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Summary

Upon mechanical loading, many crystals develop crystahgwivhich has to be considered as a
special deformation mechanism. In contrast to crystadlpic glide, twinning enables a crystal to
accommodate rapid deformations at low temperatures, wheph be exploited to expand the range
of application of a material. However, twinning affectsosigly the material properties, which is not
always beneficial. The twins form as plates inside of graang, alter significantly the morphological
and the crystallographic texture, both influencing thed/letus and the elastic anisotropy, while the
additional interfaces have an impact on the strain hardenvhoreover, the twinning mechanism is
polar, which can cause a pronounced differential effecherstrength of the material and the forming
limit, depending on the crystallographic texture. For margterials, these effects are not negligible.
Especially the ductile TWIP steels and the lightweight hagtats, magnesium and titanium, which
are interesting for engineering applications, displayeegive twin formation at room temperature.
One is therefore interested in a proper modelling of twigni®ne approach, proposed by Ericksen
(1975), is to treat twinning as isothermal phase changesrmnaconvex elastic modelling. In this
work, a micro-mechanical elastic modelling approach{for11){0112} twinning in magnesium is
developed. It is coupled with basal glide, another domimkefdrmation mode encountered in most
hexagonal crystals. The approach allows to compare simolegsults to experimental findings on
the microscale and, by numerical homogenisation by theesgmtative volume element technique
(RVE), to experimental findings on the macroscale.

Chapter 1 serves as an introduction, were the framework for the moeeivation is set up.
Chapter 2 is dedicated to the geometrical description and classidicaif twins, the twin formation
and their impact on the material properties. Different datian techniques on the different scales are
discussed irthapter 3. Chapter 4 and 5are devoted to the development of the microscale model,
where the basic model is derivedcéhapter 4 and modified inchapter 5. In chapter 4, the energy
invariance in compound twins and its implications for thastic modelling are discussed, as well.
The material law is summarized thapter 6, where a section is dedicated to the implementation
of the crystallographic glide. lohapter 7, different simulation results are presented, namely three
different FE-models that are settled on the microscalelendne FE simulation allows by numerical
homogenization for a comparison with experiments condlcte the macroscale. The work is
summarized irchapter 8, and a short outlook is given.



Zusammenfassung

Die vorliegende Arbeit behandelt die mechanisch indugigktillingsbildung. Diese kann als sehr
spezielle, isotherme kristallographische Umwandlunggefafsst werden. Solche Festkorper zu
Festkorper-Umwandlungen induzieren eine Reihe intenéssaind ingenieurtechnisch nutzbarer
Effekte. Zum Beispiel basiert der Formgedéachtniseffekidmu thermisch induzierten Martensit zu
Austenit Umwandlung, wahrend die augenscheinlich irrgtaéen Deformationen in der Martensit-
phase durch das Verschieben von Grenzflachen zwischenirfyeii realisiert werden. Als weiteres
Beispiel ist die Zwillingsinduzierte Plastizitat zu nenné&ie kann gerade wenn kristallographisches
Gleiten schwer aktivierbar ist, z.B. bei niedrigen Tempaen und hohen Dehnraten, als alternativer
Deformationsmechanismus zur Verfigung stehen. Allesimag die Zwillingsbildung einen starken
Einfluss auf das Materialverhalten. Hier kbnnen Materialgi® beim Verstehen und Vorhersagen
der durch Zwillingsbildung verursachten Verfestigung urexturentwicklung hilfreich sein. Ziel
dieser Arbeit ist die Entwicklung eines Materialmodellsglghes die Zwillingsbildung auf der
Kristallebene beschreibt. Die Modellierung erfolgt im Keturch die Kopplung eines pseudoelastis-
chen Gesetzes mit einer viskosen Bewegungsgleichung. i Dateesich auf Zwillingsbildung in
Magnesium und Magnesiumlegierungen konzentriert, wadimehrere Griinde gibt. Magnesium ist
wegen seiner geringen Dichte fur den Leichtbau interessdatdings sind Magnesiumlegierungen
wegen ihrer geringen Duktilitat hauptsachlich als Gugstanzutreffen. Die Zwillingsbildung
spielt fur die Umformbarkeit von Magnesium und seinen Lagigen eine wichtige Rolle. Gerade
stranggepresste Magnesiumlegierungen, deren Verweralsihtplbzeug bisher eine untergeordnete
Bedeutung hat, zeigen aufgrund einer starken Textur eisgeguagte, durch Zwillingsbildung
verursachte Zug-Druck-Anisotropie, was sowohl die Flpzliswung als auch die Umformbarkeit
betrifft. Dementsprechend umfangreich sind die zum Theenfiigbare Literatur und experimentelle
Befunde, welche zum Vergleich mit Simulationen zur Verfiigstehen. Daher wurde das Modell
fur die haufig angetroffen@111){0112} Zwillingsbildung implementiert.

Kapitel 1 dient der Einfihrung und steckt den Rahmen ab, innerhalbetledas Materialmodell
entwickelt wird. Kapitel 2 befasst sich mit der geometrischen Beschreibung und desHilderung
der Zwillinge, sowie der Entstehung und dem Einfluss, derlibgsbildung auf das Materialverhal-
ten hat. InKapitel 3 werden Simulationstechniken auf verschiedenen Skaldwikst. Kapitel 4
und 5 sind der Entwicklung des Materialmodells gewidmet, wolbeKapitel 4 nach einem Ansatz
von Ball und James die elastische Energie entwickelt wireliciae in Kapitel 5 modifiziert wird.
In Kapitel 4 wird ebenfalls die Energieinvarianz in sogeman Compound-Twins diskutiert, sowie
deren Bedeutung fur die elastische Modellierung. Die Malgeichungen werden iiKapitel 6
zusammengefasst, wobei auf die numerische Implemengedas kristallographischen Gleitens
eingegangen wird. IrKapitel 7 werden verschiedene Simulationsergebnisse prasentieliei
die ersten drei Finite-Elemente-Modelle auf der Mikroebamgesiedelt sind, wahrend das vierte
FE-Modell einen Vergleich zu experimentellen Befunden @eif Makroebene erlaubt. Die Arbeit
schlieRt mitkapitel 8 mit einer Zusammenfassung der Ergebnisse und Uberlegungarkiinftigen
Arbeiten ab.
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Chapter 1

Preliminaries

1.1 Introduction

Deformation twinning can be understood as a special defitmmeode available in crystals. A crys-
tal that undergoes twinning reorients its lattice withdudieging the symmetry class, unlike marten-
sitic transformations. The twin configuration is achievgdsimple shear deformation of the parent
crystal, while the crystallographic structure of the twiffets only by a rotation or a mirror oper-
ation from the parent one, which motivates the term "twigfiinin real crystals the twins appear
as lamellae, which are aligned approximately coplanar ecstiear plane. A micrograph of a twin
network in magnesium is given in Fig—lL.1, where the twinsaigned along characteristic planes.
Mechanical twinning was propably firstly observed by Ewi 0). In mineralogy,
crystal twinning was well known in the 19th century (Naum ).

Figure 1.1: Light optical photograph of a polished magnessample.

The common view on the twin formation is that so called transfition dislocations exist in the
crystal, which dissociate when a stress is applied, andnaglade at nucleation sites. Transformation

9



10 CHAPTER 1. PRELIMINARIES

dislocations can also be generated. The nuclei are formédsimcation walls, which enclose a small
twinned volume. This nucleus then grows by moving the daion walls, which at some instance
become large enough to be considered as interfaces. Mivgithg become self-sustained at a certain
size. The elastic misfit strain gives rise to further twinwgtto, until a sufficiently large counter-force
or an obstacle is met. This causes the twinning induced loaplsdn the stress-strain curves. One
can speak about a twin as a very special type of grain, resabl@ by its shape, grain boundary
orientation and lattice orientation with respect to thesunding grain.

Twinning contributes strongly to the mechanical properti®y the lattice reorientation, twinning
alters the crystal orientation distribution (COD, crykigtaphic texture), and by subgrain growth the
grain morphology (morphologic texture). Both alteratiaffect, among other properties, the macro-
scopic elastic modulus and the yield locus. Further, twigns polar, i.e., unlike crystallographic
slip, the shear deformation is possible only in one directiwinning is available at high strain rates
and low temperatures, and can therefore compensate theflagkstallographic glide under the latter
conditions. Twinning is targeted for in manganese alloyegls (TWIP-steels, Twinning-Induced
Plasticity,| Grassel and Frommeyer (1998); Karamanlet 80(2 |Frommeyer et all (2003)), which
can accommodate unusual large strains at room temperatstyrby deformation twinning.

For a suitable material modelling of materials that undeitgbormation twinning, the underlying
deformation mechanism has to be incorporated. For thisgz@;pmany macroscale models have
been proposed (e.g._Tomé et al. (1991); Staroselsky andoX@2803)). They include twin formation
in a homogenised sense, and account for one or more aspéweismhg, like the grain refinement or
the texture evolution. One method to set up a macroscale In®tiepropose constitutive equations
describing macroscopic quantities, which are adjustedperments. It is problematic to show that
such a model is applicable to other processes than the enguatal ones to which it has been adapted.
Another method to derive macroscale constitutive equati®ito apply an analytical homogenisation
scheme to microscale constitutive equations, which arsipally motivated. Here, the necessarily
rough homogenisation (mostly the Taylor assumption) mag l® results that are not sufficiently
accurate. It is highly complicated, if not impossible, ta@ ap a macroscale material model that
can incorporate, e.g., a grain morphology, a texture andf@rmation path, which yields precise
predictions of the material behaviour. Nevertheless, oraodels are important tools in industrial
design. Their advantage is the numerical efficiency, andaha can choose a model that explicitely
accounts for ones needs.

Another way to incorporate twinning on the macroscale issainumerical homogenisation scheme
in conjunction with a microscale model. Following this wape has to set up a material model that
includes twinning only for a single crystal, while the horeagsation procedure is done numerically.
An example would be thEE? method, where at each integration point (or at certain kéytppof the
macroscopic model another FE model of a representativenmklement (RVE) is incorporated. The
micromodel has to be adjusted only to the behaviour of a siagistal, which leaves few physically
motivated parameters that have to be adjusted to an eaggeg@able experiment. It can be expected
that the latter approach yields more precise predictiorte@material behaviour than a macroscale
model. The most significant disadvantage of Hi¢# method is the high computational effort when
applied to engineering problems.

In this work, a microscale-model for deformation twinningsied on a nonconvex elastic energy
density is developed. Due to the twinning-induced reareament of the atoms, the lattice vectors
do not behave like material vectors. This has to be regardedvéolation of the Cauchy-Born rule
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(Born and Huarig, 1954), which is so fundamental in the thebslasticity that it is mostly adapted
intuitively and without explicit declaration. The consegques of this violation have to be analysed in
order to determine the limitations of a theory that modefsmeation twinning by means of elasticity.

It is demonstrated that all compound twins exhibit an etastiergy invariance, and the consequences
for the elastic modelling are discussed. Finally, the magleédsted in characteristic FE simulations,
which are comparable to experimental setups. The findiregsianmarised, and an outlook for future
work is given.

1.2 List of Symbols

e o

TQmEe

N

Ytwin

TN D3

edge length of the base hexagon in a hcp lattice, page 28

regularisation element, page 57

height of the unit cell of a hcp lattice, page 28

elastic modulus (1D example), page 50

force (1D example), page 50

shear modulus, page 79

regularisation parameter, page 57

Boltzmann constant, page 56

displacement (1D example), page 50

context dependent, strain energy density or specific exterénergy, page 39

Kronecker symbol, page 23

amount of shear, page 14

twinning shear, page 31

critical twinning shear, page 81

projection distance parameter, page 79
viscosity, page 53

domain occupied by an elastic body, page 50
context dependent indicator function, page 79
context dependent shear stress, page 37
absolute temperature, page 56

hexagonal lattice base vectors inside the basal plane,38&age
hexagonal lattice base vector parallel to the cylinder,gpage 28
shear direction, page 14

normalised slip direction, page 74

orthonormal basis, page 12

vector of the plane of shear, page 14

first and second twin plane in the classical twin notatiogepa7
first and second twin plane after twinning in the classicahtmotation, page 17
(shear) plane normal, page 14

lattice basis generating the parent lattice, page 20

lattice basis generating the twin lattice, page 20
displacement vector, page 14
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n,, firstand second shear direction in the classical twin natapage 17

right Cauchy Green tensor, page 61
Green’s strain tensor, page 56
ot Critical strain state, page 81

SEGHE

F deformation gradient, page 14

H  displacement gradient, page 14

1 second-order identity tensor on vectors, page 12

P plastic transformation, page 61

Qsp orthogonal second-order tensor, page 12

Ry  rotation of amounir around the axi®, page 12

S deformation gradient of a simple shear deformation, page 14
T second Piola-Kirchhoff stresses, page 56

T.i critical stress state, page 79

Cauchy stresses, page 73

Q

Cy  reference stiffness tetrad, page 61
I° Fourth-order identity tensor on symmetric second-ordesdes, page 83

[A]  invertible integer matrix the inverse of which containsyointegers, page 21

Inv  set of invertible matrices, page 21

Invt  set of invertible second-order tensors with positive dateant, page 20
Orth™ set of orthogonal second-order tensors with positive dgtent, page 20
Shear set of second-order tensors denoting a shear deformatge, b

Z set of integer numbers, page 21

1.3 Notation

Throughout the work a direct tensor notation is preferredanl expression cannot be represented
in the direct notation without introducing new conventipits components are given with respect to
orthonormal base vectoes, using the summation convention. Vectors are symbolisddwgrcase
bold lettersv = v;e;, second-order tensors by uppercase bold leffers T}e; ® e; or bold greek
letters. The second-order identity tensor is denoted.lfyourth-order tensors are symbolised lke
The dyadic product is defined &8 b) - ¢ = (b- ¢)a. Matrices are denoted liKel|. A dot represents

a scalar contraction. If more than one scalar contractioarised out, the number of dots corresponds
to the number of vectors that are contracted, tausb® c--d® e = (b-d)(c-e)a,a =A-- B
ando = C - - e. When only one scalar contraction is carried out, the schdais frequently omitted,
e.g.,v = Fw, A = BC'. The Rayleigh-product is defined by applying a second-aeiesor to the
base vectors of a tensor. In case of a fourth-order ted#3erC = C;;;,Pe; ® Pe; ® Pe, @ Pe,
with C = Cyjne; ® e; @ e, ® e;. Orthogonal tensors are denoted@y,, = e; ® e;, mapping one
orthonormal basig; into another one;. If @ can be interpreted as a rotation, the optional indexing
contains the amount of rotatighand the normalised axial vector Two-fold rotations are rotations
of amountr. They are denoted aBy = —1I + 2v ® v, with v being the normalised axial vector.
The derivative, e.g., of a vector valued vector functionhwiéspect to its argument is denoted like
v'(w) = dv(w) /0w = Jv; /0w, e; @ e;. The material time derivative is indicated by a dot, placed
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above the function under consideration.

1.4 Two-fold Rotations, Reflections and Self-Inverseness

Ry are referred to as two-fold rotations. They are orthogondlsymmetric, i.eRy = Ry, = Ry

— Ry has the same properties, but represents a reflection onaghe pbrmal to the axial vector of
the rotation. A basis undergoes a central inversion if mdfgye- R instead ofR4, which does not
affect the simple lattice generated by the basis that ismdxa Note that

Re, Re,Re, =1, (1.1)

which allows us in conjunction with the self-inverseneswitiie

Re, = Re, Re,, (1.2)

or, using mirror operations,
—Re, = —Re,Re, (1.3)
Rel = (_Re2)(_Re3)' (14)

Mirror symmetries give rise to the Coxeter groups, althonghall Coxeter groups can be described
using only reflections. It is pointed out that from the viewypf application to simple lattices,
the use of reflections or two-fold rotations is equivalentrtker, Ry = R_ holds, i.e. only the
direction of the axial vector, but not the sense of directiaatters.

Note that a tensor that is orthogonal and symmetric is seHrse, but not all self-inverse tensors
must be symmetric. LeM be a self-inverse tensor. Its eigenvalues can only takedhges+1. Its
projector representation is given b = P, — P,, with P, = %(I + M) and P, = %(I — M).
Note thatP, P, = P;, andP; + P, = I. In case of the two-fold rotations, one obtaiRs = v ® v
andP; =1 —v®w.

1.5 Continuum Mechanics

The modelling framework employed in this work is continuureahanics, a theory based on the
proposition of a continuous distribution of matter in spadde common treatment is to index the
infinitely many material points of a body witX', and spatial points witlx. A placement of the
body assigns the material points to spatial pointsztby= ¢(X). A motion of a body is given
by a continuous change of placement, denotable as x(X,¢). Note that often more elaborate
definitions are used (Karobeynikav, 2008), but not needed.he

Usually, a reference placement is introduced. Since thedowatesX;, x; andt can be chosen freely,
they are chosen mostly such that= X at¢ = 0 holds, which is called reference placement. This
is presumed in the remainder. The use of this distinguist&cement simplifys the treatment of
standard elastic bodies, because the stress-free platediiger only by a rigid body motion, and the
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stresses are denoteable in terms of a deviation from thessfiree placement in the elastic law. It is
of limited benefit, e.g., in fluid mechanics. With respecthe teference placement one can denote
the displacement vectar = (X ,¢) — X. Further, the displacement gradielt = Ju/0X =
Ox/0X — I and the deformation gradie#t = 0x/0X = H -+ I are introduced. The deformation
gradientF’ maps a line element from the reference placement to thelggaeement. By applying
the polar decomposition theorelt = QU = V Q, one can define strain measures with respect to
the stretching in the material or the spatial placement laygusitherU or V', respectively. In solid
mechanics usually a material strain measure is used. Fomaretiensive account on continuum
mechanics see, e.q., L iu (2002); Bertram (2005).

1.6 Simple Shear Deformation

Since simple shear deformations play the leading part wiigming is examined, some explanations
regarding shear deformations should be given. Consider[ER, where the shear deformation of
a cuboid is sketched. The shear deformation can be imagmeddeck of cards that glide along

Figure 1.2: Simple shear deformation of a cuboid.

each other. Thus, the characteristic measures are the eakdndrmaln, which is called shear
plane normal, and the glide directiah) which is called shear directiom andd are normalised and
perpendicular to each other. As a measure for the amounteair she shear number = [/h is
introduced (see Fig._1.2). The amount of glide of a planellghta the shear plane is proportional to
the distance from the base plane. In the example, the despkaat of the upper planeish) = yhd,
with h denoting the distance from the base plane. The displacegnadient is therefore

ou Oh (X -n)

“ox 4% 5x 4P Tox

HSS
0X

=vd ®n. (1.5)
Commonly,y is put intod, at cost of the convenience of working with a normaligiedn this work,

~ andd are kept separately. Then the tendop n can be referred to as Schmid tensor or slip system
tensor. Further, itis made use of the plane of shear, dehgtdte normal vectok = n x d. (n, d, k)
form a positively oriented orthonormal basis.

The tensoiH . is a rank one tensor, which can be denoted by only one base @igactorresponding
deformation gradient is given h§ = I + H. In the sequel, deformation gradients that describe a
simple shear deformation are denoted¥yyand the set of all deformation gradients denoting a shear
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deformation is written ashear = {I +yd®nn-n=1,d-d = 1,d-n = 0,7 € R}. Shear
deformations are isochoric, i.e. d8t) = 1.
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Chapter 2

Mechanical Twinning

2.1 Usual Twin Description

In the literature, twins are mostly described by the twignétementse,, k., n, andn, (Fig. 21,

see Pitteri and Zanzottb (2002) for a comprehensive ddésmmp k; andk, should not be confused
with k introduced in sectiof 1.6k, represents the shear plane, also referred to as the invarian
plane. n, indicates the shear direction, akd represents the one plane that is simply rotated but
not stretched by the simple shear deformation, also refaoes the second undistorted plare.
denotes the plank, after applying the twinning shear, respectively after orimg or rotating the
planek, accordingly. The twin lattice is obtained by mirroring tharent lattice at the shear plane
k, (type 1 twinning) or at the plane normal to the shear directjo (type 2 twinning). Ifk; and

k-, are rational, i.e., crystallographically embedded, oreakp of compound twins. In that case,
both orientation relations hold. The term "compound twiastbeen introduced by Cahn (1953). In
many casegs; andk, are even crystallographically equivalent. Thepgives the shear direction for
twinning along the plan&,, and the pair,, n, andk., n, denote shearing in crystallographically
equivalent twin systems, see Hg.]2.2. Non-compound twie$ardly reported, and appear to occur
only in low-symmetry lattices (see Fig._2.3 for a type 2 twimpnmode). Examples for the occurrence
of non-compound twins are-uranium (Cahn, 1953) and sapphire (Clayton, 2009).

In this work, a shear plane is identified by(k, ), the shear direction b (n, ) and the plane of shear
by k, where all vectors are normalised. Therefore, a shear numizeneeded to uniquely identify
the twinning mode.

17
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plane of shear /

Y

=\f'2

Ak

n,

Y

Figure 2.1: The commonly used twin elements.

Figure 2.2: A compound twin (left), crystallographicallguevalent compound twins (right).
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Figure 2.3: A type 2 twin in a triclinic unit cell. Shearingags in directiond. The plane normal to
d serves as a mirror plane, while the plane normat oes not.
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2.2 Mechanical Twinning in Simple Lattices

The variety of twinning modes and materials that undergamwig is large. Practically all crystals can
form twins (Cahn and Haasen, 1996) if crystallographicegigidisabled, e.g. at low temperatures. At
room temperature, the most important materials for engingapplications which undergo twinning
display a hexagonal close packed (hcp), a face centred (fubjor a body centred cubic (bcc) lattice.
The most important hcp crystals are single phase Mg, Ti, @pB&, Cd, Zr and their alloys, while the
most interesting cubic crystals are intermetallic computsyhike fcc TiAl, bct NiMn and fcc FeMn,
which exhibits the TWIP-effect. Furthermore, single phitseCu owes its great ductility partially
to deformation twinning. For magnesium, at least six dédfgrtwinning modes have been reported
(Reed-Hill and Robertson, 1957a; Klassen-Neklyudova4)],%ome of which are only active under
very specific conditions.

Twinning is strongly connected to the crystallographitidat For a more general account to lattices
see Pitteri and Zanzottd (2002). It is pointed out that thienden of a twin varies between differ-
ent authors, each one choosing a definition meeting eachpurpsse best. Here, the focus is on
practicability for a continuum theory, and therefore imtsrof deformations.

In a simple lattice, each lattice point can be reached by tegér linear combination of lattice base
vectorsp,. Then,t; andt, are the lattice bases of a possible twin variant if

t;=Fp,, Fclw" (2.1)
t;=Qp;, Q¢ Orth” (2.2)
Vo, € Z3a € Z 2 ayit; = it (2.3)

are fulfilled. In words: Either a deformation or a rotatiortlo¢ lattice basip, gives a lattice basig
or t;, which both generate congruent simple lattices. lllusteaéxamples are given in Fig.2.4. For
convenienceF will be called the twin deformation, whil@ is regarded as the reorientation.

p27t/

plutll

Figure 2.4: Left: Twinning along shear directiops andp,. The twin lattice bases, and v’ can

be obtained by rotating the parent bgsid 80 around the corresponding interface normal, while the
twin lattice bases:; andwv; are reached by shearing along the interface. Right: Thieddbasist;
generates a lattice congruent to the lattice generated byl p,.

It is sufficient to focus o with det(Q) = 1, because the central inversion is included by expanding
the three base vectors tifand the corresponding; with -1. The reader is encouraged to remember
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thatt; comes from the deformation, whitg is given by rotating the parent basis, though this will be
used frequently in the remainder of this Section.

Equation$Z]1 t6 213, which are basically the topic of thisti®e, are called "twinning condition” in
the sense that potential twinning modes can be identifiecdgching for solutions of e§._2.10P.3,
not to be confused with the loading conditions under whicimtiwg occurs.

The set of possible twin deformatiods can be reduced. We demand that a coherent interface be-
tween twin and parent exists. For simplicity, the parertidatis taken as the undistorted reference
configuration. Then, the kinematic compatibility conditionposes

F=I+a®n, (2.4)

with n being the interface normal (Liu, 2002). One can decomposeo its normal and tangential
component with respect t@, namelya = vd + an, d - n = 0, and write

F=1T1+vd®n+an®n. (2.5)

Note thatn andd are normalisedF’ represents a twinning mode if the lattice generated; by F'p,
can be obtained as well by rotating the parent basis. A nages®ndition therefore is that the
volumes of the unit cells are equal. The determinantE & a measure for the volume change, and

det(Q) = det(F) =det(I +yd"@n+an®@n)=1+a =1 (2.6)

must be fulfilled. Thereforey must be zero, and the twinning deformation must be a simparsh
deformationS = I + vd ® n, which already implicates that the interface is identicatlte shear
plane.

In order to fullfill eq. [Z.3B), it is sufficient to demand thaietvectorg; andt, can be represented by
integer linear combinations of the other one, i.e.,dpe= 1 anda); = 1 one can write

7770
t; = Aj't;, (2.8)
where[A] is an invertible 3x 3 matrix with integer components, the inverse of which costanly

integers. In order to identify twinning modes for a simpleitze induced by a given basis, one has
to search foiS, Q and|A] such that
Sp, = Ai;Qp;, S € Shear, Q € Orth™ (2.9)
[A] € Inv, A Ai’jl €z, i,j=1...3

is satisfied. This is not a trivial task. Moreover, the twimpicondition [Z.P) is too wide, because
crystallographic slip in direction @b, is included, as sketched in Fig._2.4. A corresponding souti
IS

R

S=I+gV'p;® (i xp,),V=p-(pyxps) i#j geL (2.10)

Q=1 (2.11)

with 1 being the volume of the unit cell. As one can check, the rest#}, andt; for, e.g.,; = 1 and
j=2are

t, = tll = D1 (212)

ty =t} = p,, (2.13)

ts =t + gt) = ps + gpy, (2.14)
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which clearly generate the same lattice, with

(2.15)

o = O
—_— O O

1
g

Such lattice invariant shear deformations have been exahiy Ericksen (1984a,b). They represent
crystallographic glide along one of the lattice vectorg, Iy dislocation movement but by sliding
along the entire shear plane. This is not of practical irsterfeven if one is restricted to the so called
"classical” twinning modes (Christian and Mahajan, 199#)jch imposes further restrictions @
andA;;, lattice invariant shearing (slip) is still included, a®sm later on.

In classical twinning, the twin lattice must be the mirroeige of parent lattice on the interface plane
or on the plane normal to the shear direction. Actually,éhgmo convincing experimental evidence
for the occurrence of non-classical twins (Ericksen, 19dnzotto, 1992; Christian and Mahajan,
1995). Therefore, the remainder is restricted to classmahing. Following from the latter orienta-
tion relation, a twin lattice base can be obtained by

e mirroring the parent lattice at the interface/shear ptane

e mirroring the parent lattice at the plane normal to the sdéeactiond,

e rotating the parent lattice 18@round the shear plane norma|

e rotating the parent lattice 18@round the shear directiah(Christian and Mahajan, 1995).

Due the restricitonlet(Q) = 1 from above, in the remainder the rotations are the usedtatien
relations. Rotations around 186an be represented by the special symmetric and orthogamsort
R = -1 + 2a ® a, with a being the normalised axial vector. The classical twinnlmntimposes

(I +vd®@mn)p; = A;;Rp;, (2.16)
p; = Aij(I —vd® n)Rp;, (2.18)

with Rp = —I +2n®@nor Ry = —1I + d ® d. One speaks of type 1 twins in the first and type 2
twins in the second case. In both cases

(I —yd®n)R=P (2.19)
yields aP that is self-inverse,
P=pP (2.20)

We may examine the difference between lattice bases thargodype 1 and type 2 twinning by
introducing the tensaA mapping the type 2 twinned basis on the type 1 twinned basis,

Rip, = AR;p,. (2.21)
A is easily evaluated,
A=R R, =RnR;= Ry. (2.22)

Therefore, the distinction into type 1 and type 2 twins is netessary ifR;, is element of the
symmetry group of the simple lattice induced py The same has been found by Sterk (1988).
Such twins, for which both orientation relations hold, asened as compound twins, which are the
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twinning modes of most practical relevance. The latticersatny of compound twins with respect to
R, is of importance when the strain energy invariance of coaigigwins is discussed (Sectionl4.8).

Eqg. (Z220) can be used to restriet] further by
p; = Aij Pp;, (2.23)
Pp, = Aj;p;, (2.24)
which gives after renaming the indicgs— k£ andi — j in eq. [Z2Z#) and inserting into ed._(2123)
p; = AijAjkDs. (2.25)
With p, being a base of linear independent vectors, the latter ioquiatonly fulfilled if
Az‘jAjk = Oix, [A] = [A]fla (2.26)

which shows that the self-inversenesdis conducted tgA]. We therefore reformulate the twinning
condition for type 1 twinning, putting theinto d and takingR = — I +2n®mn as orientation relation.
d andn denote a possible twinning mode of a simple lattice genetaye, if

n-n=1 (2.27)
d-n=0 (2.28)
P=—-T-d®n+2n®@n (2.29)
p; = Ai; Pp;, [A] = [A]7 Ay €Z,i,j=1...3 (2.30)

are fulfilled. Similarly, the twinning conditions for type tinning can be derived by taking ;
instead ofRy,. However, no qualitatively distinct results emerge, whghvhy it is focused on type
1 twinning in the remainder of this Sectiom] is a self-inverse integer matrix, which is by definition
very nice(Hanson, 1985). In the same article it is shown that everfyisedrse integer matrix is
equivalent to an upper triangular x m matrix of the form

M=% T =1, kl=n+l...m, (2.31)
0 —0k

where the equivalence relation is
[A] = [PITM][P), [P)€ Inv,(Py,P;') € Z, 4,5 =1...m. (2.32)

[P] is an integer invertible matrix, the inverse of which consabnly integers, but does not need to be
self-inverse (i.e[P] is only nice). A self-inverse integer matrix of the forfai{2]31) is calleghonical.
Hansonl(1985) shows that every self-inverse integerm matrix is equivalent to only one canonical
self-inverse integer matrix. This statement includes tivat distinct canonical self-inverse integer
matrices cannot be equivalent.

The reduced twinning condition still includes crystallaghic slip. The example from above (eg.
210 and2.711) can be slightly modified such thateq.]2.2730 2re satisfied. The shear deformation
is unaffected, whileR can be replaced by a rotation of T&Yound the shear direction:

S=I+gV'p,®(pxp;), V=p-(p,xps),i#j, g€, (2.33)

P=S"'R (2.35)
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The evaluation foi = 1 andj = 2 gives

P=-I+gV7'p @ (p xp,)+ P OP (2.36)
1 1
and one finds
Pp, = p,, (2.37)
2p.-p
Pp, = —p, + - 2p17 (2.38)
1°P1
2p,-p
Pp, = —p; +gp, + ———p,. (2.39)
D -Py
The correspondingl-matrix is then
1 0 0
2p1‘p2 _
A= QPW I 0. (2.40)
pp 9 0

One can confirm thdt4] = [A]!, and thafp, can be chosen such thdf; € Z, i,j = 1...3is met.
The corresponding deformation and bases are depicted fantlaonormal basig, andg = 1 in Fig.
Z5a.

In the neighbouring figure, a common twinning mode found elibdy centred tetragonal (bct) lattice
(usually indexed a$101}(101) with respect to the basig(, e,, ces)) is depicted. The bct lattice can
be generated by a rhombohedral basis, which base vectarsfmn one corner atom to three of the
neighbouring body-centred atoms. The rhombohedral b& &ad twin mode are given by

P = %(el + eq + ces), (2.41)
Py = %(—el + ey + ce3), (2.42)
P3 = %(—61 — ey + cey), (2.43)
n = |p, x ps|'py x Py = (1+ )72 (ces +e3), (2.44)
d = —9py + ps| " (py + ps) = (1 + )2 (er —ces), y=c—1/c (2.45)

with ¢ being the height of the unit cell divided by the edge lengtthefbase square. It is particular
interesting thap, andp; are unaffected by the twin deformation, though they sparstigar plane.
One could therefore suspect the deformation to represgstiadiographic slip. As one can check, one
obtainswithP = —I —vd®@n+2n®n

1

Pp, = 5(61 — ey +ce3) = p; — Py + Ps, (2.46)
1

Pp, = 5(61 — ey — ce3) = —Ps, (2.47)
1

Pp, = —(e; + ey — ce3) = —ps, (2.48)

2
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with
1 -1 1
Pp; = Ayp;, [Ay]=10 -1 0, (2.49)
0 0 -1

being a self-inverse integer matrix that is already of theocécal form [Z311). One may choose

n
©
, 'pz k
2 D3
/S0 K
p17n / Q
£S’t3 at2at=27d
2

(@) (b)

Figure 2.5: (a) Crystallographic slip fulfilling the twimg relations for type 1 twins in the primitive
cubic lattice. (b) A common twinning mode in a bct lattice.

another basis that generates the same bct lattice, for dgamp

pb=€e (2.50)

Py = €2 (2.51)
1 1 c

p; = ;e + 5€2 + €3 (2.52)

For the same twinning mode, one finds

Pp, = ces =2p; — p; — p, (2.53)

Pp, = —e; = —p, (2.54)
1 1 c

Pp, = 561 — 582 + 563 = Py — Do, (2.55)

with the corresponding very nice matrix

1 -1 2
[Ay]=10 -1 0f. (2.56)
0 -1 1

By elementary matrix operations for self-inverse integatnmes presented hy Hanson (1985) one
can reducgA,;| to its canonical form. It is interesting to note that one doeetsfind the matrix in eq.



26 CHAPTER 2. MECHANICAL TWINNING

(Z.29), although the same twinning mode in the same lat@seleen described, but with different
generating lattice bases. The elementary operationsigddtgquivalent self-inverse integer matrices
are:

e Add k (k € Z) times rowi to row j. Then, add-£ times columry to columni.

e Interchange row and row;. Then, interchange columrwith columnj.

e Multiply row i by —1 and then multiply colummn by —1.

Further, the transpose of a self-inverse matrix remaingfanserse matrix. By carrying out the first
operation witht = —1, ¢+ = 3 andj = 1 and the second with = 1 andj = 3 one finds the
corresponding canonical self-inverse matrix

1 -1 0
[Aij]can. — 0 —1 0 y (257)
0o 0 -1

which differs from the one given in ed.{2]49). Further, takthe transpose of the self-inverse matrix
of eq. [Z.40) and choosing, and g accordingly yields the self-inverse matrix of ed._(2.49)neO
comes from a solution representing crystallographic glide other from a twinning mode. In other
words: the self-inverse integer matrix in the twinning citioth does not serve for distinguishing
whether a solution represents twinning or crystallogragjiide, neither does it help to uniquely
identify a twinning mode. This holds at least until a unigeeluced basis to any simple lattice
is defined and used, though the differéAt matrices arise when the same lattice is described by
different bases.

The twinning conditions[(2.27]-(Z.B0) still include crglographic glide, as the example above
demonstrates. The main feature of gliding is that the latiscnot reoriented. In the notation used
here,p, andt, = Rp, generate the same simple lattice. This is identical torgjdkiat if R is element

of the symmetry group op,, the corresponding solution of ed._(2.2[7)-(2.30) represerystallo-
graphic slip. For this reason, in the cubic lattices {0} and {110} planes do not serve for type
1 twinning, which is due to the fact that rotations of 1&Jound these directions are elements of
the crystal symmetry group. One can search for solutiong o{Z2T){2.3D), and check afterwards
whetherR is element of the symmetry group pf.

Until here, the twins discussed are produced by shearingtijgle lattice generated lpy. However,
twinning is not restricted to these modes. It may also hagpahthe twinning conditions hold
only for a sublattice, see Fid._2.6. In that case, the atomi<aptured by the sublattice have to
undergo a so called shuffling, because the simple sheamdafion does not leave them in their new
lattice positions. Shuffling is the nonhomogeneous buigécimovement of atoms not captured by
the simple lattice that undergoes twinning, see Figsl 2dZ&i for illustrations. As pointed out
by (Christian and Mahajan (1995), twinning modes includihgfing are of practical relevance. In
Fig. [2.1, several realizations of{@13} twin in a simple cubic lattice_ (Hirth, 2000) are depicted,
involving pure shear, pure shuffling and a mixture of bothe Pure shuffling examples are not of
practical interest, because the question which drivingdarggers a sudden shuffling without a mean
deformation and without a change of crystal class cannonbe@red conclusively. Most twinning
modes that are of practical interest are realized by a sirsipéar deformation plus shuffling, as
depicted in the lower left subfigure of Fig.R.7.

There has been made some effort to predict possible twirniodes by Bilby and Crocker (1965),
based on the assumption that the twinning modes with smadirstumbers and a minimum of shuf-
fling are preferred. It is clear that one can search for a vamgel sublattice which can form a twin
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Figure 2.6: Left: Twinning mode involving shuffling, righdhuffle-free twinning.
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Figure 2.7: {013} twinning in a simple cubic lattice. Note that shuffling doest need to occur
parallel to the plane of shear. Upper left: pure simple skhefwrmation withy, = 4. Upper right:

pure shuffling. Lower left: simple shear deformation wijth= 1 plus shuffling of 50% of the atoms.
Lower right: pure shuffling parallel to the twin parent iritere.
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with a very small shear number, which would give a supposadyeactivated twin systems. As
countermove, growing with the size of the sublattice-hasisre shuffling is necessary. As well, the
twin thickness is a multitude of the size of the sublatticeifavhich makes an arrangement of more
thicker unit twins more difficult. See Westlake (1966); Tinwon (1965) for a discussion on shuffling
and unit twin thickness.

However, by solely looking at perfect lattices, it is igndréhat twin propagation is connected to
dislocation movement and stacking faults, which will becdssed later on. Therefore, itis practically
impossible to predict relevant twinning modes by solelykiag at the lattice basis.

2.3 The Hexagonal Lattice

For a hexagonal lattice, it is convenient to use the MilleaRis basis

a; = aeq, (258)
as — —961 + al—\/geg, (259)
2 2
a CL\/g
as = —561 — 5 €9, (260)
c = ces. (2.61)

This basis is widely used in the literature (see Eigl 12.8,m&n (1966); Pitteri and Zanzatio (2002)).
The lattice parametersanda represent the height of the cell and the edge length of theelisagon,
respectively, and correspond to the norms:@nda, ¢ = /¢ c anda = \/a - a. Although one
usually does not appreciate the use of linearly dependesat vectors, this basis has the advantage
that it reflects the hexagonal symmetry. Permutations oftinegponents belonging @, 3, a change

of sign of thec-component or a change of sign simultaneous om@alk yield crystallographically
equivalent directions, which are denoted(asi,asc). Usually, negative components are denoted by
7 instead of—z. Further, due to the linear dependencewof 5, the conditiona; + as + a3 = 0 is
imposed, and therefore sometimes the third compaosgistomitted.

To indicate planes, it is advantageous to introduce antdss. This is done by taking the dual basis
(a1, as, ¢) of (ay, as, ¢) and defining the base vectors

2 1 2
=l — @y = — 2.62
a; 3a1 3(12 3aa1’ ( )
. 1. 2 _ 2
ay, = —gal + gaz = @&2, (263)
1 1 2
= ——a; — —a — 2.64
as 3(11 3a2 35283 ( )
1
c'=¢c=—c. (2.65)
c

This basis again satisfies + a3 + a3 = 0, but it is not the dual basis oti(, a-, a3, c). It also
has the advantage that crystallographically equivaleartgd are connected by permutations of the
components and changes of sign as stated above. Again, thgooents should be restricted to
a; + a3+ af = 0. If this is done, several practical simplifications are aled: If a normal vector
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is given with respect to the basjaj, a}, a}, c*), the reciprocals of its components correspond to
the piercing point distances of the plane with the base vectn , a-, a3, ¢). Therefore, the plane
{1012} can be visualised by considering the poiats —as; and1/2c (see Fig[ZI8). Moreover, one
can easily see whether direction and normal vectors arepdigular to each other by calculating the
scalar product as ffai, as, a3, ¢) and(aj, aj, aj, c*) were dual bases. One notes easily tHat 1)
and{1012} are perpendicular to each other:

(ay —as+c)-(—aj+a5;+2c")=—a,-a}+a;-a;—as-a;+az-a)+2c-c* (2.66)
2 1 2 1

=————-—-—= 2=—-1—-14+2=0. 2.67

3 3 3 3+ * ( )

es {1012}-plane

sy R

e Sooas

as
82/

Figure 2.8: Simple hexagonal lattice with Miller-Bravaiasis (left), hexagonal close packed mul-
tilattice constructed from the simple lattice by introchgiadditional translations im = <§0§%)
(right).

2.4 Partial Dislocations and Stacking Faults

A perfect crystal can be constructed by a pile of atomic lay&hich have to be stacked in the proper
sequence in order to construct a defect-free crystal; spdZE® for an illustrative example with an
abstract ABCABCABC stacking. A stacking fault is an errothe stacking. For example, in the Fig.
2.9, along line L the stacking is ABCACBABC, the layers B an@i@ interchanged. This stacking
fault is enclosed by the two encircled partial dislocationsich would be line defects if the 2D sketch
was considered as a cutting plane of a 3D-crystal. The teartigh dislocation” indicates that a finite
stacking fault is limited by a pair of such dislocations.tRddislocations at interfaces are sometimes
referred to as twinning dislocations, Shockley dislogaiodisconnections, transformation disloca-
tions, structural ledges or growth ledges (Hirth, 2000).ilArstrative explanation on the dissociation
of ordinary dislocations into partial dislocations can barfd in_ Reed-Hill and Abbaschian (1994).

In the given example, the partial dislocations enclose a tainella. As one can check, the lattice
vectorst; andt;, in the lamella can be obtained by rotating the basiaround the vertical axis. An
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alternative basis for the twin lamella consisting of thetoext,; andt, can be obtained frorp, by
applying a simple shear deformation, wjth as the shear direction and the vertical axis as the shear
plane normal.

Stacking faults rise the level of the stored energy, espedize elastic strain energy by distorting
the lattice. This energy is called stacking fault energg, lével of which depends on the crystal.
Materials with a low stacking fault energy form more readitpcking faults than materials with a
high stacking fault energy. Regarding a twin lamella as ekatg fault, it is concluded that materials
with lower stacking fault energy are more inclined to formrsv A twin can be regarded as a pile
of stacking faults/(Bovko et al., 1994), see FIg._2.10. Nbia for stacking faults it is convenient
to form neighbours, as the stored energy of the rejoined lddalger stacking fault is reduced by
eliminating two interfaces. The resulting twin nucleusherefore more stable than the individual
stacking faults, which renders the agglomeration of stagkaults to twin nuclei capable to reduce
the internal energy of a crystal.

At this point, the interested reader is referred to the ditere on dislocations in general
(Reed-Hill and Abbaschian, _1994) and partial dislocatiarmnected to twinning in special
(Boyko et al.| 1994). It is emphasised that the aforemertias only a brief introduction, sketch-
ing the idea of how partial dislocations and stacking faatesconnected to twinning.
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Figure 2.9: A stacking fault, enclosed by two partial disitbons.
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Figure 2.10: A twin can be considered as a pile of stackinfidau
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Figure 2.11: Scanning Tunnelling Microscope (STM) imageao$tacking fault in a sputtered
and annealedt,5Ni;5 single crystal, enclosed by two Shockley partial dislawagi (courtesy of

1.[(1992)).
2.5 Stacking of the HCP and the FCC Lattice

The hcp and the fcc crystal lattice can be constructed bylaegtiackings of planes of regularly
densely packed spheres. By translating the base planethBebne obtains the variants B and C
(see Fig[Z112). By stacking ABAB... one obtains the hcpdattwhile ABCABC... results in the fcc
lattice (Fig.[2ZIB, see, e. gL_BIILeLLa.n.d_Za.nzldLLo_dZOOB))th lattices differ only by a parallel shift
of planes, which facilitates the mechanical induced fccd thansformation that is important for the
TRIP effect (transformation induced plasticity). In thehease the stacking direction coincides with
the cylinder axis of the unit cell, while in the fcc case thesaunit cell can be obtained by stacking
along the 4 distinct body diagona{$11). Following Kepler's conjecture, which can be regarded
as proved@s{__ZObG), in both cases the stacking is a® denpossible, WitlVsyhere/Viotar =
7/(3v/2) ~ 74%. However, real hexagonal crystals are not stacked idealylting in ac/a ratio
deviating from the ideally packed case witha = ,/8/3. This value is obtained by geometrical
considerations on the regular tetrahedron. Note that therdaation "hexagonal closest packing”
impliesc/a = +/8/3, while "hexagonal close packing” allows othefu-ratios.

If ¢/a = +/3,the{1012}(1011) twinning mode is not available (Fig—2114). In that c&seandk, are
perpendicular to each other, akg andk!, coincide, i.e. there is no shear deformationc I # /3
one obtains from geometrical considerations the twinnimeps to be

V3 c/a

Yo= = =

cla /3

The six possible shear directions are given by permutatiéns)11), where thec-component has to

be +1 due to the fact that a reversal of the shear directiohapging frome/a < v/3to c/a > /3
is implied in eq[2.68.

(2.68)
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Figure 2.12: Densely packed spheres in 2D. By translatiegptane A the variants B and C are
obtained.

Figure 2.13: Stacking of fcc (left) and hcp (right) lattiddote how the spheres form straight lines in
the left figure, which are the face-diagonals in the fccdatti
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2.6 Twinning in Magnesium

Twinning in magnesium has been studied in detail firstly byedRElill and Robertson
(1957&.,b); | Partridge | (1965); Roberts and Partridge (1988bnsiewicz and Backofen| (1967);
Kelley and Hosford|(1968). Since these pioneering worksrgel amount of literature concerning
twinning in magnesium and its alloys has been publishedallisthe twins are categorised as exten-
sion or compression twins, depending on wether they appeserielongation or compression along
the c-axis. Magnesium has~ 0.52103nm anda ~ 0.32094nm, which gives:/a ~ 1.62345, i.e. it

is quiet close to the densest possible packing wijth = \/% The unit cell is slightly less high
than thick. This causes tHg012}(1011) twins to be extension twins (see Fig.2.14), while twinning
along the{1011}, {1013}, {3034} and{1015} planes|(Meng et all., 2008) occurs undeaxis com-
pression. Recently, Stanford (2008) obseryétP1}-twinning in the magnesium alloy WE54. The
exact determination of the twinning mode is not an easy tastause precise measurements of lattice
and interface orientations are necessary. Usually, ther gh@nen is measured, and is constrained
by n - d = 0. However, still more than one combination of twinning shead atomic shuffling
are possible. Though the shear is hard to measure in thinllisané has been determined mostly
by "ingenious geometric guesswork” (Zanzotto, 1992). Bameple, the{1011} twinning mode in
magnesium reported hy Hall (1954) had to be corrected duggerenental findings by Reed-Hlill
(1960).

Figure 2.14: Visualisation of the effect of a variation oé#y« ratio on the magnitude of the shear
deformation accompanyingl012} twinning. Left: ¢/a > /3, twinning shear increases width of the
entity, leading tac-axis compression. Centre/a = +/3, width and height do not change (the mean
deformation is zero, n¢1012} twinning). Right:c/a < /3, twinning shear increases the height of
the entity, leading te-axis elongation.

In a recent workl(Al-Samman and Gottstein, 2008), planerst@mpression tests on cuboid-shaped
AZ31 samples with different processing histories are edrdut. One of them is an extruded sample,
that is compressed along the extrusion direction (Eig.])2.Extruded magnesium is textured such
that thec-axes and one of the; directions are distributed approximately uniformly andg@adicular
around the extrusion direction, i.e. a compression aloegettirusion direction results in @axis
elongation and vice versa. In a compression test, the diyréexgured material undergoes a complete
shift of texture, see Fig—_216. However, the impressivengeeaof texture does not occur when the
loading direction is reversed. As well, one observes a prooed strength differential effect. The
cause for this is the unidirectionality of twinning. Theaxis elongation is accommodated )12}
twins, while compression twins (mostfi011}) accommodate-axis compression, i.e. elongation
along the extrusion direction. The twinning modes exhibibrsg morphological differences. The
{1012} tension twins are activated very easily, (namely at a shteegsssof approximately 2.7MPa in
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Figure 2.15: Schematic diagram of the extrusion processhancesulting texture.
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Figure 2.16:(0002) (left) and(1010) (right) pole figures before (above) and after (below) the com
pression test at = 0.28 (courtesy of Al-Samman and Gottsiein (2008)). The progectirection

is parallel to the extrusion direction. A4012} twinning reorients thes-axis about approximately
86°, the outer ring (upper left figure) transforms into the cemgeek (lower left figure). The slight
deviation from the approximately rotational symmetriatstg texture comes from the asymmetry of
the loading (plane strain compression, two opposing famekept fixed).
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Figure 2.17: Strength differential effect in the AZ31 maginen alloy (left, courtesy df Chino etlal.
(2008)), sketch of1101){1102} extension and1102){1101} compression twinning (right). The
extension twins appear in an compression test along theseair direction and vice versa.

pure magnesium, Koike (2005)), and their boundaries ardleokhe {1011} compression twins are
thin, pinned lamellae. Instead of growing in thickness ttke elongation twins, double twinning (first
{1011} compression followed by1012} extension twins) is observed as loading continles (Yilet al.
2009).

Therefore, in a compression test, the major deformatiorhargism are th¢1012} elongation twins.
After virtually occupying the entire volume, elongationitwing is no more disposable. Due to
the reorientation of the-axis of approximately 86 the deformation is then accommodated by
{1011} compression twinning_(Wonsiewicz and Backofen, 1967; é{elind Hosford, 1968), as it
occurs from the beginning if the contrary loading directisrchosen. As depicted in Fid._2117,
the stress level is then approximately the same as in thétetsst. Due to the immobile inter-
faces of the compression twins, the deformation accomneddagfore fracture is much lesser than
in case of elongation twinning. The double twins have beemtified to be crack initiation sites
(Hartt and Reed-HIll, 1968; Yin et al., 2008).

Sumarising roughly{ 1012} tension twins allow for large deformation accommodatiohile/{ 1011}
compression twins preceed fracture. A similar behaviowbiserved in titaniunm_(Serra and Bacon,
1996; Ungar et all, 2008) and ziric (Lay and Nbuet, 1994), wbiggests that the morphological dif-
ference between the twinning modes is intrinsic to the hemaplattice structure. It is explained by
the characteristics of the distinct interfaces and padigbcations belonging to each twinning mode.
In a series of articles, Serra and Bacon (1986, 1991, 19%8ysed twinning by the molecular dy-
namics technique. Firstly, they examined which of the défe many-body potentials given in the
literature suite best to each hcp metal (Bacon and | iangg)YL98arashi et al. (1991) even adapted
parameters of the many-body potentials such that they deeothe elastic properties anth ratio

for eight hcp metals. With the potentials at hand, stackaudtfand interface energies have been cal-
culated, and found to be in agreement with experiments&Zerd Baccari, 1986). In Serra and Bacon
(1991), the mobility of partial dislocations belonging tfferent twin interfaces has been studied by
means of molecular dynamics. It is found that dislocation$1i012} and {1121} boundaries are
very glissile, but sessile ifi1011} and {1122} interfaces. In_Serra and Bacan (1996), the interac-
tion between basal slip dislocations and different twireifgces has been studied. It is found that
if a basal slip dislocation hits 1012} interface, a source fof1012} partial dislocations is created,
which forms pairs of partial dislocations if a shear strairapproximately+0.005 is applied. The
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source therefore provides a mechanism to move the integiackially by generating a pair of partial
dislocations, as long as the load is not removed and no dessamet. The converse is reported for a
basal slip dislocation that hits{d 011} interface. It creates there a pair of partial dislocatids not
an independent source for twinning dislocations. Togettidr the findings from_Serra and Bacon
(1991), a convincing explanation f¢i012}-twinning being the most prominent twinning mode in
hcp metals is obtained.

Another explanation for the needle-like011} twinning and the extensivgl012} twinning is that
the {1011} twins produce a larger shear strain. Therefore, to accorateaa certain deformation,
compared td 1012} twinning, less volume fraction df1011} twins is necessary (Bingert et al., 2002;
Jiang et all, 2007). At least for magnesium this explanasoather improbable, as the corresponding
shear numberso12; ~ 0.13 and~y0113 ~ 0.137 differ only slightly.

Li and Ma (2009b) recently modeled the development pf@i 1} twin and its interface movementin
magnesium by molecular dynamics. In their simulations, gmeaium single crystal is subjected to
a strain driven tensile test. The crystal orientation iighat 2 of the 6 possible twin variants are not
triggered, while 4 of them are equally preferable. It is fduhat in the process of twin nucleation,
initially two twin variants develop, one of which is assiatéd by the other one as the simulation
continues. As the model is symmetric, itis to conclude ttsmall perturbation, like a dislocation, can
cause the unfortunate twin to be the other one. This undsrtime affinity of twinning to bifurcation.
In order to obtain reproducible results, both, the simalatiand the experimental setups should
avoid ambiguities like equally preferred twin systems. o interesting result is that three kinds
of interface steps are observed, namely 1,2 and 4-layes.siéfhile the 1-layer step is sessile, the
2-lacer step is glissile. The 4-layer step is unstable assodiates into two 2-layer steps, between
which a repulsive force is acting. The movement of the iakfis connected to the generation
of prismatic dislocation. In another work, Li and Ma (2009ajused on the atomic modelling of a
{1012} twin interface in magnesium, employing the embedded atonetny/ Liu et al.{(1996). It has
been found that the morphological difference betwéeii1} and {1012} twinning in magnesium
can be explained by the mechanism underlying to the interfaovement. In case of thg011}
twinning, the interface movement rests upon the movemeptdfal dislocations, while in case of
the {1012} twinning, atomic shuffling appears to play the leading raled no pronounced partial
dislocation is observed. Therefore, unlike)12} twinning, the{1011} twin propagation is restricted
by the partial dislocation density, which renders {612} interfaces more glissile compared to the
{1011} interfaces.

A direct comparison to the results of Serra and Bacon is diffithough no interaction with basal
slip dislocations is observed. However, the strategy eyguidy Li and Ma is promising to give
considerable insight into the processes of twin nucleadiuh propagation, like the atomic shuffling
that accompanie$§1011} twinning and the critical stress states. Unfortunatelyahd Ma (2009b)
could not determine the stress necessary f6i 1} twinning, which is due to the high strain rate that
has been applied in their simulation.

In this work we focus on deformation twinning. The approfieandidate for implementation and
testing purposes is theg 012} twinning mechanism in magnesium, due to its capability tmatmo-
date moderate deformations without fracture. Moreovemagnesium and its alloys are of technical
interest, the examination of twinning in the hcp structusg/mrove useful in the process of ductilising
magnesium.
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2.7 Ductility of Magnesium

At room temperature, crystallographic slip occurs only lo@ basal plane in magnesium. Therefore,
it is not as ductile as needed for serious metal forming. A&bRRSC, the pyramidal slip systems
are activated (Emle5s, 1966), and sufficient slip systemsliapmosable to accommodate an arbitrary
deformation.

Some attempts to ductilise magnesium and its alloys aimrovig@ing glissile slip systems at room
temperature which have their slip plane not parallel to tsabplane. The pyramidal and thea slip
systems, which are available at higher temperatures, dlbeybotentially active at room temperature.
It is the task of experimenters, metallurgists and molecdianamic specialists to eventually find
a good alloy composition or material processing. Kelley Hodford (1968) found that alloying
Mg with Li (approximately 12 at.%) makes the prismafitd10}(1210) slip systems available by
decreasing their critical shear stress, while the sheasstreeded for basal slip is increased such that
Torism/ Thasal = D (Haferkamp and Jaschik, 2000). Therefore, a more ducthevieur at low specific
weight (ov, = 1,738g/cm?, pr; = 0.534g/cm?) is obtained, although still no slip systems are
available forc-axis straining. By adding between 17at.% and 30at.% of twiaphase microstructure
is obtained, while at a Li fraction of more than 30at.% the nesjum atoms are dissolved in the bcc
Li lattice. If enriched, e.g., with aluminium, one obtainsaloy of moderate strength, which is due
to its low mass density particular interesting for highlyhdynic applications. Very light Mg-Li alloys
have been used in the aerospace and arms industry in the 4880960s, but did not find broad
application in civil engineering.

The tensile ductility, microstructure and texture of eged magnesium to which rare earth elements
are added have been recently studied by Stanford and B¢206#). The dependence of the tensile
ductility and fracture elongation on the alloy compositajrcast Mg-Li has been recently studied by

Regener et all (2007).

A more direct approach to produce a more ductile material geherate a fine microstructure, which
has been recently demonstrated for the magnesium alloy$ X B¢ Ma et al. (2009) and ZK60 by
Lietall (2009). By a large number of equal channel angulasfing passes (ECAP), an average
grain size of approximately 1.om and 0.8:m is obtained. This can enable so called superplastic
deformation mechanisms, which are mainly grain boundaayng) and recovery by dynamic recrys-
tallisation. Similar has been shown for Mg-9Li-1Zn by Kimadt (2009), who found that a single
»high-speed-ratio differential speed rolling” processigmtes an ultrafine microstructure in Mg-9Li-
Zn, which enables a fracture elongation up to 50% of logarithstrain at room temperature. The
ECAP can be used as well to generate a homogeneous textupmgiale distributionl(Gan et al.,
2009).

2.8 Experimentally Observed Twins in Magnesium

In order to illustrate the latter chapter, some micrograpfiysure magnesium are presented. Stripes
have been cut out of cast magnesium, which has coarse-grsarenoi-like microstructure. The
specimens have been grinded and polished, with a maximughnass of Am. To visualise the
morphology, the samples have been etched approximatelgetihds in 3% nitric acid. As twins
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form in magnesium at very low stresses, the preparatioregioe induced already a large number of
twins, see Figl_Il1. An impression on the twin formation cediog is given in Fig[ZZ]8. It has been
obtained by preparing a cubic sample as described abover #iting relatively homogeneous and
twin free grains, the sample has been gradually deformedenah vice, and the grains have been
reviewed. One notes that a twin network evolves with ongaiefiprmation, and the surface of the
sample roughens noteably due to the inhomogeneous deform#&n atomic force micrograph of
small free twins can be found in Fig_2.8, left. These twinsfeart of a line of short, free, parallel
twins, (see Fig.[ 218 right, the upper region), which is pldpaa trace of a scratch that has been
introduced during the surface preparation.

Figure 2.19: A small free twin (left, AFM figure), which belgs to a chain of similar twins (right,
optical microscope figure, upper region).

2.9 Twin-Parent Interface

Considering the mirror symmetry of the atomic arrangemeuatnél on a coherent twin-parent inter-
face, the classification into twin and parent is rather eyt The unique assignment is given by the
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Figure 2.20: Untwinned (left) and twinned (right) crystahe interface is a a plane of mirror sym-
metry.

order of appearance, i.e. the parent is the primary streictunile the twin forms afterwards. It has
in general a much smaller volume fraction than the paremtjssurrounded by the parent. The twin
parent interface can be regarded as a planar perturbatibe ofystallographic structure. As such, it
contributes to the internal energy, which is physicallydzhsn the fact that the atoms on the interface
cannot occupy their energy minimising configurations adicay to the crystal structure (Fig._2120).
Therefore, the existence of the interface does not correspm a state of minimum energy, but is
determined by the history of the material (Haasen, 1996 Ouhe fact that a coherent twin-parent
interface is a plane of mirror symmetry, no driving force ba position of the interface is induced by
the existence of the interface solely. A driving force canlbgved by stating that the interface moves
towards the crystal which accommodates the macroscopiim stith the lesser elastic strain, i.e. by
minimising the elastic energy. If the driving force is lag@ough, the partial dislocations move along
the interface such that the interface moves towards an etextly favourable configuration. In such
a process, the change of the size of the interface is of mmpoitance, which holds therefore for the
interface energy as well.

By assuming that the twins arrange such that a local energymmaim is obtained, one can derive
some properties of the twins, if the elastic strain energy the interface energy are given. E.g., by
prescribing the twin geometry except for the thickness, cane obtain the twin thickness by min-
imising the the sum of elastic strain energy and interfae¥gn(Khachaturyan, 1983). Conversely,
this approach can be used as well to estimate the interfaargyeby measuring the twin thickness
(Demczyk) 1990). Additional to the interface and strainrggeone can consider the ,intrinsical dis-
sipation” to estimate a critical resolved shear stresgyRet al., 2003). These approaches compare
distinct states in finite volumes, while the focus in this kv on local modelling equations that are
continuous in space and time.

It is generally difficult to treat interfaces in a continuulneory, which is due to the fact that the inter-
faces represent discontinuities in space and, in the moafdatmation, in time, while one is inter-
ested in smooth modelling equations. The modelling eqonatiwe written down for a material point,
which cannot contain discrete interface. Several authegsstrain gradients to energetically penalise
sharp strain changes like those found at twin-parent imtes (see, e.d., Truskinovsky and Zanzotto
(1996)). Such a strategy has to be regarded as a regulanisztthe strain jump at the interface,
which requires a strongly nonlinear dependence on thenggradient. This is inconvenient from the
practical viewpoint, though a fine spatial discretisatioméeded when the solution is approximated
numerically.

Haasen|(1996) stated that twin-parent-interfaces shoaNe kxtremely low energies, with nd/
being a reasonable measuring unit_In Serra and Bacon| (1®@lyaluesgyicioiz; ~ 187mJim?
and wipnaseiorzy ~ 141mJin? are given. The indexing corresponds to the two differenepibals
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used by Serra and Bacan (1991) and the twinning mode. Bo#npals display characteristics close
to real magnesium. Thg1012} twin interface energy is in both cases larger than the iateren-
ergy belonging to the less frequently obsery@t11} compression twinsprvgion; ~ 141mJin?
and wipnase(iony ~ 79MIm?. In fact, the values given fof1121} and {1122} twinning are be-
low the values fo{ 1012} twinning as well. The{1012} twinning mode is the most easily activated
twinning mode, although it charges more interface energy tihe alternative modes. This leads
Serra and Bacon (1991) to the conclusion that the interfaeegg is of minor importance compared
to the partial dislocation core properties.

It appears therefore reasonable to exclude the interfaegefrom the modelling efforts in the first
place, as it is done in many publications (e.g., Kochmann&n(®2009)). It may be used as a fine
tuning tool. In fact, some problems that arise in the elastclelling of twinning are possibly solved
by incorporating an interface energy, namely the infinifahg twin-parent mixing and the energy
invariance in conjugate twin systems.

2.10 Twinning-Induced Effects

The twinning mechanism induces a number of practical reliegtects. As twins form as lamella-
shaped subgrains with a reoriented lattice (Higsl [1.1] 2ntdiZ.8), twinning contributes strongly to
the grain refinement, the morphological texture and thetaltlpgraphic texture evolution. Therefore,
the elastic behaviour, yield locus and plastic behavioaadtered. Unlike crystallographic slip, twin-
ning is polar and practically reversible (Lubenets et @80), which induces a strength differential
effect and a pronounced or reversed Bauschinger effectnaiépg on the crystallographic texture.

Hardening behaviour. The influence of twinning on the work hardening can be quitagex. An
important contribution is given by the dynamic Hall-Petekation. Due to the grain partitioning by
twinning, the mean free path for dislocations movementdsiced, as well as the mean free length
for the growth of a new twin. To obtain a certain mean deforomaby twinning, more twins have to
nucleate (by dislocation movement) in a fine grained stredfoan in a coarse grained structure.

Recently, it is discussed whether this effect may be ratbevrsdary/(Caceres et al., 2008; Sevillano,
2009) compared to the effect of twin saturation. At the omddtvinning, twins form at the most
favourable sites in the crystal. As the potential twinnioduvne is limited, the available twin forma-
tion sites decrease with ongoing deformation. Consequéeh# less favourable nucleation sites have
to be occupied, for which a higher loading is necessary.

Another contribution to the strain hardening is given by Besinski mechanism_(Basinski ef al.,

1992), who observed that in fcc Cu8Al glissile dislocatiamshe parent are converted into sessile
dislocations in the twin. To find out whether similar changappen in hcp crystals is a challenge for
experimenters and molecular dynamic simulation experts.

Twinning has a strong impact on the crystallographic textuvhich can influence the hardening
behaviour. For example, the reorientation of the latticgen1011} twinning by approximately 56
can leave the basal plane in a more advantageous orientatibasal slip, which could reduce the
yield stress. If1012} twins, this effect is negligible due to the reorientationdpproximately 86.
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In a cyclic deformation, another contribution to hardeniaggiven by the strength difference of

twinning and detwinning, which is due to the unilateral ptwin nucleation. For the magnesium-

aluminium alloy AZ31B,/ Lou et al.[(2007) estimated that @lost-hardening to basal slip (Hall-

Petch), textural hardening and the twinning-detwinnirrgrggth difference contribute at the same
order of magnitude to the overall hardening behaviour. Hselts, however, depend strongly on the
alloy composition, texture and deformation mode.

It has been observed that the work hardening rate may ireesafie temperature is raised or the strain
rate is decreased (Christian and Mahajan, 1995), whichash&r uncommon behaviour. A possible
explanation may be that higher temperatures and lowenstes promote dislocation movement. As
the twin nucleation is explained by the agglomeration otiphdislocations, a possible explanation
for this behaviour may be that in a slowly driven test or atheigtemperatures, twin nucleation
is eased, leading to a high twin density. For magnesium, iiep®rted that the number of twins
increases with a decreasing strain rate (Maksoud et al9)2@onsequently, the grain partitioning
due to twinning, which forwards the Hall-Petch-hardeniisgnore pronounced than in fast or low
temperature tests. When twin nucleation is hindered, bt propagation not, the first few nuclei
have to rapidly expand in order to accommodate the defoomaéind fewer but larger twins evolve.
In that case, the partitioning of the grains is less pronedncesulting in a lower work hardening
rate. Moreover, the more pronounced slip at high tempezatand low strain rates leaves a more
heterogeneous grain structure that hinders twinning.

In alloys, the rather complex hardening behaviour is everensomplicated by the slip-twin inter-
action with precipitates, which can increase the hardenatg especially for twinning-dominated
deformations. Fine particles serve as nucleation sitestla@fore increase the number of twins,
but their size and overall volume fraction is reduced. Thie fnagmentation increases the total twin-
parent interface, and consequently the stored interfaeggnwvhich indicates an increased hardening
rate. As precipitates hinder basal slip, which is necestargccommodating th¢1012} twin tips,
Stanford and Barnett (2009) state that the hardening effieetto precipitates affects this twinning
mode always equally or stronger than the basal slip. Cl##&&)found that in a Mg-9 wt.% Al alloy,
precipitation plates form along the basal plane, which segmpthe{1012} twin formation, but not
basal glide. Therefore, in this alloy, strain hardening @enrelevant than precipitation hardening.
Moreover, the hardness can be considerably increased l®akmg, which has been confirmed by
(Regener and Dietze, 2006). However, other alloying aoldfit{e.g. Zn) can lead to different precip-
itation behaviour, which can considerably contribute te hgrdening.(Smola etlal., 2004; Liu et al.,
2009).

Creep. Twinning can contribute differently to creep, dependingloa crystallographic texture and
the loading conditions._Sato and Kral (2008) studied crdegast samples of a complex magnesium
alloy. Itis found that in the first stage of creep, significarinning takes place in some grains. In the
second stage, steady state creep linearly related to twgrirds been observed. Finally, fracture starts
mostly from a fully twinned grain that cannot accommodateereformation. It is to conclude that
by adapting the texture appropriate to loading conditidna part, a certain control over twinning-
induced creep is gained. This is especially interestingtduke polarity of twinning, which may be
used to adapt textures to the loading conditions, such teapalue to twinning is virtually excluded.

Creep due to twinning can be significantly reduced by the &bion of precipitates. In magnesium-
rare earth base alloys, ,plate shaped precipitates, wimich bn the prismatic planes of the matrix
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in a dense triangular arrangement, provide not only moscaie barriers to the motion of basal
dislocations motion but are also very effective againstgr@eformation.” (Summary in.Smola el al.
(2004)).

Moreover, precipitates nucleate at stacking faults, dafions and grain- or twin boundaries
Kaya et al. (2004). The latter hinders the twin boundary omtand contributes therefore to strain
hardening and creep resistance.

Low-temperature ductility. Crystals that deform by twinning can show a behaviour reveyshe
experiences made with deformations by crystallograpliyc $lor example the ductility of CuSn3.1
at.% bronze, silver and the silver alloy AgAu25 at.% is cdaesibly increased as the temperature is
lowered to values such as 20K (Reed-Hill and Abbaschiand;1Q8ristian and Mahajan, 1995), see
Fig. 2Z21. Usually, thermal fluctuations assist the reayeament of atoms and dislocation glide, and
one expects the ductility to decrease with temperatures tib isuspect that at higher temperatures,
slipping, being the primary deformation mode, causes tamgito deform inhomogeneously. There-
fore, an inhomogeneous crystal orientation distributid@D) inside the grains emerges, which is
disadvantageous for twin propagation.

Strain rate dependence. The flow stress due to twinning depends only weakly on the &atpre

and the strain rate, see Fig._2.21. For both dependencissiveand negative sensitivities are re-
ported, depending on the lattice structure and the twiregsystT he tendency to substitute slip by twin-
ning changes rather slowly with temperature, but rapidignhe strain rate (Christian and Mahajan,
1995). This is due to the higher sensitivity of the slip atyiwn the strain rate. Moreover, at low

strain rates, the grain partitioning due to twinning is man@ounced, which influences the hardening
behaviour via a dynamic Hall-Petch effect.
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Figure 2.21: Left: Low temperature ductility caused by ming, from|Reed-Hill and Abbaschian
(1994). Right: Strength differential effect in texturedlymwystaline magnesium at different strain
rates, from Reed-Hill (1973). Note that the twinning-indd@lateau in the compression test is rather
unaffected by strain rate changes.
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Elastic twinning. Another unusual and often cited finding is that relativehlgéatwinning-induced
strains (up to 12%) may vanish upon unloading, which suggétt the twinning is practically
fully elastic (Bolling and Richman, 1965; Lubenets et al980). [Bolling and Richman| (1965)
claim that their FeBe25-specimens deform primarily by tviiig and by a negligible amount of
slip, and draw conclusions regarding twinning. Unfortehat the term twinning is misplaced
in their work, since they observed mechanical induced maitie transformations. Therfore,
a considerable chemical driving force comes from the faet the unstable, lower symmetry
orthorhombic lattice transforms back to the cubic phasedlal966). Although this driving force
biases most of their findings when applied to pure twinnihgytare cited sometimes rather uncrit-
ical. If real twinning is considered, the elastically reemable strains are quite small (Wu et al., 2008).

It is particularly difficult to understand how twins are alepropagate at speeds at the order of
the speed of sound, while a reasonable speed for dislocatamvement is approximately 50m/s
(Sleeswyk, 1964), which is well below the shear wave spebdréfore, the twin propagation mecha-
nism by partial dislocation movement cannot be the full arption. It is to suspect that it is a mixture
of homogeneous shearing and dislocation movement.

The lightweight metals magnesium and titanium are of highnécal interest. Both exhibit a hexago-
nal atomic structure, which makes both of them prone to m@&chhtwinning. The known problems
connected to twinning, like fracture initiation, strengifferential effect and largely unpredictable be-
haviour are opposed by potential benefits, like an outstendiictility by inducing the TWIP-effect,
or the design of texture distributions adjusted to the camepts demand_(Jiang et al., 2008).
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Chapter 3

Simulation of Mechanical Twinning

Since mechanical twinning influences the material propeitty changing its microstructure, one is
interested in its proper modelling. In the following, a rbugverview on the simulation of twinning
at different scales is given. For a more detailed accourReeitek (2004).

3.1 Macromodels

This modelling approach uses and predicts information fteenmicroscale in an averaged and ho-
mogenised sense. With respect to mechanical twinning, etnaeterial point, the volume fraction
of each phase (e.g._Tomé et al. (1991)) or the average gmanesig.l Allain et al.[(2004)) are pre-
dicted. The model length has to be considerably larger thateingth scale at which the microscale
processes take place. l.e. for twinning, which occurs orgta@ scale, the model size has to be at
least sufficiently large to cover a representative numbgraihs. Macromodels have the advantage of
being computationally less intense than models that senaesmaller length scale, and are therefore
more useful for engineering problems. Further, if one iy amlerested in a specific information, one
can pick a macromodel that accounts to ones needs.

Macromodels can be formulated purely phenomenologicallgdapting model parameters to exper-
imental findings, or they couple a physically motivated aggh on the microscale with a necessarily
crude analytical homogenisation scheme. A prominent el@sphe Taylor-homogenisation applied
to single crystal slip (see, e.q., Bohlke (2001)). Due tortwegh homogenisation, non-negligible
information may be lost. For example, the Taylor-homogatios used to predict the change of
the crystal orientation distribution (COD) by crystallaghic glide may lack texture components
(Bohlke et al.; 2007). It also overestimates the texturemsiess. Some remedies for the latter are
proposed, e.g. the superposition of an isotropic backgtauadel (Bdhlke et all, 2006) or of the
Sachs homogenisation scheme, which underestimates thegskarpness (Ahzi and M'Guil (2008)
and references within). A more refined homogenisation isse#ieconsistent scheme, which uses
Eshelby’s solution. (Esheloy, 1957) of an ellipsoidal irsstin to implicitely derive the material be-
haviour of the surrounding homogenised equivalent medHE).

Macromodels that rely on a homogenisation scheme can bermaathequite expensive. The numer-
ical effort for the determination of the HEM-behaviour aslivés the number of internal variables
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grows with the number of crystal orientations that are ipooated. In order to approximate an
isotropic COD by single orientations, one needs a large atnaflorientations to obtain a reasonable
approximation. In order to reduce the number of internalkdes and calculation time, the ODF can
be approximated by weighted components instead of disoregatations. Different decomposition

techniques are proposed in the literature. Prominent tquba are the use of Mises-Fisher distri-
butions around discrete orientations (Fisher, 1953), gecal harmonics expansion of the ODF
(Bunge) 1977) and the tensorial series expansions of the (BDike et al.| 2006).

A recent application of the self-consistent viscoplastmlegenisation scheme to magnesium and its
alloys is given by Proust et al. (2009), who homogenised @860 orientations. The used material
model is relatively complex by, among other subtletiespiporating the directional Hall Petch effect,
which results in considerable numerical effort. The sirtedastress-strain curves for a deformation
process including strain-path changes are in reasonatl@eragnt to experimental findings.

Macromodels are mostly computationally advantageous eoaapto micromodels. However, in or-

der to obtain qualitatively reasonable predictions, cocapeéd models have to be introduced, with a
large number of material parameters. In many cases, theialgtarameters have no physical in-

terpretation, and the quality of the predictions may sthpmgpend on the strain path, leaving an
uncertainty which is not always acceptable. In principl@ezimental confirmation is always neces-
sary when results are obtained from microstructural in@itanditions that deviate strongly from the

conditions at which the material parameters have been edapurther, macromodels are improper
to gain understanding of the underlying mechanisms. In timéext of twinning, a macromodel that

respects crystallographic glide and twinning simultarsipaannot offer insight into the interaction

between slip and twinning. It can, of course, help to un@agbbservations on the macroscale.

3.2 Micromodels

Micromodels claim to predict the material properties withbomogenisation. With respect to me-
chanical twinning, the crystal (parent or twin) is deteredrat each material point. By doing so,
micromodels automatically have the problem of dealing \hih phase transition in an erratic way,
while the phase transition as seen from a macroscopic péintew is smooth due to the con-
tinuous change of the volume fractions. Therefore, micrdeh® that incorporate phase changes
exhibit some inconvenient properties regarding the stgbéind the uniqueness of the solution
(Abeyaratne and Knowles, 2006), which are object of reseimronathematics and mechanics.

The minimum model size is restricted to be larger than thgtleacale at which the material can no
more be described by means of a continuum theory. Therefasejoubtful whether the mechanical
behaviour of very fine twin structures like observed by Hissal. (2005) & 6 atom layers per twin)
can be modeled by using a microscale model.

The advantage of microscale modelling is that one can olm&mmation which is usually lost in
the homogenisation process when employing a macromodetorjunction with a numerical ho-
mogenisation procedure, one is able to obtain more presis®aions of the macroscopic material
behaviour as by using a macroscale model. A common numédracabgenisation procedure is the
RVE-technique. Being computationally more expensive tihacsromodels, micromodels offer more
precise predictions in return. Moreover, micromodels anphstic compared to macromodels. While
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macromodels should respect in some way the grain morpha@nondyhe COD, micromodels contain
less modelling parameters, which are determined by therrablbehaviour of a single crystal. This
is advantageous for the physical interpretation of the rtiodgparameters, as well as for the repro-
ducibility of the experiments. Compared to macroscale icamations, in a repeated experiment bias
due to different microstructures is excluded. A micromadelvhich twinning and slip are simul-
taneously incorporated may help to understand their iotera though experiments become more
difficult the smaller the length scale is.

This is motivation enough for setting up micromodels for treucal twinning, which has been done
by ISilling (1989);. Collins 1(1993);_Forest and Parisot (zZDUdesman et al.| (2000); Lapczyk et al.
(2000); Pitteri and Zanzotto (2002); Wang et al. (2004)1irgjl (1989) and _Collirs (1993) approach
the problem by setting up a nonconvex elastic energy fungctitnich has been suggested by Ericksen
(1980). LSilling (1989) uses his CHIMP algorithm to track twen evolution, but does not con-
sider real twinning modes, avoiding the problems explaineslectiol4.B| Collins (1993) treats the
problem as purely elastic. He approaches the global enengiynum by using an optimisation al-
gorithm, and obtains phase mixtures as fine as the spataketisation allows. Forest and Parisot
(2000) approach mechanical twinning by regarding twineyst as slip systems that undergo soften-
ing until reaching the twin shear. In contrasi to Silling 899 and Collins|(1993) his model allows
for the straightforward use of a critical twinning stresdesman et all (2000); Lapczyk et al. (2000)
use an order-parameter that smears out the transition franpbase to another. Wang et al. (2004)
describes the formation of martensitic plates by using thasp-field-microelasticity. Each mod-
elling technique has its advantages and disadvantageshkkpossibility of remaining "intermediate
twins” after load removal (Forest and Parisot, 2000; Idasetaal.| 2000), restriciton to small strains
(Wang et al.,. 2004) or the overestimation of critical stsaamd stresses (Silling, 1989).

One may ask why one should not set the material model instaatesly from the parent to the twin

configuration as, e.g., a resolved shear stress conditr@ached. A straightforward approach could
be to reorient the stiffness tetrad and map the stress-trefigaration by the corresponding shear
strain. Unfortunately, such a model would induce instaatasly, due to the relatively large shear
strain, large elastic stresses. These elastic stressdd wause, if it were permitted, immediate
detwinning on the same system. Moreover, in a numericallsition, the large elastic stresses would
cause a snowballing twin growth, far from realistic behavio

From the latter considerations it is clear that modellingatimuous shift from the parent to the twin
configuration is a more promising approach. In this work, r@tiomous differentiable nonconvex elas-
tic strain energy is employed. If one is interested in a atastee modelling approach, a starting point
could be to postulate differential equations which desctiite evolution of the twin volume fractions,
where the condition that the phase volume fractions haveuto $p to one at any time has to be
fulfilled. The behaviour of the latter defines whether oneagtst a macro- or a micromodel. If stable
phase mixtures are predicted, one has a macromodel, whaldas a micromodel if only the one-
phase states are stable. In case of a micromodel, it may bedadea to employ delayed differential
equations, though the existence of a waiting time for twowgh has been confirmed experimentally
(Kawabata et all, 2000). DDEs can be designed such thatdbgoe does not immediately follow to
the cause, which allows to incorporate the waiting time, el tve snowballing twin propagation can
be avoided.
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3.3 Molecular Dynamics

Modelling on the molecular level combined with numericahlesation and homogenisation is very
helpful in understanding macroscopic phenomena, seetleegeferences in SectibnP.6, or the recent
works ofiHildebrand and Abeyaratrie (2008); Jin etlal. (2088)et al. (2008); Kastner and Acklend
(2009); Liand Mai(2009b). Liand Ma (2009b) accomplishedrimdate the complex 3D atom move-
ment that accompanies the interface movement{dfia1}(1012) compression twin, which is in rea-
sonable agreement with TEM observations. If the computowep increases further, one may think
of a numerical two-step homogenisation, from the atomitesitathe grain scale and from the grain
scale to the macroscale. In such a modelling strategy, ngtspatial but temporal homogenisation
would be necessary. Although a large number of problemsdbs solved for such an approach, it
may be capable of reproducing a large variety of observatimeluding slip and twinning, by very
few modelling parameters that are interpretable on the iatsoale. By applying the Cauchy-Born
rule to a periodic unit cell of atoms (which makes the Taykswanption appear to be very mild), one
may already analytically deduce a nonconvex strain enemgy summing up the atomic potentials,
which would already recover the energy minimum for shuffeeftwin configurations. For magne-
sium, the embedded atom modellof Liu et al. (1996) could sasva starting point (disposable at
http://www.fisica.uniud.it“ercolessi/potentials/Mg/)._Liu etial. (1996) adjusted ttmee character-
istic functions (pair potential, embedding energy funetamd density function) by piecewise cubic
splines to magnesium, such that many properties of the nsagnesingle crystal are reproduced.

For now, molecular dynamics are unattractive for engimggaipplications. Microscale models appear
to fall in range of practicability soon, as the increase@aesh activities in the use of the FEethod
suggest.



Chapter 4

Setting up a Micromodel

4.1 Elastic Modelling of Phase Transitions

Consider the following 1D-example: Two horizontally aleghand compressed springs are connected
by a joint, which can only move vertically (see FIg. 4.1, whioay be a switch or similar). By ap-
plying a forceF in vertical direction, one is able to change the stressdoediguration to which the
system returns after load removalFifis sufficiently large. Apparently, a permanent deformatian

be obtained, with purely elastic ingredients. In regardd,tsuch material behaviour is often referred
to as pseudoelastic. Itisin principle possible to constuahain of such switches, which would allow
for a gradual increase of the permanent deformation, sitaildne practically continuous plasticity in-
duced by dislocation movement. Such chains of snap-sphiaxgs been used hy Miiller and Villaggio
(1977) to model plastic material behaviour. By imposing date displacement at the ends of such a
chain, it is clear that the imposed deformation can be aekli®y more than one combination of flip-
ping snap-springs, which indicates that the pseudoellbstindary value problem needs not to have a
unique solution. With such behaviour has to be dealt wherappeoaches mechanical twinning. One

u

Y

Figure 4.1: Sketch of a snap spring.
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notes that in the example there is a third equilibrium coméigan with £ = 0 just halfway between
the two energy minimising configurations. The energy-oote generally adapted (Ericksen, 1975)
tells that this is not a stable configuration. By considetimgsecond derivative of the strain energy
with respect to the displacement we fimd(u) < 0, which corresponds locally to a negative Youngs
modulus. Withw” being the curvature af,, one could say that this is in the nonconvex range oft
separates clearly the two ranges where a stable equilito@amioe found. Therefore, as micromodels
claim to predict which phase forms at a material point ingtebphase mixtures, nonconvex elastic
modelling appears to be appropriate for this purpose. katrative purposes, take the potential

w(u) = (u—1)%(u+1)% (4.1)

which could be of a snap-spring. For the sake of simplicity &ssumed that material parameters are
normalised, and physical units are ignored. The forcelatgment curve is given by

F =uw'(u) = 4(u® — u), 4.2)
and the tangential modulus is given by
E=F(u)=w"(u) =4(3u® - 1), (4.3)

see Fig[[42. By demanding = 0 one finds the three force-free configurations., = {—1,0, 1}.
They correspond to local extrema @fu), of whichu = 0 corresponds to a local maximum and
u = =+1 to local minima, i.e.E(u = 0) < 0 while E(u = +1) > 0. The rootsu; , = +37%5 of

E correspond to the local extrema f6fand mark the points where changes from a convex to a
concave curvature.
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Figure 4.2: Strain energy(u) = (u — 1)?(u + 1)? and its first and second derivative, namely the
force displacement curve and the tangent modulus.

4.2 Solution Strategies for the Pseudoelastic Model

Mechanical twinning is modelled here based on a nonconwastielenergy density. The solution
of the quasistatic elastic boundary value problem is obtalsy minimising the stored energy

W = /Q w(C)dV (4.4)
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by determiningC' such thainin(117) is obtained, wher€ denotes the domain that is occupied by the
elastic body. It is well known thaty must be at least rank one convex to ensure the existence of a
unigue minimiser and to prevent the prediction of infinitiéhe phase mixtures. A fundamental work

on convexity in elasticity is given by Ball (1977). Note tlaithyperelastic laws that are isotropic and
physically linear in a Lagrangian strain meas#re= f(C) fail to be rank one convex (Bertram ef al.,
2007), like e.g. the widely used Saint-Venant Kirchhoff Ia&kis, however, happens usually at strains
which are too large to expect elastic behaviour.

In order to obtain a well-posed problem, one can enforce a&epostrain energy by carrying out
modifications. However, one can interpret the deficiencyhefiseudo-elastostatic boundary value
problem as a lack of physical considerations (Abeyarataekarowles,| 2006). Regarding the fact
that most phenomena which are modelled by the pseudoetggiroach are strain path-dependent
(twinning, martensitic transformations), it appears toréasonable to not stick to a purely elastic
modelling, but introduce a kinetic relation. However, thesthprominent convexification techniques,
namely the relaxation ab or the introduction of an adequate strain gradient depesejeshould be
mentioned shortly.

Convexification. Given a nonconvex strain energy, one may construct a conukxand use it

in place of the starting strain energy (Pagano and Alart@198mbrecht et all, 2003; Bartels et al.,
2004;| Carstenszh, 2005). Obviously, one looses the noegdmanches of the strain energy. In this
way, the uniqueness of the solution can be restored at thetasclear assignment of the different
phases at each material point. Nevertheless, a volumédinagiteach phase at each material point can
be locally determined by looking at the distance of the sotuirom the stress-free configurations that
correspond to the individual phases (see Eig. 4.3). Talabaut volume fractions, one has arrived at
a macromodel. Therefore, the convexification proceduresigemial way of homogenisation, which
comes along with loss of information about the microstrietuOne can refer to the convexified
strain energy as the mesoscopic strain energy, while theamwex strain energy is interpreted as the
microscopic strain energy (Peigney, 2009).

In the 1D-case, the construction of a convex hull is not difficHowever, different convex hulls lead
to different material behaviour. In the above example, tenination of a tangent that connects
the two minima leads to a constant force displacement cwich leaves the unigueness issue
unresolved (Fig.[4]3). In the exampl&, = 0 corresponds to any displacement betweenand

1. In this branch, the material behaves fluid-like. In the mdirhensional case, convexity appears
to be a criterion that is too strict. For example, elasticalmost incompressible material behaviour
already violates the convexity condition. Therefore, weratotions of convexity are applied, namely
poly-, quasi- and rank one-convexity (Ball, 1977). Morepwke construction of a convex hull is
not as straightforward as in the 1D-case, and mostly sesargilifying assumptions are necessary,
like elastic isotropy in all phases and small strains. Somes, the construction of a convex hull
is referred to as a relaxation procedure, because it camelspto the relaxation of the constraint
that at each material point only one phase exists. Somethgggnposed relaxation procedures can
be found in_Pagano and Alalt (1999); Lambrecht et al. (2C88%rbi et al. (2003); Govindjee etlal.
(2003);.Schmidt (2008) and Peighey (2009).

Higher-order strain gradients. By incorporating a contribution of the strain gradient te #lastic
energy, one is able to penalise sharp strain gradientshwheans that infinitely fine phase mixtures
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Figure 4.3: Convexified strain energy(u) = (v — 1)*(u + 1)? and its first and second derivative,
namely the force displacement curve and the tangent madulbhe former minima at: = =+1
correspond to the phases 1 and 2. Phase volume fractiong caicilated by considering the distance
from the former minima. For example,@at= 0 one could speak of a 1:1 phase mixture.

are no more minimisers of the global strain energy. Phylgidaliis comes close to the incorporation
of an interface energy, and is therefore denoted as a adpill&oreover, the convexity of the strain
energy is determined by the dependence on the highest gteadrent |(Sidi Ammi and Torres, 2008),
i.e., one can regain the overall convexity of the strain gynéut maintain a nonconvex dependence
on the strains. The use of higher-order strain gradientsefier, has certain disadvantages. In reality,
the deformations undergo a sharp jump at an interface depathe two phases. Therefore, the
penalisation of sharp strain gradients corresponds towargation of the jump at the interface. In
order to obtain a reasonable approximation of the strairpjuhe dependence of the strain energy on
the strain gradient has to be strongly nonlinear. Morediernumerical treatment is more difficult,
as well as the interpretation of the additional boundaryd@wns that have to be specified.

Kinetic relation. |Abeyaratne and Knowles (2006) state that the missing patieopseudoelastic
boundary value problem is a nucleation criterion plus atkirelation.|Haasen (1996) stated simi-
larly that phase mixtures are the result of kinetic procgsset of energy minimisation alone. Even
Gibbs himself supposed the existence of obstacles, piegeglobal energy minimisation_(Pego,
1987). In fact, it is known that the interface movement uhyieg the twin propagation is controlled
by the movement of partial dislocations, which has to be iclemed as a kinetic process. Even in the
case of the snap spring one can argue that the joint must raass and consider the pseudo-elasto-
dynamic problem. By incorporating a kinetic relation, thadependence enters into the considerations.
One does not consider a global energy minimum anymore, éckgrthe evolution of a system.

Two common methods to introduce a kinetic relation are t@iparate dynamics or to regard the
material behaviour as visco-pseudoelastic. One can syixeait the dynamic and the viscous regular-
isation. The viscosity term incorporates the dissipatiberergy into the model, unlike the dynamic
regularisation. In order to demonstrate the charactesisti both regularisations, the example prob-
lem from Sectiori.4]11 is regularised. A forde,; is applied, which has to be in balance with the
reaction force of the snap spring. In case of the dynamiclagigation the differential equation to
solve is

Foe = w'(u) + mii, (4.5)
while in the viscous case

Fo = w'(u) +nu (4.6)
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has to be solved. The initial conditions ar¢ = 0) = —1, anda = 4 = 0. Physical units are
ignored again. The external force is raised proportionahne, the factor of proportionality is 1. The
results of the numerical time integration of both equatiaresgiven in Fig["4J4. As the local force
maximumF = 1.54 atu = —1/+/3 is reached, the joint jumps to the opposing configuratiorake
of the dynamic regularisation, loaded with kinetic energgscillates around the stable equilibrium
configuration, while in case of the viscous regularisatioroscillation results.

The work needed to carry outdt)-controlled process is given by

Uend

W= Fdu. 4.7)
InsertingF = w'(u) + mii yields
Uend
W= (w'(u) + mii)du (4.8)
Yend dyydu
- w(uend) - w(ustart) +m dt (49)
end
= W (Uend) — W(Ustars) + M udw (4.10)
m ' s2tart y
= W(Uend) — W(Ustars) + 5(uend — Ugart) - (4.11)
If one returns to the initial state by driving a circular pess, i.€ueng = Usary ANAUZ 4 = 12,,, NO

energy is needed or gained, which means that the systemssm@ative. In the case of the additional
viscous force one obtains

Uend

W = (w'(u) + nit)du (4.12)
wend gyt
= w<uend) - w(“start) + 77/ Edu& (413)
fona
= w(uend) - w<ustart) + 77/ u2dt (414)
tstart

A general solution for the latter integral cannot be givaut,dne notes that the integrand is positive
for anya # 0, i.e. any circular process with,q > ts..c andn > 0 must give a positivél’. This
means that an energy input is necessary to carry out theggo€Censervation of the total energy is a
basic principle in physics. However, it is not necessary tmleh the temperature increase due to the
internal friction (e.g. by dislocation movement) if it istnaf interest. The viscous force represents a
convenient modelling tool to incorporate dissipative efffevithout introducing, e.g., the temperature
field.

The zero-dimensional snap-spring serves as a draft fokkgaics bar [(Erickseén, 1975), a one-
dimensional bar with an analogous nonlinear material lawt [, L] denote the length of a bar.
The equation of motion without body forces at each pointvegiby

with p being the mass per length unit. The foic@lepends on the strain and the strain rate by

F=w'(ug)+ni, (4.16)
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Figure 4.4: Result of the numerical time integration of[edd @d4.b. One notes that in case of the
dynamic regularisation the systems oscillates aroundt#idesconfiguration after snapping through.

which is an unspecified stress-strain law resulting front@rsenergyw(u ) plus a linear viscosity.
This partial differential equation can be rewritten as

W (U )U gz + N g — pii = 0. (4.17)

Dynamic regularisation. Settingn = 0 one obtains a second-order PDE, which can be classified
by looking at the coefficients” and p, which belong to the highest derivatives. According to the
nomenclature of conic sections, the PDE is elliptic, palialmy hyperbolic if —w” p is greater, equal

or lower than zero, respectively. Note that the type of th&RbBanges as” changes its sign. In
case of a standard material witlf > 0 andp > 0, one has to handle a hyperbolic PDE. Its treatment
is considerably more difficult than in the other cases. Orsetbaleal with travelling waves, shocks
that can emerge even if the initial data is smooth, and it mregpbkn that due the lack of damping
stationary states are not reached. Moreover, the secoredd@mivative induces a more complicated
numerical treatment when the time integration is carrieid As thepii-term stems from the potential
of the kinetic energy, both terms represent local changeseifgies. Thus, there is no damping due
to the energy balance between strain and kinetic energy.

Viscous regularisation. Settingp = 0 corresponds to the quasistatic treatment. In the resulting
PDE one can replace= u ., which yields

w'(e)e s +né L = 0. (4.18)

This PDE is hyperbolic ify> > 0, which holds for real values af. Although eq. 218 is still
a hyperbolic PDE, its treatment is less difficult than in caéehe dynamic regularisation. It is
formulated in terms of strains, which means that solutidnsgo[4.18 do not depend on the choice
of the strain measure, while e."4.17 can be considerablyboated if a nonlinear strain measure
is employed. It contains only one mixed second derivativegared to two second derivatives with
respect tac andt in eq.[41¥. Thus, the numerical time integration is lesadilt. Further, a positive
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viscosity is connected with energy dissipation, whichwafidor stationary states. Finally, one can
say that most solids exhibit a positive viscosity, thoudhtreely small in metals, which renders the
latter regularisation physically substantiated.

The mathematical treatment of Ericksen’s bar is challempgifihe case of a strictly monotonic in-
creasing elastic law combined with a linear viscosity haantmonsidered by Greenberg et al. (1968);
Greenbergl(1969); Greenberg and MacCamy (1970), who shtiveeekistence, uniqueness and sta-
bility of global solutions|_Dafermos (1969) analysed theawyic one-dimensional viscoelastic bar in
a more general way, and found that the viscous part domitla¢eslastic part and assures the exis-
tence of a unique solution in the large, and that this satusasymptotically stable in the sense that
ast tends toco the stresses and time derivativesiofanish. Moreover, the positive viscosity ensures
the compliance of the Clausius-Duhem-inequality.

The uniqueness of the solution has been restudied by And/E9&));| Andrews and Ball (1982),
where the asymptotic behaviour is examined, and the incatijon of a strain gradient is proposed as
a remedy for the uniqueness issue, all focusing on a linéamdependence. Pego (1987) shows that
solutions tend strongly to stationary and stable statesrnia,twhich may contain coexistent phases,
but are not necessarily minimisers of the energy. He argugidthe minimisation of energy does not
serve as a stability criterion in materials undergoing phadsnges. Haasen (1996) stated similarly
that phase mixtures are the result of kinetic processespfreriergy minimisation alone. In regard
of this,|Abeyaratne and Knowles (2006) suggest to equip aomrex energy-minimisation problem
with a kinetic relation. As mentioned before, Gibbs alsopmged the existence of obstacles that
prevent global energy minimisation.

However, when focusing on energy minimisation alone, it hasn found that the state of min-

imum energy is obtained by an infinitely fine phase mixturee(seg.,| Ball and James (1987);

Truskinovsky and Zanzoito (1996); Carstensen (2005); Atsne and Knowles (2006)). Ball ef al.

(1991) found that if the strain energy is supported with alocel potential energy term (a strain-

gradient dependence), a dense set of solutions of Erickban’'model represent energy minimisers.
Moreover, the artificial result of infinitely fine phase misxts is also avoided. Physically, the in-

corporation of strain gradients into the strain energy esponds to a penalisation of steep strain
gradients as found at interfaces (Truskinovsky and Zaoz&896). The augmentation of the strain
energy can serve as a selection criterion, avoiding theumdgpeness of the minimisation problem

(Truskinovsky and Zanzoitob, 1996). By extending the steaiargy with a strain gradient, rank one

convexity can be ensured, and energy minimisation can bdesdpplowever, the numerical treatment

is more difficult, as well as the interpretation of the aduitll boundary conditions that have to be
specified.

Regarding the kinetic relation, the viscous regularigaigoby far the most favourable extension to
the pseudoelastic model. Efendiev and Mielke (2006) shalvatisolutions can be established by
considering the limit of the viscous regularisatipr- 0. Although the use of a viscous regularisation
is hardly manageable analytically in the three-dimendioase, it proved to be a useful tool in crystal
plasticity (Hutchinsan, 1976; Asaro and Needleman, 198%hIB2,12004). There, it does not only
avoid the Taylor problem of uniquely selecting a combimaid active slip systems that realise the
plastic deformation. Moreover, instabilities due to soiitgg coming from the rotation of the crystal
(geometric softening can cancel out strain hardening) woelad as well. Further, by choosing a
proper dependence on the strain rate, it can be regarded esattypmethod in perfect plasticity,
transforming the system of algebraic and differential ¢igua into ordinary differential equations,
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which can be treated by well established numerical meth®ilsd and Hughes, 1998).

Summarising, one can say that a regularising viscosity ysighlly reasonable and mathematically
helpful. In regard of this, the viscous regularisation igdisn this work. The overall modelling
strategy employed here is therefore as follows.

1.) Construct a nonconvex energy densitywith local minima withw = 0 at each stress-free
configuration (parent and twins). This is done in terms ofgaigstraink.

2.) Derive the material law by takiffj = ow/0E, with T' being the second Piola-Kirchhoff stresses.
3.) Add a regularising viscosity term to the material law. tBis, the modelling category is no more
a global energy minimisation, but an evolution equation.

The model derivation is given in the following Sections.

Numerical Problems and Homogenisation. It is well known that nonconvex energy minimisation
without a capillarity can lead to infinite fine phase mixtur&®hen such a minimum is approached
numerically, the solution oscillates at the level of thetepaliscretisationl(Carstensen, 2005). More-
over, even if the solution does not oscillate, it does nodriede unique, as the spatial arrangement of
the phase mixture may be arbritrary. However, if treated evically, although one may not observe
convergence on the microscale as the spatial resolutiociisased, it is shown that the homogenised
guantities converge (Bartels et al., 2004).

4.3 Construction of the Nonconvex Strain Energy

Ball and James (19817, 1992) argued that the energy densfya material that can form different
phases is given

w(x) = igllinn(wl (), wa(x), ... wy(x)). (4.19)
In words: the determining energy density is the smallesviddal energy density; of then poten-
tial phases. Applied to the snap-spring example, one cqupdoach the strain energy in each phase
by a quadratic relation, and compasaeising the Ball and James-approach (seelElg. 4.5). In general
thew; depend on the deformation, temperature and internal vesaBy changing the temperature,
it may happen that another; becomes smaller than the current one. For example, in nsititen
transformations, one crystal structure becomes at a ttanation temperature more favourable than
another one, involving, e.g., transformations from a ba foc lattice (NiTi). Here, they; depend
only on the deformation, though twinning is (unlike martéingransformations) not temperature-
driven. Of course, the temperature plays a role for the mevermf the partial dislocations, but one
can treat twinning without regarding the temperature-ddpace, though unlike martensitic transfor-
mations twinning does not change the crystal class. If ttipé&rature dependence is not neglectable,
it may be more suggestive to assemble the overall storedgbgrthe partition function

n —w;(z)
w(x) = —kgbln (Ze Fp ) , (4.20)
i=1

with the Boltzmann constaritz and the tempertature (Roubtek, 2004). The latter composition is
backed up by statistical physics, and gives a continuousdtnergy. However, neither the position
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w(u) = min(wy, wy)

u

Y

Figure 4.5. Example for a nonconvex elastic energy (boladymased from two convex (quadratic)
strain energies.

of the minima nor the properties close to the minima, esakythe elastic modulus, are conducted
from the individual strain energies to the compound storextgy.

By using the work-conjugacy of Green'’s strain and the sedeinth Kirchhoff stresses, the stresses
are given by the strain energy by

ow(E)
OE

The algebraic assignmehi(4119) is evaluated pointwisesush, it is not continuously differentiable.
In order to get a continuous stress-strain law, in the falhgwSection a regularisation to replace eq.
#.19) is constructed.

T —

(4.21)

4.4 A Regularisation for the Ball and James-Approach

Here, the strain energies depend only on the stEaimvhich is omitted in the remainder. The regu-
larisation for the Ball and James-approdch (4.19) shoutlato a regularisation parameter, $8y50
that the limit becomes

lim @ = w. (4.22)

k—o0

The w; represent the elastic strain energies, which meansuthat 0 in the stress-free state, and
w; > 0 holds. As a starting point, the pointwise addition

W= Z a;(wy, we, ... wy)w; (4.23)

i=1

is madel(Gliige and Bohlke, 2007), where theare weight factors. In the limit case (dq._4.22), the
weight factora,, of the smallestv,, should approach, while all the other; should tend to zero.
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Therefore the normalisation

3

a;(wy, we, ... wy,) =1 (4.24)

i=1
is imposed. It is obtained by

gi(w17w27---wn)

Z?:l gj(w17 W, . .. wn)

ai(gla g2, - - -gn) = (4-25)

where nowg;(wy, ws, ... w,) has to be specified. The location of the minima of the indialdu
are transferred ta independently of the regularisation parameterThis restriction is imposed in
order to not alter the location of the stress-free configomatby the choice of. As the minimum of
the individual strain energies; is equal to zero, the;(w,, ws, ... w,) are constructed such that all
gi(wy, we, ... w,) = 0andg,, (wy, ws, ...w,) > 0whenw,, =0, i =1...n,i # m. This results in
vanishingg; (wq, we, . . . w, ) except the ong,,(w;, ws, . .. w,) corresponding to the vanishing energy
densityw,,. The imposed restrictions are met by the ansatz

atwnncown) =h(w) T] (0= htw) = 2 [T b)) @20
j=lj#i Y=
with
h(w=0) =1, h(w — o0) = 0. (4.27)

By this constraint, the minima of the; are transferred ta independently of the regularisation
parametek;, as long as the minimum corresponds to a zero energy defsigyconstraints imposed
onh(w) are met, e.g., by

h(w) = exp(—kw). (4.28)

By inserting the deduceg (w;, ws, . .. w,) into thea;(g1, g, . . . g»), ONE sees that the product term
is cancelled out, and it suffices to take

_ h(w;)
I T T h(wn) (4.29)
Finally, the regularised strain energy
-1
(s b)) S hw) )
w—(;l_m)) 2 T a0 = exp(—k) (4.30)

is obtained. The given approach is visualised for testfonstin Fig.[4.6. In the remainder of this
Section it is shown that the regularisation approaches #dikaBd James-approach from above for
k — oo. For facility of inspection, the chain-like dependencyugiy:, g - - - g,), g:(w;) is omitted in
the notation.

By subtracting pointwise the smallest, out of thew; from @ gives a remainder = w — w,,, which

should vanish fok — oo:

0= Zaiwi — Wy, Wy = ,niin (wy,wa, ... wy). (4.31)
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All w; can be written as,,, plus some positive differencgw;

n

o= Z a; (W, + Aw;) — wpy,. (4.32)
i=1
With 37" , a; = 1 one finds
§= > aduy, (4.33)
i=1,i#m

which is positive due ta;; > 0 and Aw; > 0. This means thatv > w, which means that the
regularisation approaches the Ball and James-approachdbove. To show thattends to zero for
k — oo, the latter equation is divided hy,,, which corresponds to the weight factorof,:

Dy Gy, (4.34)
m i=litm "

lim 2 — lim 2 (4.35)
k—00 Gy, k—oo G,
h(wi)(1 = h(wn))
=1 4.36
koo T(wp) (1 — h(w;)) (4.36)
. h(wy) . 1= h(wy)
=1 lim ———~2. 4.37
koo (W) hsoe 1 — hw;) (4.37)
Due toklim h = 0 the limit (4.37) is obtained by
. Qi .. h(w;)
= i ) (4.38)
= klim exp(—k(w; — wp,)), (4.39)

which yields0 for w; > w,,, i # m, which in fact is our initial assumption. We are left with
.0
lim — = 0. (4.40)
Dueto) !  a; =1, andklim (ai/am,) = 0fori # m, a,, = 1 must hold, which finally yields

limd=0 < lim @ = min (wy,ws,...w,). (4.41)

k—o0 k—o0 i=1l..n
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Figure 4.6: Regularisation (bold lines) applieditp = z?%, wy = (x — 1)> + 0.5, w3 = (v + 1)* + 1
(top) andw; = 22, wy = (v —1)%, w3 = (x+1)? (centre), withk = 1 andk = 10. In the second case,
as allw; have zero as minimum, the regularisation transfers themarf thew; to w irrespective of
k. Bottom: Weight factors,; for £ = 1 andk = 10. The transition from one; = 1 to another; =1
becomes sharper asggrows.
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4.5 The Individual Strain Energies

Now that a regularisation of eq_{4]19) is given, we focustamindividual strain energies;. The
widely used principle of Euclidean invariance (BertramQ20demands that the strain energy density
w; depends only on the material stretching, but not on a supesed rigid body motion.

Consequently, it is sufficient to note,;(C) instead ofw;(F') (Truesdell and Nall/_1965), with
C = F'F and the deformation gradiet. The elastic material behaviour of most crystals can
be described sufficiently well by a linear stress-straiatreh. Therefore, the St. Vlenant-Kirchhoff
strain energy will be employed here. The elastic referetregnsenergy is given by

wo(C) = %T . E (4.42)
= (C-D) (D), (4.43)

with the stiffness tetraf,. The second Piola-Kirchhoff stressEsand Green’s straink = 1(C —1)
are work-conjugate, which simplifies the formulation@fand its derivatives with respect 16 (Hill,
1968).

4.6 Isomorphy of the Elastic Law

Due to the fact that the twinned crystal has the same crggi@phic structure as the parent crystal,
essentially the same elastic energy applies. Therefaegesdhcept of elastic isomorphisms (Bertram,
2003) is used in order to map the same elastic referenceye@EdAR) to the parent and to the twin.
By using the plastic transformatiadf;, the elastic energy can be transformed by

wi(C) = wo(P; CP;) (4.44)

to the elastic energy of th& twin variant, whereP; maps lattice reference basisinto the reference
placement of the parent or tlih twin variant. The second Piola-Kirchhoff-stresses avergby

ow;
Ti=— 4.4

Y (4.45)
ow;

=2 4.46
5C (4.46)

TOP. ToP.
_ awo(ii CP;) OP/CP, (4.47)
= 2P,w)(P{CP;)P;. (4.48)

In the following Section, the plastic transformations aeeived.
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Cpsi1

Cps2

Figure 4.7: In the spatial description, the lattice vectarparent and twin differ by a rotation of
aroundn. The associated deformation is a simple shear.

4.7 The Elastic Isomorphisms

The plastic transformationB » and P, map the reference lattice bagiginto the reference place-
ment, either into the parent,) or the twin ¢ry),

Cpp = PpCb (449)
Crp = PTCb. (450)

The spatial lattice base vectats, andc, are given by the deformation gradierdfs and F'r,

cps = Fpcpy, (4.51)

crs = Frery,. (4.52)
cps ander, are related by

Crs — RCPS, (453)

where, in compound twind® can be taken aRp, or R (see Fig[4l7). Now one can evaluate the
plastic transformatio® by means of

PTCb = C7y (454)
= F lcr, (4.55)
= F;'Rcp, (4.56)
= F'RFpcp, (4.57)
= F'RFpPpc (4.58)
which allows for the identification
P;=F;'RFpPp. (4.59)

By taking the elastic law of the parent to be the referencedad/the placement of the parent to be
the reference placement,

Pp=1I, Fp=1, (4.60)
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eq. [4.59) simplifies to
P;=F;'R. (4.61)

F describes the deformation from the parent to the twin cordign, which is given by a simple
shear deformation

Fr=1+yd®n. (4.62)
Due to the orthogonality af andn, its inverse is given by.! = I — yyd ® n, which finally yields

Prny=UT—-vd@n)(-I+2n®n) (4.63)
=—T—-—7d®n+2n®n (4.64)

in the case oR = Rp, and

Prg =T —vd®n)(—I+2dd) (4.65)
=T+ypden+2ded (4.66)

in the case off = R ;. In both casesPr has the remarkable property of self-inversend3s,=
P,'. Therefore, double twinning on the same twin system resultsrecovery of the parent (see
SectioZP).

4.8 Conjugate Twin Systems

In any compound twin defined by ratiorfal, k-, n,, 1, there exist two conjugate twin systems. These
are given by shearing in direction gf parallel tok, such that, is turned over, and shearing along
n, parallel tok, such thatk, is turned over. The second undistorted plane of one twinminde is
the shear plane of the other one, and vice versa, sed Eigoda8dketch. In the remainder of this
section,d” andn* denote the conjugate twinning mode to the twinning mddendn. For the
conjugate twin systems,

S*S! = ng (4.67)

holds, where’ and~, are connected by, = 2tan(3/2) andk = n x d. To see this, one has to
summariseS*S~! by representingl* andn* in terms ofd andn. Apparently, one has to distinguish
two cases, namely (n,n*) < 7/2 (Fig. [43 left, case 1) and(n,n*) > 7/2, (Fig.[43 right, case
2). One obtains

d; = —sin(6/2)d + cos (5/2)n (4.68)

n] = cos ((/2)d +sin (6/2)n (4.69)
and

d; = sin (8/2)d — cos (5/2)n (4.70)

ny = —cos (#/2)d — sin (3/2)n, (4.71)
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| | d | d
d 7~ d

Sejes

Figure 4.8: Conjugate twin systertd, n, 7o) and(d*, n*, o) in the hexagonal unit cell, with/a <

V3 (left) andc/a < /3 (right), and~y, = 2tan(ﬁ/2) Note that in both cases the lateral diamonds
can be mapped on each other by a rotation of amg@uarbund the axi& = n x d or, alternatively,

by reverse shearing in one twin system followed by shearirige compound system.
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where one notes that; = —n] andd; = —d;. Due to
Si=I+yn;d;=1+ynixd,=S=S, (4.72)

we can drop the case distinction. For brevity, the subgiitut /2 = « is used. Summarising*S !
by using eqs.[{4.68) and{4169) and the idenlit: n ® n +d ® d + k ® k yields

S*S™' =(I +yd" ®@n*)(I — 7d @ n) (4.73)
=I —yd®n+yd @n' —1(n"-d)d @n (4.74)
=I — yd @ n + y(—sin ad + cos an) ® (cos ad + sinan)+

— 3 cos a(—sinad + cosan) @ n (4.75)
=k®k

+ [0 — Yosin®a + gsina cosald @ i
+ [yocos’aln @ d

+ [1 — vpsina cosald @ d

+

1 + 7osina cosa — ygcos’aln ® n. (4.76)

With ~, = 2tana one can summarise each of the squared brackets by applyiagkgigonometric
relations (mostly2sin?(3/2) = 1 — cos(3), 2cos?(3/2) = 1 + cos() andtana cosa = sina). One
obtains

S*S!'=k@k+sin(f)(n®d—-d@n)+cos(f)(d2d+nen), (4.77)

where one recognises the rotation-ef aroundk, which corresponds té)?k. Another important
relation is

Q1 = Rn-RyRn. (4.78)

One can review the latter relation similarly to the previcakulation. Again, the case distinction is
dueto

Ri=-1I+2n7@n]=—-1+2n;0n; =R, (4.79)

not necessary. One obtains

Rn-RpRp = (—I+2n"@n")(-I1+2k2k)(—I +2n®n) (4.80)
=I-2kk—-2n"@n")(—I+2n®n) (4.81)
=—IT+2kk+2n@n+2n"@n" —4(n-n")n" @ n. (4.82)

To summarisen* = cosad +sinanand—I +2kk+2n®n=n®n-dd+ kQ k are
employed, which gives

Rn-RpRp =n®n—-d®d+k®k + 2[cosad + sinan| ® [cosad + sinan|+
— 4sinafcosad + sinan] @ n (4.83)
=k ®k+ (1 —2sin’a)n ®@n + (—1 + 2cos’a)d ® d+
— 2sinacosad ® n + 2sinacosan ® d. (4.84)
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Summarising and using trigonometric relations yields
RnRpRp =k®k+sin(f)(n®@d-d®n)+cos(B)(d®d+nen), (4.85)
which corresponds again @Ek.
Following eq. [4.811) the plastic transformations of comjtegtwin systems are
P=S"'Rp, P =S"'Rp-. (4.86)

where the orientation relatioR = Ry, has been chosen. After establishing the result, it is shown
that the result holds foR? = R ; as well. Mapping an elastic reference energywith the plastic
transformations yields

w = wo(PTCP), w* = wo(P*TCPY), (4.87)
or, by means of the Rayleigh product,
w = wo(P" % C), w* = wo(P*T x C). (4.88)
By substitutingC' = P*~7 « C we get
w = wy((PTPT) % C), w* = wy(C). (4.89)
We now examine
PP T =RnS TS Ry (4.90)

With egs. [4.8l7) and{4.¥8) we can summarise

pPrp~T = RnQ ;. Rn- (4.91)
= RnRnRy,Rn-Rn- (4.92)
= Ry (4.93)

Now, if we preferR = R as orientation relation, we obtain
T px—T
P P =RyQ Ry (4.94)
which can be rewritten by ; = Rj. Rp, ande* = Rp-Ry, as

P"P*" = R RnQ 1, Rn- Ry, (4.95)
= R, R R, =Ry, (4.96)

We have seenin SectidnP.2 that tRg, belonging to a compound twinning mode must be in the sym-
metry group of the lattice. Therefore, the elastic refeeemgergyw, must haveR?;, in its symmetry
group. In this section it is shown that the strain energieendw™* of conjugate twin systems differ
by a Rayleigh transformation @ with R;,. By combining both, one has to conclude that compound
twin systems exhibit an elastic energy invariancei.e= w*, and consequentlYw/0E =T =T~
holds.
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Depending on the twinning mode, distinct conclusions havieet drawn. In the case that the pairs
(d, d") and fr, n*) are crystallographically equivalent (or, in the usualiming notation, 4, 7,)
and ., k-)), the conjugate twinning modes belong to a set of cryggadiphically equivalent twin
systems. Practical examples are fh@2}(111) twinning in the bcc{111}(112) twinning in the fcc,
{0112}(0111) twinning in hcp,{101}(101) twinning in the bct and orthorhombic aqd00}(001)
twinning in the orthorhombic lattice. For example, for orfettee {0112}(0111) twin systems in
the hcp latticek,, 1y, ko, 1, are {0112}, (0111), {0112}, (0111), respectively, see Fig—4.8. This
means that the conjugate twin to th@ 12} (0111) twin system is crystallographically equivalent, i.e.
one has six crystallographically equivalent twin systeiftsese are pairwise energetically invariant,
which means that from the viewpoint of an elastic modellmgg can only distinguish three possible
twinning modes.

In the case when the pairgl,(d*) and f, n*) are crystallographically distinct, different con-
clusions emerge. Practical examples &fa11}(0112) and {1122}(1123) twinning in the hcp
lattice, {031}(013) twinning in the bct lattice,{100}(011) twinning in the rhombohedral lattice,
{101}(1k,1) and {130}(310) twinning in the orthorhombic lattice anf100}(001), {110}(001),
{100}(0k2k3) and {011}(0k4rk5) twinning in the monoclinic lattice, where; denotes some lat-
tice constant. For example, for tH®111}(0112) twin systems in the hcp lattic;, n,, k2, 1,
are {0111}, (0112), {0113}, (0332), respectively. This means that the conjugate twin to the
{0111}(0112) twin system, which is th¢0113}(0332) twin system, is crystallographically distinct,
see Fig[[40. Therefore, it may display different charasties, like different critical shear stresses.
Both twin systems are, however, connected by the elastiggm@/ariance. By introducing an elastic
energy density which displays the six distinct minima of {he11}(1012) twin variants, one enables
automatically{1013}(3032) twinning.

The strain energy invariance may even connect a twinningento@ lattice invariant shear, namely
to a deformation which one would consider as crystallogaghde. An example is twinning with
the elementsk,; = {120}, n, = (210), k; = {100} andn, = (010) in a simple cubic lattice, see
Fig. [£10 for a sketch. One notes that andn, correspond to the lattice base vectors, and that a
.reorientation” by a two fold rotation arounkl, or n, maps the lattice onto itself. This means that
shearing in the shear system ® k- should be considered as slip, not as twinning. Due to thenstra
energy invariance, one incorporates an impossible twgmode if one constructs such thatv = 0
holds for the{120}(210) twins, which are valid twin configurations.

The non-compound twinning modes, type 1 and type 2 twinrdoghot exhibit the energy invariance,
sinceRy, is not an element of the symmetry group of the lattice. Thogeetu, is not invariant under
a symmetry transformation witR;., as long as a proper elastic law is applied.

The latter conclusions are important, and therefore thaivetion is roughly summarised: THe,,
belonging to compound twins is in the lattice symmetry gr{pctior Z.R). Also, their twin systems
are conjugate. The conjugacy of the twin systems is indugékdir alignment: shear occurs mutually
along the distinguished plane that is left unstretched Bashg in the other system, but is only
turned over. Starting from a twin configuration, backwardntving into the parent configuration
and subsequent twinning into the conjugate twin system eareplaced by a rotation gf around
the plane of shear norm&, see Fig.[4]9 for an illustration. In this section it is shothat the
elastic energy densities of conjugate twin systems diffea Rayleigh transformation &' with R;,.
Combining both yields the aforementioned conclusions.
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Figure 4.9: The(0111}(0112) and the{1013}(0332) twin system in the hcp lattice.



4.8. CONJUGATE TWIN SYSTEMS 69

< S

Figure 4.10: A lattice invariant shead (| e2, n || e;) and a twinning moded || (2e; — es), n ||
(e1 + 2e5)) that are connected by the conjugacy of the shear systems.

The cause for the energy invariance has been shown in a moeeag&vay by Zanzotto (1992, 1996)
to be the violation of the Cauchy-Born rule (Born and Huar@b4). During twinning, the lattice
vectors do not behave like material vectors due to the negeraent of the atoms. One has to pay
special attention to conjugate twin systems, especiallgrwdurely energetic considerations are made.

It should be mentioned that material models that relatettiessstate to the twin system activity, e.qg.,
by a Schmid law/(Farest and Parigot, 2000), are less diffieitit respect to conjugate twin systems.
This comes from the fact that such a relation involves théiaparrangement of the lattice vectors,
which results in different resolved shear stresses in thgugate twin systems.

The six possible twin variants belonging to the prominghiti2}(0111) twinning mode are found in
the hcp crystals of Be, Cd, Mg, Ti, Zr, Znh (Pitteri and Zangg®002) and in low-symmetry crystals
with a hexagonal sublattice (e.g. sapphire). They cons3tpairs of crystallographically equivalent
conjugate twin systems, which means that incorporatingntivéo w, does not involve twinning
modes which are not aimed for. For this twinning mo#, corresponds td2q,, which maps the
hexagonal unit cell onto itselfv, is therefore unaltered, which is manifested in linear eagtoy the
fact thatCy hasRy, in its symmetry group. Note th#, S*, Rpn, Rn-, Rg, R4 are also invariant
under a Rayleigh transformation wifi, .

4.8.1 Implications for the Elastic Modelling

The practical implications for the material model presdittere are the pairwise energy invariances of
the six twin systems. Therefore, we have to speak about thséieguishable twinning modes, each
one constituted by two conjugate twin systems. The consemseare that a fully developed twin
may switch its interface alignment instantaneously to dsjegate twin without altering the internal
enerqy, if both variants are equally accomodated insiderthgix. This will be demonstrated later
on.|Zanzottol(1992, 1996) and Ericksen (2000) therefordtihat twinning can be simulated by an
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elasticity model. However, this behaviour is due to the thet the modelling is fully elastic. The
fact that an energy invariance between conjugate twin Bystxists, solely triggers the switching
between twinning modes, but the switching itself is possiblprinciple irrespective of the energy
invariance. Itis induced by the elastic modelling, whiclyleets the kinetic processes accompanying
twinning. Although the latter sounds discouraging, it e demonstrated that, if no severe strain
path changes occur, the elastic modelling works sufficjemtll. The conjugate twins cannot be
distinguished if one focuses on a material point, but by tignment of the interfaces that evolve.
However, if one intends to model, e.g., double twinning @ system activity inside the twin, one
needs to know the lattice orientation inside the twin, whemot uniquely determined due to the
energy invariance.

The model exhibits different critical strain state defimits in the parent and the twin configurations.
Therefore, the attentive reader may note that the energyiance cannot be entirely fulfilled by the
model, at least in the overcritical strain regions. Theeaulght critical strain state definitions are owed
to the fact that one cannot map the twin formation possiediof the parent to the twins, because this
would induce an infinite chain of twin variants. One would é&w simultaneously respect infinitely
many individual strain energies in the compound strain ggher = a,w;. Moreover, the direct
establishment of twins which are only accessible by mutiplinning has to be avoided, see Fig.
M. For this reason, the model is constructed such thatwimning and detwinning with respect to
the{1012}(1011) twinning modes is possible, and multiple (recursive) tvimgmeeds to be avoided.

In the model, the conjugate twin variants are treated iddiaily, and not as one twinning mode. Due
to the phenomenological model adaptation, the energyianve is not exactly met. This, however,
does not induce spurious consequences. The energy invarties not induce a special material
property that needs to be reflected by the model. Rather, ity invariance induces material
behaviour that is not observed experimentally.
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Figure 4.11: lllustration of the recursive character oftming. Each twin, since it exhibits the crystal-
lographic structure of the parent, may act as parent fonéuiwvinning. Incorporating simultaneously
all possible twin variants would allow for twin formationlkawing the dashed arrow, which is not

reasonable.
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4.9 Constitutive Equations of the Base Model

With the regularisation of the Ball and James approach amchtfividual strain energies at hand, the
stress-strain relation so far is given by

_ Ow  dajw;

= 2= (4.97)
8ai 8wz

= 9E" 98 (4.99)

_ Ou 0w, G (4.99)

~ 9w, 0B T OB
with
8(1@ . (51']' - ai)aj
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After summing up, the stress strain relation becomes

Sh(wy),  h(w;) = exp(—=kw;), h(w;) = —kexp(—kw;)  (4.100)

=T, (4.101)

T — (ai — (5Z-j)ajk:wl-
1 — exp(—kwy)

wherei andj are summation indices. Near the stress-free configurafiphasei, w; tends to zero,
andq; tends tol, while a;, @ # j tend as well to zero. By looking eq[{4.102) it becomes clear
that in this case all the summands represented by the finstaes zero, which allows to approximate
stress-strain relation by

T ~ a,T;. (4.103)

We have seen that the regularisation picks out the smaliesh £nergyw; by a; = 1 ask tends

to infinity. Consequently, for a reasonable choice:dhe approximation{4.103) holds. The latter
simplification is used instead of e. {4.102), at the costeintegrability condition of hyperelasticity.
However, by adjusting a reasonably large regularisatioarpaterk, the neglected term becomes
arbitrarily small. In order to get an impression of the effetneglecting the first term, graphs for
a comparison are plotted in Fif._%.9. One notes that for targkies ofk the difference between
eq. [410P) and{4.1D3) concentrates more at the trangitiorts. The stress-strain characteristic is
approximately the same in both cases. In the remainderjrti@iication (4.108) is used.

Eq. (410B) has a striking similarity to the calculation béthomogenised stresses when Taylor’s
assumption is applied. However, the characteristics optleeent model are entirely different, and
can be summarised as follows: The regularisation betwdtsreht quadratic elastic strain energies
yields a nonconvex elastic strain energy. As the materillig elastic, the body locally returns to
one of the stress free configurations of thphases when all constraints are removed. d;igepend

on the current deformation sta€g. In a Taylor model, the; are interpreted physically as volume
fractions, which evolve depending on the loading path. égtesent model, the are elements of a
regularisation, and have therefore no physical interpiceta



4.10. INCORPORATION OF CRYSTALLOGRAPHIC GLIDE 73

(a) (b)
Figure 4.12: Regularisation (bold lines), its full derivat(dashed line) and the approximated deriva-
tive applied tow, = 22, wy = (z — 1)? andwsz = (z + 1)?, with £ = 5 (@) andk = 20 (b).

4.10 Incorporation of Crystallographic Glide

In magnesium below 22&, slip occurs mainly along th@110), (1210) and(1120) directions in the
basal{0001} plane (Emled, 1966). Due to the regular alignment of thessigiems in only one slip
plane it is reasonable to approximate the collective ofsjgtems by the card glide mechanism, Fig.
H.T13. It is assumed that slip occurs in the direction of tingdst shear stress in the slip plane, as is

t

™

£J

>
Figure 4.13: Card glide mechanism.

observed on a card deck. Following Bertram (2005); BohllkBertram (2001), the shear stress is
given by

~T

r=(F oF )..(den), F=FP. (4.104)

The directiond corresponding to the largest largest shear stress in the plés given by projecting
the tractionf” o F ' n into then-plane,

d=(I-neon)F oF n. (4.105)
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The evolution of the plastic transformation, which is a matevariable (i.e. invariant with respect to
Euclidean transformations), is given by

d

—P'P=3d"®n, d" = Tal (4.106)
If d* andn are constant, one obtains witA(t = 0) = P, a solution forP, namely
P =PyI—~d ®n), (4.107)

This leaves onlyy(t) to be determined consistent with the elastic or viscoeldatv. In terms of
resolved shear stresses, one has to employ: 7,..a1- IN the case of perfect plasticity,... IS a
function of v, or, without hardeningr,... iS constant. In the viscoelastic casg,..; depends ony
and+, or only on+ if hardening is ignored. In this work a perfectly plastic beiour is preferred,
since it can be resolved more easily in this quasi 1D-casee tOuhe fact that the twin lamellae
are mostly thin and dislocation free, basal slip is assurodzktpotentially active only in the parent
configuration (see, e.g., Shiekhelsouk etlal. (2009)). Tumaarical treatment of the basal glide is
explained in Sectiofh 8.2.

4.11 Adding the Viscous Regularisation

As explained in Sectioh’4.2, in order to obtain a solvableo$etonstitutive equations, the elastic
energy should not be convexified, but the model categoryiftedhfrom a total constitutive law to
a rate-type law. This is done by adding a strain rate seitgitiv the stresses, namely the viscous
contributionT,. In the spatial description,

o, = f(D) (4.108)

serves as starting point, witP being the symmetric part of the velocity gradidht= FF~'. By
assuming viscous isotropy, the viscous stresses can bengesed into a volumetric and a distortional
part

o, =m(D)D° +ny(D)D'. (4.109)

There are several reasons to drop the first term. Firstlyrystal elasticity and plasticity volume
changes are very small. Secondly, a viscosity is physigatiyced by friction forces between par-
ticles that pass by each other, which does not happen inypditatational deformations of crystals.
Moreover, the viscosity is added in order to regularise tla¢enal behaviour when the material un-
dergoes the simple shear deformation connected to the dnnimaftion, which is isochoric. Therefore,
the first term in eq.[{4.109) and, thus, the index;pfire not needed. Further, a Newtonian viscous
relation is assumed,

o, =nD". (4.110)
This is translated to the material description by using

o, =J'FT,F", J=det(F) (4.111)

1 .
D= EF*TCF*1 (4.112)
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One obtains
IN 1 T e 1\ =T
T,=F '(F'CF)F (4.113)
= %(Fl(FTC'Fl — %tr(FTC’Fl)I)FT) (4.114)
= %(C—lcc—l — %tr(C_lC')C_l). (4.115)

By usingC =~ I, one can simplify the latter to

. 1 .
=5 (C - u(O)) (4.116)

_ %(‘;" (4.117)

T,
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Chapter 5

Phenomenological Model Adaptation

5.1 The Schmid Law for Twinning

By means of a critical resolved shear stress criterion, a-pyairent interface moves towards the twin
or the parent when a critical shear stress in the twin syssewsiched. Experiments indicate that the
tensile stress for twinning does not depend on the hydiogiegssurel (Reed-Hill and Abbaschian,

1994), which suggests that the twins appear as a result af skresses. The twin boundary moves
when the atoms sketched in Fig.15.1 jump into the positiodEated by the arrows. By means of the
Schmid law the twin would grow or shrink (i.e. the twin bounge&ould move towards the parent or

the twin) if one of the inequalities

TTS.T = —Tiwin, Shrinking of the twin if violated (arrow 1 in Fig. B) (5.1)
Trs.p < Tiwin, growth of the twin if violated (arrow 2 in Fig. B.7) (5.2)
is violated.7rs r andrrg p denote the resolved shear stresses in the twin system osidethof the

interface, respectively, while,,;, represents a critical twinning stress. Multiplying eq. 25y —1
and adding to eq[[(3.1) yields

TTS,T — TSP 2 —2Ttwin (5.3)
1
_5[[7_'1‘5]] S Ttwin - (54)

If the stress jumfo] at the static interface is known, the jump of the shear sireiee twin system
can be calculated by

[rrs] = [o] - - (dr ® ny) (5.5)

and, inserted into eq. [{3.4), be used to estimate lower baind,;. For pure magnesium,
Glige and Kalisch (2008) derived a value consistent witlcthieal shear stress @7 MPa given by
Koike (2005).

The applicability of a Schmid law still depends strongly ba material and the modelling scale. Two
extreme examples are Zn and Mg. In Zn, the propagation stfestwvin is well below the nucleation
stress|(Bell and Cahh, 1957), which induces a jerky yieldabigtur. Further, the twin-parent inter-
faces are almost uncurved, and are aligned only in somefgpaeentations, the preference of which
is temperature-dependent (Straumal et al., 2001).
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twin

—dy
2 *\-

»

parent

Figure 5.1: Atom movement for twinning (arrow 2, growth oéttwin, the interface moves towards
the parent) and detwinning (arrow 1, growth of the paremtjiiterface moves towards the twin). Itis
pointed out that the viewpoint which side of the interface parent and which is a twin is arbitrary. In
this work, the definition is such that directs into the twin and that directs into the shear direction
connected to twin growth.
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From a microscopic point of view, the application of a Schiaigl as a twinning criterion seems to be
reasonable due to the fact that the twin formation can beagxgd by the movement of the partial dis-
locations, since a Schmid law works well for the dislocatiovement underlying crystallographic
slip. In fact, it is applied successfully to magnesium (Brin2003), but seemed to be useless due to
the large scattering of experimentally measured critibabs stresses (Thompson and Hingley, 1955;
Wonsiewicz and Backofen, 1967; Christian and Maheljan, [1.99%e problem is that such measure-
ments are difficult to perform. Twins nucleate at inhomoggg®in the crystal, like intersectioning
points of slip lines, at grain boundaries, or at crack tigsonle is interested in determining a crit-
ical nucleation stress, it would be necessary to deternmeddcal stress where and when the twin
emerges. Due to the unavoidable inhomogeneities, a relegtimation of such a critical stress state
is rather difficult. As mentioned before, molecular dynasimulations are capable to give a deeper
insight into the mechanism underlying twin propagatiore(seg., the series of articles by Serra and
Bacon).

However, since a Schmid law seems to work well for magnesitisiapplied in the remainder. The
approach by Ball and James, that is used here in a regulargsemn, states that the phase that has
the least strain energy is the preferred one. In the 1D-elaaipve, one would come up with the
stress-strain curve given in Fig.#.5. The critical pointia# phase change lies exactly in the middle
of the stress-free configurations, with the correspondiitgcal stress. Applied to twinning, these
would correspond approximately to

Tewin = G%, (5.6)

with GG being the shear modulus in the twin system. This yields asxamplery,, ~ 2000 MPa
for (1011){1012} twinning in magnesium, which is clearly too large. The oledrcritical stress
Thgreal ~ 2-7 MPa (Koike, 2005) is three orders of magnitude lower thanothe that emerges from
the Ball and James-approach. This comes from the partillodison movement, which is ignored
by the purely elastic modelling. Therefore, one has to tlihkow the model so far developed can
be adapted to realistic stress states for twinning. Oneddatroduce a plastic variable, which would
not have a physical interpretation on the microscale, andiwlould require an evolution equation.
The only way to stick to an elastic modelling is to modify thastic law such that the apparent stress
strain relation is approximated. Such nonlinear elasticslaan be used to model plastic material
behaviouri(Hencky, 1924; Ramberg and Osgood, 11943), asdemg local unloading occurs. In the
following two sections, two possible modifications of thastic law are discussed.

5.2 Adaptation of the Stresses

A simple solution is to project the stress st@iténto an admissible stress stdflé if the critical stress
state has been passed,
99
Tcri - T - )\—, Tcri - 0 57
t oo O(Ta) (5.7)
The ¢ indicates whether the critical stress state is passednlbeaonsidered as a 5D-hypersurface
in the 6D stress space, representing all critical stresssstd herefore, it is sometimes referred to as

"yield surface”. For example, if a Schmid law is applied
G=T—Twm, T=(CT)--M=T--sym(CM), M =dy® ny, (5.8)
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with the Mandel stress tens@T" and the Schmid tensavZ. In the latter equation, one has ensure
thatd andn are pulled back to the reference placement (see, e.g. aBe(2005) p. 298), where,
andd, are normalised and perpendicular. Thenj if- 0, the critical stress state is passed, and one
has to project the stress#&saccording to eq.[{5]7) into an admissible stress dfatg. If 0¢/0T is
normalised\ can serve as a distance measure betWéandT .;;. The latter method can be applied
to the twin variants if no double twinning is regarded, iiethe twin variants can only jump back to
the one parent configuration from which they stem, which ra¢hat only one twin system has to be
incorporated. One obtains from eds.(5.7) dndl (5.8)

T — Tiwin

A= , (5.9)
[sym(CM)|J>
Teit =T — dsym(CM). (5.10)
WhenC = I, the latter can be simplified to
Tow=T—2(T - sym(M) — Tywin)sym(M). (5.11)

The situation is different when regarding the parent, whaah convert into more than one twin
variant. Applying the Schmid law, one has to chegkl ;. in all potential twin systems. Due to
theC’-continuity of the corresponding yield surface, the primtmethod (eq_5l7) cannot be applied
without further efforts. The same problem arises in crygkasticity when a Schmid law is combined
with an associated flow rule. Therefore, different regsktion schemes have been proposed (e.g.,
Bertram (2005)). A common regularised yield surface is

¢:zn:< 7l )m—1, m > 1, (5.12)
i=1

Ttwin ¢

which tends to the Schmid law whemn — co. T'.,;; and cannot be calculated explicitely for # 1.
Due to the polarity of twinning, the absolute valug has to be replaced bly;) = (7; + |7|)/2. A
simpler way to obtain a stress stdfg;; with Schmid stresses lower thag,;, in any twin system is to
use the radial return methad (Simo and Hugnes, 1998), iate slown the entire stress tensor, taking
as proportion that the largest has to be equal ta,;,. Since the trace oM, is O, it is sufficient

to recalculate the Mandel stress deviator. This is autaraidyifulfilled by the projection methods
described above, but has to be respected explicitely inatthalrreturn method. In the followind\f

is the Schmid tensor corresponding to the twin system in lvthe maximal shear stress is found.
The recalculated Mandel stresses are given by

(CT) = (CT)° +a(CTY, (5.13)
and should yield
Towin = (CT)* -+ M, (5.14)
which is used to determine:

Tiwin = ((CT)° + a(CT)) - - M = QTyax, (5.15)
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i.e. o = Tywin/Tmax- ONE can confirm that the recalculated Mandel stresses gyefnetric second
Piola Kirchhoff stresses,

T.;=C '(CT)=C* <(C’T)° + TT““ (CT)’) (5.16)
. 1 .
Ty =C! (M(C’T) + gtr(CT) (1 — M) I) (5.17)
Tmax Tmax
. 1 .
Tcrit = M1—’ + —tr(C’T) (1 — Ttwln) Cil. (518)
Timax 3 Tmax
Again, one can simplify by means of the approximat@m I,
Ty = T° + 227, (5.19)
Tmax

The given methods have a big disadvantage: By alteéfinop general, the integrability condition for
hyperelasticity is not met, and the second law of thermodyosiis violated. Therefore, one has to
think of alternative approaches.

5.3 Adaptation of the Strain Energy

Beyond the critical state, the existence of an elasticrsgaergy is questionable. As discussed before,
an entirely physically motivated modelling must incorgerthe movement and arrangement of the
partial dislocations, involving a kinetic relation. Heiiejs as well focused on practicability and
numerical efficiency, which is aimed for by a purely elastiodulling. Therefore, the); have to be
adapted beyond the critical state such that the elastic i@ldsyresults which are in agreement with
experimental findings.

For the explanation of the concept, indexing of the différases and configuration change is omit-
ted in the remainder. As the individual strain energies a&findd in terms of strains, an indicator
function¢(E) is defined, which is used to identify critical strain statesyond which the strain en-
ergy is modified. If¢(E) < 0, E is a subcritical strain state. #§(E) > 0, E is an overcritical
strain state. The critical strain states correspong(#) = 0. A critical strain state connected to an
overcritical strainE can be specified by an orthogonal projection

Ecrit =F - /\QS/(Ecrit)a ¢(Ecrit) = 07 (520)

sketched in Fig[Ch]2. Alternatively, one could think of dical strain state assignmeht.,;(E) by
demandingnin||E — E.||, ¢(E.i) = 0. The latter formulation is alike the projection method, but
it does not require thé! continuity of $(E). An even simpler way is to use the radial return method
E. ., = oF, ¢(E.;) = 0, which does not even demand the convexitys0F). In anticipation of
the numerical results, no significant difference betweerotthogonal projection and the radial return
method could be determined.

Focusing on the definition af, if a critical twinning shear strain,.;, is defined in one potential twin
system, one can take

¢1(E):’7_"thin, 7:2EM7 M=d®mn. (521)
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For this simple case, ed.{5]120) can be solved explicithH#gt,, namely
Ecrit =F — )‘Sym<M)7 A= Y — Vtwin- (522)

Although this approach is quite similar to the proposal fribra latter Section, the thermodynamic
consistency can be assured more easily by formulating ttieatistate in terms of strains. By simply
statingw in terms of strains and corresponding unique critical stedates its existence is assured.
Moreover, as magnesium is elastically approximately ggoty, the critical stress state can be easily
linked to the a critical strain state, namely by a simple skeformation in the twin system.

The latter projection is useful if only one twin system isguatally active. If more than one twin
system can be activated, the “critical strain state hyptase” has to be constructed such that a
unique assignmenkE — E.,; is possible. l.e., it must bé' continuous and convex in the sense
thatp(aEoi1 + (1 — a)Eqie) < 0, a € [0, 1] holds for any two critical strain states. Moreover,
a "shooting through” the domain of admissible strain stagealways possible, which yields two
solutions forE ;. The feasible one is the one which is closer to the straie #at.e., the one with
the smaller absolute value af

A possibleg,, for n different twin systems is

ou(B) =S (/i)™ — 1, i =2B-- M, (5.23)
=1
with (x) = (x+|z|)/2 to respect the polarity of twinning. Here, if one out of thdistinct~y; > ~yin,
theng, (E) > 0. m is a preferably large integer regularisation parametertaBing a large value for
m, Yiwin CAN practically be reached in all twin systems simultankomshout passing a critical strain
state. Form > 1, E; cannot be given explicitly.

o(E)>0

A (E)
crit — E — )\Qb,(Ecrit)

Figure 5.2: Scheme on the orthogonal projection to a ctisitain state.

With the critical strain definition at hand, one is able to miypthe strain energy. It is pointed out
again that beyond the critical strain state, the strainggnéensity is used as a pure modelling tool,
but its existence ensures the thermodynamic consistentyeitarge. The following modified strain
energy is applied:

1

w:w0:§E~(C'-E if ¢(E)<0 (5.24)

1
W = wo — Q(E —Ecit) - Co - (B — Eerit) if ¢(E)>0. (5.25)
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With the major symmetry o, in the case ob(E) > 0, w can be simplified to

1
w = wy — §(E — Ecrit) .. CQ .. (E — Ecrit) (526)
1 1
- QE . (CO . E - §<E - Ecrit) A (CO . (E - Ecrit) (527)
1
=F-- <C0 ©e Ecrit 2 crlt <C0 crlt- (528)

The latter modification ofv is chosen because it@s continuous. Moreover, it ensures that the stress
level does not increase after passing the critical straitesif we ignore the dependenceBf,;; on

E, we yield a strain energy which is linear #. In a monotonic strain driven test (in direction of
0¢/0E|g__, i.e. E.; is constant), one obtains a constant stress strain relaéigond the critical
strain state, corresponding to the linear increase mpresented by the first term in eq.{3.28).

To calculate the stress@s= Jw/0FE, the derivativeE..;;/OFE is needed.E..;; is given implicitly
by eq. [E.2D), which can be rearranged as

0=g=E -\ (Euit) — Bt (5.29)
0= g= ¢(Ecrit)- (530)

The dependence gfand its derivatives oy ..;; is omitted in the remainder. The complete differential
of the latter equations with respectkis also zero, so that

dg _ I[S . )\Qb” . aEcmt oA a-Ecrit

_ _ _ 5.31
0 dE OF ¥ 0E OE ( )
8)\ 1 S aEcrit
— ¢ ®8—E (Ap" +17) E (5.32)
- dg Y alalcrlt
0= ok ¢ - T (5.33)

with I° being the fourth-order identity on symmetric second-otdasors. The system of 36+6 linear
equations has 36+6 unknown€ ;;/OE and 0\/JE, while all other derivatives can be directly
calculated. Rearranging e._(5.32) to

8Ecrit o 8_)‘ . S 7\ —1
5E =A < ¢®8E> A=(I"+x¢") (5.34)
and inserting into eq[{5.B3) yields
38; =al¢g - A, a=¢ - -A--¢ (5.35)

which can be substituted in ed. {5.34) to obtain

6-Ecrit
OFE

where possible simplifications by using the symmetrieE£&ndA have been employed. One notes
thatoE..;./OE has the projector properyE..;;/OF - - ¢’ = 0. This has been expected due to the
fact that differentE can be projected to the sankg,;;.

—A-—a A ¢ (A ), (5.36)
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Chapter 6

Final Constitutive Equations and
Implementation

In this section, the model derived in the last Sections israansed. The indef indicates the parent
configuration, while the indicesks. . . n run over the possible twin variants. In order to avoid coitfias
in this Section all sums are written out, i.e. multiple ireBdn a product do not imply summation
automatically. The strain energy density is given by

gi h(wi)

w = a;w; G = =n 9= T—537 3 h(w;) = exp(—kw;), (6.1)
; Zj:O 9j 1 — h(w;)

with k& being a preferably large regularisation parameter, segoB&E4. Thew; are given by

1

wi =3B Cy- E, if ¢;(E;) <0 (6.2)
1

w; = Ez T (CO T Ecriti - §Ecriti o CO o Ecriti if ¢Z(E2) > 07 (63)

according to the phenomenological model adaptation of tifaénsenergies of Sectidn $.&, is the
elasticity tetrad .E ..;; are given implicitly through the orthonormal projection

Ecriti - Ez - )\gb;(Ecriti) ¢i(Ecriti) - 07 (64)

where\ needs to be calculated such that the latter equation holdsp;Tare given by

n

$o(Bo) =Y {(%j/Yewin)™ — 1 v, =Ey--M;  (6.5)
j=1
¢i(E;) = (Vi — Viwin) vi=E;--M; i=1...n, (6.6)

with the preferably large regularisation parameteand a critical shear straip,;,. The Green’s
strainsE; are obtained by

E;, = %(Pfcpi —1I). (6.7)

85
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The plastic transformations map the elastic reference detive reference placemert, is given by
the parent crystal orientation, a#®}, : = 1..n are given by

Pi = P()PZ‘Q 1= ]_’I’L, (68)
with the plastic transformation®;,

which map the elastic reference law to the twin configurajeee eq[{4.64) and Fig. b.1. Withat
hand by the latter system of equations, the second PioldKaft stresses are

8 ~ n
T, = g‘g - Pi%PiT, (6.11)

see Sectioh 416. This is, so far, the elastic law. Incorjegahe viscous regularisation corresponds
to adding the deviatoric part Gg‘iC to the second Piola Kirchhoff stresses. Regarding the datd g
mechanism, the plastic transformation of the parent egadeeresponding to

d

— PP, = Ad* d=—
0 0 7 ®na ||d||7

(6.12)
with
d=(I-neon)F oF 'n, F=FP,. (6.13)

4 is determined consistently with the elastic law. I.e., dgtihe plastic flow, the resolved shear stress
in the card glide system is equal to the flow stress.

6.1 Implementation into the FE System ABAQUS

The variable<,, d;, andn,, have been defined with respect to an orthonormal basis asteén
Fig. [&1. Withd,, andn,, the plastic transformation®,, have been defined following ed_{6.9),
which map the elastic law of the reference twin configuraitmthe elastic law of the parent, i.e. to
the elastic reference law. The final plastic transformatiwhich map the elastic reference laws of the
parent and all potential twin variants to the reference gataent are given by eq_(6.8) for= 1...n
andP; = P, fori = 0, where P, maps the lattice basis of the (parent) elastic referencedaive
lattice basis in the reference placement.
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Figure 6.1: Connection of elastic reference law and refergrlacement.

6.2 Implementation of the Card Glide Mechanism

As most FE systems evaluate the node displacement as a prigwult, the displacements (and
hence the strains) are not internal variables, and takenafdry the FE program. This means that
althoughC' appears in the equations, time integration®fneeds not to concern the user of the
UMAT interface. However, the card glide mechanism is theiagesdient of the model that forces to
deal with the integration of an internal variable, nam#ly, the plastic transformation of the parent
configuration. The index 0 is omitted in the remainder of thection since no othelP appears.
See Bertram/ (2005) for an account to plasticity, and SimoHumghe’s [(1998) for an account to its
numerical treatment.

The Mandel stresses with respect to the elastic referemcarkagiven by

T - %PTC’P (Co-- (PTCP-1T)). (6.14)
Then, the direction of and the maximal shear stress in thal ptene are given by
d:(l’%-n)-(I—nQ@n) (6.15)
Ta =Vd-d, (6.16)
with n being the normalised-axis direction vector. The yield and loading conditions ar
A(Tel, Thasal) = Tel — Thasal = 0, ¢ > 0. (6.17)

If both are fulfilled, P evolves, otherwise the deformation is elastic, dhd= 0. While P evolves,
the consistency condition = 0 must hold. When elastoplasticity is treated numericalig does not
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obtain a continuous evolution @, but a sequence of discref®,. Therefore, the loading condition
does not enter the numerical considerations, while theis@mey condition is ensured pointwise at
each of the discrete time steps.

ABAQUS passed’,,, F,, andF',, . to the user subroutine, and the plastic transformaktgn, needs

to be determined. First, a predictor step is carried outrevif®, ., = P, is assumed. By this, one
treats the strain increment as fully elastic, and calcaldte Mandel stresses and resolved shear stress
as given above. Then, if

Tel,n+1 = Thasal,n (618)

is fullfilled, P, has to be determined such that,.; = Thasant+1. By @assuming a constant slip
direction, one can make use of €q.- 41107, and write

whered” is the normalised from the predictor step. In order to respect isotropic hairtg let us
assume that,..,, depends on the accumulated shear

Yace,n+1 = Yace,n + |A7‘7 (620)

which is an internal variable just likP. One can determine the scalar varialilg such that the scalar
equationT ,+1 = Thasal,n+1 NOlds by Newtons method, or, slower but more stable, by teedtion
method. The fact that only one scalar equation has to bedobreders the card glide mechanism in
this case fairly fast and stable.

As mentioned before, basal glide is taken into account antlge parent configuration, and it remains
to discuss how this can be implemented. For this purposentheator functiony from Sectiorf 5.8
has been used.is equal to -1 in the stress-free parent configuration, ao@gwith the regularisation
exponent:, as the strain state diverges from this state. ltwghen the critical strain state is reached.
By definingmyasar = (¢4 2)Thasal0, ONE Obtains a virtually unreachable Schmid stress whecritieal
strain is passed, while leaving..., approximately unaltered in subcritical strain region. hasligh
this treatment appears empiric at first glance, it can bepgrgééed as a regularisation of the algebraic
condition that slip is only possible in the parent configiorati.e. as long asy(E,) < 0. When the
regularisation parameten — oo in ¢y (€q. [(B.ZB),Thasal = Thasalo dUe togy — —1 for subcritical
strain states, and,...,; — oo if a critical strain state is passed. Algebraic formulasi@ane, however,
not preferable from a numerical point of view, which is why tlegularised formulation is used in
this work.

In order to not mix too many ingredients in one model, handgmias been generally neglected, and
Thasalo = const. In the remainders, .0 IS @ material parameter, and the index 0 is omitted.



Chapter 7

Testing of the Model

7.1 Material Parameters

The material parameters are given with respect to the elesfierence law.e; is parallel to two
edges of the base hexagon whilgis parallel to thec-axis. The elastic stiffness tetrad of magnesium
(Simmaons and Wan@, 1971), with respect to the b#xkis= e; ® e1, Ey = €3 ® €3, E3 = e3 ® es,
E,=\V2/2(e10es+es®e;), Bs=12/2(e;®e;+e3®e;), Bg = v2/2(es@e3 +e3@ey), IS

56.49 23.16 1810 0 0 0
5649 1810 0 0 0
5873 0 0 0
€= 2.1681 0 0 B @ B, (7.1)
2.16.81 0
i 55.60 — 23.16]

in GPa. E; is an orthonormal vector basis for symmetric second-orelesdrs, i.e. a fourth-order
tensor with both subsymmetries can be denoted as a secdadtensor with respect t&;. The six
structural tensors belonging to th&012}(1011) twin systems are given by

M1 = d1 X Ny (72)
d; = cos(w)ey + sin(a)es (7.3)
n, = —sin(a)ey + cos(a)es (7.4)

M;=Q e, *Mi, i=2.6 (7.5)

i.e. by rotating the twin system/ ; in the sixfold symmetric hexagonal cell, with
o = atan(c/(aV/3)). (7.6)

For magnesium and its alloys/a ~ 1.623. The twinning shear for th€1012}(1011) twin systems
is given by

_ V3 _ca (7.7)

70_0/a \/57

89
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i.e. 7 ~ 0.13. The regularisation parametgrand the viscosity are taken &s= 0.025 andn =
10GPa s, unless stated otherwise. Reasonable valuesciam be estimated by reviewing that is
small compared to the critical slip and twinning stressé®ne: is the average strain rate, e|gD’||
or 4 in a simple shear tesk is chosen such that the transition between the elastic l&ivgim and
parent is smooth, see the next Section.

The phenomenological model adaptation that has been usee élaptation of the strain energy as
discussed in Sectidn'%.3, with the regularisation paramete 10. The used critical shear strain
IS Ytwin = 0.0570 unless not stated otherwise. The critical shear stresergftire approximately
Terit = GVwin ~ 0.05 X 0.1296 x 16500MPa~ 107MPa.

7.2 Simple Shear Tests in a Twin System and the Basal Plane

Before any structural problem is solved with the FEM, it ddooe investigated how the material
model behaves in an entirely strain-driven test, and hogssés and internal variables evolvéift)
is prescribed. Most interesting is a shear test in one ofithsvan systems. Therefore,

F:I—l—’yd1®n1, POII (78)

is imposed, with) < v < ~,. Py = I indicates that the elastic law in the reference configunatio
is identical to the current elastic reference law. For tag,tthe softening that occurs when flipping
into the twin system does not bother, since no equilibriunfigoiration is searched for. The additive
viscosity is therefore not needed, ame- 0 is applied. Basal glide is also deactivated. In Eigl 7.1 the
shear stress in the twin systein= o - - (d; ® n) is plotted overy, and the regularisation parameter
k, which smoothens the transitions between the differeistiellaws, has been varied.

One recognises that the material is stress-free when tlmedwvifiguration is reached, and that the
elastic behaviour is linear near the stress-free states p@lametek influences the sharpness of the
transition between the elastic laws, as it is expected ftomrégularisation. As the transition region,

which is smoothed by the regularisation paramétecorresponds to the nonconvex region (with a
negative stiffness) no stable equilibrium configuration ba found in that interval. It merely serves

as the transition zone. It is therefore reasonable to chbdamye enough such that the elastic laws
near the stress free configurations are represented safffjoreell, but small enough to have a smooth
transition between the twin and parent configuration. Tioeee for the simulations that are presented
in the following sectionsk = 0.025 has been chosen.

It is further important to review the effect of the phenomlegccal model adaptation. Therefore, it

has been incorporated with the critical shear strain, = 0.05v,. The critical shear stress fits well

the prior estimation of approximately 110MPa, see Eigl Dhe notes that the phenomenological
model adaptation limits the stresses.

In order to review the basal glide, a cyclic test with
F=1+vya, ®c, P=1 (7.9)

has been carried out, with evolving linearly from 0 to 0.025 and back to 0. As the refeeen
placement and the elastic reference law coincide again= e; andc* = ez are chosen. The
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Figure 7.1: Resolved shear stress in twin system one gyv&ithout (left) and with (centre) the
phenomenological model adaptation, resolved shear strashear test within the basal plane (right),
with Terit = 30MPa.

resolved shear stress plotted in Hig] 7.1 correspondsftiier® the component;; wheno is given
with respect to the basis;. One clearly recognises the perfectly plastic behavioduhasard glide
mechanism is activated, with,;; = 30MPa.

7.3 FE Model 1: Simple Shear Deformation into one Twin Sys-
tem

7.3.1 Model Setup

In this Section, the fully deformation-controlled simpleesr test from the last Section is extended
to a structural problem. A strip of the dimensions 100r200mmx 3mm is submitted to a simple
shear deformation, see Fig.17.2. The boundary conditianswah that a plane strain deformation is
enforced, so that the problem is two-dimensional. Theesfdong the thickness direction only one
element has been assigned. The lattice is oriented sucththahear plane coincides with one of the
six equivalent{1012} twinning planes and that twinning can occur in the directibmhe enforced
shear direction. The displacement boundary conditionssach that one face is fixed, while the
opposing face is displaced parallel and proportional tethy finally 15mm in 1000 seconds, and
back to zero in 1000 seconds. A small notch at one of the freaderies serves as a perturbation
to trigger the twin formation. Different meshes have beeenbased, namely a regular hexahedral
mesh with linear shape functions (element type C3D8) amdjular wedge meshes with linear and
guadratic shape functions (element types C3D6 and C3D15).

The maximal displacement due to the twinning shear defoomagd v, x 100mm. With~, ~ 0.13,

the faces should be displaced at least 13mm in order to enfloecentire twinning of the sample. The
simulations are carried out with different meshes, varyhmgcharacteristic element size, the degree
of the shape functions in the elements, and the viscosityamtaterial law.
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Figure 7.2: Simple shear deformation of a strip, with an sizexd hexagonal cell. The lattice is
oriented such that the shear plane coincides with one of th&2} twinning planes. A small notch
is incorporated as preferred nucleation site.

7.3.2 Results

In the simulations a twin nucleates near the notch, and gatpa along the shear direction. After
invading the overall length of 200mm, the twin starts grayvim direction of the shear plane normal,
i.e., the thickness of the twin grows, see Figl 7.4. As themheétion is reversed, a similar detwinning-
behaviour is observed. It is pointed out that such ideal g and detwinning behaviour is not
observed in reality. The simulation should merely dematstthe possibility of detwinning, the

effect of the phenomenological model adaptation, and tiséeingsis loop.

The regularising viscosity is so small in the context of thiimulation that a variation of it has no
significant influence. Its effect on the nominal stress caedignated byr;,. ~ 91/2 = 1.5E —
4s7'n/2 = 0.3 MPa. One notes that the nominal critical twinning shearsstaf approximately 110
MPa suites to the value that was adjusted in Se€fidn 7.1.

Consider the nominal shear stress-displacement diagi@nOhe notes that at the displacement of
approximately 13mm the entire specimen has been invadedebiwin, and that at ongoing defor-

mation the elastic law of the twin is found. The distinct lar@ps in both diagrams are connected
to the fineness of the mesh. Each load drop corresponds teatistion of the twin boundary from

one element row to the next when the twin grows in thicknessction. Consequently, the coarser
the mesh is, the larger is the load drop (Hig.l 7.3). Moredbertwin parent interfaces are approxi-
mately parallel to mesh interfaces, due to the mesh streiciitris has an influence on the simulation
results. In order to review the mesh-dependence in mord,dé simulations have been repeated
with an irregular wedge mesh of moderate fineness, with linad quadratic shape functions. The
nominal shear stress over the displacement is depictedyii/E3, two particularly interesting states
are depicted in Fig—7.5. Fig._T.3 shows the hysteresis aiadd¢o twinning and detwinning for an

irregular wedge-mesh. At the onset of twinning and detwignithe stress displacement curve fits
quite well to the findings with the regular mesh. In the pragiam stage, the first stress peak is not
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Figure 7.3: Nominal shear stress vs. displacement forréifieregular hexahedral meshes with linear
shape functions (left) and for the quadratic wedge meshtig he nominal shear stress is given by
T = F/A, whereF is the overall reaction force ia,-direction on the displaced boundary, and the
boundary areal = 600mm?.

reached again, and the nominal shear stress stays beloywphexanately constant peak level that
is found in the regular mesh simulations. This behaviour aamealistic than the results with the
regular meshing. The load drops are due to the mesh irrétyuless pronounced.

The states depicted in Fig_¥.5 showing the twin shortlyraftecleation give a good impression on
the mesh-dependence in both simulations. It appears thasa of quadratic shape functions the
mesh-dependence is less pronounced. The unrealistiethiak of the twin tips that are embedded
according to the mesh interfaces are not encountered, atiebnes the flipping of entire rows of
elements.

While the overall behaviour is as expected and mostly safisfy, observed problems should not
be concealed. In the following, "regular twin” means a twihigh aligns its interface parallel to
the shear direction, while a kink twin aligns its interfacrgendicular to the shear direction. The
kink twins are not observed in practice. In FI[g.17.4 one nthes in the first place an intermediate
twin evolves perpendicular to the shear direction. As thelehcs elastic, this twin vanishes as the
deformation continues, and is replaced by the regular twime intermediate twin appears only in
the mesh of medium fineness. Further, due to the energy amagiof conjugate twins, it is not clear
whether the intermediate twin should be regarded as a kwrk+ariant of the twin that is aimed
for, or as a regular twin of the twin system that is conjugatehie targeted twin. The conjugate
twin systems have their shear planes aligned almost peipgadto each other, namely at 86,3
while the mesh interfaces intersect at an angle 6f @ue to the mesh morphology it is reasonable
to suppose that a regular twin propagates along a meshaogeiffits shear plane is approximately
parallel to it, i.e., the propagation direction dependst@heshing. It is therefore recommendable to
use irregular meshes in conjunction with the present nateadel, in order to not induce a preferred
twin-interface alignment. Moreover, the use of quadrdteye functions appears to reduce the mesh-
dependence as well. To review the mesh dependence in maig tle¢ nominal shear stress vs.
displacement curve for three quadratic and irregular neshéifferent fineness is depicted in Fig.
[78. One sees that the discontinuity is less pronouncecdirtbst mesh, where the amplitude of the
load drops is lowest.
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Figure 7.4: Twin evolution from left to right at =2.7mm, 2.9mm, 6.7mm, 10.4mm and 13mm
on the intermediate fine mesh. The greyscale displays thghiviictor corresponding to the parent
configuration,(white) 0 < ag < 1 (black). Note the intermediate twin at = 2.67mm, and the
propagation of the interface into the next row recorded at10.4mm.
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Figure 7.6: Nominal shear stress vs. displacement for tladmqtic wedge meshes of different fine-
ness (left) and different viscosities & {1000MPas, 2000MPas, 6000MPas, 10000MP&ght).
The smaller the viscosity, the earlier occurs the load drop.

Unsteady Twin Formation

The existence of a peak stress at the twin nucleation, andwar l@ropagation stress level
is in accordance with observations and theoretical coraiidas (Christian and Mahajah, 1995;
Kochmann and lle, 2009). It is responsible for the burst-pkepagation of newly formed twins.
This behaviour is similar to the stick-slip phenomenon emtered in dry-friction, and has been veri-
fied experimentally. (Boyvko et al., 1994; Kawabata et al.,®Ghd by atomistic modelling (Hu etlal.,
2009).

Even though no nucleation stress has been explicitely ateduor, the burst-like propagation is

observed in the simulations. It is interesting to note thather the nucleation nor the propagation
stress depend on the fineness of the mesh, seEHg. 7.6. Feaimthlations it can be concluded that
the load drop from the nucleation to the propagation levelox as soon as the twin tips reach the
free boundaries, and the twin propagation by advancingabariterfaces towards the parent crystal
starts. This behaviour is quite realistic. In the microdgr&jg. (L1, one merely finds a free twin tip

inside the grain, but only at the grain boundaries.

The equilibrium at the interface between twin nucleus andias unstable (see Fig_¥.5 for a sketch).
A small perturbation, like external loading or internalesses, lead to interface motion. The fact
that the twin tip shoots through the sample instead of adugraroportionally with the application
of the boundary conditions indicates that the elastic m&fain caused by the twin triggers the
twin propagation. The conclusion is that the elastic migfit give the crucial stroke to the unstable
equilibrium, which causes the observed shooting-throdgheotwin. In the simulations, the speed at
which the twin tip shoots through is not infinite because efufscous regularisation. A reduction of
the viscosity results in a shorter nucleation stage, résdg a faster shooting-through of the twin,
see Fig.[.Z6. In FE-simulations with a domino-row arrangeinoé elements, the twin propagation
speed has been found to be inversely proportional to thesiisc

Summarising roughly, the discrepancy between nucleatind-propagation stress is partially caused
by the elastic misfit strain around the twin nucleus, whickhas the neighbouring parent crystal
towards the twin configuration. This results in a reductibtihe stress that has to be applied to trigger



96 CHAPTER 7. TESTING OF THE MODEL

AVAVAVAVAVAVAVAVAVAVAVAVAVAVA " AVAVAVAVAVAY VAVAVAVAVAVANAY
VASAYAYAVAYAVAVAVAVAVAVAVAY/ A“X%#X#A# i ORRR ey
A 3

“WAVAVAVAVAVAVAVAVAVAVAVAY"

\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYY
4‘%AVAVAWAVAYAV¢VAVAVAVAVAVAI§4
i

g, VAVAVAVAAVAVAVAVAVA®.Y N EVANA AV VAVAVAAVAVAVAY VA
Kl TAVAAVAAAVAVATEY 4 PO F OO S
MMV, ' VAVAVAVAVAVAVAVAY! o VAVAVAVAVAVAVAVAVAVAN 4 7AVA
i, it R ;5
CIREROE X b e
V% WAl A
o o
)

SVAV
%
A

VAVAVAYVA

Amvﬂmmuﬂﬁ‘%‘n =]
VT VAAATA VA Py A
SATOOHKS

P
%,

7
sVAVAVAVAVAVAV

AVAVAVAN!

VAVAVAVAVAY
S

AVA
TAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAVAY

\VAVA

e

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

VAV

NS
N

NN
S

AVAVAYAVAVAW AW AVAVAYAV A SVAVAVAVAVA w4 I AAVAW: |

)

TAVAS
SOLE
e o A WAV AVAVAVAVAVAVAVAVA L
Va¥avararavasaray
\/

N/
AV4
&
LN

-

L

i A
VAvAYL Wavatigsl
B av TIVAVAVAR S
. TAVAVAVAVAN
SO IIRIITS
ST B

‘v’uvnmv‘v‘uﬁuvﬂ:@’

RO
INNIN

VAVAVAVAVAYAVAYA NN AVAVAVAVAVAVAVU

X#AVAVA [AWAVAVAVAYAY

=

Figure 7.7: Slip twin interaction dt= 82.5s (left figures) and at = 224s (right figures). In each pair
of figures, the left figure displays the accumulated basahrsf@e..0.05 and 0...0.1) while the right
figure displays the twin volume fraction (0...1).

the twin propagation, compared to the loading that is necgge generate a twin nucleus from the
uniform parent crystal. The twin nucleation is controlledthe movement and agglomeration of
partial dislocations, which may occur at stresses thatrtlsmmificantly from the propagation stress
of an evolved twin.

7.3.3 Incorporation of Basal Glide

If basal glide is activated, the plane deforms initially by $ands, which start at the corners and
end inside the plane. Then, two twins develop such that tbapect the ends of the slip bands, see
Fig.[Z1. The shear bands deviate slightly from the oriémat45°with respect to the model edges,

because the angle between the basal plane aniithe} plane (parallel to the displaced face) is

~ 43.16°.

7.4 FE Model 2: Elongation of a Notched Band

7.4.1 Model setup

The second FE model consists of a notched single crystal, vamdh is elongated along the length
axis (Fig.[Z8). Again, a plane strain state is enforced ®gqnibingu; = 0 on the principal faces
of the stripe, while the transverse displacement perpetatito the thickness direction is not con-
strained. The notch is the inhomogeneity at which twins Ehoucleate. The hexagonal crystal
lattice is aligned such that an edge of the base hexagonaligido the band normal, while theaxis
deviates slightly from the length axis with the angleThe non-zero displacement boundary condi-
tion is applied proportional to time, which runs from 0 to 080 Regular hexahedral meshings with
linear and quadratic shape shape functions have been Usete(e types C3D8 and C3D20). The
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Figure 7.9: Reaction force over the nominal
elongation strain for the monotonic elonga-
tion of the band using the wedge-mesh with
guadratic shape functions and taking into ac-
count basal slip/ywin = 0.057. AS « in-
Figure 7.8: Model of a notched bandcreases, basal slip is triggered instead of twin-
(1x10x50). ning. With 7in & 47,.5a1, the force necessary
to elongate the band decreases. &or 45°,

the elongation was entirely accomplished by
basal slip.

regular meshing is considered as unproblematic, sincerifstat orientation enforces an interface
orientation which is far from parallel to the mesh interface

7.4.2 Cyclic Loading and General Observations

A cyclic loading test has been employed in order to examieaditwinning characteristics and the
effect of the phenomenological model adaptation. Afteding the strip as depicted in Fig._¥.8, the
loading has been reversed. Basal slip is disabled in thepfase as well.

The band behaves initially linearly elastic. At a certainnpoa twin nucleates at the notch, and
propagates rapidly through the width of the specimen. Withaing loading, it propagates along
its thickness direction, i.e. the established interfaceseasahrough the sample. After the entire
specimen is twinned, one observes again linear elasticvimiva As the deformation is reversed,
the behaviour is similar to the loading process. One obsdmrear elastic behaviour until the twin
(which has initially been the parent) invades the specimaad,the initial state is restored. With the
phenomenological model adaptation, one is able to limitsiiness at which twinning takes place,
which is depicted in Fig—7Z.10. One important result is thatdritical force at which the linear elastic
stage ends is doubled as the critical twinning sheay, is doubled, which suggests that a proportional
scaling7win & Giwin CaN be used for stresses and strains of relevant order. irasions with
regular and irregular meshes yield approximately the s&sats.

One notes that the reaction force level is not constant istage of twin or parent propagation, irre-
spective of the jerky behaviour. The reason for this is thatstress state changes qualitatively during
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Figure 7.11: The interface alignment shifts to the origatabf the conjugate twin.

the loading. As the twin propagates, the band undergoesaa dbormation lateral to the elongation
direction, which induces a small bending component. At leaersal, a slight necking is observed,
causing again a small bending component. The change ofrdessttate is responsible for the sudden
shifting of the interface, which has been observed in sonmilzdions. Some exemplifying states
are depicted in Fig—7Z11. The angle between the new and tddace is approximately 86which
means that we do not face a kink twin, but a pair of conjugaiesdwr he prediction of such behaviour
is a drawback of the elastic modelling. However, it is a mipblem in the primary loading stage,
and only of matter if strain path changes occur on the twirstecture.
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Figure 7.12: Plot of the weight factay, of the parent((black) < aq < 1(white), for a positive and
negative inclination of the lattice with respect to the gation direction.

7.4.3 Distinction of Conjugate Twin Systems

Due to the energy invariance of conjugate twin systems, ihtsresting to see how they can be
distinguished in an FE simulation. For this purpose, thenpheenological model adaptation and
basal slip have been deactivated. Therefore, the conjigatesystems (the opposing twin systems
in the hcp cell) are energetically not distinguishable Seetiorf4.B). However, due to the asymmetry
coming from the inclination of the crystal lattice with resp to the elongation direction, it has to be
presumed that one twin system is preferred. In fact, one lelg distinguish the twin bands that
evolve, not by looking at both weight factarsor the strain energies; of the conjugate twin systems
at a material point, but by relating the interface that egslto the crystal basis. The conjugate twin
systems can be triggered by incliniedyy a small positive or a negative see Figs[718 ard 7]12.
Inside the twin lamella the weight factors of the two equavelitwin systems are both approximately
0.5. The interface alignment clearly determines which of thejugate twins has evolved, while the
weight factors are equal for any deformation. In fact, byocedlimg out one of the two conjugate twin
systems in each of the three pairs, the FE calculation isltered at all. Thus, the conjugate twin
systems can be treated as one twinning mode.

One problem with the conjugate twin systems is that one tvég be bounded by interfaces belonging
to the two distinct conjugate twins, as depicted in Eig. 17 T3 simulation has been carried out at a
ten times larger elongation rate. It is observed that twaleggconjugate twins unite to a mixed twin,
which is an artifact of the model. The mixed twin is at leasttable and shifts quite fast to a regular
twin.

In one case, a rather unexpected result has been encoymtaneely the force displacement curve for
the regular mesh with linear shape functions. In this sitmathe reaction force is not jerky, and
in the first propagation stage it is negative, see Eig.17.1@ implications of this are that the twin
grows by itself, exerting a compressive force to the bandghvbontradicts physical experience. An
explanation for this may be that an unfortunate combinatiomodel parameters has been chosen.
This suspicion is furnished by the fact that in no other satiah with a qualitatively better FE model
such behaviour is observed.
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Figure 7.13: Plot of the weight factag of the parent)(black) < ag < 1(white). The elastic mod-
elling induces artificial deformation modes, namely theiifatce shifting between conjugate twins
and the union of conjugate twins.

7.4.4 Incorporation of Basal Glide

In this Section, the twin-basal glide interaction is stadid he critical shear stress for basal glide
is determined such thaty;,/m, ~ 4 holds. Withyiy, = 0.057, yielding 7iwin ~ 110MPa,
Taip = 30MPa has been chosen. These values are larger than the vatyssré magnesium, but
reasonable for MgAl alloys. The elongation test has beenechout ata = 0, 4.5, 9°, 13.53, 1&
and 45.

As expected, the basal slip activity depends on the inetinaif the lattice. The simulation at = 0°

is practically unaffected by the incorporation of basgl,stince the basal plane is perpendicular to the
tension direction. While the twin nucleates and propagatesginal slip activity is observed near the
twin interface. As the twin interfaces reach the ends of thre tmore slip system activity is observed
due to the fact that the boundary conditions at the ends dfahd are incompatible with the twinning
shear. The increased slip induces a less homogeneous pateitire, which triggers the evolution
of a twin network at load reversal (Fig_7114).

Fora = 4.5° anda = 9°, similar behaviour with more pronounced slip activity issebved. For
a = 13.5°, slipping and twinning interact already in the loading sta§oon after the twin nucleates,
a considerable amount of slip occurs near the twin tip (Ei@3) Moreover, the twin tip has a pro-
nounced cusp shape, as often observed in real crystalsredidted by the theory of transformation
dislocations|(Bovko et al., 1994). A slip band propagatesnaingle of approximately 17.5%0 the
elongation direction, which is approximately parallel be ¢-axis. From this band, a distinguished
zone of large slip deformation evolves, which acts as a&afor the twin propagation (Fid._ZIL5).
Again, the major problem with the elastic modelling of twimg becomes visible. In the upper left
subfigure in FigC”Zd5 one sees that the band undergoes a doditateral deformation. In the final
stage, the lateral shearing is upward. This means that timentwst have changed to its conjugate
between the two states.
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Figure 7.14: Twin and basal slip evolution for the elongatiest witha = 0°. Top: Plot of the
weight factora, of the parentf(black) < aq < 1(white). Bottom: Plot of the accumulated basal
shear strain, from 0...0.025 in the left and 0...0.2 in tigétriigure. At the loading stage, the twin
grows homogeneously into the parent, accompanied by dbgbdl slip. At the end of the loading
stage basal slip is enforced at the band ends, which leada@tréversal to a heterogeneous twin
structure (right).
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Figure 7.15: Twin and basal slip evolution for the elongatiest witha: = 13.5°. Top: Plot of the
weight factora, of the parentf(black) < aq < 1(white). Bottom: Plot of the accumulated basal
shear strain, from 0...0.15 in the left and 0...0.4 in thétritggure. Note the cusp shape of the twin
tip and the slip activity near the twin tip. The slip zone &thes to a slip band, which acts later as a
boundary for twin growth.

In case ofa = 45°, slip bands evolve, and the deformation is entirely accoduated by basal slip,
and no twinning is observed, Fig.—7116. The critical forcapproximately one fourth of the critical
force in case ofv = 0, i.e., one recovers the ratiQ,i, ~ 4Tasal-

The model setup is appropriate for further investigatiomsg., whether slip and twin interac-
tion produce accommodation kinking. For magnesium, kinkkgpas are well documented by
Roberts and Partridgz (1966). It is found that tfi®@12} twins that grow from the surface and meet
inside the crystal enclose a triangle, in which accommodéaktinking by a certain slip pattern is ob-
served. This somewhat specific twin-slip-pattern can beodgpced successfully in a FE Simulation,
see Fig[CZ1l7. The regular quadratic mesh has been usedywithz 110MPa, 7,...1 = 30MPa and
a=0.
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Figure 7.16: Plot of the accumulated basal shear strain @o®.5, atx = 45°. The entire elongation
is accommodated by a slip band, and no twinning is observed.
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Figure 7.17: Kink pattern observed by Roberts and Parir{i§66) and simulated kink pattern. The
deformation is scaled by a factor of two in order to magnify kinks. Left: Plot of the weight factor
ao of the parent()(black) < ay < 1(white). Right: Plot of the accumulated basal shear strain, from

0...0.08.
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7.5 FE Model 3: Simple Shear of a Plane

7.5.1 Model Setup

While the latter FE simulations result in approximately fogeneously loaded parts of twin and
parent, in this section the effect of inhomogeneous loadoglitions is examined. For this purpose,
a 200mmx 100mm plane is subjected to a simple shear deformation,renidttice is aligned such
that the twin interfaces disturb the section-wise homogasae&leformation, unlike to the simulations
of the two latter sections, see Fif._4.18. Again, the deftionds restricted to be plane. One of
the short edges is kept fixed while the opposing one is displacoportional by 20mm parallel to
the fixed one. The displacement occurs time proportionali0%. If the lattice is oriented such
that a rotation of 180inside the plane is element of the symmetry group of theckttihe model

is point-symmetric with respect to the plane centre poirlte Tattice is oriented such that the shear
direction is parallel ta: while the model plane normal coincides with one of the Therefore, only
one half of the model has been incorporated, namely a 1080mifi0mm sheet, where the midpoint
of one edge is fixed, while the opposing face is displaced 1@arallel the fixed edge. Along the
fixed edgeu(d) = —u(—d) holds, wherei runs from -50mm to 50mm, see Fig._7.18. A regular
50 x 50 mesh with quadratic elements has been used. The regudariseegarded less problematic
in this simulation, as the mesh interfaces intersect tha taterface at an angle of approximately
45°. A regular hexahedral meshing with quadratic shape funst{element type C3D20) has been
employed.

Figure 7.18: Model of a plane (200mm100mm) that is subjected to a simple shear deformation.
The hexagonal crystal lattice is aligned such that the efijeedase hexagon is perpendicular to the
model plane while the-axis is parallel to the shear direction. The boundary diomb are such that
the deformation is plane.
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7.5.2 Simulation Results without Basal Slip

In the simulations, a twin nucleates in one corner and rgudbpagates diagonally halfway through
the plate. Then, as the loading continues, it grows thickéneanucleation site while the tip of the
twin remains sharp. Consequently, a cusp-shaped twin aleselith its interfaces slightly inclined
to the{1012} shear plane. However, the interfaces cannot be inclinedrizeg certain angle, which
depends on the twinning stress. After reaching the criticdination, the twin breaks up into several
twins, see Fig[_Z.19. In Fid._ZR0, the twin shape just befloeesplitting of the twin is depicted for
different twinning stresses. One notes that the largentiring stress is, the larger is the maximum
interface inclination. This resultis in agreement withlgtieal findings by Gliige and Kalisch (2008).
Moreover, the cusp-shape of a twinning tip is predicted lycttnsiderations regarding the dislocation
nature of twinningl(Boyko et al., 1994), and observed expenitally as well, see Fig._7]P1.
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Figure 7.19: Twin growth and breakup fat,;, ~ 240MPa, model depicted at 143s, 283s, 432s, 605s,
695s and 800s. Plot of the weight factgrof the parent)(black) < ag < 1(white).

7.5.3 Incorporation of Basal Glide

If basal slip is incorporated, the single-crystal simuas are very sensitive with respect to the initial
conditions. Atn,.sa = 30MPa andr;, = 120MPa, a very small twin evolves, while the deformation
is accommodated by basal slip in the large, seelEigl 7.2Belfattice is slightly rotated (Saround
the plane normal), the twin invades the plane, and the glip-interaction at the twin tip can be
studied, see Fig_7.23. One notes that the cusp-shape ofitnéstpractically lost. The reason for
this is that basal slip accompanies the advancing twin sigha twin grows along thé1012} shear
plane. By crystallographic glide, large stresses are eelaas it acts as an additional deformation



105

7.5. FE MODEL 3: SIMPLE SHEAR OF A PLANE

e

Tt

T

T

10

EEE RN

T

T
T

LT

B RS

EEEEE
TR
T

T
T
I
T

HH\HHHH

(NEEENENERu]
T

T

A

[:H\HHHHH\HHHH

(WENEEE NN

T

[EENENEEN SRR R RS
|assmuRERE R R AR AN nEE)
(SN ]

Figure 7.20: Twins shortly before breakup for a twinningest of 60MPa (387s), 120MPa (484s),

240MPa (605s) and 360MPa (658s). Plot of the weight faggoof the parent0(black) < ay <

1(white).

Figure 7.21: Real twins may exhibit a cusp-shaped twin tiu(tesy of Boyko et all (1994)).
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mechanism to twinning. Large stresses are found at the twiand along the interface, where the
stresses increase monotonously with the interface inaimawhich is an important ingredient for
the cusp shape of the twin tip. In Fig._7123., one notes thaktkxist zones where the twin occupies
zones of prior crystallographic slip.

Figure 7.22: If basal slip is incorporated, the deformatgomainly accommodated by basal slip, and
only a small twin tip remainsr,;, = 120MPa, 7,..., = 30MPa, at 1000s. Left: accumulated basal
shear strain, from 0...0.15, right: Plot of the weight facipof the parent)(black) < ay < 1(white).

7.6 FE Model 4: Simple Compression of an RVE

In order to obtain results that are comparable to experiataddta, the RVE method is used to
simulate the simple compression of an extruded magnesiloy along the extrusion direction.
The crystallographic texture of the latter is such that ¢haxes are aligned approximately per-
pendicular to the extrusion direction, i.e., the comp@sslong the extrusion direction results
in c-axis elongation, whiézl_zzids accommodated py012}(1011) twinning (see Jiang et Al. (2007);
Al-Samman and Gottstein (2008)).

7.6.1 Model Setup

The FE model of the RVE consist of a regularly meshed cube 80th30x 30 linear hexahedron
elements. The initial microstructure has been approxichbyea periodic Voronoi tessellation, con-
sisting of 20 grains, Figlr_Z.24. The limited number of gramsecessary to provide a reasonable
discretisation of each grain, since the grains are pangtidy twinning. The crystal orientations are
restricted such that the-axes do not deviate more thanfrom the plane of compression, and are
uniformly distributed. No preferred orientation of the r@ming degree of freedom (rotating tiag
around thec-axis) has been established. The displacement boundadytioms are periodic on the
entire surface of the cube. To exclude shear deformatiothsrespect to the orthonormal base system
used for the model description, the off-diagonal compamehthe mean displacement gradient have
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Figure 7.24: FE Model of the RVE, with schematic pole figuréhafc-axes. The greyscaling exem-
plifies the periodic Voronoi structure of the grains.

been constrained to be equal to zero. Further, the 11-coempbias been constrained,

f&) 00
H: 0 . 0 €i®6j, (710)
0O 0 -

while Hy; and H33 have not been constrained. Instead, the mean reactiorsfaloeg thee, andes
directions have been constrained at the corresponding fadee equal to zero, in order to obtain the
average uniaxial stress state alongé¢helirection.

7.6.2 General Observations

In the simulations, twins nucleate and spread rapidly dveRE model. In Fig_7.25, the propagation
of a twin over a grain boundary is illustrated. In Fig._1.26sequence of states illustrating the
twin spreading in the RVE is given. Both Figures are obtaiinech the simulation with a maximum
deviation ofa. = 30°0of ¢ from the plane of compression. The incorporation of basdegfioes not
significantly aller the results, which is due to the appraatiely perpendicular alignment of the basal
planes to the principal stress direction. In Fig. ¥.27, tefodmation states of the RVE are depicted.

7.6.3 Comparison to Experimental Findings

As a reference, the works bf Reed-HIll (1973) and Jianglg2807) have been used, where com-
pression tests for two magnesium alloys and pure magnesiemcgumented. In Fid_7P8, graphs
for the twin volume fraction evolution in the experimentsidhe simulations are depicted. One notes
that the evolution of the twin volume fraction is in good agreent with the experimental findings.
The rapidly increasing twinning rate at 3 to 5% of logaritbsirain, as well as the saturation to 100%
twin volume fraction are captured by the model. In F[gs.Jag& 72D, the twin volume fraction and
the nominal compression stress are plotted. Therefors,t@t be expected that the crystallographic
texture evolution is in good accordance, as twinning dotesmthe texture evolution for this particular
experiment.
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Figure 7.25: Propagation of a twin (black) over a grain bamd The greyscaling represents the
grain structure.

Figure 7.26: Twin spreading on the RVE, at a nominal compoesstrain of 2%, 2.6%, 3.12% and
4.3%, from left to right.
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Figure 7.27: Twin spreading on the RVE, at a nominal compoesstrain of 3.3% and 4%. The
greyscaling indicates the grain structure. The twins ageddrk areas, while the accumulated basal
slip is depicted by the contour lines (0 to 0.004 in the lefi rto 0.06 in the right figure).

However, comparing to the stress strain response givenamg dt al.|(2007), one finds that the ex-
perimental results display a pronounced hardening betgwvidhich is not found in the simulations.
This is due to the fact that the hardening behaviour of themasigm alloy under consideration is
very complex due to precipitates (see Seclion]2.10), whiatot captured by the model. This ex-
planation is furnished by the fact that the stress straipaese is in considerable agreement with
the compression experiments with pure magnesium (Reddd9if3), which displays a less com-
plicated hardening behaviour due to its lack of precipgasee Fig[7/.29. For this simulations, the
critical stresses for twinning and slip have been adjusted.p, = 0.006v, t0 7win ~ 13MPa and
Thasal = 4MPa. It is found that the zero-hardening-plateau at appnately 60 MPaf 8.7 ksi) cor-
responds to the twin nucleation stage. At approximately 3%garithmic strain, the nominal stress
increases constantly, which coincides with the point wivetame-filling twinning starts seriously.
Similar findings are given by Muransky et al. (2009). The leaidg is explained by the fact that the
twins form firstly at stress concentration points, or expeesdifferently, at the most favourable twin-
ning sites. For further twinning, the loading must be ineezhin order to activate the less favoured
twinning sites. One notes that the hardening rate is oveigter in the simulations. This is due to
the fact that the material model does not capture secondaming and slip inside the twins, which
renders them stiffer as in reality.

7.6.4 Texture evolution.

The RVE-simulations allow to compare the texture evolutidgtth experimental results. At a material
point, the significant orientation is assumed to be giverheypgarent or twin variant with the small-
est strain energy. Due to the phenomenological model atiapt#he strain energy invariance is not
exactly met by the model, i.e. a definite orientation can lieaeted at each of thex 303 integration
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Figure 7.28: Comparison of the experimental (Jiang et 8072 and the RVE-simulated twin vol-
ume fraction evolution. The simulated curves are obtainéd different texture sharpnesses, the
maximum deviation of the axes from the compression plane is given.

points of the FE model. The-axes of 20 initial orientations deviate at most 1 from the com-
pression plane, see Fig._7130 for pole figures of the initi@raation distribution. The sequence®f
anda pole figures for the compression test is given in Eig.17.31e Gotes that the texture evolution
corresponds qualitatively well to experimental resultdiahg et al..(2007), although the rate at which
the texture shifts is overestimated.
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Figure 7.29: Comparison of the experimental (Reed-Hill3)%nd the RVE-simulated stress evolu-
tion (Cauchy stress over logarithmic strain).

Figure 7.30:c and a pole figures of the initial orientation distribution, witly,,., = 9.403 and

Iamax = 5.173. The projection plane is parallel to the compression divect The pole figures
are calculated using a Mises-Fisher distribution (FIish8B3) with a half-width 0f20° around the
individual orientations.
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Figure 7.31:c anda pole figures for the compression test. The projection plangarallel to the
compression direction. The pole figures are calculatedjusiMises-Fisher distribution with a half-
width of 20° around the individual orientations.
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Chapter 8

Summary and Outlook

Summary. In the first part of this work, twinning is analysed by geongeatr considerations in
simple lattices. It is shown that all compound twins exh#itelastic energy invariance, which holds
practically for all technologically interesting twinnimgodes. The existence of an energy invariance
for certain twinning modes has been found/by Ericksen (19&8ddénzotto (1992, 1996). However,
it appears that the statement that all compound twins obegtiergy invariance is new. The cases
that the compound twins are crystallographically equivate distinct and its consequences for the
elastic modelling of twinning have been discussed.

The strain energy invariance enforces a treatment of pagsmgugate twins as one twinning mode if
modelled by means of elasticity. Although not distingulsleaat each material point, one can clearly
recognise each of the conjugate twins by the interface iaegrt that is established. It is to expect
that the elastic modelling works not for crystallograpHhicdistinct conjugate twins. This is because
one has to treat them due to the energy invariance as oneitgimode, although they may feature
different properties. The strain energy invariance maynhes@nnect a regular twinning mode to a
lattice invariant shear. However, due to the high symmetrthe cubic, tetragonal and hexagonal
crystals, many compound twins are crystallographicallyiejent, e.g.{112}(111) twinning in the
bcc, {111}(112) twinning in the fcc (the TWIP-twins in manganese-alloyeeets), {1012} (1012)
twinning in hep (extension twinning),101}(111) twinning in the bct and othorhombi¢100}(001)

in the orthorhombic lattice, the pairs of conjugate twinteyss of which are treatable as one twinning
mode.

In the second half of this work, an elastic material modek#anning is developed. It consists in its
core of a quadratic strain energy, which is extended by th@asphy of the elastic law and the Ball
and James-approach_(Ball and Jeames, 11987) to a piecewideatjuanonconvex elastic energy. To
obtain a continuously differentiable strain energy, a f@gsation for the latter is introduced. Further,
to adapt the twinning-stresses, a phenomenological madgitation which relies on the Schmid law
is introduced. In order to avoid the ill-posedness of theudselastic boundary value problem, the
viscous regularisation is used. The model is applied tq #0&2}(1011) twinning in the hcp lattice,
the twinning stress and theq ratio are close to common magnesium alloys. As hcp crystalengo
readily crystallographic glide in the basal plane, the @istastic model is extended by the card glide
mechanism, which allows plastic deformations by basalislibe parent crystal.

The model is tested in various finite element simulationis. dble to predict the nucleation and prop-
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agation of the twins. The stress-drop observed shortly #fee nucleationl(Christian and Mahgjan,
1995) and predicted by Kochmann and Le (2009) is found in itinelations as well. The predicted
cusp-shape of the twin tips are in accordance with expetiahéndings and conclusions from the
theory of transformation dislocatioris (Boyko et al., 199Mbpreover, it is found that the interface in-
clination with respect to the shear plane is limited by th&oal twinning stress, which is concluded
from a stress jump analysis as well (Gliige and Kalisch, 2008)conjunction with the basal slip
mechanism, the model is able to predict the kink patternsmvks by Roberts and Partridge (1966).
The model is used in a simple compression simulation of an,R¥tere the orientation distribution
is similar to the one that is experimentally observed inwekd magnesium. It is found that the pre-
dicted twin structure is quite realistic. It is observedttthae to the misfit strains the twins propagate
across grain boundaries. The average twin volume fracboresponds well to experimental findings
of Jiang et al.|(2007). Therefore, as the texture evolusoinked directly to the twin volume frac-
tion, the texture evolution due to twinning is reproducedvai. Due to the complicated hardening
behaviour owed to twin-particle interactions, the hardgmate of Magnesium alloys is underesti-
mated. In the stage of extensive twinning, the model predictero hardening plateau, which is in
accordance to experimental observations on pure magngsaimhen no twin-particle interactions
are present. At the end of the stage of extensive twinniregstitesses are overpredicted in both cases.
This is due to the lack of deformation mechanisms like seapntivinning and slip inside the twins,
and the lack of a damage criterion.

However, the elastic modelling induces some difficultietie Thost problematic fact is that twin-
ning is connected to the movement of partial dislocationkis Tnduces a strain path-dependence
and energy dissipation, which are neglected by any pseastieinodelling. Moreover, the strain
energy invariance of conjugate twins restricts the elastidelling to crystallographically equivalent
conjugate twins. Although the conjugate twins can be distished clearly in the FE simulations by
considering the interface orientation, the elastic maagleaves the possibility that a twin turns over
into its conjugate twin. Such behaviour is not realistic tuéhe kinetic process underlying the twin
formation. The conclusion is that the pseudoelastic modptannot be applied if severe strain path
changes occur.

Outlook. One disadvantage of the model, namely the necessity of tegohenological adapta-
tion for reasonable twinning stresses, comes from the BallJames-approach. | see basically two
possibilities of how the model could be advanced.

Instead of modifying the elastic law, one could think of attucing an internal variable, which evolves
according to a nucleation criterion and a kinetic relatidhis could be a small twinned volume at the
time of nucleation, the interface of which moves accordmthe kinetic relation. It is to expect that
such a modelling strategy is very challenging from the peatpoint of view.

Another method could be to derive the elastic strain energy fimolecular dynamics or molecular
statics simulations instead of postulating it. If one comss the atomic arrangement to be periodic, it
should be possible to derive a strain energy by summing upiafootentials from deforming a small
reference cell. If one applies Born’s rule, in a moleculatiss calculation, the strain energy would
emerge straightforward and display energy minima for sédifie twinning modes. Unfortunately,
for the twinning modes involving shuffling, one has to aban@&worn’s rule, which means that the
motion of the atoms has to be tracked. Such a two-step honmsagem is as well challenging from
the practical point of view, but it may be capable to model detg of phenomenas observed in
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crystals by only a few physically conclusive equations.
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