence,

70 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

the threshold is used for cutting off sub-tries containing strings not similar to the
pattern.

In addition, the effort for computing the dynamic programming tables required
for determining the edit distance can be reduced, because all strings in one subtree
share a common prefix and therefore the same edit distance. We omit further
details of this algorithm and refer instead to the original work.

Algorithm 1: Approximate trie searching

Globals
Threshold k
Pattern string p, target string w

Procedure approxSearch(TrieNode n, int level)
begin
for all child nodes c of n
w[level] := character z of ¢
if c is a leaf node A edist (w, p, level) <k
output tuple-ids for node ¢
if edist (w, p, level) >k
continue /* cut off */
approxSearch (c, level + 1)
end for
end

In the following implementations of the previously introduced operations tries
are created on the fly for each grouping attribute or join predicate which appears
together with an edit distance predicate. Such a trie stores not only the actual
string values but also the tuple-id of the associated tuple. Therefore, besides in-
serting new string values no updates on the trie are necessary.

5.2.2 Similarity-based Join

The implementation of a similarity join outlined in this section is quite straightfor-
ward. Like for conventional join operators index support for predicates can be ex-
ploited to improve performance by reducing the number of pairwise comparisons.
However, the different predicates of a similarity expression require different kinds
of index structures:

5.2. PRINCIPLES OF THE IMPLEMENTATION AND OPTIMISATION 71

e For equality predicates common index structures like hash tables or B-trees
can be utilised.

e Simple numeric approximation predicates like diff (Aj,Aj) <k can also be
supported by B-Trees.

e For string similarity based on edit distances edist(Aj,Aj) <k tries are a
viable index structure, as previously introduced.

e For the other similarity predicates discussed in Chapter 3 index support is
given for instance through multi-dimensional indexes like R-trees and its
derivatives on data mapped to a metric space.

Given such index structures a join algorithm can be implemented taking care
of the various kinds of indexes. In Algorithm 2 a binary join for two relations rq
and ry is shown, assuming that indexes for relation r either exist or were build
on the fly in a previous processing step. The result of this algorithm is a table of
matching tuples for usage described later on. Alternatively, result tuples can be
produced for pipelined query processing directly at this point. The notations I,
and kp, refer to the index on predicate p; and the specified threshold, respectively.
Ap, refers to the involved attribute.

Algorithm 2: Processing a tuple from join relation r1 during similarity join

Globals
Conjunctive join condition ¢ = p1A... A pn
Set of indexes I, 1 <i<non join relation ry
for index supported predicates
Mapping table tid _tid for matching tuples

Procedure processTuple(Tuple t)
begin

for all index supported equality predicates p;
set of tuples Sconj := indexScan(lp,t(Ap))

end for

for all index supported similarity predicates p;
Sconj := Sconj NindexScan(lp,t(Ap),Kp)

end for

for all tuples t; € Sconj
boolean similar := true
for all non-index supported predicates p;

72 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

similar := similarA
evaluate(pi,kp, t(Ap),ti (Ap))
if not similar break
end for
if similar insert (t,t)) in tid_tid
end for
end

As a side note, more complex similarity conditions could easily be supported
by adding disjunctions. The similarity condition ¢ can be transformed to disjunc-
tive normal form. For all conjunctions of ¢ = \/[; conj; the Sconj; are computed
and the set of relevant groups would be sgisj = 21 Sconj-

5.2.3 Similarity-based Grouping

Like the join operator, the similarity-based grouping operator is based on the effi-
cient evaluation of similarity predicates, but in addition has to deal with problems
arising from the atransitivity of similarity relations, as previously outlined in Sec-
tion 4.3.3. A naive implementation of the similarity-based operator would work
as follows:

1. Ilterate over the input set and process each tuple by evaluating the similarity
condition with all previously processed tuples. Because these tuples were
already assigned to groups, the result of this step is a set of groups, where —
assuming the transitive closure strategy — in each group there is at least one
tuple similar to the current tuple.

2. If the result set is empty, a new group is created containing only this current
tuple.

3. If one group is found, the current tuple is added to this group.

4. Otherwise, i.e. more than one group is found, the conflict is resolved by
merging the found groups according to the transitive closure strategy.

Obviously, this naive implementation would lead to O(n?) time complexity for
an input set of size n. Similar to processing a similarity join we assume that there
are index-supported predicates for equality and similarity, and predicates that can-
not be supported by indexes. Therefore, the following optimised Algorithm 3 was
implemented. Please note that this algorithm implements only the y operator as
described in Section 4.3.3, because the) operation corresponds to the traditional
projection/aggregation operation.

5.2. PRINCIPLES OF THE IMPLEMENTATION AND OPTIMISATION

73

Algorithm 3: Processing a tuple during similarity grouping

Globals
Conjunctive similarity condition ¢ = p1 A ... A pn
Set of indexes I, 1 <i<n
for index supported predicates
Mapping table gid_tid assigning tuples to groups

Procedure processTuple(Tuple t)
begin
set of groups reonj := all groups from gid_tid
for all index supported equality predicates p;
set of tuples s := indexScan(ly,t(Ap))
Fconj := Fconj N gid_tid(s)
end for
for all index supported similarity predicates p;
set of tuples s := indexScan(lp,t(Ap),Kp)
Fconj = Feonj N gid_tid(s)
end for
for all groups gj € reonj
boolean member := false
for all tuples t| € g;
boolean similar := true
for all non-index supported predicates p;
similar := similarA
evaluate(pi, kp, t(Ap), i (Ap))
if not similar break
end for
member := member V similar
if member break
end for
if not member reonj := reonj — 9
end for
if reonj = O group g := new group in gid_tid
else group g := merge all reonj in gid_tid
insertting
end

74 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

id title
1 | ODBS Manifesto no group found — create new group@
'Ca‘
g ed\ﬁ\t p(ed\
2 wup fof add tuple
© gex 0
g
v 5 | ODB Manifesto
g no group found —
o
=

7 | 0ODBMS Manifesto |Create New gro“p@

C
P 50 handle

conflict
L ale
_ .(\de‘/\\o‘ed\ca‘ merge
12 | ODBMS Manifesto \ o0t ® i

Figure 5.1: Building groups applying index support

Similar to join processing, for each tuple t the algorithm tries to find a min-
imal set reonj Of groups that relate to t by applying index-supported equality and
similarity predicates first. This can even be improved, if information about the
costs and selectivity of the index-based predicate evaluation exist and an accord-
ing processing order is established. A pairwise comparison is only performed for
tuples from this small subset of groups in the second half of the algorithm. As a
result of this procedure the mapping table gid_tid is adjusted to the newly found
group structure.

The index-based processing of such a predicate in the context of similarity-
based grouping is illustrated in Figure 5.1 for the simple query

sel ect pickwhereeq(src=DBLFP, title)
fromA union all B union all C

group by transitive simlarity

on edist(title) < 2

As there are no previous tuples a new group is created for tuple 1. During pro-
cessing of tuple 5 tuple 1 is found using the trie on the ti t | e attribute, where
the edit distance is 1 for the two tuples. When tuple 7 is processed, no match
can be found, because the edit distance to previous tuples is at least 2, namely for
both of the two tuples 1 and 5. For tuple 12 two relevant groups are found and
the conflict has to be resolved by merging the groups according to the strategy of
transitive similarity.

5.3. IMPLEMENTATION USING ORACLESI 75

5.3 Implementation using Oracle8i

The described similarity-based operations were implemented as extensions to the
commercial DBMS Oracel8i. To implement such operations in a SQL DBMS
as native plan operators supporting the typical iterator interface [Gra93] requires
significant modifications to the database engine and therefore access to the source
code. So, in order to add these operations to a commercial system the available
programming interfaces and extensibility mechanisms should be used instead.
Most modern DBMS support so-called table functions which can return tables
of tuples, in some systems also in a pipelined fashion. In this way, the proposed
operations can be implemented as table functions consuming the tuples of a query,
performing the appropriate similarity operation and returning the result table.

For example, a table function si mj oi n implementing Algorithm 2 and ex-
pecting two cursor parameters for the input relations and the similarity join con-
dition could be used as follows:

sel ect *

fromtable (simjoin (cursor(select * fromdatal),
cursor(select * from data2),
"edist (datal.title, data2.title) <= 2'))

This query performs a similarity join with one similarity predicate on the title
attributes in two given relations, where the edit distance between the string values
in this field is less than or equal to 2. However, a problem of using table functions
for implementing query operators are the strong typing restrictions: for the table
functions a return type always has to be specified that prevents to use the same
function for different input relations.

As one possible solution table functions using and returning structures con-
taining generic tuple identifiers (e.g., Oracle’s r owi d) can be used. So, the Sim-
GROUPING function produces a tuple of tuple identifier / group identifier pairs,
where the group identifier is an artificial identifier generated by the operator.
Based on this, the result type gi d_ti d_t abl e of the table function is defined
as follows:

create type gid tid t as object
gid (int, tid int);

create type gid tid table
is table of gid_tid_t;

Using a grouping function si mgr oupi ng a query can be written as the follow-
ing query:

76 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

sel ect
from tabl e(si mgrouping (
cursor (select rowid, * fromraw data),
"edist(title) <2'))) as gt,
raw_dat a
where raw data.tid = gt.tid

group by gt.gid

This query groups tuples having an edit distance of less than 2 either directly or
indirectly. A discussion of according aggregate functions is given in Section 5.5.

Our approach allows to implement the function in a generic way, i.e., without
any assumption on the input relation. In order to apply aggregation or reconcilia-
tion to the actual attribute values of the tuples, they are retrieved using a join with
the original relation, whereas the grouping is performed based on the artificial
group identifiers produced by the grouping operator.

In the same way, the SIMJOIN operator can be implemented as a table function
returning pairs of tuple identifiers that fulfil the similarity condition and are used
to join with the original data.

5.4 Evaluation

The similarity-based grouping and join operators described in Chapter 4 were
implemented according to the principles outlined in Section 5.2 as part of the
FRAQL query engine by Sattler et al. (see [SCS00]) and, alternatively, accord-
ing to Section 5.3 using the extensibility interfaces of the commercial database
management system Oracle8i. For evaluation purposes the latter implementation
was used. The test environment was a PC system with a Pentium 111 (500 MHz)
CPU running Linux and Oracle 8i. The extended operators and predicates were
implemented using C++. All test results refer to our implementation of the string
similarity predicate based on the edit distance and supported by a trie index. A
non-index implementation of the predicate is provided for comparison. Indexes
are currently created on the fly and maintained in main memory only during oper-
ator processing time. The related performance impact is discussed below.

For the grouping operator test runs separate data sets containing random
strings were created according to the grade of similarity to be detected, i.e. for
one original tuple between 0 and 3 copies were created that fulfilled the similarity
condition of the test query. The test query consisted of an edit distance predicate
on only one attribute. Using the edit distance with all operations having a fixed
cost of 1 and an edit distance threshold k on an attribute, each duplicate tuple had
between 0 and k deletions, insertions, or substitutions. As the number of copies

54. EVALUATION

77

g

Data CopyOf | Edist

. W

567
568
569
570
571

abhfhfhhflk
huigwerzhads
hdhhhhrrrr
abhffhhflk
ahbfhfhhfk
huiqwerzhads

hdhhhrrrr
hdhhhhrr

W wWwWwN -
NP ODN R

Figure 5.2: Example input relation

and the numbers of applied operations on the string attributes were equally dis-
tributed, for n original tuples the total size of the data set to be processed was
approximately 3 % n with an average distance of 'é‘ among the tuples to be detected
as similar. Furthermore, to check the accuracy of the approach, additional infor-
mation about the creation of the input set were stored with duplicate tuples. Part
of an input relation is shown in Fig. 5.2.

6.0 T

50

40

3.0

Processing time

20

10 |

0.0

'Threshold k=1 ——
Threshold k=0 (exact match) ---x---

0 1000

2000 3000 4000 5000 6000
Number of original tuples

Figure 5.3: Grouping with exact match and threshold k =1

Grouping based on an exact matching (k = 0) has the expected complexity of
O(n), which results from the necessary iteration over the input set and the trie
lookup in each step, which for an exact match requires average word-length com-
parisons, i.e. can be considered O(1). This conforms to equality based grouping
with hash table support. For a growing threshold, the number of comparisons, i.e.
the number of trie nodes to be visited, grows. This effect can be seen in Fig. 5.3,

78 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

where the complexity for k = 1 appears to be somewhat worse than linear, but still
reasonably efficient.

350 T T T

e

T T T
Threshold k=1 —+—
Threshold k=2 ---x---
300 | Threshold k=3 ---*--- |
al Pairwise comparison &

250 | i

o B
£ /
= 200 | |
g d
‘B
g :
8 150 |] LK T
& X
L a - |
100 ¥
A~ * se-x "
50 o ¥ se-XTT -
L XX
= *X - XT

L U
o Lo e L
0 1000 2000 3000 4000 5000 6000
Number of original tuples

Figure 5.4: Grouping with varying thresholds k > 1 and the naive approach of
pairwise comparisons

Actually, the complexity grows quickly for greater thresholds, as larger re-
gions of the trie have to be covered. The dynamic programming approach of the
similarity search ensures that even for the worst case each node is visited only
once, which results in equal complexity as pairwise similarity comparison, not
considering the cost for index maintenance etc. The currently used main memory
implementation of the trie causes a constant overhead per insertion. Hence, the
O(n?) represents the upper bound of the complexity for a growing threshold k, just
like O(n) is the lower bound. For growing thresholds the curve moves between
these extremes with growing curvature. This is a very basic observation that ap-
plies to similarity based operations like similarity-based joins and selections as
well, the latter having a complexity between O(1) and O(n). The corresponding
test results are shown in Figure 5.4.

The previous test results were presented merely to make a general statement
about the efficiency of the similarity-based grouping operator. An interesting
question in real life scenarios would be, how the operator performs on varying ra-
tios of duplicates in the tested data set. In Figure 5.5 the dependency between the
percentage of duplicates and the required processing time is given for the thresh-
old k = 2. While the relative time complexity remains, the absolute processing
time decreases for higher percentages of detectable duplicates. Obviously, and
just as expected, using a similarity measure is more efficient, if there actually is

54. EVALUATION 79

35 T T T T T T T T
30 jz i
25 | _
Q
E
> 20 _
£
[9]
[%]
8 15 i
e
o
10 - No duplicates —+— —
2% duplicates ---x---
10% duplicates ------
5 20% duplicates & .
1 1 1 1 1 1 1

0 N2 s
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of overall tuples

Figure 5.5: Grouping with varying percentage of duplicates in the test data sets

similarity to detect. Otherwise, searching the trie along diverging paths represents
an overhead that will not yield any results.

800 B

Threshold k=4 —+—
700 | Threshold k=3 ---x--- N,
Threshold k=2 ------
Threshold k=1 &~

600

500
X
400

Processing time

300

200 —
100 b
B o RO 3|
0 po—E - T%
0 2000 4000 6000 8000 10000

Sum of input relation sizes

Figure 5.6: Results for varying thresholds k > 1 for a similarity join

Similar results were received for the described implementation of a similarity
join. The test scenario consisted of two relations ry and r», with a random num-
ber of linked tuples, i.e. for each tuple in rq there were between 0 and 3 linked
records in ro and the join attribute values were within a maximum edit distance.

80 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

The results are shown in Figure 5.6. As the implementation of the join operation
is similar to the grouping operation the complexity is between O(n) and O(n?)
depending on the edit distance threshold.

5.5 Applications

In this section some further aspects of the proposed operations related to their
application are discussed. This includes results from a project concerning an In-
ternet database for lost cultural assets, that facilitates the registration of and the
search for lost art. Registering new objects in the database can result in “dupli-
cates” if the particular object was already reported by another user or institution
but with slightly different descriptions. Furthermore, the data in the database can
be enriched by external information, e.g. from artist catalogues. Due to possible
different transcriptions for example of artist names, join conditions are necessary.
These problems were already used for illustration purposes in Section 1.1 of the
thesis.

The problem of duplicates can be solved by applying the similarity-based
grouping operations. Using an appropriate similarity predicate (see below for
a discussion) potential redundant objects can be identified. In our application a
similarity predicate consisting of a combination of artist and title comparisons
produces good results. For the artist name special similarity predicates taking
different variants of first-name/last-name combinations into account were imple-
mented. So, a typical query is formulated as follows:

sel ect

from data

group by simlarity on simperson(artist) > 0.9
and edist(title) <= 2

However, this is only the first step towards “clean” data: From each group of
tuples a representative object has to be chosen. This merging or reconciliation
step is usually performed in SQL using aggregate functions. But, in the simplest
case of the builtin aggregates one is able only to compute minimum, maximum,
average etc. from numeric values. As an enhancement modern DBMS provide
support for user-defined aggregation functions (UDA) which allow to implement
application-specific reconciliation functions. However, these UDAs are still too
restricted for reconciliation because they support only one column as parameter.
Here, the problem is to choose or compute a merged value from a set of possible
discrepant values without looking at any other columns. We can mitigate this
problem by allowing more than one parameter or by passing a structured value as
parameter to the function.

5.5. APPLICATIONS 81

Therefore, a number of enhanced aggregation functions were developed. In
particular for reconciliation purposes, we have defined the following aggregate
functions:

e pi ck_where_eq (v, col) returnsthe value of column col of the first
tuple, where the value of v is true, i.e., # 0. In case of a group consisting of
only one tuple, the value of this tuple is returned independently of the value
of v.

e pickwheremin (v, col) returns the value of column col of the
tuple, where v is minimal for the entire relation or group, respectively.

e pi ck_.where_max (v, col) returns the value of column col of the
tuple, where v is maximal.

e to_array (col) produces an array containing all values from column
col .

With the help of these functions several reconciliation policies can easily be im-
plemented as shown in the following. In a first example, we assume that the final
value for column col of each group has to be taken from the tuple containing the
most current date, which is represented as column mdat e:

sel ect max(m date), pick_where_max(m.date, col),
from data

group by ...

In the second example, each tuple contains a column sr ¢ describing the origin in
terms of the source of the tuple and this way, realising a source-aware integration
view. Assuming a “preferred source” reconciliation strategy, where in case of a
conflict the value from source Sp is selected, we could formulate the query as
follows:

sel ect pick_where_eq(src ='S’, col),
from data
group by ...

Finally, for allowing the user to decide about the resolved value in an interactive
way, the t o_ar r ay can be used to collect the list of conflicting values:

select to_array(col),
fromdata

group by ...

82 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

le+07 FT T T T T T T T T T T T

1e+06 F —:

100000 - -:

10000 F —:

Frequency (logarithmic)

1000 F]

100 [1 1 1 o — 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11
Edit distance

Figure 5.7: Edit distance distribution of random strings in the test data set with
20% duplicates of Kmax = 2

As a summary, user-defined aggregation functions provide a viable way to im-
plement specific reconciliation strategies, especially with the extension described
above. Combined with powerful grouping operators they make it possible to sup-
port advanced cleaning tasks.

Another application-specific question raised within the previously mentioned
project is, how to specify the similarity predicate for similarity joins or grouping
consisting of the similarity or distance measure itself and the threshold. If the
chosen threshold has such a major impact on the efficiency of similarity-based
operations, as described in Section 5.4, the question is how to specify a threshold
to meet requirements regarding efficiency and accuracy. Actually, this adds com-
plexity to the well studied problem of over- and under-identification, i.e. falsely
qualified duplicates. Information about the distance or similarity distribution can
be used for deciding about a meaningful threshold, as well as for refining user-
defined similarity predicates. Distance distributions usually conform to some nat-
ural distribution, according to the specific application, data types, and semantics.
Inconsistencies, such as duplicates, cause anomalies in the distribution, e.g. lo-
cal minima or points of extreme curvature. Figure 5.7 depicts the edit distance
distribution for one of the sample sets from Section 5.4 of 4000 tuples having
approximately 20% duplicates with an equal distribution of 0, 1, or 2 edit opera-
tions to some original tuple, which is apparent in the chart. To actually choose a
threshold based on such a distribution, aspects of efficiency as well as quality of
the duplicate detection process have to be considered. Hence, setting k = 2 could
be a reasonable result drawn from this chart alone.

While the previous anomaly in Figure 5.7 was created intentionally, similar
effects result from the integration of overlapping data sets in real applications.

5.5. APPLICATIONS

83

100000 g T T T T

10000

1000 |

Frequency (logarithmic)

100 |

10

0 2 4 6 8

10

Edit distance

12

14

Figure 5.8: Edit distance distribution in an integrated and sampled data set on

cultural assets

Figure 5.8 shows a result for a sample consisting of approximately 1.600 titles
starting with an ”E” from integrated sources of data on cultural assets. Neverthe-
less, drawing the same conclusion of setting the edit distance threshold to receive
a useful similarity predicate would lead to a great number of falsely identified tu-
ples. For short titles there would be too many matches, and longer titles often do
not match this way, because the length increases the number of typos etc.

100000 ¢
10000 [
1000 £

100 ¢

Frequency (logarithmic)

10 ¢

1

0 01 02 03 04 05

Figure 5.9: Relative edit distance distribution

06 0.7
Relative Edit distance

0.8

0.9 1

Better results can be achieved by applying a relative edit distance rdist(x,y) =

1— edist(x,y)
max(x.length,y.length

), which is a normalised similarity measure as introduced in

section 3.2. The algorithm introduced in section 5.2 can easily be adjusted to this

84 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

relative distance. Figure 5.9 shows the distribution of the relative edit distances
in the previously mentioned example relation. Using the first global minimum
around 0.8 as a threshold, and analysing matches in this area shows that it provides
a good ratio of very few over- and under-identified tuples.

A successive adjustment of similarity predicates using information from ana-
Iytical data processing is also of interest for the creation of user-defined similarity
predicates. For instance, directly using the edit distance on author names and their
various representations will yield poor results. Combining analytical processing
and a stepwise addition of canonising techniques like transformation of lower or
upper case letters, tokenising, abbreviation matching, etc., as mentioned in Sec-
tion 3.3 quickly leads to more meaningful distributions, that can be used to derive
a threshold value.

5.6 Conclusions

In this Chapter similarity-based operations for finding related data and identify-
ing duplicates based on similarity-based criteria suitable in materialised data in-
tegration scenarios were presented. Intended as an extended grouping operation
and by combining it with aggregation functions for merging/reconciling groups of
conflicting values the proposed grouping operator can be integrated into the rela-
tional algebra framework and the SQL query processing model. In a similar way,
the extended join operator takes similarity predicates into consideration. These
operations can be utilised in ad-hoc queries as part of more complex data integra-
tion and cleaning tasks. Moreover, a way to use these operations within existing
DBMS using extensibility interface was shown by providing an implementation
using the commercial DBMS Oracle8i.

Furthermore, it was shown that efficient implementations have to deal with
specific index support depending on the applied similarity measure. For one of
the most useful measures for string similarity we have presented a trie-based im-
plementation. The evaluation results illustrate the benefit of this approach even
for relatively large datasets. Though the focused in this thesis primarily is on the
edit distance measure, the algorithms for similarity-based grouping and join as
introduced in this Chapter are able to exploit any kind of index support.

Focusing on just one similarity predicate and keeping the strong context-
dependency of similarity measures in mind, the most important question left
unanswered probably is, how to find, specify, and efficiently support appropriate
similarity predicates for a range of applications. In many cases, basic similar-
ity measures like the edit distance are probably not sufficient. As described in
Chapter 3, application-specific similarity measures implementing domain heuris-
tics (e.g. permutation of first name and last name) based on basic edit distances is

5.6. CONCLUSIONS 85

often a viable approach.

However, choosing the right thresholds and combinations of predicates dur-
ing the design phase of an integrated system often requires several trial-and-error
cycles. This process can be supported by analytical processing steps as shown in
Section 5.5 and according tools.

86 CHAPTERS. SIMILARITY OPERATIONS FOR MATERIALISED DATA

Chapter 6

Re-writing Similarity-based Queries
for Virtual Data Integration

While in Chapter 4 the foundations of similarity-based operations where intro-
duced, and in Chapter 5 the implementation of such operations for temporarily or
persistently materialised result sets was covered, this chapter addresses problems
of a distributed processing of similarity-based operations in heterogeneous envi-
ronments. For this purpose special concepts to handle similarity predicates proba-
bly not supported by integrated systems have to be applied. Again, the description
is focused on string similarity measures and on re-writing queries containing ac-
cording predicates in a way, that source systems can answer such queries.

Provided implementations include similarity-based selections and joins, but
not the previously described similarity-based grouping. This is because the oper-
ation is hardly applicable across various sources when there are no further con-
straints on the input set. If the latter is the case, the source selections representing
the constraints are processed first as introduced in this section, and then grouping
and aggregation can take place as described in the previous chapter.

6.1 Introduction

To address the problem of data level conflicts in weakly related or overlapping data
sets from different sources, similarity-based operations were integrated in data
integration research. Unfortunately, the support for such operations in current data
management solutions is rather limited. And worse, interfaces provided over the
Web are even more limited and almost always do not allow any similarity-based
lookup of information. The specification of query capabilities is addressed for
instance by Vassalos et al. in [VP97] and by the author of this thesis and Endig in
[SEQO]. The majority of attributes used for querying are string attributes, but while

87

88 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

string similarity can be expressed using for instance the Levenshtein distance,
common interfaces only include the lookup based on equality or substring and
keyword containment. While such predicates do not allow to perform similarity
selections or joins directly, they can be used for efficiently finding candidate sets
as described in this Chapter.

The principal idea of the presented approach is to provide a pre-selection for
string similarity operations by using string containment operations as provided
by all databases and most information systems. Regarding the pre-selection this
approach is similar to those by Gravano et al. introduced in [GI1JT01] and extended
in [GIKSO03]. Contrary to their pre-selection strategy, the one presented here is not
only applicable in a scenario were integrated data sets or data sets in general are
materialised in one database, but also allows re-writing string similarity queries
for the virtual integration of autonomous sources. This way, it is applicable in
Web integration scenarios.

Another related approach only applicable in materialised scenarios is de-
scribed by Jin et al. in [JLMO03], which is based on FastMap introduced by
Faloutsos and Lin in [FL95] and shortly described in Section 3.2 of this thesis.
Nevertheless, this approach requires the full domain of string values to define a
mapping to an n-dimensional space, and according interfaces for efficient lookup.

The pre-selection proposed here is based on the edit or Levenshtein distance as
introduced in Sections 3.2.2 and 3.3 of this thesis, which expresses the dissimilar-
ity of two strings by the minimal number k of operations necessary to transform
a string to a comparison string. A basic observation described for instance by
Navarro and Baeza-Yates in [NBY98] is, that if we pick any k+ 1 non-overlapping
substrings of one string, at least one of them must be fully contained in the com-
parison string. This corresponds to Count Filtering as introduced by Gravano,
where the number of common g-grams (substrings of fixed length q) in two strings
is used as a criterion. So, searching a large pool of string data we may find a can-
didate set by selecting all strings containing at least one of these k + 1 chosen
substrings. Based on this observation, Navarro and Baeza-Yates in their approach
use g-gram indexes for approximate searches within texts in an Information re-
trieval context.

The problem with selecting according substrings for pre-selection is, we can-
not use Length Filtering and Position Filtering like described in [G1J*01] to fur-
ther refine the pre-selection, because we cannot access the necessary informa-
tion in a non-materialised scenario. And, if we choose inappropriate substrings,
the candidate sets can be huge. In this case, the question is: which substrings
are appropriate? Obviously, we can minimise the size of the intermediate result
by finding the k + 1 non-overlapping substrings having the best selectivity when
combined in one disjunctive query. Then, processing a string similarity predicate
requires the following steps:

6.2. MAPPING SIMILARITY PREDICATES 89

1. Transform the similarity predicate to an optimal disjunctive substring pre-
selection query considering selectivity information

2. Process the pre-selection using standard functionality of the information
system yielding a candidate set

3. Process the actual similarity predicate within a mediator or implemented as
a user defined function in standard DBMS

While this sketches only a simple selection, we will describe later on, how for
instance similarity joins over diverse sources can be executed based on bind joins
as described by Roth and Schwarz in [RS97]. Furthermore, we will discuss the
advantages and disadvantages of the kind of substring used, whether it is arbitrary
substrings, g-samples as fixed length substrings, or tokens.

We have to point out that though substring queries can easily be optimised,
many systems including well-known relational DBMS fail to do this. Hence, step
2 in the above mentioned processing may or may not be efficiently executed by
integrated source systems. Nevertheless, in virtual integration the key aspect very
often is to minimise the size of intermediate results that have to be transferred
from a source to the mediator. But most of all, in such scenarios we cannot expect
the source systems to provide any interface for similarity searches.

6.2 Mapping Similarity predicates

We consider a predicate like edist(x,y) < k as part of a similarity condition, where
x and y represent attribute names, or where one may represent a literal search
string. First we have to make clear, what kind of edit distance definition we use.
The simple definition as outlined in 3.3 includes only insertion, deletion, and sub-
stitution. In this case, for a threshold k the number of required non-overlapping
substrings is n = k+ 1, because all of the above mentioned operations can only
modify one substring each, i.e. after k operations there is a maximum of k mod-
ified substrings. A commonly used derivative of the edit distance in addition al-
lows transpositions of characters, i.e. “abc’ and *acb” would have an edit distance
of only 1 compared to 2 using the simple definition. Considering transpositions
increases the number of sub-strings to be considered to n = 2k + 1, because every
transposition can modify two substrings if they are adjacent in the original string.
In the remainder of this paper we consider only the classical definition.
Considering what kind of substring is most suitable, let us assume a predicate

edist('Vincent van Gogh', stringAttribute) < 1.

90 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

450000 T T T T T T

400000 —

350000 —

300000 | —

250000 —

200000 —

150000 [~ —

Number of distinct g-grams

100000 - —

50000 —

2 3 4 5 6 7
Length of g-gram

Figure 6.1: Number of distinct g-grams for varying q in the King James Bible

Such a predicate with a fixed search string s =’ Vincent van Gogh’ can either be
a direct similarity selection or the bound predicate during a bind-join. Assuming
we have selectivity information sel(a) about any substringa =s[i, j],0<i< j <
length(s) of s € Z* over an alphabet X available as discussed later in Section 6.3,
we may choose the following substrings for pre-selection predicates:

e Arbitrary Substrings: *Vincent van’ v ’ Gogh’
e Fixed length substrings (g-samples): *Vinc’ v Gogh’ (here g = 4)

e Tokens: ’Vincent’ v *Gogh’

All three obviously must yield a candidate set including the correct result,
but they differ largely regarding their selectivity. Intuitively, longer strings have
a better selectivity, because every additional character refines the query. This
consideration would render the transformation to g-samples as the least effective
one. On the other hand, there is an overhead for managing and using selectivity
information. Storing such information for arbitrary strings requires complex data
structures to be efficient and considerable memory resources. In general, choosing
a suitable substring paradigm implies a trade-off between several aspects.

Selectivity: as mentioned above, the selectivity of longer substrings is always
better than or, in the unlikely worst case, equal to a shorter substring,
sel(s[i, j]) > sel(s[k,1]),0 <k <i < j<I<length(s). Choosing a small
g as for instance 3 or 4 will likely return more intermediate results and this
way introduce a high overhead for transfer and local processing.

6.2. MAPPING SIMILARITY PREDICATES 91

Input string: vincent _van_gogh

Selectivity matrix:

Optimal result: Vinecen sel(0,5)=2.1E-8
t_van sel(6,10)=5.7E-9
~_gogh sel(11,15)=7.1E-10

Figure 6.2: Finding selective substrings for k =2, hencen=k+1=3

Maintenance: independently of what data structure we use for maintaining se-
lectivity information, the required data volume grows dramatically with the
(possible) length of the substrings due to a combinatoric effect for each ad-
ditional position. For g-grams this effect is shown for varying g based on
data from the King James Bible in Figure 6.1. Hence, a greater g increases
the necessary overhead for global processing and the global resource con-
sumption.

Applicability: we run into problems if a comparison string is not long enough to
derive the necessary number of substrings such as tokens or g-samples. For
instance, if the allowed edit distance is k = 3 and g = 5 a disjunctive pre-
selection must contain n = k+ 1 = 4 g-samples of length 5, i.e. the minimal
required length of the mapped search string is Imin = n*q = 20. Obviously,
it is not possible to derive the necessary 5-samples from the string *Vincent
van Gogh’. We will discuss later on, what can be done if this problem
occurs.

Source capabilities: we consider two kinds of sources regarding the query capa-
bilities, those allowing substring and those allowing keyword searches. For
the latter, only tokens are suitable for composing pre-selection queries.

6.2.1 Substring Decomposition

The optimal solution to the addressed problem regarding selectivity performs
the mapping in terms of a complete decomposition of the search string s into
n = k+ 1 non-overlapping substrings. The decomposition consists of positions
pos[0]... pos[n] with pos[0] = 0 and pos[n] = length(s) such that the concatena-
tion s = s[pos[0], pos[1] — 1]s[pos[1], pos[2] — 1]...s[pos[n — 1], pos[n] — 1] of the

92 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

substrings is equal to the search string. An optimal decomposition would yield a
selectivity min1 — N3 (1 — sel (s[pos]i], posi + 1] — 1])). Here we assume inde-
pendence between the selected query strings. We will show in the evaluation in
Section 6.5 that this actually yields a reasonable estimation.

The algorithm sketched in Figure 6.2 uses a lower triangular matrix A where
ajj represents the selectivity of substring s[i, j], hence, 0 <i < j < length(s). If
a count suffix trie is used for storing selectivity information, as shown in Sec-
tion 6.3, this matrix can be generated from length(s) path traversals in the trie.
An exhaustive search is quite expensive for long strings, but it can be tuned by
skipping high selectivities in the upper region of the triangular matrix. Further-
more, starting with a decomposition of equal length substrings and stepwise ad-
justing this decomposition by moving adjacent cut positions represents a greedy
approach yielding sufficient results regarding the selectivity quickly.

The disadvantage here is that we need selectivity information on the variable
length substrings s[pos]i], pos[i + 1] — 1]. Possible solutions and problems for the
storage and retrieval of this information is outlined in Section 6.3, but obviously it
requires much more resources than managing the same information for g-samples
as introduced in the following.

6.2.2 (Q-samples

The main advantage of using g-samples, i.e. non-overlapping g-grams of fixed
length g, for mapping an edit distance predicate to a disjunctive source query
results from the straightforward maintenance of according selectivity information,
as shown later on in Section 6.3.

To find the best possible combination of n g-samples from a single string s
with length(s) > nxq an algorithm basically works as shown in Figure 6.3. In
a first step selectivity information for all contained g-grams is retrieved from
data structures described in Section 6.3 and represented in an array sel[i] =
sel(s[i,i+q]),0 <'i < length(s) — . As shown later on, this can be accom-
plished in O(length(s)) time. Among the number of all possible combina-
tions we have to find the positions pos[i],0 < i< n with Vjk:0< j<k<
n A poslk] — pos|[j] > q that optimises the selectivity of the disjunctive source
query, i.e. yields min1 — N, (1 — sel[pos]i]]).

This selectivity estimation can further be used to decide, if the pre-selection
actually should be performed on the data source. If the selectivity exceeds some
selectivity threshold and cannot be performed efficiently, i.e. it yields too many
intermediate results, the query can be rejected. As the number of possible com-
binations is M, (length(s) — (n*q)) an exhaustive search can become very ex-
pensive, especially if the mapping has to be applied during a bind-join on a great
number of long strings as shown in Section 6.4. Alternatively, a greedy algorithm

6.2. MAPPING SIMILARITY PREDICATES 93

Input string: vincent_van _gogh
ggram selectivity: |]
Algorithm start ' I I 1 |

Try combinations \%%

Optimal result: — — —
vin t_ v 0gh
sell01=1.3E-6 sell61=3.2E-5 sell131=5.5E-8

Figure 6.3: Finding selective 3-samples for k =2, hencen=k+1=3

with O(length(s)) was implemented yielding sufficiently selective combinations,
in most cases equal to the result of the exhaustive search.
The selectivity of the resulting pre-selection

O\, substring(s|posli], posli] +q],stringAttribute)

can further be improved by not only considering the retrieved g-samples at pos]i],
but also the bounding substring, resulting in a complete decomposition of s. In
the given example this may be ’vincen’ and ’t_van_g’ and "ogh’, which can eas-
ily be derived. Though we cannot estimate the selectivity of this query based on
the given information, unless we move to the approach presented in the previous
subsection, it must be better or at least equal to our estimation made based on
g-gram selectivity. Another refinement of the presented approach would be to
dynamically determine g based on the string length and the number of required
g-samples, e.g. q:= [length(s)/n|. This would solve the problem of applica-
bility for shorter strings mentioned above, and improve the selectivity of the pre-
selection for longer strings. The disadvantage is that we would need selectivity
information for various length g-grams.

Finally, if g is fixed and the applicability condition length(s) > nx*q does not
hold, we may decide to nevertheless send a disjunctive query to the source, con-
taining m = | length(s)/q| < n substrings. Though this may not yield all results to
the query, it still yields the subset containing k — (n —m) differences in the string
representations. Of course, the source query should only be executed, if the esti-
mated selectivity 1 — M, (1 — sel[pos]i]]) is below a threshold granting efficient
processing and transfer of the pre-selection.

6.2.3 Tokens

Considering only substrings of a fixed or variable length would neglect the query
capabilities of a great number of sources providing keyword search instead of sub-
string search. To support such interfaces we can choose a set of tokens T = {t}

94 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

derived from our search string s using common delimiters like spaces, commas,
etc. Managing and retrieving selectivity information for keywords can be based on
standard approaches from information retrieval like the TF « IDF norm. There-
fore, it is quite straightforward as outlined in Section 6.3. Finding an optimal
combination is also easier than with g-samples or substrings.

The disadvantages of the approach are the in general worse selectivity of key-
words compared to the other approaches, a relatively big space overhead for man-
aging selectivity information compared to g-grams, and problems with the appli-
cability. The latter results from the fact that k + 1 tokens have to be derived, which
often may not be possible, e.g. it is impossible to derive a pre-selection for a query
like like

Oedist ('ErnestHemingway’ ,author Name) <2

because the threshold k = 2 implies the need of n = 3 tokens, which are not avail-
able. The selectivity problems occur because we cannot take advantage of longer
substrings, we cannot take advantage of token-spanning substrings, and a proba-
bility growing with n of having one or more relatively un-selective keywords in
our pre-selection.

6.3 Managing Selectivity Information

In the previous section we described the mapping of similarity-based predicates
to substring and keyword queries. These mappings are based on the estimation
of the selectivities of arbitrary substrings, g-samples, and tokens. Choosing the
most selective pre-selection query requires the storage of selectivity information
about these kinds of substrings. In this section we shortly review and adapt data
structures to store these information and algorithms to extract the selectivity infor-
mation. Furthermore, we describe a method to obtain and maintain the required
information from uncooperative sources. The work presented in this section is the
result of co-operative research with Ingolf Geist.

An overview of data structures to store information for approximate string
matching is for instance given by Navarro in [NBYSTO01]. For the purpose of
matching, these structures hold pointers to the occurrences of substrings in text
documents, which is the common approach in Information retrieval. Contrary to
such approaches, for an estimation of string or substring selectivity as required
in this approach the number of occurrences is interesting, and not the positions
themselves. Therefore, the data structures were adapted to hold count or frequency
information.

According to the description in the previous section, possible data structures
for the different substring types are

6.3. MANAGING SELECTIVITY INFORMATION 95

e full count-suffix trees (FST) or pruned count-suffix trees (PST),

e count tries (CT) or pruned count tries (PCT), that store count information
of tokens or g-grams of variable length g, and

e hash tables or pruned hash tables which store the g-grams or tokens and
their corresponding counts.

These data structures and their potential usage are described in the following.

A suffix tree is a trie that stores not only all strings s of a database, but also all
suffixes s[i, length(s) — 1],0 <'i < length(s) of s. The count-suffix tree is a variant
of a suffix tree which does not store pointers to the occurrences of the substrings
s[i, j] but maintains the count Cg; ; of substrings sfi, j]. The count assigned to the
root node N is the number of all suffixes in the database and can be used to derive
a relative frequency value.

The space requirements of a full count-suffix tree can be prohibitive for esti-
mating substring selectivity. Therefore, the pruned count-suffix tree was presented
by Krishnan et al. in [KVI196]. This data structure maintains only the counts of
substrings that satisfy a certain pruning rule, e.g.

e maintain only the top-n levels of the suffix-tree, i.e. retain only substrings
with a length length(a) < lyax, OF

e retain all nodes that have a count Ca > pPpmin, Where ppin is the pruning
threshold.

Count-suffix trees and their pruned version can be used to store selectivity infor-
mation for arbitrary substrings, as described in the previous section.

To support the storage of selectivity information for g-samples simple and
efficient hash tables can be applied with in general smaller space requirements.
These hash-tables contain g-grams extracted from the strings in the database. Each
entry in a hash table #q consists of a g-gram as the key and the assigned count
information Cqgram. In order to reduce the storage costs, the hash table can also be
pruned using count-based pruning rules, e.g. maintain only those g-gram entries
with a count greater than a given threshold, i.e. Cqgram > Prmin.

To support g-samples of varying length selectivity information of g-grams
with different g; has to be maintained. A simple solution can use several hash
tables for different length g;, but this approach causes a considerable redundancy.
Alternatively, count-suffix trees pruned on the string length can be applied. Hash
tables can also be used for tokens, but tokens are usually of different lengths and
non-overlapping. Therefore, the resulting hash table would be similar to an in-
verted list as commonly used in Information retrieval, with the one difference,
that, again, counts instead of pointers are stored.

96 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

As mentioned in [JKNS00] a count-suffix tree can be pruned by different rules
other than minimum counts. In order to find a compressed representation of g-
grams of different lengths by the maximum height of the count-suffix tree, a
pruning rule p < q means: for each suffix s; of a string s only the part s;[0,q]
is stored in the count-suffix tree. For each suffix, which now represents a g-gram,
the count of occurrences is maintained. Furthermore, if only g-grams of a certain
minimum length ppin should be maintained, the pruning rule can be extended to
Pmin < g < pmax- As almost all g-grams are a prefix of (g+i)-grams, the compres-
sion rate is very high. Furthermore, pruning based on the counts can be performed
as described above.

Based on information stored in these data structures, selectivity information
for a substring a can be derived for instance as

_Ca
sel(a) := N
where C, is the count value found in the data structure, and N is for instance
the separately maintained sum of all occurrences of all substrings managed in a
hash table. As previously mentioned, N can be maintained in the root nodes of
the introduced tree structures. If a substring is not found, because the index may
be incomplete as discussed later on or pruned by a count limit pyin, its selectiv-
ity can be assumed to be % or pm‘,Ql_l, respectively. Furthermore, the lookup of
the count information for all the introduced approaches has the worst complexity
of O(length(a)), i.e. the frequency of a single substring can be computed very
efficiently.
For building and maintaining these index structures, two general approaches
are considered.

1. If there are one or more co-operative sources providing full access to their
managed data, the described structures or an initial version can be build
from the according string sets.

2. For uncooperative sources, like Web databases, building and maintaining
these structures has to be based on query-based sampling as described for
instance in [CCO1].

The idea behind query-based sampling are the following. At first, the selectivity
information can be seen as an ordered “stop word list”, i.e. we want to avoid
substrings with a bad selectivity. But, substrings occurring with a high frequency
are extremely well approximated with query based sampling, as shown in the
evaluation in Section 6.5. This way we can avoid big result sets even with a
relatively small ratio of sampled tuples.

6.4. SIMILARITY-BASED OPERATIONS 97

However, we may want to maintain and improve the initial frequency infor-
mation continuously. For this purpose, the result sets during query processing can
be used. Updating selectivity information continuously may seem problematic for
structures which are pruned based on a count or frequency threshold. Each new
entry in an already established structure would fall prey to the pruning rule and
does not have a chance to reach the threshold. A solution currently developed by
Ingolf Geist and not described here is based on an aging algorithm for the count
information in the data structures.

6.4 Similarity-based Operations

The selectivity-based mapping of similarity predicates introduced in the previous
sections can be used for re-writing and executing similarity queries on sources
with limited query capabilities. This way string similarity predicates can be sup-
ported in global queries even if the source systems support only primitive predi-
cates such as

e substring(a, b), e.g. in form of SQL’s “a | i ke ’ %% predicate or

e keyword(a, b) representing an IR-like keyword containment of phrase b in
string a.

In the following we use a generalised form contains(a, b) that has to be replaced
by the specific predicate supported by the source system.
Based on the descriptions given in Chapter 4, we focus on two operations:

e the similarity-based selection returning tuples satisfying a string similarity
predicate, and

e the similarity-based join combining tuples from two relations based on an
approximate matching criterion.

In the following we describe strategies for implementing these operators using
selectivity-based mapping.

6.4.1 Similarity-based Selection

As introduced in Section 4.3.1, a similarity selection can for instance be an op-
eration returning all tuples satisfying a similarity predicate based on a distance
function dist(s, attr) where attr € R with a distance less than or equal to a given
maximum distance k:

98 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

Ogist(s,attr) <kl (R) = {t | t € r(R) Adist(s,t.attr) <k}

The variant of such a similarity predicate considered here is based on the edit
distance of strings edist:

Oedist(s,attr)<kF (R) = {t | t € r(R) Aedist(s, t.attr) <k}

Without loss of generality we focus on simple predicates only. Complex predi-
cates, e.g. connected by Vv or A can be handled by applying the following steps
to each atomic predicate and taking into account query capabilities of the sources.
Furthermore, we assume that source systems do not support such predicates but
only the primitive predicate contains(a, b) introduced above. Now, the problem is
to rewrite a query containing Ggu in the following form:

Gam — Gam(opream(r(R)))

where opregm is pushed to the source system and Ggy is performed in the medi-
ator.

Assuming SIM is an atomic predicate of the form edist(s, attr) < k the selec-
tion condition PRESIM can be derived using the mapping functions map_ggram,
map_substring, map_token from Section 6.2 which we consider in the generalised
form map. This mapping function returns a set {q} of g-samples, substrings, or
keywords according to the mappings described in Section 6.2. The disjunctive
query represented by this set in general contains k + 1 strings, unless the length
of s does not allow to retrieve this number of substrings. In this case, a the next
possible smaller set is returned, representing a query returning a partial result as
described before. In any case, the estimated selectivity of the represented query
must be better than a given selectivity threshold.

Based on this we can derive the expression PRESIM from the similarity pred-
icate as follows:

PRESIM:= \/ contains(q,attr)
Vaemap(s)

In case of using the edit distance as similarity predicate we can further opti-
mise the query expression by applying length filtering. This means, we can omit
the expensive computation of the edit distance between two strings s1 and s; if
|length(s1) — length(s2)| > k for a given maximum distance values k. This holds,

6.4. SIMILARITY-BASED OPERATIONS 99

because in this case the edit distance value is already > k. Thus, the final query
expression is

C~yedist(s,attr)<k(0| length(s)—length(attr)| >k(Opresm(r(R)))

where the placement of the length filtering selection depends on the query capa-
bilities of the source.

A second optimisation rule deals with complex disjunctively connected sim-
ilarity conditions of the form SIM(s1,attr) v SIM(sp,attr). In this case the pre-
selection condition can be simplified to

\/ contains(qy,attr)v \/ contains(qy, attr)
vazEmap(s;) VozEmap(sz)

A general problem that can occur in this context are query strings exceeding
the length limit for query strings given by the source system. This has to be han-
dled by splitting the query condition into two or more parts PRESIM1 ... PRESIM,,
and building the union of the partial results afterwards:

Ogm(Opresim, (F(R)) U+ U opresim, (1(R)))

Obviously, the above mentioned optimisation of applying length filtering can be
used here, too.

6.4.2 Similarity Join

Based on the idea of implementing similarity operations by introducing a pre-
selection we can realise similarity join operations, too. A similarity join
ri(R1)Xgmrz2(R2) where the join condition is an approximate string criterion of
the form SIM(R;.attrq, Rp.attry) > threshold or edist(Rj.attry, Ro.attry) < k. As
in the previous sections we consider in the following only simple edit distance
predicates.

A first approach for computing the join is to use a bind join implementation.
Here, we assume that one relation is either restricted by a selection criterion or can
be scanned completely. Then, the bind join works as shown in Algorithm 4. For
each tuple of the outer relation r; we take the (string) value of the join attribute
attr, and perform a similarity selection on the inner relation.

100 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

This is performed in the same way as described in Section 6.4.1 by
mapping the string to a set of g-grams,
sending the disjunctive selection to the source,

post-process the result by applying the similarity predicate, and then

D w0 o

combining each tuple of this selection result with the current tuple of the
outer relation.

Algorithm 4: Bind join

foreach t; € r1(R1) do
s:=t(Ry.attrq)
foreach tz € Oegigy(sattr,) (OPRESM(I2(R2))) do
outputty oty
od
od

The roles of the participating relations (inner or outer relation) are determined
by taking into account relation cardinalities as well as the query capabilities. If
a relation is not restricted using a selection condition and does not support a full
table scan it has to be used as inner relation. Otherwise, the smaller relation is
chosen as the outer relation in order to reduce the number of source queries.

A significant reduction of the number of the source queries can be achieved
by using a semi-join variant. Here, the following principal approach is used.

1. One of the relations is first processed completely.

2. The string values of the join attribute are collected and the map function is
applied to each of them.

3. The resulting set S of g-grams, tokens, or substrings is used to build a single
pre-selection condition.

4. The result of the according query is joined with the tuples from the first
relation using the similarity condition.

This is shown in Algorithm 5.

6.5. EVALUATION 101

Algorithm 5: Semi join

S:=0
foreach t; € ri(R1) do
S =S Umap(t(Ry.attry))
od
lmp = Oy contains(sattr,) (12(R2))
foreach t; € ry(Ry) do
foreach tz € ryp do
if edist(t;(Ry.attry),t2(Ro.attrp)) < k
outputtj oty
fi
od
od

If the pre-selection condition exceeds the query string limit of the source, the
pre-selection has to be performed in multiple steps. In the best case, this approach
requires only 2 source queries assuming that the first relation is cached in the me-
diator or 3 source queries otherwise. The worst case depends on the query length
limit as well as the number of derived g-grams. However, if the number of queries
is greater than |rq1| + 1 one can switch always to the bind join implementation.

A further kind of join operation can be used if none of the both input relations
are restricted by a selection condition. Assuming that a full fetch / scan is not pos-
sible or not allowed, one could use the index containing frequent g-grams / tokens
/ substrings together with the selectivity for retrieving possibly matching data from
both relations. By processing the results (i.e. extracting g-grams) the index can
be adjusted and extended and in this way the following retrieval operations can be
focused to promising g-grams. Of course, this discovery join cannot guarantee a
complete result but is helpful in identifying existing approximate matches.

6.5 Evaluation

For evaluation purposes a real-life data set containing detailed information about
cultural assets lost or stolen from private persons and museums in Europe during
and after the Nazi regime was used. Because the gathered data is often imprecise
or erroneous, similarity based operations are important in this application scenario
and are already part of the application. This current research targets the integration
with similar databases available over the Web.

102 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

16 T T T T T

12 1

10 - 1

Tuples with duplicates in %
(o]
T
1

0 1 1 1 1 1
0 1 2 3 4
Edit distance of duplicates

Figure 6.4: Duplicate distribution in test data set

The experiments only dealt with a collection of approximately 60000 titles of
cultural assets. The data set contains a great number of duplicates with identical
and similar values as shown in Figure 6.4, i.e. for about 14% of the tuples there are
tuples with an identical title, for 2% of the tuples there are (possible) duplicates
with an edit distance of 1, etc. The distribution conforms to the aspects discussed
in Section 5.5.

To evaluate the key criteria described in the following, this data set as well
as necessary index structures were materialised in one local Oracle 9i database
and queries were mapped to SQL substring queries for pre-selection. The re-
quired mapping and further evaluation was implemented in a mediator on top of
the database system using Java. The considered queries were similarity self-joins
on this one table.

The key criteria considered during evaluation are the selectivity of generated
pre-selections, the quality of our selectivity estimation, and the applicability to
actual data values. Furthermore, dealing with structures for maintaining selectiv-
ity information, the necessary space overhead and impact on the quality of our
selectivity estimations for complete, incomplete, and pruned data structures were
considered.

Figure 6.5 shows the average selectivity achieved with the proposed g-samples
approach for a varying maximum edit distance k and varying g. The size of the
candidate sets retrieved from the database were reasonable, especially for g = 4
and g = 5, 100 to 300 of the approximate 60000 original titles. For a growing
edit distance threshold k the selectivity grew linear or better due to the growing
number of required disjuncts.

To answer the question, how many queries provide a good selectivity, beneath

6.5. EVALUATION 103

3-sa'1mples _—
4-samples ---x---
2.5 - 5-samples ---x--- -

Average query selectivity in %

15 a

l B -
U --X

0.5 N |
o HR— — .
0 I 1 i i
1 2 3 4

Edit distant threshold k of disjunctive query

Figure 6.5: Average selectivity for varying g and k

a given threshold, which also can be used to reject a query if the intermediate
result would exceed a reasonable limit, the selectivity distribution of queries cre-
ated from every tuple in the data set was investigated. The results are shown in
Figure 6.6 for varying q and k. For example, in Figure 6.6(c) where k = 3, if
we set the selectivity threshold to 5%, we have to reject approximately 3% of the
queries using 4-samples and 5-samples and approximately 14% of queries using
3-samples.

Though the former observation may seem quite bad, actually the edit distance
threshold of k = 3 is not realistic for most applications, where real duplicates
often have a distance of 1 or 2. The effect improves for smaller k as shown in
Figure 6.6(d), where for the the same selectivity threshold we see that for k = 2
we only have to reject 10% and for k = 1 only 5% of our queries. Again, for
longer substrings with g = 4 and q = 5 the queries perform far better, as seen in
Figures 6.6(a) and 6.6(b).

For the previous experiments un-pruned selectivity information stored in hash
tables and gathered from the full input relation was used, i.e. for each g-gram the
exact number of occurrences was used. Still, our selectivity estimation may be
biased by the fact that we assume independence between disjuncts by computing
the selectivity as 1 — I'Ig‘jll(l —sel(qgramj)). Figures 6.7(a) and 6.7(b) show that
our estimation is actually quite good for q = 3 and q = 5 respectively, assuming
k = 2. The estimation is rather conservative, i.e. we estimate the selectivity some-
what higher than it actually is. Comparing Figure 6.7(a) and Figure 6.7(b) shows
that the estimation quality decreases for growing q towards more conservative es-
timates. Results are only shown for k = 2,q = 3,9 = 5, but the results for other
combinations of g and k were measured and turned out similar.

104 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

100

100

n 3-samp‘)les 0 3-sam;‘)les
= 4-samples ------- 2 4-samples -——--——-
3 5-samples -------- o 5-samples --------
& 80 2 80 \
— N
1l 1l
x x
g 60 B 60
o Q |
o \ & ! \
3 [!
s 40 1\ 5 40 i \
[il () [y
=) i =) !
g B b L
& 20 [& 20 F+
o R o L
3] I @ AN
o > o N \‘k
Do R ——— T T
0 = 0 =
0 5 10 15 20 0 5 10 15 20
Selectivity threshold in % Selectivity threshold in %
(a) k=1, varying q (b) k=2, varying q
100 T 100 - T
) 3-samples ™ 8 k=1 ——
2 4-samples ——-—-- 1% K= —oeomm
] ples -------- 5 L =3 -----e-
3 80 5-samples g 80 i
P 3 iy
= ‘ S v
T 60} g 60 Hit
o [2 [
5 40| 540
3 A k> e
DT e LT EE
0 ——— s 0
0 5 10 15 20 0 5 10 15 20
Selectivity threshold in % Selectivity threshold in %
(c) k=3, varying q (d) varying k, g=3

Figure 6.6: Cumulative selectivity distribution for varying g and k

A problem with the presented approach occurs, if the number of required g-
samples cannot be retrieved from a given search string, because the latter is not
long enough for the decomposition. Figure 6.8 shows how often this was the case
with our data set and for varying g and k, i.e. the query strings s did not fulfil
the condition length(s) < q* (k+ 1). Though, in this case we can still step back
instead of reject and send a query containing less than k + 1 g-samples providing
at least a subset of the result as mentioned before.

Nevertheless, while greater g benefit the selectivity they hinder the applica-
bility when many short query strings exist. Therefore, the parameters g, k, and a
possible selectivity threshold have to be chosen carefully based on characteristics
of a given application.

In Section 6.3 the usage of query-based sampling was described in order to
build selectivity summaries for uncooperative sources. In joint work with Ingolf

6.5. EVALUATION 105

20 T T T

Real selectivity in %

Estimated selectivity in %, k=2 and gq=3

(@) g=3

Real selectivity in %

0 1 2 3 4 5 6 7 8
Estimated selectivity in %, k=2 and g=5

(b) 4=5

Figure 6.7: Quality of selectivity estimation for g=3 and g=5

Geist the quality of these information and the influence to the pre-selection pred-
icates was evaluated. First, the differences between full scan estimation and esti-
mation based on a certain sample size are investigated. From all possible g-grams
2000 were selected into a query set Q. Subsequently, we computed the average

106 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

50

3-sa|1mples _—
45 - 4-samples -—-x---
40 b 5-samples ---*:--

35
30
25
20
15
10

Non-applicable queries in %

Edit distant threshold k of disjunctive query

Figure 6.8: Applicability for varying q and k

40 T T T T
3-grams —+—
35 b4 4-grams —>—

30

25
20 -
15 —
10 —

Avg. absolute-relative-error

Sample size (% of data)

Figure 6.9: Sample size estimation errors

of the absolute-relative-errors defined as

_ 1 L abs(sel(q) —est(q))
A& sl

e

with sel(q) the selectivity g compute based on full statistics, i.e. the real selec-
tivity, and est(q) the estimated selectivity based on a sample. The results are
illustrated in Fig. 6.9.

As assumed the error is decreasing with bigger sample sizes. However, the
error is quite high, around 5 with 5% sample size. But, the most important thing
is, the relative order of g-grams is retained. Furthermore, high ranked g-grams,
i.e. those, which have to be avoided, are approximated well in the sample.

6.5. EVALUATION 107

240 , ,

T
3-grams —+—

100%)

220

200

180

160

140

120

Relative result size (full statistics

100

2 4 6 8 10 12
Sample size (% of data)

Figure 6.10: Quality of the pre-selection decisions

Following the evaluation of the estimation errors the influence of the errors to
the pre-selection results have to be shown. Therefore, we generated a sample set
of queries Q; which contains 500 strings randomly selected from the database. We
measured the average number of tuples returned by the pre-selection condition for
an edit distance k = 2, i.e. a disjunction of three g-sample substring queries. Here,
we assumed the average result size of substring queries created with full statistics
as 100%. Fig. 6.10 shows the result sizes of pre-selection queries created using
selectivity information from different sample sizes.

Even the precision of query based sampling selectivity estimation is not very
high, the query results are close to full statistics. That has several reasons. The se-
lectivity estimation of high ranked g-grams is rather high and ranking similarity is
high. Thus, even if the selectivity estimation is not perfect absolutely, the relative
order of the g-grams is good.

Finally, we evaluated the influence of the pruning limit on sizes of the storage
structures as well as on the quality of pre-selection. The results are illustrated in
Figures 6.11 and 6.12 respectively. Especially for 4- and 5-grams pruning reduces
the storage costs decisively, e.g. with a pruning limit pyin = 15 the size of the
5-gram table reduces to 10% of the original size. Nevertheless, the quality of
the estimations and result set sizes based on the estimations are very good as
seen in Figure 6.12. Because of the higher reduction for 5-grams the results are
slightly worse than for 3- and 4-grams. But, the figures show that pruning is well
applicable in our scenario.

108 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

100 I
8-grams —+—
90 £\ 4-grams —--x--- 7
< 80 \ 5-grams -
£ 70 p
o R
g 60 Sy b
c * R
£ 50 N
8 B0
T 40 B e
c s
3 a0 TR
20 i L .
94% .
0 BEOI S e 3
0
O . " e 20

Minimum count value retained in hashtable

Figure 6.11: g-gram table sizes vs. pruning limits

200 T T T T

3-grams ——
4-grams ===
5-grams o

150

100 1

50 1

Avg. returned tuples (500 queries) in %

0 2 4 6 8 10 12 14 16 18 20
Minimum count value retained in hashtable

Figure 6.12: Quality of pre-selection vs. pruning limits

6.6 Conclusions

In this chapter an approach for querying based on string similarity in a virtually
integrated and heterogeneous environment was presented. String similarity is ex-
pressed in terms of the edit distance, and global queries are re-written to

e asource query suitable for standard interfaces to efficiently select a candi-
date set, and

e a global part of the query that actually computes the correct result within a
mediator or FDBMS.

6.6. CONCLUSIONS 109

To grant efficiency, queries are re-written to disjunctive source queries based on
selectivity information for g-samples, arbitrary substrings, or tokens. The ad-
vantages and disadvantages of these three kinds of substrings and the necessary
overhead for storing selectivity information was discussed. The latter was aspects
and its evaluation is based on joint work with Ingolf Geist.

Based on the predicate mapping implementations for selection and join op-
erations were discussed. For the evaluation of the introduced concepts the focus
was on g-samples, because they seemed most suitable regarding applicability in
various scenarios and provide a low overhead for query processing and required
data structures. The results show that the proposed approach is well appropriate
for the target problem, but to grant efficiency and result quality the parameters
have to be chosen very carefully according to a given application scenario.

As this approach of string similarity based querying heterogeneous sources in
general is quite new, there is of course a great number of open questions, which
require further research. This includes a further improvement of source query
selectivity. The currently achieved results of fetching only a small fraction of a
percent of the original data in most scenarios may be suitable for many applica-
tions, but for large data volumes this already may be prohibitive. On the other
hand, while a complete decomposition of a search string to substrings is optimal
regarding the selectivity, the necessary overhead seems impractical in most appli-
cations. Here, mixed approaches and further ways of selectivity estimation are
researched.

Using only the string edit distance for similarity operations does not fully re-
flect real-world requirements, were similarity is most often specific to attribute
semantics of the given application, e.g. the similarity of presentations of a persons
name can be judged much better using a specific similarity measure. Neverthe-
less, the general principle of pre-selection by query re-writing remains applicable,
as well as many aspects of mapping a given value based on selectivity.

Related to a running project, the discovery join is currently more thoroughly
investigated. The intention of this operation is to find related or duplicate infor-
mation in Web sources, without having either a partial result or one full data set
materialised. The current approach is based on the work presented here as shortly
sketched in Section 6.4.

110 CHAPTER 6. RE-WRITING SIMILARITY-BASED QUERIES

Chapter 7

Conclusions

This thesis addressed problems of similarity-based operations in data integration.
Data integration has been a topic of research for more than twenty years and has
gained a growing interest over recent years because of the continously increasing
availability of data from sources in local or global scopes. While data integration
in early research has tackled problems mostly on the conceptual level, such as
for instance approaches targeting schematic heterogeneities of data from various
sources, the research focus shifted toward aspects required to implement solu-
tions for real-life applications, e.g. means for query processing in distributed and
heterogeneous environments.

Once schematic heterogeneities are resolved, and techniques of materialised
or virtual data integration were applied to provide unified access to an integrated
data set, most likely there will still be conflicts on the data level. This is because
the information provided by various sources may overlap or relate in some way,
and data values representing one real-world object or related objects may vary for
instance due to different representation conventions and errors made during input.
If this is the case, operations to resolve such conflicts cannot be based on equality
of values. Therefore, similarity-based operations are very useful to provide access
to integrated data sets.

Furthermore, these operations have to be implemented in a way to efficiently
deal with the special requirements in data integration scenarios. On the one hand,
the size of an integrated data set may be huge, because the sizes of the source
data sets are added. On the other hand, processing queries in a distributed and
heterogeneous environment has to be based on the quite narrow bottleneck of cur-
rent data networks. These two aspects also hold for equality-based operations, but
similarity-based operations in addition are characterised by an in general slightly
worse performance, because the search space is bigger. Therefore, efficiency of
similarity-based operations is a key issue.

111

112 CHAPTER 7. CONCLUSIONS

7.1 Summary of Contributions

The main contributions to the target research field of this thesis are starting in
Chapter 4 with a description of the foundations of similarity-based operations.
For this purpose, the semantics of predicate-based operations as known from the
relational algebra are adapted to the inclusion of similarity predicates. According
consequences and necessary modifications are outlined. In this way, the focus for
considerations in the following chapters is constituted.

While the semantics of similarity predicates as well as similarity-based se-
lection and join operations are introduced according to related approaches used
in other research, the description of a similarity-based grouping operation is a
novel approach, suitable especially for purposes of duplicate detection and recon-
ciliation. Though these two aspects on the surface are well covered by the two
stages of grouping and aggregation, for the intended purpose the actual grouping
sub-operation required severe changes to deal with specific characteristics of sim-
ilarity relations. Accordingly, strategies to deal with atransitivity introduced by
similarity predicates were described, and a simple strategy of building the transi-
tive closure was used later on.

Though the foundations, algorithms, and implementations provided are de-
scribed in a way, such that generic similarity predicates and complex conditions
can be handled, throughout the Chapters 5 and 6 a string similarity predicate based
on the edit distance was used to illustrate possible index support and efficient eval-
uation during distributed query processing. This specific predicate was chosen
because string attributes are most common in data management. On the other
hand, efficient support for string similarity is not well researched compared to, for
instance, similarity of complex multi-media objects. Hence, the support for such
predicates is an urgent requirement, especially in data integration.

Chapter 5 described novel research results consisting of algorithms for the
implementation of

e similarity-based join and

e similarity-based grouping

operations in materialised scenarios, i.e. the input relation of the operations ex-
ists either in secondary or primary storage of the integration system. In this case,
index support for similarity predicates is conceivable, which was illustrated by
using a trie index for evaluating string similarity predicates. Implementations
were provided for a mediator query engine and as an extension for a commercial
database management system. Based on the implementation of the algorithms
and the string similarity predicate, the performance of the approach was evalu-
ated. Further aspects of their application were discussed, including the design of
similarity predicates and the usage of aggregation functions for reconciliation.

7.2. OUTLOOK AND OPEN PROBLEMS 113

In Chapter 6 the according problems were addressed for virtual integration
scenarios.

e Similarity-based selection and
e similarity-based join

operations based on string similarity were introduced suitable for distributed query
processing in heterogeneous environments, i.e. the predicate has to be evaluated
by source systems with possibly limited query capabilities. To deal with this prob-
lem, a new approach was presented, which is based on expanding predicates by
deriving a disjunctive set of pre-selection predicates that can be evaluated by most
kinds of sources. To grant the efficiency of this mapping, selectivity information
on substrings was used. Finally, the mappings and algorithms were evaluated for
various aspects of the string similarity predicate and the quality of the selectivity
information.

The general intention behind the work presented in this thesis was to provide
means to deal with data-level conflicts in a way, such that the operations can be
implemented and used efficiently in a number of applications. Therefore, the most
important consideration during the research was to introduce similarity-based op-
erations that

e can be implemented as part of common data integration solutions like
FDBMS, mediators, or Data warehouses,

e can be integrated with existing data management solutions where appro-
priate, e.g. in commercial DBMS used for instance in Data warehousing,
and

e are implemented based on algorithms considering the specific requirements
of efficiency resulting from similarity-based data processing.

Accordingly, prototype implementations of the proposed similarity-based opera-
tions were provided, and their efficiency was evaluated and discussed. In gen-
eral, the evaluation results have shown that similarity-based operations can be
performed with a reasonable efficiency. Yet, the strong dependence on the context
of similarity and unclear properties of resulting similarity relations make efficient
implementations of similarity predicates a difficult task.

7.2 Outlook and Open Problems

Specific summaries and important open problems regarding the presented ap-
proaches were already discussed in the conclusions of Chapters 5 and 6. There-

114 CHAPTER 7. CONCLUSIONS

fore, in this section an outlook from a broader perspective is given and more gen-
eral problems in the research fields of interest are addressed.

The importance of similarity in computer science and especially in data man-
agement and data integration was outlined several times throughout this thesis.
It is a valuable concept for identification and abstraction, which can be applied
wherever great amounts of data have to be processed to make it suitable for hu-
man comprehension.

Yet, the support for according operations is still in its infancy and the focus
is often very limited. To better deal with the requirements of current and future
applications, similarity will play a key role. The current lack of similarity-based
operations is mostly based on certain properties of similarity and the stark contrast
with operations currently used in data management.

While the work presented in this thesis is based on the simple framework out-
lined in Chapter 4, a more comprehensive view on similarity on a conceptual level
is required, explicitly including aspects of suitable data models. Furthermore, an
agreement on the characteristics of similarity measures and relations is required as
a basis for such a comprehensive framework. Based on this, according operations
can be defined in a way, that allows a sound integration with existing or possible
future data management and data integration solutions.

The strong dependence on a context of similarity leads to the requirement of
different similarity measures that are specific to almost each given application.
While this problem can be solved in data management on the low level of ex-
tensibility interfaces as for instance provided by current database management
systems, the semantics of according user-defined functions are not clear and ef-
ficiency as a result is hard to accomplish. Therefore, these aspects have to be
covered within the more general framework mentioned above.

While it is reasonable to provide operations like the ones introduced in this
thesis in systems that are intended to be used in data integration scenarios, the
inclusion in database management systems should be realised as optional exten-
sions based on extensibility interfaces. This is because, the operations are often
required in the former systems, but are currently not a key requirement in many
standard applications. On the other hand, as shown in Chapter 5 the implemen-
tation based on existing extensibility interfaces can be cumbersome and not quite
intuitive. Hence, new concepts of extensibility have to be provided by commer-
cial database management systems to better suit current and future applications,
including those requiring similarity-based operations.

Bibliography

[AB8Y]

[AD77]

[APS8]

[Att50]

[BKLW99]

[BKS93]

[BLNS6]

[BYRN99]

[CCO1]

R. Alonso and D. Barbara. Negotiating data access in federated
database systems. In Proc. IEEE Int’l. Conf. on Data Eng., page 56,
Los Angeles, CA, February 1989.

M. Adiba and C. Delobel. The cooperation problem between dif-
ferent data base management systems. In Architecture and Models
in Data Base Management Systems, Nijssen(ed) (IFIP TC-2) Nice
France, 1977.

F. G. Ashby and N. A. Perrin. Toward a unified theory of similar-
ity and recognition. Psychological Review, 95(1):124-150, January
1988.

F. Attneave. Dimensions of similarity. American Journal of Psy-
chology, 63:516-556, 1950.

S. Busse, R.-D. Kutsche, U. Leser, and H. Weber. Federated infor-
mation systems: Concepts, terminology and architectures. Technical
Report Technical report 99-9, Technische Universitat Berlin, 1999.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of
Spatial Joins Using R-Trees. In P. Buneman and S. Jajodia, editors,
Proc. of the 1993 ACM SIGMOD Int. Conf. on Management of Data,
Washington, D.C., volume 22 of ACM SIGMOD Record, pages 237—
246. ACM Press, June 1993.

C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. ACM Comput-
ing Surveys, 18(4):323-364, December 1986.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley-Longman, May 1999.

J. Callan and M. Connell. Query-based sampling of text databases.
ACM Trans. Inf. Syst., 19(2):97-130, 2001.

115

116

BIBLIOGRAPHY

[CAGL*99] D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and

[Coh98]

[Con97]

[Dat90]

[DFGGY7]

[DS96]

[EN94]

[FLO5]

[Fou97]

[Fuh95]

[GBLYS]

R. Rosati. A principled approach to data integration and reconcilia-
tion in data warehousing. In Proceedings of the International Work-
shop on Design and Management of Data Warehouses (DMDW?99),
Heidelberg, Germany, 1999.

W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In L. M. Haas
and A. Tiwary, editors, Proceedings ACM SIGMOD, 1998, Seattle,
Washington, USA, pages 201-212. ACM Press, 1998.

S. Conrad. Foderierte Datenbanksysteme: Konzepte der Dateninte-
gration. Springer-Verlag, Berlin/Heidelberg, 1997.

C. J. Date. An Introduction to Database Systems. Addison-Wesley
Publishing Company, Reading , MA , USA, 5th edition, 1990.

G. Das, R. Fleischer, L. Gasieniec, and D. Gunopulos. Episode
matching. Lecture Notes in Computer Science, 1264, 1997.

D. Dey and S. Sarkar. A probabilistic relational model and algebra.
ACM Transactions on Database Systems, 21(3):339-369, Septem-
ber 1996.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings, Redwood City, CA, 2 edition, 1994.

C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for index-
ing, data-mining and visualization of traditional and multimedia
datasets. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 163—-174, San Jose, Cal-
ifornia, 22-25 May 1995.

IBM Community Development Foundation. The net result - report
of the national working party for social inclusion., 1997.

N. Fuhr. Probabilistic datalog — A logic for powerful retrieval meth-
ods. In Proceedings of the Eighteenth Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, Retrieval Logic, pages 282-290, 1995.

C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An auto-
matic citation indexing system. In DL’98: Proceedings of the 3rd
ACM International Conference on Digital Libraries, pages 89-98,
1998.

BIBLIOGRAPHY 117

[GFSS00]

[G13+01]

[GIKS03]

[GL94]

[Gol99]

[Goo72]

[GPQT94]

[Gra93]

[Gut84]

H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an
extensible data cleaning tool. In Weidong Chen, Jeffery Naughton,
and Philip A. Bernstein, editors, Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data, Dallas,
Texas, volume 29(2), pages 590-590, 2000.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-
ishnan, and D. Srivastava. Approximate string joins in a database
(almost) for free. In Proceedings of the Twenty-seventh Interna-
tional Conference on Very Large Data Bases: Roma, Italy, 11-14th
September, 2001, pages 491-500, Los Altos, CA 94022, USA, 2001.
Morgan Kaufmann Publishers.

L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins
in an RDBMS for web data integration. In Proceedings of the twelfth
international conference on World Wide Web, pages 90-101. ACM
Press, 2003.

P. Gupta and E. Lin. Datajoiner: A practical approach to multi-
database access. In Parallel and Distributed Information Systems
(PDIS ’94), pages 264-264, Los Alamitos, Ca., USA, September
1994. IEEE Computer Society Press.

R. L. Goldstone. Similarity. In R. A. Wilson and F. Keil, editors,
The MIT Encyclopedia of the Cognitive Sciences, page 1312. MIT
Press, 1999.

N. Goodman. Seven strictures on similarity. In Problems and
Projects, pages 437-447. Bobbs-Merrill, New York, 1972.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
J. Sagiv, J. D. Ullman, and J. Widom. The TSIMMIS Approach to
Mediation: Data Models and Languages (Extended Abstract). Tech-
nical Report, Stanford University, 1994.

G. Graefe. Query Evaluation Techniques For Large Databases. ACM
Computing Surveys, 25(2):73-170, 1993.

A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proceeding of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 47-57, Boston, MA, June 1984.

118

[Ham]

[HD80]

[HM79]

[HS95]

[HSC99]

[Hut81]

[Hyl96]

[Inm96]

[Jag91]

[Jam90]

[JKNSO00]

BIBLIOGRAPHY

W. R. Hamilton. The Mathematical Papers of Sir William Rowan
Hamilton. University Press, Cambridge. Vol.I Geometrical Optics
(1931), Vol.1l Dynamics (1940), Vol.Ill Algebra (1967).

P. A. V. Hall and G. R. Dowling. Approximate string matching.
ACM Computing Surveys, 12(4):381-402, 1980.

M. Hammer and D. McLeod. On database management system ar-
chitecture. Technical Report TR-LCS-T, Machine Intelligence, eds:
Meltzer, and Michie, vars. PublishersT Laboratory.for CS,, October
1979.

M. A. Hernandez and S. J. Stolfo. The merge/purge problem for
large databases. In Michael J. Carey and Donovan A. Schneider, ed-
itors, Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, pages 127-138, San Jose, California,
22-25 May 1995.

J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent,
Open Enterprise Data Integration. IEEE Data Engineering Bulletin,
22(1):43-49, 1999.

J. Hutchinson. Fractals and self-similarity. Indiana University Math-
ematics Journal, 30:713-747, 1981.

J. A. Hylton. Identifying and merging related bibliographic records.
Technical Report MIT/LCS/TR-678, Massachusetts Institute of
Technology, February 1996.

W. H. Inmon. Building the Data Warehouse. John Wiley & Sons,
Inc., 2 edition, 1996.

H. V. Jagadish. A retrieval technique for similar shapes. SIGMOD
Record (ACM Special Interest Group on Management of Data),
20(2):208-217, June 1991.

W. James. The Principles of Psychology. Holt, New York, 1890.

H.V. Jagadish, O. Kapitskaia, R.T. Ng, and D. Srivastava. One-
dimensional and multi-dimensional substring selectivity estimation.
The VLDB Journal The International Journal on Very Large Data
Bases, 9(3):214 — 230, dec 2000.

BIBLIOGRAPHY 119

[JLMO3]

[JTU96]

[Ken91]

[Kit86]

[Kos00]

[KRROZ]

[Kru78]

[KS83]

[KS91]

[KS00]

L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data
sets. In Eighth International Conference on Database Systems for
Advanced Applications (DASFAA °03), March 26-28, 2003, Kyoto,
Japan. IEEE Computer Society, 2003.

P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approxi-
mate string matching algorithms. Software—Practice and Experi-
ence, 26(12):1439-1458, December 1996.

W. Kent. The breakdown of the information model in multi-database
systems. SIGMOD Record, 20(4):10-15, December 1991.

J. Kittler. Feature selection and extraction. In T. Y. Young and K. S.
Fu, editors, Handbook of Pattern Recognition and Image Process-
ing, pages 59-83, Orlando, FL, 1986. Academic Press.

Donald Kossmann. The state of the art in distributed query process-
ing. ACM Computing Surveys, 32(4):422-469, 2000.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. In Philip A. Bernstein et al., ed-
itors, VLDP 2002: proceedings of the Twenty-Eighth International
Conference on Very Large Data Bases, Hong Kong SAR, China, 20—
23 August 2002, pages 275-286, Los Altos, CA 94022, USA, 2002.
Morgan Kaufmann Publishers.

C.L. Krumhansl. Concerning the applicability of geometric models
to similar data: The interrelationship between similarity and spatial
density. Psychological Review, 85(5):445-463, 1978.

J. B. Kruskal and D. Sankoff. An anthology of algorithms and con-
cepts for sequence comparison. In D. Sankoff and J. B. Kruskal,
editors, Time Warps, String Edits, and Macromolecules: The The-
ory and Practice of Sequence Comparison. Addison-Wesley, 1983.

W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity
in Multidatabase Systems. IEEE Computer, 24(12):12-18, Decem-
ber 1991.

N. Koudas and K. C. Sevcik. High dimensional similarity joins:
Algorithms and performance evaluation. IEEETKDE: IEEE Trans-
actions on Knowledge and Data Engineering, 12, 2000.

120

[KV196]

[Lev66]

[LH82]

[Li95]

[LMPO1a]

[LMPO1b]

[LRO96]

[LSPR93]

[ME96]

BIBLIOGRAPHY

P. Krishnan, J.S. Vitter, and B.R. lyer. Estimating alphanumeric se-
lectivity in the presence of wildcards. In H.V. Jagadish and 1.S. Mu-
mick, editors, Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996, pages 282—-293. ACM Press, 1996.

V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady., 10(8):707-710,
February 1966.

J. De Leeuw and W. Heiser. Theory of multidimensional scaling. In
Classification, pattern recognition and reduction of dimensionality,
pages 285-316. North-Holland, Amsterdam, 1982.

Wen-Syan Li. Knowledge gathering and matching in heterogeneous
databases. In AAAI Spring Symposium on Information Gathering,
1995.

S. Lujan-Mora and M. Palomar. Comparing string similarity mea-
sures for reducing inconsistency in integrating data from different
sources. Lecture Notes in Computer Science, 2118, 2001.

S. Lujan-Mora and M. Palomar. Reducing Inconsistency in Integrat-
ing Data from Different Sources. In M. Adiba, C. Collet, and B.P.
Desal, editors, Proc. of Int. Database Engineering and Applications
Symposium (IDEAS 2001), pages 219-228, Grenoble, France, 2001.
IEEE Computer Society.

A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous in-
formation sources using source descriptions. In T. M. Vijayaraman
et al., editors, Proceedings of the twenty-second international Con-
ference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 251-262, Los Altos, CA 94022, USA, 1996.
Morgan Kaufmann Publishers.

E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity
identification in database integration. In International Conference
on Data Engineering, pages 294-301, Los Alamitos, Ca., USA,
April 1993. IEEE Computer Society Press.

A. E. Monge and C. P. Elkan. The field matching problem: Al-
gorithms and applications. In Evangelos Simoudis, Jia Wei Han,
and Usama Fayyad, editors, Proceedings of the Second International

BIBLIOGRAPHY 121

[ME97]

[MGG93]

[MHLL99]

[Mor96]

[MRJ99]

[Nav01]

[Nav02]

[NBY98]

[NBY99]

[NBYSTO1]

Conference on Knowledge Discovery and Data Mining (KDD-96),
page 267. AAAI Press, 1996.

A. E. Monge and C. P. Elkan. An efficient domain-independent al-
gorithm for detecting approximately duplicate database records. In
Proceedings of the Workshop on Research Issues on Data Mining
and Knowledge Discovery (DMKD’97), 1997.

D. L. Medin, R. L. Goldstone, and D. Gentner. Respects for simi-
larity. Psychological Review, 100(2):254-278, April 1993.

W. May, R. Himmerdder, G. Lausen, and B. Ludéscher. A unified
framework for wrapping, mediating and restructuring information
from the web. In P. P. Chen, D. W. Embley, J. Kouloumdjian, S. W.
Liddle, and J. F. Roddick, editors, Advances in Conceptual Model-
ing: ER ’99, Paris, France, Proceedings, volume 1727 of Lecture
Notes in Computer Science, pages 307—-320. Springer, 1999.

William Morris, editor. The American Heritage Dictionary of the
English Language. Houghton Mifflin, Boston, third edition, 1996.

P. Missier, M. Rusinkiewicz, and W. Jin. Multidatabase Languages.
In A. K. Elmagarmid, A. Sheth, and M. Rusinkiewicz, editors,
Management of Heterogeneous and Autonomous Database Systems,
pages 175-216. Morgan Kaufmann Publishers, San Francisco, CA,
1999.

G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31-88, 2001.

D. Navarro. Representing Stimulus Similarity. Dissertation, Univer-
sity of Adelaide, December 2002.

G. Navarro and R. Baeza-Yates. A practical g-gram index for text
retrieval allowing errors. CLEI Electonic Journal, 1(2), 1998.

G. Navarro and R. Baeza-Yates. A new indexing method for approx-
imate string matching. Lecture Notes in Computer Science, 1645,
1999.

G. Navarro, R.A. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing
methods for approximate string matching. IEEE Data Engineering
Bulletin, 24(4):19 — 27, dec 2001.

122

[NHS84]

[NW70]

[OR18]

[Ore90]

[OV99]

[RBO1]

[RC96]

[RR99]

[RS97]

[SCS00]

BIBLIOGRAPHY

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable, symmetric multikey file structure. ACM Transactions on
Database Systems, 9(1):38-71, March 1984.

S. B. Needleman and C. D. Wunsch. A general method applicable to
the search of similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48:443-453, 1970.

M. Odell and R. C. Russell. The soundex coding system, 1918. U.S.
Patents 1261167 (1918) and 1435663 (1922).

J. Orenstein. A comparison of spatial query processing techniques
for native and parameter spaces. SIGMOD Record (ACM Special
Interest Group on Management of Data), 19(2):343-352, June 1990.

M. T. Ozsu and P. Valduriez. Principles of Distributed Database
Systems. Prentice Hall, Upper Saddle River, 2 edition, 1999.

E. Rahm and P. A. Bernstein. A survey of approaches to auto-
matic schema matching. VLDB Journal: Very Large Data Bases,
10(4):334-350, December 2001.

K. Ramamritham and P. K. Chrysanthis. A Taxonomy of Correct-
ness Criteria in Database Applications. The VLDB Journal, 5(1):85-
97, January 1996.

S. Ram and V. Ramesh. Schema Integration: Past, Present, and Fu-
ture. In A. K. EImagarmid, A. Sheth, and M. Rusinkiewicz, editors,
Management of Heterogeneous and Autonomous Database Systems,
pages 119-155. Morgan Kaufmann Publishers, San Francisco, CA,
1999.

M.T. Roth and P.M. Schwarz. Don’t scrap it, wrap it! a wrapper
architecture for legacy data sources. In M. Jarke, M.J. Carey, K.R.
Dittrich, F.H. Lochovsky, P. Loucopoulos, and M.A. Jeusfeld, ed-
itors, VLDB’97, Proceedings of 23rd International Conference on
Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages
266-275. Morgan Kaufmann, 1997.

K. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolu-
tion Features to a Query Language for Database Federations. In
M. Roantree, W. Hasselbring, and S. Conrad, editors, Proc. 3nd Int.
Workshop on Engineering Federated Information Systems, EFIS’00,

BIBLIOGRAPHY 123

[SE00]

[Sea79]

[She62a]

[She62b]

[SJ97]

[SL90]

[SLO1]

[SM96]

[SN9O]

Dublin, Ireland, June, pages 41-52, Berlin, 2000. Akadem. Verlags-
gesellschaft.

E. Schallehn and M. Endig. Using Source Capability Descrip-
tions for the Integration of Digital Libraries. In H.-J. Klein, edi-
tor, Tagungsband 12. GI-Workshop Grundlagen von Datenbanken,
volume 2005, pages 86-90, Institut fur Informatik und Praktische
Mathematik, Christian-Albrechts-Universitdt Kiel, June 2000.

J. R. Searle. Metaphor. In Andrew Ortnony, editor, Metaphor and
Thought, pages 265-277. Cambridge University Press, Cambridge,
England, 1979.

R. N. Shepard. The analysis of proximities: multidimensional scal-
ing with an unknown distance function. I. Psychometrika, 27:125—
140, 1962.

R. N. Shepard. The analysis of proximities: multidimensional scal-
ing with an unknown distance function. Il. Psychometrika, 27:219-
246, 1962.

S. Santini and R. Jain. Similarity is a geometer. Multimedia Tools
and Applications, 5(3):277-306, 1997.

A. P. Sheth and J. A. Larson. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases.
ACM Computing Surveys, 22(3):183-236, September 1990.

B. Salzberg and D. B. Lomet. Spatial database access methods.
SIGMOD Record (ACM Special Interest Group on Management of
Data), 20(3):5-15, September 1991.

H. Shang and T. H. Merrett. Tries for approximate string matching.
IEEE Transactions on Knowledge and Data Engineering, 8(4):540-
547, 1996.

M. Schrefl and E.J. Neuhold. A Knowledge-based Approach to
Overcome Structural Differences in Object Oriented Database Inte-
gration. In R. A. Meersman, S. Zhongzhi, and K. Chen-Ho, editors,
Artificial Intelligence in Databases and Information Systems, Proc.
of the IFIP WG 2.6 Working Conf., DS-3, Guangzhou, China, July,
1988, pages 265-304, Amsterdam, 1990. North-Holland.

124

[SP91]

[SPD92]

[SRF87]

[SS03]

[SSA02]

[SSSO01]

[SSS02]

[SSS04]

[Ste46]

[TAH*96]

BIBLIOGRAPHY

S. Spaccapietra and C. Parent. Conflicts and Correspondence Asser-
tions in Interoperable Databases. ACM SIGMOD Record, 20(4):49—
54, December 1991.

S. Spaccapietra, C. Parent, and Y. Dupont. Model Independent As-
sertions for Integration of Heterogeneous Schemas. The VLDB Jour-
nal, 1(1):81-126, July 1992.

T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. In P. M. Stocker and
W. Kent, editors, Proc. of the 13th Int. Conf. on Very Large Data
Bases, VLDB’87, Brighton, England, September 1-4, 1987, pages
507-518, Los Altos, CA, 1987. Morgan Kaufmann Publishers.

E. Schallehn and K. Sattler. Using Similarity-based Operations
for Resolving Data-level Conflicts. In A. James, B. Lings, and
M. Younas, editors, Advances in Databases, 20th British National
Conf. on Databases, BNCOD 20, Coventry, UK, July 2003, volume
2712 of Lecture Notes in Computer Science, pages 172-189, Berlin,
2003. Springer-Verlag.

K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity
joins. Knowledge and Data Engineering, 14(1):156-171, 2002.

E. Schallehn, K. Sattler, and G. Saake. Advanced grouping and
aggregation for data integration. In Proc. 10th International Con-
ference on Information and Knowledge Management, CIKM’01, At-
lanta, GA, pages 547-549, 2001.

E. Schallehn, K. Sattler, and G. Saake. Extensible and similarity-
based grouping for data integration Poster paper. In Rakesh
Agrawal, Klaus Dittrich, and Anne H.H. Ngu, editors, 8th Int. Conf.
on Data Engineering (ICDE), 26 February - 1 March 2002, San
Jose, CA, page 277, 2002.

E. Schallehn, K. Sattler, and G. Saake. Efficient Similarity-based
Operations for Data Integration. Data and Knowledge Engineering
Journal, 48(3):361-387, 2004.

S. S. Stevens. On the theory of scales of measurement. Science,
103:677-680, 1946.

M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey, W. Cody, R. Fagin,
P. M. Schwarz, J. Thomas, and E. L. Wimmers. The Garlic Project.

BIBLIOGRAPHY 125

[TCY92]

[TG82]

[Tho9s]

[Tic84]

[Tor52]

[Tor58]

[Tor65]

[Tve77]

[UKK92]

[Ukk93]

[VP97]

In H. V. Jagadish and I. S. Mumick, editors, Proc. of the 1996 ACM
SIGMOD Int. Conf. on Management of Data, Montreal, Quebec,
Canada, volume 25 of ACM SIGMOD Record. ACM Press, June
1996.

F. Tseng, A. Chen, and W. Yang. A probabilistic approach to query
processing in heterogeneous database systems. In Proceedings of
the 2nd International Workshop on Research Issues on Data Engi-
neering: Transaction and Query Processing, pages 176-183, 1992.

A. Tversky and I. Gati. Similarity, seperability, and the triangle
inequality. Psychological Review, 89(2):123-154, 1982,

Della Thompson, editor. The Concise Oxford Dictionary of Current
English. Oxford University Press, ninth edition, 1995.

W. F. Tichy. The string-to-string correction problem with block
moves. ACM Transactions on Computer Systems, 2(4):309-321,
1984.

W. S. Torgerson. Multidimensional scaling. I. Theory and method.
Psychometrika, 17:401-419, 1952.

W. S. Torgerson. Theory and Methods of Scaling. John Wiley and
Sons, New York, 1958.

W. S. Torgerson. Multidimensional scaling of similarity. Psychome-
trika, 30:379-393, 1965.

A. Tversky. Features of similarity. Psychological Review,
84(4):327-352, 1977.

E. Ukkonen. Approximate string-matching with g-grams and maxi-
mal matches. Theoretical Computer Science, 92(1):191-211, 1992.

E. Ukkonen. Approximate string-matching over suffix trees. In
A. Apostolico, M. Crochemore, and Z. Galil a. Udi Manber, editors,
Combinatorial Pattern Matching, 4th Annual Symposium, volume
684 of Lecture Notes in Computer Science, pages 228-242, Padova,
Italy, 1993. Springer.

V. Vassalos and Y. Papakonstantinou. Describing and using query
capabilities of heterogeneous sources. In M. Jarke, M.J. Carey, K.R.

126

[VPZ88]

[Wei99]

[WGOT]

[Wie92]

[Wie93]

[Wie94]

[WZ00]

[YGMO5]

[ZHKF95]

BIBLIOGRAPHY

Dittrich, F.H. Lochovsky, P. Loucopoulos, and M.A. Jeusfeld, ed-
itors, VLDB’97, Proceedings of 23rd International Conference on
Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages
256-265. Morgan Kaufmann, 1997.

J. Veijalainen and R. Popescu-Zeletin. Multidatabase systems in
iso/osi environments. In N.E. Malagardis and T.J. Williams, editors,
Standards and Economic Development in Information Technology,
pages 83-97, 1988.

E. W. Weisstein. The CRC Concise Encyclopedia of Mathematics.
CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-
9868, USA, 1999.

Gio Wiederhold and Michael R. Genesereth. The conceptual basis
for mediation services. IEEE Expert, 12(5), 1997.

G. Wiederhold. Mediators in the Architecture of Future Information
Systems. IEEE Computer, 25(3):38-49, March 1992,

G. Wiederhold. Intelligent integration of information. SIGMOD
Record (ACM Special Interest Group on Management of Data),
22(2):434-437, June 1993.

G. Wiederhold. Interoperation, mediation and ontologies. In Int.
Symposium on 5th Generation Computer Systems; Workshop on
Heterogeneous Cooperative Knowledge-Bases, volume W3, pages
33-48, Tokyo, Japan, 1994.

H. Wang and C. Zaniolo. Using sql to build new aggregates and
extenders for object- relational systems. In Proc. of 26th Int. Conf.
on Very Large Data Bases (VLDB’00), Cairo, Egypt, pages 166—
175. Morgan Kaufmann, 2000.

T. W. Yan and H. Garcia-Molina. Duplicate removal in information
dissemination. In Proceedings of the 21st International Conference
on Very Large Data Bases (VLDB ’95), pages 66—77, San Francisco,
Ca., USA, September 1995. Morgan Kaufmann Publishers, Inc.

G. Zhou, R. Hull, R. King, and J. Franchitti. Using object matching
and materialization to integrate heterogeneous databases. In Proc.
of 3rd Intl. Conf. on Cooperative Information Systems (CooplS-95),
Vienna, Austria, 1995.

	Title (German)
	Abstract (German)
	Title (English)
	Abstract (English)
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis
	1.3 Contributions of the Thesis
	2 Data Integration Approaches
	2.1 Introduction
	2.2 Characteristics of Data Integration
	2.2.1 Heterogeneity
	2.2.2 Distribution
	2.2.3 Autononmy
	2.3 Data Integration Approaches
	2.3.1 Virtual Data Integration
	2.3.2 Materialised Data Integration
	2.4 Conclusions
	3 Concepts of Similarity
	3.1 Introduction
	3.2 Models of Similarity
	3.2.1 Similarity Measures and Predicates
	3.2.2 Metrics as Similarity Measures
	3.2.3 Problems with Common Models
	3.3 String Similarity
	3.4 Conclusions
	4 Similarity-based Operations
	4.1 Introduction
	4.2 Similarity Predicates
	4.3 Similarity-based Operations
	4.3.1 Similarity-based Selection
	4.3.2 Similarity-based Join
	4.3.3 Similarity-based Grouping
	4.4 Conclusions
	5 Similarity-based Operations for Materialised Integration
	5.1 Introduction
	5.2 Principles of the Implementation and Optimisation
	5.2.1 A Trie-based Similarity Predicate for Strings
	5.2.2 Similarity-based Join
	5.2.3 Similarity-based Grouping
	5.3 Implementation using Oracle 8i
	5.4 Evaluation
	5.5 Applications
	5.6 Conclusions
	6 Re-writing Similarity-based Queries for Virtual Integration
	6.1 Introduction
	6.2 Mapping Similarity Predicates
	6.2.1 Substring Decomposition
	6.2.2 q-samples
	6.2.3 Tokens
	6.3 Managing Selectivity Information
	6.4 Similarity-based Operations
	6.4.1 Similarity-based Selection
	6.4.2 Similarity Join
	6.5 Evaluation
	6.6 Conclusions
	7 Conclusions
	7.1 Summary of Contributions
	7.2 Outlook and Open Problems
	Bibliography

