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Abstract

Fracture networks are the main pathways for groundwater flow and transport es-
pecially in rocks with a low-permeability matrix. For this reason, the presence,
connectivity, and hydraulic properties of fracture networks concern groundwater re-
sources, geothermal systems, and the environmental safety of waste repositories.
Hydraulic tomography experiments provide one approach for characterizing frac-
tured sites. For this method, several intervals of adjacent boreholes are isolated
by packer systems at different depths. A given pumping rate in one of the intervals
induces a perturbation of the steady-state pressure, and the resulting transient pres-
sure curves are recorded in the surrounding intervals. This procedure is repeated
for all intervals; thus, multiple combinations of pressure signals are measured, which
serve as the basis for the inversion of the hydraulic and structural properties of
fractured rocks.

For this purpose, a discrete fracture network (DFN) model is applied. A DFN
model implies planar fractures and a permeability determined by the fracture aper-
ture. The derivation of a DFN realization from the pressure response curves is a
challenging topic due to the high number of unknown parameters and the significant
contrast between highly permeable fractures and a nearly impervious rock matrix.
Therefore, a new approach for the evaluation of hydraulic tomography experiments
that is specifically suited for fractured sites is developed and tested in this thesis.
In comparison to previous studies that mainly utilize continuous inversion methods,
the properties of the fractured rock are addressed more directly by the DFN model.
Thereby, a DFN model is implemented to perform the forward simulations, the struc-
tural and hydraulic properties of a DFN are inferred, and the results are evaluated
as the fracture probability. The inversion is accomplished by a stochastic method
based on the Bayesian equation that defines a posterior distribution of the DFN
parameters given the measured data. The posterior distribution is characterized by
sampling from it according to Markov chain Monte Carlo (MCMC) methods. An
initial DFN configuration is updated iteratively by adding or deleting fractures or
by changing the position, length, and hydraulic aperture of a fracture. This results
in several posterior DFN realizations of approximately equal probability. The struc-
tural properties of the DFN realizations are processed to a fracture probability map
over the investigated region and a mean hydraulic aperture indicating transmissivity
and storativity of the fractures.

The developed inversion approach is tested and evaluated with two- (2D) and
three-dimensional (3D) synthetic test cases. The synthetic test cases demonstrate
the applicability of the method in general and the sensitivity of the inversion results
to a different tomographic setup. Moreover, the method is applied to the inversion
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of hydraulic tomography experiments conducted as part of the In situ Stimulation
and Circulation experiments at the Grimsel Test Site in Switzerland. Flow, seismic,
and ground penetrating radar tests identified a highly fractured and most permeable
area of 4m to 6m width between two shear zones which is the target of the inversion.
The fracture probability map of the investigated zone highlights two preferential flow
paths with different levels of permeability.
This work delineates a practical procedure for the setup of a DFN inversion prob-

lem as derived from the work with synthetic test cases and the field application.
This includes a list of studies that have to be conducted before the DFN inver-
sion, a description of common assumptions and simplifications for the derivation of
constraints and prior distributions, and a recommendation for the specification of
site-dependent parameters. Thereby, this project facilitates the direct inversion of
hydraulic and structural parameters of DFNs and promotes the application to other
fractured sites and on a larger scale.
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Zusammenfassung

Kluftnetzwerke sind bedeutendeWegsamkeiten für Grundwasserströmung und Trans-
port. Das gilt insbesondere für Gesteine, die eine Gesteinsmatrix mit geringer Per-
meabilität aufweisen. Aus diesem Grund sind das Auftreten, die Konnektivität und
die hydraulischen Eigenschaften von Kluftnetzwerken für Grundwasserressourcen,
geothermische Systeme und die Umweltverträglichkeit von Deponien von Bedeu-
tung. Einen Ansatz zur Charakterisierung von geklüfteten Standorten bietet die
hydraulische Tomographie. Für dieses Verfahren werden mehrere Intervalle benach-
barter Bohrlöcher durch Packersysteme in unterschiedlichen Tiefen isoliert. Durch
eine vorgegebene Pumprate in einem der Intervalle wird eine Störung des stationären
Drucks hervorgerufen und die daraus resultierenden instationären Druckkurven wer-
den in den umliegenden Intervallen aufgezeichnet. Dieses Vorgehen wird für alle
Intervalle wiederholt, sodass mehrere Kombinationen von Drucksignalen gemessen
werden können. Diese dienen als Grundlage für die Inversion der hydraulischen und
strukturellen Eigenschaften des geklüfteten Gesteins.

Für die Inversion wird in dieser Arbeit ein diskretes Kluftnetzwerkmodell angewen-
det. Ein diskretes Kluftnetzwerkmodell setzt ebene Klüfte und eine durch die
Kluftöffnung bestimmte Permeabilität voraus. Die Berechnung eines Kluftnetz-
werks aus den Druckkurven stellt aufgrund der großen Anzahl unbekannter Pa-
rameter und des starken Kontrasts zwischen durchlässigen Klüften und einer na-
hezu undurchlässigen Gesteinsmatrix eine Herausforderung dar. Deswegen wird
hier ein neuer Ansatz zur Auswertung von hydraulischer Tomographie entwick-
elt und erprobt, der sich speziell für geklüftete Standorte eignet. Im Vergleich
zu früheren Studien, die hauptsächlich kontinuierliche Inversionsverfahren anwen-
den, werden die Eigenschaften des geklüfteten Gesteins durch das diskrete Kluft-
netzwerkmodell unmittelbarer berücksichtigt. Dazu wird ein diskretes Kluftnetz-
werkmodell für die Durchführung der Simulationen implementiert, die strukturellen
und hydraulischen Eigenschaften des diskreten Kluftnetzwerkmodells werden bes-
timmt und die Ergebnisse als Kluftwahrscheinlichkeit ausgewertet. Die Inversion er-
folgt durch ein stochastisches Verfahren, das auf der Bayes’schen Gleichung basiert,
die eine Posterior-Verteilung der Parameter des Kluftnetzwerks in Abhängigkeit
von den gemessenen Daten definiert. Die Posterior-Verteilung wird durch mehrere
Stichproben, die mit dem Markov-Ketten-Monte-Carlo-Verfahren erzeugt werden,
charakterisiert. Eine erste Konfiguration eines Kluftnetzwerks wird iterativ durch
Hinzufügen oder Löschen von Klüften oder durch das Anpassen von deren Posi-
tion, Länge und Kluftöffnung variiert. Dies führt zu mehreren Realisierungen von
diskreten Kluftnetzwerken mit ungefähr gleicher Wahrscheinlichkeit. Die struk-
turellen Eigenschaften der Kluftnetzwerke werden für den untersuchten Bereich
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durch die Visualisierung der Kluftwahrscheinlichkeiten und der mittleren Kluftöff-
nung, die Transmissivität und Speicherfähigkeit der Klüfte bestimmt, ausgewertet.
Der erarbeitete Inversionsansatz wird durch zwei- (2D) und dreidimensionale (3D)

synthetische Beispiele getestet und bewertet. Die synthetischen Testfälle demon-
strieren die grundsätzliche Anwendbarkeit der Methode und die Sensitivität der
Inversionsergebnisse gegenüber unterschiedlichen tomographischen Einstellungen.
Darüber hinaus wird die Methode auf die Inversion von hydraulischen Tomographie-
experimenten angewendet, die als Teil der In-situ-Stimulations- und Zirkulationsex-
perimente am Grimsel-Testgelände in der Schweiz durchgeführt wurden. Strömungs-
messungen, Seismik und Bodenradaruntersuchungen ergaben einen hochgradig ge-
klüfteten und höchst durchlässigen Bereich von 4m bis 6m Breite zwischen zwei
Scherzonen. Die Charakterisierung dieses Bereichs ist das Ziel der Inversion. Die
Auswertung der Kluftwahrscheinlichkeiten in dem untersuchten Bereich zeigt zwei
bevorzugte Fließwege mit unterschiedlichen Permeabilitäten.
In dieser Arbeit wird ein praktisches Verfahren für den Ablauf eines Inversions-

problems zur Charakterisierung von geklüfteten Standorten vorgestellt, das sich aus
der Arbeit mit synthetischen Testfällen und der Feldanwendung ergibt. Dies bein-
haltet eine Empfehlung von Untersuchungen, die vor der Inversion durchgeführt
werden müssen, eine Beschreibung gängiger Annahmen und Vereinfachungen für die
Ableitung von Randbedingungen und Prior-Verteilungen, sowie eine Empfehlung für
die Spezifikation von standortabhängigen Parametern. Dadurch ermöglicht diese
Studie die direkte Inversion der hydraulischen und strukturellen Parameter von
diskreten Kluftnetzwerken und fördert die Anwendung auf andere geklüftete Stan-
dorte und in einem größeren Maßstab.

vi



Publications

The following three publications are part of this thesis (cumulative thesis):

Chapter 2 has been published as Ringel, L. M., Somogyvári, M., Jalali, M.,
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the support from Márk Somogyvári and Mohammadreza Jalali. I am extremely
grateful to Peter Bayer for offering me the opportunity to take on and conclude this
PhD project, for his valuable support, constructive feedback, and encouragement.
This project would have been much more difficult without Márk Somogyvári and
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1 Introduction

1.1 Fracture networks

Fractures represent the preferential pathways for flow and transport in an otherwise
intact rock matrix. They often form a network that provokes a complex flow field
depending on the size, geometry and connectivity of fractures, and the permeabil-
ity of the matrix. Despite the challenge to resolve these networks and to reliably
describe their hydraulic properties, fractured sites are the target for various applica-
tions in hydrogeology and engineering, such as water resources, geothermal energy,
or nuclear waste repositories. For instance, fractured aquifers host important fresh-
water reservoirs worldwide (Chandra et al., 2019; Spencer et al., 2021; Wilske et al.,
2020). At the same time, open fractures are also the main conduits for contami-
nant transport affecting groundwater resources (Hadgu et al., 2017; Neuman, 2005).
As another example, the construction and operation of enhanced geothermal sys-
tems relies on well-connected fracture networks by generating new fractures or by
opening already existing fractures through hydraulic, thermal, or chemical stimu-
lation (Kittilä et al., 2020; Vogler et al., 2017; Watanabe et al., 2017). Moreover,
the appearance and properties of fracture networks are crucial for the evaluation of
potential sites for a nuclear waste repository (Follin et al., 2014; Li et al., 2022),
and for the description of an excavation-induced damaged zone around tunnels and
openings (Armand et al., 2014; de La Vaissière et al., 2015). In all these different
application areas, models and in particular specialized high-fidelity simulation tools
are elementary for understanding subsurface processes. Especially for case-specific
evaluation and engineering, the applicability of these models depends on the relia-
bility of fractured site characterization.
Fractures are mechanical discontinuities with a predominant direction, i.e., a void

space confined on two sides by the surface of the intact rock. The length of a fracture
can extend to several orders of magnitude while the opening of a fracture, which
is the so-called fracture aperture, is small compared to the length. Therefore, the
geometry of individual fractures is approximated as planar two-dimensional (2D) ob-
jects in a three-dimensional (3D) rock matrix (Adler et al., 2013; Berre et al., 2019).
The aperture of a fracture depends on the properties of the rock surfaces. Their
fluctuations determine the local aperture distribution and are commonly described
by statistical methods, that is a Gaussian probability density function of the surface
fluctuations with the surface roughness as standard deviation, an autocorrelation
function describing the nature of each surface, and an intercorrelation function to
relate the fluctuations of the upper and lower surface (Adler et al., 2013; Vogler
et al., 2017).
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1 Introduction

The geometric properties of fracture networks are characterized by the fracture
intensity, the network connectivity, and the spatial correlation of the properties
of individual fractures, mainly the aperture, length, and orientation of fractures
(Berkowitz, 2002). The parameters of the fracture network can be described by
statistical distributions, such as the power law distribution (Bour and Davy, 1997; de
Dreuzy et al., 2012; Hyman et al., 2019). Thereby, the term fracture network implies
an impervious or low-permeable rock matrix, such as crystalline rock or bedrock
formations. In contrast to that, a fractured porous media has a non-negligible
matrix permeability (Adler et al., 2013; Berre et al., 2019).
Two general approaches can be distinguished for the implementation of fracture

networks in numerical models to simulate flow and transport which are reviewed by
Berre et al. (2019) and compared by Hadgu et al. (2017) for two test cases. For
the application of the so-called equivalent continuum method, a regular grid of the
investigated domain is generated, and the hydraulic properties of the fractures are
translated into a permeability tensor and an effective porosity for each element of the
grid. Thereby, the fracture network is translated into an equivalent porous media
(EPM). In contrast, the hydraulic and structural properties of the fractures are
represented directly by applying a discrete fracture network (DFN) method. The
fractures are incorporated as lower-dimensional objects in the simulation models.
Only the midplane of the fracture is discretized assuming plane fractures and no
changes of the fluid pressure and the averaged velocity normal to the plane. In
general, the EPM method is better suited especially in terms of computational costs
for fracture networks with a high fracture density and for problems where the matrix
conductivity cannot be neglected, such as heat transfer. Representing fractures
explicitly in flow models allows for a detailed insight into preferential flow paths
(Neuman, 2005) and it provides a direct link between the properties of the fracture
network and their influence on flow and transport (Hyman et al., 2019; Roubinet
et al., 2010). It also enables the resolution of small-scale characteristics such as
local variations of fracture lengths, density, and aperture (de Dreuzy et al., 2012).
However, the advantages of applying DFNs are only admissible in practice insofar
as the DFN parameters are well mapped (Hadgu et al., 2017). Different gradations
and combinations of the DFN and EPM approaches are also possible. For example,
the discrete fracture matrix approach explicitly discretizes those fractures that are
more relevant for flow and transport, while others are replaced by an equivalent
permeability (Berre et al., 2019).
In general, flow is governed by mass and momentum conservation, i.e., by the

continuity equation and the Navier-Stokes equations. The Navier-Stokes equations
are simplified for flow in DFN models by assuming the flow to be confined between
two parallel plates with a large ratio between the extensions of the fracture and the
fracture aperture. No surface roughness is considered, and the flow is dominated
by a small Reynolds number, i.e., Re < 1, which refers to a so-called viscous flow
behavior. This assumption implies only small changes of the fluid velocity in a
fracture plane and a constant pressure normal to the fracture plane (Zimmerman
and Bodvarsson, 1996). Errors occur at the inlet and outlet and at the intersections
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1.1 Fracture networks

of fractures. Thereby, a linear relation between the flow rate and the pressure or
hydraulic head gradient, which is effective in the fracture plane, is derived analogous
to Darcy’s law applied for flow in porous media. The flow rate and the pressure
gradient are linked by the aperture to the power of three, hence the name cubic law
(Berkowitz, 2002; Zimmerman and Bodvarsson, 1996). Inserting the flow rate in
the continuity equation and integrating over the fracture aperture leads to a partial
differential equation for the pressure diffusion valid in a fracture midplane

aρS
∂p

∂t
−∇T ·

(
aρ

kf
µ
∇T p

)
= a q. (1.1)

a [m] refers to the aperture of a fracture, S
[
Pa−1

]
to the specific storage, kf

[
m2
]
to

the fracture permeability, and q
[
kgm−3 s−1

]
to a source/sink term depending on the

sign of q. The fluid parameters are the density ρ
[
kgm−3

]
and the dynamic viscosity

µ [Pa s]. The pressure p [Pa] includes the static pressure and the piezometric pressure
due to gravitational forces. The fracture permeability kf is related to the fracture
aperture (Zimmerman and Bodvarsson, 1996). The gradient ∇T is to be applied in
the local coordinate system tangential to the fracture plane due to the assumption
that no changes of the flow occur normal to the fracture plane. The intersections of
different fractures in a fracture network are also governed by the continuity equation.
The continuity of the primary variable, in this case, the pressure, and the balance
of the secondary variable, in this case, the flow rate, are valid at the intersection of
fractures (Reddy and Gartling, 2010). Equation 1.1 does not consider coupling of the
flow with geomechanical or heat effects, such as fracture opening or a temperature
dependent density or viscosity.

In order to consider realistic fracture properties and deviations from the flow
model, the concept of the so-called hydraulic apertures needs to be applied (Berre
et al., 2019). The average aperture of a fracture is easy to determine, while the
hydraulic aperture is estimated by experiments such as pumping tests or with air
permeameters. The hydraulic aperture of a fracture accounts for a more reasonable
flow rate due to filling materials inside a fracture or the surface roughness. In most
cases, the hydraulic aperture is smaller than the average aperture and in case a good
estimate of the hydraulic aperture is available, this value should be applied for the
calculation of the fracture permeability.

A review of the validity of the assumptions, i.e., cubic law and viscous flow, and
an extension of the method are examined by Oron and Berkowitz (1998), Brush and
Thomson (2003), and Fang and Zhu (2018). Oron and Berkowitz (1998) derived an
estimation of the Reynolds number that depends on the geometry as limiting condi-
tion for the applicability of the cubic law. Brush and Thomson (2003) compared the
solution of Navier-Stokes, Stokes, and local cubic law equations for fractures with
different wall geometries, and Fang and Zhu (2018) developed a model based on a
local Reynolds number using either Darcy’s law (viscous flow) or the Forchheimer
equation (inertial and viscous flow).
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1 Introduction

1.2 Tomography experiments for fractured sites

The characterization of the structural and hydraulic properties of fractured rocks is
a challenging topic due to the difficulty of identifying single fractures, the complexity
of fracture connectivities, and the high costs of specialized measurement techniques.
A general understanding of fractured sites, such as fracture intensities or prevalent
fracture orientations, is derived by analyzing outcrops or evaluating the parameters
of fractures intercepted by boreholes with borehole samples or optical or acoustic
televiewers (Armand et al., 2014; Barthélémy et al., 2009; Chandra et al., 2019; Follin
et al., 2014; Ishibashi et al., 2016; Krietsch et al., 2018; Ma et al., 2022; Massiot et al.,
2017; Pavičić et al., 2021; Ren et al., 2018; Shakiba and Doulati Ardejani, 2022; Tan
et al., 2020; Yin and Chen, 2020). Single- and cross-borehole pumping or tracer
tests characterize the permeability surrounding a borehole interval (Brixel et al.,
2020a; Ren et al., 2018), the permeability of the connection between several intervals
(Brixel et al., 2020b; Chuang et al., 2017; de La Vaissière et al., 2015; Le Borgne
et al., 2006; Jalali et al., 2018), the velocity distribution (Hyman et al., 2019; Kang
et al., 2015), transport properties (Cvetkovic et al., 2010; Cvetkovic and Cheng,
2011; de La Bernardie et al., 2018; Kittilä et al., 2019), or the effects from hydraulic
stimulation (Amann et al., 2018; Kittilä et al., 2020). Moreover, they are applied for
constraining the hydraulic properties of simulation models (Cvetkovic et al., 2007;
Follin et al., 2014; Frampton and Cvetkovic, 2010; Li et al., 2022; Tiedeman et al.,
2010).

The results from these studies can serve as prior information and constraints for
the application of tomography experiments that provide an estimate of the proper-
ties between boreholes. The common principle of all tomographic methods is the
perturbation of the investigated system by injecting, e.g., a flow rate, tracer, or an
electric current. The provoked responses are recorded by several nearby receivers.
The aim of the tomography experiments is to determine a relation between the mea-
sured signals and the quantity of interest which is, in most cases, the permeability
of the fractures or the porous media.

Geophysical methods, such as stress-based tomography, seismic reflection, or
ground penetrating radar (Afshari Moein et al., 2018; Chandra et al., 2019; Deparis
et al., 2008; Doetsch et al., 2020; Dorn et al., 2011, 2012; Robinson et al., 2016; Voorn
et al., 2015), provide only an implicit link between the permeability and the mea-
sured signal (Day-Lewis et al., 2017). A summary of various geophysical technologies
suitable for the characterization of fractured media, the measured properties, and
their potential target application is given by Day-Lewis et al. (2017). In contrast to
this, so-called invasive tomographic methods apply a hydraulic or pneumatic over-
pressure or tracer injections, such as salt, dye, or heat. Thereby, the interpretation
of the signals is both clearer and the relation between the pressure responses or the
tracer breakthrough curves, and the permeability is easier to determine. A combi-
nation of invasive and geophysical measurements can also be realized (Chen et al.,
2006; Dorn et al., 2013; Giertzuch et al., 2021a,b).

Especially fractured sites pose a challenge for the application and interpretation
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1.2 Tomography experiments for fractured sites

Figure 1.1: Illustration of evaluation methods of tomography experiments from dif-
ferent artificial examples, (a) continuous tomogram, (b) simplification
of the fracture structure according to predefined orientations or connec-
tivity, (c) simplification of the fractured rock based on a DFN model.
The colors indicate the evaluated hydraulic parameter. Lines mark 2D
fracture structures, ellipses 3D fracture structures.

of tomography experiments due to the sharp contrast between permeable fractures
and the surrounding rock matrix. In general, the data from the tomography exper-
iments can be evaluated as EPM over the investigated volume, by a simplification
of the fracture structure, or as DFN which is summarized schematically in Fig. 1.1.
An EPM approach results in a 2D or 3D tomogram of the hydraulic conductivity
(C) or diffusivity (D) distribution and, for some studies, also a specific storage (S)
distribution as illustrated in Fig. 1.1a. The evaluation of the element-wise frac-
ture density is also possible with the EPM representation. The properties of the
fractured rock can be inferred more directly by simplifying the structural proper-
ties of the fractures (Fig. 1.1b) as connectivity structure between borehole intervals
(Klepikova et al., 2014, 2020) or by the cell-wise adaption of the parameters of linear
structures (Fischer et al., 2017b, 2018a,b). The hydraulic parameters of the simpli-
fied DFN structure are calibrated with the measured data. Only 2D properties are
inferred by these studies, thereby, neglecting the propagation of flow in the third
dimension. The application of a DFN model and the inversion of the hydraulic and
structural properties of the DFN resolves the fractured rock more detailed as shown
in Fig. 1.1c (Ringel et al., 2019, 2021; Somogyvári et al., 2017, 2019). However,
this approach also requires assumptions and simplifications, e.g., about the fracture
shape or the fracture orientations. Due to the large number of unknown parameters,
an unequivocal relation between the measured signals and the fracture properties is
usually not possible.
Table 1.1 gives an overview of studies concerning the characterization of fractured

media applying hydraulic, pneumatic, or tracer tomography with an emphasis on
the representation of the fracture properties in the evaluation of the results.
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1 Introduction

Table 1.1 shows that most studies rely on continuous tomograms instead of an
explicit representation of the fractured media. Figure 1.2 groups the fractured sites
(Table 1.1) based on the scale of the investigated region and the resolution of the
properties of the fractured rock by the evaluation of the tomography experiment.
The resolution is categorized generally based on the different evaluation methods
that are illustrated in Fig. 1.1. Further, the studies are arranged according to the
dimension of the results and the evaluated parameters. On a meter-scale, the con-
ductivity tomograms are not able to delineate the strong heterogeneity of the perme-
ability distribution provoked by the appearance of a fracture network. This problem
can be overcome by particle transport simulations to investigate the fracture con-
nectivity (Tiedeman and Barrash, 2020), the comparison with forward simulations
of synthetic test cases with similar properties as the site (Sharmeen et al., 2012;
Zha et al., 2015; Zhao et al., 2021), or the incorporation of specific prior knowledge
(Poduri et al., 2021; Zha et al., 2017; Zhao et al., 2021). Inversion approaches result-
ing in continuous tomograms have an advantage characterizing kilometer-scale sites
where the influence of single fractures is smaller (Blessent et al., 2011; Illman et al.,
2009; Zha et al., 2015, 2016, 2017) or porous aquifers such as in sedimentary rock
(Berg and Illman, 2011; Brauchler et al., 2013b; Cardiff and Barrash, 2011; Cardiff
et al., 2012, 2013, 2019; Jardani et al., 2013; Jiménez et al., 2013; Sánchez-León
et al., 2020b; Somogyvári and Bayer, 2017; Zha et al., 2018; Zhao and Illman, 2017;
Zhao et al., 2019).

1.3 Inverse problems

In general, forward or inverse problems provide a relation between experimental data
and the parameters that are the quantity of interest to be estimated by the exper-
iments. Therefore, such problems comprise the following elements: the input data
d is obtained from observations or measurement campaigns, the model f describes
the present system that depends on a vector of model parameters θ (Aster et al.,
2018). The elements of the system are linked by

f(θ) = d, (1.2)

whereby f(θ) refers to the evaluation of the mathematical model or forward operator
based on the parameter vector θ (Aster et al., 2018). Depending on the problem,
the forward operator can be an ordinary or partial differential equation, or a system
of equations. For most applications, the input data contains observation errors
or measurement noise, such that the signals consist of the perfect outcome of an
experiment d̃ and noise ϵ

d = d̃+ ϵ. (1.3)

Equation 1.2 is a so-called forward problem, that is, the results of an experiment
are calculated based on the model parameters. Thereby, errors are introduced by
assumptions applied to reduce the number of model parameters, simplifications of
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Figure 1.2: Classification of the field studies (Table 1.1) concerning the characteri-
zation of fractured sites according to the scale of the investigated region
and the resolution of the fracture properties by the inversion results.

the underlying physics, or by the discretization of the differential equation in a
numerical model.

Vice versa to the forward problem, an inverse problem deals with finding the
model parameters given the input data (Aster et al., 2018). Several difficulties arise
for the computation of inverse problems in practice. The number of parameters
describing a model is often large, making the solution computationally expensive.
Moreover, the forward operator is not invertible for most applications, therefore, an
inverse problem cannot be solved by inverting Eq. 1.2. In addition, there may be no
parameter set that fits the input data exactly. This is the case for data containing
measurement errors (Eq. 1.3) or for simplified models. On the contrary, a large
number of model parameters θ can fit the perfect data without noise d̃ (Aster et al.,
2018).

Depending on the input data, the forward model, and the scale of the investi-
gated domain, different methods for the solution of inverse problems, which is the
evaluation of tomography experiments, are feasible. The most common methods
in hydrogeology are different deterministic approaches, geostatistical methods, and
stochastic sampling methods. The input data, i.e., the type of tomography ex-
periment, and the inversion approach are summarized for each study and site in
Table 1.1.

A deterministic solution is derived by minimizing the misfit between the measured
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1 Introduction

data and the results from the forward simulation according to Eq. 1.2 and, therefore,
one parameter vector can be evaluated. The optimization is implemented generally
as an iterative process of updating the parameter vector such that the experiment
data matches the results of the forward simulation. Depending on the system and the
parameter set for the inversion, different approaches are possible, such as the cellular
automata deterministic inversion (CADI) method that is adapted for the work with
linear structures (Fischer et al., 2017a,b), or the Nelder-Mead optimization method
(Klepikova et al., 2020).
Travel time inversion is a specific type of deterministic inversion. The concept was

adapted from seismic tomography to invasive tomography. The basis is a relation
between the travel time of the measured signal and the line integral of the reciprocal
of the diffusivity (Brauchler et al., 2003). For advection-driven problems, such as
heat transfer or tracer transport, the diffusivity can be replaced by the application
of Darcy’s law, i.e., porosity, permeability, and pressure gradient (Vasco and Datta-
Gupta, 1999). For the inversion of hydraulic tomography data, the first derivative
of the pressure or hydraulic head response is applied (Brauchler et al., 2013b). To
distinguish preferential flow paths and reduce the effects of diffusion, early-time
diagnostics can be applied for thermal and hydraulic tomography (Somogyvári et al.,
2016). The travel time is recorded at each receiver which functions as the input
data for the solution of the inverse problem. The investigated domain is discretized
and the trajectory length of the signal through each element is calculated, which
depends on the material properties of each element. Then, the material parameters
are adapted iteratively to match the observed travel times.
A stochastic approach is capable of finding several solution parameter vectors,

such that the statistical properties of the model parameters can be analyzed. This
is based on the Bayesian equation that relates the conditional probability of the
model parameters, given the input data, to the a priori known information and the
likelihood of the data, given a parameter vector. In general, the mean quantity of
interest and a variance or uncertainty of the results can be evaluated. The sequen-
tial or simultaneous successive linear estimator (SLE) and the pilot-point inversion
applied in the studies in Table 1.1 are variogram-based geostatistical estimation
methods (Poduri et al., 2021; Tiedeman and Barrash, 2020; Zha et al., 2015; Zhu
and Yeh, 2005). The element-wise hydraulic conductivity and specific storage are
formulated as mean value plus a stochastic perturbation. The estimate of the param-
eters is updated iteratively by comparing the simulated with the observed response
from the tomography experiment. The error is weighted by a coefficient matrix that
depends on the covariance and cross-covariance matrix (Zha et al., 2015; Zhu and
Yeh, 2005). The residual covariance matrix is also updated during the inversion.
Additional data sets can be included either sequentially or simultaneously.
A different stochastic approach is the transition probability geostatistical method.

Thereby, the generation of realistic geological formations is in the focus of this
approach. The basis are different rock types, so called rock facies, which vary from
sparsely fractured to highly fractured, defined from ranges of fracture frequency or
fracture density. The observed transition rates are calculated from borehole logs and
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the properties of a Markov chain are fitted to match the observed transition rates.
This is applied to simulate different rock facies distributions over the experimental
volume. In a next step, the hydraulic conductivity of each facies is calibrated with
the pressure, flow rate, or concentration data.
Sampling methods, such as Markov chain Monte Carlo (MCMC) (Ringel et al.,

2019, 2021, 2022; Somogyvári et al., 2017, 2019) or Monte Carlo (MC) rejection
sampling (Dorn et al., 2013), characterize the posterior distribution given by the
Bayesian equation by generating samples from the distribution. The sampling op-
erates according to a proposal function in case of MCMC or based on the prior
distribution for MC. The proposal function can include a transdimensional update
that changes the number of parameters (Green, 1995).

1.4 Objective and outline of this study

The overall objective of this research project is the development of an innovative
method for the inversion of fractured sites. This approach should enable the charac-
terization of fractured rocks with more detail than available continuous evaluation
methods or simplified connectivity structures. For this purpose, the properties of
the fractured rock are represented directly as DFN in the forward simulations and
the parameter vector of the inverse problem. The observed pressure signals or tracer
breakthrough curves are not sufficient, and the parameter set describing the system
is too large to implement a deterministic solution method. Therefore, a stochastic
sampling method is applied to consider the non-uniqueness of the inverse problem.
The stochastic approach is reflected also in the results that are evaluated as fracture
probability map and mean hydraulic aperture.
The previously conducted work regarding the inversion of 2D DFNs is summarized

and extended in Chapter 2. The goal of this part of the thesis is the evaluation of
suitable input data for the inversion. This is achieved by a synthetic DFN test
case and by comparing the inversion results obtained from two different types of
tomography experiments, in this case, hydraulic and tracer tomography.
Based on the insights from the work with 2D DFNs, a forward model and inversion

algorithm for 3D DFNs are introduced in Chapter 3. The objective of Chapter 3 is
testing the 3D DFN inversion procedure with several synthetic test cases. Therefore,
the configuration of the tomography experiments and setup of the inversion problem
are varied and the specifics of the inversion results are evaluated.
Chapter 4 demonstrates the applicability of the developed inversion method to

a fractured field site. The approach is implemented to characterize the structural
and hydraulic properties of the highly fractured zone at the Grimsel Test Site in
Switzerland with hydraulic tomography experiments that were conducted as part of
the In situ Stimulation and Circulation measurement campaign.
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2 Comparison of hydraulic and tracer
tomography for discrete fracture
network inversion

Abstract

Fractures serve as highly conductive preferential flow paths for fluids in rocks, which
are difficult to exactly reconstruct in numerical models. Especially, in low-conductive
rocks, fractures are often the only pathways for advection of solutes and heat. The
presented study compares the results from hydraulic and tracer tomography applied
to invert a theoretical discrete fracture network (DFN) that is based on data from
synthetic cross-well testing. For hydraulic tomography, pressure pulses in various
injection intervals are induced and the pressure responses in the monitoring intervals
of a nearby observation well are recorded. For tracer tomography, a conservative
tracer is injected in different well levels and the depth-dependent breakthrough of
the tracer is monitored. A recently introduced transdimensional Bayesian inversion
procedure is applied for both tomographical methods, which adjusts the fracture
positions, orientations, and numbers based on given geometrical fracture statistics.
The used Metropolis-Hastings-Green algorithm is refined by the simultaneous esti-
mation of the measurement error’s variance, that is, the measurement noise. Based
on the presented application to invert the two-dimensional cross-section between
source and the receiver well, the hydraulic tomography reveals itself to be more
suitable for reconstructing the original DFN. This is based on a probabilistic repre-
sentation of the inverted results by means of fracture probabilities.

2.1 Introduction

Tomographic methods are specifically suited for characterizing the spatial hetero-
geneity of aquifers. They are based on the inversion of signals recorded among
multiple sources and receivers, which are employed to infer two-dimensional (2D)
or three-dimensional (3D) images of spatial hydraulic parameter distribution. For
identifying those structural characteristics relevant for groundwater flow, solute and
heat transport, invasive concepts are available that apply hydraulic (Berg and Ill-
man, 2011; Brauchler et al., 2013b; Cardiff et al., 2012; Illman, 2013; Jiménez et al.,
2013; Zha et al., 2018) or pneumatic pressure (Hu et al., 2015, 2016; Ni and Yeh,
2008; Vesselinov et al., 2001), or that use tracers such as dye (Datta-Gupta et al.,
2002; Jiménez et al., 2016; Ma et al., 2012), salt (Doetsch et al., 2012; Jardani et al.,
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2013; Jougnot et al., 2018; Singha and Gorelick, 2005) or heat tracers (Hermans
et al., 2015; Klepikova et al., 2014; Schwede et al., 2014; Somogyvári et al., 2016).
In comparison to many alternative near-surface geophysical applications, these sig-
nals are rarely introduced from the ground surface. Instead, pressure and tracer
tomograms are typically recorded between boreholes by cross-well testing. For ex-
ample, Bohling et al. (2007), Brauchler et al. (2013b), Cardiff et al. (2013), and
Paradis et al. (2016) applied short-term pumping or slug tests in different well in-
tervals or levels, which are isolated by packers. Tomographic data sets for two-
or three-dimensional inversion of aquifer heterogeneity were obtained by recordings
from pressure sensors in adjacent observation wells. In contrast, tracer tomogra-
phy as presented by Jiménez et al. (2016) for solutes and by Somogyvári and Bayer
(2017) for heat, is based on multi-level injection of tracers. Here, the tracer break-
through curves (BTCs) recorded in adjacent observation wells serve as input for
spatial inversion procedures.
Most available tomographic inversion methods are especially suitable for recon-

struction of smoothly changing hydraulic properties such as those often found in
sedimentary deposits (Berg and Illman, 2011; Hu et al., 2011; Jiménez et al., 2013;
Tso et al., 2016; Zha et al., 2018; Zhao et al., 2015). In comparison, fractured aquifers
commonly exhibit sharp contrasts between highly conductive fractures and a low-
permeable matrix. Tomograms generated with classical smoothing algorithms such
as the successive linear estimator thus provide a blurred visualization of hydraulic
properties, and they roughly estimate fracture locations or connectivity (Dong et al.,
2019; Hao et al., 2008; Illman et al., 2009; Illman, 2013, 2015; Wen et al., 2019; Zha
et al., 2015). As alternatives, a hybrid procedure was presented by Wang et al.
(2017), and a travel-time based approach by Brauchler et al. (2013a) for exploring
trend and location of highly conductive channels. All these inversion techniques,
however, similarly pixelate the spatial hydraulic properties and thus offer limited
insight into the geometric properties of fractures.
Due to that, we chose to rely on a discrete fracture network (DFN) approach

since this method is more realistic when emphasizing the features of a DFN and
the connectivity of the fracture network. In contrast, equivalent continuum models
can be appropriated to characterize rocks with a high fracture intensity. In this
case, the approximation of the rock as highly heterogeneous porous medium holds.
However, the DFN case study presented in this paper deals with a small number of
fractures. Another significant advantage of the DFN approach is that this method
allows for an easier observance of a priori known statistical information such as
fracture inclination and fracture intensity.
Recently, concepts have been introduced that focus on a discrete representation of

inverted fractures. For example, Fischer et al. (2017b) introduced a method based on
the use of the Cellular Automata concept for deterministic inversion of linear struc-
tures and applied it to systems with fractured and karstic conduits (Fischer et al.,
2018b,c). Klepikova et al. (2014) calibrated DFNs with given horizontal and verti-
cal fracture orientations mainly for investigating fracture connectivity, but not for
adjustment of fracture network geometry. The method by Somogyvári et al. (2017)
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2.2 Methodology

iteratively tunes geometric fracture properties in order to match tomographic tracer
measurements. Based on synthetic DFN examples, fracture probability maps were
generated, which reveal a good reliability of inverted results for simple networks, but
a minor capability for locating single fractures in complex networks. This demon-
strates not only the highly demanding inversion problem when adjusting individual
fractures in a network, but it also highlights the growing data demand of accurate
tomographic inversion, with increasing network complexity.
Improved tomograms can be achieved by increasing source-receiver density, by

optimal and full usage of information of measured data instead of, for example,
utilizing trends and characteristics of response data only, and by combining different
measurements that deliver complementary data. For better delineation of fracture
flow paths, the combined use of salt tracer and electrical resistivity tomography
(Singha and Gorelick, 2005), of salt tracer and ground penetrating radar (Dorn
et al., 2011), as well as of nanoscale zero-valent iron tracer and flowmeter testing
(Chuang et al., 2017) have been proposed. Combining different methods, however,
also raises efforts and cost of field investigation campaigns. Moreover, comparison or
coupling of different data inversions escalate the requirements for the tomographic
inversion procedure.
The presented work builds upon the DFN inversion procedure by Somogyvári

et al. (2017). The objective is to further develop the tomographic reconstruction of
discrete fractures by comparing the results from tracer-based inversion to that based
on hydraulic pressure signals. Our inversion procedure is assigned to the stochastic
methods. Therefore, the probabilistic characteristics of the results will be the same
for different inversion runs. Nevertheless, individual results will change, although
we use the same input data. In contrast, deterministic approaches (e.g. Klepikova
et al., 2014) will produce the same results for every inversion run using the same
input parameters. In the following, the underlying Bayesian inversion procedure is
first described and improved. Then a synthetic case study is introduced for testing
the different tomographic concepts.

2.2 Methodology

The following section starts by introducing our case study, its geometrical parame-
ters, and the settings of the experiment. The reconstruction of the DFN is done by
transdimensional inversion, which is explained in the following part. We present a
method that deals with noisy observation data at the end of this section.

2.2.1 DFN case study

A synthetic 2D DFN model is used for testing the inversion procedure. It is set
up based on the fracture geometry of the Tschingelmad outcrop in the central Alps
(Ziegler et al., 2013). The simplified cross-section shown in Fig. 2.1 provides differ-
ent preferential flow paths between the given three source and three receiver points,
and hence represents an ideal example to test the specific capabilities of different
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Figure 2.1: Synthetic discrete fracture network with three injection points (number
one to three) and three receiver points (number four to six) based on an
outcrop in Switzerland. It contains two fracture sets with two different
fracture angles and fracture apertures.

tomographic methods. The sources on the left side may be interpreted as packed
vertical intervals of a well, where tracer or pressure signals are introduced. The
receiver points on the right represent measurement points in an imaginary obser-
vation well. By systematic characterization of the fractures adjacent to the source
and receiver wells and with the aid of packer tests, one could isolate only conductive
and connective fractures and realize such tests also in practice. For the subsequent
tomographic inversion, it is assumed that the profile in Fig. 2.1 can be reproduced
by the definition of two fracture sets. These sets differ with respect to the fracture
orientation and aperture as given in Table 2.1. These properties of the fracture sets
and the fracture length distribution (FLD) are geometric constraints of the inver-
sion. Within these constraints, the inversion procedure will explore suitable fracture
combinations.

Theoretical experiments are simulated with different source signals to obtain re-
ceiver data that is used for the inversion to calibrate the DFN. The details of these
experiments are summed up in Table 2.1. Hydraulic tomography is simulated with
a series of independent pumping tests, using a Heaviside injection pressure signal
(transient flow condition). Tracer tomography is simulated in a similar hydraulic
regime as in the hydraulic tomography case. Water is injected in the source wells
using the same pressure gradient between the source and receiver wells as for the
hydraulic tomography. We wait until the flow stabilizes after the injection of water.,
i.e. until the velocity field is stable (steady-state flow condition), before any tracer
injection is applied. The tracer is injected continuously, with a constant concentra-
tion, until the termination of the experiment.

To simulate the pressure signals and tracer breakthroughs, a fast and robust for-
ward model is implemented. Darcy flow, which relates the pressure gradient to the
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Table 2.1: List of geometric constraints, experimental and inversion parameter set-
tings.

Category Parameter Fracture set 1 Fracture set 2

Geometric
constraints

Fracture inclination (◦) −19.48 74.48
Fracture aperture (mm) 1.5 1
FLD-mean (m) 9.9
FLD-variance

(
m2
)

8.5

Experimental
parameter
settings

Injection pressure (Pa) 3 · 105
Injection concentration(
mg l−1

) 40

Inversion
parameter
settings

Discretization (m) 1
padd/pdel/pshift 0.4/0.4/0.2
Number of iterations 100, 000

velocity, and the continuity equation are used to calculate the pressure diffusion in
the fracture network. The fracture aperture indicates the hydraulic conductivity
due to Cubic law. The intersection between two or more fractures is considered by
mass conservation. These equations are solved numerically by a finite difference ap-
proach with first-order accuracy in time and second-order accuracy in space (Afshari
Moein et al., 2018; Jalali, 2013). We use an implicit time integration method which
is unconditionally stable. The advection-dispersion equation is solved numerically
considering the steady state velocity field. The numerical solution of the equation
produces the concentration field of the experiment in the DFN. By monitoring the
concentration at specific points we obtain the tracer breakthroughs at the monitor-
ing intervals in the receiver well. The tracer transport is assumed to be conservative,
and no loss towards the rock matrix is simulated. The focus of the present study is
set on a conservative tracer, but the experiment could also be simulated and inverted
with a heat tracer. In the model, heat conduction and heat convection are described
by a partial differential equation that has the same form as the advection-diffusion
equation. Additionally, however, heat conduction from the water to the rock matrix
needs to be taken into account.

2.2.2 Transdimensional inversion

The DFN reconstruction is accomplished by using a transdimensional Markov Chain
Monte Carlo methodology: the Metropolis-Hastings-Green algorithm (MHG) intro-
duced by Green (1995). The method is also known as reversible-jump Markov chain
Monte Carlo (rjMCMC) as it operates with reversible model updates (jumps) that
change the problem dimensions. This algorithm was implemented for DFN inversion
by Somogyvári et al. (2017).

RjMCMC uses an iterative structure with two main phases per iteration; an up-
date and an evaluation phase. The inversion procedure and the workflow of our
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2 Comparison of hydraulic and tracer tomography for DFN inversion

Figure 2.2: Flowchart showing the inversion algorithm with its main phases.

inversion algorithm are described by the flowchart in Fig. 2.2. In the update phase,
the parameters of the DFN model are modified by one of the following updates:
fracture movement, fracture insertion, and fracture deletion. The DFN model pa-
rameter set includes the number of fractures and for each fracture its position, the
fracture inclination, and the fracture length. The parameter set of a DFN realization
is denoted by θ. Since the number of fractures varies through adding or deleting
a fracture, the dimension of the parameter space changes, too. This motivates the
description of transdimensional inversion. To consider the computational costs of
the inversion problem, we estimate the number of fractures during the iterations of
the inversion. The number of fractures is in the range of 10 to 102 and the dimension
of the parameter space is three times the number of fractures. These parameters
have to be adjusted by the inversion algorithm to reproduce the measured pressure
signals or tracer breakthroughs.

The kind of update is selected randomly, with predefined probabilities padd, pdel,
and pshift, which may change during the inversion process, e.g. if the fracture in-
tensity is too high. Fracture addition is the so-called birth move of the rjMCMC
algorithm. For this update, first the DFN model gets discretized, adhering to a
pre-defined spacing distance. This characteristic property of the fractured rock
represents the shortest possible distance between two parallel fractures. A set of
insertion points is identified based on this distance, where new fractures could be
added. The insertion of fractures is only possible starting or intersecting with a
given fracture since isolated fractures do not affect the transport. Counting the
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number of possible insertion points, we receive the insertion probability Pins. The
orientation, length, and physical properties of a new fracture are probabilistically
chosen, based on the given characteristics of one or more fracture sets. In this study,
a fracture set represents fractures with similar physical properties and inclinations
(Table 2.1). The choice between different fracture sets is taken into account by the
fracture set probability, Pset. However, further constraints and properties may be
defined, depending on the information that is available for a specific case. The frac-
ture length is drawn from the fracture length distribution (FLD) that is assumed
for the corresponding fracture set, which gives us the probability of the length of a
new fracture, Plength.

The point of intersection along the fracture (fracture position) is randomly selected
after the geometric properties of the fracture are determined. The new fracture is
inserted in the field by assigning the fracture position to a random insertion point.
We obtain the probability of the position Ppos where the new fracture intersects the
existing DFN according to the number of possible points along the new fracture. The
different probabilities, which have a part in the addition probability, are explained in
detail in Somogyvári et al. (2017). The resulting probability of fracture addition can
be expressed as the product of the individual probabilities of the above-mentioned
steps

qadd = Pset Plength Pins Ppos. (2.1)

Fracture deletion is the so-called death move of the rjMCMC algorithm. A randomly
selected fracture gets deleted from the DFN model when it is applied. This update
is constrained, only allowing the deletion of a fracture if the source and receiver
points remain connected. This is required to properly run the forward model. The
probability of this update reads as the reciprocal of the number of deletable fractures,
ndeletable fractures

qdel =
1

ndeletable fractures
. (2.2)

qadd and qdel are the transition probabilities. We receive the probability of the
transition from the current DFN realization to a proposed realization by computing
them. Therefore, qadd and qdel are the conditional probabilities of updating the DFN
given the current realization.

Fracture movement is a straightforward update, representing a random pertur-
bation of fracture coordinates. It does not change the dimension of the model pa-
rameter space. A fracture is randomly selected in our implementation, and is then
shifted to another randomly drawn insertion point while using the same discretiza-
tion as the fracture addition. Fracture movement updates symmetrically, that is, the
probability of the forward and the reverse update is equal. The proposal ratio does
not need to be calculated, because the fracture length and the fracture set will not
change, i.e., only the likelihood ratio matters. In contrast, the parameters of a new
fracture are drawn from the FLD and Pset if we first delete a random fracture and
add a new one in the next iteration. This requires the calculation of the proposal
ratio for adding and deleting. Therefore, fracture moving necessitates less compu-
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2 Comparison of hydraulic and tracer tomography for DFN inversion

tational costs than adding or deleting. Hence, it is the most efficient update. This
type of update is also known as the Metropolis update, as defined by Metropolis
et al. (1953).
The DFN model is iteratively adjusted in a loop that is based on the recorded

pressure signals or tracer breakthroughs by one of the described updates, as it is
shown in the flowchart (Fig. 2.2). A proposed DFN model (denoted by the model
parameters θ′) is evaluated while using the MHG acceptance criterion, i.e., the
update probability α, comparing the current DFN realization (denoted by θ) with
the proposed DFN realization

α = min

(
1,

p (θ′)

p (θ)

L (d|θ′)
L (d|θ)

q (θi−1|θ′)
q (θ′|θi−1)

|J |
)
. (2.3)

Equation 2.3 is calculated from the product of the prior ratio p (θ′) /p (θ), the like-
lihood ratio L (d|θ′) /L (d|θ) the probability of the data given the model parame-
ters, the proposal ratio q (θi−1|θ′) /q (θ′|θi−1) and the determinant of the so-called
Jacobian matrix |J |. The prior probability, multiplied by the likelihood function,
yields the posterior probability, according to Bayes’ theorem. The Jacobian takes
the change in the dimension of the parameter space into account, as provoked by
fracture addition or fracture deletion. In the presented DFN inversion, the prior
ratio is always equal to one, because, aside from the non-informative priors, all prior
information is included in the proposal ratio. The likelihood ratio is calculated by
dividing the likelihood function of the updated model by the non-updated model.
The likelihood of a model can be expressed with the following Gaussian distribution
if we assume that the observations are independent and follow a normal distribution

L (d|θ) = 1√
4πσ2

exp

(
−(d− f (θ))2

2σ2

)
. (2.4)

The transdimensional updates of the presented DFN inversion only deal with the
discretized model parameter space. New fractures can only be inserted to discrete
insertion points, with discretized fracture length distribution. Deleting a fracture
from a DFN is also a discrete operation. The Jacobian matrix of these discrete
updates is always equal to one (Denison et al., 2002). This makes this inversion ap-
proach very efficient, as the transdimensional updates can be evaluated at the same
computational cost as updates that do not change the dimension of the parameter
space. For the same reason, the fracture spacing discretizes the originally continuous
fracture length distribution, since discretized values ensure an easy computation of
the Jacobian in the acceptance probability α, see Eq. 2.3.

The MHG criteria ensure that the Markov chain is stationary, and it samples from
the posterior probability distribution of the inverse problem. In our case, the MHG
criteria simplify to

α = min

(
1,

L (d|θ′)
L (d|θ)

q (θi−1|θ′)
q (θ′|θi−1)

)
, (2.5)

which is the same as the acceptance ratio of the Metropolis–Hastings algorithm.
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2.2 Methodology

The accepted realization is stored and the Markov chain continues in step. In
the case of rejection, the previous model gets restored and it is used for the start
of the next iteration. The final result of the inversion is the ensemble of model
realizations along the whole Markov chain. However, in practice, the first part of
the chain (burn-in phase) is discarded, as these realizations are influenced by the
chosen initial model until the chain converges (Brooks et al., 2011).
The likelihood governs the convergence rate of the inversion. In this case, the

control parameter of the inversion is a fixed variance σ2 of the normal distribution
in Eq. 2.4. Choosing a smaller variance value could enhance the convergence rate,
with the risk of trapping the algorithm early in the local minimum. We inspect the
acceptance probability α to study the effect of the variance, σ2, on the convergence
rate in more detail (Eq. 2.5). For this, we test the different settings of the variance.
Note that, by changing the variance, only the likelihood ratio Lratio is affected,
while the proposal and the prior ratio remain constant. First, we consider the case
that the error between the observed and the current DFN simulated data decreases
through a proposed realization. This yields a likelihood ratio that is greater than
one, irrespective of whether a high or a low variance is chosen, and it induces a high
acceptance probability.
Second, we suppose the choice of a high variance. The limit of(

RMS2current − RMS2proposed
)
/2σ2, is zero, as σ2 approaches infinite,

lim
σ2→∞

RMS2current − RMS2proposed
2σ2

= 0 (2.6)

and therefore, the limit of Lratio is one (limσ2→∞ Lratio = 1). Hence, the use of a
high variance causes a high acceptance rate

acc =
Naccepted

Niterations
(2.7)

independent of whether RMS becomes smaller or larger through the proposed DFN.
In contrast, the lower the variance is, the lower the mean RMS after the burn-in
phase. However, a variance that is too low increases the possibility of the algorithm
getting stuck in a local minimum as Lratio approaches infinity for a decreasing error
and zero for an increasing RMS while using small variance. If a higher variance
is chosen, the mean RMS increases as well, but more proposed realizations will be
accepted and the mixing of different accepted realizations is better.

2.2.3 Estimation of the noise variance

In addition to the reconstruction of the DFN, we can estimate the variance of the
measurement error, i.e., the measurement noise. While this value is the main control
parameter of the convergence of the rjMCMC algorithm, in most implementations
its value is empirically chosen. For pressure measurements, this value is relatively
easy to properly choose, but for solute and especially for temperature measure-
ments, it becomes difficult due to numerous environmental factors and the strong
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2 Comparison of hydraulic and tracer tomography for DFN inversion

influence of imperfect experimental conditions (e.g., nonuniform physical properties
of the borehole, sampling inconsistency, tracer degradation). Hence, we apply the
following methodology for variance sampling: The measured data d (obtained by
Ndata measurement points) is composed of the tracer BTCs or the pressure signals
that would be observed without noise d̃ and a measurement error ϵ. Therefore, the
recorded data can be expressed as d = d̃ + ϵ. ϵi (i = 1, ..., Ndata) is independent
and normally distributed, ϵi ∼ N

(
0, σ2

noise

)
. The observation data is also normally

distributed dobs,i ∼ N
(
d̃i,σ

2
noise

)
with data mean d̃ and noise variance σ2

noise.

Our aim is to determine d̃ and estimate the variance of the noise. Therefore, we
need a probability density function (pdf) for σ2

noise that depends on the observed
data and the model parameters to draw the variance from. The posterior pdf of
σ2
noise can be calculated while using Bayes’ theorem with the model parameters θ

(DFN and inversion parameters) and the observation data d

p (θ|d) = L (d|θ) p (θ)
p (d)

. (2.8)

The denominator is assumed as constant and therefore can be neglected. For reasons
of clarity, θ−σ2

noise
denotes the model parameters without σ2

noise. Due to Bayes’

theorem and a constant p (d), the posterior pdf of σ2
noise can be expressed as

p
(
σ2
noise|d, θ−σ2

noise

)
∝ L (d|θ) p

(
σ2
noise

)
(2.9)

from which σ2
noise can be sampled (Demirhan and Kalaylioglu, 2015; Gelman et al.,

2013).
To determine the likelihood function L (d|θ), we assume that the tracer BTCs or

the pressure signals of the current DFN realization (denoted by f (θ)) calculated
with the forward model are the data mean d̃. This assumption is valid after the
burn-in phase, because the error between the data mean and the simulated data
from the proposed DFN realization is small enough d̃i − f (θ)i ≈ 0. Therefore, the
probability density function of the observation data given the model parameters,
i.e., the likelihood function, can be calculated with Eq. 2.4. The estimated variance
is higher than the variance of the noise at the beginning of the inversion due to
the higher error occurring during the first iterations, i.e., the burn-in phase. The
estimated noise variance is inserted into the likelihood function to replace the fixed

variance. This is valid because of the assumption di ∼ N
(
d̃i, σ

2
noise

)
, which is

expressed by the likelihood function. Thus, the variance in the likelihood function
is updated by estimating the noise variance in every iteration of the rjMCMC loop.
The use of a noninformative prior as pdf of σ2

noise ensures that the data mainly
affect the posterior distribution. In this study, an inverse gamma (IG) and a uniform
(U) prior are applied

p
(
σ2
noise

)
∼ IG (a, b) , (2.10)

p
(
σ2
noise

)
∼ U(0, c), (2.11)
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with the so-called hyperparameters a, b, and c (a, b, c > 0). A noninformative prior
is obtained by using small values for a and high values for b and c. Bayes’ theorem
leads to the following posterior pdfs that are dependent on the prior

p
(
σ2
noise|d, θ−σ2

noise

)
∼ IG

(
a+

n

2
, b+

∑Ndata
i=1 (di − f (θ)i)

2

2

)
, (2.12)

p
(
σ2
noise|d, θ−σ2

noise

)
∼ IG

(
n

2
− 1,

∑Ndata
i=1 (di − f (θ)i)

2

2

)
. (2.13)

The calculation of the posterior pdf is illustrated in Eq. 2.12 while using the IG
prior and in Eq. 2.13 using the uniform prior. The IG prior has to be carefully
handled, since the pdf is improper as a and 1/b approach zero. A pdf is improper
if the integral of the distribution is infinity, which violates the assumption that
the cumulative probability distribution approaches one or any positive value for
non-normalized distributions. In this case, the improper IG prior leads to improper
posterior distribution. The results of the two different priors will be compared in the
following because of this potential shortcoming (Demirhan and Kalaylioglu, 2015;
Gelman et al., 2013).
After a new DFN realization is accepted or rejected (as explained in Section 2.2.2),

the variance is estimated from the posterior pdf while using the Gibbs sampling
method illustrated in Fig. 2.3. The acceptance probability α of a Gibbs sampler
is always one. Therefore, every proposed variance will be accepted (Brooks et al.,
2011). The variance sampling is implemented in every iteration of the inversion
loop after the evaluation of a proposed update of the DFN model parameters (see
Fig. 2.2). This is illustrated by adding the sampled variances to a histogram, as
shown in step 4 of Fig. 2.3. The described procedure is presented for an increasing
number of iterations.
A similar procedure is employed by Fearnhead (2005) and Punskaya et al. (2002)

to analyze a speech signal in order to obtain the real speech data without noise.
Gallagher et al. (2011) used the rjMCMC method to identify the abrupt changes
in geochemical data series due to environmental or climatic variations and to fit a
constant regression function to the recorded data curves. The regression function is
defined piecewise between two changepoints, which model the abrupt changes in the
data series. Adding, deleting, or moving a changepoint estimates the number and
position of the changepoints. They estimate the variance of the noise while using
an acceptance criterion to accept or reject a new variance proposal. In Sambridge
(2016), an rjMCMC algorithm is applied to reconstruct sea level variations assuming
that the time series and the measured data contain stochastic noise.

2.3 Results

In the following, we first rely on a fixed variance in the likelihood function to compare
the results of hydraulic and tracer tomography. In the second part, the results of
the estimation of the noise variance are presented.
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2 Comparison of hydraulic and tracer tomography for DFN inversion

Figure 2.3: Scheme to explain the procedure of drawing samples from a variance
probability function (pdf)

2.3.1 Results of the DFN inversion

The result of the DFN inversion is not a single calibrated DFN model. In every
iteration of the MCMC loop, a DFN realization is calculated and stored. The set of
DFN realizations is called the ensemble. This result contains information regarding
the probabilistic properties of the inverse problem, such as uncertainty and bi- or
multimodality. The probabilistic characteristics stay the same for different inversion
runs, as our inversion method is a stochastic method. To visualize the ensemble,
we convert it to a fracture probability map (Somogyvári et al., 2017). This is
done via the rasterization of the DFN realizations and by taking the mean of these
raster models over the ensemble. The fracture probability of one point, i.e., the
probability of this position to contain a fracture, is the number of DFN realizations
that identify a fracture at this point divided by the whole number of realizations.
This representation is equivalent to taking the mean of the ensemble, which is a
common method of visualization (see Bodin and Sambridge, 2009; Jiménez et al.,
2016).

Figure 2.4 shows the tomographic reconstruction of the hydraulic tomography
experiment. The fracture locations are well resolved, and the locations of the frac-
ture intersections with the higher fracture probability roughly match those of the
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2.3 Results

Figure 2.4: (a) Synthetic discrete fracture networks (DFN) and (b) the results using
the pressure signals for the inversion illustrated as fracture probability
map.

synthetic model. Fractures at the sides of the model (connecting the sources and
receivers with the DFN) are fixed, thus they appear with 100% probability. This
assumption is acceptable since it is possible to detect the fracture location and
orientation in boreholes based on core and image logs (e.g., optical or acoustical
televiewer) (see Afshari Moein et al., 2018; Jalali et al., 2018).

The fracture probability map only shows the fractures with a probability higher
than 10% to present the results clearly. In Fig. 2.4, the general characteristics
of the original DFN can be identified. We can locate the area where the main
horizontal connection between the source and receiver takes place. In addition,
the non-fractured positions can be detected. Still, some errors are visible in the
reconstruction. The quality of the recognition is better there so that the fractures on
the right half of the model appear with higher probability because observation points
are only placed on the right side of the model. The position of the fractures, which
connect the fractures of the left side of the model horizontally with the middle of the
investigated area, is uniformly distributed between y ≈ 8m and y ≈ 22m. Therefore,
we can conclude that this area contains fractures, but we cannot determine the
exact position of a single fracture. In contrast, the position of the fractures, which
horizontally connect the middle of the area with the right side of the model, has
a higher probability and it is better resolved. The variance of a fracture position
is much smaller on the right half of the investigated area. The position of the
fracture with its center point at x ≈ 30m and y ≈ 12m can be fit to a normal
distribution, since the fractures at the left and right side of it appear symmetrically
with a decreasing probability. This corresponds to a Gaussian pdf of the position
of this fracture. The aligned dots occur due to the rasterization in the fracture
probability, and their size depends on the accuracy of converting a continuous DFN
realization to the grid points of the probability raster. They represent fractures with
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2 Comparison of hydraulic and tracer tomography for DFN inversion

Figure 2.5: (a) Synthetic DFN and (b) the results using the tracer BTCs for the
inversion illustrated as fracture probability map.

a very low probability.
Figure 2.5 shows the tomographic reconstruction of the tracer tomography exper-

iment. We check the acceptance rate of the rjMCMC loop after the burn-in phase
to ensure that both of the results are comparable, see Eq. 2.7. The acceptance rate
in both cases is about acc ≈ 4.2%. From this, we can conclude that the different re-
sults of the different tomographic concepts do not depend on the parameter settings
of the inversion, and especially not on the variance in the likelihood function. The
most obvious difference to the hydraulic tomography example is the larger variabil-
ity of the results. In contrast to the results of the hydraulic tomography (Fig. 2.4),
single fractures, except for fractures from the injection and receiver points, are less
visible, since no fractures occur with a high probability. Additionally, neither the
left nor the right side is resolved well with a high probability. Still, from the result
in Fig. 2.5, we get an idea regarding the fractured and non-fractured areas and the
main characteristics of the DFN. The gaps appearing between some of the pixels are
a matter of rasterization similar to the aligned dots and they do not occur in the
individual DFN realizations. This results from a raster grid that does not accord
well with the DFN geometry.

2.3.2 Results estimating the noise variance

In contrast to the previous section, we assume that the observed tracer break-
throughs and pressure signals contain stochastic noise. Therefore, we want not
only to do the inversion of the DFN, but to also estimate the noise variance and the
data mean, i.e., the theoretically measured data without noise. This is accomplished
according to Section 2.2.3. A synthetic example for noisy tracer breakthroughs with
σnoise = 3mg l−1 is shown in Fig. 2.6. The data mean is iteratively estimated by
the inversion of the DFN by applying the forward model to calculate the tracer
breakthroughs of the current DFN realization. The variance is sampled from the IG
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Figure 2.6: Noisy tracer BTCs (σnoise = 3mg l−1) for different combinations of
source and receiver points: (a) tracer injection at source 1; (b) tracer
injection at source 2; (c) tracer injection at source 3. The colors of the
graphs accord with the colors of the receiver points in Fig. 2.1.

posterior pdf in every iteration of the inversion loop. These samples are illustrated in

a histogram that compares this with the posterior pdf of σ2
noise p

(
σ2
noise|d, θ−σ2

noise

)
of the last iteration of the rjMCMC loop in Fig. 2.7. The pdf and the histogram
in Fig. 2.7 are as well not normalized, i.e., a cumulative probability function would
approach any positive value for an increasing variance due to the non-normalized
posterior pdf (see Eq. 2.9) from which the variance is sampled. The samples converge
to a stationary distribution, since the histogram of the variance samples fulfills the
posterior pdf of the last step. Both variance histograms are similar, as we compare
the two different priors. Hence, we can conclude that both priors are in fact nonin-
formative, because the posterior pdf is mainly affected by the data and not by the
choice of the prior pdf. In addition, the prior IG pdf does not lead to an improper
subsequent pdf in this case.

The same procedure could be applied to the noisy pressure signals (Fig. 2.8).
The histogram of the variance samples and the posterior pdf of σ2

noise are shown in
Fig. 2.9. Additionally, in this case, both of the priors provide similar histograms
and posterior pdfs of σ2

noise.

2.4 Discussion and conclusions

The presented study deals with an exemplary hypothetical case, which makes it
difficult to generalize the results to other experimental setups or general conclusions.
Still, the application of the two tomographic concepts allows for the comparison of
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2 Comparison of hydraulic and tracer tomography for DFN inversion

Figure 2.7: Histogram of variance samples during the inversion and posterior pdf of

σ2
noise p

(
σ2
noise|d, θ−σ2

noise

)
in the last iteration of the rjMCMC loop (a)

inversion of σ2
noise using the inverse gamma prior; and, (b) inversion of

σ2
noise using the uniform prior.

Figure 2.8: Noisy pressure signals (σnoise = 3000Pa) for different combinations of
source and receiver points: (a) water injection at source 1; (b) water
injection at source 2; (c) tracer injection at source 3. The colors of the
graphs accord with the colors of the receiver points in Fig. 2.1.
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2.4 Discussion and conclusions

Figure 2.9: Histogram of variance samples and posterior pdf of σ2
noise in the last step

of the inversion.

characteristic differences. Hydraulic tomography provides better results than tracer
tomography, since the variability of the result is smaller and some fractures occur
with a higher probability, i.e., the obtained fracture probability map of the hydraulic
tomography is better resolved. In this case, the pressure signals are better for the
inversion, because the complexity of the simulation is smaller. For practical use,
many extra factors would probably make the tracer tomography better, e.g., the
measurement noise is smaller, and tracer BTCs can be more easily detected. Both
tomographic concepts are able to perfectly identify no fractured areas and the main
characteristics. The experiment should be repeated in the other direction, since the
part of the cross-sectional area where the receiver points are located provides better
results to further improve our inversion algorithm. This uneven sensitivity is a known
attribute of tomographic methods, as it was shown for continuous reconstruction in
Somogyvári et al. (2016).

The presented procedure for the estimation of variance includes noise variance
and model errors. The estimated variance is usually higher than the variance of the
noise, since the estimated variance includes not only the variance of the noise, but
also the error of the conceptual model, e.g., the geometrical constraints (only two
different fracture inclinations, fracture length distribution), the limited number of
iterations, and errors of the forward model. Therefore, this method could also be
applied to determine the errors of the conceptual model, if observation data without
noise or with very low noise variances are used for the inversion.

Variance estimation becomes even more significant when considering, for instance,
heat as a tracer. In-situ temperature observations are more prone to systematic
errors and to being affected by diffusion than solutes. The simulation of thermal
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2 Comparison of hydraulic and tracer tomography for DFN inversion

transport in both fracture and matrix introduces an extra level of complexity into
the forward model, and requires the specification of additional physical parameters.
Variance estimation could be employed to reveal initial improper settings if these
parameters are set incorrectly.
The aim of this study is to extend the inversion procedure from synthetic DFN

cases to practical applications with field data. To prepare this, we conclude from
the synthetic DFN case study to the parameters and information we need to use
this inversion algorithm in practice. In addition, we checked the limitations and the
conceptual errors of this approach. However, we introduce a method to deal with
that issue. One conclusion is that we need a 3D forward model to expand from
the two-dimensional cases to three-dimensional DFN reconstruction. Moreover, we
require information regarding the fracture sets, e.g., from outcrops. We also have to
use an optical or acoustical televiewer to get the inclination and the position of the
fractures adjacent to the boreholes to introduce them as source and receivers for the
inversion and as boundary conditions in the forward model.
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3 Stochastic inversion of
three-dimensional discrete fracture
network structure with hydraulic
tomography

Abstract

We introduce an approach for the stochastic characterization of the geometric and
hydraulic parameters of a three-dimensional (3D) discrete fracture network (DFN)
and for estimating their uncertainty based on data from hydraulic tomography ex-
periments. The inversion approach relies on a Bayesian framework and the resulting
posterior distribution is characterized by generating samples by Markov chain Monte
Carlo (MCMC) methods. The inversion method is evaluated for four synthetic test
cases related to the Grimsel Test Site (GTS) in Switzerland. Comparison of original
and reconstructed DFN models shows that the presented approach is suitable for
identifying variable fracture locations and orientations. This is especially the case
for those fractures that represent the preferential flow paths in the simulated ex-
periments. It is also revealed that the Bayesian framework is useful to discriminate
fractures based on the reliability of the inversion, which is illustrated by fracture
probability maps taken as sections through the studied rock mass. Moreover, it
is demonstrated that the hydraulic apertures can be calibrated together with the
fracture geometries. A premise for applicability in practice, however, is that the
hydraulic measurements are complemented by additional information to sufficiently
constrain the value ranges of the geometric and hydraulic parameters to be inverted
together. The presented work expands the applicability of a previously presented
promising two-dimensional procedure based on transdimensional inversion to field-
based 3D problems. The theoretical findings here open the door for highly flexible
structural characterization in practice based on hydraulic tomography, as well as
alternative or complementary tomographic methods.

3.1 Introduction

Groundwater flow through rocks with a low-permeability matrix is usually domi-
nated by the presence of fractures, associated with pronounced local permeability
contrasts. Multiple connected fractures yield preferential flow paths along a fracture
network permeating the rock mass. Implemented in a model, the network is mostly
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3 Stochastic inversion of 3D DFN structure with hydraulic tomography

represented either by a single or multiple continuum method that translates the hy-
draulic properties of the fractures into an upscaled effective permeability tensor or
explicitly as a discrete fracture network (DFN). Combinations of both methods are
also possible, such as realized by the discrete fracture matrix model (Berre et al.,
2019). Dense fracture networks with many interconnections are more appropriate
for the representation in a continuum model. In contrast, if a few fractures dominate
the hydraulic conditions, resolving the fractures explicitly in flow models allows for
a more detailed insight into preferential flow and transport paths, specific processes
such as flow focusing, spatial fracture connectivity, and quantification of the individ-
ual influence of single fracture parameters (Berkowitz, 2002; de Dreuzy et al., 2012;
Hyman et al., 2019; Neuman, 2005; Roubinet et al., 2010; Yin and Chen, 2020).
Both variants are compared, for example, by Hadgu et al. (2017), in terms of ef-
fective permeability and tracer breakthrough curves by simulating flow and tracer
transport in benchmark test cases. The authors conclude that because of the explicit
representation of the DFN, this approach is better suited to represent the structural
heterogeneity of the DFN, insofar as the parameters of the network are well mapped.
Proper mapping, however, is challenging due to the limited insight into the studied
rock mass.
Spatial reconstruction of fracture systems requires field investigation techniques

that deliver meaningful space-dependent information such as obtained by tomog-
raphy. The underlying principle of tomographic methods is the application and
combined interpretation of signals sent from different sources and/or recorded at
different nearby receivers. Hydraulic tomography, for instance, is commonly based
on multilevel pumping or slug tests with pressure signals recorded in cross-borehole
test configurations (Berg and Illman, 2011; Brauchler et al., 2003, 2013b; Cardiff
and Barrash, 2011; Cardiff et al., 2013, 2019; Hu et al., 2011; Illman et al., 2009;
Illman, 2013; Klepikova et al., 2020; Laloy et al., 2018; Poduri et al., 2021; Sánchez-
León et al., 2020a,b; Sharmeen et al., 2012; Tiedeman and Barrash, 2020; Wang
et al., 2017; Yeh and Liu, 2000; Zha et al., 2015; Zhao and Illman, 2017; Zhao
et al., 2019). This facilitates spatial resolution of aquifer heterogeneity by inversion
procedures and further use of reconstructed permeability patterns in flow models.
Fractured systems have been addressed by hydraulic tomography as well as by other
tomographic techniques, such as tracer tomography (Brauchler et al., 2013a; Kit-
tilä et al., 2020; Klepikova et al., 2014), stress-based tomography (Afshari Moein
et al., 2018), or coupled inversion of geophysical signals (Chen et al., 2006; Day-
Lewis et al., 2003; Dorn et al., 2013). The interpretation of the measured data is
performed by a continuous representation of the porous or fractured media in most
of these previous studies.
An explicit representation of the fractured media as DFN was demonstrated

mainly for two-dimensional (2D) problems that neglect the role of structural varia-
tions in the third dimension (Fischer et al., 2020; Ma et al., 2020; Somogyvári et al.,
2017; Tran and Tran, 2007). Three-dimensional (3D) inversion problems applying
data from tomographic experiments are more challenging and have been handled
primarily by continuous inversion methods. These provide tomograms of continu-
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ous hydraulic conductivity distributions (Cardiff and Barrash, 2011; Cardiff et al.,
2013, 2019; Tiedeman and Barrash, 2020) and hydraulic conductivity together with
storativity distributions (Berg and Illman, 2011; Illman et al., 2009; Sánchez-León
et al., 2020b; Zha et al., 2015; Zhao and Illman, 2017; Zhao et al., 2019). Promis-
ing alternatives rely on the simplification of the inversion problem by prescribing
selected characteristics of the main flow paths between two boreholes (Klepikova
et al., 2020); they focus on critical hydraulic aspects such as the role of a leakage
interface (Wu et al., 2020) or the aperture distribution (Wu et al., 2021). In this
context, multifidelity approaches can strike a balance between the accurate repre-
sentation of 3D DFNs and simplifications of the inversion problem to improve the
computational efficiency of modeling the tomography experiment (O’Malley et al.,
2018).

In our study, we present a full 3D tomographic fracture network inversion. Based
on promising previous work in 2D (Ringel et al., 2019; Somogyvári et al., 2017), the
geometrical properties of fractured aquifers are represented by a flexible 3D DFN
structure that is iteratively calibrated to the data from tomographic measurements.
Related studies on the direct inversion of 3D fracture networks generate DFNs and
condition them to geophysical and hydrogeological data (Dorn et al., 2013) or fit a
random number of fractures intersecting the boreholes (Mardia et al., 2007). Our
objective is to develop an inversion technique that adjusts the structure and organi-
zation of fractures as flexibly as possible. Moreover, a stochastic characterization of
the structural properties is also chosen to account for the uncertainty in the results,
as field data is often insufficient for unequivocal model inversion.

In the following, the forward and inverse modeling procedures used for simula-
tion of DFNs will first be described. We refer to a synthetic hydraulic tomography
experiment, which is treated as virtual reality to inspect and demonstrate the capa-
bilities of the developed inversion method. This analysis is based on four different
experimental variants to test inversion performance and limitations.

3.2 Methodology

The overall principle of the presented procedure is using tomographic information
to infer as much 3D structural characteristics as possible of a fractured rock mass
on the decimeter scale. In this study, a hydraulic tomography setup is chosen that
is based on multilevel hydraulic pumping tests in boreholes with different orienta-
tions. The recorded pressure responses from multiple tests in these boreholes reveal
the existence and degree of hydraulic connections within the fracture network of
the rock mass. By simultaneous fitting of a DFN model to all recorded pressure
responses, preferential flow paths and thus, hydraulically active fractures can be lo-
calized. While there exist different methods to calibrate the DFN to such hydraulic
signals or tracer and geophysical information, they are commonly based on limiting
assumptions (e.g., a priori fixed fracture locations). Our purpose is to minimize such
assumptions except for a conceptual model of given fracture sets, which is formulated
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based on the properties of fractures along boreholes or outcrops. This means, for
a given fracture set, realistic ranges of fracture geometric and hydraulic parameters
are predefined. Within this framework, fracture numbers, their locations, lengths,
and hydraulic properties are treated as unknowns and are calibrated.
Flexible 3D adjustment of fracture geometries is ideally accomplished by an iter-

ative learning procedure, which calibrates the model to independent measurements.
Considering conditions in practice, we assume that there exists a basic geological
insight in typical fracture orientations, density, and a range of possible hydraulic
aperture values. Exact structures, however, are unknown, and the prior geological
knowledge is exploited together with hydraulic test data to infer potentially valid
DFN configurations. Typically, outcrops or properties of fractures along boreholes
are investigated to define a conceptual model and for the setup of the inversion
problem. A proper framework for probabilistic processing of such soft and hard
data follows Bayesian principles, which is considered here. Bayesian inversion is
accompanied by a high computational demand for iterative comparison of model
predictions with measurements, which may require many thousands of model runs.
To minimize the simulation time for the forward model, an unsophisticated DFN
fluid flow model has been set up to simulate hydraulic tests in fractured aquifers with
variable fracture orientations. This is described in the next chapter as the forward
model concept of this study. After this, the inversion algorithm and its implemen-
tation with test cases are described. Different test cases are used to examine the
applicability of the tomographic inversion. Here, specifics of the examined hydraulic
problem, the parameters treated as unknowns, as well as the prior information will
be explained.

3.2.1 Forward modeling of hydraulic tomography experiment

Fractures are modeled as lower-dimensional objects with a uniform aperture, as-
suming a constant pressure gradient normal to the fracture plane due to the small
aperture. Fluid flow in a single fracture is described by the continuity equation and
the cubic law derived by simplifying the Navier-Stokes equations (Berre et al., 2019;
Zimmerman and Bodvarsson, 1996)

aρS
∂p

∂t
−∇T ·

(
aρ

kf
µ
∇T p

)
= aq (3.1)

with the hydraulic aperture a [m], the density of the fluid ρ
[
kgm−3

]
, the specific

storage S
[
Pa−1

]
, the fracture permeability kf

[
m2
]
, the fluid dynamic viscosity µ

[Pa s], and a source/sink term q
[
kgm−3 s−1

]
. The pressure p [Pa] refers to the static

pressure and the piezometric pressure due to gravitational forces. The gradient ∇T

is performed in the local coordinate system tangential to the fracture plane.
In this study, the equations are solved by the finite element method (FEM) with

a conforming discretization at the intersections of different fractures. For further
reading on the FEM fundamentals, we refer to related literature, for example, Lang-
tangen and Mardal (2019), Reddy and Gartling (2010), and Zienkiewicz et al. (2014).
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3.2 Methodology

For conciseness, only the methodology that is specific to the present study and the
evaluation of the results are explained in the remainder.

The geometry and mesh generation is implemented by the open-source mesh gen-
erator Gmsh (Geuzaine and Remacle, 2009). Each fracture can be created separately
according to its properties, with the built-in geometry module as ellipse arbitrarily
positioned in the investigated volume. The intersections of different fractures are
considered by the so-called Boolean fragment operation implemented in Gmsh. This
function provides a conforming discretization at the interfaces of fractures. The
fractures are implemented as shell elements, as suggested by Reddy and Gartling
(2010), for heat transfer problems with a constant temperature across the element
thickness. This allows the reduction of a 3D fracture to a 2D plane without losing
information about the properties normal to the fracture plane.

To verify our implementation, 2D and 3D scenarios have been defined in a pre-
liminary analysis. For each scenario, there are analytical solutions or estimates of
the expected results available. The 2D problems apply to the general behavior of
the implementation of the FEM simulation concept. Therefore, the scenarios are
specified by the method of manufactured solutions and the convergence of the nu-
merical solution to the defined solution is evaluated for different basis functions and
mesh resolutions (Langtangen and Mardal, 2019). This demonstrates the correct
calculation of the pressure diffusion within a single fracture midplane and the accu-
rate implementation of the boundary conditions. The 3D scenarios are designed to
check those characteristics of flow in a DFN that are essential to providing physically
meaningful results. That is, the reduction of the dimension by the shell elements,
the quality of the results depending on the basis functions and the mesh resolution,
and the balance of fluxes at the intersections of fractures for different apertures and
fracture lengths. To consider more complex physics, the forward model may be re-
placed by any other DFN simulation tool that allows for automatic updating of the
DFN structure (Hyman et al., 2015; Keilegavlen et al., 2020).

3.2.2 Inversion methodology

The method for the inversion of the DFN structure, that is, the estimation of the
model parameters given the observed hydraulic data, is based on the Bayesian ap-
proach

p (θ|d) ∝ L (d|θ) p (θ) (3.2)

that evaluates the posterior probability p (θ|d) of the parameters of the DFN model
given the results from the tomography experiment. In this study, the parameters
θ to be inferred are the properties of the DFN. The parameters are treated as ran-
dom variables that are characterized by probability density functions. The data d
stems from the hydraulic tomography experiment, that is, the pressure perturba-
tions provoked by an overpressure created at the injection points. The posterior
distribution is based on prior information p (θ) about the position and the proper-
ties of the fractures and the likelihood of the data L (d|θ) (Gelman et al., 2013).
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3 Stochastic inversion of 3D DFN structure with hydraulic tomography

The likelihood function evaluates the error between the measured data and the sim-
ulated results from the corresponding hydraulic tomography experiment. In the
subsequent application to different test cases, we assume independent and identical
normally distributed errors for the time steps of each pressure signal. Therefore, the
log-likelihood function is proportional to the sum of the squared error over all data
points Ndata

logL (d|θ) ∝ − 1

2σ2

Ndata∑
i=1

(di − f (θ)i)
2 (3.3)

whereby f (θ) refers to the simulation of the forward model for a given DFN param-
eter set θ.
Evaluating the posterior distribution is a challenge due to its complexity and

its typically high dimensionality. A widely used method to handle this problem
is to characterize the posterior by drawing samples from the posterior distribution
according to the Markov chain Monte Carlo (MCMC) sampling strategy. Starting
from an initial state, new samples θ′ are proposed in each iteration i according to a
proposal distribution q and are accepted (θi = θ′) with probability

α = min

(
1,

p (θ′|d)
p (θi−1|d)

q (θi−1|θ′)
q (θ′|θi−1)

|J |
)

(3.4)

or rejected (θi = θi−1). The determinant of the Jacobian matrix |J | holds for a
generalization of the update probability. It equals one for updates that do not
change the number of parameters. For transdimensional update types that include
adding or deleting parameters, the Jacobian provides a relation between the already
existing and to be added or deleted parameters. The tolerance for accepting a DFN
realization depends on the update probability (Eq. 3.4). A high update probability
implies, in most cases, that the proposed realization (θ′) has an equal or greater
posterior compared to the current DFN realization (θi−1), that is, the error between
the simulated and measured data is the same or smaller and that it meets the prior
distribution. Proposed realizations outside of the prior limits are rejected outright.
The reversible jumpMCMC (Fan and Sisson, 2011; Green, 1995; Hastie and Green,

2012) is applied due to the advantage that the number of parameters, in this case,
the number of fractures, does not need to be known a priori. Instead, the number of
fractures and the structure of the DFN are adjusted iteratively during the inversion.
This is accomplished by switching between two update types (Fan and Sisson, 2011).
The number of parameters is inferred by so-called between-model moves. In this case,
the number of parameters is varied by inserting a fracture in a random position
within the investigated volume or by deleting a randomly chosen fracture. Since
the insertion of a fracture, in our implementation, is just an addition of parameters
that are not linked to the parameters of the other fractures, the Jacobian is equal
to 1 (Sambridge et al., 2006). The Jacobian of the reverse update type, that is,
the deletion of a fracture, is the inverse of the reverse update, and therefore, it is
also equal to 1. The parameters of the DFN for a given number of fractures are
adjusted by updating the position, the fracture length, or the fracture aperture.
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Figure 3.1: Overview of the implemented rjMCMC sampling strategy for the dis-
crete fracture network (DFN) inversion with the between-model moves
(insertion or deletion of fractures) and the within-model move, that is,
the update of the DFN parameters.

Since the number of parameters does not change, this is described as a within-
model move. The parameters are varied by perturbing the current value with a
sample from a normal distribution with zero mean and a given variance, which is
the most common proposal distribution. In practice, this procedure is implemented
by alternating between both update types. The MCMC iterations are initialized
by a random DFN realization based on the prior information and the DFNs are
adapted iteratively to meet the posterior distribution. An overview of the rjMCMC
algorithm and the workflow, as it is implemented for the DFN inversion, is illustrated
in Fig. 3.1. The update type is chosen randomly and, in our implementation, for
simplicity reasons, no update types are combined. During the burn-in iterations, we
found that the efficiency of the algorithm can be improved by raising the probability
for those update types that change the number of fractures, that is, insertion or
deletion. When the number of fractures reaches the maximum possible number of
fractures, the probability for insertion is set to zero.

As further advancement of our previous studies (Ringel et al., 2019; Somogyvári
et al., 2017), the insertion of fractures is possible at any position in the investigated
volume, that is, fractures do not necessarily have to be connected to the main DFN.
In comparison, this provides two main computational advantages. The influence of
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3 Stochastic inversion of 3D DFN structure with hydraulic tomography

Table 3.1: Overview of the characteristics of each test case.

Test
case

Settings Objective

1 Based on measurements at
the GTS

Applicability of the inversion method to
realistic geolgical formations

2 Update of the hydraulic
aperture by the inversion
algorithm

Applicability of the inversion method to
identify fracture geometries and
hydraulic apertures

3 Insertion of an additional
injection point

Sensitivity of the results to the number
of constraints

4 Definition of a third fracture
set

Applicability of the inversion method to
an extra fracture set and handling of
more possible flow paths

the initial DFN configuration is lower, and this ensures that more possible DFN
realizations are included. Moreover, a fracture without a connection to the main
DFN has no hydraulic effect and thus does not change the outcome of the hydraulic
tomography simulation. Therefore, considering only the likelihood of this update,
the insertion will most probably be accepted. Nevertheless, this realization is part
of the posterior and has to be considered to ensure reversibility and stationarity
of the Markov chain. Deletion of the same fracture will most likely be accepted
for similar reasons, insofar as no new connection to the main DFN has yet been
formed. In practice, fractures are inserted randomly within a given domain ∆x, ∆y,
∆z (Fig. 3.1). Aside from that, the update of the fracture length and the hydraulic
aperture has been included in the inversion framework to improve the sampling
efficiency, since this also allows the consideration of more possible DFN realizations.

3.2.3 Setup of test cases

To check the applicability of the proposed methods, we employ four synthetic test
cases (Table 3.1). The use of synthetic, perfectly known conditions, allows for evalu-
ation of the performance of the inversion procedure, to detect difficulties that could
cause errors in the inversion results, and to derive conclusions for measurement data
requirements and field applications that are suitable for our inversion approach.
In each test case, hydraulic tomography experiments are simulated by creating a
constant overpressure sequentially at different cross-well injection positions. The
induced transient pressure perturbations at the injection points are recorded at re-
ceiver points in adjacent observation boreholes and normally distributed noise is
added to the data to account for measurement, modeling, and conceptual errors.
The noise is applied to affect the pressure signals, nevertheless, without concealing
the main trend of the signals (Klepikova et al., 2020). The standard deviation of
the noise is approximately 3% of the mean pressure.
To refer to a realistic geological formation, a base case (test case 1) is devel-
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3.2 Methodology

Figure 3.2: (a) Synthetic test case 1 (base case), boreholes, and source/receiver
points denoted as S/R 1 to S/R 5. Fractures whose properties are as-
sumed to be unknown are illustrated in lighter gray. (b) Pressure signals
recorded at the different receiver points (R 1 to 5) provoked by an over-
pressure created at the source points (S 1 to 5). The pressure signals
result from the forward simulation of the hydraulic tomography exper-
iment with normally distributed noise added and function as basis for
the inversion of the discrete fracture network (DFN) properties. The
black curves indicate the mean of the simulated pressure signals of the
posterior DFN realizations.

oped utilizing data from hydraulic characterization campaigns during the In situ
Stimulation and Circulation (ISC) experiments at the Grimsel Test Site (GTS) in
Switzerland (Amann et al., 2018; Doetsch et al., 2018; Krietsch et al., 2018). Nev-
ertheless, the present analysis is only theoretical and the fractures of the base case
are considered to be perfectly known. The insight from the GTS helps to define rea-
sonable assumptions for the setup of the conceptual models and the prior parameter
distributions. The fractures forming the DFN of the base case, as well as the bore-
holes for simulating a cross-hole hydraulic tomography experiment are presented in
Fig. 3.2. The injection boreholes and the properties of the fractures with the cen-
ter connected to the boreholes are oriented at observations from optical televiewer
tests conducted during the ISC experiment (Doetsch et al., 2018; Krietsch et al.,
2018). The position of the fractures connecting the boreholes and the length of all
fractures are based on the connectivity matrix given in Jalali et al. (2018). The
DFN is built up by two fracture sets. The inclination and dip assigned to the frac-
tures are the mean of the fracture sets defined according to the fractures intersecting
the boreholes. This tomographic setup yields 5 source/receiver (S/R) points, which
means that the constant pressure injection tests are simulated sequentially at each
position in the well and the arrival of the pressure signals are recorded at the other
source/receiver points functioning as observation locations. The data assumed to
be measured during the hydraulic tomography experiment is shown in Fig. 3.2b.

The potential of adjusting the hydraulic aperture within a given range is inves-
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3 Stochastic inversion of 3D DFN structure with hydraulic tomography

Figure 3.3: (a) Test case 3 oriented at the base case with an extra injection point
fracture and an additional source/receiver point (S/R 6). (c) Test case
4 including a third fracture set and an additional source/receiver point
(S/R 6). Fractures whose properties are assumed to be unknown are
illustrated in lighter gray. The noisy pressure signals and the mean
of the simulated pressure curves of the posterior DFN realizations are
displayed for both test cases in (b) and (d).

tigated by test case 2. For comparison of the results with the base case, we apply
the same DFN setup and the same tomographic test configuration (Fig. 3.2). In
contrast to the previous test case, the aperture of the fractures is assumed unknown
within given value ranges. Therefore, the aperture values are estimated as part of
the parameter update of the inversion algorithm (Fig. 3.1). In this exemplary test
case, the range of possible hydraulic aperture values is set to ±80% of the given
value in test case 1, which is implemented as prior bounds.

To examine the capabilities of the inversion methodology further, the base case
(1) is extended. The third test case (3) is designed to check the sensitivity of the
inversion algorithms to modifications of the DFN and to the number of available
pressure signals. Therefore, a new fracture is added with a connection to a borehole
to provide another source/receiver point (S/R 6). The additional fracture is placed
in the lower part of the investigated volume and shifted backward. Since this fracture
is presumably connected to a borehole, its position and the associated fracture set
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are given. Hence, this variation of the test case contributes information about the
lower part of the DFN in the studied rock mass and the parameters normal to the
plane defined by the injection boreholes. This test case is illustrated in Fig. 3.3a.
The tomographic setup is the same as before but with an additional source/receiver
point (Fig. 3.3b).
Test case 4 (Fig. 3.3c) examines the ability of the inversion method to deal with a

(theoretical) third fracture set. The third fracture set is defined by a rotation angle
around the x-axis. To infer the properties of this DFN, an additional source/receiver
point (S/R 6) is favorable to compensate for the uncertainty due to the additional
possible rotation around the x-axis. Therefore, in this case, the tomographic setup
is the same as for the previous test cases. By inserting the additional fractures, a
unique feature of this third case is that more possible flow paths exist connecting
the source/receiver points. Therefore, the rationale of the case is to reveal how the
inversion procedure can deal with a potentially higher number of suitable solutions.

3.2.4 Implementation of the inversion

Constraints, assumptions, and prior distributions for the formulation and imple-
mentation of the inversion problem are mainly based on the information about the
fractures connected to the boreholes. An overview of the underlying assumptions,
the necessary information for the derivation of a conceptual model, the properties
of the prior and likelihood distribution are summarized in Table 3.2.
Table 3.2 follows the steps for the setup of an inversion problem. The basic

information, essentially, borehole data or outcrops, is applied for the derivation of
a conceptual model and the definition of the prior distribution. The measured data
from the hydraulic tests are included as likelihood function. Relying on these sources
and assumptions, several parameters of the DFN can be estimated by the inversion
algorithm.
The parameters selected for the test cases of this study are listed in Table 3.3.

Hydraulic apertures are assigned as fixed values based on the fracture sets for test
cases 1, 3, and 4, while the aperture is estimated within the exemplary prior bounds
in test case 2. The shapes of the fractures are approximated as plane ellipses with a
uniform aperture. Most of the flow occurs directly between intersections with other
fractures. Therefore, no sharp edges have to be considered for the simulation of
flow. This makes the ellipses a reasonable assumption, but does not account for the
potential existence of nonuniform apertures or channelized flow along fractures. The
length of the fracture refers to the major axis and the ratio to the minor axis is given
by the conceptual model. In this setup of the inversion, the hydraulic conditions in
the boreholes are not resolved. Instead, we assume that the injection points can be
isolated perfectly by the packer systems.
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3 Stochastic inversion of 3D DFN structure with hydraulic tomography

Table 3.2: Steps required for the setup of the inversion problem, and parameters
estimated by the inversion.

Properties Information source/
assumptions

1. Basic
information

Coordinates of fractures
intercepting boreholes

Cores, geophysical logs (e.g.,
optical or acoustic televiewer)

Angles of fractures
intercepting boreholes

Cores, geophysical logs (e.g.,
optical or acoustic televiewer)

2. Conceptual
model

Fracture shape Plane ellipse with a uniform
aperture; length of minor axis is
half of length of major axis

Fracture sets Properties of fractures along
boreholes (cores, geophysical
image logs) or based on outcrops

Specific storage Cross-hole in situ tests,
laboratory tests

Hydraulic aperture In situ hydraulic tests or
estimated by inversion

3. Prior
distribution

Minimum and maximum
possible values for the
parameters of the fractures

Field investigation and/or
outcrops

Upper limit for the number
of fractures

Fracture intensity map derived
from outcrop, cores, and
geophysical logs

4. Likelihood
function

Transient pressure signals
provoked by perturbations
of the system

Cross-hole in situ hydraulic tests

5. Estimated
parameters

Number of fractures,
coordinates, and length of
fractures between
boreholes, length of
fractures along boreholes,
hydraulic apertures based
on fracture sets

rjMCMC inversion algorithm

We apply a uniform prior as a lower and upper limit for the unknown parameters,
that is, for the coordinates of the center of each fracture and the fracture length. The
characterization of the error between simulated and measured data by estimating
its standard deviation can be utilized to quantify uncertainties of the conceptual
model, for example, deviations from the fracture sets or the assumed fracture shape,
for resolving inconsistencies of conceptual model assumptions with respect to field
conditions.
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Table 3.3: Parameter setting of the inversion model.

Parameter Fracture set 1 Fracture set 2 Fracture set 3

Hydraulic aperture 6 · 10−5m 8 · 10−6m 6 · 10−5m
Inclination (Rotation
around y-axis)

167.9 ◦ 56.7 ◦

Dip (Rotation around
z-axis)

65.9 ◦ 90 ◦

Rotation around
x-axis

75 ◦

Specific storage 2 · 10−6m−1

3.2.5 Evaluation of the results

During the MCMC search, initially tested DFN configurations and the following
sample realizations proved unsuitable for the posterior distribution, since the misfit
between the simulated and the measured pressure signals is relatively high due to
inexact connections between the boreholes. Therefore, samples from the beginning of
the MCMC procedure are discarded as burn-in realizations. Assuming that little is
known about the posterior distribution, the evaluated results originate from different
initial DFN configurations drawn from the prior distribution. This avoids getting
stuck in local modes of the posterior distribution and respectively prevents the results
from only partially covering the posterior. To reduce the autocorrelation, only every
nth iteration is kept for the evaluation of the results, which is called thinning (Brooks
et al., 2011).

The DFN realizations, that is, the samples from the posterior distribution, ob-
tained by the rjMCMC algorithm, are evaluated as fracture probability maps (FPMs).
Due to the changing number of parameters, single fractures and their influence are
difficult to distinguish from each other and, therefore, FPMs are a more suitable
evaluation method than, for example, histograms on individual fracture statistics.
Since a fracture can be inserted at an arbitrary position in the investigated rock
volume, a new fracture is not necessarily connected to the main DFN. Therefore,
unconnected fractures, that is, fractures without influence on the flow, are discarded
for the generation of the FPM. Similar to the mesh generation, the function Boolean
intersection by the mesh generator Gmsh is implemented to detect unconnected frac-
tures. The FPM is evaluated by generating a raster of each DFN realization and
taking the mean of all DFN realizations. Thereby, the FPM presents the sample
mean for each volume of the raster to be a part of a fracture, which is interpreted
as fracture probability. The updates of the fracture aperture are evaluated on the
same raster over the investigated volume. If an element of the raster is part of the
DFN, the corresponding aperture is selected from the explicit representation of the
DFN. This is used to calculate the mean fracture aperture of each element of the
raster.
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Figure 3.4: (a) Rasterized test case 1. (b) Inversion results illustrated as FPM pre-
sented for constant positions y (as illustrated at the upper right together
with the size of the evaluated volume).

3.3 Results

3.3.1 Test case 1

The rjMCMC samples are evaluated as FPM presenting the mean over the DFN
realizations. In Fig. 3.4b, the FPM derived for the base case is illustrated in different
cross sections for constant values y. For better comparability of the results with the
test case, a raster of the synthetic DFN is generated with the same resolution as
the FPM (Fig. 3.4a). Fracture probabilities below 10% are neglected for the sake of
clarity of the visualization. Note that the bounds of the modeled domain are greater
than what is presented in Fig. 3.4 and some fractures can partially extend over the
bounds of the displayed volume.

In general, the shown cross sections reveal fractured and non-fractured areas. The
main characteristics of the inverted DFN are precise and accord with the synthetic
test case. This illustration of the results also indicates which parameters of the DFN
can be inferred with certainty or uncertainty by the inversion algorithm. Parameters
that are well constrained by the hydraulic tomography experiment can be estimated
properly, while parameters that have only a small effect on the pressure signals occur
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with a broader range of possible values. The fracture connecting the fractures from
injection borehole 2 (Fig. 3.2a) with the right part of the investigated volume has
a direct influence on the pressure signals, therefore, only small deviations from the
mean position are possible. Otherwise, the error would be too large, that is, this
realization would be less likely. The hydraulic effect of the other fractures on the
flow is lower and thus larger fluctuations around an expected value are possible in
the inverted results. In particular, the y-coordinates of all fractures are not well
determined, instead, they can move quite freely on the x-z-plane. The effects of
varying the length of all fractures are visible by the lower fracture probabilities at
the end of each fracture. More pressure signals are available for injection borehole
2 than for borehole 1. The combinations of source/receiver 3, 4, and 5 among
each other allow the expected fracture length of the fractures connected to injection
borehole 2 to be well determined, and fewer deviations are possible compared to the
fracture lengths at injection borehole 1 (Fig. 3.2a).

Figure 3.2b shows the mean of the simulated pressure signals of the posterior
DFN realizations compared to the pressure signals that function as basis for the
inversion. Since the conceptual model coincides with the setup of the test cases, the
mean signals accord well with the measured signals. For the inversion of field data,
further parameters like the error variance or quantiles of the simulated data can
be evaluated to consider uncertainties in the conceptual model. For the synthetic
test cases of this study, the uncertainty of the data and the results correlate with
the scale of the noise added to the pressure signals. If the approximate number
of fractures can be evaluated based on the FPM, application of MCMC algorithms
that require the number of fractures to be given can provide additional insight into
the DFN parameters and their correlations. Results from such inversion setups with
a constant number of fractures are available in the supplement. In general, the
results from the inversion setup with a fixed number of fractures agree with the
presented rjMCMC results, which serves as a confirmation of the results. However,
due to the uncertainty about the number of fractures in a rock mass, in practice, a
transdimensional implementation is favorable for the first step of inversion.

3.3.2 Test case 2

This test case expands the previous base case by coupled inversion of likewise hy-
draulic apertures. The latter are inverted within a range of possible values based on
the fracture sets. The obtained fracture probability (Fig. 3.5a) and the sample mean
of the hydraulic aperture of each element of the raster are evaluated in Fig. 3.3b.
Fracture probabilities below 10% are not displayed in the FPM. Accordingly, no
aperture value is given, since a reasonable estimate of the mean aperture is not
possible for these elements.

In general, the overall uncertainty of the results is increased due to the estimation
of an additional parameter of each fracture. In comparison to the previous results
(Fig. 3.4), more raster elements with low fracture probabilities and probabilities
below 10% exist and the resolution of the FPM is lower. As a whole, the fracture
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Figure 3.5: Inversion results of test case 2 evaluated as (a) fracture probability map
and (b) mean aperture of each element. We refer to Fig. 3.4a for com-
parison with the rasterized test case and for the size of the displayed
volume.

aperture correlates mainly with the number of fractures and the position of the
other fractures. For example, more fractures in parallel with a small distance, can
compensate for an underestimated aperture at the same position. However, the
separate effect of the inverted parameters of the DFN even representing a similar
position is difficult to quantify.

Despite the coarse resolution of the FPM, the results in Fig. 3.5 facilitate the
following conclusions regarding the properties of the DFN: The horizontal connection
in the upper part of the investigated volume is apparent and the mean aperture
value accords approximately with the aperture from the setup of the test case. In
contrast to the previous results with a fixed hydraulic aperture (Fig. 3.4), more
DFN realizations appear in the lower part of the domain. And analogous to this,
new intersections of the fractures of the different fracture sets are found suitable.
This shows that the given tomographic data and prior information are not sufficient
for reliable reconstruction of the given DFN of test case 2. While the inversion
result comes close to the original DFN, the additional flexibility of calibrating the
hydraulic aperture offers more freedom and allows more diverse candidate solutions.
Obviously, such findings are still useful, especially when judging the suitability of
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Figure 3.6: (a) Rasterized test case 3. (b) Inversion results illustrated as FPM for
different cross sections for constant values y. Fracture probabilities below
10% are neglected.

different field data, and for deriving strategies of optimized additional field surveys
or data requirements to better constrain the DFN inversion.

3.3.3 Test case 3

In test case 3, the role of a modified tomographic setup is examined with fixed
apertures. Once again, using the base case as reference, an additional injection point
provides more tomographic information. In general, the inversion results obtained
by the rjMCMC algorithm demonstrate that it is possible to constrain the properties
of the fractures by the extra injection point (Fig. 3.3a). Figure 3.6b indicates that
the resolution of the inversion results is better in contrast to results from the base
test case presented in Fig. 3.4. Due to the additional source/receiver point in the
lower part of the investigated rock volume, the fractures in this part cause a more
direct influence on the fluid flow in comparison to the previous base case. Therefore,
the uncertainty of the inversion results is generally reduced. The fracture of fracture
set 1 with the connection to S/R 6 exhibits less variance from the mean position
compared to the initial setup given by the base case. The fracture of the second
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Figure 3.7: (a) Rasterized test case 4. (b) Inversion results illustrated as FPM pre-
sented for different cross sections for constant values y. Fracture proba-
bilities below 10% are neglected.

fracture set, which connects the two fractures of the first set, respectively the upper
and the lower part of the investigated rock volume, also deviates only slightly from
the mean position. Since S/R 6 is shifted backward (Fig. 3.3a), this setup of the test
case also enables better constraint of the y-coordinates of the center of the fractures.
This also clarifies that it would not have been possible to reduce the inversion to
a 2D problem without disregarding information on the 3D properties of the DFN.
This example demonstrates that the results for test case 1 can be used to infer
a suitable location for additional S/R points. Assuming no practical restrictions
for the insertion of S/R points, the best effect could be achieved by placing it at
positions where the resolution of the FPM is lowest.

3.3.4 Test case 4

In this case, the inversion result is obtained with a higher uncertainty compared
to the previous examples. The accuracy of the inversion results is also lower. This
originates mainly from the rotation around the x-axis according to the third fracture
set and more possible flow paths due to more fractures, which leads to more uncer-
tainty. However, a few useful conclusions about the structure of the DFN can still be
drawn from the inversion results. The FPM is shown for different cross sections in
Fig. 3.7b. The fractures of the third fracture set, readily identifiable by the straight
line, are located in the upper part of the investigated rock volume, which coincides
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with the setup of the test case (Fig. 3.3c). The FPM also reveals the appearance of
fractures in the lower part, although the expected position is more difficult to deter-
mine. Especially the y-coordinate of the fractures is hard to specify more precisely.
Obviously, there is not enough data available for reliable inversion. The resolution
of the inversion results could, however, be improved by more prior information such
as from other measurements or an additional source/receiver point in the lower part
of the investigated volume similar to the one for the second test case.

3.3.5 Comparison of the results for all four test cases

We apply around 1,500 posterior samples for each test case to generate the FPM
after discarding the burn-in iterations (approximately 40,000 depending on the initial
guess and the proposed updates), and after thinning the posterior realizations (we
keep every 100th iteration). Altogether, that is a rather conservative approach.
However, that should ensure the representation of all possible DFN realizations to
provide reasonable estimates about the uncertainties of the parameters. In general,
it is a complex process to determine if the DFN samples capture the whole posterior
distribution. We circumvent this issue by comparing and summarizing the results
from different initial guesses as starting points of the inversion. If the results are
similar or recurring, it is a good indication that the procedure can be terminated.
This procedure will become even more important when dealing with real measured
data.
Comparing the results from the base case and test case 3, an extra source/receiver

point provides sufficient data to better resolve the inversion results, respectively
reducing the uncertainty. However, this also has the effect that the algorithm is
more prone to get stuck in a local minimum during the burn-in phase if only a part
of the pressure signals is met. Therefore, test case 3 requires more burn-in iterations
than the other examples. In contrast to this test case, test case 4 demonstrates that
more available flow paths decrease the impact of a single fracture on the pressure
signals and therefore, reduce the accuracy of the results. This is comparable to the
findings with a flexible aperture value as tackled by test case 2. Here, the greater
flexibility and thus expanded mathematical decision space facilitates more suitable
DFN variants as solutions. This is as expected and thus reflects a good performance
of the rjMCMC procedure.

3.4 Conclusions and outlook

In this study, we applied a Bayesian framework and the rjMCMC sampling strategy
to flexibly calibrate the parameters of a 3D DFN to data from hydraulic tomogra-
phy and to adjust to prior information. This is accomplished by representing and
inferring, in particular, the geometrical properties of the DFN explicitly. The main
advantage of the stochastic inversion procedure is the generation of a set of possible
DFN realizations that are approximately equally likely. This facilitates being able
to distinguish between parameters or fractures that are identified with higher or
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lower certainty. The inversion results for the synthetic test cases demonstrate the
capability of characterizing the main flow path between the source/receiver points,
as this has the greatest influence on the outcome of the hydraulic tomography ex-
periment. The properties of the other fractures, whose contribution to the pressure
signals is less, are subject to higher uncertainty, that is, the resolution of the inver-
sion result is lower. Despite the higher uncertainty, the existence of such fractures
is substantiated and can be further analyzed by introducing additional information,
for instance, by complementary field investigation.
In one test case, the estimation of the hydraulic aperture is integrated in the

inversion algorithm as part of the parameter update of the DFN. However, future
research is required on the evaluation of the results, mostly concerning the correlation
of the hydraulic aperture with the position and number of fractures. Also, the
overall performance of the rjMCMC algorithm and the possibilities regarding the
evaluation of the results could be improved by defining two additional update types,
like merging nearby fractures and for the reversibility of the chain splitting fractures.
These update types could provide a better estimate of the effect of a single fracture
and, therefore, offer additional options for the evaluation.
The same inversion framework and MCMC algorithms can be applied to the char-

acterization of DFNs in combination with different forward solvers to consider either
more complex physics like coupled flow and transport processes or different sources of
measurement data, for example, data from tracer or stress-based tomography. Fur-
ther information about the DFN, for example, from geophysical measurements or
results from continuous inversion, can also be used in the flexible Bayesian framework
as prior distribution to be applied to the inversion of more complicated problems.
Mainly, three advantages are possible. First, introducing more constraints should
reduce the variance of the results. In addition, more prior knowledge about the
properties of the fractures is capable of reducing the computational costs by short-
ening the burn-in phase due to better initial guesses. Third, inversion problems that
include the update of the fracture aperture will benefit from information about the
transmissivity because of the direct connection between aperture and transmissivity.
The presented evaluation with the different synthetic test cases helps to learn

about the features and difficulties of the inversion algorithms together with the
potential integration of additional prior information. Ultimately, the results serve
as preparation for DFN inversion with measured field data.
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4 Characterization of the highly fractured
zone at the Grimsel Test Site based on
hydraulic tomography

Abstract

In this study, we infer the structural and hydraulic properties of the highly fractured
zone at the Grimsel Test Site in Switzerland using a stochastic inversion method.
The fractured rock is modeled directly as a discrete fracture network (DFN) within
an impermeable rock matrix. Crosshole transient pressure signals recorded from
constant rate injection tests at different intervals provide the basis for the (herein
presented) first field application of the inversion. The experimental setup is realized
by a multi-packer system. The geological mapping of the structures intercepted by
boreholes as well as data from previous studies that were undertaken as part of
the In situ Stimulation and Circulation (ISC) experiments facilitate the setup of
the site-dependent conceptual and forward model. The inversion results show that
two preferential flow paths between the two boreholes can be distinguished: one
is dominated by fractures with large hydraulic apertures, whereas the other path
consists mainly of fractures with a smaller aperture. The probability of fractures
linking both flow paths increases the closer we are at the second injection borehole.
These results are in accordance with the findings of other studies conducted at the
site during the ISC measurement campaign and add new insights into the highly
fractured zone at this prominent study site.

4.1 Introduction

Solid rocks, such as in crystalline and bedrock formations, typically have a compact
matrix of low permeability. Water pathways are focused on mechanical discontinu-
ities that separate individual rock blocks over multiple scales. Such fractures are
commonly described as planar structures and form a network that is hard to resolve
at field sites. This is due to the high diversity and complexity of natural fracture
networks, the difficulty involved with identifying fracture connectivities, and thus
the difficulty involved with interpreting the hydraulic regime of an entire formation
based on local fracture detection. Accordingly, fractured-aquifer characterization
represents a challenge, with a relatively high cost related to the application of spe-
cialized field investigation techniques and to gathering a sufficient data set for reliable
hydraulic description.
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4 Characterization of the highly fractured zone at the Grimsel Test Site

The general poor understanding of how groundwater flows in fractured field sites
is in contrast to the relevance of fractured environments that host elementary fresh-
water reservoirs worldwide (Chandra et al., 2019; Spencer et al., 2021; Wilske et al.,
2020). Moreover, adequate characterization of the properties of fractured field sites
concerns many subsurface engineering applications, such as the planning and op-
eration of enhanced geothermal systems (Kittilä et al., 2020; Vogler et al., 2017),
the evaluation of potential sites for a nuclear waste repositories (Follin et al., 2014;
Li et al., 2022), or the description of an excavation-induced damaged zone around
tunnels and openings (Armand et al., 2014; de La Vaissière et al., 2015).
Depending on the chosen experimental setting and the available data, different

interpretations of the hydraulic and structural properties of a fracture network are
possible. A fractured site can be inspected locally by borehole data (e.g., core map-
ping and geophysical image logs such as optical or acoustic televiewer). The depth
and orientation of structures intercepted by boreholes characterize fracture inten-
sity and prevalent fracture orientations (Armand et al., 2014; Chandra et al., 2019;
Krietsch et al., 2018; Pavičić et al., 2021; Tan et al., 2020; Yin and Chen, 2020); fur-
thermore, by fitting probability distributions to the parameters, a statistical analysis
can be conducted (Barthélémy et al., 2009; Massiot et al., 2017). Single-hole and
cross-hole flow and tracer tests are employed to infer permeability and connectivity
between different borehole intervals (Brixel et al., 2020a,b; de La Bernardie et al.,
2018; de La Vaissière et al., 2015; Follin et al., 2014; Jalali et al., 2018; Le Borgne
et al., 2006; Li et al., 2022; Tan et al., 2020), the velocity distribution (Kang et al.,
2015), or transport properties (Kittilä et al., 2019; Lee et al., 2019).
Detailed insight into the properties of flow paths between adjacent boreholes can

be gained by tomographic methods. The principle of all tomographic methods is
perturbing the investigated system (e.g., by an injection of fluid, a tracer, a thermal
anomaly, or an electric current) and recording the response at nearby receivers. In
particular, geophysical tomographic methods are applied for the characterization of
the rock properties, the identification of fractured (in particular highly fractured)
zones, and the monitoring of flow pathways (Deparis et al., 2008; Doetsch et al.,
2020; Dorn et al., 2012; Robinson et al., 2016).
This is frequently done in combination with hydrogeological methods (Chen et al.,

2006; Day-Lewis et al., 2003; Dorn et al., 2013; Giertzuch et al., 2021a,b; Voorn et al.,
2015). A comprehensive portrayal of geophysical methods for the investigation of
fractured field sites and the potential target applications is given in Day-Lewis et al.
(2017).
In contrast to geophysical exploration techniques, hydraulic, pneumatic, or tracer

tomography is based on a fluid or tracer injection at a source well. The response is
recorded at different adjacent boreholes at different depth intervals. In most cases,
the pressure signals or tracer arrival curves are evaluated by a continuous hydraulic
conductivity distribution based on an equivalent porous media (EPM) concept (Dong
et al., 2019; Illman et al., 2008, 2009; Jiang et al., 2022; Kittilä et al., 2020; Liu et al.,
2022; Poduri et al., 2021; Sharmeen et al., 2012; Tiedeman and Barrash, 2020; Yeh
and Liu, 2000; Zha et al., 2015, 2016; Zhao and Illman, 2017; Zhao et al., 2021).
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4.1 Introduction

Thus, detected high conductivity zones correspond to the locations of fractures or
faults.

Further insights into the fracture properties and improved results can be gained by
particle tracking simulations (Tiedeman and Barrash, 2020), binary priors represent-
ing either fracture or matrix (Poduri et al., 2021), or by generating synthetic models
with similar features to the field site (Zha et al., 2015). Geostatistical methods
apply a stochastic EPM, and different realizations of the subsurface are evaluated
(Blessent et al., 2011; Park et al., 2004; Wang et al., 2017). Here, different facies
represent different levels of fractured or intact rock, for which hydraulic conductivi-
ties are calibrated. In contrast to the EPM approach, the properties of the fracture
network are inferred more directly by calibrating a connectivity pattern (Fischer
et al., 2018a,c; Klepikova et al., 2020).

Our inversion approach differs from previous studies insofar as the fractured rock
is represented explicitly as a discrete fracture network (DFN) and the hydraulic and
structural parameters of the fractures are inferred directly. The great number of
unknown parameters prevents the minimization of an objective function between
simulated and observed data, resulting in a single deterministic DFN. Instead, a
stochastic approach is applied to consider the nonuniqueness of the results. This
is accomplished by generating several realizations of the fracture network that are
equally likely to be evaluated as a fracture probability map. The validity of the
approach has been demonstrated for synthetic test cases in two dimensions (2D)
(Ringel et al., 2019; Somogyvári et al., 2017) and three dimensions (3D) (Ringel
et al., 2021).

In this study, the new inversion method is applied to field data for the first time.
We use transient pressure signals from hydraulic tomography experiments conducted
as part of the In situ Stimulation and Circulation (ISC) experiments at the Grimsel
Test Site (GTS) in Switzerland. Proper evaluation and validation of a new approach
requires controlled tests, and the GTS and ISC experiments pose a well-explored site
for experimental validation. The objective of this paper is to reveal the feasibility
and capability of 3D DFN inversion using a small-scale example. This study provides
an elementary link between the theoretical development of a new inversion algorithm
based on synthetic test cases and field applications, although the small scale may
not be representative of the much larger scale of groundwater reservoirs.

The paper is structured as follows: in the first part (Section 4.2), we describe the
site and the hydraulic tomography experiments to be used for the inversion. The
implementation of the inversion is elaborated upon in the second part (Section 4.3).
We review the forward modeling procedure and the general inversion framework
developed in previous works with synthetic test cases. We then explain the site-
dependent inversion setting (i.e., the conceptual model and the prior parameter
distributions that serve as basis for a stochastic inversion procedure) and discuss
and justify the necessary constraints and assumptions. The inversion results are
interpreted and compared with findings from related ISC experiments.
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4 Characterization of the highly fractured zone at the Grimsel Test Site

Figure 4.1: (a) General overview of the ISC experimental site showing the AU (Au-
flockerungszone, i.e., excavation effects) tunnel, the VE (ventilation test)
tunnel, all boreholes, and the two types of shear zones (Krietsch et al.,
2018). (b) The volume that is investigated in this study, i.e., the zone
between the two brittle–ductile (S3) faults.

4.2 Experimental setting

4.2.1 Test site

The GTS is an underground rock laboratory located in the Aar Massif in the Swiss
Alps. The ISC experiments, which serve as the basis for this study, utilized 15 bore-
holes of 20m to 50m depth, including two injection boreholes (Inj1 and Inj2). The
other boreholes are used for stress and strain measurement as well as seismic, pres-
sure, and temperature monitoring during the hydraulic stimulation phases (Krietsch
et al., 2018). A general overview of the site showing the persistent structures and
the boreholes is given in Fig. 4.1a. A summary of the experiments conducted during
the ISC measurement campaign and their results are given in Amann et al. (2018)
and Doetsch et al. (2018).

The crystalline rock in the southern part of the GTS (ISC experiment volume) has
been moderately fractured. Ductile (S1) and brittle–ductile (S3) shear zones can be
distinguished from the investigated rock volume (Fig. 4.1a; Krietsch et al. (2018)).
The shear zones consist of a fault core, a damage zone, and unperturbed host rock
(Wenning et al., 2018). A 4m to 6m highly fractured zone with a fracture density
(P10) of around 3m−1 is present between the fault cores of the two S3 shear zones
and is displayed in Fig. 4.1b. The fractures can be distinguished in wall damage zones
adjacent to the S3 faults and linking damage zones, i.e., fractures connecting both
fault cores (Brixel et al., 2020b). Testing campaigns on the connectivity between
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4.2 Experimental setting

Table 4.1: Parameters of the packer intervals and the hydraulic tomography experi-
ments.

Interval Interval depth
[m]

Injection flow rate[
mlmin−1

] Injection time
[min]

Inj1-Int3 30− 34 60 60
Inj1-Int4 27− 29 400 30
Inj2-Int3 25− 29 60 60
Inj2-Int4 22− 24 400 12

several intervals of the injection boreholes revealed that the best response occurs
between the intervals 3 and 4 of both injection boreholes, which are located in the
aforementioned highly fractured zone. Therefore, this is not only a highly fractured
zone but also the most permeable region with conductive fractures (Jalali et al.,
2018). For this reason, the characterization of the hydraulic and structural properties
of this region (Fig. 4.1b) is the target of this study. The geological mapping of the
structures intercepted by the boreholes and tunnels provides the basis for the setup
of the conceptual model (Krietsch et al., 2018).

4.2.2 Hydraulic tomography data

The hydraulic tomography tests that are applied in this study are part of the char-
acterization phase of the ISC experiment. We utilize transient pressure signals from
constant rate injection tests in the intervals 3 and 4 of the injection boreholes Inj1
and Inj2. The different intervals are isolated by a multi-packer system. The prop-
erties of the packer intervals and the parameters of the injection are summarized in
Table 4.1. Between each injection experiment, pressure recovery was possible. The
pressure response of the fluid is measured using piezoresistive pressure transducers.
The resolution of the pressure response data is approximately 0.5 kPa. The mini-
mum principal stress is of the order of 8MPa. As the injected fluid pressure is much
below the minimum principal stress, the coupling between hydraulic and mechanical
effects can be neglected in the forward modeling of the experiment. The fluid pres-
sure is measured with ∆t = 2 s. In general, we use similar hydraulic tomography
experiments as those applied by Klepikova et al. (2020) except for a shorter injection
time (Table 4.1), which was chosen for computational reasons.

The pressure signals are shown in Fig. 4.2 for each injection interval. Due to
the stochastic inversion approach, the noisy pressure response data can be directly
utilized for the inversion without the necessity to smooth or filter the signals.
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4 Characterization of the highly fractured zone at the Grimsel Test Site

Figure 4.2: Pressure response in the different intervals provoked by a constant rate
injection applied sequentially to the intervals Inj1-Int3 (a), Inj1-Int4 (b),
Inj2-Int3 (c), and Inj2-Int4 (d), according to Table 4.1. The pressure
measured in the respective injection interval belongs to the left vertical
axes, and the pressure signals measured in the observation intervals to
the right vertical axes.

4.3 Implementation of the inversion

4.3.1 Forward modeling

Fractures are modeled as 2D objects with constant properties normal to the fracture
midplane in a 3D rock matrix that is assumed to be impermeable. The pressure
diffusion in a single fracture is described by

aρS
∂p

∂t
−∇T ·

(
aρ

kf
µ
∇T p

)
= aq, (4.1)

where a [m] is the hydraulic aperture, ρ
[
kgm−3

]
is the density of the fluid, S

[
Pa−1

]
is the specific storage, kf

[
m2
]
is the permeability, µ [Pa s] is the dynamic viscosity,

and q
[
kgm−3 s−1

]
is a source/sink term. The pressure p [Pa] consists of the static

pressure and the piezometric pressure.

58



4.3 Implementation of the inversion

Figure 4.3: Overview of the volume considered in the forward model and the bound-
ary conditions (BCs). The geometry of the S3 faults is simplified to
planes, and the fractures intercepted by the injection intervals are illus-
trated as plane ellipses.

The permeability is related to the aperture by

kf =
a2

12
, (4.2)

and the subscript T of the gradient (∇T ) denotes that it is evaluated in the fracture
plane (Berre et al., 2019; Zimmerman and Bodvarsson, 1996). In this study, flow in
the shear zones is modeled using the same approach as flow in the DFN, i.e., the
shear zones are represented as 2D objects whereby the flow parameters are given by
hydraulic aperture and specific storage (Eq. 4.1). The equations are solved numeri-
cally using the finite element method (FEM) with a conforming discretization at the
intersections of different fractures. The generation of the geometry and the mesh-
ing of the fractures and shear zones are implemented using the open-source mesh
generator Gmsh (Geuzaine and Remacle, 2009). The geometry of each structure
is created separately by the built-in geometry module of Gmsh. The fractures and
the shear zones are connected for a conforming discretization at the intersections of
different structures by the Boolean operations implemented in Gmsh.
The implemented boundary conditions are shown in Fig. 4.3 along with the S3

faults, and the fractures intercepted by the injection boreholes obtained from optical
televiewer logs (Krietsch et al., 2018).
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4 Characterization of the highly fractured zone at the Grimsel Test Site

The boundary conditions are chosen considering the fact that only a small volume of
the ISC experiment is investigated in this study. Therefore, the following boundary
conditions are applied:

� The AU tunnel is represented by a pressure boundary condition – in this case,
ambient pressure.

� The way to the VE tunnel cannot be modeled explicitly. Thus, we apply a
Robin boundary condition as a transfer boundary condition to consider the
transition of the flow and the extension of the shear zones towards the VE
tunnel (Watanabe et al., 2017).

� A no-flow boundary condition is applied normal to the planes of the fractures
and shear zones.

4.3.2 Inversion algorithm

The parameters of the DFN θ are treated as unknowns characterized by probability
density functions. Based on the Bayesian equation, the posterior density function
p (θ|d) of the parameters given the measured data d is proportional to the likelihood
function

logL (d|θ) ∝ −
Ndata∑
i=1

(di − f (θ)i)
2

2σ2
i

(4.3)

and the prior distributions p (θ) (Gelman et al., 2013). The term f (θ) refers to the
forward simulation of the hydraulic tomography experiment for the DFN realization
defined by the parameters θ. The posterior density function is evaluated by sampling
from it according to Markov chain Monte Carlo (MCMC) methods. This is an
iterative procedure whereby new samples θ′ are proposed by a proposal function
and accepted (θi = θ′) with probability

α = min

(
1,

p(θ′|d)q(θi−1|θ′)
p(θi−1|d)q(θ′|θi−1)

|J |
)

(4.4)

or rejected (θi = θi−1) (Brooks et al., 2011). The so-called reversible jump MCMC
algorithm allows one to change the number of parameters (Green, 1995). In this
study, the number of parameters is adjusted by deleting or inserting a fracture within
the prior bounds. The determinant of the Jacobian matrix |J | has to be considered
for transdimensional updates. It equals 1 for parameters sampled from the prior
without linking its value to preexisting parameters (Sambridge et al., 2006). The
parameters of the inversion problem are adjusted by proposing a new value from
a normal distribution whereby the mean of the normal distribution is given by the
current value.
The variance σ2 in the likelihood function (Eq. 4.3) accounts for different sources

of uncertainties, such as measurement errors, modeling errors, and errors of the
conceptual model. Therefore, the value of the variance is estimated separately for
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4.3 Implementation of the inversion

each pressure signal. This is implemented as part of the inversion algorithm after the
update of the parameters of the DFN. The measured data are assumed to consist of
a mean and a normally distributed error d = d+N

(
0, σ2

)
. With this assumption,

the variance can be estimated by sampling from an inverse gamma distribution

σ2|d, θ ∼ IG

(
Ndata

2
,

∑Ndata
i=1 (di − f(θ)i)

2

2

)
(4.5)

as introduced by Gelman (2006) and implemented by authors including Haario et al.
(2006) and Ringel et al. (2019). For this reason, the noisy measured data can be
directly utilized for the inversion without filtering or smoothing the signals.

In practice, one iteration of the inversion algorithm operates as follows: assuming
that the insertion of a fracture is chosen in the MCMC algorithm, the parameters
(position; length; fracture set, i.e., orientation; and hydraulic aperture) of the frac-
ture are generated from the prior functions. The chosen parameters are evaluated by
simulating the hydraulic tomography experiment with the proposed parameter set θ
(i.e., including the new fracture). The outcome of the simulation is compared to the
measured pressure signals. If the error is smaller (the likelihood, Eq. 4.3, is higher)
or similar to the previous step (without the fracture), the acceptance probability
(Eq. 4.4) is high (Ringel et al., 2021). After accepting or rejecting the proposed
parameters, the variance is updated according to Eq. 4.5.

4.3.3 Inversion constraints

The overall inversion procedure relies on several simplifications concerning param-
eters with less importance for our research target. For instance, the parameters
specifying the properties of the shear zones have to be fixed. In general, our aim is
an optimal balance between the accuracy of the generated results and the compu-
tational cost of the inversion procedure.

The underlying conceptual model comprises simplifications of the properties of
single fractures that serve as inversion constraints. We assume plane ellipses as the
fracture shape, and the length of the minor axis equals half of the length of the
major axis (i.e., the length ratio is fixed). The assumption of reducing the fracture
shape to a 2D plane is a common assumption and is justified by the derivation of
the cubic law and the large ratio between the fracture extensions and the fracture
aperture (Zimmerman and Bodvarsson, 1996). The assumption of the fracture shape
as an ellipse is reasonable because the flow is dominated by the path between the
intersections of different fractures; therefore, no sharp edges are considered for the
simulation of the flow in the DFN. The hydraulic aperture is assumed to be con-
stant over the fracture plane. Two fracture sets are defined with fixed orientations
based on the orientations of the structures intercepted by the two injection bore-
holes. Thus, the fracture set is chosen by the inversion algorithm for the fractures
between the boreholes; however, the orientation assigned to the fracture sets is a
default. Figure 4.4 shows the orientation of the structures between the S3 shear
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Figure 4.4: Orientations of the structures between the fault cores of the S3 shear
zones in the injection boreholes observed from optical televiewer logs
(Krietsch et al., 2018), shown in gray and light blue, as well as the
calculated orientations for the fracture sets applied for the conceptual
model.

zones intercepted by the two injection boreholes and the orientations defined for the
two fracture sets. The appearance and distribution of the fractures dominate the
flow. Accordingly, the surrounding rock matrix is assumed to be impermeable.

The investigated volume is limited to the volume between the two S3 shear zones
(Fig. 4.1). The shear zones consist of a fault core and a damage zone. The per-
meability increases with distance from the fault core, where the cores are almost
impermeable (Wenning et al., 2018). As the properties of the shear zones are not
the target of this study, the shape is simplified and the associated hydraulic param-
eters are fixed. The shape of the shear zones is simplified to a plane rectangle (i.e.,
a linear interpolation between the shear zones’ traces at the injection boreholes). A
constant hydraulic aperture of aSZ = 1 · 10−5m is assigned. This small value is cho-
sen based on preliminary in situ tests and the knowledge that the cores of the shear
zones are impermeable at their tunnel intersection. A higher permeability of the
shear zone at specific locations can be covered by placing fractures in the respective
area that also accounts for the spatial variability in the permeability of the shear
zone. Moreover, the specific storage value is fixed at SSZ = 1 · 10−5 Pa−1. This high
value is prescribed considering the results from cross-borehole tests (Klepikova et al.,
2020). Fractures of fracture set 1 are approximately parallel to the S3 faults. Hence,
a position close to an S3 fault also accounts for spatial changes in the permeability
and specific storage of the S3 faults.

Overall, the application of constraints and assumptions about the fracture shape
limit an exact reproduction of the structural properties of the tested rock mass.
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Table 4.2: Uniform prior distributions defined by a minimum and maximum possible
value.

Minimum Maximum

x (easting + 667 400) [m] 45 70
y (northing + 158 800) [m] 102 108
z (height + 1 700) [m] 14 19
Fracture length [m] 0.4 7
Hydraulic aperture [m] 1 · 10−5 1 · 10−3

Specific storage
[
Pa−1

]
5 · 10−10 1 · 10−6

All spatial values refer to the position of the midpoint of the ellipse.

However, those parameters that have a major influence on the flow in the DFN are
adjusted by the inversion algorithm within prescribed bounds. These are, in partic-
ular, the position and the hydraulic aperture of fractures. In contrast, parameters
with minor effects on the flow behavior are fixed (e.g., the exact fracture orientation
or the length ratio).

4.3.4 Prior distributions

The parameters to be inferred are the number of fractures, the position of the frac-
tures, the fracture lengths, the respective hydraulic aperture for each fracture, and
the specific storage coefficient that applies to the whole DFN. The specific storage
S (Eq. 4.1) is given by the compressibility of water in theory (Freeze and Cherry,
1979). However, some fractures are only partially open; thus, due to the roughness
of the surface, the specific storage can be increased compared with the theoretical
value (Jalali et al., 2018). Moreover, the hydraulic aperture is generally smaller than
the actual aperture (Berre et al., 2019). The specific storage is assumed to be valid
for the whole DFN because two variable hydraulic parameters for each fracture are
not feasible for the inversion algorithm. Accordingly, five different update types are
implemented to be applied sequentially: the transdimensional update changes the
number of parameters by either inserting a new fracture or deleting a fracture; the
other update types keep the number of parameters constant but adjust position,
length, hydraulic aperture, or the specific storage. For the update of the position,
length, and hydraulic aperture, one fracture is chosen randomly, and a new value is
proposed by a random perturbation of the current value.
Uniform prior distributions are applied, i.e., a parameter is specified by a con-

stant probability between minimum and maximum possible values that are given
in Table 4.2. The spatial priors are derived in general from the position of frac-
tures intersecting the injection boreholes. The maximum value in the x direction
corresponds to the distance to the AU tunnel to apply the boundary condition.
The prior for the north direction is given such that the fractures are located be-
tween the cores of the S3 shear zones. The elevation of fractures is expected to
have a minor influence on the flow between the two boreholes, and a broader pos-
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sible range for the elevation would be less resolved. In the following, x refers to
easting + 667 400m, y to northing + 158 800m, and z to height + 1 700m (Fig. 4.1).
The minimum value for the fracture length is given by the borehole diameter, and
the maximum possible value corresponds to the distance between the shear zones.
Fractures proposed during iterative inversion which intersect with the fault cores
of the shear zones are reduced to the part of the fracture within the investigated
volume (Figs. 4.1b, 4.3). The prior range for the aperture is approximated from the
results of single- and cross-borehole tests (Brixel et al., 2020a,b; Jalali et al., 2018).
The minimum specific storage value is given by the compressibility of water (Freeze
and Cherry, 1979), whereas the maximum value is based on cross-borehole injection
tests (Klepikova et al., 2020). Both prior distributions for the hydraulic parameters
cause the flow preferentially in the DFN rather than in the shear zones, due to a
smaller specific storage and a larger hydraulic aperture of the fractures.

4.4 Results

4.4.1 Processing of the results

Overall, 27,000 DFN realizations are considered to be posterior DFN realizations
because they minimize the error and fulfill the prior conditions. DFN realizations
from the initial 500 iterations are discarded as so-called “burn-in” iterations due to
a higher error. The computation of the inversion was executed by an Intel Core
i9 workstation with 10 cores and 128GB RAM and took about one week. The
posterior realizations are approximately equally likely. They reflect the uncertainty
of the inversion results in contrast to a unique solution that would be obtained by a
deterministic approach. To reduce the autocorrelation of the results, we keep every
100th realization for further processing, which is called “thinning” (Brooks et al.,
2011). Using the stochastic approach applied here, the fit between the measured and
simulated pressure signals of the hydraulic tomography experiment is evaluated by
the posterior and prediction uncertainty. The posterior limits are calculated based on
the simulated pressure signals of the posterior DFN realizations which correspond to
the uncertainty of the inversion method. The uncertainty related to predicting new
observations is a measure of the overall error as well as of conceptual simplifications,
as it also considers the estimated variance (Eq. 4.5). The DFN realizations are
evaluated using a fracture probability map (FPM) over the investigated volume.
For this, the inspected rock volume is divided into raster elements. Each element
records whether the element is part of a fracture. By taking the element-wise mean
over all of the posterior DFN realizations, the probability that each raster element is
part of a fracture is derived. The evaluation of the FPM summarizes the estimated
position and length of the fractures (i.e., those parameters with major influence on
the flow). The hydraulic aperture is evaluated on the same raster elements. If a
raster element is part of a DFN realization, the respective aperture is taken from
the DFN. Thus, the mean hydraulic aperture can be evaluated for each element.
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Figure 4.5: Comparison of the observed pressure response with the simulation of the
hydraulic tomography experiment for the posterior DFN realizations for
injection in the intervals Inj1–Int3 (a), Inj1–Int4 (b), Inj2–Int3 (c), and
Inj2–Int4 (d), according to Table 4.1. For visual clarity, the observed
pressure signals have been smoothed.

4.4.2 Evaluation of the data

In the first step, the measured and simulated pressure signals are compared to assess
the quality of the posterior realizations. Figure 4.5 shows the median fit and the
95% limits of the forward simulation of the posterior DFN realizations and the 95%
limits of the prediction uncertainty along with the observed data.

Figure 4.5 demonstrates that the general shape and trend of the measured signals
are reproduced by the simulated pressure curves checking the median fit and the
95% posterior limits. This is especially the case for the response in interval 4 of
both boreholes. The weaker fit of some signals in interval 3 indicates effects not cov-
ered by the inversion approach or forward simulations, such as deviations from the
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4 Characterization of the highly fractured zone at the Grimsel Test Site

assumed fracture shape or fracture orientations. For a given DFN realization, the
actual measured pressure signals are predicted. Due to measurement noise and sim-
plifications concerning the DFN model, the 95% limits of the prediction uncertainty
are wider than for the posterior uncertainty.

4.4.3 Evaluation of the DFN realizations

The FPM and the mean hydraulic aperture are shown for different cross sections (z)
in Fig. 4.6. The fractures intercepted by the injection intervals and the shear zones
are fixed; therefore, they appear with a probability of 100%. Their orientation, as
derived from the optical televiewer logs, is assigned to these fractures; thus, the
orientation is in the same range as the orientation defined for the fracture set, but
the exact values vary.

Overall, two different connections with different levels of permeability are present.
A flow path dominated by fractures with a large hydraulic aperture exists between in-
jection interval 4 of both boreholes (Inj1–Int4 and Inj2–Int4). The fractures provid-
ing this connection are visible with a high probability in the cross sections z = 16m
and mainly z = 17m. In general, a good respective permeable connection between
two intervals is possible with a large hydraulic aperture of the fractures, with long
fractures, with a long intersection length between different fractures, or with a cor-
relation of these factors. In contrast, a connection with fractures with smaller hy-
draulic apertures appears between injection interval 3 of both boreholes (Inj1–Int3
and Inj2–Int3) and Inj2–Int4. This flow path is present with an average probability
of approximately 50% primarily in the cross section z = 15m. Fractures linking
both flow paths appear more likely the closer the location is to injection borehole 2
(i.e., further east). The described behavior is also reflected in the measured data.
All responses provoked by the injection in interval 4 of both boreholes are more
distinct than for the injection in the intervals 3. Although a maximum hydraulic
aperture of 10−3m is enabled by the prior distribution, only a few fractures with a
small probability appear with an aperture close to the maximum possible value, as
visible in Fig. 4.6, at a depth of z = 17m. The specific storage coefficient converges
to a mean value of S = 7.4 · 10−7 Pa−1. Only a few updates were possible that oc-
curred mainly during the burn-in iterations. Therefore, this value is interpreted as
the result of an optimization (i.e., as the averaged specific storage to be applied for
the whole DFN). The estimated specific storage is greater than the theoretical value
that functioned as the minimum value of the prior distribution of the specific storage
(Table 4.2). This considers a delay in the response that is not related exclusively to
the compressibility of water (Freeze and Cherry, 1979) but also to, for example, the
surface roughness or fractures that are only partially open. Multiplied by the max-
imum possible aperture (Table 4.2), the inferred value is well within the storativity
range calculated from cross-borehole injection tests (Klepikova et al., 2020). Sev-
eral fractures of fracture set 1 appear close to the S3.1 shear zone, indicating either
permeable fractures close to the shear zone or a higher permeability of the shear
zone in this region than the assigned value. This demonstrates that the prescribed
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4.4 Results

Figure 4.6: Evaluation of the results from the fracture probability map (a) and the
mean hydraulic aperture (b) for different cross sections (z). The bound-
aries of the investigated volume are indicated by the cuboid in the lower
left.

assumptions with respect to the hydraulic properties of the shear zone do not induce
crucial conceptual constraints in the inversion, but a locally high permeability of a
shear zone is indicated by a locally high fracture probability.
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4 Characterization of the highly fractured zone at the Grimsel Test Site

Although the volume east of injection borehole 2 towards the AU tunnel is part of
the inversion (i.e., fractures can be inserted or moved in this volume), the resolution
of the results is low because various DFN realizations (i.e., fracture positions) are
possible. Only the volume between the two injection boreholes can be evaluated
with a sufficient resolution.

4.4.4 Comparison with other studies

The inferred flow paths consist of fractures with a high or rather low permeability,
which is in accordance with the results of Klepikova et al. (2020). We also compare
our results with the structures intersected by other boreholes drilled after conducting
the experiments evaluated in this study. While this inversion approach is capable of
identifying fractures that are hydraulically relevant, geophysical methods (such as
optical televiewer logs) report all structures intercepted by boreholes independent of
their permeability. The boreholes PRP1 and FBS1 are partially located within the
prior range defined for this study. The 23–25m depth interval for PRP1 has been
identified as the interval with the highest transmissivity by Brixel et al. (2020a) and
Kittilä et al. (2019). In 95% of the posterior DFN realizations, at least one fracture
is present in this interval. Fractures that intersect with the interval between the
S3 faults of the FBS1 borehole are present in about 45% of the posterior DFN
realizations. This supports the fact that crucial hydraulic features of the DFN can
be identified by the presented inversion approach. Still, even if such successful local
validation is possible, there are no other independent measurements available to
confirm the validity of the inverted complete DFN structure and its probability.
Geophysical measurements, such as seismic data (Doetsch et al., 2020) or ground-
penetrating radar (Giertzuch et al., 2021b), were able to characterize the ISC volume
on a decameter scale and identify the persistent structures and the highly fractured
zone; however, they could not delineate or specify the properties of single flow paths.

4.5 Conclusions

In this study, we characterized the highly fractured zone at the GTS based on tran-
sient pressure signals from hydraulic tomography experiments using a new stochastic
inversion method. A stochastic approach was applied to assess the uncertainty of
the measured data and the nonuniqueness of the results. The fractured rock is rep-
resented directly as a DFN model in the forward simulations. Several posterior DFN
realizations that are approximately equally likely are evaluated, and two preferen-
tial flow paths dominated by a large or small hydraulic aperture are successfully
identified. The presented method relies on some investigations that must be applied
prior to the inversion (such as the mapping of structures intercepted by boreholes)
and benefits from single- and cross-hole permeability tests for the definition of the
hydraulic aperture range. If it is possible to further narrow down the prior range
of the hydraulic parameters, the specific storage can be inferred separately for each
fracture, instead of computing only a mean value for the whole DFN. In general,
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improved results and more insights into the fractured rock can be gained using the
same inversion method but with more pressure signals from additional intervals and
boreholes.
Future research is necessary on the generally most suitable definition of prior and

proposal distributions, which are elementary for robust inversion and for deriving
meaningful results. The efficiency of the MCMC sampling can be improved signifi-
cantly by implementing more elaborate prior or proposal distributions, for example,
relying on soft information and site-specific expertise. A further option is utilizing
continuous inversion results (such as continuous hydraulic conductivity distribu-
tions) or geophysical measurements for highlighting a priori regions with a higher
probability of the insertion of fractures or to define zones that are likely connected
by fractures to reduce the number of necessary inversion iterations (Dong et al.,
2019).
The introduced inversion framework can be applied in a highly flexible way for the

characterization of different fractured sites by adapting the site-dependent param-
eters to meet the conditions of the tomography experiment at each site. Moreover,
different types and sources of measured data can be processed for the inversion (such
as tracer or in situ stress data), provided that a forward model is available that al-
lows for the flexible update of DFN parameters. The workflow for the setup of the
inversion problem is similar. The basis is the properties of the fractures intercepted
by the boreholes, i.e., their position and orientation, obtained from optical or acous-
tic televiewer logs or outcrops. This knowledge is utilized for the prior distributions
on the spatial parameters and for the specification of fracture sets. The prior distri-
butions on the hydraulic parameters are based on cross-hole flow tests in this study.
This can also be done by the evaluation of the hydraulic tomography experiments as
a continuous hydraulic conductivity and specific storage tomogram. As the defini-
tion of priors and constraints delineates the range of feasible DFN realizations, this
step has to be done carefully. However, the presented Bayesian framework allows the
combination of multiple and diverse hard and soft data, which often exist in addition
to hydraulic test data that are used to guide the inversion. As demonstrated here,
overly tight constraints may be avoided by uniform prior distributions with large
value ranges at the expense of a higher computational cost for the inversion. In prac-
tice, the amount of information describing the fractured rock is determined mainly
by the hydraulic tomography data (i.e., by the number of intervals and boreholes).
The present study paves the way towards the applicability of the discrete inversion

approach on a larger scale. The main issue will be to balance the degree of field test-
ing with the desired fracture resolution and the associated computational cost. One
possible direction is explicitly implementing only large conductive fractures. The
role of smaller fractures with a lower permeability could be represented by calibrat-
ing a background permeability within the discrete fracture matrix approach (Berre
et al., 2019). Another appealing direction is the representation of scale-dependent
fracture sets by their statistical properties following a hierarchical parameterization
(Ma et al., 2020).
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5.1 Summary and conclusions

Fractured rocks cause a heterogeneous flow field such that the fracture properties
cannot be modeled or inferred with a sufficient resolution by a continuous perme-
ability and specific storage distribution. This motivates the application of a discrete
representation of the fractures. A novel 3D discrete inversion approach was devel-
oped in this study and applied to the reconstruction of a 3D fractured field site for
the first time. The chosen discrete approach comprises three elements, which are the
explicit representation of fractures as DFN in the forward simulations, the inversion
of the structural and hydraulic parameters of the DFN, and the direct evaluation
of the DFN parameters. The main hindrance of representing the fractures directly
stems from the unknown number of fractures. This was overcome by utilizing the re-
versible jump MCMC method that also estimates the number of parameters. In this
case, the number of fractures was adapted by the inversion algorithm. In addition to
the so-called transdimensional update, a parameter update was implemented that
adjusts the structural and hydraulic properties of the DFN realizations. This com-
bination is a highly flexible approach for characterizing the parameters of a DFN.
Due to the stochastic nature of MCMC methods, uncertainties in the data and the
forward modeling are considered.
This thesis demonstrated the field applicability of this new inversion method for

a fractured site on a dekameter-scale. The field application of the new inversion
approach was prepared by evaluating several synthetic test cases in 2D and 3D.
First, the results from hydraulic and tracer tomography applied to a 2D test case
were compared. Both approaches were able to identify fractured and non-fractured
areas and the main characteristics of the DFN. For this test case, the pressure signals
provided a better resolution of the structural properties of the fractures than the
tracer breakthrough curves. In addition to the inversion of the DFN structure, the
measurement noise and errors in the conceptual model were considered by variance
estimation which led to a more realistic setup of the inversion problem for the field
application.
In the next step, the inversion method was extended to 3D problems. For that

purpose, a fast and robust forward model for the simulation of the transient pres-
sure distribution in a 3D DFN was developed. Inversion results from different 3D
synthetic test cases were evaluated to prove the suitability of the method in gen-
eral. The inverted fracture probability maps accorded well with the setup of the
synthetic test cases. The resolution of the fracture probability varied according to
the setup of the tomography experiment and the parameter set that is considered
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by the inversion algorithm.
Based on the successful work with synthetic test cases, the inversion method was

applied to field data, in this case, to the inversion of the structural and hydraulic
properties of the highly fractured zone at the Grimsel Test Site (GTS) based on hy-
draulic tomography. The results revealed two flow paths, whereby one is dominated
by fractures with a large hydraulic aperture and the other by fractures with a small
hydraulic aperture. The findings coincide with other studies from the In situ Stimu-
lation and Circulation (ISC) experiments and add new information about the highly
fractured zone due to the explicit representation of the fractured rock. Overall, a
gap was able to be closed by this thesis between continuous state-of-the-art inversion
methods and the specific requirements of inferring the properties of fractured rocks.
The first field application of the new inversion method on a dekameter-scale

showed promising results and motivates the implementation of the method to the
characterization of further fractured sites in rocks with a low-permeability matrix.
Thereby, the same inversion concept, i.e., the direct representation of the fractures
and the combination of a transdimensional update and a parameter update, can
be easily generalized to other sites. The conceptual model, the prior distributions,
and the forward model are site-dependent properties, therefore, they have to be cus-
tomized to match the local conditions. The conceptual model and the prior distri-
butions can be defined based on the known fracture properties. The site-dependent
setup of the forward model is essential for a reliable application of the inversion since
the pressure signals of the simulated hydraulic tomography experiment are compared
with the measured data in the likelihood function of the Bayesian equation. There-
fore, the assumptions and simplifications of the forward model have to be rechecked
carefully for each site. The location of tunnels or a connection to the surface have
to be represented in the boundary conditions as ambient pressure by a Dirichlet
boundary condition or inflow/outflow by a Neumann boundary condition. Optional
source/sink terms or a Robin boundary condition can simulate the extension of the
flow to parts of the rock that are not included in the inversion problem.
Several preliminary studies and a general understanding of the flow characteris-

tics at the site are necessary for a successful implementation of the discrete inversion
method. The general properties of the fractures have to be characterized by out-
crops or by optical or acoustic televiewer logs for the setup of the conceptual model.
The prior distributions of the coordinates of the fractures define the scale of the
investigated domain. Therefore, a suitable domain should be specified based on
the local geology of the site, such as highly or sparsely fractured regions or shear
zones. This information can be obtained, e.g., from seismic data or ground pen-
etrating radar. Single- and cross-hole flow tests provide the prior distribution for
the hydraulic parameters. Despite the effort that is necessary for the preparatory
work and the required data, the discrete inversion provides useful insights about the
properties of the fracture network between boreholes and preferential flow paths,
especially in rocks with a low-permeability matrix.
In addition to a more detailed resolution of the fracture properties by the inver-

sion results, another advantage of the explicit representation of the fractured rock
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is the further evaluation and processing of the inversion results depending on the
planned usage of the investigated site. Several DFN realizations obtained from the
inversion algorithm can be utilized for different high-fidelity simulations concern-
ing, e.g., geothermal systems or disposal sites. Simulations of heat extraction or
hydrofracturing are a possibility to improve the design and operation of enhanced
geothermal systems. Simulations of contaminant transport through a DFN can help
to assess the environmental safety of a planned disposal site.

5.2 Outlook

Considering the findings from the synthetic test cases and the first field application,
various next steps are possible for expanding and transferring the presented discrete
inversion method, such as assessing and extending the potential of the approach and
reducing the computational costs.

In general, the capabilities, the advantages, and disadvantages of the inversion
method have to be examined further which can be achieved by testing the approach
over different scales and applications:

� The continuation of the parameter study with synthetic test cases (Ringel
et al., 2019, 2021; Somogyvári et al., 2017) allows to investigate the effects
of varying DFN parameters, such as the fracture density (Dong et al., 2019),
and the influence of deviations from the conceptual fracture model, which
are variations of the assumed fracture shape or a variance in the fracture
orientations. Their impact can be examined by additional synthetic test cases
in 2D and 3D. Quantifying these effects makes the inversion results of field
sites more reliable.

� Laboratory experiments with rock blocks or 3D printed fracture networks have
the advantage of known fracture locations similar to synthetic tests but also
provide more realistic features such as a surface roughness (Brauchler et al.,
2013a; Sharmeen et al., 2012; Zhao et al., 2021). Therefore, laboratory exper-
iments bridge the gap between synthetic experiments and field applications.

� On a field scale, the application of the discrete inversion provides more in-
formation about the properties of fracture networks compared to continuous
inversion approaches. This can be applied to infer and evaluate the features of
naturally fractured rocks, the characteristics of an excavation-induced fracture
network (Armand et al., 2014; de La Vaissière et al., 2015), and the effects of
hydraulic stimulation on fractured rocks (Keilegavlen et al., 2020; Kittilä et al.,
2020).

� The inversion results and hydraulic parameters of DFNs over different scales
(synthetic, laboratory, and field scale) can be summarized and compared by
developing dimensionless numbers, in addition to the Reynolds number.
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Specific considerations are necessary for the application of the DFN inversion on a
hundred-meter to kilometer scale. The approach has to be implemented carefully to
find an optimum between the computational costs of the inversion and the accuracy
of the resolution of the fracture properties:

� To reduce the computational costs, the effects of large and small fractures
have to be treated differently in the forward simulation. Large fractures with
a greater impact on the flow can be implemented directly by their geomet-
ric and hydraulic parameters, while smaller fractures are included following
their statistical properties which are the fracture density and a fracture length
distribution (Ma et al., 2020). The hydraulic effects of the small fractures
are considered by assigning a matrix permeability according to the discrete
fracture matrix method (Berre et al., 2019).

� The setup of the conceptual model, the simplifications, and assumptions re-
quire more consideration concerning their validity over the whole domain.
Therefore, more preparatory studies are necessary.

� Precise knowledge is required for the setup of the prior distributions to avoid
the computational time for unrealistic DFNs proposed by the inversion algo-
rithm. This is especially the case for the differentiation between large and
small fractures which has to be incorporated by the prior distribution of the
fracture length.

A major drawback is the computational cost of the method. Due to the stochastic
approach, more than 10, 000 iterations are required in most cases. This can be
improved by reducing either the calculation time of each iteration or the number of
necessary iterations:

� The evaluation of the forward model has the main impact on the computation
time of each iteration. Therefore, the forward model has to be implemented
as a fast and robust simulation code in general. Depending on the applica-
tion, a multifidelity simulation approach, i.e., the combination of low-fidelity
and high-fidelity forward models, can improve the computational efficiency
(O’Malley et al., 2018).

� A more specified implementation of prior distributions offers a potential for
decreasing the computational efforts by reducing the required number of iter-
ations (Poduri et al., 2021; Zha et al., 2017).

� Hydraulic conductivity tomograms and the variance of the results as obtained
from the successive linear estimator approach (Zha et al., 2015; Zhu and Yeh,
2005) can be applied directly as element-wise Gaussian prior distribution in
the Bayesian equation and, thereby, in the update probability.

� Results from continuous approaches or geophysical inversion results can be
utilized to define regions with a higher or lower probability for inserting a
fracture which leads to more efficient proposal functions.
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� Geostatistical methods can be applied to facilitate the efficient generation of
fracture networks considering realistic geological formations (Blessent et al.,
2011; Liu et al., 2009; Park et al., 2004; Shakiba and Doulati Ardejani, 2022;
Wang et al., 2017). Thereby, the step of proposing a DFN update can be
improved.

So far, the method is limited to data from hydraulic tomography in 3D and rocks
with a matrix that can be assumed impermeable:

� Tracer tomography experiments have a few advantages compared to hydraulic
tomography since the tracer breakthrough curves can be more easily detected
and the noise variance is usually smaller (Ringel et al., 2019; Somogyvári
et al., 2017). The inversion problem can be set up in the same way, although
the forward simulation is generally more difficult due to possible numerical
instabilities because of the convection term in the partial differential equation
(Hyman et al., 2015).

� The focus of this study was on fractures within an impermeable rock matrix.
Fractured porous media has a non-negligible matrix permeability which has
to be estimated by the inversion together with the properties of the fracture
network (Berre et al., 2019; Keilegavlen et al., 2020). For that purpose, the
most important issues are robust prior distributions for the hydraulic proper-
ties of fracture and matrix, such that the correlation between both effects is
minimal.

� For the application of heat as tracer, the convective transport of heat in the
fractures has to be considered by the forward model. Also, due to the diffusion
of heat in the rock matrix, the conduction in the matrix cannot be neglected
which makes the inversion problem computationally expansive.

Overall, the discrete inversion method is a valuable tool with various potential ap-
plications and different starting points for expanding the approach.
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Appendix

A.1 Supporting information for Chapter 3

Further inversion results are given as supporting information to Chapter 3. The
main characteristics of the discrete fracture network (DFN) can be evaluated in
the most flexible way by the reversible jump Markov chain Monte Carlo (rjMCMC)
sampling strategy. For comparison, inversion methods that require a fixed number
of parameters are also applied here, which may be more suitable when the number
of fractures is initially known and thus can be kept constant during the inversion.
Moreover, when dealing with a given number of fractures, the effects of each fracture
on the flow can be better distinguished and thus the evaluation of the results fea-
tures additional insights that cannot be revealed easily when applying the rjMCMC.
Therefore, they are less likely to be useful in practice and serve mainly as additional
information and confirmation of the results presented in the paper.
In this study, the so-called t-walk (traverse or thoughtful walk) MCMC and the

delayed rejection adaptive Metropolis algorithm (DRAM) are chosen in addition to
the rjMCMC algorithm. The t-walk MCMC (Christen and Fox, 2010) is a black box
algorithm that requires almost no tuning. It is designed to be invariant to scale and
approximately invariant to affine transformations of the state space, and therefore, it
is appropriate to sample from arbitrary continuous distributions. This is achieved by
four different randomly chosen proposals. The walk move allows for efficiently mixed
samples of distributions with weak correlations, while the traverse move is developed
for strong parameter correlations that may change through the state space. The so-
called hop and blow moves are necessary to guarantee irreducibility of the chain for
arbitrary target distributions, but are chosen with lower probability. The DRAM
algorithm (Haario et al., 2006) improves the efficiency of the sampling by combining
the delayed rejection Metropolis-Hastings algorithm (Mira, 2001) and the adaption
of the proposal covariance matrix based on previous samples (Haario et al., 2001).
The delayed rejection algorithm provides samples efficiently to learn the structure of
the posterior pdf as the basis for the adaption of the proposal covariance matrix of
this structure. Haario et al. (2006) proofed the ergodicity of DRAM and therefore,
the proper simulation of the posterior distribution.
Inversion methods for a given number of fractures are applicable, if the number

of fractures is known in advance or from the rjMCMC results. In this case, various
t-walk chains function as pilot runs to converge to the posterior distribution and to
detect local modes in the posterior. Here, again, random starting points are sampled
from the prior distribution. This can be used as a starting point for the DRAM
algorithm and as a rough estimate of the proposal covariance to be adapted with
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the samples. Using the t-walk MCMC to get close to the posterior distribution,
is more robust than DRAM, since it requires almost no tuning of the inversion
parameters and DRAM is affected more by local minima. MCMC algorithms with a
fixed number of fractures provide additional options for the evaluation of the results.
Here, the marginal distribution of each parameter can be evaluated by presenting
histograms or calculating, for instance, the sample mean and quantiles. The results
can be further analyzed by estimating the correlation between parameters, i.e., by
2D scatter plots.
In this base case (Chapter 3), the approximate number of fractures can be eval-

uated using the FPM as the basis for additionally applying the MCMC inversion
algorithms that require the number of parameters to be given. Figure A.1 shows
the inversion results by means of calculating the quantiles and checking the range
of each fracture parameter. Since the fractures can be distinguished and analyzed
individually (Fig. A.1), this provides additional insights about the DFN properties
and their correlation. Here, again, it becomes apparent that parameter values of
features with a direct influence on the flow path between the injection boreholes are
more constrained (x, z, and length of fracture 1 and z and length of fracture 2 in
Fig. A.1a, c, and d). Here, little deviations of the parameters lead to an increased
error between the simulated and the observed pressure signals. The quantiles for the
evaluation of the y-coordinate (Fig. A.1b) indicate the difficulty of estimating this
parameter as well, due to the lack of information in the direction for this specific
test case configuration and, in particular, of the injection points.

Evaluating correlations between parameters provides more insights about the fac-
tors with the main influence on the inversion results. The correlation between the
length and the z-coordinate of fracture 4 in Fig. A.2b clarifies that the intersection
length with the fracture providing the horizontal connection has the most important
effect on the pressure signals. Therefore, moving the position of the center point of
the fracture down, requires an increased fracture length for a connection to S/R 2
and the main DFN. This necessitates a correlation between the parameters, which is
illustrated in Fig. A.2b. The upper value of the z-coordinate is limited by injection
point 1, since the inversion demonstrated correctly that there is no direct connec-
tion between S/R 1 and 2. A similar intersection length can be provided by a few
combinations of the fracture parameters z4 and l4. Therefore, more possible com-
binations of these parameters are accepted as DFN realizations. The significance
of the intersection length also explains why so many values are permitted for the
y-coordinate of each fracture.
The outcome and the interpretation regarding the possible properties of each

DFN parameter can be accomplished either by inversion approaches with a variable
or a fixed number of fractures. The results of both algorithms agree, although, the
rjMCMC results are subject to a higher degree of uncertainty, since the setup of the
inversion parameters is less constrained. The main advantage of MCMC algorithms
with a constant number of parameters are more possibilities for the evaluation of the
results, which allows for more insights into the parameters and their correlations.

78



A.1 Supporting information for Chapter 3

Figure A.1: Range and quantiles of the fracture parameters x (a), y (b), z (c), and
fracture length (d) as results from the inversion with a fixed number of
fractures for the base test case compared to the value used to set up the
test case (blue dot). The fractures denoted as fracture 1 and 2 belong
to fracture set 1. Fracture 1 is defined as the fracture with the greater
z-coordinate and fracture 3 is defined as the fracture with the greater
x-coordinate.
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Figure A.2: Histogram of the inversion results of the z-coordinate (a) and the length
(c) of fracture 4 and correlation between both parameters (b).
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Ringel, L. M., Somogyvári, M., Jalali, M., & Bayer, P. (2019). Comparison
of Hydraulic and Tracer Tomography for Discrete Fracture Network Inversion.
Geosciences, 9 (6), 274. https://doi.org/10.3390/geosciences9060274.

Conference contributions

Ringel, L. M., Jalali M., & Bayer, P. (2022). Estimation of hydraulic and
geometrical characteristics of fractured geothermal reservoirs using in-situ to-
mographic methods, European Geothermal Congress 2022, Berlin, Germany,
17–21 October 2022.

Ringel, L. M., Jalali, M., & Bayer, P. (2022). Inversion of Hydraulic To-
mography Data from the Grimsel Test Site with a Discrete Fracture Network
Model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022.

Ringel, L. M., Somogyvari, M., Jalali, M. & Bayer, P.(2020). Characteriza-
tion of discrete fracture networks by invasive tomographic methods, Compu-
tational Methods in Water Resources, virtual, 14–17 December 2020.

Ringel, L. M., Jalali, M. & Bayer, P. (2020). Inversion of three-dimensional
discrete fracture networks using hydraulic tomography, AGU Fall Meeting
2020, virtual, 1–17 December 2020.

Nitzsche, J., Ringel, L. M., Kaiser, C., Hennings, H. (2019). Fluid-mode
flutter in plane transonic flows, International Forum on Aeroleasticity and
Structural Dynamics, Savannah, USA, 10–13 June, 2019.
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