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Summary

Upon mechanical loading, many crystals develop crystal twins, which has to be considered as a
special deformation mechanism. In contrast to crystallographic glide, twinning enables a crystal to
accommodate rapid deformations at low temperatures, whichmay be exploited to expand the range
of application of a material. However, twinning affects strongly the material properties, which is not
always beneficial. The twins form as plates inside of grains,and alter significantly the morphological
and the crystallographic texture, both influencing the yield locus and the elastic anisotropy, while the
additional interfaces have an impact on the strain hardening. Moreover, the twinning mechanism is
polar, which can cause a pronounced differential effect on the strength of the material and the forming
limit, depending on the crystallographic texture. For manymaterials, these effects are not negligible.
Especially the ductile TWIP steels and the lightweight hcp metals, magnesium and titanium, which
are interesting for engineering applications, display extensive twin formation at room temperature.
One is therefore interested in a proper modelling of twinning. One approach, proposed by Ericksen
(1975), is to treat twinning as isothermal phase changes by anon-convex elastic modelling. In this
work, a micro-mechanical elastic modelling approach for〈0111〉{0112̄} twinning in magnesium is
developed. It is coupled with basal glide, another dominantdeformation mode encountered in most
hexagonal crystals. The approach allows to compare simulation results to experimental findings on
the microscale and, by numerical homogenisation by the representative volume element technique
(RVE), to experimental findings on the macroscale.

Chapter 1 serves as an introduction, were the framework for the model derivation is set up.
Chapter 2 is dedicated to the geometrical description and classification of twins, the twin formation
and their impact on the material properties. Different simulation techniques on the different scales are
discussed inchapter 3. Chapter 4 and 5are devoted to the development of the microscale model,
where the basic model is derived inchapter 4 and modified inchapter 5. In chapter 4, the energy
invariance in compound twins and its implications for the elastic modelling are discussed, as well.
The material law is summarized inchapter 6, where a section is dedicated to the implementation
of the crystallographic glide. Inchapter 7, different simulation results are presented, namely three
different FE-models that are settled on the microscale, while one FE simulation allows by numerical
homogenization for a comparison with experiments conducted on the macroscale. The work is
summarized inchapter 8, and a short outlook is given.
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Zusammenfassung

Die vorliegende Arbeit behandelt die mechanisch induzierte Zwillingsbildung. Diese kann als sehr
spezielle, isotherme kristallographische Umwandlung aufgefasst werden. Solche Festkörper zu
Festkörper-Umwandlungen induzieren eine Reihe interessanter und ingenieurtechnisch nutzbarer
Effekte. Zum Beispiel basiert der Formgedächtniseffekt auf der thermisch induzierten Martensit zu
Austenit Umwandlung, während die augenscheinlich irreversiblen Deformationen in der Martensit-
phase durch das Verschieben von Grenzflächen zwischen Zwillingen realisiert werden. Als weiteres
Beispiel ist die Zwillingsinduzierte Plastizität zu nennen. Sie kann gerade wenn kristallographisches
Gleiten schwer aktivierbar ist, z.B. bei niedrigen Temperaturen und hohen Dehnraten, als alternativer
Deformationsmechanismus zur Verfügung stehen. Allerdings hat die Zwillingsbildung einen starken
Einfluss auf das Materialverhalten. Hier können Materialmodelle beim Verstehen und Vorhersagen
der durch Zwillingsbildung verursachten Verfestigung undTexturentwicklung hilfreich sein. Ziel
dieser Arbeit ist die Entwicklung eines Materialmodells, welches die Zwillingsbildung auf der
Kristallebene beschreibt. Die Modellierung erfolgt im Kern durch die Kopplung eines pseudoelastis-
chen Gesetzes mit einer viskosen Bewegungsgleichung. Dabei wird sich auf Zwillingsbildung in
Magnesium und Magnesiumlegierungen konzentriert, wofür es mehrere Gründe gibt. Magnesium ist
wegen seiner geringen Dichte für den Leichtbau interessant, allerdings sind Magnesiumlegierungen
wegen ihrer geringen Duktilität hauptsächlich als Gussteile anzutreffen. Die Zwillingsbildung
spielt für die Umformbarkeit von Magnesium und seinen Legierungen eine wichtige Rolle. Gerade
stranggepresste Magnesiumlegierungen, deren Verwendungals Halbzeug bisher eine untergeordnete
Bedeutung hat, zeigen aufgrund einer starken Textur eine ausgeprägte, durch Zwillingsbildung
verursachte Zug-Druck-Anisotropie, was sowohl die Fließspannung als auch die Umformbarkeit
betrifft. Dementsprechend umfangreich sind die zum Thema verfügbare Literatur und experimentelle
Befunde, welche zum Vergleich mit Simulationen zur Verfügung stehen. Daher wurde das Modell
für die häufig angetroffene〈0111〉{0112̄} Zwillingsbildung implementiert.

Kapitel 1 dient der Einführung und steckt den Rahmen ab, innerhalb dessen das Materialmodell
entwickelt wird.Kapitel 2 befasst sich mit der geometrischen Beschreibung und der Klassifizierung
der Zwillinge, sowie der Entstehung und dem Einfluss, den Zwillingsbildung auf das Materialverhal-
ten hat. InKapitel 3 werden Simulationstechniken auf verschiedenen Skalen diskutiert. Kapitel 4
und 5 sind der Entwicklung des Materialmodells gewidmet, wobei in Kapitel 4 nach einem Ansatz
von Ball und James die elastische Energie entwickelt wird, welche in Kapitel 5 modifiziert wird.
In Kapitel 4 wird ebenfalls die Energieinvarianz in sogenannten Compound-Twins diskutiert, sowie
deren Bedeutung für die elastische Modellierung. Die Materialgleichungen werden inKapitel 6
zusammengefasst, wobei auf die numerische Implementierung des kristallographischen Gleitens
eingegangen wird. InKapitel 7 werden verschiedene Simulationsergebnisse präsentiert,wobei
die ersten drei Finite-Elemente-Modelle auf der Mikroebene angesiedelt sind, während das vierte
FE-Modell einen Vergleich zu experimentellen Befunden aufder Makroebene erlaubt. Die Arbeit
schließt mitKapitel 8 mit einer Zusammenfassung der Ergebnisse und Überlegungenzu zukünftigen
Arbeiten ab.
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Chapter 1

Preliminaries

1.1 Introduction

Deformation twinning can be understood as a special deformation mode available in crystals. A crys-
tal that undergoes twinning reorients its lattice without changing the symmetry class, unlike marten-
sitic transformations. The twin configuration is achieved by a simple shear deformation of the parent
crystal, while the crystallographic structure of the twin differs only by a rotation or a mirror oper-
ation from the parent one, which motivates the term ”twinning”. In real crystals the twins appear
as lamellae, which are aligned approximately coplanar to the shear plane. A micrograph of a twin
network in magnesium is given in Fig. 1.1, where the twins arealigned along characteristic planes.
Mechanical twinning was propably firstly observed by Ewing and Rosenhain (1900). In mineralogy,
crystal twinning was well known in the 19th century (Naumann, 1830).

Figure 1.1: Light optical photograph of a polished magnesium sample.

The common view on the twin formation is that so called transformation dislocations exist in the
crystal, which dissociate when a stress is applied, and accumulate at nucleation sites. Transformation
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dislocations can also be generated. The nuclei are formed bydislocation walls, which enclose a small
twinned volume. This nucleus then grows by moving the dislocation walls, which at some instance
become large enough to be considered as interfaces. Mostly,twins become self-sustained at a certain
size. The elastic misfit strain gives rise to further twin growth, until a sufficiently large counter-force
or an obstacle is met. This causes the twinning induced load drops in the stress-strain curves. One
can speak about a twin as a very special type of grain, recognisable by its shape, grain boundary
orientation and lattice orientation with respect to the surrounding grain.

Twinning contributes strongly to the mechanical properties. By the lattice reorientation, twinning
alters the crystal orientation distribution (COD, crystallographic texture), and by subgrain growth the
grain morphology (morphologic texture). Both alterationsaffect, among other properties, the macro-
scopic elastic modulus and the yield locus. Further, twinning is polar, i.e., unlike crystallographic
slip, the shear deformation is possible only in one direction. Twinning is available at high strain rates
and low temperatures, and can therefore compensate the lackof crystallographic glide under the latter
conditions. Twinning is targeted for in manganese alloyed steels (TWIP-steels, Twinning-Induced
Plasticity, Grassel and Frommeyer (1998); Karaman et al. (2000); Frommeyer et al. (2003)), which
can accommodate unusual large strains at room temperature mostly by deformation twinning.

For a suitable material modelling of materials that undergodeformation twinning, the underlying
deformation mechanism has to be incorporated. For this purpose, many macroscale models have
been proposed (e.g. Tomé et al. (1991); Staroselsky and Anand (2003)). They include twin formation
in a homogenised sense, and account for one or more aspects oftwinning, like the grain refinement or
the texture evolution. One method to set up a macroscale model is to propose constitutive equations
describing macroscopic quantities, which are adjusted to experiments. It is problematic to show that
such a model is applicable to other processes than the experimental ones to which it has been adapted.
Another method to derive macroscale constitutive equations is to apply an analytical homogenisation
scheme to microscale constitutive equations, which are physically motivated. Here, the necessarily
rough homogenisation (mostly the Taylor assumption) may lead to results that are not sufficiently
accurate. It is highly complicated, if not impossible, to set up a macroscale material model that
can incorporate, e.g., a grain morphology, a texture and a deformation path, which yields precise
predictions of the material behaviour. Nevertheless, macromodels are important tools in industrial
design. Their advantage is the numerical efficiency, and that one can choose a model that explicitely
accounts for ones needs.

Another way to incorporate twinning on the macroscale is to use a numerical homogenisation scheme
in conjunction with a microscale model. Following this way,one has to set up a material model that
includes twinning only for a single crystal, while the homogenisation procedure is done numerically.
An example would be theFE2 method, where at each integration point (or at certain key points) of the
macroscopic model another FE model of a representative volume element (RVE) is incorporated. The
micromodel has to be adjusted only to the behaviour of a single crystal, which leaves few physically
motivated parameters that have to be adjusted to an easy reproduceable experiment. It can be expected
that the latter approach yields more precise predictions ofthe material behaviour than a macroscale
model. The most significant disadvantage of theFE2 method is the high computational effort when
applied to engineering problems.

In this work, a microscale-model for deformation twinning based on a nonconvex elastic energy
density is developed. Due to the twinning-induced rearrangement of the atoms, the lattice vectors
do not behave like material vectors. This has to be regarded as a violation of the Cauchy-Born rule
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(Born and Huang, 1954), which is so fundamental in the theoryof elasticity that it is mostly adapted
intuitively and without explicit declaration. The consequences of this violation have to be analysed in
order to determine the limitations of a theory that models deformation twinning by means of elasticity.
It is demonstrated that all compound twins exhibit an elastic energy invariance, and the consequences
for the elastic modelling are discussed. Finally, the modelis tested in characteristic FE simulations,
which are comparable to experimental setups. The findings are summarised, and an outlook for future
work is given.

1.2 List of Symbols

a edge length of the base hexagon in a hcp lattice, page 28
ai regularisation element, page 57
c height of the unit cell of a hcp lattice, page 28
E elastic modulus (1D example), page 50
F force (1D example), page 50
G shear modulus, page 79
k regularisation parameter, page 57
kB Boltzmann constant, page 56
u displacement (1D example), page 50
w context dependent, strain energy density or specific interface energy, page 39

δij Kronecker symbol, page 23
γ amount of shear, page 14
γ0 twinning shear, page 31
γtwin critical twinning shear, page 81
λ projection distance parameter, page 79
η viscosity, page 53
Ω domain occupied by an elastic body, page 50
φ context dependent indicator function, page 79
τ context dependent shear stress, page 37
θ absolute temperature, page 56

ai hexagonal lattice base vectors inside the basal plane, page28
c hexagonal lattice base vector parallel to the cylinder axis, page 28
d shear direction, page 14
d∗ normalised slip direction, page 74
ei orthonormal basis, page 12
k vector of the plane of shear, page 14
k1,2 first and second twin plane in the classical twin notation, page 17
k′

1,2 first and second twin plane after twinning in the classical twin notation, page 17
n (shear) plane normal, page 14
pi lattice basis generating the parent lattice, page 20
t
(′)
i lattice basis generating the twin lattice, page 20

u displacement vector, page 14
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η1,2 first and second shear direction in the classical twin notation, page 17

C right Cauchy Green tensor, page 61
E Green’s strain tensor, page 56
Ecrit critical strain state, page 81
F deformation gradient, page 14
H displacement gradient, page 14
I second-order identity tensor on vectors, page 12
P plastic transformation, page 61
Qβv orthogonal second-order tensor, page 12
Rv rotation of amountπ around the axisv, page 12
S deformation gradient of a simple shear deformation, page 14
T second Piola-Kirchhoff stresses, page 56
T crit critical stress state, page 79

σ Cauchy stresses, page 73

C0 reference stiffness tetrad, page 61
IS Fourth-order identity tensor on symmetric second-order tensors, page 83

[A] invertible integer matrix the inverse of which contains only integers, page 21

Inv set of invertible matrices, page 21
Inv

+ set of invertible second-order tensors with positive determinant, page 20
Orth

+ set of orthogonal second-order tensors with positive determinant, page 20
Shear set of second-order tensors denoting a shear deformation, page 15
Z set of integer numbers, page 21

1.3 Notation

Throughout the work a direct tensor notation is preferred. If an expression cannot be represented
in the direct notation without introducing new conventions, its components are given with respect to
orthonormal base vectorsei, using the summation convention. Vectors are symbolised bylowercase
bold lettersv = viei, second-order tensors by uppercase bold lettersT = Tijei ⊗ ej or bold greek
letters. The second-order identity tensor is denoted byI. Fourth-order tensors are symbolised likeC.
The dyadic product is defined as(a⊗b) ·c = (b ·c)a. Matrices are denoted like[A]. A dot represents
a scalar contraction. If more than one scalar contraction iscarried out, the number of dots corresponds
to the number of vectors that are contracted, thusa ⊗ b ⊗ c · · d ⊗ e = (b · d)(c · e)a, α = A · · B
andσ = C · · ε. When only one scalar contraction is carried out, the scalardot is frequently omitted,
e.g.,v = Fw, A = BC. The Rayleigh-product is defined by applying a second-ordertensor to the
base vectors of a tensor. In case of a fourth-order tensor,P ∗ C = CijklPei ⊗ Pej ⊗ Pek ⊗ Pel,
with C = Cijklei ⊗ ej ⊗ ek ⊗ el. Orthogonal tensors are denoted byQβv = ẽi ⊗ ei, mapping one
orthonormal basisei into another onẽei. If Q can be interpreted as a rotation, the optional indexing
contains the amount of rotationβ and the normalised axial vectorv. Two-fold rotations are rotations
of amountπ. They are denoted asRv = −I + 2v ⊗ v, with v being the normalised axial vector.
The derivative, e.g., of a vector valued vector function with respect to its argument is denoted like
v′(w) = ∂v(w)/∂w = ∂vi/∂wj ei ⊗ ej. The material time derivative is indicated by a dot, placed
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above the function under consideration.

1.4 Two-fold Rotations, Reflections and Self-Inverseness

Rv are referred to as two-fold rotations. They are orthogonal and symmetric, i.e.Rv = RT
v = R−1

v .
−Rv has the same properties, but represents a reflection on the plane normal to the axial vector of
the rotation. A basis undergoes a central inversion if mapped by−Rv instead ofRv, which does not
affect the simple lattice generated by the basis that is obtained. Note that

Re1Re2Re3 = I, (1.1)

which allows us in conjunction with the self-inverseness towrite

Re1 = Re2Re3 , (1.2)

or, using mirror operations,

−Re1 = −Re2Re3 (1.3)

Re1 = (−Re2)(−Re3). (1.4)

Mirror symmetries give rise to the Coxeter groups, althoughnot all Coxeter groups can be described
using only reflections. It is pointed out that from the viewpoint of application to simple lattices,
the use of reflections or two-fold rotations is equivalent. Further,Rv = R−v holds, i.e. only the
direction of the axial vector, but not the sense of directionmatters.

Note that a tensor that is orthogonal and symmetric is self-inverse, but not all self-inverse tensors
must be symmetric. LetM be a self-inverse tensor. Its eigenvalues can only take the values±1. Its
projector representation is given byM = P 1 − P 2, with P 1 = 1

2
(I + M ) andP 2 = 1

2
(I − M).

Note thatP iP i = P i, andP 1 + P 2 = I. In case of the two-fold rotations, one obtainsP 1 = v ⊗ v

andP 2 = I − v ⊗ v.

1.5 Continuum Mechanics

The modelling framework employed in this work is continuum mechanics, a theory based on the
proposition of a continuous distribution of matter in space. The common treatment is to index the
infinitely many material points of a body withX, and spatial points withx. A placement of the
body assigns the material points to spatial points byx = φ(X). A motion of a body is given
by a continuous change of placement, denotable asx = χ(X, t). Note that often more elaborate
definitions are used (Korobeynikov, 2008), but not needed here.

Usually, a reference placement is introduced. Since the coordinatesXi, xi andt can be chosen freely,
they are chosen mostly such thatx = X at t = 0 holds, which is called reference placement. This
is presumed in the remainder. The use of this distinguished placement simplifys the treatment of
standard elastic bodies, because the stress-free placements differ only by a rigid body motion, and the



14 CHAPTER 1. PRELIMINARIES

stresses are denoteable in terms of a deviation from the stress-free placement in the elastic law. It is
of limited benefit, e.g., in fluid mechanics. With respect to the reference placement one can denote
the displacement vectoru = x(X, t) − X. Further, the displacement gradientH = ∂u/∂X =
∂x/∂X − I and the deformation gradientF = ∂x/∂X = H + I are introduced. The deformation
gradientF maps a line element from the reference placement to the actual placement. By applying
the polar decomposition theoremF = QU = V Q, one can define strain measures with respect to
the stretching in the material or the spatial placement by using eitherU or V , respectively. In solid
mechanics usually a material strain measure is used. For a comprehensive account on continuum
mechanics see, e.g., Liu (2002); Bertram (2005).

1.6 Simple Shear Deformation

Since simple shear deformations play the leading part when twinning is examined, some explanations
regarding shear deformations should be given. Consider Fig. 1.2, where the shear deformation of
a cuboid is sketched. The shear deformation can be imagined as a deck of cards that glide along

n

d
k

u

h

l

Figure 1.2: Simple shear deformation of a cuboid.

each other. Thus, the characteristic measures are the card deck normaln, which is called shear
plane normal, and the glide directiond, which is called shear direction.n andd are normalised and
perpendicular to each other. As a measure for the amount of shear the shear numberγ = l/h is
introduced (see Fig. 1.2). The amount of glide of a plane parallel to the shear plane is proportional to
the distance from the base plane. In the example, the displacement of the upper plane isu(h) = γhd,
with h denoting the distance from the base plane. The displacementgradient is therefore

Hss =
∂u

∂X
= γd ⊗ ∂h

∂X
= γd ⊗ ∂(X · n)

∂X
= γd ⊗ n. (1.5)

Commonly,γ is put intod, at cost of the convenience of working with a normalisedd. In this work,
γ andd are kept separately. Then the tensord⊗n can be referred to as Schmid tensor or slip system
tensor. Further, it is made use of the plane of shear, denotedby the normal vectork = n×d. (n, d, k)
form a positively oriented orthonormal basis.

The tensorHss is a rank one tensor, which can be denoted by only one base dyad. The corresponding
deformation gradient is given byS = I + Hss. In the sequel, deformation gradients that describe a
simple shear deformation are denoted byS, and the set of all deformation gradients denoting a shear
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deformation is written asShear = {I + γd ⊗ n|n · n = 1 , d · d = 1 , d · n = 0 , γ ∈ R}. Shear
deformations are isochoric, i.e. det(S) = 1.
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Chapter 2

Mechanical Twinning

2.1 Usual Twin Description

In the literature, twins are mostly described by the twinning elementsk1, k2, η1 andη2 (Fig. 2.1,
see Pitteri and Zanzotto (2002) for a comprehensive description). k1 andk2 should not be confused
with k introduced in section 1.6.k1 represents the shear plane, also referred to as the invariant
plane. η1 indicates the shear direction, andk2 represents the one plane that is simply rotated but
not stretched by the simple shear deformation, also referred to as the second undistorted plane.k′

2

denotes the planek2 after applying the twinning shear, respectively after mirroring or rotating the
planek2 accordingly. The twin lattice is obtained by mirroring the parent lattice at the shear plane
k1 (type 1 twinning) or at the plane normal to the shear direction η1 (type 2 twinning). Ifk1 and
k2 are rational, i.e., crystallographically embedded, one speaks of compound twins. In that case,
both orientation relations hold. The term ”compound twin” has been introduced by Cahn (1953). In
many cases,k1 andk2 are even crystallographically equivalent. Then,η2 gives the shear direction for
twinning along the planek2, and the pairsk1, η1 andk2, η2 denote shearing in crystallographically
equivalent twin systems, see Fig. 2.2. Non-compound twins are hardly reported, and appear to occur
only in low-symmetry lattices (see Fig. 2.3 for a type 2 twinning mode). Examples for the occurrence
of non-compound twins areα-uranium (Cahn, 1953) and sapphire (Clayton, 2009).

In this work, a shear plane is identified byn (k1), the shear direction byd (η1) and the plane of shear
by k, where all vectors are normalised. Therefore, a shear number γ is needed to uniquely identify
the twinning mode.

17
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k1

k2

k′
2

η1

η2

plane of shear

Figure 2.1: The commonly used twin elements.
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Figure 2.2: A compound twin (left), crystallographically equivalent compound twins (right).
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d = η1

e1

e2

e3 = k1 = n

Figure 2.3: A type 2 twin in a triclinic unit cell. Shearing occurs in directiond. The plane normal to
d serves as a mirror plane, while the plane normal ton does not.
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2.2 Mechanical Twinning in Simple Lattices

The variety of twinning modes and materials that undergo twinning is large. Practically all crystals can
form twins (Cahn and Haasen, 1996) if crystallographic glide is disabled, e.g. at low temperatures. At
room temperature, the most important materials for engineering applications which undergo twinning
display a hexagonal close packed (hcp), a face centred cubic(fcc) or a body centred cubic (bcc) lattice.
The most important hcp crystals are single phase Mg, Ti, Co, Zn, Be, Cd, Zr and their alloys, while the
most interesting cubic crystals are intermetallic compounds, like fcc TiAl, bct NiMn and fcc FeMn,
which exhibits the TWIP-effect. Furthermore, single phasefcc Cu owes its great ductility partially
to deformation twinning. For magnesium, at least six different twinning modes have been reported
(Reed-Hill and Robertson, 1957a; Klassen-Neklyudova, 1964), some of which are only active under
very specific conditions.

Twinning is strongly connected to the crystallographic lattice. For a more general account to lattices
see Pitteri and Zanzotto (2002). It is pointed out that the definition of a twin varies between differ-
ent authors, each one choosing a definition meeting each onespurpose best. Here, the focus is on
practicability for a continuum theory, and therefore in terms of deformations.

In a simple lattice, each lattice point can be reached by an integer linear combination of lattice base
vectorspi. Then,ti andt′i are the lattice bases of a possible twin variant if

ti = Fpi, F ∈ Inv
+ (2.1)

t′i = Qpi, Q ∈ Orth
+ (2.2)

∀αi ∈ Z∃α′
i ∈ Z : αiti = α′

it
′
i. (2.3)

are fulfilled. In words: Either a deformation or a rotation ofthe lattice basispi gives a lattice basisti

or t′i, which both generate congruent simple lattices. Illustrative examples are given in Fig. 2.4. For
convenience,F will be called the twin deformation, whileQ is regarded as the reorientation.

p1

p2

u1

u2

u′
1

u′
2

v1

v2

v′
1

v′
2

p1, t
′
1

p2, t
′
2

t1

t2

Figure 2.4: Left: Twinning along shear directionsp1 andp2. The twin lattice basesu′
i andv′

i can
be obtained by rotating the parent basispi 180◦ around the corresponding interface normal, while the
twin lattice basesui andvi are reached by shearing along the interface. Right: The lattice basisti

generates a lattice congruent to the lattice generated byt′i = Ipi.

It is sufficient to focus onQ with det(Q) = 1, because the central inversion is included by expanding
the three base vectors oft′i and the correspondingα′

i with -1. The reader is encouraged to remember
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thatti comes from the deformation, whilet′i is given by rotating the parent basis, though this will be
used frequently in the remainder of this Section.

Equations 2.1 to 2.3, which are basically the topic of this Section, are called ”twinning condition” in
the sense that potential twinning modes can be identified by searching for solutions of eq. 2.1 to 2.3,
not to be confused with the loading conditions under which twinning occurs.

The set of possible twin deformationsF can be reduced. We demand that a coherent interface be-
tween twin and parent exists. For simplicity, the parent lattice is taken as the undistorted reference
configuration. Then, the kinematic compatibility condition imposes

F = I + a ⊗ n, (2.4)

with n being the interface normal (Liu, 2002). One can decomposea into its normal and tangential
component with respect ton, namelya = γd + αn, d · n = 0, and write

F = I + γd ⊗ n + αn ⊗ n. (2.5)

Note thatn andd are normalised.F represents a twinning mode if the lattice generated byti = Fpi

can be obtained as well by rotating the parent basis. A necessary condition therefore is that the
volumes of the unit cells are equal. The determinante ofF is a measure for the volume change, and

det(Q) = det(F ) = det(I + γd∗ ⊗ n + αn ⊗ n) = 1 + α = 1 (2.6)

must be fulfilled. Therefore,α must be zero, and the twinning deformation must be a simple shear
deformationS = I + γd ⊗ n, which already implicates that the interface is identical to the shear
plane.

In order to fullfill eq. (2.3), it is sufficient to demand that the vectorsti andt′i can be represented by
integer linear combinations of the other one, i.e., forαi = 1 andα′

i = 1 one can write

ti = Aijt
′
j , (2.7)

t′i = A−1
ij tj, (2.8)

where[A] is an invertible 3× 3 matrix with integer components, the inverse of which contains only
integers. In order to identify twinning modes for a simple lattice induced by a given basispi, one has
to search forS, Q and[A] such that

Spi = AijQpj, S ∈ Shear , Q ∈ Orth
+ (2.9)

[A] ∈ Inv , Aij , A
−1
ij ∈ Z, i, j = 1 . . . 3

is satisfied. This is not a trivial task. Moreover, the twinning condition (2.9) is too wide, because
crystallographic slip in direction ofpi is included, as sketched in Fig. 2.4. A corresponding solution
is

S = I + gV −1pi ⊗ (pi × pj), V = p1 · (p2 × p3), i 6= j, g ∈ Z, (2.10)

Q = I (2.11)

with V being the volume of the unit cell. As one can check, the resultanttk andt′k for, e.g.,i = 1 and
j = 2 are

t1 = t′1 = p1, (2.12)

t2 = t′2 = p2, (2.13)

t3 = t′3 + gt′1 = p3 + gp1, (2.14)
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which clearly generate the same lattice, with

ti = Aijt
′
j, Aij =





1 0 0
0 1 0
g 0 1



 . (2.15)

Such lattice invariant shear deformations have been examined by Ericksen (1984a,b). They represent
crystallographic glide along one of the lattice vectors, not by dislocation movement but by sliding
along the entire shear plane. This is not of practical interest. Even if one is restricted to the so called
”classical” twinning modes (Christian and Mahajan, 1995),which imposes further restrictions onQ
andAij , lattice invariant shearing (slip) is still included, as shown later on.

In classical twinning, the twin lattice must be the mirror image of parent lattice on the interface plane
or on the plane normal to the shear direction. Actually, there is no convincing experimental evidence
for the occurrence of non-classical twins (Ericksen, 1991;Zanzotto, 1992; Christian and Mahajan,
1995). Therefore, the remainder is restricted to classicaltwinning. Following from the latter orienta-
tion relation, a twin lattice base can be obtained by
• mirroring the parent lattice at the interface/shear planen,
• mirroring the parent lattice at the plane normal to the sheardirectiond,
• rotating the parent lattice 180◦ around the shear plane normaln,
• rotating the parent lattice 180◦ around the shear directiond (Christian and Mahajan, 1995).
Due the restricitondet(Q) = 1 from above, in the remainder the rotations are the used orientation
relations. Rotations around 180◦ can be represented by the special symmetric and orthogonal tensor
R = −I + 2a ⊗ a, with a being the normalised axial vector. The classical twinning then imposes

(I + γd ⊗ n)pi = AijRpj , (2.16)

pi = Aij(I + γd ⊗ n)−1Rpj, (2.17)

pi = Aij(I − γd ⊗ n)Rpj, (2.18)

with Rn = −I + 2n ⊗ n or Rd = −I + d ⊗ d. One speaks of type 1 twins in the first and type 2
twins in the second case. In both cases

(I − γd ⊗ n)R = P (2.19)

yields aP that is self-inverse,

P = P−1. (2.20)

We may examine the difference between lattice bases that undergo type 1 and type 2 twinning by
introducing the tensorA mapping the type 2 twinned basis on the type 1 twinned basis,

R1pi = AR2pi. (2.21)

A is easily evaluated,

A = R1R2 = RnRd = Rk. (2.22)

Therefore, the distinction into type 1 and type 2 twins is notnecessary ifRk is element of the
symmetry group of the simple lattice induced byp. The same has been found by Stark (1988).
Such twins, for which both orientation relations hold, are named as compound twins, which are the
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twinning modes of most practical relevance. The lattice symmetry of compound twins with respect to
Rk is of importance when the strain energy invariance of conjugate twins is discussed (Section 4.8).

Eq. (2.20) can be used to restrict[A] further by

pi = AijPpj , (2.23)

Ppi = Aijpj, (2.24)

which gives after renaming the indicesj → k andi → j in eq. (2.24) and inserting into eq. (2.23)

pi = AijAjkpk. (2.25)

With pi being a base of linear independent vectors, the latter equation is only fulfilled if

AijAjk = δik, [A] = [A]−1, (2.26)

which shows that the self-inverseness ofP is conducted to[A]. We therefore reformulate the twinning
condition for type 1 twinning, putting theγ intod and takingR = −I+2n⊗n as orientation relation.
d andn denote a possible twinning mode of a simple lattice generated bypk if

n · n = 1 (2.27)

d · n = 0 (2.28)

P = −I − d ⊗ n + 2n ⊗ n (2.29)

pi = AijPpj , [A] = [A]−1, Aij ∈ Z, i, j = 1 . . . 3 (2.30)

are fulfilled. Similarly, the twinning conditions for type 2twinning can be derived by takingRd
instead ofRn. However, no qualitatively distinct results emerge, whichis why it is focused on type
1 twinning in the remainder of this Section.[A] is a self-inverse integer matrix, which is by definition
very nice(Hanson, 1985). In the same article it is shown that every self-inverse integer matrix is
equivalent to an upper triangularm × m matrix of the form

[M ] =

[

δij xil

0 −δkl

]

, i, j = 1 . . . n, k, l = n + 1 . . .m, (2.31)

where the equivalence relation is

[A] = [P ]−1[M ][P ], [P ] ∈ Inv , (Pij, P
−1
ij ) ∈ Z, i, j = 1 . . .m. (2.32)

[P ] is an integer invertible matrix, the inverse of which contains only integers, but does not need to be
self-inverse (i.e.[P ] is onlynice). A self-inverse integer matrix of the form (2.31) is calledcanonical.
Hanson (1985) shows that every self-inverse integerm×m matrix is equivalent to only one canonical
self-inverse integer matrix. This statement includes thattwo distinct canonical self-inverse integer
matrices cannot be equivalent.

The reduced twinning condition still includes crystallographic slip. The example from above (eq.
2.10 and 2.11) can be slightly modified such that eq. 2.27 to 2.30 are satisfied. The shear deformation
is unaffected, whileR can be replaced by a rotation of 180◦ around the shear direction:

S = I + gV −1pi ⊗ (pi × pj), V = p1 · (p2 × p3), i 6= j, g ∈ Z, (2.33)

R = −I +
2

pi · pi

pi ⊗ pi, (2.34)

P = S−1R (2.35)
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The evaluation fori = 1 andj = 2 gives

P = −I + gV −1p1 ⊗ (p1 × p2) +
2

p1 · p1

p1 ⊗ p1, (2.36)

and one finds

Pp1 = p1, (2.37)

Pp2 = −p2 +
2p1 · p2

p1 · p1

p1, (2.38)

Pp2 = −p3 + gp1 +
2p1 · p3

p1 · p1

p1. (2.39)

The correspondingA-matrix is then

A =







1 0 0
2p1·p2
p1·p1

−1 0
2p1·p3
p1·p1

+ g 0 −1






. (2.40)

One can confirm that[A] = [A]−1, and thatpi can be chosen such thatAij ∈ Z, i, j = 1 . . . 3 is met.
The corresponding deformation and bases are depicted for anorthonormal basispi andg = 1 in Fig.
2.5a.

In the neighbouring figure, a common twinning mode found in the body centred tetragonal (bct) lattice
(usually indexed as{101}〈101̄〉 with respect to the basis (e1, e2, ce3)) is depicted. The bct lattice can
be generated by a rhombohedral basis, which base vectors point from one corner atom to three of the
neighbouring body-centred atoms. The rhombohedral bct base and twin mode are given by

p1 =
1

2
(e1 + e2 + ce3), (2.41)

p2 =
1

2
(−e1 + e2 + ce3), (2.42)

p3 =
1

2
(−e1 − e2 + ce3), (2.43)

n = |p2 × p3|−1p2 × p3 = (1 + c2)−
1
2 (ce1 + e3), (2.44)

d = −γ|p2 + p3|−1(p2 + p3) = γ(1 + c2)−
1
2 (e1 − ce3), γ = c − 1/c, (2.45)

with c being the height of the unit cell divided by the edge length ofthe base square. It is particular
interesting thatp2 andp3 are unaffected by the twin deformation, though they span theshear plane.
One could therefore suspect the deformation to represent crystallographic slip. As one can check, one
obtains withP = −I − γd ⊗ n + 2n ⊗ n

Pp1 =
1

2
(e1 − e2 + ce3) = p1 − p2 + p3, (2.46)

Pp2 =
1

2
(e1 − e2 − ce3) = −p2, (2.47)

Pp3 =
1

2
(e1 + e2 − ce3) = −p3, (2.48)
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with

Ppi = Aijpj , [Aij ] =





1 −1 1
0 −1 0
0 0 −1



 , (2.49)

being a self-inverse integer matrix that is already of the canonical form (2.31). One may choose

p1, n

t2

p3, t3
p2, t2, t

′
2, d

t′3

t′1

(a)

p1
p2

p3

n

d

(b)

Figure 2.5: (a) Crystallographic slip fulfilling the twinning relations for type 1 twins in the primitive
cubic lattice. (b) A common twinning mode in a bct lattice.

another basis that generates the same bct lattice, for example

p1 = e1 (2.50)

p2 = e2 (2.51)

p3 =
1

2
e1 +

1

2
e2 +

c

2
e3 (2.52)

For the same twinning mode, one finds

Pp1 = ce3 = 2p3 − p1 − p2 (2.53)

Pp2 = −e2 = −p2 (2.54)

Pp3 =
1

2
e1 −

1

2
e2 +

c

2
e3 = p3 − p2, (2.55)

with the corresponding very nice matrix

[Aij ] =





−1 −1 2
0 −1 0
0 −1 1



 . (2.56)

By elementary matrix operations for self-inverse integer matrices presented by Hanson (1985) one
can reduce[Aij ] to its canonical form. It is interesting to note that one doesnot find the matrix in eq.
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(2.49), although the same twinning mode in the same lattice has been described, but with different
generating lattice bases. The elementary operations that yield equivalent self-inverse integer matrices
are:
• Add k (k ∈ Z) times rowi to row j. Then, add−k times columnj to columni.
• Interchange rowi and rowj. Then, interchange columni with columnj.
• Multiply row i by −1 and then multiply columni by−1.
Further, the transpose of a self-inverse matrix remains a self-inverse matrix. By carrying out the first
operation withk = −1, i = 3 and j = 1 and the second withi = 1 and j = 3 one finds the
corresponding canonical self-inverse matrix

[Aij]can. =





1 −1 0
0 −1 0
0 0 −1



 , (2.57)

which differs from the one given in eq. (2.49). Further, taking the transpose of the self-inverse matrix
of eq. (2.40) and choosingpi andg accordingly yields the self-inverse matrix of eq. (2.49). One
comes from a solution representing crystallographic glide, the other from a twinning mode. In other
words: the self-inverse integer matrix in the twinning condition does not serve for distinguishing
whether a solution represents twinning or crystallographic glide, neither does it help to uniquely
identify a twinning mode. This holds at least until a unique reduced basis to any simple lattice
is defined and used, though the different[A] matrices arise when the same lattice is described by
different bases.

The twinning conditions (2.27)-(2.30) still include crystallographic glide, as the example above
demonstrates. The main feature of gliding is that the lattice is not reoriented. In the notation used
here,pi andt′i = Rpi generate the same simple lattice. This is identical to stating that ifR is element
of the symmetry group ofpi, the corresponding solution of eq. (2.27)-(2.30) represents crystallo-
graphic slip. For this reason, in the cubic lattices the{100} and{110} planes do not serve for type
1 twinning, which is due to the fact that rotations of 180◦ around these directions are elements of
the crystal symmetry group. One can search for solutions of eq. (2.27)-(2.30), and check afterwards
whetherR is element of the symmetry group ofpi.

Until here, the twins discussed are produced by shearing thesimple lattice generated bypi. However,
twinning is not restricted to these modes. It may also happenthat the twinning conditions hold
only for a sublattice, see Fig. 2.6. In that case, the atoms not captured by the sublattice have to
undergo a so called shuffling, because the simple shear deformation does not leave them in their new
lattice positions. Shuffling is the nonhomogeneous but periodic movement of atoms not captured by
the simple lattice that undergoes twinning, see Figs. 2.6 and 2.7 for illustrations. As pointed out
by Christian and Mahajan (1995), twinning modes including shuffling are of practical relevance. In
Fig. 2.7, several realizations of a{013} twin in a simple cubic lattice (Hirth, 2000) are depicted,
involving pure shear, pure shuffling and a mixture of both. The pure shuffling examples are not of
practical interest, because the question which driving force triggers a sudden shuffling without a mean
deformation and without a change of crystal class cannot be answered conclusively. Most twinning
modes that are of practical interest are realized by a simpleshear deformation plus shuffling, as
depicted in the lower left subfigure of Fig. 2.7.

There has been made some effort to predict possible twinningmodes by Bilby and Crocker (1965),
based on the assumption that the twinning modes with small shear numbers and a minimum of shuf-
fling are preferred. It is clear that one can search for a very large sublattice which can form a twin
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Figure 2.6: Left: Twinning mode involving shuffling, right:shuffle-free twinning.

Figure 2.7: {013} twinning in a simple cubic lattice. Note that shuffling does not need to occur
parallel to the plane of shear. Upper left: pure simple sheardeformation withγ0 = 4. Upper right:
pure shuffling. Lower left: simple shear deformation withγ0 = 1 plus shuffling of 50% of the atoms.
Lower right: pure shuffling parallel to the twin parent interface.
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with a very small shear number, which would give a supposed easily activated twin systems. As
countermove, growing with the size of the sublattice-basis, more shuffling is necessary. As well, the
twin thickness is a multitude of the size of the sublattice basis, which makes an arrangement of more
thicker unit twins more difficult. See Westlake (1966); Thornton (1966) for a discussion on shuffling
and unit twin thickness.

However, by solely looking at perfect lattices, it is ignored that twin propagation is connected to
dislocation movement and stacking faults, which will be discussed later on. Therefore, it is practically
impossible to predict relevant twinning modes by solely looking at the lattice basis.

2.3 The Hexagonal Lattice

For a hexagonal lattice, it is convenient to use the Miller-Bravais basis

a1 = ae1, (2.58)

a2 = −a

2
e1 +

a
√

3

2
e2, (2.59)

a3 = −a

2
e1 −

a
√

3

2
e2, (2.60)

c = ce3. (2.61)

This basis is widely used in the literature (see Fig. 2.8, Neumann (1966); Pitteri and Zanzotto (2002)).
The lattice parametersc anda represent the height of the cell and the edge length of the base hexagon,
respectively, and correspond to the norms ofc anda, c =

√
c · c anda =

√
a · a. Although one

usually does not appreciate the use of linearly dependent base vectors, this basis has the advantage
that it reflects the hexagonal symmetry. Permutations of thecomponents belonging toa1...3, a change
of sign of thec-component or a change of sign simultaneous on alla1...3 yield crystallographically
equivalent directions, which are denoted as〈a1a2a3c〉. Usually, negative components are denoted by
x̄ instead of−x. Further, due to the linear dependence ofa1...3, the conditiona1 + a2 + a3 = 0 is
imposed, and therefore sometimes the third componenta3 is omitted.
To indicate planes, it is advantageous to introduce anotherbasis. This is done by taking the dual basis
(ã1, ã2, c̃) of (a1, a2, c) and defining the base vectors

a∗
1 =

2

3
ã1 −

1

3
ã2 =

2

3a
a1, (2.62)

a∗
2 = −1

3
ã1 +

2

3
ã2 =

2

3a2
a2, (2.63)

a∗
3 = −1

3
ã1 −

1

3
ã2 =

2

3a2
a3, (2.64)

c∗ = c̃ =
1

c2
c. (2.65)

This basis again satisfiesa∗
1 + a∗

2 + a∗
3 = 0, but it is not the dual basis of (a1, a2, a3, c). It also

has the advantage that crystallographically equivalent planes are connected by permutations of the
components and changes of sign as stated above. Again, the components should be restricted to
a∗

1 + a∗
2 + a∗

3 = 0. If this is done, several practical simplifications are obtained: If a normal vector
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is given with respect to the basis(a∗
1, a

∗
2, a

∗
3, c

∗), the reciprocals of its components correspond to
the piercing point distances of the plane with the base vectors (a1, a2, a3, c). Therefore, the plane
{101̄2} can be visualised by considering the pointsa1, −a3 and1/2c (see Fig. 2.8). Moreover, one
can easily see whether direction and normal vectors are perpendicular to each other by calculating the
scalar product as if(a1, a2, a3, c) and(a∗

1, a
∗
2, a

∗
3, c

∗) were dual bases. One notes easily that〈101̄1〉
and{1̄012} are perpendicular to each other:

(a1 − a3 + c) · (−a∗
1 + a∗

3 + 2c∗) = −a1 · a∗
1 + a1 · a∗

3 − a3 · a∗
3 + a3 · a∗

1 + 2c · c∗ (2.66)

= −2

3
− 1

3
− 2

3
− 1

3
+ 2 = −1 − 1 + 2 = 0. (2.67)

e1

e2

e3

a1 a2

a3

c

v

{101̄2}-plane

Figure 2.8: Simple hexagonal lattice with Miller-Bravais basis (left), hexagonal close packed mul-
tilattice constructed from the simple lattice by introducing additional translations inv = 〈 1̄

3
01

3
1
2
〉

(right).

2.4 Partial Dislocations and Stacking Faults

A perfect crystal can be constructed by a pile of atomic layers, which have to be stacked in the proper
sequence in order to construct a defect-free crystal; see Fig. 2.9 for an illustrative example with an
abstract ABCABCABC stacking. A stacking fault is an error inthe stacking. For example, in the Fig.
2.9, along line L the stacking is ABCACBABC, the layers B and Care interchanged. This stacking
fault is enclosed by the two encircled partial dislocations, which would be line defects if the 2D sketch
was considered as a cutting plane of a 3D-crystal. The term ”partial dislocation” indicates that a finite
stacking fault is limited by a pair of such dislocations. Partial dislocations at interfaces are sometimes
referred to as twinning dislocations, Shockley dislocations, disconnections, transformation disloca-
tions, structural ledges or growth ledges (Hirth, 2000). Anillustrative explanation on the dissociation
of ordinary dislocations into partial dislocations can be found in Reed-Hill and Abbaschian (1994).

In the given example, the partial dislocations enclose a twin lamella. As one can check, the lattice
vectorst1 andt′2 in the lamella can be obtained by rotating the basispi around the vertical axis. An
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alternative basis for the twin lamella consisting of the vectors t1 andt2 can be obtained frompi by
applying a simple shear deformation, withp2 as the shear direction and the vertical axis as the shear
plane normal.

Stacking faults rise the level of the stored energy, especially the elastic strain energy by distorting
the lattice. This energy is called stacking fault energy, the level of which depends on the crystal.
Materials with a low stacking fault energy form more readilystacking faults than materials with a
high stacking fault energy. Regarding a twin lamella as a stacking fault, it is concluded that materials
with lower stacking fault energy are more inclined to form twins. A twin can be regarded as a pile
of stacking faults (Boyko et al., 1994), see Fig. 2.10. Note that for stacking faults it is convenient
to form neighbours, as the stored energy of the rejoined double layer stacking fault is reduced by
eliminating two interfaces. The resulting twin nucleus is therefore more stable than the individual
stacking faults, which renders the agglomeration of stacking faults to twin nuclei capable to reduce
the internal energy of a crystal.

At this point, the interested reader is referred to the literature on dislocations in general
(Reed-Hill and Abbaschian, 1994) and partial dislocationsconnected to twinning in special
(Boyko et al., 1994). It is emphasised that the aforementioned is only a brief introduction, sketch-
ing the idea of how partial dislocations and stacking faultsare connected to twinning.

A

A

A
B

B

B
C

C

C

L

p1 p2

t′2

t1 t2

b1 b2

Figure 2.9: A stacking fault, enclosed by two partial dislocations.

Figure 2.10: A twin can be considered as a pile of stacking faults.
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Figure 2.11: Scanning Tunnelling Microscope (STM) image ofa stacking fault in a sputtered
and annealedPt25Ni75 single crystal, enclosed by two Shockley partial dislocations (courtesy of
Schmid et al. (1992)).

2.5 Stacking of the HCP and the FCC Lattice

The hcp and the fcc crystal lattice can be constructed by regular stackings of planes of regularly
densely packed spheres. By translating the base plane labeled A one obtains the variants B and C
(see Fig. 2.12). By stacking ABAB... one obtains the hcp lattice, while ABCABC... results in the fcc
lattice (Fig. 2.13, see, e.g., Pitteri and Zanzotto (2002)). Both lattices differ only by a parallel shift
of planes, which facilitates the mechanical induced fcc to hcp transformation that is important for the
TRIP effect (transformation induced plasticity). In the hcp case the stacking direction coincides with
the cylinder axis of the unit cell, while in the fcc case the same unit cell can be obtained by stacking
along the 4 distinct body diagonals〈111〉. Following Kepler’s conjecture, which can be regarded
as proved (Hales, 2006), in both cases the stacking is as dense as possible, withVSphere/Vtotal =
π/(3

√
2) ≈ 74%. However, real hexagonal crystals are not stacked ideally,resulting in ac/a ratio

deviating from the ideally packed case withc/a =
√

8/3. This value is obtained by geometrical
considerations on the regular tetrahedron. Note that the denomination ”hexagonal closest packing”
impliesc/a =

√

8/3, while ”hexagonal close packing” allows otherc/a-ratios.

If c/a =
√

3, the{1̄012}〈1̄011〉 twinning mode is not available (Fig. 2.14). In that casek1 andk2 are
perpendicular to each other, andk2 andk′

2 coincide, i.e. there is no shear deformation. Ifc/a 6=
√

3
one obtains from geometrical considerations the twinning shear to be

γ0 =

√
3

c/a
− c/a√

3
. (2.68)

The six possible shear directions are given by permutationsof 〈1̄011〉, where thec-component has to
be +1 due to the fact that a reversal of the shear direction by changing fromc/a <

√
3 to c/a >

√
3

is implied in eq. 2.68.
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A

B
C

Figure 2.12: Densely packed spheres in 2D. By translating the plane A the variants B and C are
obtained.

Figure 2.13: Stacking of fcc (left) and hcp (right) lattice.Note how the spheres form straight lines in
the left figure, which are the face-diagonals in the fcc lattice.
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2.6 Twinning in Magnesium

Twinning in magnesium has been studied in detail firstly by Reed-Hill and Robertson
(1957a,b); Partridge (1965); Roberts and Partridge (1966); Wonsiewicz and Backofen (1967);
Kelley and Hosford (1968). Since these pioneering works, a large amount of literature concerning
twinning in magnesium and its alloys has been published. Usually, the twins are categorised as exten-
sion or compression twins, depending on wether they appear under elongation or compression along
thec-axis. Magnesium hasc ≈ 0.52103nm anda ≈ 0.32094nm, which givesc/a ≈ 1.62345, i.e. it
is quiet close to the densest possible packing withc/a =

√

8/3. The unit cell is slightly less high
than thick. This causes the{1̄012}〈1̄011〉 twins to be extension twins (see Fig. 2.14), while twinning
along the{101̄1}, {101̄3}, {303̄4} and{101̄5} planes (Meng et al., 2008) occurs underc-axis com-
pression. Recently, Stanford (2008) observed{112̄1}-twinning in the magnesium alloy WE54. The
exact determination of the twinning mode is not an easy task,because precise measurements of lattice
and interface orientations are necessary. Usually, the shear planen is measured, andd is constrained
by n · d = 0. However, still more than one combination of twinning shearand atomic shuffling
are possible. Though the shear is hard to measure in thin lamellae, it has been determined mostly
by ”ingenious geometric guesswork” (Zanzotto, 1992). For example, the{101̄1} twinning mode in
magnesium reported by Hall (1954) had to be corrected due to experimental findings by Reed-Hill
(1960).

Figure 2.14: Visualisation of the effect of a variation of the c/a ratio on the magnitude of the shear
deformation accompanying{101̄2} twinning. Left: c/a >

√
3, twinning shear increases width of the

entity, leading toc-axis compression. Centre:c/a =
√

3, width and height do not change (the mean
deformation is zero, no{101̄2} twinning). Right:c/a <

√
3, twinning shear increases the height of

the entity, leading toc-axis elongation.

In a recent work (Al-Samman and Gottstein, 2008), plane strain compression tests on cuboid-shaped
AZ31 samples with different processing histories are carried out. One of them is an extruded sample,
that is compressed along the extrusion direction (Fig. 2.15). Extruded magnesium is textured such
that thec-axes and one of theai directions are distributed approximately uniformly and perpendicular
around the extrusion direction, i.e. a compression along the extrusion direction results in ac-axis
elongation and vice versa. In a compression test, the strongly textured material undergoes a complete
shift of texture, see Fig. 2.16. However, the impressive change of texture does not occur when the
loading direction is reversed. As well, one observes a pronounced strength differential effect. The
cause for this is the unidirectionality of twinning. Thec-axis elongation is accommodated by{1̄012}
twins, while compression twins (mostly{1̄011}) accommodatec-axis compression, i.e. elongation
along the extrusion direction. The twinning modes exhibit strong morphological differences. The
{1̄012} tension twins are activated very easily, (namely at a shear stress of approximately 2.7MPa in
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Figure 2.15: Schematic diagram of the extrusion process andthe resulting texture.

Figure 2.16:(0002) (left) and(101̄0) (right) pole figures before (above) and after (below) the com-
pression test atε = 0.28 (courtesy of Al-Samman and Gottstein (2008)). The projection direction
is parallel to the extrusion direction. As{101̄2} twinning reorients thec-axis about approximately
86◦, the outer ring (upper left figure) transforms into the centre peek (lower left figure). The slight
deviation from the approximately rotational symmetric starting texture comes from the asymmetry of
the loading (plane strain compression, two opposing faces are kept fixed).
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a1a2

a3

c

d〈1̄101〉

d〈1̄102〉

Figure 2.17: Strength differential effect in the AZ31 magnesium alloy (left, courtesy of Chino et al.
(2008)), sketch of〈1̄101〉{11̄02} extension and〈1̄102〉{11̄01} compression twinning (right). The
extension twins appear in an compression test along the extrusion direction and vice versa.

pure magnesium, Koike (2005)), and their boundaries are mobile. The{1̄011} compression twins are
thin, pinned lamellae. Instead of growing in thickness likethe elongation twins, double twinning (first
{101̄1} compression followed by{101̄2} extension twins) is observed as loading continues (Yi et al.,
2009).

Therefore, in a compression test, the major deformation mechanism are the{1̄012} elongation twins.
After virtually occupying the entire volume, elongation twinning is no more disposable. Due to
the reorientation of thec-axis of approximately 86◦, the deformation is then accommodated by
{1̄011} compression twinning (Wonsiewicz and Backofen, 1967; Kelley and Hosford, 1968), as it
occurs from the beginning if the contrary loading directionis chosen. As depicted in Fig. 2.17,
the stress level is then approximately the same as in the tension test. Due to the immobile inter-
faces of the compression twins, the deformation accommodated before fracture is much lesser than
in case of elongation twinning. The double twins have been identified to be crack initiation sites
(Hartt and Reed-Hill, 1968; Yin et al., 2008).

Sumarising roughly,{1̄012} tension twins allow for large deformation accommodation, while {1̄011}
compression twins preceed fracture. A similar behaviour isobserved in titanium (Serra and Bacon,
1996; Ungár et al., 2008) and zinc (Lay and Nouet, 1994), which suggests that the morphological dif-
ference between the twinning modes is intrinsic to the hexagonal lattice structure. It is explained by
the characteristics of the distinct interfaces and partialdislocations belonging to each twinning mode.
In a series of articles, Serra and Bacon (1986, 1991, 1996) analysed twinning by the molecular dy-
namics technique. Firstly, they examined which of the different many-body potentials given in the
literature suite best to each hcp metal (Bacon and Liang, 1986). Igarashi et al. (1991) even adapted
parameters of the many-body potentials such that they reproduce the elastic properties andc/a ratio
for eight hcp metals. With the potentials at hand, stacking fault and interface energies have been cal-
culated, and found to be in agreement with experiments (Serra and Bacon, 1986). In Serra and Bacon
(1991), the mobility of partial dislocations belonging to different twin interfaces has been studied by
means of molecular dynamics. It is found that dislocations in {101̄2} and{112̄1} boundaries are
very glissile, but sessile in{101̄1} and{112̄2} interfaces. In Serra and Bacon (1996), the interac-
tion between basal slip dislocations and different twin interfaces has been studied. It is found that
if a basal slip dislocation hits a{101̄2} interface, a source for{101̄2} partial dislocations is created,
which forms pairs of partial dislocations if a shear strain of approximately±0.005 is applied. The
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source therefore provides a mechanism to move the interfacegradually by generating a pair of partial
dislocations, as long as the load is not removed and no obstacle is met. The converse is reported for a
basal slip dislocation that hits a{101̄1} interface. It creates there a pair of partial dislocations,but not
an independent source for twinning dislocations. Togetherwith the findings from Serra and Bacon
(1991), a convincing explanation for{101̄2}-twinning being the most prominent twinning mode in
hcp metals is obtained.

Another explanation for the needle-like{101̄1} twinning and the extensive{101̄2} twinning is that
the {101̄1} twins produce a larger shear strain. Therefore, to accommodate a certain deformation,
compared to{101̄2} twinning, less volume fraction of{101̄1} twins is necessary (Bingert et al., 2002;
Jiang et al., 2007). At least for magnesium this explanationis rather improbable, as the corresponding
shear numbersγ{101̄2} ≈ 0.13 andγ{101̄1} ≈ 0.137 differ only slightly.

Li and Ma (2009b) recently modeled the development of a{101̄1} twin and its interface movement in
magnesium by molecular dynamics. In their simulations, a magnesium single crystal is subjected to
a strain driven tensile test. The crystal orientation is such that 2 of the 6 possible twin variants are not
triggered, while 4 of them are equally preferable. It is found that in the process of twin nucleation,
initially two twin variants develop, one of which is assimilated by the other one as the simulation
continues. As the model is symmetric, it is to conclude that asmall perturbation, like a dislocation, can
cause the unfortunate twin to be the other one. This underlines the affinity of twinning to bifurcation.
In order to obtain reproducible results, both, the simulations and the experimental setups should
avoid ambiguities like equally preferred twin systems. Another interesting result is that three kinds
of interface steps are observed, namely 1,2 and 4-layer steps. While the 1-layer step is sessile, the
2-lacer step is glissile. The 4-layer step is unstable and dissociates into two 2-layer steps, between
which a repulsive force is acting. The movement of the interface is connected to the generation
of prismatic dislocation. In another work, Li and Ma (2009a)focused on the atomic modelling of a
{101̄2} twin interface in magnesium, employing the embedded atom model by Liu et al. (1996). It has
been found that the morphological difference between{101̄1} and{101̄2} twinning in magnesium
can be explained by the mechanism underlying to the interface movement. In case of the{101̄1}
twinning, the interface movement rests upon the movement ofpartial dislocations, while in case of
the {101̄2} twinning, atomic shuffling appears to play the leading role,and no pronounced partial
dislocation is observed. Therefore, unlike{101̄2} twinning, the{101̄1} twin propagation is restricted
by the partial dislocation density, which renders the{101̄2} interfaces more glissile compared to the
{101̄1} interfaces.

A direct comparison to the results of Serra and Bacon is difficult, though no interaction with basal
slip dislocations is observed. However, the strategy employed by Li and Ma is promising to give
considerable insight into the processes of twin nucleationand propagation, like the atomic shuffling
that accompanies{101̄1} twinning and the critical stress states. Unfortunately, Liand Ma (2009b)
could not determine the stress necessary for{101̄1} twinning, which is due to the high strain rate that
has been applied in their simulation.

In this work we focus on deformation twinning. The appropriate candidate for implementation and
testing purposes is the{101̄2} twinning mechanism in magnesium, due to its capability to accommo-
date moderate deformations without fracture. Moreover, asmagnesium and its alloys are of technical
interest, the examination of twinning in the hcp structure may prove useful in the process of ductilising
magnesium.
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2.7 Ductility of Magnesium

At room temperature, crystallographic slip occurs only on the basal plane in magnesium. Therefore,
it is not as ductile as needed for serious metal forming. Above 225◦C, the pyramidal slip systems
are activated (Emles, 1966), and sufficient slip systems aredisposable to accommodate an arbitrary
deformation.

Some attempts to ductilise magnesium and its alloys aim for providing glissile slip systems at room
temperature which have their slip plane not parallel to the basal plane. The pyramidal and thec+a slip
systems, which are available at higher temperatures, should be potentially active at room temperature.
It is the task of experimenters, metallurgists and molecular dynamic specialists to eventually find
a good alloy composition or material processing. Kelley andHosford (1968) found that alloying
Mg with Li (approximately 12 at.%) makes the prismatic{101̄0}〈12̄10〉 slip systems available by
decreasing their critical shear stress, while the shear stress needed for basal slip is increased such that
τprism/τbasal ≈ 5 (Haferkamp and Jaschik, 2000). Therefore, a more ductile behaviour at low specific
weight (ρMg = 1, 738g/cm3, ρLi = 0.534g/cm3) is obtained, although still no slip systems are
available forc-axis straining. By adding between 17at.% and 30at.% of Li, atwo phase microstructure
is obtained, while at a Li fraction of more than 30at.% the magnesium atoms are dissolved in the bcc
Li lattice. If enriched, e.g., with aluminium, one obtains an alloy of moderate strength, which is due
to its low mass density particular interesting for highly dynamic applications. Very light Mg-Li alloys
have been used in the aerospace and arms industry in the 1950sand 1960s, but did not find broad
application in civil engineering.

The tensile ductility, microstructure and texture of extruded magnesium to which rare earth elements
are added have been recently studied by Stanford and Barnett(2008). The dependence of the tensile
ductility and fracture elongation on the alloy compositionof cast Mg-Li has been recently studied by
Regener et al. (2007).

A more direct approach to produce a more ductile material is to generate a fine microstructure, which
has been recently demonstrated for the magnesium alloys ZE41A by Ma et al. (2009) and ZK60 by
Li et al. (2009). By a large number of equal channel angular pressing passes (ECAP), an average
grain size of approximately 1.5µm and 0.8µm is obtained. This can enable so called superplastic
deformation mechanisms, which are mainly grain boundary sliding and recovery by dynamic recrys-
tallisation. Similar has been shown for Mg-9Li-1Zn by Kim etal. (2009), who found that a single
„high-speed-ratio differential speed rolling” process generates an ultrafine microstructure in Mg-9Li-
Zn, which enables a fracture elongation up to 50% of logarithmic strain at room temperature. The
ECAP can be used as well to generate a homogeneous texture andparticle distribution (Gan et al.,
2009).

2.8 Experimentally Observed Twins in Magnesium

In order to illustrate the latter chapter, some micrographsof pure magnesium are presented. Stripes
have been cut out of cast magnesium, which has coarse-grained Voronoi-like microstructure. The
specimens have been grinded and polished, with a maximum roughness of 1µm. To visualise the
morphology, the samples have been etched approximately 40 seconds in 3% nitric acid. As twins
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form in magnesium at very low stresses, the preparation procedure induced already a large number of
twins, see Fig. 1.1. An impression on the twin formation on loading is given in Fig. 2.8. It has been
obtained by preparing a cubic sample as described above. After finding relatively homogeneous and
twin free grains, the sample has been gradually deformed in abench vice, and the grains have been
reviewed. One notes that a twin network evolves with ongoingdeformation, and the surface of the
sample roughens noteably due to the inhomogeneous deformation. An atomic force micrograph of
small free twins can be found in Fig. 2.8, left. These twins form part of a line of short, free, parallel
twins, (see Fig. 2.8 right, the upper region), which is propably a trace of a scratch that has been
introduced during the surface preparation.

Figure 2.18: Evolution of a twin network under gradual loading.

Figure 2.19: A small free twin (left, AFM figure), which belongs to a chain of similar twins (right,
optical microscope figure, upper region).

2.9 Twin-Parent Interface

Considering the mirror symmetry of the atomic arrangement found on a coherent twin-parent inter-
face, the classification into twin and parent is rather arbitrary. The unique assignment is given by the
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Figure 2.20: Untwinned (left) and twinned (right) crystal.The interface is a a plane of mirror sym-
metry.

order of appearance, i.e. the parent is the primary structure, while the twin forms afterwards. It has
in general a much smaller volume fraction than the parent, and is surrounded by the parent. The twin
parent interface can be regarded as a planar perturbation ofthe crystallographic structure. As such, it
contributes to the internal energy, which is physically based on the fact that the atoms on the interface
cannot occupy their energy minimising configurations according to the crystal structure (Fig. 2.20).
Therefore, the existence of the interface does not correspond to a state of minimum energy, but is
determined by the history of the material (Haasen, 1996). Due to the fact that a coherent twin-parent
interface is a plane of mirror symmetry, no driving force on the position of the interface is induced by
the existence of the interface solely. A driving force can bederived by stating that the interface moves
towards the crystal which accommodates the macroscopic strain with the lesser elastic strain, i.e. by
minimising the elastic energy. If the driving force is largeenough, the partial dislocations move along
the interface such that the interface moves towards an energetically favourable configuration. In such
a process, the change of the size of the interface is of minor importance, which holds therefore for the
interface energy as well.

By assuming that the twins arrange such that a local energy minimum is obtained, one can derive
some properties of the twins, if the elastic strain energy and the interface energy are given. E.g., by
prescribing the twin geometry except for the thickness, onecan obtain the twin thickness by min-
imising the the sum of elastic strain energy and interface energy (Khachaturyan, 1983). Conversely,
this approach can be used as well to estimate the interface energy by measuring the twin thickness
(Demczyk, 1990). Additional to the interface and strain energy, one can consider the „intrinsical dis-
sipation” to estimate a critical resolved shear stress (Petryk et al., 2003). These approaches compare
distinct states in finite volumes, while the focus in this work is on local modelling equations that are
continuous in space and time.

It is generally difficult to treat interfaces in a continuum theory, which is due to the fact that the inter-
faces represent discontinuities in space and, in the momentof formation, in time, while one is inter-
ested in smooth modelling equations. The modelling equations are written down for a material point,
which cannot contain discrete interface. Several authors use strain gradients to energetically penalise
sharp strain changes like those found at twin-parent interfaces (see, e.g., Truskinovsky and Zanzotto
(1996)). Such a strategy has to be regarded as a regularisation of the strain jump at the interface,
which requires a strongly nonlinear dependence on the strain gradient. This is inconvenient from the
practical viewpoint, though a fine spatial discretisation is needed when the solution is approximated
numerically.

Haasen (1996) stated that twin-parent-interfaces should have extremely low energies, with mJ/m2

being a reasonable measuring unit. In Serra and Bacon (1991), the valueswIFMG{1̄012} ≈ 187mJ/m2

andwIFna56{1̄012} ≈ 141mJ/m2 are given. The indexing corresponds to the two different potentials
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used by Serra and Bacon (1991) and the twinning mode. Both potentials display characteristics close
to real magnesium. The{1̄012} twin interface energy is in both cases larger than the interface en-
ergy belonging to the less frequently observed{1̄011} compression twins,wIFMG{1̄011} ≈ 141mJ/m2

andwIFna56{1̄011} ≈ 79mJ/m2. In fact, the values given for{112̄1} and{112̄2} twinning are be-
low the values for{1̄012} twinning as well. The{1̄012} twinning mode is the most easily activated
twinning mode, although it charges more interface energy than the alternative modes. This leads
Serra and Bacon (1991) to the conclusion that the interface energy is of minor importance compared
to the partial dislocation core properties.

It appears therefore reasonable to exclude the interface energy from the modelling efforts in the first
place, as it is done in many publications (e.g., Kochmann andLe (2009)). It may be used as a fine
tuning tool. In fact, some problems that arise in the elasticmodelling of twinning are possibly solved
by incorporating an interface energy, namely the infinitelyfine twin-parent mixing and the energy
invariance in conjugate twin systems.

2.10 Twinning-Induced Effects

The twinning mechanism induces a number of practical relevant effects. As twins form as lamella-
shaped subgrains with a reoriented lattice (Figs. 1.1, 2.10and 2.8), twinning contributes strongly to
the grain refinement, the morphological texture and the crystallographic texture evolution. Therefore,
the elastic behaviour, yield locus and plastic behaviour are altered. Unlike crystallographic slip, twin-
ning is polar and practically reversible (Lubenets et al., 1980), which induces a strength differential
effect and a pronounced or reversed Bauschinger effect, depending on the crystallographic texture.

Hardening behaviour. The influence of twinning on the work hardening can be quite complex. An
important contribution is given by the dynamic Hall-Petch relation. Due to the grain partitioning by
twinning, the mean free path for dislocations movement is reduced, as well as the mean free length
for the growth of a new twin. To obtain a certain mean deformation by twinning, more twins have to
nucleate (by dislocation movement) in a fine grained structure than in a coarse grained structure.

Recently, it is discussed whether this effect may be rather secondary (Cáceres et al., 2008; Sevillano,
2009) compared to the effect of twin saturation. At the onsetof twinning, twins form at the most
favourable sites in the crystal. As the potential twinning volume is limited, the available twin forma-
tion sites decrease with ongoing deformation. Consequently, the less favourable nucleation sites have
to be occupied, for which a higher loading is necessary.

Another contribution to the strain hardening is given by theBasinski mechanism (Basinski et al.,
1992), who observed that in fcc Cu8Al glissile dislocationsin the parent are converted into sessile
dislocations in the twin. To find out whether similar changeshappen in hcp crystals is a challenge for
experimenters and molecular dynamic simulation experts.

Twinning has a strong impact on the crystallographic texture, which can influence the hardening
behaviour. For example, the reorientation of the lattice under{1̄011} twinning by approximately 56◦

can leave the basal plane in a more advantageous orientationfor basal slip, which could reduce the
yield stress. In{1̄012} twins, this effect is negligible due to the reorientation byapproximately 86◦.
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In a cyclic deformation, another contribution to hardeningis given by the strength difference of
twinning and detwinning, which is due to the unilateral prior twin nucleation. For the magnesium-
aluminium alloy AZ31B, Lou et al. (2007) estimated that obstacle-hardening to basal slip (Hall-
Petch), textural hardening and the twinning-detwinning strength difference contribute at the same
order of magnitude to the overall hardening behaviour. The results, however, depend strongly on the
alloy composition, texture and deformation mode.

It has been observed that the work hardening rate may increase as the temperature is raised or the strain
rate is decreased (Christian and Mahajan, 1995), which is a rather uncommon behaviour. A possible
explanation may be that higher temperatures and lower strain rates promote dislocation movement. As
the twin nucleation is explained by the agglomeration of partial dislocations, a possible explanation
for this behaviour may be that in a slowly driven test or at higher temperatures, twin nucleation
is eased, leading to a high twin density. For magnesium, it isreported that the number of twins
increases with a decreasing strain rate (Maksoud et al., 2009). Consequently, the grain partitioning
due to twinning, which forwards the Hall-Petch-hardening,is more pronounced than in fast or low
temperature tests. When twin nucleation is hindered, but twin propagation not, the first few nuclei
have to rapidly expand in order to accommodate the deformation, and fewer but larger twins evolve.
In that case, the partitioning of the grains is less pronounced, resulting in a lower work hardening
rate. Moreover, the more pronounced slip at high temperatures and low strain rates leaves a more
heterogeneous grain structure that hinders twinning.

In alloys, the rather complex hardening behaviour is even more complicated by the slip-twin inter-
action with precipitates, which can increase the hardeningrate especially for twinning-dominated
deformations. Fine particles serve as nucleation sites andtherefore increase the number of twins,
but their size and overall volume fraction is reduced. The twin fragmentation increases the total twin-
parent interface, and consequently the stored interface energy, which indicates an increased hardening
rate. As precipitates hinder basal slip, which is necessaryfor accommodating the{101̄2} twin tips,
Stanford and Barnett (2009) state that the hardening effectdue to precipitates affects this twinning
mode always equally or stronger than the basal slip. Clark (1968) found that in a Mg-9 wt.% Al alloy,
precipitation plates form along the basal plane, which suppress the{101̄2} twin formation, but not
basal glide. Therefore, in this alloy, strain hardening is more relevant than precipitation hardening.
Moreover, the hardness can be considerably increased by annealing, which has been confirmed by
(Regener and Dietze, 2006). However, other alloying additions (e.g. Zn) can lead to different precip-
itation behaviour, which can considerably contribute to age hardening (Smola et al., 2004; Liu et al.,
2009).

Creep. Twinning can contribute differently to creep, depending onthe crystallographic texture and
the loading conditions. Sato and Kral (2008) studied creep of cast samples of a complex magnesium
alloy. It is found that in the first stage of creep, significanttwinning takes place in some grains. In the
second stage, steady state creep linearly related to twinning has been observed. Finally, fracture starts
mostly from a fully twinned grain that cannot accommodate more deformation. It is to conclude that
by adapting the texture appropriate to loading conditions of a part, a certain control over twinning-
induced creep is gained. This is especially interesting dueto the polarity of twinning, which may be
used to adapt textures to the loading conditions, such that creep due to twinning is virtually excluded.

Creep due to twinning can be significantly reduced by the formation of precipitates. In magnesium-
rare earth base alloys, „plate shaped precipitates, which form on the prismatic planes of the matrix
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in a dense triangular arrangement, provide not only most effective barriers to the motion of basal
dislocations motion but are also very effective against creep deformation.” (Summary in Smola et al.
(2004)).

Moreover, precipitates nucleate at stacking faults, dislocations and grain- or twin boundaries
Kaya et al. (2004). The latter hinders the twin boundary motion, and contributes therefore to strain
hardening and creep resistance.

Low-temperature ductility. Crystals that deform by twinning can show a behaviour reverse to the
experiences made with deformations by crystallographic slip. For example the ductility of CuSn3.1
at.% bronze, silver and the silver alloy AgAu25 at.% is considerably increased as the temperature is
lowered to values such as 20K (Reed-Hill and Abbaschian, 1994; Christian and Mahajan, 1995), see
Fig. 2.21. Usually, thermal fluctuations assist the rearrangement of atoms and dislocation glide, and
one expects the ductility to decrease with temperature. It is to suspect that at higher temperatures,
slipping, being the primary deformation mode, causes the grains to deform inhomogeneously. There-
fore, an inhomogeneous crystal orientation distribution (COD) inside the grains emerges, which is
disadvantageous for twin propagation.

Strain rate dependence. The flow stress due to twinning depends only weakly on the temperature
and the strain rate, see Fig. 2.21. For both dependencies, positive and negative sensitivities are re-
ported, depending on the lattice structure and the twin system. The tendency to substitute slip by twin-
ning changes rather slowly with temperature, but rapidly with the strain rate (Christian and Mahajan,
1995). This is due to the higher sensitivity of the slip activity on the strain rate. Moreover, at low
strain rates, the grain partitioning due to twinning is morepronounced, which influences the hardening
behaviour via a dynamic Hall-Petch effect.

Figure 2.21: Left: Low temperature ductility caused by twinning, from Reed-Hill and Abbaschian
(1994). Right: Strength differential effect in textured polycrystaline magnesium at different strain
rates, from Reed-Hill (1973). Note that the twinning-induced plateau in the compression test is rather
unaffected by strain rate changes.
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Elastic twinning. Another unusual and often cited finding is that relatively large twinning-induced
strains (up to 12%) may vanish upon unloading, which suggests that the twinning is practically
fully elastic (Bolling and Richman, 1965; Lubenets et al., 1980). Bolling and Richman (1965)
claim that their FeBe25-specimens deform primarily by twinning and by a negligible amount of
slip, and draw conclusions regarding twinning. Unfortunately, the term twinning is misplaced
in their work, since they observed mechanical induced martensitic transformations. Therfore,
a considerable chemical driving force comes from the fact that the unstable, lower symmetry
orthorhombic lattice transforms back to the cubic phase (Laves, 1966). Although this driving force
biases most of their findings when applied to pure twinning, they are cited sometimes rather uncrit-
ical. If real twinning is considered, the elastically recoverable strains are quite small (Wu et al., 2008).

It is particularly difficult to understand how twins are ableto propagate at speeds at the order of
the speed of sound, while a reasonable speed for dislocationmovement is approximately 50m/s
(Sleeswyk, 1964), which is well below the shear wave speed. Therefore, the twin propagation mecha-
nism by partial dislocation movement cannot be the full explanation. It is to suspect that it is a mixture
of homogeneous shearing and dislocation movement.

The lightweight metals magnesium and titanium are of high technical interest. Both exhibit a hexago-
nal atomic structure, which makes both of them prone to mechanical twinning. The known problems
connected to twinning, like fracture initiation, strengthdifferential effect and largely unpredictable be-
haviour are opposed by potential benefits, like an outstanding ductility by inducing the TWIP-effect,
or the design of texture distributions adjusted to the components demand (Jiang et al., 2008).
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Chapter 3

Simulation of Mechanical Twinning

Since mechanical twinning influences the material properties by changing its microstructure, one is
interested in its proper modelling. In the following, a rough overview on the simulation of twinning
at different scales is given. For a more detailed account seeRoubí̌cek (2004).

3.1 Macromodels

This modelling approach uses and predicts information fromthe microscale in an averaged and ho-
mogenised sense. With respect to mechanical twinning, at one material point, the volume fraction
of each phase (e.g. Tomé et al. (1991)) or the average grain size (e.g. Allain et al. (2004)) are pre-
dicted. The model length has to be considerably larger than the length scale at which the microscale
processes take place. I.e. for twinning, which occurs on thegrain scale, the model size has to be at
least sufficiently large to cover a representative number ofgrains. Macromodels have the advantage of
being computationally less intense than models that serve on a smaller length scale, and are therefore
more useful for engineering problems. Further, if one is only interested in a specific information, one
can pick a macromodel that accounts to ones needs.

Macromodels can be formulated purely phenomenologically by adapting model parameters to exper-
imental findings, or they couple a physically motivated approach on the microscale with a necessarily
crude analytical homogenisation scheme. A prominent example is the Taylor-homogenisation applied
to single crystal slip (see, e.g., Böhlke (2001)). Due to therough homogenisation, non-negligible
information may be lost. For example, the Taylor-homogenisation used to predict the change of
the crystal orientation distribution (COD) by crystallographic glide may lack texture components
(Böhlke et al., 2007). It also overestimates the texture sharpness. Some remedies for the latter are
proposed, e.g. the superposition of an isotropic background model (Böhlke et al., 2006) or of the
Sachs homogenisation scheme, which underestimates the texture sharpness (Ahzi and M’Guil (2008)
and references within). A more refined homogenisation is theself-consistent scheme, which uses
Eshelby’s solution (Eshelby, 1957) of an ellipsoidal inclusion to implicitely derive the material be-
haviour of the surrounding homogenised equivalent medium (HEM).

Macromodels that rely on a homogenisation scheme can be numerically quite expensive. The numer-
ical effort for the determination of the HEM-behaviour as well as the number of internal variables

45



46 CHAPTER 3. SIMULATION OF MECHANICAL TWINNING

grows with the number of crystal orientations that are incorporated. In order to approximate an
isotropic COD by single orientations, one needs a large amount of orientations to obtain a reasonable
approximation. In order to reduce the number of internal variables and calculation time, the ODF can
be approximated by weighted components instead of discreteorientations. Different decomposition
techniques are proposed in the literature. Prominent techniques are the use of Mises-Fisher distri-
butions around discrete orientations (Fisher, 1953), the spherical harmonics expansion of the ODF
(Bunge, 1977) and the tensorial series expansions of the ODF(Böhlke et al., 2006).

A recent application of the self-consistent viscoplastic homogenisation scheme to magnesium and its
alloys is given by Proust et al. (2009), who homogenised over1800 orientations. The used material
model is relatively complex by, among other subtleties, incorporating the directional Hall Petch effect,
which results in considerable numerical effort. The simulated stress-strain curves for a deformation
process including strain-path changes are in reasonable agreement to experimental findings.

Macromodels are mostly computationally advantageous compared to micromodels. However, in or-
der to obtain qualitatively reasonable predictions, complicated models have to be introduced, with a
large number of material parameters. In many cases, the material parameters have no physical in-
terpretation, and the quality of the predictions may strongly depend on the strain path, leaving an
uncertainty which is not always acceptable. In principle, experimental confirmation is always neces-
sary when results are obtained from microstructural initial conditions that deviate strongly from the
conditions at which the material parameters have been adapted. Further, macromodels are improper
to gain understanding of the underlying mechanisms. In the context of twinning, a macromodel that
respects crystallographic glide and twinning simultaneously cannot offer insight into the interaction
between slip and twinning. It can, of course, help to understand observations on the macroscale.

3.2 Micromodels

Micromodels claim to predict the material properties without homogenisation. With respect to me-
chanical twinning, the crystal (parent or twin) is determined at each material point. By doing so,
micromodels automatically have the problem of dealing withthe phase transition in an erratic way,
while the phase transition as seen from a macroscopic point of view is smooth due to the con-
tinuous change of the volume fractions. Therefore, micromodels that incorporate phase changes
exhibit some inconvenient properties regarding the stability and the uniqueness of the solution
(Abeyaratne and Knowles, 2006), which are object of research in mathematics and mechanics.

The minimum model size is restricted to be larger than the length scale at which the material can no
more be described by means of a continuum theory. Therefore,it is doubtful whether the mechanical
behaviour of very fine twin structures like observed by Fissel et al. (2006) (≈ 6 atom layers per twin)
can be modeled by using a microscale model.

The advantage of microscale modelling is that one can obtaininformation which is usually lost in
the homogenisation process when employing a macromodel. Inconjunction with a numerical ho-
mogenisation procedure, one is able to obtain more precise estimations of the macroscopic material
behaviour as by using a macroscale model. A common numericalhomogenisation procedure is the
RVE-technique. Being computationally more expensive thanmacromodels, micromodels offer more
precise predictions in return. Moreover, micromodels are simplistic compared to macromodels. While
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macromodels should respect in some way the grain morphologyand the COD, micromodels contain
less modelling parameters, which are determined by the material behaviour of a single crystal. This
is advantageous for the physical interpretation of the modelling parameters, as well as for the repro-
ducibility of the experiments. Compared to macroscale considerations, in a repeated experiment bias
due to different microstructures is excluded. A micromodelin which twinning and slip are simul-
taneously incorporated may help to understand their interaction, though experiments become more
difficult the smaller the length scale is.

This is motivation enough for setting up micromodels for mechanical twinning, which has been done
by Silling (1989); Collins (1993); Forest and Parisot (2000); Idesman et al. (2000); Lapczyk et al.
(2000); Pitteri and Zanzotto (2002); Wang et al. (2004). Silling (1989) and Collins (1993) approach
the problem by setting up a nonconvex elastic energy function, which has been suggested by Ericksen
(1980). Silling (1989) uses his CHIMP algorithm to track thetwin evolution, but does not con-
sider real twinning modes, avoiding the problems explainedin Section 4.8. Collins (1993) treats the
problem as purely elastic. He approaches the global energy minimum by using an optimisation al-
gorithm, and obtains phase mixtures as fine as the spatial discretisation allows. Forest and Parisot
(2000) approach mechanical twinning by regarding twin systems as slip systems that undergo soften-
ing until reaching the twin shear. In contrast to Silling (1989) and Collins (1993) his model allows
for the straightforward use of a critical twinning stress. Idesman et al. (2000); Lapczyk et al. (2000)
use an order-parameter that smears out the transition from one phase to another. Wang et al. (2004)
describes the formation of martensitic plates by using the phase-field-microelasticity. Each mod-
elling technique has its advantages and disadvantages, like the possibility of remaining ”intermediate
twins” after load removal (Forest and Parisot, 2000; Idesman et al., 2000), restriciton to small strains
(Wang et al., 2004) or the overestimation of critical strains and stresses (Silling, 1989).

One may ask why one should not set the material model instantaneously from the parent to the twin
configuration as, e.g., a resolved shear stress condition isreached. A straightforward approach could
be to reorient the stiffness tetrad and map the stress-free configuration by the corresponding shear
strain. Unfortunately, such a model would induce instantaneously, due to the relatively large shear
strain, large elastic stresses. These elastic stresses would cause, if it were permitted, immediate
detwinning on the same system. Moreover, in a numerical simulation, the large elastic stresses would
cause a snowballing twin growth, far from realistic behaviour.

From the latter considerations it is clear that modelling a continuous shift from the parent to the twin
configuration is a more promising approach. In this work, a continuous differentiable nonconvex elas-
tic strain energy is employed. If one is interested in a an inelastic modelling approach, a starting point
could be to postulate differential equations which describe the evolution of the twin volume fractions,
where the condition that the phase volume fractions have to sum up to one at any time has to be
fulfilled. The behaviour of the latter defines whether one obtains a macro- or a micromodel. If stable
phase mixtures are predicted, one has a macromodel, while one has a micromodel if only the one-
phase states are stable. In case of a micromodel, it may be a good idea to employ delayed differential
equations, though the existence of a waiting time for twin growth has been confirmed experimentally
(Kawabata et al., 2000). DDEs can be designed such that the reaction does not immediately follow to
the cause, which allows to incorporate the waiting time, as well the snowballing twin propagation can
be avoided.



48 CHAPTER 3. SIMULATION OF MECHANICAL TWINNING

3.3 Molecular Dynamics

Modelling on the molecular level combined with numerical evaluation and homogenisation is very
helpful in understanding macroscopic phenomena, see, e.g., the references in Section 2.6, or the recent
works of Hildebrand and Abeyaratne (2008); Jin et al. (2008); Xu et al. (2008); Kastner and Ackland
(2009); Li and Ma (2009b). Li and Ma (2009b) accomplished to simulate the complex 3D atom move-
ment that accompanies the interface movement of a{101̄1}〈101̄2̄〉 compression twin, which is in rea-
sonable agreement with TEM observations. If the computing power increases further, one may think
of a numerical two-step homogenisation, from the atomic scale to the grain scale and from the grain
scale to the macroscale. In such a modelling strategy, not only spatial but temporal homogenisation
would be necessary. Although a large number of problems has to be solved for such an approach, it
may be capable of reproducing a large variety of observations, including slip and twinning, by very
few modelling parameters that are interpretable on the atomic scale. By applying the Cauchy-Born
rule to a periodic unit cell of atoms (which makes the Taylor assumption appear to be very mild), one
may already analytically deduce a nonconvex strain energy from summing up the atomic potentials,
which would already recover the energy minimum for shuffle-free twin configurations. For magne-
sium, the embedded atom model of Liu et al. (1996) could serveas a starting point (disposable at
http://www.fisica.uniud.it/∼ercolessi/potentials/Mg/). Liu et al. (1996) adjusted thethree character-
istic functions (pair potential, embedding energy function and density function) by piecewise cubic
splines to magnesium, such that many properties of the magnesium single crystal are reproduced.

For now, molecular dynamics are unattractive for engineering applications. Microscale models appear
to fall in range of practicability soon, as the increased research activities in the use of the FE2 method
suggest.



Chapter 4

Setting up a Micromodel

4.1 Elastic Modelling of Phase Transitions

Consider the following 1D-example: Two horizontally aligned and compressed springs are connected
by a joint, which can only move vertically (see Fig. 4.1, which may be a switch or similar). By ap-
plying a forceF in vertical direction, one is able to change the stress-freeconfiguration to which the
system returns after load removal, ifF is sufficiently large. Apparently, a permanent deformationcan
be obtained, with purely elastic ingredients. In regard of this, such material behaviour is often referred
to as pseudoelastic. It is in principle possible to construct a chain of such switches, which would allow
for a gradual increase of the permanent deformation, similar to the practically continuous plasticity in-
duced by dislocation movement. Such chains of snap-springshave been used by Müller and Villaggio
(1977) to model plastic material behaviour. By imposing a certain displacement at the ends of such a
chain, it is clear that the imposed deformation can be achieved by more than one combination of flip-
ping snap-springs, which indicates that the pseudoelasticboundary value problem needs not to have a
unique solution. With such behaviour has to be dealt when oneapproaches mechanical twinning. One

u

F (u) w(u)F (u)

Figure 4.1: Sketch of a snap spring.
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notes that in the example there is a third equilibrium configuration withF = 0 just halfway between
the two energy minimising configurations. The energy-criterion generally adapted (Ericksen, 1975)
tells that this is not a stable configuration. By consideringthe second derivative of the strain energy
with respect to the displacement we findw′′(u) < 0, which corresponds locally to a negative Youngs
modulus. Withw′′ being the curvature ofw, one could say that this is in the nonconvex range ofw. It
separates clearly the two ranges where a stable equilibriumcan be found. Therefore, as micromodels
claim to predict which phase forms at a material point instead of phase mixtures, nonconvex elastic
modelling appears to be appropriate for this purpose. For illustrative purposes, take the potential

w(u) = (u − 1)2(u + 1)2, (4.1)

which could be of a snap-spring. For the sake of simplicity itis assumed that material parameters are
normalised, and physical units are ignored. The force-displacement curve is given by

F = w′(u) = 4(u3 − u), (4.2)

and the tangential modulusE is given by

E = F ′(u) = w′′(u) = 4(3u2 − 1), (4.3)

see Fig. 4.2. By demandingF = 0 one finds the three force-free configurationsuF=0 = {−1, 0, 1}.
They correspond to local extrema ofw(u), of which u = 0 corresponds to a local maximum and
u = ±1 to local minima, i.e.E(u = 0) < 0 while E(u = ±1) > 0. The rootsu1,2 = ±3−0.5 of
E correspond to the local extrema ofF and mark the points wherew changes from a convex to a
concave curvature.
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Figure 4.2: Strain energyw(u) = (u − 1)2(u + 1)2 and its first and second derivative, namely the
force displacement curve and the tangent modulus.

4.2 Solution Strategies for the Pseudoelastic Model

Mechanical twinning is modelled here based on a nonconvex elastic energy densityw. The solution
of the quasistatic elastic boundary value problem is obtained by minimising the stored energy

W =

∫

Ω

w(C)dV (4.4)
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by determiningC such thatmin(W ) is obtained, whereΩ denotes the domain that is occupied by the
elastic body. It is well known thatw must be at least rank one convex to ensure the existence of a
unique minimiser and to prevent the prediction of infinitelyfine phase mixtures. A fundamental work
on convexity in elasticity is given by Ball (1977). Note thatall hyperelastic laws that are isotropic and
physically linear in a Lagrangian strain measureE = f(C) fail to be rank one convex (Bertram et al.,
2007), like e.g. the widely used Saint-Venant Kirchhoff law. This, however, happens usually at strains
which are too large to expect elastic behaviour.

In order to obtain a well-posed problem, one can enforce a convex strain energy by carrying out
modifications. However, one can interpret the deficiency of the pseudo-elastostatic boundary value
problem as a lack of physical considerations (Abeyaratne and Knowles, 2006). Regarding the fact
that most phenomena which are modelled by the pseudoelasticapproach are strain path-dependent
(twinning, martensitic transformations), it appears to bereasonable to not stick to a purely elastic
modelling, but introduce a kinetic relation. However, the most prominent convexification techniques,
namely the relaxation ofw or the introduction of an adequate strain gradient dependence, should be
mentioned shortly.

Convexification. Given a nonconvex strain energy, one may construct a convex hull, and use it
in place of the starting strain energy (Pagano and Alart, 1999; Lambrecht et al., 2003; Bartels et al.,
2004; Carstensen, 2005). Obviously, one looses the nonconvex branches of the strain energy. In this
way, the uniqueness of the solution can be restored at the cost of a clear assignment of the different
phases at each material point. Nevertheless, a volume fraction of each phase at each material point can
be locally determined by looking at the distance of the solution from the stress-free configurations that
correspond to the individual phases (see Fig. 4.3). Talkingabout volume fractions, one has arrived at
a macromodel. Therefore, the convexification procedure is aspecial way of homogenisation, which
comes along with loss of information about the microstructure. One can refer to the convexified
strain energy as the mesoscopic strain energy, while the nonconvex strain energy is interpreted as the
microscopic strain energy (Peigney, 2009).

In the 1D-case, the construction of a convex hull is not difficult. However, different convex hulls lead
to different material behaviour. In the above example, the determination of a tangent that connects
the two minima leads to a constant force displacement curve,which leaves the uniqueness issue
unresolved (Fig. 4.3). In the example,F = 0 corresponds to any displacement between−1 and
1. In this branch, the material behaves fluid-like. In the multidimensional case, convexity appears
to be a criterion that is too strict. For example, elastically almost incompressible material behaviour
already violates the convexity condition. Therefore, weaker notions of convexity are applied, namely
poly-, quasi- and rank one-convexity (Ball, 1977). Moreover, the construction of a convex hull is
not as straightforward as in the 1D-case, and mostly severalsimplifying assumptions are necessary,
like elastic isotropy in all phases and small strains. Sometimes, the construction of a convex hull
is referred to as a relaxation procedure, because it corresponds to the relaxation of the constraint
that at each material point only one phase exists. Some recently proposed relaxation procedures can
be found in Pagano and Alart (1999); Lambrecht et al. (2003);Acerbi et al. (2003); Govindjee et al.
(2003); Schmidt (2008) and Peigney (2009).

Higher-order strain gradients. By incorporating a contribution of the strain gradient to the elastic
energy, one is able to penalise sharp strain gradients, which means that infinitely fine phase mixtures
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Figure 4.3: Convexified strain energyw(u) = (u − 1)2(u + 1)2 and its first and second derivative,
namely the force displacement curve and the tangent modulus. The former minima atu = ±1
correspond to the phases 1 and 2. Phase volume fractions can be calculated by considering the distance
from the former minima. For example, atu = 0 one could speak of a 1:1 phase mixture.

are no more minimisers of the global strain energy. Physically, this comes close to the incorporation
of an interface energy, and is therefore denoted as a capillarity. Moreover, the convexity of the strain
energy is determined by the dependence on the highest straingradient (Sidi Ammi and Torres, 2008),
i.e., one can regain the overall convexity of the strain energy but maintain a nonconvex dependence
on the strains. The use of higher-order strain gradients, however, has certain disadvantages. In reality,
the deformations undergo a sharp jump at an interface separating the two phases. Therefore, the
penalisation of sharp strain gradients corresponds to a regularisation of the jump at the interface. In
order to obtain a reasonable approximation of the strain jump, the dependence of the strain energy on
the strain gradient has to be strongly nonlinear. Moreover,the numerical treatment is more difficult,
as well as the interpretation of the additional boundary conditions that have to be specified.

Kinetic relation. Abeyaratne and Knowles (2006) state that the missing part ofthe pseudoelastic
boundary value problem is a nucleation criterion plus a kinetic relation. Haasen (1996) stated simi-
larly that phase mixtures are the result of kinetic processes, not of energy minimisation alone. Even
Gibbs himself supposed the existence of obstacles, preventing global energy minimisation (Pego,
1987). In fact, it is known that the interface movement underlying the twin propagation is controlled
by the movement of partial dislocations, which has to be considered as a kinetic process. Even in the
case of the snap spring one can argue that the joint must have amass, and consider the pseudo-elasto-
dynamic problem. By incorporating a kinetic relation, time-dependence enters into the considerations.
One does not consider a global energy minimum anymore, but tracks the evolution of a system.

Two common methods to introduce a kinetic relation are to incorporate dynamics or to regard the
material behaviour as visco-pseudoelastic. One can speak about the dynamic and the viscous regular-
isation. The viscosity term incorporates the dissipation of energy into the model, unlike the dynamic
regularisation. In order to demonstrate the characteristics of both regularisations, the example prob-
lem from Section 4.1 is regularised. A forceFext is applied, which has to be in balance with the
reaction force of the snap spring. In case of the dynamic regularisation the differential equation to
solve is

Fext = w′(u) + mü, (4.5)

while in the viscous case

Fext = w′(u) + ηu̇ (4.6)
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has to be solved. The initial conditions areu(t = 0) = −1, and u̇ = ü = 0. Physical units are
ignored again. The external force is raised proportional intime, the factor of proportionality is 1. The
results of the numerical time integration of both equationsare given in Fig. 4.4. As the local force
maximumF ≈ 1.54 atu = −1/

√
3 is reached, the joint jumps to the opposing configuration. Incase

of the dynamic regularisation, loaded with kinetic energy,it oscillates around the stable equilibrium
configuration, while in case of the viscous regularisation no oscillation results.

The work needed to carry out au(t)-controlled process is given by

W =

∫ uend

ustart

Fdu. (4.7)

InsertingF = w′(u) + mü yields

W =

∫ uend

ustart

(w′(u) + mü)du (4.8)

= w(uend) − w(ustart) + m

∫ uend

ustart

du̇du

dt
(4.9)

= w(uend) − w(ustart) + m

∫ u̇end

u̇start

u̇du̇ (4.10)

= w(uend) − w(ustart) +
m

2
(u̇2

end − u̇2
start). (4.11)

If one returns to the initial state by driving a circular process, i.e.uend = ustart andu̇2
end = u̇2

start, no
energy is needed or gained, which means that the system is conservative. In the case of the additional
viscous force one obtains

W =

∫ uend

ustart

(w′(u) + ηu̇)du (4.12)

= w(uend) − w(ustart) + η

∫ uend

ustart

du

dt
du

dt

dt
(4.13)

= w(uend) − w(ustart) + η

∫ tend

tstart

u̇2dt. (4.14)

A general solution for the latter integral cannot be given, but one notes that the integrand is positive
for any u̇ 6= 0, i.e. any circular process withtend > tstart andη > 0 must give a positiveW . This
means that an energy input is necessary to carry out the process. Conservation of the total energy is a
basic principle in physics. However, it is not necessary to model the temperature increase due to the
internal friction (e.g. by dislocation movement) if it is not of interest. The viscous force represents a
convenient modelling tool to incorporate dissipative effects without introducing, e.g., the temperature
field.

The zero-dimensional snap-spring serves as a draft for Ericksen’s bar (Ericksen, 1975), a one-
dimensional bar with an analogous nonlinear material law. Let [0, L] denote the length of a bar.
The equation of motion without body forces at each point is given by

F,x = ρü, (4.15)

with ρ being the mass per length unit. The forceF depends on the strain and the strain rate by

F = w′(u,x) + ηu̇,x (4.16)
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Figure 4.4: Result of the numerical time integration of eq. 4.5 and 4.6. One notes that in case of the
dynamic regularisation the systems oscillates around the stable configuration after snapping through.

which is an unspecified stress-strain law resulting from a strain energyw(u,x) plus a linear viscosity.
This partial differential equation can be rewritten as

w′′(u,x)u,xx + ηu̇,xx − ρü = 0. (4.17)

Dynamic regularisation. Settingη = 0 one obtains a second-order PDE, which can be classified
by looking at the coefficientsw′′ andρ, which belong to the highest derivatives. According to the
nomenclature of conic sections, the PDE is elliptic, parabolic or hyperbolic if−w′′ρ is greater, equal
or lower than zero, respectively. Note that the type of the PDE changes asw′′ changes its sign. In
case of a standard material withw′′ > 0 andρ > 0, one has to handle a hyperbolic PDE. Its treatment
is considerably more difficult than in the other cases. One has to deal with travelling waves, shocks
that can emerge even if the initial data is smooth, and it may happen that due the lack of damping
stationary states are not reached. Moreover, the second time derivative induces a more complicated
numerical treatment when the time integration is carried out. As theρü-term stems from the potential
of the kinetic energy, both terms represent local changes ofenergies. Thus, there is no damping due
to the energy balance between strain and kinetic energy.

Viscous regularisation. Settingρ = 0 corresponds to the quasistatic treatment. In the resulting
PDE one can replaceε = u,x, which yields

w′′(ε)ε,x + ηε̇,x = 0. (4.18)

This PDE is hyperbolic ifη2 > 0, which holds for real values ofη. Although eq. 4.18 is still
a hyperbolic PDE, its treatment is less difficult than in caseof the dynamic regularisation. It is
formulated in terms of strains, which means that solutions of eq. 4.18 do not depend on the choice
of the strain measure, while eq. 4.17 can be considerably complicated if a nonlinear strain measure
is employed. It contains only one mixed second derivative compared to two second derivatives with
respect tox andt in eq. 4.17. Thus, the numerical time integration is less difficult. Further, a positive
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viscosity is connected with energy dissipation, which allows for stationary states. Finally, one can
say that most solids exhibit a positive viscosity, though relatively small in metals, which renders the
latter regularisation physically substantiated.

The mathematical treatment of Ericksen’s bar is challenging. The case of a strictly monotonic in-
creasing elastic law combined with a linear viscosity has been considered by Greenberg et al. (1968);
Greenberg (1969); Greenberg and MacCamy (1970), who showedthe existence, uniqueness and sta-
bility of global solutions. Dafermos (1969) analysed the dynamic one-dimensional viscoelastic bar in
a more general way, and found that the viscous part dominatesthe elastic part and assures the exis-
tence of a unique solution in the large, and that this solution is asymptotically stable in the sense that
ast tends to∞ the stresses and time derivatives ofu vanish. Moreover, the positive viscosity ensures
the compliance of the Clausius-Duhem-inequality.

The uniqueness of the solution has been restudied by Andrews(1980); Andrews and Ball (1982),
where the asymptotic behaviour is examined, and the incorporation of a strain gradient is proposed as
a remedy for the uniqueness issue, all focusing on a linear rate dependence. Pego (1987) shows that
solutions tend strongly to stationary and stable states in time, which may contain coexistent phases,
but are not necessarily minimisers of the energy. He argued that the minimisation of energy does not
serve as a stability criterion in materials undergoing phase changes. Haasen (1996) stated similarly
that phase mixtures are the result of kinetic processes, notof energy minimisation alone. In regard
of this, Abeyaratne and Knowles (2006) suggest to equip a nonconvex energy-minimisation problem
with a kinetic relation. As mentioned before, Gibbs also supposed the existence of obstacles that
prevent global energy minimisation.

However, when focusing on energy minimisation alone, it hasbeen found that the state of min-
imum energy is obtained by an infinitely fine phase mixture (see, e.g., Ball and James (1987);
Truskinovsky and Zanzotto (1996); Carstensen (2005); Abeyaratne and Knowles (2006)). Ball et al.
(1991) found that if the strain energy is supported with a nonlocal potential energy term (a strain-
gradient dependence), a dense set of solutions of Ericksen’s bar model represent energy minimisers.
Moreover, the artificial result of infinitely fine phase mixtures is also avoided. Physically, the in-
corporation of strain gradients into the strain energy corresponds to a penalisation of steep strain
gradients as found at interfaces (Truskinovsky and Zanzotto, 1996). The augmentation of the strain
energy can serve as a selection criterion, avoiding the non-uniqueness of the minimisation problem
(Truskinovsky and Zanzotto, 1996). By extending the strainenergy with a strain gradient, rank one
convexity can be ensured, and energy minimisation can be applied. However, the numerical treatment
is more difficult, as well as the interpretation of the additional boundary conditions that have to be
specified.

Regarding the kinetic relation, the viscous regularisation is by far the most favourable extension to
the pseudoelastic model. Efendiev and Mielke (2006) showedthat solutions can be established by
considering the limit of the viscous regularisationη → 0. Although the use of a viscous regularisation
is hardly manageable analytically in the three-dimensional case, it proved to be a useful tool in crystal
plasticity (Hutchinson, 1976; Asaro and Needleman, 1985; Böhlke, 2004). There, it does not only
avoid the Taylor problem of uniquely selecting a combination of active slip systems that realise the
plastic deformation. Moreover, instabilities due to softening coming from the rotation of the crystal
(geometric softening can cancel out strain hardening) are avoided as well. Further, by choosing a
proper dependence on the strain rate, it can be regarded as a penalty method in perfect plasticity,
transforming the system of algebraic and differential equations into ordinary differential equations,
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which can be treated by well established numerical methods (Simo and Hughes, 1998).

Summarising, one can say that a regularising viscosity is physically reasonable and mathematically
helpful. In regard of this, the viscous regularisation is used in this work. The overall modelling
strategy employed here is therefore as follows.
1.) Construct a nonconvex energy densityw with local minima withw = 0 at each stress-free
configuration (parent and twins). This is done in terms of Green’s strainE.
2.) Derive the material law by takingT = ∂w/∂E, with T being the second Piola-Kirchhoff stresses.
3.) Add a regularising viscosity term to the material law. Bythis, the modelling category is no more
a global energy minimisation, but an evolution equation.
The model derivation is given in the following Sections.

Numerical Problems and Homogenisation. It is well known that nonconvex energy minimisation
without a capillarity can lead to infinite fine phase mixtures. When such a minimum is approached
numerically, the solution oscillates at the level of the spatial discretisation (Carstensen, 2005). More-
over, even if the solution does not oscillate, it does not need to be unique, as the spatial arrangement of
the phase mixture may be arbritrary. However, if treated numerically, although one may not observe
convergence on the microscale as the spatial resolution is increased, it is shown that the homogenised
quantities converge (Bartels et al., 2004).

4.3 Construction of the Nonconvex Strain Energy

Ball and James (1987, 1992) argued that the energy densityw of a material that can formn different
phases is given

w(x) = min
i=1...n

(w1(x), w2(x), . . . wn(x)). (4.19)

In words: the determining energy density is the smallest individual energy densitywi of then poten-
tial phases. Applied to the snap-spring example, one could approach the strain energy in each phase
by a quadratic relation, and composew using the Ball and James-approach (see Fig. 4.5). In general,
thewi depend on the deformation, temperature and internal variables. By changing the temperature,
it may happen that anotherwi becomes smaller than the current one. For example, in martensitic
transformations, one crystal structure becomes at a transformation temperature more favourable than
another one, involving, e.g., transformations from a bct toa fcc lattice (NiTi). Here, thewi depend
only on the deformation, though twinning is (unlike martensitic transformations) not temperature-
driven. Of course, the temperature plays a role for the movement of the partial dislocations, but one
can treat twinning without regarding the temperature-dependence, though unlike martensitic transfor-
mations twinning does not change the crystal class. If the temperature dependence is not neglectable,
it may be more suggestive to assemble the overall stored energy by the partition function

w(x) = −kBθln

(

n
∑

i=1

e
−wi(x)

kBθ

)

, (4.20)

with the Boltzmann constantkB and the tempertatureθ (Roubí̌cek, 2004). The latter composition is
backed up by statistical physics, and gives a continuous stored energy. However, neither the position
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w(u) = min(w1, w2)
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F (u)

Figure 4.5: Example for a nonconvex elastic energy (bold) composed from two convex (quadratic)
strain energies.

of the minima nor the properties close to the minima, essentially the elastic modulus, are conducted
from the individual strain energies to the compound stored energy.

By using the work-conjugacy of Green’s strain and the secondPiola Kirchhoff stresses, the stresses
are given by the strain energy by

T =
∂w(E)

∂E
. (4.21)

The algebraic assignment (4.19) is evaluated pointwise. Assuch, it is not continuously differentiable.
In order to get a continuous stress-strain law, in the following Section a regularisation to replace eq.
(4.19) is constructed.

4.4 A Regularisation for the Ball and James-Approach

Here, the strain energies depend only on the strainE, which is omitted in the remainder. The regu-
larisation for the Ball and James-approach (4.19) should contain a regularisation parameter, sayk, so
that the limit becomes

lim
k→∞

w̃ = w. (4.22)

The wi represent the elastic strain energies, which means thatwi = 0 in the stress-free state, and
wi ≥ 0 holds. As a starting point, the pointwise addition

w̃ =

n
∑

i=1

ai(w1, w2, . . . wn)wi (4.23)

is made (Glüge and Böhlke, 2007), where theai are weight factors. In the limit case (eq. 4.22), the
weight factoram of the smallestwm should approach1, while all the otherai should tend to zero.
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Therefore the normalisation
n

∑

i=1

ai(w1, w2, . . . wn) = 1 (4.24)

is imposed. It is obtained by

ai(g1, g2, . . . gn) =
gi(w1, w2, . . . wn)

∑n
j=1 gj(w1, w2, . . . wn)

(4.25)

where nowgi(w1, w2, . . . wn) has to be specified. The location of the minima of the individual wi

are transferred tõw independently of the regularisation parameterk. This restriction is imposed in
order to not alter the location of the stress-free configurations by the choice ofk. As the minimum of
the individual strain energieswi is equal to zero, thegi(w1, w2, . . . wn) are constructed such that all
gi(w1, w2, . . . wn) = 0 andgm(w1, w2, . . . wn) > 0 whenwm = 0, i = 1 . . . n, i 6= m. This results in
vanishinggi(w1, w2, . . . wn) except the onegm(w1, w2, . . . wn) corresponding to the vanishing energy
densitywm. The imposed restrictions are met by the ansatz

gi(w1, w2, . . . wn) = h(wi)
n

∏

j=1,j 6=i

(1 − h(wj)) =
h(wi)

1 − h(wi)

n
∏

j=1

(1 − h(wj)) (4.26)

with

h(w = 0) = 1, h(w → ∞) = 0. (4.27)

By this constraint, the minima of thewi are transferred tõw independently of the regularisation
parameterk, as long as the minimum corresponds to a zero energy density.The constraints imposed
onh(w) are met, e.g., by

h(w) = exp(−kw). (4.28)

By inserting the deducedgi(w1, w2, . . . wn) into theai(g1, g2, . . . gn), one sees that the product term
is cancelled out, and it suffices to take

gi =
h(wi)

1 − h(wi)
. (4.29)

Finally, the regularised strain energy

w̃ =

(

n
∑

j=1

h(wj)

1 − h(wj)

)−1 n
∑

i=1

h(wi)

1 − h(wi)
wi, h(w) = exp(−kw) (4.30)

is obtained. The given approach is visualised for testfunctions in Fig. 4.6. In the remainder of this
Section it is shown that the regularisation approaches the Ball and James-approach from above for
k → ∞. For facility of inspection, the chain-like dependency ofai(g1, g2 . . . gn), gi(wi) is omitted in
the notation.

By subtracting pointwise the smallestwm out of thewi from w̃ gives a remainderδ = w̃−wm, which
should vanish fork → ∞:

δ =
n

∑

i=1

aiwi − wm, wm = min
i=1...n

(w1, w2, . . . wn). (4.31)
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All wi can be written aswm plus some positive difference∆wi

δ =

n
∑

i=1

ai(wm + ∆wi) − wm. (4.32)

With
∑n

i=1 ai = 1 one finds

δ =
n

∑

i=1,i6=m

ai∆wi, (4.33)

which is positive due toai ≥ 0 and∆wi ≥ 0. This means that̃w ≥ w, which means that the
regularisation approaches the Ball and James-approach from above. To show thatδ tends to zero for
k → ∞, the latter equation is divided byam, which corresponds to the weight factor ofwm:

δ

am
=

n
∑

i=1,i6=m

ai

am
∆wi, (4.34)

Calculating the limitk → ∞ of theai/am yields

lim
k→∞

ai

am
= lim

k→∞

gi

gm
(4.35)

= lim
k→∞

h(wi)(1 − h(wm))

h(wm)(1 − h(wi))
(4.36)

= lim
k→∞

h(wi)

h(wm)
lim
k→∞

1 − h(wm)

1 − h(wi)
. (4.37)

Due to lim
k→∞

h = 0 the limit (4.37) is obtained by

lim
k→∞

ai

am
= lim

k→∞

h(wi)

h(wm)
(4.38)

= lim
k→∞

exp(−k(wi − wm)), (4.39)

which yields0 for wi > wm, i 6= m, which in fact is our initial assumption. We are left with

lim
k→∞

δ

am

= 0. (4.40)

Due to
∑n

i=1 ai = 1, and lim
k→∞

(ai/am) = 0 for i 6= m, am = 1 must hold, which finally yields

lim
k→∞

δ = 0 ⇔ lim
k→∞

w̃ = min
i=1...n

(w1, w2, . . . wn). (4.41)
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Figure 4.6: Regularisation (bold lines) applied tow1 = x2, w2 = (x − 1)2 + 0.5, w3 = (x + 1)2 + 1
(top) andw1 = x2, w2 = (x−1)2, w3 = (x+1)2 (centre), withk = 1 andk = 10. In the second case,
as allwi have zero as minimum, the regularisation transfers the minima of thewi to w irrespective of
k. Bottom: Weight factorsai for k = 1 andk = 10. The transition from oneai = 1 to anotheraj = 1
becomes sharper ask grows.
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4.5 The Individual Strain Energies

Now that a regularisation of eq. (4.19) is given, we focus on the individual strain energieswi. The
widely used principle of Euclidean invariance (Bertram, 2005) demands that the strain energy density
wi depends only on the material stretching, but not on a superimposed rigid body motion.

Consequently, it is sufficient to notewi(C) instead ofwi(F ) (Truesdell and Noll, 1965), with
C = F T F and the deformation gradientF . The elastic material behaviour of most crystals can
be described sufficiently well by a linear stress-strain relation. Therefore, the St. Venant-Kirchhoff
strain energy will be employed here. The elastic reference strain energy is given by

w0(C) =
1

2
T · · E (4.42)

=
1

8
(C − I) · · C0 · · (C − I), (4.43)

with the stiffness tetradC0. The second Piola-Kirchhoff stressesT and Green’s strainsE = 1
2
(C−I)

are work-conjugate, which simplifies the formulation ofw0 and its derivatives with respect toE (Hill,
1968).

4.6 Isomorphy of the Elastic Law

Due to the fact that the twinned crystal has the same crystallographic structure as the parent crystal,
essentially the same elastic energy applies. Therefore, the concept of elastic isomorphisms (Bertram,
2003) is used in order to map the same elastic reference energy (4.43) to the parent and to the twin.
By using the plastic transformationP i, the elastic energy can be transformed by

wi(C) = w0(P
T
i CP i) (4.44)

to the elastic energy of theith twin variant, whereP i maps lattice reference basiscb into the reference
placement of the parent or theith twin variant. The second Piola-Kirchhoff-stresses are given by

T i =
∂wi

∂E
(4.45)

= 2
∂wi

∂C
(4.46)

= 2
∂w0(P

T
i CP i)

∂(P T
i CP i)

· · ∂P T
i CP i

∂C
(4.47)

= 2P iw
′
0(P

T
i CP i)P

T
i . (4.48)

In the following Section, the plastic transformations are derived.
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cTs1

cTs2

d
n

Figure 4.7: In the spatial description, the lattice vectorsof parent and twin differ by a rotation ofπ
aroundn. The associated deformation is a simple shear.

4.7 The Elastic Isomorphisms

The plastic transformationsP P andP T map the reference lattice basiscb into the reference place-
ment, either into the parent (cPb) or the twin (cTb),

cPb = P Pcb (4.49)

cTb = P T cb. (4.50)

The spatial lattice base vectorscPs andcTs are given by the deformation gradientsF P andF T ,

cPs = F P cPb, (4.51)

cTs = F T cTb. (4.52)

cPs andcTs are related by

cTs = RcPs, (4.53)

where, in compound twins,R can be taken asRn or Rd (see Fig. 4.7). Now one can evaluate the
plastic transformationP T by means of

P T cb = cTb (4.54)

= F−1
T cTs (4.55)

= F−1
T RcPs (4.56)

= F−1
T RF PcPb (4.57)

= F−1
T RF PP P cb (4.58)

which allows for the identification

P T = F−1
T RF P P P . (4.59)

By taking the elastic law of the parent to be the reference lawand the placement of the parent to be
the reference placement,

P P = I, F P = I, (4.60)
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eq. (4.59) simplifies to

P T = F−1
T R. (4.61)

F T describes the deformation from the parent to the twin configuration, which is given by a simple
shear deformation

F T = I + γ0d ⊗ n. (4.62)

Due to the orthogonality ofd andn, its inverse is given byF−1
T = I − γ0d⊗n, which finally yields

P T (n) = (I − γ0d ⊗ n)(−I + 2n ⊗ n) (4.63)

= −I − γ0d ⊗ n + 2n ⊗ n (4.64)

in the case ofR = Rn and

P
T (d)

= (I − γ0d ⊗ n)(−I + 2d ⊗ d) (4.65)

= −I + γ0d ⊗ n + 2d ⊗ d (4.66)

in the case ofR = Rd. In both cases,P T has the remarkable property of self-inverseness,P T =
P−1

T . Therefore, double twinning on the same twin system resultsin a recovery of the parent (see
Section 2.2).

4.8 Conjugate Twin Systems

In any compound twin defined by rationalk1, k2, η1, η2 there exist two conjugate twin systems. These
are given by shearing in direction ofη1 parallel tok1 such thatk2 is turned over, and shearing along
η2 parallel tok2 such thatk1 is turned over. The second undistorted plane of one twinningmode is
the shear plane of the other one, and vice versa, see Fig. 4.8 for a sketch. In the remainder of this
section,d∗ andn∗ denote the conjugate twinning mode to the twinning moded andn. For the
conjugate twin systems,

S∗S−1 = QT

βk (4.67)

holds, whereβ andγ0 are connected byγ0 = 2tan(β/2) andk = n × d. To see this, one has to
summariseS∗S−1 by representingd∗ andn∗ in terms ofd andn. Apparently, one has to distinguish
two cases, namely∠(n, n∗) < π/2 (Fig. 4.8 left, case 1) and∠(n, n∗) > π/2, (Fig. 4.8 right, case
2). One obtains

d∗
1 = − sin (β/2)d + cos (β/2)n (4.68)

n∗
1 = cos (β/2)d + sin (β/2)n (4.69)

and

d∗
2 = sin (β/2)d − cos (β/2)n (4.70)

n∗
2 = − cos (β/2)d − sin (β/2)n, (4.71)
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Figure 4.8: Conjugate twin systems(d, n, γ0) and(d∗, n∗, γ0) in the hexagonal unit cell, withc/a <√
3 (left) andc/a <

√
3 (right), andγ0 = 2tan(β/2). Note that in both cases the lateral diamonds

can be mapped on each other by a rotation of amountβ around the axisk = n × d or, alternatively,
by reverse shearing in one twin system followed by shearing in the compound system.
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where one notes thatn∗
2 = −n∗

1 andd∗
2 = −d∗

1. Due to

S∗
1 = I + γ0n

∗
1 ⊗ d∗

1 = I + γ0n
∗
2 ⊗ d∗

2 = S∗
2 (4.72)

we can drop the case distinction. For brevity, the substitution β/2 = α is used. SummarisingS∗S−1

by using eqs. (4.68) and (4.69) and the identityI = n ⊗ n + d ⊗ d + k ⊗ k yields

S∗S−1 =(I + γ0d
∗ ⊗ n∗)(I − γ0d ⊗ n) (4.73)

=I − γ0d ⊗ n + γ0d
∗ ⊗ n∗ − γ2

0(n
∗ · d)d∗ ⊗ n (4.74)

=I − γ0d ⊗ n + γ0(− sin αd + cos αn) ⊗ (cos αd + sin αn)+

− γ2
0 cos α(− sin αd + cos αn) ⊗ n (4.75)

=k ⊗ k

+ [−γ0 − γ0sin
2α + γ2

0sinα cosα]d ⊗ n

+ [γ0cos2α]n ⊗ d

+ [1 − γ0sinα cosα]d ⊗ d

+ [1 + γ0sinα cosα − γ2
0cos2α]n ⊗ n. (4.76)

With γ0 = 2tanα one can summarise each of the squared brackets by applying several trigonometric
relations (mostly2sin2(β/2) = 1 − cos(β), 2cos2(β/2) = 1 + cos(β) andtanα cosα = sinα). One
obtains

S∗S−1 = k ⊗ k + sin(β)(n ⊗ d − d ⊗ n) + cos(β)(d ⊗ d + n ⊗ n), (4.77)

where one recognises the rotation of−β aroundk, which corresponds toQT

βk. Another important
relation is

QT

βk = Rn∗RkRn. (4.78)

One can review the latter relation similarly to the previouscalculation. Again, the case distinction is
due to

R∗
1 = −I + 2n∗

1 ⊗ n∗
1 = −I + 2n∗

2 ⊗ n∗
2 = R∗

2 (4.79)

not necessary. One obtains

Rn∗RkRn = (−I + 2n∗ ⊗ n∗)(−I + 2k ⊗ k)(−I + 2n ⊗ n) (4.80)

= (I − 2k ⊗ k − 2n∗ ⊗ n∗)(−I + 2n ⊗ n) (4.81)

= −I + 2k ⊗ k + 2n ⊗ n + 2n∗ ⊗ n∗ − 4(n · n∗)n∗ ⊗ n. (4.82)

To summarise,n∗ = cosαd + sinαn and−I + 2k ⊗ k + 2n ⊗ n = n ⊗ n − d ⊗ d + k ⊗ k are
employed, which gives

Rn∗RkRn =n ⊗ n − d ⊗ d + k ⊗ k + 2[cosαd + sinαn] ⊗ [cosαd + sinαn]+

− 4sinα[cosαd + sinαn] ⊗ n (4.83)

=k ⊗ k + (1 − 2sin2α)n ⊗ n + (−1 + 2cos2α)d ⊗ d+

− 2sinαcosαd ⊗ n + 2sinαcosαn ⊗ d. (4.84)
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Summarising and using trigonometric relations yields

Rn∗RkRn = k ⊗ k + sin(β)(n ⊗ d − d ⊗ n) + cos(β)(d ⊗ d + n ⊗ n), (4.85)

which corresponds again toQT

βk.

Following eq. (4.61) the plastic transformations of conjugate twin systems are

P = S−1Rn, P ∗ = S∗−1Rn∗ , (4.86)

where the orientation relationR = Rn has been chosen. After establishing the result, it is shown
that the result holds forR = Rd as well. Mapping an elastic reference energyw0 with the plastic
transformations yields

w = w0(P
T CP ), w∗ = w0(P

∗TCP ∗), (4.87)

or, by means of the Rayleigh product,

w = w0(P
T ∗ C), w∗ = w0(P

∗T ∗ C). (4.88)

By substitutingC = P ∗−T ∗ C̃ we get

w = w0((P
T P ∗−T ) ∗ C̃), w∗ = w0(C̃). (4.89)

We now examine

P T P ∗−T = RnS−T S∗T Rn∗ . (4.90)

With eqs. (4.67) and (4.78) we can summarise

P T P ∗−T = RnQ
βkRn∗ (4.91)

= RnRnRkRn∗Rn∗ (4.92)

= Rk. (4.93)

Now, if we preferR = Rd as orientation relation, we obtain

P T P ∗−T = RdQ
βkRd

∗ , (4.94)

which can be rewritten byRd = RkRn andRd
∗ = Rn∗Rk as

P T P ∗−T = RkRnQ
βkRn∗Rk (4.95)

= RkRkRk = Rk. (4.96)

We have seen in Section 2.2 that theRk belonging to a compound twinning mode must be in the sym-
metry group of the lattice. Therefore, the elastic reference energyw0 must haveRk in its symmetry
group. In this section it is shown that the strain energiesw andw∗ of conjugate twin systems differ
by a Rayleigh transformation ofC with Rk. By combining both, one has to conclude that compound
twin systems exhibit an elastic energy invariance, i.e.w = w∗, and consequently,∂w/∂E = T = T ∗

holds.
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Depending on the twinning mode, distinct conclusions have to be drawn. In the case that the pairs
(d, d∗) and (n, n∗) are crystallographically equivalent (or, in the usual twinning notation, (η1, η2)
and (k1, k2)), the conjugate twinning modes belong to a set of crystallographically equivalent twin
systems. Practical examples are the{112}〈1̄1̄1〉 twinning in the bcc,{111}〈112̄〉 twinning in the fcc,
{011̄2}〈01̄11〉 twinning in hcp,{101}〈101̄〉 twinning in the bct and orthorhombic and{100}〈001̄〉
twinning in the orthorhombic lattice. For example, for one of the {011̄2}〈01̄11〉 twin systems in
the hcp lattice,k1, η1, k2, η2 are{011̄2}, 〈01̄11〉, {011̄2̄}, 〈011̄1〉, respectively, see Fig. 4.8. This
means that the conjugate twin to the{011̄2}〈01̄11〉 twin system is crystallographically equivalent, i.e.
one has six crystallographically equivalent twin systems.These are pairwise energetically invariant,
which means that from the viewpoint of an elastic modelling,one can only distinguish three possible
twinning modes.

In the case when the pairs (d, d∗) and (n, n∗) are crystallographically distinct, different con-
clusions emerge. Practical examples are{011̄1}〈011̄2̄〉 and {112̄2}〈112̄3〉 twinning in the hcp
lattice, {031}〈01̄3〉 twinning in the bct lattice,{100}〈01̄1̄〉 twinning in the rhombohedral lattice,
{101̄}〈1κ11〉 and {130}〈31̄0〉 twinning in the orthorhombic lattice and{100}〈001〉, {110}〈001̄〉,
{100}〈0κ2κ3〉 and {011}〈0κ4κ5〉 twinning in the monoclinic lattice, whereκi denotes some lat-
tice constant. For example, for the{011̄1}〈011̄2̄〉 twin systems in the hcp lattice,k1, η1, k2, η2

are {011̄1}, 〈011̄2̄〉, {011̄3̄}, 〈033̄2〉, respectively. This means that the conjugate twin to the
{011̄1}〈011̄2̄〉 twin system, which is the{011̄3̄}〈033̄2〉 twin system, is crystallographically distinct,
see Fig. 4.9. Therefore, it may display different characteristics, like different critical shear stresses.
Both twin systems are, however, connected by the elastic energy invariance. By introducing an elastic
energy density which displays the six distinct minima of the{101̄1}〈101̄2̄〉 twin variants, one enables
automatically{101̄3̄}〈303̄2〉 twinning.

The strain energy invariance may even connect a twinning mode to a lattice invariant shear, namely
to a deformation which one would consider as crystallographic glide. An example is twinning with
the elementsk1 = {120}, η1 = 〈21̄0〉, k2 = {100} andη2 = 〈010〉 in a simple cubic lattice, see
Fig. 4.10 for a sketch. One notes thatk2 andη2 correspond to the lattice base vectors, and that a
„reorientation” by a two fold rotation aroundk2 or η2 maps the lattice onto itself. This means that
shearing in the shear systemη2 ⊗ k2 should be considered as slip, not as twinning. Due to the strain-
energy invariance, one incorporates an impossible twinning mode if one constructsw such thatw = 0
holds for the{120}〈21̄0〉 twins, which are valid twin configurations.

The non-compound twinning modes, type 1 and type 2 twinning,do not exhibit the energy invariance,
sinceRk is not an element of the symmetry group of the lattice. Therefore,w0 is not invariant under
a symmetry transformation withRk, as long as a proper elastic law is applied.

The latter conclusions are important, and therefore their derivation is roughly summarised: TheRk
belonging to compound twins is in the lattice symmetry group(Section 2.2). Also, their twin systems
are conjugate. The conjugacy of the twin systems is induced by their alignment: shear occurs mutually
along the distinguished plane that is left unstretched by shearing in the other system, but is only
turned over. Starting from a twin configuration, backward twinning into the parent configuration
and subsequent twinning into the conjugate twin system can be replaced by a rotation ofβ around
the plane of shear normalk, see Fig. 4.9 for an illustration. In this section it is shownthat the
elastic energy densities of conjugate twin systems differ by a Rayleigh transformation ofC with Rk.
Combining both yields the aforementioned conclusions.
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Figure 4.9: The{011̄1}〈011̄2̄〉 and the{101̄3̄}〈033̄2〉 twin system in the hcp lattice.
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e1

e2

e3

Figure 4.10: A lattice invariant shear (d ‖ e2, n ‖ e1) and a twinning mode (d ‖ (2e1 − e2), n ‖
(e1 + 2e2)) that are connected by the conjugacy of the shear systems.

The cause for the energy invariance has been shown in a more general way by Zanzotto (1992, 1996)
to be the violation of the Cauchy-Born rule (Born and Huang, 1954). During twinning, the lattice
vectors do not behave like material vectors due to the rearrangement of the atoms. One has to pay
special attention to conjugate twin systems, especially when purely energetic considerations are made.

It should be mentioned that material models that relate the stress state to the twin system activity, e.g.,
by a Schmid law (Forest and Parisot, 2000), are less difficultwith respect to conjugate twin systems.
This comes from the fact that such a relation involves the spatial arrangement of the lattice vectors,
which results in different resolved shear stresses in the conjugate twin systems.

The six possible twin variants belonging to the prominent{011̄2}〈01̄11〉 twinning mode are found in
the hcp crystals of Be, Cd, Mg, Ti, Zr, Zn (Pitteri and Zanzotto, 2002) and in low-symmetry crystals
with a hexagonal sublattice (e.g. sapphire). They consist of 3 pairs of crystallographically equivalent
conjugate twin systems, which means that incorporating them into w0 does not involve twinning
modes which are not aimed for. For this twinning mode,Rk corresponds toRai

, which maps the
hexagonal unit cell onto itself.w0 is therefore unaltered, which is manifested in linear elasticity by the
fact thatC0 hasRk in its symmetry group. Note thatS, S∗, Rn, Rn∗ , Rd, Rd

∗ are also invariant
under a Rayleigh transformation withRk.

4.8.1 Implications for the Elastic Modelling

The practical implications for the material model presented here are the pairwise energy invariances of
the six twin systems. Therefore, we have to speak about threedistinguishable twinning modes, each
one constituted by two conjugate twin systems. The consequences are that a fully developed twin
may switch its interface alignment instantaneously to its conjugate twin without altering the internal
energy, if both variants are equally accomodated inside thematrix. This will be demonstrated later
on. Zanzotto (1992, 1996) and Ericksen (2000) therefore doubt that twinning can be simulated by an
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elasticity model. However, this behaviour is due to the factthat the modelling is fully elastic. The
fact that an energy invariance between conjugate twin systems exists, solely triggers the switching
between twinning modes, but the switching itself is possible in principle irrespective of the energy
invariance. It is induced by the elastic modelling, which neglects the kinetic processes accompanying
twinning. Although the latter sounds discouraging, it willbe demonstrated that, if no severe strain
path changes occur, the elastic modelling works sufficiently well. The conjugate twins cannot be
distinguished if one focuses on a material point, but by the alignment of the interfaces that evolve.
However, if one intends to model, e.g., double twinning or slip system activity inside the twin, one
needs to know the lattice orientation inside the twin, whichis not uniquely determined due to the
energy invariance.

The model exhibits different critical strain state definitions in the parent and the twin configurations.
Therefore, the attentive reader may note that the energy invariance cannot be entirely fulfilled by the
model, at least in the overcritical strain regions. The different critical strain state definitions are owed
to the fact that one cannot map the twin formation possibilities of the parent to the twins, because this
would induce an infinite chain of twin variants. One would have to simultaneously respect infinitely
many individual strain energies in the compound strain energy w̃ = aiwi. Moreover, the direct
establishment of twins which are only accessible by multiple twinning has to be avoided, see Fig.
4.11. For this reason, the model is constructed such that only twinning and detwinning with respect to
the{1̄012}〈1̄011〉 twinning modes is possible, and multiple (recursive) twinning needs to be avoided.

In the model, the conjugate twin variants are treated individually, and not as one twinning mode. Due
to the phenomenological model adaptation, the energy invariance is not exactly met. This, however,
does not induce spurious consequences. The energy invariance does not induce a special material
property that needs to be reflected by the model. Rather, the energy invariance induces material
behaviour that is not observed experimentally.
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parent twin

Figure 4.11: Illustration of the recursive character of twinning. Each twin, since it exhibits the crystal-
lographic structure of the parent, may act as parent for further twinning. Incorporating simultaneously
all possible twin variants would allow for twin formation following the dashed arrow, which is not
reasonable.
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4.9 Constitutive Equations of the Base Model

With the regularisation of the Ball and James approach and the individual strain energies at hand, the
stress-strain relation so far is given by

T =
∂w

∂E
=

∂aiwi

∂E
(4.97)

=
∂ai

∂E
wi + ai

∂wi

∂E
(4.98)

=
∂ai

∂wj

∂wj

∂E
wi + ai

∂wi

∂E
, (4.99)

with

∂ai

∂wj

=
(δij − ai)aj

h(wj) − h(wj)2
h′(wj), h(wj) = exp(−kwj), h(wj)

′ = −kexp(−kwj) (4.100)

∂wi

∂E
= T i. (4.101)

After summing up, the stress strain relation becomes

T =
(ai − δij)ajkwi

1 − exp(−kwj)
T j + aiT i (4.102)

wherei andj are summation indices. Near the stress-free configuration of phasei, wi tends to zero,
andai tends to1, while aj, i 6= j tend as well to zero. By looking eq. (4.102) it becomes clear
that in this case all the summands represented by the first term are zero, which allows to approximate
stress-strain relation by

T ≈ aiT i. (4.103)

We have seen that the regularisation picks out the smallest strain energywi by ai = 1 ask tends
to infinity. Consequently, for a reasonable choice ofk the approximation (4.103) holds. The latter
simplification is used instead of eq. (4.102), at the cost of the integrability condition of hyperelasticity.
However, by adjusting a reasonably large regularisation parameterk, the neglected term becomes
arbitrarily small. In order to get an impression of the effect of neglecting the first term, graphs for
a comparison are plotted in Fig. 4.9. One notes that for larger values ofk the difference between
eq. (4.102) and (4.103) concentrates more at the transitionpoints. The stress-strain characteristic is
approximately the same in both cases. In the remainder, the simplification (4.103) is used.

Eq. (4.103) has a striking similarity to the calculation of the homogenised stresses when Taylor’s
assumption is applied. However, the characteristics of thepresent model are entirely different, and
can be summarised as follows: The regularisation between different quadratic elastic strain energies
yields a nonconvex elastic strain energy. As the material isfully elastic, the body locally returns to
one of the stress free configurations of then phases when all constraints are removed. Theai depend
on the current deformation stateC. In a Taylor model, theai are interpreted physically as volume
fractions, which evolve depending on the loading path. In the present model, theai are elements of a
regularisation, and have therefore no physical interpretation.
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Figure 4.12: Regularisation (bold lines), its full derivative (dashed line) and the approximated deriva-
tive applied tow1 = x2, w2 = (x − 1)2 andw3 = (x + 1)2, with k = 5 (a) andk = 20 (b).

4.10 Incorporation of Crystallographic Glide

In magnesium below 225◦C, slip occurs mainly along the〈2̄110〉, 〈12̄10〉 and〈112̄0〉 directions in the
basal{0001} plane (Emles, 1966). Due to the regular alignment of the slipsystems in only one slip
plane it is reasonable to approximate the collective of slipsystems by the card glide mechanism, Fig.
4.13. It is assumed that slip occurs in the direction of the largest shear stress in the slip plane, as is

de

t
ne

Figure 4.13: Card glide mechanism.

observed on a card deck. Following Bertram (2005); Böhlke and Bertram (2001), the shear stress is
given by

τ = (F̃
T
σF̃

−T
) · · (d ⊗ n), F̃ = FP . (4.104)

The directiond corresponding to the largest largest shear stress in the planen is given by projecting

the tractionF̃
T
σF̃

−T
n into then-plane,

d = (I − n ⊗ n)F̃
T
σF̃

−T
n. (4.105)
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The evolution of the plastic transformation, which is a material variable (i.e. invariant with respect to
Euclidean transformations), is given by

−P −1Ṗ = γ̇d∗ ⊗ n, d∗ =
d

‖d‖ . (4.106)

If d∗ andn are constant, one obtains withP (t = 0) = P 0 a solution forP , namely

P = P 0(I − γd∗ ⊗ n), (4.107)

This leaves onlyγ(t) to be determined consistent with the elastic or viscoelastic law. In terms of
resolved shear stresses, one has to employτel = τbasal. In the case of perfect plasticity,τbasal is a
function ofγ, or, without hardening,τbasal is constant. In the viscoelastic case,τbasal depends onγ
and γ̇, or only onγ̇ if hardening is ignored. In this work a perfectly plastic behaviour is preferred,
since it can be resolved more easily in this quasi 1D-case. Due to the fact that the twin lamellae
are mostly thin and dislocation free, basal slip is assumed to be potentially active only in the parent
configuration (see, e.g., Shiekhelsouk et al. (2009)). The numerical treatment of the basal glide is
explained in Section 6.2.

4.11 Adding the Viscous Regularisation

As explained in Section 4.2, in order to obtain a solvable setof constitutive equations, the elastic
energy should not be convexified, but the model category is shifted from a total constitutive law to
a rate-type law. This is done by adding a strain rate sensitivity to the stresses, namely the viscous
contributionT v. In the spatial description,

σv = f(D) (4.108)

serves as starting point, withD being the symmetric part of the velocity gradientL = ḞF−1. By
assuming viscous isotropy, the viscous stresses can be decomposed into a volumetric and a distortional
part

σv = η1(D)D◦ + η2(D)D′. (4.109)

There are several reasons to drop the first term. Firstly, in crystal elasticity and plasticity volume
changes are very small. Secondly, a viscosity is physicallyinduced by friction forces between par-
ticles that pass by each other, which does not happen in purely dilatational deformations of crystals.
Moreover, the viscosity is added in order to regularise the material behaviour when the material un-
dergoes the simple shear deformation connected to the twin formation, which is isochoric. Therefore,
the first term in eq. (4.109) and, thus, the index ofη2 are not needed. Further, a Newtonian viscous
relation is assumed,

σv = ηD′. (4.110)

This is translated to the material description by using

σv = J−1FT vF
T , J = det(F ) (4.111)

D =
1

2
F−T ĊF−1 (4.112)
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One obtains

T v =
Jη

2
F−1(F−T ĊF−1)′F−T (4.113)

=
Jη

2
(F−1(F−T ĊF−1 − 1

3
tr(F−T ĊF−1)I)F−T ) (4.114)

=
Jη

2
(C−1ĊC−1 − 1

3
tr(C−1Ċ)C−1). (4.115)

By usingC ≈ I, one can simplify the latter to

T v =
Jη

2
(Ċ − 1

3
tr(Ċ)I) (4.116)

=
Jη

2
Ċ

′
. (4.117)
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Chapter 5

Phenomenological Model Adaptation

5.1 The Schmid Law for Twinning

By means of a critical resolved shear stress criterion, a twin-parent interface moves towards the twin
or the parent when a critical shear stress in the twin system is reached. Experiments indicate that the
tensile stress for twinning does not depend on the hydrostatic pressure (Reed-Hill and Abbaschian,
1994), which suggests that the twins appear as a result of shear stresses. The twin boundary moves
when the atoms sketched in Fig. 5.1 jump into the positions indicated by the arrows. By means of the
Schmid law the twin would grow or shrink (i.e. the twin boundary would move towards the parent or
the twin) if one of the inequalities

τTS,T ≥ −τtwin, shrinking of the twin if violated (arrow 1 in Fig. 5.1) (5.1)

τTS,P ≤ τtwin, growth of the twin if violated (arrow 2 in Fig. 5.1) (5.2)

is violated.τTS,T andτTS,P denote the resolved shear stresses in the twin system on bothsides of the
interface, respectively, whileτtwin represents a critical twinning stress. Multiplying eq. (5.2) by−1
and adding to eq. (5.1) yields

τTS,T − τTS,P ≥ −2τtwin (5.3)

−1

2
[[τTS]] ≤ τtwin. (5.4)

If the stress jump[[σ]] at the static interface is known, the jump of the shear stressin the twin system
can be calculated by

[[τTS]] = [[σ]] · · (dT ⊗ nT) (5.5)

and, inserted into eq. (5.4), be used to estimate lower boundof τcrit. For pure magnesium,
Glüge and Kalisch (2008) derived a value consistent with thecritical shear stress of2.7 MPa given by
Koike (2005).

The applicability of a Schmid law still depends strongly on the material and the modelling scale. Two
extreme examples are Zn and Mg. In Zn, the propagation stressof a twin is well below the nucleation
stress (Bell and Cahn, 1957), which induces a jerky yield behaviour. Further, the twin-parent inter-
faces are almost uncurved, and are aligned only in some specific orientations, the preference of which
is temperature-dependent (Straumal et al., 2001).
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nT

dT

−nT

−dT

1

2

parent

twin

Figure 5.1: Atom movement for twinning (arrow 2, growth of the twin, the interface moves towards
the parent) and detwinning (arrow 1, growth of the parent, the interface moves towards the twin). It is
pointed out that the viewpoint which side of the interface isa parent and which is a twin is arbitrary. In
this work, the definition is such thatn directs into the twin and thatd directs into the shear direction
connected to twin growth.
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From a microscopic point of view, the application of a Schmidlaw as a twinning criterion seems to be
reasonable due to the fact that the twin formation can be explained by the movement of the partial dis-
locations, since a Schmid law works well for the dislocationmovement underlying crystallographic
slip. In fact, it is applied successfully to magnesium (Barnett, 2003), but seemed to be useless due to
the large scattering of experimentally measured critical shear stresses (Thompson and Hingley, 1955;
Wonsiewicz and Backofen, 1967; Christian and Mahajan, 1995). One problem is that such measure-
ments are difficult to perform. Twins nucleate at inhomogeneities in the crystal, like intersectioning
points of slip lines, at grain boundaries, or at crack tips. If one is interested in determining a crit-
ical nucleation stress, it would be necessary to determine the local stress where and when the twin
emerges. Due to the unavoidable inhomogeneities, a reliable estimation of such a critical stress state
is rather difficult. As mentioned before, molecular dynamicsimulations are capable to give a deeper
insight into the mechanism underlying twin propagation (see, e.g., the series of articles by Serra and
Bacon).

However, since a Schmid law seems to work well for magnesium,it is applied in the remainder. The
approach by Ball and James, that is used here in a regularisedversion, states that the phase that has
the least strain energy is the preferred one. In the 1D-example above, one would come up with the
stress-strain curve given in Fig. 4.5. The critical point ofthe phase change lies exactly in the middle
of the stress-free configurations, with the corresponding critical stress. Applied to twinning, these
would correspond approximately to

τtwin = G
γ0

2
, (5.6)

with G being the shear modulus in the twin system. This yields as an exampleτ c
Mg ≈ 2000 MPa

for 〈1̄011〉{1̄012} twinning in magnesium, which is clearly too large. The observed critical stress
τ c
Mgreal ≈ 2.7 MPa (Koike, 2005) is three orders of magnitude lower than theone that emerges from

the Ball and James-approach. This comes from the partial dislocation movement, which is ignored
by the purely elastic modelling. Therefore, one has to thinkof how the model so far developed can
be adapted to realistic stress states for twinning. One could introduce a plastic variable, which would
not have a physical interpretation on the microscale, and which would require an evolution equation.
The only way to stick to an elastic modelling is to modify the elastic law such that the apparent stress
strain relation is approximated. Such nonlinear elastic laws can be used to model plastic material
behaviour (Hencky, 1924; Ramberg and Osgood, 1943), as longas no local unloading occurs. In the
following two sections, two possible modifications of the elastic law are discussed.

5.2 Adaptation of the Stresses

A simple solution is to project the stress stateT into an admissible stress stateT ∗ if the critical stress
state has been passed,

T crit = T − λ
∂φ

∂T
, φ(T crit) = 0. (5.7)

Theφ indicates whether the critical stress state is passed. It can be considered as a 5D-hypersurface
in the 6D stress space, representing all critical stress states. Therefore, it is sometimes referred to as
”yield surface”. For example, if a Schmid law is applied

φ = τ − τtwin, τ = (CT ) · · M = T · · sym(CM), M = d0 ⊗ n0, (5.8)
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with the Mandel stress tensorCT and the Schmid tensorM . In the latter equation, one has ensure
thatd andn are pulled back to the reference placement (see, e.g., Bertram (2005) p. 298), wheren0

andd0 are normalised and perpendicular. Then, ifφ > 0, the critical stress state is passed, and one
has to project the stressesT according to eq. (5.7) into an admissible stress stateT crit. If ∂φ/∂T is
normalised,λ can serve as a distance measure betweenT andT crit. The latter method can be applied
to the twin variants if no double twinning is regarded, i.e.,if the twin variants can only jump back to
the one parent configuration from which they stem, which means that only one twin system has to be
incorporated. One obtains from eqs. (5.7) and (5.8)

λ =
τ − τtwin

‖sym(CM)‖2
, (5.9)

T crit = T − λsym(CM). (5.10)

WhenC ≈ I, the latter can be simplified to

T crit = T − 2(T · · sym(M) − τtwin)sym(M). (5.11)

The situation is different when regarding the parent, whichcan convert into more than one twin
variant. Applying the Schmid law, one has to checkτi ≤ τtwin in all potential twin systems. Due to
theC0-continuity of the corresponding yield surface, the projection method (eq. 5.7) cannot be applied
without further efforts. The same problem arises in crystalplasticity when a Schmid law is combined
with an associated flow rule. Therefore, different regularisation schemes have been proposed (e.g.,
Bertram (2005)). A common regularised yield surface is

φ =
n

∑

i=1

( |τi|
τtwin i

)m

− 1, m ≥ 1, (5.12)

which tends to the Schmid law whenm → ∞. T crit andλ cannot be calculated explicitely form 6= 1.
Due to the polarity of twinning, the absolute value|τi| has to be replaced by〈τi〉 = (τi + |τi|)/2. A
simpler way to obtain a stress stateT crit with Schmid stresses lower thanτtwin in any twin system is to
use the radial return method (Simo and Hughes, 1998), i.e. scale down the entire stress tensor, taking
as proportion that the largestτi has to be equal toτtwin. Since the trace ofM i is 0, it is sufficient
to recalculate the Mandel stress deviator. This is automatically fulfilled by the projection methods
described above, but has to be respected explicitely in the radial return method. In the following,M
is the Schmid tensor corresponding to the twin system in which the maximal shear stress is found.
The recalculated Mandel stresses are given by

(CT )∗ = (CT )◦ + α(CT )′, (5.13)

and should yield

τtwin = (CT )∗ · · M , (5.14)

which is used to determineα:

τtwin = ((CT )◦ + α(CT )′) · · M = ατmax, (5.15)
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i.e. α = τtwin/τmax. One can confirm that the recalculated Mandel stresses yieldsymmetric second
Piola Kirchhoff stresses,

T crit = C−1(CT )∗ = C−1

(

(CT )◦ +
τcrit

τmax
(CT )′

)

(5.16)

T crit = C−1

(

τtwin

τmax
(CT ) +

1

3
tr(CT )

(

1 − τtwin

τmax

)

I

)

(5.17)

T crit =
τtwin

τmax

T +
1

3
tr(CT )

(

1 − τtwin

τmax

)

C−1. (5.18)

Again, one can simplify by means of the approximationC ≈ I,

T crit = T ◦ +
τtwin

τmax

T ′. (5.19)

The given methods have a big disadvantage: By alteringT , in general, the integrability condition for
hyperelasticity is not met, and the second law of thermodynamics is violated. Therefore, one has to
think of alternative approaches.

5.3 Adaptation of the Strain Energy

Beyond the critical state, the existence of an elastic strain energy is questionable. As discussed before,
an entirely physically motivated modelling must incorporate the movement and arrangement of the
partial dislocations, involving a kinetic relation. Here,it is as well focused on practicability and
numerical efficiency, which is aimed for by a purely elastic modelling. Therefore, thewi have to be
adapted beyond the critical state such that the elastic law yields results which are in agreement with
experimental findings.

For the explanation of the concept, indexing of the different phases and configuration change is omit-
ted in the remainder. As the individual strain energies are defined in terms of strains, an indicator
functionφ(E) is defined, which is used to identify critical strain states,beyond which the strain en-
ergy is modified. Ifφ(E) < 0, E is a subcritical strain state. Ifφ(E) > 0, E is an overcritical
strain state. The critical strain states correspond toφ(E) = 0. A critical strain state connected to an
overcritical strainE can be specified by an orthogonal projection

Ecrit = E − λφ′(Ecrit), φ(Ecrit) = 0, (5.20)

sketched in Fig. 5.2. Alternatively, one could think of a critical strain state assignmentEcrit(E) by
demandingmin‖E −Ecrit‖, φ(Ecrit) = 0. The latter formulation is alike the projection method, but
it does not require theC1 continuity ofφ(E). An even simpler way is to use the radial return method
Ecrit = αE, φ(Ecrit) = 0, which does not even demand the convexity ofφ(E). In anticipation of
the numerical results, no significant difference between the orthogonal projection and the radial return
method could be determined.

Focusing on the definition ofφ, if a critical twinning shear strainγtwin is defined in one potential twin
system, one can take

φ1(E) = γ − γtwin, γ = 2E · · M , M = d ⊗ n. (5.21)
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For this simple case, eq. (5.20) can be solved explicitly forEcrit, namely

Ecrit = E − λsym(M), λ = γ − γtwin. (5.22)

Although this approach is quite similar to the proposal fromthe latter Section, the thermodynamic
consistency can be assured more easily by formulating the critical state in terms of strains. By simply
statingw in terms of strains and corresponding unique critical strain states its existence is assured.
Moreover, as magnesium is elastically approximately isotropic, the critical stress state can be easily
linked to the a critical strain state, namely by a simple shear deformation in the twin system.

The latter projection is useful if only one twin system is potentially active. If more than one twin
system can be activated, the ”critical strain state hypersurface” has to be constructed such that a
unique assignmentE → Ecrit is possible. I.e., it must beC1 continuous and convex in the sense
thatφ(αEcrit1 + (1 − α)Ecrit2) < 0, α ∈ [0, 1] holds for any two critical strain states. Moreover,
a ”shooting through” the domain of admissible strain statesis always possible, which yields two
solutions forEcrit. The feasible one is the one which is closer to the strain stateE, i.e., the one with
the smaller absolute value ofλ.

A possibleφn for n different twin systems is

φn(E) =
n

∑

i=1

〈γi/γtwin〉m − 1, γi = 2E · · M i, (5.23)

with 〈x〉 = (x+ |x|)/2 to respect the polarity of twinning. Here, if one out of then distinctγi > γtwin,
thenφn(E) > 0. m is a preferably large integer regularisation parameter. Bytaking a large value for
m, γtwin can practically be reached in all twin systems simultaneously without passing a critical strain
state. Form > 1, Ecrit cannot be given explicitly.

E = 0, φ(E) < 0

φ(E) = 0

φ(E) > 0

λφ′(E)

Ecrit = E − λφ′(Ecrit)

Figure 5.2: Scheme on the orthogonal projection to a critical strain state.

With the critical strain definition at hand, one is able to modify the strain energy. It is pointed out
again that beyond the critical strain state, the strain energy density is used as a pure modelling tool,
but its existence ensures the thermodynamic consistency inthe large. The following modified strain
energy is applied:

w = w0 =
1

2
E · · C · · E if φ(E) ≤ 0 (5.24)

w = w0 −
1

2
(E − Ecrit) · · C0 · · (E − Ecrit) if φ(E) > 0. (5.25)
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With the major symmetry ofC0, in the case ofφ(E) > 0, w can be simplified to

w = w0 −
1

2
(E − Ecrit) · · C0 · · (E − Ecrit) (5.26)

=
1

2
E · · C0 · · E − 1

2
(E − Ecrit) · · C0 · · (E − Ecrit) (5.27)

= E · · C0 · · Ecrit −
1

2
Ecrit · · C0 · · Ecrit. (5.28)

The latter modification ofw is chosen because it isC1 continuous. Moreover, it ensures that the stress
level does not increase after passing the critical strain state. If we ignore the dependence ofEcrit on
E, we yield a strain energy which is linear inE. In a monotonic strain driven test (in direction of
∂φ/∂E|Ecrit

, i.e. Ecrit is constant), one obtains a constant stress strain relationbeyond the critical
strain state, corresponding to the linear increase ofw represented by the first term in eq. (5.28).

To calculate the stressesT = ∂w/∂E, the derivative∂Ecrit/∂E is needed.Ecrit is given implicitly
by eq. (5.20), which can be rearranged as

0 = g = E − λφ′(Ecrit) − Ecrit (5.29)

0 = g = φ(Ecrit). (5.30)

The dependence ofφ and its derivatives onEcrit is omitted in the remainder. The complete differential
of the latter equations with respect toE is also zero, so that

0 =
dg

dE
= I

S − λφ′′ · · ∂Ecrit

∂E
− φ′ ⊗ ∂λ

∂E
− ∂Ecrit

∂E
(5.31)

= I
S − φ′ ⊗ ∂λ

∂E
− (λφ′′ + I

S) · · ∂Ecrit

∂E
(5.32)

0 =
dg

dE
= φ′ · · ∂Ecrit

∂E
, (5.33)

with IS being the fourth-order identity on symmetric second-ordertensors. The system of 36+6 linear
equations has 36+6 unknowns∂Ecrit/∂E and∂λ/∂E, while all other derivatives can be directly
calculated. Rearranging eq. (5.32) to

∂Ecrit

∂E
= A · ·

(

I
S − φ′ ⊗ ∂λ

∂E

)

, A = (IS + λφ′′)−1 (5.34)

and inserting into eq. (5.33) yields

∂λ

∂E
= α−1φ′ · · A, α = φ′ · · A · · φ′ (5.35)

which can be substituted in eq. (5.34) to obtain

∂Ecrit

∂E
= A − α−1(A · · φ′) ⊗ (A · · φ′), (5.36)

where possible simplifications by using the symmetries ofE andA have been employed. One notes
that∂Ecrit/∂E has the projector property∂Ecrit/∂E · · φ′ = 0. This has been expected due to the
fact that differentE can be projected to the sameEcrit.
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Chapter 6

Final Constitutive Equations and
Implementation

In this section, the model derived in the last Sections is summarised. The index0 indicates the parent
configuration, while the indices1 . . . n run over the possible twin variants. In order to avoid confusion,
in this Section all sums are written out, i.e. multiple indices in a product do not imply summation
automatically. The strain energy density is given by

w̃ =

n
∑

i=0

aiwi ai =
gi

∑n
j=0 gj

gi =
h(wi)

1 − h(wi)
h(wi) = exp(−kwi), (6.1)

with k being a preferably large regularisation parameter, see Section 4.4. Thewi are given by

wi =
1

2
Ei · · C0 · · Ei if φi(Ei) ≤ 0 (6.2)

wi = Ei · · C0 · · Ecriti −
1

2
Ecriti · · C0 · · Ecriti if φi(Ei) > 0, (6.3)

according to the phenomenological model adaptation of the strain energies of Section 5.3.C0 is the
elasticity tetrad.Ecriti are given implicitly through the orthonormal projection

Ecriti = Ei − λφ′
i(Ecriti) φi(Ecriti) = 0, (6.4)

whereλ needs to be calculated such that the latter equation holds. Theφi are given by

φ0(E0) =

n
∑

j=1

〈γj/γtwin〉m − 1 γj = E0 · · M j (6.5)

φi(Ei) = 〈γi − γtwin〉 γi = Ei · · M i i = 1 . . . n, (6.6)

with the preferably large regularisation parameterm and a critical shear strainγtwin. The Green’s
strainsEi are obtained by

Ei =
1

2
(P T

i CP i − I). (6.7)
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The plastic transformations map the elastic reference law to the reference placement.P 0 is given by
the parent crystal orientation, andP i, i = 1..n are given by

P i = P 0P i0 i = 1...n, (6.8)

with the plastic transformationsP i0

P i0 = −I − γ0di ⊗ ni + 2ni ⊗ ni i = 1...n, (6.9)

which map the elastic reference law to the twin configurations, see eq. (4.64) and Fig. 6.1. With̃w at
hand by the latter system of equations, the second Piola Kirchhoff stresses are

T =
∂w̃

∂E
≈

n
∑

i=0

aiT i (6.10)

T i =
∂wi

∂E
= P i

∂wi

∂Ei
P T

i , (6.11)

see Section 4.6. This is, so far, the elastic law. Incorporating the viscous regularisation corresponds
to adding the deviatoric part ofJη

2
Ċ to the second Piola Kirchhoff stresses. Regarding the card glide

mechanism, the plastic transformation of the parent evolves corresponding to

−P −1
0 Ṗ 0 = γ̇d∗ ⊗ n, d∗ =

d

‖d‖ , (6.12)

with

d = (I − n ⊗ n)F̃
−1

σF̃
−T

n, F̃ = FP 0. (6.13)

γ̇ is determined consistently with the elastic law. I.e., during the plastic flow, the resolved shear stress
in the card glide system is equal to the flow stress.

6.1 Implementation into the FE System ABAQUS

The variablesC0, di0 andni0 have been defined with respect to an orthonormal basis as depicted in
Fig. 6.1. Withdi0 andni0, the plastic transformationsP i0 have been defined following eq. (6.9),
which map the elastic law of the reference twin configurations to the elastic law of the parent, i.e. to
the elastic reference law. The final plastic transformations which map the elastic reference laws of the
parent and all potential twin variants to the reference placement are given by eq. (6.8) fori = 1...n
andP i = P 0 for i = 0, whereP 0 maps the lattice basis of the (parent) elastic reference lawto the
lattice basis in the reference placement.
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Figure 6.1: Connection of elastic reference law and reference placement.

6.2 Implementation of the Card Glide Mechanism

As most FE systems evaluate the node displacement as a primary result, the displacements (and
hence the strains) are not internal variables, and taken care of by the FE program. This means that
althoughĊ appears in the equations, time integration ofC needs not to concern the user of the
UMAT interface. However, the card glide mechanism is the oneingredient of the model that forces to
deal with the integration of an internal variable, namelyP 0, the plastic transformation of the parent
configuration. The index 0 is omitted in the remainder of thisSection since no otherP appears.
See Bertram (2005) for an account to plasticity, and Simo andHughes (1998) for an account to its
numerical treatment.

The Mandel stresses with respect to the elastic reference law are given by

M

T =
1

2
P T CP

(

C0 · · (P T CP − I)
)

. (6.14)

Then, the direction of and the maximal shear stress in the basal plane are given by

d = (
M

T · n) · (I − n ⊗ n) (6.15)

τel =
√

d · d, (6.16)

with n being the normalisedc-axis direction vector. The yield and loading conditions are

φ(τel, τbasal) = τel − τbasal = 0, φ̇ > 0. (6.17)

If both are fulfilled,P evolves, otherwise the deformation is elastic, andṖ = 0. While P evolves,
the consistency conditioṅφ = 0 must hold. When elastoplasticity is treated numerically, one does not
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obtain a continuous evolution ofP , but a sequence of discreteP n. Therefore, the loading condition
does not enter the numerical considerations, while the consistency condition is ensured pointwise at
each of the discrete time steps.

ABAQUS passesP n, F n andF n+1 to the user subroutine, and the plastic transformationP n+1 needs
to be determined. First, a predictor step is carried out, where P n+1 = P n is assumed. By this, one
treats the strain increment as fully elastic, and calculates the Mandel stresses and resolved shear stress
as given above. Then, if

τel,n+1 > τbasal,n (6.18)

is fullfilled, P n+1 has to be determined such thatτel,n+1 = τbasal,n+1. By assuming a constant slip
direction, one can make use of eq. 4.107, and write

P n+1 = P n(I − ∆γd∗ ⊗ n), (6.19)

whered∗ is the normalisedd from the predictor step. In order to respect isotropic hardening, let us
assume thatτbasal depends on the accumulated shear

γacc,n+1 = γacc,n + |∆γ|, (6.20)

which is an internal variable just likeP . One can determine the scalar variable∆γ such that the scalar
equationτel,n+1 = τbasal,n+1 holds by Newtons method, or, slower but more stable, by the bisection
method. The fact that only one scalar equation has to be solved renders the card glide mechanism in
this case fairly fast and stable.

As mentioned before, basal glide is taken into account only in the parent configuration, and it remains
to discuss how this can be implemented. For this purpose, theindicator functionφ from Section 5.3
has been used.φ is equal to -1 in the stress-free parent configuration, and grows with the regularisation
exponentn, as the strain state diverges from this state. It is0 when the critical strain state is reached.
By definingτbasal = (φ+2)τbasal0, one obtains a virtually unreachable Schmid stress when thecritical
strain is passed, while leavingτbasal approximately unaltered in subcritical strain region. Although
this treatment appears empiric at first glance, it can be interpreted as a regularisation of the algebraic
condition that slip is only possible in the parent configuration, i.e. as long asφ0(E0) < 0. When the
regularisation parameterm → ∞ in φ0 (eq. 5.23),τbasal = τbasal0 due toφ0 → −1 for subcritical
strain states, andτbasal → ∞ if a critical strain state is passed. Algebraic formulations are, however,
not preferable from a numerical point of view, which is why the regularised formulation is used in
this work.

In order to not mix too many ingredients in one model, hardening has been generally neglected, and
τbasal0 = const. In the remainder,τbasal0 is a material parameter, and the index 0 is omitted.



Chapter 7

Testing of the Model

7.1 Material Parameters

The material parameters are given with respect to the elastic reference law.e1 is parallel to two
edges of the base hexagon whilee3 is parallel to thec-axis. The elastic stiffness tetrad of magnesium
(Simmons and Wang, 1971), with respect to the basisE1 = e1 ⊗ e1, E2 = e2 ⊗ e2, E3 = e3 ⊗ e3,
E4 =

√
2/2(e1 ⊗e2 +e2 ⊗e1), E5 =

√
2/2(e1 ⊗e3 +e3 ⊗e1), E6 =

√
2/2(e2 ⊗e3 +e3 ⊗e2), is

C =

















56.49 23.16 18.10 0 0 0
56.49 18.10 0 0 0

58.73 0 0 0
2 · 16.81 0 0

2 · 16.81 0
55.69 − 23.16

















Ei ⊗ Ej , (7.1)

in GPa. Ei is an orthonormal vector basis for symmetric second-order tensors, i.e. a fourth-order
tensor with both subsymmetries can be denoted as a second-order tensor with respect toEi. The six
structural tensors belonging to the{101̄2}〈1̄011〉 twin systems are given by

M 1 = d1 ⊗ n1 (7.2)

d1 = cos(α)e2 + sin(α)e3 (7.3)

n1 = −sin(α)e2 + cos(α)e3 (7.4)

M i = Qi−1
π/3e3

∗ M 1, i = 2...6 (7.5)

i.e. by rotating the twin systemM 1 in the sixfold symmetric hexagonal cell, with

α = atan(c/(a
√

3)). (7.6)

For magnesium and its alloys,c/a ≈ 1.623. The twinning shear for the{101̄2}〈1̄011〉 twin systems
is given by

γ0 =

√
3

c/a
− c/a√

3
, (7.7)
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i.e. γ0 ≈ 0.13. The regularisation parameterk and the viscosity are taken ask = 0.025 andη =
10GPa s, unless stated otherwise. Reasonable values forη can be estimated by reviewing thatηε̇ is
small compared to the critical slip and twinning stresses, whereε̇ is the average strain rate, e.g.‖D′‖
or γ̇ in a simple shear test.k is chosen such that the transition between the elastic laws of twin and
parent is smooth, see the next Section.

The phenomenological model adaptation that has been used isthe adaptation of the strain energy as
discussed in Section 5.3, with the regularisation parameter n = 10. The used critical shear strain
is γtwin = 0.05γ0 unless not stated otherwise. The critical shear stress is therefore approximately
τcrit = Gγtwin ≈ 0.05 × 0.1296 × 16500MPa≈ 107MPa.

7.2 Simple Shear Tests in a Twin System and the Basal Plane

Before any structural problem is solved with the FEM, it should be investigated how the material
model behaves in an entirely strain-driven test, and how stresses and internal variables evolve ifF (t)
is prescribed. Most interesting is a shear test in one of the six twin systems. Therefore,

F = I + γd1 ⊗ n1, P 0 = I (7.8)

is imposed, with0 < γ < γ0. P 0 = I indicates that the elastic law in the reference configuration
is identical to the current elastic reference law. For this test, the softening that occurs when flipping
into the twin system does not bother, since no equilibrium configuration is searched for. The additive
viscosity is therefore not needed, andη = 0 is applied. Basal glide is also deactivated. In Fig. 7.1 the
shear stress in the twin systemτ1 = σ · · (d1 ⊗n1) is plotted overγ, and the regularisation parameter
k, which smoothens the transitions between the different elastic laws, has been varied.

One recognises that the material is stress-free when the twin configuration is reached, and that the
elastic behaviour is linear near the stress-free states. The parameterk influences the sharpness of the
transition between the elastic laws, as it is expected from the regularisation. As the transition region,
which is smoothed by the regularisation parameterk, corresponds to the nonconvex region (with a
negative stiffness) no stable equilibrium configuration can be found in that interval. It merely serves
as the transition zone. It is therefore reasonable to choosek large enough such that the elastic laws
near the stress free configurations are represented sufficiently well, but small enough to have a smooth
transition between the twin and parent configuration. Therefore, for the simulations that are presented
in the following sections,k = 0.025 has been chosen.

It is further important to review the effect of the phenomenological model adaptation. Therefore, it
has been incorporated with the critical shear strainγtwin = 0.05γ0. The critical shear stress fits well
the prior estimation of approximately 110MPa, see Fig. 7.1.One notes that the phenomenological
model adaptation limits the stresses.

In order to review the basal glide, a cyclic test with

F = I + γa1 ⊗ c∗, P = I (7.9)

has been carried out, withγ evolving linearly from 0 to 0.025 and back to 0. As the reference
placement and the elastic reference law coincide again,a1 = e1 and c∗ = e3 are chosen. The
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Figure 7.1: Resolved shear stress in twin system one overγ, without (left) and with (centre) the
phenomenological model adaptation, resolved shear stressin a shear test within the basal plane (right),
with τcrit = 30MPa.

resolved shear stress plotted in Fig. 7.1 corresponds therefore to the componentσ13 whenσ is given
with respect to the basisei. One clearly recognises the perfectly plastic behaviour asthe card glide
mechanism is activated, withτcrit = 30MPa.

7.3 FE Model 1: Simple Shear Deformation into one Twin Sys-
tem

7.3.1 Model Setup

In this Section, the fully deformation-controlled simple shear test from the last Section is extended
to a structural problem. A strip of the dimensions 100mm×200mm×3mm is submitted to a simple
shear deformation, see Fig. 7.2. The boundary conditions are such that a plane strain deformation is
enforced, so that the problem is two-dimensional. Therefore along the thickness direction only one
element has been assigned. The lattice is oriented such thatthe shear plane coincides with one of the
six equivalent{101̄2} twinning planes and that twinning can occur in the directionof the enforced
shear direction. The displacement boundary conditions aresuch that one face is fixed, while the
opposing face is displaced parallel and proportional to time by finally 15mm in 1000 seconds, and
back to zero in 1000 seconds. A small notch at one of the free boundaries serves as a perturbation
to trigger the twin formation. Different meshes have been been used, namely a regular hexahedral
mesh with linear shape functions (element type C3D8) and irregular wedge meshes with linear and
quadratic shape functions (element types C3D6 and C3D15).

The maximal displacement due to the twinning shear deformation is γ0 × 100mm. Withγ0 ≈ 0.13,
the faces should be displaced at least 13mm in order to enforce the entire twinning of the sample. The
simulations are carried out with different meshes, varyingthe characteristic element size, the degree
of the shape functions in the elements, and the viscosity in the material law.
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e2
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Figure 7.2: Simple shear deformation of a strip, with an oversized hexagonal cell. The lattice is
oriented such that the shear plane coincides with one of the{101̄2} twinning planes. A small notch
is incorporated as preferred nucleation site.

7.3.2 Results

In the simulations a twin nucleates near the notch, and propagates along the shear direction. After
invading the overall length of 200mm, the twin starts growing in direction of the shear plane normal,
i.e., the thickness of the twin grows, see Fig. 7.4. As the deformation is reversed, a similar detwinning-
behaviour is observed. It is pointed out that such ideal twinning and detwinning behaviour is not
observed in reality. The simulation should merely demonstrate the possibility of detwinning, the
effect of the phenomenological model adaptation, and the hysteresis loop.

The regularising viscosity is so small in the context of thissimulation that a variation of it has no
significant influence. Its effect on the nominal stress can beestimated byτvisc ≈ γ̇η/2 = 1.5E −
4s−1η/2 = 0.3 MPa. One notes that the nominal critical twinning shear stress of approximately 110
MPa suites to the value that was adjusted in Section 7.1.

Consider the nominal shear stress-displacement diagram 7.3. One notes that at the displacement of
approximately 13mm the entire specimen has been invaded by the twin, and that at ongoing defor-
mation the elastic law of the twin is found. The distinct loaddrops in both diagrams are connected
to the fineness of the mesh. Each load drop corresponds to the transition of the twin boundary from
one element row to the next when the twin grows in thickness direction. Consequently, the coarser
the mesh is, the larger is the load drop (Fig. 7.3). Moreover,the twin parent interfaces are approxi-
mately parallel to mesh interfaces, due to the mesh structure. This has an influence on the simulation
results. In order to review the mesh-dependence in more detail, the simulations have been repeated
with an irregular wedge mesh of moderate fineness, with linear and quadratic shape functions. The
nominal shear stress over the displacement is depicted in Fig. 7.3, two particularly interesting states
are depicted in Fig. 7.5. Fig. 7.3 shows the hysteresis connected to twinning and detwinning for an
irregular wedge-mesh. At the onset of twinning and detwinning, the stress displacement curve fits
quite well to the findings with the regular mesh. In the propagation stage, the first stress peak is not
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Figure 7.3: Nominal shear stress vs. displacement for different regular hexahedral meshes with linear
shape functions (left) and for the quadratic wedge mesh (right). The nominal shear stress is given by
τ = F/A, whereF is the overall reaction force ine2-direction on the displaced boundary, and the
boundary areaA = 600mm2.

reached again, and the nominal shear stress stays below the approximately constant peak level that
is found in the regular mesh simulations. This behaviour is more realistic than the results with the
regular meshing. The load drops are due to the mesh irregularity less pronounced.

The states depicted in Fig. 7.5 showing the twin shortly after nucleation give a good impression on
the mesh-dependence in both simulations. It appears that incase of quadratic shape functions the
mesh-dependence is less pronounced. The unrealistic thickening of the twin tips that are embedded
according to the mesh interfaces are not encountered, and neither is the flipping of entire rows of
elements.

While the overall behaviour is as expected and mostly satisfactory, observed problems should not
be concealed. In the following, ”regular twin” means a twin which aligns its interface parallel to
the shear direction, while a kink twin aligns its interface perpendicular to the shear direction. The
kink twins are not observed in practice. In Fig. 7.4 one notesthat in the first place an intermediate
twin evolves perpendicular to the shear direction. As the model is elastic, this twin vanishes as the
deformation continues, and is replaced by the regular twin.The intermediate twin appears only in
the mesh of medium fineness. Further, due to the energy invariance of conjugate twins, it is not clear
whether the intermediate twin should be regarded as a kink-twin variant of the twin that is aimed
for, or as a regular twin of the twin system that is conjugate to the targeted twin. The conjugate
twin systems have their shear planes aligned almost perpendicular to each other, namely at 86.3◦,
while the mesh interfaces intersect at an angle of 90◦. Due to the mesh morphology it is reasonable
to suppose that a regular twin propagates along a mesh interface if its shear plane is approximately
parallel to it, i.e., the propagation direction depends on the meshing. It is therefore recommendable to
use irregular meshes in conjunction with the present material model, in order to not induce a preferred
twin-interface alignment. Moreover, the use of quadratic shape functions appears to reduce the mesh-
dependence as well. To review the mesh dependence in more detail, the nominal shear stress vs.
displacement curve for three quadratic and irregular meshes of different fineness is depicted in Fig.
7.6. One sees that the discontinuity is less pronounced at the finest mesh, where the amplitude of the
load drops is lowest.
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Figure 7.4: Twin evolution from left to right atu =2.7mm, 2.9mm, 6.7mm, 10.4mm and 13mm
on the intermediate fine mesh. The greyscale displays the weight factor corresponding to the parent
configuration,(white) 0 < a0 < 1 (black). Note the intermediate twin atu = 2.67mm, and the
propagation of the interface into the next row recorded atu = 10.4mm.
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Figure 7.5: Twin shortly after nucleation in the linear (left) and the quadratic (right) wedge mesh.
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Figure 7.6: Nominal shear stress vs. displacement for the quadratic wedge meshes of different fine-
ness (left) and different viscosities (η = {1000MPas, 2000MPas, 6000MPas, 10000MPas}, right).
The smaller the viscosity, the earlier occurs the load drop.

Unsteady Twin Formation

The existence of a peak stress at the twin nucleation, and a lower propagation stress level
is in accordance with observations and theoretical considerations (Christian and Mahajan, 1995;
Kochmann and Le, 2009). It is responsible for the burst-likepropagation of newly formed twins.
This behaviour is similar to the stick-slip phenomenon encountered in dry-friction, and has been veri-
fied experimentally (Boyko et al., 1994; Kawabata et al., 2000) and by atomistic modelling (Hu et al.,
2009).

Even though no nucleation stress has been explicitely accounted for, the burst-like propagation is
observed in the simulations. It is interesting to note that neither the nucleation nor the propagation
stress depend on the fineness of the mesh, see Fig. 7.6. From the simulations it can be concluded that
the load drop from the nucleation to the propagation level occurs as soon as the twin tips reach the
free boundaries, and the twin propagation by advancing the two interfaces towards the parent crystal
starts. This behaviour is quite realistic. In the micrograph Fig. 1.1, one merely finds a free twin tip
inside the grain, but only at the grain boundaries.

The equilibrium at the interface between twin nucleus and parent is unstable (see Fig. 7.5 for a sketch).
A small perturbation, like external loading or internal stresses, lead to interface motion. The fact
that the twin tip shoots through the sample instead of advancing proportionally with the application
of the boundary conditions indicates that the elastic misfitstrain caused by the twin triggers the
twin propagation. The conclusion is that the elastic misfit can give the crucial stroke to the unstable
equilibrium, which causes the observed shooting-through of the twin. In the simulations, the speed at
which the twin tip shoots through is not infinite because of the viscous regularisation. A reduction of
the viscosity results in a shorter nucleation stage, respectively a faster shooting-through of the twin,
see Fig. 7.6. In FE-simulations with a domino-row arrangement of elements, the twin propagation
speed has been found to be inversely proportional to the viscosity.

Summarising roughly, the discrepancy between nucleation-and propagation stress is partially caused
by the elastic misfit strain around the twin nucleus, which pushes the neighbouring parent crystal
towards the twin configuration. This results in a reduction of the stress that has to be applied to trigger
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Figure 7.7: Slip twin interaction att = 82.5s (left figures) and att = 224s (right figures). In each pair
of figures, the left figure displays the accumulated basal shear (0...0.05 and 0...0.1) while the right
figure displays the twin volume fraction (0...1).

the twin propagation, compared to the loading that is necessary to generate a twin nucleus from the
uniform parent crystal. The twin nucleation is controlled by the movement and agglomeration of
partial dislocations, which may occur at stresses that depart significantly from the propagation stress
of an evolved twin.

7.3.3 Incorporation of Basal Glide

If basal glide is activated, the plane deforms initially by slip bands, which start at the corners and
end inside the plane. Then, two twins develop such that they connect the ends of the slip bands, see
Fig. 7.7. The shear bands deviate slightly from the orientation ±45◦with respect to the model edges,
because the angle between the basal plane and the{101̄2} plane (parallel to the displaced face) is
≈ 43.16◦.

7.4 FE Model 2: Elongation of a Notched Band

7.4.1 Model setup

The second FE model consists of a notched single crystal band, which is elongated along the length
axis (Fig. 7.8). Again, a plane strain state is enforced by prescribingu1 = 0 on the principal faces
of the stripe, while the transverse displacement perpendicular to the thickness direction is not con-
strained. The notch is the inhomogeneity at which twins should nucleate. The hexagonal crystal
lattice is aligned such that an edge of the base hexagon is parallel to the band normal, while thec-axis
deviates slightly from the length axis with the angleα. The non-zero displacement boundary condi-
tion is applied proportional to time, which runs from 0 to 1000s. Regular hexahedral meshings with
linear and quadratic shape shape functions have been used (element types C3D8 and C3D20). The
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Figure 7.8: Model of a notched band
(1x10x50).
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Figure 7.9: Reaction force over the nominal
elongation strain for the monotonic elonga-
tion of the band using the wedge-mesh with
quadratic shape functions and taking into ac-
count basal slip,γtwin = 0.05γ0. As α in-
creases, basal slip is triggered instead of twin-
ning. With τtwin ≈ 4τbasal, the force necessary
to elongate the band decreases. Forα = 45◦,
the elongation was entirely accomplished by
basal slip.

regular meshing is considered as unproblematic, since the crystal orientation enforces an interface
orientation which is far from parallel to the mesh interfaces.

7.4.2 Cyclic Loading and General Observations

A cyclic loading test has been employed in order to examine the detwinning characteristics and the
effect of the phenomenological model adaptation. After loading the strip as depicted in Fig. 7.8, the
loading has been reversed. Basal slip is disabled in the firstplace as well.

The band behaves initially linearly elastic. At a certain point, a twin nucleates at the notch, and
propagates rapidly through the width of the specimen. With ongoing loading, it propagates along
its thickness direction, i.e. the established interface moves through the sample. After the entire
specimen is twinned, one observes again linear elastic behaviour. As the deformation is reversed,
the behaviour is similar to the loading process. One observes linear elastic behaviour until the twin
(which has initially been the parent) invades the specimen,and the initial state is restored. With the
phenomenological model adaptation, one is able to limit thestress at which twinning takes place,
which is depicted in Fig. 7.10. One important result is that the critical force at which the linear elastic
stage ends is doubled as the critical twinning shearγtwin is doubled, which suggests that a proportional
scalingτtwin ≈ Gγtwin can be used for stresses and strains of relevant order. The simulations with
regular and irregular meshes yield approximately the same results.

One notes that the reaction force level is not constant in thestage of twin or parent propagation, irre-
spective of the jerky behaviour. The reason for this is that the stress state changes qualitatively during
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Figure 7.10: Reaction force over the nominal elongation strain for the cyclic elongation, for regular
hexahedral meshes (left) and wedge-meshes (right).

Figure 7.11: The interface alignment shifts to the orientation of the conjugate twin.

the loading. As the twin propagates, the band undergoes a shear deformation lateral to the elongation
direction, which induces a small bending component. At loadreversal, a slight necking is observed,
causing again a small bending component. The change of the stress state is responsible for the sudden
shifting of the interface, which has been observed in some calculations. Some exemplifying states
are depicted in Fig. 7.11. The angle between the new and old interface is approximately 86◦, which
means that we do not face a kink twin, but a pair of conjugate twins. The prediction of such behaviour
is a drawback of the elastic modelling. However, it is a minorproblem in the primary loading stage,
and only of matter if strain path changes occur on the twinnedstructure.
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Figure 7.12: Plot of the weight factora0 of the parent,0(black) < a0 < 1(white), for a positive and
negative inclination of the lattice with respect to the elongation direction.

7.4.3 Distinction of Conjugate Twin Systems

Due to the energy invariance of conjugate twin systems, it isinteresting to see how they can be
distinguished in an FE simulation. For this purpose, the phenomenological model adaptation and
basal slip have been deactivated. Therefore, the conjugatetwin systems (the opposing twin systems
in the hcp cell) are energetically not distinguishable (seeSection 4.8). However, due to the asymmetry
coming from the inclination of the crystal lattice with respect to the elongation direction, it has to be
presumed that one twin system is preferred. In fact, one can clearly distinguish the twin bands that
evolve, not by looking at both weight factorsai or the strain energieswi of the conjugate twin systems
at a material point, but by relating the interface that evolves to the crystal basis. The conjugate twin
systems can be triggered by incliningc by a small positive or a negativeα, see Figs. 7.8 and 7.12.
Inside the twin lamella the weight factors of the two equivalent twin systems are both approximately
0.5. The interface alignment clearly determines which of the conjugate twins has evolved, while the
weight factors are equal for any deformation. In fact, by cancelling out one of the two conjugate twin
systems in each of the three pairs, the FE calculation is not altered at all. Thus, the conjugate twin
systems can be treated as one twinning mode.

One problem with the conjugate twin systems is that one twin may be bounded by interfaces belonging
to the two distinct conjugate twins, as depicted in Fig. 7.13. The simulation has been carried out at a
ten times larger elongation rate. It is observed that two regular conjugate twins unite to a mixed twin,
which is an artifact of the model. The mixed twin is at least unstable and shifts quite fast to a regular
twin.

In one case, a rather unexpected result has been encountered, namely the force displacement curve for
the regular mesh with linear shape functions. In this simulation, the reaction force is not jerky, and
in the first propagation stage it is negative, see Fig. 7.10. The implications of this are that the twin
grows by itself, exerting a compressive force to the band, which contradicts physical experience. An
explanation for this may be that an unfortunate combinationof model parameters has been chosen.
This suspicion is furnished by the fact that in no other simulation with a qualitatively better FE model
such behaviour is observed.
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Figure 7.13: Plot of the weight factora0 of the parent,0(black) < a0 < 1(white). The elastic mod-
elling induces artificial deformation modes, namely the interface shifting between conjugate twins
and the union of conjugate twins.

7.4.4 Incorporation of Basal Glide

In this Section, the twin-basal glide interaction is studied. The critical shear stress for basal glide
is determined such thatτtwin/τslip ≈ 4 holds. Withγtwin = 0.05γ0, yielding τtwin ≈ 110MPa,
τslip = 30MPa has been chosen. These values are larger than the values for pure magnesium, but
reasonable for MgAl alloys. The elongation test has been carried out atα = 0, 4.5◦, 9◦, 13.5◦, 18◦

and 45◦.

As expected, the basal slip activity depends on the inclination of the lattice. The simulation atα = 0◦

is practically unaffected by the incorporation of basal slip, since the basal plane is perpendicular to the
tension direction. While the twin nucleates and propagates, marginal slip activity is observed near the
twin interface. As the twin interfaces reach the ends of the bar, more slip system activity is observed
due to the fact that the boundary conditions at the ends of theband are incompatible with the twinning
shear. The increased slip induces a less homogeneous parentstructure, which triggers the evolution
of a twin network at load reversal (Fig. 7.14).

For α = 4.5◦ andα = 9◦, similar behaviour with more pronounced slip activity is observed. For
α = 13.5◦, slipping and twinning interact already in the loading stage. Soon after the twin nucleates,
a considerable amount of slip occurs near the twin tip (Fig. 7.15). Moreover, the twin tip has a pro-
nounced cusp shape, as often observed in real crystals, and predicted by the theory of transformation
dislocations (Boyko et al., 1994). A slip band propagates atan angle of approximately 17.5◦ to the
elongation direction, which is approximately parallel to thec-axis. From this band, a distinguished
zone of large slip deformation evolves, which acts as a barrier for the twin propagation (Fig. 7.15).
Again, the major problem with the elastic modelling of twinning becomes visible. In the upper left
subfigure in Fig. 7.15 one sees that the band undergoes a downward lateral deformation. In the final
stage, the lateral shearing is upward. This means that the twin must have changed to its conjugate
between the two states.
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Figure 7.14: Twin and basal slip evolution for the elongation test withα = 0◦. Top: Plot of the
weight factora0 of the parent,0(black) < a0 < 1(white). Bottom: Plot of the accumulated basal
shear strain, from 0...0.025 in the left and 0...0.2 in the right figure. At the loading stage, the twin
grows homogeneously into the parent, accompanied by slightbasal slip. At the end of the loading
stage basal slip is enforced at the band ends, which leads at load reversal to a heterogeneous twin
structure (right).

Figure 7.15: Twin and basal slip evolution for the elongation test withα = 13.5◦. Top: Plot of the
weight factora0 of the parent,0(black) < a0 < 1(white). Bottom: Plot of the accumulated basal
shear strain, from 0...0.15 in the left and 0...0.4 in the right figure. Note the cusp shape of the twin
tip and the slip activity near the twin tip. The slip zone stretches to a slip band, which acts later as a
boundary for twin growth.

In case ofα = 45◦, slip bands evolve, and the deformation is entirely accommodated by basal slip,
and no twinning is observed, Fig. 7.16. The critical force isapproximately one fourth of the critical
force in case ofα = 0, i.e., one recovers the ratioτtwin ≈ 4τbasal.

The model setup is appropriate for further investigations,e.g., whether slip and twin interac-
tion produce accommodation kinking. For magnesium, kink patterns are well documented by
Roberts and Partridge (1966). It is found that two{101̄2} twins that grow from the surface and meet
inside the crystal enclose a triangle, in which accommodation kinking by a certain slip pattern is ob-
served. This somewhat specific twin-slip-pattern can be reproduced successfully in a FE Simulation,
see Fig. 7.17. The regular quadratic mesh has been used, withτtwin ≈ 110MPa,τbasal = 30MPa and
α = 0.

Figure 7.16: Plot of the accumulated basal shear strain from0...0.5, atα = 45◦. The entire elongation
is accommodated by a slip band, and no twinning is observed.
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Figure 7.17: Kink pattern observed by Roberts and Partridge(1966) and simulated kink pattern. The
deformation is scaled by a factor of two in order to magnify the kinks. Left: Plot of the weight factor
a0 of the parent,0(black) < a0 < 1(white). Right: Plot of the accumulated basal shear strain, from
0...0.08.
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7.5 FE Model 3: Simple Shear of a Plane

7.5.1 Model Setup

While the latter FE simulations result in approximately homogeneously loaded parts of twin and
parent, in this section the effect of inhomogeneous loadingconditions is examined. For this purpose,
a 200mm× 100mm plane is subjected to a simple shear deformation, and the lattice is aligned such
that the twin interfaces disturb the section-wise homogeneous deformation, unlike to the simulations
of the two latter sections, see Fig. 7.18. Again, the deformation is restricted to be plane. One of
the short edges is kept fixed while the opposing one is displaced proportional by 20mm parallel to
the fixed one. The displacement occurs time proportional in 1000s. If the lattice is oriented such
that a rotation of 180◦ inside the plane is element of the symmetry group of the lattice, the model
is point-symmetric with respect to the plane centre point. The lattice is oriented such that the shear
direction is parallel toc while the model plane normal coincides with one of theai. Therefore, only
one half of the model has been incorporated, namely a 100mm× 100mm sheet, where the midpoint
of one edge is fixed, while the opposing face is displaced 10mmparallel the fixed edge. Along the
fixed edge,u(d) = −u(−d) holds, whered runs from -50mm to 50mm, see Fig. 7.18. A regular
50× 50 mesh with quadratic elements has been used. The regular mesh is regarded less problematic
in this simulation, as the mesh interfaces intersect the twin interface at an angle of approximately
45◦. A regular hexahedral meshing with quadratic shape functions (element type C3D20) has been
employed.

c a

Figure 7.18: Model of a plane (200mm× 100mm) that is subjected to a simple shear deformation.
The hexagonal crystal lattice is aligned such that the edge of the base hexagon is perpendicular to the
model plane while thec-axis is parallel to the shear direction. The boundary conditions are such that
the deformation is plane.
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7.5.2 Simulation Results without Basal Slip

In the simulations, a twin nucleates in one corner and rapidly propagates diagonally halfway through
the plate. Then, as the loading continues, it grows thicker at the nucleation site while the tip of the
twin remains sharp. Consequently, a cusp-shaped twin develops, with its interfaces slightly inclined
to the{101̄2} shear plane. However, the interfaces cannot be inclined beyond a certain angle, which
depends on the twinning stress. After reaching the criticalinclination, the twin breaks up into several
twins, see Fig. 7.19. In Fig. 7.20, the twin shape just beforethe splitting of the twin is depicted for
different twinning stresses. One notes that the larger the twinning stress is, the larger is the maximum
interface inclination. This result is in agreement with analytical findings by Glüge and Kalisch (2008).
Moreover, the cusp-shape of a twinning tip is predicted by the considerations regarding the dislocation
nature of twinning (Boyko et al., 1994), and observed experimentally as well, see Fig. 7.21.

Figure 7.19: Twin growth and breakup forτtwin ≈ 240MPa, model depicted at 143s, 283s, 432s, 605s,
695s and 800s. Plot of the weight factora0 of the parent,0(black) < a0 < 1(white).

7.5.3 Incorporation of Basal Glide

If basal slip is incorporated, the single-crystal simulations are very sensitive with respect to the initial
conditions. Atτbasal = 30MPa andτtwin = 120MPa, a very small twin evolves, while the deformation
is accommodated by basal slip in the large, see Fig. 7.22. If the lattice is slightly rotated (9◦ around
the plane normal), the twin invades the plane, and the slip-twin interaction at the twin tip can be
studied, see Fig. 7.23. One notes that the cusp-shape of the twin is practically lost. The reason for
this is that basal slip accompanies the advancing twin tip, as the twin grows along the{101̄2} shear
plane. By crystallographic glide, large stresses are relaxed, as it acts as an additional deformation
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Figure 7.20: Twins shortly before breakup for a twinning stress of 60MPa (387s), 120MPa (484s),
240MPa (605s) and 360MPa (658s). Plot of the weight factora0 of the parent,0(black) < a0 <
1(white).

Figure 7.21: Real twins may exhibit a cusp-shaped twin tip (courtesy of Boyko et al. (1994)).
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mechanism to twinning. Large stresses are found at the twin tip and along the interface, where the
stresses increase monotonously with the interface inclination, which is an important ingredient for
the cusp shape of the twin tip. In Fig. 7.23., one notes that there exist zones where the twin occupies
zones of prior crystallographic slip.

Figure 7.22: If basal slip is incorporated, the deformationis mainly accommodated by basal slip, and
only a small twin tip remains.τtwin = 120MPa,τbasal = 30MPa, at 1000s. Left: accumulated basal
shear strain, from 0...0.15, right: Plot of the weight factor a0 of the parent,0(black) < a0 < 1(white).

7.6 FE Model 4: Simple Compression of an RVE

In order to obtain results that are comparable to experimental data, the RVE method is used to
simulate the simple compression of an extruded magnesium alloy along the extrusion direction.
The crystallographic texture of the latter is such that thec-axes are aligned approximately per-
pendicular to the extrusion direction, i.e., the compression along the extrusion direction results
in c-axis elongation, which is accommodated by{101̄2}〈1̄011〉 twinning (see Jiang et al. (2007);
Al-Samman and Gottstein (2008)).

7.6.1 Model Setup

The FE model of the RVE consist of a regularly meshed cube with30×30×30 linear hexahedron
elements. The initial microstructure has been approximated by a periodic Voronoi tessellation, con-
sisting of 20 grains, Fig. 7.24. The limited number of grainsis necessary to provide a reasonable
discretisation of each grain, since the grains are partitioned by twinning. The crystal orientations are
restricted such that thec-axes do not deviate more thanα from the plane of compression, and are
uniformly distributed. No preferred orientation of the remaining degree of freedom (rotating theai

around thec-axis) has been established. The displacement boundary conditions are periodic on the
entire surface of the cube. To exclude shear deformations with respect to the orthonormal base system
used for the model description, the off-diagonal components of the mean displacement gradient have
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Figure 7.23: Slip-twin interaction at the tip of the twin,τtwin = 120MPa, τbasal = 30MPa, states
depicted at 223s, 443s and 1000s (from top to bottom row). Left: accumulated basal shear strain,
0...0.0375 (top), 0...0.075 (centre) and 0...0.25 (bottom). Right: Plot of the weight factora0 of the
parent,0(black) < a0 < 1(white).
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Figure 7.24: FE Model of the RVE, with schematic pole figure ofthec-axes. The greyscaling exem-
plifies the periodic Voronoi structure of the grains.

been constrained to be equal to zero. Further, the 11-component has been constrained,

H =





f(t) 0 0
0 · 0
0 0 ·



ei ⊗ ej , (7.10)

while H22 andH33 have not been constrained. Instead, the mean reaction forces along thee2 ande3

directions have been constrained at the corresponding faces to be equal to zero, in order to obtain the
average uniaxial stress state along thee1 direction.

7.6.2 General Observations

In the simulations, twins nucleate and spread rapidly over the FE model. In Fig. 7.25, the propagation
of a twin over a grain boundary is illustrated. In Fig. 7.26, asequence of states illustrating the
twin spreading in the RVE is given. Both Figures are obtainedfrom the simulation with a maximum
deviation ofα = 30◦of c from the plane of compression. The incorporation of basal glide does not
significantly aller the results, which is due to the approximately perpendicular alignment of the basal
planes to the principal stress direction. In Fig. 7.27, two deformation states of the RVE are depicted.

7.6.3 Comparison to Experimental Findings

As a reference, the works of Reed-Hill (1973) and Jiang et al.(2007) have been used, where com-
pression tests for two magnesium alloys and pure magnesium are documented. In Fig. 7.28, graphs
for the twin volume fraction evolution in the experiments and the simulations are depicted. One notes
that the evolution of the twin volume fraction is in good agreement with the experimental findings.
The rapidly increasing twinning rate at 3 to 5% of logarithmic strain, as well as the saturation to 100%
twin volume fraction are captured by the model. In Figs. 7.28and 7.29, the twin volume fraction and
the nominal compression stress are plotted. Therefore, it is to be expected that the crystallographic
texture evolution is in good accordance, as twinning dominates the texture evolution for this particular
experiment.
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Figure 7.25: Propagation of a twin (black) over a grain boundary. The greyscaling represents the
grain structure.

Figure 7.26: Twin spreading on the RVE, at a nominal compression strain of 2%, 2.6%, 3.12% and
4.3%, from left to right.
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Figure 7.27: Twin spreading on the RVE, at a nominal compression strain of 3.3% and 4%. The
greyscaling indicates the grain structure. The twins are the dark areas, while the accumulated basal
slip is depicted by the contour lines (0 to 0.004 in the left and 0 to 0.06 in the right figure).

However, comparing to the stress strain response given by Jiang et al. (2007), one finds that the ex-
perimental results display a pronounced hardening behaviour, which is not found in the simulations.
This is due to the fact that the hardening behaviour of the magnesium alloy under consideration is
very complex due to precipitates (see Section 2.10), which is not captured by the model. This ex-
planation is furnished by the fact that the stress strain response is in considerable agreement with
the compression experiments with pure magnesium (Reed-Hill, 1973), which displays a less com-
plicated hardening behaviour due to its lack of precipitates, see Fig. 7.29. For this simulations, the
critical stresses for twinning and slip have been adjusted by γtwin = 0.006γ0 to τtwin ≈ 13MPa and
τbasal = 4MPa. It is found that the zero-hardening-plateau at approximately 60 MPa (≈ 8.7 ksi) cor-
responds to the twin nucleation stage. At approximately 3% of logarithmic strain, the nominal stress
increases constantly, which coincides with the point wherevolume-filling twinning starts seriously.
Similar findings are given by Muránsky et al. (2009). The hardening is explained by the fact that the
twins form firstly at stress concentration points, or expressed differently, at the most favourable twin-
ning sites. For further twinning, the loading must be increased in order to activate the less favoured
twinning sites. One notes that the hardening rate is overpredicted in the simulations. This is due to
the fact that the material model does not capture secondary twinning and slip inside the twins, which
renders them stiffer as in reality.

7.6.4 Texture evolution.

The RVE-simulations allow to compare the texture evolutionwith experimental results. At a material
point, the significant orientation is assumed to be given by the parent or twin variant with the small-
est strain energy. Due to the phenomenological model adaptation, the strain energy invariance is not
exactly met by the model, i.e. a definite orientation can be extracted at each of the8× 303 integration
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Figure 7.28: Comparison of the experimental (Jiang et al., 2007) and the RVE-simulated twin vol-
ume fraction evolution. The simulated curves are obtained with different texture sharpnesses, the
maximum deviation of thec axes from the compression plane is given.

points of the FE model. Thec-axes of 20 initial orientations deviate at most by15◦ from the com-
pression plane, see Fig. 7.30 for pole figures of the initial orientation distribution. The sequence ofc

anda pole figures for the compression test is given in Fig. 7.31. One notes that the texture evolution
corresponds qualitatively well to experimental results ofJiang et al. (2007), although the rate at which
the texture shifts is overestimated.
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Figure 7.29: Comparison of the experimental (Reed-Hill, 1973) and the RVE-simulated stress evolu-
tion (Cauchy stress over logarithmic strain).

Figure 7.30:c and a pole figures of the initial orientation distribution, withIcmax = 9.403 and
Iamax = 5.173. The projection plane is parallel to the compression direction. The pole figures
are calculated using a Mises-Fisher distribution (Fisher,1953) with a half-width of20◦ around the
individual orientations.
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Experimentalc pole figures measured by Jiang et al. (2007) atε0 of -4%, -8% -11% and -15%.

Imax = 6.78 Imax = 8.05 Imax = 10.99 Imax = 11.23
simulatedc pole figures

Imax = 3.95 Imax = 3.03 Imax = 3.71 Imax = 3.79
ε0 = −2.9 ε0 = −4.8 ε0 = −8.2 ε0 = −14.2

simulateda pole figures

Figure 7.31:c anda pole figures for the compression test. The projection plane is parallel to the
compression direction. The pole figures are calculated using a Mises-Fisher distribution with a half-
width of 20◦ around the individual orientations.
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Chapter 8

Summary and Outlook

Summary. In the first part of this work, twinning is analysed by geometrical considerations in
simple lattices. It is shown that all compound twins exhibitan elastic energy invariance, which holds
practically for all technologically interesting twinningmodes. The existence of an energy invariance
for certain twinning modes has been found by Ericksen (1984b); Zanzotto (1992, 1996). However,
it appears that the statement that all compound twins obey the energy invariance is new. The cases
that the compound twins are crystallographically equivalent or distinct and its consequences for the
elastic modelling of twinning have been discussed.

The strain energy invariance enforces a treatment of pairs of conjugate twins as one twinning mode if
modelled by means of elasticity. Although not distinguishable at each material point, one can clearly
recognise each of the conjugate twins by the interface alignment that is established. It is to expect
that the elastic modelling works not for crystallographically distinct conjugate twins. This is because
one has to treat them due to the energy invariance as one twinning mode, although they may feature
different properties. The strain energy invariance may even connect a regular twinning mode to a
lattice invariant shear. However, due to the high symmetry of the cubic, tetragonal and hexagonal
crystals, many compound twins are crystallographically equivalent, e.g.,{112}〈111̄〉 twinning in the
bcc, {111}〈112̄〉 twinning in the fcc (the TWIP-twins in manganese-alloyed steels),{1̄012}〈101̄2〉
twinning in hcp (extension twinning),{101}〈111̄〉 twinning in the bct and othorhombic,{100}〈001̄〉
in the orthorhombic lattice, the pairs of conjugate twin systems of which are treatable as one twinning
mode.

In the second half of this work, an elastic material model fortwinning is developed. It consists in its
core of a quadratic strain energy, which is extended by the isomorphy of the elastic law and the Ball
and James-approach (Ball and James, 1987) to a piecewise quadratic nonconvex elastic energy. To
obtain a continuously differentiable strain energy, a regularisation for the latter is introduced. Further,
to adapt the twinning-stresses, a phenomenological model adaptation which relies on the Schmid law
is introduced. In order to avoid the ill-posedness of the pseudoelastic boundary value problem, the
viscous regularisation is used. The model is applied to the{101̄2}〈1̄011〉 twinning in the hcp lattice,
the twinning stress and thec/a ratio are close to common magnesium alloys. As hcp crystals undergo
readily crystallographic glide in the basal plane, the visco-elastic model is extended by the card glide
mechanism, which allows plastic deformations by basal slipin the parent crystal.

The model is tested in various finite element simulations. Itis able to predict the nucleation and prop-
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agation of the twins. The stress-drop observed shortly after the nucleation (Christian and Mahajan,
1995) and predicted by Kochmann and Le (2009) is found in the simulations as well. The predicted
cusp-shape of the twin tips are in accordance with experimental findings and conclusions from the
theory of transformation dislocations (Boyko et al., 1994). Moreover, it is found that the interface in-
clination with respect to the shear plane is limited by the critical twinning stress, which is concluded
from a stress jump analysis as well (Glüge and Kalisch, 2008). In conjunction with the basal slip
mechanism, the model is able to predict the kink patterns observed by Roberts and Partridge (1966).
The model is used in a simple compression simulation of an RVE, where the orientation distribution
is similar to the one that is experimentally observed in extruded magnesium. It is found that the pre-
dicted twin structure is quite realistic. It is observed that due to the misfit strains the twins propagate
across grain boundaries. The average twin volume fraction corresponds well to experimental findings
of Jiang et al. (2007). Therefore, as the texture evolution is linked directly to the twin volume frac-
tion, the texture evolution due to twinning is reproduced aswell. Due to the complicated hardening
behaviour owed to twin-particle interactions, the hardening rate of Magnesium alloys is underesti-
mated. In the stage of extensive twinning, the model predicts a zero hardening plateau, which is in
accordance to experimental observations on pure magnesium, i.e. when no twin-particle interactions
are present. At the end of the stage of extensive twinning, the stresses are overpredicted in both cases.
This is due to the lack of deformation mechanisms like secondary twinning and slip inside the twins,
and the lack of a damage criterion.

However, the elastic modelling induces some difficulties. The most problematic fact is that twin-
ning is connected to the movement of partial dislocations. This induces a strain path-dependence
and energy dissipation, which are neglected by any pseudoelastic modelling. Moreover, the strain
energy invariance of conjugate twins restricts the elasticmodelling to crystallographically equivalent
conjugate twins. Although the conjugate twins can be distinguished clearly in the FE simulations by
considering the interface orientation, the elastic modelling leaves the possibility that a twin turns over
into its conjugate twin. Such behaviour is not realistic dueto the kinetic process underlying the twin
formation. The conclusion is that the pseudoelastic modelling cannot be applied if severe strain path
changes occur.

Outlook. One disadvantage of the model, namely the necessity of the phenomenological adapta-
tion for reasonable twinning stresses, comes from the Ball and James-approach. I see basically two
possibilities of how the model could be advanced.

Instead of modifying the elastic law, one could think of introducing an internal variable, which evolves
according to a nucleation criterion and a kinetic relation.This could be a small twinned volume at the
time of nucleation, the interface of which moves according to the kinetic relation. It is to expect that
such a modelling strategy is very challenging from the practical point of view.

Another method could be to derive the elastic strain energy from molecular dynamics or molecular
statics simulations instead of postulating it. If one constrains the atomic arrangement to be periodic, it
should be possible to derive a strain energy by summing up atomic potentials from deforming a small
reference cell. If one applies Born’s rule, in a molecular statics calculation, the strain energy would
emerge straightforward and display energy minima for shuffle-free twinning modes. Unfortunately,
for the twinning modes involving shuffling, one has to abandon Born’s rule, which means that the
motion of the atoms has to be tracked. Such a two-step homogenisation is as well challenging from
the practical point of view, but it may be capable to model a variety of phenomenas observed in



117

crystals by only a few physically conclusive equations.
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