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A B S T R A C T   

In the context of a continuously increasing human population that needs to be fed, with environmental pro
tection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the 
natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent 
advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two con
trasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three 
root-related, and two reflectance-related traits were measured weekly under each treatment. Subsequently, the 
population was genetically analysed using a total of 13,060 polymorphic haplotypes and singular SNPs for a 
genome-wide association study (GWAS). In total, we detected 543 quantitative trait loci (QTL) across all time 
points and traits, which were pooled into 42 stable QTL (sQTL; present in at least three of the six weeks). Besides 
Rht-B1 and Rht-D1, candidate genes playing a role in gibberellic acid-regulated growth and nitrate transporter 
genes from the NPF gene family, like NRT 1.1, were linked to sQTL. Two novel sQTL on chromosomes 5 A and 6D 
showed pleiotropic effects on several traits. The high number of N-specific sQTL indicates that selection for UPE 
is useful specifically under N-limited conditions.   

1. Introduction 

Wheat is one of the most important crops for feeding the world’s 
population. Worldwide, 19% of calories and 20% of protein intake in the 
human diet came from wheat in 2009 (Reynolds et al., 2012, p. 6). 

Nitrogen (N) is a key actor in plant metabolism and often a limiting 
factor for growth, yield and quality formation in winter wheat (Haw
kesford et al., 2012). Globally, 109,905,248 tons of nutrient-N were 
fertilized in agriculture in 2017 (on average 69.71 kg N/ha) and syn
thetic N-fertilizers and manure emitted 895.571 Gigagram CO2 equiv
alents (Food and Agriculture Organization of the United Nations, 1997). 
In addition to emitting greenhouse gases (Bouwman et al., 2002; 
Davidson, 2009), intensive N fertilization may exert negative effects on 

biodiversity (Clark and Tilman, 2008; Gough et al., 2000; Suding et al., 
2005) and may lead to the degradation of land and water (Diaz and 
Rosenberg, 2008; Guo et al., 2010). 

Efficient use of N fertilizers by plants would counteract these effects. 
In this context, the definition of nitrogen use efficiency (NUE) estab
lished by Moll et al. (1982) can be applied in breeding. NUE is defined as 
produced grain dry matter yield per unit of N available in the soil, which 
is composed of N uptake efficiency (plant N uptake/N available N; UPE) 
and N utilization efficiency (grain dry matter yield/N plant uptake; 
UTE). Research has not yet reached a consensus on whether UPE 
(Baresel et al., 2008; Le Gouis et al., 2000; Liang et al., 2014) or UTE 
(Barraclough et al., 2010) has a greater influence on NUE under low N 
availability. Both parameters are subject to environmental influences 
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(Baresel et al., 2008; Guttieri et al., 2017). 
Unfortunately, NUE in cereals is only about 33% worldwide (Raun 

and Johnson, 1999), though high-yielding sites can achieve higher NUE 
(Foulkes et al., 2009; Liang et al., 2014). Therefore, in addition to an 
effective N management strategy (Foulkes et al., 2009), breeding for 
increased NUE in wheat is an elementary goal in plant breeding to 
sustainably feed the growing world population (Hirel et al., 2007). 
Multiple studies showed that there is genetic variation for NUE in winter 
wheat (Barraclough et al., 2010; Kichey et al., 2007; Le Gouis et al., 
2000) and thus there is potential for NUE improvement through 
breeding. 

van Sanford and MacKown (1987) and Kichey et al. (2007) found 
that about 83% and 71.2%, respectively, of the nitrogen in the 
above-ground biomass at maturity was taken up by the plant before 
anthesis. Thus, besides post anthesis N uptake, the nitrogen uptake ca
pacity of plants at the earlier stage plays an important role in yield and 
quality formation. 

Plant characteristics that can contribute to the improvement of the 
NUE are, for instance, increased root density at depth to access water 
and N from deeper soil layers (King et al., 2003), enhanced root 
longevity post-anthesis and penetration ability of the roots (Bengough 
et al., 2006), decreased specific leaf N content (Semenov et al., 2007) 
and increased post-anthesis N uptake by plants (Triboi et al., 2006). 

On the genetic level, NUE was found to be controlled by nitrate 
transporters of the two gene families NRT1 (low-affinity transporter; 
LAT) and NRT2 (high-affinity transporter; HAT) (Cai et al., 2008; 
Fraisier et al., 2000; Vidmar et al., 2000; Yin et al., 2007), which are also 
involved in nitrate-regulated root development (Garnett et al., 2009). 
Further genes described for affecting NUE are GS1 (cytosol) and GS2 
(plastids) genes, increasing Glutamine Synthetase activity (Habash 
et al., 2001; Hirel et al., 2001; Martin et al., 2006; Masclaux et al., 2001), 
ammonium transporters of the AMT1 gene family (Hoque et al., 2006), 
ANR1 which stimulates lateral root growth in dependency of NRT1.1 
expression (Remans et al., 2006; Walch-Liu and Forde, 2008), 
NADH-GOGAT (Yamaya et al., 2002), ASN1 and ASN2 genes (Lam et al., 
2003; Wong et al., 2004), Dof1 (Kurai et al., 2011; Yanagisawa et al., 
2004), glutamate receptor 1.1 (GLR1.1) (Kang and Turano, 2003), 
protein allosteric effector PII (GLB1) (Hsieh et al., 1998), nitrate 
reductase (NR) (Hänsch et al., 2001), alanine aminotransferase (AlaAT) 
(Good et al., 2007; Shrawat et al., 2008), hexose transporter STP13 
which increases expression of NRT2.2 (Schofield et al., 2009) and the 
NAC genes (Uauy et al., 2006). 

High-throughput phenotyping plays an important role in the dis
covery of loci and genes that affect the target trait (Al-Tamimi et al., 
2016; Hickey et al., 2019). In recent years, high-throughput phenotyp
ing methods have been successfully used for phenotyping NUE both in 
the greenhouse and under field conditions (Banerjee et al., 2020; Hansen 
et al., 2018; Jiang et al., 2019; Nguyen et al., 2019). 

While mapping of quantitative trait loci (QTL) in bi-parental pop
ulations results in high statistical power, this is achieved at the expense 
of low genetic diversity. This problem can be circumvented by a 
genome-wide association study (GWAS), which allows to work with 
association panels consisting of genetically very diverse accessions and 
cultivars instead and serve as a powerful tool to dissect the genetic 
regulation of complex traits. However, the resulting complex population 
structure creates a new problem and the statistical power decreases. This 
is where the establishment of multi-parent advanced generation inter
cross (MAGIC) populations enters the field. By increasing the number of 
founders, it combines the advantages of the high statistical power of a bi- 
parental population with the high genetic diversity of association 
panels. In the meantime, various studies have proven the benefits of 
MAGIC populations for the detection of QTL in a wide variety of crops 
like Arabidopsis thaliana (Kover et al., 2009), cotton (Islam et al., 2016), 
barley (Sannemann et al., 2015), maize (Dell’ Acqua et al., 2015), rice 
(Ogawa et al., 2018) and wheat (Camargo et al., 2016; Gardner et al., 
2016; Huang et al., 2012; Mackay et al., 2014; Sannemann et al., 2018; 

Stadlmeier et al., 2018). 
To break the limitation of bi-allelic SNPs in a MAGIC population, 

allelic variation can be significantly increased by the approach of 
haplotype-based GWAS, which is based on haplotype blocks grouping 
two or more SNPs in strong linkage disequilibrium (LD) (Qian et al., 
2017). This allows to track back the detected effects to a specific 
founder. Haplotype-based GWAS has already proven to be able to detect 
major genes as well as QTL with small effects (Chen et al., 2021; Ogawa 
et al., 2018; Sehgal et al., 2020). 

Using the winter wheat MAGIC population WM-800 under two 
contrasting N levels, we investigated the genetic variation of traits that 
are linked to UPE and whether genotypic differences can be character
ized by collecting only image-based plant growth and vitality traits 
using high-throughput phenotyping of young plants in a greenhouse. We 
conducted a haplotype-based GWAS to detect QTL controlling traits 
linked to UPE in WM-800, which already proved to be a valuable 
mapping population (Lisker et al., 2022; Sannemann et al., 2018; 
Schmidt et al., 2022). 

2. Materials and methods 

2.1. Plant material 

We used WM-800, a winter wheat MAGIC population. The crossing 
scheme was adapted from Cavanagh et al. (2008), using eight modern 
German elite varieties as founders reflecting a wide range of yield po
tential and quality groups (Tab. S1). The population comprises 800 re
combinant inbred lines in generation F4:7, derived from intercrossing the 
eight founders. These lines were selected based on excluding all 
double-dwarf lines, carrying Rht-B1b and Rht-D1b. Previous studies 
already elaborated genetic characteristics of the population. The 
average genetic similarity (calculated based on the 27,006 polymorphic 
SNPs) among the founders was 0.59 with a range from 0.53 to 0.66 
(Pillen et al., 2022). The 800 WM-800 lines showed an average genetic 
similarity of 0.60, but with a substantially increased range from 0.46 to 
0.98, pointing to a high degree of genetic diversity within the popula
tion. The first and second principal component, explained 19.4% and 
7.8% of the genetic similarity present in WM-800. More details on the 
WM-800 population are given in Sannemann et al. (2018) and Lisker 
et al. (2022). 

2.2. Experimental set-up 

The population was split into five batches due to capacity limitations, 
where each batch included 160 WM-800 lines, the eight founders, and 
four additional checks in both nitrogen treatments. After sowing, each 
batch of plants was grown for two weeks, vernalized for six weeks and 
then grown and phenotyped in the TraitMill™ high throughput phe
notyping facility (Reuzeau et al., 2006) in the greenhouse for six more 
weeks. The weekly moving of the plants to the TraitMill™ facility 
resulted in reversing the order of the plants on the gutter after every 
phenotyping. Each genotype was represented by five biological repli
cates (one plant per pot per replicate) per treatment. The two nitrogen 
treatments were applied directly at sowing using Osmocote Exact 
Standard 3–4 months fertilizer containing 16% N (ICL Specialty Fertil
izers, www.icl-sf.com) with 1 g/l and 4 g/l substrate for the low nitrogen 
treatment (N-) and the high nitrogen treatment (N+ ), respectively. 
Plants were potted in a mix of 81% peat, 9% clay and 10% ground 
expanded clay (0–2 mm) with an initial fertilization of Yara PG Mix 
14–16–18 at 0.25 kg per m3 in transparent, round, custom-made pots 
with a diameter of 12 cm and a volume of 700 ml and placed on a plant 
moving system. 

2.3. Phenotypic data 

The plants were imaged weekly in the TraitMill™ facility using an 
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RGB camera from the side that takes 6 pictures (at 30◦ angles) and an 
RGB camera below the plant to track root development at the bottom of 
the pot, together with a multispectral camera above the plant (Fig. 1). In 
total, eight digital traits were measured, five shoot-related traits and 
three root-related traits (Table 1). The RGB cameras used were Allied 
Vision Prosilica GT 4905 with a resolution of 0.45 mm/pixel and a field 
of view of 1485 × 1533 mm for the side view and a resolution of 0.036 
mm/pixel and field of view of 115 × 115 mm for the root image. The top 
view multispectral camera was a FD-1665-MS5 Custom 3CCD Camera 
that used the RGB spectral bands and two additional ones at 680 nm and 
808 nm with a resolution of 0.8 mm/pixel and a field of view of 
860×1050 mm. 

The shoot-related traits included plant area measured from a side 
view (PAS), plant height (HEI), gravitational height (GRA) which rep
resents the distance along the y-axis from the base to the centre of the 
gravity of the plant, greenness index (GRE), and normalized difference 
vegetation index (NDVI). The transparency of the pots made it possible 
to take pictures of the root system from underneath the pots and capture 
the part of the root system that grew to the bottom of the pot. The root 
system was represented by the three traits root length (RLE), root 
diameter (RDI), and root area (RAR). 

2.4. Statistical analyses 

Data points with a median absolute deviation ≥ 3.0 from the popu
lation median were classified as outliers and removed from the data set 
according to Leys et al. (2013). 

A linear model was fitted using the core R function “lm” with the 
software R (R Core Team, 2022) to test for genotype, treatment and 
batch effects. Genotype, treatment and batch were assigned as fixed 
effects and all two-way interaction effects were considered. 

Data were adjusted to account for significant batch effects, detected 
by the linear model. In the first step, the least squares mean (LSmean) for 
each batch was calculated across all founders and checks over both 
treatments for the last phenotyping time point using the function 
“emmeans” (Lenth, 2020). The last time point was chosen as the stan
dard for adjustment of all time points, because the founders there 
showed the highest repeatability. In the second step each value of the 
WM-800 lines was divided by the LSmean of founders and checks of the 
corresponding batch calculated in step one. In the last step, the LSmean 
for all founders and checks over the treatments and this time also over all 
batches of the last time point was calculated and each adjusted value of 

the WM-800 lines was multiplied by that LSmean to re-translate the 
values to the original unit. After adjustment, the linear model revealed 
no significant batch effect anymore. A linear model was calculated again 
to test for genotype and treatment effects and the two-way interaction 
effect. 

Variance components were calculated separately for the treatments 
with genotype modelled as a random effect, using the package “lme4′′

(Bates et al., 2015) with R (R Core Team, 2022), and were used to 
calculate the repeatability (Rep) based on the following formula:  

Rep= VG/(VG+VR/r)                                                                             

where VG and VR correspond to the variance components genotype and 
the residual variance, respectively and r denotes the number of repli
cates per genotype. 

In the next step, LSmeans for all genotypes across the five replicates 
per treatment were calculated using the core R function “lm” and 
“emmeans” (Lenth, 2020) in R (R Core Team, 2022). Genotype and 
treatment were modelled as fixed effects. 

Pearson correlation coefficients among the traits in each treatment at 
each time point were calculated based on the estimated LSmeans using 
the cor() function with R (R Core Team, 2022). 

2.5. Genotypic data 

The WM-800 population and the founders and checks were geneti
cally characterized with the Infinium 15 K iSelect SNP array and the 
135k Affymetrix SNP array at TraitGenetics (Gatersleben, Germany) 
using bulked DNA from 12 F4:5 seedlings per WM-800 line and founder. 

In total, 27,006 polymorphic SNPs (Tab. D1 in (Pillen et al., 2022)) 
passed the quality check which includes SNP calls for all founders, < 5% 
missing calls, > 5% minor allele frequency and a known physical posi
tion in the wheat genome. These polymorphic SNPs contain 7484 SNPs 
from the Infinium 15k iSelect array and 19,522 SNPs from the 135k 
Affymetrix array (given in Tab. A1 and A2 of (Pillen et al., 2022)). 
TraitGenetics provided the physical positions of the SNPs, anchored to 
the Refseq v1.1 reference genome sequence of Triticum aestivum (Alaux 
et al., 2018) for both arrays and the genetic position in centimorgan 
(cM) based on the wheat consensus map (Wang et al., 2014) for 7245 
SNPs of the Infinium 15k iSelect array (Sannemann et al., 2018). The 
genetic positions for the remaining SNPs were interpolated by placing 
the unmapped SNPs between the two closest mapped markers based on 
their physical position given by (Alaux et al., 2018). 

The polymorphic SNPs were transcribed into a numerical matrix 
based on identity by state (IBS) according to the homozygote presence 

Fig. 1. : Phenotyping setup. a) Camera view from a top perspective, b) camera 
view from a side perspective and c) camera view from below the pot to access 
root parameters. 

Table 1 
List of studied traits including name, abbreviation and description.  

Trait Abbr. Description 

Plant Area (Side View) PAS Projected plant area from a side view (in mm2) 
Plant height HEI Distance (in mm) along the y-axis from base to 

highest point of plant 
Gravitational height GRA Distance (in mm) along the y-axis from base to 

centre of gravity; 
measure for the bending of the plants 

Greenness index GRE Calculated as a ratio of colour values for each 
plant pixel, averaged over all pixels 

Normalized Difference 
Vegetation Index 

NDVI Indicator for chlorophyll content, based on 
difference between near-infrared (reflected by 
vegetation; NIR) and red light (absorbed by 
vegetation). NDVI is measured with a 
multispectral camera and calculated over each 
plant pixel from a top view as (NIR-Red)/ 
(NIR+Red) 

Root length RLE Projected length of all detected roots (mm) 
Root diameter RDI Projected average diameter of all detected 

roots (mm) 
Root area RAR Projected area where root biomass is detected 

(mm2)  
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(2), heterozygote presence (1) or absence (0) of the Julius founder allele 
(similar as described in (Sannemann et al., 2018)) to allow regression 
analyses to be performed. Imputation of missing SNP calls was made 
based on the mean imputation (MNI) approach (Rutkoski et al., 2013). 

2.6. Haplotype building 

A haplotype (HT) matrix, made of SNPs in high LD, was built for WM- 
800 (Lisker et al., 2022) with the software package Haploview 4.2 
(Barrett et al., 2005) using the SNPs of the eight founders of WM-800 
and applying the ‘Four Gamete Rule’, that checks for SNP pairs that 
could not have occurred without recombination by analyzing the pop
ulation frequencies of the four possible two-marker haplotypes for each 
SNP pair. Each SNP pair within a distance of < 500 kb was combined 
into a haploblock (HB) if at least one of the four possible gametes was 
observed with a frequency of < 0.01 and a high LD between the SNP pair 
was estimated with D′ = 1.0 (Lewontin, 1964). SNPs that were not 
included in HBs were retained and considered “singular SNPs”. 

Out of 2970 HBs with a total of 92,734 HTs, 8498 informative HTs 
were selected as they had a HT frequency > 5% in the WM-800 popu
lation and no missing nucleotides in the HT sequence (Tab. D3 in (Pillen 
et al., 2022)). The selected 8498 HTs were complemented by 4562 
singular SNPs. Finally, the presence of HTs and singular SNPs was then 
converted into a presence-absence matrix indicating 1 and 0 for the 
presence and absence of a specific HT in a line, respectively, to enable 
GWAS in a multiple linear regression framework. 

2.7. GWAS 

The GWAS was conducted separate for the time points and treat
ments with the software SAS 9.4 (SAS 9.4, 2016). In all subsequent steps 
the first four principle components, presented in Lisker et al. (2022), 
were included to correct for potential population structure effects. In the 
first step, all SNPs and HTs associated with the target trait were selected 
using a multiple linear regression model (SAS PROC GLMSELECT). This 
was carried out by creating 100 repeated subsamples, each containing 
80% of the lines, and only those SNPs and HTs that improved the pre
diction of the remaining 20% were selected (according to the minimum 
average squared error). All SNPs and HTs selected more than one time in 
this step were defined as potential cofactors. The potential cofactors 
were then used as input for the final cofactor selection (SAS PROC 
GLMSELECT based on Schwarz Bayesian Criterion) in the whole dataset. 
The selected cofactors were then modelled with SAS PROC REG in the 
background of a multiple linear regression model where all SNPs and 
HTs were tested for significance. Thus, allele effects, the coefficient of 
determination (R2) and p-value were estimated as a function of the co
factors, which entered the model first according to their ranking in the 
previous step, by applying the model option PARTIALR2 (SEQTESTS). 
Significant MTAs were merged to one QTL if they affected the same trait 
at the same time point and within the same treatment and if they were 
genetically linked within a window of < 5 cM. The effects of two linked 
MTAs were summed up, if at least one of them entered the regression 
model as a cofactor, otherwise the highest effect was taken. MTAs have 
been combined into stable QTL (sQTL), if they have been detected in at 
least three of the six phenotyping time points. Relative sQTL effects were 
calculated by dividing the estimated sQTL effect by the corresponding 
population mean. If a sQTL or two or more linked sQTL showed an effect 
on more than one trait they were classified as sQTL hotspots. 

2.8. Candidate genes 

The physical positions were anchored to the Refseq v1.1 reference 
genome sequence of Triticum aestivum (Alaux et al., 2018). The gene 
annotation from the IWGSC was used to identify candidate genes within 
the significant HB or upstream and downstream up to the neighbouring 
HBs. In the last step the expression profiles of candidate genes were 

checked using the wheat RNA-seq expression database of polyploid 
wheat (http://www.wheat-expression.com/). 

3. Results & discussion 

In WM-800, significant phenotypic differences were found among 
genotypes (except RLE, week five) and between N treatments (except 
GRA and GRE, week one) for all measured traits at p-value < 0.05, as 
well as significant genotype x treatment interactions (p-value < 0.001, 
week six) (Table 2, Tab. S2). 

The initial fertilisation of the soil with Yara MPG Mix ensured a 
complete supply of all necessary nutrients to the plants at the start of the 
trial. The two treatments applied consisted of two different application 
rates of Osmocote, a full-spectrum fertiliser. It is therefore possible that 
the phenotypic differences observed between the treatments can also be 
attributed to nutrients other than N. However, the observed effects 
especially on greenness, biomass and NDVI are a strong indication that N 
is the critical factor, because these traits are known for their strong 
dependence on the N supply of the plant (Ali et al., 2020; Benincasa 
et al., 2018; Zhang et al., 2019). 

The significant differences between the treatments as well as the 
significant genotype x treatment interactions indicate genotypic differ
ences in the N use efficiency, more precisely N uptake efficiency as 
plants were phenotyped during vegetative growth only. N uptake effi
ciency was not measured directly, the traits measured in this study are to 
be considered as indicators reflecting the differences in N uptake effi
ciency between the genotypes. Especially the strong link between N 
uptake and NDVI and plant greenness are described in the literature (Ali 
et al., 2020; Benincasa et al., 2018; Jia et al., 2012), which confirms that 
they are suitable as an indicator for UPE. 

The mean values for PAS, GRE and RDI were lower in the N- than in 
the N + treatment at all time points and this difference increased over 
time, showing that the N deficiency had a negative impact on these traits 
from the beginning of seedling development (Fig. 2). Serrano et al. 
(2000), Wang et al. (2012) and Guo et al. (2014) observed similar re
sponses of plant growth, root growth and chlorophyll and nitrogen 
content to different N treatments. 

In contrast, the mean values for HEI, GRA, NDVI and RAR were 
higher under N- than N + at the beginning of the experiment and this 
trend of development then reversed in the second half of the trial. A 
possible explanation for this observation is that under low N conditions 
the plants are initially sufficiently supplied by the nutrients in the grain 
while the plants in N + have to deal with reduced soil osmotic potential 
due to high mineral concentration of fertilizer which might inhibit their 
growth temporarily (Jacobs and Timmer, 2005). After three to four 
weeks this trend reverses most likely because plants under N- used up 
the nutrients from the kernel while the root system of the plants in 
N + had acclimated. RLE was the only trait that had significantly higher 
mean values in N- than in N + over the entire course of the trial, but the 
difference was only slight in week six. Increased RLE under limiting N 
conditions is a well-known phenomenon (Guo et al., 2014; Wang et al., 
2012) and might be explained by N deficiency-induced stimulation of 
root development. 

The WM-800 population and its founders showed moderate to high 
phenotypic variation, the coefficient of variation (CV %) ranged from 
7.27% to 20.74% at week six for all traits except GRE, NDVI (N + ) and 
RDI (Table 2). The CV for the WM-800 decreased over the six weeks for 
the traits PAS, RLE, RDI and RAR, increased for GRE and NDVI, and 
remained approximately constant for HEI and GRA (Tab. S2). Further
more, the WM-800 lines showed higher variation than their founders for 
all traits and time points, indicating transgressive segregation. The wide 
range of phenotypic variation in the WM-800 population is advanta
geous for the selection of genetic variation in plant breeding. 

Repeatability (Rep) values of WM-800 for the aboveground traits 
were high (> 86%) in both treatments at week six. PAS was the only trait 
that showed a noticeable lower Rep in N- (68.40%) than in N +
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(82.17%) (Table 2). RDI showed a moderate Rep value in both treat
ments in week six, while the Rep values for RLE and RAR were moderate 
in N- (RLE: 63.22%, RAR: 68.50%) and low in N + (RLE: 25.18%, RAR: 
36.91%) treatment. Over the course of the six weeks, the Rep value 
decreased for PAS (N-) and all three root parameters increased for HEI 
and NDVI and remained relatively constant for PAS (N + ), GRA and 
GRE (Tab. S2). These findings indicate that the above-ground traits are 
heritable under both N treatments while root parameters are influenced 
by N treatments and/or their interaction with genotype or that the 
method is prone to error for the scoring of root traits. Comparable values 
were reported for the above-ground traits (Condorelli et al., 2018; Gao 
et al., 2015; Mathew et al., 2018) while for root-related traits higher 
values have been reported (Beyer et al., 2019; Mathew et al., 2018), 
which might suggest an inaccuracy in measuring methods. 

The Pearson correlation analysis in WM-800 revealed dynamic cor
relations between the eight traits over the course of the six weeks 
(Fig. 3). The biomass-related traits PAS, GRA, and HEI formed a block of 
significant positive correlations at all times. The correlations of PAS with 
GRA and HEI increased in the N + while they were low in the N- 
treatment at week six, suggesting that plants under N stress were less 
able to accumulate biomass over time. PAS further correlated signifi
cantly positively with RLE in both N treatments in the first four weeks. 
Consequently, a well-developed root system might have had a positive 

effect on plant biomass development. However, the negative correla
tions between RLE and GRE in N + and RLE and GRA, HEI and GRE in N- 
, respectively, suggest that the establishment of a root system also 
required energy at the expense of above-ground traits. The low corre
lations of the traits RLE and RDI between treatments and the significant 
positive correlation between RLE and RDI under N- at the end of the 
experimental period indicated that root system development differed 
greatly depending on N availability. Scheible et al. (1997) described, 
that an accumulation of nitrate in the shoot (occurring under high N 
availability) inhibits root growth, whereas under N-limiting conditions 
root growth is promoted. RLE and RAR correlation was nearly perfect 
and showed similar correlations to the remaining traits, which is prob
ably due to the fact, that RAR is a calculation based on RLE and RDI with 
RLE having the stronger impact due to the higher phenotypic variation. 

The traits GRE and NDVI were significantly positively correlated 
with each other in weeks four to six. This positive correlation between 
spectral vegetation indices and photosynthetic pigments has been re
ported in multiple studies before (Kyratzis et al., 2017; Serrano et al., 
2000). GRE and NDVI had significantly high negative correlations with 
biomass-related traits during this period. This negative correlation was 
also observed by Gao et al. (2015) and Liu et al. (2018) and indicates 
that the plants were stressed. Because both treatments behaved similarly 
and the negative correlations developed earlier in the N + than in the N- 

Table 2 
Descriptive statistics of population WM-800 and founders for eight traits measured under two N treatments after six weeks of cultivation.  

a Measured trait; b Group of genotypes; c Treatment: low nitrogen (N-), high nitrogen (N + ); d Number of observations; e least squares means of the eight founders and 
the WM-800 population; f Minimum; g Maximum; h Standard deviation; i coefficient of variation (%); j Repeatability (%); k Significant differences between genotypes 
within N treatments; l Significant differences between N treatments; m Significant genotype x treatment interaction: *p < 0.05, * *p < 0.01, * **p < 0.001. Trait 
abbreviations are indicated in Table 1. 
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variant, a possible explanation for the stress may be that the plants were 
grown in pots with limited volume. In this case, the plants may be 
stressed once they have entirely utilized the pot volume, which might 
happen earlier in N + because of a faster growth due to the sufficient N 
supply. 

3.1. GWAS results 

To investigate the genetic basis of NUE, GWAS was performed 
separately for each nitrogen level. First, a total of 1297 significant 
marker-trait associations (MTAs) (Tab. S3) were detected and the GWAS 
model could explain between 12.2% (RDI, N + , week four) and 69.4% 
(HEI, N-, week three) of the genotypic variance of a trait at one time 
point (Table 3). In a second step, genetically linked MTAs with a 

distance < 5 cM were combined to a single QTL resulting in a total of 
543 QTL. In a third step, these QTL were further combined to stable QTL 
per trait and treatment (sQTL), if the QTL effect was present at least 
during three of the six weeks of the study. This resulted in a total of 42 
sQTL for the eight traits studied (Table 4) of which 14 sQTL were 
detected exclusively under N-, eight sQTL exclusively under N + and 20 
sQTL across both N treatments (Nacross). Five sQTL hotspots showed 
pleiotropic effects on multiple traits simultaneously, which were 
detected under one treatment or across both treatments. There has been 
a slight trend that more QTL were detected under N- than under N + or 
across both treatments. Along with the observation, that we detected 
more N-specific than N-independent QTL, this suggests that genetic 
regulation of these traits is differing depending on N availability and 
that separate selection for improved UPE under low N conditions might 

Fig. 2. : Box-Whisker-Plots indicating trait progression over six weeks per N treatment for founders and population WM-800. a) Plant area (side view) in mm2 (PAS), 
b) Plant height in mm (HEI), c) Gravity in mm (GRA), d) Greenness (GRE), e) Normalized difference vegetation index (NDVI), f) Total root length in mm (RLE), g) 
Average root diameter in mm (RDI), h) Total root area in mm2 (RAR). 
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be advantageous over passive selection under standard N conditions. 

3.1.1. sQTL hotspots affecting multiple traits 
Among the 42 sQTL, a total of 28 showed pleiotropic effects, clus

tering at five hotspots (Fig. 4). In the following, the five hotspots are 
described and discussed first and then additional sQTL of interest are 
added. 

3.1.1.1. QTL effects derived from Rht-B1 and Rht-D1 loci. The GWAS 
studies revealed two pleiotropic hotspots, that refer to QTL next to the 
semi-dwarf genes Rht-B1 and Rht-D1 on chromosomes 4B and 4D, 
respectively. The semi-dwarf phenotypes of alleles Rht-B1b and Rht-D1b 
are the results of mutations in the DELLA region of Rht-B1 and Rht-D1 
causing the suppression of gibberellic acid (GA)-related plant growth 
(Peng et al., 1999). Many studies have already demonstrated that both of 
these Rht genes have pleiotropic effects on NUE and related traits (Gao 
et al., 2015; Gooding et al., 2012; Kubota et al., 2018). 

Rht-B1 showed pleiotropic effects on HEI (sQHEI_N-_WM-800_4B & 
sQHEI_N+_WM-800_4B), GRA (sQGRA_N-_WM-800_4B & 
sQGRA_N+_WM-800_4B), GRE (sQGRE_N-_WM-800_4B & sQGRE_N+

_WM-800_4B), NDVI (sQNDVI_N-_WM-800_4B & sQNDVI_N+_WM- 
800_4B) and PAS N + (sQPAS_N+_WM-800_4B). The effect direction for 
HEI, GRA and PAS was opposite to the effect direction for GRE and NDVI 
across N treatments. The semi-dwarf allele Rht-B1b present in Tobak and 
Safari reduced HEI, GRA and PAS while GRE and NDVI were increased. 
Rht-D1 showed pleiotropic effects on PAS, GRA, HEI, GRE and NDVI 
across N treatments and RAR under N- and the effect directions showed 
the same relation as for Rht-B1; when PAS, HEI and GRA showed a 

positive effect, the effects for GRE, NDVI and RAR were negative 
(Table 4). The semi-dwarf allele Rht-D1b derived from Patras, Linus, JB 
Asano and Julius reduced PAS, HEI and GRA, while GRE, NDVI and RAR 
were increased. This underlines the negative relationship between 
biomass-related and NUE-related traits, which was already visible based 
on the correlations (Fig. 3). The effect of Rht on plant height, biomass, 
chlorophyll content (greenness) and NDVI was already described by 
others (Gao et al., 2015; Li et al., 2021; Subira et al., 2016). 

The effect of Rht-B1 was about twice as high under N + treatment 
than under N- treatment for GRA and HEI, while the effect on GRE and 
NDVI was about the same across N treatments. The QTL linked to Rht-B1 
could explain between 6.05% (PAS N + ) and 19.99% (HEI N + ) of the 
variation with a relative effect ranging from 0.29% (GRE N-) to 22.64% 
(HEI N + ). In contrast, the QTL hotspot Rht-D1 on 4D explained be
tween 5.39% (RAR N-) and 26.36% (HEI N + ) of the variation and had 
an effect on PAS (sQPAS_N-_WM-800_4D & sQPAS_N+_WM-800_4D), 
HEI (sQHEI_N-_WM-800_4D & sQHEI_N+_WM-800_4D), GRA 
(sQGRA_N-_WM-800_4D & sQGRA_N+_WM-800_4D), GRE (sQGRE_N- 
_WM-800_4D & sQGRE_N+_WM-800_4D), NDVI (sQNDVI_N-_WM- 
800_4D & sQNDVI_N+_WM-800_4D) and RAR N- (sQRAR_N-_WM- 
800_4D). The effects of the QTL showed a strong nitrogen dependency. 
The QTL showed markedly stronger effects under N + for GRA and PAS, 
while for GRE and NDVI the effects under N- were twice as high as under 
N + , whereas for HEI the effects showed no significant difference be
tween the treatments. 

Multiple studies showed that semi-dwarf GA insensitive genotypes 
have lower NUE and reduced chlorophyll content (Gooding et al., 2012; 
Li et al., 2018; Wang et al., 2020). In contrast, just like in our study, Gao 

Fig. 3. : Pearson correlation tables per week of cultivation for eight traits. Upper and lower triangle represent correlation coefficients (r) under N + and N- 
treatments respectively. Trait auto correlations between both N treatments are indicated on the diagonal. Red and blue colours indicate positive and negative 
correlations, respectively. Trait abbreviations are indicated in Table 1. Significance levels: *p < 0.05, * *p < 0.01, * **p < 0.001. 
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et al. (2015) and Shi et al. (2017) observed that semi-dwarf Rht-B1 and 
Rht-D1 alleles had a positive effect on NDVI and chlorophyll content. 
Yan et al. (2021) showed, that overexpression of GA-2-oxidase in Ara
bidopsis and maize inactivates active GAs and thus reduces plant height. 
Furthermore, they observed overexpression of genes involved in chlo
rophyll synthesis, resulting in increased chlorophyll content and 
reduced growth height in GA-deficient phenotypes, which support our 
observed effects. 

3.1.1.2. Additional N-independent sQTL hotspots. A further hotspot, 
controlling HEI under N- (sQHEI_N-_WM-800_5A) and GRA (sQGRA_N- 
_WM-800_5A.2 and sQGRA_N+_WM-800_5A) across N treatments, was 
located on chromosome 5A between 675,386,126 and 675,731,014 bp. 
The QTL allele, present in Meister, JB Asano and Bernstein, reduced HEI 
and GRA under N- treatment by 6.31% and 8.81%, respectively, and 
GRA by 9.73% under N + treatment, with the treatment apparently not 
having a strong influence on the effect size in this case. At a very close 
distance to this QTL is a gene coding for a DELLA protein (IWGSC RefSeq 
v1.1: TraesCS5A01G511900.1,). DELLA proteins are negative regulators 
of GA signalling and thus of GA-responsive growth (Nelson and Steber, 
2016). This could explain the observed effects on HEI and GRA. In a field 

trial with population WM-800 under two contrasting N levels, a QTL 
with an effect on yield was found in close proximity to the sQTL detected 
here (Lisker et al., 2022). This finding indicates that QTL found in 
greenhouse experiments may correspond to field QTLs and may be used 
as a model for genetic and physiological studies on plant growth and 
yield formation. 

A fourth hotspot was located on chromosome 6D at position 
470,042,740 bp and affected RLE (N-) and PAS (N + ). The Julius allele 
at this locus was associated with reduced RLE by − 12.50% and also PAS 
(N + ) by − 11.19%. A potential candidate gene to explain these effects 
is a gene coding for a gibberellin-regulated protein (IWGSC RefSeq v1.1: 
TraesCS6D02G397800.2), which is located on chromosome 6D at posi
tion 469,391,149 bp and expressed in roots and shoots during the 
vegetative state. (Borrill et al., 2016; Ramírez-González et al., 2018). A 
hypothesis to explain the QTL effects here could be that under insuffi
cient nitrogen supply the plants may promote root growth, while under 
high nitrogen supply the nutrient resources may be invested in shoot 
biomass development. This might happen through N-deficiency-induced 
growth signalling that affects the expression of the gibberellin candidate 
gene or upstream genes which could then result in effects on RLE under 
N- and PAS under N + . The physiological phenomenon of shifting 

Table 3 
Number of significant QTL, detected under N-, under N + or across treatments (Nacross), explained genotypic variance (R2) per trait, treatment and week and number of 
stable QTL (sQTL, detected in at least three of the six phenotyping time points) per trait and treatment.  

* Overall percentage of genotypic variance that could be explained by the combined action of detected QTL per trait, treatment and week, including QTL which were 
significant across treatments and categorised as Nacross. Colour variation from blue to red indicate the range from low to high R2 values. 
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Table 4 
List of 42 stable QTL (sQTL, detected in at least three of the six phenotyping time points) controlling eight traits under two N treatments in population WM-800.  

Stable QTLa Trait N 
Treatment 

Weeks Chromosome Start (in bp)b Start 
(in 
cM)c 

-log10 
BON_pd 

R2 

[%]e 
Effect 
Patras 
[%]f 

Effect 
Meister 
[%]f 

Effect 
Linus 
[%]f 

Effect JB 
Asano 
[%]f 

Effect 
Tobak 
[%]f 

Effect 
Safari 
[%]f 

Effect 
Bernstein 
[%]f 

Effect 
Julius 
[%]f 

sQPAS_N-_WM- 
800_1A 

PAS N- 1,4,5 1A 591,095,295  155.3  3.2  3.46  -4.72  4.22  4.22  4.22  -3.48  4.22  4.22  -1.44 

sQPAS_N-_WM- 
800_4D 

PAS N- 2–5 4D 25,989,112  69.2  9.5  6.86  -5.31  5.68  -5.31  -5.31  5.68  5.68  5.68  -5.31 

sQPAS_N+_WM- 
800_4B 

PAS N+ 4–6 4B 30,861,580  54.6  6.8  6.05  1.45  1.67  5.60  1.45  -6.75  -6.75  1.67  1.67 

sQPAS_N+_WM- 
800_4D 

PAS N+ 2–6 4D 18,781,062  69.2  23.9  18.53  -16.31  16.31  -16.31  -16.31  16.31  16.31  -3.50  -16.31 

sQPAS_N+_WM- 
800_5A 

PAS N+ 4–6 5 A 654,389,180  112.3  5.5  4.51  7.73  -7.73  -7.73  7.73  -7.73  -7.73  -7.73  -7.73 

sQPAS_N+_WM- 
800_6D 

PAS N+ 3–5 6D 470,042,740  153.1  4.5  3.45  11.19  11.19  11.19  11.19  11.19  11.19  11.19  -11.19 

sQHEI_N-_WM- 
800_2D 

HEI N- 3,5,6 2D 192,993,240  49.9  1.5  1.54  -6.48  5.71  5.71  -6.48  5.71  -1.39  5.71  5.71 

sQHEI_N-_WM- 
800_4B 

HEI N- 1–6 4B 30,861,580  56.0  27.5  10.92  15.53  15.53  15.53  15.53  -16.48  -16.48  15.53  15.53 

sQHEI_N-_WM- 
800_4D 

HEI N- 1–6 4D 18,781,062  69.2  29.1  19.22  -28.81  29.60  -28.81  -28.81  29.60  29.60  29.60  -28.81 

sQHEI_N-_WM- 
800_5A 

HEI N- 1–3 5 A 675,386,126  124.1  4.6  2.73  6.31  -6.31  6.31  -6.31  6.31  6.31  -6.31  6.31 

sQHEI_N+_WM- 
800_4B 

HEI N+ 1–6 4B 30,861,580  56.0  52.0  19.99  21.29  21.29  21.29  21.29  -22.64  -22.64  21.29  21.29 

sQHEI_N+_WM- 
800_4D 

HEI N+ 1–6 4D 18,781,062  69.2  46.7  26.36  -28.83  28.83  -28.83  -28.83  28.83  28.83  14.32  -28.83 

sQGRA_N-_WM- 
800_4B 

GRA N- 1–6 4B 30,861,580  54.6  27.4  11.10  12.64  12.64  12.64  12.64  -12.89  -12.89  12.64  12.64 

sQGRA_N-_WM- 
800_4D 

GRA N- 1–6 4D 18,781,062  69.2  26.2  15.18  -12.59  19.47  -12.59  -12.59  19.47  19.47  19.47  -12.59 

sQGRA_N-_WM- 
800_5A.1 

GRA N- 1,5,6 5A 590,458,527  92.0  27.1  18.01  1.86  -24.45  -24.45  -24.45  -24.45  24.85  -24.45  -24.45 

sQGRA_N-_WM- 
800_5A.2 

GRA N- 1–4 5A 675,386,126  124.1  13.8  6.41  8.81  -8.81  8.81  -8.81  8.81  8.81  -8.81  8.81 

sQGRA_N+_WM- 
800_2A 

GRA N+ 2,4,5 2A 2380,829  5.9  3.9  2.50  2.55  2.72  1.84  2.55  na  0.60  1.84  -7.78 

sQGRA_N+_WM- 
800_4B 

GRA N+ 1–6 4B 30,861,580  56.0  47.6  19.08  20.94  20.94  20.94  20.94  -22.46  -22.46  20.94  20.94 

sQGRA_N+_WM- 
800_4D 

GRA N+ 1–6 4D 18,781,062  69.2  40.5  23.89  -28.41  28.41  -28.41  -28.41  28.41  28.41  12.32  -28.41 

sQGRA_N+_WM- 
800_5A 

GRA N+ 1–3 5A 675,386,126  124.1  4.6  3.49  9.73  -9.73  9.73  -9.73  9.73  9.73  -9.73  9.73 

sQGRE_N-_WM- 
800_4B 

GRE N- 3–6 4B 30,861,580  54.6  13.8  8.15  -0.56  -0.29  -0.49  -0.56  1.09  1.09  -0.29  -0.29 

sQGRE_N-_WM- 
800_4D 

GRE N- 1–6 4D 18,781,062  69.2  17.0  11.09  1.76  -1.91  1.76  1.76  -1.91  -1.91  -1.91  1.76 

sQGRE_N+_WM- 
800_2A 

GRE N+ 3–5 2A 11,846,086  26.0  4.3  2.85  0.12  0.40  0.40  0.41  0.12  0.40  0.40  0.41 

sQGRE_N+_WM- 
800_4B 

GRE N+ 4–6 4B 30,861,580  54.6  20.3  9.86  -1.12  -1.12  -1.12  -1.12  1.22  1.22  -1.12  -1.12 

sQGRE_N+_WM- 
800_4D 

GRE N+ 2–6 4D 18,781,062  69.2  14.7  8.47  0.94  -0.94  0.94  0.94  -0.94  -0.94  -0.94  0.94 

sQGRE_N+_WM- 
800_5B 

GRE N+ 3–5 5B 388,584,392  48.5  4.7  3.09  -0.43  -0.43  0.36  0.32  0.32  -0.43  -0.43  0.32 

(continued on next page) 
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Table 4 (continued ) 

Stable QTLa Trait N 
Treatment 

Weeks Chromosome Start (in bp)b Start 
(in 
cM)c 

-log10 
BON_pd 

R2 

[%]e 
Effect 
Patras 
[%]f 

Effect 
Meister 
[%]f 

Effect 
Linus 
[%]f 

Effect JB 
Asano 
[%]f 

Effect 
Tobak 
[%]f 

Effect 
Safari 
[%]f 

Effect 
Bernstein 
[%]f 

Effect 
Julius 
[%]f 

sQGRE_N+_WM- 
800_6B 

GRE N+ 1,3,4,6 6B 64,118,503  47.3  2.7  2.34  0.87  0.87  -0.87  0.87  0.87  0.87  0.87  0.87 

sQNDVI_N-_WM- 
800_4B 

NDVI N- 2–6 4B 27,838,076  53.1  14.8  6.74  -8.58  -8.58  -8.58  -8.58  9.18  9.18  -8.58  -8.58 

sQNDVI_N-_WM- 
800_4D 

NDVI N- 3–6 4D 18,781,062  69.2  14.6  9.46  6.37  -12.76  6.37  6.37  -12.76  -12.76  -12.76  6.37 

sQNDVI_N-_WM- 
800_5A.1 

NDVI N- 4–6 5 A 546,538,231  72.5  1.5  1.76  -2.21  0.05  -2.21  0.05  0.05  -2.21  6.96  -2.21 

sQNDVI_N-_WM- 
800_5A.2 

NDVI N- 4–6 5A 594,955,076  92.6  37.6  20.13  -11.98  15.41  15.41  15.41  15.41  -14.84  15.41  15.41 

sQNDVI_N-_WM- 
800_5D 

NDVI N- 4–6 5D 424,352,371  74.2  9.1  4.54  -7.43  -7.43  7.43  -7.43  7.43  -7.43  -7.43  7.43 

sQNDVI_N+_WM- 
800_4B.1 

NDVI N+ 3–6 4B 30,861,580  56.0  22.5  11.01  -5.51  -5.51  -5.51  -5.51  6.30  6.30  -5.51  -5.51 

sQNDVI_N+_WM- 
800_4B.2 

NDVI N+ 3–5 4B 97,922,320  62.6  2.7  2.17  1.61  -1.61  -1.61  1.61  1.61  1.61  1.61  -1.61 

sQNDVI_N+_WM- 
800_4D 

NDVI N+ 1,3–6 4D 18,781,062  69.2  28.5  15.99  6.21  -6.21  6.21  6.21  -6.21  -6.21  -6.21  6.21 

sQRLE_N-_WM- 
800_1D 

RLE N- 1,2,4 1D 410,464,692  84.3  4.7  4.24  5.69  -5.69  5.69  -5.69  5.69  5.69  -5.69  -5.69 

sQRLE_N-_WM- 
800_3D 

RLE N- 1,4–6 3D 43,655,074  101.1  4.0  3.83  -4.01  1.71  -4.01  1.54  4.01  4.01  4.01  -4.01 

sQRLE_N-_WM- 
800_6D 

RLE N- 1,3,4 6D 470,042,740  153.1  4.9  4.36  12.50  12.50  12.50  12.50  12.50  12.50  12.50  -12.50 

sQRDI_N-_WM- 
800_5A 

RDI N- 2,5,6 5A 588,023,218  90.5  2.6  2.71  2.38  2.38  2.38  2.38  2.38  -2.38  2.38  2.38 

sQRAR_N-_WM- 
800_1B 

RAR N- 1,2,5 1B 6196,964  11.7  2.4  2.74  7.22  7.22  7.22  -7.22  7.22  7.22  7.22  7.22 

sQRAR_N-_WM- 
800_4A 

RAR N- 1,4,5 4A 631,496,503  97.6  5.2  4.35  6.35  6.35  6.35  -6.35  6.35  6.35  -6.35  -6.35 

sQRAR_N-_WM- 
800_4D 

RAR N- 4–6 4D 18,781,062  69.2  8.3  5.39  7.01  -7.01  7.01  7.01  -7.01  -7.01  -7.01  7.01 

c Start of the haploblock or singular SNP, based on genetic SNP position in cM taken from (Wang et al., 2014) 
d The -log10 Bonferroni corrected p value of significant (BON_P<0.05) haplotypes per haploblock or allele per singular SNP. Values are taken from the last week where the haplotype or singular SNP was significant. 
e Proportion of the genotypic variance explained by significant (BON_P<0.05) haplotypes per haploblock or allele per singular SNP. Values are taken from the last week where the haplotype or singular SNP was significant. 
f Relative sQTL effect, calculated by dividing the absolute sQTL effect by the population mean; values taken from the last week where the haplotype or singular SNP was significant. Effects of HTs that were significant in the 
GWAS were highlighted with bold numbers. Red colour indicates trait-reducing effects. 

a Name of the stable QTL including information on trait, treatment, population and chromosome 
b Start of the haploblock or singular SNP, based on physical SNP position in bp taken from (Alaux et al., 2018) 
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growth between root and shoot depending on N availability was also 
described by Scheible et al. (1997). 

3.1.1.3. N-specific QTL hotspot in close distance to NRT 1.1 and NRT 1.2. 
A fifth hotspot was located on chromosome 5A between 588,023,218 
and 603,380,801 bp. This hotspot revealed effects on GRA (sQGRA_N- 
_WM-800_5A.1), NDVI (sQNDVI_N-_WM-800_5A.2), and RDI (sQRDI_N- 
_WM-800_5A), which were solely detected under N- treatment (N-spe
cific QTL). The QTL haplotype, carried by all founders except Patras and 
Safari, reduced GRA by 24.45% and increased NDVI and RDI by 15.41% 
and 2.38%, respectively. This QTL is in close proximity to two genes 
coding for nitrate transporters (NRT) NRT1.1 and NRT1.2 (IWGSC 
RefSeq v1.1: TraesCS5A02G409600.1 and TraesCS5A02G388000.1, 
respectively). Although NPF family genes are known to be low-affinity 
transporters (Okamoto et al., 2003), Guo et al. (2014) observed that 
NRT1.1 and NRT1.2 showed increased expression under N starvation in 
wheat, with NRT1.2, in particular, showing significantly increased 
expression throughout the applied stress. Many studies support the 
assumption that NRT1.1 functions as a dual-affinity nitrate transporter 
(Crawford and Glass, 1998; Liu et al., 1999; Wang et al., 1998) and it has 
also been found that NRT1.1 has a crucial role as a nitrate sensor in 
response to N deficiency in Arabidopsis (Ho et al., 2009; Wang et al., 
2012). This function may explain that the QTL has an influence on GRA 
and RDI in addition to NDVI. Mu et al. (2018) observed that N deficiency 
in maize led to a reduction of GA20ox4, a key enzyme for the synthesis of 
gibberellins, thus, reducing above-ground growth while promoting root 
growth. Possibly, NRT1.1 initiated its function as a nitrate sensor also in 
our wheat study. 

3.1.2. Biomass-related traits 

3.1.2.1. Plant area from a side view (PAS). For PAS, two sQTL were 
detected under N- and four sQTL under N + treatments, explaining 

between 3.45% and 18.53% of the genotypic variance. Only the sQTL on 
4D, linked to Rht-D1, showed a significant effect under both treatments. 
The lower number of sQTL under N- is accompanied by reduced re
peatabilities (as mentioned before) and R2 values of the GWAS model 
over the six weeks. 

3.1.2.2. Plant height (HEI). Four sQTL and two sQTL showed a signifi
cant effect on HEI under N- and N + , respectively, explaining between 
1.54% and 26.36% of the variation. The sQTL on 4B, 4D and 5A have 
already been discussed in the preceding text as a hotspot. In addition to 
the hotspots, one further sQTL on 2D showed a moderate effect on HEI 
and was detected only under N-, with the QTL haplotype derived from 
Patras and JB Asano reducing HEI by 6.48%. A candidate gene could not 
be identified yet. While the sQTL on 4B, 4D and 5A were also detected in 
the field trials with the WM-800 (Lisker et al., 2022; Sannemann et al., 
2018), the sQTL on 2D was not detected. This may be because plant 
height in our study was measured in young plants still under develop
ment whereas in the field trials the trait was measured at maturity. The 
sQTL on 2D, thus, may only exert an effect during early development. On 
the other hand, a large number of QTL for HEI were detected based on 
the field trials (Lisker et al., 2022; Sannemann et al., 2018), which were 
not detected here. 

3.1.2.3. Gravitational height (GRA). For GRA, four sQTL were detected 
under N- and four sQTL under N + treatment. These sQTL could explain 
between 2.50% and 23.89% of the phenotypic variation. As for HEI, the 
strongest effects associated with the highest R2 values were found for the 
Rht genes Rht-B1 and Rht-D1. One sQTL on 2 A affected GRA under 
N + and the significant haplotype, derived from the founder Julius, 
reduced GRA by 7.78%. Located within this haplotype is a gene coding 
for a gibberellin-regulated protein (IWGSC RefSeq v1.1: TraesC
S2A02G007700.1). A study in sorghum reported increased culm bending 
under gibberellin deficiency due to non-uniform cell proliferation 

Fig. 4. : Location, direction and strength of relative stable QTL (sQTL, detected in at least three of the six phenotyping time points) allele effects in population WM- 
800, which are derived from eight founders. The relative effect was calculated by dividing the absolute sQTL effect by the population mean. The effects and pop
ulation means were taken from the last week in which the sQTL was significant. Traits are given on the left side; trait abbreviations are indicated in Table 1. 
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between the upper and lower parts of the culm internode (Ordonio et al., 
2014). As GRA is a measure for the bending of the plants the observed 
sQTL effect may be explained by variation in the candidate gene where 
growth regulation is controlled downstream of gibberellin. 

3.1.3. Greenness (GRE) and NDVI 

3.1.3.1. Greenness (GRE). For GRE, two and five sQTL, explaining be
tween 2.34% and 11.09% of the genotypic variation, were detected 
under N- and N + , respectively. The strongest effects were again esti
mated for the sQTL hotspots close to Rht-B1 and Rht-D1 on 4B and 4D. In 
addition to the hotspots already described, the sQTL sQGRE_N+ _WM- 
800_6B on 6B had a moderate effect on GRE under N + and was sig
nificant during four of the six weeks. Interestingly, close to this sQTL (at 
90 Mbp) a gene is located in wheat that encodes LOW PSII ACCUMU
LATION 2 (IWGSC RefSeq v1.1: TraesCS6B02G109300.1). A study in 
Arabidopsis showed that low psii accumulation1 mutants accumulated 
fewer photosystem II complexes and had altered green coloration 
compared to the wild type (Peng et al., 2006). A natural variation in our 
population for this gene could explain the observed effect on GRE but 
would not explain, why the effect only occurred under N + , so further 
research on this sQTL is necessary. A QTL in close proximity to the here 
described sQTL, affecting yield, was detected in the field trial with the 
WM-800 population independent of the N treatment (Lisker et al., 
2022). Multiple studies already showed a strong linkage between the 
greenness of plant leaves and yield (Kanning et al., 2018; Kizilgeci et al., 
2021; Rorie et al., 2011), attributable to the leaf N concentration and 
thus the N supply of the plant. 

3.1.3.2. Normalized difference vegetation index (NDVI). For NDVI, five 
sQTL were detected under N- and three sQTL under N + , five of them 
were already described as hotspots. They could explain between 1.76% 
and 20.13% of the genotypic variation. Rht-D1 explained 9.46% and 
15.99% of the genotypic variance and had the strongest relative effect 
on NDVI with − 12.76% and − 6.21% under N- and N + , respectively. 
Apart from Rht-D1, the sQTL under N- showed substantially stronger 
effects and higher R2 values than the sQTL under N + . The strongest 
sQTL, sQNDVI_N-_WM-800_5A.2, was located on 5A in close proximity 
to NRT1.1 and NRT1.2. This QTL was detected only under N- and 
explained 20.13% of the variance with a relative effect of 15.41%. 

The sQTL sQNDVI_N-_WM-800_5D on chromosome 5D was detected 
only under N-. The QTL allele present in Patras, Meister, JB Asano, 
Bernstein and Safari reduced NDVI by 7.43% and explained 4.54% of the 
variance. A candidate gene located in close proximity to this QTL en
codes a light-harvesting chlorophyll a-b binding protein (LHCB) (IWGSC 
RefSeq v1.1: TraesCS5D02G357600.1), which acts as a coordinator of 
photosystem I and II antenna pigments with chlorophyll and xantho
phyll (Jansson, 1994). Furthermore, it is well described in the literature, 
that the expression of LHCB is affected by several environmental stresses 
such as oxidative stress (Staneloni et al., 2008) and drought stress (Xu 
et al., 2012). A study in Arabidopsis with LHCB antisense mutants 
observed phenotypes with reduced chlorophyll content (Andersson 
et al., 2003). A natural variation of the expression of LHCB could, thus, 
explain the observed effect on NDVI under N deficiency stress. 

The two remaining sQTL on 4B and 5A, which were significant under 
N+ and N-, respectively, showed minor effects with low R2. For both 
sQTL no candidate genes could be determined. However, both sQTL 
were also detected in the WM-800 field trial with an effect on heading 
for the corresponding N treatment (Lisker et al., 2022). This is a strong 
indication of a causal link between the genetic regulation of NDVI and 
heading in wheat that may be investigated more closely in the future. 

Many studies showed that there is a strong relationship between 
NDVI and yield in wheat (Duan et al., 2017; Magney et al., 2016; Raun 
et al., 2001). In this case, the results presented here suggest that it is 
useful to select for NUE under N-reduced conditions and to exploit the 

effects of the N-specific QTL on, for example, 5A and 5D. Studies in 
maize and wheat showed that selective breeding for NUE under N 
deficiency conditions is more effective than indirect selection under 
high N conditions (Brancourt-Hulmel et al., 2005; Presterl et al., 2003). 

3.1.4. Root traits 
In general, for root traits less sQTL were detected than for the above- 

ground traits and repeatabilities and coefficient of determination values 
decreased over the six weeks, which is in accordance with the often 
reported high plasticity of roots to their environment (López-Bucio et al., 
2003; Sultan, 2003). This finding may indicate that root traits were more 
influenced by growth conditions or measurement methods. Measuring 
only the roots growing to the bottom of the pot may be prone to errors 
because this may not perfectly account for root development inside pots. 
However, although this method has its weakness, the moderate to high 
repeatability of this trait over the six weeks suggests that there is a solid 
data basis for conducting a GWAS. A total of seven sQTL for root traits 
were detected, all of which were N- specific, suggesting that there may 
be potential for breeding improvement of the root system for NUE under 
low N availability. 

3.1.4.1. Root length (RLE). For RLE, three sQTL were detected under N-, 
explaining between 3.83% and 4.36% of the genotypic variance. The 
significant haplotypes showed relative effects between 4.01% and 
12.50%. In addition to the hotspot on chromosome 6D, which had the 
strongest effect and the highest R2, two other sQTL on 1D and 3D 
showed a significant but minor effect on RLE under N-. 

3.1.4.2. Root diameter (RDI). Just one sQTL showed a significant effect 
on RDI, detected on chromosome 5A under N-. This sQTL is close to 
NRT1.1 and NRT1.2, already discussed as a sQTL hotspot, which 
explained 2.71% of the variance with a relative effect of 2.38%. 

3.1.4.3. Root area (RAR). For RAR, three sQTL were detected under N-, 
explaining between 2.74% and 5.39% of the variance. Besides the sQTL 
hotspot on chromosome 4D, which is linked to Rht-D1 and showed the 
strongest effect, two further sQTL on chromosomes 1B and 4A were 
detected. At the 1B sQTL, the haplotype derived from JB Asano reduced 
RAR by 7.22%. A promising candidate explaining this effect is a gene 
encoding the TRANSFORMING GROWTH FACTOR-BETA RECEPTOR- 
ASSOCIATED PROTEIN 1 (TaTRIP1) (IWGSC RefSeq v1.1: 
TraesCS1B02G017200.2,). In wheat, TaTRIP1 showed significantly 
higher expression in genotypes with short roots than with long roots (He 
et al., 2014; Ren et al., 2012). They also reported, that TaTRIP1 interacts 
with TaBRI1, encoding a brassinosteroid receptor, affecting a subset of 
brassinosteroid-regulated genes. Multiple studies showed that brassi
nosteroids regulate root growth by regulating root meristem size and 
cell expansion (Gao et al., 2008; Hacham et al., 2012; Li et al., 2009; 
Singh et al., 2016). It is also known, that brassinosteroids play an 
important role in abiotic stress tolerance in plants (Krishna, 2003; Ye 
et al., 2017) which could explain, that the described sQTL in our study 
was only significant under N- treatment. 

The sQTL on chromosome 4A explained 4.35% of the variance with a 
relative effect of 6.35% under N-. This sQTL coincides with two QTL 
affecting yield under low N supply and grain number per ear indepen
dent of N supply, which were detected in the WM-800 population in a 
multi-environment field trial with two contrasting nitrogen treatments 
(Lisker et al., 2022). It remains open, whether there is a causal rela
tionship between these QTL and whether a change in RAR may indeed 
have an impact on yield formation under low N availability. 

4. Conclusion 

In summary, our GWAS results indicate that a greenhouse-based 
high-throughput study is suitable to detect N treatment effects, N 
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treatment x genotype interactions and N-specific sQTL. We could show 
that the genetic regulation of the traits apparently depends on N avail
ability. The haplotype-based GWAS approach allowed us to assign sQTL 
effects for the eight different traits to individual parents of the MAGIC 
population. A total of 19 sQTL were detected of which five sQTL had 
pleiotropic effects on multiple traits. Candidate genes besides the Rht 
genes Rht-B1 and Rht-D1 were genes, playing a role in GA-regulated 
growth and nitrate transporter genes from the NPF gene family, where 
in particular, the latter genes acted N treatment specific. 

There has been a slight trend that more N-specific than N-indepen
dent sQTL were detected. This is an indication that genetic regulatory 
mechanisms of the studied traits may differ depending on N availability. 
Therefore, it might be more efficient to specifically select for nitrogen 
uptake efficiency under reduced N availability than to undertake an 
indirect selection for UPE under standard N conditions. 

The next step to validate and better understand nitrogen uptake ef
ficiency in the wheat population WM-800 could be the development of 
heterogeneous inbred families (HIFs, (Bergelson and Roux, 2010; 
Tuinstra et al., 1997)) from WM-800 lines that were heterozygous for the 
loci of interest in generation F4. With these HIFs, QTL validation and fine 
mapping can subsequently be performed to ultimately clone the 
responsible genes for nitrogen uptake efficiency via transformation or 
knock-out experiments. Deciphering the genetic regulation of efficient 
nitrogen uptake and utilization, and selecting the relevant genes in 
wheat breeding programs, will allow us to support feeding the human 
population even with increasing requirements regarding environmental 
constrains and natural resource protection. 

Funding 

The study was supported by funds of the German Federal Ministry of 
Food and Agriculture (BMEL) under the innovation support programme 
(MAGIC Efficiency project, no. 281B201816). 

CRediT authorship contribution statement 

Laura Schmidt: Formal analysis, Data curation, Writing – original 
draft, Visualization John Jacobs: Methodology, Software, Validation, 
Investigation, Writing – review & editing, Supervision Thomas 
Schmutzer: Data curation, Writing – review & editing Ahmad M. 
Alqudah: Writing – review & editing, Supervision Wiebke Sanne
mann: Conceptualization, Writing – review & editing, Supervision, 
Funding acquisition Klaus Pillen: Conceptualization, Writing – review 
& editing, Supervision, Project administration, Funding acquisition 
Andreas Maurer: Methodology, Software, Formal analysis, Writing – 
review & editing, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Acknowledgments 

We are grateful to the team from BASF, for excellent technical 
assistance and to TraitGenetics GmbH, Gatersleben, for genotyping WM- 
800 with the Infinium iSelect 15k SNP array and the 135k Affymetrix 
array. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.plantsci.2023.111656. 

References 

M. Alaux, J. Rogers, T. Letellier, R. Flores, F. Alfama, C. Pommier, N. Mohellibi, 
S. Durand, E. Kimmel, C. Michotey, C. Guerche, M. Loaec, M. Lainé, D. Steinbach, 
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