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Summary

Optimal experimental designs for models with random effects have received increasing
attention in recent years. Binary data models, especially logistic, form the main part of
the presented research.
The main goal of this thesis is to develop optimal experimental designs for the Poisson
regression models with random intercept and random slope.
An introduction will be presented about fundamental concepts including linear models,
generalized linear models, linear mixed models and generalized linear mixed models. Com-
plications in the design process arise with the use of random effects, i.e. when some model
parameters are allowed to vary randomly between subjects. In fact the Fisher information
matrix can not be written down in closed form for generalized linear mixed models due
to the random effects. Therefore we apply a different estimating method to derive an
approximating information matrix. This method is called the quasi-likelihood method
and the information matrix based on this method is the quasi-information matrix. Some
properties of the quasi-score function are studied as a special case of the estimating func-
tion.
A simulated example shows that the quasi-likelihood estimations are close to the MLE of
the unknown model parameters, especially when the variance of random effects is small.
Using the quasi-likelihood method, the quasi-information matrices are obtained for dif-
ferent Poisson models.
Convex design theory for ordinary linear models could not be extended to the proposed
models due to the fact that the quasi-information matrices are not additive because of the
existence of random effects in the models. We obtain some new theorems that allow us
to apply convex design theory to our models. Besides this, equivalence theorems, similar
to the ones known for ordinary linear models, are derived for our situations.
The best experimental settings to do an experiment are usually selected via a real-valued
function of the respective information matrix. In this work, we derive different represen-
tation of these functions based on the quasi-information matrices.
Some examples from the models are presented to illustrate proposes. This thesis is closed
with a discussion of future work.

iii



iv



Zusammenfassung

Die Bestimmung optimaler Versuchspläne für Modelle mit zufälligen Effekten erfreut
sich in den letzten Jahren wachsenden Aufmerksamkeit in der Literatur. Modelle mit
binären Daten, speziell logistischer Form, bilden den Hauptteil dieser Arbeiten .
Das Ziel der vorliegenden Arbeit ist die Herleitung optimaler Versuchspläne für das
Poisson-Regressions-Modell mit zufälligem Achsenabschnitt bzw. mit zufälliger Steigung.
Es wird eine Einführung in grundlegende Konzepte gegeben, die lineare Modelle, verallge-
meinerte lineare Modelle, lineare gemischte Modelle und verallgemeinerte lineare gemisch-
te Modelle umschließen. Die Einführung zufälliger Effekte zur Modellierung individueller
Parameter verkompliziert die Bestimmung optimaler Designs. Für verallgemeinerte line-
are gemischte Modelle lässt sich auf Grund der zufälligen Effekte keine geschlossene
Form der zugehörige Fisher-Information herleiten. Deswegen wenden wir eine andere
Schätzmethode an und approximieren die zugehörige Informationsmatrix. Diese Methode
wird Quasi-Likelihood-Methode genannt, und die aus dieser Methode resultierende Infor-
mationsmatrix wird als Quasi-Informationsmatrix bezeichnet. Einige Eigenschaften der
Quasi-Score-Funktion als Spezialfall der Schätzfunktion werden hier untersucht.

Ein simuliertes Beispiel zeigt, dass sich Quasi-Likelihood- und Maximum-Likelihood-
Schätzungen der unbekannten Parameter nicht stark unterscheiden, speziell wenn die
Varianz der zufälligen Effekte klein ist. Mit der Quasi-Likelihood-Methode können die
Quasi-Informationsmatrizen für verschiedene Poisson-Modelle hergeleitet werden.
Bisher konnte die konvexe Design-Theorie für gewöhnliche lineare Modelle nicht auf die
vorgestellten Modelle erweitert werden, da die Quasi-Informationsmatrizen auf Grund des
Vorliegens der zufälligen Effekte nicht additiv sind. Wir können jedochneue Theoreme
herleiten, die uns erlauben, die konvexe Design-Theorie auf unsere Modelle anzuwenden.
Des Weiteren werden Äquivalenz-Theoreme für die betrachteten Modelle bewiesen.
Die optimalen Versuchspläne werden üblicherweise mit Hilfe einer reellwertigen Funktion
der betreffenden Informationsmatrix bestimmt. In dieser Arbeit leiten wir eine auf der
Quasi-Informationsmatrix basierte Form dieser Kriterien her.
Einige Beispiele der Modelle werden vorgestellt, um das Vorhaben zu illustrieren. Die
Arbeit schließt mit einer Diskussion über mögliche zukünftige Entwicklungen auf dem
bearbeiteten Gebiet.
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1 Introduction

Optimal design of experiments goes back at least as far as Smith (1918), who defined
the objective of minimizing the worst-case prediction error on the construction of univari-
ate polynomial models up to the sixth degree. In that paper, the G-optimality criterion
(a term which was introduced by Kiefer and Wolfowitz (1959)) was first used. Kiefer and
Wolfowitz (1959) gave the name D-optimality to the criterion introduced by Wald (1943),
which is based on the parameters. Kiefer and Wolfowitz (1960) also related D-optimality
and G-optimality. In fact, the contributions in this area are relatively sparse until the
fifties and sixties, before Kiefer and Wolfowitz (1959) published a paper on this topic. The
history behind optimal designs can be found in Atkinson and Bailey (2001) and Kiefer et
al. (1985).
A review of literature in the optimal design of experiments (Fedorov (1972), Silvey (1980),
Pukelsheim (1993)) indicates that the optimality for linear models was the main part of
the research on this topic, while generalized linear and non-linear models are often more
applicable to real data. Certain complication arise due to the fact that the informa-
tion matrix based on the likelihood function depends on the parameter values, hence we
encounter to a dual problem: parameter estimating needs to design an experiment and
experimental design needs the parameter values. Box and Lucas (1959) investigated lo-
cally D-optimal design for non-linear models. They suggested using of some initial guess
of the values of the parameters.
Despite considerable work on optimal design for binary data models, especially for the
logistic regression model (Myers et al. (1994), Sitter (1992)), there are few researches on
the optimal design for the Poisson regression model. Recently, Wang et al. (2006) and
Russell et al. (2009) have done an extensive work on the Poisson regression model.
Linear and non-linear mixed models and generalized linear mixed models (McCulloch and
Searle (2001)) consider random effects beside fixed effects. Despite wide theoretical work
on the analysis of these models, very little research has focused on this topic in optimal
experimental designs.
Mentré et al. (1997) propose the linearization approach to non-linear mixed model. Glad-
itz and Pilz (1982) considered a Bayesian framework for individual prediction in the ran-
dom coefficient regression models. Fedorov and Hackl (1997) Liski et al. (2002) and
Schmelter (2006) gave some results for linear mixed model.
A common characteristic in the above literature on optimal design is to apply the like-
lihood method for estimating the parameter. Due to the random effects in generalized
linear mixed models, we can not obtain a closed form for the likelihood function and hence
the information matrix for the parameters. Waterhouse (2005) has done a numerically
study on optimal designs for the generalized linear mixed models and non-linear mixed

1



1 Introduction

models.
The quasi-likelihood function is as an alternative approach to the likelihood function. To
define a quasi-likelihood function we need only to specify a relation between the mean and
the variance. Using this method, in present work, we address a new approach to optimal
designs.
This thesis is organized of follows.
An introduction to linear models, generalized linear models, linear mixed models and
generalized linear mixed models is presented in chapter 2. Furthermore the differences
between these models are discussed. In chapter 3, the quasi-score function as a special
case of estimating function and the quasi-likelihood estimator are described. We also
obtained many properties of quasi-score function and quasi-likelihood function. In chap-
ter 4, we define the considered models under the names Poisson regression model with
random intercept and random slope as special cases of generalized linear mixed models.
The relations between mean and variance in these models are obtained in this chapter.
We obtain quasi-information matrix for these models. The main parts of our work are in
the last two chapters where, in chapter 5, we obtain new statements to develop convex
design theory to the considered models. In chapter 6, we apply the theoretical parts of our
study to find some locally D-optimal designs for our models. We also do some curiosities
in optimal design for our models in this chapter. We will close this work with a short
discussion and some suggestions for future studies in the last chapter, chapter 7.

2



2 Generalized Linear Mixed Models: A review

2.1 Introduction

Generalized Linear Mixed Models (GLMMs) are a useful extension of Linear Mixed
Models (LMMs) and Generalized Linear Models (GLMs) for assessing additional compo-
nents of variability due to latent random effects. In other words GLMMs are an extension
of GLMs by the inclusion of random effects. The essence of this extension is two-fold:
First, data are not necessarily assumed to be normally distributed, and second, that the
mean is not necessarily taken as a linear combination of parameters but that some func-
tion of the mean is. These models provide a general framework which includes a wide
range of models, in addition to Linear Models (LMs), GLMs and LMMs, like Poisson
regression models with random effects and logistic model with random effects. Because of
this generality and because of the availability computer capacity, the use of such models
has increased dramatically in the last two decades. McCulloch and Searle (2001) have
provided a comprehensive summary of the development that took place in the last cen-
tury. Also more details can be found in Jiang (2007) on these topics.
The maximum likelihood estimator (MLE) is used to make inference about the unknown
parameters. Obtaining MLEs involves tremendous analytical and computational difficul-
ties due to integrated likelihoods. There are two different approaches for finding MLEs.
The first approach emphasizes on the numerical techniques to find a solution for ML equa-
tions (e.g. Pinheiro J.C. and Bates D.M. (1995), Booth and Hobert (1999)). The second
approach which is based on alternative method for MLEs, include Quasi-Likelihood (Mc-
Cullagh and Nelder (1998)), Penalized Quasi-Likelihood (PQL) (Breslow and Glayton
(1993)), Generalized Estimating Equations (GEE) (Liang and zeger (1986)), Conditional
second-order Generalized Estimating Equation (CGEE2) (Vonesh et al. (2002)), among
others. When the number of observations is large, most of the alternatives of the MLEs
work well ( see e.g. Sinha (2004) and Nie (2007)).
The aim of this chapter is to provide some basic information and fundamental concepts
that we need to use of GLMs and GLMMs.
This chapter is organized as follow: In the next two sections, we recall GLMs and LMMs
briefly. In section 4 we describe GLMMs and a method to estimate the unknown param-
eters.

3



2 Generalized Linear Mixed Models: A review

2.2 Generalized Linear Models

One of the flexible tools for statistical inference is Generalized Linear Models which is
formulated by Nelder and Wedderburn (1972) to unify various statistical models, including
linear regression, logistic regression, probit regression and Poisson regression, under one
framework. This unification helps us to estimate the parameters of models under the
same algorithm.
The linear Model (LM) for a response Y has the following form

Y = xT β + ε (2.1)

where x is a vector of known explanatory variable, β is a p× 1 unknown vector of fixed
effects and uncorrelated ε is the error term,which follows a Normal distribution with mean
µ and variance σ2. Note that we can replace xT by fT (x) = (f1(x), . . . , fp(x)), then

Y = fT (x)β + ε (2.2)

where fi(x) can be an arbitrary function of x.
In general, we can write this model as

Y = Xβ + ε E(ε) = 0 andV ar(ε) = σ2I (2.3)

or, corresponding to (2.2)

Y = Fβ + ε (2.4)

where Y = (Y1, . . . , Yn) is the data vector which summarizes the whole observations.
X = (x1, . . . ,xn)T ( or F = (f(x1) . . . f(xn))T ) is known as the design matrix.
If (FTF) is regular then the maximum likelihood estimator, say β̂, for the parameter
vector β is

β̂ = (FTF)−1FTY (2.5)

which coincides with the best linear unbiased estimator(BLUE) of the parameter vector
β.
The variance-covariance matrix of β̂ is then

V ar(β̂) = σ2(FTF)−1 (2.6)

that is free of Yis and parameters.
Note that if F is rank-deficient, either because of intrinsic aliasing among factors or for
some other reasons, then (FTF) is singular. In this case, there is no unique estimator for
β. But if γ(β) = Lγβ is any estimable among βs, i.e. γ(β) = Lγβ is identifiable, then
the best linear unbiased estimator of γ(β) is

γ̂(β) = Lγ(F
TF)−FTY (2.7)

4



2.2 Generalized Linear Models

where (FTF)− is a g-inverse for (FTF).( see e.g. Schott 1997 sec.5.8). The variance-

covariance matrix of γ̂(β) is then

V ar(γ̂(β)) = σ2Lγ(F
TF)−LT

γ (2.8)

which also does not depend on β.

GLMs seek to extend the domain of applicability of LM by relaxing of the normal
assumption or, more generally, of the assumption of additive error, i.e. we denote fY(y) =
fε(y −Xβ) instead of fY(y) = f(y;Xβ).
If Y1, . . . , Yn be the random sample of Y the two following statements are sufficient to
define GLMs:

1. Random component: Yi is a member of an exponential family (Jørgensen 1987)
of the form

f(yi; γi, φ) = exp

{
yiγi − b(γi)

a(φ)
+ c(yi;φ)

}
(2.9)

where a(.), b(.) and c(.; .) are known functions. γi is the canonical parameter of the
distribution of Yi and φ is a nuisance parameter which may be known or not.

2. Systematic component: The expectation of Yi, denoted as µi is related to xi

through a known monotone function h, i.e.,

h(µi(β)) = xT
i β ⇔ µi(β) = h−1(xT

i β) (2.10)

Since h links together the mean of Yi and linear form of predictors, h is called
the link function. Also γi would be some known function of µi, i.e. γi = γ(µi).
It is clear that γi in (2.9) is a function of β through µi(β). For simplicity we
suppress the arguments of γ(µi(β)) and µi(β) except for the cases which would lead
to ambiguities.

For the sake of clarity, we list some special cases.

• LM. The corresponding link function is h(µ) = µ, the ”identity” link function,
φ = σ2, a(φ) = φ and γi = µi = xT

i β.

• Logistic Model. This corresponds to the case that Y ,
i s have Bernoulli distribution

with canonical parameter γi = log( µi

1−µi
). h(µi) = log( µi

1−µi
) is the ”logit” link and

a(φ) = 1, i.e. φ can be neglected.

• Poisson Model. The distribution of the response Yi is Poisson with mean param-
eter µi. h(µi) = log µ is the ”log” link and a(φ) = 1

Remark 2.1. When the link function h(µ) is the same as the canonical parameter γ(µ),
we call h(µ) the canonical link function.

5



2 Generalized Linear Mixed Models: A review

2.2.1 Some Properties

With regard to the exponential distribution family the log-likelihood function for (2.9)
is

l = l(γ, φ;y) =
n∑

i=1

(yiγi − b(γi))/a(φ) +
n∑

i=1

c(yi;φ) (2.11)

The following elementary properties of log-likelihood function, under suitable regularity
conditions which are fulfilled for (2.11)

E(
∂l(γ, φ;Y)

∂γi

) = 0 (2.12)

V ar(
∂l(γ, φ;Y)

∂γi

) = −E(
∂2l

∂γ2
i

) (2.13)

lead us to the basic concepts in GLMs ,

∂l(γ, φ;y)

∂γi

= (yi − b′(γi))/a(φ) ⇒ E(Yi) = µi = b′(γi) (2.14)

V ar(
∂l(γ, φ;Y)

∂γi

) = V ar((Yi − b′(γi))/a(φ)) = a−2(φ)V ar(Yi)

and − E(
∂2l(γ, φ;Y)

∂γ2
i

) = a−1(φ)b′′(γi)

⇒ V ar(Yi) = a(φ)b′′(γi) = a(φ)v(µi) (2.15)

where b′(.) and b′′(.) indicate the first and the second derivative of b(.).The last expression
for the variance of Yi describes the rational behind the phrase ”dispersion parameter” for
φ. Since v(µi) = b′′(γi) = b′′(γ(µi)) indicates how the variance of Yi is related to the mean
of Yi, and it is called the variance function.

Remark 2.2. Since in all model that we apply here a(φ) = 1, we ignore this in the
remainder of this chapter.

Remark 2.3. Regarding to the relationship between γi and β through the relations (2.10),
(2.14) and (2.15), we can represent f(yi; γi) in (2.9) as f(yi; β).

In addition to above equations, a straightforward algebra leads to

∂γi

∂µi

=
1

v(µi)
and

∂µi

∂β
=

1

h′(µi)
· xi (2.16)

6



2.2 Generalized Linear Models

And if we have the canonical link function

h′(µi) =
1

v(µi)
and hence

∂γi

∂β
= xi (2.17)

Thus, in the general case, the maximum likelihood equations for β are given as

∂l

∂β
=

n∑
i=1

(yi − µi)

v(µi)h′(µi)
xi (2.18)

We can represent the above equation in matrix notation as follow

∂l

∂β
= XTW(y − µ(β)) (2.19)

where W = W(β) is a diagonal matrix with the diagonal entries [v(µi)h
′(µi)]

−1 and
depends on β via µi = µi(β). Because µ is a function of β, ∂l

∂β
is also a function of β

through µ and W. If we consider the canonical link function, then W = I where I is
identity matrix. Sometimes we can maximize this analytically and find an exact solution
for the MLE of β, says β̂, but the Normal GLM is the only common case where this is
possible. Typically, we must use numerical optimization. By applying the Fisher scoring
method,which is a method to solve maximum likelihood equations numerically(McCulloch
and Searle (2001)), McCullagh and Nelder (1998) show that the optimization is equivalent
to Iterative Weighted Least Squares(IWLS) based on a working variable. Many softwares
provide program to find estimations of the parameters (e.g. Faraway 2006).
The second derivative of the log-likelihood function with respect to β is

∂2l

∂β∂βT
= −XTWX + XT (

∂

∂βT
W)(y − µ(β))

then,

−E(
∂2l

∂β∂βT
) = XTWX

which is the information matrix for β. Under the regularity conditions, the asymptotic
variance- covariance matrix of β̂ equals to the inverse of the information matrix (Pourah-
madi 2002)

V ar(β̂) = (XTWX)−1 (2.20)

which depends on the unknown parameter vector through W.

7



2 Generalized Linear Mixed Models: A review

2.3 Linear Mixed Models

A natural question to raise is: what happens if one ignores the random effects or depen-
dency of observations? Before we describe LMMs we answer these questions (or sometimes
one question) with a simple example.

Example 2.1. Suppose that Yij is the jth observation from the ith subject, and

Yij = µ+ ai + εij i = 1, . . .m and j = 1, . . . , n (2.21)

where ai ∼ N(0, σ2
a), εijs are uncorrelated error terms for all i and j which are normally

distributed with mean 0 and variance σ2. Cov(ai, ai′) = 0 for all i 6= i′ and Cov(ai, εi′j) = 0
for all i, i′ and j. In other words, we consider a balanced design with m subjects and n
observations per subject.

Cov(Yij, Yij′) = σ2
a ⇒ corr(Yij, Yij′) =

σ2
a

σ2
a + σ2

=
1

1 + d

where d = σ2

σ2
a
. It is easy to indicate that corr(Yij, Yij′) is a decreasing function of d and

hence increasing function of σ2
a.

The focus here is on the inference for µ when we ignore the fact that the random effect
exists. Let µ̂ be the maximum likelihood estimator of µ, it is easy to see that

µ̂ = Ȳ .. and V1 = V ar(µ̂) =
σ2 + nσ2

a

nm

Now, we ignore ai, the random effect of the model, i.e. Yij = µ+ εij. We have

µ̂ = Ȳ .. and V2 = V ar(µ̂) =
σ2

nm

Thus the ratio of V2/V1 is d/(d+ n)
Figure 2.1 shows plot of the ratio V2/V1 versus d for three different n.

The main result in Figure 2.1 is that how can the ignoring of random effect influence
on the variance for simple model (2.21). The message is rather clear. The discrepancy
between V1 and V2 decreases with the rising in d and hence decreasing in corr(Yij, Yij′).
Under the random effect ignoring, the confidence interval based on V2 is narrower than
should be. Therefore increasing in d causes that the confidence intervals based on V1 and
V2 are closed.
Different from LMs and GLMs, which consider independence of data and involve only
fixed effects, LMMs can be applied to model correlation between observations and consider
random effects in addition to fixed effects. In fact, the use of random effects reflects the

8
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Figure 2.1: The plot of V2/V1 against d for n = 5, n = 10 and n = 100.

belief that there is heterogeneity in the subjects for a subset of the regression coefficients
in β. Since Laird and Ware (1982), mixed models have become popular and widely used
tool for modeling repeated measurements in the framework of normal regression models.
Before describing GLMMs, we recall the main principles of Linear Mixed Models.
Assume that ni denote the number of observations for the ith subject provided that

n =
m∑

i=1

ni be the number of the whole data at hand. The general LMM is given by

Yi = Xiβ + Zibi + εi (2.22)

where Yi is a ni × 1 vector of observation for the ith subject (i = 1, . . . ,m), β is p × 1
vector of unknown fixed effects parameters and bi is the q × 1 vector of the random
effects parameters for the ith subject in the data set which is often supposed to follow a
Nq(0,D). Xi, of order ni×p, and Zi, of order ni×q, are design matrices for the fixed and
the random effects respectively. εi contains the error terms for subject i and we suppose
that it is normally distributed with mean vector 0 and variance-covariance matrix Ri.
In most application we suppose Ri = σ2Ini

. We assume that the different subjects are
independent and bi and ε are supposed to be independent. Since

µi = E(Yi) = E(E(Yi | bi)) = Xiβ + E(Zibi) = Xiβ (2.23)

Vi = V ar(Yi) = V ar(E(Yi | bi)) + E(V ar(Yi | bi)) = ZiDZT
i + Ri (2.24)

9



2 Generalized Linear Mixed Models: A review

then Yi ∼ N(µi,Vi). So we can find log-likelihood function under the conditions of
a known variance-covariance matrix or unknown variance-covariance matrix and then
numerical methods leads us to obtain the maximum likelihood estimator.
A useful brief on this topic can be found in chapter 6 of McCulloch and Searle (2001) and
more details in chapter 1 and chapter 2 of Jiang (2007).

2.4 Generalized Linear Mixed Models

After a short discussion about GLMs and LMMs, we are ready to introduce GLMMs
as a generalized version of GLMs and LMMs.
Suppose that, given a vector of random effects bi, the response Yij (i = 1, . . . ,m , j =
1, . . . , ni) corresponding to the jth observation of the ith subject are conditionally inde-
pendent and the conditional density function of Yij given bi is

f(yij | bi) = exp{
yijγ

(bi)
ij − b(γ

(bi)
ij )

a(φ)
+ c(yij;φ)}

{
i = 1, . . . ,m
j = 1, . . . , ni

(2.25)

where, as in GLMs, b(.) a(.) and c(.; .) are known function. In other words we assume that
the conditional distribution of Yij given bi is a member of an exponential family. It is also
assumed that the vector bi is normally distributed with mean 0 and variance-covariance
D, where D = D(α) depends on a vector α of unknown variance components.
Regarding to remark (2.2), we consider the case with known φ.
Since the conditional distribution is a member of an exponential family, properties of
GLMs which are obtained based on this family are satisfied for conditional distributions
in GLMMs. For example,

µ
(bi)
ij = E(Yij | bi) = b′(γ

(bi)
ij ) (2.26)

V ar(Yij | bi) = a(φ)b′′(γ
(bi)
ij ) = a(φ) · v(µ(bi)

ij ) (2.27)

Similar to GLMs, the conditional mean is related to a linear predictor

η
(bi)
ij = xT

ijβ + zT
ijbi (2.28)

by a link function h, h(µ
(bi)
ij ) = η

(bi)
ij . Also xij and zij are p-dimensional and q-dimensional

vectors of known covariate values. β and bi have the same definition as in LMMs.

Remark 2.4. As we defined in remark (2.1),if γ
(bi)
ij = h(µ

(bi)
ij ) then we say h(µ

(bi)
ij ) is

a canonical link function. In most application of GLMMs, this type of link function is
considered.

The marginal mean of Yij can be derived:

µij = E(Yij) = E(E(Yij | bi)) = E(µ
(bi)
ij ) = E(h−1(xT

ijβ + zT
ijbi)) (2.29)

10



2.4 Generalized Linear Mixed Models

Because of the nonlinear function h−1(.), more specification, in general, is not possible.
The marginal variance can be also obtained as

V ar(Yij) = V ar(E(Yij | bi)) + E(V ar(Yij | bi))

= V ar(h−1(xT
ijβ + zT

ijbi)) + E(a(φ) · v(h−1(xT
ijβ + zT

ijbi)) (2.30)

which again can not be more simplified without making further assumptions on the form
of h−1(.) and/or the conditional distribution of Yij.
By the same way, we have

Cov(Yij, Yik) = Cov(h−1(xT
ijβ + zT

ijbi), h
−1(xT

ikβ + zT
ikbi)). (2.31)

It is often assumed that the different subjects are independent, So

Cov(Yij, Yi′k) = 0 for all i 6= i′. (2.32)

Example 2.2. Let Yij denotes the jth observation for the ith subject or individual and
the Yij given bi are independent following a Poisson distribution, i.e.

f(yij | bi) =
(µ

(bi)
ij )yije−µ

(bi)
ij

yij!
i = 1, . . . ,m; j = 1, . . . , n

for non-negative integer yij. We consider canonical link function, i.e. log(µ
(bi)
ij ) = xT

ijβ +
zT

ijbi. Also we suppose bi ∼ Nq(0,D). So the mean and the variance are

µij = E(Yij) = E(ex
T
ijβ+zT

ijbi) = ex
T
ijβ · E(ez

T
ijbi) = ex

T
ijβ+ 1

2
zT

ijDzij

V ar(Yij) = V ar(E(Yij | bi)) + E(V ar(Yij | bi)) = V ar(ex
T
ijβ+zT

ijbi) + E(ex
T
ijβ+zT

ijbi)

= E(E(Yij | bi))
2 − E2(E(Yij | bi)) + E(V ar(Yij | bi))

= µ2
ij(e

zT
ijDzij − 1) + µij

Since the term in parentheses on the right side of the last expression is always positive,
the variance of Yij is greater than the mean of Yij. This fact, compared to the properties
of the Poisson distribution, where we have that the mean and the variance are equal, is
called over dispersion. For different subjects the covariances of responses are zero and
regarding to (2.31) for the same subject

Cov(Yij, Yik) = Cov(ex
T
ijβ+zT

ijbi , ex
T
ikβ+zT

ikbi) + E(Cov(Yij, Yik | bi))

with regard to the definition of the model Cov(Yij, Yik | bi) = 0 for j 6= k then,

Cov(Yij, Yik) = ex
T
ijβ+xT

ikβ[E(e(z
T
ij+zT

ik)bi)− E(ez
T
ijbi)E(ez

T
ikbi)]

= µijµik(e
zT

ijDzik − 1)

11



2 Generalized Linear Mixed Models: A review

Remark 2.5. If Y is the vector of all responses, then we can represent the conditional

density function of Y given b =

 b1
...

bm

(as a member of the exponential family) in the

matrix form as following,

f(y | b; β, φ) = exp{(yT (Xβ + Zb))− 1T b(Xβ + Zb)/a(φ) + 1T c(y;φ)} (2.33)

where β and X are the vector of fixed effects and the corresponding design matrix for
whole data respectively. b is the vector of all random effects and Z is a corresponding

block diagonal design matrix with elements Zi(i = 1, . . . ,m) and also Zb =
m∑

i=1

Zibi with

Zi = (zi1, . . . , zini
)T . 1 is a vector with all entries one of appropriate length. Also we note

that for a general vector u = (u1, . . . , ur)
T , a(u) denotes the vector (a(u1), . . . , a(ur))

T .

2.4.1 Maximum Likelihood Estimation

If Yi = (Yi1, . . . , Yini
) be the vector of observations for the ith subject, the likelihood

function for subject i becomes

L(β,α, φ;yi) = f(yi; β,α, φ) =

∫
f(yi | bi; β, φ)f(bi; α)dbi

=

∫ ni∏
j=1

f(yij | bi; β, φ)f(bi; α)dbi (2.34)

The overall likelihood function for β, α and φ is obtained as,

L(β,α, φ;y) =
m∏

i=1

L(β,α, φ;yi) =
m∏

i=1

∫ ni∏
j=1

f(yij | bi; β, φ)f(bi; α)dbi (2.35)

Note that f(yi | bi; β, φ) is the same as f(yi | bi). Unlike linear models, the likelihood
function under a GLMM typically does not have an explicit expression. Following Wand
(2007) we consider the form (2.33) for the conditional density function of Y given b. Also
we assume that a(φ) = 1. The derivative of the log-likelihood function with respect to β

∂l(β,α;y)

∂β
=
∂ logL(β,α;y)

∂β
=
∂ log f(y; β,α)

∂β

where

f(y; β,α) =

∫
f(y | b; β)f(b; α)db

=

∫
exp{[yT (Xβ + Zb)− 1T b(Xβ + Zb)] + 1T c(y)}f(b; α)db

12



2.4 Generalized Linear Mixed Models

thus

∂l(β,α;y)

∂β
=

∂f(y;β,α)
∂β

f(y; β,α)
=

∫
f(y,b; β,α){[y − b′(Xβ + Zb)]TX}db

f(y; β,α)

=

∫
f(y,b; β,α)

f(y; β,α)
{[y − b′(Xβ + Zb)]TX}db

=

∫
{[y − b′(Xβ + Zb)]TX}f(b | y; β,α)db

= (y − E(µ(b) | y))X (2.36)

By the same way, the derivative of the log-likelihood with respect to α is

∂l(β,α;y)

∂α
=

∫
∂ log f(b; α)

∂α
f(b | y)db

Since in this thesis, we suppose that the parameters of random effects are known we ignore
more detail about the MLE of α.
It is easy to see that (2.36) can not be further simplified, so we, in the general case, can
not find a closed form for the estimators of β. In most cases, due to the multidimensional
integral involved in (2.36), such an integral is difficult to evaluate even numerically.

13
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3 Quasi-likelihood

3.1 Introduction

In applications of a statistical model, in a few cases, we know the specific distribution
of the random variable which has generated the data. Also, in many cases, in spite of
a known density function of the data, due to difficulty in integrating we can not find a
closed form for the Likelihood function. This case occurs especially in the models with
random effects. We may, however, be able to specify some characteristics of data like
cumulants.
Historically, two particular views are considered in parameter estimation theory. The first
one, introduced by Fisher, is the maximum likelihood (ML) method which is dependent
on the entire form of the underlying distribution. The second view, introduced by Gauss
and Legendre, is the least squares (LS) method that works based on minimizing the sum
of squared errors.
These approaches have been unified under the general description of Quasi-Likelihood
(QL) via estimating functions. Earlier works on the QL method was made available by
Wedderburn (1974) who relaxed the distributional assumption through the specification
of a variance function in Generalized Linear Models where the distribution of observations
is from the exponential family. This suggestion raises the question of what happens when
the true underlying distribution is not from the exponential family? This question is an-
swered by relating the Quasi-Likelihood to estimating functions. Some properties of QL
estimates, irrespective of underlying distribution, via estimating function have been con-
sidered in Godambe and Heyde (1987) and Heyde (1997). A brief review on QL through
estimating functions has been prepared in Desmond (1997). McCullagh (1983) provided
some asymptotic properties of QL estimators. An extensive work can be found in McCul-
lagh and Nelder (1998)(ch.9) on this topic.
The purpose of this chapter is to show how inference can be drawn from experiments in
which there is insufficient information to construct the likelihood function explicitly.
In the next section, we introduce estimating functions and the Optimal Estimating Func-
tion to estimate parameters. In section 3, we first introduce the Quasi-Likelihood method
to estimate and then use the relation between QL and estimating functions, we extend
the properties of estimating functions to QL method.
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3 Quasi-likelihood

3.2 Estimating Functions

Estimating functions, the term may have been coined by Kimball (1946), provide a
general framework for finding estimators and studying their properties in many different
kinds of statistical models. The estimating function approach has turned out to be very
useful in obtaining estimators where the likelihood function is usually not explicitly known.

Def 3.1. An estimating function gn for µ is a function of Y = (Y1, . . . , Yn) as well as the
parameter of interest µ, i.e. gn(Y;µ).

We get an estimator by solving gn(Y;µ) = 0. That is, µ̂ is an estimator based on y
and gn, if gn(y, µ̂) = 0. There might be more than one solution or no solution at all.

Def 3.2. gn(Y;µ) is an unbiased estimating function if Eµ(gn(Y;µ)) = 0 for all µ.

Example 3.1. As an immediate consequence, under the regularity conditions the deriva-
tive of log-likelihood function is an unbiased estimating function as well as least square.

It is pointed out that not all estimates covered by the estimating function method need
be unbiased, while the corresponding estimating function is unbiased. Higher order mo-
ments of gn(Y;µ) might be dependent on the parameter, so that the estimating function
need not be a pivotal function.
Note that we consider unbiased and square integrable version of the estimating function in
this text as needed. To clarify the basic concepts, we first consider the simplest case with
random independent variables and a scalar parameter µ in the following simple example.

Example 3.2. Let Y1, . . . , Yn be independent random variables with E(Yi) = µ and

V ar(Yi) = σ2. Consider the estimating function gn(Y;µ) =
n∑

i=1

bi(Yi−µ), then µ̂b =

nP
i=1

biYi

nP
i=1

bi

with
n∑

i=1

bi 6= 0 is an unbiased estimator which is the solution of gn(Y;µ) = 0.

For simplicity we denote gn(Y;µ) by gn whenever this doesn’t lead to ambiguities.

It is easy to see that gn and ġn = kgn (k is a constant) result in the same estimator
µ̂b. But V ar(ġn) = k2V ar(gn) can however be made arbitrarily small, thus two esti-
mating functions are not comparable based on the variance of the estimating functions.
One remedy is to use some standardized versions of estimating functions. One possible
standardization is to define it as (Heyde 1997)

g(s)
n (Y;µ) = (−Eµ(g′n))(Eµ(g2

n))−1gn(Y;µ) (3.1)
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3.2 Estimating Functions

where g′n is the derivative of gn(y, µ) with respect to µ. It produces the same estimator

of µ for different k and V ar(g
(s)
n ) = V ar(kgn)(s).

This standardization helps us to find a measure to compare different estimating func-
tions in some sense. In addition to the above property of standardization, the following
advantage of a standard version of gn is important (Heyde 1997 and Godambe 1991).

• One measure that we want to minimize, is V ar(gn) = E(g2
n). On the other hand

we would like that gn(Y;µ) be sensitive to small varies in µ where µ is true value.
That is we want gn(Y;µ+ δµ)− gn(Y;µ) with δ > 0, to differ as much as possible

from 0. These two statements are achieved by maximizing V ar(g
(s)
n ) = (E(g′n))2

E(g2
n)

.

The following property is also true in example (3.2).

• Under the Feller condition (See e.g. Bauer (1996), page 235) which guarantees that

the bi
2 are small compared to their sum,

n∑
i=1

b2i , in the sense that for given ε > 0,

bis
nP

i=1
b2i

< ε for i = 1, . . . , n when n is sufficiently large , using the Lindeberg-Feller

Central Limit theorem (Sec. 2.8 in Van der Vaart (1998))

n∑
i=1

bi(Yi − µ)/(σ2

n∑
i=1

b2i )
1
2

D−→ N(0, 1)

Hence with regard to estimator of µ, µ̂b =

nP
i=1

biYi

nP
i=1

bi

, we have

µ̂− µ
D−→ N(0, V ar−1(g(s)

n )) =
E(g2

n)

(E(g′n))2
)

where V ar−1(g
(s)
n ) = E(g2

n)
(E(g′n))2

. The length of confidence interval for µ is proportional

to the inverse of the V ar(g
(s)
n ). Thus maximizing of V ar(g

(s)
n ) coincides with small

confidence interval.

The following theorem states an important property of estimating function which is called
invariance property.

Theorem 3.2.1 (Godambe(1991)). The estimating function is invariant under one to
one transformation of the parameter µ.

Proof. We have to show that if gn(Y;µ) is an estimating function and µ̂ is an estimate
for µ ∈ Θ, then under the one-to-one transformation ϕ = α(µ) (ϕ : Θ −→ Λ), ϕ̂ = α(µ̂)
is an estimate for ϕ.
If µ̂ is an estimator based on gn(Y;µ) then

gn(Y, θ̂) = 0 =⇒ ∃ ϕ̂, gn(Y, α−1(ϕ̂)) = ġn(Y, ϕ̂) = 0

then ϕ̂ is an estimator based on ġn(Y, ϕ).
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3 Quasi-likelihood

Although this property doesn’t hold for unbiased minimum variance estimators, it is
well known that the invariance property is enjoyed by the maximum likelihood estimators
(Godambe and Thompson (1978)).

Remark 3.1. bi
,s might depend on µi which differ from one individual to another. And

also µi may be link to a linear or non-linear combination of p-vector unknown param-
eter, β, through a known function, where β is taking values in an open subset Θ of
p-dimensional Euclidian space, Rp.

Now we concentrate on a more general class of unbiased and square integrable es-
timating functions G = {g(Y1, . . . , Yn; β) : E(g(Y1, . . . , Yn; β)) = 0,β ∈ Θ}, where
gn = g(Y1, . . . , Yn; β) is a p× 1 vector with element gi(n).

Regarding to the class G, the standardized version of gn can be represent as

g(s)
n = −E(g′n)T (E(gng

T
n ))−1gn (3.2)

which is a generalization of Fisher information. In this expression the components of g′n,

of order p× p, are g′ir(n) =
∂gi(n)

∂βr

Def 3.3. Consider the class of unbiased estimating function G. A member of G, g∗n
is F-optimal (That is finite sample optimality (Desmond (1991))) within this class, if it
maximizes

E(g(s)
n g(s)T

n ) = E(g′)T (E(gng
T
n ))−1E(g′n) (3.3)

i.e. V ar(g∗
(s)

n ) ≥ V ar(g
(s)
n ) for all gn ∈ G uniformly in β ∈ Θ.

It is clear from the nature of the above definition that finding the F-optimality based
on the comparison, in the case with more than one-dimensional in vector of parameters,
between two matrices is difficult and sometimes is impossible. By results in Heyde (1997)
g∗ is F-optimal if

E(g∗(s)n g(s)T

n ) = E(g(s)
n g∗(s)

T

n ) = E(g(s)
n g(s)T

n ) for all g(s)
n (3.4)

or equivalently

(E(g′n))−1E(gng
∗T
n ) (3.5)

is a constant matrix for all gn ∈ G. In the practical point of view, these conditions are
simpler than the condition in the definition of F-optimality.
Note that under the condition of existence of an F-optimal estimating function, we may
compare matrices by some real functions. The following theorem (Heyde 1997) states
that.
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3.3 Quasi-Likelihood

Theorem 3.2.2. Suppose G is a set of estimating functions for which an F-optimal
estimating function, g∗n, exists. “g∗n is F-optimal” is equivalent to either of the three
following statements:

1. Trace optimality: tr(E(g∗ng
∗T

n )) ≥ tr(E(gng
T
n )) for all gn

2. Determinant optimality: det(E(g∗ng
∗T

n )) ≥ det(E(gng
T
n )) for all gn

3. Smallest eigenvalue optimality: λmin(E(g∗ng
∗T

n )) ≥ λmin(E(gng
T
n )) for all gn

where tr, det and λmin denote trace, determinant and minimum of eigenvalues respectively.

Proof. The proof can be found in Heyde (1997)(pages 19-21).

3.3 Quasi-Likelihood

Wedderburn (1974) observed that, from a computational point of view, the only two
assumptions of GLM necessary to fit the model were a specification of the mean (in term
of the regression parameters) and the relationship between the mean and the variance.
This led him to replace the full distributional assumption about the random component
in the model by a much weaker assumption of mean-variance relationship alone.
Suppose the n × 1 random variable Y has mean µ(β) and variance-covariance matrix
a(φ)V(µ(β)) where V(µ(β)) is the variance function . Both are known functions of the
p-dimensional parameter vector β and V(µ(β)) is a positive definite matrix. Also φ is
the nuisance parameter. Nuisance parameters, by definition, are of little intrinsic interest
to investigators, yet necessary to fully specify the random mechanism of the data.

Remark 3.2. As we mentioned in previous chapter, we suppose that φ is known then
without loss of generality we assume that a(φ) = 1 if this doesn’t lead to ambiguity.

The p-dimensional vector U (n)(β) with the entries U
(n)
r (β) i = 1, . . . , p is the quasi-

score function, which considers as a function of β, and it is given by the system of partial
differential equations

U (n)(β) =
∂ql(β;y)

∂β
=
∂ log(Ql(β;y))

∂β
= DTV−1(µ(β))(y − µ(β)) (3.6)

where DT = ∂µ(β)
∂β

. In other words, ql(β;y) as a solution for the above differential equa-

tion (if it exists) is called the log Quasi-likelihood function.

β̂
(n)

is maximum QL estimator of β if U (n)(β̂
(n)

) = 0.Unfortunately, we can not usually
find a closed form expression to obtain the root of (3.6), although root of that can be found
through out numerical methods. From the point of view of the statistical inference, fortu-

nately, we can study the properties of β̂
(n)

indirectly by studying the Quasi-score function.
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3 Quasi-likelihood

Remark 3.3. The expression (3.6), as we will indicate later, possesses the properties of
the derivative of the log-likelihood .

Remark 3.4. For a single observation ql(β; y) can be defined as an integral
∫ µ(β)

y
y−t
V (t)

dt,
if the integral exists.

When the certain mean-variance relationship are specified, the QL function sometimes
turn out to be a recognizable likelihood function. Wedderburn (1974) indicated that the
QL is unified with the likelihood function if the family of distributions is from an one-
parameter exponential family. The efficiency of the QL estimator of β relative to the ML
estimator of β has been considered by Firth (1987) when the true probability mechanism
of the random variables doesn’t follow an exponential family distribution. Several differ-
ent types of departure from the exponential dispersion family were established and high
efficiency of QL estimator of β is maintained when the departure of f , the true density
function, from the exponential dispersion family is only modest.
In the simple case, we suppose that the components of the response vector Y are inde-
pendent. Thus the matrix V(µ(β)) is diagonal

V(µ(β)) = diag{V1(µ(β)), . . . , Vn(µ(β))}

where V ar(Yi) = Vi(µ(β)). Also, in most applications, one can assume that Vi(µ(β))
depends on the ith component of µ(β), i.e. µi(β). Thus

V(µ(β)) = diag{V1(µ1(β)), . . . , Vn(µn(β))}

An unnecessary assumption is to suppose that the functions V1(.), . . . , Vn(.) are identical,
through their arguments, and hence their values, are different. The condition is satisfied
in the majority of the applied models.
Thus under the above assumptions, we can represent U (n)(β) in the form of the gradient
vector of the QL function as following

U (n)(β) = DT∆ (3.7)

where ∆ is a n× 1 vector with entries yi−µi(β)
V (µi(β))

, i = 1, . . . , n.
There are many situations where the dependence relationship among the data is so

strong such that we can not ignore them. Repeated measurements observations, for
example longitudinal data, can be recognized as dependent observation. Liang and Zeger
(1986) proposed the generalized estimating equations (GEE) approach as an application of
the QL approach to longitudinal data analysis. They considered the case that V ar(Y) =
V(a(φ),ρ), where ρ is a vector of autoregressive coefficients. Here and in the following we
consider the case that we have V ar(Y) = V(µ(β)).In this case, the Quasi-score function
(3.6) has the following properties (McCullagh and Nelder (1998))

1. E(U
(n)
r (β)) = 0
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3.3 Quasi-Likelihood

2. V ar(U (n)(β)) = DTV−1(µ(β))D/φ2 = Mβ,n

where Mβ,n = −E(∂U(n)(β)
∂β

).

If the covariance matrix of Y, or V(µ(β)), is not of full rank then any generalized inverse
can be used, providing that this inverse, say V−(µ(β)), ensures that V ar(U (n)(β)) =
DTV−(µ(β))V(µ(β))V−(µ(β))D is equal to Mβ,n.(McCullagh 1991)
The above properties of U (n)(β) are in accordance with these of a score function based
on the likelihood function. There is a curious limitation in the equivalence between the
Likelihood function and the Quasi-likelihood function which pointed the following remark.

Remark 3.5. There is an elegant point which is not clear for inference in the case of
quasi-likelihood. An important property, which is satisfied by the score function, is that
the derivative matrix of the score function with respect to β is symmetric. According to
McCullagh and Nelder (1998), U (n)(β) is the gradient vector of a log quasi-likelihood if
and only if the derivative matrix of U (n)(β) with respect to β is symmetric. For more
details see 9.3.2 in McCullagh and Nelder (1998).

Remark 3.6. The above properties refer to the derivative with respect to β and not with
respect to φ. In other words, the statistical properties of the QL function, in terms of the
quasi-score function, are similar to those of ordinary likelihood functions except that the
nuisance parameter, φ, when it is unknown, is treated separately from β. So the nuisance
parameter could have non-trivial impact on estimating β as well. Nelder and Pregibon
(1987) extended the quasi-likelihood to the case in the presence of a nuisance parameter.
In our text we consider only a known nuisance parameter.

Under some weak conditions on the third derivative of the link function and assuming
that n−1Mβ,n has a positive definite limit and also that the third moments of Y are finite,
following McCullagh (1983), we have the following results:

1. U (n)(β) = Op(n)

2. n−
1
2U (n)(β)

D−→ Np(0,Mβ,n/n) asn→∞

3. I
(n)
β = − ∂

∂β
(U (n)(β)) = Op(n)

4. I
(n)
β −Mβ,n = Op(n

1/2)

Furthermore, the maximum Quasi-likelihood estimator, β̂
(n)

, is consistent for β, i.e.,

β̂
(n)
− β = Op(n

−1) (3.8)

Also the distribution of β̂
(n)

is asymptotic Normal as following

n−1/2(β̂
(n)
− β)

D−→ Np(0, ni
−1
β ) asn→∞ (3.9)
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3 Quasi-likelihood

That is β̂
(n)

is unbiased for β asymptotically and the covariance matrix of β̂
(n)

is i−1
β,n,

given that the eigenvalues λ of Mβ,n be enough large for all β.
We consider the class of the linear unbiased estimating functions, H, which is defined by
components

gn = HT (β)(Y − µ(β)) (3.10)

where H(β), an n×p matrix, may be dependent on unknown parameter, β, but it doesn’t
depend on Y. As we see from the definition of gn, “linear” for gn is “linear in (Yi−µi(β))”
(i = 1, . . . , n).
Regarding to the definition of Quasi-score function, we have

E(g′n) = −HT (β)∂µ(β)
∂β = −HT (β)D

and
E(gnU(n)T

) = E(HT (β)(Y − µ(β))(Y − µ(β))TV−1(µ(β))D)

⇒ (E(g′n))−1E(gnU(n)T

) =

−I

is a constant matrix. Thus according to (3.5) the Quasi-score function is a F-optimal
estimating function in the linear estimating function class H.
In addition to the properties which have been obtained in the previous section, in the
reminder of this section we describe some other properties which are satisfied for the
Quasi-likelihood function as a F-optimal estimating function.
If fy(β) is the density function of Y, then we can write, in the general case, U(n)(β) =
f−1
y (β)f ′y(β) for the score function. Also we assume that U(n)(β) is almost surely differ-

entiable with respect to the components of β.
Now we suppose that gn = (g1,n, . . . , gp,n), U(n) = (U

(n)
1 , . . . , U

(n)
p ) and H(β) = (h1(β), . . . ,hp(β))

under the regularity conditions,

E(gnU
(n)T

) = (E(gi,nU
(n)
j ))p

i,j=1 and,

E(gi,nU
(n)
j ) =

∫
hT

i (β)(y − µ(β))(
∂

∂βj

fy(β))
1

fy(β)
fy(β)dy

=

∫
hT

i (β)y
∂

∂βj

fy(β)dy − hT
i (β)µ(β)

∂

∂βj

∫
fy(β)dy

= hT
i (β)

∂

∂βj

µ(β)

⇒ E(gU(n)T

) = HT ∂

∂β
µ(β) = −E(g′) (3.11)

Now we consider the vector correlation which measures the association between g and
U(n), and which is defined by

ρ2
g,U(n) =

(det(E(gU(n)T

)))2

det(E(ggT )) det(E(U(n)U(n)T
))

(3.12)
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3.3 Quasi-Likelihood

(Hotelling (1936)). Regarding to (3.11), the maximization of ρ2
g,U(n) is equivalent to the

maximizing

(det(E(g′)))2/ det(E(ggT ))

which is equivalent to maximize

det(E(g′)T (E(ggT ))−1E(g′))

That is, the maximum of the correlation between estimating function in the class H and
true score function is achieved when the estimating function is F-optimal or the Quasi-
score function, if it exists.
The next property is that the Quasi-score function as a F-optimal estimating function
is unique, in the sense that the standardized version of optimal estimating function is
unique.
Since, even under one to one transformation, unbiased estimators is not invariant thus
we can not extend invariance property to optimal estimating function. But Suppose that
YL = LY, µL(β) = Lµ(β) and VL(β) = LV(β)L where L is a nonsingular matrix of
order n. The Quasi-score function based on YL

UL(β) = (
∂µL(β)

∂β
)TV−1

L (β)(YL − µL(β)) = DTV−1(β)(Y − µ(β)) = U(β)

is the same as the Quasi-score function based on Y, U(n)(β). This condition is weaker
than the corresponding condition for Score function.

3.3.1 A simulated example

To explore the adequacy of QL estimations a simulation study was performed. Data
was generated according to the following model

Yijk | bi ∼ ind.P (µ
(bi)
ij ) i = 1, . . . ,m; j = 1, . . . , t, k = 1, . . . s (3.13)

where µ
(bi)
ij = ebi+β0+β1xj is the conditional expectation of Yijk given bi.

As we described in previous chapter, this model is a special case of GLMMs, where zij = 1
and bi is one-dimensional for all i and j, and xT

ij = (1, xj) for all i. Data are generated for
the following settings m = 30, t = 2, s = 2, 12, 24, β = (3,−2) and xj = 0, 3 for different
σ2 (σ2 = 0, σ2 = 2 and σ2 = 6). The results including the mean and standard deviation
are obtained in Table (3.1).
Note that due to the random effects generating in simulated data, the results might be
not fixed for different tries but they must be close to these results. For this simulation I
used 300 repetitions.
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3 Quasi-likelihood

Table 3.1: QL estimation of parameters (and standard deviation) of the model (3.13)
based on simulated data

l = 2 l = 12 l = 24

σ2 = 0
β̂0 3.0042(0.0091) 2.9995(0.0112) 3.0011(0.0900)

β̂1 -1.9981(0.0562) -2.0049(0.0771) -2.0078(0.0590)

σ2 = 2
β̂0 3.0369(0.3799) 3.0466(0.3743) 2.9728(0.3867)

β̂1 -2.0082(0.0876) -2.0036(0.0380) -2.0007(0.0262)

σ2 = 2
β̂0 3.4073(1.0603) 3.2619(1.0433) 3.2979(1.0432)

β̂1 -2.0011(0.0022) -1.9999(0.0032) -1.9998(0.0023)

Note that σ2 = 0 corresponds to the model without random effect, i.e. Yijk ∼ ind.P (µij)
where µij = eβ0+β1xj for all i. The results indicate that when σ2 increases the accuracy of
estimation of parameters will be less. Also when s rises the estimation of parameters will
be closer to the true values of the parameters.

3.4 Penalized Quasi-Likelihood Estimator

As we saw in the previous sections, in the QL method random effects are not involved
with unknown parameters. Approximation of the likelihood function is an alternative
method to find an estimation of the parameters in the GLMMs. Several of approxima-
tions have been proposed in the literature. Among them penalized quasi-likelihood by
Breslow and Glayton (1993) is the most popular for GLMMs. It approximates the integral
involved in the likelihood function using the well-known Laplace approximation.

The integrated quasi-likelihood based on the observations of ith subject corresponding
to (2.34) is given by (Breslow and Glayton (1993))

IQL = (2π)
q
2 (det(D))−

1
2

∫
exp[

ni∑
j=1

ql(µ
(bi)
ij ; yij)−

1

2
bT

i D−1bi]dbi (3.14)

We can represent the above expression as

IQLi = c(det(D))−
1
2

∫
e−k(b)db

where k(b) = −
ni∑

j=1

ql(µ
(bi)
ij ; yij) + 1

2
bT

i D−1bi. Using Laplace approximation (Barndorff-

Nielsen and Cox (1989) sec 3.3),

log(IQLi) ≈ −
1

2
log(det(D))− 1

2
log(k′′(b̃))− k(b̃)
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3.4 Penalized Quasi-Likelihood Estimator

where b̃ is the root of k′(b) = 0. Thus following Breslow and Glayton (1993), (β̂, b̂)
which maximize jointly

PQLi(β,b) =

ni∑
j=1

ql(µ
(bi)
ij ; yij)−

1

2
bT

i D−1bi (3.15)

are called penalized quasi-likelihood(PQL) estimations of β and b based on the observa-
tions of subject i. PQLi(β,b) is individual PQL function which has been penalized the
QL function by the term 1

2
bT

i D−1bi. And for whole observations, the PQL function is

PQL(β,b) =
m∑

i=1

PQLi(β,b) (3.16)

The PQL estimators of the parameters are biased. Lin and Breslow (1996) consider some
correction for the bias of the estimators.
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4 Poisson Regression Models with Random
Intercept and Random Slope

In the previous chapters, we considered a general framework for our models. there were
many problems to achieve a closed form for variance-covariance structure and hence for
information matrix due to the unspecified models.
In this chapter using the two previous chapters we apply quasi-likelihood in some special
cases of GLMMs which are well-known as the Poisson Regression Model with Random
Intercept and the Poisson Regression Model with Random Slope.
In the next section we consider a Poisson regression with random intercept which is
divided in detail in two models: simple Poisson regression model with random intercept
and quadratic Poisson regression model with random intercept. After that in section 3,
we discuss the simple Poisson regression with random slope. We will find the variance-
covariance structure of the estimator of the fixed effect parameters to be similar to the
Poisson regression model with random intercept.

4.1 Poisson Regression Model with Random Intercept

We consider the Poisson regression model with random intercept which can be written
as:

Yijk | bi
ind∼ P (µij(bi))


i = 1, . . . , s
j = 1, . . . , ti
k = 1, . . . ,mij

ti∑
j=1

mij = mi

n =
s∑

i=1

mi

(4.1)

i.e. f(yijk | bi) =
(µij(bi))

yijkeµij(bi)

yijk!

where µij(bi) = exp(bi + fT (xij)β) is specified by the canonical link function. The devi-
ation bi is assumed to be normal distributed with mean 0 and known variance σ2. The
random intercepts are uncorrelated for different individuals, i.e., cov(bi, bi′) = 0 for all
i 6= i′ Here, Yijk stands for the kth replication for the individual i at the experimental
setting xij from the experimental region τ . Also we suppose that mij denotes the num-
ber of replications of individual i at the jth level of x. The vector of known regression
functions f = (1, f1, . . . , fp−1)

T is the same for all individuals. The p-dimensional vector
of parameters β = (β0, β1, . . . , βp−1)

T associated with the mean response curve is un-
known and it is also the same for all individual. The random variable bi is the individual
deviation from the overall population intercept β0, i.e. β0 + bi is the random intercept
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4 Poisson Regression Models with Random Intercept and Random Slope

which varies and depends on the different individuals. The deviation bi is assumed to
be normally distributed with mean 0 and known variance σ2. The random intercepts
are uncorrelated for different individuals, i.e., cov(bi, bi′) = 0 for all i 6= i′. Note that
V ar(Yijk | bi) = E(Yijk | bi) = µij(bi).
As we have seen in the example (2.2) this model is a special case of GLMMs with zij = 1
With regard to section(2.4), if σ2 is known then the likelihood function for β is

L(β) =
s∏

i=1

∫ t∏
j=1

mij∏
k=1

eµij(bi)(µij(bi))
yijk

yijk!
.

1√
2πσ2

e−
1

2σ2 b2i dbi

so we can not find a closed form for the ML estimator of β and the variance-covariance
matrix of β̂ can not be obtained.
In many applications including optimal design we need to have the variance of estimator
of parameters instead of seeking for the exact estimator of β. These facts lead us to use
of the quasi likelihood as an approximate method (sec (3.3)) to estimate parameters; with
regard to (3.6) the quasi-score function is

U (n)(β) = DTV−1(µ(β))(y − µ(β)) (4.2)

and the information matrix for β̂ is

Mβ,n = DTV−1(µ(β))D (4.3)

where Y is the vector of responses, µ(β) = E(Y) is expectation of Y and V ar(Y) =
V(µ(β)) where V(µ(β)) is the variance function and indicates the relation between the

mean and variance of Y. D = ∂µ(β)
∂β

=

D1
...

Ds

 and Di =



µi1f
T (xi1)
...

µi1f
T (xi1)


mi1×p

...
µitf

T (xiti)
...

µitf
T (xiti)


miti

×p


mi×p

for i = 1, . . . , s .
We first need to obtain the variance-covariance structure of Y to find the information
matrix for β i.e. Mβ,n. For sake of simplicity we will denote Mβ,n by Mβ.
As we have seen in example (2.2),

V ar(Yijk) = V ar(E(Yijk | bi)) + E(V ar(Yijk | bi)) = µ2
ij(e

σ2 − 1) + µij = V (µij) (4.4)

where µij = µij(β) = E(Yijk) = E(E(Yijk | bi)) = ef
T (xij)β+ 1

2
σ2

is a function of β. For the
sake of simplicity we suppress the argument β in µij(β).
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4.1 Poisson Regression Model with Random Intercept

For different subjects the covariance will be zero, i.e.

Cov(Yijk, Yi′j′k′) = 0 for all i 6= i′ and all j, j′, k, k′ (4.5)

Also,

Cov(Yijk, Yij′k′) = Cov(E(Yijk | bi), E(Yij′k′ | bi)) + E(Cov(Yijk, Yij′k′ | bi))
= µijµij′(e

σ2 − 1) for all (j, k) 6= (j′, k′) (4.6)

Let Yi = (YT
i1, . . . ,Y

T
iti

)T be the mi × 1 vector of measurements on the ith individual,
where Yij = (Yij1, . . . , Yijmij

)T (j = 1, . . . , ti) is the mij × 1 vector of replications of
individual i at the jth level of x. Then by applying some matrix algebra, Vi = V ar(Yi) =
V(µi(β)) is

Vi =


V

(11)
i V

(12)
i . . . V1t

i

V
(21)
i V

(22)
i . . . V2t

i
...

...
. . .

...

V
(t1)
i V

(t2)
i . . . Vtt

i

 (4.7)

where V
(jk)
i = Cov(Yij,Yik) for all j and k and it will be

V
(kk)
i =


(eσ2 − 1)µ2

ik + µik (eσ2 − 1)µ2
ik . . . (eσ2 − 1)µ2

ik

(eσ2 − 1)µ2
ik (eσ2 − 1)µ2

ik + µik . . . (eσ2 − 1)µ2
ik

...
...

. . .
...

(eσ2 − 1)µ2
ik (eσ2 − 1)µ2

ik . . . (eσ2 − 1)µ2
ik + µik


mik×mik

= µikImik
+ (eσ2 − 1)µ2

ikJmik×mik
(4.8)

and

V
(jk)
i =

 (eσ2 − 1)µijµik . . . (eσ2 − 1)µijµik
...

. . .
...

(eσ2 − 1)µijµik . . . (eσ2 − 1)µijµik


mij×mik

= (eσ2 − 1)µijµikJmij×mik
(4.9)

where j 6= k and Jm×n is a matrix of m× n order in which all entries are equal to 1.

Vi = V ar(Yi) =


µi1Imi1

0 · · · 0
0 µi2Imi2

· · · 0
...

...
. . .

...
0 0 · · · µitImiti



+(eσ2 − 1)


µi11mi1

µi21mi2

...
µiti1miti

( µi11
T
mi1

µi21
T
mi2

· · · µiti1
T
miti

)

= Ȧi + ȧiȧ
T
i (4.10)
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where, ȧT
i =

√
eσ2 − 1

(
µi11

T
mi1

· · · µiti1
T
miti

)
and Ȧi = diag{µi1Imi1

, · · · , µitiImiti
}.

Here and throughout Iν denotes the ν × ν identity matrix and 1ν is an ν × 1 vector with
all entries equal to 1.
We suppose that YT = (YT

1 , . . . ,Y
T
s ) is the vector of the whole observation. Independence

of different individuals leads to,

V = V ar(Y) =


V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vs

 = V(µ(β))

according to (4.3) the quasi-information matrix of β, Mβ, is

Mβ =
s∑

i=1

DT
i V−1

i Di =
s∑

i=1

M i
β (4.11)

where M i
β = DT

i V−1
i Di is the individual quasi-information matrix for β associated with

the observations Yi of a single individual i. By replacing Vi (Eq. (4.10)) in to the
expression of M i

β we can represent M i
β as following

M i
β = DT

i (Ȧi + ȧiȧ
T
i )−1Di (4.12)

From (4.12), the information matrix is strongly dependent on the parameters.

If we define Ḟi =



fT (xi1)
...

fT (xi1)


mi1×p

...
fT (xiti)

...
fT (xiti)


miti

×p


mi×p

then Di = ȦiḞi and consequently we obtain

the following lemma .

Lemma 4.1.1. The individual information matrix (4.12) can be represented as

M i
β = ḞT

i (Ȧ−1
i + (eσ2 − 1)1mi

1T
mi

)−1Ḟi (4.13)

Proof.

M i
β = DT

i (Ȧi + ȧiȧ
T
i )−1Di = DT

i Ȧ−1
i (Ȧ−1

i + Ȧ−1
i ȧiȧ

T
i Ȧ−1

i )−1Ȧ−1
i Di

Since DT
i Ȧ−1

i = ḞT
i and Ȧ−1

i ȧi =
√
eσ2 − 11mi

, the result follows.
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Define Fi =

fT (xi1)
...

fT (xiti)


ti×p

the row individual design matrix neglecting the number of

replications. Then the information matrix can be simplified.

Lemma 4.1.2. (Niaparast 2009) The individual information matrix can be represented
as

M i
β = FT

i (A−1
i + (eσ2 − 1)1ti1

T
ti
)−1Fi = FT

i (Ai −
(eσ2 − 1)Ai1ti1

T
ti
Ai

1 + (eσ2 − 1)1T
tiAi1ti

)Fi (4.14)

with Ai =

mi1µi1 0
. . .

0 mitiµiti


Proof. Because of (Schott (1997), Corollary 1.7.2)

M i
β = ḞT

i (Ȧ−1
i + (eσ2 − 1)1mi

1T
mi

)−1Ḟi = ḞT
i (Ȧi −

(eσ2 − 1)Ȧi1mi
1T

mi
Ȧi

1 + (eσ2 − 1)1T
mi

Ȧi1mi

)Ḟi

Since ḞT
i ȦiḞi = FT

i AiFi, ḞT
i Ȧi1mi

= FT
i Ai1ti and 1T

mi
Ȧi1mi

=
ti∑

j=1

mijµij = 1T
ti
Ai1ti , we

obtain

M i
β = FT

i AiFi −
(eσ2 − 1)(FT

i Ai1ti)(1
T
ti
AiFi)

1 + (eσ2 − 1)1T
tiAi1ti

and the representation follows

Lemma 4.1.3. The above representation of information matrix can be simplified as

M i
β = ((FT

i AiFi)
−1 + U)−1 (4.15)

where U =

 eσ2 − 1 . . . 0
...

. . .
...

0 · · · 0

 is a matrix of order p× p.

Proof. Since (
√
eσ2 − 1)1ti = Fiup with uT

p =
√
eσ2 − 1

(
1 0 . . . 0

)
, we have

M i
β = FT

i (A−1
i + (Fiup)(Fiup)

T )−1Fi = FT
i (A−1

i + FT
i UFi)

−1Fi

where U = upu
T
p . With regard to lemma 1 in Schmelter (2007) the claim follows.

31



4 Poisson Regression Models with Random Intercept and Random Slope

Eq.(4.14) can be represented as,

M i
β = e

1
2
σ2

(FT
i ǍiFi −

e
1
2
σ2

(eσ2 − 1)

1 + e
1
2
σ2

(eσ2 − 1)
ti∑

j=1

mijµ̌ij

(FT
i Ǎi1ti)(F

T
i Ǎi1ti)

T )

where µ̌ij = e−
1
2
σ2
µij, Ǎi = e−

1
2
σ2

Ai = diag{mi1µ̌i1, . . .mitiµ̌iti} and, hence, FT
i ǍiFi is

the information matrix for the model without random intercept, i.e.

Y̌ijk
ind∼ P (µ̌ij) with µ̌ij = exp(fT (xij)β))


i = 1, . . . , s
j = 1, . . . , ti
k = 1, . . . ,mij

If µ̌i is the mean of the individual’s means for individual i in different points of experi-

mental setting, i.e., µ̌i = 1
mi

ti∑
j=1

mijµ̌ij, then

M i
β = e

1
2
σ2

(FT
i ǍiFi − c(σ2,mi, µ̌i)(F

T
i Ǎi1ti)(F

T
i Ǎi1ti)

T )

= e
1
2
σ2

((1− c(σ2,mi, µ̌i))F
T
i ǍiFi + c(σ2,mi, µ̌i)(F

T
i ǍiFi − (FT

i Ǎi1ti)(F
T
i Ǎi1ti)

T )

(4.16)

where c(σ2,mi, µ̌i) = e
1
2 σ2

(eσ2−1)

1+e
1
2 σ2

(eσ2−1)miµ̌i

. Using some simple algebra it is easy to see that

c(σ2,mi, µ̌i) is an increasing function of σ2 for all mi and µ̌i and it takes a number in
[0, 1

miµ̌i
). FT

i ǍiFi−(FT
i Ǎi1ti)(F

T
i Ǎi1ti)

T is the information matrix for the parameter vec-

tor (β1, . . . , βp−1) in the model with individual fixed effects. As we have indicated, (4.16)
concludes a linear combination of two information matrix, the fact that is in contrary to
the result in Schwabe and Schmelter (2008) which is considered a convex combination of
these two information matrices.
Now we consider two special cases of the Poisson regression model with random inter-
cept which are called simple Poisson regression with random intercept and quadratic
Poisson regression model with random intercept. In the first model we suppose that
f(xij) = (1, xij),i.e.

Yijk | bi
ind∼ P (µij(bi)) where µij(bi)) = exp(bi + β0 + β1xij) (4.17)

In the spaghetti plot of Figure 4.1, we show an aspect of conditional individual mean
response lines, exp(β0 + bix), and marginal mean response line, exp(β0 + β1x + 1

2
σ2), to

get a feeling for the patterns.

It is easy to see that Fi will be

 1 xi1
...

...
1 xiti

 in this model. Thus after some matrix
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4.1 Poisson Regression Model with Random Intercept

x

 

Figure 4.1: Conditional (dashed lines) and population mean (solid line) for the simple
Poisson regression model with random intercept.

algebra we have,

M i
β =


ti∑

j=1

mijµij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijx
2
ij



− eσ2 − 1

1 + (eσ2 − 1)
ti∑

j=1

mijµij

 (
ti∑

j=1

mijµij)
2 (

ti∑
j=1

mijµij)(
ti∑

j=1

mijµijxij)

(
ti∑

j=1

mijµij)(
ti∑

j=1

mijµijxij) (
ti∑

j=1

mijµijxij)
2


(4.18)

In the second model, the quadratic Poisson regression model with random intercept, we
have f(xij) = (1xij x

2
ij), an

Yijk | bi
ind∼ P (µij(bi)) where µij(bi)) = exp(bi + β0 + β1xij + β2x

2
ij) (4.19)

In the following plot (Figure 4.2) a general pattern of the behavior of the conditional and
unconditional means of the response is given.
The quasi-information matrix for β, based on individual i, can be represented as
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4 Poisson Regression Models with Random Intercept and Random Slope

x

 

Figure 4.2: Conditional (dashed lines) and population mean (solid line) for the quadratic
Poisson regression model with random intercept.

M i
β =

 1 xi1 x2
i1

...
...

...
1 xiti x2

iti


T  mi1µi1 . . . 0

...
. . .

...
0 . . . mitiµiti


 1 xi1 x2

i1
...

...
...

1 xiti x2
iti



− eσ2 − 1

1 + (eσ2 − 1)
ti∑

j=1
mijµij



ti∑
j=1

mijµij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijx
2
ij


(

ti∑
j=1

mijµij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijx
2
ij

)

=



ti∑
j=1

mijµij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijx
2
ij

ti∑
j=1

mijµijxij

ti∑
j=1

mijµijx
2
ij

ti∑
j=1

mijµijx
3
ij

ti∑
j=1

mijµijx
2
ij

ti∑
j=1

mijµijx
3
ij

ti∑
j=1

mijµijx
4
ij


− eσ2 − 1

1 + (eσ2 − 1)
ti∑

j=1
mijµij


(

ti∑
j=1

mijµij)2 (
ti∑

j=1
mijµij)(

ti∑
j=1

mijµijxij) (
ti∑

j=1
mijµij)(

ti∑
j=1

mijµijx
2
ij)

(
ti∑

j=1
mijµij)(

ti∑
j=1

mijµijxij) (
ti∑

j=1
mijµijxij)2 (

ti∑
j=1

mijµijxij)(
ti∑

j=1
mijµijx

2
ij)

(
ti∑

j=1
mijµij)(

ti∑
j=1

mijµijx
2
ij) (

ti∑
j=1

mijµijxij)(
ti∑

j=1
mijµijx

2
ij) (

ti∑
j=1

mijµijx
2
ij)

2


(4.20)
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4.2 Poisson Regression Model with Random Slope

4.2 Poisson Regression Model with Random Slope

An assumption that might sometimes be in challenge is that the effect of the explanatory
variable is constant across the different subjects. On the contrary of a random intercept
model, random slope model allows the explanatory variable to have a different effect for
each individual.
The Poisson regression model with random slope can be written as,

Yijk | bi
ind∼ P (µij(bi))


i = 1, . . . , s
j = 1, . . . , ti
k = 1, . . . ,mij

ti∑
j=1

mij = mi

n =
s∑

i=1

mi

(4.21)

where µij(bi) = exp(β0 + bixij), and bi is normally distributed with mean β1 and variance
σ2.
Similar to the model with random intercept, we have

µij = E(Yijk) = eβ0+β1xij+
1
2
σ2x2

ij for all k (4.22)

A good comparison of the conditional mean and population mean is prepared in the
following plot (Figure 4.2)

V ar(Yijk) = µ2
ij(e

σ2x2
ij − 1) + µij for all k (4.23)

Cov(Yijk, Yij′k′) = µijµij′(e
σ2xijxij′ − 1) for all (j, k) 6= (j′, k′) (4.24)

For different individuals ,

Cov(Yijk, Yi′j′k′) = 0 for all i 6= i′ and all j, j′, k, k′ (4.25)

Consider the same notation as in the previous section , then we have

V
(kk)
i = µikImik

+ (eσ2x2
ik − 1)µ2

ikJmik×mik

and also,

V
(jk)
i = (eσ2xijxik − 1)µijµikJmij×mik

for j 6= k

where V
(kk)
i and V

(jk)
i are the same notation as in Model with random intercept. Therefore

the variance-covariance matrix of the Yi, the vector of the ith individual observations, is

Vi = V ar(Yi) = Ȧi + Ḃii (4.26)
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4 Poisson Regression Models with Random Intercept and Random Slope

x

 

Figure 4.3: Conditional (dashed lines) and population mean (solid line) for the Poisson regres-
sion model with random slope.

where Ȧi is the same as the definition of Ȧi in the model with random intercept (4.10),
i.e.,

Ȧi = diag{µi1Imi1
, · · · , µitiImiti

} (4.27)

and Ḃii = (B(ii)jk)
mi
j,k=1 is ami×mi block matrix, where B(ii)jk = (eσ2xijxik−1)µijµikJmij×mik

.

Under known σ2, the quasi-information matrix of β, M i
β, can be obtained by replacing

(4.27) in (4.3),

M i
β = DT

i (Ȧi + Ḃii)
−1Di (4.28)

Lemma 4.2.1. Suppose that H =

 eσ2x2
1 − 1 . . . eσ2x1xt − 1
...

. . .
...

eσ2x1xt − 1 . . . eσ2x2
t − 1

, then H is positive

semi-definite.

Proof. Consider the following model

Yi | b ∼ P (µi(b)) , i = 1, . . . , t and µi(b) = eβ0+bxi
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4.2 Poisson Regression Model with Random Slope

Let
˜̃
Y = (Y1, . . . , Yt)

T be the t× 1 vector of observations, we have

V ar(E(
˜̃
Y | b)) =

 (eσ2x2
1 − 1)µ2

1 . . . (eσ2x1xt − 1)µ1µt
...

. . .
...

(eσ2x1xt − 1)µ1µt . . . (eσ2x2
t − 1)µ2

t


where µj = eβ0+β1xj+

1
2
σ2x2

j . We define Q = diag{µ1, . . . µt} as a diagonal matrix, thus

H = Q−1V ar(E(
˜̃
Y | b))Q−1

Since V ar(E(
˜̃
Y | b)) is positive semi definite (PSD) matrices and Q = QT , H is PSD.

The following lemma indicates a simplified version of the quasi-information matrix for
the model with random slope.

Lemma 4.2.2. The quasi-information matrix M i
β in (4.28) can be represented as

M i
β = FT

i (A−1
i + Bii)

−1Fi (4.29)

where Ai = diag{mi1µi1,mi2µi2, . . . ,mitiµiti} is the same as Ai in the model with random

intercept, Fi =

(
1 1 . . . 1
xi1 xi2 . . . xiti

)T

is the design matrix of the model, and

Bii =


eσ2x2

i1 − 1 eσ2xi1xi2 − 1 . . . eσ2xi1xiti − 1

eσ2xi1xi2 − 1 eσ2x2
i2 − 1 . . . eσ2xi2xiti − 1

...
...

. . .
...

eσ2xiti
xi1 − 1 eσ2xiti

xi2 − 1 . . . eσ2x2
iti − 1

 (4.30)

Proof. Consider M i
β in (4.28) it is easy to see that under known σ2, DT

i = ḞT
i Ȧi, then

DT
i (Ȧi + Ḃii)

−1Di = ḞT
i Ȧi(Ȧi + Ḃii)

−1ȦiḞi = ḞT
i (Ȧ−1

i + Ȧ−1
i ḂiiȦ

−1
i )−1Ḟi

this equality holds because Ȧi is a diagonal matrix with non-zero diagonal entries and,
hence, it is symmetric and invertible.

Ȧ−1
i ḂiiȦ

−1
i

=


(eσ2x2

i1 − 1)Jmi1×mi1
(eσ2xi1xi2 − 1)Jmi1×mi2

. . . (eσ2xi1xiti − 1)Jmi1×miti

(eσ2xi1xi2 − 1)Jmi2×mi1
(eσ2x2

i2 − 1)Jmi2×mi2
. . . (eσ2xi2xiti − 1)Jmi2×miti

...
...

. . .
...

(eσ2xiti
xi1 − 1)Jmiti

×mi1
(eσ2xiti

xi2 − 1)Jmiti
×mi2

. . . (eσ2x2
iti − 1)Jmiti

×miti


= CiBiiC

T
i
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4 Poisson Regression Models with Random Intercept and Random Slope

where Ci = diag{1mi1
,1mi2

, . . . ,1miti
} which is a block diagonal matrix of order mi × ti.

using 4.2.1, Under conditions of unequal and non-zero measurements for xij, regarding to
the Lemma 4.2.1 Bii is invertible. Applying the theorem 1.7 of Schott (1997), we have

M i
β = ḞT

i (Ȧ−1
i + CiBiiC

T
i )−1Ḟi

= ḞT
i [Ȧi − ȦiCi(B

−1
ii + CT

i ȦiCi)
−1CT

i Ȧi]Ḟi

= ḞT
i ȦiḞi − ḞT

i ȦiCi(B
−1
ii + CT

i ȦiCi)
−1CT

i ȦiḞi

Since ḞT
i ȦiḞi = FT

i AiFi, ḞT
i ȦiCi = FT

i Ai and CT
i ȦiCi = Ai, thus

M i
β = FT

i [Ai −Ai(Ai + B−1
ii )−1Ai]

−1Fi

⇒ M i
β = FT

i (A−1
i + Bii)

−1Fi (4.31)

where the last expression holds because of (Schott(1997), Corollary 1.7.1)

Remark 4.1. In the above proof an essential assumption was xij 6= 0. In case of xij = 0
which will be typically occurred to optimal designs study, we replace xij by xij + δ and
hence Bii by Bδ

ii. Since lim
δ→0

Bδ
ii = Bii we can follow the same line in the proof as the

above proof and thus result follows.

As we will see in next chapters, the analysis of this model based on the quasi-information
matrix differs from the model with random intercept. This discrepancy comes from the
dependency of Bii on the support points of the experimental setting.
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5 Optimal Designs

5.1 Introduction

This chapter presets a compact review of the topics of optimal designs of experiments
and locally optimal design of experiments. A short introduction to the optimal design
terminology, which we need to introduce the optimal design theory and its applications,
starts the review. Despite wide theoretical work on optimal designs for linear models (see
e.g. Fedorov (1972), Silvey (1980) and many others) and optimal linear mixed models(see
e.g. Liski et al. 2002, Fedorov and Hackl 1997, Schmelter 2007 and others) there are
only a few results on the case of Generalized Linear Mixed Models. With regard to the
structure of these models (see sec. 2.4), deriving analytical result is difficult.
In the next section, we introduce some arbitrary concepts and definitions of optimal
design. After that, in the third and the fourth sections, a review of convex design theory
for two popular models including linear models and linear mixed models will be prepared.
In the last two sections some new results on the convex design theory are presented for
two special models which are the Poisson regression model with random intercept and the
Poisson regression model with random slope separately.

5.2 Basic Concepts

Consider the linear model,

Y = Fβ + ε

As we indicated in (2.6) and (2.8) the variance-covariance matrices of β̂ and γ̂(β) are

V ar(β̂) = σ2(FTF)−1

V ar( ˆγ(β)) = σ2Lγ(F
TF)−1LT

γ

respectively. They depend heavily on the experimental setting{x1, . . . , xn} via F. The
settings xi may be chosen from τ = [a, b] which is called the experimental domain .
Most literature on optimal designs focuses on the specific symmetric domain [−1, 1] or on
the specific asymmetric domain [0, 1]. It is easy to see that we can replace τ = [a, b] by
a symmetric standardized experimental domain τ = [−1, 1]( e.g. Atkinson et al. (2007)
page 18) or an asymmetric standardized experimental domain τ = [0, 1] (e.g. Liski et al.
(2002) page 38), although the relations between optimality study in different domains are
not clear generally.
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5 Optimal Designs

Note that if we have replications in the experimental settings,i.e. {n1, . . . , nm} is the
number of replications corresponding to {x1, . . . , xm} with the total number of observa-

tions n =
m∑

i=1

ni and xi ∈ τ , then we can represent the variance-covariance matrix of β̂

and γ̂(β)

V ar(β̂) =
1

n
σ2(FTWF)−1 (5.1)

V ar( ˆγ(β)) =
1

n
σ2Lγ(F

TWF)−LT
γ

respectively. In the above expressions W is a diagonal matrix with entries ni

n
, i = 1, . . . ,m,

i.e. W =

 n1
n

. . .
nm
n

.

Remark 5.1. Since the analytical inference based on V ar(β̂) is the same as analytical

inference based on V ar( ˆγ(β)), in continue we consider only β̂ and V ar(β̂) except in
special cases that we say.

Because of the dependency on experimental settings, the experimenters might think
how they can plan an experiment to make the variance-covariance matrix of β̂ as small
as possible or alternatively to make its inverse as large as possible in some sense. The
answer of this question is the main subject of optimal design .
Consider an exact design dn as following

dn =

{
x1 . . . xm

n1 . . . nm

}
(5.2)

then,

V ard(β̂) =
1

n
σ2(FTWF)−1 (5.3)

We subscribe Var with d to lay emphasis on the design. For the sake of simplicity in
writing we suppress the index of dn.
Each exact design dn can be considered as a discrete design measure over τ , ξn. If the
design has trails at m distinct points in τ , we can write,

ξn =

{
x1 . . . xm

p(x1) . . . p(xm)

}
(5.4)

where p(xi) is the assigned relative frequencies for the point xi (i = 1, . . . ,m). Note that

np(xi) = ni and
m∑

i=1

p(xi) = 1.
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5.2 Basic Concepts

If σ2 is known, then V ard(β̂) depends on the xi and the ni. It seems to be reasonable
that we try to minimize 1

n
(FTWF)−1 or equivalently to maximize n(FTWF) or (FTWF)

with W = diag{p1, . . . , pm} and pi = p(xi), i = 1, . . . ,m. n(FTWF) and (FTWF) are
well-known as the information matrix and the normalized information matrix respectively.
Following Fedorov and Hackl (1997) we denote the information matrix and normalized
information matrix with Mβ(ξn) and Mβ(ξn) respectively.

The design ξ
(1)
n dominates the design ξ

(2)
n in the Loewner ordering sense , denoted

by ξ
(1)
n � ξ

(2)
n , if Mβ(ξ

(1)
n ) −Mβ(ξ

(2)
n ) is a non-negative definite matrix. We also denote

Mβ(ξ
(1)
n ) ≥Mβ(ξ

(2)
n ) or Mβ(ξ

(1)
n )−Mβ(ξ

(2)
n ) ≥ 0 when Mβ(ξ

(1)
n )−Mβ(ξ

(2)
n ) is non-negative

definite.
The matrix inversion A−1 is an antitonic mapping from the open cone of positive definite
matrices to itself with respect to the Loewner ordering sense , that means if A ≥ B then
A−1 ≤ B−1(see Pukelsheim (1993), page 13).
Since the information matrix for the parameter β, in general, equals (or approximately
equals) the inverse of the variance-covariance matrix of β̂, this property leads us to an
equivalence in the comparison of variance-covariance matrices of two different designs and
the comparison of their information matrices in the sense of Loewner ordering, i.e.

V ar
ξ
(1)
n

(β̂) ≤ V ar
ξ
(2)
n

(β̂) ⇔Mβ(ξ(1)
n ) ≥Mβ(ξ(2)

n ) ⇔ ξ(1)
n � ξ(2)

n (5.5)

An immediate question arises: Can we find an exact design ξ∗n which dominates any other
design of experiment?
In the simple case, when β is scalar, to find an optimal design is straightforward but, in
general, for the situation for more than one dimensional β there is no optimal design in
the Loewner ordering sense.
A remedy way out of this situation is to compare the designs with respect to some design
criterion function Φ.
In general Φ is an antitonic convex real-valued function on the p× p symmetric matrices
which is called an optimality criterion Φ. We suppose without loss of generality that the
best design according to Φ, the Φ-optimal design , is the one which minimizes Φ. Thus
ξ∗n is Φ-optimal design if

ξ∗n = arg min
ξn∈Ξn

Φ(Mβ(ξn)) (5.6)

where Ξn is the set of exact designs of the size n (see (5.4)).
Because of the discreteness in the exact design and consequently the set

Mn = {Mβ(ξn), ξn ∈ Ξn} (5.7)

finding a solution to minimize Φ(Mβ(ξn)) over Ξn may be extremely difficult both ana-
lytically or computationally (see Pukelsheim (1993), sec. 4.7). The mathematical prob-
lem is avoided by considering approximate designs (continuous designs) which ignore
the restriction that the number of trails at any design points must be integer. In fact
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5 Optimal Designs

we allow that the weights at the experimental points lie in [0, 1] without the condition
npi = ni (i = 1, . . . ,m). If Ξ be the set of all probability measures over τ , ξ, then the
Φ-optimal design might be not an exact design, the fact that the ”approximate” word
could be come up.

For the approximate design ξ =

{
x1 . . . xm

p1 . . . pm

}
∈ Ξ with

m∑
i=1

pi = 1 the information

matrix is

Mβ(ξ) =

∫
τ

f(x)fT (x)ξ(dx) = n
m∑

i=1

pif(xi)f
T (xi) = n(FT

ξ WFξ)

where W is the same as before with entries pi.
There are many different optimality criteria which are indexed by some alphabetic letters.
we review some of them in this text.
Note that we suppress indices from Fξ and Mβ(ξ) for simplicity in writing. The most
popular criterion is based on the determinant of the information matrix Mβ(ξ) which is
defined as following

Def 5.1. ξ∗ is called a D-optimal design if

det(M(ξ∗)) ≥ det(M(ξ)) for all ξ ∈ Ξ (5.8)

This is equivalent to maximizing the logarithm of the determinant of M(ξ) over Ξ, i.e.

ξ∗ = arg min
ξ∈Ξ

[− log(det(M(ξ)))] (5.9)

or Φ(M(ξ)) = − log(det(M(ξ))). Using the logarithm function has the advantage that it
is convex on the space of information matrices M, so that a local minimum will in fact
be a global minimum.

In other words under the assumption of normal errors the confidence ellipsoid for β will
be

{β :
n

σ2
(β − β̂)TM(ξ)(β − β̂) ≤ c} = {β : (β − β̂)TV ar−1(β̂)(β − β̂) ≤ c} (5.10)

where c is a constant which depends on the significance level. A common way is to make
this ellipsoid as small as possible. A measure of the size of this ellipsoid is its volume which
is proportional to the (det(M(ξ)))−

1
2 . Thus it is reasonable that we maximize det(M(ξ))

or minimize − log(det(M(ξ))) which coincides with the definition of D-optimal design.
If a certain linear combination of parameter vector β, AT β, is of interest, then,

MA(ξ) = (ATM−1(ξ)A)−1 ⇒ Φ(MA(ξ)) = log(det(ATM−1(ξ)A)) (5.11)

is an optimal criterion, which is called the DA-criterion . Here A is a s ×m matrix of
rank s. If A = [Is 0] then AT β is the part of β containing the first s elements. This
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5.2 Basic Concepts

optimal criterion is called the Ds- criterion (Kiefer and Wolfowitz (1959)).
Suppose that λmin(M(ξ)) is the minimal eigenvalue of the matrix M(ξ) then the length
of the largest principle axis of the ellipsoid (5.10) is 1/

√
λmin(M). So this is another

optimal design which minimizes λmin(M(ξ)) .

Def 5.2. Φ is called E-criterion (Ehrenfeld (1955)) if

Φ(M(ξ)) = λmin(M(ξ)) (5.12)

and, hence, ξ∗ will be E-optimal design if

ξ∗ = max
ξ∈Ξ

λmin(M(ξ)) (5.13)

The A-criterion is a criterion which is considered to minimize the total variance of
parameter estimates or equivalently minimizing the average variance.

Def 5.3. ξ∗ is an A-optimal design (Chernoff (1953)) if it minimize tr(M−1(ξ)) over
Ξ, i.e.

Φ(M(ξ)) = tr(M−1(ξ)) (5.14)

If λ1, . . . , λp are the eigenvalues of M(ξ), then the A-optimality criterion will be ,

Φ(M(ξ)) =

p∑
i=1

λ−1
i . (5.15)

There are more criteria to define an optimal design in different ways, which we will not
treat in this note.
A wide class of optimal design criteria can be considered as

Φk(M(ξ)) = (
1

p

p∑
i=1

λ−k
i )

1
k (5.16)

D, A and E-optimality criteria are known as special cases when k → 0, 1 and k → ∞
respectively.
All above criteria are relative to parameter space.
Smith(1918)was one of the first to state a criterion and obtain optimal design based on
predictions of Y at x, Ŷx, for regression models. She proposed a criterion which is based on
the minimization of the maximum variance of any predicted value over the experimental
domain, i.e.

min
ξ∈Ξ

max
x∈τ

V ar(Ŷx). (5.17)

With regard to (2.2), in the linear model,

V ar(Ŷx) = σ2fT (x)M−1(ξ)f(x) (5.18)
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5 Optimal Designs

Def 5.4. A design ξ∗ is G-optimal if

ξ∗ = arg min
ξ∈Ξ

max
x∈τ

fT (x)M−1(ξ)f(x) (5.19)

In other words, ξ∗ is G-optimal if

max
x∈τ

fT (x)M−1(ξ∗)f(x) ≤ max
x∈τ

fT (x)M−1(ξ)f(x) (5.20)

for all ξ ∈ Ξ.

Since D and G-optimal criteria are the criteria receiving the most attention in applied
research and strong connection between D and G-optimality, we will more focus on these
criteria.
Two important questions which arise here, how would one shows that a specific design, ξ∗,
is the best one? And second, how does D-optimality as a parameter estimation criterion
relate to G-optimality as a response estimation criterion? The answers will be through
convex design theory and an equivalence theorem .

5.3 Convex Design Theory

Under the following mild assumptions,

1. τ is compact set.

2. fi(.) (i = 1, . . . p) are continuous functions.

which guarantee the existence a Φ-optimal design, Carathéodory’s theorem concludes
that every element of the design space M can be expressed as a convex combination of
no more than p(p+1)

2
+ 1 elements of the form f(x)fT (x). Moreover as we further see

if Φ(M(ξ)) is monotone, then a boundary point of M minimizes Φ(M(ξ)) and, hence,

an optimal design with at most p(p+1)
2

support points can be found (see Silvey (1980),
Appendix 2).
All optimal criteria have the following properties,

1. Monotonicity: If M(ξ1) ≤ M(ξ2) (Loewner ordering sense), then Φ(M(ξ1)) ≥
Φ(M(ξ2)).
this property ensures that the minimum of Φ(M(ξ)) occurs at a boundary point.

2. Convexity:Φ(M((1− α)ξ1 + αξ2)) ≤ (1− α)Φ(M(ξ1)) + αΦ(M(ξ2)) for α ∈ [0, 1].
this property guarantees that a local minimum will in fact be a global minimum.

Now we are ready to find an answer for the question which was stated to start this section,
”how would one shows that a specific design, ξ∗, is the best there is?”, by means of the
Fréchet directional derivative.
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5.3 Convex Design Theory

Def 5.5. For any M1 and M2 ∈M, the Fréchet directional derivative of Φ(.) at M1

in the direction of M2 is defined as,

FΦ(M1,M2) = lim
α→0+

1

α
[Φ((1− α)M1 + αM2)− Φ(M1)] (5.21)

or equivalently ,

FΦ(M1,M2) =
d

dα
Φ((1− α)M1 + αM2) |α=0+ (5.22)

Note that, since that M((1 − α)ξ1 + αξ2) = (1 − α)M(ξ1) + αM(ξ2) we replaced
M((1− α)ξ1 + αξ2) by (1− α)M(ξ1) + αM(ξ2)in (5.21) and (5.22).

Remark 5.2. Note that differentiability of Φ at M1 is a necessary condition. To check if
Φ is Fréchet differentiable at M1 when Φ is convex and φ(M1) is finite, a sufficient and
necessary condition stated in Silvey (1980), Appendix 3, can be used, i.e., one can check
whether the Gâteaux derivative is linear in its second argument, in other words,

GΦ(M1,
∑

aiMi) =
∑

aiGΦ(M1,Mi)

where ai is a real number with
∑
ai = 1 and

GΦ(M1,Mi) = lim
α→0+

1

α
[Φ(M1 + αM2)− Φ(M1)]

Or equivalently, with regard to Rockafeller (1972) a necessary and sufficient condition for
Φ to be Fréchet differentiable is

FΦ(M1,
∑

aiMi) =
∑

aiFΦ(M1,Mi) (5.23)

Note that linearity in the second argument of the Gâteaux derivative does not guar-
antee Fréchet differentiability in general, but since that the optimal design is unique it
guarantees existence of Fréchet derivative (For more detail see P.113-115 of Wayne and
Varberg(1973)). After this definition, we are ready to obtain the equivalence theorem as
a consequence of the Fréchet directional derivative. Silvey(1980) has proved the following
theorem which is known as the general equivalence theorem in the literature.

Theorem 5.3.1. If β is the parameter vector and Φ(.) is convex on M, the set of de-
sign information matrices, and differentiable at M(ξ∗), then the following statements are
equivalent

1. The measure ξ∗ is Φ- optimal

2. The Fréchet derivative FΦ(M(ξ∗), fT (x)fT (x)) ≥ 0 for all x ∈ τ
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5 Optimal Designs

3. The following equality holds,

max
x∈τ

FΦ(M(ξ∗), f(x)fT (x)) = min
ξ∈Ξ

max
x∈τ

FΦ(M(ξ), f(x)fT (x)) (5.24)

If Φ(M(ξ)) = − log(det(M(ξ))), the last statement expresses the equivalence between
D-optimality designs and G-optimality designs. In other words the equivalence theorem
says that these two design criteria are identical when the design is expressed as a measure
on τ . A compact discussion can be found in Silvey (1980) and many theorems have been
provided there.

Remark 5.3. The condition FΦ(M(ξ∗), f(x)fT (x)) ≥ 0 in the above theorem can often
be transformed to the form φ(x, ξ∗) ≤ C(M(ξ∗)) where φ(x, ξ∗) is usually called the sen-
sitivity function, as it shows us how moving some small measure from the support set
ξ∗ into the direction of x influences the optimality criterion Φ. C(M(ξ∗)) is a function
of M(ξ∗). For instance if we consider D-optimality in the ordinary linear model, the
sensitivity function will be

φ(x, ξ∗) = fT (x)M−1(ξ∗)f(x)

and C(M(ξ∗)) = p where p is the number of parameters. A summarized table of sensitivity
functions and C(M(ξ∗)) for different optimality criteria in the ordinary linear models has
been prepared in table 2.1 in Fedorov and Hackl (1997).

5.4 Convex Design Theory for Linear Mixed Models

The structure of the last section was built on the basis of the fixed effects linear model.
In those models the main characteristic of models was independence of observations.
In many cases of application, where the individuals can be observed more than once or
the repeated measurements are available, this condition is not true. Fedorov and Hackl
(1997), Liski et al. (2002), Luoma (2000) have extensively provided some theoretical
results in optimal designs for these models. Liu (2006), and Schmelter (2007a, 2007b and
2007c) have recently done some extensive works on this topic.
Consider again the linear mixed model (2.22),

Yi = Xiβ + Zibi + εi (5.25)

We focus on a special case of LMM, where Zi = Xi, i.e.,

Yi = Xiβ + Xibi + εi (5.26)

This model is called Random Coefficient Regression (RCR) model. Yi = (Yi1, . . . , Yimi
)T

is the vector of all observations for individual i, Yij (j = 1, . . . ,mi) is observed under the
following experimental design

ξi =

{
xi1 . . . xiti

pi1 . . . piti

}
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5.4 Convex Design Theory for Linear Mixed Models

where
ti∑

i=1

pij = 1. We replace Xi by Fi for unifying notation and generality, where Fi has

the same definition as Fi in the linear model. Thus we restrict ourselves to the following
model,

Yi = Fiβ + Fibi + εi (5.27)

where bi ∼ N(0, σ2U). We suppose that U is known. εi is normally distributed with
mean 0 and covariance matrix σ2I.
Regarding to (2.24), the covariance matrix of the estimator β̂ of β corresponding to the
individual i, is

V ar(β̂i) = σ2(FT
i (FiUFT

i +miWi)
−1Fi)

−1

where Wi is the diagonal matrix with the weights pij as diagonal elements. If σ2 is known,
then the ith individual information matrix, Mβ(ξi) is defined as:

Mβ(ξi) = FT
i (FiUFT

i +miWi)
−1Fi (5.28)

So

V ar(β̂) = σ2(
s∑

i=1

FT
i (FiUFT

i +miWi)
−1Fi)

−1 ⇒ Mβ =
s∑

i=1

FT
i (FiUFT

i +miWi)
−1Fi

where Mβ is the information matrix for the whole sample population which depends
heavily on the experimental setting. The last expressions hold because of independence
of individuals. For more details see Schmelter (2007a).

Lemma 5.4.1. (cf. Schmelter (2007a) Lemma1) Mβ(ξi) in (5.28) can be represented as

Mβ(ξi) = ((miF
T
i WiFi)

−1 + U)−1 = (M−1(ξi) + U)−1

where M(ξi) = miF
T
i WiFi is the non-normalized information matrix of ξi in the corre-

sponding fixed effect model.

The same result can be found in Liski et al.(2002). This above representation of Mβ(ξi)
clearly separates the effects of the random part and the fixed part on the information
matrix. We can also obtain thus any information matrix dominance in the fixed effects
models will also carry through for random coefficient regression models.
The main property of the information matrix of the ordinary linear model is that the
information matrix of the convex combination of two designs is the convex combination
of the information matrix of the two designs, a property which does not carry over through
random coefficient regression model, i.e.

Mβ(αξ1 + (1− α)ξ2) 6= αMβ(ξ1) + (1− α)Mβ(ξ2)
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5 Optimal Designs

so we cannot directly apply convex design theory and find an equivalence theorem for
RCR models and hence we have to reconstruct the concepts and theorem for this case.
Under mild assumptions, lemma 8.5 in Schmelter (2007c) allows us to directly apply
convex design theory as described in the last section to the ordinary linear model. For
instance , if

Φ[(M−1(ξ) + U)−1] = log(det(M−1(ξ) + U))

i.e. the optimality criterion is the D-criterion. The second statement in Theorem 5.3.1
leads us to,

mfT (x)M−1(ξ∗)Mβ(ξ∗)M−1(ξ∗)f(x) ≤ tr[Mβ(ξ∗)M−1(ξ∗)] for all x ∈ τ (5.29)

as a necessary and sufficient condition for ξ∗ to be optimal for the estimation of β.
In general, for different individuals we may use different designs for data collection, we
introduce population design ζ:

ζ =

{
ξ1 . . . ξm
q1 . . . qm

}
(5.30)

with
m∑

i=1

qi = 1, where the ξi, i = 1, . . . ,m are individual designs. The following theorem

expresses the relation between individual optimal design and population optimal designs.

Theorem 5.4.1. (cf. Schmelter (2007a) Theorem 1) Optimal designs can be found among
those which are uniform across the individuals, i.e. if ξ∗i is Φ-optimal for the individual
design then we can observe all individual under this experimental design.

The proof can be found in Schmelter (2007a).
An immediately conclusion of this theorem is that we can ignore index i in Mβ(ξi), or in
other words

Mβ = sMβ(ξ1)

5.5 Locally Optimal Designs

A further common property of generalized linear models and generalized linear mixed
models is that the information matrix depends on the unknown parameters and hence the
optimum design will also depend upon the value of β. It poses a dual problem: to find
the optimal design we must know the parameters in advance and to get knowledge about
the parameters we need the experimental design to perform the experiment. A simple
approach to this problem is to look for locally optimal designs (the term introduced by
Chernoff (1953)) which are based on an initial guess of the parameters and then find
optimal designs which are optimal with respect to this initial guess. This initial guess
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5.6 Convex Design Theory for Poisson Regression Models with Random Intercept

used in locally optimal design might come from previous experimentation, or from a pilot
experiment conducted particularly for this purpose, or merely a guess. We shall call this
parameter guess the initial estimate or initial guess no matter how it is obtained.
Locally optimal designs will often apply in the next chapter where we attempt to find opti-
mal designs for Poisson regression models with random intercept and a Poisson regression
model with random slope.

5.6 Convex Design Theory for Poisson Regression
Models with Random Intercept

We consider again the individual information matrix of a Poisson regression model with
random intercept (4.15),

Mβ(ξ) = (M−1
β (ξ) + U)−1

We ignore the index i and then β in this expression just for simplicity. This representation
is very similar to the information matrix of a RCR model which has briefly been described
in the previous section. Here we have

U =


eσ2 − 1 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


In this section we try to extend convex design theory and the equivalence theorem for the
RCR model to the Poisson regression model with random intercept.
The following lemma is basically needed to find later results.

Lemma 5.6.1. The following inequality holds for every ξ1 and ξ2

M((1− α)ξ1 + αξ2) ≥ (1− α)M(ξ1) + αM(ξ2)

with respect to the Loewner partial ordering of symmetric non-negative definite matrices,
and where

M(ξ) = (M−1(ξ) + U)−1

Proof. The matrix U is not invertible, so we use some regularization

(((1− α)M(ξ1) + αM(ξ2))
−1 + U)−1 = lim

δ→0+
(((1− α)M(ξ1) + αM(ξ2))

−1 + (U + δI))−1

= lim
δ→0+

[(U + δI)−1 − (U + δI)−1((1− α)M(ξ1) + αM(ξ2) + (U + δI)−1)−1(U + δI)−1]
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≥ lim
δ→0+

[(U + δI)−1 − (U + δI)−1((1− α)(M(ξ1) + (U + δI)−1)−1

+α(M(ξ2) + (U + δI)−1)−1)(U + δI)−1]

= lim
δ→0+

[(1− α)(M−1(ξ1) + (U + δI))−1 + α(M−1(ξ2) + (U + δI))−1]

= (1− α)(M−1(ξ1) + U)−1 + α(M−1(ξ2) + U)−1

and the representation immediately follows. The inequality holds because of (αA+ (1−
α)B)−1 ≤ αA−1 + (1− α)B−1 for invertible matrices A and B (see ,for example, Fedorov
and Hackl (1997) p.107).

This outcome does not coincide with the result in ordinary linear models. The following
lemma is an immediate consequence of the above lemma and helps us to relate convex
design theory for our model and convex design theory for the ordinary linear model.

Lemma 5.6.2. Suppose that M is the set of non-negative definite (N.N.D.) Matrices of
order k×k and Φ : M→ (−∞,∞] is an optimality criterion with regularity assumptions,
i.e. convexity, monotonicity. If we define Ψ : Ξ → (−∞,∞] with Ψ(ξ) = Φ(M(ξ)) =
Φ[(M−1(ξ) + D)−1], then Ψ has the same properties as Φ, i.e., Ψ(ξ) is also monotone,
convex, where Ξ is the set of all probability measures on τ

.

Proof. Let ξ1 and ξ2 two designs in Ξ
Monotonicity property:

ξ1 � ξ2 ⇔ M(ξ1) ≥ M(ξ2)

⇔ Φ(M(ξ1)) ≤ Φ(M(ξ2)) ⇔ Ψ(ξ1) ≤ Ψ(ξ2)

convexity property:

Ψ((1− α)ξ1 + αξ2) = Φ(M((1− α)ξ1 + αξ2))

≤ Φ((1− α)M(ξ1) + αM(ξ2))

≤ (1− α)Φ(M(ξ1)) + αΦ(M(ξ2))

= (1− α)Ψ(ξ1) + αΨ(ξ2)

The first inequality is because of the antitonicity of Φ and Lemma 5.6.1 and the second
inequality is due to the convexity of Φ.

A similar proof can be found in Schmelter(2007c).
This lemma guarantees the applicability of convex design theory of the ordinary linear
model to our model, the Poisson regression model with random intercept.
If we consider the D-criterion

Ψ(ξ) = log(det(M−1(ξ) + U)) (5.31)

then the following theorem gives a sufficient and necessary condition that ξ∗ is D-optimal.
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Theorem 5.6.1. ξ∗ is D-optimal for a Poisson regression model with random intercept
if and only if

mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x) ≤ tr[M(ξ∗)M−1(ξ∗)]∀x ∈ τ
⇔ µ(x)fT (x)M−1(ξ∗)[M−1(ξ∗) +mU]−1M−1(ξ∗)f(x) ≤ p− 1 +

m

m+ uT
pM(ξ∗)up

∀x ∈ τ

where M(ξ∗) and M(ξ∗) are the normalized and non-normalized information matrices for

the model without random effect respectively and µ(x) = eβ0+β1x+ 1
2
σ2

Proof. First of all we need to check the Fréchet differentiability of Ψ defined in (5.31).
The Gâteaux derivative of the criterion function Ψ is

GΨ(ξ, ξ′) = lim
α→0+

1

α
[log(det(M(ξ) + αM(ξ′))−1 + U)− log(det(M−1(ξ) + U))]

= lim
α→0+

1

α
[log

det(I + U(M(ξ) + αM(ξ′)))

det(M(ξ) + αM(ξ′))
− log

det(I + UM(ξ))

det(M(ξ))
]

= lim
α→0+

1

α
[log

det(I + U(M(ξ) + αM(ξ′))) det(M(ξ))

det(M(ξ) + αM(ξ′)) det(I + UM(ξ))
]

= lim
α→0+

1

α
[log(det(I + αUM(ξ′)(I + UM(ξ))−1))− log(det(I + αM(ξ′)M−1(ξ)))]

= lim
α→0+

1

α
[(1 + αtr(UM(ξ′)(I + UM(ξ))−1))− (1 + αtr(M(ξ′)M−1(ξ′)))]

= tr(UM(ξ′)(I + UM(ξ))−1)− tr(M(ξ′)M−1(ξ))

= tr((M−1(ξ) + U)−1U− I)(M(ξ′)M−1(ξ))

let ξ′ =
r∑

i=1

aiξi with
r∑

i=1

ai = 1 therefore

GΨ(ξ1,
r∑

i=1

aiξi) = tr((M−1(ξ1) + U)−1U− I)((
r∑

i=1

aiM(ξi))M
−1(ξ1))

=
r∑

i=1

aitr((M
−1(ξ1) + U)−1U− I)M(ξi)M

−1(ξ1)

=
r∑

i=1

aiGΨ(ξ1, ξi)

so Ψ is Fréchet differentiable, and by applying the rules for matrix/vector differential
calculus ( see, e.g. Magnus and Neudecker (1988) or Wand (2002)) the Fréchet derivative
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which is defined in (5.21) or equivalently in (5.22), will be

FΨ(ξ∗, ξ) =
d

dα
ψ((1− α)ξ∗ + αξ) |α=0+

=
d

dα
log{det[((1− α)M(ξ∗) + αM(ξ))−1 + U])} |α=0+

= tr{[((1− α)M(ξ∗) + αM(ξ))−1 + U]−1 d

dα
[((1− α)M(ξ∗) + αM(ξ))−1 + U]} |α=0+

= −tr{(M−1(ξ∗) + U)−1((1− α)M(ξ∗) + αM(ξ))−1(M(ξ)

−M(ξ∗))((1− α)M(ξ∗) + αM(ξ))−1}
= tr{(M−1(ξ∗) + U)−1M−1(ξ∗)(M(ξ∗)−M(ξ))M−1(ξ∗)}

where M(ξ) = mµ(x)f(x)fT (x) is the information matrix for a single point design ξ. With
regard to the theorem (5.3.1) ξ∗ is D-optimal if

FΨ(ξ∗, ξ) ≥ 0 for all ξ

⇔ mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x) ≤ tr[M(ξ∗)M−1(ξ∗)]

the right expression of the above inequality can be simplified as

tr[M(ξ∗)M−1(ξ∗)] = tr[(M−1(ξ∗) + U)−1M−1(ξ∗)]

= tr[(M(ξ∗)−
M(ξ∗)upu

T
pM(ξ∗)

1 + uT
pM(ξ∗)up

)M−1(ξ∗)]

= p−
trM(ξ∗)upu

T
p

1 + uT
pM(ξ∗)up

= p−
ut

pM(ξ∗)up

1 + uT
pM(ξ∗)up

=
p+ (p− 1)uT

pM(ξ∗)up

1 + uT
pM(ξ∗)up

= (p− 1) +
1

1 + uT
pM(ξ∗)up

since that M(ξ∗) = 1
m
M(ξ∗) thus the representation follows.

Note that, by the same way as in the linear mixed models, we can indicate that the
population design is optimal when all individuals are observed under the same individual
optimal design.

5.7 Convex Design Theory for the Poisson Regression
Model with Random Slope

We consider the individual design as follow:

ξi =

{
xi1 . . . xiti

pi1 . . . piti

}
.
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Lemma 5.7.1. For the above design the quasi-information matrix of the Poisson regres-
sion model with random slope is

Mβ(ξi) = FT
i (A−1

i + Bii)
−1Fi (5.32)

where Ai = midiag{pi1µi1, pi2µi2, . . . , pitiµiti}, Fi =

(
1 1 . . . 1
xi1 xi2 . . . xiti

)T

and

Bii =


eσ2x2

i1 − 1 eσ2xi1xi2 − 1 . . . eσ2xi1xiti − 1

eσ2xi1xi2 − 1 eσ2x2
i2 − 1 . . . eσ2xi2xiti − 1

...
...

. . .
...

eσ2xiti
xi1 − 1 eσ2xiti

xi2 − 1 . . . eσ2x2
iti − 1

 . (5.33)

Proof. Regarding to the Lemma 4.2.2, the proof is immediately obtained .

In contrast to the previous model, we can not separate the random effect part and fixed
effect part. This fact causes that all theorems and lemmas which are constructed based
on these two parts cannot be used. So we build a new view to optimal design for this
model.
The following lemma will be needed in the reminder of this section.

Lemma 5.7.2. If ξ1 and ξ2 be two experimental designs in ∈ Ξ then

Mβ((1− α)ξ1 + αξ2) ≥ (1− α)Mβ(ξ1) + αMβ(ξ2)

where Mβ(ξi) (i = 1, 2) is the quasi-information matrix for β based on individual design
ξi. For simplicity we suppress the index β.

Proof.

Mβ((1− α)ξ1 + αξ2) = FT

((
(1− α)A1 0

0 αA2

)−1

+

(
B11 B12

B21 B22

))−1

F

= FT

(
(1− α)−1A−1

1 + B11 B12

B21 α−1A−1
2 + B22

)−1

F

where F =

(
F1

F2

)
with F1 =

(
1 . . . 1
x11 . . . x1t1

)T

and F2 =

(
1 . . . 1
x21 . . . x2t2

)T

as the

design matrices corresponding to ξ1 and ξ2 respectively. We also have

B12 =

 eσ2x11x12 − 1 . . . eσ2x11x1t2 − 1
... . . .

...

eσ2x1t1x21 − 1 . . . eσ2x1t1x2t2 − 1

 = BT
21
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Due to the lemma(4.2.1), B =

(
B11 B12

B21 B22

)
is PSD and hence all leading prin-

ciple minors are non-negative. On the other hand 0 < α < 1 and hence the con-
stants α

1−α
and 1−α

α
are positive and inverse to each other. Therefore all leading prin-

ciple minors of

(
( α

1−α
)B11 −B12

−B21 (1−α
α

)B22

)
= CBCT are positive semi-definite with C =( √

α
1−α

I 0

0 −
√

1−α
α

I

)
.

(
( α
1−α)B11 −B12

−B21 (1−α
α )B22

)
=

(
( 1
1−α − 1)B11 −B12

−B21 ( 1
α − 1)B22

)
≥ 0

⇔
(

(1− α)−1A−1
1 + B11 B12

B21 α−1A−1
2 + B22

)
−
(

(1− α)−1A−1
1 + (1− α)−1B11 0

0 α−1A−1
2 + α−1B22

)
≤ 0

⇔
(

(1− α)−1A−1
1 + B11 B12

B21 α−1A−1
2 + B22

)
≤
(

(1− α)−1A−1
1 + (1− α)−1B11 0

0 α−1A−1
2 + α−1B22

)
⇔
(

(1− α)−1A−1
1 + B11 B12

B21 α−1A−1
2 + B22

)−1

≥
(

(1− α)−1A−1
1 + (1− α)−1B11 0

0 α−1A−1
2 + α−1B22

)−1

the last inequality is because of the antitonic property of the matrix inversion (Pukelsheim(1993),
page 13). So

FT

(
(1− α)−1A−1

1 + B11 B12

B21 α−1A−1
2 + B22

)−1

F

≥ FT

(
(1− α)−1A−1

1 + (1− α)−1B11 0
0 α−1A−1

2 + α−1B22

)−1

F

⇔ FT

(
(1− α)−1A−1

1 + B11 B12

B21 α−1A−1
2 + B22

)−1

F

≥ FT
1 ((1− α)−1A−1

1 + (1− α)−1B−1
11 )−1F1 + FT

2 (α−1A−1
2 + α−1B22)−1F2

So the claim follows.

Theorem 5.7.1. If Ψ : Ξ → (−∞,∞] with Ψ(ξ) = Φ(M(ξ)) and ξ1 and ξ2 be two designs
in Ξ, the following statements hold

1. Ψ is antitonic, that is if ξ1 and ξ2 be two designs in Ξ and ξ1 � ξ2 then Ψ(ξ1) ≤
Ψ(ξ2).

2. Ψ is convex, that is if ξ1 and ξ2 be two designs in Ξ, then

Ψ((1− α)ξ1 + αξ2) ≤ (1− α)Ψ(ξ1) + αΨ(ξ2)
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Proof.

1. ξ1 � ξ2 ⇒ M(ξ1) ≥ M(ξ2) ⇒ Φ(M(ξ1)) ≤ Φ(M(ξ2)) ⇒ Ψ(ξ1) ≤ Ψ(ξ2)

2. Ψ((1− α)ξ1 + αξ2) = Φ(M((1− α)ξ1 + αξ2))
≤ Φ((1− α)M(ξ1) + αM(ξ2)) ≤ (1− α)Φ(M(ξ1)) + αΦ(M(ξ2))
= (1− α)Ψ(ξ1) + αΨ(ξ2)

The second statement holds because of lemma (5.7.2) and antitonicity of Φ and the last
inequality in there is true due to convexity of Φ.

This theorem allows the practitioner to verify that a given design is globally optimal.
As we have seen the most popular optimal criterion is the D-optimality criterion. We are
now ready to obtain a new version of the equivalence theorem to check D-optimality of a
design in this case.
Let F0,F1, . . . ,Fk be the design matrices and A0,A1, . . . ,Ak are diagonal matrices with

elements mijµij and µij = eβ0+β1xij+
1
2
σ2x2

ij (j = 1, . . . , ti) corresponding to the designs
ξ, ξ1, . . . , ξk. The following lemma is necessary to prove Fréchet differentiability of D-
criterion.

Lemma 5.7.3. Suppose that f(ε) = det[M((1 − ε)ξ + ε
k∑

i=1

aiξi)]. f(ε) is continuous,

concave and differentiable at any right hand neighborhood of ε = 0.

Proof. Suppose that FT =
(

FT
0 FT

1 . . . FT
k

)
=
(

FT
0 F̃T

)
is the design matrix of

the convex combination of ξ and (1−ε)ξ+ε
k∑

i=1

aiξi and A(ε) = diag{(1−ε)A0, εa1A1, . . . , εakAk} =(
A0(ε) 0

0 Ã(ε)

)
is a block diagonal matrix where A0(ε) = (1 − ε)A0 and Ã(ε) =

ε · diag{a1A1, . . . , akAk}. We also suppose that B =

(
B00 B̃01

B̃10 B̃11

)
where B̃01 =

B̃T
10 =

(
B01 . . . B0k

)
and B̃11 = (Bhj)

k
h,j=1 are also appropriate block matrices with

Bhj = (eσ2xhlxjl′ − 1)
th,tj
l,l′=1 for h and j = 0, 1, . . . , k.

-Continuity of f(ε) : Let B be invertible. We have f(ε) = det[FT (A−1(ε) + B)−1F] for
ε > 0 and f(0) = FT

0 (A−1
0 + B00)

−1F0), so f(ε) is a continuous function of ε > 0 and

lim
ε→0

f(ε) = lim
ε→0

det[FT (A−1(ε) + B)−1F] = lim
ε→0

det[FT (A(ε)−A(ε)(A(ε) + B−1)−1A(ε))F]

= lim
ε→0

det

FT

A(ε)−A(ε)

(
A0(ε) + B00 B̃01

B̃10 Ã(ε) + B̃11

)−1

A(ε)

F


= det

FT

( A0 0
0 0

)
−
(

A0 0
0 0

)(
A0 + B00 B̃01

B̃10 B̃11

)−1(
A0 0
0 0

)F


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where

(
B00 B̃01

B̃10 B̃11

)
= B−1. If we define that

(
A0(ε) + B00 B̃01

B̃10 Ã(ε) + B̃11

)−1

=

(
T00 T̃01

T̃10 T̃11

)
with T00 = (A0 + B00 − B̃01(B̃11)−1B̃10)−1 = (A0 + B−1

00 )−1, we have

lim
ε→0

f(ε) = det

[
FT

((
A0 0
0 0

)
−
(

A0T00A0 0
0 0

))
F

]
= det[FT

0 (A0 −A0(A0 + B−1
00 )−1A0)F0] = det(FT

0 (A−1
0 + B00)

−1F0)

- Concavity of f(ε):

f((1− β)ε+ βε′) = det(M((1− (1− β)ε+ βε′)ξ + ((1− β)ε+ βε′)
k∑

i=1

aiξi))

= det(M((1− β)((1− ε)ξ + ε
k∑

i=1

aiξi) + β((1− ε′)ξ + ε′
k∑

i=1

aiξi))

≥ (1− β)f(ε) + βf(ε)

- Differentiability of f(ε):
Since that A(ε) is invertible for ε > 0, then f(ε) = det[FT (A−1(ε)+B)−1F] is differentiable
at any right hand neighborhood of ε = 0 and

f ′(ε) = det

[
M((1− ε)ξ + ε

k∑
i=1

aiξi)

]

·tr


[
M((1− ε)ξ + ε

k∑
i=1

aiξi)

]−1

d

dε

[
M((1− ε)ξ + ε

k∑
i=1

aiξi)

]
= det

[
M((1− ε)ξ + ε

k∑
i=1

aiξi)

]

·tr{

[
M((1− ε)ξ + ε

k∑
i=1

aiξi)

]−1

d

dε
(FT (A−1(ε) + B)−1F)} (5.34)

The derivative inside tr in (5.34) will be

d

dε
FT (A−1(ε) + B)−1F = FT (A−1(ε) + B)−1(

d

dε
(A−1(ε)))(A−1(ε) + B)−1F

= FT (A−1(ε) + B)−1A−1(ε)(
d

dε
A(ε))A−1(ε)(A−1(ε) + B)−1F

(5.35)
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where we have

A−1(ε)(
d

dε
A(ε))A−1(ε) =

(
−(1− ε)−2A−1

0 0

0 ε−2Ã−1

)
(5.36)

Suppose that

(A−1(ε) + B)−1 =

(
A−1

0 (ε) + B00 B̃01

B̃10 Ã−1(ε) + B̃11

)−1

=

(
K11(ε) K12(ε)
K21(ε) K22(ε)

)
(5.37)

where

K11(ε) = (A−1
0 (ε) + B00 − B̃01(Ã

−1(ε) + B̃11)
−1B̃10)

−1 of order t0 × t0

K22(ε) = (Ã−1(ε) + B̃11 − B̃10(A
−1
0 (ε) + B00)

−1B̃01)
−1 of order (

k∑
j=1

tj)× (
k∑

j=1

tj)

K12(ε) = −(A−1
0 (ε) + B00)

−1B̃01K22(ε) of order t0 × (
k∑

j=1

tj)

K21(ε) = −(Ã−1(ε) + B̃11)
−1B̃10K11(ε) of order (

k∑
j=1

tj)× t0

We take (5.36) and (5.37) in (5.35),

d

dε
FT (A−1(ε) + B)−1F

= FT

(
K11(ε) K12(ε)
K21(ε) K22(ε)

)(
−(1− ε)−2A−1

0 0
0 ε−2Ã−1

)(
K11(ε) K12(ε)
K21(ε) K22(ε)

)
F

= FT

(
−(1− ε)−2K11(ε)A−1

0 K11(ε) + ε−2K12(ε)Ã−1K21(ε)
−(1− ε)−2K21(ε)A−1

0 K11(ε) + ε−2K22(ε)Ã−1K21(ε)

−(1− ε)−2K11(ε)A−1
0 K12(ε) + ε−2K12(ε)Ã−1K22(ε)

−(1− ε)−2K21(ε)A−1
0 K12(ε) + ε−2K22(ε)Ã−1K22(ε)

)
F

Since that,

lim
ε→0+

K11(ε) = (A−1
0 + B00)

−1

lim
ε→0+

ε−1K22(ε) = lim
ε→0+

ε−1(Ã−1(ε) + B̃11)
−1 = Ã

lim
ε→0+

KT
12(ε) = lim

ε→0+
K21(ε) = ÃB̃10(A

−1
0 + B00)

−1
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so we have

d

dε
FT (A−1(ε) + B)−1F |ε=0+

= FT

(
−(A−1

0 + B00)
−1A−1

0 (A−1
0 + B00)

−1 + (A−1
0 + B00)

−1B̃01ÃB̃10(A
−1
0 + B00)

−1

−ÃB̃10(A
−1
0 + B00)

−1

−(A−1
0 + B00)

−1B̃12Ã

Ã

)
F

= −FT
0 (A−1

0 + B00)
−1A−1

0 (A−1
0 + B00)

−1F0 + FT
0 (A−1

0 + B00)
−1B̃01ÃB̃10(A

−1
0 + B00)

−1F0

−F̃T ÃB̃10(A
−1
0 + B00)

−1F0 − FT
0 (A−1

0 + B00)
−1B̃01ÃF̃ + F̃T ÃF̃

We denote the last term in the above with T in the reminder to avoid a long expression,
so

f ′(ε) |ε=0+= det[M(ξ)] · tr{M−1(ξ) · T} (5.38)

Regarding to concavity of f(ε), f ′(0+) = f ′(ε) |ε=0+ . Note that if B is singular, then we
consider B = lim

γ→0
(B + γI) and we follow the same way as the above case.

If we consider Ψ(ξ) = Φ(M(ξ)) = − log(det(M(ξ))) then the following theorem guar-
antees the Fréchet differentiability of Ψ(ξ) at ξ1 in the direction of ξ2.

Theorem 5.7.2. If Ψ(ξ) = Φ(M(ξ)) = − log(det(M(ξ))) is the D-optimality criterion,

then FΨ(ξ, ξ′) is linear in the second argument. In other words, if ξ′ =
k∑

i=1

aiξi

FΨ(ξ, ξ′) =
k∑

i=1

aiFΨ(ξ, ξi)

where FΨ(ξ, ξ′) is the Fréchet derivative of Ψ(ξ) at ξ in the direction of ξ′.

Proof.

FΨ(ξ, ξ′) = lim
ε→0+

1

ε
[Φ(M((1− ε)ξ + εξ′))− Φ(M(ξ))]

= lim
ε→0+

1

ε
{log(det(M((1− ε)ξ + εξ′)))− log(det(M(ξ)))}

= lim
ε→0+

1

ε
{log(det(M((1− ε)ξ + εξ′)(M(ξ))−1))}

= lim
ε→0+

1

ε
{log(g(ε))

where

g(ε) = det(M((1− ε)ξ + εξ′)) det(M(ξ))−1
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We can represent the above expression as g(ε) = c · f(ε), where c = det(M(ξ))−1 is a con-
stant and f(ε) has the same definition as in Lemma 5.7.3. where FT =

(
FT

0 FT
1 . . . FT

k

)
=(

FT
0 F̃T

)
, A(ε) =

(
A0(ε)

Ã(ε)

)
and B =

(
B00 B̃01

B̃10 B̃11

)
are the same matrices

as before in Lemma 5.7.3.
With regard to the Lemma 5.7.3, g(ε) is continuous, concave and differentiable at the

right hand neighborhood of ε = 0 (ε = 0+), and hence the Taylor expansion of g(ε) around
ε = 0+ is

g(ε) = lim
ε→0+

c · f(ε) + ( lim
ε→0+

c · d
dε
f(ε))ε+ o(ε) (5.39)

= 1 + ε · tr(c · T ) + o(ε)

(5.40)

The last expression holds because of limε→0+ g(ε) = 1.

FΨ(ξ,
k∑

i=1

aiξi) = lim
ε→0+

1

ε
log(1 + ε · tr(c · T ) + o(ε))

= lim
ε→0+

1

ε
(Tε) = tr(c · T )

The last equality holds because of log(1 + t) = t+ o(t).

FΨ(ξ,
k∑

i=1

aiξi) = tr{[−FT
0 (A−1

0 + B00)
−1A−1

0 (A−1
0 + B00)

−1F0

+FT
0 (A−1

0 + B00)
−1

k∑
i=1

aiB0iAiBi0(A
−1
0 + B00)

−1F0

−
k∑

i=1

aiF
T
i AiBi0(A

−1
0 + B00)

−1F0

−FT
0 (A−1

0 + B00)
−1

k∑
i=1

aiB0iAiFi +
k∑

i=1

aiF
T
i AiFi] · (FT

0 (A−1
0 + B00)

−1F0)}

=
k∑

i=1

aitr{[−FT
0 (A−1

0 + B00)
−1A−1

0 (A−1
0 + B00)

−1F0

+FT
0 (A−1

0 + B00)
−1B0iAiBi0(A

−1
0 + B00)

−1F0

−FT
i AiBi0(A

−1
0 + B00)

−1F0

−FT
0 (A−1

0 + B00)
−1B0iAiFi + FT

i AiFi] · (FT
0 (A−1

0 + B00)
−1F0)}

=
k∑

i=2

aiFΨ(ξ, ξi)
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We are now ready to give an equivalence theorem for the D-criterion for the model
with random slope. The following theorem does not give us a closed form of equivalence
theorem to check whether a design is D-optimal or not, but it prepares an expression to
check it computationally.

Theorem 5.7.3. The design ξ∗ =

{
x∗1 . . . x∗t
p∗1 . . . p∗t

}
is D-optimal for the Poisson regres-

sion model with random slope if and only if

tr{mµxf(x)M
−1(ξ∗)f

T (x)

−M−1(ξ∗)[F
T
∗ (A−1

∗ + B∗∗)
−1(I + B∗∗A∗)

−1F∗ − FT
∗ (A−1

∗ + B∗∗)
−1B∗xBx∗(A

−1
∗ + B∗∗)

−1

+mµxf(x)Bx∗(A
−1
∗ + B∗∗)

−1 +mµxF
T
∗ (A−1

∗ + B∗∗)
−1B∗xf

T (x)]} ≤ 0 for all x ∈ τ

where F∗ is the design matrix of ξ∗, A∗ = m · diag{p∗1µ∗1, . . . , p∗tµ∗t} with µ∗i = exp(β0 +
β1x

∗
i + 1

2
σ2x∗

2

i ), µx = exp(β0 + β1x+ 1
2
σ2x2), Bx∗ = BT

∗x =
(
eσ2x∗

1x − 1 . . . eσ2x∗
t x − 1

)
and B∗∗ =

(
eσ2x∗

i x∗
j − 1

)t

i,j
of order t× t.

Proof. Consider the D-criterion, Ψ(ξ) = − log(det[M(ξ)]) then with regard to theorem
5.7.2 Ψ(ξ) is Fréchet differentiable. So

FΨ(ξ∗, ξ) =
d

dε
Φ(M((1− ε)ξ∗ + εξ)) |ε=0

Since Φ(M((1− ε)ξ∗ + εξ)) = − log(det(FT (A−1(ε) + B)−1F)), thus

d

dε
Φ(M((1− ε)ξ∗ + εξ)) = −tr[(FT (A−1(ε) + B)−1F)−1 d

dε
(FT (A−1(ε) + B)−1F)]

= −tr[(FT (A−1(ε) + B)−1F)−1{FT (A−1(ε) + B)−1A−1(ε)AA−1(ε)(A−1(ε) + B)−1F}]

Note that A(ε) =

(
(1− ε)A∗ 0

0 εA1

)
and A =

(
−A∗ 0
0 A1

)
, where A∗ and A1

are diagonal matrices with the weighted response means (mijµij) as diagonal elements
corresponding to the ξ∗ and the ξ respectively. The first equality holds according to the
derivative of the determinant (Schott (1997), Corollary 8.1.1) and the second equality
holds because of theorem 8.2 in Schott(1997). After some matrix algebra similar to the
proof of theorem (5.7.2) the result follows.

5.8 G-Optimality

We considered the D-criterion as a measure to compare different designs all over the pre-
vious sections. The demand for G-optimality is arising as well as applying D-optimality.
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Unfortunately, due to the nonlinear structure of the prediction of the response variable
in the two mentioned classes (Poisson regression with random intercept and Poisson re-
gression with random slope), the variance of the predictor can not be obtained by the
linear model techniques. On the other hand, we have obtained that the quasi likelihood
estimators are asymptotically normal distributed (see section (3.3)). These two reasons
are sufficient to suggest an asymptotic method to find the variance of the predictor of Yx,
where Yx is the response variable at x and we eliminated index in response and experi-
mental point just for simplicity in writing. This asymptotic method is called the delta
method (or δ-method) (Rao (1973), page 388 or Casella and Berger (2002)).

Let β̂
(n)

be the quasi-likelihood estimator of β, then with regard to (3.9), β̂
(n)

is asymp-
totically normally distributed with mean β and variance matrix Σ, where Σ equals to
the inverse of quasi-information matrix of β. According to the δ- method theorem if g(.)
be any function with continuous first partial derivative then

g(β̂
(n)

)− g(β)
D−→ N(0,∇T

g Σ∇g) (5.41)

where ∇T
g = (dg(β)

dβ1
, . . . , dg(β)

dβp
). In other words,

asymptotic V ar(g(β̂
(n)

)) = ∇T
g Σ∇g. (5.42)

We are now ready to find the variance of the response predictor for two proposed classes
separately. We consider again Poisson regression model with random intercept (4.1), so

Ŷx = ef(x)T β̂+ 1
2
σ2

where β̂ = (β̂0, β̂1). Using the (5.42), let g(β̂) = ef(x)T β̂+ 1
2
σ2

, we have

as. V ar(Ŷx) = µ2
xf

T (x)M−1
β (ξ)f(x) and µx = eβ0+β1x+ 1

2
σ2

For simplicity we omit the superscript (n). So, ξ∗ is G-optimality design if

ξ∗ = arg min
ξI∈Ξ

max
x∈τ

µ2
xf

T (x)M−1
β (ξI)f(x)

where ξI is the experimental design to estimate the parameters of the Poisson regression
model with random intercept model.
For the Poisson regression model with random slope (4.21)

Ŷx = eβ̂0+β̂1x+ 1
2
σ2x2

If we consider g(β̂) = eβ̂0+β̂1x+ 1
2
σ2x2

then using the (5.42), we have

as. V ar(Ŷx) = µ2
x(1 x)M−1

β (ξ)

(
1
x

)
and µx = E(YX) = eβ0+β1x+ 1

2
σ2x2
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So, ξ∗ is G-optimality design if

ξ∗ = arg min
ξS∈Ξ

max
x∈τ

µ2
x(1 x)M−1

β (ξS)

(
1
x

)
Here ξS stands for the experimental design for the Poisson regression with random slope
model.
From these expressions for as. V ar(Ŷx), it becomes evident that even for simple Poisson
regression with random intercept, i.e. model (4.17), we can not obtain a closed form for
V ar(Ŷx).
In the next chapter we will consider some numerically results on this subject.
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6 Some Results

6.1 Introduction

The main purpose of this chapter is to present some applications of the theory in the
last two chapters, in other words we would like to obtain some locally optimal designs.
The most popular criterion, the D-criterion, is considered and we obtain the locally D-
optimal designs for some selected values of parameters.
In the next two next sections, we consider once again the simple and quadratic Poisson
regression models with the random intercept. The locally D-optimality will be obtained in
these cases. The structure of these two models are different from the model with random
slope. In section 6.4 the locally D-optimal design will be described for the Poisson regres-
sion model with random slope. The relation to the local G-optimality will be discussed
throughout these sections.

6.2 Locally D-optimal Design for Simple Poisson
Regression with Random Intercept

In a recent manuscript Yanping et al. (2006) obtain the locally D-optimal design in
a Poisson regression model without random effects. In this section we consider a simple
Poisson regression model with random intercept

Yijk | bi
ind∼ P (µij(bi)) where µij(bi) = exp(bi + β0 + β1xj) (6.1)

to see the effect of blocks and, hence, of intra-individual correlation. We ignore the index
i in the settings, i.e. xij = xj, because of the fact that the optimal designs can be found
among those which are uniform across the individuals.
We want to find locally D-optimal designs to estimate β, which maximize the determinant
of the information matrix.
In most applications of this model, like bioscience, pharmacokinetics etc., the design
region is the non-negative real line or a subset of that. In other words τ = [h,∞) is con-
sidered as an unbounded subset and τ = [h, g] is considered as a bounded subset, where
h ≥ 0 and g > h determine the bounds for the design region, which has to be defined by
experimenter. In this text we consider only the cases with positive design regions. The ex-
pectation µj = µ(xj) = e

1
2
σ2+β0+β1xj of Yijk, is a monotone function of xj. We consider the

special case, where µ(xj) is considered as a decreasing function of xj, i.e., β1 < 0. There-
fore the maximum and the minimum of the mean response are attained at the lower and
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upper bound of the design region respectively. Let µ(h) = eβ0+β1h+ 1
2
σ2

be the expectation
of Yijk at h, the canonical standardized mean µ̃j = µ̃(xj) =

µj

µ(h)
= eβ1(xj−h), will always

lie in (0, 1] and [µ̃(g), 1] respectively corresponding to the design regions [h,∞) and [h, g] .

We outline the following lemma which allows us to restrict ourselves to designs with
only two different settings x1 and x2.

Lemma 6.2.1. (Niaparast (2009)) For the model (6.1), the D-optimal design ζ∗ ={
ξ∗

1

}
has exactly two different support points x∗1 and x∗2, i.e., ξ∗ =

{
x∗1 x∗2
p∗1 p∗2

}
where

p∗1, p
∗
2 > 0.

Proof. As we have seen in theorem (5.6.1) a necessary and sufficient condition for ξ∗ to
be D-optimal for our model is

mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x) ≤ tr[M(ξ∗)M−1(ξ∗)] ∀x ∈ τ

We represent the above inequality in the following form

µ(x)
(

1 x
)( a b

b c

)(
1
x

)
≤ d (6.2)

with appropriate constant a, b, c, d. Therefore the inequality (6.2) is equivalent to

µ(x)(cx2 + 2bx+ a) ≤ d⇐⇒ ax2 + bx+ c ≤ d

µ(x)

Suppose that the D-optimal design has at least three support points z1 < z2 < z3, i.e.
h(zi) = k(zi) (i = 1, 2, 3) where h(x) = 1

d
(cx2 +2bx+a) and k(x) = 1

µ(x)
. Applying Rolle’s

theorem, there are z′1, z
′
2 such that z1 < z′1 < z2 < z′2 < z3 and h′(z′i) = k′(z′i) (i = 1, 2).

Because h(z) ≤ k(z) for all z, the points zi(i = 1, 2, 3) are local extrema, then h′(z2) =
k′(z2). By Rolle’s theorem again for the function h′(z)−k′(z), we receive points z′′1 , z

′′
2 , such

that z′1 < z′′1 < z2 < z′′2 < z′2 and h′′(z′′i ) = k′′(z′′i )(i = 1, 2). Because h′′(z) = 2 c
d

for all z,

we have k′′(z′′i ) = 2 c
d
(i = 1, 2). Since that in the model (model (6.1))k(x) = e−(β0+β1x+ 1

2
σ2)

and hence k′′(x) = β2
1e
−(β0+β1x+ 1

2
σ2) and k′′(x) = r (for all r) has at most one root, thus

it is in contrary to result that k′′(x) = 2 c
d

has two roots and the claim follows. Similar
idea can be found in Biedermann et al. (2006).

Using this lemma, we can restrict ourselves to the case t = 2. In other words, this
lemma reduce our search to the the experimental setting with two points.

Lemma 6.2.2. Consider the model (6.1). In terms of the canonical standardized mean,

the D-criterion for a design ξ =

{
x1 x2

p1 p2

}
to estimate β depends on the parameters

only through γ(m,β0(h), σ
2) = meβ0(h)+ 1

2
σ2

(eσ2 − 1) as follows.
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det(M(ξ)) ∝ p1(1− p1)µ̃1µ̃2(ln(µ̃1)− ln(µ̃2))
2

1 + γ(m,β0(h), σ2)(p1µ̃1 + p2µ̃2)
(6.3)

where β0(h) = β0 + β1h is the mean response at the lower bound x = h of the design
region.

Proof. Let mi = mpi (i = 1, 2), from (4.14) the information matrix for model (6.1) is

m(ξ) =

(
1 1
x1 x2

)((
m1µ1 0

0 m2µ2

)−1

+ (eσ2 − 1)

(
1
1

)(
1 1

))−1(
1 x1

1 x2

)

=


2∑

j=1

mjµj

2∑
j=1

mjµjxj

2∑
j=1

mjµjxj

2∑
j=1

mjµjx
2
j



− (eσ2 − 1)

1 + (eσ2 − 1)
2∑

j=1

mjµj


2∑

j=1

mjµj

2∑
j=1

mjµjxj

( 2∑
j=1

mjµj

2∑
j=1

mjµjxj

)

=
1

1 + (eσ2 − 1)(m1µ1 +m2µ2)

×
(

m1µ1 +m2µ2 m1µ1x1 +m2µ2x2

m1µ1x1 +m2µ2x2 m1µ1x
2
1 +m2µ2x

2
2 + (eσ2 − 1)m1µ1m2µ2(x1 − x2)

2

)
A straightforward calculation leads to

det(m(ξ)) =
m1µ1m2µ2(x1 − x2)

2

1 + (eσ2 − 1)
2∑

j=1

mjµj

=
m2µ2

hp1p2µ̃1µ̃2(x1 − x2)
2

1 + (eσ2 − 1)mµ(h)
2∑

j=1

pjµ̃j

As (x1 − x2) = log µ̃1−log µ̃2

β1
, the representation follows

Theorem 6.2.1. Let τ = [h,∞). If µ̃∗1, µ̃
∗
2, p

∗
1, p

∗
2 = 1 − p∗1 maximize the expression

(6.3), the D-optimal design for model (6.1) is given by ξ∗ =

{
x∗1 x∗2
p∗1 p∗2

}
. where x∗j =

1
β1

log µ̃∗j + h, and µ̃∗1, µ̃
∗
2, p

∗
1, p

∗
2 = 1− p∗1 maximize the expression (6.3).

Proof. the proof is immediately obtained using the lemmas 6.2.1 and 6.2.2.

According to Theorem 6.2.1, numerical methods can be used to maximize this criterion
in order to find D-optimal designs. The D-optimal design for some representative values
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Table 6.1: D-optimal designs for model (6.1)
γ(m,β0(h), σ

2) p∗1 µ̃∗1 µ̃∗2 γ(m,β0(h), σ
2) p∗1 µ̃∗1 µ̃∗2

0 0.500 0.1353 1 30 0.746 0.0864 1
0.5 0.543 0.1279 1 60 0.762 0.0825 1
2 0.609 0.1155 1 100 0.769 0.0807 1
5 0.665 0.1044 1 1000 0.781 0.0779 1

10 0.703 0.0962 1 10000 0.782 0.0776 1

of γ(m,β0(h), σ
2) are listed in Table 6.1 .

Note that µ̃∗2 = 1 corresponds to x∗2 = h which means that one point in the optimal
setting will be at the lower bound of the design region. For the Fixed Effect Simple
Poisson Regression models, i.e. σ2 = 0, the constant γ(m,β0(h), σ

2) is equal to zero for
all m and β0(h). In this case we find that the D-optimal design is the design with 50% to
the experimental runs at x∗1 = 1

β1
ln(0.1353) + h for all β1 < 0 as long as x∗1 ≤ g and the

remaining at x∗2 = h, in accordance with the results in Yanping et al. (2006).
γ(m,β0(h), σ

2) is an increasing function of σ2 and it can also be easily seen that the intra-
individual correlation , corrσ2(Yijk, Yij′k′), is an increasing function of σ2. So for fixed m
and β0(h) increasing in corrσ2(Yijk, Yij′k′) is equivalent to increasing in γ(m,β0(h), σ

2).
From Table 6.1 it can be seen that a larger value of σ2 and, hence, of the intra-individual
correlation decreases the proportion of observations at x∗2 = h. When σ2 tends to infinity,
78% of the experiments should be run at x∗1 = 1

β1
ln(0.0776)+h and 22% at x∗2 = h. These

results coincide with the results to find the D-optimal design for estimation of the slope
in the corresponding model with fixed block effects (Minkin (1993)).
Theoretically, xi can tend to ∞ and hence µ̃i can be as small as 0. But this is rarely
occurs in practice. In real experiment, a design point with very small µ̃ is not reasonable,
so it is more practical to consider design on a restricted (bounded) region. In the case of
a restricted region τ = [h, g], the D-optimal design is the same as the D-optimal in the
unrestricted case, if µ̃(g) ≤ µ̃∗1. Otherwise, µ̃(g) and µ∗2, i.e., x∗1 = g and x∗2 = h will be
optimal values but with different weights p∗1 and p∗2.
We have evaluated the sensitivity function,

φ(x, ξ∗) = mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x)

over the experimental domain for this model. We have found that this expression achieves
the maximum of tr[M(ξ∗)M−1(ξ∗)] at the experimental setting points of the locally opti-
mal design for some special cases.
Figure 6.1 shows the locally D-optimal design for the first order Poisson regression model
with random intercept when γ(m,β0(h), σ

2) = 1000 for two special cases: (i) unrestricted
region or µ̃ ∈ (0, 1] and (ii) restricted region or µ̃ ∈ (0.2, 1] corresponding to these cases
for the model without random intercept, i.e. γ(m,β0(h), σ

2) = 0 respectively. For the
first two cases, figures 6.1(a) and 6.1(b), the sensitivity function attains the maximum
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(a) unrestricted region ; γ(m,β0(h), σ2) = 1000
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(b) restricted region ;γ(m,β0(h), σ2) = 1000
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(c) unrestricted region ; γ(m,β0(h), σ2) = 0
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(d) restricted region ;γ(m,β0(h), σ2) = 0

Figure 6.1: Locally D-optimal designs for the model (6.1): (a) µ̃ ∈ (0, 1] and
γ(m,β0(h), σ

2) = 1000; (b) µ̃ ∈ [0.2, 1] and γ(m,β0(h), σ
2) = 1000; (c): µ̃ ∈ (0, 1] and

γ(m,β0(h), σ
2) = 0 (without random intercept); (d)µ̃ ∈ [0.2, 1] and γ(m,β0(h), σ

2) = 0
(without random intercept).
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tr[M(ξ∗)M−1(ξ∗)] = 1.001 at µ̃∗1 = 0.0779 and µ̃∗2 = 1 whereas for the cases without
random effects, the maximum of sensitivity function, φ(x, ξ∗) = mµ(x)fT (x)M−1(ξ∗)f(x)
is 2, the number of parameters.
The coincidence between G- and D- optimality is an immediate consequent of the Kiefer-
Wolfowitz (1959) equivalence theorem for the fixed effects linear models. Schwabe and
Schmelter (2008) have considered a linear model with random intercept which is an special
case of L.M.M. They have indicated that the equivalence of D- and G-optimality is not
retained even for a simple linear model with random intercept. The similar result holds
for the simple linear model with random slope which has been indicated in Schmelter et
al. (2007).
If we confine the search for G-optimal designs to those with observation at x∗1 and x∗2
corresponding to µ∗1 and µ∗2 respectively, then candidates for an G-optimal design are
characterized by p1, the proportion of observations at µ∗1. The quasi-information is eval-

uated at µ∗1 and µ∗2. ξ
∗
G =

{
x∗1 x∗2
p
′∗
1 p

′∗
2

}
is G-optimal if

ξ∗G = arg min
ξ∈ΞG

max
x

V ar(Ŷx)

where ΞG is the set of experimental design ξG such that ξG =

{
x∗1 x∗2
p′1 p′2

}
. There is no

analytical solution to find ξ∗G. Figure 6.2 gives a general view how the proportion varies in
terms of σ2: For σ2 = 0, p∗1 = p

′∗
1 which is in accordance with the celebrated equivalence

theorem for fixed effects models. If σ2 ≥ 0 then p∗1 and p
′∗
1 go far away as σ2 is increasing.

As we have described before, in real experimental design, it is more reasonable to consider
the bounded regions, i.e. µ̃j ∈ [µ̃(g), 1]. Experimenters might consider a standard two
points design which consist of the two endpoints, i.e. µ̃1 = µ̃(g) and µ̃2 = 1 with equal
allocation, i.e. p1 = p2 = 1

2
. We define the D-efficiency as

D-efficiency(ξ) =

(
det(Mβ(ξ))

det(Mβ(ξ∗))

) 1
p

where ξ∗ is the D-optimal design in the corresponding model.
The results in Table 6.3 indicate that, for the case with µ̃(g) = 0.01 which is nearly

unrestricted case, the standard two points design ξ0 =

(
h g

0.5 0.5

)
is not robust to the

values of γ(m,β0(h), σ
2) whereas it is robust for the case with µ̃(g) = 0.2. In fact in

the latter case the experimental design points of the standard design and of the optimal
design coincide while they only have different proportions.
Also we present a graphical view (Figure 6.3) for the D-efficiency of the standard design
ξ0 for different values of γ(m,β0(h), σ

2).
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Figure 6.2: Optimal proportions of observations at x∗1 versus σ2. D-optimal proportion
(solid line) and G-optimal proportion (dashed line).

Table 6.2: D-efficiency of the standard design for the simple Poisson regression model
with random intercept

γ(m,β0(h), σ
2) D-efficiency ( µ̃(g) = 0.01) D-efficiency ( µ̃(g) = 0.2)

0 0.6259 1.0000
0.5 0.6311 0.9970
2 0.6291 0.9827
5 0.6187 0.9659

10 0.6081 0.9541
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Figure 6.3: D-efficiency of the standard design ξ0 in dependence on γ.

6.3 Locally D-optimal Designs for the Quadratic Poisson
Regression Model with Random Intercept

In the previous section we focused on the first order model of Poisson regression as
defined in (6.1). However the effect of explanatory variables sometimes are stronger than
that which the model (6.1) describe as the relation between the explanatory variable and
response variable. Thus the quadratic model as we indicated in (4.19) may be suitable.
We consider again the quadratic Poisson regression model with random intercept

Yijk | bi
ind∼ P (µij(bi)) where µij(bi)) = exp(bi + β0 + β1xj + β2x

2
j). (6.4)

We assume here that the designs used for different individuals are the same and hence we
do not consider index i in the experimental settings. We suppose that the expectation

of Yijk, µj = µ(xj) = e
1
2
σ2+β0+β1xj+β1x2

j , is a monotone function on the design region, an
assumption in accordance with the most applications in real experiments. Without loss
of generality, we consider the function µ(xj) to be decreasing.
We also assume that the design region is restricted to the non-negative real numbers or a
subset of that as in the first order model with random intercept.

Remark 6.1. All design regions are considered in this text are bounded below. The
restricted design regions are denoted by [h, g] and the unrestricted design region by [h,∞).
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Let µ̃j = µ̃(xj) =
µj

µ(h)
= eβ1(xj−h)+β2(x2

j−h2) be the canonical standardized mean at xj,

where xj ∈ [h, g]. For sake of simplicity, we suppose h = 0. As we have seen in the
first order model , β1 ≤ 0 guarantees that µ(xj) is a decreasing function of xj. From a
descriptive point of view, this assumption should carry over to quadratic model. Also, β2

should not be as much large positive number so that the quadratic model is capable to
describe a stronger effect than the first order model. Mathematically, the signs of β0 and
β1 can be derived from the assumption that µ̃(xj) is a decreasing function of xj.
We reconsider

µ̃(x) = eβ1x+β2x2

or equivalently log(µ(x)) = β1x+ β2x
2

This function is a decreasing function of x if

d

dx
log(µ̃(x)) = β1 + 2β2x ≤ 0 for all x ∈ [0, g]

Since that β1 + 2β2x must be non-positive for all x, thus β1 will be non-positive number.
Despite of the non-positive constant sign of β1 the sign of β2 is not constant. If β2 ≤ 0,
then ˜µ(x) is a decreasing function and for β2 ≥ 0, under the condition −β1

2β2
≤ g, ˜µ(x) is

still a decreasing function of x.

Lemma 6.3.1. For the model (6.4) the D-optimal design ζ∗ =

{
ξ∗

1

}
has exactly three

different support points x∗1, x
∗
2 and x∗3, i.e., ξ∗ =

{
x∗1 x∗2 x∗3
p∗1 p∗2 p∗3

}
where p∗1, p

∗
2 and p∗3 > 0.

Proof. We consider β2 < 0. According to the Theorem 5.6.1 ξ∗ is the D-optimal design
for model (6.4) if and only if

mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x) ≤ tr[M(ξ∗)M−1(ξ∗)] ∀x ∈ τ.

We can represent the above inequality as:

(
1 x x2

) a b c
b d e
c e f

 1
x
x2

 ≤ 1

µ(x)
(6.5)

for some constant a, b, c, d, e, f . Therefore the left side of (6.5) can be represented as a
forth order degree polynomial and hence the above inequality can be written as:

h(x) ≤ k(x) with h(x) = a1x
4 + a2x

3 + a3x
2 + a4x

+a5

where ai (i = 1, . . . , 5) are some appropriate constants. We suppose that h(x)−k(x) = 0,
where k(x) = 1

µ(x)
, has at least four roots z1 < z2 < z3 < z4, i.e. h(zi) = k(zi)for i =

1, 2, 3, 4. Regarding to Rolle’s theorem we have z′1, z
′
2 and z′3 such that z1 < z′1 < z2 < z′2 <

z3 < z′3 < z4 and h′(z′i) = k′(z′i) (i = 1, 2, 3). Since that h(z) ≤ k(z) thus zi (i = 2, 3, 4)
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are tangent points, i.e. h′(zi) = k′(zi) for i = 2, 3, 4. Applying Rolle’s theorem again, we
have z′′i i = 1, . . . 5, such that z′1 < z′′1 < z2 < z′′2 < z′2 < z′′3 < z′3 < z′′4 < z3 < z′′5 < z4.

We apply the Rolle’s theorem furthermore three times. We find z
(5)
1 < z

(5)
2 such that

h(5)(z
(5)
i ) = k(5)(z

(5)
i ) for i = 1, 2. Because of h(5)(z

(5)
i ) = 0, then we have k(5)(x) = 0 has

two roots. Since that in (6.4) k(x) = e−(β1x+β2x2) and hence,

k(5) = k(x)(β1 + 2β2x)[−60β2
2 + 20β2(β1 + 2β2x)

2 − (β1 + 2β2x)
4]

since that β1 + 2β2x ≤ 0 then k(5) = 0 has one root, thus It is in contrary to result that
k(5)(x) = 0 has two roots and the claim follows.

Remark 6.2. when β2 > 0, then the value of β2 depends on β1, so we can not find a
general proof for this case. We can find D-optimal designs in the three points design class
and check the results via equivalence theorem.

Using this lemma, we consider designs with three support points. For sake of simplicity,
we consider the case where h = 0. The following lemma is immediately concluded from
the above lemma.

Lemma 6.3.2. Consider the model (6.4). The determinant of the information matrix for

β is as follows for ξ =

(
x1 x2 x3

p1 p2 p3

)
det(M(ξ)) =

1

1 + γ(m,β0, σ2)(
3∑

j=1

pjµ̃j)

·p1p2(1− p1 − p2)µ̃1µ̃2µ̃3{x2
1(x2 − x3)− x2

2(x1 − x3) + x2
3(x1 − x2)}2 (6.6)

where γ(m,β0, σ
2) = mµ0(e

σ2 − 1), µ0 = eβ0+ 1
2
σ2

and µ̃j =
µj

µ0
for j = 1, 2, 3.

Proof. Let mj = mpj. From (4.20), for the design ξ =

(
x1 x2 x3

p1 p2 p3

)
for model (6.4),

the information matrix is given as follows

Mβ(ξ) =



3∑
j=1

mjµj

3∑
j=1

mjµjxj

3∑
j=1

mjµjx
2
j

3∑
j=1

mjµjxj

3∑
j=1

mjµjx
2
j

3∑
j=1

mjµjx
3
j

3∑
j=1

mjµjx
2
j

3∑
j=1

mjµjx
3
j

3∑
j=1

mjµjx
4
j


− eσ2 − 1

1 + (eσ2 − 1)
3∑

j=1
mjµj


(

3∑
j=1

mjµj)2 (
3∑

j=1
mjµj)(

3∑
j=1

mjµjxj) (
3∑

j=1
mjµj)(

3∑
j=1

mjµjx
2
j )

(
3∑

j=1
mjµj)(

3∑
j=1

mjµjxj) (
3∑

j=1
mjµjxj)2 (

3∑
j=1

mjµjxj)(
3∑

j=1
mjµjxj)

(
3∑

j=1
mjµj)(

3∑
j=1

mjµjx
2
j ) (

3∑
j=1

mjµjxj)(
3∑

j=1
mjµjx

2
j ) (

3∑
j=1

mjµjx
2
j )

2


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The claim is concluded after straightforward calculation.

Theorem 6.3.1. Let τ = [0,∞). ξ∗ =

{
x∗1 x∗2 x∗3
p∗1 p∗2 p∗3

}
is D-optimal design for model

(6.4) if it maximizes (6.6)

Proof. According to the Lemma 6.3.1, the optimal design for model (6.4) is a saturated
design like most D-optimal designs. From Lemma 6.3.2 for a saturated design for a
quadratic Poisson regression model with random intercept, (6.6) gives the D-criterion for
this model. So the D-optimal design can be obtained though maximizing (6.6). Note that

µ̃∗j = eβ1x∗
j +β2x∗2

j ⇒ β2x
∗2
j + β1x

∗
j − log µ̃∗j = 0

is a quadratic equation in x∗j . Therefore

x∗j =
−β1 ±

√
β2

1 + 4β2 log µ̃∗j

4β2

is divided to two separated cases corresponding to the sign of β2: i) x∗j = 1√
2β2
{
√
r −√

r + 4 log µ̃j} if β2 > 0 and ii) x∗j = 1√
−2β2

{
√
−r +

√
−r − 4 log µ̃j} if β2 < 0, where

r =
β2
1

2β2
.

Note that γ(m,β0, σ
2) = mµ0(e

σ2−1) then the criterion (6.6), in terms of the canonical
standardized mean, depends on the parameters through γ(m,β0, σ

2) and r.
With regard to Theorem 6.3.1, numerical methods can be used to maximize det(M(ξ)) or
to minimize − log(det(M(ξ))) in order to find D-optimal designs. The D-optimal design
for some representative values of γ(m,β0, σ

2) and r are listed in Tables 6.3 and 6.4.

Table 6.3: D-optimal designs for model (6.4), r > 0
r = 20 r = 50

γ(m,β0, σ
2) p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3 p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3

0 0.333 0.333 0.0067 0.1806 1 0.333 0.333 0.0046 0.2425 1
10 0.439 0.360 0.0067 0.1434 1 0.439 0.358 0.0039 0.1959 1

100 0.455 0.400 0.0067 0.1229 1 0.485 0.358 0.0035 0.1745 1
1000 0.493 0.373 0.0067 0.1218 1 0.495 0.356 0.0034 0.1703 1

10000 0.587 0.302 0.0067 0.1218 1 0.496 0.355 0.0034 0.1699 1

According to these tables x∗3 = 0 is one point in experimental setting which is correspond-
ing to µ∗3 = 1.
γ(m,β0, σ

2) = 0 is corresponding to σ2 = 0 for all m and β0. The results for γ(m,β0, σ
2) =

0 coincide with the results in Yanping et al. (2006).
For the restricted region, i.e. τ = [h, g], if µ̃(g) ≤ µ̃∗1 the D-optimal design is equal to the
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Table 6.4: D-optimal designs for model (6.4), r < 0
r = −20 r = −50

γ(m,β0, σ
2) p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3 p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3

0 0.333 0.333 0.0149 0.3294 1 0.333 0.333 0.0117 0.3050 1
10 0.440 0.344 0.0128 0.2801 1 0.439 0.349 0.0101 0.2559 1

100 0.480 0.339 0.0120 0.2620 1 0.483 0.343 0.0093 0.2367 1
1000 0.489 0.337 0.0118 0.2584 1 0.490 0.342 0.0092 0.2332 1

10000 0.489 0.337 0.0118 0.2585 1 0.491 0.341 0.0091 0.2327 1

Table 6.5: D-optimal designs for model (6.4), r < 0 (restricted region µ̃(g) = 0.1)
r = −20 r = −50

γ(m,β0, σ
2) p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3 p∗1 p∗2 µ̃∗1 µ̃∗2 µ̃∗3

0 0.333 0.333 0.1 0.4500 1 0.333 0.333 0.1 0.4397 1
10 0.421 0.334 0.1 0.4188 1 0.417 0.337 0.1 0.4077 1

100 0.442 0.332 0.1 0.4117 1 0.442 0.335 0.1 0.4023 1
1000 0.446 0.331 0.1 0.4109 1 0.438 0.339 0.1 0.4000 1

10000 0.446 0.330 0.1 0.4109 1 0.443 0.335 0.1 0.3998 1

D-optimal for the unrestricted case. Otherwise the second point of experimental setting
will be x∗1 = g. The results for some special values for γ(m,β0, σ

2) and r are listed in
Table 6.5.
Based on Tables 6.3, 6.4 and 6.5 the D-optimal designs for the restricted design region

are completely different from the D-optimal designs for the unrestricted cases, in defiance
of the similar trends in all cases. For instance when the intra-individual correlation is
increasing then the proportion of observations at x∗3 = 0 decreases.
Similar to the previous section, we need to check the locally D-optimality for the quadratic
Poisson regression model with random intercept. Regarding to Theorem 5.6.1, we have
evaluated sensitivity function, φ(x, ξ∗) = mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x), over
the experimental domain for the model (6.4). The results confirmed the locally D-optimal
designs for special cases which have been obtained in Tables 6.3, 6.4 and 6.5. For instance,
we illustrate these evaluation for some representative values of γ(m,β0, σ

2) and r. Four
cases have been considered in Figure 6.4: restricted design domain (or µ̃ ∈ [0.1, 1]) for two
different values γ(m,β0, σ

2) = 1000 and γ(m,β0, σ
2) = 0 and unrestricted design region

(or µ̃ ∈ (0, 1]) for the same γ(m,β0, σ
2) as the restricted design region. Note that in these

four cases we consider r = −50.
In the restricted case of design region, Figure 6.4(b) and Figure 6.4(d), two of the max-
ima points of sensitivity function φ(x, ξ∗) are on the border points of the design re-
gion and the remainder can be observed at the corresponding points to µ̃∗2 = 0.4000 if
γ(m,β0, σ

2) = 1000 or at µ̃∗2 = 0.4397 if γ(m,β0, σ
2) = 0, respectively.
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(a) unrestricted region ; γ(m,β0, σ
2) = 1000
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(b) restricted region ;γ(m,β0, σ
2) = 1000
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(c) unrestricted region ; γ(m,β0, σ
2) = 0
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(d) restricted region ;γ(m,β0, σ
2) = 0

Figure 6.4: Locally D-optimality for model (6.4) (a) µ̃ ∈ (0, 1] and γ(m,β0(h), σ
2) = 1000;

(b) µ̃ ∈ [0.1, 1] and γ(m,β0(h), σ
2) = 1000; (c) µ̃ ∈ (0, 1] and γ(m,β0(h), σ

2) = 0 ( without
random intercept); (d) µ̃ ∈ [0.1, 1] and γ(m,β0(h), σ

2) = 0 ( without random intercept).
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Table 6.6: D-efficiency of the standard design for the Quadratic Poisson Regression Model
with Random Intercept, r < 0 (restricted region µ(g) = 0.1)

D-efficiency
γ(m,β0(0), σ2) r = −10 r = −20 r = −30 r = −50

0 0.9200 0.9148 0.9113 0.9070
10 0.8609 0.8490 0.8424 0.8353

100 0.8367 0.8222 0.8144 0.8063
1000 0.8019 0.8181 0.8101 0.8019

10000 0.8006 0.8179 0.8100 0.8018

In the case of an unrestricted design region, Figure 6.4(a) and Figure 6.4(c), if γ(m,β0, σ
2) =

1000, mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x) gets its maximum at µ̃∗1 = 0.0092, µ̃∗2 =
0.2332 and µ̃∗3 = 1 and if γ(m,β0, σ

2) = 0 ( model without random effects),

mµ(x)fT (x)M−1(ξ∗)M(ξ∗)M−1(ξ∗)f(x)

attains its maximum at µ̃∗1 = 0.0117, µ̃∗2 = 0.3050 and µ̃∗3 = 1.
A result in the previous section was that the D-optimal designs do not coincide with the
G-optimal designs.

If we consider ξ∗G =

{
x∗1 x∗2 x∗3
p
′∗
1 p

′∗
2 p

′∗
3

}
as a G-optimal design for model (6.4), i.e.

ξ∗G = arg min
ξ∈ΞG

max
x

V ar(Ŷx)

where V ar(Ŷx) is the variance of predictor of Y at the point x and can be obtained
through δ-method (see section 5.8). ΞG is the set of experimental design such that ξ∗G ={
x∗1 x∗2 x∗3
p′1 p′2 p′3

}
and p′1, p

′
2, p

′
3 are the allocated proportions to x∗1, x

∗
2, x

∗
3 respectively with

p′1 +p′2 +p′3 = 1. There is no analytical solution to find G-optimal design for the quadratic
Poisson regression model with random intercept. As in the previous section, we have
numerically that the D-optimality and G-optimality do not coincide. For instance, we plot
the proportion of the observations at x∗1 from the D-optimal design and from the G-optimal
design versus σ2 (Figure 6.5). p∗1 and p

′∗
1 go far away when σ2 increases. We consider a

standard three point design which includes the two endpoints and the middle point. We
also suppose that the corresponding proportions are equal, i.e. p1 = p2 = p3 = 1

3
. Table

6.6 indicates that this standard three point design is robust as long as µ̃(g) is not too
small, i.e. if g is not too large. The results also show that the efficiency decreases when
r is increasing. The same relation can be seen for γ(m,β0(0), σ

2).
Figure 6.6 indicates the above results for D-efficiency of the standard design graphically.
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Figure 6.5: D and G-optimal proportions of observations at x∗1 versus σ2 (for model (6.4)).
D-optimal proportions (solid line) and G-optimal proportion (dashed line).
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Figure 6.6: D-efficiency of the standard design in model (6.4) versus σ2.
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6.4 Locally D-optimal Designs for the Poisson Regression
Model With Random Slope

The last model, which is considered in this section, is the Poisson regression model
with random slope. In the previous chapter we described some properties of this model
theoretically. Some examples of locally D-optimal designs are obtained in the sequel of
this section.
In general, for different individuals, we may use different designs for data collection. In
this section we confine ourselves to the case where identical designs are used for different
individuals. So this model will be as follows

Yijk | bi
ind∼ P (µij(bi))


i = 1, . . . , s
j = 1, . . . , t
k = 1, . . . ,mj

t∑
j=1

mj = m

n = sm

(6.7)

where µij(bi) = exp(β0 + bixj) with bi is normally distributed with mean β1 and variance
σ2and Cov(bi, bi′) = 0 (i 6= i′). Here, the aim is to find D-optimal design for estimating β0

and β1. For the same reason as previous sections, we suppose that the design regions are
non-negative real number. So µj = exp(1

2
σ2x2

j + β0 + β1xj) lies in (0, µ0], where µ0 = eβ0

stands for the mean response at x = 0. If µj is decreasing , µ̃j =
µj

µ0
lies in (0, 1].

Remark 6.3. We can consider the general case for experimental design domain where
x ∈ [h, g] and hence µj ∈ [µg, µh]. For simplicity we consider x ∈ [0, g], where g can tend
to ∞.

The following theorem gives us a criterion for D-optimal designs in the Poisson regres-
sion model with random slope.

Theorem 6.4.1. Consider the model (6.7). If ξ is any design with two points in the ex-

perimental setting, i.e. ξ =

{
x1 x2

p1 1− p1

}
then the determinant of the quasi-information

matrix for β is as follows

det(Mβ(ξ))

=
m2µ2

0p1(1− p1)µ̃1µ̃2(x1 − x2)
2

1 +mp1µ0µ̃1(eσ2x2
1 − 1) +m(1− p1)µ0µ̃2(eσ2x2

2 − 1) +m2p1(1− p1)µ2
0µ̃1µ̃2(eσ2x1x2 − 1)

(6.8)

Proof. with regard to (5.32)

Mβ(ξ) = FT (A−1 + B)−1F

=

(
1 1
x1 x2

)((
mµ0

(
p1µ1 0

0 (1− p1)µ2

))−1

+

(
eσ2x2

1 − 1 eσ2x1x2 − 1

eσ2x1x2 − 1 eσ2x2
2 − 1

))−1(
1 x1

1 x2

)
After using some matrix algebra and a straightforward calculation the result follows.

78



6.4 Locally D-optimal Designs for the Poisson Regression Model With Random Slope

Using the numerical methods, we maximize this criterion (6.8)(or minimize− log(Mβ(ξ)))
for some representative values of β0, β1, σ

2 and m. The results are listed in Table 6.7.
Note that µ̃∗2 = 1 corresponds to x∗2 = 0. If σ2 = 0, i.e. the model without random

Table 6.7: D-optimal designs for model (6.7)
m = 100, β0 = −2 and β1 = −5 m = 200, β0 = −2 and β1 = −5

σ2 p∗1 µ̃∗1 µ̃∗2 p∗1 µ̃∗1 µ̃∗2
0 0.500 0.1353 1 0.500 0.1353 1
0.5 0.482 0.1305 1 0.465 0.1313 1
1 0.462 0.1272 1 0.434 0.1308 1
2 0.422 0.1296 1 0.379 0.1441 1
3 0.384 0.1487 1 0.338 0.1743 1
4 0.354 0.1798 1 0.309 0.2114 1
5 0.331 0.2147 1 0.289 0.2487 1

effects, the results are in accordance with the results in Table 6.1.
From Table 6.7, for fixed m, β0 and β1 the proportion of observations at x∗1, p

∗
1, decreases

when σ2 is increasing. The same trend can be seen when m increases. On this point of
view the results in Table 6.7 is in contrast with the results in Table 6.1, where p∗1 increases
when σ2 or m are rising.
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(b) restricted region

Figure 6.7: Locally D-optimality for the model (6.7) (a) unrestricted domain, where
m = 100, β0 = −2, β1 = −5 and σ2 = 1; (b) restricted domain µ̃ ∈ [0.2, 1], where
m = 100, β0 = −2, β1 = −5 and σ2 = 1;

Theorem 5.7.3 helps us to check the optimality of ξ∗ for different cases. We obtain lo-
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cally D-optimal designs which are showed in Table 6.7 and also for the restricted domain
cases. For instance we plot two different cases corresponding to the different values of the
parameters (Figure 6.7). For m = 100, β0 = −2, β1 = −5 and σ2 = 1, in the unrestricted
case, Figure 6.7(a) shows that the sensitivity function, φ(x, ξ∗) achieves the maximum
zero at µ̃1 = 0.1272 and µ̃2 = 1. In the restricted domain case, the Fréchet derivative is
zero at µ̃1 = 0.2 and µ̃2 = 1.
For some fixed values of β0, β1, m and σ2 (σ2 > 0), the numerical results show that the
D-optimal designs do not coincide with the corresponding G-optimal design.
Figure 6.8 shows that the design is robust when the design points of Standard design and
optimal design are the same.
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Figure 6.8: D-efficiency of the design in model (6.7) versus σ2.
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7 Discussion and Future Research

The main purpose of this research was to develop efficient and robust experimental
design for the Poisson regression model with random effects. This model is a special case
of a broad class, generalized linear mixed models. These random effects caused some
theoretical problems with the likelihood method and in finding the information matrix.
At least two ways could be considered to overcome of these limitations. First one is to
use numerical methods for obtaining locally optimal designs directly. The second way is
to apply some approximate method to find a closed form for information matrices and
hence maximizing an appropriate optimality criterion. The quasi-likelihood method is an
approximate method which is applied in our research. In the Poisson regression model with
random effects, the quasi-likelihood method encountered us to new theoretical challenges
with convex design theory. We obtained some solutions to remedy these problems in our
models separately.
The best experimental settings, as a main goal of the optimal design studies, have been
considered in chapter 6 and we found locally D-optimal designs for different models. We
have made two important assumptions there: First we supposed that experimental design
domains are non-negative subsets of the real line and the second assumption was that
increasing the design variable causes a decrease in the mean response. These assumptions
seem to be justified in many applications including industrial studies, biosciences etc.
A possible design, which might be considered for a linear model, is a saturated standard
design. The numerical results indicated that these designs could not be suggested for
our models due to low efficiency for these saturated standard designs when experimental
design regions are large.
This research could potentially be extended in several directions, which are listed as
follows:

1. Tekle et al. (2008) have done a numerical study in optimal designs for logistic mixed
effects models for a binary longitudinal response as a special case of generalized
linear mixed models. They studied locally optimal designs for these models under a
different method of estimation. So a numerical comparison between locally optimal
designs based on the quasi-likelihood method and their likelihood method might be
interesting.

2. We considered models with one explanatory variable. An extension to higher di-
mensions of the explanatory variables is a topic for further studies. A recent work
in the Poisson regression model with fixed effects has been published by Russell et
al. (2009).
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3. Although some numerical results has been presented for different values of σ2 (vari-
ance of the random effect), we only considered random effects with known variance
in the theoretical part of this thesis. One could work on the case with random effects
with unknown variance numerically and analytically.

4. A main assumption was that the random effects are normally distributed. Selecting
a different distribution, a deviation of this condition, could be a subject for further
investigation

5. Bayesian or other methods can be considered to overcome the dependence of design
performance on parameter values. For example, we can see Woods et al.(2006) and
Gotwalt et al.(2009).

82



83



Abbreviation

Abbreviation

D−→ asymptotic distribution, 20

()− g-inverse, 3

∇T
g gradient vector, 58

1t t-dimensional vector containing only ones, 28

Ai diag{mi1µi1, . . . ,mitiµiti}, 29

Ȧi diag{µi1Imi1
, · · · , µitiImiti

}, 28

ȧT
i

√
eσ2 − 1

(
µi11

T
mi1

· · · µiti1
T
miti

)
, 28

bi vector of the random effects parameters for the ith subject, 9

Cov covariance matrix, 4

D partial derivative of µ(β), 19

dn exact design of size n, 37

det() determinant of a matrix, 18

diag{} diagonal matrix, 19

E() expectation, 4

e() exponential function, 22

exp() exponential function, 5

F design matrix, 4

Fi row individual design matrix neglecting the number of replications , 29

Ḟi design matrix for individual i, 28

FΦ Fréchet directional derivative, 42

GLM generalized linear models, 3

GLMM Generalized Linear Mixed Model, 3

GΦ Gâteaux derivative, 42

gn estimating function for p dimensional vector of parameters, 17

g() estimating function for p dimensional vector of parameters, 17

g∗n F-optimal estimating function, 17
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Abbreviation

g upper bound of experimental domain, 59

gn = gn() estimating function, 15

g
(s)
n standardized versions of estimating function, 15

g
(s)
n () standardized versions of estimating function, 15

h lower bound of experimental domain, 60

h() link function, 5

I identity matrix, 7

I
(n)
β minus derivative of score function w.r.to β, 20

Jm×n a matrix of m× n order containing only ones, 27

LM linear model, 3

LMM linear mixed model, 3

LS least square, 14

l = l() log-likelihood function, 6

log() natural logarithm, 5

ML maximum likelihood, 14

Mβ,n quasi-information matrix, 20

M i
β quasi-information matrix for β corresponding to the individual i, 28

Mn set of the information matrices of exact designs dn, 38

Mβ(ξi) ith individual information matrix for β, 44

mi total number of observations for individual i , 25

mij number of replication for the individual i at xij , 25

P () Poisson distribution , 22

PQL penalized quasi-likelihood , 24

QL quasi-likelihood , 14

ql() log-QL function , 19

ti number of points at experimental setting for individual i , 25

tr() trace of a matrix, 18

U (n)(β) quasi-score function for β, 18

U
(n)
r (β) rth element of U (n)(β), 18

V variance of Y, 28
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Abbreviation

Vi variance of Yi, 27

V
(jk)
i Cov(Yij,Yik), 27

V(µ(β)) V ar(Y), 18

V ar() variance, 4

v() variance function, 6

X design matrix, 4

xij jth level of explanatory variable for ith individual , 25

Y vector of the whole observations, 4

Yi vector of all responses for individual i, 27

Yij vector of replication for individual i at xij , 27

Yij jth observation of the ith subject (individual) , 10

Zi design matrix for the random effects, 9

β unknown vector of fixed effects, 4

β̂
(n)

maximum QL estimator of β, 19

γi canonical parameter of the distribution of Yi , 5

ε error term, 4

ζ population design, 45

λmin minimum of eigenvalues of a matrix, 18

µ(β) expectation of Y, 18

µi(β) expectation of Yi, 27

µ
(bi)
ij conditional mean of Yij or Yijk, 10

µ̃() canonical standardized mean evaluated at g , 61

Ξ set of all probability measures over τ , 39

Ξn set of exact designs of size n, 38

ξi ith individual design, 43

ξn discrete design measure corresponding to dn , 37

ξ∗ optimal design, 38

σ2 variance of the error term, ε, 4

σ2 variance of the random effect, 25

τ experimental (design) domain (region), 36
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Abbreviation

Φ optimality criterion, 38

φ nuisance parameter, 5

φ() sensitivity function, 43

Ψ optimality criterion, 47
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