
An Evaluation Framework for Software Test Processes

Dissertation

zur Erlangerung des akademischen Grades

doktor ingenieur
(Dr.-Ing)

genehmigt durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: M.Sc. Ayaz Farooq
geb. am 30.07.1972 in Sargodha (Pakistan)

Gutachter:
Prof. Dr.-Ing. habil. Reiner R. Dumke
Prof. Dr.-Ing. habil. Andreas Schmietendorf
Prof. Dr.-Ing. habil. Fevzi Belli

eingereicht am: 16. Juni 2009
verteidigt am: 29 September 2009

Abstract

Existing assessment and improvement models of software testing process mainly intend
to raise maturity of an organization with reference to testing activities. Such process as-
sessments are based on what testing activities are being carried out, and thus implicitly
evaluate process quality. Other test process measurement techniques attempt to directly
assess some partial quality attribute such as efficiency or effectiveness using few test mea-
surements. There exists a potential for a formalized method of evaluating test process
quality that addresses both implicity and partially of these current evaluations.

The first part of this dissertation surveys and analyzes breadth and depth of existing
evaluation approaches in the area of software testing. Strengths and weaknesses of these
approaches are highlighted to arrive at a set of requirements for an improved solution. On
the other hand, to investigate the scientific and philosophical foundations of evaluation, a
short study and analysis into the discipline of evaluation is also made in this part. This
research helps identify salient features of an improved test evaluation approach.

Building upon the first phase of research, the second part of the dissertation presents
an evaluation framework for specifying and evaluating diverse quality aspects of software
test processes. The framework comprises two types of components. Five informative com-
ponents describe evaluation aspects of testing process, a quality model, a yardstick test
process, test metrics, and synthesis techniques. These informative components support a
sixth (core) component called evaluation process which details all the steps of test evalu-
ations. The informative components are founded on the theory of evaluation and research
into test measurement and evaluation, while the core component derives its concepts from
relevant international standards. Combination of this theory, research and best practices
helps create a comprehensive test evaluation approach. Finally, the presented approach is
exemplified for a domain specific testing approach, i.e., testing process for service-oriented
systems.

The main contribution of this dissertation lies in its ability to combine several quality
aspects of test processes and, furthermore, in providing an explicit evaluation approach.
The developed framework complements the existing maturity models of software testing
process by providing a solution that fulfils a subset of requirements at maturity level 4 of
TMM/CMMI models.

Zusammenfassung

Existierende Modelle zur Bewertung und Optimierung des Software-Testprozesses ver-
suchen hauptsächlich den Reifegrad einer Organisation hinsichtlich der Testaktivitäten zu
verbessern. Diese Prozessbewertungen entstehen durch Betrachtung der ausgeführten Tes-
taktivitäten und liefern deshalb nur eine implizite Aussage zur Prozessqualität. Andere
Prozessmesstechniken versuchen einige Qualitätseigenschaften, wie die Effizienz oder die
Effektivität, durch Testmessungen direkt zu bestimmen. Es gibt auch formale Methoden
zur Ermittlung der Testprozessqualität, die sowohl die implizite als auch die teilweise di-
rekten Eigenschaften gleichzeitig berücksichtigen können.

Der erste Teil dieser Dissertation gibt einen Überblick zu Bewertungsverfahren auf dem
Gebiet des Software-Tests und charakterisiert diese in Bezug auf das durch sie abgedeckte
Testspektrum und die erreichbare Testtiefe. Um eine Menge von Anforderungen für
einen eigenen verbesserten Ansatz zu finden, wurden die Stärken und Schwächen bekan-
nter Vorgehensweisen herausgearbeitet. Dieser Abschnitt enthält auch eine kurze Betra-
chtung zu die wissenschaftlichen und philosophischen Grundlagen der Bewertungsdiszi-
plin. Diese Untersuchungen helfen bei der Identifikation entscheidender Merkmale eines
verbesserten Testbewertungsansatzes.

Aufbauend auf diese erste Phase der Untersuchungen wird im zweiten Teil der Disser-
tation ein Bewertungs-Framework zur Spezifizierung und Bewertung verschiedener Qual-
itätsaspekte von Software-Testprozessen entwickelt. Das Framework umfasst zwei Arten
von Komponenten. Fünf informative Komponenten beschreiben die Bewertungs-aspekte
des Testprozesses, ein Qualitätsmodell, ein Bewertungsmassstab des Testprozesses, Test-
metriken und Synthesetechniken. Diese informativen Komponenten unterstützen eine
sechste (Kern-) Komponente, Bewertungsprozess genannt, die alle detaillierten Schritte
der Testbewertung enthält. Die informativen Komponennten sind aus der Theorie der Bew-
ertung und Forschungen zu Testmessungen und Bewertungen abgeleiten worden, während
die Kernkomponente auf Konzepten relevanter internationaler Standards beruht. Die
Kombination von Theorie, Forschung und Best Praxis hilft so, eine Vorgehensweise, die
Ansprüche eines expliziten Testbewertung erfüllt, zu entwickeln. Abschliessend wird die
entwickelte Vorgehensweise exemplarisch auf eine domainspezifische Testmethode, den
Testprozessen für service-orientierte Systeme, angewandt.

Die Hauptergebnisse dieser Dissertation liegen in der Entwicklung eines Ansatzes zur
Kombination verschiedener qualitativer Aspekte von Testprozessen und in der Bereitstel-
lung einer expliziten Vorgehensweise zur Bewertung. Das entwickelte Framework ergänzt
die existierenden Reifegradmodelle des Software-Testprozesses um die Erzeugung einer
Lösung , die einer Untermenge der Anforderungen des TMM/CMMI Reifegrades der Stufe
4 dieser Modelle entspricht.

Acknowledgements

First, I am indebted to my supervisor Prof. Dr-Ing. habil. Reiner R. Dumke who provided
me an opportunity to undertake this research work. I can’t find words to duly express my
gratitude for his supervision, guidance, support, and friendship which helped and motivated
me all through my work. Thanks also go to Prof. Dr-Ing. habil. Andreas Schmietendorf
for his involvement and interest in my research and review of my thesis. Thanks to Prof.
Dr-Ing. habil. Fevzi Belli for being so kind in taking time to review my thesis.

I will never forget mentioning Dr. René Braungarten who holds the key role in lay-
ing the foundation of my research career. I have learned the very first lessons of doing
research from him. Many unnamed teachers starting right from my primary schooling
to my college level also share a greate contribution in my academic career. Very special
thanks to my colleagues (became friends) in my research group, Dr. Fritz Zbrog and Dr.
Martin Kunz. Discussions and feedback from them supported me a lot in building my
research approach. Among these names, I cannot ignore mentioning my colleague and
friend Konstantina Georgieva with whom I enjoyed a very friendly, peaceful, and pleasant
office-sharing environment.

Many thanks to several of my Pakistani friends in this home-away-home. I can’t cover
names of all of them beyond mentioning Shams, Zahid, Tariq, Rehan, Nasir, Kamran and
Zaheer. Their friendship and affection has been a great support for me.

I also find myself thankful to the city of Magdeburg where I have spent six important
years of career. I would rather call it my second Heimatstadt (hometown).

Finally, I am grateful to my family who gave me all the support during my journey
towards higher studies. Paying any thanks to my mother seems like putting a dot in the sky.
Very special thanks to my elder brother Khalid who actually has been the true motivation
behind my academic and research career. Thanks to Kiran for being with me, although for
a very short time, yet unfolding to me invaluable realities and lessons of life.

Contents vii

Contents

1 Introduction 1

1.1 Background & Motivation . 1

1.1.1 Background on Test Process Evaluation 4

1.2 Research Setting . 6

1.2.1 Research Problem . 6

1.2.2 Research Questions . 7

1.2.3 State of SE Research . 7

1.3 Structure of Thesis . 12

2 Background on Software Testing 15

2.1 Introduction . 15

2.2 Testing Process . 17

2.2.1 Research directions . 19

2.2.2 Test Process Definition & Modeling 20

2.2.3 Test Process Evaluation & Improvement 35

2.3 Testing Techniques . 36

2.3.1 Static techniques . 37

2.3.2 Dynamic techniques . 41

2.4 Testing Tools . 46

2.5 Summary . 47

3 Theoretical Foundations of Evaluation 49

3.1 Introduction . 49

3.1.1 Evaluation Concepts . 50

3.1.2 Evaluation Components . 52

3.2 Evaluation in Software Engineering . 54

3.3 Evaluation Theory Applied in SE . 56

3.4 Summary . 58

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

viii Contents

4 Evaluation in Software Testing 61

4.1 Introduction . 61

4.2 Evaluation of Processes . 62

4.2.1 Testing Maturity Model (TMM) 62

4.2.2 Testing Process Improvement (TPI) Model 65

4.2.3 Inspection Capability Maturity Model (ICMM) 67

4.2.4 Test Maturity Model Integration (TMMi) 68

4.2.5 Test Process Metrics . 70

4.3 Evaluation of Techniques . 72

4.3.1 Evaluation of Static Techniques 72

4.3.2 Evaluation of Dynamic Techniques 73

4.4 Evaluation of Tools . 76

4.4.1 Pre-Implementation Analysis/ Tool Selection 77

4.4.2 In-Process & Post-Implementation Analysis 78

4.5 Typical Characteristics of Test Evaluations 79

4.5.1 Measurement . 79

4.5.2 Compliance with Standards . 80

4.5.3 Implicitness vs. Explicitness . 81

4.5.4 Cost . 82

4.6 Summary . 84

5 Analysis of Related Work 87

5.1 Introduction . 87

5.2 Analysis of Existing Approaches . 89

5.2.1 Analysis of Testing Maturity Model (TMM) 89

5.2.2 Analysis of Test Process Improvement Model (TPI v1.0) 93

5.2.3 Analysis of Test Maturity Model Integration (TMMi v1.0) 96

5.3 Summary . 99

6 Light-TPEF: The Test Process Evaluation Framework 101

6.1 Introduction . 101

6.2 Concept and Design . 102

6.2.1 Framework presentation . 104

6.3 Framework Components . 105

6.3.1 Support Components . 106

6.3.2 Core Component . 118

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Contents ix

6.4 Summary . 127

7 Implementation & Validation of Light-TPEF 131

7.1 Introduction . 131

7.2 Development of a Working Solution . 132

7.3 SOA Testing Background . 137

7.3.1 SOA Revisited . 137

7.3.2 ITIL & SOA . 139

7.3.3 Existing Research on SOA Testing 140

7.4 Light-TPEF: Application in an SOA Industrial Environment 143

7.4.1 Background of the Industrial Environment 144

7.4.2 Adaptation of Light-TPEF for the considered case 146

7.5 Summary . 150

8 Summary & Future Work 153

8.1 Summary . 153

8.2 Thesis Contributions . 154

8.3 Future Work . 155

List of Tables 157

List of Figures 159

List of Abbreviations 163

Bibliography 165

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

1

1 Introduction
The purpose of this chapter is to present an overview of the research work at hand and
briefly outline structure of the thesis. The chapter begins with a short description of back-
ground and motivation behind this work. It then gives a first impression of the addressed
research problem, lists the specific research questions, introduces the chosen research ap-
proach, and concludes with an outline of subsequent chapters.

1.1 Background & Motivation
Significance of software

Software is the backbone of computer-based systems which have become an integral part
of our everyday life rendering this world-without-computers beyond our imagination. It
sits at the heart of almost all kinds of home appliances which have penetrated lives of
people across the globe. Software enabled technologies are currently supporting our cars,
planes, nuclear power plants, warfare weapons, satellites, space ships and much more.
A recent report published by IDC 1 [Microsoft,] indicates that an overall IT spending,
in the western Europe alone, reached 376 billion USD in 2007 and is expected to grow
5.7% a year between now and 2011. According to another finding by European Software
Association [ESA, 2008] IT industry, across EU, employs 7.8 million people and the sector
contributes 25% of the growth of European economy. These indicators and the results
of other studies [Broy et al., 2001], [McGibbon, 2005] further corroborate the economic
impact of IT and software industry in Europe and Germany. The EU has already embarked
on i2010 2 strategy to benefit from the fruit of IT progress for improvement of economy,
society and personal lives of the general public.

Software misadventures
However, our overwhelming dependability on computer systems has left us vulnerable
to unimaginable risks. Peter G. Neumann’s The Risks Digest forum lists accounts of
catastrophic consequences mostly arising out of computer system failures. Although
software is not the ultimate culprit in all of these mishaps [Glass, 2008], yet it is
behind the considerable proportion of such events/disasters. Partial failure of the toll
collection system on German highways causing 10% of all attempts to use the system
ending in failure or in people just not paying the toll and of the software program
for German employment agency’s Arbeitslosengeld II project leaving about 5% of the
recipients without money [Weber-Wulff, 2005] are only some examples to mention.
Other such incidents where the effects have been widespread and/or most expensive
have occurred in space missions[Leveson, 2004], aviation industry [Ladkin, 2006], public
mass transport systems [Colville, 2004], financial sector [BBC, 2008], and internet

1International Data Corp.
2http://ec.europa.eu/information_society/eeurope/i2010/index_en.htm

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://ec.europa.eu/information_society/eeurope/i2010/index_en.htm

2 1 Introduction

applications [Bennison, 2007] etc. A myriad reports of incidents caused by computer
system glitches can also be found elsewhere in [Glass, 1998], [Perrow, 2008] etc.

Software engineering
Effective software engineering can help avoid these problems. The term Software
Engineering was coined in a conference organized by NATO Science Committee in
1968 [Naur and Randell, 1969] for exploiting theoretical and practical knowledge from
other engineering disciplines for the construction of software. Fritz Bauer proposed an
introductory definition of software engineering in this seminal conference:

Definition: Software engineering is the establishment and use of sound engineer-
ing principles in order to obtain economically software that is reliable and works
efficiently on real machines.

Since then many books, authors and experts on software engineering have provided
many competing definitions of this term. However, a more common and comprehensive
definition has been given in IEEE Standard Glossary of Software Engineering Terminology
[IEEE, 1990]

Definition: Software engineering. (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software;
that is, the application of engineering to software. (2) The study of approaches as in
(1).

The list of initially identified challenges to software engineering such as economics, reli-
ability, and efficiency (some of which although remain partially elusive till today) has been
augmented by some of the contemporary challenges of 21st century [Sommerville, 2007,
Ch. 1], [Boehm, 2006].

Software quality
Quality movement in the field of software engineering did not get real impetus un-
til the monumental works of Garvin [Garvin, 1984], Deming [Deming, 1986], and Ju-
ran [Juran, 1988] in the 80s. Although all stakeholders of the software world have always
been concerned about quality since the birth of software itself, the exact meaning and ways
to achieve it have broadly remained hard-to-achieve targets. The accurate interpretation of
software quality is highly perception and context dependent. Quality in the software field
is usually attributed to product which is believed to be mainly a consequence of design and
process quality, to the process which is considered to result from maturity of practices, or
to the product in use which perhaps comes from good understanding and implementation
of user requirements. A very promising definition of software quality has been put forward
by Pressman [Pressman, 2001, p. 199] in his classical text on software engineering.

Definition: [Software quality means] conformance to explicitly stated functional
and performance requirements, explicitly documented development standards, and
implicit characteristics that are expected of all professionally developed software.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.1 Background & Motivation 3

The extent of the activities for effective management of software quality vary with the
size of system involved. While informal approaches may suffice for smaller systems,
quality management of larger systems will typically comprise distinct quality assurance,
quality planning, and quality control activities [Sommerville, 2007, p. 643]. Regardless of
the size of the system, at least some sort of verification, validation, and testing activities
are always performed as part of the quality management process. Other higher level
approaches include several product and process standards.

Standardizing software engineering
Among the most common factors giving rise to software failures are misinterpreta-
tion of system requirements, poor communication among people involved in software
projects, sloppy development practices, and poor project management etc [Charette, 2005].
Standards are among the main elements of software quality engineering which are be-
lieved to assist in reducing many of these failure factors. In the opinion of Som-
merville [Sommerville, 2007, p. 646] standards are helpful since they are based on best
practices, provide a framework for implementing quality assurance process and assist in
establishing systematic and continuous approaches to software development. IEEE and
ISO have been leading contributors to the development of software related standards. JTC
1 [iso,] is the ISO’s committee which works on information technology related standards.
As of now, the number of standards published directly by this committee stands at 540
while this count reaches to 2250 if the standards published by its sub-committees are also
included. This is more than the number of standards published by any ISO committee in
any other field. IEEE [iee,] has also published a number of standards pertaining to soft-
ware, while Specialist Group in Software Testing [BCS,] of the British Computer Society
is also working on few software testing related standards. Involvement of so many agencies
for developing software engineering standards marks the evolving nature of this research
area.

ISO 9000 is the series of familiar standards for quality management systems. Its first re-
lease in 1987 was followed by several revisions with the latest release appearing in the year
of writing this thesis. Some of the well known product quality related standards include
ISO/IEC 9126 Software Engineering–Product Quality and its successor ISO/IEC 2500n
Software Engineering -Software product Quality Requirements and Evaluation (SQuaRE)
series, and ISO/IEC 14598 Information technology–Software product evaluation, while
few of those related to software process are IEEE/EIA 12207 Standard for Informa-
tion Technology–Software life cycle processes, ISO/IEC 15939 Software Engineering -
Software measurement process, ISO/IEC 15504 Information Technology–Process Assess-
ment, ISO/IEC 15288 Systems engineering–System life cycle processes, and the regional
standard V-Modell XT [iABG,] Development Standard for IT Systems in Germany (previ-
ously V-Modell 97). A more detailed chronicle of commercial and governmental standards
relevant to software quality assurance can be found in [Schulmeyer, 2008, Ch. 3]

Processes improvement
The well known fact about the common engineering and manufacturing processes is that
a better quality process produces equally better products. As the software development
is also considered to be an engineering activity, many of the concepts from the engineer-
ing and manufacturing world penetrated into the software field. It is a widely held belief
that the software product quality is a direct consequence of the process used to develop

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

4 1 Introduction

it [Humphrey, 1989], [Kenett and Baker, 1999]. Improving the software process, thus,
serves as an implicit approach to product quality improvement. Importance of improv-
ing the software process was acknowledged in the mid 80s with the initiation of work on
Capability Maturity Model (CMM) and the ISO 9000 standard. However software process
is a complex human-intensive activity as opposed to other manufacturing processes. Find-
ing the best way to improve the software process has been a great challenge both to the
practitioners and researchers. The history of software process research [Fuggetta, 2000]
is replete with numerous techniques to manage, control, and improve it. Ex-
emplary efforts in this area include those for establishing [Dumke et al., 2006a],
[ISO/IEC, 2004], [Wang and King, 2000], defining [IEEE, 1997b], [IEEE/EIA, 1998],
modeling [Zamli, 2004], assessing [ISO/IEC, 1998], [April, 2005], and measur-
ing [Basili and Weiss, 1984], [Ebert and Dumke, 2007] the software process.

Testing processes
Since testing is widely acknowledged to consume a considerable proportion of software
development resources, improving the testing process also leads to achievement of simi-
lar goals as aspired by generic process improvement programs, the difference being in the
scale and coverage of activities only. Impressed by similar works over software process, the
maturity models and improvement approaches for software testing process began around
1996 with the introduction of Testing Maturity Model (TMM) [Burnstein, 2003] and Test
Process Improvement (TPI) model [Koomen and Pol, 1999]. The latest augmentation in
this direction is the Test Maturity Model Integration TMMi [Goslin et al., 2008b] as revi-
talization of TMM. This new maturity model, at the moment, has been worked out only
up to maturity level 2 while further development is under way. However there have been
few criticisms of both process maturity models[Humphrey et al., 2007] and test maturity
models [Farooq et al., 2007]. This thesis aims to address some of the deficiencies in test
process assessment approaches, and attempts to build a scientifically rigorous, explicit, and
comprehensive method for evaluation of test processes.

1.1.1 Background on Test Process Evaluation

Why improve processes?
High level business goals, other quality objectives set by business managers, and user’s
needs are major driving forces behind every test process improvement program. Many
times, transforming these implicit or complex intensions into concrete process improve-
ment objectives is in itself a challenge. However, alongside organizational and project
specific targets, the most common process improvement goals as identified by Solingen
and Berghout [van Solingen and Berghout, 1999, p. 11] are to:

• Increase quality

• Shorten project cycle time

• Decrease costs

• Decrease risks

Processes improvement defined
As testing is mainly aimed at finding errors in programs [Myers, 2004], thus additional
goals of testing process, alongside those mentioned above, would be to efficiently detect
defects, remove errors, and avoid system failures. While setting testing process goals is

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.1 Background & Motivation 5

easier, it is difficult to perceive them accurately and arrive at a set of process improvement
actions. For this we must first try to understand it well what exactly is meant by improving
a process. It has been defined in the following manner,

Definition: Software process improvement (SPI) is a systematic procedure to im-
prove the performance of an existing process system by changing the current pro-
cesses or updating new processes in order to correct or avoid problems identified in
the old system by means of a process assessment. [Wang and King, 2000, p. 42]

Test process improvement
The definition above implies that the process performance has to be improved. Cost and
time are undoubtedly the biggest factors that businesses want to reduce. But it is not
just cost and time expenditures that have to be reduced to a minimum. The system qual-
ity must also be improved. So we have to find an optimal balance among these factors.
Many diverse techniques have been worked out to meet one or the other set of these
goals. Managing and controlling the testing activities provides one way of improving
the testing process. Management models [Pol et al., 2002], [Drabick, 2003] and formal
models [Cangussu, 2002], [Stikkel, 2006] based on the feedback mechanisms are few ex-
amples of this kind. To reduce the cost, time, and effort of generating and executing
test cases, model-based testing [Utting and Legeard, 2006] exists to help us. Indepen-
dent verification and validation (IV&V) and special methods for testing embedded sys-
tems [Broekman and Notenboom, 2003] are primarily aimed at reducing risk in systems
requiring high accuracy. Assessment is another class of approach to realize improvement
of the testing practices. It is seen as a pre-requisite to be able to begin with an improve-
ment activity. This situation has been described by Humphrey [Humphrey, 1989] as the
three main questions that should be addressed by any process improvement activity:

1. How good is my current software process?

2. What must I do to improve it?

3. Where do I start?

The first question aims to get a first hand idea of current development/testing activities.
The second relates to spotting weaknesses in the existing practices. The third question is
about finding out what to do to improve the situation. Assessment is a systematic way to ad-
dress all these three questions. In the field of software testing research, several assessment
techniques have been developed for three main testing entities, i.e. techniques, tools, and
processes [Farooq and Dumke, 2008b]. For testing techniques there are empirical analy-
sis and measurements [Farooq and Dumke, 2008b, Ch. 3], for tools there are evaluation
approaches to help in their selection [Farooq and Dumke, 2008b, Ch. 4], and for testing
processes are assessment models[Farooq and Dumke, 2008b, Ch. 2]. Process assessments
typically give an enhanced picture of an overall capability of a variety of testing practices.
Wang and King [Wang and King, 2000] define it as:

Definition: Software process assessment (SPA) is a systematic procedure to inves-
tigate the existence, adequacy, and performance of an implemented process system
against a model, standard, or benchmark. [Wang and King, 2000, p. 42]

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

6 1 Introduction

Assessment based approaches of the testing process have broadly followed the maturity
model concept of capability maturity models of software process (CMM/CMMI). These
are collections of experience-based best testing practices that are believed to yield desired
process improvements. Examples of such models include Testing Maturity Model (TMM),
Test Process Improvement (TPI) model, and Test Maturity Model Integration (TMMi) in-
troduced earlier in this chapter. The next section highlights the problems with current test
process assessment approaches that this thesis aims to address and explains the followed
research approach.

1.2 Research Setting

This section is intended to introduce the research project at hand and describe the general
and specific research questions addressed by it. Furthermore, the connection of the chosen
issue with the contemporary research topics is established. The adopted research approach
is also explored within the context of practised software engineering research paradigms.

1.2.1 Research Problem

Today’s industrial software engineering environments adequately realize the caliber of a
well controlled testing process as a means to increasing test efficiency, replying to rapidly
increasing complexity, and improving quality of the developed products. Efficient assess-
ment and improvement of the testing processes, therefore, is a primary concern of the
today’s testing approaches. Small costs, large benefits, and high benefit/cost ratio are prob-
ably the most common characteristics sought by software organizations when selecting and
undertaking any kind of programs for assessing and improving these processes. However,
unfortunately many largescale SPI programs have been found to be highly expensive and
difficult to be undertaken by small organizations [Rico, 2004, p. 175]. In general, mono-
lithic process assessment and improvement models have been found to be cost, time, and
resource hungry [Staples et al., 2007] and nurture a culture of maturity levels instead of
actual process capability [Humphrey et al., 2007]. Furthermore, current process maturity
models are only implicit in nature since they assess organizational processes based on their
conformance to the set of best practices chosen from the given area. Researchers have
already realized these problems and have devised methods by which existing process as-
sessment models can be customized or also have developed new specialized approaches.
Current test process assessment and improvement models, which are mostly designed on
the pattern of maturity models like CMM/CMMI, suffer from similar kinds of resistance to
their adoption [Farooq et al., 2007]. It has been found that the approaches addressing the
aforementioned problems in case of testing process are limited.

Given this general characterization of current test process assessment models, the spe-
cialized task of this research project is to investigate prevalent forms of test process as-
sessments, diagnose the existing problems in the area, and come up with a light-weight
quantitative evaluation methodology for software test processes which is small enough to
be reasonably cheap, yet powerful enough to provide meaningful assessments and improve-
ment suggestions. Although few earlier research works have been devoted to these issues,
to date no test process evaluation method has been reported in literature which determines

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.2 Research Setting 7

capability of test processes based on what organizations have achieved rather than on what
they do.

1.2.2 Research Questions

The main research question investigated by the current thesis is:

Could a process be defined to allow medium size industrial organizations
perform light-weight and explicit evaluation of their testing processes?

Sine the main research question is quite broad in its perspective, it can be broken down
into following secondary research tasks:

Sub-tasks of Research

RT-1. Traverse the area of software testing to identify entities of evaluation. Explore
existing evaluation forms and approaches as applied in this field. Investigate char-
acteristics of low-cost and effective test evaluations.

RT-2. Investigate the philosophy of evaluation in general and with special focus to soft-
ware engineering. Identify core elements of a comprehensive process evaluation
approach.

RT-3. Analyze available test process evaluation approaches based on the criterion devel-
oped in RT-1/RT-2.

RT-4. Bring forward the concept of a comprehensive approach that fills the gaps marked
in RT-3 as well as which satisfies requirements set forth in RT-1/RT-2.

RT-5. How can the idea conceived by RT-4 be transformed into a practical test process
evaluation and improvement model?

RT-6. Can the approach developed as a result of RT-5 be validly applied in practical
and industrial situations? What are the limitations and the needed adjustments in
applying the new approach?

1.2.3 State of SE Research

The field of software engineering research is almost as old as the modern computer itself.
Despite the many developments and revolutionary inventions made possible by software
(which certainly in turn owe to software engineering research), from time to time SE re-
search has been criticized as well–that it is unscientific in approach [Fenton et al., 1994],
ignores evaluation [Zelkowitz and Wallace, 1997], is immature [Shaw, 2001] and nar-
row [Glass et al., 2002], and lacks a decided direction [Poore, 2004]. It has also been ob-
served that a gap exists between the results of academic efforts and the application of these

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

8 1 Introduction

results in the software industry [Glass et al., 2002] possibly due to irrelevance of research
or intransigence of the practitioners. That research model of past is no more a choice of
majority of SE researchers today, which Glass [Glass, 1994] once described as advocacy
research consisting of steps "conceive an idea, analyze the idea, advocate the idea" mainly
following the notion that any change is better than status quo. Referring to the knowl-
edge on philosophical and experimental foundations of software engineering research, the
next sections explore the connections of current research work to the software engineering
patterns of research.

1.2.3.1 Research Paradigms & Phases

The word paradigm refers to certain concepts in linguistic and scientific disciplines.
Thomas Kuhn, while explaining the philosophy of science in his famous book The Struc-
ture of Scientific Revolutions [Kuhn, 1996], defines a scientific paradigm as,

some accepted examples of actual scientific practice–examples which include law,
theory, application, and instrumentation together–provide models from which spring
particular coherent traditions of scientific research

In other words, scientific paradigm explains how a scientific work is performed which
begins with observation, goes through discovery and analysis, and culminates in some
precise results. In simple words, it is a kind of work plan to solve similar problems. An
example of a paradigm in the field of computer science or software engineering is the notion
of programming paradigms. Similarly a research paradigm is a way to solve a given class
of research problems. Chen [Chen, 2005] defines a research paradigm more precisely as,

a dynamical system of scientific works, including their perceived values by peer
scientists, and governed by intrinsic intellectual values and associated citation en-
durance and decay

Almost three decades old legendary work of Peter Wegner over research paradigms in
computer science [Wegner, 1976] is still meaningful today. He mentioned the evolutionary
path of prevalent research paradigms as comprising empirical, mathematical, and engi-
neering paradigms. A later explanation of contemporary research paradigms in the field
of software engineering was given by Adrion [Adrion, 1993] at the 1992 Dagstuhl Work-
shop on Future Directions in Software Engineering held in Germany. He named scientific,
engineering, empirical, and analytical as the four main methods of software engineering
research which have been further elaborated in figure1.1. The approach followed by this
thesis is highlighted in this figure.

The above mentioned paradigms, or synonymously called methodologies, share some
common structure of activities that are applied while following any of these research paths.
Glass [Glass, 1995] proposed these patterns to be called research phases. These four phases
are,

• The informational phase: gathering information via reflection, literature survey,
people/organization survey, or poll

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.2 Research Setting 9

Scientific Method Engineering Method Empirical Method Analytical Method

Observe the world

Propose a model or theory

Measure and analyze

Validate hypothesis

Observe existing solutions

Propose better solutions

Build or develop

Measure and analyze

Propose a model

Develop statistical or other
methods

Apply to case studies

Measure and analyze

Propose a formal theory

Develop a theory

Derive results

Compare with empirical
observations

Validate model

Repeat Repeat
Repeat

Figure 1.1: Software Engineering Research Methodologies

• The propositional phase: proposing and/or formulating a hypothesis, method or
algorithm, model, theory, or solution

• The analytical phase: analyzing and exploring a proposition, leading to a demon-
stration and/or formulation of a principle or theory

• The evaluative phase: evaluating a proposition or analytic finding by means of
experimentation or observation, perhaps leading to a substantiated model, principle,
or theory.

1.2.3.2 Classifications of Research

Hierarchical classification of research topics is a common concept both in computing and
non-computing research fields. Journals more often use such schemes for organizing and
indexing research works. These classifications also help to establish context and connec-
tion of a research work with the relevant and surrounding areas.

Probably the earliest classification of topics in the computing field dates back to 1964
when the first version of ACM’s Computing Reviews Classification System appeared. With
the emergence of new areas and research, the classification was later revised in 1991 and
then in 1998 [ACM, 1998]. Between 2002 and 2004, Glass et al. [Glass et al., 2002],
[Glass et al., 2004] developed a broader classification scheme covering the computing field
in general and the software engineering field in particular. The scheme is not just limited
to the research topics alone, but covers other characteristics of research such as the re-
search approach, method, and relevant disciplines. As an another instance, the content of
the IEEE’s Guide to the Software Engineering Body of Knowledge [Abran et al., 2004]
also serves as a reference resource for software engineering research topics. Some further
discussions on possible paradigms, approaches, and methods used in the software engi-
neering research appearing in [Vessey et al., 2005] and [Holz et al., 2006] have presented
numerous viewpoints on classifications which overlap with Glass’s scheme.

Table 1.1 reproduces above mentioned Glass’s classifications of computing research (the
areas to which this thesis relates are highlighted). Considering it an adequately compre-
hensive coverage of research classifications, the thesis at hand uses this classification as a

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

10 1 Introduction

reference for describing the context of current research work. Glass discussed following
aspects of his classifications which have been summarized in table 1.1.

• Research topic: It refers to the field of application or the problem type/area ad-
dressed. The content of the research work makes up its topic area. This element
pertains to the what dimension of the research. Topics are divided into major cate-
gories and sub-categories.

• Research approach: Researchers employ a number of techniques to solve a given
problem. The how dimension of the research is described through this aspect. This
gives the broad or high level description of the adopted research technique. Ap-
proaches are also grouped into categories and sub-categories.

• Research method: In contrast to a brief view of research techniques, a detailed
description is classified as the research method.

• Reference discipline: Researchers many times exploit knowledge from disciplines
other than their main field of work to establish baselines for their research. For ex-
ample, for developing formal models of software processes or the alike, a researcher
may borrow knowledge from mathematics.

• Level of analysis: In information systems, computer science, and software engineer-
ing, different objects of interest are studied. These objects may be of technical kind
or abstract, or may involve individuals or organization. Level of analysis is related to
these objects. For example, Glass [Glass et al., 2004] found that nearly all CS (com-
puter science) and SE research work was conducted at the technical level, studying
artifacts or entities.

Table 1.1: Research Classifications

1. Research Topics
– Problem-solving – System/software management

- Algorithms - Project/product management
- Mathematics/computational sci. - Process management
- Methodologies - Measurement/metrics
- Artificial intelligence - Personnel issues

– Computer - Acquisition of software
- Principles or architecture – Organizational
- Intercomputer communication - Organizational structure
- Operating systems - Strategy
- Machine-level data/instructions - Alignment

– Systems/software - Org. learning
- Architecture/engineering - Tech. transfer
- Software lifecycle/engineering - Change management
- Programming languages - IT implementation
- Methods/techniques - IT usage/operation

Continued on next page...

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.2 Research Setting 11

Table 1.1 – continued from previous page
- Tools - Mgmt. of ’computing ’ function
- Product quality - Computing as a business
- Human-computer interaction - IT impact
- System security - Legal/ethical/political implications

– Data/information – Societal
- Data/file structures - Cultural implications
- Data base/mart org. - Legal implications
- Information retrieval - Ethical implications
- Data analysis - Political implications
- Data security – Disciplinary issues

– Problem domain-specific - ’Computing’ research
- Scientific engineering - ’Computing’ curriculum/teaching
- Information systems
- Systems programming
- Realtime
- Edutainment

2. Research Approach
– Descriptive – Evaluative

- Descriptive System - Formulative-concept
- Review of Literature - Formulative-framework
- Descriptive Other - Formulative-guidelines

– Evaluative - Formulative-model
- Evaluative-deductive - Formulative-process, method
- Evaluative-interpretive - Formulative-classification
- Evaluative-critical
- Evaluative-other

3. Research Method
- Action Research - Grounded Theory
- Case Study - Hermeneutics
- Concept Implementation - Instrument Development
- Conceptual Analysis - Laboratory Experiment-Human
- Conceptual Analysis/Mathematical - Laboratory Experiment-Software
- Data Analysis - Literature Review/analysis
- Descriptive/Exploratory Survey - Mathematical Proof
- Ethnography - Protocol Analysis
- Field Experiment - Simulation
- Field Study

4. Reference Discipline
- Cognitive Psychology - Not applicable
- Computer Science - Science
- Economics - Self-Reference
- Management - Social and Behavioral Science
- Management Science - Other

Continued on next page...

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

12 1 Introduction

Table 1.1 – continued from previous page
- Mathematics

5. Level of Analysis
- Abstract Concept - Organizational Context
- Computing Element - Profession
- External Business Context - Project
- Group/Team - Society
- Individual - System

1.2.3.3 Characteristics of Research at Hand

In the context of the aforementioned classifications of research efforts, the current work
can be considered to match with the following research patterns:

• Research Paradigm:
– Engineering

• Research Topics:
– Process management

– Measurement/metrics

• Research Approaches:
– Review of literature

– Formulative-process, method

• Research Methods:
– Case study

– Literature review/analysis

• Reference Disciplines:
– Computer science

– Social and behavioral science

• Analysis Levels:
– Abstract concept

1.3 Structure of Thesis
The current chapter was dedicated to establishing a foundation for this research work. It has
given a very brief historical background first to the software engineering research and then
to the related area. The research problem has been defined and the approach and connection
of current research is described in different contexts. Highlights of the upcoming chapters
are given below while the figure 1.2 visualizes thesis structure.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.3 Structure of Thesis 13

4. Evaluation in Software
Testing

5. Analysis of Related Work

6. Light-TPEM Light-weight
Test Process Evaluation

Framework

3. Theoretical Foundation of
Evaluation

2. Background on Software
Testing

7. Implementation &
Validation of Light-TPEF

Research Tasks1. Introduction

8. Summary & Future Work

RT-1

RT-4

RT-3

RT-2

RT-5

RT-6

Figure 1.2: Thesis Structure

Chapter 2 explores the field of software testing research and methods with a view to
developing a context within which the current research exists. The survey given herein
helps to appreciate significance and complexity of the testing aspects. It helps to identify
chief entities of evaluation mostly sought by technical and managerial people to determine
how well the testing is being done.

Chapter 3 introduces the discipline and philosophy of evaluation in general. After a short
discussion over evaluation methods, the chapter explains how evaluation is conceived and
applied in the field of software engineering. The chapter ends with a list of characteristics
and elements of a comprehensive evaluation approach that could be applied to any entity
of interest in software engineering.

Chapter 4 covers the breadth of available knowledge related to evaluation of software
testing entities of interest discovered in chapter 2. It surveys concept, approach, and char-

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

14 1 Introduction

acteristics of all kinds of process assessment models, assessment and measurement of test-
ing techniques, and qualitative and quantitative evaluation of testing tools. Based on their
generality and comprehensiveness, a few of these solutions are shortlisted for a further
deeper analysis to be performed later. The chapter concludes by identifying characteristics
of successful yet light-weight test evaluation approaches.

Chapter 5 is concerned with an in-depth analysis and evaluation of previous work done
related to the current research problem. It builds upon research performed in chapter 3
and 4. It first extracts the requirements for a test evaluation approach as established in the
previous two chapters. Shortlisted solutions are then analyzed step-by-step for their appro-
priateness against these criteria. The chapter concludes with a vision of a new evaluation
approach which fulfils the discovered shortcomings in the analyzed models.

Chapter 6 is the heart of this thesis and presents the structure and content of the pro-
posed test process evaluation framework. All the elements of the framework are explained
in sufficient detail using appropriately chosen process modeling techniques. It provides a
foundation over which a concrete test evaluation process model could be built. The model
is verified to fulfill all the requirements of light-weight test evaluation approaches estab-
lished at the beginning of the previous chapter.

Chapter 7 discusses the implementation and validation of the framework proposed in the
previous chapter. The proposed model is verified and validated using assertion techniques.
The chapter presents implementation of a workable solution by converting the model into
an executable evaluation process model. This process model is demonstrated to fit into
an example SOA governance model as an example of a business environment. It serves
as a prototype implementation of the developed framework to motivate further industrial
implementations of the presented approach.

Chapter 8 retrospects the research work with the research goals and takes a look at the
prospects of future work in the related areas of research.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

15

2 Background on Software Testing

As a first step towards this research work, this chapter recaps some of the fundamental
concepts in the field of software testing. The content and organization of this chapter is
aimed at building a wide perspective of the area from which this thesis springs out. This
synopsis motivates the reader to appreciate the significance of the research problem and
connect it to its parent area of knowledge.

2.1 Introduction

Testing defined
Software testing literature is entangled with somewhat confusing terminologies. Testing,
per its classical definition by Glenford Myers [Myers, 2004], is the process of executing
a program for finding errors. Verification and validation (V&V) are also related activities
carried out for the same purpose which may or may not involve code execution. Testing and
V&V are mainly support activities of the development process. They serve as evaluation
techniques for the software development artifacts as well as tools for quality assurance.
Slightly overlapping context descriptions of testing related activities have been found in
literature. For instance,

• Guide to the Software Engineering Body of Knowledge (SWE-
BOK) [Abran et al., 2004, p. 11-1] lists testing related topics inside software
quality knowledge area. It describes software quality management processes as
comprising software quality assurance, verification, validation, reviews, and audits.

• Jeff Tian [Tian, 2005, p. 27] also describes verification, validation and testing as part
of quality assurance.

• IEEE/EIA 12207 standard [IEEE/EIA, 1998] organizes software life cycle processes
into three categories, namely primary life cycle processes, supporting processes, and
organizational life cycle processes. Quality assurance, verification, validation, joint
reviews, and audit are listed inside supporting life cycle processes, while quality
assurance process may in turn make use of results of other supporting processes
such as verification, validation, joint reviews, and audit.

Figure 2.1 gives a visual representation of these relationships among software quality
engineering, software quality assurance and software testing discussed above.

Complexity of testing
Software testing is a complex and critical task among software development activities.
This complexity stems from the characteristics of the software systems themselves. Size,
safety criticality, business value and increasing dependence of people on software systems

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

16 2 Background on Software Testing

SQM Processes Supporting Life
Cycle Processes

SQE

Reviews

Validation

QA

V&V

SQA

Audit

QA

Verification
V&V

Testing

Reviews/Audit

IEEE SWEBOK SQE by Jef Tian ISO/IEC Std. 12207

Figure 2.1: Some Context Descriptions of Software Testing

Software
Testing

Methods & Techniques

Standards

Process

Empirical Knowledge

Community

Tools

Measurements

Figure 2.2: Software Testing Elements of Interest

call for their failure free functioning. Software testing can give us this confidence that a
system will work as intended. But this confidence building process costs almost half of
the total system development time and money. During this process, testers apply different
techniques, avail different tools, sometimes follow some standards, use few measurements
and exploit empirical knowledge during the core of their testing tasks. Figure 2.2 presents
a visualization of different elements that are involved with and support the task of software
testing. Owing to this breadth of the field, software testing occupies a dedicated key area
within the software engineering body of knowledge [Abran et al., 2004].

Research issues in testing
The area of software testing research is almost as old as the software engineering itself.
Historically speaking, an overwhelming portion of software testing research has focused
on test case design, static and dynamic testing techniques, problem-centered testing ap-
proaches such as for object-oriented design or for embedded systems software, testing
tools, and designing effective testing processes. Based upon analysis of several latest ar-
ticles over past and future research trends in software testing, it can be inferred that the
research on fundamental testing issues such as testing methods, tools, and processes has

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 17

Table 2.1: Research Issues in Software Testing

Reference Issues Highlighted
[Harrold, 2000] Testing component-based systems

Test effectiveness
Creating effective testing processes
Testing evolving software

[Abran et al., 2004, p. 5-3] Test selection
Test effectiveness
Test oracles
Testing for defect identification
Testability
Theoretical and practical limitations of testing

[Taipale et al., 2005] Testing automation
Standardization
Test process improvement
Formal methods
Testing techniques

[Bertolino, 2007] Test process improvement
Test effectiveness
Compositional testing
Empirical body of evidence
Model-based testing
Test oracles
Domain specific test approaches

somewhat matured. Our focus is now more on advanced and finer problems such as es-
tablishing empirical baseline on testing knowledge, test process improvement, standard-
ization, demonstrating effectiveness of testing methods, tools, and processes, and on test
automation. Table 2.1 summarizes active research issues in software testing collected from
latest literature on testing research.

2.2 Testing Process

Need for process
based approach

With fast growing size of software systems, numerous complexity issues and wealth of
professional practices, software development is no longer a programmer oriented activity.
Process based software engineering methodology has evolved out of this chaos as a system-
atic approach that can handle issues related to development methodology & infrastructure,
organization, and management of software development activities. Software processes has
become a key research area in the field of software engineering today.

Testing process defined

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

18 2 Background on Software Testing

Being critical to the quality of the developed product, testing activities occupy major por-
tion of the software development process and are believed to involve heavy expenses, de-
velopment effort, and time. Owing to their important role, all testing related activities and
issues can be seen as a unity or a process. The scope and content of this process can be
viewed from two perspectives. First is the purpose for which testing exists. As for its
objectives testing process has been defined as,

Definition 1: Software testing process (by purpose) is the set of activities for reveal-
ing defects in software, and for establishing that the software has attained a specified
degree of quality with respect to selected attributes. [Burnstein, 2003, p. 7]

To achieve these objectives diverse forms, phases, and levels of testing activities are
performed. It is this content perspective which refers to the type of these activities that are
considered to be part of the whole testing process. In the context of the current thesis, this
content view brings about the following definition of the testing process,

Definition 2: Software testing process (by content) encompasses all kinds of verifi-
cation and validation activities as well as all types of reviews (management reviews,
inspections, walk-throughs,...), all phases of testing (planning, design, execution,...)
and all levels (unit, integration, system,...) of testing activities.

Testing process explained
Now, similar to the two levels of studying software engineering processes as mentioned in
IEEE SWEBOK [Abran et al., 2004, p. 9-1], the test process can also be studied at two
levels. The first level refers to technical and managerial activities that are carried out to
verify and validate development artifacts throughout the software development lifecycle.
The second is the meta-level which involves the definition, implementation, assessment,
measurement, management, change, and improvement of the test process itself. This chap-
ter mainly concerns with this meta-level description of the test process which applies to all
kinds of testing methods and domains.

Different kinds of meta-level descriptions of test process exist. It is usually described
as generic process phases or as a series of various levels of testing. It is commonly stud-
ied as an organization of testing techniques [Everett et al., 2007], as a quality assurance
approach [Tian, 2005], [Lewis, 2004], or a means to managing different kinds of testing
activities [Pol et al., 2002]. A generic very high level structure of test process activities has
been given by Tian [Tian, 2005, p. 68]. He divides test process into three main groups of
test activities which are,

• Test planning and preparation, which sets the goals for testing, select an overall
testing strategy, and prepare specific test cases and the general test procedures.

• Test execution and related activities, which also include related observation and mea-
surement of product behavior

• Analysis and follow-up, which include result checking and analysis to determine if a
failure has been observed, and if so, follow-up activities are initiated and monitored
to ensure removal of the underlying causes or faults that led to the observed failures
in the first place.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 19

Figure 2.3 summarizes these common test process activities. Another detailed level
picture of the testing process is the one given by Perry [Perry, 2006, p. 157] who divides
it into seven steps, namely; organizing for testing, developing the test plan, verification
testing, validation testing, analyzing and reporting test results, acceptance and operational
testing, and post-implementation analysis. Perry’s partitioning of testing process into these
seven steps can be considered to be an expansion of Tian’s three phased view discussed
above.

Planning &
Preparation

Analysis &
Followup

Execution Goals
Satisfied

analysis results
selected measurements

& models

no

establish goals

defect handling

fe
ed

ba
ck

 &

ad
ju

st
m

en
ts

test cases &
procedures

entry

exit

yes

m
easurem

ents

Figure 2.3: Generic Structure of Testing Process [Tian, 2005]

Benefits of testing process
A well established test process can bring about many benefits to all stakeholders. Accord-
ing to Perry [Perry, 2006] these advantages include,

• Testing is consistent: Following test process matures the practices. Successful prac-
tices can be re-implemented for other projects which reduces variability of activities
and increases our confidence.

• Testing can be taught: In a heroic testing where no process exists, testing is mainly
an art confined to a master tester. Breaking testing into processes makes it under-
standable and teachable.

• Test processes can be improved: By using processes we can identify ineffective areas
and activities. Such deficiencies can be removed to make testing cost-effective and
improve product quality.

• Test processes become manageable: When a process is in place, it can be managed.
If it is not, then things are being done in an ad-hoc manner where there can be no
management.

2.2.1 Research directions

Three main issues concerning test process research are: definition or modeling, evaluation,
and improvement.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

20 2 Background on Software Testing

Test process definition
As mentioned above, testing (by definition) is the process of executing code for finding
errors, such as unit testing process etc. In this context, the definition of the test process
refers to the definition of the processes as models, plus any optional automated support
available for modeling and for executing the models during the software process (derived
from [Acuña et al., 2001]). This may be in the form of a description of part/whole of test
process using a suitable process modeling language. An example is model-based testing
approaches. Another way to define a test process is to give an activity based description of
the process aimed at activity management. This approach to defining testing process is used
when testing refers to all sorts of methods for identifying software errors e.g. inspection
process, or system testing process. Examples include well known testing standards and
other generic and domain-specific test process descriptions.

Test process evaluation
Test process evaluation is a systematic procedure to investigate the existence, adequacy,
and performance of an implemented process system against a model, standard, or bench-
mark (derived from [Wang and King, 2000, p. 42]). It is the investigation of the current
state of the process with a view of finding necessary improvement areas. Process evaluation
is typically performed prior to any process improvement initiative. Test process evaluation
and improvement is motivated by a concern for cutting on testing costs and improving
product quality.

Test process improvement
Test process improvement is a systematic procedure to improve the performance of an ex-
isting process system by changing the current process or updating new processes in order
to correct or avoid problems identified in the old process system by means of a process
assessment (derived from [Wang and King, 2000, p. 42]). In parallel with the concern for
software process improvement, test process improvement also continues to be a major re-
search direction within software testing. It has been ranked by Taiple [Taipale et al., 2005]
as one of the top three important issues in software testing research.

In most cases a solution may address more than one of the above mentioned three issues
at the same time. For instance, process evaluation and improvement are mutually connected
issues of software test process. Any software process improvement initiative needs first an
evaluation of the current level of performance of the process. A process evaluation exercise
should eventually follow an identification of and suggestions over most important process
improvement areas. Therefore, test process evaluation and improvement will be reviewed
in the same section in this text. Figure 2.4 gives a classification and summary of existing
approaches in this regard.

2.2.2 Test Process Definition & Modeling

Existing test process modeling approaches include some empirical and descrip-
tive, and formal and descriptive process models. According to Wang and
King [Wang and King, 2000, p. 40] an empirical process model defines an organized and
benchmarked software process and best practices, a descriptive model describes what to
do according to a certain software process system, while a formal model describes the
structure and methodology with an algorithmic approach.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 21

Definition & Modeling

Evaluation &
Improvement

Generic

Domain specific

Formal

Implicit Models

Explicit Models

TMap - Test Management
Approach

TDD - Test Driven
Development

Drabick’s Testing Process

Testing for Embedded
Systems

Testing for Service-
oriented Systems

MBT – Model based
Testing

Cangussu’s Mathematical
Models

TMM – Testing Maturity
Model

TPI - Test Process
Improvement Model

IV&V - Independent
Verification & Validation

A
pp

ro
ac

he
s

to
 T

es
t P

ro
ce

ss

TMMi – Test Maturity
Model Integrated

ICMM – Inspection
Capability Maturity Model

Test Metrics

Figure 2.4: Approaches to Software Testing Processes

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

22 2 Background on Software Testing

2.2.2.1 Generic Test Process Descriptions

An activity-based description of the software test process has been given by
Perry [Perry, 2006, Ch. 6]. He divides the test process intro seven steps. The process
has been designed to be used by both developers and an independent test team. Since the
details of the process activities are very generic in nature, the process must be customized
by organization before its actual use.

Figure 2.5 gives an overview of the proposed process. It follows the V concept of de-
velopment/testing. The seven steps as given in [Perry, 2006, p. 157] are being summarized
below.

Define Requirements

Operate and Maintain
Software

Install Software

Build Software

Design Software

Step 7
Post-implementation Analysis

Step 6
Acceptance and

Operation Testing

Step 5
Analyzing and Reporting

Step 4
Validation Testing

Step 3
Verification Testing

Step 2
Test Plan

Step 1
Organizing for

Software Testing

Development of Software
Independent Testing of Software

Figure 2.5: V-Diagram for Seven Step Test Process [Perry, 2006]

1. Organizing for testing: This is a kind of preparation step which is aimed at defining
the scope of testing activities and responsibilities of whoever will be involved in test-
ing process. Furthermore, the development plan must be analyzed for completeness
and correctness which is the basis for the next step of test plan development.

2. Developing the test plan: After the preliminary steps, a test plan must be developed
that precisely describes testing objectives. A test plan will mention exactly how
and what kinds of testing activities will be performed. Possible risks should also be
identified at this step.

3. Verification testing: The purpose of this step is verify activities and products of
each of the design and development process to ensure that software is being con-
structed correctly. This will enable an early detection of defects before development
is complete.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 23

4. Validation testing: Dynamic testing of the code using the pre-established methods
and tools should be performed now. This step should ensure that the software fulfills
the stated requirements.

5. Analyzing and reporting test results: Test results should be analyzed to compare
the developed product with the intended development goals. Results should be re-
ported with the defect reports etc.

6. Acceptance and operational testing: A final step is the testing of the software by
the actual users. Upon completion of the acceptance testing, the software must once
again be tested in the production environment to observe conflicts or other faults.

7. Post-implementation analysis: This step is a kind of post-mortem analysis of the
whole testing process. Efficiency and effectiveness of the testing process must be
analyzed. This will help us identify lessons learned, and future improvement areas
for the test activities.

TMap-
Test Management Approach

The Test Management Approach (TMap) [Pol et al., 2002] has been developed by a Dutch
firm named Sogeti. The TMap approach primarily focuses on structured testing and
provides answers to the what, when, how, where, and who questions of software test-
ing [van Veenendaal and Pol, 1997]. Figure 2.6 gives an overview of TMap. It is founded
on following four cornerstones,

L Lifecycle: This element sits at the heart of the approach a provides a development
process related life cycle model for the testing activities. The lifecycle model is
composed of planning, specification, execution, and completion phases under the
umbrella of a planning & control phase. The model elaborates on guidelines on
objectives, tasks, responsibilities, deliverables and related issues relevant to each of
these phases.

T Techniques: This component compiles various techniques needed at each phase of
the test lifecycle. The techniques cover issues such as defining test strategy, estimat-
ing test effort, studying test basis, and test specification etc. This component serves
as a knowledge support to the lifecycle element.

I Infrastructure: Performing the lifecycle activities using the defined techniques
needs some facilities and resources. The infrastructure element exactly addresses
the provision of these elements. Two types of facilities fulfill this purpose, the test
environment and test tools. The choice of the test environment depends upon the
nature of the tests. TMap mentions a laboratory environment for white-box tests, a
system test environment for black-box tests, and a production environment for accep-
tance tests. In case of test tools, TMap divides them according to the lifecycle phase
where a test tool is needed or applied. The categories of tools recommended for
the testing process include record & playback, comparators, test drivers, simulators,
coverage analyzers, and static analyzers.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

24 2 Background on Software Testing

L: Lifecycle

Planning & Control
Preparation
Specification
Execution
Completion

T: Techniques

Strategy development
Test point analysis
Testability review
Test spec. techniques
Checklists

I: Infrastructure

Test environment
Test tools
Office environment

O: Organization
Operational test process
Structural test organization
Test management and control
Staff and training
Structuring the test process

Figure 2.6: Test Management Approach-TMap

O Organization: Apart from necessity of managing technical aspects of establishing a
testing process, TMap acknowledges the strong role of organizational support for the
success of the process. Contention of interest, organizational structures and manage-
ment methods, time and resource constraints and lack of expertise affect the testing
process. To cope with these issues this cornerstone focuses on the operational test
process, the structural test organization, test management, personnel and training,
and structuring the test process.

Drabick’s formal
testing process

Drabick [Drabick, 2003] presents a task-oriented process model for formal testing intended
for use on medium-to-large software-intensive programs. The model provides a concise
framework of testing tasks to assist test engineers. The author of the approach assumes the
model to be helpful in a number of ways, for example to

• manage defects

• create efficient test plans

• provide work breakdown structure for the test engineering function, and

• provide a basis for documenting testing processes.

The test process model is composed of a collection of Input-Process-Output (IPO) di-
agrams. Each IPO diagram lists inputs, process names, and relevant outputs. Figure 2.7
gives structure of the level 0 model for the formal testing. The description is very primitive
in nature at this level. This level of detail is not much meaningful and is meant to present
only a top-level picture of the test process.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 25
MODELING THE

TESTING PROCESS

Formal
Testing

(1.0)Requirements
Software Design
Risk Data
Approved, Debugged,
 Eng. Tested Code
Automated Test Tools

Tested Code
Test Report
Test Incidents
System Limitations
Updated Test Doc.

Requirements, Design,
 and Code Issues

Customer Problems
Change Requests

Test Doc. Review
Results

Problems Found
in Testing

INPUT PROCESS OUTPUT

Figure 2.7: Drabick’s Formal Software Test Process-Level 0 IPO Diagram [Drabick, 2003]

Figure 2.8 expands the level 0 description of the model into several sub-processes which
are listed below. The proposed model further drills down to level 2 and 3 for each of these
processes (which are not given here for the sake of brevity).

1. Extract test information from program plans

2. Create test plan

3. Create test design, test cases, test software, and test procedures

4. Perform formal test

5. Update test documentation

Although the process model contains several useful details of testing activities, yet it
speaks nothing about the evaluation of the process itself. It provides no mechanism of
evaluating how good the process has been performed or any other form of assessing effec-
tiveness or efficiency of the activities performed.

Test-driven development
Agile software development is a conceptual framework for software development that pro-
motes development iterations, open collaboration, and adaptability. Agile methods are
development processes that follow philosophies of Agile manifesto and principles. Some
examples of these methods include Extreme Programming (XP), Adaptive Software De-
velopment (ASD), Scrum, and Feature Driven Development (FDD) etc. Agility, change,
planning, communication, and learning are common characteristics of these methods .

Extreme Programming (XP) is a well known and probably the most debated of the Agile
methods. Two of the twelve practices of XP include Test First and Refactoring. The test
first principle requires that automated unit tests be written before writing a single line of
code to which they are going to be related. Test Driven Development (TDD) [Beck, 2002]
has evolved from this test first principle. Although TDD is an integral part of XP but it can
also be used in other development methods.

TDD is not a not a testing technique nor a testing method or a process, it is only a style of
development. Under this approach software evolves through short iterations. Each iteration

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

26 2 Background on Software TestingMODELING THE
TESTING PROCESS

Extract Test
Information from
Program Plans

Perform Formal Test

Update Test
Documentation

Standards,
 Templates

Design, Code,
and Complexity
DataRequirements,

 SW Design,
 Code

Requirements Issues

Tested Source and Object Code
 Test Report
 Test Incidents
 System Limitations

Updated
 Test
 Documentation

Design,
 Code
 Issues

Requirements,
Design, and

 Code Issues

Test Doc. Problems
Engineering
 Test Data

Test Tools

Test Doc.
 Problems

1.1

Create Test
Plan

1.2

1.4

1.5

Test Tool
 Data

Test
Tools

Create Test Design,
Test Cases, Test SW,
and Test Procedures

1.3

Test Design, Cases,
 Procedures,
 Input Data

Test Plan

Program Plan Issues

Program Plans

Reqts.

Requirements

Resources
 and Staff

Requirements
 from Pgm. Plans

Risk

Test Plan
 Issues

Standards,
 Templates

Test Documentation

Figure 2.8: Drabick’s Formal Software Test Process-Level 1 IPO Diagram [Drabick, 2003]

involves initially writing test cases that cover desired improvement or new functionality.
Necessary code is then implemented to pass these tests and the software is finally refactored
to accommodate changes. Test-driven development cycle consists of following sequence
of steps; [Beck, 2002]

• Quickly add a test: A simple test is written as the first step which covers some
aspect of functionality of code.

• Run all tests and see the new one fail: Running the test cases in absence of required
code should essentially fail. This validates that the test harness is working correctly
and that the new test does not mistakenly pass without requiring any new code.

• Make a little change: The next step is to implement some code that is just enough
to pass the existing tests. This is meant to incrementally add functionality to the
developed code.

• Run all tests and see them all succeed: If all tests now pass, the programmer can
be confident that the code meets all the tested requirements.

• Refactor to remove duplication: Refactoring is the process of making changes to
existing working code without changing its external behavior. This step removes
cleans up the code and any duplication that was introduced getting the test to pass.

• Repeat: This test-code-refactor cycle is repeated which leads to an evolution of the
whole program, where the program-units are developed gradually.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 27

Add a
Test

Run all
tests (to
fail)

Add
some
code

Run all
tests (to
pass)

Refactor
code

Figure 2.9: Test-driven Development Cycle

Figure 2.9 summarizes the TDD cycle. As in other conventional development and testing
practices, testing under TDD is not done in a linear fashion. The continuous evolution and
feedback that is obtained from running tests makes this method circular. Since its inception,
a number of techniques and tools have been developed that support TDD style.

Improved quality, testability, extensibility and other benefits are believed to be associated
with TDD style of development. Few empirical works have attempted to validate some of
these claimed benefits[Siniaalto, 2006]. However certain TDD is limited in certain aspects
too. First, it concentrates on automated unit tests to build clean code. It is a fact that not
all tests can be automated such as user interface testing. Secondly, in database applications
and those involving different network configurations full functional tests are a necessity.
Test-first approaches for these kinds of applications are still missing. TDD’s lack of proper
functional specifications and other documentations also limit this style to small projects.
There are some social factors such as developer’s attitude and management support which
will certainly be a hurdle in adoption of this evolutionary approach.

Independent Verification
& Validation

Zero defect software is a highly sought goal for some particular kinds of safety critical and
complex large applications. Sometimes managerial commitments, financial constraints and
developer’s or tester’s bias may cause adverse affects on testing and may compromise soft-
ware quality. According to IEEE, independent verification and validation (IV&V) refers
to the verification and validation performed by an organization that is technically, manage-
rially, and financially independent of the development organization. But whether IV&V
differs from V&V in more than just the independence of its practitioners is still open to
debate [Arthur et al., 1999].

IV&V activities have been found to help detect faults earlier in the software develop-
ment life cycle, reduce the time to remove those faults, and produce a more robust prod-
ucts [Arthur et al., 1999]. The advantages of an independent V&V process are many. In
particular, the independence in V&V [Arthur and Nance, 1996],

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

28 2 Background on Software Testing

• provides an objective assessment of the product during its creation,

• adds a new analytical perspective not present in the development environment,

• brings its own set of tools and techniques to bear on ensuring development accuracy
and validity,

• introduces "intermediate" users of the system who serve as "beta testers" before the
product goes to market, and

• significantly enhances testing and the discovery of design flaws and coding errors.

Several software companies offer IV&V services. NASA’s IV&V Facility is a well-
known IV&V service provider for NASA’s critical projects and missions. Analysis of
IV&V approaches for different domains such as simulation and modeling and object-
oriented software applications has been performed by various researchers.

2.2.2.2 Domain Specific Test Processes

A very wide variety of software applications are being developed today, for example those
for distributed systems, communication systems, and embedded systems etc. Type of the
application domain naturally affects scope and range of software testing involved. Certain
techniques and levels of testing may no longer be applicable, and new approaches to testing
may be required. Testing activities and processes will also be affected. The next two sec-
tions will review testing process for embedded systems and service-oriented applications
as well-known examples which require specialized testing methods.

Test process for
embedded software

Many different types of embedded systems exist today such as mobile phones, electrical
home appliances, railway signal systems, hearing aids and other health care systems, mis-
sile guidance systems, satellites, and space shuttles etc. Zero defect software is needed
for such systems since a failure can cause human lives or extremely huge financial losses.
Within this context, testing of embedded software becomes very complex and poses much
more challenges and requirements on testing than that of other common software applica-
tions.

Numerous techniques and tools have been developed to answer specific testing concerns
of embedded softwares. Instead of discussing individual techniques a testing method will
be reviewed here which covers a wider perspective of embedded software in comparison
to specific techniques or tools. The method is called TEmb. TEmb provides a mechanism
for assembling a suitably dedicated test approach from the generic elements applicable
to any test project and a set of specific measures relevant to the observed characteristics
of the embedded system [Broekman and Notenboom, 2003, Ch. 2]. This method actually
adapts the concepts of TMap [Pol et al., 2002] approach to the embedded software domain.
Figure 2.10 gives an overview of the TEmb method.

The generic elements of the method involve descriptions of lifecycle, techniques, in-
frastructure, and organization issues. The second part of the method involves applying
measures specific to the system context based on the analysis of risks and system char-
acteristics. Example of these specific measures include specific test design techniques,

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 29

Dedicated Test Approach

L I T O

Specific
MeasuresTEmb Generic

Mechanism

TMap System
Characteristics

Figure 2.10: TEmb:Test Process for Embedded Systems [Broekman and Notenboom, 2003]

system modeling, dedicated test tools, and lifecycle etc [Broekman and Notenboom, 2003,
p. 18].

Test process for
SOA systems

Service-oriented computing represents a new generation distributed computing plat-
form [Erl, 2007]. There are two view points to look at a service-oriented architecture
(SOA) of applications. On the business side, SOA is a set of services providing some func-
tionality utilized externally by customers or internally by other parts of the organization.
This loose coupling of functionality provides support for evolving business requirements
to be flexibly implemented. On the technical side, SOA is a hierarchy of services resem-
bling the software components which implement some specific business task. Software
systems are then composed of these services serving as primary building blocks which can
be discovered, composed, instantiated, and executed at runtime. A generalized definition
of SOA covering both these views as given by Bieberstein states that,

Definition: A service-oriented architecture is a framework for integrating business
processes and supporting IT infrastructure as secure, standardized components–
services–that can be reused and combined to address changing business priori-
ties. [Bieberstein et al., 2005, Ch. 1]

Service-oriented architecture (SOA) enables creation of enterprise-wide and cross-
enterprise flexible, dynamic business processes and agile applications. The rigor and
flexibility of SOA-based systems comes with a price and confronts us with unique chal-
lenges [Papazoglou et al., 2007].

One issue among these research areas is the quality assurance and testing of SOA sys-
tems. The widespread adoption of SOA-based solutions introduces rising concern for effi-
cient and effective testing methods specific to service-oriented systems. Within the context
of testing and quality assurance of SOA-based systems, it has been observed that focus of
research has primarily been on developing new testing techniques for services, maturity
models of SOA adoption, and SOA related measures etc. The author scanned the litera-
ture for articles, conference proceedings, and books related to SOA testing and found that
out of the 128 identified sources, 103 presented new service testing techniques, 15 were

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

30 2 Background on Software Testing

New Testing Techniques
 81%

New Techniques for SOA Testing
81%

Process aspect
of SOA Testing

2%

Surveys
12%

New Metrics for SOA
5%

Figure 2.11: Review of 127 Articles on SOA Testing

about overview of SOA testing issues, new challenges and surveys, 7 discussed new SOA
related measures, while only 3 references discussed process dimension of SOA testing.
Figure 2.11 summarizes these facts. Thus, it appears that testing of services alone has been
focused, until now, within the very broad scope of SOA testing. Perhaps it seems appro-
priate to believe that SOA testing has not yet received adequate attention as mentioned
by [Ribarov et al., 2007].

TPI SOA Model:The discussion would be incomplete without mentioning a very recent
endeavor [Eggink et al., 2008] for customization of the well-known process improvement
model, TPI [Koomen and Pol, 1999], in the SOA context. In addition to making a few
structural and textual changes to existing process areas, the model adds following key areas
related to SOA testing,

• Service Registry:
Exploitation of service registry for development and test process

• SOA knowledge:
The existence and implementation of special testing knowledge in SOA context

• Availability of test basis:
Existence of details about test objects to serve as test basis

• Service integration:
The level of service testing if it has been modified

• Quality management:
Extent of implementing quality management procedures for test process and SOA
services

2.2.2.3 Formal Approaches

Wang and King [Wang and King, 2000, p. 40] define a formal process model as a model
that describes the structure and methodology of a software process system with an algo-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 31

rithmic approach or by an abstractive process description language. Formal approaches to
software process have been variably applied. Dumke et al. [Dumke et al., 2006a] mention
few of such approaches. The same concept has been used in the domain of testing process.
The next two sections explain these approaches.

Model based testing
A major portion of software testing costs is associated with test case related activities.
Test case generation consumes resources such as for their planning, design, and execution.
Manual design and execution of test cases is a tedious task. Therefore, automation of test
case generation and execution could be an interesting mechanism to reduce the cost and
effort of testing. Automatic execution of tests is offered by many automated test tools.
Model based testing (MBT) [Utting and Legeard, 2006] takes a step forward to automate
the design process of test cases.

MBT involves creating an abstract model of the system under test which is mostly based
on functional requirements. Then a test tool automatically generates test cases from this
model of the system. A direct benefit is that overall test design time is reduced and a
variety of test cases can be generated from the same model simply by changing test se-
lection criteria. MBT is supposed to offer many benefits such as shorter schedules, lower
cost and effort, better quality, early exposure of ambiguities in specification and design;
capability to automatically generate many non-repetitive and useful tests, test harness to
automatically run generated tests, and convenient updating of test suites for changed re-
quirements [El-Far and Whittaker, 2001]. Utting and Legeard [Utting and Legeard, 2006,
p. 27] divide MBT into following five steps,

• Model: The very first step is to create an abstract model which describes behavior of
the system under test (SUT). This model is abstract in the sense that it mostly covers
key aspects of the SUT. Some design language or a test specification language must
be used to create this model. Unified Modeling Language (UML), TTCN-3 1, or Test
Modeling Language (TML) [Foos et al., 2008] can be used for this purpose.

• Generate: The next step is to generate abstract tests from the model. An automated
test case generator tool can be exploited at this step. To reduce the almost infinitely
possible test cases, a test selection criteria must be used. In addition to a set of
abstract test cases, this step sometimes also produces a requirements traceability
matrix and a model coverage report.

• Concretize: The abstract test cases from the previous step cannot be executed di-
rectly on the SUT. They must be transformed into executable form which is done
under this step. A test script generator tool may be used for the purpose.

• Execute: This step executes the concrete test cases over the system under test (SUT)
with the help of a test execution tool. The step produces the final test results. With
online testing, the above three steps are merges and tests are executed as they are
produced. In case of the offline testing, the above three steps will be performed as
described.

1http://www.ttcn-3.org/

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://www.ttcn-3.org/

32 2 Background on Software Testing

Req. Traceability
Matrix

Abstract
Test Cases

1. Model

Test Script
Generator 3. Concretize

2. Generate

4. Execute

5. Evaluate

Test Execution
Tool

Test Results

Requirements

Model Coverage

Software
Under Test

Modeling
Notation

Test Scripts

Test Selection
Criteria

Test Case
Generator

Figure 2.12: Model-based Testing Process

• Analyze: The final step is to analyze the test results. Actual and expected outputs are
compared and failure reports are analyzed. The step also involves deciding whether
to modify the model, generate more test cases, or stop testing.

Figure 2.12 gives a detailed description of the MBT process with necessary inputs and
outputs of each step.

Hundreds of MBT approaches have been developed to date. However, they are not aimed
at covering all testing aspects. MBT techniques mainly aimed at functional testing since
test cases are derived from functional specification of the system. Only in very few cases
have the MBT approaches been used for testing some non-functional characteristics. Fur-
thermore, MBT is a kind of black-box approach since the system model has been derived
from the behavioral descriptions. However, MBT can be applied at any testing level (al-
though it has mostly been applied for system level tests). Figure 2.13 summarizes the scope
of MBT with reference to different testing aspects.

A comprehensive characterization of these techniques has been given by Neto et
al. [Neto et al., 2007]. MBT techniques differ by behavioral model, test generation al-
gorithm, test levels, software domain, or level of automation etc. Choice of a particular
MBT approach out of the many can influence efficiency of the overall test process.

Cangussu’s formal models
A mathematical model of a software process attempts to describe its behavior and pro-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 33

Scale of SUT

Tests Derived from...

Characteristics being Tested

Unit

System

Integration

Component

Functional

Robustness

Performance

Code
(White-box)

Requirements
(Black-box)

Usability

Figure 2.13: Scope of Model-based Testing [Utting and Legeard, 2006]

vides a feedback mechanism which guides the managers in adjusting model parameters to
achieve desired quality objectives. The generic procedure to select, adopt and apply these
kinds of models can be summarized in following steps

1. Postulate general class of models

2. Identify model to be tentatively entertained

3. Estimate model parameters

4. Perform diagnose checking (model validation)

5. Use model for prediction or control

Several mathematical models of software test process have been developed by Cangussu
et. al[Cangussu, 2002], [Cangussu, 2003]. These mathematical models attempt to predict
some aspect of the software test process (with special focus on system test phase) such
as effort, schedule slippage, failure intensity or effect of learning etc. Most of these ap-
proaches follow a feedback control mechanism as outlined in the figure 2.14.

Now we briefly describe each of Cangussu’s approaches one by one.

• State variable model [Cangussu et al., 2000]
This model uses the theory of state variables to capture the dynamic behavior of the
software test process by focusing on time and effort required to debug the software.
It then applies feedback control for adjusting the variables such as work force and
quality of the test process to improve the test process performance, and meeting
the deadlines. This model has been validated with data from two large industrial
projects.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

34 2 Background on Software Testing

STP

Manager

Control
Mechanism

input parameters

E
rr

or
=

Q
e-

Q
o

output

set of
solutions

observed quality (Qo)

change in input
parameters

expected quality (Qe)

ordinary approach

Cangussu’s approach

Figure 2.14: Cangussu’s Approach of STP Models [Cangussu, 2002]

• A state model [Cangussu et al., 2001a]
This model attempts to predict completion time and cost to perform software test
process. The model provides an automated method for parameter identification. The
closed-loop feedback mechanism consisting of determination (based on adjustment
of different parameters) of minimum decay rate needed to meet management objec-
tives guides the managers to correct deviations in the software test process.

• Feedback control model [Cangussu et al., 2001b]
Feedback control model is quite similar to formal and state models. It differs only in
control variables which in this case are product reliability and failure intensity. These
variables are calculated at specific checkpoints within the software test process and
result is fed back to the controller to adjust model parameters to meet desired process
objectives.

• A formal model [Cangussu et al., 2002]
Current formal model of the software test process is based on the theory of process
control. Estimations of the number of remaining errors and schedule slippage are
performed at specific checkpoints inside a feedback control structure which helps
meet the schedule and quality requirements.

• Stochastic control model [Cangussu, 2003]
The stochastic control model is a variation of state variable model and formal model
of the software test process discussed above. This model is designed to account for
foreseen and unforeseen disturbances and noise in the data collection process. The
model has been verified with some simulation results while still needs validation
with actual project data.

• A quantitative learning model [Abu et al., 2005]
This model is also derived from the formal model of the software test process de-
scribed above. This approach investigates the effect of learning behavior and ex-
perience to improve the software test process. Prediction process is improved by

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Testing Process 35

adjusting different model parameters such as initial knowledge and learning rate.
The model has been validated with two large industrial case studies.

Some general aspects of concern about such mathematical models are:

• Model Validation: Usually these kinds of models are validated through simulation
runs, analytical approaches, or empirical investigations and industrial case studies.
The models outlined above have been validated through simulation and same two
case studies applied to each of these model evaluations. We still need more empirical
studies on these models to highlight any new aspects of model behavior and effect of
different model parameters.

• Prediction Quality: An evaluation of above mentioned mathematical models in-
volves assessment of their prediction quality. Apel [Apel, 2005] mentions some
criteria to evaluate prediction quality of such mathematical models.

– Prediction Accuracy answers the question how accurate is the prediction.

– Prediction Distance determines how far in future does the prediction lie.

The models mentioned above need to be evaluated in the light of these criteria.
The only related evaluation reported by authors in this regard is a sensitivity analy-
sis [Cangussu et al., 2003] of the state variable model discussed above. This analysis
attempts to quantify effects of parameter variations on the behavior of the model such
as its performance.

• Practical Application/Industrial Acceptance: The mathematical complexity involved
in construction and application of such models may be difficult to be handled by
process managers who usually do not have enough background in such areas. In this
case, a tool encapsulating mathematical procedures may simplify adoption of these
models in industry.

2.2.3 Test Process Evaluation & Improvement

Evaluation models of software
process vs. test process

Evaluation and improvement of software test process is strongly motivated by and bor-
rows common concepts from that of the software process. A large number of meth-
ods over assessment and measurement techniques for generic software processes have
been developed over the years. Surveys of current software process quality models given
in [Komi-Sirviö, 2004, Ch. 3], [Zahran, 1998] highlight the directions of research in soft-
ware process improvement. Some of these research directions were also followed by re-
searchers working on evaluation and improvement of test process. Analogously, a few sur-
veys have tried to summarize the corresponding models of test process evaluation and im-
provement [Swinkels, 2000], [Farooq and Dumke, 2007], [Farooq and Dumke, 2008b].
Combining both these surveys a broad picture of available approaches for software process
and test process has been developed and given in table 2.2. This discourse could be helpful
in establishing connections between the two classes of these models.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

36 2 Background on Software Testing

Table 2.2: Software Process vs. Test Process Research

Model Type Software Process Test Process
Management Deming’s Cycle TMap

QIP
IDEAL Model
ISO 15504 Part 7

Best Practices CMMI TMM
Bootstrap TPI
SPICE TMMi
ISO 9000-3 IEEE Std. V&V

IEEE Std. Unit
Testing

Measurement SPC Cangussu’s
GQM Mathematical Models
PSP

Product Quality ISO/IEC 25000 –
IEEE Std. 1061

Knowledge Management Experience Factory (EF) –

The categories of the approaches such as management, best practices, etc mentioned in
the table have been take from [Komi-Sirviö, 2004]. Since the main direction of this thesis
is evaluation and improvement of test process, discussions of the models of test process
summarized in table 2.2 needs a detailed analysis. Therefore, such discussions will be
deferred until a subsequent chapter (4) which dedicates itself for a meticulous descriptions
of these approaches.

2.3 Testing Techniques
Within the area of software testing, the terms technique and method are interchangeably
used. Ideally speaking a test technique refers to the way test engineers design or select test
cases against which the program is to be tested. In this situation, a technique is in fact some
kind of dynamic technique which involves actual code execution. On the other hand, the
process of testing may initially and partially be done without executing the program code.
In this case, these are called static techniques or rather testing methods. These testing
methods (or techniques) define different procedures to find defects in the software design
and source code. For the sake of simplicity and ease of understanding, this thesis therefore
does not distinguish between the terms testing technique and testing method.

Classification of techniques
Software testing literature contains a rich source of testing techniques, for example
Beizer [Beizer, 1990], Perry [Perry, 2006, Ch. 17], Liggesmeyer [Liggesmeyer, 2002],
Tian [Tian, 2005, Ch. 8-11], Pezze and Young [Pezzè and Young, 2007]. These tech-
niques are aimed at solving a variety of problems or needed at different testing stages.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Testing Techniques 37

Avoiding even the list of such huge collection of testing techniques, only their broad
classes will be mentioned here. It is evident that any uniform classification scheme
for testing techniques is not possible, and only some pseudo classifications exist such
as Abran [Abran et al., 2004], Juristo[Juristo et al., 2004a], Tian[Tian, 2005], and Ligges-
meyer [Liggesmeyer, 2002, p. 34] etc. These classifications vary by the way they organize
techniques such as based on how tests are designed, the purpose of the technique, or the
testing phase or level etc. Liggesmeyer’s classification seems to be quite comprehensive
in combining few of these criterion and in covering available techniques. Figure 4.9 is a
modified version of his classification.

2.3.1 Static techniques

Static testing techniques are usually applied at the initial steps in software testing. These
are verification techniques which do not employ actual execution of code/program. These
techniques attempt to ensure that organizational standards and guidelines for coding and
design are being followed. Formal verification, inspection, reviews, and measurement are
main types of static techniques. Table 2.3 presents an abridged summary of static testing
techniques.

Table 2.3: Summary of Static Testing Techniques

Category Technique Description
Verification Formal Verification Analyzes correctness of software systems based

on their formal specification.
Symbolic Verification Program is executed by replacing symbolic

values in place of original program variables
to provide general characterization of program
behavior.

Analysis Measurement Provides quantitative view of various
attributes of testing artifacts.

Review A work product is examined for defects by
individuals other than the producer.

Inspection Disciplined engineering practice for detecting
and correcting defects in software artifacts

Walk-through The producer describes the product and asks
for comments from the participants.

Audit An independent examination of work products
to assess compliance with specifications,
standards, or other criteria.

Slicing Technique for simplifying programs by focusing
on selected aspects of semantics for debugging.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

38 2 Background on Software Testing

Static Techniques

Dynamic Techniques

Verification

Analysis

Structure Oriented

Function Oriented

Diversifying

Formal Verification

Test Measures

Symbolic Verification

Control-flow Oriented

Data-flow Oriented

Functional Equivalence Classes

Decision Tables based Testing

Regression Tests

Mutation Tests

Reviews

Te
st

in
g

Te
ch

ni
qu

es

Miscellaneous

Domain Testing

Path Range Testing

Partition Analysis

Statistical Testing

Error Guessing

Limit Value Analysis

Figure 2.15: Liggesmeyer’s Classification of Testing Techniques

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Testing Techniques 39

2.3.1.1 Verifying

Formal specifications is a way to precisely describe customer requirements, environmental
constraints, and design intentions to reduce the chances of common specification errors.
Verifying techniques check the conformance of software design or code to such formal
specifications of the software under test. These techniques are mainly focused on investi-
gating functional requirements and aspects such as completeness, clarity, and consistency.
Only a few of some well known techniques of this type will be discussed below.

Formal verification
Formal verification is the use of mathematical techniques to ensure that a design conforms
to some precisely expressed notion of functional correctness. Software testing alone can-
not prove that a system does not have a certain defect, neither can it prove that it does have
a certain property. The process of formal verification can prove that a system does not
have a certain defect or does have a certain property. Formal verification offers rich tool-
box of mathematical techniques such as temporal-logic model checking, constraint solving
and theorem proving [Lüttgen, 2006]. Clarke [Clarke and Wing, 1996] mentions two well
established approaches to verification: model checking and theorem proving. Two gen-
eral approaches to model checking are temporal model checking in which specifications
are expressed in a temporal logic and systems are modeled as finite state transitions while
in second approach the specification is given as an automaton then the system, also mod-
eled as an automaton, is compared to the specification to determine whether or not its
behavior conforms to that of the specification [Clarke and Wing, 1996]. One of the most
important advances in verification has been in decision procedures, algorithms which can
decide automatically whether a formula containing Boolean expressions, linear arithmetic,
enumerated types, etc. is satisfiable [Heitmeyer, 2005].

Test process for
symbolic testing

Symbolic testing [Pezzè and Young, 2007, Ch. 19] or symbolic execution is a program
analysis technique in which a program is executed by replacing symbolic values in place
of original program variables. This kind of testing is usually applied to selected execu-
tion paths as against formal program verification. Symbolic execution gives us a gen-
eral characterization of program behavior which can help us in designing smarter unit
tests [Tillmann and Schulte, 2005] or in generating path-oriented test data. Figure 2.16
gives an example of symbolic execution. Although this technique was developed more
than three decades before, it has only recently become practical with hardware improve-
ments and automatic reasoning algorithms.

2.3.1.2 Analyzing

Analyzing techniques attempt to find errors in software without executing it. However
these techniques are not just limited to checking software entities but also involve review-
ing designs and relevant documents. The main premise behind these techniques is that
an earlier detection of bugs in software is less expensive than finding and fixing them at
later development stages. These techniques analyze requirements, specifications, designs,
algorithms, code, and documents. Examples of these techniques are;

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

40 2 Background on Software Testing

int x, y;

if (x>y) {

 x=x+y;

 y=x-y;

 x=x-y;

 if(x-y>0)

 assert (false);
}

x=1, y=0

1 > ? 0

x=1+0=1

y=1-0=1

x=1-1=0

0-1>?0

[A > B] x = A + B

x = A, y = B

[A > B, B – A < = 0] END [A > B, B – A > 0] END

[A > B] B – A > ? 0

[A < = B] END

A > ? B

[A > B] x = A + B – B = A

[A > B] y = A + B – B = A

Figure 2.16: An Example of Symbolic Execution

• test measurements

• inspections

• reviews

• walk-throughs

• audits

Test measures
Measurement is a static analysis technique which can give us valuable information even
before actually executing dynamic tests. Size, effort, complexity, and coverage like infor-
mation can readily be obtained with the help of numerous test metrics. A detailed review
of test related metrics will be given later in this thesis.(see section 4.2.5)

Software reviews, inspections
and walk-throughs

Software review as defined by IEEE [IEEE, 1990] is a process or meeting during which
a work product or set of work products are presented to project personnel, managers,
users, customers, or other interested parties for comment or approval. IEEE stan-
dard [IEEE, 1997a] which defines requirements for software reviews describes five types of
reviews as management reviews, technical reviews, inspections, walk-throughs, and audits.

Reviews are usually performed for code, design, formal qualification, requirements,
and test readiness etc. Since it is virtually impossible to perform full software testing,
reviews are used as an essential quality control technique. It is a common belief that
reviews increase the quality of the software product, reduce rework and ambiguous ef-
forts, reduce testing and defines test parameters, and are a repeatable and predictable pro-
cess [Lewis, 2004].

Fagan Inspections
Fagan inspection refers to a structured process of trying to find defects in development
documents such as programming code, specifications, designs and others during various

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Testing Techniques 41

phases of the software development process. In a typical Fagan inspection the inspection
process consists of the operations shown in figure 2.17.

Planning Overview Preparation Meeting FollowupRework

Figure 2.17: Fagan Inspection Basic Model [Fagan, 1986]

Surveys, state-of-the-art studies, and future research directions within soft-
ware reviews and inspections have been given by in [Laitenberger, 2002],
and [Kollanus and Koskinen, 2007]. Another very recent industrial practice survey
of software reviews was performed by [Ciolkowski et al., 2003]. The authors concluded
that "companies conduct reviews regularly but often unsystematically and full potential of
reviews for defect reduction and quality control is often not exploited adequately".

A recent case study to judge effectiveness of software development technical reviews
(SDTR) [Sauer et al., 2000] has concluded that the most important factor in determining
the effectiveness of SDTRs is the level of expertise of the individual reviewers. Addition-
ally, this study highlights three ways of improving performance: selection of reviewers
who are expert at defect detection; training to improve individuals’ expertise; and estab-
lishing group size at the limit of performance. Another study [Laitenberger et al., 1999]
reports similar results and rates preparation effort as the most important factor influencing
defect detection capability of reviews.

2.3.2 Dynamic techniques
Dynamic testing techniques involve tests which employ system operation or code execu-
tion. Two broad categories of such dynamic methods exist, structural-based and functional-
based. Dynamic techniques that exploit the internal structure of the code are known as
structural, white-box, glass-box or coverage based tests. In contrast, those that do not in-
volve the internal structure of the code are known as functional, black-box, behavioral or
requirement-based tests. These kinds of testing techniques in the coming sections. Ta-
ble 2.4 presents a very short summary of dynamic testing techniques.

2.3.2.1 Structure oriented

Types of testing techniques under this category exploit structural information about the
software to derive test cases as well as their coverage and adequacy. In this context,
data and control element are two main elements in any computation or information pro-
cessing task that are grouped through some implemented algorithms. Structural testing
techniques [Pezzè and Young, 2007, Ch. 12] are mainly based on this control-flow and
data-flow information about our code design.

Control-flow oriented
Control-flow testing focuses on the complete paths and the decisions as well as interactions
along these execution paths. Control flow elements that may be examined are statements,
branches, conditions, and paths. These elements are also generally considered for coverage

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

42 2 Background on Software Testing

Table 2.4: Summary of Dynamic Testing Techniques

Category Technique Description
Structured Data-flow Select test cases based on program path to
oriented oriented explore sequences of events related to the

data state.
Control-flow Select test cases using information on
oriented complete paths and the decisions as well

as interactions along these execution paths

Function Functional equivalence Input domain of the software under test is
oriented classes partitioned into classes to generate one

test case for each class.
Decision tables Select test cases exploiting information

on complex logical relationships between
input data.

Cause-and-effect Causes and effects in specifications are
graphs drawn to derive test cases.
Syntax testing Test cases are based on format specification

obtained from component inputs.

Diversifying Regression testing Selective retesting of a system to verify
that modifications have not caused
unintended effects.

Mutation testing Works by modifying certain statements in
source code and checking if test code
is able to find the errors.

Back-to-back testing For software subject to parallel
implementation, it executes tests on similar
implementations and compares the results.

Domain Testing Partition analysis Compares a procedure’s implementation
to its specification to verify consistency
between the two and to derive test data.

Miscellaneous Statistical testing It selects test cases based on usage model
of the software under test.

Error guessing Generate test cases based on tester’s
knowledge, experience, and intuition of
possible bugs in the software under test.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Testing Techniques 43

criteria. For most computation intensive applications, which cover most of the traditional
software systems, mere state and link coverage would not be enough because of the inter-
connected dynamic decisions along execution paths [Tian, 2005]. Therefore, control-flow
testing is generally a necessary step among the variety of testing techniques for such sys-
tems.

Data-flow oriented
Data-flow testing [Pezzè and Young, 2007, Ch. 13], [Beizer, 1990, Ch. 5] is based on prin-
ciple of selecting paths through the program’s control flow in order to explore sequences
of events related to the status of data objects, for example, pick enough paths to assure that
every data object has been initialized prior to use or that all defined objects have been used
for something. It attempts to test correct handling of data dependencies during program
execution. Program execution typically follows a sequential execution model, so we can
view the data dependencies as embedded in the data flow, where the data flow is the mech-
anism that data are carried along during program execution [Tian, 2005]. Data flow test
adequacy criteria improve over pure control flow criteria by selecting paths based on how
one syntactic element can affect the computation of another.

2.3.2.2 Function oriented

IEEE [IEEE, 1990] defines function oriented testing or black-box testing as:

• Testing that ignores the internal mechanism of a system or component and focuses
solely on the outputs generated in response to selected inputs and execution condi-
tions.

• Testing conducted to evaluate the compliance of a system or component with speci-
fied functional requirements.

This type of testing does not exploit any knowledge about inner structure of the
software. It can be applied towards testing of modules, member functions, object clusters,
subsystems or complete software systems. The only system knowledge used in this
approach comes from requirement documents, specifications, domain knowledge or
defect analysis data. This approach is specifically useful for identifying requirement or
specification defects. Several kinds of functional test approaches are in practice such as,

• decision tables

• functional equivalence classes

• domain testing

• transaction-flow based testing

• array and table testing

• limit testing

• boundary value testing

• database integrity testing

• cause-effect analysis

• orthogonal array testing

• exception testing

• random testing

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

44 2 Background on Software Testing

Out of these, only a few commonly used techniques will be discussed in the coming
sections.

Functional equivalence
classes

This technique is used for minimizing the test cases that need to be performed in order
to adequately test a given system. It produces a partitioning of the input domain of the
software under test. The finite number of equivalence classes that are produced allow the
tester to select a given member of an equivalence class as a representative of that class
and the system is expected to act the same way for all tests of that equivalence class. A
more formal description of equivalence classes has been given by Beizer [Beizer, 1995].
While Burnstein [Burnstein, 2003] regards derivation of input or output equivalence classes
mainly a heuristic process, Myers [Myers, 2004] suggests some more specific conditions
as guidelines for selecting input equivalence classes.

Cause-and-effect
graphing analysis

Equivalence class partitioning does not allow combining conditions. Cause-and-effect
graphs can be used to combine conditions and derive an effective set of test cases that
may disclose inconsistencies in a specification. Based on some empirical studies, Parad-
kar [Paradkar, 1994] relates some experiences of using cause-effect graphs for software
specification and test generation. He finds it very useful in reducing the cardinality of
the required test suite and in identifying the ambiguities and missing parts in the specifi-
cation. Nursimulu and Probert [Nursimulu and Probert, 1995] point out ambiguities and
some known drawbacks to cause-effect graphing analysis.

Syntax testing
Syntax testing [Beizer, 1995], [Liggesmeyer, 2002], also called grammar-based testing,
is a testing technique for testing applications where the input data can be described for-
mally. Some example domains where syntax testing is applicable are GUI applications,
XML/HTML applications, command-driven software, scripting languages, database query
languages and compilers. According to Beizer [Beizer, 1995], syntax testing begins with
defining the syntax using a formal meta-language such as Backus-Naur form (BNF) which
is used to express context-free grammars and is a formal way to describe formal languages
is the most popular. Once the BNF has been specified, generating a set of tests that covers
the syntax graph is a straightforward matter.

The main advantage with syntax testing is that it can be automated, easily making this
process easier, reliable and faster. Tools exist that support syntax testing. Marquis et
al. [Marquis et al., 2005] explain a language called SCL (structure and context-sensitive)
that can describe the syntax and the semantic constraints of a given protocol, and con-
straints that pertain to the testing of network application security. Their method reduces
the manual effort needed when testing implementations of new (and old) protocols.

2.3.2.3 Diversifying

The diversifying test techniques pursue quite different goals. Diversifying test techniques
do not serve in contrast to the structure-oriented or function-oriented test techniques.
A goal of the diversifying test techniques is to sometimes avoid the often hardly pos-
sible evaluation of the correctness of the test results against the specification. Differ-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Testing Techniques 45

ent types of diversifying techniques are back-to-back test, mutation test, and regression
tests [Liggesmeyer, 2002]. Only regression testing, being probably the most widely re-
searched technique in this category, will be discussed next.

Regression testing
Regression testing is defined by IEEE [IEEE, 1990] as selective retesting of a system or
component to verify that modifications have not caused unintended effects and that the
system or component still complies with its specified requirements. Regression tests may
apply at any level of testing such as unit tests etc to confirm no undesired changes have
occurred during functional improvements or repairs. The main issues in regression testing
include a) removal of redundant and obsolete test cases and b) test case selection to reduce
cost and time of retesting.

The new version of software involves structural or other changes to modules which ren-
ders some of the previous test cases non-executable. Redundant test cases are those that
are still executable but are irrelevant with rest to testing criteria. Re-executing all test cases
other than obsolete and redundant affects regression testing complexity, effort and cost.
We must select a suitable subset of these test cases. A number of techniques exist which
attempt to reduce the test suite in this case. Some of these approaches are;

• Test case prioritization

• Test case selection

– Code based

– Specification based

– Control-flow based

– Data-flow based

– Random sampling

Several regression testing techniques exist for specific problem situations. Muccini et
al. [Muccini et al., 2005] explore how regression testing can be systematically applied at
the software architecture level in order to reduce the cost of retesting modified systems,
and also to assess the regression testability of the evolved system. Few other recently de-
veloped regression testing techniques include a scenario-based functional regression test-
ing [Paul, 2001], regression testing for web-applications based on slicing, agile regression
testing using record & playback, and regression testing technique for component-based
software systems by enhancing change information etc.

Regression test selection and prioritization: Rothermel et al. [Rothermel et al., 2001]
analyze few techniques for test case prioritization based on test case’s code coverage and
ability to reveal faults. Their analysis shows that each of the prioritization techniques
studied improved the rate of fault detection of test suites, and this improvement occurred
even with the least expensive of those techniques. Harry Sneed [Sneed, 2004] considers
a problem which arises in the maintenance of large systems when the links between the
specification based test cases and the code components they test are lost. It is no longer
possible to perform selective regression testing because it is not known which test cases to
run when a particular component is corrected or altered. To solve this problem, he proposes
applying static and dynamic analysis of test cases.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

46 2 Background on Software Testing

Analysis of regression test techniques: Several other research works have performed
cost-benefit or effectiveness analysis of regression test selection techniques. These in-
clude [Graves et al., 2001] and [Rothermel et al., 2004]. These studies reveal that very few
safety-based regression test selection techniques exist as compared to coverage-based tech-
niques. Although the safety-based techniques were most effective in detecting faults, yet
such techniques could not considerably reduce the test suite. The minimization techniques
produced smallest and least effective set suites while safe and data-flow techniques had
nearly equivalent behavior in terms of cost effectiveness.

2.3.2.4 Domain Testing

Selection of appropriate test data from input domain maximizing fault detection capability
and minimizing costs is one major problem in black-box test design approach. Domain
testing [Liggesmeyer, 2002, p. 190] attempts to partition the input domain and to select
best representatives from these partitions to achieve these goals. Path analysis, partition
testing, and random testing are usually used to short-list test data in domain testing.

Much research effort has been devoted to comparative analysis of these different do-
main testing approaches and varying opinions have been held by researchers. According
to Gutjahr [Gutjahr, 1999], "in comparison between random testing and partition testing,
deterministic assumptions on the failure rates systematically favor random testing, and
that this effect is especially strong, if a partition consists of few large and many small
sub-domains". He maintains that partition testing is better at detecting faults than random
testing. In a later work, Ntafos [Ntafos, 2001] conclude that although partition testing gen-
erally performs better than random testing, the result can be reversed with a little addition
in number of test cases.

2.4 Testing Tools

Why test tools?
With the growth in size, maturity of practices, and increased workload, software orga-
nizations begin to feel a need for automating (some of the) testing procedures. A test
tool is defined to be an automated resource that offers support to one or more test activ-
ities, such as planning and control, specification, constructing initial test files, execution
of tests, and analysis [Pol et al., 2002, p. 429] etc. Supporting the testing process with
tools can possibly increase the efficiency of test activities, reduce the effort required for
executing routine test activities, improve the quality of software and the test process, and
provide certain economic benefits. In summary, test tools automate manual testing activ-
ities thereby enabling efficient management of the testing activities and processes. But
the level of test automation depends upon many factors such as type of application under
development, testing process, and type of development and target environment. One hun-
dred percent automatic testing has been regarded as a dream of modern testing research by
Bertolino [Bertolino, 2007].

Is a tool inevitable?
The first thought that should concern someone while considering a tool implementation
is determining whether it is really inevitable that a tool should be used. If the answer is

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.5 Summary 47

positive, one must then look around for resources where we can find some appropriate
tools. With the advancement of research and technology we expect to come across a lot
of tools of different kinds. At this stage it will be interesting to organize this list in some
fashion which could facilitate one in grasping an overview of available tools.

Despite the long list of possible benefits expected of test tools, it is not wise to instantly
start using a tool in all kinds of testing problems. The decision to use a test tool warrants
careful cost-benefit analysis. Some testing tools may be very expensive in terms of money
and effort involved and an organization may even be doing well without application of a
sophisticated tool. Different sets of circumstances exist which may encourage or discour-
age adopting a testing tool. Ramler and Wolfmaier [Ramler and Wolfmaier, 2006] analyze
trade-off between automated and manual testing and present a cost model based on oppor-
tunity cost to help decide when tests should be automated. Some situations that motivate
organizations in automating testing tasks include,

• Test practices are mature

• Large size of the software

• Large number of tests required

• Time crunch

In opinion of Lewis [Lewis, 2004, p. 321] the few circumstances where using a testing
tools may not be a wise choice include,

• Lack of a testing process

• Education and training of testers

• Technical difficulties with tool

• Organizational issues

• Ad hoc testing

• Cost

• Time crunch

• Organizational culture

2.5 Summary
As part of the initial research phase, this chapter concentrated on a preliminary review
of software testing area. The chapter has partially addressed the first sub-question of the
research task. The fulfilled part of the research question has been emphasized as shown
below,

RT-1. Traverse the area of software testing to identify entities of evaluation.
Explore existing evaluation forms and approaches as applied in this field. Inves-
tigate characteristics of low-cost and explicit test evaluations.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

48 2 Background on Software Testing

This chapter opened with a brief introduction to the field of software testing. Serving
as a quick scan of the area, a summary of research issues in software testing was given
right in the beginning. Intending to cover breadth of knowledge in the software testing
area, the chapter went through all the major branches of this area. Software testing process
was discussed in the first place since this is the broader class of research problem of this
thesis. A definition and explanation of the software testing process as followed in this
thesis was given. Past and current directions of research in this sub-area were mentioned
followed by an extensive coverage of all testing approaches which could be classed under
the testing process category. The chapter postponed review of evaluation and improvement
models of testing process which due to their size and special relevance to thesis deserve a
separate chapter (4). Focus then shifted to the second major sub-area of testing techniques.
Classifications of testing techniques along with summaries of significant static and dynamic
techniques among them were given. The area of software testing techniques was found to
be as much researched as the process aspect. Finally, the topic of test tools was examined.
Rationale for using or implementing any test tools got deliberated. Evaluation aspects of
these tools were discussed as well.

The treatment of the software testing area given in this chapter enables us to grasp the
complexity and importance of evaluation in this field. The chapter has marked three areas
of testing as key elements of interest for evaluations– processes, techniques, and tools.
Existing evaluation methods for these testing aspects will be presented in later chapters
(chapter 4 and 5). Below is a summary of observations made in this chapter.

Observations on Software Testing

� The all-time chief knowledge areas of software testing include techniques and
methods of testing, evaluation of test effectiveness, and test tools.

� While testing stands for evaluating software product quality, evaluation of the test-
ing itself for its effectiveness has been a topic of constant debate.

� Techniques, tools, and the testing process are significant elements of evaluation in
the software testing area.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

49

3 Theoretical Foundations of
Evaluation

In an attempt to establish theoretical foundations behind evaluation of test processes, this
thesis exploits some fundamental knowledge from a non-computing field; a subject area
from the social sciences called Evaluation. This chapter explains some of the key concepts
of this discipline and explores the necessary elements of a typical evaluation task. The
relevance and application of this knowledge area to the field of software engineering is
also summarized.

3.1 Introduction
The practice of evaluating something is a quite natural and almost spontaneous phenom-
ena in humans and even among animals. Sitting at the lunch table we evaluate our food
by its appearance, smell and taste, while taking a bath we judge temperature of the water
before pouring it over our body, watching a movie we evaluate it if was good or bad, ar-
riving at a place on an excursion trip we evaluate the atmosphere and weather against our
aesthetic sense, and even when we throw some eatable before an animal it first sniffs and
touches it before beginning to eat it. Unlike these kinds of primitive and involuntary eval-
uations that we make in our everyday lives, we need much more systematic efforts when
it comes to evaluating more complex entities such as success of a project or of a social
welfare program, or efficiency of an industrial production process. Well organized evalua-
tion procedures are usually undertaken to evaluate individuals, programs, projects, policies,
products, equipments, services, and organizations etc. The issues like goals and scope of
such extended evaluations, the parameters and criteria to be considered, and techniques &
processes to be applied are studied today under a well established discipline called Eval-
uation. What is precisely meant by evaluation has been described in several definitions of
this term reflecting the approach followed. Only a few of these from the renowned subject
matter gurus are given below.

Definition 1: Evaluation is the process of determining the merit, worth, or value of
something, or the product of that process. [Scriven, 1991]

Definition 2: Evaluation is the systematic assessment of the operation and/or the
outcomes of a program or policy, compared to a set of explicit or implicit stan-
dards, as a means of contributing to the improvement of the program or policy.
[Weiss, 1998]

Definition 3: Evaluation is the systematic process of delineating, obtaining,
reporting, and applying descriptive and judgmental information about some

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

50 3 Theoretical Foundations of Evaluation

object’s merit, worth, probity, feasibility, safety, significance, and/or equity.
[Stufflebeam and Shinkfield, 2007]

Under these definitions is hidden a complete art, science, and philosophy of all kinds of
evaluative undertakings. The expansiveness of the field cannot even be summarized here,
only some relevant concepts will be explained next.

3.1.1 Evaluation Concepts

Program evaluation
The term evaluation can refer to a range of evaluative works. However, in the context of
social science, evaluation refers to a special kind of it called program evaluation which is
perhaps the largest area studied and discussed in the evaluation literature. A program in this
context is a collection of organized human efforts for the well being of the common people.
Hence program evaluation is defined to be use of social research procedures to systemati-
cally investigate the effectiveness of social intervention programs [Rossi et al., 1999]. Al-
though the origin of disciplined evaluation procedures cannot be precisely determined in
history, the birth of modern program evaluation occurred around 1960s due to the initia-
tion of several social welfare programs in the United States. Colossal amounts of money
spent on such programs raised questions about their legitimacy, effectiveness, and success
which could not be answered by the traditional unsystematic approaches. Governmental,
political, managerial, and intellectual concerns about these programs mandated a need for
systematic evaluations of these programs for their effectiveness, efficiency, and success.

Types of evaluation
Notable variations exist in evaluation approaches based on their goals and nature. Scriven’s
division of evaluations into two broad groups [Scriven, 1996b] was the first endeavor in
this regard. He classified evaluations as formative (those performed during the program
to improve it) and summative (those performed after the program is finished to assess its
effectiveness). Apart from these large differences the two types differ over their intended
use, methodology, and characteristics of results etc. Scriven’s classification was challenged
by Chen [Chen, 1996] who provided an extended view which based the decompositions
on program stage (process or outcome) and evaluation functions (improvement or assess-
ment). Chen’s classification is given in table 3.1.

Evaluation models
Under the broad types of evaluation discussed above, there exist several sets of assumptions
corresponding to different evaluation scenarios. The best ways to guide the planning and
implementation in each of these evaluation situations are grouped in the form of different
evaluation models. Stufflebeam [Stufflebeam, 2001] critically analyzed twenty two evalua-
tion models with a view to deciding which one of them are worthy of continued application
and which are best abandoned. The models that he reviewed are named below. Among the
best of these program evaluation approaches include Client-centered, Constructivist, and
Outcome assessment.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3.1 Introduction 51

Process
Improvement

Evaluation

Outcome
Assessment
Evaluation

Outcome
Improvement

Evaluation

Process
Assessment
Evaluation

Improvement Assessment

O
ut

co
m

e
Pr

oc
es

s

Pr
og

ra
m

 S
ta

ge
s

Evaluation Functions

Figure 3.1: Chen’s Classification of Evaluation Types [Chen, 1996]

• Public relations-inspired studies

• Politically controlled studies

• Objective testing programs

• Management information systems

• Benefit-cost analysis approach

• Decision-oriented studies

• Deliberative democratic evaluation

• Program theory-based evaluation

• Criticism and connoisseurship

• Consumer-oriented studies

• Utilization-focused evaluation

• Experimental studies

• Accountability studies

• Outcome evaluation

• Performance testing

• Clarification hearing

• Case study evaluations

• Accreditation approach

• Constructive evaluation

• Mixed-methods studies

• Objectives-based studies

• Client-centered studies

In a similar work, Posavac et al. [Posavac and Carey, 2003] reviewed thirteen such mod-
els, only the names of which are being listed here.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

52 3 Theoretical Foundations of Evaluation

• Industrial inspection model

• Objectives-based evaluation

• Theory-driven evaluation

• Improvement-focused model

• Social science model

• Black box evaluation

• Goal-free evaluation

• Traditional model

• Fiscal evaluation

• Accountability model

• Expert opinion model

• Naturalistic model

• Empowerment model

Evaluation theory
One of the Merriam-Webster online dictionary’s definitions of theory is that it is a belief,
policy, or procedure proposed or followed as the basis of action. A theory enables us to
analyze a phenomenon and understand the research findings. With reference to the disci-
pline of evaluation, [Clarke and Dawson, 1999, p. 30] distinguishes between two types of
theories; theory about evaluation and theory in evaluation. Mentioning the former kind of
theory, [Shadish et al., 1991, p. 34] write:

Evaluation theory tells us when, where, and why some methods should be applied
and others not, suggesting sequence in which methods could be applied, ways dif-
ferent methods can be combined, types of questions answered better or less well by
a particular method, and benefits to be expected from some methods as opposed to
others.

The other type, theory in evaluation, is the application of program theory (how the
program is supposed to behave) for program evaluation. However, the term evaluation
theory most commonly refers to theory of evaluation, i.e. how the evaluation has to be
conducted. [Shadish et al., 1991] summarize the different evaluation theories presented by
seven well known theorists. None of the seven theories consider entirely generic evaluation
situations as they do not avoid references to social programs. However, Scriven’s theory
can be assumed to be at the highest level of abstraction as he describes principles, con-
cepts, and methods for any scenario of knowledge construction in evaluation. His theory is
discussed with little more detail in the next section.

3.1.2 Evaluation Components
Scriven’s theory of evaluation as mentioned in [Scriven, 1996a] and also
by [Shadish et al., 1991, Ch. 3] attempts to clarify the logic behind evaluations. In
Scriven’s words "the most common type of evaluation involves determining criteria of
merit (usually from needs assessment), standards of merit (frequently as a result of looking
for appropriate comparisons), and then determining the performance of the evaluand so
as to compare it against these standards". He further explains that two more steps are
involved before and after these three key evaluation activities. Prior to anything, an object

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3.1 Introduction 53

of evaluation is to be selected, and after the third step of performance measurement, the
results have to be accumulated and transformed to a shape from which judgements could
be drawn. These five elements of evaluation are further explained below:

• Target
It is the object under evaluation. [Scriven, 1991, p. 139] calls it evaluand, a generic
term for whatever is being evaluated, be it concrete or abstract, for example, person,
performance, program, proposal, product, possibility etc. Gaining an understanding
of the evaluand is the first step in the development of rest of the evaluation com-
ponents. Delimitation of the scope and range of the target helps in determining the
boundaries of the evaluation program.

• Criteria
Once the nature of the evaluand has been established, we become able to determine
the possible good or bad characteristics of our target of evaluation. For example, for
a train, punctuality, safety, and comfort are some examples of criteria of its merit.
Such characteristics of the target that are to be assessed make up the criteria element.
With the elicitation of the criteria we come up with the set of attributes that are
interesting to us and are to be evaluated.

• Standard/yardstick
The ideal form of the target based on the optimality of defined criteria makes up
the standard or yardstick against which a real target is to be matched. Acceptable
ranges for certain performance indicators is an example of yardstick. In case of
criteria of punctuality mentioned in the previous element a typical yardstick could
be a deviation of plus/minus 2 minutes, for example. Since multiple sets of criterion
are most commonly involved, we need to develop a balanced combination of optimal
values of the required attributes.

• Assessment techniques
The criteria set forth for the target must be somehow assessed to find out how well the
target rates against each of the criteria. Different assessment techniques or methods
such as qualitative or quantitative may be used for this purpose.

• Synthesis techniques
Application of the assessment techniques makes available a lot of data and/or raw
information which is not much meaningful in its that state. Synthesis techniques
provide means to harmonize assessment data and transform it to a final evaluative
judgement so it can be compared against the yardstick. Different types of mathemat-
ical or statistical techniques can be applied to synthesize assessment data.

In addition to Scriven’s identification of key elements of evaluation, common sense
knowledge of evaluative thinking was applied in the context of information systems eval-
ulation to draw a framework of analysis [Grembergen, 2001, Ch. 4]. This framework uses
why, what, which aspects, when, who, and how questions to come up with a list of elements
of evaluation as purpose, subject, criteria, time, people, and methodologies. Application
of the philosophy of evaluation to software architectures [Lopez, 2003], and software pro-
cesses [Ares et al., 2000] also drew quite similar elements of evaluation with the addition

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

54 3 Theoretical Foundations of Evaluation

Target

Evaluation processAssessment
techniques

Synthesis
techniques

Yardstick

Criteria

Figure 3.2: Interrelationships among Components of Evaluation

of evaluation process component which is aimed at providing guidelines for the conduct
of all evaluation activities. This element can define a series of activities and sub-activities
that are performed from the beginning of the evaluation till it finishes. Planning, execution,
and evaluation results reporting are generic broad level activities involved here. There may
be slightly varying organization of these activities but the main purpose of this element is
to provide express guidelines for the evaluation steps.

Thus combining all these views, six generic components can be traced in all kinds of
evaluative works, whether they are related to the field of social sciences or otherwise.
Figure 3.2 summarizes these components and draws the relationships that exist among
them.

3.2 Evaluation in Software Engineering

SE’s connections to
other disciplines

The field of software engineering cannot solve all of its problems in isolation from other
knowledge domains. It has a strong multidisciplinary nature [Wang, 2008] and incorpo-
rates laws, theories and experiences from many other science and engineering disciplines
such as philosophy, mathematics, computing, linguistics, information science, cognitive
informatics, system science, management science, economics, sociology, and engineering
organization. Evaluation as a discipline of social sciences presents one such example of
non-software field which can serve as foundation for evaluation problems focused on dif-
ferent software engineering artifacts such as products and processes. A short discussion
below reviews the status of evaluation in software engineering and the application of theo-
ries and knowledge from other disciplines for solving this class of problems.

SE research problems
Lázaro and Marcos [Lázaro and Marcos, 2005] have distinguished software engineer-
ing research problems as either engineering problems (concerned with the formula-
tion of new artifacts) or scientific problems involving analysis of existing artifacts.
The role of evaluation and assessment in software engineering is realized by long-
standing works of many researchers as [Kitchenham et al., 1997], [Budgen, 2000],

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3.2 Evaluation in Software Engineering 55

Software Quality
Program

Process & Product
Quality Evaluation

Methodology
Establishment &
Implementation

Requirements
Management

Figure 3.3: Software Quality Elements [Kenett and Baker, 1999]

[Singpurwalla and Wilson, 1999], and [Dumke et al., 2004]. Despite these works,
one of the criticisms to software engineering research is that it ignores evalua-
tion [Zelkowitz and Wallace, 1997]. This opinion is further strengthened by a survey con-
ducted by Glass et al. [Glass et al., 2004] in which it was found that 79% of approaches in
the field of general computer science and 55% of approaches in software engineering were
formulative in nature while only about 14% approaches were evaluative works. Perhaps
still today many research efforts follow the research model that Glass [Glass, 1994] once
described as advocacy research consisting of steps, "conceive an idea, analyze the idea,
advocate the idea" ignoring the comparative evaluation among the proposed and existing
approaches.

Evaluation for quality assurance
Evaluation is an important tool of software quality assurance. A typical software quality
program involves i) establishment, implementation, and control of requirements, ii) es-
tablishment and control of methodology and procedures, and iii) software quality evalua-
tion [Kenett and Baker, 1999, p. 4]. Figure 4.2 summarizes this observation. The software
quality evaluation component is aimed at evaluating products (both in-process and at com-
pletion), activities and processes (for optimization and compliance with standards), and
methodologies (for appropriateness and technical adequacies).

Evaluation terminology in SE
When it comes to software engineering in general and software process in particular,
the terms evaluation and assessment are interchangeably used in literature and prac-
tice. We however differentiate between them and follow the viewpoint of Kenet and
Baker [Kenett and Baker, 1999] which seems quite logical specially in view of available
process evaluation approaches. The nature of the software evaluation, according to him,
may be qualitative ("assessment") or quantitative ("measurement"). "Measurement encom-
passes quantitative evaluations that usually use measures which can be used to directly
determine attainment of numerical quality goals. On the other hand, any evaluative under-
taking that requires reasoning or subjective judgment to reach a conclusion as to whether
the software meets requirements is considered to be an assessment. It includes analysis,
audits, surveys, and both document and project reviews" [Kenett and Baker, 1999]. Per-

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

56 3 Theoretical Foundations of Evaluation

haps it would be more appropriate not to call them as two different types of evaluations but
rather as two different methods of gathering data for the purpose of evaluation. This text
will follow this distinction between qualitative and quantitative methods while studying
and analyzing evaluative works in the discussed areas.

It has been observed that evaluation approaches of software processes and products are
largely based on empirical methodologies and lack well formed theoretical foundations.

3.3 Evaluation Theory Applied in SE

To the best of the author’s knowledge, only a couple of SE literary material could be found
which attempted to exploit theory of evaluation in some manner. These examples will be
discussed one-by-one below.

Meta-evaluation of
software architectures

Designing an architecture for the software system is among the initial steps in the sys-
tem development life cycle. Success of a developed system heavily depends upon the
underlying architecture which if poorly designed will not be able to provide intended
functionality. Software architectures for larger or complex systems are themselves com-
plex too, one needs to make judicious choice among candidate design alternatives which
strongly affect the quality aspects of the developed systems. A number of methods
have been developed to formally compare different architectural decisions specially with
a view to ensure high quality or reduce risks. Architecture Tradeoff Analysis Method
(ATAM) [Kazman et al., 2000] is one such method developed by Software Engineering In-
stitute (SEI). This method is aimed at analyzing a software architecture to determine if
it will be capable of satisfying established quality goals and also to compare interactions
between them. It guides the selection of suitable architecture taking into consideration var-
ious trade-offs, quality requirements, and risks. In this sense, it is an evaluation method for
software architectures.

An evaluation of the ATAM method (an evaluation of the evaluation, hence the name
meta-evaluation) has been performed by Lopez et al. [Lopez, 2003] to check for its com-
prehensiveness, weaknesses, or possible improvements. The authors have performed this
evaluation using the concepts of evaluation theory. They have analyzed the ATAM method
against the six key elements of evaluation guided by the principles and theory of evaluation.
The findings of their study are summarized in table 3.1.

The study has enabled a systematic characterization of the method, identification of
missing or incomplete elements, and a feedback about possible enhancements and im-
provements of ATAM approach.

Meta-evaluation of
software processes

A number of software process assessment and improvement approaches have been
developed to date. All of these methods follow slightly or greatly different paths
to achieve the same goal of improving the software process. Explanations, analy-
sis, and comparisons of these approaches have been given in many literary works.
At times, these models may look quite similar in structure and purpose making it
hard to decide which one of them may be suitable for an organizational setting. A

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3.3 Evaluation Theory Applied in SE 57

Table 3.1: Evaluation theory perspective of ATAM [Lopez, 2000]

ATAM-Architecture Tradeoff Analysis
Method

Target Architecture (not explicitly defined)

Criteria General criteria: quality attributes, Specific cri-
teria: architectural decisions, responses

Yardstick Particular scenarios and architecture styles

Assessment techniques Presentations, interviews, questionnaires

Synthesis techniques Not explicitly distinguished

Evaluation process Structured steps and tasks described in ATAM
documentation

few techniques have been developed to serve this purpose. These include an evalu-
ative framework for software process improvement models by Saiedian and Chennu-
pati [Saiedian and Chennupati, 1999], an object-oriented software measurement and eval-
uation framework by Dumke and Foltin [Dumke and Foltin, 1999], metrics-based evalua-
tion frameworks for XP (eXtreme Programming) [Williams et al., 2004] and RUP (rational
unified process) [Krebs et al., 2005], a technique to compare them based on their return on
investment [Rico, 2004] etc. Any comparisons among these models mostly consider the
value offered by these models to an organization while they pay little attention to the con-
tent of the models themselves.

Comparing them from the content perspective, many of these approaches focus heavily
on developing standard/yardstick and the details of the evaluation process itself which are
just two among the six core elements of evaluation described earlier. Analyzing for com-
prehensiveness or treatment of the problem, Ares et al. [Ares et al., 2000] have compared
different software process evaluation approaches with reference to principles of evaluation
to discover existence of sound theoretical and scientific foundations behind them. Like
the analysis of ATAM discussed earlier, the authors also have taken an evaluation theory
perspective of the software process assessment methods and have analyzed them with ref-
erence to six key components of evaluation. Their findings as outlined in table 3.3 show
some missing or inadequately provided evaluation components in all of the considered
approaches.

The authors further describe a process evaluation method which is aimed to be com-
prehensive enough to provide all the necessary evaluation components. A brief summary
of method components that they defined is given in table 3.2. Although the developed
method seems to follow a systematic and logical approach to process evaluation yet it is
marked with some visible shortcomings. For example, criteria is defined as comprising
three elements; activities, software process model, and structure. Criteria should be char-
acteristics of the target which is of interest for assessment purposes. Criteria definition is
quite implicit in nature as given by the method. The yardstick is defined as a process model
quite similar to SPICE or CMMI. It is not clear if the defined process model comes from
any set of well established best practices or only from the author’s personal experiences.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

58 3 Theoretical Foundations of Evaluation

Table 3.2: Evaluation theory based software process evaluation method [Ares et al., 2000]

Developed Method
Target Technical, management, and strategic processes

Criteria Criteria tree comprising activities, software pro-
cess model, and structure

Yardstick Software process model

Assessment techniques Questionnaires, interviews, and document
inspections

Synthesis techniques Criteria grouping and datum-by-datum analysis

Evaluation process Planning, examination, and decision making as
main phases

Furthermore, the software process model is exemplified only for the requirements analysis
process (table 7 in [Ares et al., 2000]), no information is given for other processes. The
last method component is evaluation process itself which gives some high level informa-
tion for evaluation phases and sub-phases without any details about specific inputs/outputs
and entry/exit criterion.

3.4 Summary

As part of the investigating the scientific foundation and cross-disciplinary analysis of the
research problem, this chapter concentrated and resolved the second sub-question of the
current research task.

RT-2. Investigate the philosophy of evaluation in general and with special fo-
cus to software engineering. Identify core elements of a comprehensive process
evaluation approach.

The chapter set about an inquiry into the baseline philosophy of evaluative undertakings.
Following this trail led to Evaluation, which is a discipline in its own right. It is a field of
social sciences which is concerned with studying the issues involved in evaluation of social
programs. Key concepts of this discipline such as evaluation types, models, and theories
were briefly explained. Focal point of the discussion remained theory of evaluation, which
is concerned with the rationale and design of any kind of evaluations. Out of this delibera-
tion emerged six elementary components of any generic evaluative design. The next part of
the chapter explored connections between the field of Evaluation and Software Engineer-
ing and that how one can benefit from the former to solve some of the problems of the later
field. An abridged analysis of software engineering research problems emphasized the fact
that evaluation of existing artifacts is given lesser attention as compared to development

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3.4 Summary 59

of new ones. Evaluation was identified mainly as a tool for quality assurance. Finally, the
chapter inquired about the software engineering evaluation approaches that could possibly
have exploited theoretical foundations of evaluation provided by the discipline and field of
Evaluation. Only two such instances were found and explained in brief.

In finding conceptual requirements underlying any comprehensive evaluation approach
for software processes or test processes, this chapter discovered the following mandatory
components for the composition of a solution.

Components of Comprehensive Test Process Evaluations

X The test process evaluation approach must explicitly define and delimit the target,
i.e. the entities interesting for evaluation.

X The evaluation approach must explicitly define particular criteria to be considered
about the entities of interest.

X The test process evaluation approach must provide a standard or yardstick against
which the target process could be compared.

X The approach must describe and explain the type of techniques that will be used to
assess the target against the criteria.

X The approach must specify the synthesis techniques that will be used to integrate
the collected assessment or measurement data.

X Finally, the test process evaluation approach must define the steps of the evaluation
process

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

60
3

TheoreticalFoundations
ofE

valuation

Table 3.3: Evaluation theory perspective of software process assessment methods [Ares et al., 2000]

ISO 9000 TickIT CMM Bootstrap Trillium STD ISO 15504
Target Quality

system
Quality
System

Management
process

Technical and
management
process and
methodology

Telecommunications Technical,
management
and strategic
process

Technical,
management
and strategic
process

Criteria Implicit Implicit Implicit Defined Implicit – Defined

Yardstick Developed Developed Developed – Developed – Not
developed

Assessment
techniques

Not pre-
pared

Not pre-
pared

Not pre-
pared

Developed Not prepared – Not proposed

Synthesis
techniques

Generic de-
scription

Generic de-
scription

Generic de-
scription

Developed – – Developed

Evaluation
process

Partially
developed

Partially
developed

Developed Developed Partially developed Partially de-
veloped

Not
developed

F
IN

-IV
S,O

tto-von-G
uericke-U

niversity
ofM

agdeburg
A

yaz
Farooq

61

4 Evaluation in Software Testing

The purpose of this chapter is to provide a detailed level survey of related work. Through
the analysis of contemporary research problems, the chief objects of evaluation in the field
of software testing are identified first. For each of these objects, the chapter contains
findings from an exhaustive survey of available evaluation techniques and models. Af-
ter reading this chapter, the reader should be familiar with existing forms and approaches
of evaluation as prevalent in the area of software testing.

4.1 Introduction
The fundamental purpose behind all kinds of software testing is to evaluate the products of
the software development process. A large portion of the research in the field of software
testing has concentrated on how to perform it. Chapter 2 in this thesis has discussed various
topics which are strongly related to this aspect of software testing. Since testing is an
expensive and difficult piece of work, the huge costs and effort required to perform it
motivate us to evaluate the testing itself. In this case, it will be equivalent to finding out
how well the testing is being performed. Despite the availability of so many scattered
approaches in this direction, evaluation of software testing artifacts remains an elusive
research problem. Such evaluations when made available and if they are comprehensive
enough, can help reduce uncertainties about the testing activities such as their adequacy,
time, cost, and quality of the developed products.

Objects of evaluation
in software testing

But the first question is which testing artifacts can be and should be evaluated? Chapter 2
has partially developed the answer to this question. The topics contained therein consist
mainly of test levels, test techniques, test measures, test process, and test tools. Among
these, test techniques is one element of evaluation, for example, we need to know how
much effective is our technique in terms of effort and defect finding capability. Test tools
are another target of measurement. We need to assess and analyze our tools themselves for
their efficiency. Test process is perhaps the most substantial element to evaluate since it
may cover other elements of evaluation under its umbrella. By evaluating test process we
try to find out how much effective and efficient is it in terms of money, time, effort, and
defect identification and removal. The next sections discuss these three testing artifacts and
survey existing forms of evaluations for each of them.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

62 4 Evaluation in Software Testing

CMMI
V 1.1

1993 2008200620052004200219971996

CMM
V 1.1

CMMI
V 1.2

TMM
V 1.0

TPI

TIM

MB-V2M2

TPAM

TMMi
V 1.0

TMap

ICMM

Figure 4.1: History of Test Process Assessment Models & Dependencies

4.2 Evaluation of Processes

History of test process
assessment/improvement models

Motivated by Capability Maturity Model (CMM) and a lack of any maturity models in
the field of the software testing, Testing Maturity Model (TMM) introduced in 1996 was
the first model of its kind. It was followed by Test Process Improvement (TPI) model
appearing in 1997. In the same year, another related approach Test Improvement Model
(TIM) [Ericson et al., 1997] was published in an article which later disappeared into the
ocean of research without enjoying any significant appreciation. Two later approaches
similarly introduced in short articles, one in 2002 named as Metrics-based Verification &
Validation Maturity Model (MB − V 2M2) [Jacobs and Trienekens, 2002], and another in
2004 as Test Process Assessment Model (TPAM) [Chernak, 2004] met the same fate as
TIM. Another similar maturity model specifically for the inspection process, called In-
spection Capability Maturity Model (ICMM) [Kollanus, 2005], was developed in 2005.
The latest well organized and detailed development (other than this thesis) in this regard is
the Test Maturity Model Integration (TMMi) which is still under development. Figure 4.1
summarizes time-line of these test process evaluation and improvement models.

TIM, TPAM, and MB − V 2M2 appear to have vanished from literature probably due
to their insignificance or incompleteness. These three models will be ignored here from
further discussion. An overview of the four living test process assessment models is sum-
marized in table 4.1.

4.2.1 Testing Maturity Model (TMM)

Model concept
Testing Maturity Model (TMM) was developed by Ilene Burnstein [Burnstein, 2003] to

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.2 Evaluation of Processes 63

Table 4.1: Comparison of Test Process Assessment Models

Model Dependency Approach Scope
TMM
Testing Maturity Model CMM Implicit General

TPI
Test Process Improvement TMap Implicit Structured testing

ICMM
Inspection Capability Maturity Model CMMI Implicit Software inspections

TMMi
Test Maturity Model Integration CMMI Implicit General

Evollutionary testing model
(Gelperin & Hetzel)

Survey of industrial testing
practices (Durant)

P
rogressive phases of a

tester’s m
ental m

odel (B
eizer)C

ap
ab

ili
ty

 M
at

ur
ity

 M
od

el
 fo

r
S

of
tw

ar
e

(C
M

M
)

Testing
Maturity Model

(TMM)

Figure 4.2: Inputs to the Testing Maturity Model

assist and guide organizations focusing on test process assessment and improvement.
Since release of its first Version 1.0 in 1996 no further release has appeared. The prin-
cipal inputs to TMM were Capability Maturity Model (CMM) V 1.1, Gerlperin and Het-
zel’s Evolutionary Testing Model [Gelperin and Hetzel, 1988], survey of industrial testing
practices by Durant [Durant, 1993] and Beizer’s Progressive Phases of a Tester’s Mental
Model [Beizer, 1990]. The figure summarizes these inputs. It is perhaps the most compre-
hensive test process assessment and improvement model to date.

Model structure in brief
TMM derives most of its concepts, terminology, and model structure from CMM. The
model consists of a set of maturity levels, a set of maturity goals and sub-goals and asso-
ciated activities, tasks and responsibilities (ATRs), and an assessment model. The model
description follows a staged architecture for process improvement. The maturity levels
along with relevant maturity goals are shown in figure 4.3.

Model structure in detail
TMM reference model is organized in two parts. The first part contains five maturity

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

64 4 Evaluation in Software Testing

5: Optimization/Defect prevention and Quality
control
- Test process optimization
- Quality Control
- Application of process data for defect prevention

4: Management and Measurement
- Software quality evaluation
- Establish a test measurement program
- Establish an organizationwide review program

3: Integration
- Control & monitor the testing process
- Integrate testing into the software lifecycle
- Establish a technical training program
- Establish a software test organization

2: Phase Definition
- Institutionalize basic testing techniques
& methods
- Initiate a test planning process
- Develop testing & debugging goals

1: Initial

Figure 4.3: TMM Maturity Levels

levels which define evolutionary path to test process improvement. The contents of each
level are described in terms of testing capability organizational goals and sub-goals. Under
each maturity goal, several questions are provided which correspond to testing practices. A
maturity goal is expected to be achieved if all the questions pertaining to it can be answered
affirmatively. Level 1 contains no goals and therefore every organization is at least at level
1 of test process maturity. This part one with the questionnaire is mainly of use for the
process assessments.

The second part contains recommendations, roles, and responsibilities for the key play-
ers in the testing process–the managers, developers/testers, and users/clients. The model
organizes sets of TMM activities, tasks, and responsibilities (ATRs) to be performed by
these three key players. Appropriate ATRs are given for each maturity goal as process
improvement suggestions to achieve that goal. Relationships between its model elements
have been summarized in figure 4.4.

The author of the TMM also provides an assessment model [Burnstein, 2003, Ch. 16].
The model follows the class of team-based self assessments. Information regarding selec-
tion and training of assessment team, assessment procedure, and the assessment question-
naire is provided. Details of the ranking procedure for rating maturity goals and sub-goals
are also included.

Short critical review
A comparison of TMM with other test process improvement models has been performed
by Swinkels [Swinkels, 2000]. It is a kind of characteristics-based comparison which takes
into consideration the model elements and coverage of the process improvement issues.
He concludes that TMM and other test process improvement models of its era appear to
complement each other. Another detailed criticism of TMM has been performed by the
author of the thesis in [Farooq et al., 2007]. The analysis which is based on content and
structure of the model comes up with some suggestions to improve the model structure, to
update the assessment model, and to expand the process areas.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.2 Evaluation of Processes 65

Levels

contain

Maturity goals

indicate

Testing
capability

supported by

Maturity subgoals

achieved by

Activities/Tasks/Responsibilities

address organized by

Critical views
Implementation and
organizational adaptation

Manager Developer/Tester User/Client

Figure 4.4: Structure of Testing Maturity Model [Burnstein, 2003]

4.2.2 Testing Process Improvement (TPI) Model

Model concept
Test Process Improvement (TPI) 1[Koomen and Pol, 1999] model is an industrial initiative
to provide test process improvement guidelines based on the knowledge and experiences
of a large number of professional testers. The first release of this model appeared in 1997.
The model has been designed in the context of structured high level testing. It is strongly
linked with the Test Management Approach (TMap) [Pol et al., 2002] test methodology.

Model structure in brief
The model elements include several key areas, each with different levels of maturity. A
maturity matrix describes the connections between key areas and levels. For every key area,
several checkpoints have been defined corresponding to each maturity level; questions that
need to be answered positively in order to classify for that level. Improvement suggestions,
which help to reach a desired level, are also part of the model. Relationships among TPI
model elements are summarized in figure 4.5.

Model structure in detail
TPI model consists of 20 key areas which are organized by means of the four cornerstones
of structured testing as defined by TMap: life cycle, organization, infrastructure, and tech-
niques. These key areas are listed in table 4.2. Level of achievement relevant to these

1http://www.sogeti.nl/Home/Expertise/Testen/TPI.jsp

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

66 4 Evaluation in Software Testing

Key Areas
(20)

Levels
(A, B, C, D)

Improvement
SuggestionsCheckpoints

Test
Maturity
Matrix

Figure 4.5: Structure of Test Process Improvement (TPI) Model

Table 4.2: TPI Key Areas

Cornerstone Key areas
Life cycle Test strategy, Life-cycle model, Moment of in-

volvement
Techniques Estimating and planning, Test specification

techniques, Static test techniques, Metrics
Infrastructure & tools Test tools, Test environment, Office environ-

ment
Organization Commitment and motivation, Test functions

and training, Scope of methodology, Communi-
cation, Reporting, Testware management, Test
process management

All key areas Evaluation, Low-level testing

key areas is defined through maturity levels. There can be three to four maturity levels
for each key area. Each level consists of certain requirements (defined in terms of check-
points) for the key area. With the design of TPI, all key areas need not be and cannot be
at the same maturity level, so an overall maturity level for all key areas is not provided by
the model. Improvement suggestions are intended to help fulfill checkpoints for all levels
and key areas. TPI does not provide any assessment model. It seems that TPI is aimed at
self-assessment.

Short critical review
Two world-wide surveys on adoption of TPI by software industry have been reported
in [Koomen, 2002], [Koomen and Notenboom, 2004]. These surveys reported positive im-
provements and better control of the testing process by the organizations applying the
model. Both of these surveys are not enough detailed, for example, they do not provide any
information about the characteristics of the survey respondents. Critical review and com-
parisons of TPI with other test process improvement models given in [Swinkels, 2000],
[Goslin et al., 2008b, p. 70] have found it a complementary approach to TMM. Another

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.2 Evaluation of Processes 67

5: Optimizing
- Standards for project and inspection planning
- Defined learning process

4: Managed
- Continuous inspection process improvement
- Defect prevention actions
- Systematic training program
- Software process improvement

3: Defined
- Code & test case inspections
- Defined inspection process
- Training for all stakeholders
- Customized material
- Data collection & use
- Organizational commitment

2: Practising
- Req. & design document inspections
- Inspections individual preparation &
 reporting
- Inspection leader training

1: Initial

Figure 4.6: ICMM Maturity Levels

comparison among the test process improvement models has been performed by author
in [Farooq and Dumke, 2008a]. The comparison frames the approaches in an evaluation
framework made out of critical success factors for process improvement. The findings
show that TPI diverges from process assessment standards as well as ignoring some other
process improvement aspects.

4.2.3 Inspection Capability Maturity Model (ICMM)

Model concept
Kollanus [Kollanus, 2005] developed the Inspection Capability Maturity Model (ICMM)
to help organizations assess and improve the level of inspection process. He developed this
method due to CMMI’s lack of not explicitly addressing software inspections and TMM’s
limitation of not being able to assess reviews/inspections independently from the rest of
the testing process.

Model structure
ICMM derives its concept, terminology, and model structure from CMMI. The model con-
sists of five maturity levels (initial, practising, defined, managed, optimizing) and alto-
gether 15 process areas. The maturity levels along with relevant process areas are shown
in figure 4.6. Maturity level 2 mandates existence of only base inspection practices. The
process areas within this level cover only inspection of requirements/documents and some
fundamental issues about conducting inspections. Maturity level 3 calls for establishing
well organized inspection program covering all sorts of inspections. Level 4 is about evalu-
ating and improving the inspection process itself while level 5 concerns following standard
approaches in the inspection process. The description of process areas inside these matu-
rity levels includes only some guidelines without their division into any further elements
such as generic/specific goals/practices. ICMM does not provide any information about a
corresponding assessment model.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

68 4 Evaluation in Software Testing

5: Optimization
- Defect Prevention
- Test Process Optimization
- Quality Control

4: Management and Measurement
- Test Measurement
- Software Quality Evaluation
- Advanced Peer Reviews

3: Defined
- Test Organization
- Test Training Program
- Test Life Cycle and Integration
- Non-functional Testing
- Peer Reviews

2: Managed
- Test Policy and Strategy
- Test Planning
- Test Monitoring and Control
- Test Design and Execution
- Test Environment

1: Initial

Figure 4.7: TMMi Maturity Levels

Short critical review
In the first place, the ICMM model is described in only a very short arti-
cle [Kollanus, 2005]. The model (with its maturity levels and process areas) rather gives
only a skeleton of a full inspection maturity model. A later article [Kollanus, 2009] has dis-
cussed application of this model in a number of case studies where the approach has been
found to work well to identify strengths and weaknesses of industrial inspection practices.

4.2.4 Test Maturity Model Integration (TMMi)

Model concept
TMMi is being developed by a non-profit organization called TMMi Foundation. This
framework is intended to complement Capability Maturity Model Integration (CMMI) with
a special focus on testing activities and test process improvement in both the systems en-
gineering and software engineering discipline. An initial version 1.0 [Goslin et al., 2008b]
of this framework was released in February 2008. The current version follows staged rep-
resentation and provides information only up to maturity level 2 out of the five proposed
levels. The assessment framework itself is not part of TMMi and has not been released yet.

Model structure in brief
TMMi borrows its main principles and structure from Capability Matu-
rity Model Integration (CMMI), Gelperin and Hetzel’s Evolution of Testing
Model [Gelperin and Hetzel, 1988], Beizer’s testing model [Beizer, 1990], IEEE Standard
for Software Test Documentation [IEEE, 1998], and ISTQB’ Standard Glossary of terms
used in Software Testing [ISTQB, 2006]. Similar to CMMI, this framework defines three
types of components. The model defines exactly the same elements defined by CMMI,
maturity levels, process areas, generic and specific goals etc. The maturity levels and
process areas proposed by this model have been summarized in figure 4.7.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.tmmifoundation.org/

4.2 Evaluation of Processes 69

Model structure in detail
A detailed structure of the model has been shown in figure 4.8. TMMi defines three types
of components–required, expected, and informative components which have been summa-
rized to illustrate their relationship in figure 4.8. These components are shortly explained
as,

• Required: These components describe what an organization must achieve to satisfy
a process area. Specific and generic goals make up required component of TMMi.

• Expected: These components describe what an organization will typically imple-
ment to achieve a required component. Expected components include both specific
and generic practices.

• Informative: These components provide details that help organizations get started
in thinking about how to approach the required and expected components. Sub-
practices, typical work products, notes, examples, and references are all informative
model components. Informative components describe other components.

TMMi defines five maturity levels. A maturity level within this framework indicates
the quality of organizational test process. To each maturity level several process areas
are associated which in turn involve several generic and specific goals and generic and
specific practices. To reach a particular maturity level, an organization must satisfy all of
the appropriate goals (both specific and generic) of the process areas at the specific level
and also those at earlier maturity levels. All organizations possess a minimum of TMMi
level 1, since this level does not contain any goals that must be satisfied.

Short critical review
Test Maturity Model Integration is no doubt a long awaited enhancement to its predecessor
Testing Maturity Model. Below are presented some critical observations of TMMi.

• The model description is yet incomplete since the currently available document only
provides information up to maturity level 2.

• The assessment framework for TMMi is also not part of current release and is not
yet publicly available.

• The current release of TMMi provides only a staged model representation. This
same limitation was also observed for TMM [Farooq et al., 2007]. A continuous
representation on the other hand lets an organization to select a process area (or group
of process areas) and improve processes related to it. While staged and continuous
representations have respective pros and cons, the availability of both representations
provides maximum flexibility to organizations to address their particular needs at
various steps in their improvement programs.

• TMMi is designed to be a complementary model to CMMI. The model descrip-
tion [Goslin et al., 2008b, p. 6] states that "in many cases a given TMMi level needs
specific support from process areas at its corresponding CMMI level or from lower
CMMI levels. Process areas and practices that are elaborated within the CMMI are

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

70 4 Evaluation in Software Testing

Process Area

Maturity Level

Generic Goals Specific Goals

Required Expected

Purpose
Statement

Specific
Practices

Generic
Practices

Typical Work
ProductsSubpracticesExamplesElaborations

Informative

Scope
Definition

Introductory
Notes

Component Type:

Figure 4.8: Structure of Test Maturity Model Integration (TMMi)

mostly not repeated within TMMi; they are only referenced". Now there are organiza-
tions which offer independent software testing services. Such or other organizations
may solely want to concentrate on improvement of their testing process only. Strong
coupling and references between TMMi and CMMI may limit independent adoption
of this framework without implementing a CMMI process improvement model.

4.2.5 Test Process Metrics

Concept of test metrics
Quantitative approaches to process management work by evaluating one or more of its at-
tributes through measurement. The measurement information so obtained reflects some key
characteristics of measured process such as size, involved effort, efficiency, and maintain-
ability etc. The objectivity of the information provides possibility of precise and unbiased
evaluation as compared to that obtained through assessments. Although several measure-
ment tools and frameworks [Dumke, 2005], [Dumke et al., 2006c] exist for the generic
software process and can possibly be tailored to test process with minor or major changes,
but very few have been developed solely for the test process. Measurement techniques for
software test process exist broadly in the form of metrics for the test process. This section
analyzes available metrics in this area.

Types of test metrics
Like other knowledge areas within software engineering, testing related measures are very

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.2 Evaluation of Processes 71

helpful to managers to understand, track, control, and improve the testing process. For ex-
ample, metrics of testing costs, test effectiveness, tester productivity, testability, test cases,
coverage, defects and faults and other similar aspects can give us very valuable insight
about many different aspects of software testing. Realizing necessity of such measure-
ments, a number of test process metrics have been proposed and reported in literature.
The table 4.3 provides a non-comprehensive list of test metrics definitions found in the
literature.

Table 4.3: Resources of Test Metrics Definitions

Reference Types of Metrics Discussed
[Peng and Wallace, 1994] test cases, coverage, failure
[Liggesmeyer, 1995] test complexity
[Suwannasart et al., 1999] Miscellaneous
[Kan, 2002, Ch. 10] Miscellaneous
[Hutcheson, 2003, Ch. 5] size, cost, defect
[Kan et al., 2001] test progress
[Pol et al., 2002] miscellaneous
[Burnstein, 2003, p. 266] testing status, tester productivity, testing

costs, errors/failures/faults, test effective-
ness, metrics at test process maturity lev-
els

[Chen et al., 2004] quality metrics, time-to-market metrics,
cost-to-market metrics

[Abran et al., 2004, p. 5-7] program under test, tests performed
[Verma et al., 2005] coverage metrics
[Rajan, 2006] coverage metrics
[Harris, 2006] coverage metrics
[Whalen et al., 2006] coverage metrics
[Sneed, 2005] test cases, costs, coverage, test effective-

ness
[Sneed, 2007] product, project, progress, process
[Afzal, 2007] test progress, cost, quality

Nonetheless, we can distinguish several of these metrics which are meaningful at the
process level only, for example few maturity level metrics and process progress and ef-
fectivity metrics. Availability of so many metrics may sometimes confuse practitioners
rather than help them. A well organized list of these metrics may help a test manager
better understand metrics available at hand and to select them according to particular sit-
uations and needs. Feeling this need, the author and his colleagues [Farooq et al., 2008a]
presented a classification of test metrics considering various test contexts. Existing test
related metrics and test metrics classifications were also reviewed. Figure 4.9 shows Fa-
rooq et al.’s [Farooq et al., 2008a] classification of test metrics. Another related approach
to classify software process metrics was presented by Dumke et al. [Dumke et al., 2006b].

Short critical review
An examination of literature on test related metrics has revealed that research in this context

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

72 4 Evaluation in Software Testing

Process Phases/
Maturity Level

Process Goals

Process Entities

main
tai

na
bil

ity

thigs used

activity elements

completion

execution

specification

planning & control tra
ck

ing

pre
dic

tab
ilit

y

eff
ec

tiv
en

es
s

Test cost estimation (time, effort)

Tester productivity

Testing status (coverage, test cases)

Testability (unit, system)

Test efficiency (errors, faults, failures)

Test completion (milestones, adequacy)

Example Metrics Classes

things produced
thigs held

things consumed

Figure 4.9: Classification of Test Process Metrics [Farooq et al., 2008a]

is as yet immature. Each set of existing test metrics have been defined only in a confined
context, serving the need of some particular analysis problem of a given testing aspect. We
still lack widely known common set of test metrics. Moreover, existing test metrics remain
poorly validated both from theoretical and empirical point of view.

4.3 Evaluation of Techniques

Why evaluate techniques
There are many reasons why the evaluation of testing techniques should be carried out.
Issue of technique selection is one reason. The fault finding capability of candidate testing
techniques needs to be assessed first. This kind of information is useful before one has
implemented a given technique, but the same information is also useful (as a post mortem
analysis) when one is finished with testing. This post-implementation assessment and anal-
ysis is needed for subsequent improvement of the technique to increase its effectiveness.
This section surveys testing techniques, empirical knowledge about them, and existing
ways for assessing them from different quality perspectives.

Although that the criteria for evaluating static or dynamic techniques are nearly the same,
the methods are slightly different. Furthermore, literature is divided over surveys and com-
parisons of evaluation techniques for both kinds of testing. Therefore, evaluation of both
families of static and dynamic techniques will be given separately in the next sections.

4.3.1 Evaluation of Static Techniques

Evaluation criteria
The criterion here means what aspect of techniques is usually evaluated. Review of lit-
erature shows that the evaluation criteria for static testing techniques has largely been
their ability for detecting defects, costs incurred, or expended time and effort. Lam-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.3 Evaluation of Techniques 73

sweerde [van Lamsweerde, 2000] mentions few qualitative criterion for evaluating specifi-
cation techniques, namely constructibility, manageability, evolvability, usability, and com-
municability. Some of these attributes are applicable to other static techniques as well.
Rico [Rico, 2004] mentions several high level criteria such as return on investment (ROI),
benefit/cost ratio, return on investment percentage, and net present value.

Evaluation methods
The method refers here as to how the techniques are evaluated. Wu et al. [Wu et al., 2005]
incorporate number of remaining faults in a Bayesian network model of the inspection
process to measure its effectiveness. Another example of a similar model-based approach
in this direction is [Freimut and Vollei, 2005] who used historical project data and expert
opinions to evaluate inspections. Empirical techniques for evaluating inspection effective-
ness in isolation or in comparison to testing or other forms of technical reviews include
works by Eickelmann [Eickelmann et al., 2002] and Kelly [Kelly and Shepard, 2002] etc.
In addition to these, behavioral theory has been used to analyze effectiveness of software
development technical reviews. One of the very few approaches for evaluating formal ver-
ification techniques is by [Wang et al., 1998] which involves an experiment for measuring
effectiveness of design validation techniques based on automatic design error injection and
simulation.

Evaluation results
Summarizing studies conducted by various researchers to evaluate the effectiveness of in-
spections as compared to testing , Eickelmann et al. [Eickelmann et al., 2002] mention that
inspections are two times more effective than tests to identify errors, cause four times
less effort than tests and are 7.4 times more productive than tests. However a recent case
study [Chatzigeorgiou and Antoniadis, 2003] has identified that project planning method-
ologies, as currently applied in software project management, do not account for the in-
herent difficulties in planning software inspections and their related activities. As a result,
inspection meetings accumulate at specific periods towards the project deadlines, possibly
causing spikes in the project effort, overtime costs, quality degradation and difficulties in
meeting milestones.

Finally, analysis of literature on software reviews and inspections has revealed that cur-
rent research in this area is now not focusing much on developing new inspection or re-
view techniques. Rather, the modern (and some past) research effort is now being devoted
mainly to studying factors that influence success and efficiency of reviews and inspections
and to evaluating (relative) effectiveness of these techniques in comparison to other testing
and related techniques.

4.3.2 Evaluation of Dynamic Techniques

Types of evaluation
A rich body of research work is available concerning evaluation of dynamic testing tech-
niques as compared to static techniques. This research work has mainly been triggered by
a need to select an appropriate technique among the many competing ones or due to an
interest in validating usefulness or effectiveness of a technique in question. For a given
testing problem, there may exist several techniques of the same kind which differ by the
underlying mechanism. For instance, several regression testing techniques are available,
they belong to same family, yet they follow a different way to solve the problem at hand.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

74 4 Evaluation in Software Testing

Contrary to this are techniques which solve the same testing problem, but exploit totally
different set of information for the purpose. As an example, the control-flow and data-flow
based techniques derive test cases quite differently. Following this distinction, Juristo et
al. [Juristo et al., 2004a] identify two classes of evaluation studies on dynamic techniques
as inter-family, and intra-family,

• Intra-family studies

– studies on data-flow testing techniques

– studies on mutation testing techniques

– studies on regression testing techniques

• Inter-family studies

– comparisons between control-flow, data-flow and random techniques

– comparisons between functional and structural control-flow techniques

– comparisons between mutation and data-flow techniques

– comparisons between regression and improvement techniques

This section deals with wider range of intra-family studies over the state of research
covering all dynamic testing techniques.

Evaluation methods
Three directions of research have been found related to evaluation of dynamic techniques,

1. actual evaluations and comparisons of testing techniques based either on analytical
or empirical methods,

2. evaluation frameworks or methodologies for comparing and/or selecting testing tech-
niques

3. surveys of empirical studies on testing techniques which have summarized available
work and have highlighted future trends

During the past few decades, a large number of theoretical and empirical eval-
uations of numerous testing techniques have been executed. Morasca and Capiz-
zano [Morasca and Serra-Capizzano, 2004] present an analytical technique that is based
on the comparison of the expected values of the number of failures caused by the appli-
cations of testing techniques, based on the total ordering among the failure rates of input
sub-domains. They have also reviewed other approaches that compare techniques using
expected number of failures caused or the probability of causing at least one failure.

The second stream of research in evaluation of dynamic technique is developing frame-
work or guidelines for comparing and thus selecting an appropriate testing technique for
a given problem domain. Probably the most commonly considered attributes of test tech-
niques are their efficiency, effectiveness, and applicability in detecting errors in programs.
However, the major problems with these comparison frameworks are that they treat all
types of faults and the underlying programs on which these techniques are to be evaluated
as equal which can affect validity of such comparison results.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.3 Evaluation of Techniques 75

Data-flow

Testing Functional vs.

Control-flowMutation vs.

Data-flowControl-flow

vs. Data-flowMutation

testingCharacteristic

Response variables of interest to
practitioners

Use of programs/faults representative
of reality

Findings beyond mere analysis

Data analysis rigour

Experimental design rigour

There are no topics remaining to be
looked at or confirmed

Real technique application
environment is taken into account

Experiment chaining

Methodological advancement in
experimentation sequence

N/A

Empirical study fully meets
the characteristic

Empirical study partially
meets the characteristic

Empirical study does not
meet the characteristic

Figure 4.10: Study Maturity by Families

Evaluation results
Juristo [Juristo et al., 2002], [Juristo et al., 2004a] performed very comprehensive analysis
of several years of empirical work over testing techniques. She has highlighted following
issues with current studies namely,

• informality of the results analysis (many studies are based solely on qualitative graph
analysis)

• limited usefulness of the response variables examined in practice, as is the case of
the probability of detecting at least one fault

• non-representativeness of the programs chosen, either because of size or the number
of faults introduced

• non-representativeness of the faults introduced in the programs

An analysis of the maturity of empirical studies of various testing techniques has been
given in [Juristo et al., 2004b]. Figure 4.10 has been adapted from the summary given
therein. Additionally, Briand and Labiche [Briand and Labiche, 2004] discussed issues
facing empirical studies of testing techniques. Criteria to quantify fault-detection ability
of a technique is one such issue, while threats to validity arising out of the experimental
setting (be it academic or industrial) is another. They suggest using (common) benchmark
systems for such empirical experiments and standardizing the evaluation procedures.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

76 4 Evaluation in Software Testing

4.4 Evaluation of Tools

Why evaluate tools?
Evaluation of testing tools is important for many reasons. Due to an overwhelming number
of testing tools available in the market, the decision to select the best tool remains elusive.
Subjective and objective evidence about candidate tools before is needed before arriving
at a final choice among them. Only systematic guidelines and precise criteria to compare
and evaluate tools is the befitting solution to this problem. This kind of quality evaluation,
when at hand, establishes our confidence in the capability of the tool in solving our testing
issues. This section deals with existing research work which has focused on developing
procedures and criteria for testing tools evaluation.

Evaluation Criteria
Many different subjective and objective criteria have been suggested in tool evaluation
techniques. Typical sets of criteria which could contribute to a tool’s evaluation or affect
its selection are;

• Quality attributes

– Reliability

– Usability

– Efficiency

– Functionality

– Maintainability

– Portability

• Vendor qualifications

– Profile

– Support

– Licensing

• Cost

– Purchasing & installation

– Training

• Organizational constraints

• Environmental constraints

– Lifecycle compatibility

– Hardware compatibility

– Software compatibility

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.4 Evaluation of Tools 77

Levels of tool evaluation
Evaluation of tools may be meaningful at three different stages in development and test
process. First and perhaps the most important stage is when one feels that he/she needs
a tool to automate testing tasks, has several candidate tools available at hand, and wants
to make a judicious choice of selecting and implementing the most relevant tool matching
specific needs and constraints. This is the pre-implementation stage. Second is the in-
process stage. It is when we are in the middle of our test process and we want to track and
control progress of our testing tasks. At this state it would be interesting to see number
of test cases run in comparison to time, number of faults detected etc. A quite similar and
third level of evaluation will be helpful when we are finished with a project and we want to
assess what we have spent for a tool and what have we gained. If a tool is found to do well
according to our cost benefit analysis, it will likely be re-implemented for next projects or
otherwise. This third point of tool evaluation is a kind of post-implementation evaluation.

4.4.1 Pre-Implementation Analysis/ Tool Selection

Evaluation methods
Most test tool evaluation approaches belong to the type of pre-implementation analysis
which involves assessing a tool based on certain criteria. The assessment results are used
by a subsequent tool selection process. IEEE Standard 1209 [IEEE, 1992] distinguishes
between evaluation and selection as, "evaluation is a process of measurement, while selec-
tion is a process of applying thresholds and weights to evaluation results and arriving at
decisions".

A short discussion of some well known such evaluation techniques is given below.

• IEEE Standard 1209, Recommended Practice for the Evaluation and Selection
of CASE Tools [IEEE, 1992]: This standard comprises three main sections; evalua-
tion process, selection process, and criteria. The evaluation process provides guide-
lines on determining functionality and quality of CASE tools. The section on se-
lection process contains guidelines on identifying and prioritizing selection criteria
and using it in conjunction with evaluation process to make a decision about a tool.
The third section of the standard is criteria which is actually used by evaluation and
selection process. It presents a framework of tool’s quality attributes based on ISO
9126-1 standard.

• Lewis’ Methodology to Evaluate Automated Testing Tools [Lewis, 2004, Ch. 30]:
Lewis provides step-by-step guidelines for identifying tool objectives, conducting
selection activities, and procuring, implementing, and analyzing the tool.

• Task Oriented Evaluation of Illes et al. [Illes et al., 2005]: They have defined func-
tional and quality criteria for tools. Quality criteria has been specified using set of
several quality attributes and sub-attributes influenced from ISO 9126-1 standard.
The functional criteria are based on a task oriented view of the test process and tools
required for each test process phase are described. Their approach attempts to avoid
laboratory test by forming the criteria which can be analyzed based on tool vendor’s
provided instructions.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

78 4 Evaluation in Software Testing

• Miscellaneous: Some un-structured guidelines in this regard have been pre-
sented by Fewster and Graham [Fewster and Graham, 1999, Ch. 10], Spill-
ner [Spillner et al., 2007, Ch. 12] et al. and Perry [Perry, 2006, Ch. 4]. The authors
have discussed various implications involved with selecting, evaluating, and imple-
menting test tools. Perry [Perry, 2006] suggests considering development life cycle,
tester’s skill level, and cost comparisons for tools. Another similar example is Schul-
meyer and Mackenzie’s test tool reference guide [Schulmeyer and MacKenzie, 2000,
p. 65].

4.4.2 In-Process & Post-Implementation Analysis

Evaluation methods
Dumke [Dumke and Grigoleit, 1997] provides an example of scenarios to evaluate effi-
ciency of a similar class of tools (CAME-computer assisted software measurement and
evaluation tools). However, very few specific methods exist for an in-process eval-
uation of test tools. In this regard, a quantitative criteria presented by Michael et
al. [Michael et al., 2002] can be used both during the test process and also as a post-
implementation analysis. They proposed several metrics for the purpose which are named
below.

• Tool Management

• Human Interface Design

• Maturity & Customer Base

• Maximum Number of Parameters

• Test Case Generation

• Estimated Return on Investment

• Maximum Number of Classes

• User Control

• Ease of Use

• Tool Support

• Response Time

• Reliability

• Features Support

Short critical review
In contrast to many evaluation works over testing techniques, search into existing literature
resources over evaluation of test tools returned very few results. It seems that the devel-
opment of new testing tools has been given far more attention than analysis, measurement,
and comparison among existing tools. Based on the above discussion it can be observed
that systematic test tool selection and evaluation involves several steps, which include;

1. Principal decision to use a tool

2. Understanding concerned testing tools

3. Identification of tool requirements

4. Pre-evaluation

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.5 Typical Characteristics of Test Evaluations 79

5. Selection

6. Post-evaluation

4.5 Typical Characteristics of Test Evaluations
After the widespread survey of all forms of prevalent test evaluations, it has become possi-
ble now that the chief characteristics of these evaluations be identified which embody their
strength, effectiveness, and applicability. With the list of these characteristics, we would
be able to arrive at a superset of common features that form the criteria upon which we can
analyze selected evaluation approaches.

4.5.1 Measurement
The application of software measurement for software engineering evaluations is widely
accepted as an effective technique. International standards on process and product qual-
ity give pivotal place to measurement. The most well known process maturity model
(CMMI) contains a dedicated measurement & analysis process area, while part 3 and 4
of its counterpart standard for product quality (ISO 9126) also concentrate on product
measurements. Software measurement has successfully been exercised in a variety of eval-
uation approaches [Dumke et al., 2006a], [Ebert et al., 2004] and is seen as one of the
critical success factors for process evaluation and improvement [Dyba, 2005].

Apart from its unquestionable significance for process, product, and resource evalu-
ations, software measurement has been a key player in all forms of test evaluation ap-
proaches discussed in this chapter. All the assessment models of test process place mea-
surement as a requirement in higher maturity levels. For example, it is mentioned as a
maturity goal at level 4 in TMM, as a key area in TPI, and as a process area at level 4 in
TMMi. In case of test process evaluations, measurement has been found to facilitate un-
derstanding, controlling, monitoring, predicting, and making objective decisions during the
course of action of process activities. Measurement and analysis of test process activities
is a helpful tool for process managers who need to constantly track process progress and
to identify improvement needs. A majority of evaluation approaches of test techniques re-
viewed in this chapter also used test measurements. The empirical evaluations of both static
and dynamic techniques used some type of test measurements to compare their relative ef-
fectiveness. The methodologies to evaluate test tools specifically at the in-process and
post-implementation levels heavily used cost and defect measurements for finding tool’s
effectiveness or efficiency.

As a consequence of these observations, exploitation of test measurements is regarded
as an important element for any test evaluation approach to be effective and efficient. Ref-
erences to other research/practice resources are also being reiterated below which motivate
the choice of this requirement,

• Requirement of a test measurement program in TMM [Burnstein, 2003, Ch. 16]
maturity goal 3.4 (maturity level 3) and maturity goal 4.2 (maturity level 4)

• Requirement of a test measurement program in TMMi [Goslin et al., 2008b] process
areas 4.1 and 4.2 (maturity level 4)

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

80 4 Evaluation in Software Testing

• Application of test metrics mandated by TPI [Koomen and Pol, 1999] metrics key
area

• Requirement of metrics-based process assessment by [Hamann, 2006, p. 48]

4.5.2 Compliance with Standards
Software engineering standards represent the sets of best practices to do some activity. A
large number of standards have been developed by various organizations. Well known soft-
ware testing related standards have mostly been developed by IEEE and Special Interest
Group in Software Testing of British Computer Society. On many occasions, other stan-
dards designed mainly for the general classes of software engineering problems have also
be used to develop testing related approaches.

In the field of software testing, many models and techniques for the evaluation of process
and tools contain references to international software engineering standards. For example,
the concepts, structures, and contents of the Testing Maturity Model (TMM) and Test Ma-
turity Model Integration (TMMi) both follow the ideas of CMM/CMMI process maturity
and improvement standards. The Test Process Improvement (TPI) model is also linked
strongly with the TMap (Test Management Approach) pseudo standard. These references
of the test process maturity models to standard models on one hand offers familiarity of
the approach while on the other hand facilitates its integration into any existing process
improvement program. The existing evaluations of testing techniques are mostly based on
some kind of experimental analysis and do not refer to any standards in this regard. In
case of evaluation of test tools, the IEEE Standard 1209 Recommended Practice for the
Evaluation and Selection of CASE Tools can be cited as an example of standard-based test
tool evaluations.

Therefore, referencing and complying with relevant international software engineering
or testing standards is an unavoidable necessity in developing any test evaluation approach.
References to other research/practice resources are also being reiterated below which mo-
tivate the choice of this requirement,

• Requirement of following process assessment standards [Braungarten, 2007, Section
3.4]

• Reference to use of best practices as SPI’s strength [van Solingen, 2000, Section
4.5.3]

• Remark about immaturity level of software testing by [Bertolino, 2004]

• Active application of software testing standards identified by testing practices survey
made in Australia by [Ng et al., 2004]

• Test standardization marked as the second most important research issue identified
in a survey by [Taipale et al., 2005]

• Active interest in standards based software testing exemplified by an under-
development software testing standard ISO/IEC 29119 System and Software En-
gineering: Software Testing

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.5 Typical Characteristics of Test Evaluations 81

4.5.3 Implicitness vs. Explicitness

In the context of social and natural sciences, any kind of evaluation is distinguished ei-
ther as implicit (relatively automatic and perhaps unconscious) or as explicit (deliberate,
controlled and conscious). However, in the field of software engineering it means slightly
different for an approach to be of implicit or explicit type. Implicit models use subjective
methods for assessing quality of an object while explicit models use objective and direct
measurement techniques to evaluate their targets. Based on the peculiarities of the discov-
ered evaluation methods in the area of software testing, the division between implicit and
explicit models as held by the author of the thesis could be summarized like this,

• Implicit models subjectively evaluate the practices of testing processes against a
reference standard, and solely focus on the maturation of the processes. Primarily,
they investigate how testing is being done.

• Explicit models are those that directly and objectively evaluate actual performance
of the testing processes. Primarily, they investigate how well testing is being done.

Attempting to match the evaluation approaches of test processes, techniques, and tools
reviewed earlier in this chapter, it can be observed that test process maturity models or
other process assessment/improvement models fit well into the implicit category. These
models attempt to subjectively evaluate practices of an actual testing process against those
practices which are believed to enable efficient testing. Such maturity models are based on
the widely held belief that a better software process produces better products. However,
it is still a kind of indirect way to evaluate testing processes. In contrast to the processes,
most evaluation methods for test techniques are of explicit kind since they directly attempt
to measure some quality attribute of the techniques through the use of test metrics. This
avoids the possibly biased human judgements and provides an objective view of the quality
of the evaluated object. The evaluation techniques for test tools almost follow the same
style of explicit evaluations.

A very recent example of an explicit approach to assessment of software processes is
that of Tarhan and Demirörs [Tarhan and Demirörs, 2008] where they have applied several
process metrics for a quantitative analysis of process progress. Although that the benefits
of the implicit models of test process evaluation cannot be ignored, an explicit or at least a
hybrid kind of test evaluation similar to Tarhan and Demirörs’ approach mentioned above
has the potential of providing effective and accurate results.

References to various research/practice resources are being reiterated below which mo-
tivate the choice of this requirement,

• Need for explicit process quality evaluations mentioned in [van Solingen, 2000, Sec-
tion 4.5.1, 4.5.2]

• Application of direct process measurement approach
by [Tarhan and Demirörs, 2008]

• Need for explicit assessment of testing practices mentioned as one of the seven prin-
ciples of software testing by [Meyer, 2008]

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

82 4 Evaluation in Software Testing

4.5.4 Cost

SME defined
All across the globe as well as in Europe, a vast majority of software development com-
panies exist on the scale of small and medium-sized enterprizes. Small and medium-sized
enterprizes are companies the number of whose employees or turnover is below certain
thresholds. European Commission categorizes such companies more precisely as micro,
small, and medium-sized enterprizes distinguishing them on the basis of staff headcount,
annual turnover, and annual balance sheet. As per these categories, micro, small, and
medium-sized enterprizes (SMEs) are those companies who have fewer than 250 employ-
ees, do not earn more than 50 million euro, and whose annual balance sheet does not exceed
43 million euro. These thresholds are slightly different for companies in the United States
or few other countries to be classed as SMEs. Following any interpretation of SMEs, ma-
jority of all sorts of businesses across the globe are SMEs with their proportions varying
between 70-90% for different countries.

Software SMEs
IT business or more specifically that of software development is an ideal choice for people
having motivation to set up a small technology firm. Unlike other businesses requiring
considerable investments, infrastructure, and personnel, setting up a small software firm is
a much simple piece of chore. Perhaps that is the reason behind the fact that most software
companies fall in the category of SMEs. The often quoted proportion of SMEs in the
IT/software business is between 80-90% for various countries.

Organizational challenges
Both large and small software development companies have to meet almost the same set of
technical and business requirements. They strive to improve the quality of their products
and processes, keep up with the new technologies, maintain competitive advantage, and
sustain economic fluctuations. However, SMEs have limited resources to face all these
challenges. Cost is the first major issue for SMEs. Their monetary resources are highly
limited and they cannot make any long term investments the fruit of which could be realized
only after a considerable period of time. Lack of human resources is another obstacle.
Often a person is playing more than one role which limits his or her ability to perform
any tasks requiring dedicated effort. Absence of adequately trained staff marks another
disadvantage that SMEs have over larger firms which leaves SMEs unable to undertake
complex tasks to optimize the quality of their services.

Software process
initiatives for SMEs

It is a strong perception in software development industry that CMMI and other simi-
lar software process assessment/improvement approaches are not suited to SMEs. In a
recent survey [Staples et al., 2007], organizational size, cost, and time ranked as the top
three hitches for the organizations not adopting CMMI. Acknowledging the need for spe-
cialized methodologies matching the constraints of SMEs, several software process as-
sessment and improvement approaches have been developed. Several regional solutions
in this direction include process improvement models such as CMM Fast-Track, Mo-
ProSoft, Agile SPI, QuickLocus, and COMPETISOFT [Oktaba and Piattini, 2008], and
process assessment models such as Micro-Evaluation, MARES, SPM, RAPID, FAME,
and EAP [Zarour et al., 2007]. In contrast to all these assessment and improvement mod-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.5 Typical Characteristics of Test Evaluations 83

els for software process, unfortunately no specialized evaluation model for test processes
could be found in literature.

Requirements on assessment
models for SMEs

The organizational challenges facing SMEs mandate some special requirements on the
process evaluation models suited to them. Even if the size of the organization is small,
they need the same level and content of the assessment results and improvement sugges-
tions as sought by larger companies. Instead, their assessments have to be even more
effectively designed and implemented. As analyzed by Richardson [Richardson, 2002]
and Zarour [Zarour et al., 2007] some of the characteristics that any SPI model for SMEs
should support are that they,

• relate to the company’s business goals

• focus on the most important software processes

• give maximum value for money

• propose improvements which have maximum effect in as short a time as possible

• provide fast return on investment

• be process-oriented

• relate to other software models

• be flexible and easy-to-use

Some of these requirements are already on the priority list of large-scale process assess-
ment/improvement models. Still few others are vague as they are subjective and opinion
centric in nature rather than objective. For example, relating to business goals and provid-
ing effective improvement suggestions are the features claimed by almost all assessmen-
t/improvement approaches, yet the validity of the claim is difficult to be judged objectively.
What remain as the visible characteristics are the time, personnel, and any specialized as-
sessor training needed for the assessments which are chief characteristics of light-weight
process assessments. It can be concluded that expensive and large-scale evaluation models
of software process or testing process are inappropriate for SMEs unless they are adapted
to specific constraints. Light-weight evaluation approaches of test process are, therefore,
an obligation for small companies while a choice for larger ones.

References to various research/practice resources are being reiterated below which mo-
tivate the choice of this requirement,

• Cost as a barrier to adoption of software testing approaches observed in a testing
practices survey made in Australia by [Ng et al., 2004]

• Personnel costs identified as the highest cost item in testing in a dissertation on test-
ing practices by [Taipale, 2007]

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

84 4 Evaluation in Software Testing

4.6 Summary

Extending the survey performed in chapter 2, the current chapter identified all existing
forms of evaluation in the testing area. As a result, the chapter has partially addressed the
second part of the first sub-question of the research task. The fulfilled part of the research
question has been italicized as shown below,

RT-1. Traverse the area of software testing to identify entities of evaluation.
Explore existing evaluation forms and approaches as applied in this field. Inves-
tigate characteristics of low-cost and effective test evaluations.

This chapter was solely dedicated to the survey of all forms of evaluations prevailing
in the area of software testing. An earlier chapter (chapter 2) had already given a glimpse
of the possible entities of testing that could be evaluated. Evaluation of testing process
was considered first. History of the test process evaluation approaches was crawled in
depth. It resulted in identification of seven approaches most of which were maturity
models. Out of these, three significant and living models were selected for further detailed
elaboration. The concept, structure, and applications of these models were discussed.
Focus of the chapter then moved on to evaluation of testing techniques. A previous
chapter had divided these techniques into two broad classes as static and dynamic. Based
on the observation of available evaluations and upon intrinsic characteristics of their
application, it seemed appropriate to discuss evaluations of these two kinds of techniques
separately. It was observed that in the category of static techniques, reviews and different
forms of inspections caught more attention than any other static techniques. The dynamic
techniques were evaluated much more often than the static techniques. The evaluations
were largely focused on finding effectiveness and efficiency of these techniques. Testing
tools was the third element of testing that was subjected to evaluations. Corresponding
to different stages in the testing process where a tool is involved, different evaluation
methodologies, guidelines were discovered. One of these guidelines for evaluation and
selection of tools was found in the form of an IEEE standard. Diagnosis of these numerous
forms of test evaluations enabled the author to discover characteristics of successful test
evaluations which were given in the last section of the chapter. These characteristics are
being summarized below and form part of the criteria against which the related literature
will formally be analyzed in the next chapter.

Desired Characteristics of Test Process Evaluations

X The test evaluations must exploit quantitative assessment techniques.

X The test evaluations must follow standard approaches wherever applicable.

X The test evaluations must be light-weight in nature.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.6 Summary 85

X The test evaluations must be explicitly designed.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

87

5 Analysis of Related Work

The previous chapter provided an in-depth survey of existing evaluation approaches in
the area of software testing. Moving a step further, the current chapter critically reviews
and objectively analyzes these approaches for finding their strengths and weaknesses. The
chapter is aimed to establish a relationship between available evaluation approaches and
the research problem at hand.

5.1 Introduction
After an exhaustive review of testing literature for finding available test evaluation ap-
proaches it was discovered that alongside existence of a couple of models and techniques
the evaluation and improvement of testing process remains an active research issue in
the testing community. It is necessary that these existing approaches be analyzed in the
purview of the current research problem. This analysis has to be based on a clearly estab-
lished yardstick.

In finding an answer to the sub-questions of research (RQ-1 and RQ-2), the previous
chapters have already determined few criteria of merit relating to foundation, structure,
content, and applicability of the approach. These aspects of test evaluations are a direct
consequence of the research for finding a solution to the current problem sought by this
thesis. The requirements for a possible solution mentioned in section 3.4 and 4.6 are being
summarized here in the form of a definite criteria set,

Criteria of Evaluation for Related Work

C1 – Scientific rigor:
The test process evaluation approach must have been developed on a sound theo-
retical and scientific foundations of evaluation.

C1.1: The approach must explicitly define and delimit the target, i.e. the entities
interesting for evaluation.

C1.1: The approach must explicitly define particular criteria to be considered
about the entities of interest.

C1.1: The approach must provide a standard or yardstick against which the target
process could be compared.

C1.1: The approach must describe and explain the type of techniques that will be
used to assess the target against the criteria.

C1.1: The approach must specify the synthesis techniques that will be used to
integrate the collected assessment or measurement data.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

88 5 Analysis of Related Work

C1.1: The approach must explain the steps of the evaluation process.

C2 – Utilization of Measurement
The test process evaluation approach must exploit quantitative assessment tech-
niques.

C3 – Utilization of Standards
The test process evaluation approach must have been developed using standard
approaches wherever applicable.

C4 – Size
The test process evaluation approach must be light-weight in nature.

C5 – Style
The test process evaluation approach must make explicit assessments of process
quality.

Building upon the previous analysis of test process evaluation models by
Swinkels [Swinkels, 2000] and by the author himself [Farooq et al., 2007],
[Farooq and Dumke, 2007], this chapter critically analyzes the selected approaches
against the criteria of merit presented above. The author of the thesis was unable to
find any other survey/analysis of test process assessment/improvement approaches other
than the three just mentioned. This analysis will be a sort of characteristics-based com-
parison [Halvorsen and Conradi, 2001] of test process evaluation/improvement models.
Such kinds of criteria-based analyses have earlier been performed of SPI approaches in
other PhD dissertations involving research over evaluation and improvement of software
process. These research works are being mentioned very briefly here,

[van Solingen, 2000]:
Criteria for a product-focused SPI approach for embedded systems derived from
strengths and weaknesses of SPI methodologies

[Komi-Sirviö, 2004]:
Criteria for development and evaluation of SPI methods derived from critical success
factors of existing SPI approaches

[Hamann, 2006]:
Criteria for an integrated approach for SPI derived from analysis of software process
assessment models

[Braungarten, 2007]:
Criteria for development and evaluation of software measurement process improve-
ment model derived from a survey of software measurement literature and measure-
ment process improvement models

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.2 Analysis of Existing Approaches 89

5.2 Analysis of Existing Approaches

Chapter 4 has revealed three types of test evaluation approaches, for test processes, test
techniques and test tools. By design, the evaluation/improvement models at the process
level encompass other elements of evaluation such as techniques and tools as well. Only
these process level approaches will be analyzed here as examples of evaluation models
covering all aspects of software testing. Details about underlying principles, structure, and
content of shortlisted models among these have already been presented in chapter 4. This
section will analyze only these selected models (TMM, TPI, and TMMi) against the criteria
mentioned above.

5.2.1 Analysis of Testing Maturity Model (TMM)

C1–scientific rigor
Development of TMM was a result of a university research project completed in 1996.
It was backed by practical testing knowledge extracted from a diverse set of resources.
The fact mentioned earlier in chapter 4 is being reiterated here that this model’s sci-
entific foundations were built upon Beizer’s progressive phases of a tester’s mental
model [Beizer, 1990] while the testing foundations were taken from Gelperin and Het-
zel’s evolutionary testing model [Gelperin and Hetzel, 1988]. Furthermore, the structural
elements were based on the concepts of Capability Maturity Model (CMM) and the best ap-
proaches derived from Durant’s survey of industrial testing practices [Durant, 1993]. This
combination of research and practice thus works as the backbone of this maturity model
making it a well founded approach.

Although that the author of the TMM did not make any specific reference to the concepts
of evaluation as mentioned in chapter 3, the model yet seems to provide the six evaluation
components mandated by this first criterion (3.4). A little careful comparison of TMM
model against these evaluation components, shows that it actually contains all of these
components. For example, the target of the TMM is clearly all types of software testing
processes. The maturity goals correspond with the broad categories of test process issues
that have to be considered for evaluation. Thy make up the set of criteria aspired by the
evaluators. The overall maturity model including the maturity sub-goals and the TMM
questionnaire give a picture of an ideal testing process at different levels of maturity. It
represents the standard or yardstick against which an actual instance of a testing process is
to be compared. The model also describes an assessment procedure which is aimed at in-
ternal and self evaluations. The procedure describes assessment techniques (questionnaire,
interviews, forms, document reviews etc), techniques of synthesizing results (ranking pro-
cedures for sub-goals and goals etc), and all relevant details of the assessment steps. Based
on these discussions, it can be assumed that TMM model fully satisfies all the required
elements of criterion of scientific rigor.

C2–utilization of measurement
To analyze the involvement of quantitative techniques, two elements of TMM need to be
considered, its assessment model, and the TMM reference model itself. Considering the
TMM reference model, the role of measurement for process monitoring, control and evalu-
ation is emphasized in three maturity goals at two different maturity levels. Particularly, the
maturity level 4 concerns with management and measurement of testing processes. Two

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

90 5 Analysis of Related Work

Table 5.1: Mapping between Evaluation Components and TMM

Evaluation Compo-
nent

Testing Maturity Model

Target Software testing processes
Criteria Maturity goals
Yardstick Sub-goals, Questions
Assessment techniques Questionnaires, Interviews, Forms, Doc-

ument reviews
Synthesis techniques Ranking procedure, Traceability matrix
Evaluation process Assessment procedure

maturity goals at this level emphasizes the use of measurements for controlling and mon-
itoring the testing process. References to measurement made by TMM are summarized
below through the extracts obtained from [Burnstein, 2003, pp. 648-651],

Maturity Goal 3.4: Control and monitor the testing process
The purpose of this maturity goal is to promote development of a monitoring and
controlling system for the testing process so that deviations from the test plans can
be detected as soon as possible,...

– Maturity subgoal 3.4.1
An organizationwide committee or group on the controlling and monitoring of
testing is formed and provided with funding and support. The committee de-
velop, documents, distributes, and supports...and measurements for controlling
and monitoring of testing.

– Maturity subgoal 3.4.2
Test-related measurements for controlling and monitoring are collected for
each project.

Maturity Goal 4.2: Establish a test measurement program
The purpose of test measurement program is to identify, collect, analyze, and apply
measurements to support an organization in determining test progress, evaluating
the quality and effectiveness of its testing process, assessing the productivity of its
testing staff, assessing the results of test improvement efforts, and evaluating the
quality of its software products.

– Maturity Subgoal 4.2.1
An organizationwide committee or group focusing on developing a test mea-
surement program is formed and provided with funding and support. The com-
mittee develops, documents, distributes, and supports procedures, goals, poli-
cies, and measurement as applied to software artifacts and the test process...

– Maturity Subgoal 4.2.2
A test measurement program is developed according to policy with a measure-
ment reporting system....

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.2 Analysis of Existing Approaches 91

– Maturity Subgoal 4.2.3
Training, tools, and other resources are provided to support the test measure-
ment program.

Maturity Goal 4.3: Software quality evaluation
The purpose of software quality evaluation maturity goal is to relate software quality
issues to the adequacy of testing process, define and promote use of measurable
software quality attributes...

– Maturity subgoal 4.3.1
An organizationwide committee or group focusing on software quality evalua-
tion is formed and provided with funding and support. The committee develops,
documents, distributes, and supports ... and measurement for software quality
evaluation.

– Maturity subgoal 4.3.3
Quality goals are developed for each project according to policy. The testing
process is structured, measured, and evaluated to ensure that quality goals are
achieved....

There is no doubt that the mentioned measurement activities are necessary for effective
management of the testing process, but these are only very abstract and high-level guide-
lines. They merely tell what has to be done, the information on how it can be done is
missing.

The how element of this test measurement has fractionally been explained by Burn-
stein [Burnstein, 2003, Ch. 9, 11] when she exemplifies several measurements organized
by the applicable TMM level or by their purpose for controlling and monitoring testing
process. She further lists some steps of a general measurement program without any refer-
ence to testing related issues. It still lacks particular details of test measurement program
as required by maturity goal 4.2 explained above. It can be concluded that apart from
stressing the need for test measurement and partly describing the peculiarities of the mea-
surement process, the TMM model lacks guidelines on designing and implementation of
measurements for the test process evaluations.

As for the TMM assessment model [Burnstein, 2003, Ch. 16] notable lacks are observed
from measurement point of view. The model consists of three major components a) team
training and selection criteria, b) the assessment procedure, and c) the assessment instru-
ment (questionnaire). The TMM questionnaire itself is composed of eight parts. Three
of these parts comprise maturity goal questions, testing tool questions, and testing trends
questions while rest of the parts are of informative nature. This structure of assessment
components is visualized in figure 5.1.

Performing the assessment involves determining the answers to these questions through
interviews, inspections, and other such subjective data gathering techniques. The questions
themselves are somewhat objective or subjective in nature. However, the assessment pro-
cedure by no means exploits any process measurements for ranking maturity subgoals and
goals. In fact, with the nature of questions the role of measurement even seems irrelevant
in determining their answers. In the absence of measurements for assessing and evaluating
testing process the criteria of measurement is found to have failed.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

92 5 Analysis of Related Work

Team training &
selection criteria

Assessment
questionnaire

Assessment
procedure

Organizational background

Respondent instructions

Respondent identification

Testing tool questions

Testing trends questions

Respondent comments

Glossary of terms

TMM questions

TMM Assessment Model

Yes/
No/
Does not apply/
Not known

Figure 5.1: Components of TMM Assessment Model

C3–utilization of standards
The concept and structure of TMM’s maturity model and assessment model need to be
considered for compliance to relevant standards. The use of standards makes such a model
to be easily integrated with other standard or well-known process assessment and improve-
ment approaches. The structural framework of TMM clearly resembles that of CMM.
There is one-to-one correspondence between the both. First considering the TMM from
maturity model point of view, it can be observed that TMM was developed to serve as a
complementary model to CMM. Perhaps that was the reason that it derived most of CMM’s
concepts of building a maturity model. TMM also has five levels of maturity, follows
a staged improvement model, has maturity goals/subgoals similar to process areas/goals
of CMM, and defines activities/tasks/responsibilities (ATRs) resembling key practices of
CMM. In essence, TMM provides an expanded picture of testing related process areas
of CMM. This matching structure of TMM makes it a suitable choice for organizations
already using CMM/CMMI-like process improvement models.

Considering the construction of TMM’s assessment model, Burnstein [Burnstein, 2003,
p. 549] mentions the underlying principles in these words,

The CMM and SPICE Assessment Models were used to guide development of the
TMM Assessment Model. The goal was to have the resulting TMM-AM compli-
ant with the Capability Maturity Model Appraisal Framework so that organizations
would be able to perform parallel assessment in multiple process areas.

Accordingly, TMM defines a SPICE like assessment model which is a kind of team-
based self assessment instrument. TMM explains assessment procedures, although in not
enough detail as SPICE, yet to be sufficient enough for evaluating the testing process.
The style of the TMM’s maturity and assessment model makes it familiar to people and
organizations already using CMM/CMMI. Based on the observations, it can be assumed
that TMM followed standard approaches in its design and implementation and hence the
criteria C-3 is fairly fulfilled.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.2 Analysis of Existing Approaches 93

C4–size
TMM is based on the principle of self (team-based) assessment and does not require an
external certification body for the evaluations. The assessment procedure is carried through
several short steps. The necessary assessment questionnaire, ranking procedure for rating
maturity goals and subgoals, and the guidelines on determining overall maturity levels
are all part of the assessment model. Appropriate format of the assessment outputs are
exemplified with some sample forms describing test process profile. The structure and
details of the assessment model give the reflection that the evaluations can be performed in
a relatively short period of time. However, some aspects of the assessment team may raise
some issues. For example, writing about the size of the team Burnstein [Burnstein, 2003,
p. 550] mentions,

The size of a TMM assessment team may vary, and depends on the scope of the
assessment, the experience level of the team, and the size and complexity of the
organizational projects being assessed. A team size of 4-8 members is suggested.

The mentioned team size may be enough large for small organizations. A short train-
ing for the team has also been suggested by TMM. Most small and medium companies
would be reluctant to dedicate a few of their staff members for the assessment, sacrific-
ing their other precious responsibilities. However, despite these observations the overall
consideration of the assessment model finds it a light-weight evaluation and improvement
model.

C5–style
TMM’s assessment procedure involves collecting answers to the questions designed for
each of the subgoal/goal. These questions check the existence of best testing practices that
are believed to have worked well. Based on the responses to these questions, subgoals and
then goals are ranked by a pre-determined scheme from which an overall maturity level is
calculated. Since the descriptions of goals/subgoals are themselves somewhat abstract and
implicit, so are the questions prepared to check if they are satisfied are not. In this way
the testing process is assessed by conformance of actual testing practices with these sets
of questions/best practices. In essence, this kind of evaluation actually determines what is
being done. It is equivalent to the interpretation of implicit approaches explained earlier
in a previous chapter in section 4.5.3. The TMM’s assessment techniques do not consider
what test process has achieved, i.e. the actual performance of the testing process which can
be gathered through direct process measurements. Based on this point of view of implicit
and explicit process evaluations, TMM is considered to be an implicit model.

5.2.2 Analysis of Test Process Improvement Model (TPI v1.0)

C1–scientific rigor
Testing professionals working for IQUIP, a Dutch firm now known as Sogeti, designed
TPI mainly based on their industrial knowledge and experience gained within a specific
field of application (administrative automation). Although the concept of the TPI model
originated out of the personal reflections of its designers, yet it compares well with most
other maturity models of its kind. For example, its key areas are similar to maturity goals
of TMM and process areas of CMM. The concept of checkpoints is a renamed version

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

94 5 Analysis of Related Work

of TMM’s activities/tasks/responsibilities and CMM’s key practices. Thus, TPI’s model
structure resembles to that of other well established approaches in its area.

Comparing the model structure with evaluation components as outlined in the sub-
criteria of first criterion C1, it is observed that TPI does not cover all of these components.
First, although that TPI model applicable to broad testing situations it is mainly designed
for structure testing. This serves the target of the model. The 20 key areas relate to different
aspects of the testing process to be considered for improvement and hence for evaluation
too. The key areas are the criteria of TPI’s evaluations. The checkpoints compose an ideal
picture of a key area at a given level. Together they make the yardstick with which the
actual test activities have to be matched. Except for mentioning interviews and document
reviews for conducting assessment, and a maturity matrix to draw final evaluation results,
TPI lacks further details on assessment and synthesis techniques. However, the whole
evaluation process component is provided in enough detail when its authors explain the
application of the model [Koomen and Pol, 1999, Ch. 6].

Table 5.2: Mapping between Evaluation Components and TPI

Evaluation Compo-
nent

Test Process Improvement

Target Structured testing
Criteria Key areas
Yardstick Checkpoints
Assessment techniques —
Synthesis techniques —
Evaluation process Assessment procedure

It is observed that even if the TPI model is not a direct consequence of some scientific
principles of process assessment and improvement, it has been demonstrated to work well
in practice without any critical failures [Koomen and Notenboom, 2004]. The model has
been found to partially comply with the requirement of scientific rigor.

C2–utilization of measurement
Like measurement related maturity goals and subgoals of TMM, TPI also has a key area
named Metrics. This key area concerns with the use of metrics for progress monitoring,
configuration management, and defect and change management. The model mentions ex-
amples of product, process, system, and organization metrics that should be used for mon-
itoring and controlling the test process. Collecting sets of metrics along the project phases
is a trivial task that somewhat mature organizations typically perform. However, this key
area only partially addresses this aspect of test process while further guidelines on using
these metrics for drawing meaningful process indicators are missing from TPI descriptions.

The TPI assessment procedure mainly mentions using qualitative assessment techniques
such as interviews and analysis of documents. Although the checkpoints are designed to be
as objective as possible, yet the procedure for determining if a checkpoint is met does not
use any quantitative, viz. measurement techniques. Describing the information collection
phase of the process assessment, TPI model says that [Koomen and Pol, 1999, p. 63],

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.2 Analysis of Existing Approaches 95

By interviewing the participants, studying the documentation, and optionally by wit-
nessing the process, the necessary information is collected. If the person who is
interviewed gives too positive or too negative an account of a situation, a biased
view can be presented. The interviewer should be aware of this. Studying the docu-
mentation can help to recognize this bias.

No matter that the TPI’s process area acknowledge the significance of measurement
for process monitoring, control and improvement, the assessment procedure still relies on
qualitative and subjective information for deciding whether the checkpoints are met or
not. Based on these findings, it can be inferred that TPI does not fulfil the requirement of
measurement criteria.

C3–utilization of standards
The model is based on the methodology for structured testing called Test Management
Approach (TMap) [Pol et al., 2002]. TPI serves as an example of implementation of TMap
concept. The key areas of TPI are organized around the four corner stones defined by
TMap–lifecycle of test activities (L), organization (O), infrastructure(I), and tools (T).

Although that TMap is well known in software testing industry across few countries of
western Europe, it is not an international standard as yet. TPI could be a favorable choice
of those professionals and companies already familiar with TMap concepts but may not be
of others too.

Additionally, TPI’s model elements have a close resemblance with other well known
maturity model concepts in its area. However, the concept of its assessment procedure
is not in line with any process assessment or measurement standards. In view of these
considerations, TPI is not considered to be utilizing relevant international standards. The
criteria C3 is therefore absent.

C4–Size
This criteria relates to the size of the effort spent on assessment procedures or the im-
plementation of the model itself. A number of issues such as planning, assessment, and
improvement actions that arise in the implementation of TPI model have been collected in a
so called change process by the TPI’s developers. The process is designed to be applicable
to both small and large kinds of organizational settings and requirements.

Figure 5.2 details the steps inside this change process. Starting with the initial phases of
awareness and target definition, the process iterates through assessment, improvement, and
evaluation phases. Only broad guidelines for conducting these phases are available without
reference to any low-level information such as the roles, techniques, and specific activities.
The whole implementation process for the TPI-based process improvement does not entail
significant overhead and the costs can be expected to be from low to medium scale.

The TPI’s assessment procedure is mentioned to be consisting of preparation, informa-
tion collection, analysis, and reporting sub-phases. The details given thereof are, although
quite brief, yet are adequate set of instructions about the assessment steps, the techniques to
be used, and the results to be produced. Thus, the TPI’s assessment method matches with
the principle of (team-based) self-assessment. Considering the information found about
the implementation and assessment model, TPI seems to satisfy the requirement of being
a light-weight solution.

C5–style
The assessment procedure of the model involves evaluating the validity of the defined

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

96 5 Analysis of Related Work

Obtain awareness

Determine target, area of
consideration, and approach

Execute
assessment

Formulate plan

Implement
improvement

actions

Define
improvement

actions

Perform evaluation

Preparation

Information collection

Analysis

Reporting

Figure 5.2: TPI Change Process [Koomen and Pol, 1999, p. 56]

checkpoints for various key areas and levels. TPI’s checkpoints have been developed in the
form of statements relevant to key areas and their levels. These checkpoints are no different
than maturity questions of TMM. For example, one of the checkpoints says something like
this [Koomen and Pol, 1999, p. 85],

Checkpoint for key area Test Strategy, level A, Strategy for single high-level test – A
motivated consideration of the product risks takes place, for which knowledge
of the system, its use and its operational management is required.

– There is a differentiation in test depth, depending on the risks and, if present,
the acceptance criteria: not all subsystems are tested equally thoroughly and
not every quality characteristic is tested (equally thoroughly).

– etc.

Like TMM, TPI also assesses the quality of the testing process based on existence of the
practices mentioned in checkpoints, not on the actual performance and achievements of the
process itself. Therefore, the same argument of implicity of evaluation methods holds true
for TPI leading to rejection of criteria C5.

5.2.3 Analysis of Test Maturity Model Integration (TMMi v1.0)

Although the development of the TMMi is still in process and only few interim documents
have been released at the time of writing this thesis, a short analysis of this model will be
included here based on whatever information is currently available about its structure and
contents.

C1–scientific rigor
TMMi is not a product of a purely practice-oriented approach, its foundations are routed in
an international research project which investigated supporting TMM with software met-
rics. Furthermore, other guiding principles have been taken from almost the same set of
testing literature which formed the basis of TMM. Uniquely from other test improvement

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.2 Analysis of Existing Approaches 97

models, TMMi also takes inputs from few international testing standards. TMMi has an-
other advantage over TMM in that it includes new sets of best industrial testing practices
extracted from surveys and the experiences of its development team.

Like TMM, this model also did not make any specific reference to evaluation theory
mentioned in chapter 3. Nonetheless, TMMi’s model elements match well with the six
evaluation components mandated by the first criterion (C1). For instance, the target of
TMMi is the whole testing process covering all levels and types of testing procedures. The
different process areas represent the criteria which have to be considered. The generic and
specific goals and practices, the sub-practices, and typical work products relevant to each of
these process area describe the best way to testing. This serves as a yardstick against which
an actual instance of testing process has to be compared. TMMi authorizes two kinds of
assessment methods, an informal assessment without resulting in any capability determi-
nation, and a formal (external) assessment producing a formal capability rating against the
model. Both these types of methods use interviews, questionnaires, document reviews,
surveys etc as assessment techniques. All assessment related guidelines are given in a
separate document titled TMMi Assessment Method Application Requirements (TAMAR)
whose initial version is available in [Goslin et al., 2008a]. This TAMAR gives information
on assessment techniques and synthesis techniques, and the evaluation process. Thus all
six components of evaluation are provided by the TMMi model.

Table 5.3: Mapping between Evaluation Components and TMMi

Evaluation Compo-
nent

Test Maturity Model Integration

Target Software testing processes
Criteria Process areas
Yardstick Generic/specific goals/practices,
Assessment techniques Questionnaires, Interviews, Surveys,

Document reviews
Synthesis techniques TAMAR
Evaluation process TAMAR

Review of this information on TMMi’s foundation, development, and model structure
leads to satisfaction of the criteria of scientific rigor.

C2–utilization of measurement
It is expected that the measurement will occupy a significant place both in the reference
model and any associated assessment instrument since the model’s foundations come from
a research project about metrics based maturity model for software testing process. Al-
though that the full TMMi reference model is not yet available, the names of the process
areas as such as test monitoring and control, test measurement, and software quality eval-
uation suggest strong association to process and product measures. However, any opinion
about (level of) the involvement of measurement in TMMi will be premature since suffi-
cient information about the model is not available yet and hence the criteria C2 will be left
undetermined.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

98 5 Analysis of Related Work

C3–utilization of standards
The model is claimed to be successor of TMM and a complementary approach to CMMI.
Hence it inherits many of the concepts and elements from both of these two models. Like
TMM/CMMI it develops the concept of a matured testing process growing through a grad-
ual and incremental implementation of best testing practices. The number of levels and
the degree of organizational maturity required to achieve those levels is almost the same
as could have been for TMM/CMMI. Division of maturity levels into process areas and
then into generic and specific goals exactly follows the CMMI structure. The specific and
generic practices are also not unknown to organizations having used TMM or CMMI. Thus
the model structure fully matches with the well established standard process improvement
approaches.

An initial document titled TMMi Assessment Method Application Requirements
(TAMAR) [Goslin et al., 2008a] is currently available which outlines key features of
TMMi assessment method. The assessment method mentioned thereof is aimed to com-
ply with the requirements of ISO 15504 process assessment standard and therefore uses
ISO/IEC 15504 standard (specially its part 2) as its input. Section 5 of the TAMAR pro-
vides its one-to-one correlation with ISO/IEC 15504-2. In this way, TMMi’s assessment
method is in accordance with international standards on software process assessment.

The structure of the TMMi reference model and the style of assessment method qualifies
TMMi against the requirement of following standard approaches.

C4–size
The five maturity levels of TMMi contain sixteen process areas altogether. Level 2 en-
compasses five process areas. Each of these process areas define several generic practices,
specific practices (and sub-practices). Level 2 alone contains 60 generic practices, 69 spe-
cific practices (and at least more than 250 sub-practices). Each of the specific practices
requires preparation of 2 to 4 items of typical work products (documents etc). The rest of
the levels when developed would proportionally have similar number of elements. Imple-
mentation of TMMi at any given level means fulfilling all of these required elements and
preparation of documents which would cost a considerable amount of time and effort often
suited only to large organizations.

As for the assessment model, TMMi authorizes two types of assessment meth-
ods [Goslin et al., 2008a]. An ’Informal Assessment’ performed by a single experienced
assessor which is fast and brief scan of organizational activities carried through interviews,
questionnaires, surveys, and document checks. This type of assessment is aimed at a raw
evaluation of the organizational maturity in various process areas. No formal maturity level
score against the model is produced in this case. This is a kind of light-weight and inter-
nal assessment. The other type is ’Formal Assessment’ which is performed by an external
assessment team lead by an accredited assessor. This type of assessment fulfils the require-
ments of the ISO/IEC 15504 standard for software process assessment. Accuracy of the
data gathered through interviews, questionnaires, and document checks is cross verified
with the use of multiple techniques. This formalized assessment which produces maturity
level ratings is much more expensive since it has to check the existence of all the relevant
practices, and work products in the course of process execution and can be carried out by
external assessing bodies. Based on the choice of the method, the assessment procedure
can be low or high cost, but the implementation of the model itself is beyond any doubt an
expensive task. The requirement of the being a light-weight approach will not therefore be

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

5.3 Summary 99

Table 5.4: Analysis of Test Process Evaluation & Improvement Models

Criteria TMM TPI TMMi
C1: Scientific rigor

C1.1: Target
√ √ √

C1.2: Criteria
√ √ √

C1.3: Yardstick
√ √ √

C1.4: Assessment techniques
√

×
√

C1.5: Synthesis techniques
√

×
√

C1.6: Evaluation process
√ √ √

C2: Utilization of Measurement × × —

C3: Utilization of Standards
√

×
√

C4: Size
√ √

×
C5: Style × × ×

considered met by TMMi.
C5–style

Despite that this model is not fully developed, yet it is clear that it is being developed on
the lines of TMM/CMMI. The same argument of implicity that is applicable to TMM also
seems to hold true for TMMi. Therefore, the TMMi model like other maturity models of
its kinds will not be considered explicit.

5.3 Summary

Extending the survey of the test evaluation approached explained and reviewed in chap-
ter 4, this chapter attempted a more objective analysis and evaluation of these approaches
using the set of criteria established in chapter 2, and 3. In doing so, the chapter has
achieved the third sub-question of this research work,

RQ-3. Analyze available test process evaluation approaches based on the crite-
rion developed in RQ-1/RQ-2.

This chapter marks the conclusion of first phase of the research project, i.e. observing
the existing solutions. The chapter started with a summary of the criteria against which the
test process evaluation approaches were to be analyzed. The choice of the approaches to
be considered had already been reduced to Testing Maturity Model (TMM), Test Process
Improvement Model (TPI), and Test Maturity Model Integration (TMMi). The chapter
deeply analyzed all three of these approaches highlighting or reproducing the elements
which supported or caused those criteria to fail. Summary of the findings is presented

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

100 5 Analysis of Related Work

in table 5.4. The — sign in the table marks that criteria could not be evaluated due to
insufficient information, the other signs are self explanatory.

As the table shows none of the reviewed evaluation and improvement models of the
testing process conform fully to all the set forth criteria of merit. Among them, only the
Testing Maturity Model (TMM) appears to be the closest match with those criteria. The
analysis has shows that TMM is still an excellent source for defining an improvement path
for the testing process. Nonetheless, the identified lacks in this model create the possibility
of a complementary evaluation model, which once appropriately developed, can fill the
identified gaps in the current test process evaluation approaches.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

101

6 Light-TPEF: The Test Process
Evaluation Framework

The main contribution of this research work is contained in this chapter. It proposes the
concept of an evaluation framework to address the research problem at hand. The frame-
work serves as a design document for the construction of a concrete evaluation model and
its implementation. All the elements of the framework are described that have to be utilized
to evaluate software testing processes and later to develop an executable evaluation process
model.

6.1 Introduction

The previous chapter has deeply analyzed mainstream evaluation and/or assessment mod-
els of software testing processes. Based on the criteria set forth at the beginning of this
thesis, none of these models could exhibit full conformance to all of these requirements.
The analyzed approaches, broadly following the maturity model concept, cover most of
these criteria with few exceptions. Specially, despite stressing the use of measurements for
controlling and monitoring progress of the testing process, the models exploit limited role
of measurements for evaluating the process. Furthermore, the nature/style of evaluations
has been implicit in contrast to explicitness as marked by research problem. These two
aspects have come up as chief shortcomings of the existing models. The current chapter
proposes a solution to these shortcomings in the form of an evaluation framework for test
processes.

Framework, what
it means exactly?

Before moving on further, the term framework deserves little clarification here which has
often been used as a buzzword, especially in the software engineering field. The term
conceptual framework as mentioned in Wikipedia 1 is used in research to outline possible
courses of action or to present a preferred approach to an idea or thought. Although
that the solution presented here is deemed to be this kind of conceptual framework, it
is more than just an abstract framework in its essence. It is rather a concrete approach
supported with full guidelines to implement it in a practical environment. The next sections
incrementally build this approach and describe its details with appropriate techniques.

1http://en.wikipedia.org/wiki/Conceptual_framework

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://en.wikipedia.org/wiki/Conceptual_framework

102 6 Light-TPEF: The Test Process Evaluation Framework

6.2 Concept and Design

Framework concept
To be able to address the requirements of an improved evaluation approach, a framework
is first proposed which takes inputs from diverse sources of knowledge and practice. The
approach followed in the framework enables satisfaction of generally considered key re-
quirements of test measurement. Figure 6.1 summarizes principal inputs to the framework
and the well-known test measurement related requirements that are believed to be implic-
itly met by the use of this approach. The four inputs are;

• Software testing knowledge areas: This element provides information about possi-
ble entities of evaluation, existing issues and requirements of test evaluations, classes
of test measures commonly applied in practice which can answer different evaluation
perspectives and suitability of an approach applicable to the testing area.

• Evaluation theory: To provide scientific rigor to the development of evaluation
framework, this element provides philosophy and rationale behind all the compo-
nents required to build a comprehensive solution. Generic evaluation principles are
extracted from this non-software area of knowledge to identify and fill possible gaps
in the existing evaluation approaches.

• ISO/IEC 14598-5 Standard: This standard is titled Information technology–
Software product evaluation–Part 5: Process for evaluators. Part 5 of this stan-
dard takes evaluator’s view of the evaluation process and describes activities
needed to perform an independent product evaluation in connection with qual-
ity model as defined in ISO/IEC 9126 standard. Although that this standard is
mainly designed for software product evaluations, it has recently been used by
Trudel [Trudel et al., 2006] and Schmietendorf [Schmietendorf, 2008] to evaluate
software processes and business processes respectively. Application of this standard
to process evaluations and its close resemblance with the evaluation theory com-
ponents motivates the author to customize the guidelines of this standard for test
evaluations.

• IEEE 1061 Standard: Again fulfilling the requirement of following pertinent stan-
dard approaches, this standard will be used to extract knowledge as to how the mea-
surements will be used to derive various quality characteristics of the measured test-
ing process.

Although that the framework originally strikes the primary research problem of the thesis
at hand, yet the developed approach can possibly enable an organization to satisfy measure-
ment related maturity goals contained in maturity models. For example, implementation
of test process measurement based on this framework tends to partially meet with the re-
quirements of following maturity goals;

• TMM Level 3 Maturity Goal 3.4- Control and Monitor the Testing Process: This
maturity goal calls for establishing a system to control and monitor the progress of
testing processes. The subgoals outline a path to achieve this requirement by setting

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.2 Concept and Design 103

IEEE Std. 1061-1998
Standard for a Software

Quality Metrics
Methodology

ISO/IEC 14598-5
Information technology –

Software product
evaluation

Evaluation Theory

Test Process Evaluation Framework

TMM Level 3
MG 3.4: Control & Monitor

the Testing Process

CMMI v1.2 Level 2
Process Area:

Measurement & Analysis

TMM Level 4
MG 4.2: Establish a Test
Measurement Program

P A R T I A L L Y S U P P O R T S

Knowledge areas of
Testing Processes

I N P U T S

Figure 6.1: Concept of Evaluation Framework

up a responsible organization-wide committee, collecting and analyzing test mea-
surements, and utilizing tools and other resources to support these activities. Specifi-
cally with reference to utilizing test-related measurements for project monitoring the
TMM only tells ’what’ has to be done while the question of ’how’ it has to be done
is answered by the proposed framework.

• TMM Level 4 Maturity Goal 4.2- Establish a Test Measurement Program: This
maturity goal is quite similar to maturity goal 3.4 discussed before except that it
necessitates a more consistent measurement program that uses organization-wide
test measures to aid decision making process. A method following the proposed
framework will be capable of meeting this requirement of test measurement program.

• CMMI v1.2 Process Area: Measurement & Analysis: This process area specifies
a measurement process with much more specific details than TMM maturity goals
and subgoals discussed above. An adapted version of mentioned measurement pro-
cess makes one part of the of framework, which additionally provides some other
information to support these activities. This process area can also be considered to
be implicitly supported by the test evaluation framework.

Following the intentions of framework, the design and development of the test evaluation
approach to be explained in the next sections is briefly summarized here in following steps;

1. A textual description of the five primary components of evaluation framework which
serve as information support to the one core component

2. Graphical and semi-formal (textual) representation of the core component (evalua-
tion process itself) to define all the workable and necessary steps

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

104 6 Light-TPEF: The Test Process Evaluation Framework

3. As a proof of concept, transformation and implementation of a concrete executable
evaluation process model based on the framework

6.2.1 Framework presentation

Since the framework exists as a source of practical information that is expected to be used
by technical and managerial people, it must be described in such a way to allow easy
understanding and communication of information among involved people. A variety of
process modeling notations and languages exist that exactly serve these purposes. Some
kinds of descriptive, graphical, and semi-formal (also textual) representations will be used
to provide unique views to the framework elements and their interrelationships.

Choice of graphical
modeling notation

Several graph-based process modeling languages [Zamli, 2004] have been developed
which describe software processes at different levels of abstraction. Since software pro-
cesses are a kind of businesses too, apart from these predominantly technical represen-
tations, software processes today need to be described in way understandable to the
business people as well. Business process modeling approaches [Lu and Sadiq, 2007],
on the other hand, are oriented to business environments where process activities are
performed by different roles and business units. Business Process Modeling Notation
(BPMN) [OMG, 2006], as an intermediate solution addressing both software technology
levels and business levels, supports a vast range of abstraction levels. The official specifi-
cation of this industrially standardized notation states that ”The primary goal of BPMN is
to provide a notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers respon-
sible for implementing the technology that will perform those processes, and finally, to
the business people who will manage and monitor those processes.” Since the evaluation
process for test processes can integrate with software processes and hence with business
processes, BPMN will be used to model process activities.

Choice of textual
modeling notation

Complementing the graphical presentation of the model structure, the process architec-
ture is sometimes modeled using some certain specification elements. Supporting the
various levels of details and abstractions, the processes can be modeled using either of
IPO (input, process, output) paradigm, ETXM (entry, task, exit, measure), ETVX (en-
try, task, validation, exit), or EITVOX (entry, input, task, validation, output, exit) paradigm
etc [Humphrey, 1989, Ch. 13]. Although that the ETVX or EITVOX are usually the choice
of most high maturity organizations [Paulk and Chrissis, 2002], the IPO model yet being
quite concise in nature enjoys many interdisciplinary applications. It has recently been
used by Drabick [Drabick, 2003] to model software testing processes. For the sake of sim-
plicity an adapted version of this model–SIPO (support, input, process, output) as shown
in figure 6.2 will be used in this thesis to describe the evaluation process.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 105

Entry ExitTask

InOutInput

Output

Feedback

Information Support

Figure 6.2: Basic (adapted) Process Architecture Elements

6.3 Framework Components

Core component
Stretching the conceptual view of the framework described earlier in section 6.2 and dis-
cussed in [Farooq et al., 2008d], [Farooq et al., 2008c], this section explains all the six in-
dividual components of this framework as shown in figure 6.3. There is one core com-
ponent, Evaluation Process, that is derived from applicable international standards. This
component furnishes the ’what’ aspect of the information needed to evaluate the testing
processes. The scope of the information provided in this component is not much different
from what is found in the ISO/IEC 15939 Software engineering – Software measurement
process standard or the Measurement and Analysis process area of Capability Maturity
Model v1.2. However, some content is simplified to reduce the overhead involving bureau-
cratic activities while on some other occasions further low-level activities are defined to
specify the evaluation steps. BPMN diagrams and SIPO process architecture will be used
to sketch this component.

Support components
The other five support components deal with the ’how’ aspect of the evaluation process
and support the execution of activities defined in the core component. They are highly
customized within the context of testing processes and their issues. The components are
informative in nature and encircle all the details of testing knowledge needed to evaluate
and assess the capabilities or in-capabilities of testing processes. A characterization of
which testing entities could be evaluated, which criterion of merit are generally consid-
ered, which types of test measurements could be used, formulas of how the measurements
can be synthesized, and visualization of evaluation results to be produced. The information
from each one or more of these components is fed to each phase of the evaluation process
thus enhancing those high level evaluation guidelines to produce a concrete working solu-
tion. Bare textual descriptions will be used to render these components. The next sections
indulge themselves into further details of first the support components and then finally the
core component.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

106 6 Light-TPEF: The Test Process Evaluation Framework

Core Component

Support Components

Target

Evaluation Process

Yardstick Synthesis
Techniques

Assessment
TechniquesCriteria

Evaluation Theory

ISO/IEC 14598-5
Information technology –

Software product
evaluation

IEEE Std. 1061-1998
Standard for a Software
Quality Metrics Methodology

Knowledge areas of
Testing Processes

INPUTS

INPUTS

Te
st

 P
ro

ce
ss

 E
va

lu
at

io
n

Fr
am

ew
or

k

Figure 6.3: Components of Evaluation Framework

6.3.1 Support Components

Titles of support components are preceded with labels S1, S2, S3, S4, or S5. The labels
will be used to refer to these components later on in the description of core component.

6.3.1.1 S1–Target

For the evaluations to be objective and specific, scope of the evaluations must be defined
and the target must be delimited. The first question here arises, what objects of test pro-
cess can be and should be evaluated?. A formalization of software processes provided
by Dumke et al. [Dumke et al., 2005], [Ebert and Dumke, 2007] can be taken as starting
source for this purpose where he classifies components of software products, processes and
resources. They define a software product (SP) as a collection of programs and documen-
tations. They write it in a formal manner as,

SP = (MSP , RSP)

= ({programs, documentation}, RSP)

They divide programs and documentation into further components as,

programs ⊆ {sourceCode, objectCode, template, macro, library, script

plugIn, setup, demo}

documentation ⊆ {userManual, referenceManual, developmentDocumentation}

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 107

whereas RSP describes the set of relations over the SP elements.

The software product is developed through implementation of a software development pro-
cess. According to Dumke et al. [Dumke et al., 2005] the development process (SD) in-
volves aspects such as different kinds of development methods, lifecycle phases through
which the development iterates, lifecycle models adopted as a development approach, and
management methods used at various levels. The define it as,

SD = (MSD, RSD)

= ({developmentMethods, lifecycle, softwareManagement} ∪MSR, RSD)

They divide these three elements into further components such as,

developomentMethods ⊆ {formalMethods, informalMethods}
= SE −Methods

lifecycle ⊆ {lifecyclePhase, lifecycleModel}

softwareManagement = developmentManagement ⊆ {projectManagement,

qualityManagement, configurationManagement}

Alongside the development process, several kinds of resources are exploited. Dumke et
al.’s [Dumke et al., 2005] approach defines them as comprising personnel resources (de-
velopers, testers etc.), software resources in the form of CASE (computer-aided software
engineering) tools, and platform resources representing the hardware and any other devel-
opment environments. Their definition of software resources (SR) looks like,

SR = (MSR, RSR)

= ({personnelResources, softwareResources, platformResources}, RSR)

The resource types are further categorized as,

softwareResources = {COTS} ∪ {ICASE}

personnelResources = {analyst, designer, developer, acquisitor, reviewer,

= programmer, tester, administrator, qualityEngineer

= systemProgrammer, chiefProgrammer, customer}

Equivalently, testing is as complex a job as is the whole development process itself. To
identify the elements of evaluation, a structuring of the test process entities in a precise

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

108 6 Light-TPEF: The Test Process Evaluation Framework

Software Testing Process

testingMethods testingResourcesTestware

errorLogs
documentation

testReports
testPlantestCases

officeEnvironmentplatformResources
toolspersonnel

regressionTesting
systemTesting

unitTesting
reviews

testTechniques acceptanceTesting

Figure 6.4: Entities of Evaluation in Software Testing Process

and comprehensible manner is needed. In doing so, without imposing any particular pro-
cess model for test processes, a structured list of the testing entities of evaluation will be
developed here.

First, several methods are applied all along the way of testing process. Seen from the
perspective of these methods, testing process may be decomposed into various types and
levels of organized activities which although cannot be detached from the testing process
but a clear boundary can still be drawn between them. Examples are technical reviews,
inspections, audits, unit testing, system testing etc or any particular testing techniques. One
may be interested in finding effectiveness of inspections, efficiency of unit testing, or costs
attributed to any particular testing technique that has been applied. This makes the first
component of the testing process regarded here as testing methods. During the course of its
execution, test process would usually produce some artifacts such as test specifications, test
plans, error logs, defect reports, test cases, tested product etc. Testware refers to all such
elements. Measurement and evaluation of this testware can give key insights to the size,
duration, effort, and cost incurred during the testing process. Testware makes the second
dimension of evaluation about testing process. Still a third class of elements of evaluation
comprises resources involved with the testing process. These can be testing personnel, test
tools, computers and hardware, as well as office environment. Evaluation of these aspects
is necessary to assess cost effectiveness of the process. Figure 6.4 summarizes these three
entities of evaluation for software testing processes.

6.3.1.2 S2–Criteria

After having identified and defined artifacts involved in software testing process, we need
to define their criterion of merit or worth that concern us. These must be established clearly
in the light of general process goals, strategic business goals, and any particular technical
requirements. For example, it is very common to say that testing be done in an efficient
manner, with minimum time and resource consumptions. It is also not uncommon at all
to require testing to be done effectively, to find and remove as many defects as possible.
Several other criterion may relate to individual testing phases and techniques, testing tools
and personnel etc. Such descriptions of requirements are generally outlined in the form of
quality models for a given domain. A large number of techniques exist that attempt to eval-

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 109

uate some entity of testing process (see section 4.3). For example, some techniques focus
on comparing efficiency of test case selection techniques, while others dedicate themselves
to analyze effectiveness of reviews, inspections, unit and system testing. However, these
examples represent only a subset of testing entities each being evaluated against a single
criteria.

Process quality
attributes

Similar to the case of software process, defining overall quality characteristics of
testing process is a difficult task. In this connection, ISO 9126 software product
quality standard (now replaced by ISO/IEC 25000 SQuaRE) is a well known quality
model specifying product quality attributes and sub-attributes. Since the software
processes are considered software too [Osterweil, 1987], the concept of product qual-
ity model could also be mapped to software testing process. Examples already exist
where ISO 9126-like quality attributes and sub-attributes have been defined and their
use demonstrated for software process by Kenett & Baker [Kenett and Baker, 1999],
Tyrrell [Tyrrell, 2000], Satphathy [Satpathy et al., 2000], Güceğlioğlu and
Demirörs [Güceğlioğlu and Demirörs, 2005a], [Güceğlioğlu and Demirörs, 2005b],
and Kandt [Kandt, 2005]. For the sake of brevity, only the top level process quality
attributes mentioned by these authors have been summarized in table 6.1. Recently,
a similar concept has been illustrated to assess the quality of business processes by
defining business process metrics, Rud et al. [Rud et al., 2007f], [Rud et al., 2007c],
[Rud et al., 2007a], Demirörs and Güceğlioğlu [Demirörs and Güceğlioğlu, 2006], and
Vanderfeesten [Vanderfeesten et al., 2007] being few examples. Wille [Wille et al., 2004]
also used a similar hierarchical quality model for evaluation of agent-based systems.

Table 6.1: Definitions of Software Process Quality Attributes

Reference Process Quality Attributes
[Kenett and Baker, 1999, p. 101] Size, Defect, Effort, Duration, Cost, Cus-

tomer satisfaction
[Tyrrell, 2000] Effectiveness, Maintainability, Pre-

dictability, Repeatability, Quality,
Improvement, Tracking

[Satpathy et al., 2000] Functionality, Usability, Efficiency & es-
timation, Visibility & control, Reliability,
Safety, Scalability, Maintainability

[Güceğlioğlu and Demirörs, 2005a],
[Güceğlioğlu and Demirörs, 2005b]

Maintainability, Reliability, Functional-
ity, Usability

[Kandt, 2005] Effectiveness, Efficiency, Predictability

Evaluation criteria for
test processes

These successful implementation of ISO 9126 standard like quality model concept for
software process motivates one to develop a similar approach (as its special kind) for the
software testing process. Consequently, ISO 9126-like hierarchy of typical evaluation at-
tributes and sub-attributes for any kind software test process will be defined here. This

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

110 6 Light-TPEF: The Test Process Evaluation Framework

Evaluation Criteria for Testing Processes

Efficiency UsabilityFunctionalityReliabilityEffectiveness

Time behavior

Resource
behavior

Maturity

Test execution

Test plans

Productivity

Fault tolerance Functional
adequacy Understandability

Functional
completeness

Recoverability

Complexity

Security & safety

Figure 6.5: Candidate Evaluation Criteria for Test Processes

serves as a pre-defined generic evaluation model of the test process which needs to be cus-
tomized according to particular evaluation situations. The finally refined model will make
up the criteria against which a particular instance of a testing process has to be evaluated.
The list of attributes/sub-attributes is explained next.

Efficiency
The definition of this attribute is derived directly from ISO 9126 standard where it applies
to software product. Efficiency of the testing process is its capability to provide appropriate
performance, relative to the amount of resources used, under stated conditions.

An efficient testing process is one which is as low-cost as possible. At the highest level
of evaluation this cost undoubtedly refers to monetary costs. The top management usually
counts this single cost indicator. However, there are other lower level cost drivers which
contribute towards an overall monetary of cost of performing the testing activities. The
time behavior of the testing activities and tools is one of them. Testing tasks also consume
several kinds of resources during the course of their execution. The work performance or
productivity of the testing staff also matters to complete intended testing procedures. Time
behavior, resource behavior, and productivity make up the three sub-attributes of efficiency.

Effectiveness
It is the capability of the testing process to find and remove faults and defects. It relates to
doing the testing well without reference to time or the resources consumed. This attribute
is not only relevant to testing activities but is equally applicable to individual techniques,
and tools for analyzing their required capabilities.

It is the implied goal of every testing process to render a software product as much defect
free as possible. Errors in the code create faulty situations in the software programs which
gives rise to failures. It is, therefore, a chief task of the testing process to detect and remove
any defects present in the software. Effectiveness of testing process is meaningful at two
key stages of the process, test planning and test execution. At the test planning phase it
is mainly related to the necessity and sufficiency of the designed tests. While during test
execution the efficiency concerns with defect detection capability of activities, techniques,

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 111

and tools.
Reliability

Test process may also be assessed indirectly by assessing its products. For testing process,
tested program and code is the product. Since testing is a way to gain confidence in the
quality of software products, we can rely on a testing process when it produces reliable
(tested) products. Therefore, the concept of test process reliability is borrowed here from
that of product reliability given in ISO 9126 standard and will be evaluated using product’s
fault tolerance, recoverability, and predictability. Maturity of the practices is one direct
measure of test process reliability.

Functionality
This attribute will also be assessed indirectly from product quality evaluation. Software
testing stands there to validate that the right product is being built and to verify that it is be-
ing built the right way (verification and validation). A software testing process that fulfills
its functionality produces a (tested) product that satisfies functional and non-functional
requirements. Therefore, this attribute can be assessed using product’s functional com-
pleteness, adequacy, security and safety.

Usability
Before testing can begin, a testing process should be planned and defined. The activi-
ties of the testing process should be well designed to avoid complex couplings between
them. The test process should be adequately documented to be understood well by its im-
plementors. The usability of the testing process refers to its capability to be understood
and implemented comfortably. This can be evaluated in terms of its understandability and
complexity.

6.3.1.3 S3–Assessment techniques

Having prepared the list of test artifacts and criterion of evaluation, the next task is to deter-
mine how good is that artifact with respect to its relevant criteria. A level (in ordinal scale)
or a numeric score can be used to represent the extent to which a criteria holds true. Test
process assessment models typically employ a varied set of techniques for this purpose.
These may include measurements, questionnaires, interviews, document inspections, and
simple observations etc. It is beyond any doubt that the use of measurement as a tool for
process assessment is a powerful way to gather accurate status information about process
progress. The use of test measurements is being advocated here as a primary means of test
process data collection.

No definitive list of test metrics to be used will be specified here since the choice
of a metric is limited by its availability or other constraints. However, several exam-
ples and classes of existing test metrics will be discussed here as guidelines. Several
sources of test process metrics definitions and their application have been summarized
in [Farooq et al., 2008a]. In developing a categorization of these test metrics based on their
inherent characteristics or intended use, Dumke et al.’s [Dumke et al., 2006b] structuring
of the software process metrics can provide a foundation where they discuss empirical as-
pects of software process by the use of different kinds of process measurements. Within
the present context, the first aspect to be considered is the nature and type of measurement-
based information available or applicable to test process. It can be distinguished as test
related measurement experiences and test process metrics. For example, some testing prin-

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

112 6 Light-TPEF: The Test Process Evaluation Framework

ciples [Davis, 1995, Ch. 6], and testing laws [Kit and Finzi, 1995, Ch. 1], and various
rules of thumb [Boehm and Basili, 2001] are a form of static quantitative experiences that
guide the test professionals. On the other hand, test process metrics and related thresholds
are a kind of dynamic quantitative information that highlight state and progress of the test
process. Table 6.2 is a condensed reproduction of the test metrics definitions mentioned
earlier 4.3 in this thesis. Although the list mentions most commonly used metrics, new
metrics may also be defined as the need may arise.

Table 6.2: Notable Resources of Test Metrics Definitions

Reference Types of Metrics Discussed
[Peng and Wallace, 1994] test cases, coverage, failure
[Liggesmeyer, 1995] test complexity
[Kan et al., 2001] test progress
[Pol et al., 2002] miscellaneous
[Burnstein, 2003, p. 266] testing status, tester productivity, testing costs,

errors/failures/faults, test effectiveness, metrics
at test process maturity levels

[Chen et al., 2004] quality metrics, time-to-market metrics, cost-
to-market metrics

[Abran et al., 2004, pp. 5-7] program under test, tests performed
[Sneed, 2005] test cases, costs, coverage, test effectiveness
[Sneed, 2007] product, project, progress, process
[Afzal, 2007] test progress, cost, quality

Figure 6.6 gives the classification contexts for the test process metrics. Process evalua-
tion goals is one of them. This goal aspect is equivalent to the evaluation criterion listed
in section 6.3.1.2 above. Test metrics can be mapped to each of these criterion. Secondly,
several entities pertaining to the test process itself can be measured as mentioned in sec-
tion 6.3.1.1. Although not all of the process entities may be of concern in a particular
situation, tracing the metrics back to the list of entities may help us identify if we are ig-
noring some process aspects in our measurements. Some broad classes of these measurable
entities include [Florac and Carleton, 1999];

• Things received or used (resources etc)

• Activities and their elements (testing, inspections etc)

• Things consumed (effort, time, money etc)

• Things held or retained (tools, experience etc)

• Things produced (test cases, tested components, defect reports etc)

Test process phases/level and test process maturity levels give another dimension to
structuring test process metrics. Metrics relating to test cost and effort or testability may be
of concern at initial process phases while productivity and test efficiency kind of metrics

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 113

Process Phases

Process Goals

Measurement Concern

main
tai

na
bil

ity

technical

higher management

completion

execution

specification

planning & control tra
ck

ing

pre
dic

tia
bil

ity

eff
ec

tiv
en

es
s

Test cost estimation (time, effort)

Tester productivity

Testing status (coverage, test cases)

Testability (unit, system)

Test efficiency (errors, faults, failures)

Test completion (milestones, adequacy)

Metrics Classes

Figure 6.6: Classifications of Test Process Metrics

will be available towards later phases of the test process. Burnstein [Burnstein, 2003, p.
372] also lists different sets of metrics appropriate at different test process maturity levels.
Figure 6.6 shows some example test process metrics classes which have been derived from
available metrics definitions. These metrics classes relate to all three classification con-
texts. For example, metrics of test cost estimation are related to resources (process entity),
calculated during planning & control step (process phase), and assess predictability and
tracking (process goals). Undoubtedly, not all test managers may be concerned about all
of these metrics. Most of the time they may just be interested in cost and effort related
metrics.

6.3.1.4 S4–Synthesis techniques

Collection of process measurements is as much an important task as is to convert this data
into useful information about process quality. Organizations often complain that they col-
lect lots of metrics but do not know how to use them. Synthesis techniques exactly serve
this purpose. They organize and combine data gathered with the application of assessment
techniques and transform them into qualitative judgements about the measured process.
Systematic mathematical, statistical, or other methods are used for this purpose. Addi-
tionally, this section also includes explanation of any other techniques used to connect
information provided by any of these support components.

Measurement conversion
& normalization

This framework recommends collecting a wide variety of test process metrics and setting
threshold values for each of them. All of these metrics may belong to different scale
types. After the metrics values have been recorded and before they can be used for further
measurement analysis, they need to be transformed to a common scale and normalized to
a value between 0 and 1. Zuse [Zuse, 1998, Ch. 5] provides guidelines and rules to follow
for such conversions. Normalization of measures is also a widely used method to get a
consistent quality score for a measured attribute. Depending upon the type of problem
and context, several different kinds of normalization methods exist [Zuse, 1998, pp. 231-
238]. Among these, the normalization by a ratio scale transformation methods seems most

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

114 6 Light-TPEF: The Test Process Evaluation Framework

Unacceptable To be
improved

Target
range

Over
quality

0.3 0.5 0.7 0.9

Scale Conversion & Normalization

Measurement Values & Thresholds
(All scales)

N o r m a l i z e d (R a t i o s c a l e)
1.00.0

Figure 6.7: Conversion and Normalization of Test Process Metrics

appropriate since the empirical relational system of the measure is maintained in this way
and the method is equally applicable to other scale types. Figure 6.7 shows a schematic
diagram of test metrics transformation and normalization.

Private quality
indexes

One or more test metrics may be associated with each of the sub-attributes for each of
the test process entity. This is visualized in figure 6.8. These metrics will be used to
calculate a numerical quality score for each of the sub-attributes called as private quality
index. This concept of quality index as a hybrid measure is quite common in use in the
area of software quality evaluations, such as the example of SAP using it for evaluating
product, process, and project quality [Limböck, 2009], and Kozlov using it for software
process quality [Kozlov, 2005].

It is assumed that m1, m2, ...,mi metrics are defined relevant to each sub-attribute/test
process entity. Priority weights w1, w2, ..., wi (a number between 0 and 1) should also
be assigned to each of these metrics corresponding to the significance of the metric.
This concept of quality weights is influenced from Scriven’s weight and sum methodol-
ogy [Scriven, 1981] where a similar application was discussed. Private quality index (P.QI)
is defined here to be

P.QI =

i∑
ind=1

wind ×mind

i∑
ind=1

wind

The design of the formula results a value always between 0 and 1 for P.QI which will
further be used for higher level quality indexes.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 115

Efficiency

Productivity

Effectiveness

Test plans

Reliability

Maturity

Fault Tolerance

E
v

a
lu

a
ti

o
n

 C
ri

te
ri

a
 f

o
r

T
e

s
ti

n
g

 P
ro

c
e

s
s

e
s Time Behavior

Resource Behavior

Functionality

Usability

Func. Completeness

Test execution

Complexity

Understandability

Func. Adequancy

Security & Safety

Recoverability

w

w

w

w

w

w

w

w

w

w

w

w

w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Metric
w

Figure 6.8: Evaluation Criteria for Testing Processes with Metrics

Integral quality
indexes

Measurement of evaluation attributes for each test process entity using sub-attributes will
be carried out next. The above mentioned calculations will result in a series of private
quality indexes P.QI1, P.QI2, ..., P.QIj for a given test process element against a given
evaluation attribute. Priority weights should also be defined for each of the sub-attributes
referring to their significance value. Then the formula for calculating an overall integral
quality index (I.QI) for a given test process element for a given attribute can be written as:

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

116 6 Light-TPEF: The Test Process Evaluation Framework

W1 x P.QI1

w1×m1

Wj x P.QIjW2 x P.QI2

I. QIAttribute Level

Sub-Attribute
Level

Test Process
Metrics Level

......

......w2×m2 wi×mi

Figure 6.9: Relationship between Quality Indexes

I.QI =

j∑
ind=1

Wind × P.QIind

j∑
ind=1

Wind

The value for I.QI will always lie between 0 and 1. Calculation of integral qual-
ity indexes will give us attribute level view of test process quality. Figure 6.9 shows
hierarchy and relationships among these quality indexes. The procedure for develop-
ing these different levels of quality scores from the test metrics could also be based on
multi-criteria evaluation methodology [Blin and Tsoukiàs, 2001] or the analytic hierar-
chy process [Saaty, 2000] or its variant which is very commonly used in many differ-
ent fields involving decision situations including quantification of overall software qual-
ity [McCaffrey, 2005].

6.3.1.5 S5–Yardstick

This component represents the ideal picture of testing process against which a real instance
of it is to be compared. It serves as a kind of reference standard or a yardstick which is
used by every process assessment model. CMMI and TMM both use a maturity model
for this purpose. This thesis introduces the concept of process quality profiles to be used
for describing an idealized testing process. These profiles consist of pictures of the to-be-
achieved testing process’ quality at the attribute, sub-attribute or even at the metrics level.
These quality-related requirements are represented in the form of numerical quality scores.
This concept resembles Watt S. Humphrey’s quality profile [Humphrey,] where he uses it
to suggest a process that should consistently produce high quality programs.

The test process quality profiles used in this approach consist of integral and private
quality indexes which correspond to quality views at the attribute and sub-attribute levels
respectively. These quality indexes for the ideal test process are calculated from threshold
values of test metrics as against metrics values collected from an actual instance of testing
process. The profiles are graphically shown with the help of Kiviat diagrams where each
spoke represents a evaluation attribute/sub-attribute. The length of the spoke is taken as
unity, and a quality index value which is between 0 and 1 is marked at an appropriate point

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 117

on this spoke. Joining these points gives a picture of the test process quality. Figure 6.10
and 6.11 show imaginary Kiviat diagrams at the attribute and sub-attribute level. Values
of quality indexes for a measured test process are drawn accordingly and can easily and
instantly be compared with the reference standard.

Efficiency

Reli
ab

ility
Functionality

Usability

Ef
fe

ct
ive

ne
ss

Test
Process
Quality

Ref. Standard Observed Process

Figure 6.10: Process Quality Profile: Attribute
Level

Efficiency
Usability

Functionality

R
el

ia
bi

lit
yE

ffe
ct

iv
en

es
s

P
roductivity

Complexity

Fun
c.

co
mple

ten
es

s Security & safety

Recoverability

Fault tolerance

Maturity

Failure prevention

Fault detection

Tim
e behavior

Resource behavior

Fu
nc

. a
de

qu
ac

y

Un
de

rs
ta

nd
ab

ilit
y

Test
Process
Quality

Ref. Standard Observed Process

Figure 6.11: Process Quality Profile:
Sub-attribute Level

Evaluation matrix
Not all of the evaluation attributes and/or sub-attributes proposed in section 6.3.1.2 may
be associable to each element of the software test process mentioned in section 6.3.1.1.
The relevance of each quality attribute to test process elements must be defined in some
fashion. An evaluation matrix is created to establish connection between these two aspects.
This matrix has to be derived based on requirement specifications, test process goals, and
test specifications. Application of this kind of matrix as a method to specify and evaluate
software quality requirements supporting managerial decision-making during the software
life cycle has earlier been found in [Salvaneschi, 2005].

Furthermore, importance of different evaluation attributes may vary depending upon a
particular scenario. For instance, for testing of a usual software application, efficiency
and visibility & control of the test process may be more important as compared to other
evaluation attributes while for testing of a safety critical application, functionality and re-
liability attributes may receive more concern. To express this significance weights can
be assigned to the evaluation attributes. These weights can range from 0 (non-relevance)
to 1 (applicable and fully important). The weights must be selected very carefully based
on expert opinions or through a more sophisticated technique such as analytic hierarchy
process (AHP) [Saaty, 2000]. Figure 6.12 shows this evaluation matrix may look like. A
first view of this quality matrix contains only weights of sub-attributes corresponding to
relevant process elements. Other views of this matrix are formed in the later stages of the
evaluation process when quality indexes .

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

118 6 Light-TPEF: The Test Process Evaluation Framework

ReliabilityEfficiency Usability

ComplexityTime
Behavior Productivity UnderstandabilityResource

Behavior
Fault

ToleranceMaturity

Hardware

Tools

Personnel

...

Documentati
on

Test cases

...

Techniques

Reviews

R
es

ou
rc

es
Te

st
w

ar
e

M
et

ho
ds

Process Evaluation Attributes

Te
st

 P
ro

ce
ss

 C
om

po
ne

nt
s

To be populated with desired/selected attribute weights and computed

quality indexes

Figure 6.12: A sketch of the Evaluation Matrix

6.3.2 Core Component

As mentioned in section 6.2.1 above about the presentation format of the framework,
BPMN has been opted for graphical notation to be used to explain phases of evaluation
process. Recalling the figure 6.3 found earlier in this chapter about framework com-
ponents, it is found that core component of this evaluation framework has been derived
from ISO/IEC 14598-5 Information technology–Software product evaluation–Part 5: Pro-
cess for evaluators and IEEE Std. 1061-1998 Standard for a Software Quality Metrics
Methodology and is reinforced by support components S1, S2, S3, S4, S5 explained in
sections 6.3.1.1 through 6.3.1.5. To maintain simplicity and conciseness, the evaluation
process has been designed to comprise three sub-processes as seen in figure 6.13. It shows
inputs and outputs to each sub-process in the form of data objects while the support com-
ponents S1, S2, ...S5 etc are shown as text annotations attached through an association to
respective sub-processes.

The first sub-process, specify evaluation process requirements, involves defining and
prioritizing precise evaluation goals in the form of evaluation attributes/sub-attributes, fi-
nalizing the entities of interest for the evaluation, and developing relationships between the
both. It takes candidate evaluation goals (G), candidate test entities (E), and testing pro-
cess requirements (R) as input and produces selected evaluation goals (G′), selected test
entities (E ′), evaluation criteria (EC) consisting of attributes and sub-attributes of con-
cern, and an initial evaluation matrix (EvalMat) defining relationships among test entities
and evaluation attributes/sub-attributes. These outputs are fed into the second sub-process,
specify software measures, which selects and defines test measures to answer evaluation
goals, sets measurement thresholds, and establishes and prioritizes relationships among
measures and evaluation attributes/sub-attributes. This sub-phase produces a set of selected
measures (M ′), measurement thresholds (MT), and a second version of evaluation matrix
(EM ′) which is now enhanced by association of measures to their respective attributes/sub-
attributes of evaluation. The outputs from these first two sub-processes are used by the third
and final sub-process, perform process measurement & evaluation, in which actual mea-
surement values are collected and are processed to produce different views of quantitative
judgements about test process. A final evaluation report (ER) is output that contains details
of strong and weak areas of test process and improvement suggestions.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 119

+

EP1
Specify process

evaluation
requirements

+

EP2
Specify software

measures

+

EP3
Perform process
measurement &

evaluation

EP: Evaluation Process for Software Test Processes

G, E, R

G', E', EM, EvalMat

ER
M', MT, EvalMat'

Supported by:
S1, S2

Supported by:
S4

Supported by:
S3, S5

Figure 6.13: BPMN Diagram of Top Level Evaluation Process

Table 6.3: Top Level Evaluation Process

EP: Evaluation Process for Software Test Processes

Support items S1, S2, S3, S4, S5
Inputs G – goals

E – candidate test entities
R – test requirements

Process - Specify process evaluation requirements
- Specify software measures
- Perform process measurement & evaluation

Outputs ER – evaluation requirements
ImprovementSuggestions

The graphical representation of the evaluation process by means of BPMN diagrams is
supplemented by a textual/semi-formal description using a customized SIPO process mod-
eling methodology. As introduced earlier in section 6.2.1 and summarized in figure 6.2
above, the element ’S’ has been appended to ’IPO’ methodology to refer to support compo-
nent S1, S2, ...S5 etc which guide the various phases of evaluation process. Each process
phase modeled with BPMN diagrams in this text will also be exemplified by corresponding
SIPO model. Sub-processes which contain only atomic phases (tasks) will not be modeled
here using BPMN, they will be modeled using SIPO methodology alone. Table 6.3 is the
SIPO model of the top level evaluation process shown by figure 6.13.

6.3.2.1 Sub-process: Specify process evaluation requirements

This section explodes the sub-process, specify process evaluation requirements, into four
sub-processes. Figure 6.14 and table 6.3.2.2 visualize these details. The first sub-process,
stipulate information needs, produces a list of selected evaluation goals (G′) based on di-
verse sources of information such as test requirements (R), and organizational/business
goals (G). The next sub-process, delimit entities of evaluation, shortlists entities of test

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

120 6 Light-TPEF: The Test Process Evaluation Framework

process (E ′) to be evaluated from a list of possible test entities (E). The third sub-phase,
prescribe evaluation goals, uses the list of selected evaluation goals (G′) and an initial ver-
sion of evaluation criteria (EC) to develop a refined evaluation criteria (EC ′) consisting of
evaluation attributes and sub-attributes of concern for present project. The fourth and last
sub-process in this sequence, prioritize evaluation goals, defines relationships among eval-
uation attributes/sub-attributes and testing entities and prioritizes these relationships. This
phase uses the set of selected goals (G′), the selected test entities (E ′), and refined evalu-
ation criteria (EC ′) to produce an evaluation matrix (EvalMat) which captures priorities
of attribute-entity relationships.

+

EP1.1
Stipulate

information needs

+

EP1.2
Delimit entities of

evaluation

+

EP1.3
Prescribe

evaluation goals

EP1: Specify process evaluation requirements

G, R

G'
EM'

E'

Supported by:
S2

Supported by:
S2

Supported by:
S1

+

EP1.4
Prioritize

evaluation goals

E
EvalMat

Supported by:
S2

EM

Figure 6.14: BPMN Diagram of Specify process evaluation requirements Sub-process

Table 6.4: Sub-process: Specify process evaluation requirements

EP1: Specify process evaluation requirements

Support items S1 – target
S2 – criteria

Inputs G – goals
E – candidate test entities
R – any test process requirements

Process - Stipulate information needs
- Delimit entities of evaluation
- Prescribe evaluation goals
- Prioritize evaluation goals

Outputs G′ – refined goals
E ′ – selected test entities
EC – candidate evaluation criteria
EvalMat – evaluation matrix

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 121

Stipulate information
needs

For the sake of brevity, BPMN diagrams will be sacrificed while describing the sub-
processes which contain only atomic level activities (tasks), they will be modeled using
only SIPO methodology. Table 6.3.2.1 models the inner lifecycle of stipulate information
needs sub-process. The tasks begin with identification of all possible kinds of evaluation
requirements. These requirements are refined based on strategic, business, and project
goals resulting in a list of selected evaluation goals (G′).

EP1.1: Stipulate information needs

Support items S2 – criteria
Inputs G – goals

R – test process requirements
Process - Identify a list of possible evaluation requirements

- Identify business/internal evaluation requirements
- Identify information needs to be addressed
- Document results

Outputs G′ – refined goals

Delimit entities
of evaluation

Table 6.3.2.1 summarizes the low-level tasks that make up this sub-process which is re-
sponsible for defining scope of evaluation. Using the information given in target (S1)
component and taking the set of candidate test entities, the tasks shortlist the set of test
entities of interest for present evaluation. A set of selected entities (E ′) is the output from
this sub-process.

EP1.2: Delimit entities of evaluation

Support items S1 – target
Inputs E – candidate test entities
Process - Identify all possible entities of evaluation

- Identify present entities of interest
- Document results

Outputs E ′ – selected test entities

Prescribe evaluation
goals

This sub-process concentrates on defining the evaluation goals and attributes. With the help
of criteria (S2) component, the preliminary evaluation criteria (EC) and input of selected
evaluation goals (G′) from the previous sub-process, top-level evaluation attributes are
first defined based on current project and business contexts. Relevant sub-attributes are
then assigned to these attributes and defined accordingly producing a selected and defined
evaluation criteria (CM ′).

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

122 6 Light-TPEF: The Test Process Evaluation Framework

EP1.3: Prescribe evaluation goals

Support items S2 – criteria
Inputs G′ – refined goals

EC – evaluation criteria
Process - Identify all possible evaluation attributes

- Identify evaluation attributes in accordance with business
needs
- Define evaluation attributes
- Identify evaluation sub-attributes
- Define evaluation sub-attributes
- Document results

Outputs EC ′ –refined evaluation criteria

Prioritize evaluation
goals

The outputs from the last two sub-processes, the set of selected entities (E ′) and selected
evaluation criteria (EC ′) still stand alone in their positions and need to be connected to
each other reflecting the relevance and importance of each attribute for each test entities.
In doing this, the tasks of this sub-process use the information provided by target (S1) and
criteria (S2) components. Relative significance of attributes/sub-attributes are defined with
the help of quality weights and are recorded in a so called high-level evaluation matrix
(EvalMat).

EP1.4: Prioritize evaluation goals

Support items S1 – target
S2 – criteria

Inputs E ′ – selected test entities
EC ′ – refined evaluation criteria

Process - Connect evaluation attributes/sub-attributes with entities
- Prioritize evaluation attributes/sub-attributes
- Build high-level evaluation matrix
- Document results

Outputs EvalMat – evaluation matrix

6.3.2.2 Sub-process: Specify software measures

The specify software measures sub-process is mainly concerned with establishing a system
of test measures. Figure 6.15 and table 6.5 exemplify its structure. It is composed of
three further sub-processes. The first sub-process, select and define measures, exploits
the list of selected test entities (E ′) and candidate test measures (M) to arrive at a list of
selected test measures (M ′). The support component, assessment techniques (S1), serves
as guidelines for activities of this sub-process. The subsequent sub-process, determine
measurement thresholds, takes the list of selected measures (M ′) as input and assigns the

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 123

acceptable values ranges to these measures. This phase uses the information provided in the
process yardstick (S5) support component and produces a list of measurement thresholds
(MT). The third sub-process, define relationships between measures & attributes, is about
assigning metrics to evaluation attributes/sub-attributes and prioritizing these relationships.
These activities are governed by the information given in assessment techniques (S3) and
yardstick (S5) support components. The inputs to this sub-process selected evaluation
criteria (EC ′) and selected measures (M ′) are used to produce a next version of evaluation
matrix (EvalMat′) which has measures attached to attributes/sub-attributes.

+

EP2.1
Select & define

measures

+

EP2.2
Determine

measurement
thresholds

+

EP2.3
Define relationships

between measures &
evaluation attributes

EP2: Specify software measures

E', M M' EM'MT

Supported by:
S3

Supported by:
S3, S5

Supported by:
S3, S5

EvalMat'

Figure 6.15: BPMN Diagram of Specify software measures Sub-process

Table 6.5: Sub-process: Specify software measures

EP2: Specify software measures

Support items S3 – assessment techniques
S5 – yardstick

Inputs E ′ – selected test entities
EC ′ – refined evaluation criteria
EvalMat – evaluation matrix

Process - Select and define measures
- Determine measurement thresholds
- Define relationships between measures & attributes

Outputs M ′ – selected measurements
MT – measurement thresholds
EvalMat′ – evaluation matrix with measurements

Select and
define measures

It is the first elements of the above mentioned sub-process specify software measures. The
tasks exploit the information from assessment techniques (S3) component and the inputs
selected test entities (E ′) and candidate test measures (M). Specific and applicable mea-
sures to be used are selected and defined. The tasks of this sub-process produce a set of
selected test measures (M ′).

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

124 6 Light-TPEF: The Test Process Evaluation Framework

EP2.1: Select and define measures

Support items S3 – assessment techniques
Inputs E ′ – selected test entities

M – candidate measures
Process - Identify list of all candidate measures

- Select and define specific measures
- Document results

Outputs M ′ – selected measures

Determine measurement
thresholds

This sub-process is supported by assessment techniques (S1) and yardstick (S5) com-
ponents and takes as input the list of selected test measurements to assign measurement
thresholds to each of them. These desired value serve as measurement goals which help to
develop a picture of ideal testing process sought by the organization. The tasks generate a
set of measurement thresholds (MT).

EP2.2: Determine measurement thresholds

Support items S3 – assessment techniques
S5 – yardstick

Inputs M ′ – selected measurements
Process - Define measurement thresholds

- Document results
Outputs MT – measurement thresholds

Determine measurement
thresholds

After the measures have been defined, they need to be linked with the attributes for which
they provide some evaluative value. Information provided by criteria (S2) and assessment
techniques (S3) components will be helpful in establishing this. The tasks will need the
selected evaluation criteria (EC ′) and selected measures (M ′) elements. These measures
could also be (optionally) prioritized reflecting their relative significance. These relation-
ships will be recorded in the form of a low-level evaluation matrix (EvalMat′) which will
be output to the next phase.

6.3.2.3 Sub-process: Perform process measurement & evaluation

The third and last element of the top level evaluation process is the perform process mea-
surement & evaluation sub-process. This phase involves collection of actual measure-
ments, building qualitative views about the worth of the testing process, and reporting final
evaluation results and suggesting improvements. Figure 6.16 and table 6.6 summarize con-
figuration of this sub-process. It consists of another three sub-processes. The first of them,
collect measurement data, is responsible for managing the collection of measurement val-
ues and related issues of refining and validating them. It does so with the help of guidelines

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.3 Framework Components 125

EP2.3: Define relationships between measures & attributes

Support items S2 – criteria
S3 – assessment techniques

Inputs EC ′ – selected evaluation criteria
M ′ – selected measurements

Process - Assign measures to sub-attributes
- Prioritize measures
- Build low-level evaluation matrix
- Document results

Outputs EvalMat′ – evaluation matrix with measurements

+

EP3.1
Collect measurement

data

+

EP3.2
Compute quality

indexes

+

EP3.3
Develop & report

results

EP3: Perform process measurement & evaluation

M' EvalMat'' E', EM’M', EvalMat'

Supported by:
S4

Supported by:
S5

Supported by:
S4

ERComputed Measures

Figure 6.16: BPMN Diagram of Perform process measurement & evaluation Sup-process

from the synthesis techniques (S4) component, and with inputs of selected test entities (E ′)
and selected measures (M ′). This phase results in a set of computed test measures. The
next sub-process, compute quality indexes, is dedicated to transform computed test mea-
sures into qualitative judgements about the state of the testing process. These are in the
form of numerical quality scores referred by quality indexes in this text. Using the infor-
mation from synthesis techniques (S4) support component and inputs as selected measures
(M ′), their computed measurement values, and evaluation matrix (EvalMat′), this sup-
process delivers a further refined version of evaluation matrix (EvalMat′′) which contains
values of quality indexes relevant to all attributes/sub-attributes and test entities. The third
and last of these sub-processes is the develop and report results phase. It is about describing
aforementioned qualitative information about test process at a higher level of abstraction
highlighting strong and weak process areas. This phase is also responsible for developing
appropriate improvement suggestions. The whole evaluation process culminates with com-
pletion of activities within this sub-process. The inputs to this sub-process are selected test
entities (E ′), refined evaluation criteria (EC ′), and evaluation matrix (EvalMat′′) while
evaluation report (ER) is the final output.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

126 6 Light-TPEF: The Test Process Evaluation Framework

Table 6.6: Sub-process: Perform process measurement & evaluation

EP3: Perform process measurement & evaluation

Support items S4 – synthesis techniques
Inputs E ′ – selected test entities

M ′ – selected measured
EC ′ – refined evaluation criteria
EvalMat′ – evaluation matrix with measurements

Process - Collect measurement data
- Compute quality indexes
- Develop and report results

Outputs ER

EP3.1: Collect measurement data

Support items S4 – synthesis techniques
Inputs M ′ – selected measurements
Process - Collect base measurements

- Compute measurement values
- Normalize measurement values
- Document results

Outputs Computed measurement values

Collect measurement
data

For performing the actual measurement and evaluation the first step is the collection and
refinement of the crude measurement data. This typically involves capturing base measures
out of which other hybrid measures are computed. These measurements have to be normal-
ized to a common ratio scale to enable computation of next higher level of quality score out
of these measurements. The guidelines given in synthesis techniques (S4) component will
help guide this process. The tasks use the set of selected measurements (M ′) to produce a
set of computed measurements.

Compute quality
indexes

The measurements collected and computed in the previous sub-process are converted into
quantitative evaluations at the sub-attribute and attribute level which are here called quality
indexes. Computations of these quality indexes need guidelines and formulas provided in
synthesis techniques (S4) component. The tasks additionally use the set of selected mea-
surements (M ′) and the evaluation matrix (EvalMat′) to yield another version of evalua-
tion matrix (EvalMat′′) containing this time the computed quality indexes.

Develop and
report results

This is the final phase of the whole evaluation process which converts the all the process
measurements into interpretable quality judgements which are meaningful to test man-
agers or other such people. The results are compared against the established goals and

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.4 Summary 127

EP3.2: Compute quality indexes

Support items S4 – synthesis techniques
Inputs Computed measurement values

M ′ – selected measurements
EvalMat′ – evaluation matrix with measurements

Process - Compute private quality indexes
- Compute integral quality indexes
- Document results

Outputs EvalMat′′ – evaluation matrix with all quality indexes

benchmarks. The yardstick (S5) support component provides ways through which such
comparisons could be executed. This gives rise to identification of strong and weak areas
of process and an evaluation report (ER) about needed improvements.

EP3.3: Develop and report results

Support items S5 – yardstick
Inputs E ′ – selected test entities

EC ′ – selected evaluation criteria
EvalMat′′ – evaluation matrix with all quality indexes

Process - Draw desired-quality graph
- Draw measured-quality graph
- Identify strong and weak areas of process
- Identify potential improvements
- Document results

Outputs ER – evaluation report

6.4 Summary

Moving towards the next phase of research project, i.e. proposal and development of an
improved solution, this chapter addressed the fourth sub-question of current research task,

RT-4. Bring forward the concept of a comprehensive approach that fills the
gaps marked by research on RT-3 as well as which satisfies requirements set forth
in RT-1/RT-2.

After a step-by-step analysis of the current test evaluation approaches for provision of
established criteria, the previous chapter highlighted the areas where the available mod-
els exhibited weaknesses. This provided a rationale for an improved and complemental
solution for the discussed problem domain. It was concluded that in addition to special
consideration for measurement based explicit evaluations of test process, the solution must

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

128 6 Light-TPEF: The Test Process Evaluation Framework

Table 6.7: Mapping of Method Criteria to Evaluation Framework

Criteria Test Process Evaluation Framework
Status Found in

C1: Scientific rigor
C1.1: Target

√
Section 6.3.1.1

C1.2: Criteria
√

Section 6.3.1.2
C1.3: Yardstick

√
Section 6.3.1.3

C1.4: Assessment techniques
√

Section 6.3.1.4
C1.5: Synthesis techniques

√
Section 6.3.1.5

C1.6: Evaluation process
√

Section 6.3.2

C2: Utilization of Measurement
√

Section 6.3.1.4

C3: Utilization of Standards
√

Section 6.3.2

C4: Size
√

Overall model design

C5: Style
√

Overall model approach &
Section 6.3.1.4

be derived from science and theory of evaluations, be based on any relevant standards, and
that it be low cost light-weight approach.

To care for these requirements, the proposed approach was built from an in-depth survey
of the software testing field (rendered in chapter 2), perusal over the theory of systematic
evaluations (accomplished in chapter 3), and guidelines derived from ISO standard on
software measurement process and IEEE standard on applying software quality metrics.
The design and content of the intended approach matched with the some requirements
of TMM maturity level 3 (about using measurements for controlling and monitoring test
process progress) and 4 (setting up a test measurement program).

The intended solution initially introduced as an abstract concept was filled with enough
details to form a complete framework and to be able to

conceptual framework was upgraded to an evaluation model for test process with enough
details to implement it in practical environments. The widely known graphical tool–
Business Process Modeling Notation (BPMN) and an adapted version of a simple textual
process modeling methodology–Input, Process, Output (IPO) were chosen as representa-
tion techniques for the evaluation framework.

The chapter introduced the framework as a collection of six components altogether, di-
vided into two groups. The design of these six components was in strict correlation to
the six core elements of evaluation required by the first criterion (C1). The first five of
these components (target, criteria, yardstick, assessment techniques, synthesis techniques),
named support components, were of informative nature and were explained with all rele-
vant details derived from research on testing knowledge areas earlier in the thesis. These
five components were connected to and supported the sixth component, evaluation pro-
cess, which was called a core component. The process modeling techniques chosen earlier
(BPMN and SIPO) were used to steps of the test evaluation process. While the structure

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

6.4 Summary 129

of the model was in line with the first criterion (C1), the content of the model components
helped meet rest of the criteria (C2 through C5).

The chapter has presented a novel approach to evaluation of software testing processes
in accordance with the set forth criteria and the marked shortcomings in the available so-
lutions of its kinds. Table 6.7 maps the required criteria to the elements of the developed
evaluation framework. The table clearly signs the achievement of the intended model goals.
Consideration of the implementation scenarios and exercising the concept for a practical
use is now left for the next chapter.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

131

7 Implementation & Validation of
Light-TPEF

The framework introduced in the previous chapter provides only principal structure of the
solution to the research problem. The approach cannot really be appreciated without an
operational example of its application. This chapter concerns with the practical imple-
mentation of the framework concept. Development of a working evaluation process model
using appropriate technologies is explained. The chapter further discusses integration of
the model in an actual business process and another example case study.

7.1 Introduction

Although that the presented model seems to provide structure of a test process evaluation
approach to support the improvement of software testing processes, yet its correctness,
adequacy and generality needs to be tested to gain confidence in the suitability of the so-
lution. Furthermore, applicability and acceptance of a scientific research work depends on
its ability to demonstrate its worth for practice. Without provision of any kind of proof of
concept, the research at hand would merely be of the often criticized [Glass et al., 2004]
’formulate process/method/algorithm’ type missing any evaluations.

Software engineering researchers adopt a number of ways to validate developed methods
or processes. The choice of a particular techniques is driven by the nature of the addressed
problem, the nature of the developed solution, the research environment, time and other
such elements. Experimentation or empirical validation is one broad class of such tech-
niques. Zelkowitz and Wallace [Zelkowitz and Wallace, 1997] identified three categories
of experimental validation techniques as observational (collect data as a project devel-
ops), historical (collect data from completed projects) and controlled (multiple instances
of data collection with statistical analysis). Other classes of validation approaches men-
tioned by Shaw [Shaw, 2001] include persuasion, implementation, evaluation, analysis,
and experience. However, the author of the thesis reorients these types of validation tech-
niques by stressing that every research work first needs to be analyzed if it really solves
the problem that it purports to solve, a kind of validation to be named as internal/the-
oretical. Next, to prove its value for practice, another practical validation can be per-
formed for which any of the techniques classed by Shaw [Shaw, 2001] or Zelkowitz and
Wallace [Zelkowitz and Wallace, 1997] mentioned earlier could be followed. The inter-
nal/theoretical validation is implicitly performed as the main and sub-questions of research
are mentioned across previous chapters and that the Chapter 6 begins with explanation
of connection between research problem/research questions and the to-be-proposed eval-
uation framework. In its summary in section 6.4 the chapter also provides a one-to-one
mapping between required criteria and the elements of the developed model which ad-

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

132 7 Implementation & Validation of Light-TPEF

dress them. It is a kind of assertion (from the class of observational approaches mentioned
in [Zelkowitz and Wallace, 1997]) technique which is generally considered to have a value
judgement. Therefore, the requirement of first kind of validation is assumed to be met al-
ready. The next sections discuss the development of a working solution that is exemplified
to fit in current industrial environments.

7.2 Development of a Working Solution

Goal
The description of the evaluation process given in the last chapter has a semi-abstract na-
ture. It is a kind of meta-level information in the sense that it just imposes a structure or
framework on a possible concrete evaluation process. However, the modeling of the evalu-
ation process with BPMN diagrams and SIPO methodology provides a partial picture of an
approach from which an actual evaluation process could be instantiated. The goal of this
section to discuss how existing modeling techniques and technologies can be used to con-
vert it into a fully working evaluation process model suited to a process oriented software
engineering environment.

Process model
A software process model is a representation of the software engineering process using
a process modeling language. Software process models embody the sequence of activi-
ties, roles/responsibilities performing those activities, artifacts produced or consumed in
activities, and any tools exploited during process tasks. Process models impose an overall
structure over the process activities, while a process is an actual instantiation of it. Thus,
process models can be reused by creating more than one instantiations of it. Software
process models are developed to meet several objectives. They help us to facilitate un-
derstanding and communication among different stakeholders. This way processes can
be manually or automatically monitored, measured, and evaluated thus supporting their
efficient management.

Process modeling
languages

Software process models can be designed using a diverse set of process modeling
languages. Many different types of process modeling languages and notations ex-
ist [Zamli, 2004] that can be used based on the target of application. These include, among
others, rule-based, graphical, executable, non-executable, state-based, and hybrid lan-
guages. However, more generally they can be classed as either executable, non-executable,
or simulated languages. Non-executable or non-enactable languages are used when one is
only interested in semantics of process activities with the goal of understanding process
structure. Executable or enactable languages are used when the activities of software en-
gineers are to be supported through a model which automates some of the process tasks.
Such enactment is even more useful in a distributed environment where well organized
synchronization among process activities is needed.

Business process
Today’s dynamic markets and economy have posed great challenges for companies in pro-
viding better and specific products to their customers. The concept of business process
management evolved around 1990s to enable companies to gain competitive advantages in

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.2 Development of a Working Solution 133

the markets. In this context, a business process is defined by Weske [Weske, 2007] to be a
set of activities that are performed in coordination in an organizational and technical envi-
ronment which jointly realize a business goal. A business process model is a description of
these business activities modeled using an appropriate business modeling language or nota-
tion. Modeling of business processes offers similar benefits [Havey, 2005, Ch. 1] as do the
software process models. There exist several modeling languages and notations for busi-
ness processes too [Lu and Sadiq, 2007] some of which are for non-executable graphical
representations only while others are with executable features. Among these, BPMN being
a widely adopted graphical process modeling notation has already been used to provide
details of the test evaluation process.

XPDL
Different business process modeling tools support a slightly varying sets of modeling
notations. It is essential that a process designed by one tool is still usable by an-
other tool which uses a different modeling elements. XML Process Definition Language
(XPDL) [WfMC, 2008] is an XML-based file format standardized by the Workflow Man-
agement Coalition (WfMC) that can be used to interchange process models between var-
ious design tools. The XPDL and the BPMN specifications address the same modeling
problem from different perspectives. The official XPDL specification [WfMC, 2008] ex-
plains relationships between each of BPMN and XPDL modeling elements. Several tools
exists that can convert a business process represented in BPMN to an equivalent in XPDL
format. The test evaluation process can also be transformed to XPDL version through the
use of these tools. Although that the XPDL process is not designed to be executable, yet
some execution engines are available that can directly enact a process stored in this format.

WS-BPEL
Web Services Business Process Execution Language Version 2.0 (WS-BPEL or shortly
only BPEL) [OASIS, 2007] is an XML-based standard executable language that can model
behavior of both abstract and concrete (executable) business processes. BPEL Abstract
Processes are partially specified, serve communication and descriptive roles, and lack op-
erational details. The BPEL Executable (concrete) Processes on the other hand contain full
details of the process behavior and specifications. BPEL does not contain elements to rep-
resent the graphical aspects of a process behavior. However, a mapping between the BPEL
elements and the corresponding BPMN graphical equivalent is provided in BPMN specifi-
cation [OMG, 2006]. Many tools exist that offer transformation of processes modeled with
BPMN into WS-BPEL.

Approach
In today’s enterprise environments there is a need to reduce the gap between the organi-
zational aspects of business problems and the technical aspects of information technology
that is used to solve these problems. Software processes, test processes, as well as the
evaluation processes of the kind developed by in this thesis being on the software side
can be represented as a business process on the other end thus bridging the gap between
information technology and business issues. To achieve this, the approach summarized
in figure 7.1 can be followed. Several process modeling tools support designing business
processes using BPMN notation. They provide to serialize these processes in XPDL pro-
cess exchange language. Other transformation tools can convert a BPMN process either
into BPEL or XPDL process. With the inclusion of semantic information about process
execution, either of the XPDL or BPEL processes can be executed by a process execution

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

134 7 Implementation & Validation of Light-TPEF

Transformation Tools

Process Execution Engines

Business Process in XPDL

Business Process in BPEL

Design Tool Y Design Tool X

Business Process in BPMN

Figure 7.1: Relationships among Business Process Technologies

engine.

Implementation
Since the Light-TPEF is roughly an abstract structure of evaluation procedures, first a pre-
cise software process and/or a business process needs to be constructed out of it. Figure 7.2
outlines the approach followed in this thesis for construction of an executable business
process based on the Light-TPEF framework. In addition to introducing the evaluation
framework, the previous chapter, by the use of BPMN diagrams for describing Light-TPEF
framework, has also partially developed this business process. The developed business pro-
cess next needs to be transformed to an executable form using an appropriate process mod-
eling language. A well known open source business process modeling tool called TIBCO 1

Business StudioTMis being used here to first model the Light-TPEF and then to convert it
to XPDL. A process execution engine will then be able to execute this evaluation process
in an actual business setting. TIBCO is itself capable of executing the processes. Another
option used in this approach is to send the XPDL version of the Light-TPEF to another
simpler process execution engine. Enhydra Shark 2 is being referred here to enact the de-
veloped XPDL evaluation process. Shark is a Java-based open source workflow server
which can directly execute processes written in XPDL format.

Figure 7.3 and 7.4 show screen shots of the Light-TPEF process model developed inside
TIBCO Business Studio. Only the top level view of the evaluation process is visible in
the first figure while the second shows a sub-process of the test evaluation process. This
tool organizes related processes and sub-processes into a so called process package. All
process packages are part of the root level project. The tool saves each process package in a
separate XPDL file. Figure 7.5 shows the XPDL-based view of the designed test evaluation
process. The actual enactment of the process is not provided here as it can only be done in a
real problem setting which needs appropriate inputs from an implemented testing process.

1http://www.tibco.com/devnet/business_studio/default.jsp
2http://www.enhydra.org/workflow/shark/index.html

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.tibco.com/devnet/business_studio/default.jsp
http://www.enhydra.org/workflow/shark/index.html

7.2 Development of a Working Solution 135

P
rocess E

xecution

Light-TPEF Evaluation Fram
ew

ork
(C

oncept)

Graphical
(BPMN)

Textual
(SIPO)

BPMN to
XPDL/BPEL

conversion tool

TIBCO Business Studio™
<<tool>>

Light-TPEF
Executable Process

Process
Execution

Engine

Enhydra Shark TWS
<<tool>>

Figure 7.2: Implementation Approach for the Evaluation Process

Figure 7.3: Implementation of top-level Evaluation Process in TIBCO Business Modeler

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

136 7 Implementation & Validation of Light-TPEF

Figure 7.4: Implementation of an Embedded Sub-process in TIBCO Business Modeler

Figure 7.5: XPDL view of Evaluation Process in TIBCO Business Modeler

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.3 SOA Testing Background 137

7.3 SOA Testing Background

This section introduces the application environment and related fundamentals of the cho-
sen area in which the developed Light-TPEF approach will be exemplified. Being the
latest trend in the development of modern business applications, systems based on service-
oriented architecture (SOA) motivated the author to select it as an application scenario for
the test evaluation framework.

7.3.1 SOA Revisited

Service-oriented
computing elements

Service-oriented computing represents a new generation of the older systems built around
the concepts of distributed computing and modular programming. It is completely new art
and science of system architecture, design, and development involving unique design prin-
ciples, design patterns, and new concepts, technologies, and frameworks. This new style of
software system structure is aimed at improving efficiency, agility, and productivity and en-
ables creation of enterprisewide and cross-enterprise flexible, dynamic business processes
and agile applications. [Erl, 2007] defines and describes following primary elements of a
service-oriented computing platform (also summarized in the accompanying figure 7.6),

• Service-oriented architecture:
With the proliferation of literature about this new paradigm the term "service-
oriented architecture" or the SOA have wrongly become synonym with the service-
oriented computing itself. An SOA is an architectural model whose implementation
can consist of a combination of technologies, products, APIs, and supporting infras-
tructure extensions etc.

• Service-orientation:
It refers to a kind of style or design paradigm to provide functionality around the con-
cept of independently existing services. With reference to other design paradigms,
service-orientation broadly targets the separation of concerns.

• Service-oriented solution logic:
It originates from the application of service-oriented design principles to built the
solution logic

• Services:
A service provides some capability in a distinct functional context. It is a primary
building block of service-oriented systems and the resulting software programs as
services can be discovered, composed, instantiated, and executed at runtime.

• Service compositions:
Services may embody in themselves other services to provide some functionality.
Service composition thus involves systematic coordination among services to ad-
dress some related group of required functionalities.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

138 7 Implementation & Validation of Light-TPEF

Service-Oriented
Architecture

Service-Oriented
Design Paradigm

Service
Compositions

Service inventory

Service-Oriented
Solution Logic

Services

is designed
 to support the

 implementation
 of

is primarily
distinguished

by

provides principles
that shape the

design of

is designed to
 support the creation

 and evolution of

is designed
 to support the

 implementaton of

provides principles
 that shape the

 design of

are composed of

is comprised of is comprised
of standardized

can be
comprised of

draw from
 the

Figure 7.6: Elements of Service-oriented Computing [Erl, 2007, p. 41]

• Service inventory:
A service inventory is an independently standardized and governed collection of
complementary services within a boundary that represents an enterprise or a mean-
ingful segment of an enterprise.

SOA lifecycles
A short description of SOA-based systems has already appeared in this text in sec-
tion 2.2.2.2. The present discussion is aimed at drawing a picture of SOA systems so
as to discover points where any kind of software testing could be involved and later to
develop a picture of a SOA testing process. An analysis of SOA-related lifecycle phases
can reveal these points. However there exist several perspectives to look at lifecycles in
an SOA. One is to look at the service alone. A service is usually created, used, and en-
hanced but does not always live forever. It may cease to exist at some point in time when
it no longer provides a business value. Thus, the service goes through few phases along
its lifetime. However, the lifecycle of a service may be visualized from two other funda-
mental perspectives. From the point of view of provider, a service goes through vision,
requirement analysis, design, development, testing, deployment, operation, maintenance,
and phaseout cycles. From the view point of a consumer, it iterates through vision, discov-
ery, binding, invocation, change, and monitoring. Another perspective to SOA lifecycle is
held by IBM’s experts [Jr. et al., 2005] and [Woolf, 2008] where they interpret it with ref-
erence to adoption of a complete SOA solution as well as a SOA governance lifecycle. For
the SOA lifcycle, they divide it into model (capture business design), assemble (transform
business to IT design), deploy (application hosting), and manage (maintain operational en-
vironment and policies) stages. Based on these lifecycle scenarios of a SOA-based system
different levels and types of testing can be distinguished.

SOA research
issues

The rigor and flexibility of SOA-based systems comes with a price and confronts us with

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.3 SOA Testing Background 139

unique challenges [Stojanovic and Dahanayake, 2005][Papazoglou et al., 2007]. Some ex-
ample research issues in this context are business related (SOA strategy selection etc.),
engineering (process and lifecycle, development, quality assurance, testing, and main-
tenance etc.), operations (service monitoring and support etc.), and cross-cutting is-
sues (governance and stakeholder management etc.) [Kontogiannis et al., 2008]. One
issue among these engineering related research areas is quality assurance and test-
ing. Software testing itself is a complex task and its scope and objectives vary with
the applicable software engineering dimensions such as technology (object-oriented,
component-based, services-based etc.), development methodology (waterfall, agile, etc.),
and application systems (information systems, embedded systems etc.). The widespread
adoption of SOA-based solutions introduces rising concern for efficient and effective
testing methods but unfortunately testing SOA has not yet received adequate atten-
tion [Dustdar and Haslinger, 2004][Ribarov et al., 2007].

7.3.2 ITIL & SOA

ITIL stands for Information Technology Infrastructure Library. It is developed by the
United Kingdom’s Office of Government Commerce (OGC). ITIL is a widely accepted
approach to information technology service management (ITSM). The current version 3
of the ITIL library consists of five components which have been briefly described be-
low [Buchsein et al., 2008],

• Service Strategy:
Covers strategy development, demand management, and service portfolio manage-
ment for the prioritization of service provider investments in services

• Service Design:
guidance on the design of IT services, processes, and other aspects of the service
management effort. Beginning with the service portfolio management it provides
guidelines on service level management and supplier management.

• Service Transition:
Covers issues such as change management, service assessment configuration man-
agement, and release & deployment management.

• Service Operation:
Provides guidelines on event management, incident management, and request fulfil-
ment for the delivery of agreed levels of services both to end-users and the customers

• Continual Service Improvement:
Contains set of best practices for service measurement, service reporting, and service
improvement to aligning IT services to changing business needs.

These components tend to cover the gap between business and technology and focus
on processes needed to deliver effective services to business customers. The version 3 re-
flects a key improvement with increased focus on service management taking the lifecycle
approach to guiding IT services.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

140 7 Implementation & Validation of Light-TPEF

Service Level Management

Release Management

Change Management

Configuration Management

Incident Management
Service Desk

Service SupportService Delivery

Continuity Management

Finance Management

Availability Management

Capability Management Problem Management

Figure 7.7: ITIL Process Description for Service Management [Schmietendorf, 2007, p. 85]

ITIL and SOA are deeply connected to each other. The focus of ITIL v3 towards services
makes it more important for SOA. One key issue of SOA is governance while ITIL is also
mainly about IT service governance. [Schmietendorf and Dimitrov, 2006] mentions an
approach to manage service-oriented architectures with the application of ITIL. He outlines
to use ITIL for service support, service delivery, and as ITIL-conformance management of
SOA. Figure 7.7 summarizes the ITIL’s role for service management.

7.3.3 Existing Research on SOA Testing
Survey of SOA testing issues and research have been found in a couple of articles
such as [Parveen and Tilley, 2008], [Canfora and Penta, 2006],[Ribarov et al., 2007]. It
has been observed that the task of SOA testing is significantly different from that of or-
dinary software applications and even of distributed systems. It is further complicated
by a number of factors such as SOA testing perspectives (developer, provider, integrator,
etc), the elements to be tested (governance, architecture, technology etc), the SOA pecu-
liarities (absence of user interface and underlying code, etc), and testing levels and types
(unit, service-level, integration, functional, non-functional) etc. Figure 7.8 visualizes these
aspects involved within testing of SOA-based systems.

Service testing
process

Instead of covering all aspects of SOA testing which seems a considerably challenging
task, only a component of SOA, a service, will be considered here from testing viewpoint.
Testing of services closely resembles that of component-based systems. It is rather even
more complex due to peculiar characteristics of SOA systems. For example, lack of user
interface, distribution of functionality, composition and integration of services, and high
demands on performance and quality call for specialized testing techniques. Based on the
analysis of SOA and service test methodologies discussed in [Canfora and Penta, 2006],
[Ribarov et al., 2007], [THBS, 2007], following chief levels of service testing can be iden-
tified,

Reviews:
When requirements are being established and service is in design, traditional review

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.3 SOA Testing Background 141

SOA Testing

- Developer
- Provider
- Integrator
- Third-party certifier
- User

- Unit
- Integration
- System
- Functional
- Non-functional
- ...

- Absence of code
- Absence of user
interface
- Dynamic binding
- ...

- Architecture
- Governance
- Technologies
- Services
- ...

Testing perspectives

Testing elements SOA peculiaries

Testing levels/types

Figure 7.8: Aspects of SOA Testing

and inspection of documents and code is the first testing activity towards service
testing. No specialized review techniques for SOA systems have been found in liter-
ature.

Unit testing:
Unit testing of a service performed by its developers is much like unit testing of
ordinary software components which is aimed at verifying basic functionality of the
service in isolation. Code reviews, white-box and black-box testing techniques can
be applied at this stage. Despite the absence of any user interface, black-box tests
can be generated from service specifications. It is the most common type of service
testing which is widely supported by both commercial and open-source SOA testing
tools.

Integration testing:
A service also needs to be tested if it works well in collaboration with any other
intended services or components. Service integration testing establishes that service
interface follows defined format and standards. This is perhaps the most important
phase of service testing since SOA systems are meant to be an integration of several
services. Evolveability of services, unavailability of all the constituting components
or services, and dynamic and late binding nature of services sometimes complicates
this phase of service testing. Examples of integration test strategies for SOA in-
clude [Huang et al., 2008] and [Bucchiarone et al., 2007].

System testing:
Systems testing is aimed at testing the whole service-oriented system as a unity. This
testing level involves verifying the functional and non-functional characteristics of
the system. Acceptance testing is yet another type of SOA system testing.

Functional testing:
It applies both to an individual component/service or the whole SOA system to

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

142 7 Implementation & Validation of Light-TPEF

verify its conformance to business requirements or technical designs. In context
of services, this type of testing can be performed by sending a request to a ser-
vice and then analyzing the received response. Services can exhibit a number of
faults [Brüning et al., 2007] all along their lifecycle phases. These may occur dur-
ing publishing, discovery, composition, binding, and execution of services. Service
specifications help to generate test cases for the tests against these and other types
of functional misbehavior. Growing size of a service-oriented system needs more
sophisticated services which makes design of adequate tests covering all functional
characteristics a great challenge. Examples of functional testing of SOA systems
include [Sinha and Paradkar, 2006] and [Dranidis et al., 2007].

Non-functional testing:
Quality of the service is a crucial factor for its existence. Non-functional testing is
aimed at verifying QoS (quality-of-service) attributes [O’Brien et al., 2007] of ser-
vices. It checks to see if a service meets the demands on its reliability, efficiency,
usability, maintainability, security, and portability etc which are usually defined in
service level agreements (SLAs). The dynamics of service bindings and external
factors such as network or server load complicate this testing step. However, to-
day there are several tools on the market which support this type of service testing.
Approaches of non-functional testing of SOA systems include [Rud et al., 2007a]
and [Fu et al., 2004].

Regression testing:
After any phase of service testing is completed regression testing of services is per-
formed to ensure that any changes to service code, interface, or otherwise does not
introduce any new defects. It should be particularly performed after unit, integration,
functional and non-functional testing phases. Examples of regression test techniques
for services include [Penta et al., 2007] and [Ruth and Tu, 2008].

Acceptance testing:
Finally, a passage through user acceptance test moves a service-oriented system to its
implementation. Early involvement of business users and operational stakeholders is
a key to a comfortable user acceptance test of services.

Like traditional software testing, these testing activities inevitably consume at least some
portion of an service development project resources. Since optimization of development ef-
fort, time, and cost has always been prime concern of software companies, the choice even-
tually falls on analyzing testing processes for its efficiency and effectiveness. As has been
observed and mentioned earlier in section 2.2.2.2 that alongside invention of numerous test-
ing technique for SOA, empirical knowledge about their efficiency and effectiveness has
yet to be established. While there exist many techniques for evaluation of SOA implemen-
tation [Rud et al., 2007e], products [Rud et al., 2006], and resources [Zenker et al., 2007]
etc, dedicated techniques for the evaluation of service test techniques and processes has
been an ignored issue as yet, with the exception of an initial model called TPI SOA.

TPI SOA
TPI SOA [Eggink et al., 2008] is a recent customization of the well known process im-
provement model, TPI [Koomen and Pol, 1999], in the SOA context. The TPI SOA model

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.4 Light-TPEF: Application in an SOA Industrial Environment 143

Key Areas
(20+2)

Levels
(A, B, C, D)

Checkpoints

Test Maturity Matrix

TPI SOA

SOA Testing
Issues

Key Areas
(20)

Levels
(A, B, C, D)

Improvement
suggestionsCheckpoints

Test Maturity Matrix

TPI

New areas
 Structural changes

Textual changes

Figure 7.9: From TPI to TPI SOA

introduces five new process areas in addition to making few structural and textual changes
to existing process areas. The newly added key areas are shortly described below while the
figure summarizes the shift of TPI to TPI SOA.

• Service Registry:
Exploitation of service registry for development and test process

• SOA knowledge:
The existence and implementation of special testing knowledge in SOA context

• Availability of test basis:
Existence of details about test objects to serve as test basis

• Service integration:
The level of service testing if it has been modified

• Quality management:
Extent of implementing quality management procedures for test process and SOA
services

The new model is no doubt an initial endeavor to the complex world of SOA testing. The
new model lacks key areas specific to SOA governance testing, SOA metrics, and testing
the underlying technology and architecture etc. The model seems to cover only a few
service testing issues. Although that checkpoints can also serve as improvement guidelines,
dedicated improvement suggestions like TPI are not part of the currently available TPI
SOA.

7.4 Light-TPEF: Application in an SOA Industrial
Environment

This part of the thesis describes an industrial development situation as an example imple-
mentation scenario of Light-TPEF approach. The considered case is a service-oriented
development environment at the software division of a company in eastern Germany. The
identity of the company is withheld for the sake of anonymity and to avoid influences of
any company-related policies on the applicability of current research work.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

144 7 Implementation & Validation of Light-TPEF

Enterprise Architecture Management

SOA Initiative
management

Infrastructure
management

Provider
management

SOA service
management

Business
process

management

SOA strategy Analyze
maturity

Source service
from ext. provider

Service impl. testing,
and deployment

Process
operation

Exam. &
documentation

Model business
processes

Identify involved
processes

Process
analysis

Initiate business
process

Optimize
SOA gov.

Implement
SOA gov.

Plan SOA
implementation

Design SOA
gov. concept

Design
services

Service
versioning

Consolidate
logical data model

Analyze legacy
sys. components

Discover service
operations

Orchestrate &
deploy services

Figure 7.10: SOA Governance Model

7.4.1 Background of the Industrial Environment

Example SOA
governance model

Figure 7.10 shows an outline of this company’s approach to managing technical and busi-
ness/organizational issues related to implementation of SOA as its development strategies.
This is called a SOA governance model which is variably defined in literature and prac-
tice to comprise some necessary components. It is so because implementation of SOA
governance in enterprizes is a customization of technical and business approaches to solve
particular SOA related issues. The SOA governance model shown in figure 7.10 comprises
five modules, SOA initiative management (introducing SOA governance in an organiza-
tion), business process management (for planning, implementation, and operation of busi-
ness processes), SOA service management (covering service derivation, implementation,
orchestration, and deployment), provider management, and infrastructure management.
Each of these modules consist of several building blocks which organize activities to be
carried out. The building blocks are defined in a structured manner with the details about
their task descriptions, inputs/outputs and involved roles. The figure 7.10 also highlights
three building blocks of interest to the current example.

The first building block of interest in the current situation is process analysis. It
is aimed at identifying and analyzing requirements for all new processes or adjusting
pre-existing processes with any new requirements that grow as the business process
evolves. The first activity inside this building block determines the boundary conditions
for the process such as time, technical and business constraints. The functional and
non-functional requirements for the process are identified next. These requirements are
derived from requirement specification documents and service-level agreements (SLAs).

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.4 Light-TPEF: Application in an SOA Industrial Environment 145

These requirements are then assessed to find out effort involved and then prioritizing them.
The next phase captures and records all relevant data to these processes. Summary of the
process analysis building block is given below,

Process analysis

Participating roles:

Business project team

Activities:

– Determination of boundary condition

– Determination of functional and non-functional requirements

– Estimation of requirements

– Process survey

The next building block of interest, process operation, is concerned with the evaluation
of business processes. The first activity measures the time related aspects of the process
phases. The measurement data so obtained is statistically processed to draw any conclu-
sions about its progress. Summary of this building block follows next,

Process operation

Participating roles:

Business process owner, IT process owner, SOA service manger, System and
database administrator

Activities:

– Business activity monitoring

– Processing of results

– Interception

The service management module includes a building block responsible for imple-
mentation, testing, and deployment of services. Specifically, the test part starts after the
service has been implemented. Service code is reviewed and service is tested. Successful
acceptance tests send the service to deployment step. Several roles are involved at this
stage such as service manager, testing specialist etc. However, testing of service-oriented
systems is not as simple as seems to be from the description of this building block. Service
testing involves several levels of testing described earlier but not visible here. Considering
the complexity and breadth of testing issues involved in SOA perspective, this building
block however seems to provide insufficient information. Its summary is given below,

Service implementation, testing, and deployment

Participating roles:

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

146 7 Implementation & Validation of Light-TPEF

IT domain leader, Business analyst, SOA service manager, Testing specialist,
Deployment manager, Business process owner, Head of line of business, IT
process owner, IT project manager

Activities:

– Plan implementation project

– Negotiate implementation project plan

– Start implementation project

– Implement service

– Test service

– Review code

– Perform user acceptance test

– Deploy service

– Update service meta-data and endpoint reference

7.4.2 Adaptation of Light-TPEF for the considered case

Light-TPEF Elements
revisited

The previous chapter has presented, Light-TPEF, as a framework to explicitly evaluate di-
verse quality aspects of all the elements of software testing processes. The framework is
particularly aimed at addressing the implicity and partiality of current test evaluation ap-
proaches as well as providing a lightweight test measurement and evaluation methodology.
The four inputs to the framework, namely research over software testing knowledge areas
(chapter 2), research on evaluation theory [Shadish et al., 1991, Ch. 3], [Scriven, 1996a]
concepts (chapter 3), IEEE Std. 1061-1998 Standard for a Software Quality Metrics
Methodology, and ISO/IEC 14598-5 Information technology–Software product evaluation
provide theoretical and practical foundations to address the challenges envisaged for the
framework.

To this end, the framework defines one core component, evaluation process, which has
been derived from IEEE 1061 and ISO/IEC 14598-5 standards and describes all the steps
necessary to select, measure, and evaluate different test process entities. Five support and
informative components have been derived from software testing knowledge areas and
evaluation theory concepts to guide the steps of the core evaluation process component.
The framework uses BPMN (as a graphical technique) and SIPO, a variant of IPO method-
ology (as a semi-formal textual technique) to describe the core component, while the sup-
port components use ordinary textual descriptions. Figure 7.11 outlines the Light-TPEF
once again to reiterate the concept and to be able to visualize how it can be adapted to
evaluating various specialized testing processes such as for embedded systems, distributed
systems, or service-oriented systems.

Adaptation outline for
service testing process

Taking a different perspective than the TPI SOA, the present framework, Light-TPEF, can

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.4 Light-TPEF: Application in an SOA Industrial Environment 147

Light-TPEF Framework

E
va

lu
at

io
n

P
ro

ce
ss

S1-Target

S5-Yardstick

S4-Synthesis
Techniques

S3-Assessment
Techniques

S2-Criteria

BPMN
(graphical)

SIPO (semi-
formal)

ISO/IEC 14598-5
Standard

ISO 1061
Standard

Evaluation
theory

Software testing
knowledge areas

C
on

te
nt

P
re

se
nt

at
io

n

SOA Sys.

Distributed Sys.

Embedded Sys.

Testing Domains

A
da

pt
at

io
ns

Figure 7.11: Light-TPEF: Flashback and customizations

help make evaluations of service testing activities. Figure 7.12 outlines connections among
the service development, service testing, and the present framework. While the SOA life-
cycle on the left part of the figure covers the phases of the complete SOA adoption and
related issues, the service provider lifecycle next to it gives the lifecycle of a single service
or group of services. Between the requirement analysis and testing/deployment stages of
this service are involved the above mentioned testing levels. This offers the activity view of
service testing. These activities have to be managed through a service testing process. The
management view of the service testing process can comprise analysis & design, imple-
mentation & execution, and evaluation & reporting engulfed by a planning & control phase.
An important role of planing & control phase is to control and monitor the progress of the
testing process. As a most specific solution to fulfil this task, the Light-TPEF framework
can complement this phase of the testing process. Challenges to adopting this approach
for service test processes have earlier been discussed by the author [Farooq et al., 2008b].
Addressing these challenges, next part of this thesis presents a case where the Light-TPEF
approach could be used in SOA development and testing situations.

Adaptations needed
Not all components of the Light-TPEF are affected by the type of testing required in a
given context. For example, in case of SOA testing, we need to extend and redefine the
S1:Target component with specifics of SOA testing elements, the S2:Criteria component
with some of the SOA quality attributes, and the S3:Assessment techniques component
with SOA related metrics. The rest of the framework components are quite generic and are
independent of the choice of the testing background.

The first adaptation is with the first support component of the framework, Target. While
the testware and testing resources elements remain same for service testing, the testing
phases are slightly different which are the target of evaluations. The specialized levels
of testing involved in this case are unit, integration, system testing, as well as testing for
governance, underlying technologies, or normally uncommon non-functional testing. The
figure 7.13 captures these elements as a summary information.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

148 7 Implementation & Validation of Light-TPEF

Vision/
identification

Model

Assemble

Deploy

Phaseout

Operation &
maintenance

Testing/
deployment

Development

Design

Requirements
analysis

Manage

Reviews

Evaluation &
reporting

Implementation
& execution

Analysis &
design

System non-
functional testing

System
functional testing

Integration
testing

Unit testing Planning & control

Acceptance
testing

Regression
testing

Light-TPEF
Framework

Service TestingService Development

Management viewActivity view
Service
provider
lifecycle

SOA lifecycle

Figure 7.12: Light-TPEF vs. Service Testing Process

Service Testing Process

testingPhases testingResourcesTestware

errorLogs
documentation

testReports
testPlantestCases

officeEnvironmentplatformResources
toolspersonnel

regressionTesting
governanceTesting

unitTesting
reviews

systemTesting architectureTesting

Figure 7.13: Elements of Service Testing Process

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.4 Light-TPEF: Application in an SOA Industrial Environment 149

Evaluation Criteria for ServiceTesting Processes

Efficiency Usability SOA Quality
AttributesEffectiveness

Time behavior

Resource
behavior

Reliability

Test execution

Test plans

Productivity

AvailabilityUnderstandability

...

Complexity

Generic criteria Specialized criteria

Figure 7.14: Evaluation Criteria for Service Testing Process

The second required adjustment is with the evaluation criteria. The generic evaluation
criteria element S2 mentioned in section 6.3.1.2 is a set of generic quality attributes for the
software testing process. This set contains two product specific quality attributes, reliability
and functionality, as an evaluation criteria for the testing process. These attributes need to
be replaced with SOA specific quality attributes [O’Brien et al., 2005] such as reliability
and usability etc. In this way, the evaluation criteria for the service or SOA testing process
will be a combination of generic and specific attributes as visualized in figure 7.14.

The third area where Light-TPEF should include SOA specific adjustments is the com-
ponent on assessment techniques. The section 6.3.1.3 mentions a classification of several
test metrics which are connected with the evaluation criteria attributes. In case of service/-
SOA testing, specific product, process, and resource metrics such as [Rud et al., 2006],
[Rud et al., 2007b], [Rud et al., 2007d] will add to the list of existing test metrics to help
evaluate generic and service/SOA specific quality criteria mentioned in the previous sec-
tion.

Connections between Light-TPEF
and the SOA governance model

With the incorporation of the mentioned adaptations, Light-TPEF can augment the SOA
governance modules mentioned in the previous section. It can be observed that there exist
few relationships among some of these modules. Figure 7.15 highlights these relationships
among Process analysis, Process operation, and Service implementation, testing, & de-
ployment building blocks. It can be observed as summarized earlier that the task of testing
services is considerably large and complex to be viewed as a sizable testing process. Even-
tually, it will need to be monitored as a process for its effectiveness, efficiency and other
such concerns. The process analysis and process operation building blocks from the busi-
ness process management module can help guide this monitoring and control. Specifically,
the process operation building block as summarized above is about monitoring process

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

150 7 Implementation & Validation of Light-TPEF

Business Process Management SOA Service Management

Initiate business
process

Process analysis

Identify involved
processes

Service impl., testing,
& deployment

Orchestrate & deploy
services

Discover service
operations

Analyze legacy
system components

Process operation

Examination &
documentation

Model business
processes

Light- TPEF: Evaluation
process for Service testing Service testing process

Extensions

SOA Governance Modules

Figure 7.15: Relationships among SOA Governance Modules

progress. However, it is not enough detailed to cover all the aspects of measuring and
evaluating the service test process tasks. As a more specialized approach, the Light-TPEF
approach developed in this thesis can fill this gap. It can serve as a bridge between the
business process management and SOA service management modules by sitting between
the process analysis and process operation building blocks and the service implementation
and testing building block. The figure 7.15 shows two extended building blocks, service
testing process and the Light-TPEF as evaluation process for service testing process which
enhance the connections between SOA business process management and service manage-
ment.

7.5 Summary

Concluding the last phase of the research project at hand, this chapter concentrated and
resolved last two sub-questions of the current research task.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

7.5 Summary 151

RT-5. How can the idea conceived by RT-4 be transformed into a practical test
process evaluation and improvement model?
RT-6. Can the approach developed as a result of RT-5 be validly applied in practi-
cal and industrial situations? What are the limitations and the needed adjustments
in applying the new approach?

This chapter focused on the implementation and validation of the evaluation framework
developed in this thesis. The considered implementation scenario was to convert the model
into an executable business process to allow for semi automatic capturing of test metrics
and fully automatic generation of evaluation results. Thus it would provide continuous test
process measurement. Fundamental concepts of software process model, process mod-
eling languages, and the business processes where explained in brief. Discussions also
included short introduction of XPDL (XML process definition language) as an exchange
format for process designs, and WS-BPEL (business process execution language) as an
example of well-known executable process modeling language. Connections among these
technologies in the context of current task were also established.

The chapter later outlined the implementation approach to be followed. It was consti-
tuted in converting the existing BPMN process descriptions into their equivalent XPDL
or BPEL processes. It was done through one of the many open source process modeling
and execution engines called TIBCO Business Studio. The XPDL version of the evalua-
tion process was then sent to another process execution engine (Enhydra Shark) which was
capable of directly executing the XPDL-based processes.

Principle of using this implementation scheme in an industrial environment was also
explained. In a chosen industrial domain, testing of SOA-based systems came up as an
example scenario. After briefly introducing the testing processes in the context of SOA-
based development settings, the chapter explained integration of the implemented solution
into SOA governance model. The integration seemed to be smooth and provided a use-
ful example where the test evaluation framework provided an added value to the current
models.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

153

8 Summary & Future Work

8.1 Summary

In the context of evaluation and improvement of software testing processes, this disserta-
tion attempts to find an answer to the following primary research question,

Could a process be defined to allow medium size industrial organizations
perform light-weight and explicit evaluation of their testing processes?

As a result of this research a framework for the explicit evaluation of testing processes
was developed. Organized research steps were needed to be followed to perform this PhD
research which was to span over a few years. Addressing this challenge, the author chose
to follow the engineering paradigm as the research method. It was one of the four common
software engineering research methodologies; the choice being motivated by the type of
research problem and solution that it presented. This thesis ran only a first cycle of this
method consisting of observation of existing solution, proposal of a better solution, devel-
opment of a better solution, and its measurement and analysis. A summary of each part of
this research is given below,

Chapter 1
Setting ground for research

This chapter set the background of the current research project. Beginning with an intro-
duction to the role of the software, the chapter led the reader to the definition and expla-
nation of the research problem. The chapter established the research pattern and plan to
be followed for solving the problem. Connections and various contextual aspects of the
research project with reference to software engineering research environments were given.

Chapter 2 through chapter 5
Observation of existing solutions

A first-hand knowledge of the problem domain is an initial step for dissecting any research
problem. A survey of the software testing knowledge and practice areas was performed
(chapter 2). It enabled identification of core entities of software testing interesting in the
context of the current problem. It was felt that some level of interdisciplinary inspec-
tion was needed to extract philosophy and principles of evaluation. It was done through
a brief study of a non-software engineering discipline, evaluation research (chapter 3).
The inquisition brought forward key elements of any evaluative work, some of which are
often appear to be ignored by evaluation methods in the field of software testing and soft-
ware engineering. After discovering these key components of evaluation, it seemed logical
to review currently available evaluation methods and models in the testing domain. An

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

154 8 Summary & Future Work

exhaustive survey of evaluation methods for testing processes, techniques and tools was
performed (chapter 4). At this stage of research, precise requirements for a test evaluation
approach in the light of the research problem were developed. The available test evaluation
methods were judged based on this set of requirements (chapter 5). The results of the anal-
ysis showed a need for an improved solution that would satisfy the identified shortcomings
in the current approaches.

Chapter 6
Proposal & development of a better solution

An improved solution was imposed in the form of an evaluation framework which took
inputs from testing foundations, theory of evaluations, and well accepted process mea-
surement standards. The framework consisting of five support components and one core
component was enhanced to be described as a complete guide for evaluating software test
processes. This was done with the help of graphical and textual process modeling nota-
tions. As a counter check, the solution was matched with the criteria set in the earlier phase
of the research and was found to be consistent with its goals.

Chapter 7 through chapter 8
Prototypical implementation and validation

This phase of research attempted to transform the proposed framework as an exemplary
workable solution. Open source process modeling tools were used to create a business
process representing the evaluation framework. The business process was described in the
form of an executable process model. As an industrial application of the propose concept,
the service-oriented development environment at an international company was considered
for an example. Adaptation of the developed framework in the context of SOA governance
model at this company was explained. Finally, theoretical validation of the model for its
consistency was performed using assertion techniques. Further extensive validity checks of
the approach were left for future research, nonetheless the current research task had been
successfully accomplished at this stage.

8.2 Thesis Contributions

This dissertation has made following main contributions in the field of evaluation and im-
provement of software test processes,

Contribution # 1 A contemporary augmentation to the many surveys of the software test-
ing field, but with special focus to candidate elements for evaluation.

Contribution # 2 A first-of-its-kind survey of evaluation approaches in software testing,
specifically a first chronological and comprehensive account of test process assess-
ment and improvement models.

Contribution # 3 An explicit and light-weight evaluation framework for software test pro-
cesses covering all possible entities of test evaluation.

Contribution # 4 Development of a test measurement approach that can potentially help
organizations fulfill part of the requirements at maturity level 4 of the Testing Matu-
rity Model.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

8.3 Future Work 155

Contribution # 5 Presentation and implementation of a working evaluation process model
in modern business process environments.

8.3 Future Work
The previous chapter has discussed a so called internal/theoretical validation of the evalu-
ation framework concept using the assertion techniques. Additionally, an implementation
environment discussed earlier provides only its pilot application. This could be improved
by a full scale application of the approach in multiple projects and over a longer period
of time. It is an ongoing process which needs considerable time to adequately validate the
approach for truly realizing the its practical significance. It can provide important feedback
about improving and adjusting the framework accordingly.

Recently an approach called causal network-based process model (CNPM) has been
developed by Richter and Dumke [Richter and Dumke, 2008] for an explicit analysis of
process models. Application of this approach for analysis of Capability Maturity Model
Integration (CMMI) has discovered few inconsistencies and incompleteness of this process
model. This capability of CNPM method as a validity check for process model creates the
possibility of analyzing the current framework developed in this thesis. A causal network
model representation of the test process evaluation framework is expected to be able to
enhance the current approach by identifying any of its incompleteness or potential im-
provement areas.

The implementation of the evaluation framework given in chapter 7 represents it as an
executable business process model. With the current design of the process model, the test
metrics have yet to be collected through a manual process. This allows for a semi auto-
mated but continuous measurement and evaluation of the testing process. A related but
alternative approach can improve this situation by providing a fully automated continuous
measurement. If a model of software testing process and the current evaluation framework
are described using some formal process modeling language, they can be merged into an
integrated test process and evaluation process model through the use of some modeling
tool. This can be converted into an executable business process model on the lines of
implementation discussed in chapter 7. With this approach the test measurements can be
defined in the model and can be automatically collected. The measurements can be syn-
thesized according the procedures already defined in the framework. Thus it will eliminate
the need to manually calculate and record test metrics and enable a completely automatic
and continuous measurement and evaluation of testing processes.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

List of Tables 157

List of Tables

1.1 Research Classifications . 10

2.1 Research Issues in Software Testing . 17

2.2 Software Process vs. Test Process Research 36

2.3 Summary of Static Testing Techniques 37

2.4 Summary of Dynamic Testing Techniques 42

3.1 Evaluation theory perspective of ATAM [Lopez, 2000] 57

3.2 Evaluation theory based software process evaluation

method [Ares et al., 2000] . 58

3.3 Evaluation theory perspective of software process assessment meth-

ods [Ares et al., 2000] . 60

4.1 Comparison of Test Process Assessment Models 63

4.2 TPI Key Areas . 66

4.3 Resources of Test Metrics Definitions 71

5.1 Mapping between Evaluation Components and TMM 90

5.2 Mapping between Evaluation Components and TPI 94

5.3 Mapping between Evaluation Components and TMMi 97

5.4 Analysis of Test Process Evaluation & Improvement Models 99

6.1 Definitions of Software Process Quality Attributes 109

6.2 Notable Resources of Test Metrics Definitions 112

6.3 Top Level Evaluation Process . 119

6.4 Sub-process: Specify process evaluation requirements 120

6.5 Sub-process: Specify software measures 123

6.6 Sub-process: Perform process measurement & evaluation 126

6.7 Mapping of Method Criteria to Evaluation Framework 128

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

List of Figures 159

List of Figures

1.1 Software Engineering Research Methodologies 9

1.2 Thesis Structure . 13

2.1 Some Context Descriptions of Software Testing 16

2.2 Software Testing Elements of Interest 16

2.3 Generic Structure of Testing Process [Tian, 2005] 19

2.4 Approaches to Software Testing Processes 21

2.5 V-Diagram for Seven Step Test Process [Perry, 2006] 22

2.6 Test Management Approach-TMap . 24

2.7 Drabick’s Formal Software Test Process-Level 0 IPO Dia-

gram [Drabick, 2003] . 25

2.8 Drabick’s Formal Software Test Process-Level 1 IPO Dia-

gram [Drabick, 2003] . 26

2.9 Test-driven Development Cycle . 27

2.10 TEmb:Test Process for Embedded Sys-

tems [Broekman and Notenboom, 2003] 29

2.11 Review of 127 Articles on SOA Testing 30

2.12 Model-based Testing Process . 32

2.13 Scope of Model-based Testing [Utting and Legeard, 2006] 33

2.14 Cangussu’s Approach of STP Models [Cangussu, 2002] 34

2.15 Liggesmeyer’s Classification of Testing Techniques 38

2.16 An Example of Symbolic Execution . 40

2.17 Fagan Inspection Basic Model [Fagan, 1986] 41

3.1 Chen’s Classification of Evaluation Types [Chen, 1996] 51

3.2 Interrelationships among Components of Evaluation 54

3.3 Software Quality Elements [Kenett and Baker, 1999] 55

4.1 History of Test Process Assessment Models & Dependencies 62

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

160 List of Figures

4.2 Inputs to the Testing Maturity Model . 63

4.3 TMM Maturity Levels . 64

4.4 Structure of Testing Maturity Model [Burnstein, 2003] 65

4.5 Structure of Test Process Improvement (TPI) Model 66

4.6 ICMM Maturity Levels . 67

4.7 TMMi Maturity Levels . 68

4.8 Structure of Test Maturity Model Integration (TMMi) 70

4.9 Classification of Test Process Metrics [Farooq et al., 2008a] 72

4.10 Study Maturity by Families . 75

5.1 Components of TMM Assessment Model 92

5.2 TPI Change Process [Koomen and Pol, 1999, p. 56] 96

6.1 Concept of Evaluation Framework . 103

6.2 Basic (adapted) Process Architecture Elements 105

6.3 Components of Evaluation Framework 106

6.4 Entities of Evaluation in Software Testing Process 108

6.5 Candidate Evaluation Criteria for Test Processes 110

6.6 Classifications of Test Process Metrics 113

6.7 Conversion and Normalization of Test Process Metrics 114

6.8 Evaluation Criteria for Testing Processes with Metrics 115

6.9 Relationship between Quality Indexes 116

6.10 Process Quality Profile: Attribute Level 117

6.11 Process Quality Profile: Sub-attribute Level 117

6.12 A sketch of the Evaluation Matrix . 118

6.13 BPMN Diagram of Top Level Evaluation Process 119

6.14 BPMN Diagram of Specify process evaluation requirements Sub-process . 120

6.15 BPMN Diagram of Specify software measures Sub-process 123

6.16 BPMN Diagram of Perform process measurement & evaluation Sup-process 125

7.1 Relationships among Business Process Technologies 134

7.2 Implementation Approach for the Evaluation Process 135

7.3 Implementation of top-level Evaluation Process in TIBCO Business Modeler135

7.4 Implementation of an Embedded Sub-process in TIBCO Business Modeler 136

7.5 XPDL view of Evaluation Process in TIBCO Business Modeler 136

7.6 Elements of Service-oriented Computing [Erl, 2007, p. 41] 138

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

List of Figures 161

7.7 ITIL Process Description for Service Management [Schmietendorf, 2007,

p. 85] . 140

7.8 Aspects of SOA Testing . 141

7.9 From TPI to TPI SOA . 143

7.10 SOA Governance Model . 144

7.11 Light-TPEF: Flashback and customizations 147

7.12 Light-TPEF vs. Service Testing Process 148

7.13 Elements of Service Testing Process . 148

7.14 Evaluation Criteria for Service Testing Process 149

7.15 Relationships among SOA Governance Modules 150

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

163

List of Abbreviations

ACM Association for Computing Machinery
AHP Analytic Hierarchy Process
ASD Adaptive Software Development
ATR Activities, Tasks, Responsibilities
ATAM Architecture Tradeoff Analysis Method
BNF Backus-Naur Form
BPEL Business Process Execution Language
BPMN Business Process Modeling Notation
CAME Computer Assisted Software Measurement
CASE Computer Aided Software Engineering
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
CNPM Causal Network-Based Process Model
COTS Commercial off-the-shelf
CS Computer Science
DoD Department of Defense
ETXM Entry, Task, Exit, Measure
ETVX Entry, Task, Validation, Exit
EITVOX Entry, Input, Task, Validation, Output, Exit
EIA Electronic Industries Alliance
EU European Union
EF Experience Factory
FDD Feature Driven Development
GQM Goal, Question, Metric
GUI Graphical User Interface
HTML Hypertext Markup Language
IBM International Business Machines
ICMM Inspection Capability Maturity Model
IDC International Data Corporation
IDEAL Initiating, Diagnosing, Establishing, Acting, Learning
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IPO Input Process Output
ISO International Organization for Standardization
ISTQB International Software Testing Qualifications Board
IT Information Technology
ITIL IT Infrastructure Library
IV&V Independent Verification & Validation
JTC Joint Technical Committee

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

164

NATO North Atlantic Treaty Organization
MBT Model based Testing
MB − V 2M2 Metrics-based Verification and Validation Maturity Model
NASA National Aeronautics and Space Administration
PMBOK Project Management Body of Knowledge
PSP Personal Software Process
QIP Quality Improvement Paradigm
ROI Return on Investment
RT Research Question
RUP Rational Unified Process
SD Software Development Process
SE Software Engineering
SEI Software Engineering Institute
SIPO Support, Input, Process, Output
SLA Service Level Agreement
SME Small and Medium sized Enterprise
SOA Service-oriented Architecture
SP Software Product
SPI Software Process Improvement
SPICE Software Process Improvement and Capability Determination
SQuaRE Software product Quality Requirements and Evaluation
SR Software Resources
STD Software Technology Diagnostic
STDR Software Development Technical Review
SUT System under Test
SW-CMM Software Capability Maturity Model
SWEBOK Software Engineering Body of Knowledge
TAMAR TMMi Assessment Method Application Requirements
TDD Test Driven Development
TIM Test Improvement Model
TMap Test Management Approach
TML Test Modeling Language
TMM Test Maturity Model
TMMi Test Maturity Model Integration
TPAM Test Process Assessment Model
TPEF Test Process Evaluation Framework
TPI Test Process Improvement
UML Unified Modeling Language
V&V Verification and Validation
W3C World Wide Web Consortium
XML Extensible Markup Language
XP Extreme Programming
XPDL XML Process Definition Language
XT Extreme Tailoring

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

165

Bibliography
Note All links to web resources have been checked and found to be working in a final step on

16.06.2009.

[iee,] IEEE Standards Association. Available at http://standards.ieee.org/.

[iso,] JTC 1- Information Technology, International Organization for Standardization. Available
at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
tc_browse.htm?commid=45020.

[Abran et al., 2004] Abran, A., Bourque, P., Dupuis, R., and Moore, J. W., editors (2004). Guide
to the Software Engineering Body of Knowledge - SWEBOK. IEEE Press, Piscataway, NJ, USA.

[Abu et al., 2005] Abu, G., Cangussu, J. W., and Turi, J. (2005). A quantitative learning model
for software test process. In HICSS ’05: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences - Track 3, page 78.2, Washington, DC, USA. IEEE Computer
Society.

[ACM, 1998] ACM (1998). The ACM computing classification system. Available at http://
www.acm.org/about/class.

[Acuña et al., 2001] Acuña, S. T., Antonio, A. D., Ferré, X., López, M., and Maté, L. (2001). The
software process: Modelling, evaluation and improvement. Handbook of Software Engineering
and Knowledge Engineering, pages 193–237.

[Adrion, 1993] Adrion, W. R. (1993). Research methodology in software engineering: Summary
of the Dagstuhl workshop on future directions in software engineering. SIGSOFT Softw. Eng.
Notes, 18(1):35–48.

[Afzal, 2007] Afzal, W. (2007). Metrics in software test planning and test design processes. Mas-
ter’s thesis, Department of Software Engineering and Computer Science, Blekinge Institute of
Technology, Ronneby, Sweden.

[Apel, 2005] Apel, S. (2005). Software reliability growth prediction-state of the art. Technical
report, IESE-Report No. 034.05/E Fraunhofer Institute of Experimental Software Engineering.

[April, 2005] April, A. (2005). S3m-Model to Evaluate and Improve the Quality of Software Main-
tenance Process. PhD thesis, University of Magdeburg, Magdeburg, Germany.

[Ares et al., 2000] Ares, J., Vazquez, R. G., Juzgado, N. J., Lopez, M., and Moreno, A. M. (2000).
A more rigorous and comprehensive approach to software process assessment. Software Process:
Improvement and Practice, 5(1):3–30.

[Arthur et al., 1999] Arthur, J. D., Groner, M. K., Hayhurst, K. J., and Holloway, C. M. (1999).
Evaluating the effectiveness of independent verification and validation. Computer, 32(10):79–
83.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://standards.ieee.org/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45020
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45020
http://www.acm.org/about/class
http://www.acm.org/about/class

166 Bibliography

[Arthur and Nance, 1996] Arthur, J. D. and Nance, R. E. (1996). Independent verification and
validation: a missing link in simulation methodology? In WSC ’96: Proceedings of the 28th
conference on Winter simulation, pages 230–236, Washington, DC, USA. IEEE Computer Soci-
ety.

[Basili and Weiss, 1984] Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid
software engineering data. IEEE Trans. Software Eng., 10(6):728–738.

[BBC, 2008] BBC (2008). Software blamed for LSE failure, BBC News, 9 Sept. 2008. Available
at http://news.bbc.co.uk/2/hi/business/7605871.stm.

[BCS,] BCS. SIGiST Specialist Group in Software Testing, British Computer Society. Available
at http://www.testingstandards.co.uk/.

[Beck, 2002] Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold, New York,
USA.

[Beizer, 1995] Beizer, B. (1995). Black-box testing: techniques for functional testing of software
and systems. John Wiley & Sons, Inc., New York, NY, USA.

[Bennison, 2007] Bennison, M. J. (2007). Software bug took Skype out. The Risks Digest, 24(80).

[Bertolino, 2004] Bertolino, A. (2004). The (im)maturity level of software testing. SIGSOFT
Softw. Eng. Notes, 29(5):1–4.

[Bertolino, 2007] Bertolino, A. (2007). Software testing research: Achievements, challenges,
dreams. In FOSE ’07: Proceeding of International Conference on Software Engineering: Future
of Software Engineering, pages 85–103, Washington, DC, USA. IEEE Computer Society.

[Bieberstein et al., 2005] Bieberstein, N., Bose, S., Fiammante, M., Jones, K., and Shah, R.
(2005). Service-Oriented Architecture (SOA) Compass: Business Value, Planning, and Enter-
prise Roadmap. The developerWorks Series. IBM Press.

[Blin and Tsoukiàs, 2001] Blin, M.-J. and Tsoukiàs, A. (2001). Multi-criteria methodology contri-
bution to the software quality evaluation. Software Quality Journal, 9(2):113–132.

[Boehm, 2006] Boehm, B. (2006). A view of 20th and 21st century software engineering. In ICSE
’06: Proceeding of the 28th international conference on Software engineering, pages 12–29,
New York, NY, USA. ACM Press.

[Boehm and Basili, 2001] Boehm, B. and Basili, V. R. (2001). Software defect reduction top 10
list. Computer, 34(1):135–137.

[Braungarten, 2007] Braungarten, R. (2007). The SMPI model: A stepwise process model to facili-
tate software measurement process improvement along the measurement paradigms. PhD thesis,
University of Magdeburg, Magdeburg, Germany.

[Briand and Labiche, 2004] Briand, L. and Labiche, Y. (2004). Empirical studies of software test-
ing techniques: challenges, practical strategies, and future research. SIGSOFT Softw. Eng. Notes,
29(5):1–3.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://news.bbc.co.uk/2/hi/business/7605871.stm
http://www.testingstandards.co.uk/

Bibliography 167

[Brüning et al., 2007] Brüning, S., Weißleder, S., and Malek, M. (2007). A fault taxonomy for
service-oriented architecture. In HASE ’07: Proceedings of the 10th IEEE High Assurance Sys-
tems Engineering Symposium, pages 367–368, Washington, DC, USA. IEEE Computer Society.

[Broekman and Notenboom, 2003] Broekman, B. and Notenboom, E. (2003). Testing Embedded
Software. Addison-Wesley, Great Britain.

[Broy et al., 2001] Broy, M., Hartkopf, S., Kohler, K., and Rombach, D. (2001). Germany: Com-
bining software and application competencies. IEEE Software, 18(4):93–95, 100.

[Bucchiarone et al., 2007] Bucchiarone, A., Melgratti, H., and Severoni, F. (2007). Testing service
composition. In ASSE’07: Proceedings of the 8th Argentine Symposium on Software Engineer-
ing.

[Buchsein et al., 2008] Buchsein, R., Victor, F., Günther, H., and Machmeier, V. (2008). IT-
Management mit ITIL V3 Strategien, Kennzahlen, Umsetzung. Vieweg+Teubner.

[Budgen, 2000] Budgen, D. (2000). Evaluation and assessment in software engineering. J. Syst.
Softw., 52(2-3):93–94.

[Burnstein, 2003] Burnstein, I. (2003). Practical Software Testing: A Process-oriented Approach.
Springer Inc., New York, NY, USA.

[Canfora and Penta, 2006] Canfora, G. and Penta, M. D. (2006). Testing services and service-
centric systems: Challenges and opportunities. IT Professional, 8(2):10–17.

[Cangussu, 2002] Cangussu, J. W. (2002). A Mathematical Foundation for Software Process Con-
trol. PhD thesis, Purdue University, West Lafayette, IN, USA.

[Cangussu, 2003] Cangussu, J. W. (2003). A stochastic control model of the software test process.
In ProSim’03: Proceedings of the Workshop on Software Process Simulation Modeling.

[Cangussu et al., 2000] Cangussu, J. W., DeCarlo, R., and Mathur, A. (2000). A state variable
model for the software test process. In Proceedings of 13th International Conference on Software
& Systems Engineering and their Applications, Paris-France.

[Cangussu et al., 2001a] Cangussu, J. W., DeCarlo, R., and Mathur, A. P. (2001a). A state model
for the software test process with automated parameter identification. In Proceedings of 2001
IEEE International Conference on Systems, Man, and Cybernetics, pages 706–711, Los Alami-
tos, CA, USA. IEEE Computer Society.

[Cangussu et al., 2002] Cangussu, J. W., DeCarlo, R. A., and Mathur, A. P. (2002). A formal model
of the software test process. IEEE Trans. Softw. Eng., 28(8):782–796.

[Cangussu et al., 2003] Cangussu, J. W., DeCarlo, R. A., and Mathur, A. P. (2003). Using sensi-
tivity analysis to validate a state variable model of the software test process. IEEE Trans. Softw.
Eng., 29(5):430–443.

[Cangussu et al., 2001b] Cangussu, J. W., Mathur, A. P., and DeCarlo, R. A. (2001b). Feedback
control of the software test process through measurements of software reliability. In ISSRE ’01:
Proceedings of the 12th International Symposium on Software Reliability Engineering, page 232,
Washington, DC, USA. IEEE Computer Society.

[Charette, 2005] Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42(9):36–43.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

168 Bibliography

[Chatzigeorgiou and Antoniadis, 2003] Chatzigeorgiou, A. and Antoniadis, G. (2003). Efficient
management of inspections in software development projects. Information & Software Technol-
ogy, 45(10):671–680.

[Chen, 2005] Chen, C. (2005). Measuring the movement of a research paradigm. In VDA 2005:
Proceedings of Conference on Visualization and Data Analysis, pages 63–76. SPIE and IS&T.

[Chen, 1996] Chen, H.-T. (1996). A comprehensive typology for program evaluation. American
Journal of Evaluation, 17(1):121–130.

[Chen et al., 2004] Chen, Y., Probert, R. L., and Robeson, K. (2004). Effective test metrics for
test strategy evolution. In CASCON ’04: Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, pages 111–123. IBM Press.

[Chernak, 2004] Chernak, Y. (2004). Introducing TPAM: Test process assessment model.
Crosstalk-The Journal of Defense Software Engineering. June Issue.

[Ciolkowski et al., 2003] Ciolkowski, M., Laitenberger, O., and Biffl, S. (2003). Software reviews:
The state of the practice. IEEE Software, 20(06):46–51.

[Clarke and Dawson, 1999] Clarke, A. and Dawson, R. (1999). Evaluation Research: An Intro-
duction to Principles, Methods and Practice. Sage Publications, Bonhill Street, London, UK.

[Clarke and Wing, 1996] Clarke, E. M. and Wing, J. M. (1996). Formal methods: state of the art
and future directions. ACM Comput. Surv., 28(4):626–643.

[Colville, 2004] Colville, J. (2004). Sydney trains disrupted by software glitch. The Risks Digest,
23(35).

[Davis, 1995] Davis, A. M. (1995). 201 principles of software development. McGraw-Hill, Inc.,
New York, NY, USA.

[Deming, 1986] Deming, W. E. (1986). Out of the Crisis. MIT Press.

[Demirörs and Güceğlioğlu, 2006] Demirörs, O. and Güceğlioğlu, A. (2006). A case study for
measuring process quality attributes. Technical report, Middle East Technical University, Infor-
matics Institute.

[Drabick, 2003] Drabick, R. D. (2003). Best Practices for the Formal Software Testing Process: A
Menu of Testing Tasks. Dorset House.

[Dranidis et al., 2007] Dranidis, D., Kourtesis, D., and Ramollari, E. (2007). Formal verification
of web service behavioural conformance through testing. Annals of Mathematics, Computing &
Teleinformatics, 1(5):36–43.

[Dumke, 2005] Dumke, R. R. (2005). Software measurement frameworks. In Proceedings of
the 3rd World Congress on Software Quality, pages 72–82, Erlangen, Germany. International
Software Quality Institute GmbH.

[Dumke et al., 2006a] Dumke, R. R., Braungarten, R., Blazey, M., Hegewald, H., Reitz, D., and
Richter, K. (2006a). Software process measurement and control - a measurement-based point
of view of software processes. Technical report, Dept. of Computer Science, University of
Magdeburg, Germany. Available at http://ivs.cs.uni-magdeburg.de/sw-eng/
agruppe/forschung/paper/FormalM.pdf.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/FormalM.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/FormalM.pdf

Bibliography 169

[Dumke et al., 2006b] Dumke, R. R., Braungarten, R., Blazey, M., Hegewald, H., Reitz, D., and
Richter, K. (2006b). Structuring software process metrics. In IWSM/MetriKon 2006: Pro-
ceedings of the 16th International Workshop on Software Metrics and DASMA Software Metrik
Kongress, pages 483–497, Aachen, Germany. Shaker Verlag GmbH.

[Dumke et al., 2006c] Dumke, R. R., Braungarten, R., Kunz, M., Schmietendorf, A., and Wille, C.
(2006c). Strategies and appropriateness of software measurement frameworks. In MENSURA
2006: Proceedings of the International Conference on Software Process and Product Measure-
ment, pages 150–170, Spain. Servicio de Publicaciones de la Universidad de Cádiz.

[Dumke et al., 2004] Dumke, R. R., Côté, I., and Andruschak, O. (2004). Statistical process control
(SPC) - a metric-based point of view of software processes achieving the CMMI level four.
Technical report, Dept. of Computer Science, University of Magdeburg, Germany. Available
at http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/
SPCPreprint.pdf.

[Dumke and Foltin, 1999] Dumke, R. R. and Foltin, E. (1999). An object-oriented software mea-
surement and evaluation framework. In FESMA 99: Proceedings of the 2nd European Software
Measurement Conference, pages 59–68.

[Dumke and Grigoleit, 1997] Dumke, R. R. and Grigoleit, H. (1997). Efficiency of CAME tools in
software quality assurance. Software Quality Journal, 6(2):157–169.

[Dumke et al., 2005] Dumke, R. R., Schmietendorf, A., and Zuse, H. (2005). Formal de-
scriptions of software measurement and evaluation-a short overview and evaluation. Tech-
nical report, Dept. of Computer Science, University of Magdeburg, Germany. Available
at http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/
ProcPreprintFinal.pdf.

[Durant, 1993] Durant, J. (1993). Software testing practices survey report. Technical report, Soft-
ware Practices Research Center.

[Dustdar and Haslinger, 2004] Dustdar, S. and Haslinger, S. (2004). Testing of service-oriented
architectures - a practical approach. In Net.ObjectDays: Proceedings of 5th Annual Interna-
tional Conference on Object-Oriented and Internet-Based Technologies, Concepts, and Applica-
tions for a NetworkedWorld, volume 3263 of Lecture Notes in Computer Science, pages 97–109.
Springer.

[Dyba, 2005] Dyba, T. (2005). An empirical investigation of the key factors for success in software
process improvement. IEEE Trans. Softw. Eng., 31(5):410–424.

[Ebert et al., 2004] Ebert, C., Dumke, R., Bundschuh, M., and Schmietendorf, A. (2004). Best
Practices in Software Measurement. Springer Verlag.

[Ebert and Dumke, 2007] Ebert, C. and Dumke, R. R. (2007). Software Measurement: Establish
Extract Evaluate Execute. Springer-Verlag Berlin Heidelberg.

[Eggink et al., 2008] Eggink, J. M., Wilhelmus, L., and Hulleman, R. (2008). TPI R© SOA model
version 1.0. Sogeti Netherlands, October 2008. Available at http://www.sogeti.nl/
images/TPI%20SOA%20Model%20v1.0_tcm6-47915.pdf.

[Eickelmann et al., 2002] Eickelmann, N. S., Ruffolo, F., Baik, J., and Anant, A. (2002). An em-
pirical study of modifying the Fagan inspection process and the resulting main effects and inter-
action effects among defects found, effort required, rate of preparation and inspection, number

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/SPCPreprint.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/SPCPreprint.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/ProcPreprintFinal.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/paper/ProcPreprintFinal.pdf
http://www.sogeti.nl/images/TPI%20SOA%20Model%20v1.0_tcm6-47915.pdf
http://www.sogeti.nl/images/TPI%20SOA%20Model%20v1.0_tcm6-47915.pdf

170 Bibliography

of team members and product. In SEW’02: Proceedings of the 27th Annual NASA Goddard
Software Engineering Workshop, page 58, Washington, DC, USA. IEEE Computer Society.

[El-Far and Whittaker, 2001] El-Far, I. K. and Whittaker, J. A. (2001). Encyclopedia of Software
Engineering, chapter Model-based Software Testing, pages 825–837. Wiley.

[Ericson et al., 1997] Ericson, T., Subotic, A., and Ursing, S. (1997). TIM a test improvement
model. J. Softw. Test., Verif. Reliab., 7(4):229–246.

[Erl, 2007] Erl, T. (2007). SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

[ESA, 2008] ESA (2008). European software industry: Looking for a competitive advantage.
European Software Association. Available at http://www.europeansoftware.org/
documents/softwarestrategywhitepaperFINAL.pdf.

[Everett et al., 2007] Everett, G. D., Raymond, and Jr., M. (2007). Software Testing: Testing Across
the Entire Software Development Life Cycle. Wiley InterScience, Hobokon, NJ, USA.

[Fagan, 1986] Fagan, M. E. (1986). Advances in software inspections. IEEE Trans. Softw. Eng.,
12(7):744–751.

[Farooq and Dumke, 2007] Farooq, A. and Dumke, R. R. (2007). Research directions in verifica-
tion & validation process improvement. SIGSOFT Softw. Eng. Notes, 32(4):3.

[Farooq and Dumke, 2008a] Farooq, A. and Dumke, R. R. (2008a). Developing and applying
a consolidated evaluation framework to analyze test process improvement approaches. In
Cuadrado-Gallego, J., Braungarten, R., Dumke, R., and Abran, A., editors, Software Process
and Produce Measurement, volume 4895 of Lecture Notes in Computer Science, pages 114–
128. Springer-Verlag Berlin/Heidelberg.

[Farooq and Dumke, 2008b] Farooq, A. and Dumke, R. R. (2008b). Evaluation approaches in
software testing. Technical report, Dept. of Computer Science, University of Magdeburg,
Germany. Available at http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/
forschung/TR_Farooq.pdf.

[Farooq et al., 2008a] Farooq, A., Dumke, R. R., Schmietendorf, A., and Hegewald, H. (2008a).
A classification scheme for test process metrics. In SEETEST 2008: Proceedings of South East
European Software Testing Conference, Heidelberg, Germany. dpunkt.verlag.

[Farooq et al., 2008b] Farooq, A., Georgieva, K., and Dumke, R. R. (2008b). Challenges in evalu-
ating SOA test processes. In Dumke, R., Braungarten, R., Büren, G., Abran, A., and Cuadrado-
Gallego, J., editors, Software Process and Product Measurement, volume 5338 of Lecture Notes
in Computer Science, pages 107–113. Springer-Verlag Berlin/Heidelberg.

[Farooq et al., 2008c] Farooq, A., Georgieva, K., and Dumke, R. R. (2008c). A meta-measurement
approach for software test processes. In INMIC 2008: Proceedings of 12th IEEE International
Multitopic Conference, pages 333–338. IEEE Computer Society.

[Farooq et al., 2007] Farooq, A., Hegewald, H., and Dumke, R. R. (2007). A critical analysis of
the Testing Maturity Model. Metrics News, Journal of GI-Interest Group on Software Metrics,
12(1):35–40.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.europeansoftware.org/documents/softwarestrategywhitepaperFINAL.pdf
http://www.europeansoftware.org/documents/softwarestrategywhitepaperFINAL.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/TR_Farooq.pdf
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/TR_Farooq.pdf

Bibliography 171

[Farooq et al., 2008d] Farooq, A., Schmietendorf, A., and Dumke, R. R. (2008d). A quantitative
evaluation framework for software test process. In CONQUEST 2008: Proceedings of the In-
ternational Conference on Quality Engineering in Software Technology, pages 1–14, Aachen,
Germany. Shaker Verlag GmbH.

[Fenton et al., 1994] Fenton, N., Pfleeger, S. L., and Glass, R. L. (1994). Science and substance:
A challenge to software engineers. IEEE Software, 11(4):86–95.

[Fewster and Graham, 1999] Fewster, M. and Graham, D. (1999). Software test automation: ef-
fective use of test execution tools. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA.

[Florac and Carleton, 1999] Florac, W. A. and Carleton, A. D. (1999). Measuring the Software
Process: statistical process control for software process improvement. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

[Foos et al., 2008] Foos, R., Bunse, C., Höpfner, H., and Zimmermann, T. (2008). TML: an XML-
based test modeling language. SIGSOFT Softw. Eng. Notes, 33(2):1–6.

[Freimut and Vollei, 2005] Freimut, B. and Vollei, F. (2005). Determining inspection cost-
effectiveness by combining project data and expert opinion. IEEE Trans. Softw. Eng.,
31(12):1074–1092.

[Fu et al., 2004] Fu, C., Ryder, B. G., Milanova, A., and Wonnacott, D. (2004). Testing of java web
services for robustness. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, pages 23–34, New York, NY, USA. ACM.

[Fuggetta, 2000] Fuggetta, A. (2000). Software process: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 25–34, New York, NY, USA.
ACM Press.

[Garvin, 1984] Garvin, D. A. (1984). What does "product quality" really mean? Sloan Manage-
ment Review, 26(1):25–43.

[Güceğlioğlu and Demirörs, 2005a] Güceğlioğlu, A. and Demirörs, O. (2005a). A process based
model for measuring process quality attributes. In Richardson, I., Abrahamsson, P., and Mess-
narz, R., editors, Software Process Improvement, volume 3792 of Lecture Notes in Computer
Science, pages 118–129. Springer-Verlag Berlin/Heidelberg.

[Güceğlioğlu and Demirörs, 2005b] Güceğlioğlu, A. and Demirörs, O. (2005b). Using software
quality characteristics to measure business process quality. In van der Aalst, W., Benatallah,
B., Casati, F., and Curbera, F., editors, Business Process Management, volume 3649 of Lecture
Notes in Computer Science, pages 374–379. Springer-Verlag Berlin/Heidelberg.

[Gelperin and Hetzel, 1988] Gelperin, D. and Hetzel, B. (1988). The growth of software testing.
Commun. ACM, 31(6):687–695.

[Glass, 1994] Glass, R. L. (1994). The software-research crisis. IEEE Software, 11(6):42–47.

[Glass, 1995] Glass, R. L. (1995). A structure-based critique of contemporary computing research.
J. Syst. Softw., 28(1):3–7.

[Glass, 1998] Glass, R. L. (1998). Software Runaways: Monumental Software Disasters. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

172 Bibliography

[Glass, 2008] Glass, R. L. (2008). Software: Hero or zero? IEEE Software, 25(3):96, 95.

[Glass et al., 2004] Glass, R. L., Ramesh, V., and Vessey, I. (2004). An analysis of research in
computing disciplines. Commun. ACM, 47(6):89–94.

[Glass et al., 2002] Glass, R. L., Vessey, I., and Ramesh, V. (2002). Research in software engineer-
ing, an analysis of the literature. Information and Software Technology, 40(1):491–506.

[Goslin et al., 2008a] Goslin, A., Olsen, K., O’Hara, F., Miller, M., Thompson, G., and van Vee-
nendaal, E. (2008a). TMMi Assessment Method Application Requirements (TAMAR) Version 1.0.
TMMi R© Foundation. Available at http://www.tmmifoundation.org/downloads/
tmmi/TMMi.TAMAR.pdf.

[Goslin et al., 2008b] Goslin, A., Olsen, K., O’Hara, F., Miller, M., Thompson, G., and Wells, B.
(2008b). Test Maturity Model Integration-TMMi. TMMi R© Foundation. Available at http://
www.tmmifoundation.org/downloads/resources/TMMi%20Framework.pdf.

[Graves et al., 2001] Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and Rothermel, G.
(2001). An empirical study of regression test selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):184–208.

[Grembergen, 2001] Grembergen, W. V., editor (2001). Information technology evaluation meth-
ods and management. John Wiley & Sons, Inc., New York, NY, USA.

[Gutjahr, 1999] Gutjahr, W. J. (1999). Partition testing vs. random testing: The influence of uncer-
tainty. IEEE Trans. Softw. Eng., 25(5):661–674.

[Halvorsen and Conradi, 2001] Halvorsen, C. P. and Conradi, R. (2001). A taxonomy to compare
SPI frameworks. In EWSPT ’01: Proceedings of the 8th European Workshop on Software Pro-
cess Technology, pages 217–235, London, UK. Springer-Verlag.

[Hamann, 2006] Hamann, D. (2006). Towards an Integrated Approach for Software Process Im-
provement: Combining Software Process Assessment and Software Process Modeling. PhD the-
sis, Fraunhofer-Institute of Experimental Software Engineering, Univ. of Kaiserslautern, Kaiser-
slautern, Germany.

[Harris, 2006] Harris, I. G. (2006). A coverage metric for the validation of interacting processes.
In DATE ’06: Proceedings of the conference on Design, automation and test in Europe, pages
1019–1024, 3001 Leuven, Belgium, Belgium. European Design and Automation Association.

[Harrold, 2000] Harrold, M. J. (2000). Testing: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 61–72, New York, NY, USA. ACM
Press.

[Havey, 2005] Havey, M. (2005). Essential Business Process Modeling. O’Reilly Media, Inc.

[Heitmeyer, 2005] Heitmeyer, C. (2005). A panacea or academic poppycock: Formal methods
revisited. In HASE ’05: Proceedings of the Ninth IEEE International Symposium on High-
Assurance Systems Engineering, pages 3–7, Washington, DC, USA. IEEE Computer Society.

[Holz et al., 2006] Holz, H. J., Applin, A., Haberman, B., Joyce, D., Purchase, H., and Reed, C.
(2006). Research methods in computing: what are they, and how should we teach them? SIGCSE
Bull., 38(4):96–114.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.tmmifoundation.org/downloads/tmmi/TMMi.TAMAR.pdf
http://www.tmmifoundation.org/downloads/tmmi/TMMi.TAMAR.pdf
http://www.tmmifoundation.org/downloads/resources/TMMi%20Framework.pdf
http://www.tmmifoundation.org/downloads/resources/TMMi%20Framework.pdf

Bibliography 173

[Huang et al., 2008] Huang, H. Y., Liu, H. H., Li, Z. J., and Zhu, J. (2008). Surrogate: A sim-
ulation apparatus for continuous integration testing in service oriented architecture. In SCC
2008: Proceedings of IEEE International Conference on Services Computing, pages 223–230,
Los Alamitos, CA, USA. IEEE Computer Society.

[Humphrey,] Humphrey, W. S. The software quality profile. Available at http://www.sei.
cmu.edu/publications/articles/quality-profile/index.html.

[Humphrey, 1989] Humphrey, W. S. (1989). Managing the software process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[Humphrey et al., 2007] Humphrey, W. S., Konrad, M. D., Over, J. W., and Peterson, W. C. (2007).
Future directions in process improvement. Crosstalk-The Journal of Defense Software Engineer-
ing. February Issue.

[Hutcheson, 2003] Hutcheson, M. L. (2003). Software Testing Fundamentals: Methods and Met-
rics. John Wiley & Sons, Inc., New York, NY, USA.

[iABG,] iABG. V-Modell XT, iABG Industrieanlagen-Betriebsgesellschaft mbH. Available at
http://v-modell.iabg.de/.

[IEEE, 1990] IEEE (1990). Std 610.12-1990:IEEE standard glossary of software engineering ter-
minology.

[IEEE, 1992] IEEE (1992). Std 1209:IEEE recommended practice for evaluation and selection of
CASE tools.

[IEEE, 1997a] IEEE (1997a). Std 1028:IEEE standard for software reviews.

[IEEE, 1997b] IEEE (1997b). Std 1074: IEEE standard for developing software life cycle pro-
cesses.

[IEEE, 1998] IEEE (1998). Std 829: IEEE standard for software test documentation.

[IEEE/EIA, 1998] IEEE/EIA (1998). Std 12207: Standard for information technology-software
life cycle processes.

[Illes et al., 2005] Illes, T., Herrmann, A., Paech, B., and Rückert, J. (2005). Criteria for soft-
ware testing tool evaluation-a task oriented view. In Proceedings of the 3rd World Congress for
Software Quality. Available at http://www.softwareforschung.de/fileadmin/
_primium/downloads/publikationen/IHPR2005.pdf.

[ISO/IEC, 1998] ISO/IEC (1998). Standard 15504 : Information technology - software process
assessment – part 7 : Guide for use in process improvement.

[ISO/IEC, 2004] ISO/IEC (2004). Standard 90003: Software engineering – guidelines for the
application of ISO 9001:2000 to computer software.

[ISTQB, 2006] ISTQB (2006). Standard glossary of terms used in software testing.

[Jacobs and Trienekens, 2002] Jacobs, J. C. and Trienekens, J. J. M. (2002). Towards a metrics
based verification and validation maturity model. In STEP ’02: Proceedings of the 10th Interna-
tional Workshop on Software Technology and Engineering Practice, page 123, Washington, DC,
USA. IEEE Computer Society.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://www.sei.cmu.edu/publications/articles/quality-profile/index.html
http://www.sei.cmu.edu/publications/articles/quality-profile/index.html
http://v-modell.iabg.de/
http://www.softwareforschung.de/fileadmin/_primium/downloads/publikationen/IHPR2005.pdf
http://www.softwareforschung.de/fileadmin/_primium/downloads/publikationen/IHPR2005.pdf

174 Bibliography

[Jr. et al., 2005] Jr., R. H., Kinder, S., and Graham, S. (2005). IBM’s SOA foundation. IBM
White Paper. Available at http://www.ibm.com/developerworks/webservices/
library/ws-soa-whitepaper/.

[Juran, 1988] Juran, J. M. (1988). Juran on Planning for Quality. Free Press.

[Juristo et al., 2002] Juristo, N., Moreno, A. M., and Vegas, S. (2002). A survey on testing tech-
nique empirical studies: How limited is our knowledge. In ISESE ’02: Proceedings of the 2002
International Symposium on Empirical Software Engineering, page 161, Washington, DC, USA.
IEEE Computer Society.

[Juristo et al., 2004a] Juristo, N., Moreno, A. M., and Vegas, S. (2004a). Reviewing 25 years of
testing technique experiments. Empirical Softw. Engg., 9(1-2):7–44.

[Juristo et al., 2004b] Juristo, N., Moreno, A. M., and Vegas, S. (2004b). Towards building a solid
empirical body of knowledge in testing techniques. SIGSOFT Softw. Eng. Notes, 29(5):1–4.

[Kan, 2002] Kan, S. H. (2002). Metrics and Models in Software Quality Engineering Second Edi-
tion. Addison-Wesley Pub. Company, Inc.

[Kan et al., 2001] Kan, S. H., Parrish, J., and Manlove, D. (2001). In-process metrics for software
testing. IBM Systems Journal, 40(1):220–241.

[Kandt, 2005] Kandt, R. K. (2005). Software Engineering Quality Practices (Applied Software
Engineering). Auerbach Publications, Boston, MA, USA.

[Kazman et al., 2000] Kazman, R., Klein, M., and Clements, P. (2000). ATAM: Method for ar-
chitecture evaluation. Technical report, Software Engineering Institute, SEI. Available at
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf.

[Kelly and Shepard, 2002] Kelly, D. and Shepard, T. (2002). Qualitative observations from soft-
ware code inspection experiments. In CASCON ’02: Proceedings of the 2002 conference of the
Centre for Advanced Studies on Collaborative research, page 5. IBM Press.

[Kenett and Baker, 1999] Kenett, R. S. and Baker, E. R. (1999). Software Process Quality Man-
agement and Control. Marcel Dekker Inc., New York, NY, USA.

[Kit and Finzi, 1995] Kit, E. and Finzi, S. (1995). Software testing in the real world: improving
the process. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

[Kitchenham et al., 1997] Kitchenham, B., Brereton, P., Budgen, D., Linkman, S., Almstrum,
V. L., and Pfleeger, S. L. (1997). Evaluation and assessment in software engineering. Infor-
mation and Software Technology, 39(11):731–734.

[Kollanus, 2005] Kollanus, S. (2005). ICMM- inspection capability maturity model. In Kokol, P.,
editor, Proceedings of IASTED International Conference on Software Engineering, part of the
23rd Multi-Conference on Applied Informatics, pages 372–377. ACTA Press.

[Kollanus, 2009] Kollanus, S. (2009). Experiences from using ICMM in inspection process assess-
ment. Software Quality Journal, 17(2):177–187.

[Kollanus and Koskinen, 2007] Kollanus, S. and Koskinen, J. (2007). Survey of software inspec-
tion research: 1991-2005. Technical report, University Of Jyväskylä, Department of Com-
puter Science and Information Systems. Available at http://users.jyu.fi/~kolli/
research/Inspection_survey_WP.pdf.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/
http://www.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf
http://users.jyu.fi/~kolli/research/Inspection_survey_WP.pdf
http://users.jyu.fi/~kolli/research/Inspection_survey_WP.pdf

Bibliography 175

[Komi-Sirviö, 2004] Komi-Sirviö, S. (2004). Development and Evaluation of Software Process
Improvement Methods. PhD thesis, Faculty of Science, University of Oulu, Oulu, Finland.

[Kontogiannis et al., 2008] Kontogiannis, K., Lewis, G. A., and Smith, D. B. (2008). A research
agenda for service-oriented architecture. In SDSOA ’08: Proceedings of the 2nd international
workshop on Systems development in SOA environments, pages 1–6, New York, NY, USA. ACM.

[Koomen, 2002] Koomen, T. (2002). Worldwide survey on Test Process Improvement. Techni-
cal report, Sogeti. Available at http://www.sogeti.se/upload/vara_tjanster/
dokument/tpi_survey2002.pdf.

[Koomen and Notenboom, 2004] Koomen, T. and Notenboom, E. (2004). Worldwide survey on
Test Process Improvement. Technical report, Sogeti. Available at http://www.sogeti.
nl/Home/Expertise/Testen/tpi_survey_uk.jsp.

[Koomen and Pol, 1999] Koomen, T. and Pol, M. (1999). Test Process Improvement: a Practical
Step-by-Step Guide to Structured Testing. Addison-Wesley, New York, NY, USA.

[Kozlov, 2005] Kozlov, D. (2005). A formal model for evaluation of the software development
process based on quality indexes. In QAOOSE 2005: Proceedings of the 9th ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering. Available at http:
//www.iro.umontreal.ca/~sahraouh/qaoose2005/paper8.pdf.

[Krebs et al., 2005] Krebs, W., Ho, C.-W., Williams, L., and Layman, L. (2005). Rational
unified process evaluation framework version 1.0. Technical report, IBM Corporation and
North Carolina State University, USA. Available at ftp://ftp.ncsu.edu/pub/unity/
lockers/ftp/csc_anon/tech/2005/TR-2005-46.pdf.

[Kuhn, 1996] Kuhn, T. S. (1996). The Structure of Scientific Revolutions Third Edition. The Uni-
versity of Chicago Press, Chicago, IL, USA.

[Ladkin, 2006] Ladkin, P. B. (2006). A380 delivery delays attributed partly to design SW prob-
lems. The Risks Digest, 24(45).

[Laitenberger, 2002] Laitenberger, O. (2002). A survey of software inspection technologies. Hand-
book on Software Eng. and Knowledge Eng., 2:517–555.

[Laitenberger et al., 1999] Laitenberger, O., Leszak, M., Stoll, D., and Emam, K. E. (1999). Quan-
titative modeling of software reviews in an industrial setting. In METRICS ’99: Proceedings of
the 6th International Symposium on Software Metrics, page 312, Washington, DC, USA. IEEE
Computer Society.

[Leveson, 2004] Leveson, N. G. (2004). Role of software in spacecraft accidents. Journal of
Spacecraft and Rockets, 41(4):564–575.

[Lewis, 2004] Lewis, W. E. (2004). Software Testing and Continuous Quality Improvement, Second
Edition. Auerbach Publications, Boca Raton, FL, USA.

[Liggesmeyer, 1995] Liggesmeyer, P. (1995). A set of complexity metrics for guiding the software
test process. Software Quality Journal, 4(4):257–273.

[Liggesmeyer, 2002] Liggesmeyer, P. (2002). Software-Qualität. Testen, Analysieren und Veri-
fizieren von Software. Spektrum Akademischer Verlag, Berlin, Germany.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://www.sogeti.se/upload/vara_tjanster/dokument/tpi_survey2002.pdf
http://www.sogeti.se/upload/vara_tjanster/dokument/tpi_survey2002.pdf
http://www.sogeti.nl/Home/Expertise/Testen/tpi_survey_uk.jsp
http://www.sogeti.nl/Home/Expertise/Testen/tpi_survey_uk.jsp
http://www.iro.umontreal.ca/~sahraouh/qaoose2005/paper8.pdf
http://www.iro.umontreal.ca/~sahraouh/qaoose2005/paper8.pdf
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2005/TR-2005-46.pdf
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2005/TR-2005-46.pdf

176 Bibliography

[Limböck, 2009] Limböck, G. (2009). Measuring the quality of standard software: the SAP quality
index. In Software Quality Days 2009.

[Lopez, 2000] Lopez, M. (2000). An evaluation theory perspective of the architecture tradeoff
analysis methodsm (ATAM). Technical report, Software Engineering Institute, SEI. Available at
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr012.pdf.

[Lopez, 2003] Lopez, M. (2003). Application of an evaluation framework for analyzing the archi-
tecture tradeoff analysis method. J. Syst. Softw., 68(3):233–241.

[Lüttgen, 2006] Lüttgen, G. (2006). Formal verification & its role in testing. Technical Re-
port YCS-2006-400, Department of Computer Science, University of York, England. Avail-
able at http://www-users.cs.york.ac.uk/~luettgen/publications/pdf/
York-YCS-2006-400.pdf.

[Lu and Sadiq, 2007] Lu, R. and Sadiq, S. W. (2007). A survey of comparative business process
modeling approaches. In Abramowicz, W., editor, Business Information Systems, volume 4439
of Lecture Notes in Computer Science, pages 82–94. Springer-Verlag Berlin/Heidelberg.

[Lázaro and Marcos, 2005] Lázaro, M. and Marcos, E. (2005). Research in software engineering:
Paradigms and methods. In CAiSE Workshops Vol. 2, Proceedings of the 17th International
Conference, CAiSE 2005, Porto, Portugal, pages 517–522. FEUP Edições, Porto.

[Marquis et al., 2005] Marquis, S., Dean, T. R., and Knight, S. (2005). SCL: a language for security
testing of network applications. In CASCON ’05: Proceedings of the 2005 conference of the
Centre for Advanced Studies on Collaborative research, pages 155–164. IBM Press.

[McCaffrey, 2005] McCaffrey, J. (2005). Test run: The analytic hierarchy process. MSDN Mag-
azine. Available at http://msdn.microsoft.com/en-us/magazine/cc163785.
aspx.

[McGibbon, 2005] McGibbon, S. (2005). Growth and jobs from the European software industry.
European Review of Political Technologies, 3:1–13.

[Meyer, 2008] Meyer, B. (2008). Seven principles of software testing. Computer, 41(8):99–101.

[Michael et al., 2002] Michael, J. B., Bossuyt, B. J., and Snyder, B. B. (2002). Metrics for measur-
ing the effectiveness of software-testing tools. In ISSRE ’02: Proceedings of the 13th Interna-
tional Symposium on Software Reliability Engineering (ISSRE’02), page 117, Washington, DC,
USA. IEEE Computer Society.

[Microsoft,] Microsoft. The economic impact of IT, software, and the Microsoft
ecosystem on the global economy. International Data Corp. Available at
http://www.microsoft.com/downloads/details.aspx?FamilyId=
BB95083E-2BCA-4C60-832C-9B35A2A6BC6D&displaylang=en.

[Morasca and Serra-Capizzano, 2004] Morasca, S. and Serra-Capizzano, S. (2004). On the analyt-
ical comparison of testing techniques. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, pages 154–164, New York, NY, USA.
ACM.

[Muccini et al., 2005] Muccini, H., Dias, M. S., and Richardson, D. J. (2005). Reasoning about
software architecture-based regression testing through a case study. In COMPSAC’05: Pro-
ceedings of the 29th Annual International Computer Software and Applications Conference,
volume 02, pages 189–195, Los Alamitos, CA, USA. IEEE Computer Society.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr012.pdf
http://www-users.cs.york.ac.uk/~luettgen/publications/pdf/York-YCS-2006-400.pdf
http://www-users.cs.york.ac.uk/~luettgen/publications/pdf/York-YCS-2006-400.pdf
http://msdn.microsoft.com/en-us/magazine/cc163785.aspx
http://msdn.microsoft.com/en-us/magazine/cc163785.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=BB95083E-2BCA-4C60-832C-9B35A2A6BC6D&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=BB95083E-2BCA-4C60-832C-9B35A2A6BC6D&displaylang=en

Bibliography 177

[Myers, 2004] Myers, G. J. (2004). The Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA.

[Naur and Randell, 1969] Naur, P. and Randell, B., editors (1969). Software Engineering: Report
on a Conference Sponsored by NATO Science Committee (in October in Germisch, Germany).
Scientific Affairs Division, NATO, Burssels, Belgium.

[Neto et al., 2007] Neto, A. C. D., Subramanyan, R., Vieira, M., and Travassos, G. H. (2007). Char-
acterization of model-based software testing approaches. Technical report, PESC/COPPE/UFRJ,
Siemens Corporate Research. Available http://www.cos.ufrj.br/uploadfiles/
1188491168.pdf.

[Ng et al., 2004] Ng, S. P., Murnane, T., Reed, K., Grant, D., and Chen, T. Y. (2004). A prelimi-
nary survey on software testing practices in australia. In ASWEC ’04: Proceedings of the 2004
Australian Software Engineering Conference, page 116, Washington, DC, USA. IEEE Computer
Society.

[Ntafos, 2001] Ntafos, S. C. (2001). On comparisons of random, partition, and proportional parti-
tion testing. IEEE Trans. Softw. Eng., 27(10):949–960.

[Nursimulu and Probert, 1995] Nursimulu, K. and Probert, R. L. (1995). Cause-effect graphing
analysis and validation of requirements. In CASCON ’95: Proceedings of the 1995 conference
of the Centre for Advanced Studies on Collaborative research, page 46. IBM Press.

[OASIS, 2007] OASIS (2007). Web services business process execution language WS-BPEL ver-
sion 2.0. OASIS Standard.

[O’Brien et al., 2005] O’Brien, L., Merson, P., and Bass, L. (2005). Quality attributes and service-
orinted architectures. Technical report, Software Engineering Institute, SEI.

[O’Brien et al., 2007] O’Brien, L., Merson, P., and Bass, L. (2007). Quality attributes for service-
oriented architectures. In SDSOA ’07: Proceedings of the International Workshop on Systems
Development in SOA Environments, page 3, Washington, DC, USA. IEEE Computer Society.

[Oktaba and Piattini, 2008] Oktaba, H. and Piattini, M. (2008). Software Process Improvement for
Small and Medium Enterprises Techniques and Case Studies. Information Science Reference,
IGI Global.

[OMG, 2006] OMG (2006). Business process modeling notation (BPMN) specification. Final
Adopted Specification, February 2006. Object Management Group.

[Osterweil, 1987] Osterweil, L. (1987). Software processes are software too. In ICSE ’87: Pro-
ceedings of the 9th international conference on Software Engineering, pages 2–13, Los Alami-
tos, CA, USA. IEEE Computer Society Press.

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007).
Service-oriented computing: State of the art and research challenges. Computer, 40(11):38–45.

[Paradkar, 1994] Paradkar, A. (1994). On the experience of using cause-effect graphs for software
specification and test generation. In CASCON ’94: Proceedings of the 1994 conference of the
Centre for Advanced Studies on Collaborative research, page 51. IBM Press.

[Parveen and Tilley, 2008] Parveen, T. and Tilley, S. (2008). A research agenda for testing SOA-
based systems. In Proceeding of 2008 2nd Annual IEEE Systems Conference, pages 1–6, Los
Alamitos, CA, USA. IEEE Computer Society.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://www.cos.ufrj.br/uploadfiles/1188491168.pdf
http://www.cos.ufrj.br/uploadfiles/1188491168.pdf

178 Bibliography

[Paul, 2001] Paul, R. (2001). End-to-end integration testing. In APAQS ’01: Proceedings of the
Second Asia-Pacific Conference on Quality Software, page 211, Washington, DC, USA. IEEE
Computer Society.

[Paulk and Chrissis, 2002] Paulk, M. C. and Chrissis, M. B. (2002). The 2001 hight maturity
workshop. Technical report, Software Engineering Institute, SEI. Available at http://www.
sei.cmu.edu/pub/documents/01.reports/pdf/01sr014.pdf.

[Peng and Wallace, 1994] Peng, W. W. and Wallace, D. R. (1994). Software Error Analysis. Silicon
Press, Summit, NJ, USA.

[Penta et al., 2007] Penta, M. D., Bruno, M., Esposito, G., Mazza, V., and Canfora, G. (2007).
Test and Analysis of Web Services, chapter Web Services Regression Testing, pages 205–236.
Springer.

[Perrow, 2008] Perrow, C. (2008). Software failures, security, and cyber attacks. In SHB 2008:
Interdisciplinary Workshop on Security and Human Behaviour. Available at http://www.
cl.cam.ac.uk/~rja14/shb08/perrow.pdf.

[Perry, 2006] Perry, W. E. (2006). Effective methods for software testing. Wiley Publishing Inc.,
Indianapolis, IN, USA, third edition.

[Pezzè and Young, 2007] Pezzè, M. and Young, M. (2007). Software Testing and Analysis: Pro-
cess, Principles, and Techniques. John Wiley & Sons, Inc, Hobokon, NJ, USA.

[Pol et al., 2002] Pol, M., Teunissen, R., and van Veenendaal, E. (2002). Software Testing-A Guide
to the TMap Approach. Addison-Wesley, New York, NY, USA.

[Poore, 2004] Poore, J. H. (2004). A tale of three disciplines...and a revolution. Computer,
37(1):30–36.

[Posavac and Carey, 2003] Posavac, E. J. and Carey, R. G. (2003). Program Evaluation: methods
and Case Studies. Pearson Education, Inc., Upper Saddle River, NJ, USA.

[Pressman, 2001] Pressman, R. S. (2001). Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education.

[Rajan, 2006] Rajan, A. (2006). Coverage metrics to measure adequacy of black-box test suites.
In ASE ’06: Proceedings of the 21st IEEE International Conference on Automated Software
Engineering, pages 335–338, Washington, DC, USA. IEEE Computer Society.

[Ramler and Wolfmaier, 2006] Ramler, R. and Wolfmaier, K. (2006). Economic perspectives in
test automation: balancing automated and manual testing with opportunity cost. In AST ’06:
Proceedings of the 2006 international workshop on Automation of software test, pages 85–91,
New York, NY, USA. ACM Press.

[Ribarov et al., 2007] Ribarov, L., Manova, I., and Ilieva, S. (2007). Testing in a service-oriented
world. In InfoTech-2007: Proceedings of the International Conference on Information Technolo-
gies.

[Richardson, 2002] Richardson, I. (2002). SPI models: What characteristics are required for small
software development companies? Software Quality Journal, 10(2):101–114.

[Richter and Dumke, 2008] Richter, K. and Dumke, R. R. (2008). A causal-based approach for
process improvement. Software Measurement News-Journal of the Software Metrics Community,
13(2):27–48.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01sr014.pdf
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01sr014.pdf
http://www.cl.cam.ac.uk/~rja14/shb08/perrow.pdf
http://www.cl.cam.ac.uk/~rja14/shb08/perrow.pdf

Bibliography 179

[Rico, 2004] Rico, D. F. (2004). ROI of Software Process Improvement: Metrics for Project Man-
agers and Software Engineers. J. Ross Publishing, Inc.

[Rossi et al., 1999] Rossi, P. H., Freeman, H. E., and Lipsey, M. W. (1999). Evalution: A System-
atic Approach. Sage Publications, Thousand Oaks, CA, USA.

[Rothermel et al., 2004] Rothermel, G., Elbaum, S., Malishevsky, A. G., Kallakuri, P., and Qiu, X.
(2004). On test suite composition and cost-effective regression testing. ACM Trans. Softw. Eng.
Methodol., 13(3):277–331.

[Rothermel et al., 2001] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Priori-
tizing test cases for regression testing. IEEE Trans. Softw. Eng., 27(10):929–948.

[Rud et al., 2007a] Rud, D., Kunz, M., Schmietendorf, A., and Dumke, R. R. (2007a). Performance
analysis in WS-BPEL-based infrastructures. In UKPEW 2007: Proceedings of 23rd Annual UK
Performance Engineering Workshop, pages 130–141.

[Rud et al., 2007b] Rud, D., Mencke, S., Schmietendorf, A., and Dumke, R. R. (2007b). Granular-
itätsmetriken für serviceorientierte architekturen. In MetriKon 2007: Proceedings of the DASMA
Software Metrik Kongress, pages 297–308, Aachen, Germany. Shaker Verlag GmbH.

[Rud et al., 2006] Rud, D., Schmietendorf, A., and Dumke, R. R. (2006). Product metrics for
service-oriented infrastructures. In IWSM/MetriKon 2006: Proceedings of the International
Workshop on Software Measurement and DASMA Software Metrik Kongress, pages 161–174,
Aachen, Germany. Shaker Verlag GmbH.

[Rud et al., 2007c] Rud, D., Schmietendorf, A., and Dumke, R. R. (2007c). Performance anno-
tated business processes in service-oriented architectures. International Journal of Simulation:
Systems, Science & Technology, 8(3):61–71.

[Rud et al., 2007d] Rud, D., Schmietendorf, A., and Dumke, R. R. (2007d). Resource metrics for
service-oriented infrastructures. In SEMSOA 2007: Workshop on Software Engineering Methods
for Service Oriented Architecture, pages 90–98.

[Rud et al., 2007e] Rud, D., Schmietendorf, A., Kunz, M., and Dumke, R. R. (2007e). Anal-
yse verfügbarer SOA-reifegradmodelle-state-of-the-art. In BSOA 2007: 2. Workshop Bewer-
tungsaspekte serviceorientierter Architekturen, pages 115–126, Aachen, Germany. Shaker Ver-
lag GmbH.

[Rud et al., 2007f] Rud, D., Schmietendorf, A., Kunz, M., and Dumke, R. R. (2007f). Processqual-
ität bei dem Übergang zur serviceorientierten architektur. In MetriKon 2007: Proceedings of the
DASMA Software Metrik Kongress, pages 141–153, Aachen, Germany. Shaker Verlag GmbH.

[Ruth and Tu, 2008] Ruth, M. E. and Tu, S. (2008). Empirical studies of a decentralized regression
test selection framework for web services. In TAV-WEB ’08: Proceedings of the 2008 workshop
on Testing, analysis, and verification of web services and applications, pages 8–14, New York,
NY, USA. ACM.

[Saaty, 2000] Saaty, T. (2000). Fundamentals of the Analytic Hierarchy Process. RWS Publica-
tions, Pittsburgh, PA, USA.

[Saiedian and Chennupati, 1999] Saiedian, H. and Chennupati, K. (1999). Towards an evaluative
framework for software process improvement models. J. Syst. Softw., 47(2–3):139–148.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

180 Bibliography

[Salvaneschi, 2005] Salvaneschi, P. (2005). The quality matrix: A management tool for software
quality evaluation. In SE 2005: Proceedings of the The IASTED International Conference on
Software Engineering, pages 394–399. ACTA Press.

[Satpathy et al., 2000] Satpathy, M., Harrison, R., Snook, C., and Butler, M. J. (2000). A generic
model for assessing process quality. In IWSM ’00: Proceedings of the 10th International Work-
shop on New Approaches in Software Measurement, pages 94–110, London, UK. Springer-
Verlag.

[Sauer et al., 2000] Sauer, C., Jeffery, D. R., Land, L., and Yetton, P. (2000). The effectiveness of
software development technical reviews: A behaviorally motivated program of research. IEEE
Trans. Softw. Eng., 26(1):1–14.

[Schmietendorf, 2007] Schmietendorf, A. (2007). Eine strategische Vorgehensweise zur erfolgre-
ichen Implementierung serviceorientierter Architekturen in großen IT-Organisationen. Shaker
Verlag.

[Schmietendorf, 2008] Schmietendorf, A. (2008). Assessment of business process modeling tools
under consideration of business process management activities. In Dumke, R., Braungarten,
R., Büren, G., Abran, A., and Cuadrado-Gallego, J., editors, Software Process and Product
Measurement, volume 5338 of Lecture Notes in Computer Science, pages 141–154. Springer-
Verlag Berlin/Heidelberg.

[Schmietendorf and Dimitrov, 2006] Schmietendorf, A. and Dimitrov, E. (2006). Management ser-
viceorientierter architekturen auf der grundlage von ITIL. In CECMG Jahrestagung 2006.

[Schulmeyer, 2008] Schulmeyer, G. G., editor (2008). Handbook of Software Quality Assurance
(4th ed.). Artech House, Inc., Norwood, MA, USA.

[Schulmeyer and MacKenzie, 2000] Schulmeyer, G. G. and MacKenzie, G. R. (2000). Verification
and Validation of Modern Software Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Scriven, 1981] Scriven, M. (1981). The "weight and sum" methodology. American Journal of
Evaluation, 2(1):85–90.

[Scriven, 1991] Scriven, M. (1991). Evaluation Thesaurus. Sage Publications Inc., Thousand
Oaks, CA, USA, 4th edition.

[Scriven, 1996a] Scriven, M. (1996a). The theory behind practical evaluation. Evaluation,
2(4):393–404.

[Scriven, 1996b] Scriven, M. (1996b). Types of evaluation and types of evaluator. American Jour-
nal of Evaluation, 17(1):181–161.

[Shadish et al., 1991] Shadish, W. R., Cook, T. D., and Leviton, L. C. (1991). Foundations of
Program Evaluation: Theories of Practice. Sage Publications, Inc., Newbury Park, CA, USA.

[Shaw, 2001] Shaw, M. (2001). The coming-of-age of software architecture research. In ICSE
’01: Proceedings of the 23rd International Conference on Software Engineering, page 656,
Washington, DC, USA. IEEE Computer Society.

[Singpurwalla and Wilson, 1999] Singpurwalla, N. D. and Wilson, S. P. (1999). Statistical Meth-
ods in Software Engineering: Reliability and Risk. Springer.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 181

[Sinha and Paradkar, 2006] Sinha, A. and Paradkar, A. (2006). Model-based functional confor-
mance testing of web services operating on persistent data. In TAV-WEB ’06: Proceedings of
the 2006 workshop on Testing, analysis, and verification of web services and applications, pages
17–22, New York, NY, USA. ACM.

[Siniaalto, 2006] Siniaalto, M. (2006). Test driven development: Empirical body of evidence.
Technical report, ITEA, Information Technology for European Advancement. Available
at http://www.agile-itea.org/public/deliverables/ITEA-AGILE-D2.7_
v1.0.pdf.

[Sneed, 2004] Sneed, H. M. (2004). Reverse engineering of test cases for selective regression
testing. In CSMR’04: Proceedings of the Eigth Euromicro Working Conference on Software
Maintenance and Reengineering, page 69, Los Alamitos, CA, USA. IEEE Computer Society.

[Sneed, 2005] Sneed, H. M. (2005). Measuring the effectiveness of software testing: converting
software testing from an art to a science. In Proceedings of MetriKon 2005: DASMA Software
Metrik Kongress, pages 145–170, Aachen, Germany. Shaker Verlag GmbH.

[Sneed, 2007] Sneed, H. M. (2007). Test metrics. Metrics News, Journal of GI-Interest Group on
Software Metrics, 12(1):41–51.

[Sommerville, 2007] Sommerville, I. (2007). Software Engineering. Pearson Education Limited,
Harlow, England, 8th edition.

[Spillner et al., 2007] Spillner, A., Rossner, T., Winter, M., and Linz, T. (2007). Software Testing
Practice: Test Management. Rocky Nook Inc., Santa Barbara, CA, USA.

[Staples et al., 2007] Staples, M., Niazi, M., Jeffery, R., Abrahamsd, A., Byatte, P., and Murphy,
R. (2007). An exploratory study of why organizations do not adopt CMMI. J. Syst. Softw.,
80(6):883–895.

[Stikkel, 2006] Stikkel, G. (2006). Dynamic model for the system testing process. Information
and Software Technology, 48(7):578–585.

[Stojanovic and Dahanayake, 2005] Stojanovic, Z. and Dahanayake, A. (2005). Service-oriented
Software System Engineering Challenges and Practices. Idea Group Inc., Hershey, PA, USA.

[Stufflebeam and Shinkfield, 2007] Stufflebeam, D. and Shinkfield, A. J. (2007). Evaluation The-
ory, Models, and Applications. Jossey-Bass, San Francisco.

[Stufflebeam, 2001] Stufflebeam, D. L. (2001). Evaluation models. New Directions for Evaluation,
89.

[Suwannasart et al., 1999] Suwannasart, T., Prapass, and Srichaivattana (1999). A set of measure-
ments to improve software testing process. In NCSEC’99: Proceedings of the 3rd National
Computer Science and Engineering Conference.

[Swinkels, 2000] Swinkels, R. (2000). A comparison of TMM and other test process improvement
models. Technical report, Frits Philips Institute, Technische Universiteit Eindhoven, Nether-
lands. Available at http://is.tm.tue.nl/research/v2m2/wp1/12-4-1-FPdef.
pdf.

[Taipale, 2007] Taipale, O. (2007). Observations On Software Testing Practice. PhD thesis,
Lappeenranta University of Technology, Lappeenranta, Finland,.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

http://www.agile-itea.org/public/deliverables/ITEA-AGILE-D2.7_v1.0.pdf
http://www.agile-itea.org/public/deliverables/ITEA-AGILE-D2.7_v1.0.pdf
http://is.tm.tue.nl/research/v2m2/wp1/12-4-1-FPdef.pdf
http://is.tm.tue.nl/research/v2m2/wp1/12-4-1-FPdef.pdf

182 Bibliography

[Taipale et al., 2005] Taipale, O., Smolander, K., and Kälviäinen, H. (2005). Finding and ranking
research directions for software testing. In Richardson, I., Abrahamsson, P., and Messnarz, R.,
editors, Software Process Improvement, volume 3792 of Lecture Notes in Computer Science,
pages 39–48. Springer-Verlag Berlin/Heidelberg.

[Tarhan and Demirörs, 2008] Tarhan, A. and Demirörs, O. (2008). Assessment of software process
and metrics to support quantitative understanding. In Cuadrado-Gallego, J., Braungarten, R.,
Dumke, R., and Abran, A., editors, Software Process and Product Measurement, volume 4895
of Lecture Notes in Computer Science, pages 102–113. Springer-Verlag Berlin/Heidelberg.

[THBS, 2007] THBS (2007). SOA test methodology. Torry Harris Business Solutions. Available
at http://www.thbs.com/pdfs/SOA_Test_Methodology.pdf.

[Tian, 2005] Tian, J. (2005). Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. Wiley-IEEE Computer Society Pres, Los Alamitos, CA, U.S.A.

[Tillmann and Schulte, 2005] Tillmann, N. and Schulte, W. (2005). Parameterized unit tests. In
ESEC/FSE-13: Proceedings of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 253–262, New York, NY, USA. ACM Press.

[Trudel et al., 2006] Trudel, S., Lavoie, J.-M., Paré, M.-C., and Suryn, W. (2006). PEM: The small
company-dedicated software process quality evaluation method combining CMMI and ISO/IEC
14598. Software Quality Journal, 14(1):7–23.

[Tyrrell, 2000] Tyrrell, S. (2000). The many dimensions of the software process. Crossroads,
6(4):22–26.

[Utting and Legeard, 2006] Utting, M. and Legeard, B. (2006). Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[van Lamsweerde, 2000] van Lamsweerde, A. (2000). Formal specification: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering, pages 147–159,
New York, NY, USA. ACM Press.

[van Solingen and Berghout, 1999] van Solingen and Berghout, E. (1999). The Goal/Question/-
Metric Method: A Practical Guide for Quality Improvement of Software Development. McGraw-
Hill, London, UK.

[van Solingen, 2000] van Solingen, R. (2000). Product Focused Software Process Improvement:
SPI in the Embedded Software Domain. PhD thesis, Eindhoven University of Technology, Eind-
hoven, The Netherlands.

[van Veenendaal and Pol, 1997] van Veenendaal, E. and Pol, M. (1997). A test management ap-
proach for structured testing. Achieving Software Product Quality.

[Vanderfeesten et al., 2007] Vanderfeesten, I. T. P., Cardoso, J., and Reijers, H. A. (2007). A
weighted coupling metric for business process models. In Eder, J., Tomassen, S. L., Opdahl,
A. L., and Sindre, G., editors, Proceedings of the CAiSE’07 Forum at the 19th International
Conference on Advanced Information Systems, pages 41–44.

[Verma et al., 2005] Verma, S., Ramineni, K., and Harris, I. G. (2005). An efficient control-
oriented coverage metric. In ASP-DAC ’05: Proceedings of the 2005 conference on Asia South
Pacific design automation, pages 317–322, New York, NY, USA. ACM Press.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.thbs.com/pdfs/SOA_Test_Methodology.pdf

Bibliography 183

[Vessey et al., 2005] Vessey, I., Ramesh, V., and Glass, R. L. (2005). A unified classification system
for research in the computing disciplines. Information & Software Technology, 47(4):245–255.

[Wang et al., 1998] Wang, L.-C., Abadir, M. S., and Zeng, J. (1998). On measuring the effec-
tiveness of various design validation approaches for powerpc microprocessor embedded arrays.
ACM Trans. Des. Autom. Electron. Syst., 3(4):524–532.

[Wang, 2008] Wang, Y. (2008). Software Engineering Foundations : A Software Science Perspec-
tive. Auerbach Publications, Boca Raton, FL, USA.

[Wang and King, 2000] Wang, Y. and King, G. (2000). Software engineering processes: principles
and applications. CRC Press, Inc., Boca Raton, FL, USA.

[Weber-Wulff, 2005] Weber-Wulff, D. (2005). Two german projects: Toll and dole. The Risks
Digest, 23(65).

[Wegner, 1976] Wegner, P. (1976). Research paradigms in computer science. In Proceedings of
Int’l Conf. Software Engineering, pages 322–330.

[Weiss, 1998] Weiss, C. H. (1998). Evaluation. Prentice Hall, Upper Saddle River, NJ, USA,
second edition.

[Weske, 2007] Weske, M. (2007). Business Process Management: Concepts, Languages, Archi-
tectures. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[WfMC, 2008] WfMC (2008). Process definition interface – XML process definition language
version 2.1. Workflow Management Coalition Standard.

[Whalen et al., 2006] Whalen, M. W., Rajan, A., Heimdahl, M. P., and Miller, S. P. (2006). Cover-
age metrics for requirements-based testing. In ISSTA ’06: Proceedings of the 2006 international
symposium on Software testing and analysis, pages 25–36, New York, NY, USA. ACM Press.

[Wille et al., 2004] Wille, C., Dumke, R. R., and Brehmer, N. (2004). Evaluation of the agent
academy: Measurement intentions and results. In IWSM/MetriKon 2004: Proceedings of the
International Workshop on Software Metrics and DASMA Software Metrik Kongress, pages 309–
319, Aachen, Germany. Shaker Verlag GmbH.

[Williams et al., 2004] Williams, L., Layman, L., and Krebs, W. (2004). Extreme programming
evaluation framework for object-oriented languages version 1.4. Technical report, IBM Cor-
poration and North Carolina State University, USA. Available at ftp://ftp.ncsu.edu/
pub/unity/lockers/ftp/csc_anon/tech/2004/TR-2004-18.pdf.

[Woolf, 2008] Woolf, B. (2008). Exploring IBM SOA Technology & Practice, How to Plan, Build
and Manage a Service Oriented Architecture in the Real World. Maximum Press., FL, USA.

[Wu et al., 2005] Wu, Y. P., Hu, Q. P., Ng, S. H., and Xie, M. (2005). Bayesian networks modeling
for software inspection effectiveness. In PRDC ’05: Proceedings of the 11th Pacific Rim In-
ternational Symposium on Dependable Computing, pages 65–74, Washington, DC, USA. IEEE
Computer Society.

[Zahran, 1998] Zahran, S. (1998). Software process improvement: practical guidelines for business
susccess. Addison-Wesley Longman Ltd., Essex, UK, UK.

[Zamli, 2004] Zamli, K. Z. (2004). A survey and analysis of process modeling languages.
Malaysian Journal of Computer Science, 17(2):68–89.

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2004/TR-2004-18.pdf
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2004/TR-2004-18.pdf

184 Bibliography

[Zarour et al., 2007] Zarour, M., Desharnais, J.-M., and Abran, A. (2007). A framework to com-
pare software process assessment methods dedicated to small and very small organizations.
In ICSQ’07: Proceedings of International Conference on the Software Quality. Available at
http://www.lrgl.uqam.ca/publications/pdf/1095.pdf.

[Zelkowitz and Wallace, 1997] Zelkowitz, M. and Wallace, D. (1997). Experimental validation in
software engineering. Information and Software Technology, 39(1):735–743.

[Zenker et al., 2007] Zenker, N., Kunz, M., and Rautenstrauch, C. (2007). Service oriented archi-
tectures: Resource based evaluation of a SOA. In Schmietendorf, A., Mevius, M., and Dumke,
R. R., editors, BSOA 2007: 2 Workshop Bewertungsaspekte serviceorientierter Architecturen,
pages 23–32. Shaker Verlag.

[Zuse, 1998] Zuse, H. (1998). A Framework of Software Measurement. Walter de Gruyter & Co.,
Berlin, Germany.

FIN-IVS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.lrgl.uqam.ca/publications/pdf/1095.pdf

Bibliography 185

Statement of Autonomy
I hereby declare that the this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, nor material which to a
substantial extent has been accepted for the reward of any other degree or diploma at the University
of Magdeburg or any other educational institution, except where due acknowledgement is made
in the thesis. Any contribution made to the research by others, with whom I have worked at the
University of Magdeburg or elsewhere, has been explicitly acknowledged in this thesis.

I also declare that the intellectual content of this thesis is the product of own work, except to the
extent that assistance from others in the project’s design and conception or in style, presentation,
and linguistic expression is acknowledged.

Magdeburg, June 16, 2009

Ayaz Farooq

Ayaz Farooq FIN-IVS, Otto-von-Guericke-University of Magdeburg

	1 Introduction
	1.1 Background & Motivation
	1.1.1 Background on Test Process Evaluation

	1.2 Research Setting
	1.2.1 Research Problem
	1.2.2 Research Questions
	1.2.3 State of SE Research

	1.3 Structure of Thesis

	2 Background on Software Testing
	2.1 Introduction
	2.2 Testing Process
	2.2.1 Research directions
	2.2.2 Test Process Definition & Modeling
	2.2.3 Test Process Evaluation & Improvement

	2.3 Testing Techniques
	2.3.1 Static techniques
	2.3.2 Dynamic techniques

	2.4 Testing Tools
	2.5 Summary

	3 Theoretical Foundations of Evaluation
	3.1 Introduction
	3.1.1 Evaluation Concepts
	3.1.2 Evaluation Components

	3.2 Evaluation in Software Engineering
	3.3 Evaluation Theory Applied in SE
	3.4 Summary

	4 Evaluation in Software Testing
	4.1 Introduction
	4.2 Evaluation of Processes
	4.2.1 Testing Maturity Model (TMM)
	4.2.2 Testing Process Improvement (TPI) Model
	4.2.3 Inspection Capability Maturity Model (ICMM)
	4.2.4 Test Maturity Model Integration (TMMi)
	4.2.5 Test Process Metrics

	4.3 Evaluation of Techniques
	4.3.1 Evaluation of Static Techniques
	4.3.2 Evaluation of Dynamic Techniques

	4.4 Evaluation of Tools
	4.4.1 Pre-Implementation Analysis/ Tool Selection
	4.4.2 In-Process & Post-Implementation Analysis

	4.5 Typical Characteristics of Test Evaluations
	4.5.1 Measurement
	4.5.2 Compliance with Standards
	4.5.3 Implicitness vs. Explicitness
	4.5.4 Cost

	4.6 Summary

	5 Analysis of Related Work
	5.1 Introduction
	5.2 Analysis of Existing Approaches
	5.2.1 Analysis of Testing Maturity Model (TMM)
	5.2.2 Analysis of Test Process Improvement Model (TPI v1.0)
	5.2.3 Analysis of Test Maturity Model Integration (TMMi v1.0)

	5.3 Summary

	6 Light-TPEF: The Test Process Evaluation Framework
	6.1 Introduction
	6.2 Concept and Design
	6.2.1 Framework presentation

	6.3 Framework Components
	6.3.1 Support Components
	6.3.2 Core Component

	6.4 Summary

	7 Implementation & Validation of Light-TPEF
	7.1 Introduction
	7.2 Development of a Working Solution
	7.3 SOA Testing Background
	7.3.1 SOA Revisited
	7.3.2 ITIL & SOA
	7.3.3 Existing Research on SOA Testing

	7.4 Light-TPEF: Application in an SOA Industrial Environment
	7.4.1 Background of the Industrial Environment
	7.4.2 Adaptation of Light-TPEF for the considered case

	7.5 Summary

	8 Summary & Future Work
	8.1 Summary
	8.2 Thesis Contributions
	8.3 Future Work

	List of Tables
	List of Figures
	List of Abbreviations
	Bibliography

