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Abstract: Trehalose conjugates of 3-hydroxychromone (3HC) dyes have previously been utilized as
fluorescence labels to detect metabolically active mycobacteria with a view to facilitating point-of-care
detection of mycobacterial pathogens, especially Mycobacterium tuberculosis. We subjected the 3HC
dye 2-(6-(diethylamino)benzofuran-2-yl)-3-hydroxy-4H-chromen-4-one (3HC-2) to a combined X-ray
crystallography and density functional theory (DFT) study, and conducted preliminary fluorescence
labelling experiments with the model organism Mycobacterium aurum. In the crystal, 3HC-2 ex-
hibits an s-cis conformation of the chromone and the benzofuran moieties about the central C–C
bond. According to DFT calculations, the s-cis conformer is about 1.8 kcal mol−1 lower in energy
than the s-trans conformer. The solid-state supramolecular structure features hydrogen-bonded
dimers and π· · ·π stacking. Fluorescence microscopy revealed fluorescence of M. aurum cells treated
with the dye trehalose conjugate 3HC-2-Tre in the GFP channel. It was concluded that s-cis is the
preferred conformation of 3HC-2 and that the generally considered non-pathogenic M. aurum can
be labelled with the fluorescence probe 3HC-2-Tre for convenient in vitro drug screening of new
antimycobacterial agents.

Keywords: 3-hydroxychromone; crystal structure; hydrogen bonding; Hirshfeld surface analysis;
conformation; DFT calculation; fluorescence labelling; Mycobacterium aurum

1. Introduction

With a total of 1.6 million deaths and an estimate of 10.6 new cases worldwide in
2021, tuberculosis (TB) remains the leading bacterial killer and a public health threat [1].
The etiologic agent of TB is primarily Mycobacterium tuberculosis. Infections caused by non-
tuberculous mycobacteria (NTM), which are mostly considered opportunistic pathogens,
are also on the rise globally [2,3]. Point-of-care detection of mycobacteria based on low-cost
microscopy methods [4] could help prevent and combat mycobacterial infections. In this
context, Kamariza et al. recently reported on 3-hydroxychromone dye trehalose conju-
gates for the fluorescence labelling of mycobacterial cells [5]. As illustrated in Figure 1,
exogenous trehalose molecules can be mycolylated at position 6 to give trehalose mon-
omycolates (TMM), which are incorporated into the mycomembrane. A solvatochromic
3-hydroxychromone dye appended to trehalose as a fluorophore group appears to be
tolerated by the converting enzymes antigene 85 (Ag85), which enables visualization of
metabolically active mycobacteria.

Mycobacterium aurum is a fast-growing non-tuberculous mycobacterium [6], which has
been used as a surrogate bacterium in anti-TB drug discovery [7–9], although its suitability
as a model organism for M. tuberculosis has been called into question [10]. M. aurum is
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generally considered non-pathogenic, but a documented rare case of keratitis attributable
to M. aurum has been reported in the medical literature [11]. We have also used M. aurum
as a test bacterium in early-stage antimycobacterial drug discovery [12–14]. Therefore, we
became interested in possible applications of the fluorescence probe 3HC-2-Tre (Figure 2) [5]
for the labelling of M. aurum cells, as this could be a useful tool for in vitro testing of new
antimycobacterial agents.
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Figure 2. Chemical diagram of the dye trehalose conjugate 3HC-2-Tre used in this study.

Whereas in-depth spectroscopic investigations of the dye 3HC-2 can be found in the
literature [15,16], its crystal and molecular structure appears to be hitherto unpublished,
as revealed by a search of the Cambridge Structural Database (CSD) [17] via the WebCSD
interface [18] in April 2023. Therefore, we subjected 3HC-2 to X-ray crystallography, density
functional theory (DFT) calculations, and Hirshfeld surface analysis in order to better
understand its features. In this contribution, we report the molecular structure of 3HC-2
in the crystal, a computational study of its conformational preference, its supramolecular
structure in the solid state, and the preliminary results of fluorescence labelling experiments
with M. aurum cells using the dye trehalose conjugate 3HC-2-Tre.
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2. Results and Discussion
2.1. Structural Description of 3HC-2

Compound 3HC-2 (Figure 3a) was synthesized as described in the literature [5]. In brief,
2′-hydroxyacetophenone was reacted with 6-(diethylamino)benzofuran-2-carbaldehyde [16],
followed by treatment with hydrogen peroxide to give the desired 3-hydroxychromone
derivative 3HC-2. Intense yellow crystals of 3HC-2, as shown in Figure 3b, grew from
a solution in heptane/ethyl acetate. X-ray crystallography revealed that the compound
crystallized solvent-free in the triclinic system, centrosymmetric space group P-1, with
two molecules in the unit cell (Z = 2).
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Figure 3. Chemical diagram of 3HC-2 (a) and microscope image of crystal specimens in perfluo-
ropolyether oil (b).

Figure 4 shows the molecular structure of 3HC-2 in the crystal. One of the ethyl groups
exhibits disorder over two positions. As expected, the ten-membered chromene system
is planar (r.m.s. deviation 0.0108 Å) as is the nine-membered benzofuran moiety tethered
to C2 (r.m.s. deviation 0.0107 Å). The molecule adopts an s-cis conformation about the
C2–C2′ bond. The O1–C2–C2′–O1′ torsion angle is −13.76(16)◦ in the chosen asymmetric
unit, and the angle between the mean planes through the chromene and benzofuran
moieties is 14.42(4)◦. An s-cis conformation was encountered in the related 3-(furan-2-
yl)-2-hydroxy-4H-chromen-4-one (CSD refcodes: IJUCEW and IJUCEW01) [19,20] and its
nicotinic acid ester (MASGAS) [21]. Interestingly, an s-trans conformation was found in the
crystal structures of the 2-thiophenyl derivatives ((5-(3-hydroxy-4-oxo-4H-chromen-2-yl)-
2-thienyl)methylene)malononitrile (MUGGEC) [22] and 2-(thiophen-2-yl)-4H-chromen-4-
one-3-O-2,3,4,6-O-tetraacetyl-β-D-glucopyranoside (QICLIA) [23].
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A CSD search (April 2023) for crystal structures containing a 2,3-diether-butadiene
moiety with a central acyclic C-C single bond revealed 107 entries. Of these, 80 structures
exhibited an O–C–C–O torsion angle between 163 and −164◦, and for 21 structures the
O–C–C–O torsion angle was between −26 and 20◦, as observed for 3HC-2. Intermediate
torsion angle values in six structures can likely be attributed to packing effects or the steric
bulk of substituents (NENLAT −60.2◦ [24], AHAYEO −47.3◦ [25], CIVXUC 37.9◦ [26],
SILXAP 49.5◦ [27], HEJRUL 76.3◦ [28], DADHOJ 127.2◦ [29]). The relatively small number
of structures with an O–C–C–O torsion angle around 0◦ prompted us to calculate the
optimized structure of the free molecule of 3HC-2 using DFT methods. The minimum
energy structure of the free molecule exhibited an O1–C2–C2′–O1′ torsion angle of 0◦.
Figure 5 shows a superposition of the 3-hydroxychromone moieties of the molecular
structure in the crystal and the DFT-optimized molecular structure of the free molecule
of 3HC-2, illustrating the conformational difference between the two structures, which
can be attributed to packing effects in the crystal (vide infra). A relaxed surface scan was
subsequently calculated in order to explore the conformational flexibility of 3HC-2 about
the central C2–C2′ bond. This revealed a rotational barrier of ca. 7.5 kcal mol−1 and the
energy of the s-trans conformer was about 1.8 kcal mol−1 higher than that of the local
ground state structure adopting the s-cis conformation (Figure 6).
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The supramolecular structure of 3HC-2 in the solid state features centrosymmetric
O–H· · ·O hydrogen-bonded dimers (Figure 7). The 3-hydroxy groups each act as a hy-
drogen bond donor towards the chromone carbonyl oxygen atom of the other molecule
in a dimer, resulting in a R2

2(10) motif [30]. The corresponding hydrogen bond param-
eters (Table 1) are characteristic of strong hydrogen bonds [31]. The same intermolec-
ular hydrogen bond motif was observed in the crystal structures of the unsubstituted
3-hydroxychromone (HOHHIW) [32] and in the aforementioned IJUCEW and MUGGEC.
Whereas the chromone oxygen atom O1 does not exhibit contacts shorter than the sum
of van der Waals radii in the crystal, the benzofuran oxygen atom O1′ is approached by
a methyl hydrogen atom of the disordered ethyl group of an adjacent molecule. Figure 8
shows the Hirshfeld surface of 3HC-2 and the corresponding 2D fingerprint plot, revealing
the dominance of short out of the plane O· · ·H contacts, resulting from the intermolecular
O–H· · ·O hydrogen bonding described above and the π· · ·π stacking of the molecules.
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1 Symmetry code: (i) −x, −y, −z + 2.
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2.2. Labelling of Mycobacterium aurum Cells

The dye trehalose conjugate 3HC-2-Tre (Figure 2) for the labelling of M. aurum cells
was prepared from anhydrous trehalose and 3HC-2 as described by Kamariza et al. [5]. In
brief, trehalose was brominated in the 6-position by a variation of the Appel reaction using
N-bromosuccinimide and triphenylphosphine, followed by acetylation. Subsequently,
a nucleophilic substitution reaction with 3HC-2, after deprotonation of the 3-hydroxy
group, followed by deacetylation afforded the anticipated 3HC-2-Tre. We then incubated
M. aurum cells with 100 µM 3HC-2-Tre in liquid growth medium for 3 h at 36 ◦C and
subjected the sample to fluorescence microscopy. As shown in Figure 9, our preliminary
results demonstrate fluorescence of 3HC-2-Tre-labelled M. aurum cells with λex = 485 nm
and λem = 510–531 nm filter sets. It is interesting to note that Kamariza et al. came to
the conclusion that 3HC-2-Tre-labelling of Mycobacterium smegmatis, another generally
considered non-pathogenic, fast-growing mycobacterium and model organism for the
pathogen M. tuberculosis [33], was not specific to the trehalose pathway (vide supra) [5].
Exploring the mechanism of the labelling of M. aurum cells with 3HC-2-Tre, however, is
beyond the scope of this preliminary investigation.
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3. Materials and Methods
3.1. General

Compounds 3HC-2 and 3HC-2-Tre were prepared following the procedures reported
by Kamariza et al. [5]. The synthesis of the aldehyde precursor to 3HC-2, i.e., 6-
(diethylamino)benzofuran-2-carbaldehyde, from 3-dimethylaminophenol is described in
Ref. [16]. Experimental details of the preparation of 3HC-2-Tre can be found in the Supple-
mentary Materials. The starting materials 3-dimethylaminophenol (97.69%, BLD Pharmat-
ech GmbH, Kaiserslautern, Germany), 2′-hydroxyacetophenone (99.94%, BLD Pharmatech
GmbH), and anhydrous trehalose (>98.0%, TCI, Chuo-ku, Tokyo) were purchased and used
as received.

3.2. X-ray Crystallography

A few crystals of 3HC-2 suitable for single-crystal X-ray diffraction were obtained
by chance when the remainder of a heptane/ethyl acetate solution resulting from flash
chromatography evaporated to dryness in a tube. The crystals were coated with perflu-
oropolyether PFO-XR75 and mounted using a MiTeGen cryo-loop. The X-ray diffraction
data were measured on a Bruker AXS D8 Venture diffractometer, equipped with an Incoatec
IµS Diamond microfocus X-ray source, Incoatec multilayer optics, and a CMOS Photon III
detector. The APEX4 software was used to control the diffractometer [34]. The raw data
were processed with the SAINT software [35] and corrected for absorption effects with
SADABS-2016/2 [36] using the Gaussian method based on indexed crystal faces.

The crystal structure was solved with SHELXT [37] and refined with SHELXL-2019/3 [38].
Anisotropic atomic displacement parameters (ADPs) were introduced for all non-hydrogen
atoms. The diethylamino group was affected by positional disorder, which was taken into
account by a split model for one ethyl group. Refinement of the ratio of occupancies by
means of a free variable resulted in 0.531(4):0.469(4). Similar distance (SADI) and enhanced
rigid-bond restraints (RIGU) [39] were applied to the disordered ethyl group. Except for
the hydroxy hydrogen atom H2 and H3′ on the benzofuran moiety, hydrogen atoms were
placed in geometrically calculated positions with Caromat–H = 0.95 Å, Cmethylene–H = 0.99 Å,
and Cmethyl–H = 0.98 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (1.5 for
methyl groups). The initial torsion angle of the methyl group of C10 was determined in
a circular Fourier calculation and subsequently refined while maintaining a tetrahedral
structure. H2 and H3′ were located in difference Fourier maps and refined with the O2–H2
and C3′–H3′ distance restrained to target values of 0.84(2) and 0.95(2) Å, respectively, and
with Uiso(H) = 1.2 Ueq(C, O). Crystal data and refinement details are listed in Table 2.
Structure pictures were drawn with Diamond [40]. Hirshfeld surface analysis was carried
out using CrystalExplorer [41].

3.3. Computational Methods

DFT calculations were performed with ORCA (version 5.0) [42] with a B3LYP/G
VWN1 hybrid functional (20% HF exchange) [43–45], using a def2-TZVPP basis set [45].
Optimization of the structure was completed using the BFGS method from an initial Hessian
according to Almoef’s model with a very tight self-consistent field convergence thresh-
old [46]. Calculations were made on the free molecule of 3HC-2. A relaxed surface scan was
carried out varying the crystallographic O1–C2–C2′–O1′ torsion angle from 0 to 359◦ in 1◦

steps using a def2-TZVPP basis set and optimizing as above with a tight self-consistent field
convergence criterion. Structures near the transition states were subsequently optimized
using a def2-TZVPP basis set and a very tight self-consistent field convergence criterion, as
for the optimized structure. The optimized local minimum-energy structures exhibited only
positive modes and the transition states each exhibited one imaginary mode. Cartesian
coordinates of the DFT-optimized structure of 3HC-2 can be found in the Supplementary
Materials. Structure pictures were generated with Mercury [47].
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Table 2. Crystal data and refinement details for 3HC-2.

Empirical Formula C21H19NO4

Mr 349.37

T (K) 100(2)

λ (Å) 0.71073

Crystal system, space group Triclinic, P-1

a (Å) 7.2022(5)

b (Å) 8.4003(5)

c (Å) 15.0621(10)

α (◦) 99.969(4)

β (◦) 94.673(4)

γ (◦) 111.188(2)

V (Å3) 826.48(9)

Z, ρcalc (g cm−3) 2, 1.404

µcalc (mm−1) 0.098

F(000) 368

Crystal size (mm) 0.236 × 0.112 × 0.020

θ range (◦) 2.665–30.555

Reflections collected/unique 91202/5061

Rint 0.0553

Observed reflections [I > 2σ(I)] 3946

Data/restraints/parameters 5061/29/261

Goodness-of-fit on F2 1.027

R1 [I > 2σ(I)] 0.0483

wR2 (all data) 0.1418

∆ρmax, ∆ρmin 0.471/−0.556

3.4. Microbiology

M. aurum DSM 43999 was cultivated via the inoculation of a single colony from
a fresh streak plate (Middlebrook 7H10 agar) into 10 mL of Middlebrook 7H9 liquid
medium supplemented with 10% ADS [5% (m/v) bovine serum albumin fraction V, 0.81%
(m/v) sodium chloride, 2% (m/v) dextrose in purified water] and 0.05% polysorbate 80.
The culture was grown to an OD600 between 0.2 and 0.8 for the labelling experiment by
incubation at 36 ◦C with shaking (50 rpm). After dilution to an initial concentration of
5 × 107 CFU/mL (OD600 0.1 = 1 × 108 CFU/mL) with growth medium, the culture was
transferred to a clear flat-bottom 96-well plate (Sarstedt, 83.3924.500) with 100 µL per well.
Subsequently, 1 µL of 3HC-2-Tre (10 mM in DMSO) was added to each well to achieve
a final dye concentration of 100 µM. After homogenization by pipetting, the plate was
incubated for 3 h at 36 ◦C with shaking (50 rpm).

3.5. Fluorescence Microscopy

After incubation (see Section 3.4), the contents of the wells were homogenized by
pipetting and 1 µL of each well was transferred to a black clear flat-bottom 96-well plate
(Greiner bio one, 6550909) filled with 200 µL phosphate-buffered saline per well. Fluores-
cence microcopy was performed with a Thermo Scientific (Waltham, MA, USA) CellInsight
CX5 instrument. Samples were excited at 485 nm and imaged with the GFP channel
(510–531 nm).



Molbank 2023, 2023, M1647 9 of 11

4. Conclusions

We have structurally characterized the 3-hydroxychromone dye 3HC-2 in the solid
state by X-ray crystallography. In the crystal, the molecule exhibits an s-cis conformation
with an O–C–C–O torsion angle of ±13.76(16)◦. DFT calculations on the free molecule
gave an O–C–C–O torsion angle of ca. 0◦, and revealed that the s-cis conformer was
approximately 1.8 kcal mol−1 more stable than the s-trans conformer, with a rotational
barrier of ca. 7.5 kcal mol−1. Preliminary labelling experiments demonstrated that
M. aurum cells incubated in the presence of the dye trehalose conjugate 3HC-2-Tre could
be detected by fluorescence microscopy in the GFP channel. We expect that this will facil-
itate in vitro testing of new antimycobacterial agents using this test bacterium, which is
generally regarded as non-pathogenic.

Supplementary Materials: The following materials are available online: Description of the synthesis
of 3HC-2-Tre and cartesian coordinates of the DFT-optimized structures of the s-cis and s-trans
conformers of 3HC-2.
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