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Magnonic Klein and acausal tunneling enabled
by breaking the anti parity-time symmetry in
antiferromagnets
Shaohua Yuan1, Chaowei Sui1, Zhengduo Fan1, Jamal Berakdar 2✉, Desheng Xue1 & Chenglong Jia 1,3✉

Klein tunneling associated with particle-antiparticle pair productions across a potential barrier

is a key prediction of quantum-field theory for relativistic particles. Yet, a direct experimental

realization is hampered by the particles large rest mass resulting in high potential barrier.

Here, for non-Hermitian antiferromagnets, at the verge of the anti-parity-time symmetry

transition, chiral magnons are demonstrated to offer a bosonic platform to access Klein

tunneling at meV energies in experimentally feasible settings. Our analytical and numerical

simulations evidence that magnetic damping renders a low energy mechanism for the

breakdown of the magnonic vacuum and for creating particle-antiparticle pairs in strong

magnetic fields. Adopting Feynman’s picture for antiparticles, the tunneling time of an inci-

dent magnon wave packet across a supercritical barrier is found to be negative. The

uncovered aspects point to the potential of chiral magnons for addressing fundamental

physics in a conceptually simple setup with the potential for use in chirality-dependent

magnonic computing.
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A spontaneous breaking of a continuous symmetry entails
the presence of massless (zero-energy) modes, meaning
the mode energies ω(k) vanish, as the wavevector k tends

to zero (Goldstone theorem)1,2. Such Goldstone modes appear in
spin systems with spin rotation symmetry in the long wavelength
limit as spin waves (SWs) with magnons being the excitation
quanta3,4. The presence of interactions not compatible with spin
rotation symmetry may lead to damping of the spin excitations.
Thus, the effective low-energy Hamiltonian describing SWs is
generally not Hermitian and may exhibit non-Hermitian degen-
eracies (called exceptional points, EPs)5. For ferromagnets (FM)
with a single magnetic lattice, SWs are always right-handed cir-
cularly polarized6,7. For antiferromagnets (AFM) in G-type
ordering m(r) or for synthetic AFM (SyAFM), meaning metal-
spacer-separated two magnetic layers with antiparallel spins8,9, a
translation with a lattice vector a between the two magnetic
sublattices (e.g., sublattice A for spin-up and sublattice B for spin-
down) implies m(r+ a)→−m(r). In this case the SW Hamil-
tonian is shown to be in general anti-parity-time (anti-PT )
symmetric and non-Hermitian10. In addition to the spin rotation
symmetry break, a breaking of the anti-PT symmetry may occur
and is signaled by the emergence of EP and chiral magnons. For
instance, this symmetry break can be brought about by increasing
the local magnetic damping and/or the AFM interaction strength
between the two sublattices (Fig. 1). In anti-PT symmetry-
preserved (APT) phase, the spin excitations in the two sublattices
are equator modes with a maximally coherent superposition, no
spin waves are radiated. In anti-PT symmetry-broken (APTB)
phase, the two types of magnons with opposite chirality (right-
handed or left-handed) are dominated by the spin precession in
the sublattice A or B, respectively11,12. This chirality, as a new
degree of freedom, is akin to AFM magnons and may serve to
encode information13–16. General aspects of PT and anti-PT
symmetry in magnetic excitations have been discussed recently,
for instance in10,17–21. Here, we are interested in consequences
thereof on the magnon scattering characteristics.

From an energy point of view, right-handed and left-handed
AFM magnons possess respectively positive and negative dis-
persion (real part of eigenfrequencies) and can be viewed as

particles and antiparticles. Therefore, similar to chiral fermions in
graphene22, a magnonic setup based on AFM bipartite lattices can
be constructed to test for relativistic effects23–30.

Here, we demonstrate that Klein paradox, entailing chiral
magnon-pair productions and acausal tunneling, can be realized
by scattering from a step potential for magnons caused by spatio-
temporally varying magnetic fields. Within the region of a strong
field, we find that the imaginary eigenfrequency of the antiparticle
magnon states is shifted up becoming positive which is signaled
by an enhanced density of a left-handed magnon wave packet.
Feynman’s picture of antiparticle as being particle moving
backward in time31, is used for the interpretation of the acasual
magnonic transmission mechanism across a supercritical barrier
by Klein tunneling. The results are generic and not limited to
G-type AFMs with the Dirac spectrum but also in SyAFMs
described by coupled Schrödinger equations. Our finding points
to the importance of chirality rather than the linear dispersion for
Klein tunneling, and to chiral magnons in AFM as a versatile
platform for experimentally elucidating fundamental physics at
low energies (~meV) and at mesoscopic length scale.

Results and discussion
Anti-PT symmetric AFM dynamics. We study SW excitations
in a SyAFM consisting of two FM sublayers with the normalized
magnetization vector fields mn (n ¼ 1; �1) (the analysis and results
for the case of G-type AFMs can be found in the Supplementary
Note 3). SWs can be described by linearizing the Landau-Lifshitz-
Gilbert (LLG) equations10

∂tmn ¼ � γn
1þ α2n

mn ´ Heff
n þ αnðmn ´H

eff
n Þ� �

: ð1Þ

γn (αn) is the gyromagnetic ratio (Gilbert damping). The effective
magnetic field

Heff
n ¼ 2ðAn∇2mn þKzm

z
nêz � Jm�nÞ; ð2Þ

depends on the Heisenberg exchange coupling An between
neighboring sites within the n-layer, the magnetic anisotropy Kz
along the easy axis (taken as the z-axis), and the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction J between the two FM

Fig. 1 Magnons in synthetic antiferromagnets governed by anti-PT symmetric Hamiltonian. a Real and b imaginary part of the dispersion ω(k) as a
function of the antiferromagnetic (AFM) interaction J. In the anti-PT symmetry-preserved (APT) phase, the spin dynamics in the two magnetic sublayers
(m1 and m�1) share the same amplitude, no preferred chirality and no net polarization are induced. In the anti-PT symmetry-broken (APTB) phase, the
appearance of right- and left-handed modes, Ψ±

�� �
with negative/positive polarization-charge signals a break of the anti-PT symmetry. Note that

Im½ω� � 0 holds in both APT (red) and APTB (blue) phases. In both phases the stable vacuum state is the Néel state to which all excitation decays in
presence of Gilbert damping. Other parameters are: exchange stiffnessA ¼ 0:4 pJ m−1, unixial magnetic anisotropyKz ¼ 0:5 kJ m−3, and Gilbert damping
α= 0.1.
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sublayers32,33. We assume J > 0 and a large enough Kz to suppress
quantum fluctuations enforcing so a collinear antiferromagnetic
(Néel) equilibrium configuration aligned along the easy axis. SWs
are collective small transversal fluctuations m?

n around the Néel
ground state: mn ¼ mz

nêz þm?
n with mz

1 � �mz
�1 � 1 and

k m?
n k� 1.

To expose the chirality of SWs, we introduce two complex
variables Ψðr; tÞ ¼ ðψ1;ψ�1ÞT and Φðr; tÞ ¼ ðϕ1; ϕ�1ÞT with

ψn ¼ mx
n � imy

n and ϕn ¼ mx
n þ imy

n: ð3Þ
We note that ψn and ψ�n are distinguished by the Pauli matrix σi in
the sublattice space, while ψn and ϕn can be distinguished by τi in
isospin space34, thus the basis elements (3) are independent. For
the fully symmetric case, meaning in the event that in Eqs. (1), (2)
A1 ¼ A�1 ¼ A, ~γn ¼ 2γn

1þα2n
¼ γ, and ~αn ¼ 2αnγn

1þα2n
¼ α, and to a linear

order in k m?
n k, one infers that the SW dynamics obeys the

equation of motion

i∂t
Ψðr; tÞ
Φðr; tÞ

� �
¼ H 0

0 �H?

� �
Ψðr; tÞ
Φðr; tÞ

� �
ð4Þ

where the Schrödinger-type Hamiltonian H in a plane-wave basis
ψn(ϕn) ~ eik⋅r−iωt (appropriate in the long-wavelength limit) reads

H ¼ Ekð1� iαÞ Jð1� iαÞ
�Jð1þ iαÞ �Ekð1þ iαÞ

� �
ð5Þ

with Ek ¼ Ak2 þKz þ J .
A parity operation P̂ with respect to sublattice exchange is

realized by the Pauli operator σx. The time-reversal operation T̂
results in i→− i, t→− t and k→− k. Therefore, we find

P̂T̂ H ¼ �HP̂T̂ : ð6Þ
So, H is anti-PT symmetric. The eigenvalues of H are

ω± ¼ Ek �iα±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q	 

; ð7Þ

with ξk ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
=Ek. The corresponding eigenvectors are

Ψþ ¼ cosh θ
2

� sinh θ
2 e

iφ

 !
; Ψ� ¼ � sinh θ

2

cosh θ
2 e

iφ

 !
; ð8Þ

with tanφ ¼ α and tanh θ ¼ ξk. Equation (7) indicates the
emergence of an exceptional point (EP) at ∥ξk∥= 1, separating
the APT phase-space region with purely imaginary eigenfre-
quencies and the APTB phase with complex eigenfrequencies, as
shown in Fig. 1. The system can be driven across the phase
transition by varying J, Kz and/or α. Clearly, for isotropic
SyAFMs with the anisotropy Kz ¼ 0 we can have ξk > 1 when Ek
is around its minimum at |k|= 0.

In the APT phase as ξk > 1, Ψ± are also eigenvectors of the P̂T̂
operator satisfying

P̂T̂ Ψ ± ¼ λ±Ψ± with k λ± k2 ¼ 1: ð9Þ
The dynamic motions of m1 and m�1 in the two coupled FM

sublayers are modes with k ψ1 k¼k ψ�1 k. The system remains
magnetically neutral in the dynamic states and no net spin
polarization is generated by spin excitations. Within the APT
phase, low-energy magnetization excitations decays exponentially
with time and can not be efficiently radiated in the form of spin
waves. Note that for both APT and APTB phases we start from
the stable (vacuum) Néel state, and excitations relax eventually
(due to Gilbert damping) to the stable vacuum.

The characteristics of the eigenmodes Ψ± change qualitatively
as soon as ξk < 1, in which case the system enters the APTB phase
with complex ω±. Analysis of the eigenvectors shows that Ψ+

(Ψ−) with Re½ωþ�> 0 (Re½ω��< 0) is a right-handed (left-handed)
precession of the Néel vector n ¼ ðm1 �m�1Þ=2. As sketched in
Fig. 1a, b, the modes Ψ± with opposite chirality are dominated by
precession in different sublayer. That is, Ψ+ with k ψ1 k > k ψ�1 k
while Ψ− with k ψ1 k < k ψ�1 k, which results in a small opposite
circular-polarization (i.e., net magnetization) p ¼
hm1i þ hm�1i
� �

=2 along the z-direction, namely, negative (posi-
tive) polarization-charge pz for right-handed (left-handed) Ψ±

magnons, respectively. Therefore, the emergent net magnetization
may serve to trace the breaking of the anti-PT symmetry of chiral
magnon excitations in AFMs. Experimentally, the realization of
electrically tunable RKKY interactions (J) has been reported32,33.
Via interfacial magnetoelectic couplings, the magnetic anisotropy
Kz and effective magnetization damping α can be tuned by gate
voltage as well. By scanning these parameters, the anti-PT phase
transition can be observed in SyAFMs.

Particle-hole symmetry of AFM magnons. The anti-PT sym-
metry breaking holds true for the complex conjugate Φ(r, t) as
well. However, the eigenmode Φ+ having ReðωþÞ> 0 corresponds
to the left-handed magnons with a positive polarization-charge
(pz > 0), and the negative frequency mode Φ− corresponds to the
right-handed mode with a negative polarization-charge (pz < 0).
Therefore, we can take two degenerated states, for instance Ψ+
and Φ+, as the isospin basis for AFM magnons, where magnon
states in the isospin space have same frequencies but opposite
isospin (chirality) and opposite polarization-charge. Similar to
relativistic fermions, we have so four well-defined magnon states,
Ψ± and Φ± in AFM systems in the APTB phase.

In the sublattice space the Ψ± magnons with positive/negative
energies have particle-hole symmetry and live on the hyperboloid
of two sheets SU(1,1). In addition, the SyAFM Hamiltonian is
invariant under global spin rotation around the easy z-axis. Thus,
the z-component of the total spin is a good quantum number.
Consequently, H with zero damping (α= 0) is pseudo-Hermi-
tian, Hy ¼ σzHσz , and the total polarization-charge density
Nz= ∫drρ(r, t) in the sublattice space is conserved, where
ρ(r, t)=Ψ†σzΨ. The conserved Nz helps identifying the magnonic
Klein paradox with particle-antiparticle (P-AP) pair productions.
For a finite magnetic damping, we have Im½ω± �< 0 (Fig. 1b) and
a time-decaying polarization-charge density. The larger is the rest
mass m of magnons (m2 ¼ KzðKz þ 2JÞ � J2α2

� �
), the faster the

P-AP (Ψ+-Ψ−) pair decays into the magnonic vacuum (Néel
state). Clearly, the above arguments apply to Φ+-Φ− pairs.

Magnetic field effects on AFM magnons. To elucidate the nature
of the magnonic P-AP pairs, we separate the Ψ-branch from the
Φ-branch magnons. The degeneracy in the isospin space is pro-
tected by the combined PT symmetry of AFM systems. There-
fore, we apply a normal magnetic field (B ¼ Bzêz) breaking the
time-reversal symmetry and lifting the two-fold isospin degen-
eracy of AFM magnons (see Supplementary Note 1) but it does
not affect the stability of the vacuum. Starting from the collinear
Néel state, H turns non-Hermitian with a passive anti-PT sym-
metry,

H ¼ ðEk þ BzÞð1� iαÞ Jð1� iαÞ
�Jð1þ iαÞ �ðEk � BzÞð1þ iαÞ

� �
: ð10Þ

Figure 2 demonstrates the usefulness of the linearized model by
comparing to the results of the full numerical simulations of the
LLG Eq. (1). As shown in Fig. 2c, energies of Ψ± magnon states
are shifted up but those of the Φ± states are lowered upon
applying a magnetic field. In other words, Bz tunes to the
favorable regime for characterizing magnon transport in that, the
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spatio-temporal character of Bz is reflected in a corresponding
spatio-temporal shape of an emergent potential barrier (well) for
Ψ± (Φ±) magnons having a positive (negative) isospin.

However, a strong external magnetic field may destabilize the
initial Néel ground state along the easy axis35. For instance, a
large field may result in a spin-flop transition36,37, where
antiparallel spins m1 and m�1 are approximately perpendicular
to the external field B as to minimize the total energy (Fig. 2a).

We performed numerical micromagnetic simulations under
initial collinear Néel ordering along the easy z-axis (technical
details and parameter values of the simulations are referred to the
Methods) and find that the spin-flop time τsf depends inversely
on the damping parameter α, i.e. τsf∝ 1/α38. For SyAFMs with
small Gilbert damping, τsf can be over several tens of
nanoseconds at low enough temperatures (Fig. 2b and the
discussion of the temperature effects in the Supplementary

Fig. 2 Chiral tunneling of antiferromagnetic (AFM) magnons through a potential step. a Schematic spin-flop transition in synthetic antiferromagnets
(SyAFMs) induced by applied normal magnetic fields when J>Kz. b Spin-flop time of the Néel vector component nz in dependence of the Gilbert damping
α in the presence of different magnetic fields Bz at zero temperature (detailed quantifications of the effects of elevated temperatures are enclosed in the
Supplementary Note 4). c Density plots of the energy dispersion relation under magnetic field pulses with Bz= 0 T and Bz= 1 T, respectively. They are
obtained from the normalized Fast Fourier Transform (FFT) intensities (quantified by the colour bar) that follow from full micromagnetic simulations of the
Landau-Lifshitz-Gilbert (LLG) equations. The analytical eigen-frequencies of four spin-wave eigenmodes (Ψ± and Φ±) are shown by the solid curves.
Importantly, the pulse duration is shorter than the corresponding spin-flop time in b. d, e Time evolution of incoming Ψ+ and Φ+ wave packets with the
center momentum k0= 500 μm−1. Correspondingly, the incident center frequency ω(k0) is located in the lifted-up energy gap between the Ψ± magnons, as
marked by the white dot and black dashed lines. By increasing the potential step or lowering the incident energy, the Klein paradox occurs. In all figures the
polarization charge density ρ is renormalized by the initial incident wave packet (WP) for comparison. In the simulations, we assumed for saturation
magnetization Ms= 8.0 × 105 Am−1, exchange stiffness A ¼ 1:0 pJ m−1, uniaxial magnetic anisotropy Kz ¼ 35 kJ m−3, and the inter-sublayer AFM
coupling between two ferromagnetic (FM) sublayers is σ=− 10−4 J m−2 (the energy density of Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is
J=− σ/a with a being the lattice constant).
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Note 4). The time evolution of magnons in question proceeds on
the order of nanoseconds (the tunneling time is less than 2 ns as
shown in Figs. 2 and 3). During this time the initial Néel order is
maintained and in the meantime the SW excitations are described
well by the Hamiltonian, Eq. (10) (Fig. 2c and Supplementary
Note 3). The time window is thus large enough to investigate the
magnon scattering off the potential step generated by a local
magnetic field.

Chiral tunneling. We study at first the transmission properties of
the Ψ and Φ branch magnons. The incident magnonic wave
packet (WP) is chosen as the Gaussian Ae�ðx�x0Þ2=L2eiðk0xþθÞð1; 0ÞT
starting at x0 with amplitude A= 0.001 and L2= 8000 nm2. In
the region with zero magnetic field, the Ψ+ and Φ+ WPs can be
launched by choosing negative/positive k0 or different phases,
θ= 0 or θ=− π/2, respectively. As shown in Fig. 2 d, e, the initial
WPs at x0= 1000 nm split immediately into two parts: anti-
particle (Ψ−/Φ−) waves move left (with negative energy) while
the particle (Ψ+/Φ+) waves move right (with positive energy).
After around 1 ns, the right moving magnons reach the left edge
of the step potential due to the applied, normal magnetic field
Bz= 1 T for x≥1500 nm. Since the incoming center frequency
ω(k0) is now in the lifted energy gap between Ψ± eigenmodes, the
Ψ+ magnons are subject to a potential step but the Φ+ magnons
experience a potential well. As a result, Ψ+ magnons are totally
reflected but Φ+ magnons do mostly transmit across the step
edge. In other words, a chiral tunneling of AFM magnons is
realized: we have a magnonic insulator (metal) to the incident Ψ+
(Φ+) magnons by adjusting the amplitude of applied magnetic

field with respect to the center frequency ω(k0) of the incoming
wave packets.

Klein paradox, magnonic P-AP pair production. Further
increasing the potential step above 2m, for instance up to Bz= 2
T, we can temperarily have an effective energy overlap between
the Ψ+-state (particle) and the Ψ−-state (antiparticle) during the
interaction at the edge of the potential step. As demonstrated in
Fig. 3a by the micromagentic simulations, P-AP (Ψ+-Ψ−) pair-
creation processes are so triggered at the step edge by the
incoming Ψ+ magnons. More than 100%Ψ+ magnons are
reflected back and the Ψ− magnons are spontaneously produced
in the interior of Bz= 2 T, which resembles the results of quan-
tum field theory showing that particles can be spontaneously
produced in the presence of strong electric and gravitational
fields39,40. Clearly, in magnonic systems Klein scattering is pre-
sent, even though the SyAFM magnons possess a parabolic
energy spectrum rather than a relativistic linear spectrum.

To further check the spontaneous pair production by strong
magnetic fields, we consider a square potential barrier generated
by the space-varying magnetic field: Bz(x)= 2 T, 1500 ≤ x ≤ 2000
nm; and Bz(x)= 0, elsewhere. Indeed, Ψ− magnons are generated
and begin their oscillations in the barrier after first encounter of
the Ψ+ wave packet at the left barrier’s edge. Subsequently, each
reflection off the edge produces more Ψ+-Ψ− pairs and enhances
the magnon densities inside the barrier, as shown in Fig. 3b (the
barrier acts as the energy source).

Considering that Ψ± eigenmodes exhibit the charge-
conjugation symmetry and the total circle-polarization charge is

Fig. 3 Klein paradox and particle-antiparticle (P-AP) pair productions of synthetic antiferromagnetic (SyAFM) magnons. Scattering of the incident Ψ+

wave packets with the central wave vector k0= 500μm−1 by a the Klein step and b the supercritical square barrier induced by a space-varying magnetic
field pulse Bz= 2 T. Abundance of Ψ+-Ψ− pairs are produced upon reflection at the barrier’s edges. c Reflection (R) and transmission (T) coefficients of the
Ψ+ wave packet by the potential step as a function of the applied magnetic fields Bz. Note that α= 0 is used during the simulations to validate R+ T= 1.
d Time evolution of the total polarization-charge in the left (x < 1500 nm), interior (1500 < x < 2000 nm), and right (x > 2000 nm) regions across the
supercritical square barrier. Now, the finite Gilbert damping α= 0.001 is used. In all simulations the incoming center energy of the Ψ+ wave packet is
E=ω(k0). The simulation parameters are the same as in Fig. 2.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01222-z ARTICLE

COMMUNICATIONS PHYSICS |            (2023) 6:95 | https://doi.org/10.1038/s42005-023-01222-z | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


conserved for a vanishing Gilbert damping, we can in this case
describe the magnon tunneling across the potential step by
defining the reflection and transmission coefficients as

R ¼
R
ρrðxÞdxR
ρiðxÞdx

andT ¼
R
ρtðxÞdxR
ρiðxÞdx

; ð11Þ

where ρi, ρr and ρt are the incoming, reflected, and the tunneling
magnon densities at the step edge. The R and T of the incomingΨ+
wave packet with the center energy E scattered by the potential step
Bz are numerically summarized in Fig. 3c: (i) Normal transmission
with R < 1 and 0 < T < 1 through a potential well when Bz < (E−
m); (ii) Perfect reflection with R= 1 and T= 0 when (E−m) <
Bz < (E+m); (iii) Anomalous Klein tunneling with R > 1 and T < 0
when Bz > (E+m). The relation R+ T= 1 does hold in all
scattering cases. Notably, the supercritical Klein step gives rise to
a sign reversal of the polarization-charge and momentum k of
magnons inside the strong fields, thus resulting in negative
transmission coefficient T. We should also note that T has a
minimum (negative) value for the Klein tunneling of AFM
magnons, which is different from the unbounded negative T in
the quantum mechanical Dirac and Klein-Gordon wave packet
dynamics (Supplementary Note 2)24,27.

As pointed out by Schwinger39, a spontaneous production of
particles is closely related to the vacuum breakdown by a strong field.
This process is non-perturbative. In our case nonlinear magnetic
dynamics sets in when Gilbert damping α ≠ 0 is involved and at
strong magnetic fields. As evidenced by Nz in Fig. 3d, in addition to
the P-AP pairs generated by each interaction with the potential edge,
the detailed simulations indicate that the density of Ψ− magnons
exponentially increases with traveling time inside the barrier because
of the positive imaginary part of their energy due to the combined
effect of strong field and nonzero damping. With such an increased
density of circular-polarization (i.e., the transversal components of
magnetization jm?

n j), the spin-flop transition is accelerated as well.
The Néel ordering is then destabilized strongly and the AFM
magnonic vacuum breaks down completely in the presence of the
magnetic fields (see Supplementary Fig. 1).

Acausal transmission with negative tunneling time. A further
aspect of the Klein paradox is the so-called “tunneling time
problem”41. Following Feynman’s picture of antiparticles as par-
ticle states moving backward in time42, the P-AP pair production at
the edge of the barrier hints on a negative tunneling time of
incoming particles across a supercritical barrier. Here, we check
this transmission mechanism based on the “physical” solution43 by
running simulations of chiral magnons in G-type AFMs, which
have a linear energy spectrum and are less affected by the dynamic
dipolar interactions (see Supplementary Note 3). The transmission
process (simulation results are shown in Fig. 4) involves an
emergent antiparticle wave packet Ψð1Þ

� traveling forward in time
from the left edge of the barrier. At this barrier edge and triggered
by first encounter of the incoming particle wave packetΨð1Þ

þ , a P-AP
pair production occurs. The wave packet Ψð1Þ

� is then partially
reflected back in the barrier into Ψð2Þ

� and partially transmitted
across the right edge to form the outgoing particle wave packetΨðtÞ

þ .
Soon after, the antiparticle wavesΨð2Þ

� are annihilated by the second
incoming particle wave packet Ψð2Þ

þ at the left edge. Recall that an
antiparticle wave Ψ− going forward in time is equivalent to a
particle wave Ψ+ going backwards, we observe so an acausal pro-
cess where the Ψ+ magnon, scattered back into the past at the
barrier’s left edge, emerges from the barrier’s right edge at an earlier
moment. In other words, the Klein tunneling, Ψð2Þ

þ ! Ψð2Þ
� ! ΨðtÞ

þ
of AFM chiral magnons across the barrier demonstrates clearly a
case of the acausal transmission mechanism.

Conclusion
The chiral magnons in AFMs associated with a breaking of anti-
PT symmetry behaves qualitatively different from their FM
counterpart. Right-handed and left-handed AFM magnon states
at positive and negative energies are intimately interconnected
and have to be described by spinor wavefunctions with the
relative contribution of magnetic sublattices A and B, allowing to
address anomalous tunneling problems such as the Klein para-
dox. Analytical and full-fledged numerical micromagnetic simu-
lations show that the magnonic Klein paradox is related to the
circular-polarization charge conjugation symmetry of the spinor
wavefunctions, rather than the linear or parabolic energy spec-
trum of magnons in respectively G-type and synthetic AFMs. A
locally applied strong magnetic field can bridge the chiral magnon
gap, invert the polarization-charge carriers, and create
antiparticle-like magnon states inside the potential barrier. Con-
sequently, an incident particle-like magnon moving to the barrier
can be scattered to a left-moving particle-like magnon state or a
right-moving antiparticle-like magnon state. However, the scat-
tering process does not alter the isospin state. The field-produced
antiparticle-like magnons have positive imaginary eigen-
frequencies enhancing exponentially the magnon creation in the
barrier’s interior. Such enhancement can be used to compensate
for the density decay of traveling magnons which can be of
relevance for chirality-dependent information processing and
rectification of magnonic signals in magnonic circuits.

In principle, the tunneling anomalies are intrinsic properties of
AFM chiral magnons and should be present in a wide class of
materials. To be specific, we consider the FeCoB/Ru/FeCoB het-
erostructure as a prototypical SyAFM32,33, in which the magneto-
electric effects upon interfacing with ferroelectric materials allows
for an electrical control of the RKKY interaction, magnetization
damping, and the magnetic anisotropy, providing so a flexible
way to investigate the Klein paradox. To further reduce the effect
of magnetic dipole-dipole interactions from magnon dynamics, a
G-type AFM waveguide made of, for instance FeO with the
exchange coupling J= 2.1 meV and magnetic momentum
S= 3.5 μB, is suitable for focusing the transmission mechanism of
exchange spin waves across the potential barrier. The magnetic
fields of the order of 10 T can be effectively generated exploiting
Helmholtz coil by placing locally two identical circular magnetic

Fig. 4 Acausal evolution of antiferromagnetic (AFM) magnons across the
supercritical barrier. Red arrows point to the transmission pathway,
Ψð2Þ

þ ! Ψð2Þ
� ! ΨðtÞ

þ of the incoming Ψð2Þ
þ magnon within the Feynman’s

anti-particle picture. The corresponding magnon densities are quantified by
the colour bar. A smooth Sauter potential is used during the simulations,
where we have chosen J= ℏ= γ= S= 1. Other parameters are uniaxial
magnetic anisotropy Kz ¼ 10�4, Gilbert damping α= 10−5 and the lattice
constant a= 0.5 nm.
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coils on the up- and bottom-sides of AFM narrow strip. Fur-
thermore, G-type AFMs are more robust against magnetic per-
turbations and have longer spin-flop time. So far, we studied the
basic case of a flat space of the magnonic vacuum with less
emphasis on non-linearities and many-body scattering. These
regimes are readily realizable in AFM textures. This can be done
for example, by involving spin-orbital-based effects on the mag-
nons such as the Dzyaloshinsky-Moriya interaction and con-
sidering microscopically curved and/or topologically nontrivial
structure of the AFM sample. Furthermore, our governing
equations are extendable to capture the longitudinal spin
dynamics and are inherently non-linear. The nonlinearities are
controlled by magnetic damping and/or initial excitation ampli-
tude. Magnon transport in structured AFMs is therefore a ver-
satile platform to study basic physics problems and unravel new
ways for using magnons in information transmission and
processing.

Methods
Micromagnetic simulations of SyAFM dynamics. We use the Object Oriented
MicroMagnetic Framework (OOMMF) for the numerical simulations of spin
excitations in SyAFMs44. The SyAFM heterostructure is composed of two
(2500 × 1 × 1) nm3 FM wires with cell size of (1 × 1 × 1)nm3. The Gilbert damping
α= 0.001 and the gyromagnetic ratio γ= 2.2 × 105 mA−1s−1 are widely used in
simulations of SyAFM dynamics, except in specially mentioned cases. Additional
simulations based on the material parameters of CoFeB/Ru/CoFeB and (Pt/Co)2/
Ru/(Co/Pt)2 multilayers show the same qualitative behavior as in the case of
SyAFM dynamics.

Atomistic simulations of spin dynamics in G-type AFMs. For G-type AFMs, the
simulations are performed by the open-source, atomistic and finite-difference
micromagnetic solver Fidimag45. The coefficients to convert the external field B and
time t to SI units are t̂ ¼ _S=J and B̂ ¼ J=ð_γSÞ. Given that the AFM exchange
coupling J= 1meV and the atomic spin S= 1, we have then t̂ � 0:66 ps and B̂ � 8:63
T. The Sauter potential is given by a combination of two hyperbolic tangent field steps,
BðxÞ ¼ Bz tanhðx � 2500Þ=25� tanhðx � 3000Þ=25� �

=2. The sharp-edge assumption
is appropriate since the magnon wavelength is much larger the lattice constant a. The
magnetic dipolar interactions are included for the antiferromagnetic environment.

Data availability
The data that support the findings presented in the main text and the Supplementary
Information are available from the corresponding author upon reasonable request.
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