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1 Introduction

It is late in the afternoon. The traffic in the city is chaotic and
everywhere the cars are anxious for a green traffic signal. Probably,
everyone in the city have left off work at the same time. Tom and
his wife are on the way home. He drives the car, while talking to his
wife about his day, and further tapping his finger in the rhythm of
the radio music.

It is fascinating, how we are able to process all these simultaneously occurring
sensations in just a few milliseconds. Mostly, we reason very little about our
perception of the world around us. When we think about the aforementioned
situation more intensely, this requires multiple processing systems regarding per-
ception and cognition in parallel, in this example the visual, auditory, motor,
and speech system. To understand the complex interplay of several perceptual
systems, the first step is to study how these systems work on their own at differ-
ent processing stages. Within the current thesis, I will focus on the visual and
auditory system to investigate the following three issues: At first, I will consider
low-level processes during the auditory and visual modality. Second, I will study
how cognitive functions influence the processing of auditory information. Third,
I will compare which processing mechanisms in the visual and auditory system
are shared and which are different.

For an introduction in perceptual processes, let us consider the visual modality
more precisely. This system is required to build a representation of the world
surrounding us and accomplishes a variety of complex tasks, including the iden-
tification and categorization of visual objects, assessing distances to and between
objects, and guiding body movements towards visual objects. Two examples of
object perception in different contexts are displayed in Figure 1.1 and your task is
it to identify the face in both pictures. To identify the ’object’ (face), a multiplic-
ity of object features such as color, form, texture, distance, spatial orientation,
or movement direction can be of relevance and all of them are processed at the
same time. Afterwards, all of these different information about the same object
have to be integrated into a whole percept. This process is known as binding.
A determining step to identify the object is the decision, which features belong
to the same object. The binding-by-synchronization hypothesis for neuronal ob-
ject coding proposes that those neurons which participate in the representation
of the same visual object are characterized by synchronous activity, while those
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Chapter 1. Introduction

Figure 1.1: Where is the face? Two pictures, in which a face is hidden, are
displayed. Although the face is not obviously seen in both pictures, you will
most probably find the face faster in the right picture, since it is a natural scene
as we perceive it every day. We would rather expect a face in this context than
among coffee beans. It is further helpful for detection that there is not only a
face but a whole moving person. If you need a hint to find the face on the left,
concentrate your attention to the bottom.

neurons which code information of different objects show a different temporal
pattern (Eckhorn et al., 1988; Gray et al., 1989; Singer, 1993; von der Malsburg,
1995). The process of segmentation of objects that belong together is a prereq-
uisite for figure-ground segregation that will be elucidated in more detail in the
next paragraph.

In the early 20th century, theorists such as Kurt Koffka, Max Wertheimer, and
Wolfgang Köhler emphasized that the perception of objects was not achieved by
an assembly of parts of objects but rather that perception was based on holistic
and well-organized patterns. Gestalt theorists believed that the context, in which
we notice an object, is very important in perception, so that perception of the
object is ’more than only the sum of its parts’. The very success of everyday vi-
sion implies mechanisms that discount irrelevant information and organize local
image features into objects and surfaces (Kersten et al., 2004; Yuille and Kersten,
2006). The main point of this research is the idea of ’grouping’ or how we tend
to interpret things as belonging together. This was summarized in a multitude
of Gestalt laws, while the most common are for example grouping by proximity,
similarity, simplicity, closure, or continuity. If one could observe the situation dis-
played in Figure 1.1 (right), not only as a picture but as a real scene, the principle
of common fate might play a role in detection of the face: The person behind the
grass and branches seems to walk and regarding the principle of common fate,
elements with the same moving direction are perceived as a unit. However, our
perception also depends on attention, expectation, and prior knowlegde about

2



different situations and contexts. Since a natural scene is displayed, namely a
person walking through a forest, it is very simple to identify the face, although
it is only a picture in which movements cannot be seen. In such a context, one
would rather expect to find a face than among the coffee beans (see left part of
1.1).

If we consider the auditory system and I ask you to imagine several people
simultaneously speaking, singing, or argueing at a party with loud music, there
are some possibilities what you can perceive: (i) It might be that you hear a
mix of sounds, maybe some music and different voices, however, you are not
able to understand about what people are discussing. (ii) Further, it might be
that you are concentrated on the singing person and notice that this person is
trying to sing along with the currently played song and the result is very out
of tune. Of course, there are much more possibilities of another acoustic per-
ception. However, both mentioned cases (i) and (ii) are enough to explain some
of the previously described grouping mechanisms. In audition, the way sensory
inputs are grouped by our nervous system is very similar to grouping in visual
perception (Bregman, 1994). The first depicted example (i) implies that one is
able to differentiate simultaneously occurring sounds by a mechanism termed as
auditory stream segregation. The second example (ii) emphasizes the influence
by high-level functions, namely attention and shows further that attention facil-
itates a more detailed and elaborated perception. According to that, there are
some general processing mechanisms that are comparable between both sensory
systems. However, the auditory system is not a quarter as good studied than the
visual system. Therefore, the thesis aims to investigate auditory perception more
precisely in comparison with visual perception.

This dissertation presents experiments investigating low-level as well as higher
level perceptual processes in both, the visual and auditory modality, using the
electroencephalography (EEG). The EEG is a method for recording electrical
activity from the human brain. Although its spatial resolution is very imprecise
(in the range of several centimeters), the EEG provides an excellent temporal
resolution in the range of milliseconds which appears to be relevant for addressing
the subsequently defined issues. I will mainly focus on the analysis of oscillatory
brain activity in the gamma-band (30-80 Hz) and how and at which latency it is
modulated by different perceptual processes.

3



Chapter 1. Introduction

1.1 Oscillatory activity in the human brain

Information processing in the human brain is characterized by parallel informa-
tion streams as well as by a hierarchical organization of different cortical areas
based on complex neuronal networks (Felleman and Van Essen, 1991). The ex-
change of information can occur simultaneously in terms of activation patterns
via connections between neurons. The processing of incoming information in
the cerebral cortex is characterized by distributed representations in different
neuronal assemblies. Distributed representations enable the mapping of the com-
plexity and variability of the natural environment by a large number of possible
combinations of neurons that can encode the representation of a certain stimulus
or something else. However, this raises the question, how it is possible to identify
and distinguish a single activated representation from other related activity at
the same time?

A good candidate for a mechanism that delineates and structures neuronal
assemblies is the synchronization among neurons. This synchrony can form a
sort of tag to mark cells that belong together (Singer and Gray, 1995). Neurons
can exhibit a wide range of oscillations and these oscillations can enter into pre-
cise synchrony over a limited period of time. The frequency of such oscillatory
activity can be ordered from slow oscillations in the delta (1.5-3 Hz), theta (4-
7 Hz), and alpha (8-12 Hz) ranges to faster oscillations in the beta (12-30 Hz) and
gamma (30-80 Hz) ranges (Buzsáki and Draguhn, 2004). Within this spectrum,
gamma-band oscillations have received particular interest, since their relation-
ship to higher brain functions is frequently reported (Engel et al., 2001; Karakaş
et al., 2001). Evidence from electrophysiological experiments of animals and hu-
mans showed that gamma-band responses (GBRs) can be found in the visual,
auditory, and somatosensory modality (Başar et al., 2000).

In general, most studies distinguish between two types of GBRs based on the
temporal occurrence and phase-locking across different trials. The early evoked

GBR is phase-locked to stimulus onset, whereas the later induced GBR jitters
in latency from trial to trial and is, therefore, not phase-locked (Başar-Eroglu
et al., 1996). In the visual modality, early evoked GBRs occur with a peak la-
tency around 90 ms and with a posterior scalp distribution (Böttger et al., 2002;
Senkowski and Herrmann, 2002; Busch et al., 2006; Schadow et al., 2007b), sug-
gesting the generators of the GBR in visual cortices. The auditory evoked GBR
peaks much earlier at 60 ms after stimulus onset and is often observed with an
amplitude maximum at fronto-central electrodes (Haenschel et al., 2000; Schadow
et al., 2007a). Because of the temporal proximity to the auditory middle latency
response (MLR) and long latency response (e.g. N1), a number of studies argued
about whether the auditory evoked GBR represents a functionally distinct brain
response (Başar et al., 1987; Bertrand and Pantev, 1994; Pantev, 1995; Jacobson
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1.1. Oscillatory activity in the human brain

et al., 1998; Müller et al., 2001). Dipole localizations suggested that generators
underlying the gamma-band field are spatially distinct from those underlying the
MLR as well as the N1 (Pantev et al., 1993).

The early phase-locked GBR was initially associated with sensory coding pro-
cesses, while the non-phase-locked activity between 200 and 400 ms represents
perceptual and cognitive functions (Karakaş and Başar, 1998). Later, it was
shown that early gamma-band activity might also reflect cognitive processes
(Karakaş et al., 2001). In this regard, recent reports describe modulations of these
early gamma-band oscillations by memory matching (Herrmann et al., 2004b) and
attention (Tiitinen et al., 1993; Senkowski and Herrmann, 2002; Fell et al., 2003;
Busch et al., 2006). Non-phase-locked GBRs on the other hand have been re-
lated to cognitive processes including memory encoding and retrieval (Sederberg
et al., 2003; Gruber et al., 2004), working memory (Tallon-Baudry et al., 1998),
and learning (Gruber et al., 2001; Keil et al., 2001b; Axmacher et al., 2006). In
the ’match-and-utilization model’, memory was discussed as a global underlying
mechanism for both early and late GBRs (Herrmann et al., 2004c).
Some of the earliest studies on this topic investigated the role of synchronous neu-
ronal firing in binding different features of the same perceptual object (Eckhorn
et al., 1988; Singer, 1993), suggesting that object perception is associated with
enhanced gamma-band activity. Tallon et al. (1995) and Tallon-Baudry et al.
(1996) studied oscillatory gamma-band activity during the perception of coher-
ent (Kanizsa triangles) and non-coherent (non-Kanizsa triangles) stimuli (see Fig.
1.2).

Figure 1.2: Example stimuli applied in the studies of Tallon et al. (1995) and
Tallon-Baudry et al. (1996): virtual Kanizsa triangle (left) and non-Kanizsa
triangle stimulus (right). The authors reported a larger induced GBR at 280 ms
to the Kanizsa triangle than to non-Kanizsa triangle.

In the left part of this figure you will probably see the edges (illusory contours)
of an entire triangle, even though the figure is defined only by the notches in the
inducers. The researchers reported a larger induced GBR at 280 ms in response
to Kanizsa figures compared with non-Kanizsa figures in which the inducers were
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Chapter 1. Introduction

rotated and therefore no figure was perceived. They concluded that the late in-
duced gamma-band activity is functionally relevant for feature integration or for
matching with an internal representation of the object.

spectral pitch

non-coherent tone

virtual pitch

Figure 1.3: Kanizsa stimuli (left side) vs. equivalent sound stimuli (right side).
(a) Spectral pitch of 250 Hz corresponding to the real triangle. (b) Virtual pitch
consisting of the 4th to 8th harmonics of the missing fundamental frequency
of 250 Hz. (c) Non-harmonic complex tone with components corresponding to
prime numbers within the frequency range 1117-2091 Hz (Parts of the figure are
redrawn from Knief et al., 2000.).

An auditory experiment was performed by Knief et al. (2000) as an analog to
this Kanizsa experiment. They investigated gamma-band activity in response to
different coherent and non-coherent complex tones (see Fig. 1.3). The partici-
pants were ask to detect a target tone (not contained in Fig. 1.3) and reporting
it by pressing a button as quickly as possible. The authors did not find any
differences in the induced gamma-band activity between the stimulus categories.
However, the cortical sources of the evoked GBR for spectral and virtual pitches
(comparable with the real and illusory triangle in the visual modality) were found
to be closer together. The cortical source for the non-coherent tones were located
more anterior to those of the coherent tones, suggesting that different cortical
areas were active in processing spectral/virtual pitches and non-coherent tones.

The processing of perceptual information further underlies the distinction
whether it appears in a bottom-up or top-down fashion. The classical view of
information processing is that of a bottom-up process in a feedforward hierarchy
from lower to higher cortical areas. The perceptual process starts at sensory re-
ceptors and continues with the integration of sensory information. Therefore, it

6



1.1. Oscillatory activity in the human brain
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Figure 1.4: Bottom-up and top-down processing: Left: Bottom-up processing
occurs from lower to higher cortical areas, whereas higher associative areas influ-
ence lower cortices by feedback connections during top-down processing. Right:
The influence of top-down processing by knowledge and the context (A) and by
knowledge about geometrical rules (B) is exemplified.

is termed data- or stimulus-driven. In many situations, however, our perception
is subjective and influenced by past experiences, knowledge, attention, or expec-
tations. As an example, in Figure 1.4A you probably read "THE CAT", although
the middle letter in each word is identical in form. The context, given through the
knowledge of the English words, causes us to perceive the same object differently.
This is labeled as top-down processing or schema-driven because higher brain
functions exert a dominant influence over stimulus processing involving feedback
connections from higher associative to lower primary cortices. In reading, as the
example shows, we do not only register the letters and words (bottom-up), but
also perceive the letters depending on our expectations and the particular context
(top-down). As a further example of a top-down process, Figure 1.4B1 shows a
picture of an endless staircase that was painted by the English biologist Lionel
Penrose in 1962. By the knowledge about geometrical objects and rules, this
staircase emerges as an impossible object and we are not able to group features
into a meaningful object.
In the end, both bottom-up and top-down processes are important during our
perception and frequently work together to ensure accurate and rapid processing
of information.

In the following both Sections 1.2 and 1.3, I give a more precise overview about
the psychophysiological evidence suggesting that both bottom-up and top-down
effects play a crucial role during processing of input stimuli in the auditory as

1The image was found at http://www.ucl.ac.uk/Library/special-coll/knowledge.shtml
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Chapter 1. Introduction

well as visual modality.

1.2 Bottom-up modulation in the auditory and

visual system

Information processing typically starts with basic sensory aspects concerning for
example the perception of brightness, color, or loudness. The investigation of how
sensory experiences are related to physical stimulation and physiological function-
ing is a basic prerequisite for studying and understanding cognitive processing.
This is exemplified in Figure 1.5, showing two natural scences with an animal
that you can meet in everyday life. Although the pictures widely contained the
same colors, there is one meaningful difference: it might be much easier to detect
the dog in the right than the paddock in the left picture. This is caused by a
different contrast ratio between the animal and background in both pictures. The
contrast between the dog and background is much larger and lead therefore to
more defined contours. Stimulus contrast is a fundamental variable encoded by
the early visual system and has been shown to influence behavioral responses.
Reaction times were shortened as the contrast level of visual stimuli increased
(Felipe et al., 1993; Vassilev et al., 2002; Chakor et al., 2005). Thus, a higher
contrast results in a faster behavioral reaction and might also influence higher
stages of information processing. According to this, it is of high relevance to be
aware of stimulus related modulations on early processing.

Figure 1.5: Natural scenes and visual contrast: The paddock (left) on the ground
appears to be more difficult to detect than the dog (right). This is caused by a
different contrast ratio between the animal and background (Both pictures were
taken by E. Schadow.).

In this section, I will concentrate on early visual and auditory processing mech-

8



1.2. Bottom-up modulation in the auditory and visual system

anisms. Since the current dissertation exclusively presents EEG experiments, I
will mainly report results of EEG studies concerning event-related potentials
(ERPs) and GBRs. ERPs reflect phasic modulations of brain activity, which are
time-locked to the onset of an event, and have been linked to many perceptual
and cognitive processes.

Bottom-up modulations in the ERPs are reflected in the early components
during the first 100 milliseconds after stimulus onset. The influence of visual
stimulus properties, for instance size, luminance, contrast, or spatial frequency
is well examined in the ERP literature. These so called exogenous effects on
visually evoked potentials (VEPs) have been investigated predominantly using
checkerboard stimuli or sinusoidal gratings in steady-state paradigms (Celesia,
1993). Changes of the aforementioned stimulus parameters lead to changes in
the latency and amplitude of the early VEP, in particular of the P100. For in-
stance across a wide range of luminance or contrast levels, the P100 amplitude
increased and the latency decreased with increasing luminance (Pastrnáková and
Peregrin, 1977) or contrast (Campbell and Kulikowski, 1972; Spekreijse et al.,
1973). The size of the stimlus area modulates the VEP amplitude as well: Bartl
et al. (1978) reported an amplitude enhancement with increasing size of the stim-
ulus area and further a maximal amplitude at 7.5 - 10 degrees of visual angle.
A number of studies in animals and humans reported that oscillatory responses in
the gamma-frequency range change depending on a change in different stimulus
features. In recordings from cat retinal ganglion cells, large, but not small, stim-
uli elicited high-frequency oscillatory potentials (Neuenschwander et al., 1999).
The same size dependency was observed in frogs (Ishikane et al., 1999) and rab-
bits (Ariel et al., 1983). Similar results in humans have been reported. Busch
et al. (2004) demonstrated that stimulus features such as size and eccentricity
significantly influence the evoked gamma-band activity. The largest and most
centrally presented stimulus yielded the strongest GBR. Other studies in humans
reported that gamma-band activity varies with the spatial frequency as a further
stimulus characteristic (Tzelepi et al., 2000; Bodis-Wollner et al., 2001; Fründ
et al., 2007a). Thus, the occurrence of evoked gamma-band activity was shown
to be most sensitive to stimulus properties.

Exogenous auditory evoked potentials (AEPs, e.g. N1 at 100 ms) also primar-
ily depend on characteristics of the external stimulus. Many studies consistently
reported a strong intensity dependency of the early AEP (Rapin et al., 1966; Bea-
gley and Knight, 1967; Polich et al., 1996; Carrillo-de-la-Peña, 1999; Neukirch
et al., 2002). With increasing stimulus intensity the N1 response increases in
amplitude and decreases in latency. At constant levels of intensity, the N1 am-
plitude varies with the tonal frequency of the stimulus (Picton et al., 1978). The
N1 decreases with increasing tonal frequency particularly at frequencies greater
than 2000 Hz. For the auditory GBR, a similiar effect was demonstrated by Lenz
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Chapter 1. Introduction

et al. (2008). However, in that study the gamma-band amplitude increased from
250 Hz to frequencies around 1000 Hz and decreased at higher frequencies. This
finding suggests that the auditory GBR is also modulated by physical stimulus
parameters, but compared to the visual domain, bottom-up modulation of the
auditory GBR are sparsely investigated. To my knowledge, further effects of au-
ditory stimulus features on gamma-band activity such as sound intensity, pitch,
timbre, or the combination of multiple frequencies have not yet been reported.
Knowing and controlling such effects is necessary for investigations of auditory
cognition in order to yield optimal GBRs and not to confound task (cognitive)
effects with stimulus effects (see Busch et al., 2004, for a similar discussion in the
visual modality).

1.3 Top-down modulation in the auditory and

visual system

Our visual and acoustic environment appears to be very complex and different
visual impressions or sounds occur simultaneously. This requires a fast percep-
tual analysis and organization of incoming information which is often influenced
and facilitated by top-down processes. The auditory system has to segregate
and integrate different sounds into meaningful auditory units or objects, which
is also known as auditory scene analysis (Bregman, 1994). Mechanisms for this
perceptual organization in the visual system are summarized in the Gestalt laws
(Koffka, 1935). During this perceptual analysis attentional processes, memory
content, and expectations play a decisive role and are related to oscillatory ac-
tivity in the gamma-band in several studies (for a review, see Engel et al., 2001).

Most notably, the influence of attention has been studied both in animal and
in human experiments showing that GBR is enhanced during attentional selec-
tion of sensory information. Visual neurons in monkeys responding to a presented
stimulus fire in synchrony if the target stimulus is attended (Fries et al., 2001;
Bichot et al., 2005). In humans, several visual and auditory experiments have
demonstrated similar effects. Target stimuli, capturing a higher amount of at-
tention, trigger a stronger early GBR than non-target stimuli (Yordanova et al.,
1997; Herrmann et al., 1999; Debener et al., 2003; Busch et al., 2006). The effect
of top-down processes specifically on the auditory evoked GBR was examined in a
study reporting a modulation of the evoked GBR by selective attention, whereas
the activity in other frequency bands was not influenced (Tiitinen et al., 1993).
Similar attentional effects on the induced GBR in a later time interval (200 - 400
ms) were found during a visual spatial attention task where participants had to
shift their attention to the left or right half of the screen to detect target stimuli
(Gruber et al., 1999).
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Further, gamma-band activity has been associated with maintenance of work-
ing and short-term memory as well as long-term memory (Herrmann et al.,
2004c). It has been proposed that the representation of a specific stimulus relies
on a synchronously oscillating assembly of neurons and a memory trace could
be established when the synchronous oscillatory firing is maintained in the ab-
sence of the stimulus (for a review, see Jensen et al., 2007). This hypothesis
was supported by an experiment by Tallon-Baudry et al. (1998), who observed
enhanced gamma-frequency power during active maintenance of visual shapes in
short-term memory. Recent studies also pointed out that gamma-band activity is
involved in matching sensory input to long-term memory representations in the
visual and auditory system. The match of a presented stimulus with a memorized
template resulted in an enhanced GBR compared to new stimuli (Gruber et al.,
2004; Herrmann et al., 2004d; Lenz et al., 2007; Busch et al., 2008). These re-
sults were summarized in the ’match-and-utilization model’ (MUM), proposed by
Herrmann et al. (2004c). The model suggested that such matching processes be-
tween bottom-up (sensory signals) and top-down (memory content) information
result in increased evoked gamma-band oscillations due to stronger feedback from
higher cortical areas. Obviously, it appears that the early evoked GBR reflects an
interaction of bottom-up and top-down processes in such a way that early percep-
tual processes were controlled by higher cognitive mechanisms such as attention
or memory (Busch et al., 2006). While during a visual experiment, the match
with long-term memory content could already be observed for the early evoked
GBR peaking at 90 ms, this effect occurred in the later induced GBR in the
auditory domain. Lenz et al. (2007) reasoned that effects of matching processes
with auditory long-term memory on the evoked GBR are very improbably, since
the perception of complex sounds becomes available in a serial order. Changes
in frequency and amplitude have to be analyzed over time and therefore it takes
more time to identify a complex sound than a picture which appears at once.
For the visual modality it was shown, that sources of the induced gamma-band
activity are located in the occipital cortex (Osipova et al., 2006). Therefore, the
authors have assumed that retrieval from long-term memory involves a top-down
drive, reactivating the visual representation of the familiar stimulus. In contrast
to these rather late top-down effects on the induced GBR, Widmann et al. (2007)
reported a very early modulation of auditory stimulus processing by top-down
guided expectation in an audio-visual integration study.

As another factor that can facilitate efficient processing of information, expec-

tations about our environment or incoming signals are discussed (Engel et al.,
2001). Most events in everyday life occur predictably for us, which is for instance
very important in competitive sports. During the preparation of the next return
in a tennis match, the tennis player will be more accurate if the trajectory of
the ball fits his expectation. This anticipatory state is presumably represented
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as a pattern of neural activity in specific areas of the brain, which might also
modulate the brain activity of successive cognitive or motor processes. Thus, at
the one hand expectation guided processes can be studied during the preparation
of a task (e.g. cueing paradigms) and on the other hand during the task itself if
a preparation phase is ensured.
The status of anticipation or expectation and its influence on the processing of
forthcoming stimuli was previously investigated with respect to oscillatory ac-
tivity (Gonzalez Andino et al., 2005; Snyder and Large, 2005; Gómez et al.,
2004; Widmann et al., 2007). GBRs were reported to precede the perceptual
processing of a visual stimulus and correlated significantly with reaction times
(Gonzalez Andino et al., 2005). This activity, occurring before stimulus onset,
might facilitate the amplification of neural activity in sensory areas in response
to the stimulus. Furthermore, effects of expectation were already found in cueing
paradigms, in which a previously presented cue can give some information about
the forthcoming stimulus (valid cue vs. invalid cue). In such an experiment,
Fründ et al. (2008b) investigated evoked electroencephalographic responses from
human participants. On some trials, the participants were cued about the cat-
egory of the stimulus before it appeared on the screen, on other trials this was
not the case. Stimulus anticipation effects were observed for the phase-locking
of oscillatory activity in the β-band indicating larger amplitudes for stimuli that
were preceded by a valid cue. In the same frequency band, Liang et al. (2002)
reported pre-stimulus oscillatory power and coherence in prefontal cortex of a
macaque monkey during visual stimulus anticipation, that were highly corre-
lated with the amplitude and latency of early evoked potential components and
with response time. This is not only observed in the visual modality: Snyder and
Large (2005) studied the relationship between GBRs and the processing of rhyth-
mic tone sequences. Here, induced GBRs appeared to predict tone onsets and
persisted even for expected tones that were omitted. In contrast, evoked GBRs
occurred in response to tones, but not to tone omissions. The authors concluded
that induced gamma-band oscillations might play a role in developing a mental
representation of a temporally structured tone pattern, whereas the evoked ac-
tivity would reflect more stimulus driven aspects. In contrast, Widmann et al.
(2007) observed a much earlier modulation of auditory stimulus processing by
top-down guided expectation in an audio-visual integration study. Here, visual
symbolic information served as a cue and preceded the auditory stimulus, while
visual and auditory stimuli could be either congruent or incongruent. In par-
ticular, the authors used a symbol-to-sound-matching paradigm in which simple
score-like patterns (e.g. ¯ - -¯ ¯ - -) predict corresponding sound patterns. Only
in the case of congruent stimulus presentations, where the prediction about the
forthcoming sound matched the sensory input, an enhanced evoked GBR at 42 ms
was observed.

In conclusion, top-down related effects on the GBR were demonstrated during
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early and late processing of auditory as well as visual information. In the case
of anticipatory processing, the given literature suggests on the one hand a strong
relationship between pre-stimulus oscillatory activity during stimulus anticipation
and behavioral responses. Otherwise, there exist diverse results, whether top-
down guided expectation is reflected in early or late GBR. Thus, it remains
unexplained, if expectation to an event can influence subsequent processing at
such an early stage as was already reported for memory- and attention-related
influences on stimulus processing.
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2 Hypotheses and objectives

The preceding part of the Introduction emphasized that oscillatory brain activ-
ity in the gamma-band is involved in bottom-up as well as top-down processes
in the visual and auditory modality. Based on this theoretical framework, the
current section will give an outline about the conducted experiments including
the respective aims and hypotheses.

2.1 Bottom-up modulation in the auditory and

visual system

To investigate top-down influences of gamma-band activity it necessitates re-
search about how bottom-up factors modulate the GBR. Thus, two of the current
experiments focus on the influence of stimulus features on the GBRs. Since size,
eccentricity, and spatial frequency of a stimulus strongly affect the visual gamma-
band activity (Tzelepi et al., 2000; Bodis-Wollner et al., 2001; Busch et al., 2004;
Fründ et al., 2007a), the first experiment (Chapter 4) investigates the effects of
different stimulus contrasts in a discrimination paradigm. As already illustrated
in the Introduction, modulations of auditory stimulus characteristics on the GBR
have been studied sparsely. Therefore, a second experiment was conducted sim-
ilar to the first visual experiment, examining the auditory gamma-band activity
in response to different sound intensities of sinusoidal tones (Chapter 5). Since
most research groups found bottom-up effects in a very early time window, I also
expected amplitude differences within the range of evoked GBR.

In conclusion, two hypotheses for the first studies are derived:

The early evoked GBR is modulated by the contrast of vi-

sual stimuli.

The early evoked GBR is likewise influenced by the sound

intensity of sinusoidal tones.
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2.2 Top-down modulation in the auditory system

To date the number of studies investigating the functional role of auditory gamma-
band activity in higher level perceptual tasks is sparse compared to the visual
domain. A substantial difference between perceptual processing of visual and
auditory information, for example in binding single features to a coherent per-
cept, is due to the temporal processing. While visual information (e.g. pictures)
appears at once, auditory information (e.g. melody, speech) becomes available
in a serial order which takes more time to perceive an auditory object. It has
been widely accepted that the processing of stimuli is controlled by top-down in-
formation, and that gamma-band oscillations are particularly important during
this process. Top-down processes can be active also before stimulus appearance,
when one has a specific expectancy or anticipation about what will happen in
context of a specific task. During such states of expectancy, researchers observed
a precise synchrony between local field potentials recorded from different areas
in the cat even before the behaviorally relevant stimulus appeared (Engel et al.,
2001). In humans, influences of expectation were often investigated in cueing
paradigms, mainly constrained to the visual domain. In a third experiment, I
have therefore studied the impact of stimulus anticipation on auditory stimulus
processing and how early potential effects can be observed (Chapter 6). Since
anticipatory-related activity, occurring before stimulus onset, might facilitate the
amplification of brain activity in sensory areas in response to the stimulus, it is
most likely that an effect of anticipation is reflected in the early evoked GBR. In
the visual modality, this process was discussed as matching between the incoming
stimulus and a previously activated template (i.e. by anticipation) which results
in enhanced evoked GBR in the case of a successful match (Herrmann et al.,
2004c).

Therefore, the third hypothesis reads as follows:

The influence of anticipation on the auditory stimulus pro-

cessing is reflected in an increased early evoked GBR.
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3 General Method

While the specific methods of each study are reported in the corresponding sec-
tions, I will describe the more general methodology in this chapter. At first, I will
introduce the electroencephalogram (EEG), which was recorded in all reported
experiments.

3.1 Electroencephalogram

The EEG is a measure of electrical brain activity from the scalp. The first record-
ings were made by the German psychiatrist Hans Berger in 1929 in Jena (Berger,
1929). The waveforms recorded are thought to reflect the activity of the surface
of the brain, the cortex. This activity is influenced by the electrical activity from
the brain structures underneath the cortex as well. The amplitude of the EEG is
about 100 µV when measured on the scalp, and about 1-2 mV when measured on
the surface of the brain (electrocorticogram, ECoG). The EEG represents tem-
porally and spatially summed postsynaptic potentials of cortical pyramidal cells
(Zschocke, 2002, Chap.1). When neurons are activated, local current flows are
produced. The currents that flow during synaptic excitations of the dendrites
of many pyramidal neurons in the cerebral cortex constitute the main part of
the EEG. Differences of electrical potentials are caused by summed postsynaptic
graded potentials from pyramidal cells that create electrical dipoles between soma
(body of neuron) and apical dendrites (neural branches). Only large populations
of active neurons can generate electrical activity recordable on the head surface.

A prerequisite in order to functionally and anatomically interpret EEG data is
a standardized positioning of the electrodes on the scalp relatively to the cerebral
structure beneath. Therefore, the internationally standardized 10-20 system is
employed to record the EEG (Jasper, 1958). In this system, electrodes are lo-
cated in special positions on the surface of the scalp. The head is divided into
proportional distances in steps of 10% and 20%, respectively, starting at promi-
nent skull landmarks (nasion, preauricular points, inion). This provides adequate
coverage of all regions of the brain and allows between subjects comparisons.

The EEG is often contaminated by signals without cerebral origin. These are
termed artifacts and can be divided into physiological and non-physiol-
ogical origin. While physiological artifacts are generated by the participant, non-
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physiological artifacts arise from the immediate participant surroundings (i.e.
equipment, environment). The most common types of physiological artifacts are
cardiac, glossokinetic, muscle, eye and body movements, respiratory, pulse, and
skin artifacts. Non-physiological artifacts are generated e.g. by impedance fluc-
tuations, cable movements, or broken wire contacts. Artifacts should be removed
or corrected by specific algorithms within the EEG traces. For a better discrim-
ination of different physiological artifacts, additional electrodes for monitoring
eye movement activity are important. In all of the current studies, EEG epochs
containing artifacts were removed by an automatic algorithm and further by vi-
sual inspection.

In the following sections, two different measures for analyzing EEG data will
be introduced and explained: the event-related potential and event-related oscil-
latory activity in the frequency range between 30-80 Hz. Both measures provide
the basis of the data analysis in the presented experiments.

3.2 Event-related potentials

Hans Berger reported variations within the ongoing EEG signal in response to
changes of psychological variables (which may be an auditory or visual stimulus).
Differences between such experimental variables are not directly seen in the raw
signal since the amplitude change is too small in comparison to the amplitude of
the ’background’ EEG (noise). To extract the specific brain activity in response
to an event or stimulus, a larger number of trial repetitions (typically between
20 and 50) of the same stimulus category is necessary. All trials belonging to
the same stimulus category are averaged in a specified time window to improve
the signal-to-noise ratio. The result of this averaging is termed the event-related
potential (ERP). Thus, ERPs are a trial-based measure showing a high tempo-
ral resolution that allow an extensive application for studying perceptual and
cognitive functions (Picton et al., 2000). By means of ERP analysis, the onset
(latency), duration, and the level of engagement (amplitude) of a perceptual or
cognitive process can be assessed and, thus, represented in real time. The fact of
the high temporal resolution is advantageously, since cognitive processes can be
analyzed in temporal correlation with behavioral responses such as reaction times.

However, this method reveals some limitations, which are important to men-
tion as well. The ERPs reflect only a partial record of neural activity engaged
in the respective experimental condition, because the activity from subcortical
structures is less detectable. The EEG represents only superficial sources of neu-
ral activity, while the strength of the signal declines with the distance from its
source. Further, the EEG provides a small spatial resolution compared to the
functional magnetic resonance imaging (fMRI). The signal which is measured on
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the scalp results from the summation of electrical activity that may by generated
by several different sources in the brain. Therefore, it is very difficult to localize
potential sources of the measured neural activity in a specific condition. However,
there has been a continuous development of techniques that allow ERP source
localization directly based on the scalp fields themselves. The larger the number
of electrodes the more improved are source localizations or topographic analyses
(Liu et al., 2002).

3.3 Oscillatory brain activity

Until the beginning of the nineties, perceptual and cognitive processes were ex-
clusively studied by employing ERP analyses. Rhythmic brain activity was usu-
ally considered as something indicating activation or vigilance (cf. Niedermeyer,
1997).
In the traditional view, it is assumed that ERP components reflect transient
bursts of neuronal activity that are time-locked to an external event. Here, ERPs
are superimposed on and impedded in ongoing background EEG that is com-
pletely unrelated to processing of the task events. This view has been changed,
since it was shown that EEG oscillations at a specific frequency changed their
magnitude and phase in response to an external event (Engel et al., 2001; Makeig
et al., 2004; Yeung et al., 2004). This was revealed by time-frequency analysis
of single trial EEG epochs, supporting the role of oscillatory activity in infor-
mation processing. Such an analysis method can tell us which frequencies have
the most power at specific time points and electrode positions. Before explaining
time-frequency analysis, I will present a general overview about characteristics
and classification of oscillatory brain activity.

3.3.1 Classification of brain oscillations

An EEG signal generally consists of a series of sine waves of different frequencies
overlapping in time and with different phase angles with regard to a stimulus
presentation. A sine wave is characterized by several parameters: amplitude,
frequency, and phase. The amplitude corresponds to the maximum height of the
sine waves’s peaks (or valley) and is in terms of an EEG signal typically between
0 and 10 µV. The frequency describes the number of complete cycles or oscilla-
tions within a 1-second time period and is indicated in Hertz (Hz = cycles per
second). The phase of an oscillation relates the relative position of a time point
and can be expressed in degrees from 0◦ to 360◦, or in radians from 0 to 2π.

Three different types of oscillatory activity can be distinguished: spontaneous,
evoked, and induced respones (Galambos, 1992). Oscillations in the brain with-
out relation to an external stimulus or event reflect spontaneous activity. Evoked
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activity occurs in response to an external event and is strictly time- and phase-
locked to its onset in each trial repetition. Evoked responses can be extracted
from noise in the time-domain by averaging the signal evoked in each trial. In
contrast, induced activity after stimulation occurs with varying onset times and
phase jitter and can therefore not be extracted in time domain of the averaged
ERP. In this case, specific signal analysis methods have to be used. As one
approach, the time-frequency analysis underwent a renaissance in the middle of
the nineties, initiated by the work of Tallon-Baudry who studied EEG gamma-
band oscillations and its role in object representation (Tallon-Baudry et al., 1996,
1997). Meanwhile it is generally accepted that the frequency characteristics of
the scalp EEG reflect perceptual as well as cognitive processes of the brain (Başar
et al., 1999, 2000; Klimesch, 1999).

The next paragraph will introduce the fundamental issues of signal analysis
referring to neural brain oscillations and how one can extract meaningful infor-
mation relating to time and frequency.

3.3.2 Time-frequency analysis

For the analysis of event-related oscillations and their temporal dynamics, EEG
signals have to be transformed into a time-frequency representation. The con-
ventional frequency domain analysis is based on the Fourier transform. During a
Fourier transform, the time signal is decomposed in a series of sines and cosines,
which are characterized by a frequency and an amplitude value. The representa-
tion of a signal depending on the frequency is termed as a spectrum. The main
disadvantage of this analysis, however, is that it reflects only frequency infor-
mation and neglects time information. Thus, the Fourier transform provides no
information regarding the point of time at which specific spectral components
appear.

The wavelet transform or wavelet analysis is probably the most recent solution
to overcome the shortcomings of the Fourier transform. At the beginning of the
eighties, the french geophysicist Jean Morlet developed an analysis technique,
which enables a spectral analysis with a direct time resolution using frequency
adapted basis functions (Morlet et al., 1982). Wavelet functions can be used to
analyze non-stationary time series and give a distribution of power in two di-
mensions, namely time and frequency. Signals are described as non-stationary,
if frequency portions vary over time. An example is the evoked gamma-band
activity, being the main physiological signal presented in the thesis and showing
a temporally closed circumscribed activity at a specific frequency range. In order
to compute a wavelet transform, the measured EEG signal needs to be convolved
with a so-called mother wavelet. As such a mother wavelet, a complex Morlet
wavelet was applied in all analyses within this thesis. A Morlet wavelet is a com-
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plex sine wave multiplied by a Gaussian envelope, both in the time and frequency
domain around the central frequency. A family of wavelets is obtained by shifting
and scaling this mother wavelet, such that this set of functions adequately sample
all the frequencies present in the EEG signal. As a result, wavelet analyses em-
ploy a different time window length for each frequency, with the longest windows
applied to the lowest frequency and the shortest window to the highest frequency.
However, the advantage of a finer temporal resolution with increasing frequency
results in the disadvantage of a diminshed frequency resolution as frequency in-
creases. This convolution procedure leads to a new signal of wavelet coefficients,
which quantify the similarity between the original EEG signal and the wavelet
function at a specific scale and latency. In the end, the result of this wavelet
transform gives a collection of time-frequency representations of the signal.

To extract the phase-locked GBR, the wavelet transform is computed on the
averaged evoked potential. In this procedure, the non-phase-locked activity is
cancelled out. To identiy the non-phase-locked part, the wavelet transform is
therefore applied to every single trial and the obtained absolute values are av-
eraged subsequently. The calculated time-frequency representation contains the
sum of phase-locked (evoked) and non-phase-locked (induced) activity and is
therefore referred to as total activity. This procedure is illustrated in Figure
3.1. Finally, the frequency specific baseline activity in a prestimulus interval
is subtracted to yield values that indicate the oscillatory amplitude (or power)
relative to the baseline. Additionally, in all experiments the amount of phase-
locking across trials is computed. The absolute value yields a number between 0
and 1, determining the degree of phase-locking, where 1 indicates perfect phase
alignment across trials and values close to 0 reflect a high phase variability.
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Figure 3.1: To analyze the evoked and induced portion of the GBR two different
approaches are required. In (A) 10 simulated single EEG trials are displayed
containing early evoked and late induced gamma-band bursts. (B) Averaging all
single trials results in the ERP. (C) Computing the wavelet transform (WT) on
the ERP yields only the evoked GBR, since the induced portions are cancelled
out due to the phase jitter of appearance after stimulus onset. (D) Therefore, the
WT is first applied to every single trial. (E) In the next step, the obtained time-
frequency representations of each trial, containing both the evoked and induced
activity, are averaged. The sum of evoked and induced activity is also referred to
as total activity (Parts of the Figure are redrawn from Herrmann et al., 2004.).
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4 Experiment I: Visual contrast

modulates evoked

gamma-band activity in human

EEG

The experiment described in this chapter has been published in the Journal "In-
ternational Journal of Psychophysiology" (Schadow et al., 2007b).

4.1 Introduction

Oscillatory responses of neuronal assemblies in the gamma range (30-80 Hz) have
recently been described in the auditory, somatosensory, and especially in the vi-
sual modality (Başar et al., 2000). The investigation of modulating factors of
gamma activity linked to sensory and cognitive aspects has attracted much inter-
est from numerous research groups (refer to the review of Engel et al., 2001). In
general, most studies distinguish between two types of GBRs: the early ’evoked’
and the later ’induced’ GBR (Başar-Eroglu et al., 1996, cf. Chapt. 3). The early
gamma activity observed during the first 100 ms after stimulus onset was initially
associated with sensory coding processes (Karakaş and Başar, 1998). Later, it was
shown that early gamma activity might also reflect cognitive processes (Karakaş
et al., 2001; Senkowski and Herrmann, 2002; Fell et al., 2003; Herrmann et al.,
2004b; Busch et al., 2006). For a variety of paradigms, particularly in the visual
modality in animals and humans, the late gamma activity around 200-400 ms
after stimulus onset is closely related to top-down factors such as attention (Gru-
ber et al., 1999; Müller et al., 2000; Keil et al., 2001a; Fries et al., 2001), task
complexity (Posada et al., 2003), and perception (Tallon et al., 1995). Moreover,
recent studies have highlighted a pivotal role for both types of gamma activity in
memory processes (Herrmann et al., 2004b; Gruber et al., 2004). In the ’match-
and-utilization model’ memory is discussed as a global underlying mechanism for
early and late GBRs (Herrmann et al., 2004c).
Several studies investigating gamma oscillations and their potential functional
role in animals and humans reported difficulties in either detecting gamma-band
activity or gamma modulations (Tovee and Rolls, 1992; Young et al., 1992; Menon
et al., 1996; Lamme and Spekreijse, 1998), or pointed out discrepancies in the
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experimental findings between animals and humans (Menon et al., 1996; Juer-
gens et al., 1999). Juergens et al. (1999) demonstrated a strong stimulus-related
increase in gamma oscillations in monkeys, but no related GBR in humans in
the same visual paradigm. Furthermore, some research groups failed to replicate
former results regarding visual gamma modulations. The group of Roesler (cited
in Juergens et al., 1999) tried to replicate the findings of an experiment on visual
gamma modulation done by Tallon-Baudry et al. (1996) without success. These
inconsistent findings could be attributed to the diverse methodological approaches
concerning the analysis of gamma-band activity (Engel et al., 1992). One further
possible explanation for the described difficulties in detecting gamma activity or
gamma-band modulations might be differences in the experimental design and in
the stimulation. Given the strong dependence of the GBR on stimulus properties,
it is conceivable that negative results could have been obtained due to inappro-
priate stimulation.
Busch et al. (2004) demonstrated that stimulus properties such as size and ec-
centricity significantly influence gamma activity. The largest and most centrally
presented stimulus evoked the highest GBR. Similar results for animals have been
reported regarding the stimulus size. In recordings from cat retinal ganglion cells,
large, but not small, stimuli elicited high-frequency oscillatory potentials (Neuen-
schwander et al., 1999). The same sizedependency was observed in frogs (Ishikane
et al., 1999) and rabbits (Ariel et al., 1983). Bodis-Wollner et al. (2001) and
Tzelepi et al. (2000) pointed out that the power in the gamma frequency range
varies with spatial frequency as a further stimulus characteristic. Tzelepi et al.
(2000) reported that responses were larger to 4 cycles per degree (cpd) grating
stimuli than in response to 1 cpd stimuli, whereas Bodis-Wollner et al. (2001)
observed the largest power to a spatial frequency of 5.5 cpd. Thus, the occur-
rence of evoked gamma activity seems to be most sensitive to stimulus properties
such as size, eccentricity, and spatial frequency. Accordingly, we hypothesized
that contrast, an additional characteristic of a stimulus, may influence the visual
evoked GBR.
Such a modulation by contrast has already been described in event-related poten-
tial (ERP) studies of animals and humans (Tolhurst et al., 1981; Harnois et al.,
1984; Campbell and Kulikowski, 1972; Bobak et al., 1987; Vassilev et al., 1994).
Harnois et al. (1984) observed a dependence of the transient visual evoked poten-
tials (VEPs) on contrast in rats. The latency of the P1 wave decreased linearly
and the amplitude of the P1-N2 component increased with increments of contrast
up to 55%. Similar results in visual cortical neurons of the cat were found by Tol-
hurst and colleagues (1981). At low contrasts, the response amplitude increased
linearly with contrast, but a logarithmic rise might provide a better description
for higher contrasts. However, saturation was observed at very high contrast
levels above 50%. Human EEG studies confirmed the results described for ani-
mals. VEP latency decreased and amplitude increased as a monotonic function
of stimulus contrast (Bobak et al., 1987; Vassilev et al., 1994).
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In conclusion, a clear contrast modulation of VEPs was reported in all studies.
The aim of the present study was to investigate the influence of contrast on the
evoked GBR. We expected to find a similar modulation of gamma amplitude and
to replicate results previously reported for VEP amplitudes and latencies.

4.2 Method

4.2.1 Participants

Twenty-one paid subjects (13 females, 8 males, mean age 26.2 ± 5 years) partic-
ipated in the study. They had normal or corrected-to-normal vision and showed
no signs of psychiatric or neurological disorders. All subjects received a written
task instruction and gave informed consent to participate. Two subjects were
excluded from the data analysis due to numerous eye artifacts. The ethical prin-
ciples of the Declaration of Helsinki (1964) concerning human experimentation
were followed.

4.2.2 Stimuli and Task

Sinusoidal gratings with a constant spatial frequency of 5 cpd at a size of 9
degrees of visual angle were generated using MATLAB 6.5. They were centrally
presented on a TFT computer screen placed 115 cm in front of the subjects. The
Michelson contrast of the grating pattern (C) is defined as

C =
Lmax − Lmin

Lmax + Lmin

∗ 100

where Lmax is the maximum and Lmin the minimum luminance (Bodis-Wollner
et al., 1972). Gratings with three varying contrast levels (5%, 20%, and 50%) were
created and presented on a grey background with mean luminance (Lmax + Lmin)/2
(see Fig. 4.1). The present experiment was constructed as a forced-choice dis-
crimination task. The frequent stimulus (80% of presentations) was oriented
horizontally, whereas the infrequent stimulus had a vertical orientation. The ex-
perimental session consisted of 300 frequent stimuli (100 for each contrast) and
75 infrequent stimuli (25 for each contrast) which were presented in a pseudo-
randomized order. Only the frequent stimuli were included in the present analysis.
The presentation duration of each stimulus was 1000 ms with an interstimulus
interval (ISI) between 1200-2000 ms. Participants were instructed to press a but-
ton with their right index finger in response to the infrequent stimuli and another
button with their left index finger in response to the frequent stimuli. During
the entire experimental session subjects were instructed to fixate a cross in the
center of the screen to avoid eyemovement artifacts. Two breaks were included.
The length of each break was individually determined by the participant.
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5 % contrast 20 % contrast 50 % contrast

Figure 4.1: The horizontally oriented stimuli at three contrast levels.

4.2.3 Data acquisition

EEG was recorded with a BrainAmp amplifier (Brain Products, Munich), us-
ing 32 sintered Ag/AgCl electrodes mounted in an elastic cap (Easycap, Falk
Minow Services, Munich) and placed according to the 10-10 system, with a nose-
tip reference and ground electrode between Fz and Cz. Eyemovement activity
was monitored with an electrode placed suborbitally to the right eye. Electrode
impedances were always below 5 kΩ. Data were acquired with a band-pass filter
of 0.016-250 Hz and a sampling rate of 500 Hz with an amplitude resolution of 16
bit, i.e. 0.1 µV resolution and ± 3.28 mV dynamic range. Stimulus markers and
EEG were stored on hard disk for further analysis. The EEG was recorded while
subjects sat in an electrically shielded, sound-attenuated room. The monitor was
place outside this cabin behind an electrically shielded window. All devices inside
the cabin were operated on batteries to avoid interference of the line frequency
(50 Hz in Germany). Digitized EEG data were transferred to a computer outside
the cabin with a fiber-optic cable. Averaging epochs lasted from 200 ms before to
1000 ms after stimulus onset for VEPs and evoked GBRs. Baselines were calcu-
lated in the interval from -200 ms to -100 ms and subtracted before averaging. An
automatic artifact rejection was computed which excluded trials from averaging if
the standard deviation within a moving 200 ms time interval exceeded 40 µV. All
epochs were also visually inspected for artifacts and rejected when eyemovements
occured, electrode drifts, or electromyographic activity. Whereas data analysis
was performed on unfiltered data, VEPs are displayed low-pass filtered at 20 Hz.

4.2.4 Data analysis

Behavioral Data

Responses were scored as correct if the correct button was pressed within a time
interval lasting from 200 to 2500 ms after the stimulus onset. False trials were
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rejected from the behavioral data analysis, as well as trials in which the reaction
time (RT) exceeded two standard deviations from the mean.

Visual evoked potentials

The statistical analysis of evoked potentials was performed after selected channels
were pooled into a posterior region of interest (ROI). Based on the inspection of
the topographies, those electrodes that showed a distinct signal were chosen for
the ROI (Cp1, Cp5, Cp6, Cp2, P7, P8, P3, P4, Pz, O1, O2). Two VEP compo-
nents were defined as peak amplitudes in the time interval of 90 ms to 150 ms
(P100) and 160 ms to 230 ms (N200). Amplitudes were analyzed using a repeated
measures ANOVA with the factor CONTRAST (3 contrast levels) for each of the
two components. Post hoc t-tests of specific comparisons of significant ANOVA
effects were calculated. The Greenhouse-Geisser correction, an adjustment used
in univariate repeated measures when the sphericity assumption is violated, was
applied for all ANOVA models. All post hoc t-tests were Bonferroni corrected.

Early and late gamma-band responses

For the analysis of gamma-band activity, a wavelet transform with a width of 12
cycles based on Morlet wavelets was applied (Herrmann et al., 1999). To analyze
the evoked GBR phase-locked to the stimulus, the wavelet transform was applied
to the averaged event-related potentials. However, for the non-phase-locked por-
tion of the GBR, each trial was first transformed in the frequency domain and
then the resulting wavelet transforms were averaged. This measure represents
the total activity, comprising the phase-locked and non-phase-locked part of the
GBR. Additionally, the amount of phase-locking across trials was computed. The
absolute value yields a number between 0 and 1, determining the degree of phase-
locking, where 1 indicates perfect phase alignment across trials and values close
to 0 reflect a high phase variability. The frequency used for this wavelet analysis
was individually adapted by the time-frequency plane of the O1 electrode. The
individual gamma frequency was defined as the highest peak in response to the
50% contrast stimulus in the time interval between 40 and 160 ms (early GBR) as
well as 200 and 600 ms (late GBR) after stimulus onset in the gamma frequency
range. If no clear GBR peak was visible, a frequency of 40 Hz was chosen for
analysis (as done previously, e.g. Herrmann et al., 2004b). For the statistical
analysis, early GBRs were defined as the peak amplitude of evoked gamma ac-
tivity, the phase-locking and total gamma activity in the time-interval between
40 and 160 ms, which turned out to be the peak interval in the time-frequency
planes. Thereby, channels were pooled into a ROI comprising the following seven
parieto-occipital electrodes which exhibited the strongest responses after visual
stimulation: P7, P8, P3, P4, O1, O2, and Pz. Late GBRs were defined as mean
amplitude of total gamma activity in the timeinterval between 200 and 600 ms.
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A repeated measures ANOVA was calculated for the factor CONTRAST (3 con-
trast levels). Post hoc t-tests of specific comparisons of significant ANOVA effects
were calculated (50% vs. 20%, 50% vs. 5%, and 20% vs. 5%).

4.3 Results

4.3.1 Behavioral data

Participants performed the task with high accuracy (1.3 % errors). The ANOVA
of the RTs yielded a significant main effect of CONTRAST (F [2, 36] = 13.186, p =
0.001). Responses were fastest for stimuli with the highest contrast (50%, mean
RT = 488 ms), whereas subjects responded slowest to low contrast stimuli (5%,
mean RT = 520 ms). Post hoc tests showed a significant difference between the
conditions 50% vs. 5% (t[18] = 3.802, p = 0.003) and 20% vs. 5% (t[18] =
4.162, p = 0.003).

4.3.2 Visual evoked potentials

The VEPs of all conditions were characterized by a first positive peak at a la-
tency between 90-150 ms (P100) followed by a negative peak between 160-230 ms
latency (N200, Fig. 4.2). P100 amplitudes yielded a main effect of CONTRAST
(F [2, 36] = 16.078, p < 0.001), indicating increasing amplitudes with increasing
stimulus contrast in posterior electrodes (see the scalp topographies for the P100
in Figure 4.3A). Post hoc tests yielded significant effects for the 50% vs. 20%
(t[18] = −4.907, p < 0.001) and for the 50% vs. 5% (t[18] = −4.181, p = 0.003)
condition. An ANOVA on the P100 latencies revealed a main effect of CON-
TRAST (F [2, 36] = 16.491, p < 0.001). This result indicates that P100 la-
tencies increase in posterior electrodes with decreasing stimulus contrast. Post
hoc tests showed significant differences between all conditions: 50% vs. 20%
(t[18] = 2.854, p < 0.05), 50% vs. 5% (t[18] = 6.077, p < 0.001), and 20% vs.
5% (t[18] = 2.787, p < 0.05). No significant modulation by stimulus contrast was
obtained for N200 amplitudes or latencies. The scalp topographies of the N200
show a characteristic pattern after visual stimulation with pronounced activation
peaks in more lateral posterior electrodes (see Fig. 4.3B).

4.3.3 Early and late gamma-band responses

The wavelet analysis revealed that evoked gamma activity increased when stim-
ulus contrast was increased. Figure 4.4A depicts sample baseline-corrected time-
frequency plots for each contrast condition at electrode O2 for one subject. The
GBR showed a clear peak in a time window from 60 to 140 ms after stimulus onset
for the 50% contrast stimulus. The ANOVA of the peak amplitudes of the evoked
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Figure 4.2: Grand average VEPs for all frequent contrast stimuli (50%, 20%,
and 5%). Left: VEP waveforms at electrode P7. Middle: Peak amplitudes of
the P100 and standard error for all electrodes within posterior ROI. Right: VEP
waveforms at electrode O2.

GBR yielded a main effect of CONTRAST (F [2, 36] = 12.658, p < 0.001; Fig.
4.4B) with larger amplitudes for stimuli with the highest contrast. Additionally,
post hoc tests revealed significant differences between the following conditions:
50% vs. 20% (t[18] = 4.834, p < 0.001) and 50% vs. 5% (t[18] = 3.777, p = 0.003).

Figure 4.5 displays the variation in time of the evoked GBR, phase-locking,
and total GBR averaged across all subjects at electrode O2. For this figure,
peak frequencies of the individually identified evoked GBRs ranged from 25 Hz
to 71 Hz (mean 45 Hz, SD=14.19 Hz). A frequency of 40 Hz was chosen for
two participants, who showed no clear GBR peak (as done before, e.g. Herrmann
et al., 2004b). Similar to the evoked GBR, we found a significant main effect of
CONTRAST for the phase-locking (F [2, 36] = 16.789, p < 0.001), whereas the
analysis of the total GBR, an index of signal power, revealed no CONTRAST
effect (F [2, 36] = 2.501, p = 0.101). Thus, the increase in evoked GBR is most
likely based on stronger phase-locking. Although evoked responses for high con-
trast stimuli occured slightly earlier (96 ms) than for the middle (104 ms) and
low contrast stimuli (98 ms), GBR peak latencies did not differ significantly
(F [2, 36] = 1.187, p = 0.314). Figure 4.6 represents the topographies of the
evoked GBR for each condition. The evoked GBR in response to the highest
contrast stimulus shows a characteristic scalp distribution with a maximum at
occipital and posterior electrodes, as reported in previous visual experiments
(Busch et al., 2006).

For the late gamma-band activity in the time range between 200 and 600
ms after stimulus onset, the time-frequency planes did not reveal any activity
that exceeded the noise level. Therefore, no further statistical analyses were
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Figure 4.3: A. The first row depicts the scalp topographies of the P100 at its
peak latency (112 ms) in the top view. B. In the second row scalp topographies
of the N200 at the peak latency (170 ms) are displayed in the back view. Both
rows represent the grand average of all subjects (n=19) for each contrast (5%,
20%, and 50%).

calculated.

4.4 Discussion

The goal of the present study was to investigate whether the visual evoked GBR
is modulated by contrast as has been well demonstrated for VEPs. For this
purpose, stationary sine wave gratings with three different contrast levels were
presented.

30



4.4. Discussion

Evoked gamma-band responses

0.8

0.4

0.6

0.2

0.0

A
m

p
lit

u
d

e
 [

V
]

m

50% contrast

5% contrast

20% contrast

Legend:

A.

B.

*****

***
**

p < 0.001

p < 0.01

Time-frequency plots of a single subject

GBR peak amplitudes

Figure 4.4: Evoked GBRs for all contrast stimuli (50%, 20%, and 5%). A.
Sample time-frequency plots at electrode O2 for one subject. B. Peak amplitudes
of the GBR and standard error for all electrodes within the posterior ROI.

4.4.1 Behavioral data

The behavioral data show that reaction times are significantly affected by contrast
variation. Subjects’ responses were shortened as the contrast level increased,
which is in accordance with a number of previous experiments (Felipe et al.,
1993; Vassilev et al., 2002; Chakor et al., 2005).

4.4.2 Early gamma-band responses

In the present study, gamma frequency oscillations revealed the strongest re-
sponses at occipital electrodes. Our results are consistent with findings showing
evoked gamma-band activity in response to visual stimulation in a latency range
of about 100 ms (Böttger et al., 2002; Senkowski and Herrmann, 2002; Busch
et al., 2006). The data demonstrate that stimulus contrast strongly modulates
the visual evoked gamma-band oscillations. High contrast stimulation (50%) en-
hanced the gamma amplitude, whereas the GBR, elicited by low contrast stimuli
(5%), did not differ from noise level. In addition to the evoked GBR, we also
analyzed the phase-locking and total response in the same time interval to de-
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Figure 4.5: Time courses for the evoked GBR, phase-locking, and total GBR
(containing the phase-locked and non-phase-locked parts of the GBR) at electrode
O2 displayed for all contrast stimuli (50%, 20%, and 5%).

termine whether the contrast effect on evoked activity is caused by a stronger
phase-locking to stimulus onset or by an increase in gamma-band power. In the
present study, we observed a stronger phase-locking for high contrast stimuli with
no significant effect on the total GBR. This result is in accordance with previ-
ous studies (Busch et al. 2004, 2006) which found that changes in bottom-up
factors (e.g. stimulus properties such as size or contrast) mainly affected the
phase-locking of early evoked GBR, while top-down effects (e.g. attention) on
GBR derived from an increase in gamma-band power.
Our results are in agreement with recent studies in macaque monkeys that in-
vestigated the contrast effect in the gamma-band using local field potentials and
multiunit activity (Logothetis et al., 2001; Henrie and Shapley, 2005). Whereas
a human magnetoencephalograpic study reported a linear contrast dependency
for the late induced gamma-band amplitude (Hall et al., 2005), the present study
only observed effects for the early evoked GBR. This discrepancy might be related
to the differences in recording as well as analysis methods, but it is also possi-
ble that the discrepancy is attributable to differences in the experimental setup
(task, number of stimulus presentations). Whereas in the current experiment 100
stimuli per contrast condition were presented for 1000 ms with randomized ISIs
to obtain a good signal-to-noise ratio, Hall et al. (2005) presented 25 stimuli per
condition in an on-off mode at a frequency of 0.5 Hz where subjects were not re-
quired to respond to the stimuli. The employed task in our study required active
involvement by the participants, ensuring active processing of the grating stimuli.
Since gamma-band oscillations depend on active stimulus processing (Senkowski
and Herrmann, 2002; Marshall et al., 1996), this might be one explanation for
the differing findings of the two studies. The early GBR phase-locked to the
stimulus is regarded as being most sensitive to processing demands (Yordanova
et al., 1997). Moreover, we chose randomized ISIs to avoid task expectancy as a
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Figure 4.6: Grand averaged scalp topographies of the evoked gamma-band ac-
tivity at the peak latency (98 ms) are displayed for each contrast (5%, 20%, and
50%).

confounding parameter because it has been demonstrated that the state of antic-
ipation enhances the gamma-band power (Lee, 2003; Fitzgibbon et al., 2004).
In addition to the contrast dependency, human studies have reported that oscil-
latory activity in the gamma range is modulated by changes along a variety of
stimulus dimensions in the visual system. The size, eccentricity, luminance, and
spatial frequency of a stimulus verifiably affect the magnitude of gamma activity
(Busch et al., 2004; Rols et al., 2001; Tzelepi et al., 2000). To date it is still
unclear, however, why some research groups failed to find gamma-band activity
or gamma-band modulations (Menon et al., 1996; Juergens et al., 1999) and some
did not. These conflicting results in the literature may be due to experimental de-
signs in which variables like the aformentioned stimulus features are confounded
with the independent variable. Stimulus contrast as one visual parameter is re-
quired to integrate stimulus features to form a global percept and segregate such
a percept from its background or other elements. A large contrast appears as a
very salient cue for segregation and indicates object borders. Hence, future visual
studies that analyze early evoked GBRs should choose an appropriate stimulus
contrast and control it across different conditions.

4.4.3 Visual evoked potentials

The strongest effects of stimulus contrast for the P100, elicited by grating stim-
uli, were found at posterior electrodes. As described in the results section, the
first positive deflection showed the expected contrast dependency in amplitudes
and latencies. While the P100 amplitudes exhibited an increase, the latencies
decreased as a function of contrast. These findings are in accordance with both
animal (Tolhurst et al., 1981; Harnois et al., 1984) and human studies (Campbell
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and Kulikowski, 1972; Spekreijse et al., 1973; Wright and Johnston, 1982; Bobak
et al., 1987; Vassilev et al., 1994). However, most of these experiments applied
a pattern revearsal, an onset-offset presentation, or a moving stimulation. De-
spite different stimulation settings, contrast variations yield a similar modulation
of the visual evoked potentials, namely a monotonic increase of VEP amplitude
with an increase in grating contrast. In particular, at low contrast levels Tolhurst
et al. (1981) and Wright and Johnston (1982) postulated a linear amplitude in-
crease with contrast, whereas a logarithmic function seems to provide a better
explanation for the increased VEP amplitudes at higher contrasts. Regarding the
negative component in the later time window between 160-230 ms, no significant
contrast effect on amplitude and latency was observed. This result is in line with
recent studies that reported a stronger contrast dependency on the P100, while
the N200 is rather involved in, and modulated by, motion and form perception
(Müller and Göpfert, 1988; Bach and Ullrich, 1997; Göpfert et al., 1998).
The different scalp distributions of the P100 and the N200 after visual stimulation
indicated different underlying generators in the cortex (Herrmann and Knight,
2001). The P100 with an occipital topography is probably generated within the
ventral part of the occipitotemporal cortex (Heinze et al., 1994; Yamazaki et al.,
2000; Martínez et al., 2001; Di Russo et al., 2002). The subsequent negativity
(N200) revealed a more distributed topography compared to the P100. Previous
studies assumed that this negativity arises from activity in multiple brain areas
within the extrastriate occipital and parietal cortex (Gomez Gonzalez et al., 1994;
Di Russo et al., 2005).

4.4.4 Conclusion

The present study shows that visual contrast modulates the early evoked gamma-
band activity and that the increase in evoked activity is mainly caused by stronger
phase-locking. High contrast stimuli appear to be most suitable to elicit a strong
response in the human scalprecorded EEG. Therefore, cognitive studies employ-
ing visual stimulus material should carefully match low level attributes of their
stimulus material to avoid confounding GBR modulations.

34



5 Experiment II: Sound intensity

modulates auditory evoked

gamma-band activity in human

EEG

The experiment described in this chapter has been published in the Journal "In-
ternational Journal of Psychophysiology" (Schadow et al., 2007a).

5.1 Introduction

Synchronous neuronal firing in the range from 30-80 Hz appears to be involved
in binding different features of an object so that it is perceived as a single, co-
herent one (Eckhorn et al., 1988; Singer, 1993; von der Malsburg, 1995). This
phenomenon is well investigated for animals and humans in the visual modality
(Gray et al., 1989; Singer and Gray, 1995; Tallon-Baudry and Bertrand, 1999).
Furthermore, the indiviual stimulus features such as size, spatial frequency, and
contrast have a noticeable influence on the human gamma activity (Busch et al.,
2004; Tzelepi et al., 2000; Schadow et al., 2007b). The mentioned studies re-
ported a systematic variation of gamma-band amplitude with changing stimulus
features.
The auditory evoked GBR has been investigated with different methods in ani-
mals and humans (Başar et al., 1987; Pantev et al., 1991; Galambos, 1992; Başar-
Eroglu et al., 1996). A number of studies argue about whether the auditory
evoked gamma-band activity represents an independent brain response function-
ally distinct from the auditory middle latency response (MLR) and long latency
response (e.g. N1) (Başar et al., 1987; Bertrand and Pantev, 1994; Pantev, 1995;
Jacobson et al., 1998; Müller et al., 2001). Since several studies observed a simil-
iar amplitude increase with an increasing interstimulus interval for evoked GBRs
as shown for the MLR and long latency response (Makeig, 1990; Pantev et al.,
1993), Başar et al. (1987) reasoned that the 40 Hz response is a consistent part of
the auditory evoked potential. However, dipole localizations suggested that gen-
erators underlying the gamma-band field (GBF) are spatially distinct from those
underlying the MLR Pa component as well as the N100 (Pantev et al., 1993). In
this regard, the spatial separation of the GBF, MLR, and N100 provides evidence
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that they may arise from different processes in the auditory pathway (Pantev,
1995).
Animal studies with intracranial recordings have shown oscillations with a fre-
quency around 40 Hz, both in the primary and secondary auditory cortex that
occurred spontaneously and in response to sensory stimulation (Brett et al., 1996;
Franowicz and Barth, 1995; MacDonald and Barth, 1995; Brosch et al., 2002).
In humans, GBRs elicited by auditory stimulation were intensively studied in a
variety of perceptual and cognitive tasks (Karakaş and Başar, 1998; Crone et al.,
2001; Kaiser and Lutzenberger, 2005b; Karakaş et al., 2006). In different experi-
ments, gamma-band activity was functionally related to Gestalt perception and
attention as well as memory processing (Tiitinen et al., 1993; Yordanova et al.,
1997; Knief et al., 2000; Debener et al., 2003; Kaiser and Lutzenberger, 2005a).
However, the effects of auditory stimulus features on gamma-band activity such
as loudness, pitch, timbre, or the combination of multiple frequencies have not
yet been reported. Knowing and controlling such effects is nessecary even for
investigations of auditory cognition in order to yield optimal GBRs and not to
confound task (cognitive) effects with stimulus effects (see Busch et al. [2004] for
a similiar discussion in the visual modality).
Processing of different sound intensities has already been investigated for auditory
evoked potentials (AEPs). These studies consistently found a strong intensity de-
pendency of the early AEP (Rapin et al., 1966; Beagley and Knight, 1967; Polich
et al., 1996; Carrillo-de-la-Peña, 1999; Neukirch et al., 2002). All of them have
reported a shortening of N1 latency and a pronounced increase of the N1-P2
peak-to-peak amplitude as the intensity of pure sinusoidal tones was increased.
This loudness dependence phenomenon has also attracted much interest in psy-
chiatric research, since several studies examined the serotonergic modulation of
the cortical loudness dependency (Hegerl and Juckel, 1993; Hegerl et al., 2001;
Debener et al., 2002). While Hegerl and colleagues stated that low serotoner-
gic neurotransmission is associated with an enhancement in N1-P2 amplitude
with increasing stimulus intensity, recent studies have demonstrated contradic-
tory findings (Dierks et al., 1999; Debener et al., 2002; Massey et al., 2004).
These studies manipulated the cerebral levels of serotonin by using tryptophan
depletion and did not find significant effects of tryptophan depletion on intensity
dependence of AEPs. Thus, it remains questionable whether the loudness depen-
dency of AEPs is a specific biological marker of serotonergic activity.
The present study compared gamma-band activity in response to different sound
intensity levels of a pure sinusoidal tone. This study represents a counterpart to
the visual experiment analyzing the effects of stimulus contrast (Schadow et al.,
2007b). We analyzed the GBRs in an early and late time interval. In the early
time window, evoked and total GBR as well as the strength of phase-locking were
calculated. Presenting the phase-locking values and the total GBR completes the
description of the evoked GBR and might give an important explanation for am-
plitude differences in the early GBRs (Busch et al., 2006). These three measures
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might resolve the question of whether stronger evoked GBRs arise from stronger
phase-locking of ongoing oscillatory activity or from signal increases. Based on
the theoretical considerations, we expected to find enhanced GBRs with increas-
ing intensity of the auditory stimulus. In addition, we aimed to replicate the
aforementioned results for auditory evoked potentials.

5.2 Method

5.2.1 Participants

Twenty-one paid subjects (13 females, 8 males, mean age 26,2 ± 5 years) partic-
ipated in the study. They had no history of hearing impairments and showed no
signs of psychiatric or neurological disorders. All subjects received a written task
instruction and gave informed consent to participate. Two subjects were excluded
from the entire data analysis due to numerous eye artifacts. The ethical prin-
ciples of the Declaration of Helsinki (1964) concerning human experimentation
were followed.

5.2.2 Stimuli and Task

Two pure sinusoidal tones (2000 Hz, 4000 Hz) were generated using Adobe Au-
dition V1.0 (Adobe Systems Inc., 2004) and delivered binaurally through insert
earphones (EARTone 3A). The duration of each stimulus was 500 ms (10 ms rise
and fall time) with a randomized interstimulus interval (ISI) between 1200-2000
ms. For each participant and each sine tone, the individual hearing threshold for
the left and the right ear was determined in intensity steps of 1 dB. Based on the
individual sensation level (SL), three intensities (30, 45, 60 dB) were selected for
the high and the low frequency tone. A calibrated attenuator was used to control
the sound levels (Tucker-Davis Technologies, model PA5). This attenuator has
two channels - one for each ear. The attenuator is set before the presentation of
every sinusoidal tone. Thus, we can adjust for each ear and each tone individu-
ally.
The present experiment was constructed as a forced-choice discrimination task.
The frequent stimulus (p=0.8) was a 2000 Hz tone, whereas a 4000 Hz tone served
as the infrequent stimulus. The experimental session consisted of 300 frequent
stimuli (100 for each intensity) and 75 infrequent stimuli (25 for each intensity)
which were presented in a pseudorandomized order. Only the frequent stimuli
were included in the present analysis.
Since it has been demonstrated that stimulus-related motor activation modu-
lates the GBR (De Pascalis and Ray, 1998; Yordanova et al., 2001, 2002), all
stimuli required a motor response to avoid confounding effects. Participants were
instructed to press a button with their right index finger in response to the infre-
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quent stimuli and another button with their left index finger in response to the
frequent stimuli. During the entire experimental session, subjects were instructed
to fixate a cross in the center of the screen to avoid eye movement artifacts. Two
breaks were included. The length of each break was individually determined by
the participant.

5.2.3 Data acquisition

EEG was recorded with a BrainAmp amplifier (Brain Products, Munich), using
32 sintered Ag/AgCl electrodes mounted in an elastic cap (Easycap, Falk Minow
Services, Munich). The electrodes were placed according to the 10-10 system,
with a nose-tip reference and ground electrode between Fz and Cz. Eye move-
ment activity was monitored with an electrode placed suborbitally to the right
eye. Electrode impedances were kept below 5 kΩ. Data were acquired with a
band-pass filter of 0.016-250 Hz and a sampling rate of 500 Hz with an amplitude
resolution of 16 bit, i.e. 0.1 µV resolution and ± 3.28 mV dynamic range. Stim-
ulus markers and EEG were stored on hard disk for further analysis. The EEG
was recorded while participants sat in an electrically shielded, sound-attenuated
cabin. The monitor was placed outside behind an electrically shielded window.
All devices inside the cabin were operated on batteries to avoid interference of
the line frequency (50 Hz in Germany). Digitized EEG data were transferred to
a computer outside the cabin using a fiber-optic cable. Averaging epochs lasted
from 200 ms before to 1000 ms after stimulus onset for AEPs and evoked GBRs.
Baselines were calculated in the interval from -200 ms to -100 ms and subtracted
before averaging. An automatic artifact rejection was computed which excluded
trials from averaging if the standard deviation within a moving 200 ms time
interval exceeded 40 µV. Afterwards, all epochs were also visually inspected for
artifacts and rejected when eye movements, electrode drifts, or electromyographic
activity occured. Whereas data analysis was performed on unfiltered data, AEPs
are displayed low-pass filtered at 20 Hz.

5.2.4 Data analysis

Behavioral Data

Responses were scored as correct if the correct button was pressed within a time
window lasting from 200 to 2500 ms after the stimulus onset. False trials were
rejected from the behavioral data analysis, as well as trials in which the response
time (RT) exceeded two standard deviations from the mean.

Auditory evoked potentials

The statistical analysis of AEPs was performed after channels which exhibited the
strongest activity were pooled into a fronto-central region of interest (ROI) (F3,
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Fz, F4, Fc5, Fc6, Fc1, Fc2, C3, C4, Cz, Cp1, Cp2 - see the N100 scalp topographies
in Fig. 5.1). Two AEP components were defined as peak amplitudes in the time
interval from 60 ms to 160 ms (N100) and 290 ms to 400 ms (P340)1. Similiar
to previous studies, the analysis of the loudness dependence phenomenon was
based on the peak-to-peak amplitude of the N100-P340 complex. This peak-
to-peak amplitude as well as N100 amplitude and latency were analyzed using
a repeated measures ANOVA with the factor INTENSITY (3 intensity levels).
F- and p-values were reported as well as effect sizes of selected comparisons
(partial eta-squared - η2

p)
2. In order to ensure that all values that entered into the

ANOVA were normally distributed, the Kolmogorov-Smirnoff test was applied.
The analysis for each variable revealed p-values that were >.20. The Greenhouse-
Geisser correction, an adjustment used in univariate repeated measures when the
sphericity assumption is violated, was applied for all ANOVA models. Post hoc
t-tests of specific comparisons of significant ANOVA effects were calculated. All
post hoc tests were Bonferroni corrected for multiple comparisons.

Early and late gamma-band responses

For the analysis of the gamma-band activity, a wavelet transform with a width
of 12 cycles based on Morlet wavelets was applied (Herrmann et al., 1999). To
analyze the evoked GBR phase-locked to the stimulus, the wavelet transform was
applied to the averaged event-related potentials. However, for the non-phase-
locked portion of the GBR, each trial was first transformed in the frequency
domain and then the resulting wavelet transforms were averaged. This measure
represents the total activity comprising the phase-locked and non-phase-locked
part of the GBR. Additionally, the amount of phase-locking across trials was
computed. The absolute value yields a number between 0 and 1 determining
the degree of phase-locking, where 1 indicates perfect phase alignment across
trials and values close to 0 reflect a high phase variability. From the obtained
time-frequency representations, the average from the baseline between 200-100
ms before stimulus onset was subtracted.
Since previous studies have shown that the frequency of oscillatory brain activ-
ity varies notably between subjects, the frequency used for the wavelet analysis
was individually adapted by the time-frequency representation of the signal at
Cz (Busch et al., 2004; Klimesch, 1999). The individual gamma frequency was
defined as the highest peak in response to the 60 dB tone in a time interval
between 20 and 90 ms (early GBR) as well as 200 and 600 ms (late GBR) af-

1Note, that this ERP component ist referred to as P2 in many sensory experiments. The
latency of the P2 component could extend to frequently presented stimuli, if the task requires
a motor response to infrequent (target) stimuli (Starr et al., 1997). Thus, we designated
this component P340 to account for the later latency.

2The η
2

p
is the proportion of the effect and the error variance that is attributable to the effect

(Pierce et al., 2004).
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ter stimulus onset in the gamma frequency range. However, the time-frequency
planes did not reveal any late gamma-band activity in the selected time inter-
val that exceeded the noise level. Therefore, further statistical analyses and the
description of the results were only related to the early gamma-band activity.
If no clear GBR peak was visible, a frequency of 40 Hz was chosen for analysis
(as done previously, e.g. Herrmann et al., 2004b). This had to be done for two
subjects in the early time interval. The peak frequencies of the individually iden-
tified evoked GBRs ranged from 26 Hz to 65 Hz (mean 42.6 Hz, SD=11.7 Hz).
For the statistical analysis, early GBRs were defined as the peak amplitude of
evoked gamma activity, the phase-locking and total gamma activity in the time
interval between 20 and 90 ms, which turned out to be the peak interval in the
time-frequency planes. Thereby, channels were pooled into a ROI comprising
the following seven central electrodes which exhibited the strongest GBRs: FC1,
FC2, C3, C4, Cz, Cp1, Cp2 (see the scalp topographies in Fig. 2). We performed
a repeated measures ANOVA using the factor INTENSITY (3 intensity levels).
The Kolmogorov-Smirnoff test applied to each variable revealed p-values that
were >.20. Post hoc t-tests of specific comparisons of significant ANOVA effects
were additionally calculated (60 dB vs. 45 dB, 60 dB vs. 30 dB, and 45 dB vs.
30 dB). For all ANOVA models the Greenhouse-Geisser correction was applied
and post-hoc t-tests were Bonferroni corrected.

5.3 Results

5.3.1 Behavioral data

Participants easily performed the task with high accuracy (2.4% errors). The
error rates were not influenced by sound intensity (F [2, 36] = 1.702, p = 0.205).
The responses to the 45 dB tone (meanRT=421 ms) were somewhat faster than
to the 60 dB (meanRT=439 ms) and 30 dB (meanRT=432 ms) tone, however,
this difference was not signifcant (F [2, 36] = 2.858, p = 0.097).

5.3.2 Auditory evoked potentials

The AEPs of all conditions were characterized by a first negative peak at a
latency at 100 ms (N100) followed by a positive peak at approximately 340
ms latency (P340, Fig. 5.1). For all conditions the strongest N100 responses
were observed at fronto-central sites, while the P340 responses were strongest at
posterior-central electrodes (see the scalp topographies for the N100 and P340
in Fig. 5.1). Peak-to-peak amplitudes of the N100-P340 were larger for higher
stimulus intensities (F [2, 36] = 6.441, p < 0.05, η2

p = 0.264). Post hoc com-
parisons revealed a significant effect for the 60 dB vs. 30 dB tone condition
(t[18] = −3.004, p < 0.05). Post hoc tests between 60 dB vs. 45 dB and 45
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Figure 5.1: Left column: Scalp distributions of the N100 at its peak latency
(108 ms). Middle column: Auditory evoked potentials at electrode Cz for 60 dB
SL (red), 45 dB SL (blue), and 30 dB SL (black) sine tones. Right column: Scalp
distributions of the P340 at the peak latency (342 ms).

dB vs. 30 dB revealed no significant differences, although the data showed
a statistical trend for larger amplitudes at higher sound intensities. In con-
trast, no significant effect of stimulus intensity was found for N100 amplitudes
(F [2, 36] = 0.122, p = 0.858, η2

p = 0.007). Instead, N100 latencies were shorter
for higher sound intensities (F [2, 36] = 4.574, p < 0.05). Post hoc tests yielded
only a significant effect between 60 dB vs. 30 dB (t[18] = 3.265, p < 0.05), but
not for the remaining comparisons (60 dB vs. 45 dB and 45 dB vs. 30).

5.3.3 Early gamma-band responses

The wavelet analysis revealed an increase in evoked gamma-band activity for
higher sound intensities. This is illustrated in Figure 5.2 by the baseline-corrected
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Figure 5.2: Left column: Time-frequency plots at electrode Cz for 60 dB SL
(red), 45 dB SL (blue), and 30 dB SL (black) sine tones. Middle column: Time
courses of the individually adapted wavelet transforms at electrode Cz. Right
column: Scalp distributions of the gamma peak at 61 ms for all conditions.

time-frequency plots and the time courses of the individually adapted wavelet
transforms for all intensity conditions. The ANOVA of the peak amplitudes
yielded a main effect of INTENSITY (F [2, 36] = 9.276, p = 0.001, η2

p = 0.339;
Fig. 5.2) with larger amplitudes for stimuli with the highest sound intensity.
Post hoc comparisons revealed significant differences between the 60 dB vs. 30
dB (t[18] = −4.092, p = 0.003) and the 60 dB vs. 45 dB (t[18] = −3.039, p <
0.05) condition, but not between the middle and the lowest intensity (t[18] =
−1, 031, p = 0.948). The electrode Cz and adjacent leads show the largest ampli-
tudes compared to frontal and occipital areas. This is explicitly apparent for the
middle and the highest intensity (see scalp distributions in Fig. 5.2). The anal-
ysis of the GBR peak latency revealed no significant main effect of INTENSITY
(F [2, 36] = 0.812, p = 0.446).
Figure 5.3 displays the time-course of evoked GBR, phase-locking, and total GBR
(containing the phase-locked and non-phase-locked parts of the GBR) in compar-
ison. For the evoked GBR, the amount of phase-locking was significantly larger
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for sine tones with higher sound intensities (F [2, 36] = 5.997, p = 0.009), whereas
the analysis of the total GBR, an index of signal power, revealed no INTENSITY
effect (F [2, 36] = 0.694, p = 0.506). Thus, the increase in evoked GBR is most
likely based on stronger phase-locking. Interestingly, in the grand average across
all subjects the frequency of the evoked GBR was higher for the 60 dB tone (47
Hz) than for the 45 dB (35 Hz) and 30 dB tone (30 Hz). However, the ANOVA
did not turn out to be statistically significant (F [2, 20] = 2.237, p = 0.140).

Evoked GBR Total GBRPhase-locking

SS S

mVmV

60 dB 45 dB 30 dBLegend:

Figure 5.3: Time courses for the evoked GBR, phase-locking, and total GBR at
electrode Cz. All displayed time courses were baseline corrected.

5.3.4 Comparison of AEPs and evoked GBRs

The effects of sound intensity level were compared for the N100, N100-P340
complex and GBRs. To this end, the amplitude value of the lowest sound intensity
was set to 100%. Subsequently, the increase in response to the intermediate and
the loudest stimulus relative to 30 dB tone was calculated (see Fig. 5.4). It
stands out that the amplitudes of GBRs as well as all AEP components exhibit an
enhancement with intensity of the sine tones. Nevertheless, a difference between
auditory evoked potentials and gamma oscillations is apparent, indicating an
enhanced intensity effect for the evoked gamma-band activity particularly with
regard to the 60 dB SL tone. This is also reflected in the larger effect size of the
evoked GBR (η2

p = 0.339) compared to the AEPs (N100-P340: η2

p = 0.264, N100:
η2

p = 0.007).

5.4 Discussion

The purpose of the present study was to investigate the influence of sound inten-
sity on gamma-band activity and to replicate existing reports of such effects on
auditory evoked potentials.
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Figure 5.4: Increase of amplitude for AEP components (N100-P340 and N100)
and auditory evoked GBRs with increasing sound intensity.

5.4.1 Auditory evoked potentials

We found the strongest response pattern for auditory stimuli at fronto-central
electrodes, which is in line with previous studies of auditory evoked potentials
(Woods, 1995). Dipole source analyses of the N1-P2 complex have explained this
topography by two dipoles per hemisphere: a tangential dipole located in the
superior temporal plane including the primary auditory cortex and a somewhat
later activity of a radial dipole situated near the lateral temporal cortex (sec-
ondary auditory areas, Pantev et al., 1991; Hegerl et al., 1994; Scherg and von
Cramon, 1985, 1986).
The AEP results of our study agree in most instances with those of Rapin et al.
(1966), Beagley and Knight (1967) and Carrillo-de-la-Peña (1999). Similar to
those studies, we found the expected enhancement of amplitude as a function of
sound intensity. The results demonstrate a stronger intensity dependency of the
peak-to-peak amplitude of N100-P340 compared to the N100. Contrary to our
expectations and to previously mentioned studies, the enhancement of N100 am-
plitude did not reach statistical significance. One explanation, which Näätänen
and Picton (1987) discussed in a review about the N100 wave, might be that the
change in amplitude with increasing intensities varies greatly among subjects.
This was also the case in our study. In some subjects, we observed an increas-
ing N100 amplitude with enhanced sound intensity, whereas others showed no
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clear differences or the inverse effect in N100 amplitude, especially for the 45
and 30 dB sine tone. Therefore, some studies classified the subjects into "aug-
menters" and "reducers" and attempted to associate these groups with aspects
of personality and psychopathology (Buchsbaum, 1976). Nevertheless, the aug-
menting/reducing approach and its functional relevance is still under debate (for
more details refer to the critical review of Carrillo-de-la-Peña, 1992).
Moreover, our study confirmed the N100 latency dependence on stimulus inten-
sity (Rapin et al., 1966; Beagley and Knight, 1967). Our data showed longer
N100 latencies at low intensity levels. However, post hoc comparisons revealed
only a significant effect between 60 dB vs. 30 dB, but not between the other
sound intensities. One explanation for this result might be the frequency of the
sine tone. Rapin et al. (1966) only observed a prolongation of N100 latency for
low frequencies (250 Hz) but not for higher frequencies (1000, 6000 Hz). For the
1000 Hz tone the latency effect was extremly reduced and for the 6000 Hz tone
there was no significant latency modulation by intensity. In our experiment, we
chose a frequency of 2000 Hz for the frequent sine wave tone. This frequency
lies exactly between the low and high frequency tones mentioned by Rapin et al.
(1966). Hence, their finding might elucidate why we did not find such an obvious
latency effect between the two highest sound intensities.

5.4.2 Evoked gamma-band responses

The present study demonstrates that auditory gamma activity in scalp-recorded
human EEG can be detected using sine tones of a specific sound intensity and
is additionally influenced by the stimulus intensity. It has been demonstrated
that the processing demands of a task modulates the gamma-band activity (Yor-
danova et al., 1997; Senkowski and Herrmann, 2002; Simos et al., 2002). Thus,
the fact that our participants had to perform a discrimination task might have
contributed to our results. However, we assume that the intensity dependence
also occurs in a fully passive listening condition. The evoked gamma-band ac-
tivity following the highest intensity (60 dB SL) had a mean latency of 60 ms
after stimulus onset with strongest responses at central electrodes. Given that
auditory evoked potentials of this latency range stem from the auditory cortex
and that generators in the auditory cortex result in maximum amplitudes over
electrode Cz, it seems plausible to assume that the auditory evoked GBR is gen-
erated in or near the auditory cortex. This is in line with a previous study by
Pantev et al. (1993), who reported that the generators of auditory gamma-band
activity are located in the supratemporal auditory cortex which explained the
strongest activity at central leads.
In contrast to the highest sound intensity (60 dB), lower ones (30 and 45 dB
SL) evoked only very low GBRs. Three possible mechanisms could account for
this result. Either more neurons might respond to the louder sound (i), or the
same number of neurons with higher interneuron synchronization (ii), or the same
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number of neurons with higher synchronicity to stimulus onset (intertrial synchro-
nization - iii). Both (i) and (ii) would result in an increase of total gamma-band
activity which we did not observe. Only the last possibility (iii) is in accordance
with the observed data. We found a higher phase-locking to stimulus onset for the
high intensity stimulus. Thus, we assume, that the condition difference of sound
intensity in the evoked time-domain signal results from increased phase-locking.
This interpretation is in line with previous findings in the visual domain (Busch
et al., 2006). In their study, bottom-up factors modulated only the phase-locking,
whereas top-down factors modulated the power of the early evoked GBR. The
intensity variation of our study represents such a bottom-up modulation. There-
fore, it was to be expected to find the observed increase in phase-locking for
higher sound intensities.
Phase-locking represents a measure across trials and cannot be seen in a single
trial. This raises the question of which neural mechnism could modulate such an
intertrial synchronization. Loud stimuli have been demonstrated to result in an
earlier latency of the first spike that can be recorded in response to a stimulus
(Heil, 2004). This so-called first-spike-latency is believed to be an important code
for the brain. At the same time that first-spike-latency is reduced in response to
loud stimuli, the standard deviation of latencies across trials decreases (Heil and
Irvine, 1997). This is illustrated in Fig. 5.5 and offers a potential explanation for
the increased phase-locking observed for loud stimuli: The standard deviation of
the first-spike-latency represents the variability across trials, i.e. it represents a
similar measure to our phase-locking. The more narrow the standard deviation
becomes, the higher the synchronization of the first spike to stimulus onset must
be. Other recordings have also revealed an increased phase-locking in response to
loud stimuli, however for the first recordable spike. Therefore, it seems plausible
to also expect such an effect for further measures such as evoked gamma activity.
Even though we do not want to argue that the first spike in the auditory cortex
would evoke a GBR that can be recorded at the scalp, it seems probable that
subsequent stages of processing also reveal more narrow latency distributions in
response to increased sound intensity if the first spike does. Thus, we believe
that our enhanced phase-locking in response to loud stimuli is a result of shorter
first-spike-latency, even though the latter cannot be recorded at the scalp.
While we think that our increase in evoked gamma-band activity in response

to high intensity stimuli is due to enhanced phase-locking to the stimuli, other
studies investigating sound level dependent processing found different phenom-
ena. On the one hand, a larger number of neurons fire at higher sound intensities
due to their tuning curves, which are narrow for low but wide for high intensities
(Pickles, 1988). On the other hand, fMRI studies exhibited a systematic increase
in the extent of activated voxels and BOLD signal intensity with enhanced sound
intensity (Brechmann et al., 2002; Hart et al., 2003; Mulert et al., 2005), implying
a larger number of neurons being active in response to higher intensity.
One type of neurons in the auditory cortex reveals a monotonic increase in their
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Figure 5.5: First-spike-latency of auditory neurons. In response to low-intensity
sounds (dotted line), first-spike-latency is longer than in response to high-
intensity sounds (solid line). At the same time, the standard deviation of latencies
decreases. This potentially explains why we observed an increased phase-locking
for high-intensity sounds.

firing rate in response to higher sound intensities and is therefore called monotonic
neuron (Pfingst and O’Connor, 1981). Thus, one might expect the frequency of
the GBR to increase at higher sound intensities. While this effect did not reach
significance in our data, there was a tendency in this direction: 30 Hz, 35 Hz,
and 47 Hz for 30 dB, 45 dB, and 60 dB, respectively.
Furthermore, the present study provides new contributions to the frequently dis-
cussed question of why some research groups failed to find any gamma-band
activity (Menon et al., 1996; Juergens et al., 1999). A key factor that seems to
be most important in eliciting a strong response in the auditory gamma-band
is the sound intensity of stimuli. These results are supported by studies that
investigated additional parameters affecting the auditory evoked GBR. First, the
GBR decreases as a function of shortening the ISI (Pantev et al., 1993; Pantev,
1995). Auditory evoked GBR is best elicited with long ISIs around two seconds.
Second, tone-burst stimuli evoked a GBR in as few as 33 percent of normal sub-
jects, while noise-burst stimuli elicited a GBR in as many as 80 percent of normal
subjects (Jacobson et al., 1998). Furthermore, Crone et al. (2001) investigated
changes in the gamma-band during auditory tone and phoneme discrimination by
electrocorticographic recordings. Those data showed a greater augmentation in
gamma power during phoneme discrimination than during tone discrimination.
Apparently, stimuli such as noise and speech contain more frequencies and tem-
poral changes which have to be processed and therefore require a higher demand
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of integration of neuronal assemblies than processing pure tones.
According to the abovementioned findings, gamma oscillations seem to be very
sensitive to experimental conditions. Hence, sound stimuli with a greater spectral
and temporal complexity presented with a sound intensity of 60 dB SL or higher
and an ISI around two seconds are most suitable to evoke a measureable GBR at
the scalp. The present study cannot provide evidence about how the GBR am-
plitude is associated with intensity levels higher than 60 dB SL. Future research
should consider more than three intensity levels across a wider range, which would
yield more reliable results (Beauducel et al., 2000). Our results concerning sound
intensity effects could be particularly important for auditory paradigms investi-
gating top-down influences on gamma-band activity. Thus, potential confounds
with bottom-up factors such as sound intensity are avoidable. Interesting in this
context would be a study combining both bottom-up and top-down aspects to
resolve the question under which circumstances top-down influences can be opti-
mally observed in auditory GBRs. Such a study for the visual system was already
conducted by Busch et al. (2006), who examined both stimulus size and atten-
tion in one task. The results indicated that attention effects on visual GBRs only
occur if the stimulus covers a sufficiently large area.

5.4.3 Comparison of AEPs and evoked GBRs

When comparing the effects of stimulus intensity on GBRs and auditory evoked
potentials, it is apparent that GBRs are modulated considerably stronger and ear-
lier than AEPs. A similar pattern has been demonstrated in the visual domain
(Busch et al., 2004), where visually evoked GBRs are modulated stronger and
earlier by stimulus size and eccentricity than visual evoked potentials. This dif-
ference between GBRs and AEPs supports the notion, also proposed by Bertrand
and Tallon-Baudry (2000), that both reflect independent neuronal and possibly
functional mechanisms.

5.4.4 Conclusion

The present study revealed that the auditory evoked GBR is modulated by sound
intensity and much more so than AEPs. It has been argued that gamma activity
is essential for human cognition involved in binding, perception, and memory pro-
cesses (Singer and Gray, 1995; Engel et al., 2001; Keil et al., 1999; Tallon-Baudry
and Bertrand, 1999).
These findings may help to design future auditory experiments dealing with
gamma oscillations as a central issue. Future experiments should clarify whether
other auditory stimulus features affect 40 Hz oscillations. In addition, most natu-
ral sounds are not, however, well approximated by sinusoidal tones of a particular
frequency as used in our study. Thus, it is of considerable interest to investigate
spectrally more complex environmental sounds and their evoked responses.
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gamma-band responses reflect

anticipatory top-down

modulation in the auditory

cortex

The experiment described in this chapter has been published in the Journal "Neu-
roimage" (Schadow et al., 2009).

6.1 Introduction

We live in an extremely complex acoustic environment and are surrounded by
simultaneously occurring sounds such as music, speech, and noises from multiple
sources. Therefore, it requires a perceptual organization of this extensive mixture
of sounds. The auditory system has to segregate and integrate different sounds
into meaningful auditory units or objects, which is also known as auditory scene
analysis (Bregman, 1994). Bregman (1994) distinguished the perceptual organi-
zation along a horizontal (time) and a vertical axis (frequency). The horizontal
axis comprises the sequential grouping of sounds over time (e.g. melody), whereas
the processing along the vertical axis involves the integration of simultaneous
sounds (e.g. forming chords). These grouping processes are governed by both
primitive automatic (bottom-up) and learned (top-down) constraints.
Recently, it was suggested that oscillatory activity in the gamma-range (30 -
80 Hz) is related to bottom-up and top-down factors as well as to the integra-
tion of both (Herrmann et al., 2004c). Thus, GBRs might provide additional
insights regarding the basic sensory analysis of auditory information as well as
the influence of this analysis by top-down processes. Generally, GBRs are di-
vided in an early evoked and a late induced portion. While evoked activity is
defined to be time- and phase-locked to an event, induced GBR is time-locked,
but shows a high phase variability across trials (Galambos, 1992; Pantev, 1995).
Phase-locked oscillatory activity has been reported to be modulated by physical
stimulus properties during a very early time interval in the visual (at ∼90 ms;
Tzelepi et al., 2000; Bodis-Wollner et al., 2001; Busch et al., 2004; Fründ et al.,
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2007a; Schadow et al., 2007b) and auditory modality (at ∼50 ms; Schadow et al.,
2007a; Lenz et al., 2008). The later non-phase-locked GBR between 200 and 400
ms after stimulus onset is mainly associated with a more elaborated processing
and is therefore linked to cognitive mechanisms such as attention (Gruber et al.,
1999; Tallon-Baudry et al., 2004) and memory (Lutzenberger et al., 2002; Lenz
et al., 2007; Busch et al., 2008). However, it has been shown that such top-down
modulations can already occur much earlier and can be represented in the evoked
gamma-band activity, too. Several visual and auditory experiments have shown
an increase in the early evoked activity for target stimuli that capture a higher
amount of attention than non-target stimuli (Tiitinen et al., 1993; Herrmann
et al., 1999; Debener et al., 2003; Busch et al., 2006). Similarly, the match of a
presented stimulus with a memorized template resulted in an enhanced evoked
GBR compared to new stimuli (Herrmann et al., 2004d; Busch et al., 2008),
which demonstrates a top-down modulation at the earliest stages of information
processing. In addition to attention and memory resulting in a faster and more
efficient analysis of the upcoming stimulus, most events in everyday life occur
predictably for us. Thus, we often anticipate events and are therefore able to
prepare a faster and more accurate behavior. Widmann et al. (2007) reported
that visual symbolic information affect early auditory sensory processing at 42 ms
after tone onset. The authors observed an increase of phase-locked evoked GBR
in response to sounds that matched with a corresponding visual symbol and dis-
cussed the finding in relation with matching of incoming information against an
expectation.
The present study aimed to investigate, whether anticipatory processes also result
in such early modulation of the GBR. Therefore, we presented regularly ascend-
ing and descending tone sequences with six sinusoidal tones. These sequences
reflected a good continuation of pitch, which also resulted in the buildup of an
expectation for the upcoming stimulus by the listener during the presentation.
However, some of the tone sequences contained a violation of the good continua-
tion at the third or fifth tone position. Thus, the sequences violated the listener’s
expectation at different levels of expectation buildup. Gamma-band activity in
response to regularly presented and deviant tones at the third and fifth position
of each sequence was compared. If GBRs reflect matching with expectation, re-
sponses to regular tones within ascending/descending sequences should be larger
than to deviating tones. We assume that regularly occurring tones might be
processed by a pretuned population of neurons which is not the case for deviant
tones.
Previous research has already revealed electrophysiological correlates of such
mechanisms, e.g. the mismatch negativity (MMN), a component of the event-
related potential (ERP) after about 150-250 ms (Näätänen, 1992; Näätänen et al.,
2007), which is linked to processing of tone sequences and reflects a violation from
the preceding stimulus or regularities in complex auditory information (Yabe
et al., 2001; Kanoh et al., 2004; van Zuijen et al., 2004; Sussman and Gumenyuk,
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2005; Kujala et al., 2007). The MMN operates basically at the sensory memory
level and is an automatic process, irrespective of cognitive factors (e.g. attention,
prior knowledge; Schröger, 1997; Näätänen and Winkler, 1999; Schröger et al.,
2007). Hence, no behavioral task is needed to elicit a MMN. However, when
stimuli are attended for example by a task, then the MMN is partially over-
lapped by the N2b. The N2b is linked to the expectation of regularly appearing
stimuli and indexes deviance detection only if a deviant stimulus is attentively
recognized (Näätänen et al., 1982; Novak et al., 1992; Eimer et al., 1996; Rüsseler
and Rösler, 2000; Carrión and Bly, 2007). Therefore, we also expected a larger
negative ERP response to deviant tones compared to regularly occurring tones
within the sequence.

6.2 Materials and methods

6.2.1 Participants

Seventeen healthy volunteers (9 females, 8 males, mean age 25 ± 3.8 years) par-
ticipated in the current study. They had no history of hearing impairments and
showed no signs of psychiatric or neurological disorders. All participants received
a written task instruction and gave informed written consent to participate. They
received money or course credits for their participation. The experiment was con-
ducted in accordance with the Declaration of Helsinki.

6.2.2 Stimuli and Task

Ten different sinusoidal tones with a duration of 500 ms (10 ms rise and fall
times) and a frequency, ranging from 700 to 1177 Hz in semitone steps on the
musical scale, were generated using Adobe Audition V1.0 (Adobe Systems Inc.,
2004). Five ascending and five descending stimulus sequences, each comprising six
tones, were composed. Some of these ascending or descending tone sequences were
further modified either at the third or fifth position in their frequency to trigger a
violation of the good continuation of the sequence. This sine wave tone deviated
from the regularly presented tone about three semitone steps, either below for
ascending or above for descending sequences (see Fig. 6.1). Consequently, we
obtained three different categories of tone sequences:

A. tone sequences with a good continuation (= regular)

B. tone sequences with a violation at the 3rd position (= irregular)

C. tone sequences with a violation at the 5th position (= irregular)

All stimulus sequences were pseudo-randomly presented with a constant inter-
tone interval of 1200 ms. The randomized interval between two adjacent tone
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Figure 6.1: Schematic illustration of the paradigm. Black squares indicate tones
that regularly fit in the ascending or descending sequence. In contrast, gray
squares illustrate a violation either at the 3rd or 5th position of the sequence.

sequences was set between 1600 and 2000 ms. Sequences were repeated such that
each of the three categories comprised the same number of trials (100 trials).
Auditory stimuli were applied to both ears by insert earphones (EARTone 3A).
Before the experiment started, the individual hearing thresholds for the left and
the right ear were determined by a staircase procedure in intensity steps of 2
dB for each participant and each sine tone. Based on the individual sensation
level (SL), an intensity of 75 dB above the threshold was set for each tone. A
calibrated attenuator was used to control the sound levels (Tucker-Davis Tech-
nologies, model PA5).
The present experiment was constructed as a discrimination task. Participants
were asked to decide, whether the presented tone sequence is predominantly as-
cending or descending irrespective of a violation. Since it has been demonstrated
that stimulus-related motor activation modulates the GBR (De Pascalis and Ray,
1998; Yordanova et al., 2001, 2002), all trials required a motor response to avoid
confounding effects. Participants were instructed to press a button with the right
index finger in response to descending sequences and another button with the left
index finger in response to ascending sequences. Participants were asked to re-
spond at the end of each sequence, which was signaled by a color change of the
fixation cross from white to red. During the entire experimental session, partic-
ipants were instructed to fixate the cross in the center of the screen to reduce
eye-movement artifacts.

6.2.3 Data acquisition

EEG was recorded with a BrainAmp amplifier (Brain Products, Munich; Ger-
many), using 31 sintered Ag/AgCl electrodes mounted in an elastic cap (Easycap,
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Falk Minow Services, Munich, Germany). The electrodes were placed according
to the 10-10 system, with a nose-tip reference and ground electrode between Fz
and Cz. Eye-movement activity was monitored with an electrode placed sub-
orbitally to the right eye. Electrode impedances were kept below 10 kΩ. Data
were acquired with a band-pass filter of 0.016-250 Hz and a sampling rate of 1000
Hz. Stimulus markers and EEG were stored on hard disk for further analysis.
The EEG was recorded while participants sat in an electrically shielded, sound-
attenuated cabin (IAC, Niederkrüchten, Germany). The monitor was placed
outside behind an electrically shielded window. All devices inside the cabin were
operated on batteries to avoid interference from the line frequency (50 Hz in Ger-
many). Digitized EEG data were transferred to a computer outside the cabin
using a fiber-optic cable. Averaging epochs lasted from 200 ms before to 800 ms
after tone onset for event-related potentials and GBRs. Baselines were calculated
in the interval from -200 ms to -100 ms and subtracted before averaging. An au-
tomatic artifact rejection was computed which excluded trials from averaging if
the standard deviation within a moving 200 ms time interval exceeded 40 µV.
All epochs were also visually inspected for artifacts and rejected in case of eye-
movements, electrode drifts, or electromyographic activity. While data analysis
was performed on unfiltered data, event-related potentials are displayed low-pass
filtered at 20 Hz.

6.2.4 Data analysis

Behavioral data

Only trials with responses given between 150 and 2000 ms after the presentation
of the red fixation cross were included in the analysis. False trials were excluded
from the analysis of reaction times, as well as trials in which the reaction time
(RT) exceeded two standard deviations from the mean. On average a number of
30 trials were excluded.

Event-related potentials

In order to test differences in the neural responses to regular and irregular oc-
curring tones, we analyzed amplitudes of the early negativity in the time interval
from 150 ms to 350 ms. The statistical analysis of this early negativity was per-
formed after channels that exhibited the strongest activity in the critical time
window were pooled into a posterior region of interest (ROI): CP1, CP2, P3, Pz,
P4, O1, O2. The statistical analysis was conducted on the peak amplitude in
this time interval and ERPs at the third and fifth position in response to regular
and irreguar tone sequences were compared. Amplitudes were analyzed using a
repeated measures ANOVA with the factors REGULARITY (regular vs. irregu-
lar) and TONE POSITION (3rd vs. 5th). The Greenhouse-Geisser correction, an
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adjustment used in univariate repeated measures when the sphericity assumption
is violated, was applied where appropriate.

Evoked and total gamma-band responses

For the analysis of gamma-band activity, a wavelet transform was computed by
convolving the raw EEG signal with a complex modulated Gaussian (Herrmann
et al., 2004a). At 40 Hz, the wavelet had a time resolution of 2σt = 50 ms and a
frequency resolution of 2σf = 13 Hz. The exact time frequency resolution of the
wavelet depended on the analyzed frequency. Different methods of evaluation are
required to assess evoked and induced GBRs. To analyze the evoked GBR, the
wavelet transform was applied to the averaged event-related potentials. However,
for the non-phase-locked portion of the GBR, each trial was first transformed to
the frequency domain and then the resulting wavelet transforms were averaged.
This measure represents the total activity comprising the phase-locked and non-
phase-locked fractions of the GBR. Additionally, the amount of phase-locking
across trials was computed. The values yield a number between 0 and 1 deter-
mining the degree of phase-locking, where 1 indicates perfect phase alignment
across trials and values close to 0 reflect a high phase variability.
Previous studies have shown that the frequency of oscillatory brain activity varies
notably between subjects (Busch et al., 2004; Klimesch, 1999). Therefore, wavelet
analysis was performed for each frequency bin in the gamma-frequency range.
The resulting time-frequency representations were averaged across electrodes in
the fronto-central ROI (Cz, FC1, FC2, Fz) and across the four interesting condi-
tions (regular and irregular at the 3rd and 5th position). Afterwards, the individ-
ual gamma frequency was defined as the frequency showing the highest amplitude
in the time interval between 20 and 90 ms after stimulus onset. The peak fre-
quencies of the individually identified evoked GBRs ranged from 20 Hz to 64 Hz
(mean 42.4 Hz, SD=13.8 Hz). The peak amplitude for this individual frequency
was used for further statistical analyses of the evoked GBR, the phase-locking,
and total gamma activity in the respective early time interval. Channels were
pooled into a ROI comprising the following four fronto-central electrodes which
exhibited the strongest GBRs: Cz, FC1, FC2, Fz (see Fig. 6.4). We performed a
repeated measures ANOVA using the factors REGULARITY (regular vs. irreg-
ular) and TONE POSITION (3rd vs. 5th).
The time-frequency planes did not reveal any late gamma-band activity in the
typical time interval between 200 and 600 ms that exceeded the noise level. There-
fore, further analyses and the description of the results are focused on the early
gamma-band activity.
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Dipole modeling of the evoked GBR

Source modeling of evoked GBRs was conducted using ASA 4 (ANT Software,
Enschede, The Netherlands). A band-pass filter covering 10 Hz above and below
the mean of GBR peak frequencies of all subjects was applied to the grand-
average ERP (mean peak frequency: 42 Hz, filter-band: 32-52 Hz). There were
no differences in the scalp topographies of evoked GBRs following regular tones
at 3rd and 5th position. Therefore, further calculations were done on the average
of both conditions. As we obtained no individual MRI data from our subjects,
source modeling was performed using the standard MRI and headmodel data
included in ASA. In order to verify the hypothesis that the sources of the evoked
GBR lie in the primary auditory cortex, the scalp signal was modeled using two
symmetrical dipoles placed within the left and right primary auditory cortex and
fixed in position (AC-PC coordinates: x=-50, y=-7, z=7 (left dipole); x=50, y=-
7, z=7 (right dipole)). Afterwards, the ’goodness-of-fit’ (GOF) as a measure of
the model accuracy was calculated for the time-window between 50 ms and 60
ms.

6.3 Results

6.3.1 Behavioral data

Participants performed the task with high accuracy (ascending sequences: 94%,
standard deviation (SD) = 6% and descending sequences: 95% correct, SD = 5%).
The reaction times to the ascending (441 ms, SD = 87 ms) and descending
sequences (447 ms, SD = 97 ms) were nearly identical. Neither the accuracy
[t(16) = -0.77, p = 0.455] nor reaction times [t(16) = -1.14, p = 0.271] were
significantly influenced by the task.

6.3.2 Event-related potentials

Time courses and scalp topographies of the event-related potentials to regular
and irregular tones at the 3rd and 5th position within the sequences are depicted
in Figure 6.2. A distinct early negativity between 150 and 350 ms at posterior
electrodes was elicited when an irregular tone was presented at both possible
positions. Amplitudes in response to irregular tones were significantly larger
than in response to regular tones (main effect of REGULARITY: F(1,16) = 89.85,
p < 0.001). Although this difference tended to be larger at the 5th than at the 3rd

position, the interaction of REGULARITY and TONE POSITION only shows a
statistical trend [F(1,16) = 3.88, p = 0.066].

55



Chapter 6. Experiment III: Early gamma-band responses reflect anticipatory
top-down modulation in the auditory cortex

Figure 6.2: Time courses (left) and scalp topographies (right) of the event-
related potentials for regular and irregular tones at the 3rd and 5th position of
sequences are displayed. The gray bar highlights the statistically analysed time
interval (150-350 ms) of the early negativity. Irregular tones elicited a larger
negativity than regular tones. The potential maps were calculated over a narrower
time window from 220 to 270 ms.

6.3.3 Evoked gamma-band responses

The wavelet analysis revealed an increase in the early evoked GBR for regu-
larly presented tones. This is illustrated in Figure 6.3 by the baseline-corrected
time-frequency representations. Regularly presented tones elicited significantly
larger GBR amplitudes than irregular tones (main effect of REGULARITY:
F(1,12) = 14.604, p < 0.01). This effect is mainly manifested in fronto-central
electrodes, which is depicted in Figure 6.4. Source modeling of the evoked GBR
based on bilateral dipoles in the primary auditory cortex yielded a GOF of 94.77%
(see Fig. 6.5).

Since the ANOVA of mean baseline amplitudes between 200 and 100 ms before
stimulus onset showed no significant effects of REGULARITY [F(1,12) = 0.02,
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Figure 6.3: Time-frequency representations of the evoked GBR for regular and
irregular tones at the 3rd and 5th position of sequences are displayed and aver-
aged across the central ROI. The dashed white line highlights the stimulus onset
(at 0 ms) and the rectangle indicates the range of the early gamma-band activ-
ity. Evoked gamma-band amplitudes were significantly enhanced in response to
regular tones at both positions.

p = 0.904] and TONE POSITION [F(1,12) = 0.46, p = 0.510], the main effect
of early GBR was not elicited by differences in the baseline. The analysis of the
GBR latency revealed no significant effects at all.
Figure 6.6 displays the time courses of the evoked GBR, phase-locking, and total
GBR in comparison. For the evoked GBR, the amount of phase-locking was signif-
icantly larger for regularly presented tones at both positions (main effect of REG-
ULARITY: F(1,12) = 16.910, p < 0.01), whereas the analysis of the total GBR,
an index of signal power, revealed no amplitude differences [F(1,12) = 1.229,
p = 0.289]. Thus, the increase in the evoked GBR is most likely based on stronger
phase-locking.
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Figure 6.4: Scalp topographies (view from top, anterior is upwards) of the evoked
GBR for regular and irregular tones at the 3rd and 5th position. Regular tones
evoked stronger responses than irregular tones at fronto-central electrodes. The
potential maps were calculated averaging signal values between 30 and 60 ms.

6.4 Discussion

6.4.1 Event-related potentials

The present study showed that irregular sounds within descending or ascending
sequences elicited a larger negative deflection in the ERP than regular sounds.
The main amplitude difference occurred in a time interval between 150 and 350
ms with an amplitude maximum at posterior scalp electrodes (relative to a nose
reference electrode). This early negativity to irregular tones might reflect the
ability of the auditory system to extract and apply sequential regularities. Pre-
vious research associated the detection of deviance with the mismatch negativity
of the ERP without attentional modulation regarding simple (for a review, see
Näätänen 2007) as well complex auditory stimuli (Brattico et al., 2006). The
MMN usually peaks at 150 - 250 ms from stimulus onset with a frontocentral
scalp distribution that reverses its polarity at mastoids. This, however, does not
correspond to our findings. It has been reported that if participants attentively
detect deviant stimuli, the MMN is partially overlapped by a further negative
component, namely the N2b (Näätänen et al., 1982). We assume, that the early

58



6.4. Discussion

view from top view from left side
0.3

Vm

-0.3

Figure 6.5: Source modeling of the evoked GBR for the grand-average of regular
tones at the 3rd and 5th position was conducted using two symmetrical dipoles
placed bilaterally in the primary auditory cortex. The dipoles are displayed as red
arrows and the amplitude of the evoked GBR measured at the scalp is indicated
by a color gradient from red to blue. The source estimation yielded a GOF of
94.77%, indicating that the sources are well in line with the measured scalp-data.

negativity in the current experiment might rather resemble an N2b response
than a mismatch negativity. This is further supported by the finding that the
N2b peaks later at ∼250 ms with a scalp distribution more posterior than that
of the MMN (Alho et al., 1986). In contrast to other studies that reported a cen-
tral scalp distribution for this negativity, we observed a scalp topography with a
maximum at posterior electrodes. One possible explanation for this phenomenon
might be the attended processing of the presented stimulus sequences in an ac-
tive task. In this case, the early negativity seems to be intimately linked with a
subsequent positivity waveform (P3, Snyder and Hillyard, 1976), which typically
increases in magnitude at parietal electrode sites (Johnson, 1993) and is related
to attentional processing (Polich, 2007). Furthermore, the P3 is discussed in con-
junction with context-updating. If a new stimulus within a sequence is detected,
attentional processes govern a change or ’updating’ of the stimulus representation
(Donchin and Coles, 1988; Polich, 2007). Thus, an overlap of N2b and P3 would
be conceivable and might explain the posterior scalp distribution.
The processing of rules is also well investigated in language and music. Both, lan-
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Figure 6.6: Averaged time courses of the evoked GBR, phase-locking, and total
GBR at electrode Fz. Regular tones at the 3rd (solid line) and 5th (dashed line)
position of sequences are displayed in blue, whereas irregular tones at the 3rd

(solid line) and 5th (dashed line) position are shown in red. Since total GBRs do
not show differences between conditions, the enhanced evoked GBRs for regular
tones seem to be due to enhanced phase-locking.

guage and music are structured by complex syntactic rules and therefore evoke
an expectation for upcoming events within a specific musical or linguistic context
(Maess et al., 2001). In recent studies, the violation of regularities has shown
to be reflected in an early right anterior negativity for musical stimuli (ERAN;
Koelsch et al., 2002, 2007) and in an early left anterior negativity for linguistic
stimuli (ELAN; Friederici, 1997, 2002) with an amplitude maximimum around
200 ms. In contrast to the N2b, these EEG components rather reflected initial
and automatic neural mechanisms that were contributed to the processing of
irregularities.

6.4.2 Evoked gamma-band responses

In the current study, we investigated in which way anticipation modulates early
auditory gamma-band activity during listening to different tone sequences. Regu-
larly presented tones matching the good continuation of a sequence elicited a con-
siderably larger evoked GBR compared to irregular (deviant) tones with strongest
responses at fronto-central electrodes. This corresponds very well to our source
modeling of the evoked GBR. The dipole model with two bilateral dipoles in
the primary auditory cortex accounted for 95% of the variance of the measured
gamma-band activity. Previous investigations of the early evoked gamma-band
activity also described the largest amplitudes in response to auditory stimuli at
central electrodes and found the neural generators of this activity in the auditory
cortex (Pantev et al., 1993; Mulert et al., 2007).
We observed this amplitude differences very early at 50 ms after stimulus on-
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set. During anticipatory states, specific neuronal populations may be activated
and further enhance subthreshold oscillations in sensory cortical areas (e.g. A1)
before the actual stimulation (Engel et al., 2001). Matching of the bottom-up
input with an internal prediction about the incoming stimulus therefore results in
"resonance phenomena" and, thus, leads to enhanced evoked GBR in a very early
time interval. Therefore, events or stimuli that match the expectancy expressed
by coherent states of the neuronal network generate more salient and speeded
brain responses than non-attended or unexpected stimuli. The top-down process
whose modulatory influence we observe 50 ms after stimulus presentation has
probably already started much earlier, i.e. when the previous tone was presented
and a rule was generated in order to predict the upcoming stimulus. Such an
early modulation during auditory stimulus processing has been also reported in
an audio-visual integration study (Widmann et al., 2007). In that study, visual
symbolic information served as a cue and preceded the auditory stimulus, while
visual and auditory stimuli could be either congruent or incongruent. Only in the
case of congruent stimulus presentations, where the prediction about the forth-
coming sound matched the sensory input, an enhanced evoked GBR could be
observed. The authors discussed their findings with respect to the "match-and-
utilization" model (MUM) proposed by Herrmann et al. (2004c) for the visual
modality. Hence, our results substantiate the findings of Widmann et al. (2007)
and are further in line with the MUM. Herrmann et al. (2004c) stated that match-
ing between an incoming stimulus and a memory template results in an enhanced
evoked gamma-band activity. Thus, the early evoked GBR in the current study
appears to reflect this matching mechanism. According to the model, attention
represents a determining factor for enabling and facilitating the match. Applied
to the present experiment, the regularity of the tone sequence has to be learned
and memorized and thus, the participants built up an expectation for the forth-
coming tone, which can result in a match or mismatch. During listening to the
tone sequences, attended processing was also ensured, since the task required a
behavioral response by the participant. Therefore, it is most likely that the larger
gamma-band amplitude in response to regularly occurring sounds is due to the
higher amount of anticipation or expectation of the listener.
A similar approach is suggested by the "adaptive resonance theory" developed
by Grossberg (1999). Grossberg supposes that humans are always anticipating
their next behavior and respective consequences. These expectations about the
world are permanently matched against actually occurring events. It is assumed,
that a match between the current sensory input with existing knowledge causes
an amplification of a sensory response, whereas a mismatch leads to an extinc-
tion. Further, such top-down expectation can also sensitize or pretune specific
cells and therefore prepare them to react quickly to bottom-up inputs that match
the top-down prime (Grossberg, 2001). If this is the case, it is conceivable that
top-down modulations on GBR already occur at 50 ms. These early influences
on oscillatory activity in the gamma-range were previously observed for other
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cognitive features in humans such as attention- (Tiitinen et al., 1993; Yordanova
et al., 1997; Herrmann et al., 1999; Debener et al., 2003; Busch et al., 2006) or
memory-related stimulus processing (Herrmann et al., 2004b; Busch et al., 2008).
Additionally, the status of anticipation or expectation and its influence on the
processing of forthcoming stimuli was previously investigated with respect to os-
cillatory activity, too (Gonzalez Andino et al., 2005; Snyder and Large, 2005;
Gómez et al., 2004). Visual GBRs were reported to precede the perceptual pro-
cessing of a visual stimulus and correlated significantly with reaction times (Gon-
zalez Andino et al., 2005). This activity, occurring before stimulus onset, might
facilitate the amplification of neural activity in sensory areas in response to the
stimulus. This is not restricted to the visual modality: Snyder and Large (2005)
studied the relationship between GBRs and the processing of rhythmic tone se-
quences. Here, induced GBRs appeared to predict tone onsets and persisted even
for expected tones that were omitted. In contrast, the evoked GBR occurred in
response to tones, but not to tone omissions. The authors concluded that the
induced gamma-band oscillations might play a role in developing a mental rep-
resentation of a temporally structured tone pattern, whereas the evoked activity
reflects more stimulus driven aspects. We have previously demonstrated that au-
ditory evoked GBR is modulated by stimulus properties such as sound intensity,
too (Schadow et al., 2007a). However, we argue that evoked activity additionally
reflects top-down aspects of stimulus processing. This is shown by the current
results and earlier studies reporting strong effects of task difficulty (Mulert et al.,
2007) and attention (Tiitinen et al., 1993; Debener et al., 2003) on the auditory
evoked GBR. Furthermore, we reason that the status of anticipation during our
task might affect even more strongly the matching process between the incom-
ing tone and memory template than attentional parameters as was shown by
Tiitinen et al. (1993). This seems very plausible to assume since the irregular
or deviant tones within a sequence evoked significantly smaller GBR amplitudes
than regular tone presentations although deviant stimuli are more powerful in
attracting attention as indexed by the enhanced early negative ERP component.
Our findings indicate that gamma-band oscillations are functionally more rele-
vant for matching processes than for deviance detection, since regular tones that
match the prediction of the listener evoked larger responses than deviant tones.

6.4.3 Conclusion

We conclude that the observed enhancement in early gamma-band activity re-
flects memory and anticipatory processes supporting the "match-and-utilization"
model. Gamma-band oscillations were shown to be more relevant during match-
ing processes than in detecting deviance. Our data suggest that early top-down
modulation involves some of the first stages of auditory information processing
(∼50 ms). The findings correspond to analogous studies in the auditory and vi-
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sual system considering such early top-down influences.

63



Chapter 6. Experiment III: Early gamma-band responses reflect anticipatory
top-down modulation in the auditory cortex

64



7 General Discussion

In this Chapter, I will outline the main findings of the three presented studies ac-
cording to the proposed hypotheses (see Chapter 2). I will summerize the results
of the auditory as well as the visual experiments (7.1), discuss them within the
framework of the match-and-utilization model (7.2) and emphasize similarities
and differences between both systems within a low- and high-level perspective
(7.3).

7.1 Summary and discussion of the main results

From the visual system, we already know that physical properties of visual stim-
uli affect electrophysiological markers of perception (Busch et al., 2004; Fründ
et al., 2007a). According to these studies, I investigated the influence of a fur-
ther important visual stimulus parameter, namely the stimulus contrast, on the
GBR in a choice reaction task. Since the main concern of the dissertation is the
comparison of processes in the visual and auditory system, I designed an analog
auditory experiment. The most equivalent stimulus parameter to the stimulus
contrast in the visual system might be the sound intensity for the auditory do-
main. Therefore, I have additionally studied, whether basic auditory perception
operates in a similar way, showing a modulation of the auditory GBR in depen-
dence on the intensity of a sound.

As expressed in Chapter 2, I examined the following hypotheses:
Hypothesis 1
The early evoked GBR is modulated by the contrast of visual stimuli.
Hypothesis 2
The early evoked GBR is likewise influenced by the sound intensity of sinusoidal
tones.

Both hypotheses can be verified. The amplitude of the evoked GBR seems to
be directly related to the physical properties of a visual or auditory stimulus: the
higher the stimulus intensity (contrast as well as sound intensity) the larger is the
evoked GBR. For both modalities, this increase in the evoked gamma-band ac-
tivity can be explained by enhanced phase-locking to high intensity stimuli. The
results are in accordance with studies demonstrating a dependence of gamma-
band oscillations on stimulus parameters, and showing that the early evoked
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GBR appears to be a signature of sensory processing mechanisms (Busch et al.,
2004; Fründ et al., 2007a; Lenz et al., 2008). Furthermore, the current exper-
iments extend the knowledge about the fact that processing of basic stimulus
features in early sensory areas appears to be very similar in the visual and audi-
tory modality.
This is an interesting result, since perception as well as processing of auditory
and visual information strongly differs in some points. For example, the spatial
resolution of vision exceeds the auditory localization abilities, whereas the tem-
poral precision of the auditory system is far superior to that of the visual system
(King and Nelken, 2009). For the auditory system, time is an essential variable of
sensory inputs. While visual information (e.g. pictures) appears at once, acoustic
signals (e.g. melody, speech, environmental sounds) are constantly changing as a
function of time. The same time axis is also used by neural discharges throughout
the auditory pathway. A further distinction between audition and vision is the
temporal precision of sensory receptors and their peripheral representations. For
the auditory system, the temporal precision is in the order of less than 1 ms,
whereas it is in the order of 100 ms for the visual system (Wang, 2007). Despite
of these differences, there is evidence that early processing of physical properties
of simple stimuli happens comparably and is reflected in modulations of the same
electrophysiological marker in the visual as well as the auditory system.

The question arises which possible mechanisms could account for these results.
Either more neurons might respond to a more salient stimulus (i), or the same
number of neurons respond with higher interneuron synchronization (ii), or the
same number of neurons respond with higher synchronicity to the stimulus onset
(intertrial synchronization - iii). Both (i) and (ii) would result in an increase of
total gamma-band activity, which I did not observe in the current studies. Only
the last possibility (iii) is in accordance with the observed data, as I found a higher
phase-locking to stimulus onset for the high intensity stimuli in both modalities.
Thus, the differences in the evoked GBR result from increased phase-locking fol-
lowing high intensity stimuli. This interpretation is in line with previous findings
in the visual domain (Busch et al., 2006). In their study, bottom-up factors mod-
ulated only the phase-locking, whereas top-down factors modulated the power of
the early evoked GBR.

Furthermore, both experiments were designed to answer the question why some
research groups failed to find gamma-band activity or gamma-band modulations
and some did not, or only observed GBRs in monkeys, but not in humans (Menon
et al., 1996; Juergens et al., 1999). Different possible reasons were discussed to
explain the aforementioned negative results. By means of the current experi-
ments, I raise evidence that differences in the experimental design might account
for negative results in measuring human GBR. The current findings emphasize
the fact that the intensity of stimuli is essential for both the visual and auditory
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modality. The results show that stimulation with a low contrast grating or low
intensity sound yields nearly undetectable evoked GBR in scalp measured EEG.
Similar optimal stimulus characteristics have been reported, too (Busch et al.,
2004; Fründ et al., 2007a; Lenz et al., 2008). Thus, an appropriate stimulation
(high intensities for visual and auditory stimuli) should be guaranteed for a highly
reliable measurement of evoked GBR in human EEG (Fründ et al., 2007b). The
findings further implicated that stimulus parameters of stimuli belonging to dif-
ferent experimental conditions should be carefully matched. It appears probable
that conflicting results in the literature could arise from experimental designs, in
which variables like the aforementioned stimulus features confound the indepen-
dent variable, making it hard to differentiate between a pure bottom-up effect or
higher influences in a top-down fashion.

Within the framework of a methodical point of view, Experiment 1 and 2 yield
the following main conclusions:
First, stimulus parameters should be matched within different experimental con-
ditions, so that potential top-down effects are not confounded by differences in
stimulus parameters (bottom-up). Second, for experimental stimulation, high in-
tense stimuli (regarding the sound intensity or contrast) should be selected that
evoke large responses differing significantly from background noise.

The third experiment investigated top-down effects on auditory processing,
while assessing the role of evoked GBRs. I studied, in which way specific expec-
tations of a listener influence the subsequent auditory stimulus processing and
whether this is reflected in the early evoked gamma-band activity.

Therefore, I want to remind of the third working hypothesis (see Chapter 2):
Hypothesis 3
The influence of anticipation on the auditory stimulus processing is reflected in
an increased early evoked GBR.

As the main result of this study, I observed larger evoked GBRs as early as
50 ms after stimulus onset for tones matching the good continuation of the se-
quence compared to tones violating the good continuation. Thus, the third hy-
pothesis can also be verified. Indeed, a top-down modulation within 50 ms after
stimulus onset is very fast, however, such early top-down effects were reported
by other research groups as well (Tiitinen et al., 1993; Yordanova et al., 1997;
Debener et al., 2003; Widmann et al., 2007). A recent audio-visual study even
described a top-down effect by anticipatory processes (similar to my findings) at
42 ms after stimulus onset. During anticipatory states, specific neuronal popula-
tions may be activated and further enhance subthreshold oscillations in sensory
cortical areas (e.g. A1) before the actual stimulation (de Oliveira et al., 1997; En-
gel et al., 2001). This corresponds very well to the current findings, since a dipole
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modeling with two bilateral dipoles in the primary auditory cortex accounted for
95% of the variance of the measured gamma-band signal.
Therefore, matching of bottom-up input and active prediction about the incoming
stimulus match will result in enhanced evoked GBRs in a very early time interval.
It was proposed that early evoked GBRs are a signature of this matching process
(Herrmann et al., 2004c). Events or stimuli that match the expectancy, expressed
by coherent states of the neuronal network, generate more salient and speeded
brain responses than non-attended or unexpected stimuli. This is supported by a
couple of studies investigating the relation between the electrophysiological mark-
ers of attentional orienting and the speed of responding (Talsma et al., 2007; Des-
imone and Duncan, 1995). Preparatory attention can bias the respective sensory
system in advance to favor a certain kind of stimuli (e.g. task-relevant stimuli).
Anticipatory activity is highly relevant in everyday life and exerts influence on
two main subsequent processes: motor functions and perception. This implies:
High anticipation results in a modulation of perceptual processing of such incom-
ing stimuli on the one hand and improved task performance (e.g. shorter reaction
times, higher accuracy) on the other hand.

Interestingly and therefore important to mention are the differences between
observed ERP responses and evoked GBRs following expected and irregular (or
deviant) sounds. Deviant sounds within the descending or ascending sequences
elicited a larger negative deflection (N2b) in the ERP between 150 and 350 ms
than expected sounds. This is in contrast to the early GBR where deviant sounds
evoked significantly smaller amplitudes than expected sounds. Thus, the findings
indicate that both electrophysiological responses reflect different processing levels.
Further, evoked gamma-band oscillations are functionally more relevant during
matching processes than in deviance detection that apparently reflects later, more
elaborated processes.

Hence, two main conclusions derive from the results of Experiment 3:
First, early evoked GBRs appear as a neural correlate of anticipatory and mem-
ory processing in the auditory system. Second, the evoked GBRs reflect matching
processes, whereas the later N2b component of the ERP is much more relevant
during deviance detection.

According to the reported experimental results, I will now discuss them within
the context of the MUM (Herrmann et al., 2004c).
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7.2 Match-and-utilization model in the auditory

modality

The proposed model, termed as "match-and-utilization model", attempts to ex-
plain cognitive functions with respect to high frequency oscillations (30-80 Hz)
(see Fig. 7.1). The authors suggested that the GBR is a correlate of the com-
parison between sensory information and information stored in memory. Thus, if
the sensory bottom-up input matches with templates previously stored in mem-
ory, this results in enhanced evoked gamma-band activity. A successful matching
process initiates further so-called utilization processes, which are reflected by the
late induced GBR in the model. This late gamma-band activity can be involved
in selection of specific behavioral responses, memory updating, or reallocation of
attention.

Match-and-utilization model

Figure 7.1: Illustration of the match-and-utilization model (The figure is re-
drawn from Herrmann et al., 2004.).

This model was mainly developed for integrating findings from the visual
modality. Therefore, it would be interesting, if the model could also account for
explaining cognitive functions in the auditory system. For early processing mech-
anisms, it appears plausible that the evoked GBR serves as the same mechanism
in processing low level attributes of visual and auditory stimuli. Modulations of
evoked GBRs by physical characteristics of a stimulus have been observed for
both modalities in the first experiments and in previous studies (Busch et al.,
2004; Fründ et al., 2007a; Lenz et al., 2008). Such sensory coding mechanisms
provide the basis for further processing steps such as matching sensory input in-
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formation with memory contents. The matching or this integration of bottom-up
and top-down information only results in the aforementioned increase in early
GBR, if stimulus characteristics are salient enough (Busch et al., 2006; Fründ
et al., 2008b). So far, Lenz et al. (2007) reported that induced gamma-band
activity in the time interval between 300 and 500 ms after stimulus onset re-
flects the matches between environmental sounds and their representations in
auditory long-term memory. With respect to the time-scale, this result differs
from what was reported for the visual modality. However, the late effect seems
most likely and much more plausible: The perception of an environmental sound
builds up over a time period which is very distinct from the perception of pic-
tures. Changes in tone intensity or frequeny has to evaluated over a specific time
in order to match with a stored representation.
However, in the third experiment, I was able to show that matching processes
can occur as early as during the first 50 ms after stimulus onset. This early
top-down modulation by anticipatory processes in the auditory system might be
conceivable for two main reasons: First, sine wave tones as used in this exper-
iment are very simple compared to the complex environmental sounds used by
Lenz et al. (2007). Second, during anticipatory states, specific neuronal popu-
lations were sensitized even before stimulation and were therefore able to react
faster after a successful matching process. A similar top-down modulation on the
early gamma-band activity during the detection of target tone stimuli (sine wave
tones) was reported by Debener et al. (2003). Target detection also resembles a
matching process, since every incoming sound has to be compared with a memo-
rized target template which is usually defined before performing the experiment.
According to the first processing stages, described in the MUM, the following con-
clusion with respect to the aforementioned findings can be drawn: Basic building
blocks of cortial processing are shared in bottom-up visual and auditory process-
ing. Further, top-down driven matching processes of incoming information with
a representation of an anticipated sound are reflected in the early evoked GBR
and are well in line with MUM.

In the MUM, induced GBRs are associated with readout and utilization pro-
cesses. To my knowledge, studies investigating induced GBRs in the auditory
modality reported highly inconsistent results. The findings range from decreased
activity in response to targets (Bertrand and Tallon-Baudry, 2000), no signifi-
cant differences between target and non-targets (Debener et al., 2003), and to
increased activity in response to deviants (similar to a target stimulus, Kaiser
and Lutzenberger, 2005b). However, there are some findings which are in line
with the model. During the active maintenance of specific auditory information
in short-term memory, induced GBR was increased over putative sensory process-
ing streams and frontal regions (Lutzenberger et al., 2002; Kaiser et al., 2003).
Furthermore, the maintenance of relevant auditory information was accompanied
by gamma-band coherence between higher order sensory and prefrontal areas.
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This supports the notion of the study done by Widmann et al. (2007) that later
processing stages are linked to integration of different information.
In conclusion, some of the reported findings regarding the auditory system are
in line with the MUM and emphasize the induced gamma-band activity as an
integration mechanism. However, other studies show a diverse pattern of re-
sults requiring a further systematic investigation of the functional significance of
induced GBR during higher level auditory processes.

7.3 The visual and auditory modality in

comparison

In this paragraph, I highlight basic similarities and differences during percep-
tual processes in the auditory as well as the visual system with regard to high
frequency oscillations.

7.3.1 Low-level processing

As demonstrated in the Experiments 1 and 2 as well as reported in other studies,
there is a clear evidence that both modalities share the same processing mecha-
nisms during the first 100 ms reflected in the evoked gamma-band activity. This
is interestingly, since stimulus material is very different, particularly it is pro-
cessed in different time scales. A picture comprises various information at once,
whereas the information of a sound has to be evaluated over time. Several facts
related to anatomical (i) and functional (ii) commonalities could account for this:

(i) The cortex is organized in six horizontal layers running in parallel to the
brain surface, while each layer differs in densitiy, size, form, function and synaptic
circuits of neurons. This columnar organization appears to be relatively homoge-
neous across sensory cortices (Linden and Schreiner, 2003; Hirsch and Martinez,
2006), which is important as mainly primary sensory areas are thought to be
the origin of evoked GBR (Pantev et al., 1993; Mulert et al., 2007). Previous
investigations of the early evoked gamma-band activity described the largest am-
plitudes in response to auditory stimuli at central electrodes and found the neural
generators of this activity in the primary auditory cortex (Pantev et al., 1993;
Mulert et al., 2007). Up to now, there is no study examining neural generators of
the visually evoked GBR. However, strongest visual-related GBRs were consis-
tently observed over parieto-occipital electrodes suggesting the source of activity
in primary visual areas (Busch et al., 2004; Schadow et al., 2007b; Fründ et al.,
2008a). Nevertheless, a source localization of the visually evoked GBR would
complement the findings from the auditory modality.
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(ii) During the first steps of stimulus processing, different aspects of an event
have to be extracted and then integrated to a unified percept. In the visual
modality, this was reported to occur during the first 60 ms after stimulus onset
(Roelfsema et al., 2007). In the auditory modality, the timing of feature integra-
tion depends on the duration of the sound. One central theme in both modali-
ties is the processing in two parallel, but functionally specialized pathways: the
’what’ and ’where’ stream (Ungerleider and Haxby, 1994; Ahveninen et al., 2006;
Altmann et al., 2007). In audition, the pathways were discussed in terms of a
preferred processing of spatial features (e.g. sound localization) in caudal cortical
areas, whereas non-spatial features are processed in more ventral cortical areas
(Ahveninen et al., 2006; Altmann et al., 2007). Within the ’what’ stream, group-
ing mechanisms are essential to develop or identify a useful concept of a visual
or auditory object. Such grouping mechanisms are not only well-established in
vision, but also in audition. One example for generating perceptual entities is
the figure-ground segregation, which is illustrated for both sensory systems in
Figure 7.2. During perception of the Rubin vase/face1 (left part of Fig. 7.2),
attention controls which figure is perceived and relegates all other information
to the ground. If listeners are following an alternating tone sequence composed
of two pure tones of different frequencies (ABAB...), two percepts are possible
- depending on the frequency separation between the A and B tones (Bregman,
1994). When A and B have similar frequencies, listeners typically hear a single
stream of sound with a galloping rhythm. However, when the A and B tones
are more distinct, listeners perceive two streams and the gallop disappears. This
latter phenomenon has become known as auditory stream segregation. In such
tone sequences, the attended stream is subjectively louder than the unattended
stream, leading to an auditory "figure-ground" percept (see right part of Fig. 7.2).

As already reported in the Introduction, some studies investigated the func-
tional relevance of gamma-band oscillations in response to coherent object per-
ception in both modalities (Tallon et al., 1995; Tallon-Baudry et al., 1996; Knief
et al., 2000) and found different results. An increase in induced GBR has been
demonstrated to coherent visual objects, whereas no induced effects were shown
for respective auditory objects. However, the cortical sources of the evoked GBR
for spectral and virtual pitches (comparable with the real and illusory triangle
in the visual modality) were found to be closer together. The cortical source for
the non-coherent tones was located more anterior to those of the coherent tones,
suggesting that different cortical areas were active in processing spectral/virtual
pitches and non-coherent tones. At first glance, it seems as if coherent object
perception is reflected by different GBR responses in the studied sensory sys-
tems. Indeed, it cannot be ruled out, whether coherent object perception is

1The picture of the Rubin vase/face was downloaded from the following website:
http://www.uncleernest.com/fun_optical.html.
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Figure 7.2: Figure-ground segregation - an example for a grouping mechanism
by which perceptual entities are formed - is illustrated for the visual (left) and
the auditory (right) system.

really reflected in comparable processes in audition and vision and whether these
differences might be also caused by experimental requirements.

7.3.2 High-level processing

Higher levels of perceptual processing involves a more global view of the sensory
input information, extracting the meaning by accessing concepts and making
sense of situations at a conceptual level. This ranges from the recognition of
objects to structuring of information by attention or expectations.

The results of Experiment 3, investigating the influence of expectation on audi-
tory stimulus processing, support findings of a study addressing the same question
for the visual system (Fründ et al., 2008b). In the visual experiment, oscillatory
activity to natural images with respect to stimulus anticipation was investigated.
Effects of such stimulus anticipation for the phase-locked response were observed
in Experiment 3 and by Fründ et al. (2008b), whereby the effect for natural im-
ages was manifested in a somewhat lower frequency band (beta-band). A possible
explanation might be the stimulus complexity which required an integration of
information from remote cortical areas. This in turn needs to engage spectral
components of lower frequencies (von Stein and Sarnthein, 2000).

Furthermore, memory processes have been examined in both modalities and
revealed different findings caused by the aforementioned different time scales of
stimulus processing. Whereas pictures (line drawings) that match with a long-
term memory representation evoked early GBRs (Herrmann et al., 2004b; Fründ
et al., 2008a), environmental sounds (also with a memory representation) induced
a late GBR in a time window between 300 and 500 ms (Lenz et al., 2007). Inter-
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estingly, the memory-related effect was also reflected in the later induced GBR in
the case of more detailed visual stimuli, while this effect was not present in case of
simple line drawings (Fründ et al., 2008a). A very recent study investigated the
personal significance of SMS handy tones on the GBR (Roye et al., 2009). The
personally relevant tone stimulus elicited a strong evoked GBR during the first
60 ms after stimulus onset. Given that SMS tones are rather simple compared
to everyday life sounds and that the personal significance prompts the formation
of individual memory representations, memory-related effects on the GBR are
possibly depended on the complexity of stimulus material.

Finally, attentional modulations on the GBR were shown very early in time,
namely for the evoked response in the visual as well as auditory modality (Her-
rmann and Mecklinger, 2000; Debener et al., 2003). The authors emphasized the
evoked GBR as a mechanism for object selective attention.

Comparing low-level and high-level processing in the visual and auditory system
with regard to gamma-band oscillations as one underlying electrophysiological
marker, the following conclusions can be drawn:
First, although the timing of sensory input is fundamentally different in vision
and audition, early processing of stimulus features is equally reflected in the evoked
GBR occurring with a latency between 60-100 ms after stimulus onset with gener-
ators in predominantly sensory cortices. Second, there is convincing evidence for
similar operating memory matching mechanisms reflected in the evoked GBR, de-
pending on stimulus complexity in case of auditory and visual stimulation: Here,
top-down modulations by memory matching are either reflected in the early evoked
(for simple stimuli) or late induced (for complex stimuli) GBR.
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