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A B S T R A C T   

Climate change and variability threaten the sustainability of future food production, especially in semi-arid 
regions where water resources are limited and irrigated agriculture is widespread. Increasing temperatures 
will exacerbate evaporative losses and increase plant water needs. In this regard, higher irrigation intensities 
have been posited as a solution to mitigate climate change impacts in these regions. Here, using the agro- 
hydrological model SWAT and the biophysical crop model APSIM, we show that this mitigation measure is 
oversimplified. We find that heat stress, driven by strong temperature increases, might be the dominating factor 
in controlling future crop yields and plant water needs. Our analysis encompasses agricultural areas of the Lower 
Chenab Canal System in Punjab, Pakistan (15,000 km2), which is part of the Indus River irrigation system, the 
largest irrigation system in the world, covering major cotton, rice and maize cropping zones. Climate models 
project a strong increase in temperature over the study region of up to 1.8 ◦C (±0.5 ◦C) until the mid-century. 
Both models predict a decline in future crop yields for maize and rice crops, while cotton yields are less effected 
by rising temperatures and strongly benefit from elevated atmospheric CO2 concentrations. For a high carbon 
emission scenario, the models simulate yield declines for maize of up to − 10% (APSIM) and − 19% (SWAT); for 
rice yields of up to − 4% (APSIM) to − 26% (SWAT), and for cotton yields of − 1% (APSIM) to +11% (SWAT), 
until 2050, relative to the baseline scenario 1996–2005. Our modeling results further suggest that irrigation 
demands do not align with increasing temperature trends. Average irrigation demands increase less under higher 
temperatures. Overall, our study emphasizes the role of elevated heat stress, its effects on agricultural produc-
tivity as well as water demand, and its implications for climate change adaption strategies to mitigate adverse 
impacts in an intensively irrigated region. 
Plain language summary: Climate change is one of the most important challenge facing agriculture, and hence 
future food security. Farmers struggle more and more to ensure a reliable food production. This is especially true 
for semi-arid regions where water resources are limited but at the same time urgently needed for irrigation, such 
as in the Lower Chenab Canal Area, in Punjab, Pakistan. The search for adaptation measures to weaken the 
negative impacts of climate change on agricultural systems becomes increasingly important. One option could be 
the intensification of irrigation. We use two models to simulate crop growth processes under various climate 
conditions. Our results show that heat stress would be the dominating stress for plants in the selected study 
region and that this heat stress might even lead to a reduction in water demand. Intensive irrigation can not 
necessarily help to prevent climate change-related yield losses. The models further predict that rising CO2 can 
have a positive effect on crop yield by enhancing plant growth. Nevertheless, our results indicate that these 
positive effects could not compensate the negative impacts of heat stress under constantly rising temperatures.  
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1. Introduction 

In recent years, climate change and its impact on the environment is 
one of the main concerns facing societies globally. Specifically, its effect 
on agricultural systems has become a major problem considering the 
alarming global developments regarding water and food security 
(Hanjra and Qureshi, 2010; Schewe et al., 2014). One of the latest 
special report of the UN Intergovernmental Panel on Climate Change 
(Shukla et al., 2019) predicts with high confidence that future changes 
in climatic conditions will exacerbate existing water and food shortages 
for billions of people. One of the main reasons considered responsible for 
the predicted food shortage is the inability to meet future agricultural 
water demands (Fader et al., 2016). Globally, irrigation volumes have 
more than doubled since the 1960s (Shukla et al., 2019) and are likely to 
increase further due to climate change in regions with already limited 
water supply (Wada et al., 2013; Wang et al., 2016). 

In semi-arid and developing regions like Pakistan, agriculture is the 
most important economic sector, employing nearly half of the popula-
tion (Qureshi, 2011). A large part of agricultural workers are small-scale 
farmers who are highly vulnerable to yield losses, which have become 
increasingly frequent in the recent decades (Oxfam, 2009). The pro-
jected increase in water scarcity due to climate change, along with the 
increasing demand of the fast-growing population, poses a severe threat 
to the national food supply and the production of economically impor-
tant cash crops such as cotton, maize, and rice (Ahmad et al., 2015; Khan 
et al., 2016; Schewe et al., 2014). 

The Indus Basin in Pakistan’s Punjab province is a hot spot for 
climate change impacts on water availability and agricultural produc-
tion, as it constitutes one of the world’s largest closed irrigation areas 
(Mekonnen and Hoekstra, 2011). Irrigation water accounts for over 90% 
of the total water demand in the region (Fischer et al., 2007). Significant 
climate-induced changes in the upstream glacier-hydrology – the major 
water source for the Indus Basin - are threatening future water avail-
ability in the basin (Immerzeel et al., 2010); along with the rising 
temperatures which are projected to increase faster than the global 
average (Saeed and Athar, 2018). Under such conditions, water-related 
adaptation strategies, such as increased irrigation amounts, and 
enhanced irrigation efficiency are potential solutions to cope with these 
challenges. The effects of such adaptation measures have been studied 
for agricultural systems experiencing similar climate change pressures 
and have been suggested as possible actions (Elliott et al., 2014; Fader 
et al., 2016; Molden et al., 2010). However, the direct role of increasing 
temperatures in affecting crop yields is gaining importance across the 
globe, and could be an important factor in the Indus Basin. 
Temperature-induced stress on crop growth could counteract the po-
tential of enhanced irrigation to increase productivity (Zaveri and 
Lobell, 2019). It is therefore imperative to understand the role of tem-
perature stress on crop growth and resulting plant water demand in 
combination with water stress. Improved knowledge on the potential 
impacts of temperature and water stress as well as their interlinkages is 
important to define adequate adaptation strategies (Lesk et al., 2022). In 
terms of adequate water availability for crop growth, especially in 
semi-arid regions, previous studies highlight that there is still very 
limited understanding of the potentials and limits of irrigation-related 
climate change adaptation (Tack et al., 2017; Taraz, 2018); and that 
more research is needed to disentangle the effects of temperature and 
water stress-related climate change impacts on agricultural yields 
(Carter et al., 2016). 

The main objective of this study is to quantify the impact of heat 
stress on yield and crop water demand, in the Lower Chenab Canal 
System, in Pakistan. We hypothesize that future temperature conditions 
will have a strong negative impact on crop yields in our study area. 
Further, we propose the counter-intuitive hypothesis: increasing tem-
peratures will lead to a reduction in irrigation requirements driven by a 
strong decrease in crop growth which leads to reduced plant water 
needs. 

To assess these hypotheses, the study elaborates on how temperature 
stress controls agricultural productivity and plant water requirements in 
an intensively irrigated agricultural system. To explore whether our 
counter-intuitive assumption that increasing temperatures will lead to 
decreasing irrigation demands, holds true, we apply two models: the 
hydrological SWAT model (Arnold et al., 2012) and the biophysical-crop 
modelling framework APSIM (Holzworth et al., 2014). While biophysi-
cal crop models are the classical models to be used to assess climate 
change impacts on crops, studies have shown their low performance in 
reproducing hydrodynamics such as soil moisture storage or plant water 
availability (Faria and Bowen, 2003), which are crucial processes for the 
estimation of water requirements and demands. Hydrological models on 
the other hand, show low performances in simulating plant physiolog-
ical behaviour and yield estimations. In this study we therefore use a 
hydrological and a biophysical crop model in an ensemble framework to 
assess climate change impacts on crop production as well as climate 
change impacts on plant water demands. A hard coupling of both models 
is beyond the scope of this study. Yet, the profound comparative analysis 
of both model types is expected to allow a more detailed understanding 
of strengths and weaknesses of either model and will result in a more 
reliable assessment of changes in future yield and water demands. Un-
certainties of the respective model applications are discussed in detail 
and give valuable insights for modellers of both modelling communities, 
as they reveal important limits of climate impact assessment based on 
process-based hydrological as well as crop models. 

2. Materials and methods 

2.1. Study area 

The study area is part of the Lower Chenab Canal System Area (LCC) 
in Pakistan, which comprises about 15,000 km2 of agricultural land on 
the floodplains between the Rivers Chenab and Ravi (Fig. 1A and B). It 
belongs to the Indus Basin Irrigation System (IBIS), the world’s largest 
irrigation system, feeding more than 200 million people (Immerzeel 
et al., 2010). The area is characterized by small-scale and highly frag-
mented agricultural cropping patterns. During the dry winter season 
(Rabi) the dominating crop type is winter wheat while during the wetter 
and hot summer (Kharif) the crop pattern diversifies and mainly cotton, 
maize, rice, and fodder are grown on small-scale farms. Annual refer-
ence evaporation (approx. 1800 mm/a) is more than three times larger 
than annual precipitation (approx. 500 mm/a), resulting in a strong 
demand for additional irrigation. Knowing about potential negative 
impacts on agricultural production and defining possible adaptation 
strategies is therefore of paramount importance for water and food se-
curity in this region. 

In this study, we focused on analysing the impacts of future climate 
change on summer crops, namely cotton, maize, and rice, grown be-
tween May and October. Impacts are evaluated based on changes in crop 
yield and relevant hydrologic and biophysical variables including 
evapotranspiration, irrigation demand, leaf-area growth, and biomass 
production. The selected crops represent high-value crops with a wide 
distribution in the study area (Fig. 1A). Thus, changes in their produc-
tion levels will have significant economic impacts and changes in irri-
gation needs will have a strong impact on basin-wide water demand. 

2.2. Models: SWAT and APSIM 

To analyse climate change impacts on yield and water demand, we 
apply two models from different scientific disciplines. We consider the 
agro-hydrological SWAT model (Arnold et al., 2012), with high per-
formance in simulating complex hydrological plant-soil-atmosphere 
interactions and the biophysical crop modelling framework APSIM 
(Holzworth et al., 2014), with high performance in simulating complex 
plant growth dynamics. The models are briefly described below: 

The agro-hydrological SWAT model (Soil & Water Assessment Tool) 
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simulates the quantity and quality of water flow within catchments, 
incorporates detailed management strategies (e.g. irrigation schedules, 
planting schedules) and basic plant physiognomic stages, e.g. root 
development, leaf area development, and biomass change (Arnold et al., 
2012; Gassman et al., 2014). The main underlying principle for the 
simulation of water fluxes is the water balance closure (Neitsch et al., 
2009). SWAT accounts for spatially distributed environmental and cli-
matic changes and it simulates their effects on individual water balance 
components, such as evapotranspiration, infiltration, soil moisture 
changes and runoff (Fig. 2). Its strengths are therefore the detection of 
spatially distributed changes in water availability and demand. Impacts 
of increasing atmospheric CO2 concentrations are accounted for in the 
estimation of potential evapotranspiration, affecting (i.e., reducing) 
plant water demand as well as in the estimation of plant radiation use 
efficiency, affecting (i.e., enhancing) biomass production. To ensure 
correct and spatially differentiated parameterization, the model is cali-
brated following an automated and spatially distributed calibration 
approach. A detailed description of this calibration procedure can be 
found in Becker et al. (2019). In this study, the model was run on a daily 
timescale, with daily climate input data. The spatially distributed SWAT 
results are averaged over each respective crop growing region, resulting 
in one maize, one rice, and one cotton data set. 

The Agricultural Production System Simulator (APSIM) is a bio-
physical crop modelling framework which simulates agricultural crop 
dynamics with respect to varying climatic and environmental conditions 
(Holzworth et al., 2014). It has been extensively used to assess climate 
change impacts on agricultural productivity (Deihimfard et al., 2018; 
Gaydon et al., 2021; Khaliq et al., 2019). Model performance and ap-
plications are studied in depths within the scope of the Agricultural 
Modelling Intercomparison and Improvement Project - AgMIP (Boote 
et al., 2021; Rosenzweig et al., 2014), in which APSIM was applied in the 
same study region of southern Punjab to assess climate change impact on 
crop production. Focus and strength of the APSIM framework is the 

plant-specific simulation of biophysical dynamics such as biomass pro-
duction, yield or root growths (Fig. 2). Due to its modular approach, 
with individual sub-models for each crop type, it can account for plant 
specific reactions to climate change. For example, with individual 
models for cotton, rice, and maize it accounts for plant type specific 
carbon assimilation processes (C3 vs. C4-plants) and hence, differenti-
ates between plant type reactions to increased atmospheric CO2 levels. 

Different to SWAT, APSIM is a plot-scale model. To allow for a model 
comparison between the spatially distributed SWAT model and APSIM, 
we calibrated the APSIM model by adopting the most important soil and 
management parameter configurations from the calibrated SWAT 
model. To rule out uncertainties which would arise due to spatial dif-
ferences in soil and climate conditions over the large LCC area, we 
conducted a sensitivity analysis to analyse the effect of varying soil and 
climate parameters on APSIM simulated crop yields. This further 
allowed us to constrain appropriate parameters for the APSIM model. 
Soil parameters were furthermore verified through laboratory analysis 
of soil samples collected during a field campaign in the study region 
(Schulz et al., 2021). Details of the used parameters and underlying 
estimation procedure for both crop models are described in the Sup-
plementary Information S2 and Tables S1-S3. Like the SWAT model, 
APSIM was run on a daily time scale, with daily climate input data. 

Two central management-related assumptions were made in both 
models: i. water stress is minimized by including regular irrigation 
events, as soon as soil moisture drops below 90%; and ii. nutrient stress 
is minimized by assuring sufficient fertilizer application, applying 
100 kg/ha of nitrogenous fertilizer at each irrigation event. Simulated 
trends of future yield, biomass production, evapotranspiration, LAI and 
water demand can therefore be ascribed to the effect of temperature 
increase, by ruling out the influence of irrigation and nutrient 
management. 

The skill of both models to correctly reproduce plant water demands 
was validated against observed crop specific evapotranspiration (ET) 

Fig. 1. (A) Lower Chenab Canal (LCC) study area and spatial distribution of cotton, maize and rice growing regions (Land-use data from Awan et al., 2016). (B) 
Overview of LCC study area, Pakistan, and the Indus River Basin. (C) Mean annual temperature and (D) precipitation trends of historical data (black line) and future 
climate projection of 9 CORDEX models (red and blue lines are ensemble means; coloured uncertainty band span between 25th and 75th percentiles). Shaded grey 
areas (C and D) show the reference period (1996–2005) and future periods of 2021–2030 and 2041–2050, examined in this study. 
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rates, for the years 2009–2010. This time period was chosen based on 
the availability of high resolution and crop specific ET data. To validate 
the model performances with respect to yield simulations annual yield 
estimates were validated using observed yield data provided by Agri-
cultural Statistics of Pakistan, published by the Ministry of National 
Food Security & Research (MNFSR, 2021). Observed yield data could be 
obtained for the years 2002–2013, at the province level for the province 
of Punjab. 

2.3. Climate data sets 

Daily Climate Forecast System Reanalysis data (Saha et al., 2010) 
was taken as historical reference climate data for a baseline period 
(1996–2005). The data set encompasses temperature, precipitation, 
relative humidity, solar radiation, and wind speed. To ensure the ac-
curacy of the baseline data set, the CFSR data was bias-corrected using 
climate records of three available local climate stations (Supplementary 
Section 1.1). 

Climate projection datasets were taken from the Coordinated 
Regional Downscaling Experiment (CORDEX), which provides a suite of 
regional climate projections based on the Global Climate Models of the 
Coupled Model Intercomparison Project, Phase 5 (Taylor et al., 2012). 
We considered medium (RCP 4.5) and high (RCP 8.5) greenhouse gas 
emission scenarios from the IPCC - Fifth Assessment Record (AR5); and 
analysed the impacts in the near future (short; until 2030) and the mid 
future (medium; until 2050). The short-term time frame was selected to 
show the potential changes expected to occur in the coming next decade, 
and to show the necessity for immediate actions. The medium-term 
scenario was chosen to show the consequences of climate change at a 
time scale still relevant for today’s population. Due to the capabilities of 
management and plants to adapt to changes in climate as well as 
long-term reactions of the farming community to adapt to new envi-
ronmental conditions, we do not include a long-term impact assessment. 
For the short- and medium-term scenarios, we assumed that factors such 
as plant genetics and management strategies remain constant and at a 
current level. 

The projections of future CO2 concentration were based on (van 
Vuuren et al., 2011) and were assumed to be 420 ppm CO2 (RCP 4.5) 
and 450 ppm CO2 (RCP 8.5), during the time period 2021–2030, and 
470 ppm CO2 (RCP 4.5) and 520 ppm CO2 (RCP 8.5) for the period 
2041–2050. The study uses climate projections based on the older 
Representative Concentration Pathway (RCP) scenarios used in CMIP5 
rather than the newer Shared Socio-economic Pathways (SSP) scenarios 

from CMIP6. In terms of CO2 emission scenarios, the scenarios RCP 4.5 
and RCP 8.5 used in this study can be compared with the SSP2–4.5 and 
the early century SSP5–8.5 scenario, respectively (Fuglestvedt et al., 
2021). We acknowledge that the newer climate projections might yield 
slightly different results, however, these are rather small given the 
mid-century time frame of the analysis (until 2050), in which CMIP5 and 
CMIP6 scenarios are still comparable (Fig. 3). 

3. Results and discussion 

3.1. Validation results of SWAT and APSIM 

The skill of both the models to correctly reproduce plant water de-
mands was validated against observed crop specific evapotranspiration 
(ET) rates, for the years 2009–2010. Validation results are given in terms 
of mean monthly absolute ET values and the coefficient of determination 
(R2) in Table 1. The skill of the models to correctly reproduce plant 
growths dynamics was validated against observed yield data, for the 
province Punjab, for the years 2002–2013. Validation results of yield 
simulations are given in terms of mean absolute yields and the relative 
error (RE) in Table 2 and are visualised in Fig. 2. 

Both models show their strengths in their respective domains. SWAT 
performs slightly better in reproducing ET, due to its focus on hydro-
logical processes and APSIM performs better in yields, due to its focus on 
plant growth dynamics. All models overestimate evapotranspiration 
rates and, with the exemption of the SWAT-Rice model, they all over-
estimate crop yields. This consistent overestimation of ET and yield is 
not surprising, considering the fact that we simulate hypothetical cases 
in which farm management practices are assumed to be close to optimal, 
with sufficient water and fertilizer supply. Even though this is not a 
perfect representation of reality, it is an important assumption in order 
to rule out yield variations due to management, while studying the 
potential risks of climate impacts on agricultural production. Note that 
in this study we use the models for studying relative changes for two 
future time periods, rather than studying the change in absolute values. 
The model structural reasons for the discrepancies in their performances 
are discussed in more detail further below. They give important insights 
into model uncertainties and their use as climate impact assessment 
tools. 

3.2. Future climate trends in the LCC study area 

Climate models project a strong increase in temperature over the 

Fig. 2. Schematics of the main processes simulated by SWAT and APSIM models. Processes analysed in this study are written in bold and italic letters.  
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study region, under the high-emission scenario RCP 8.5 as well as under 
the moderate emission scenario RCP 4.5 (Fig. 1C). For the summer 
season (May-October), the ensemble means predict an increase of 1.0 ◦C 
( ± 0.4 ◦C) for RCP 4.5 and 1.0 ◦C ( ± 0.3 ◦C) for RCP 8.5 until 2030, 
compared to the reference period of 1996–2005. A warming of 1.6 ◦C 
( ± 0.5 ◦C) and 1.8 ◦C ( ± 0.5 ◦C) is projected for RCP 4.5 and 8.5, 
respectively, until 2050 (Fig. 4A). Strong increases in temperature under 
both scenarios point towards higher pressure on agricultural production 
resulting from increased heat stress on crop growth, especially during 
summer months (Ahmad et al., 2015; Awan et al., 2021; Yasin et al., 
2022). During the four central months of the growing season 
(May-August), mean monthly temperatures are projected to exceed 
32 ◦C (Fig. 4B). A high agreement between single climate model 
ensemble members regarding the consistent increase in future temper-
ature, indicates that the future summer season warming in the LCC area 
can be projected with high confidence (Fig. 1C; Fig. 4A and B). 

Precipitation projections, on the other hand, are highly uncertain 
and no clear trend in annual or monthly precipitation amounts can be 
detected (Fig. 1D, Fig. 4C and D). Estimations of future water avail-
ability based on precipitation projections for the study area, are there-
fore difficult. In this study, we assume that due to the constant irrigation 
activities in the LCC irrigation system, agricultural water availability is 
always assured, and plant water demand is met. Thus, impacts of 

changes in precipitation are small and water stress is kept low. Scenarios 
in which future water availability can no longer meet irrigation de-
mands, e.g. due to shrinking surface or groundwater resources, are not 
analysed in this study. We focus exclusively on the effects of climate 
change on agricultural production given sufficient water supply and 
examine if the pressure on water resources will increase in future. 

3.3. Declining yield levels under increasing temperatures 

Both models (SWAT and APSIM) show that climate change will lead 
to a substantial reduction of future yield levels in the study area. Under 
current CO2 concentrations, mean yield levels of all three crops are 
projected to decrease by up to − 24% ( ± 12%) under the high emission 
and mid-century scenario (Fig. 5A, light grey bar, RCP 8.5 2041–50). 
SWAT simulates yield reductions of up to − 63% ( ± 19%) for rice, 
− 18% ( ± 12%) for cotton, and − 40% ( ± 12%) for maize. APSIM 
simulates yield reductions of up to − 22% ( ± 4%) for rice, − 20% 
( ± 11%) for cotton, and − 12% ( ± 3%) for maize (Fig. 5 A-C). Despite 
differences in the predicted magnitudes of yield declines, SWAT and 
APSIM models agree in their trends (sign) and show that increasing yield 
losses align with increasing temperatures for all crop types. Considering 
that water demand and nutrient availability is assumed to be met, the 
results underline that increasing heat stress will play an important role 
in the decline of future crop yields. This is in-line with the findings of 
previous studies, which show that declining yields can be strongly 
related to temperature increases (Ortiz-Bobea et al., 2019; Saddique 
et al., 2020; Yasin et al., 2022; Zhao et al., 2017). Regional studies from 
Pakistan agree with our results and show that heat stress is the major 
factor threatening future yields in important agricultural regions in 
Pakistan (Awan et al., 2021; Khan et al., 2021; Yasin et al., 2022). Exact 
estimates of projected yield declines for our study region and our 
selected crops vary. The above cited studies suggest yield declines of 
approx. up to − 17% to − 25% in rice yields (Khan et al., 2021), up to 
− 30% in cotton yields (Awan et al., 2021), and − 8% to − 55% in maize 
yields (Yasin et al., 2022), for mid-century climate change scenarios. 

In addition it is worth noticing that the negative effects of rising 
temperatures on yields are often non-linear (Lobell et al., 2011; Schau-
berger et al., 2017; Schlenker and Roberts, 2009). Of particular impor-
tance is the exceedance of crop specific critical temperature thresholds, 
above which crops experience significant yield reductions. Cotton, 
which has a higher optimal temperature (approx. 30–32 ◦C, (Reddy 
et al., 1999; Schlenker and Roberts, 2009) and thus a higher heat 
resistance than rice (approx. 25 ◦C, Luo, 2011) and maize (approx. 
29 ◦C, Schlenker and Roberts, 2009), can therefore better cope with 
elevated temperatures. This is also reflected in the results of this study, 

Fig. 3. Simulated yield estimates compared to observations; observations are the AGRIStats data = Agricultural Statistics of Pakistan. Bar heights show the mean of 
the years 2002–2013 and uncertainty bars show + /- one standard deviation. 

Table 1 
Validation results for simulated evapotranspiration rates.  

Crop 
type 

Observed ET SWAT ET and R2 APSIM ET and R2 

Mean absolute 
ET [mm/month] 

mean absolute 
ET [mm/ 
month] 

R2 Mean absolute 
ET [mm/ 
month] 

R2 

Rice  75  83  0.65  84  0.26 
Cotton  50  86  0.36  97  0.59 
Maize  60  73  0.54  69  0.44  

Table 2 
Validation results for simulated yields.  

Crop 
type 

Observed Yield SWAT Yield and RE APSIM Yield and RE 

Mean absolute 
yield [kg/ha] 

Mean absolute 
yield [kg/ha] 

RE 
[%] 

Mean absolute 
yield [kg/ha] 

RE 
[%] 

Rice 1813 1174 -35 1867 3 
Cotton 666 950 30 867 23 
Maize 3922 4092 4 6370 38  
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which show a strong crop specific sensitivity to heat stress, with stronger 
heat stress impacts for rice and maize and a lower heat stress impact for 
cotton. Furthermore, SWAT shows significantly higher sensitivities to 
temperature than APSIM, resulting in strong yield declines for all three 
crops. The stronger temperature sensitivity of SWAT explains the larger 
uncertainties in SWAT yield predictions, as temperature projections of 
the nine selected climate models are stronger reflected in the final SWAT 
results compared to ASPIM results. Despite the differences between 
APSIM and SWAT estimates, simulated yield losses of both models are 
unequivocal and would have large implications for future agricultural 
productivity in the study area. 

3.4. Impact of rising CO2 on plant development 

Increasing atmospheric CO2 levels dampen the negative effects of 
rising temperatures on yields and reveals the significant positive effect 
of elevated CO2 concentrations on agricultural productivity (Fig. 5, dark 
grey bars). This effect is also known as CO2 fertilization. For the short- 
term scenario (2021–2030), increasing CO2 concentrations could even 
prevent a significant decline in simulated crop yields. APSIM results 
show that average yield losses could be approx. 4.4% (RCP4.5, 
2021–2030) to 6% (RCP8.5, 2021–2030) less severe due to increasing 
CO2 concentrations. Averaging yield levels of all tree crops, SWAT 
projects a full offset of climate-related yield losses under enhanced CO2 
levels. For the short-term scenario, SWAT simulates increasing yields of 
+ 1.8% (RCP4.5) to + 5.5% (RCP8.5; Fig. 5A). Strong positive effects of 
increasing CO2 concentrations on plant growth, as seen in our results, 
have proven to counteract plant growth-limiting effects (Parry et al., 
2004; Singh et al., 2020). At this point, it is worth to recall that, in this 
study, we assume a sufficient supply of nutrients at any time. Nutrient 
stress would limit the CO2 fertilization effect (Reich et al., 2014), but in 
this study the positive effect of CO2 enrichment on plant development is 

unimpeded. Overall, the effectiveness of CO2 fertilization is still a large 
source of uncertainty (Elliott et al., 2014; McGrath and Lobell, 2013), 
which is yet to be improved in bio-physical crop models (Toreti et al., 
2020). In the context of our study, uncertainty arises through the dif-
ferences in representing CO2 impacts on plant physiology by SWAT and 
APSIM. 

SWAT accounts for the positive effects of CO2 by increasing the ra-
diation use efficiency of plants under rising CO2 levels (Eqs. (S1) and 
(S2)). This increases the plants’ ability to capture photosynthetically 
active radiation and leads to more efficient biomass production. Yet, the 
model equally applies this formulation to all crops, irrespective of their 
different photosynthetic pathways, i.e. C3- or C4-pathway. Hence, the 
agro-hydrological SWAT model does not account for plant-type-specific 
impacts of CO2 and might overestimate the positive effects of CO2 (Wu 
et al., 2012). 

The APSIM crop models, on the other hand, consider plant-specific 
impacts (Vanuytrecht and Thorburn, 2017). In the case of C3-plants, 
such as rice and cotton, the models account for the photorespiratory 
part in the photosynthetic process (e.g. Eq. (S8) for cotton). Higher 
photorespiration lowers carbon assimilation under stress conditions and 
elevates it under higher CO2 concentrations (Morison and Lawlor D.W, 
1999). The APSIM maize-model (Fig. 5C) correctly assumes insensitivity 
to changing CO2 effects for C4-plants. While this leads to unchanged 
maize yields with respect to CO2 changes in APSIM simulations, SWAT 
assumes positive effects of CO2 on maize growth. For cotton, rising CO2 
levels lead to increased cotton yields of approx. up to + 6% (APSIM) and 
+ 14% (SWAT) until 2050, under the high emission scenario (Fig. 5B). 
Likewise, the simulated rice dynamics are consistent in both models. 
Rice yields (Fig. 5D) experience similar positive impacts under rising 
CO2 levels compared to cotton (both C3-plants), but their yield re-
ductions due to heat stress are too severe to be compensated by 
increasing CO2 concentrations (Fig. 5D). Large discrepancies in the rice 

Fig. 4. Projected temperature and precipitation change during Kharif (summer) months, for selected time periods 2021–2030 and 2041–2050, with respect to 
historical data (1996–2005). (A) Absolute seasonal temperature change and (B) absolute monthly temperature changes. (C) Relative seasonal precipitation changes 
and (D) absolute monthly precipitation changes. Red dots and displayed percentages show ensemble mean changes. Grey dots represent single ensemble members. 
The right panels show model ensemble uncertainty bands of 25th and 75th percentiles. 
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and maize simulations of the two models can be seen with respect to 
temperature changes. These are further discussed below. 

Previous studies have indicated that increasing CO2 improves water 
use efficiency by reducing plant transpiration which facilitates plant 
growth during drought conditions (Singh et al., 2020; Wullschleger 
et al., 2002; Yoo et al., 2009). At the same time, it has also been reported 
that reduced plant transpiration leads to increased heat stress, due to 
reduced evaporative cooling (Siebert et al., 2014; Vanuytrecht et al., 
2012). These two effects are currently not captured by either of the 
models. As the strong increase in future temperature is projected under 
both RCP scenarios and together with the abundance of water due to 
irrigation, the positive effect of CO2 on yield levels is most likely over-
estimated by both crop models. 

Under further rising temperatures (scenarios for the period 

2041–2050), APSIM and SWAT project a decline in crop yields indi-
cating that even with further elevated CO2 concentrations and unlimited 
water and nutrient availability, climate change induced yield declines 
cannot be prevented. APSIM projects an average yield decline of − 8% 
( ± 3%, RCP 4.5) and − 7% ( ± 2.3%, RCP 8.5), while SWAT projects a 
similar yield decline with larger uncertainties of − 7% ( ± 13%, RCP 
4.5) and − 7% ( ± 18%, RCP 8.5). All estimated crop yields show that 
the positive effects of increasing CO2 levels are likely to diminish as 
temperatures continue to rise (Fig. 5A). 

3.5. Future irrigation and evaporative demand 

In the following, we analyse if rising temperatures will lead to an 
increase in irrigation demand and if irrigation is an effective measure to 

Fig. 5. Projected changes in future crop yield under the RCP 4.5 and RCP 8.5 scenario, neglecting (light grey bars) and considering (dark grey bars) the impact of CO2 
changes. (A) Results are shown for all crops combined as well as separately for (B) cotton, (C) maize and (D) rice. Filled bars show the median estimate and black bars 
the respective 25th and 75th percentiles of the model ensemble (SWAT and APSIM with nine climate models). Separate results for SWAT and APSIM models are 
shown as coloured dots (median), and coloured line with the respective 25th and 75th percentiles for the model ensemble of nine climate models. 
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counteract the severe yield losses. Further, we discuss the reasons 
behind estimated yield declines in the context of changes in irrigation 
demand and evapotranspiration (ET). 

Considering the significant temperature increase one would expect a 
strong increasing signal in plant water demand (Döll, 2002; Wada et al., 
2013). Examining irrigation and evaporative demands in the study area, 
however, reveals that trends in future water demand do not align with 
projected temperature trends. Against the expectation of increasing 
irrigation needs due to rising temperatures, both crop models show that 
average irrigation demands increase less under higher temperatures. 
Under both emission scenarios and for both models, the strongest in-
crease in irrigation demand is predicted for the moderate short-term 
scenario (RCP 4.5, 2021–2030), while less increase is predicted for the 
high-end emission scenario (RCP 8.5, 2041–2050). Fig. 6 displays the 
results for APSIM and SWAT separately to reveal important differences 
in their simulation results. Results are averaged over the selected sum-
mer crops cotton, maize and rice to focus on unraveling the complex 
dynamics of heat and water stress interactions under different climate 
scenarios. Crop specific results are presented in more detail the sup-
plementary material (Figs. S4-S5). 

For conditions with historical CO2 levels, SWAT projects the lowest 
irrigation needs for the RCP 8.5 and mid-term future scenario (increase 
of irrigation needs by 1 ± 8%; Fig. 6A). Under elevated CO2 concen-
trations (Fig. 6B), water demand even reduces (− 4 ± 7%), which agrees 
with the effect of reduced plant water needs due to reduced stomatal 
conductance (Fernández-Martínez et al., 2019; Kimball et al., 2002). For 
the same scenario, irrigation demand simulated by APSIM will increase 
by approx. 5 ± 5%. It appears insensitive to CO2 changes, as irrigation 
demand remains constant regardless of changes in CO2 levels (Fig. 6A vs. 
B). Yet, the significant increase in LAI under elevated CO2 levels 
(Fig. 6B) as well as the negligible change in irrigation demand illustrates 
that APSIM likewise accounts for positive CO2 effects on water demand 
and shows decreasing irrigation demand relative to leaf area growth. 
The reason for the surprisingly low increase in irrigation needs can be 

explained by a similarly low increase in actual evapotranspiration rates 
(Fig. 6C and D). Irrespective of the strong temperature rise (up to 1.8 ◦C 
until 2041–2050), increases in ET are projected by both crop models to 
stay on average below 3% ( ± 4%; for model differences see Fig. 6), and 
do not increase with further rising temperatures. 

Finally, the fact that biomass and yield strongly decline while future 
irrigation demands do not align with future temperature trends indicates 
that even if more water for intensified irrigation activity would be 
applied, it would not help to prevent yield losses when significant heat 
stress is the main yield controlling factor. This is further underlined by 
the strong impact of heat stress on leaf area growth and the already 
mentioned dynamics of biomass production, which are discussed in 
more detail below. 

3.6. Future plant growth and plant productivity 

SWAT model results suggest a significant reduction in LAI by up to 
− 27% ( ± 6%) under the high-emission scenario (median of all three 
crop models for RCP 8.5, 2041–2050). Crop specific declines are esti-
mated to be up to − 31% for maize, − 25% for cotton, and − 58% for 
rice (Fig. S8). The decreasing LAI trend clearly follows the increasing 
temperature trend, with the highest LAI reductions under the RCP 8.5 
scenario (Fig. 6A), and reveals a strong sensitivity of leaf area growth to 
temperature changes (Fig. 6C). The reason for this strong temperature 
sensitivity is the following: SWAT estimates LAI development based on 
the influence of one predominant environmental stress factor (Eq. (S4)), 
which is heat stress in this study. Further, LAI calculations in SWAT do 
not account for CO2 effects (Fig. 7A vs B), which results in strong LAI 
decreases even under higher CO2 concentrations (Fig. 7B) and in 
decreasing ET rates (Fig. 7D). 

APSIM on the other hand, which does not account for a specific heat 
stress factor in its LAI calculations, shows a clear LAI insensitivity to 
temperature (Fig. 7A vs. B). APSIM leaf area calculations are primarily 
controlled by water stress, but as constant water supply is guaranteed in 

Fig. 6. (A and B) Projections of future irrigation demand and (C and D) future ET rates. (A and C) Changes under the baseline CO2-scenario and (B and D) with 
increased CO2-levels. 
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this study, LAI development is unimpeded. Yet, APSIM-LAI predictions 
show a notable sensitivity to CO2-concentrations and increasing leaf 
growth under rising CO2 levels, for C3-plants. Consequently, APSIM 
based simulated LAIs are projected to increase by up to 15% ( ± 10%) 
under the high emission scenario, which explains why APSIM-ET rates 
do not decrease despite ET reducing CO2-effects (Fig. 5D). Crop specific 
results are − 1% for maize (C4-plant), + 24% for cotton, and + 29% for 
rice (both C3-plants; Fig. S8). Similar effects were observed and 
described by Singh et al. (2020), revealing a strong increase in LAI due to 
CO2 increases, offsetting higher water use efficiency. 

As leaf area and temperature jointly control the evaporative de-
mands and ultimately irrigation water needs, the differences in LAI 
simulations highlight the importance of model sensitivity to heat stress. 
The differences in the underlying model structures result in two dis-
similar conclusions. On the one hand, SWAT projects a decline in future 
plant growth, which is strong enough to reduce ET and irrigation de-
mand. This leads to the conclusion that irrigation intensification cannot 
help to mitigate future yield losses. APSIM, on the other hand, forecast 
increasing leaf area growth and indicates that intensified irrigation will 
be needed due to the resulting (albeit modest) rise in water demands. 
Yet, even in the latter case, intensified irrigation cannot prevent future 
yield losses. 

The discrepancy between the projected increase in LAI and the 
decrease in biomass estimates by APSIM results from the way APSIM 
accounts for biomass partitioning processes. As a biophysical crop 
model, APSIM accounts for carbon assimilation in different plant frag-
ments such as leaves, stem, fruits, and roots. The produced biomass can 
dynamically be allocated to different plant parts. Leaf area can therefore 
remain constant or even increase while the overall biomass decreases. 

While SWAT and APSIM disagree in their LAI estimates, both models 
predict a substantial reduction in plant biomass under increasing tem-
peratures (Fig. 7C). Under historical CO2-levels SWAT predicts a 
reduction in biomass of up to − 33% ( ± 11%; up to − 41% for maize, 

− 20% for cotton, and − 64% for rice), while APSIM predicts a reduction 
of up to − 25% ( ± 11%; up to − 17% for maize, − 23% for cotton, and 
− 5% for rice; RCP 8.5, 2041–2050). To this end, both models show a 
good agreement in their predicting trends and in their sensitivity to-
wards CO2 changes. Rising CO2 levels might compensate negative 
temperature effects in the near future but for the mid-century scenario 
(2041–2050), biomass is projected to decline despite further elevated 
CO2 levels (Fig. 7D). This aligns with observations which show a clear 
temperature dependent CO2 fertilization effect (Fernández-Martínez 
et al., 2019). As mentioned above, elevated CO2 concentrations can lead 
to an enhanced carbon fixation rate under higher CO2 concentrations. 
Yet, at the same time, it has been reported that reduced plant transpi-
ration due to enhanced CO2 availability leads to increased heat stress. 
The reason is reduced evaporative cooling which induces higher leaf and 
plant organ temperatures (Siebert et al., 2014; Vanuytrecht et al., 2012). 
At the same time, the temperature increase can speed up the plant 
development and lead to less time for carbon assimilation and reduced 
biomass production. The results are supported by Morison and Lawlor D. 
W. (1999), who point out that a temperature increase of just a few tenths 
of a degree can act cumulatively over time and can significantly accel-
erate plant development and reduce time for biomass production. 

Recalling that both models assume a sufficient supply of irrigation 
water and enough nutrient supply, our results reveal once more that heat 
stress is the dominating factor controlling future yield developments. 
We, therefore, conclude that the mitigation potential of irrigation to 
counteract future yield losses is severely limited under further rising 
temperatures. An intensification of irrigation might be able to mitigate 
yield declines in the near future, when positive CO2 effects balance the 
harmful temperature effects and irrigation demands are still increasing 
(Fig. 6B). For the mid-century scenario, however, the positive CO2 ef-
fects as well as irrigation intensification will not be able to compensate 
for the yield losses. 

Fig. 7. (A and B) Projections of future LAI changes and (C and D) future biomass changes. (A and C) Changes under the baseline CO2-scenario and (B and D) with 
increased CO2-levels. 
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4. Conclusions 

The study examines potential climate change impacts on cotton, 
maize and rice crops in the Punjab region of Pakistan. The main finding 
is that under expected climate change scenarios a substantial reduction 
in summer crop yields is likely to occur in the study region. It could be 
shown that plant development is dominantly controlled by heat stress 
and that negative climate change impacts on agricultural production can 
only be marginally mitigated by an intensification of irrigation. In the 
medium-term future, under further rising temperatures, irrigation 
cannot prevent increasing yield losses. Temperature related adaptation 
strategies such as the selection of more heat resistant crops, or changes 
in crop planting schedules seem therefore more suitable than water 
related adaptation measures. This aligns with current efforts in Pakistan 
to re-define eco-agrological zones according to changing climate pat-
terns and to choose earlier planting dates to avoid summer heat waves. 

By using two models from different scientific disciplines, and with 
two different model architectures, the study is able to point out impor-
tant model structural limitations which influence the final results of 
climate impacts on local crop production and water demands. LAI sim-
ulations and the simulation of CO2-sensitivities were identified as 
important model routines, leading to discrepancies in the results of our 
climate change impact assessment using the SWAT and the APSIM 
models. This also leads to important differences in the estimation of 
irrigation water demand. We therefore conclude by suggesting a better 
combination of the strengths of hydrological and biophysical crop 
models. The integration of more robust hydrological routines into bio-
physical crop models is a promising way forward. Such a hard-coupled 
model integration will be valuable for agricultural climate change 
impact studies as it enables a simultaneous consideration of the hydro-
climatic environment with specific bio-physical responses of plants to 
climate change. 
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Peñuelas, J., 2019. Global trends in carbon sinks and their relationships with CO2 
and temperature. Nat. Clim. Change 9 (1), 73–79. https://doi.org/10.1038/s41558- 
018-0367-7. 

Fischer, G., Tubiello, F.N., van Velthuizen, H., Wiberg, D.A., 2007. Climate change 
impacts on irrigation water requirements: Effects of mitigation, 1990–2080. 
Technol. Forecast. Soc. Change 74 (7), 1083–1107. https://doi.org/10.1016/j. 
techfore.2006.05.021. 

Fuglestvedt et al., 2021, IPCC, Chapter 1: Framing and Context — Special Report on 
Climate Change and Land: Cross-Chapter Box 1.4, https://www.ipcc.ch/srccl/ 
chapter/chapter-1/. Accessed 2/10/2023. 

Gassman, P.W., Sadeghi, A.M., Srinivasan, R., 2014. Applications of the SWAT model 
special section: overview and insights. J. Environ. Qual. 8. 

Gaydon, D.S., Khaliq, T., Ahmad, M.-D., Cheema, M., Gull, U., 2021. Tweaking Pakistani 
Punjab rice-wheat management to maximize productivity within nitrate leaching 
limits. Field Crops Res. 260, 107964 https://doi.org/10.1016/j.fcr.2020.107964. 

Hanjra, M.A., Qureshi, M.E., 2010. Global water crisis and future food security in an era 
of climate change. Food Policy 35 (5), 365–377. https://doi.org/10.1016/j. 
foodpol.2010.05.006. 

R. Becker et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.agwat.2023.108243
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref1
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref1
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref1
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref1
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref1
https://doi.org/10.13031/2013.42256
https://doi.org/10.3390/su131910495
https://doi.org/10.3390/su131910495
https://doi.org/10.1016/j.jhydrol.2019.123944
https://doi.org/10.1016/j.jhydrol.2019.123944
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref5
https://doi.org/10.1088/1748-9326/11/9/094012
https://doi.org/10.1088/1748-9326/11/9/094012
https://doi.org/10.1007/s42106-018-0012-4
https://doi.org/10.1007/s42106-018-0012-4
https://doi.org/10.1023/A:1016124032231
https://doi.org/10.1023/A:1016124032231
https://doi.org/10.1073/pnas.1222474110
https://doi.org/10.5194/hess-20-953-2016
https://doi.org/10.1590/S1516-89132003000400001
https://doi.org/10.1038/s41558-018-0367-7
https://doi.org/10.1038/s41558-018-0367-7
https://doi.org/10.1016/j.techfore.2006.05.021
https://doi.org/10.1016/j.techfore.2006.05.021
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref14
http://refhub.elsevier.com/S0378-3774(23)00108-7/sbref14
https://doi.org/10.1016/j.fcr.2020.107964
https://doi.org/10.1016/j.foodpol.2010.05.006
https://doi.org/10.1016/j.foodpol.2010.05.006


Agricultural Water Management 281 (2023) 108243

11

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., 
Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., 
Whish, J.P., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., 
Hochman, Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., 
Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., 
Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., 
van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N., MacLeod, N., 
McDonald, C., Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM – Evolution 
towards a new generation of agricultural systems simulation. Environ. Model. Softw. 
62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009. 

Immerzeel, W.W., van Beek, L.P.H., Bierkens, M.F.P., 2010. Climate change will affect 
the asian water towers. Science 328 (5984), 1382–1385. https://doi.org/10.1126/ 
science.1183188. 

Khaliq, T., Gaydon, D.S., Ahmad, M.-D., Cheema, M., Gull, U., 2019. Analyzing crop yield 
gaps and their causes using cropping systems modelling–A case study of the Punjab 
rice-wheat system, Pakistan. Field Crops Res. 232, 119–130. https://doi.org/ 
10.1016/j.fcr.2018.12.010. 

Khan, M.A., Khan, J.A., Ali, Z., Ahmad, I., Ahmad, M.N., 2016. The challenge of climate 
change and policy response in Pakistan. Environ. Earth Sci. 75 (5), 412. https://doi. 
org/10.1007/s12665-015-5127-7. 

Khan, N.A., Gao, Q., Abid, M., Shah, A.A., 2021. Mapping farmers’ vulnerability to 
climate change and its induced hazards: evidence from the rice-growing zones of 
Punjab, Pakistan. Environ. Sci. Pollut. Res 28 (4), 4229–4244. https://doi.org/ 
10.1007/s11356-020-10758-4. 

Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free air 
CO2 enrichment. Adv. Agron. 77, 293–361. 

Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K.F., 
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