
MANAGEMENT OF XML DATA

BY MEANS OF SCHEMA MATCHING

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.),

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von: M.Sc. Alsayed Alshahat Alsayed Algergawy

geb. am 06. Nov. 1973 in Ägypten

Gutachter:

Prof. Dr. Gunter Saake

Prof. Dr. Erhard Rahm

Prof. Dr. Stefan Conrad

Promotionskolloquium: Magdeburg, Germany, February 19, 2010

Algergawy, Alsayed:

Management of XML Data by Means of

Schema Matching

Dissertation, Otto-von-Guericke-Universität

Magdeburg, 2009.

Abstract

The eXtensible Markup Language (XML) has emerged as a de facto standard to represent

and exchange information among various applications on the Web and within organiza-

tions due to XML’s inherent data self-describing capability and flexibility of organizing

data. As a result, the number of available (heterogeneous) XML data is rapidly increas-

ing, and the need for developing high-performance techniques to manage these data is

vastly growing. A first step to manage these data is to identify and discover semantic

correspondences across XML data. The process of identifying semantic correspondences

among heterogeneous XML data is called XML schema matching.

Schema matching in general plays a central role in several shared XML data ap-

plications, such as XML data integration, XML data migration, XML data clustering,

peer-to-peer systems, etc. Therefore, myriads of matching algorithms have been proposed

and many matching systems have been developed. However, most of these systems pro-

duce score schema elements, which results in discovering simple (one-to-one) matches.

Such results solve the schema matching problem partially. In order to completely solve

the problem, the matching system should discover complex matches as well as simple

ones. Another dimension of schema matching that should be considered is matching

scalability. Existing matching systems rely heavily either on rule-based approaches or

on learner-based approaches. Rule-based systems represent schemas to be matched in a

common data model, such as schema trees or schema graphs. Then, they apply their

algorithms to the common data model, which in turn requires traversing schema trees

(schema graphs) many times. By contrast, learning-based systems need much pre-match

effort to train their learners. As a consequence, especially in large-scale schemas and

dynamic environments, matching efficiency declines radically. As an attempt to improve

matching efficiency, recent schema matching systems have been developed. However, they

only consider simple matching. Therefore, discovering complex matching taking into ac-

count schema matching scalability against both a large number of schemas and large-scale

schemas is considered a real challenge.

This thesis proposes a new matching approach, called sequence-based schema matching,

to identify and discover both simple and complex matches in the large-scale XML schema

context. The approach is based on exploiting the Prüfer encoding method that constructs

a one-to-one correspondence between schema trees and sequences. As a result of sequence-

i

based schema matching we develop two approaches in sequence. To begin with, we develop

the XPrüM framework, which identifies and discovers simple (one-to-one) matches by

representing schema trees as sequences. By exploiting this representation we capture

both schema tree internal (semantic) information in the Label Prüfer Sequence (LPS)

and schema tree external (structural) information in the Number Prüfer Sequence (NPS).

Capturing both information in this efficient way provides and maximizes the possibility

to get better matching results. To assess the internal similarity between XML schema

elements, we develop a linguistic element matcher that exploits semantic information in

LPSs, while to assess the structural similarity between schema elements, we propose a

structure matcher that makes use of structural information in NPSs. Then, to cope with

complex matches, we further enhance the XPrüM framework by introducing the concept

of compatible elements.

We also present two case studies where our sequence-based matching approach can be

deployed. Moreover, the thesis introduces a new evaluation measure, cost-effectiveness,

to consider both performance aspects: matching effectiveness and matching efficiency.

The XPrüM and its enhancement frameworks as well as the two case studies have

been designed, developed and implemented. The frameworks have been evaluated on vari-

ous real world test cases with encouraging results, thus, empirically proving their benefits.

ii

Zusammenfassung

Die eXtensible Markup Language (XML) hat sich durch ihre inhärente Eigenschaft der

Selbstbeschreibung von Daten und die Flexibilität bei der Organisation von Daten zum

Industriestandard zur Darstellung und zum Austausch von Informationen zwischen ver-

schiedenen Anwendungen im Web und in Organisationen entwickelt. Als Ergebnis wächst

die Menge verfügbarer (heterogener) XML-Daten rapide an, und die Notwendigkeit, hoch-

performante Techniken zur Verwaltung dieser Daten zu entwickeln, steigt erheblich. Ein

erster Schritt, um diese Daten zu verwalten, ist die Identifikation und Entdeckung se-

mantischer Korrespondenzen innerhalb der XML-Daten. Der Prozess der Identifikation

semantischer Korrespondenzen zwischen heterogenen XML-Daten wird als XML Schema

Matching (dt. Schemaabgleich) bezeichnet.

Allgemein hat Schema Matching eine zentrale Bedeutung für verschiedene Anwen-

dungen gemeinsam genutzter XML-Daten, wie zum Beispiel bei der Integration, der Mi-

gration oder dem Clustering von XML-Daten, in Peer-to-Peer-Systemen usw. Deshalb

sind eine Vielzahl von Matching-Algorithmen und -Systemen entwickelt worden. Jedoch

produzieren die meisten dieser Systeme Bewertungen für Schemaelemente, was nur zur

Entdeckung einfacher (1:1) Abbildungen führt. Solche Ergebnisse lösen das Problem aber

nur teilweise. Um das Problem vollständig zu lösen, sollte ein Matching-System komplexe

und einfache Abbildungen entdecken. Eine weitere Dimension des Schema Matching,

welche berücksichtigt werden muss, ist die Skalierbarkeit. Existierende Systeme verlassen

sich entweder stark auf regelbasierte oder auf lernbasierte Ansätze. Regelbasierte Systeme

repräsentieren abzubildende Schemata in einem gemeinsamen Datenmodell, zum Beispiel

Schemabäume oder Schemagraphen. Anschliessend führen sie ihre Algorithmen auf dem

gemeinsamen Datenmodell aus, welches ein mehrfaches Durchlaufen der Schemabäume

(Schemagraphen) erfordert. Im Gegensatz dazu benötigen Systeme, welche auf Lern-

verfahren basieren, umfangreichen Aufwand zum Training der Learns. Als Konsequenz

daraus verschlechtert sich insbesondere für grosse Schemata und in dynamischen Umge-

bungen die Effizienz des Abgleichs radikal. Neuere Matching-Systeme setzen sich des

wegen zum ziel, die Matching-Effizienz zu steigern. Aber auch diese betrachten nur ein-

fache Abbildungen zwischen Schemaelementen. Deshalb stellt die Entdeckung komplexer

Abbildungen bei gleichzeitiger Berücksichtigung der Skalierbarkeit sowohl bezüglich einer

grossen Anzahl von Schemata als auch grosser Schemata eine wirkliche Herausforderung

iii

dar.

Diese Arbeit schlägt einen neuartigen Matching-Ansatz vor, welcher als sequenz-

basiertes Schema Matching bezeichnet wird und einfache und komplexe Abbildungen im

Kontext grosser XML-Schemata identifiziert und entdeckt. Der Ansatz basiert auf der

Verwendung von Prüfer-Codes, welche eine 1:1-Korrespondenz zwischen Schemabäumen

und Sequenzen konstruieren. Für die Umsetzung des sequenzbasierten Matching en-

twickeln wir zwei aufeinander aufbauende Ansätze. Zuerst entwickeln wir das XPrüm-

Framework, welches einfache (1:1) Abbildungen durch die Darstellung von Schemabäumen

als Sequenzen identifiziert und entdeckt. Wir verwenden diese Darstellung für interne (se-

mantische) Informationen in der Label Prüfer Sequence (LPS, Folge der Knotenbezeich-

nungen) und externe (strukturelle) Informationen in der Number Prüfer Sequence (NPS,

eigentlicher Prüfer-Code) beider Schemabäume. Diese effiziente Darstellung beider Infor-

mationen ermöglicht und maximiert die Wahrscheinlichkeit, bessere Matching-Ergebnisse

zu erhalten. Um die innere Ähnlichkeit zwischen XML-Schemaelementen zu berechnen,

entwickeln wir einen linguistischen Element-Matcher, welcher semantische Informationen

der zwei LPS nutzt, während zur Berechnung der strukturellen Ähnlichkeit ein Matcher

vorgestellt wird, welcher Strukturinformationen der NPS nutzt. Darauf aufbauend er-

weitern wir das XPrüm-Framework durch die Einführung des Konzeptes der kompatiblen

Elemente, um komplexe Abbildungen behandeln zu können.

Wir stellen ebenfalls zwei Fallstudien vor, in denen unser Matching-Verfahren ange-

wandt werden kann. Darüber hinaus führt die Arbeit mit der Kosteneffektivität ein neues

Evaluationsmass ein, welches beide Performanzaspekte berücksichtigt: die Effektivität

und die Effizienz des Matching.

Sowohl das erweiterte Framework XPrüM als auch die beiden Fallstudien wurden

entworfen, entwickelt und implementiert. Die Frameworks wurden anhand verschiedener

Realwelt-Testdatensätze mit ermutigenden Ergebnissen evaluiert, und dadurch wurde ihr

Nutzen empirisch nachgewiesen.

iv

Acknowledgments

In the name of Allah (GOD), Most Gracious, Most Merciful. It is my firm belief that

this dissertation has never been completed without the help of GOD. My belief in God

gave me hope during difficult times. Thanks to Allah.

I would like to express my deep gratitude to everyone who helped me shape the

ideas explored in this dissertation, either by giving technical advice or encouraging and

supporting my work in many other ways. This dissertation would not have come into

existence without their hands-on advice and motivation.

First of all, I am deeply indebted to my country (EGYPT, THE BIG MOTHER)

for accepting and supporting me to do my Ph.D. in Germany. I also have to thank

my small family, my mother, my wife, and my kids (Alaa and Aan) for moral support,

encouragement, and understanding.

I am extremely grateful to Professor Gunter Saake, my scientific advisor, for guiding

my work from the very first day and for supporting me in several directions. He gave me

the opportunity to conduct this doctoral research and helped me made the right strategic

decisions at many forks along the way. He kept me on track while allowing me to broaden

my research horizon in tangential areas. His insightful comments, which densely filled the

margins of each draft that I gave to him, gave rise to many creative ideas.

I am very grateful to Professor Zohra Bellahsene, University of Montpellier II. She

gave me the first feedback and impression about the proposed approaches in this disserta-

tion. She showed me the direction of how to improve the quality of my work. I would also

like to express my thanks to Dr. Eike Schallehn, University of Magdeburg. He has been

the driving force behind the emerging research area of schema matching, the subject of

the dissertation. I am appreciative to Dr. Richi Nayak, Queensland University of Tech-

nology, Australia. She provided me with her inspiring guidance, remarkable suggestions,

constructive criticism and friendly discussions that enabled me to complete the research

work and this thesis efficiently. Dr. Nayak spared a lot of her precious time in advising

and helping me throughout the research work.

I am grateful to external thesis reviewers, Prof. Dr. Erhard Rahm Leipzig University

and Stefan Conrad Düsseldorf University for the time and energy they have spent in

reviewing my thesis and their detailed technical feedback.

v

I am deeply indebted to Professor Mahmoud M. Fahmy, my M.Sc. supervisor. He

taught me the craft of research, and learned me how to correctly write a technical writing.

I also extend my sincere gratitude to all the staff of the Faculty of Engineering, Tanta

University, Egypt, where I did my undergraduate and master studies.

Finally, I would like to thank all members of the Database Group at the Univer-

sity of Magdeburg, for their support and many informal discussions, which helped

me put my academic research into perspective. A special word of thanks goes to

Ms. Stefanie Quade for proofreading and improving the quality of the dissertation.

Thanks to all my friends and colleagues here in Magdeburg/Germany, and there in Egypt.

........................

Magdeburg, Germany

March 1, 2010

Alsayed Algergawy

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

I Introduction 1

1 Motivations & Objectives 3

1.1 Motivations . 3

1.2 Objectives & contributions . 5

1.3 Road map of the thesis . 8

2 Preliminaries 11

2.1 Motivation example . 12

2.2 The schema matching problem . 14

2.2.1 Problem definition . 14

2.2.2 Data model . 16

2.2.3 Matching output . 24

2.3 Summary . 25

II Schema matching: The state of the art 27

3 Application domains 29

3.1 Data integration . 29

3.2 Data warehousing . 32

3.3 Schema evolution & data migration . 33

3.4 Peer-to-peer systems . 33

3.5 XML data clustering . 34

3.6 Web service discovery . 36

3.7 XML Query processing . 37

vii

CONTENTS

3.8 Summary . 38

4 Schema matching systems: An overview 39

4.1 Generic schema matching framework . 39

4.2 Transformation for matching (TransMat) 41

4.3 Pre-Match phase . 43

4.4 Match phase . 45

4.4.1 Element matcher . 45

4.4.2 Similarity combiner . 50

4.4.3 Similarity selector . 51

4.5 Mappings Transformation (MapTrans) . 53

4.6 Summary . 55

III Design, architecture, and implementation 59

5 XML element similarity measures 61

5.1 Preliminaries . 61

5.2 Internal element similarity measures . 65

5.2.1 Name similarity measure . 65

5.2.2 Data type similarity measure . 68

5.2.3 Constraint similarity measure . 69

5.3 External element similarity measures . 70

5.3.1 Element context . 71

5.3.2 Element context measure . 72

5.3.3 Putting all together . 76

5.4 The utilization of element similarity measures 77

5.4.1 Prüfer sequences construction . 78

5.5 Summary . 84

6 Sequence-based XML schema matching 85

6.1 Introduction & motivations . 85

6.2 The XPrüM system . 86

6.2.1 Schema preparation . 87

6.2.2 Matching algorithms . 88

6.2.3 Internal matching algorithms . 88

viii

CONTENTS

6.2.4 Structural matching algorithms . 90

6.2.5 Combining element similarity measures 93

6.2.6 Complexity analysis . 97

6.3 EXPrüM: Enhancement of XPrüM . 98

6.3.1 Compatible elements identification 99

6.3.2 Matching refinement . 100

6.3.3 Complexity analysis . 102

6.4 Summary . 103

7 Implementation & evaluation 105

7.1 Evaluation measures . 105

7.1.1 Effectiveness measures . 106

7.1.2 Efficiency measures . 108

7.1.3 Combining effectiveness and efficiency for schema matching evaluation108

7.2 Evaluation scenarios . 111

7.3 First scenario: Element similarity measures evaluation 112

7.3.1 Experimental results . 112

7.3.2 Lessons learned from the first scenario. 118

7.4 Second scenario: XPrüM evaluation . 119

7.4.1 Data set . 119

7.4.2 Evaluation methodology . 120

7.4.3 Experimental results . 120

7.4.4 More lessons learned. 122

7.5 Third scenario: EXPrüM evaluation . 123

7.5.1 Data sets . 123

7.5.2 Matching quality . 124

7.5.3 Matching efficiency . 126

7.5.4 Cost-effectiveness comparison . 128

7.6 Summary . 131

IV Deployment of the proposed schema matching system 133

8 SeqXClust: XML schema clustering framework 135

8.1 Introduction . 136

8.1.1 Data representation . 137

ix

CONTENTS

8.1.2 Similarity computation . 138

8.1.3 Clustering/grouping . 140

8.2 SeqXClust: The clustering framework . 140

8.2.1 Schema similarity matrix . 142

8.2.2 Clustering algorithms . 143

8.3 Experimental evaluation . 146

8.3.1 Data set . 146

8.3.2 Experimental methodology and metrics 146

8.3.3 Experimental results . 148

8.4 Related Work . 149

8.5 Summary . 151

9 SeqDisc: Supporting Web service discovery 153

9.1 Introduction . 153

9.2 Related Work . 156

9.2.1 Information Retrieval Approach . 156

9.2.2 Semantics Approach . 158

9.3 Preliminaries . 158

9.3.1 Web services . 158

9.3.2 Web service representation . 160

9.3.3 An illustrative example . 161

9.4 SeqDisc: the discovery framework . 161

9.5 Similarity assessment . 164

9.5.1 Level matching . 165

9.5.2 Schema matching . 167

9.5.3 Matching refinement . 170

9.6 Experimental evaluation . 171

9.6.1 Data sets . 172

9.6.2 Performance Measure . 172

9.6.3 Experimental Results . 172

9.7 Summary . 177

V Summary and future directions 179

10 Conclusions 181

x

CONTENTS

10.1 Summary of the thesis . 181

10.2 Contributions . 183

11 Future directions 185

11.1 Methodology directions . 187

11.2 Prototype directions . 188

11.3 Performance & evaluation directions . 189

Bibliography 204

xi

List of Figures

2.1 Two XML schemas . 12

2.2 Relational model [1] . 16

2.3 Object-oriented model [1] . 17

2.4 Example of an DTD and its respective XSD. 18

2.5 XSD new types construction. 22

2.6 XSD components reuse. 22

2.7 Distribution of a schema [118, 48] . 23

3.1 Simple schematic for a data integration system. 31

3.2 Data warehouse architecture. 32

3.3 Peer-to-peer system. 34

3.4 A generic XML data clustering framework. 35

3.5 Web service usage scenario [38] . 37

4.1 Schema matching phases . 40

4.2 Match phase steps . 45

4.3 Element matcher aspects . 46

5.1 Tree representation of XML schemas. 63

5.2 Data type similarity table. 69

5.3 Cardinality constraint similarity table. 70

5.4 The context of an XML tree element. 71

5.5 Prüfer sequence construction. 78

6.1 Matching process phases . 87

6.2 Similarity combining scenarios. 94

6.3 EXPrüM system . 99

7.1 Complete set of correspondences. 106

7.2 Internal measures quality using the linear combining strategy. 113

7.3 Internal measures quality using the nonlinear combination strategy. 114

7.4 Internal & external measures quality using the linear combining strategy. . 115

7.5 Internal & external measures quality using the nonlinear combination strategy.116

xiii

LIST OF FIGURES

7.6 Effect of using external dictionary. 117

7.7 Matching quality for real-world data sets. 121

7.8 Response time for real-world data sets. 121

7.9 Matching quality measures for XPrüM, COMA++, and SF systems. 125

7.10 Matching precision for different combinations of matchers. 126

7.11 Performance analysis of EXPrüM system with real-world schemas. 127

7.12 Matching response time for different combinations of matchers. 128

7.13 Performance aspects with cost-effectiveness. 131

8.1 Different XML data . 137

8.2 Tree representation of XML schema of D1 138

8.3 Tree distance between XML data . 140

8.4 XML clustering framework architecture . 141

8.5 XML schemas of XML data shown in Fig.8.1 144

8.6 FScore . 148

8.7 Internal quality measures . 149

8.8 The framework response time. 150

9.1 A hierarchal representation of a WSDL document. 159

9.2 Two Web service specifications. 162

9.3 Web services similarity measure framework. 163

9.4 Concrete & abstract parts of ST1 & ST2. 165

9.5 Effectiveness evaluation of SeqDisc. 173

9.6 Effectiveness evaluation of SeqDisc using linguistic matcher. 175

9.7 Effectiveness evaluation comparison. 176

9.8 Response time evaluation. 177

11.1 Publications focusing on schema matching. 186

xiv

List of Tables

4.1 Match phase steps w.r.t. mainstream systems 54

4.2 Schema Matching Phases w.r.t. mainstream systems 56

5.1 Example of using string-based measures. 68

5.2 Schema tree nodes properties . 79

6.1 Similarity values Top-3 ranking for each node 100

6.2 category set for each compatible node . 101

7.1 Data set details . 119

7.2 Data set details . 123

7.3 Cost-effectiveness data set details from [59] 129

7.4 Summary of cost-effectiveness comparison results 130

8.1 Data set details . 147

9.1 Example 9.1 result . 167

9.2 Data set specifications . 173

xv

Part I

Introduction

1

1
Motivations & Objectives

This chapter shortly introduces the context of this thesis, which contributes to the field

of management of XML data, especially to the task of identifying and discovering se-

mantic correspondences across XML data. In particular, we briefly describe the problems

that occur during the identification of semantically similar elements among heterogeneous

(XML) data sources, giving motivation for our work. We then introduce the contributions

of the thesis, and finally provide an outline of the thesis.

1.1 Motivations

Schema matching is the task of identifying semantic correspondences among elements

across different data sources. It plays a central role in many data application scenarios

[96]: in data integration to identify and characterize inter-schema relationships across

multiple (heterogeneous) schemas; in data warehousing to map data sources to a ware-

house schema; in E-business to help to map messages between different XML formats;

in the Semantic Web to establish semantic correspondences between concepts of different

ontologies [76]; in data migration to migrate legacy data from multiple sources into a new

one [58]; and in XML data clustering to determine semantic similarities between XML

data [106].

At the core of most of these data application scenarios, the eXtensible Markup Lan-

guage (XML) has emerged as a standard for information representation, analysis, and

exchange on the Web. Since XML provides data description features that are similar to

those of advanced data models, XML is today supported either as native data model or on

3

CHAPTER 1. MOTIVATIONS & OBJECTIVES

top of a conventional data model by several database management systems. As a result,

XML databases on the Web are proliferating, and efforts to develop good information

integration technology for the growing number of XML data sources have become vital.

Identifying and discovering semantic correspondences among heterogeneous data sources

is the biggest obstacle for developing such an integrated schema. The process of identify-

ing these correspondences across XML schemas is called XML schema matching [48].

As a result, myriad of matching algorithms have been proposed and many systems

for automatic schema matching have been developed [117, 63]. However, most of these

systems such as Cupid [96], Similarity Flooding (SF) [101], COMA/COMA++ [47, 48],

LSD [49], BTreeMatch [61], OntoBuilder [68], S-Match [70] and PORSCHE [122] produce

scores schema elements, which results in discovering only simple (one-to-one) matching.

Such results solve the schema matching problem partially. In order to completely solve

the problem, the matching system should discover complex matchings as well as simple

ones. Few work has addressed the problem of discovering complex matching [44, 77, 81],

because of the greater complexity of finding complex matches than of discovering simple

ones.

Additionally, existing schema matching systems rely heavily either on rule-based ap-

proaches or on learning-based approaches. Rule-based systems [96, 47, 48, 70] represent

schemas in a common data model, such as schema trees or schema graphs. Then, they

apply their algorithms to the common data model, which in turn requires traversing

schema trees (schema graphs) many times. By contrast, learning-based systems [49, 53]

need much pre-match effort to train their learners. As a consequence, especially in large-

scale schemas and dynamic environments, matching efficiency declines radically. As an

attempt to improve matching efficiency, recent schema matching systems have been de-

veloped [127, 122]. However, they consider only simple matching. Therefore, discovering

complex matching taking into account schema matching scalability against both a large

number of schemas and large-scale schemas is considered a real challenge.

Considering matching scalability is accompanied by another schema matching chal-

lenge: matching evaluation. Many real-world problems, such as the schema matching

problem, involve multiple measures of performance, which should be optimized simulta-

neously. Optimal performance according to one objective, if such an optimum exists, often

implies unacceptably low performance in one or more of the other objective dimensions,

creating the need for a compromise to be reached. In the schema matching problem,

the performance of a matching system involves multiple aspects, among them matching

effectiveness and matching efficiency. Optimizing one aspect, for example effectiveness,

4

1.2. OBJECTIVES & CONTRIBUTIONS

will affect the other aspects, such as efficiency. Hence, we need a compromise between

them, and we could consider the trade-off between effectiveness and efficiency matching

result as a multi-objective problem.

To summarize, the work presented in this thesis has been motivated by the following

main challenges:

• introducing XML schema matching to the large-scale context;

• identifying and discovering complex matches;

• schema matching evaluation in the large-scale context.

1.2 Objectives & contributions

To face the mentioned challenges, we aim at proposing a new schema matching paradigm,

called sequence-based schema matching. Our approach is based on exploiting the Prüfer

encoding method that constructs a one-to-one correspondence between XML schema trees

and sequences. In particular, we develop and implement an XML schema matching sys-

tem, called XPrüM. The main objective of XPrüM is to cope with schema matching

in the large-scale context. To deal with complex matches, the system is enhanced with

introducing the concept of compatible elements. We deploy our matching system in sev-

eral application domains, such as XML schema clustering and Web service discovery to

ensure the validity and applicability of the system. We also introduce the concept of cost-

effectiveness in order to trade-off between matching effectiveness and matching efficiency.

During the realization of our objectives, we have achieved the following contributions:

• presenting an overview of a number of shared-data applications from different do-

mains that take advantage of schema matching;

• introducing a detailed up-to-date survey of state-of-the-art schema matching ap-

proaches and systems under a generic framework;

• introducing XML schema element similarity measures that can be used to assess

the similarity between schema elements;

• designing and developing a new approach to schema matching based on the Prüfer

encoding method, called sequence-based matching approach;

5

CHAPTER 1. MOTIVATIONS & OBJECTIVES

• designing and developing a new matching framework, called XPrüM to discover

simple matches in the context of large-scale schemas;

• improving and enhancing XPrüM to cope with complex matches;

• proposing and developing algorithms for a sequence-based matching approach;

• introducing a new measure to evaluate both matching performance aspects (match-

ing effectiveness and matching efficiency), called cost-effectiveness ;

• conducting an intensive set of experiments to validate the proposed approach uti-

lizing different scenarios;

• deploying our matching approaches in different application domains, XML schema

clustering and Web service discovery;

• introducing an overview of future trends in the schema matching field.

Part of the material of the thesis has been published in various conferences and journals

(in order of appearance). Whenever results of any of these works are reported, proper

citations are made in the body of the thesis.

• [8]: A. Algergawy, E. Schallehn, and G. Saake. A unified schema matching frame-

work. In 19. GI-Workshop on Foundations of Databases, pages 58-62. Bretten,

Germany, May 2007.

• [9]: A. Algergawy, E. Schallehn, and G. Saake. Combining effectiveness and effi-

ciency for schema matching evaluation. In First International Workshop Workshop

on Model-Based Software and Data Integration (MBSDI 2008), volume 8 of CCIS,

Springer, pages 19-30. Berlin, Germany, April 2008.

• [10]: A. Algergawy, E. Schallehn, and G. Saake. Fuzzy constraint-based schema

matching formulation. In Business Information Systems (BIS 2008) Workshops,

pages 141-152, Innsbruck, Austria, May 2008. CEUR Workshop Proceedings 333.

• [12]: A. Algergawy, E. Schallehn, and G. Saake. A Prüfer sequence-based approach

for schema matching. In Eighth International Baltic Conference on Databases and

Information Systems (BalticDB&IS2008), pages 205-216. Estonia, June 2008.

6

1.2. OBJECTIVES & CONTRIBUTIONS

• [14]: A. Algergawy, E. Schallehn, and G. Saake. A sequence-based ontology match-

ing approach. In Proceedings of the Fourth International Workshop on Contexts

and Ontologies (C&O) Collocated with the 18th European Conference on Artificial

Intelligence (ECAI-2008), pages 26-30. Patras, Greece, July 2008.

• [13]: A. Algergawy, E. Schallehn, and G. Saake. A schema matching-based ap-

proach to XML schema clustering. In The Tenth International Conference on In-

formation Integration and Web-based Applications Services (iiWAS 2008), pages

131-136. Linz, Austria, ACM, Nov. 2008.

• [11]: A. Algergawy, E. Schallehn, and G. Saake. Fuzzy constraint-based schema

matching formulation. Scalable Computing: Practice and Experience, Special Issue:

The Web on the Move, 9(4):303-314, Dec. 2008.

• [15]: A. Algergawy, E. Schallehn, and G. Saake. Databases and Information Sys-

tems V - Selected Papers from the Eighth International Baltic Conference, volume

187, chapter A New XML Schema Matching Approach Using Prüfer Sequences,

pages 217-228. ISO Press, 2009.

• [7]: A. Algergawy and G. Saake. A classification scheme for XML data clustering

techniques. In 4th International Conference on Intelligent Computing and Informa-

tion Systems (ICICIS 2009), pages 550-555. Cairo, Egypt, March 2009.

• [16]: A. Algergawy, E. Schallehn, and G. Saake. Efficiently locating web services

using a sequence-based schema matching approach. In 11th International Confer-

ence on Enterprise Information Systems (ICEIS 2009). pages 287-290, Milan, Italy,

May 2009.

• [17]: A. Algergawy, E. Schallehn, and G. Saake. Improving XML schema matching

performance using Prüfer sequences. Data & Knowledge Engineering, 68(8):728-

747, August 2009.

• [6]: A. Algergawy, R. Nayak, E. Schallehn, and G. Saake. Supporting web service

discovery by assessing web service similarity. In 13th East-European Conference

on Advances in Databases and Information Systems (ADBIS-2009). Riga, Latvia,

Sept. 2009.

• [5]: A. Algergawy, R. Nayak, and G. Saake. XML schema element similarity mea-

sures: A schema matching context. In 8th International Conference on Ontologies,

7

CHAPTER 1. MOTIVATIONS & OBJECTIVES

Databases, and Applications of Semantics (ODBASE 2009) at OTM Conferences,

Vilamoura, Algarve, Portugal, LNCS 5871, pp. 1246-1253, Nov 02-04, 2009.

1.3 Road map of the thesis

The thesis is structured in five parts as follows:

Part I. Part one is devoted to mention motivation and objectives of the thesis and it

presents a definition of schema matching and its environment. Chapter 1 declares

thesis motivation, objectives and contributions to the schema matching field. In

Chapter 2, the schema matching problem is (in)formally defined by introducing a

definition for the generic matching problem and casting this definition to the schema

matching problem. From this definition, we state the matching process input and

output focusing on different data models that represent input schemas, and give

more attention to XML schemas identifying what different heterogeneities are, what

issues in representing large-scale schemas are and why they increase the complexity

of schema matching.

Part II. Part two presents a comprehensive overview of schema matching state-of-the-

art. Chapter 3 introduces a number of shared-data applications from different do-

mains that can take the advantage of schema matching. Chapter 4 presents a generic

schema matching framework that is used to survey a large number of existing schema

matching systems and prototypes in light of generic framework phases.

Part III. Part three is dedicated to presenting our sequence-based schema matching ap-

proach. Chapter 5 introduces a number of XML schema element similarity measures

that can be used to assess the similarity between XML schema elements. Chapter

6 gives the development and implementation details of frameworks that realize our

approach. Chapter 7 reports the evaluation criteria for schema matching approaches

as well as the settings in which we ran our experiments. It also reports the results

of the conducted experiments.

Part IV. Part four is devoted to point out how the sequence-based matching approach

can be deployed in different application domains. Chapter 8 introduces SeqXClust

that deploys our approach in clustering XML schemas. Chapter 8 presents a web

service discovery framework.

8

1.3. ROAD MAP OF THE THESIS

Part V. Finally, part five concludes the thesis. Chapter 9 summarizes the work done in

the thesis. Chapter 10 outlines future trends in the schema matching field.

9

2
Preliminaries

The rapid increase of information and communication technologies has made accessible

large amount of information stored in different application-specific databases and web

sites. The number of different information sources is rapidly increasing and the problem

of the ability of two or more information systems to exchange information and to use the

information that has been exchanged is becoming more and more sever. Schema matching

plays a central role in solving such problems.

Schema matching is the process of identifying semantic correspondences among ele-

ments across different data sources. However, a first step in finding high-performance

techniques to solve difficult problems, such as the schema matching problem, is to build

a complete, possibly formal, problem specification. A suitable and precise definition of

schema matching is essential for investigating approaches to solve it. Hence, to understand

and handle the complexity of the schema matching problem and to be able to advise an

efficient algorithm to cope with the matching problem, a (formal) problem specification

is required. This chapter is devoted to present schema matching and its environment.

In particular, we first present a motivation scenario to illustrate the schema matching

problem. Then, we give a definition of schema matching in order to recognize schema

matching surrounds.

The material presented in this chapter has been developed and published in [8, 10].

11

CHAPTER 2. PRELIMINARIES

Figure 2.1: Two XML schemas

2.1 Motivation example

To describe the methodologies presented in this chapter, we use a real-life scenario that

happens in e-business. This example has been used in [147]. To keep the chapter self-

contained, we briefly present the example in this section.

Example 2.1 For a multinational company, there are two subsidiary companies located at

different countries (company A in S area and company B in T area), and the two compa-

nies want to share and interoperate their customers’ information by Web Service. Let the

description schemas are represented in XML format, and these schemas are deployed on

their own XML web services. However, the XML schemas used by each company undergo

periodic changes due to the dynamic nature of of its business. In order to the two com-

panies be able to exchange and interoperate their information, semantic correspondences

between elements of them should be identified. However, if has schema matching manually

performed, it is a tiresome and costly process. Moreover, if the company A changes its

customer information database structure, and the XML schema is changed synchronously,

but they do not notice the company B to update its Web Service correspondingly, under

this conditions, if the interoperate wants to carry out successfully, two web agents have

to automatic matching their schemas again, and need not manual acting. The automatic

schema matching can improve the reliability and usability of Web services. Now, two XML

schemas are shown in Fig.2.1, which are based on BizTalk Schema specification, where,

Schema S is used by company A, and Schema T is deployed by company B.

Fig. 2.1 shows that the two schemas involve several heterogeneities that increase the

difficulty of the schema matching problem. The complexity of schema matching arises

due to the following reasons.

12

2.1. MOTIVATION EXAMPLE

• Representation problems; This kind of problems arises from the fact that databases

are engineered by different people. Even if two schemas are designed for the same

domain, two problems can be recognized, (i) different possible representation mod-

els; different possible representation models can be chosen for the schemas and (ii)

different possible names and structures; same concepts are represented using dif-

ferent names and structures, while the same name and structure could be used for

different concepts. For example, the customer name in the first schema is “Accoun-

tOwner”while in schema T is “Customer”. The name of the customer in schema S

is modeled only by one element “Name” while in the second one is represented by

two elements “FName” and “LName”.

• Semantic problems; This kind of problems arises from the fact that the semantics of

the involved elements can be inferred from only a few information sources, typically

the data creators, documentation, and associated schema and data [51]. Extracting

semantics information from these sources is often extremely bulky. Beside that,

matching schema elements is based on clues in the schema and data. Examples

of such clues include element names, types, data values, schema structures, and

integrity constraints. However these clues are often unreliable and incomplete. For

example, the element Address does not indicate whether it is a home or work address.

• Computation cost problems; To decide that an element s of schema S matches an

element t of schema T , one must typically examine all other elements of T to make

sure that there is no other element that matches s better than t. This global nature

adds substantial cost to the matching process. To make matter worse, matching is

subjective, depending on the application. Therefore the user must be involved in

the matching process.

All these problems reveal an idea of the complexity inherent to the schema matching

problem. In order to provide company users with consistent information, the schema

matching system should identify that the elements S.AccountOwner and T.Customer are

correspondent, as well as the element S.AccountOwner.Name is corresponding to two

elements (T.Customer.Fname, T.Customer.Lname).

13

CHAPTER 2. PRELIMINARIES

2.2 The schema matching problem

2.2.1 Problem definition

There are several definitions of matching and the schema matching problem [117, 30,

91, 63, 51, 127]. We here present a general definition, following the work in [11, 127].

We first introduce the definition of a generic match problem (GMP) then we cast this

definition to the schema matching problem (SMP).

Definition 2.1 The generic match problem (GMP) can be defined as 4-tuple element

GMP=(S, T, P, O), where:

• S and T are the objects to be matched, where each object may have one or more

elements,

• P is a set of predicate functions, having the values {true, false} and should be sat-

isfied, and

• O is a set of objective functions, which determines the goodness of match.

As mentioned, the goal of match function is to identify and discover semantically related

elements between two objects S and T , such that all the predicate functions P are satisfied

and values of object functions O are optimized. Since the solution of a matching problem is

not unique but there exist a set of possible solutions depending on the application domain.

Therefore, we should select the best of all possible solutions. An objective function, a

function associated with an optimization problem, determines how good a solution is.

Example 2.2 Let the objects S and T have the following elements {3, 7, AZ, 17} and

{14}, respectively, and we want to identify corresponding elements between the two objects

such that the elements of two objects have the same data type and the differences between

S elements and T elements are very small. We can rewrite this generic matching problem

as follows: GMP=(S, T, P, O) where:

• S={3,7,AZ,17}

• T={14}

• P : S and T elements have the same data type, i.e. P1: samedatatype(S.e, T.e)

14

2.2. THE SCHEMA MATCHING PROBLEM

• O: the difference between elements of two objects should be small as possible, i.e.

O1: |e.S − e.T | is minimum.

A solution of the matching problem is a set of mapping elements which indicates that

certain element(s) of S is (are) corresponding to certain element(s) of T satisfying all the

conditions in the predicate sections with an optimized similarity value depending on the

objective functions. For the above example, the predicate P1 shows that the elements 3,

7, and 17 of object S are corresponding with T element (have the same data type) but

the objective function O1 explains why S.17 is the most appropriate corresponding for

T.14 (we use here the dot notation). Since |S.3 − T.14| > |S.7 − T.14| > |S.17 − T.14|,
i.e., |S.17− T.14| is the minimum.

Now we are in a position that the definition of the generic match problem (GMP) can

be casted and used to define the schema matching problem (SMP).

Definition 2.2 The schema matching problem (SMP) is represented as 4-tuple element

(S, T, P, O), where,

• S is the source schema

• T is the target schema

• P is a set of predicate functions, & O is a set of objective functions, as defined in

the GMP.

Formally, the matching process is represented as a function that accepts two schemas S

and T as input in the presence of desired relations: predicate functions P and objective

functions O and produces a set of mappings M̃ . The mapping set, M̃ , represents cor-

respondences between S and T schema elements such that all predicates in P must be

satisfied and the selected mappings are subjected to criteria in the objective functions O.

Equation 2.1 expresses the matching process.

M̃ = f(S, T, P, O)
�

�

�

�2.1

In the following sections, we present schema matching environments: data models

(input schemas) and matching output (mappings).

15

CHAPTER 2. PRELIMINARIES

Figure 2.2: Relational model [1]

2.2.2 Data model

A schema is the description of the structure and the content of a data model. It is a

collection of meta-data that describes relations and a set of related elements in a database,

such as tables, columns, classes, or XML elements and attributes. There are several kinds

of data models, such as relational model, object-oriented model, XML schema, ontology,

etc. By schema structure and schema content, we mean its schema-based properties

and its instance-based properties, respectively. In the following, we present a number of

various forms of data models.

Relational model. In the relational model, data items is organized as a set of formally

described tables (relations) from which data can be accessed or reassembled in many

ways without having to reorganize the database tables. Each table contains one or

more data categories in columns. Each row contains a unique instance of data for

the categories defined by the columns. A relational schema specifies the names of

the tables as well as their types: the names and types of the columns of each table.

The relational model also includes the notion of a key for each table: a subset of

the columns that uniquely identifies each row. Finally, a column in a table may be

specified as a foreign key pointing to a column in another table. This is used to

keep referential constraints among various entities, as shown in Fig. 2.2.

Object-oriented data model. The object-oriented data model is based on the basic

concepts of object-oriented, such as objects and objects’ identifier, classes, encap-

sulation, etc. and benefits from the development in object-oriented analysis and

design, object-oriented programming, and object-oriented distributed computing.

Basic requirements of an object-oriented data model were listed in The Object-

oriented Database System Manifesto [20]. In general, the data model defines a data

16

2.2. THE SCHEMA MATCHING PROBLEM

object as containing code (sequences of computer instructions) and data (informa-

tion that the instructions operate on). Traditionally, code and data have been kept

apart. In an object-oriented data model, the code and data are merged into a single

indivisible thing, an object, as shown in Fig. 2.3.

Figure 2.3: Object-oriented model [1]

XML. The eXtensible Markup Language (XML) is emerging as the de facto standard

for information representation and exchange on the Web and on the Intranet. This

is due to XML’s inherent data self-describing capability and flexibility of organizing

data [2]. First, XML data are self-describing, and are based on nested tags. Tags

in XML data describe the semantic of data. This self-describing capability of XML

data helps applications on the Web understand the content of XML documents

published by other applications [71]. Moreover, the hierarchy formed by nested tags

structures the content of XML data. The role of nested tags in XML is somewhat

similar to that of schemas in relational databases. At the same time, the nested

XML model is far more flexible than the relational model.

XML data can be broadly classified into two categories: XML schemas and XML

documents. An XML document (document instance) represents a snapshot what

the XML document contains. An XML schema is the description of the structure

and the legal building blocks for an XML document. Several XML schema languages

have been proposed [88]. Among them, XML document type definition (DTD) and

XML Schema Definition (XSD) are commonly used.

XML DTD (DTD in short) is the de facto standard XML schema language of the

past and present and is most likely to thrive until the arrival of XML Schema. Its

main building block consists of an element and an attribute. It has limited capabil-

ities compared to other schema languages. The real world is typically represented

by the use of hierarchical element structures. XML Schema is an ongoing effort of

17

CHAPTER 2. PRELIMINARIES

(a) DTD (b) XSD

Figure 2.4: Example of an DTD and its respective XSD.

W3C to aid and eventually replace DTD in the XML world. XML Schema aims to

be more expressive than DTD and more usable by a wider variety of applications.

It has many novel mechanisms such as simple and complex types, rich data type

sets, occurrence constraints, and inheritance. Fig. 2.4 shows a simple DTD and its

corresponding XML schema (XSD). The figure also illustrates the main differences

between components of the two languages.

Ontology. The term ontology has its origin in philosophy, and has been applied in many

different ways. The core meaning within computer science is a model for describing

the world that consists of a set of types, properties, and relationship types [135].

Ontologies are used in artificial intelligence, the Semantic Web, software engineering,

biomedical informatics, library science, and information architecture as a form of

knowledge representation about the world or some part of it.

Contemporary ontologies share many structural similarities, regardless of the lan-

guage in which they are expressed. The common components of ontologies include

[63]:

• Classes: sets, collections, concepts, types of objects, or kinds of things are the

main entities of an ontology;

• Objects or instances are interpreted as particular individual of a domain;

• Attributes: aspects, properties, features, characteristics, or parameters that

classes can have;

• Attribute instances: are the properties applied to precise objects;

18

2.2. THE SCHEMA MATCHING PROBLEM

• Relations: ways in which classes and individuals can be related to one another;

• Restrictions: formally stated descriptions of what must be true in order for

some assertion to be accepted as input;

• Rules: statements in the form of an if-then (antecedent-consequent) sentence

that describe the logical inferences that can be drawn from an assertion in a

particular form ;

• Axioms: assertions (including rules) in a logical form that together comprise

the overall theory that the ontology describes in its domain of application;

• Events: the changing of attributes or relations.

Ontologies can be expressed in an ontology language. There are several languages

for representing ontologies [130], which can be broadly classified into: traditional

languages, such as Frame Logic (F-Logic), markup languages, which use markup

scheme to encode knowledge such as Ontology Web Language (OWL), or structural

languages such as description logic-based.

Spotlight. The four mentioned data models, relational, object-oriented, XML, and

ontology are currently surviving on the Web and on the Intranet and will remain so in

the near future. However, in this thesis, we only consider schemas represented in the

XML language. Our motivations for this selection are twofolds. The first is concerning

XML features, while the second is related to XML-based applications. In terms of XML

features, the self-describing capability and the flexibility of organizing data pave the way

for the XML model to be a widely accepted data model in both scientific and commercial

communities. As a result, the number of XML-based applications is rapidly increasing.

There has been a growing need for developing high-performance techniques to efficiently

manage XML data repositories.

XML schema representation

As XML is emerging as the data format of the internet era, there is an substantial

increase of the amount of data in XML format. To better describe such XML data

structures and constraints, several XML schema languages have been proposed. An

XML schema is the description of a type of XML document, typically expressed in

terms of constraints on the structure and content of that type [2]. There are several

languages developed to express XML schema. The most commonly used are DTD and

19

CHAPTER 2. PRELIMINARIES

XML Schema Definition (XSD) [88].

Spotlight. Both document type definition (DTD) and XML schema definition

(XSD) are commonly used languages to represent XML data. However, DTD has

limited capabilities compared to other schema languages, such as XSD. Moreover, XML

Schema definition (XSD) aims to be more expressive than DTD and more usable by

a wider variety of applications. It has many novel mechanisms, such as inheritance

for attributes and elements, user-defined data types, etc. Therefore, the research,

in this thesis, is only concerned with XML Schema Definition (XSD). Through this

thesis, unless clearly specified, we used the term ”schema” to present XML schema (XSD).

An XML schema is a set of schema components. In general, there are several kinds of

components in all, falling into three groups1.

• Primary components, which may or must have names and contain the following:

– simple type definitions;

– complex type definitions;

– element declarations;

– attribute declarations.

The element and attribute declarations must have names, while the type definitions

may have names.

• Secondary components, which must have names, are as follows

– attribute group definitions;

– identity constraint definitions;

– model group definitions;

– notation declarations;

– type alternatives;

– assertions.

• Helper components, which provide small parts of other components, they are not

independent of their context and are as follows:

1http://www.w3.org/TR/xmlschema11-1/#components

20

2.2. THE SCHEMA MATCHING PROBLEM

– annotations;

– model groups;

– particles;

– wildcards;

– attribute use.

These components may be combined together to build an XML schema. The coexisting

schemas range between small-scale and large-scale schemas. A small-scale schema is the

schema of limited size and scope, while a large-scale schema is large in scope and extent.

Spotlight. The research in this thesis deals with both types of schemas.

Issues in representing large-scale schemas

Advanced capabilities supported by the XSD language, such as user defined types, reuse

of schema components, result in significant complications for schema matching [118, 48].

In this section, we discuss the issues related to representing large-scale schemas.

1. XSD types. The XSD language provides a flexible and adaptable types containing

both simple and complex types. It contains several simple types (primitive and

derived), which can be used for element and attribute declarations. Complex types

are user-defined and can be used for element declarations. In contrast to simple

types, complex types can have elements in their content and may carry attributes.

There are two main methods to construct a new type either by a composition or

by a derivation method. Fig. 2.5 illustrates the two methods supported by XSD.

In the composition approach (Fig. 2.5a), a new type (Customer) is composed of

elements/attributes of existing types (string and AddressType). Using derivation, a

new type is derived from a base type and automatically inherits all its components.

XSD supports two derivation mechanisms, namely extension and restriction. In Fig.

2.5b, type Customer extends type AddressType and inherits the elements Street, City

and Code of AddressType.

A schema matching system presents high-performance if it has the ability to ex-

ploit XSD types information. Thus, different algorithms should be developed to

determine the similarity between XSD types across different schemas. Measuring

21

CHAPTER 2. PRELIMINARIES

(a) Composition (b) Derivation by extension

Figure 2.5: XSD new types construction.

(a) Inline (b) Element reuse (c) Type reuse

Figure 2.6: XSD components reuse.

the similarity between simple data types is a simple task by providing a data type

compatibility table [96]. However, determining the similarity among complex types

increases the difficulty of schema matching [118, 48].

2. XSD components reuse. To avoid redundancy, especially in large-scale schemas,

XSD supports two types of schema components reuse, as shown in Fig.2.6. The first

is element reuse, wherein XSD components, such as elements, attributes, types can

be referenced in several places. The referenced components are only limited to global

components, which are immediate children of the schema root element. The second

is type reuse. Types can be referenced within element or attribute declarations as

well as (recursively) within other type definitions. The high flexibility of type reuse

makes it a well-suited approach for large business applications. Both kinds of schema

components reuse, shown in Fig. 2.6(b,c), result in representing XML schemas in

graph structures. However, the basic method of element and attribute declarations

is to to specify types inline, as shown in Fig. 2.6a, resulting in a tree-like structure

schemas.

Again, a high-performance matching system should be able to deal with different

design methods (inline, element reuse, and type reuse). This requires the matching

22

2.2. THE SCHEMA MATCHING PROBLEM

Figure 2.7: Distribution of a schema [118, 48]

system uses a uniform schema representation, which is not biased to any design

style and can cope with shared components. Shared components are important for

schema matching, but also are difficult to deal with. On the other hand, it may be

important to clearly differentiate between the contexts where a shared component

is used, e.g. to distinguish the names of customers vs. employees.

3. XSD schema plans. In small-scale XML-based applications, the plan to construct

a schema is to put all schema components in one schema document. However, the

XSD language supports the distribution of a schema over schema documents and

namespaces through the include and import directives. The import directive allows

to add multiple schemas with different target namespaces to a schema document,

while the include directive provides adding multiple schemas with the same target

namespaces, as shown in Fig. 2.7. The figure shows that all documents declare the

same target namespace purchase.xsd. The main document purchase.xsd, references

type PartyType defined in document PartyType.xsd, which in turn references type

NameType in document NameType.xsd [118].

Consequently, a high-performance matching matching system should be able to deal

with the distribution of a schema over schema documents.

Spotlight. The illustrated issues in representing large-scale schemas as well as

heterogeneities discussed in the previous section amplify challenges towards developing

high-performance schema matching techniques. Our interest, in this thesis, is to deal

with these challenges. In particular, we aim to develop a generic schema matching

framework that is able to cope with several performance aspects including matching

effectiveness (quality) and matching efficiency (scalability) and has the advantage of

23

CHAPTER 2. PRELIMINARIES

dealing with complex matching.

2.2.3 Matching output

As mentioned before, the main objective of XML schema matching is to identify and

discover semantic correspondences among elements across XML schemas. The semantic

correspondences between these elements can be represented as a set of mapping elements.

A mapping element should comprise the corresponding elements and the relation that is

supposed to hold between them. Given two schemas S and T , a mapping element can be

specified by a 4-tuple element [8]

< ID, S.Eℓi, T.Eℓj, R >
�

�

�

�2.2

where

• ID is an identifier for the mapping element;

• S.Eℓi ∈ S and T.Eℓj ∈ T are the corresponding elements. It is worth noting that the

element, Eℓ, means either simple or complex type definition or element or attribute

declaration. A formal definition of the element will be detailed in Chapter 5.

• R indicates the similarity value between 0 and 1. The value of 0 means strong

dissimilarity while the value of 1 means strong similarity.

For example, after applying a certain matching algorithm to XML schemas shown in Fig.

2.1, the similarity value between the two elements “S.Address” and “T.CAddress” could

be 0.8. Suppose that this matching algorithm uses a threshold of 0.3 for determining the

resulting match, i.e., the algorithm considers all the pairs of elements with a similarity

values higher than 0.3 as correct correspondences. Thus, we write this mapping element

as follows:

m̃1 =< id1, S.Address, T.CAddress, 0.8 >
�

�

�

�2.3

A mapping element may have an associated mapping expression, which specifies how the

two elements (or more) are related. Schema matching is only considered with identifying

the mappings not determining the associated expressions. Discovering the associated

mapping expressions is another related problem called mapping discovery [103].

24

2.3. SUMMARY

We distinguish between two types of matching, which are defined as follows. Let S

and T be two schemas having n and m elements respectively, the two types are:

• Simple matching ; For each element ∈ S, find the most semantically similar element

∈ T . This problem is referred to as one-to-one matching. For example, the corre-

spondence between the “S.street” and “T.street” elements in the two XML schema

shown in Fig.2.1 represents a simple matching.

• Complex matching ; For each element (or a set of elements) ∈ S, find the most

semantically similar set of elements ∈ T . The correspondence between the “S.Name”

element of the first schema shown in Fig.2.1 and the “T.(FName, LName)” elements

of the second schema shown in the figure represents a complex matching.

2.3 Summary

In this chapter, we discussed different aspects of schema matching. To motivate the

schema matching problem we first introduced a real example from the e-business domain,

which showed the importance of schema matching. Then, we defined the generic matching

problem and casted this definition to define the schema matching problem. From this

definition, we illustrated the matching process input and output. We focused on different

data models that represent input schemas, and gave more attentions to XML schemas

identifying what different heterogeneities are and what issues in representing large-scale

schemas are and why they increase the complexity of schema matching.

25

Part II

Schema matching: The state of the

art

27

3
Application domains

As mentioned in Chapter 2, the activity that discovers semantic correspondences between

elements across different XML schemas is called schema matching. Schema matching

plays a crucial role in many data-shared applications that need to exchange data between

them. These applications make use of schema matching techniques during either design

time or run time. Typically, schema matching plays the central role: in data integration

to identify and characterize inter-schema relationships across multiple (heterogeneous)

schemas; in data warehousing to map data sources to a warehouse schema; in E-business

to help to map messages between different XML formats; in the Semantic Web to establish

semantic correspondences between concepts of different ontologies; in data migration to

migrate legacy data from multiple sources into a new one; and in XML data clustering to

determine semantic similarities between XML data.

In this chapter, we first present some well-known applications where matching has

been recognized as a plausible solution for a long time. These are data integration, data

warehouse, and schema evolution. We then discuss some recently emerged applications,

such as peer-to-peer information sharing, web service discovery, XML data clustering, and

query answering on the Web.

3.1 Data integration

XML is widely used for the exchange of data among Web applications and enterprises.

Integration of distributed XML data is thus becoming a research problem. This is due

to the large number of business data appearing on the Web and the large number of

29

CHAPTER 3. APPLICATION DOMAINS

service-oriented architecture that is being adapted in the form of Web services. XML

data integration includes the construction of a global view for a set of independently

developed XML data [25, 87, 32, 136].

Since XML data are engineered by different people, they often have different structural

and terminological heterogeneities. The integration of heterogeneous data sources requires

many tools for organizing and making their structure and content homogeneous. XML

data integration is thus a complex activity that involves reconciliation at different levels:

1. Data models. Integrating XML data with other data sources can greatly differ with

respect to the structures they use to represent data (for example, tables, objects,

files, and so on) [83]. Reconciliation of heterogeneous data models requires a com-

mon data model to map information coming from the various data sources.

2. Data schemas. Once we have agreed upon a common data model, the problem arises

of reconciling different representations of the same entity or property. For example,

two sources may use different names to represent the same concept (price and cost),

or the same name to represent different concepts (project to denote both the project

an employee is working on and a project for which an employee is the reviewer),

or two different ways for conveying the same information (date of birth and age).

Additionally, data sources may represent the same information using different data

structures. For instance, consider two data sources that represent data according

to the relational model, where both sources model the entity Employee but the

first uses only one table to store employee information while the other spreads this

information across more than one table. The need thus arises for tools to reconcile

all these differences [89].

3. Data instances. At the instance level, integration problems include determining if

different objects coming from different sources represent the same real-world entity

and selecting a source when contradictory information is found in different data

sources (for instance, different birth dates for the same person) [52].

Moreover, the integration of the Web data increases the integration process challenges

in terms of heterogeneity of data. Such data come from different resources and it is quite

hard to identify the relationship with the business subjects.

Usually, a first technical step is to identify correspondences between semantically re-

lated elements of the schemas. Then, by using the identified correspondences, merging the

databases is performed. The matching step is still required, even if the databases to be

30

3.1. DATA INTEGRATION

Figure 3.1: Simple schematic for a data integration system.

integrated are coming from the same domain of interest, e.g., book selling or car rentals.

This is because the schemas have been designed and developed independently. In fact,

humans follow diverse modeling principles and patterns, even if they have to encode the

same real-world object. Finally, the schemas to be integrated might have been developed

according to different business goals. This makes the matching problem even harder.

There are several directions of using matching in data integration. The recent trend

in data integration has been to loosen the coupling between data. Here, the idea is to

provide a uniform query interface over a mediated schema (see Fig. 3.1). This query is

then transformed into specialized queries over the original databases. To answer queries,

the data integration system uses a set of semantic mappings between the mediated schema

and local schemas of data sources. The system uses the mapping to reformulate a user

query into a set of queries on the data sources. Wrapper programs, attached to each

data source, handle the data formatting transformation between local schemas and the

mediated schema [50, 114]. This process can also be called view-based query answering

because we can consider each of the data sources to be a view over the (non-existent)

mediated schema [74]. Formally, such an approach is called Local As View (LAV), where

“Local” refers to the local sources/databases. An alternate model of integration is one

where the mediated schema is designed to be a view over the sources. This approach is

called Global As View (GAV), where “Global” refers to the global (mediated) schema, is

often used due to the simplicity involved in answering queries issued over the mediated

schema.

31

CHAPTER 3. APPLICATION DOMAINS

Figure 3.2: Data warehouse architecture.

3.2 Data warehousing

A data warehouse is a centralized repository of an organization’s electronically stored data

from multiple information sources that are transformed into a common, multidimensional

data model for efficient querying and analysis. This definition of the data warehouse

focuses on data storage. However, the means to retrieve and analyze data, to extract,

transform and load data, and to manage the data dictionary are also considered essential

components of a data warehousing system, see Fig. 3.2. The extraction process requires

transforming data from the source format into the warehouse format. As shown in [31, 24],

schema match is a useful process for designing transformations. Given a data source, one

approach to create appropriate transformations is to start by finding those elements of the

source that are also present in the warehouse. This is a match operation. After an initial

mapping is created, the data warehouse designer needs to examine the detailed semantics

of each source element and create transformations that reconcile those semantics with

those of the target. Another approach to integrate a new data source is to reuse an existing

source-to-warehouse transformation. First, the common elements of the new data source

and the old one are found (a match operation) and then, the existing source-to-warehouse

transformation is reused for those common elements.

The increasing use of XML in business-to-business (B2B) applications and e-Commerce

Web sites, suggests that a lot of valuable external data sources will be available in XML

format on the Internet. External XML data include business documents like purchase

orders, lists of prices or catalogs, as well as Web service responses. The possibility of

integrating available XML data into data warehouses plays an important role in providing

enterprise managers with up-to-date and comprehensive information about their business

domain [137, 116].

32

3.3. SCHEMA EVOLUTION & DATA MIGRATION

3.3 Schema evolution & data migration

Schema evolution is the process of assisting and maintaining the changes to the schematic

information and contents of a database. An important issue in schema evolution is to

provide evolution transparency to the users, whereby they would be able to pose queries

to the database based on a (possibly old) version of the schema they are familiar with,

even if the schema has evolved to a different state.

In the XML context, XML data tend to change over time for a multitude of reasons,

including the correction of design errors of XML schemas, allowing the expansion of the

application scope over time, or the accounting for merging of several businesses into one

[86, 72, 104]. These situations arise because knowledge engineers and developers usually

do not have a global view of how and where the schemas have changed. Therefore,

developers need to manage and maintain the different versions of their schemas. The goal

of the matching process is to discover correspondences between the old schema and the new

version of the schema. These correspondences are then used to generate transformation

rules for the underlying XML document instances.

Another application related to schema evolution is data migration. A common task in

many database applications is the migration of legacy data from multiple sources into a

new one. This requires identifying semantically related elements of the source and target

systems (schema matching) and the creation of mapping expressions (mapping discovery)

to transform instances of those elements from the source format to the target format [58].

3.4 Peer-to-peer systems

Data management in distributed systems has been traditionally achieved by distributed

database systems [111] which enable users to transparently access and update several

databases in a network using a high-level query language. A distributed database system

is a centralized server that supports a global schema and implements distributed database

techniques (query processing, transaction management, consistency management, etc.).

This approach has proved effective for applications that can benefit from centralized

control and full-fledge database capabilities, e.g., information systems. However, it cannot

scale up to more than tens of databases [136]. In contrast, peer-to-peer (P2P) systems,

a fully distributed communication model in which parties (called peers) have equivalent

functional capabilities in providing each other with data and services [146], suggest a

scalable, decentralized and easily extensible integration architecture where any peer can

33

CHAPTER 3. APPLICATION DOMAINS

Figure 3.3: Peer-to-peer system.

contribute data, schemas, and mappings. Peers with new schemas simply need to provide

a mapping between their schema and any other schema already used in the system to be

part of the network, see Fig. 3.3.

Generally, peer-to-peer management systems generally use peer-to-peer overlay net-

works to support their distributed operations [141]. Some use unstructured overlay net-

works [75] to organize the peers into a random graph and use flooding or random walks to

contact distant peers. Other peer systems maintain a decentralized yet structured peer-

to-peer network [42] to allow any peer to contact any other peer by taking advantage of

a distributed index.

To support query answering by peer-to-peer systems, there are key-based, keyword-

based, and schema-based systems [131]. Key-based systems can retrieve information ob-

jects based on a unique hash key. This kind of queries is supported by all Distributed Hash

Table (DHT) networks. Keyword-based systems extend this to the possibility to look for

the document based on a list of query terms. Schema-based systems manage and provide

query capabilities for structured information, such as relation and XML databases. A

schema matching process should be performed to automatically discover mappings be-

tween pairs of schemas to iteratively disseminate a query from one database to all the

other related databases [43].

3.5 XML data clustering

The increasing availability of heterogeneous XML data has raised a number of issues

concerning how to represent and manage semi-structured data. As a result, discovering

knowledge to infer semantic organization of XML data has become a major challenge in

34

3.5. XML DATA CLUSTERING

Figure 3.4: A generic XML data clustering framework.

XML data management. A possible solution is to group similar XML data based on their

content and structures. Grouping similar XML data according to structure or content or

both among heterogenous set of data is the process of XML data clustering.

Clustering is a useful technique for grouping data objects such that objects within a

single group/cluster have similar features, while objects in different groups are dissimi-

lar [82]. The main steps involved in the data clustering activity, as shown in Fig. 3.4,

are: (1) data representation: data objects are represented using a common data model;

(2) definition of data proximity measures suitable to the data domain and data represen-

tation: data features and the proximity function to measure the similarity between pairs

of data objects are determined; and (3) clustering or grouping : the similar data objects

are grouped together based on the proximity function using clustering algorithms [82, 28].

The relationship between schema matching and XML data clustering is bidirectional.

On the one side, clustering techniques have been adopted to improve matching perfor-

mance [93, 127, 122], and on the other side, schema matching is the backbone of the clus-

tering technique [89, 108, 13]. The SemInt system [93] starts by building the attribute

signatures, and then uses an unsupervised learning algorithm to classify the attributes

within the database. The Self-Organized Map algorithm is used to serve as clustering

algorithm to classify attributes into different categories. The output of this classifier is

used as training data for a neural net. The back-propagation learning algorithm is used

to train a network to recognize input patterns and give degrees of similarities. The work

proposed in [127] is based on using a clustering technique. The technique is inspired

35

CHAPTER 3. APPLICATION DOMAINS

by an observation that for a certain personal schema, good mappings are often found in

limited areas within the schema repository. Clustering is used as a tool to quickly identify

such areas and then restrict the expensive schema matching algorithms to these areas in-

stead of searching through the whole repository. This technique, called clustered schema

matching, adds a clustering step to an existing schema matching system. PORSCHE

[122] first clusters XML schema elements based on a linguistic label similarity making use

of a domain-specific user-defined abbreviation table and manually defined domain-specific

synonym table.

On the other hand, schema matching can be used as a technique that measures the

similarity between XML data. Approaches proposed in [89, 108, 13] consider XML data

element details such as name, data type as well as the relationships between elements. The

approaches compute the similarity between XML data based on the computed similarities

among schema elements. These element-level similarities are then aggregated in order to

determine the semantic similarities among paths and XML data trees.

3.6 Web service discovery

The Web, once solely a repository for text and images, is evolving into a provider of

services, such as flight information providers, temperature sensors, and world-altering

services, such as flight booking programs, and a variety of e-commerce and business-

to-business applications [99]. These web-based applications rely heavily on permitting

generic software components to be developed and shared. With the adoption of XML as

a standard and a common language for information representation and exchange on the

Web, the underlying principles have gained wide scale adoption through the definition of

Web service standards. Web services are well-defined, reusable, software components that

perform specific, encapsulated tasks via standardized Web-oriented mechanisms [38]. The

common usage scenario for Web services, as shown in Fig. 3.5, can be defined by three

phases; Publish, Find and Bind ; and three entities: the service requester, which invokes

services; the service provider, which responds to requests; and the registry, where services

can be published.

Three fundamental layers are required to provide or use Web services [22]. First, Web

services must be network-accessible to be invoked, HTTP is the de-facto standard network

protocol for Internet-available Web services. Second, Web services should be XML-based

36

3.7. XML QUERY PROCESSING

Figure 3.5: Web service usage scenario [38]

messaging for exchanging information, and SOAP1 is the chosen protocol. Finally, it is

through a service description that all the specifications for invoking a Web service are

made available; WSDL2 is the de-facto standard for XML-based service description.

Web service discovery mechanisms allow access to service repositories. These mech-

anisms should offer a number of capabilities, recognizable at both development and ex-

ecution time. During development, one may search repositories for information about

available services. At execution, client applications may use repositories to discover all

instances of a Web service that match a given request. Normally, Web services in a given

repository are developed independently, i.e., they are heterogeneous. This heterogeneity

is considered the main obstacle affecting the discovery process. A match task is required

to identify and discover the best Web service available. Different approaches have been

developed to discover Web services based on schema matching techniques [76, 95, 16].

3.7 XML Query processing

Although XML is usually used as an information exchange standard, storing, indexing

and querying XML data are still important issues and have become research hotspots

both in the academic community and in the industrial community [139, 71]. So far, there

have been three main approaches to manage XML data: (1) the relational model, mapping

XML data into tables and translating queries on XML data into SQL statements [64, 123],

(2) the object-oriented model, storing XML documents into an OODB with classes and

translating XML queries into OQL queries based on XML data schema information [119],

and (3) the native model, designing special structures and indexes to store and index XML

data and proposing particular query optimization techniques to query XML data [100].

1http://www.w3.org/TR/soap/
2http://www.w3.org/TR/wsdl20/

37

CHAPTER 3. APPLICATION DOMAINS

XML queries can be categorized into two classes: database-style queries and Informa-

tion Retrieval-style queries. Database-style queries return all query results that precisely

match (the content and structure requirements) the queries, while, IR-style queries al-

low ”fuzzy” query results, which are ranked based on their relevance to the queries [71].

Queries using XML query languages make use of twig patterns to match relevant portions

of data in an XML data source. Twig patterns are simple tree-structured queries for

XML that include three basic language elements, namely node conditions, parent-child

edges, and ancestor-descendant edges. They play a very important role in database-style

languages, such as XPath and XQuery as well as information retrieval-style approaches

to match relevant portions of data in an XML database [143, 71].

Given a twig pattern T and an XML database D, a match of T in D is identified by

a mapping from nodes in T to elements in D, such that: (i) query node predicates are

satisfied by the corresponding database elements; and (ii) the parent-child and ancestor-

descendant relationships between query nodes are satisfied by the corresponding database

elements. The answer to query T with m nodes can be represented as a list of m-ary tuples,

where each tuple (t1, ..., tm) consists of the database elements that identify a distinct match

of T in D.

3.8 Summary

To motivate the importance of schema matching, in this chapter, we reported on several

shared-data XML-based applications from different domains. The common feature of

these applications is that their XML data are developed independently, which results in

semantic and structure heterogeneities. It becomes inevitable to consider schema match-

ing to resolve these heterogeneities and provide a unified view of data. However, there are

notable differences in the way these applications use matching. One interesting point is

the static or dynamic aspect of data interoperability. Query answering and peer-to-peer

systems have a more dynamic nature compared to the other application domains. The

fact that peers in peer-to-peer systems have the ability to enter or leave the system at

any time increases the dynamism of matching.

38

4
Schema matching systems: An overview

As shown in Chapter 3, schema matching represents the backbone of several XML-based

applications. It has been shown that these applications make use of schema matching ei-

ther during the design time or during the run time. The emergence of numerous matching

systems motivates the need to make a survey on these systems [117, 63, 110, 51, 125]. To

this context, this chapter is devoted to present an overview of existing matching systems.

The main aim of the chapter is not to present a comparison between matching systems,

but to introduce a unified view of these systems. To this end, we propose a generic match-

ing framework. The framework should be independent from the representation scheme of

the schemas to be matched as well as independent on the domain of these models. The

aim is to draw a clear picture on the approaches, how far we can go with the current solu-

tions, and what remains to be achieved. Here, the focus is on the concepts, alternatives,

and fundamentals of the solutions, not on detailed technical discussions.

4.1 Generic schema matching framework

The existing matching systems deal with the schema matching problem from different

point of views, depending on the schemas to be matched, which kind of schemas to be

matched (relational, XML, ontology); used algorithms, the used methods to determine

semantic correspondences between schema elements (rule-based or learner-based); appli-

cation domains, etc. There has been a growing need for developing generic frameworks

that unify the solution to the schema matching problem. The intuition behind introducing

a generic framework is that recently existing matching systems and prototypes addressing

39

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

Figure 4.1: Schema matching phases

the schema matching problem have common similarities in the way of dealing with the

problem. We observed that most of these approaches share the same phases but each

phase may have its own steps depending on the nature of the approach. Therefore, in this

chapter, we propose a unified framework, as shown in Fig. 4.1. The framework consists

of the following general phases:

1. TransMat ; Schemas to be matched should be imported and transformed into a

common data model,

2. Pre-Match; Elements of common models exploited by matching algorithms should

be identified,

3. Match; Matching algorithms are then applied to identified elements,

4. MapTrans; The match result is exported to the specified application domain.

In the following sections, we strive to give more details about these phases. Throughout

the framework phases, we quote from existing mainstream systems. In fact, the number of

existing matching systems is extremely large and it is difficult to mention all these systems

in the thesis. Some reviews of a number of matching systems have already be presented, in

particular in [117, 46, 63, 125, 110, 51]. Therefore, we only consider well-known matching

systems that emerged during the last decade. Furthermore, since the main focus of the

40

4.2. TRANSFORMATION FOR MATCHING (TRANSMAT)

thesis is on schema-based matching, a few instance-based and ontology matching systems

will be discussed. In particular, we consider Cupid [96], COMA/COMA++ [47, 118, 21,

48], Similarity Flooding (SF)/Rondo [101, 102], SemInt [93], LSD/GLUE [50, 49, 54, 53],

Quick ontology mapping (QOM) [62], Ontobuilder [68, 66], Spicy [34, 35], S-Match [124,

70], Bellflower [128, 127], BTreeMatch [61, 60], PORSCHE [122], iMAP [44], and Dual

Correlation Mining (DCM) [77]. Though different in many ways, these systems can be

described through our generic framework.

4.2 Transformation for matching (TransMat)

To make the matching process a generic process, schemas to be matched should be rep-

resented internally by a common representation. This uniform representation reduces the

complexity of the matching process by not having to cope with different schema repre-

sentations. By developing such import tools, the schema match implementation can be

applied to schemas of any data model such as relational, object-oriented, XML, UML,

etc. Therefore, a first step in almost all schema matching systems is to transform input

schemas into a common model in order to apply the matching algorithm. We name this

phase TransMat ; Transformation for Matching process.

Most current schema matching systems choose graph data structure as the internal

representation [48, 101, 37, 128, 147]. The choice of graph as an internal representation

for the schemas to be matched has many motivations. First, graphs are well-known data

structures and have their algorithms and implementations. Second, by using the graph as

a common data model, the schema matching problem is transformed into another standard

problem, graph matching. Though they achieve high matching quality, matching systems

depending on graph representation have poor matching performance, especially when they

are used in a large-scale context. Therefore, other matching systems model input schemas

as trees [89, 122, 60]. In fact, a schema is a graph. It can be represented as a tree by

dealing with nesting and repetition problems using a set of predefined transformation

rules similar to those in [89]. In the sequel, we focus on how the mainstream systems

internally represent their input schemas.

Cupid [96] is a generic schema matching prototype that identifies mappings between

XML schemas. It first restricts the model with hierarchical schemas, so it transforms

its model into a schema tree. To deal with real-world schemas, Cupid extends its tech-

niques to transform schemas into rooted graphs whose nodes represent schema elements.

COMA/COMA++ [47, 48] are two systems for combining match algorithms in a flexible

41

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

way. Both deal with different kinds of schema models, such as XML, RDF, and OWL

schemas. Input schemas are represented by rooted directed acyclic graphs, where schema

elements are represented by graph nodes connected by directed links of different types.

The SF system [101] is a simple structural algorithm, based on a fixpoint computation,

and can be used for matching of diverse data models. The system transforms the original

schemas into directed labeled graphs using an import filter. The representation of the

graphs is based on the Open Information Model (OIM) specification [29]. The system

uses two different types of nodes. Oval nodes denote the identifers of nodes, and rectangle

nodes denote string values. S-Match [70], Ontobuiler [68], and QOM [62] are well-known

prototypes proposed to identify semantic correspondences between ontologies. They use

graphs as the internal representation of input ontologies.

Like our proposed approach, BTreeMatch [61], PORSCHE [122], and Bellflower [128,

127] are three proposed prototypes identifying semantic correspondences across XML

schemas. Both, BTreeMatch and PORSCHE encode input XML schemas as labeled trees,

while the Bellflower system uses directed graphs enriched with node and edge labels. The

Spicy system [34, 35] deals with both flat (i.e., relational) sources, and nested ones, as

XML repositories. To represent input sources as a uniform representation, it utilizes the

tree structure. The SemInt system [93] extracts metadata directly from the databases and

DBMSs without needing to transform the original schemas. The system is concerned with

attribute names, attribute values and domains and field specification. Then it uses this

information to form attribute signatures. The LSD [50, 53] system delays the extraction

and transformation phase into the next phase, i.e., LSD performs the first two phases

(TransMat and Pre-Match) at the same time.

DCM [77] is a framework to discover complex matchings across Web query interfaces

by a correlation mining approach. It views each query interface as a flat schema with

a set of attribute entities. An attribute can be identified by attribute name, type, and

domain.

From this, it is clear that a first step to construct a generic schema matching system,

is to represent input schemas internally by a common data model. This common model

should capture several kinds of model information, including syntactic, semantic, and

structural information. The common model also allows matching systems to deal with

different models from different domains.

42

4.3. PRE-MATCH PHASE

4.3 Pre-Match phase

The pre-match phase is an important step in the matching process. Its importance comes

from its location directly before the matching phase. This means that its output affects

the input of the matching phase. Therefore, it should be examined very carefully. In

addition, the nature of this phase depends on the type of matching algorithms. The

matching algorithms can be classified as rule-based or learner-based [51].

In the rule-based algorithms, matching systems depend on hard-coded fashion. The

Pre-Match phase does not appear clearly but can indirectly come into sight in the next

phase. COMA/COMA++ renames this phase as element identification. The graphs

are traversed to identify schema graph elements that are exploited by match algorithms

to determine the similarity between them. Besides nodes as a common element type,

COMA/COMA++ also supports matching between paths and fragments. To identify

elements exploited by matching algorithms, Cupid also traverses schema graphs in a

combined bottom-up and top-down manner. In the SF system, the Pre-Match phase does

not appear directly. The system obtains an initial mapping called “initialMap” between

the graphs using an operator called StringMatch. initialMap is obtained using a simple

string matcher that compares common prefixes and suffixes of string values. This initial

mapping is used as a starting point for the next step. To compare two entities from two

different ontologies, QOM considers their features through two steps: feature engineering

and search selection. These features have to be determined by an expert understanding

the encoded knowledge in ontologies.

The Bellflower prototype extends the graph representation of XML schemas and for-

malizes the schema matching problem as a constraint optimization problem [128]. The

Spicy system also extends tree representation and generates an electrical circuit for every

data tree. In order to build such circuit, it needs to sample instances, such that for a

leaf node in the data tree, the system selects random instances with a defined size. The

Spicy system then investigates features, such as the length of values in the sample and

the distribution of characters.

In the learner-based algorithms, the matching system depends on Artificial Intelli-

gence (AI) techniques; namely machine learning and neural networks. The Pre-Match

phase is called the training phase and it is performed explicitly in most matching systems

exploiting learner-based algorithms. The SemInt system uses a neural network learner. In

the training (Pre-Match) phase, after building the attribute signatures, the system uses

an unsupervised learning algorithm to classify the attributes within the database. The

43

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

Self-Organized Map [84] algorithm is used to serve as a clustering algorithm to classify

attributes into different categories. Then, the output of this classifier is used as training

data for a neural net. The back-propagation [120] learning algorithm, a supervised learn-

ing algorithm, is used to train a network to recognize input patterns and give degrees of

similarities. The LSD/GLUE systems use a machine learning learner. The systems incor-

porate the transformation and the pre-match phases into one phase named the training

phase. In LSD, the training phase consists of five steps starting by asking the user to

specify 1-1 mappings which can be used as training data for the learner. Then, LS-

D/GLUE extracts data from the sources. After that, the LSD system uses this extracted

data together with 1-1 mappings provided by the user to create the training data for

each base learner. The system uses different base learners, e.g., name matcher and Naive

Bayes learners and only one meta learner. Next, the LSD system starts training each base

learner and then ends with training the meta-learner.

The iMAP system does not need a Pre-Match phase since it is restricted to relational

tables. It generates a set of match candidates guided by a set of search modules. DCM

performs a data preprocessing step to make input schemas ready for mining. The data pre-

processing step consists of attribute normalization, type recognition to identify attribute

types from domain values, and syntactic merging to measure the syntactic similarity of

attribute names and domain values.

An interesting point that should be considered during the Pre-Match phase is the

preparation of auxiliary information sources, such as external dictionaries and thesaurus,

synonym tables, etc. Cupid makes use of a synonym and hypernym thesaurus to measure

the name similarity, while COMA/COMA++ uses external dictionaries to measure the

synonym between schema elements and user-specified matches to support user feedback.

PORSCHE utilizes a domain-specific user-defined abbreviation table and a manually de-

fined domain-specific synonym table to determine a linguistic label similarity between

tree nodes. S-Match exploits WordNet to compute the meaning of a label at a node (in

isolation) by taking a label as input, and by returning a concept of the label as output.

To summarize, the Pre-Match phase is an intricate and important phase. Its im-

portance arises from the fact that it is located directly before the match phase and its

output largely affects the match phase performance. Despite its importance, the work

done toward this phase is very modest, especially the rule-based matching systems.

44

4.4. MATCH PHASE

Figure 4.2: Match phase steps

4.4 Match phase

To identify semantic correspondences between schema elements, we need to assess their se-

mantic similarities. To compute the semantic similarity across schema elements, matching

systems use heuristics that are also called clues. Clues, in general, are often incomplete.

Therefore, matching approaches use multiple clues to improve the probability that each

matching situation at least some clues will correctly detect semantic similarity. Figure

4.2 shows the block diagram of the matching phase. It mainly consists of three steps:

1. Element matcher; It computes a similarity degree between every pair of schema

elements using multiple heuristics. The output of this step is called the similarity

cube.

2. Similarity combiner; It combines the different similarities for each pair of schema

elements into a single similarity value using the similarity cube. The output of this

step is called the similarity matrix.

3. Similarity selector; It selects the most plausible corresponding elements.

Below, we present more details about these steps according to the mainstream matching

systems reported in this chapter.

4.4.1 Element matcher

The implementation of matching system heuristics is the element matcher. To distinguish

between matchers, as shown in Fig. 4.3, two aspects are discussed:

• Element properties; The element properties are the properties used by the matcher

to compute the element similarity. These properties can be classified into atomic

45

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

Figure 4.3: Element matcher aspects

or structural ; schema-based or instance-based ; and auxiliary properties. Atomic

properties are the internal schema element features, such as element name, data

type, and cardinality constraints. The structural properties are the combinations

of element properties that appear together in a schema. These properties take into

account the element position (context) in the schema graph (or schema tree). The

context of an element is reflected by its descendants, ancestors, and siblings.

Schema-based properties are the properties existing in the schema itself, such as

the name and data type of an attribute in relational databases. Element descrip-

tion, relationship types and integrity constraints are good schema-based properties.

Instance-based properties are the properties that belong to the instances of the

schema, like the data values stored in the database for that attribute. The instance-

level properties provide important insight into the contents and meaning of schema

elements. Finally, auxiliary sources can be used to gather additional element prop-

erties. As stated, a few information sources carry semantics of schema elements;

both schema-based and instance-based clues are incomplete; and the matching pro-

cess is subjective. Therefore, most matchers rely not only on the input schema but

also on auxiliary information such as external dictionaries, previous mappings and

user feedback.

• Matcher algorithm; To assess the element similarity, a matching algorithm should

be used exploiting the element properties. A matching algorithm can either be

classified by the information they exploit or by their methodologies. According to

the information they exploit, as shown in Fig. 4.3, the matchers can be [117]:

– Individual matchers; exploiting one type of clues (property, schema-based,

instance-based, etc), or

46

4.4. MATCH PHASE

– Combining matchers; exploiting multiple types of clues. They can either be

hybrid matchers that integrate multiple criteria [93, 96, 47, 48], or composite

matchers that combine results of independently executed matchers [50, 53,

145].

According to their methodologies, matching algorithms can be classified as either

rule-based or learner-based [51]. Rule-based systems exploit only schema-based

properties in a hard-coded fashion. They are easy to implement and do not need

to be trained before they are put in use, and they are fast, since operate only on

schema-based properties. However, rules cannot exploit instance-based properties

efficiently and they cannot exploit previous match results to improve the current

matching process. Motivated by the drawbacks of rule-based systems, a collection

of learning-based solutions has been proposed. The learner-based systems utilize

both schema-based and instance-based information. These systems depend largely

on the previous phase (a training phase), since in these systems, a set of learners

needs to be well-trained first. The advantage of these approaches is that they can

empirically learn the similarities among data based on their instance values. The

disadvantage of using learner-based approaches is that instance data is generally

available in very vast quantity. Hence, the computational cost is very expensive.

We are now in a position to report on mainstream matching systems with respect to

the element matcher aspects. The Cupid system [96] exploits both atomic and structural

properties in two sequential steps. A linguistic matcher exploits element atomic properties,

names, and data types to produce a linguistic similarity coefficient (lsim) between each

pair of elements. The linguistic matching makes use of auxiliary information in the form

of thesaurus to help match names by identifying short-forms. A structural matcher then

makes use of element structural properties and produces a structure similarity (ssim)

coefficient.

COMA (Combining matching algorithms) [47] and its extension COMA++ [21, 48]

exploit different kinds of element properties and use different kinds of matching algo-

rithms. Both utilizes atomic (simple) properties such as names, data types, structural

properties, such as TypeName (data types + names), Children (child elements) and leaves

(leaf elements), and auxiliary information such as synonym tables and previous mappings.

The two systems utilize simple, hybrid and reuse-oriented matchers. The simple matcher

depends largely on element names as well as the element data type. The hybrid matchers

use a fixed combination of simple matchers and other hybrid matchers to obtain more

47

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

accurate similarity values. To effectively deal with large schemas, COMA++ proposes the

fragment-based matcher [118]. Following the divide and conquer technique, COMA++

decomposes a large match problem into smaller sub-problems by matching at the level

of schema fragments. Both systems support two hybrid atomic-based matchers Name

and TypeName, and three hybrid structural matchers NamePath, Children, and Leaves.

Applying K matchers to two schemas, S1 with n elements and S2 with m elements, the

output of this step is a K ×m× n cube of similarity values.

The SF system [101] uses an operator called SFJoin to produce the mappings between

the two schema graph elements. This operator is implemented based on a fixpoint com-

putation. As a starting point for the fixpoint computation the system uses the initalMap

produced in the previous phase. The matcher element is based on the assumption that

whenever two elements in the two graphs are found to be similar, the similarity of their

adjacent elements increases. After a number of iterations, the initial similarity of any two

nodes propagates through the graphs. The algorithm terminates after a fixpoint has been

reached.

The BtreeMatch [61, 60] and PORSCHE [122] systems are two hybrid approaches

to discover semantic correspondences across XML data. Both make use of atomic and

structure properties of XML data elements. BTreeMatch encodes XML data as unordered

labeled trees, while PORSCHE represent them as ordered labeled trees using the depth-

first traversal. Both measure the label similarity between tree nodes exploiting tree el-

ement names. BTreeMatch does not utilize any external dictionary, while PORSCHE

makes use of a manually defined domain-specific synonym table. To measure the struc-

tural similarity, BTreeMatch uses an index structure to improve matching performance,

while PORSCHE employs a tree mining algorithm. The Bellflower system [127] uses a

single element matcher that exploits element names. The matcher is implemented using

a fuzzy string similarity function.

The Spicy system [35, 34] proposes an architecture to integrate schema matching and

schema mapping generation. It introduces an original approach called structural anal-

ysis that uses electrical circuit representation to compare the topology and information

content of data sources. The system exploits actual data instances as well as schema-

based properties. it uses a mix of top-down and bottom-up search procedures to identify

mappings between two schemas. It works bottom-up in the first phase by adopting a

quick element-level comparison procedure to aggressively prune the search space; once

the number of candidate matching structures has been restricted, it works top-down in

order to select the best mappings using structural analysis. Structural analysis consists

48

4.4. MATCH PHASE

of the following steps: (1) mapping source and target subtrees into electrical circuits, (2)

solving the two circuits to determine currents and voltages, (3) choosing a number of de-

scriptive features, such as output current, average current, total and average consistency,

total and average stress; assuming that each feature is computed by a function, and (4)

comparing individual descriptive features.

The SemInt system [93] utilizes attribute names and field specification (schema-based

properties) and data contents and statistics (instance-based properties). The system also

exploits 20 different matchers; 15 metadata-based matchers and 5 instance-based match-

ers. It uses the properties of one database to train a network. Then, the trained network

uses information extracted from the other database as input to obtain the similarity be-

tween each attribute of the second database and each category in the first one.

The LSD system [50] largely depends on instance-based properties, but at the same

time it also exploits schema-based properties. Once both base and meta learners have

been learned in the previous phase, LSD is ready to predict semantic mappings for new

sources. To determine such mappings, LSD needs two steps. First, LSD collects all the

instances of the new source elements. LSD then applies the base learners to identify the

similarity. Different types of learners can be used to perform the task such as Name

Matcher, Content Matcher and Naive-Bayes Learners. GLUE [54] is an extended version

of LSD. Both [53] are based on machine learning techniques for individual matchers

and an automatic combination of match results. However, GLUE is devoted to discover

semantic matching between ontologies. QOM [62] uses both atomic and structural features

(properties) of ontology entities (elements). To keep up the high quality of mapping

results the system retains using as many ontology features as possible and proposes a set

of similarity measures (matchers) to determine the similarity between elements.

The iMAP [44] system discovers complex matches for relational data by casting the

problem of finding complex matches as search. It has three modules: match generator,

similarity estimator, and match selector. During the entire matching process, these mod-

ules make use of domain knowledge and data. The match generator takes two schemas,

S1 and S2, as input. For each attribute in S2, it produces a set of candidates which

can include both 1-1 and complex matches guided by a set of search modules, such as

text, numeric, and unit conversion searchers. The dual correlation mining (DCM) [77]

system represents Web query interfaces as flat schemas with a set of attribute entities.

The system exploits the attribute names and data type (simple properties) as well as

data values (instance-based). DCM utilizes holistic schema matching that matches a set

of schemas of the same domain at the same time and finds all matchings at once. To

49

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

this end, it proposes a dual correlation mining through two steps. (i) Group discovery

positively mines correlated attributes to form potential attribute groups. (ii) Matching

discovery mines negatively correlated attribute groups to form potential n− ary complex

matchings.

4.4.2 Similarity combiner

The available information about semantics of schema elements may vary; at the same

time, the relationships between them are fuzzy. Therefore, most of the existing matching

systems make use of multiple element matchers. Every element matcher computes a

similarity degree between schema element pairs exploiting a certain element property

(feature). Therefore, a matching system with K element matchers produces K similarity

values for every schema element pair. To combine these values into a single one, the

similarity combiner is used.

The Cupid system combines the two similarity coefficients in one weighted coefficient.

The weighted coefficient is the mean of lsim and ssim: wsim = wstruct × ssim + (1 −
wstruct)×lsim , where the constant wstruct is in the range 0 to 1. COMA/COMA++ derives

combined match results from the individual matcher results stored in the similarity cube.

This is achieved by what is called aggregation of matcher-specific results. The system uses

four aggregation functions, namely Max, Weighted, Average and Min. Max optimistically

returns the highest similarity predicted by any matcher, while Min pessimistically takes

the lowest one. Average aims at compensating between the matchers and returns the

average of their predicted similarities. It is a special case of Weighted, which computes a

weighted sum of the similarities given a weighting scheme indicating different importance

of the matchers. The result of the similarity combiner step is a similarity matrix.

The QOM system nonlinearly aggregates similarity values generated by different ele-

ment matchers using the following function

sim(e1, e2) =

∑

i=1...k wi × adj(simi(e1, e2))
∑

i=1...k wi

�

�

�

�4.1

where wi is the weight for each individual similarity value, adj is a function to transform

the original similarity value (adj : [0, 1]→ [0, 1]) to emphasize high individual similarities

and deemphasizes low individual similarities by weighting individual similarity results

with a sigmoid function first, simi(e1, e2) is the individual element measure (matcher),

and K is the number of used element matchers.

50

4.4. MATCH PHASE

BTreeMatch and PORSCHE both aggregate two similarity values generated by ele-

ment matchers: terminological and cosine measures for BTreeMatch and node label sim-

ilarity and contextual positioning in the schema tree for PORSCHE. In the Bellfollower

system, as mentioned before, a single name matcher is used. But, to build its objective

function, the system needs another matcher to exploit more properties. A path length

matcher is then used to capture the structural properties of schema elements. The match-

ers are then combined using a weighted sum. The Spicy system uses the harmonic mean

to determine global similarity between two subtrees.

LSD uses a meta-learner to combine the predictions generated by the base learn-

ers. The meta-learner is trained to gain the ability to judge how well each base learner

performs with respect to each element. Based on this judgment, it assigns a weight to

each combination of element and base learner that indicates how much it trusts the base

learner’s predictions regarding the element. The system uses a technique called stacking

to implement the meta-learner. SemInt does not require a similarity combiner as this

step is incorporated in the element matcher step. The back-propagation neural network

produces one similarity value for each element pair. The SF system also does not contain

a similarity combiner as it only uses one element matcher SFJoin which produces one

similarity value.

iMAP uses a similarity estimator module, which computes a score for each match

candidate that indicates the candidate’s similarity to another element. In doing so, the

similarity estimator tries to exploit additional types of information to compute a more

accurate score for each match. To this end, it employs multiple evaluator modules, each

of which exploits a specific type of information to suggest a score, and then combines the

suggested scores into a final one. The output of this module is a matrix that stores the

similarity score of <attribute, match candidate> pairs.

4.4.3 Similarity selector

At this stage, schema elements are corresponding to one or more elements from the other

schema(s). The similarity selector step is concerned with selecting the most suitable

mapping(s) for each element. However, even having a good ensemble of complementary

element matchers cannot guarantee that an optimal mapping will always be identified as

the top choice of the ensemble. To address such situations to the last possible degree,

one can adapt the approach in which K top-ranked schema mappings are generated and

examined [55]. These mappings can be ranked based on different criteria.

51

CHAPTER 4. SCHEMA MATCHING SYSTEMS: AN OVERVIEW

Cupid creates mappings by choosing pairs of schema elements with the maximal

weighted similarity, i.e., wsim that exceeds a predefined threshold (i.e. wsim ≥ th).

COMA/COMA++ compute the element similarity and the schema similarity. To com-

pute the element similarity, it uses the similarity matrix to rank S1 correspondences in

the descending order of their similarity values and then it uses one of three selecting

functions. The selecting functions are: MaxN, constantly returning the top N candidates;

MaxDelta, taking the candidates with the highest similarity Max as well as those with

a similarity within a relative tolerance range specified by a Delta value; and Threshold,

returning all candidates showing a similarity above a particular threshold. On the other

hand, to compute the schema similarity, both systems use two strategies, namely Average

and Dice.

The SF system uses an operator called SelectThreashold that selects the best match

candidates from the list of ranked map pairs returned by the SFJoin operator. To address

the selection problem, SF specifies three steps; using application-specific constraints (typ-

ing and cardinality); using selection techniques developed in matching bipartite graphs;

and evaluating the usefulness of particular selection techniques and choosing the one with

empirically best results. BTreeMatch selects a set of matches consisting of all element

pairs whose similarity value is above a threshold given by an expert.

From the similarity values, QOM derives the actual mappings based on a threshold

and a greedy strategy. QOM interprets similarity values by two means. First, it applies

a threshold to discard false evidence of similarity. For the general threshold, NOM also

uses a maximized f-measure of training data. Second, NOM enforces bijectivity of the

mapping by ignoring candidate mappings that would violate this constraint and by favor-

ing candidate mappings with highest aggregated similarity scores. As there may only be

one best mapping, every other match is a potential mistake, which is ultimately dropped.

The OntoBuilder framework [55] introduces a technique that computes the top-K
prefix of a consensus ranking of alternative mappings between two schemas, given the

graded valid mappings of schema elements provided individually by the members of ele-

ment matchers. To compute top-K mappings, the framework first utilizes the threshold

algorithm, which requires time exponential in the size of the matched schemas. To improve

matching performance, it introduces a simple algorithm, called Matrix-Direct, specific to

the schema matching problem. Then, the framework makes use of both algorithms to

address matching scenarios when the Matrix-Direct algorithm is not applicable.

In SemInt, users can specify filtering functions so that that the system only presents

those pairs with very high similarity values. System users check and verify the output

52

4.5. MAPPINGS TRANSFORMATION (MAPTRANS)

results of the trained network. LSD considers domain constraints to improve the accuracy

of the mappings. The process of exploiting these constraints is called the constraint

handler. The constraint handler takes the domain constraints and the prediction produced

by the meta-learner to generate 1-1 mappings. The constraint handler searches through

the space of possible candidate mappings to find the one with the lowest cost. Then, user

feedback can further improve the mapping accuracy.

iMAP uses a match selector module that examines the similarity matrix and outputs

the best matches for schema elements. The system views the task of the match selector as

search for the best global match assignment that satisfies a given set of domain constraints.

In doing so, it utilizes a match selector that is similar to the constraint handler module

described in LSD [50]. The DCM system develops a matching construction step that

consists of matching ranking and matching selection.

Table 4.1 gives a comprehensive summary for the Match phase steps w.r.t. the men-

tioned schema matching systems.

4.5 Mappings Transformation (MapTrans)

This phase is concerned with transforming or exporting the matching result (mappings)

to be accepted by the application domain. Hence, we call it MapTrans (Mappings

Transformation). As stated before, schema matching is only concerned with identify-

ing mappings. Each mapping element reveals which elements of the two schemas are

corresponding (matched) and the degree of that correspondence. But how these elements

are related to each other is another related problem. This problem is known as query

discovery [103, 144]. Since our main focus in this thesis is how to identify mappings but

not to discover transformation rules, we only present different aspects that affect mapping

transformation. The MapTrans phase inherently depends on two main aspects: matching

cardinality and mapping representation.

The match cardinality is subdivided into global and local cardinality [117, 65]. Global

cardinality considers how many times (zero or more) an element of a first schema S1 is

included in a match correspondence with elements of a second schema S2 (i.e., an element

of S1 can participate in zero, one, or several correspondences from S2 1:1, 1:n/n:1, or

n:m cardinality). While local cardinality refers to the number (one or more) of elements

of S2 is related to within a matching correspondences (i.e., within a correspondence, one

or more elements of S1 may be matched with one or more elements of S2). Most of the

existing matching systems map each element of one schema to the element of the other

53

C
H

A
P
T

E
R

4
.

S
C
H

E
M

A
M

A
T

C
H

IN
G

S
Y
S
T

E
M

S
:
A
N

O
V
E
R
V
IE

W

Table 4.1: Match phase steps w.r.t. mainstream systems

`
`

`
`

`
`

`
`

`
`

`
`

`
`̀

Criteria
Prototypes

Cupid COMA/COMA++ SemInt LSD/GLUE SF iMAP QOM Bellflower BTreeMatch BORSCHE Spicy

Element Property

atomic
name name, name name name name name name name name ×

data type data type length

structure
leaves node-context × × neighbors × hierarchical features total path length node context node scope ×

child, leaves, parent,
schema-based

√ √ √ √ √ √ √ √ √ √ ×
instance-based

× × √ √ × √ √ × × × √
data values& statistics instances instances instances instances

auxiliary sources

√ √ × √ √ √ × × × √ ×
thesaurus synonymy table synonyms& constraints specific constraints domain knowledge synonym tables

Element Matcher

rule-base

√ √
× ×

√
×

√ √ √ √ √
hybrid combined structure string similarity name matcher string matcher label matcher structural analysis

(linguistic& structure) (simple, hybrid,reused) (fixpoint computation) set/object similarity structure matcher cosine vector similarity tree mining (electrical circuit analysis)

learner-based × ×

√ √

×

√

× × × × ×neural network machine learning machine learning
(15 meta-data & multiple learning strategy match generator

5 data-based matchers) (base& meta learners) (beam search)

matcher output
linguistic similarity,lsim k×m×n multi- multi- a cube of similarity a cube of similarity name similarity string similarity multi-mapping multi-mapping
structural similarity,ssim similarity cube mapping mapping structure similarity cosine similarity

Similarity Combiner

method

√ √
×

√
×

√ √ √ √ √ √
weighted sum aggregate function meta-learner similarity estimator sigmoid, aggregate function aggregate function aggregate function harmonic mean

(max, min, avg.) stacking (multiple evaluation modules) sum (avg., sum, max) (avg., sum, max) (avg., sum, max)

output
weighted sum m ×n × similarity × similarity similarity similarity similarity multiple similarity

similarity (wsim) matrix similarity, matrix matrix matrix matrix matrix mappings matrix

Similarity Selector

method
maximum weighted element similarity, user constraint handler/ filters (constraints, match selector threshold selection, branch & bound threshold threshold threshold

sum (wsimmax) schema similarity specified relaxation labeler selection threshold (best global match) bijectivity of mappings algorithm selection selection selection
(maxN, maxDelta, threshold) functions(exact, best, left)) (threshold selection)

output
simple simple simple simple simple simple complex simple simple simple simple

1:1 & n:1 1:1 & 1:n 1:1 1:1 1:1 m:n 1:1 1:1 1:1& 1:n 1:1

5
4

4.6. SUMMARY

schema with the highest similarity. This results in local 1:1 matches and global 1:1 or 1:n

mappings. Hence, the mapping transformation for these types of cardinality is a plain

process. However, more work is needed to explore more sophisticated transformations

coping with local and global n:1 and n:m mappings.

Another view of matching cardinality can be found in [145]. The authors define

semantic correspondences between a source schema S and a target schema schema T as

a set of mapping elements. A mapping element is either a direct or indirect match. A

direct match binds a schema element in the source schema to a schema element in the

target schema, while an indirect match binds a virtual schema element in a virtual source

schema to a target schema element in the target schema through an appropriate mapping

expression over the source schema. A mapping expression specifies how to derive a virtual

element through manipulation operations over a source schema.

Cupid and LSD systems output element-level mappings of 1:1 local and n:1 global

cardinality, where Cupid represents mappings as paths while LSD represents it as nodes.

COMA and SF systems produce element-level correspondences of 1:1 local and m:n global

cardinality where COMA represents mappings as paths while SF represents mappings as

nodes. The SemInt system returns element-level correspondences of m:n local and global

cardinality and represents the mapping elements as nodes. The element-level correspon-

dences in these systems are associated with a similarity value in the range [0,1].

Mapping representation, the second aspect that affects mapping transformation, is

primarily based on the internal representation of input schemas. Two models have been

used: graphs and trees. Hence, schema elements may either be represented by nodes

or paths in the schema graphs/trees which also impacts the representation of schema

matches. Table 4.2 gives a summary of the schema matching phases addressed.

4.6 Summary

In this chapter, we introduced a generic schema matching framework in order to provide

a base for discussing and reporting mainstream matching systems. Although each system

innovates on a particular aspect, these systems have common features. In the following,

we summarize some global observations concerning the presented systems:

• Input schema; A number of existing systems restrict themselves to accept only one

data model, such as relational in SemInt and XML schemas in PORSCHE. However,

a small number of systems deals with different data models, such as COMA++, and

55

C
H

A
P
T

E
R

4
.

S
C
H

E
M

A
M

A
T

C
H

IN
G

S
Y
S
T

E
M

S
:
A
N

O
V
E
R
V
IE

W

Table 4.2: Schema Matching Phases w.r.t. mainstream systems

`
`

`
`

`
`

`
`

`
`

`
`

`
`̀

Criteria
Prototypes

Cupid COMA/COMA++ SemInt LSD/GLUE SF iMAP QOM Bellflower BTreeMatch BORSCHE Spicy

General information

place
Washington Uni. Leipzig Northwestern Washington Stanford Uni. Illinois Uni. Karlsruhe Twente Montpellier Montpellier Universit della Basilicata, Potenza

Leipzig & Microsoft Uni. Uni. Uni. Leipzig Uni. Washington Uni. Uni. Uni. Uni. II Uni. II
year 2001 2002/2005 2000 2001/2002 2002 2004 2004 2006 2007 2007/2008 2006/2008

TransMat
input Relational XML (xsd, xdr) Relational XML XML relational ontology XML XML XML XML

schema & XML & Ontology (owl, rdf) /ontology &Relational & relational
internal tree rooted directed - tree graph - tree rooted graph tree tree tree

representation graph (constraint problem) (electrical circuit)

Pre-Match
rule/learner rule rule learner learner rule learner rule rule rule rule rule

process

tree traversal graph traversal neural network, machine-learning string data cleaning feature engineering graph traversal tree traversal tree traversal sampling
element identification element identification SOM, Naive Bayes compare specify domain constraints search select element identification element identification element identification circuit mapping function
synonym& hypernym building external back-propagation domain knowledge& data abbreviation table&
thesaurus construction dictionaries domain-specific synonym table

output
nodes nodes, paths, categories, trained initial nodes, paths variables, domains nodes nodes, paths electrical circuits
paths fragment trained network base learners mapping instances constraints, objective functions paths subtrees

MapTrans
match result simple simple simple simple simple complex simple simple simple simple simple

mapping cardinality 1:1 & n:1 1:1 & 1:n 1:1 1:1 1:1 m:n 1:1 1:1 1:1& 1:n 1:1

5
6

4.6. SUMMARY

Spicy.

• Internal representation; Some existing matching systems encode input schemas as

tree-like structure, while a small number represents them as graphs.

• Exploited information; Some systems exploit only schema-based information, such

as COMA/COMA++, SF, and Cupid, while others make advantage of both schema-

based and instance-based information, like SemInt, LSD, iMAP, and Spicy.

• Sort of matchers; Based on the exploited information, existing matching systems

can be either rule-based or learner-based systems.

• Matching result; Most of the existing systems convey themselves to discover simple

mapping (one-to-one correspondences), such as Cupid, SF, PORSCHE, while only a

small number of systems has strived to address the problem of discovering complex

mappings, such as iMAP and DCM.

57

Part III

Design, architecture, and

implementation

59

5
XML element similarity measures

The proliferation of shared XML-based applications necessitates the need for develop-

ing high-performance techniques to discover correspondences across large XML data effi-

ciently. One of the most important components in XML schema matching is the definition,

adoption, and utilization of element similarity measures. In this chapter, we introduce

and classify several methods of element similarity measures. In particular, we first present

basic concepts and definitions used through the chapter. Then, we distinguish between

the internal and external element similarity measures that will be used to quantify the

relationship between XML elements.

The material presented in this chapter has been developed and published in [12, 17, 5].

5.1 Preliminaries

XML is a flexible representation language. It allows to use user-defined tags without any

structural constraints. As a result, XML is widely used for the representation and ex-

change among Web applications, and the need for developing high-performance techniques

to identify and discover semantic correspondences among large XML data efficiently has

been growing. The most important components to achieve this task are the definition,

adoption, and utilization of element similarity measures.

In general, there are two kinds of XML data: XML documents and XML schemas. An

XML schema provides the definitions and structure for XML documents. Several XML

schema languages have been proposed to describe the structure and the legal building

blocks in XML documents [88]. Among them, XML Document Type Definition (DTD)

61

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

and XML Schema Definition (XSD) are commonly used.

XML DTD was considered the de facto standard XML schema language until the

arrival of XML XSD. Its main building block consists of element and attribute. It has

limited capabilities compared to XSD. XSD aims to be more expressive than DTD and

more usable by a wider variety of applications. It has many novel mechanisms such as

simple and complex types, rich datatype sets, occurrence constraints, inheritance, etc.

Due to the wider popularity and usage of XSD [88], as mentioned in Chapter 2, we only

consider XSD schemas.

An XML schema can be modeled as a graph. It can also be represented as a tree

by dealing with nesting and repetition problems using a set of predefined transformation

rules [89]. XML schemas are more commonly modeled as trees due to the complexity

involved in graph handling algorithms, such as subgraph isomorphism. Subgraph Isomor-

phism, an NP-complete problem, is the problem of identifying whether a given graph, G

is an isomorph of subgraph, H or not. Consequently, in the following, we represent XML

schemas as rooted, labeled trees, called schema trees, defined as follows:

Definition 5.1 A schema tree (ST) is a rooted, labeled tree defined as a 3-tuple ST =

{NT , ET , LabN}, where:

• NT = {nroot, n2, ..., nn} is a finite set of nodes, each of them is uniquely identified

by an object identifier (OID), where nroot is the tree root node. There are basically

two types of nodes in a schema tree:

1. Element nodes. These correspond to element declarations or complex type def-

initions.

2. Attribute nodes. These correspond to attribute declarations.

• ET = {(ni, nj)|ni, nj ∈ NT} is a finite set of edges, where ni is the parent of nj.

Each edge represents the relationship between two nodes.

• LabN is a finite set of node labels. These labels are strings for describing the prop-

erties of the element and attribute nodes, such as name, data type, and cardinality

constraint.

A schema tree, ST , is called an ordered labeled tree if a left-to-right order among siblings

in ST is given; otherwise it is called unordered schema tree. To compactly represent

ordering between schema tree nodes, it is desirable to use the numbering scheme. The

62

5.1. PRELIMINARIES

(a) Schema Tree ST1 (b) Schema Tree ST2

Figure 5.1: Tree representation of XML schemas.

work of Dietz [45] is the original work on numbering schemes for trees. It labels each node

in a schema tree with a pair of numbers, (pre,post), which corresponds to the preorder

and postorder traversal numbers of the node in the tree. In our design, without loss of

generality, we choose to use the postorder traversal to uniquely number tree nodes.

Example 5.1 To describe the operations of our study, we use the example found in [53]

that has been widely used in the literature. It describes two XML schemas that represent

the organization in universities from different countries. Figures 5.1(a,b) show the schema

trees of the two XML schemas, wherein each node is associated by its name label, such as

“CSDeptUS”, its OID such as n1, and its corresponding postorder traversal number.

Definition 5.2 An Element (Eℓ) is a singular data item that is the basis of the similarity

measures. In a schema tree, it may be: an element node or an attribute node.

We categorize schema tree elements into:

• Atomic elements. These represent simple element or attribute nodes, which have

no outgoing edges and represent leaf nodes in the schema tree, and

• Complex elements. These represent complex element nodes, which are the internal

nodes in the schema tree.

Example 5.2 Schema tree, ST1, elements having OIDs n2, n3, n7, n8, n9, n10, n11 are

atomic elements, while elements having OIDs n1, n4, n5, n6 are complex elements, as shown

in Fig. 5.1.

63

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

Furthermore, there exist several relationships among schema tree elements that reflect

the hierarchical nature of the XML schema tree. These relationships include:

• parent-child (induced) relationship, which is the relationship between each element

node and its direct subelement/attribute node;

• ancestor-descendant (embedded) relationship, which is the relationship between each

element node and its direct or indirect subelement/attribute nodes;

• order relationship among siblings.

Definition 5.3 The label set associated to each element (node) in a schema tree is called

the element features. Each has an associated value.

In the XML schema context, names, types, and cardinality constraints are the most

commonly used properties (features) for XML elements and attributes. Consequently, we

also make use of these features when assessing the similarity between schema elements.

Figure 5.1 shows that each schema tree element has a name feature represented by its

value. We represent this using the dot (.) notation, such as ST1.n2.name = “Grad-

Course” and ST2.n3.name = “Staff ”.

Definition 5.4 A similarity measure Sim : ST1 ×ST2→ R, is a metric used to quantify

the similarity between elements Eℓ1 ∈ ST1 and Eℓ2 ∈ ST2 such that:

∀Eℓ1 ∈ ST1, Eℓ2 ∈ ST2, Sim(Eℓ1, Eℓ2) ≥ 0

∀Eℓ ∈ ST, Sim(Eℓ, Eℓ) = 1

∀Eℓ1 ∈ ST1, Eℓ2 ∈ ST2, Sim(Eℓ1, Eℓ2) = Sim(Eℓ2, Eℓ1)

A similarity measure exploits the features of elements as well as the relationships among

them to determine the similarity between a pair of elements. It is represented as

Sim(Eℓ1, Eℓ2), and its value is computed by the employed method. Usually, the simi-

larity value ranges between 0 and 1, when the measure is normalized. The value of 0

means strong dissimilarity between elements, while the value of 1 means exact same el-

ements. The similarity between two elements Eℓ1 ∈ ST1, Eℓ2 ∈ ST2 can be determined

using the following equation:

Sim(Eℓ1, Eℓ2) = Combine(InterSim(Eℓ1, Eℓ2), ExterSim(Eℓ1, Eℓ2))
�

�

�

�5.1

64

5.2. INTERNAL ELEMENT SIMILARITY MEASURES

where InterSim(Eℓ1, Eℓ2) represents the internal similarity measure between two ele-

ments exploiting their features, while ExterSim(Eℓ1, Eℓ2) represents the external simi-

larity measure between them exploiting their hierarchal relationships, and and Combine

is an aggregation function used to combine and quantify the importance of InterSim

measure and ExterSim measure.

In the following, we present different techniques used to determine the internal and

external similarity between schema tree elements.

5.2 Internal element similarity measures

The internal element measures exploit their own features, such as their names, data types,

constraints, etc. to compare elements from different schema trees. Depending on the type

of exploited feature, we present the following internal measures.

5.2.1 Name similarity measure

In the absence of data instances, the element name is considered an important source

of semantic information for schema matching [96]. Element names can be syntactically

similar (Staff, TechnicalStaff) or semantically similar (People, Staff). As a result, it is

desirable to consider both syntactic and semantic measures to compute the degree of

similarity between element names. In order to make element names comparable, they

should be normalized into a set of tokens. The normalization process may have the

following steps:

• Tokenization: The element name is parsed into a set of tokens using delimiters, such

as punctuation, uppercase or special symbols, etc. E.g.

UnderGradCourses→ {Under, Grad, Courses}.

• Expansion: Abbreviations and acronyms are expanded. E.g. Grad→ Graduate.

• Elimination: Tokens that are neither letters nor digits are eliminated and ignored

during the comparison process.

After decomposing each element name into a set of tokens, the name similarity between

the two sets of name tokens T1 and T2 is determined as the average best similarity of each

65

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

token with all tokens in the other set [96, 108]. It is computed as follow:

Nsim(T1, T2) =

∑

t1∈T1
[maxt2∈T2

sim(t1, t2)] +
∑

t2∈T2
[maxt1∈T1

sim(t2, t1)]

|T1|+ |T2|
�

�

�

�5.2

To determine the similarity between a pair of tokens, sim(t1, t2), both syntactic and

semantic measures can be used.

Syntactic measures (String-based)

Syntactic measures take the advantage of the representation of element names as strings

(sequence of characters). There are many methods to compare strings depending on

the way the string is seen (as exact sequence of characters, an erroneous sequence of

characters, a set of characters,..) [105, 41, 63].

1. Edit distance. The edit distance between two strings is the number of operations

required to transform one string into the other. There are several algorithms to

define or calculate this metric. In our implementation we make use of the following:

• Levenshtein distance. The Levenshtein distance between two strings is given

by the minimum number of operations needed to transform one string into the

other, where an operation is an insertion, deletion, or substitution of a single

character. To compute the similarity degree between two tokens t1 ∈ T1 and

t2 ∈ T2, the following equation is used

simedit(t1, t2) =
max(|t1|, |t2|)− editDistance(t1, t2)

max(|t1|, |t2|)
�

�

�

�5.3

where editDistance(t1, t2) is the minimum number of character insertion, dele-

tion, and substitution operations needed to transform t1 to t2. Each edit op-

eration is assigned a unit cost.

• Jaro Similarity. The Jaro measure of similarity between two strings is mainly

used in the area of record linkage (duplicate detection). The higher the Jaro

measure for two strings is, the more similar the strings are. The Jaro measure

is designed and best suited for short strings such as person names. The score is

normalized such that 0 equates to no similarity and 1 is an exact match. The

66

5.2. INTERNAL ELEMENT SIMILARITY MEASURES

Jaro similarity measure is calculated as [41]:

simjaro(t1, t2) =
1

3
× (

M

|t1|
+

M

|t2|
− M − t

M
)

�

�

�

�5.4

where M is the number of matching characters and t is the number of transpo-

sitions. A variant of this measure from Winkler uses the length P of the longest

common prefix of the two string. Let P ′ = max(P, 4), the Jaro-Winkler mea-

sure is defined as [41]

simjaro−winkler(t1, t2) = simjaro(t1, t2) +
P ′

10
× (1− simjaro(t1, t2))

�

�

�

�5.5

2. N-gram distance. N-grams are typically used in approximate string matching by

sliding a window of length n over the characters of a string to create a number of ‘n’

length grams for finding a match. The ‘n’ length grams are then rated as number of

n-gram matches within the second string over possible n-grams. An n-gram of size

1 is referred to as a “uni-gram”; size 2 is a “di-gram”; size 3 is a “tri-gram”; and

size 4 or more is simply called n-gram. The intuition behind the use of n-grams as a

foundation for approximate string processing is that when two strings t1 and t2 are

within a small edit distance of each other, they share a large number of n-grams in

common. The n-gram between two string t1 and t2 is defined as

simn−gram(t1, t2) =
2× |n− gram(t1)

⋂
n− gram(t2)|

|n− gram(t1)|+ |n− gram(t2)|
�

�

�

�5.6

where n-gram(t) is the set of n-grams in t. In our implementation, we make use of

the tri-gram measure. Hence, the above equation can be rewritten as follows

simtri(t1, t2) =
2× |tri(t1)

⋂
tri(t2)|

|tri(t1)|+ |tri(t2)|
�

�

�

�5.7

where tri(t1) is the set of trigrams in t1.

Example 5.3 Table 5.1 represents different string-based similarity measures used to com-

pute the degree of similarity between the pair of element names, “UnderGradCourses” 1

and “Courses”.

1only tokenization is considered without expansion

67

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

Table 5.1: Example of using string-based measures.

T1 T2 simedit(t1, t2) simJaro(t1, t2) simtri−gram(t1, t2)
simsyn1(t1, t2) simsyn2(t1, t2)

(using the average) (using weighted sum)
under course 0.2857 0.565 0 0.2836 0.1695
grad course 0.142 0.464 0 0.202 0.196

courses courses 1.0 1.0 1.0 1.0 1.0
Nsim(T1, T2) 0.582 0.752 0.5 0.6214 0.5913

Semantic measures (Language-based)

The semantic measures are based on using Natural Language Processing (NLP) tech-

niques to find the degree of similarity between schema tree element names. Most of

these techniques rely heavily on the use of external sources, such as dictionaries and

lexicons. Typically, WordNet is used either to simply find close relationships, such as

synonyms between element names, or to compute some kind of semantic distance be-

tween them. The sMatch system [70] proposes a semantic schema matching exploiting

the features in WordNet as a background knowledge source to return semantic relations

(e.g., equivalence, more general) between element names rather than similarity values in

the [0,1] range. Another possibility is to utilize a domain-specific user-defined dictionary.

COMA++ [48] and PORSCHE [122] utilize a user-defined dictionary to get a similarity

degree between element names.

Invoking the external sources, such as WordNet, to determine the semantic similarity

between element names makes the matching process slow, especially in the large-scale

context. As our main aim is to develop a schema matching approach that copes with

large-scale XML data, we do not make use of any external dictionaries or ontologies. This

means that to assess the similarity between element names, we rely only on string-based

measures.

5.2.2 Data type similarity measure

Although the element name is considered a necessary source for determining the element

similarity, however, it is an insufficient source. For example, the name similarity between

two elements ST1.n9 and ST2.n3, see Fig. 5.1, equals 1.0. This is a false positive match,

as these two elements are of different data types. This necessitates the need for other

schema information sources used to compute the element similarity and to prune some of

these false positive matches. The element data type is another schema information source

that makes a contribution in determining the element similarity.

68

5.2. INTERNAL ELEMENT SIMILARITY MEASURES

Type1 Type2 Tsim
string string 1.0
string decimal 0.2

decimal float 0.8
float float 1.0
float integer 0.8

integer short 0.8
...

Figure 5.2: Data type similarity table.

XML schema supports 44 primitive and derived built-in data types2. Using the XML

built-in data type hierarchy, a data type similarity can be computed. One method is to

build a data type similarity table used in [96, 108]. Figure 5.2 illustrates that elements

having the same data types or belonging to the same data type category have the possi-

bility to be similar and their type similarities (Tsim) are high. For elements having the

same data types, the type similarity is set to 1.0, while the type similarity of elements

having different data types but belonging to the same category (such as integer and short)

is set to 0.8.

Example 5.4 Fig. 5.1 depicts the element ST1.n9 having a string data type

(atomic element), and the element ST2.n3 having a complex type (complex element).

Tsim(string, complex) = 0, which increases the possibility that the two elements are

not similar.

5.2.3 Constraint similarity measure

Another schema information source of the element that makes another contribution in

assessing the element similarity are its constraints. The cardinality (occurrence) constraint

is considered the most significant. The minOccurs and maxOccurs in the XML schema

define the minimum and maximum occurrence of an element that may appear in XML

documents. A cardinality table for DTD constraints has been proposed in [89]. The

authors of [108] adapt this table for constraint similarity of XML schemas. Figure 5.3

shows the cardinality constraint similarity, where ”none” is equivalent to minOccrs=1 and

maxOccurs=1, “?” is equivalent to minOccurs=0 and maxOccurs=1, “*” is equivalent to

minOccurs=0 and maxOccur=unbounded, and “+” is equivalent to minOccurs=1 and

maxOccurs=unbounded.
2http://www.w3.org/TR/xmlschema-2/

69

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

* + ? none
* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8

none 0.7 0.7 0.8 1

Figure 5.3: Cardinality constraint similarity table.

Putting all together

In the schema matching context, a few matching systems use only one of the internal mea-

sures to produce an initial matching result, such as the Similarity Flooding system [101],

which uses a simple string matcher that compares common prefixes and suffixes of liter-

als. However, the majority of these systems make use of multiple string-based methods,

such as COMA++ [48] and BtreeMatch [61], which utilize Edit distance and n-gram as

name similarity measures. Moreover, COMA++ makes use of element data types. In this

situation, the arising question is how to combine these different measures [55, 90]. Most

of the existing matching systems use aggregation functions, such as the weighted sum, the

average functions, etc. to combine different similarity measures. In our implementation,

we use the weighted sum as the combination strategy.

Definition 5.5 The internal similarity of two elements Eℓ1 ∈ ST1 and Eℓ2 ∈ ST2 is the

combination of the name similarity (Nsim), data type similarity (Tsim), and constraint

similarity (Csim):

InterSim (Eℓ1, Eℓ2) = CombineI (Nsim (Eℓ1.name, Eℓ2.name) ,

T sim (Eℓ1.type, Eℓ2.type) ,

Csim (Eℓ1.card, Eℓ2.card))

where CombineI is an aggregation function used to combine the three similarity measures.

5.3 External element similarity measures

In contrast to internal element measures that exploit the element features without con-

sidering the position (context) of the element. They do not consider the impact of other

70

5.3. EXTERNAL ELEMENT SIMILARITY MEASURES

Figure 5.4: The context of an XML tree element.

surrounding elements. To consider the context of the element, the external measures make

use of the element relationships instead of its features.

5.3.1 Element context

The external element measures rely heavily on the element context, as shown in Fig.

5.4, which is reflected by its descendants, ancestors, and siblings. The descendants of

an element include both its immediate children and the leaves of the subtrees rooted at

the element. The immediate children reflect its basic structure, while the leaves reflect

the element’s content. In our implementation, we utilize the following element (node)

contexts:

• The child context of an element is defined as the set of its immediate children nodes

including attributes and subelements. The child context of an atomic element (leaf

node) is an empty set.

• The leaf context of an element is defined as the set of leaf nodes of subtrees rooted

at the element. The leaf context of a leaf node is an empty set.

• The ancestor context of an element is defined as the path extending from the root

node to the element. The ancestor context of the root node is an empty path.

• The sibling context of an element contains both the preceding siblings and the

following siblings of the element.

71

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

To extract the context of a schema tree element, Eℓ, we respectively define the following

four functions:

• child(Eℓ) = {Eℓi| (Eℓ, Eℓi) ∈ ET}; is a function that returns the child context set

for the element.

• leaf(Eℓ) = {Eℓi| Eℓi is an atomic element ∧ there is a path between Eℓi and Eℓ}; is a

function that determines the leaf context set of the element.

• ancestor(Eℓ) = Eℓroot/.../Eℓ; is a function that identifies the ancestor context path

for the element.

• sibling(Eℓ) = {Eℓi| ∃Eℓjs.t. (Eℓj, Eℓ) ∈ ET ∧ (Eℓj, Eℓi) ∈ ET}; is a function that

returns the sibling context set of the element.

Example 5.5 Consider schema trees shown in Figure 5.1, child(ST1.n1) = {n2, n3, n4},
leaf(ST2.n4) = {n6, n7, n8, n9, n10}, ancestor(ST1.n9) = n1/n4/n5/n9, and

sibling(ST2.n7) = {n6, n8}

5.3.2 Element context measure

The context of an element is the combination of its child, leaf, ancestor, and sibling con-

texts. Two elements are structurally similar if they have similar contexts. The structural

node context defined above relies on the notions of path and set. In order to compare two

ancestor contexts, we essentially compare their corresponding paths. On the other hand,

in order to compare two child contexts, leaf, and/or sibling contexts, we need to compare

their corresponding sets.

Although path comparison has been widely used in XML query answering frameworks,

it relies on strong matching following the two crisp constraints: node constraint and edge

constraint. Under such constraints, paths that are semantically similar may be considered

as unmatched, or paths that are not semantically similar may be considered as matched.

Hence, these constraints should be relaxed. Several relaxation approaches have been

proposed to approximate answering of queries [18]. Examples of such relaxations are

allowing matching paths even when nodes are not embedded in the same manner or in

the same order, and allowing two elements within each path to be matched even if they

are not identical but their linguistic similarity exceeds a fixed threshold [37].

72

5.3. EXTERNAL ELEMENT SIMILARITY MEASURES

To determine the context (structural) similarity between two elements Eℓ1 ∈ ST1 and

Eℓ2 ∈ ST2, the similarity of their child, leaf, ancestor, and sibling contexts should be

computed.

1. Child context similarity. The child context set is first extracted for each ele-

ment, say C set1 = child(Eℓ1) = {Eℓ11, Eℓ12, ..., Eℓ1k} and C set2 = child(Eℓ2) =

{Eℓ21, Eℓ22, ..., Eℓ2k′}. The internal similarity between each pair of children in the

two sets is then determined, the matching pairs with maximum similarity values are

selected, and finally the average of best similarity values is computed. The child

context similarity, ChSim, can be computed using

ChSim(Eℓ1, Eℓ2) =

∑i=k

i=1[maxj=k′

j=1 InterSim(Eℓ1i, Eℓ2j)]

max(|k|, |k′|)
�

�

�

�5.8

where InterSim(Eℓ1i, Eℓ2j) is the internal similarity computed using Definition 5.5.

2. Leaf context similarity. Before getting into the details of computing the leaf context

similarity, we first introduce the notion of gap between two elements and the gap

vector of an element.

Definition 5.6 The gap between two elements Eℓi and Eℓj in a schema tree ST is

defined as the difference between their postorder numbers.

Definition 5.7 The gaps between a complex element and its leaf set in a schema

tree form a vector called the gap vector.

Example 5.6 Considering ST1 of Example 5.1, the gap vector (gapvec) of node

n5 is gapvec(n5) = {5, 4, 2, 1}.

To compute the leaf context similarity between two elements, we compare their

leaf context sets. To this purpose, first, we extract the leaf context set for each

element, say L set1 = leaf(Eℓ1) = {Eℓ11, Eℓ12, ..., Eℓ1k} and L set2 = leaf(Eℓ2) =

{Eℓ21, Eℓ22, ..., Eℓ2k′}. Then, we determine the gap vector (gapvec) for each element,

say v1 and v2. We finally apply the cosine measure (CM) between the two vectors.

The cosine measure between the two gap vectors is given by the following formula

73

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

CM(v1, v2) =
v1v2

|v1||v2|
�

�

�

�5.9

CM is in the interval [0,1]. A result close to 1 indicates that the vectors tend in the

same direction, and a value close to 0 denotes a total dissimilarity between the two

vectors.

Example 5.7 Considering the two schema trees shown in Example 5.1, the leaf

context set of ST1.n1 is L set1= leaf(n1(11))={n2(1), n3(2), n7(3), n8(4), n9(6),

n10(7), n11(9)}, and the leaf context set of ST2.n1 is L set2 =leaf(n1(11))={n2(1),

n6(2), n7(3), n8(4), n9(6), n10(7), n11(9)}. The gap vector of ST1.n1

is v1 =gapvec(ST1.n1)={10,9,8,7,5,4,2}, and the gap vector of ST2.n1 is

v2 =gapvec(ST2.n1)={10,9,8,7,5,4,2}. The cosine measure CM of the two vectors

gives CM(v1,v2) =1.0. Then, the leaf context similarity between nodes ST1.n1 and

ST2.n1 is 1.0. Similarly, the leaf context similarity between ST1.n5 and ST2.n4 is

0.82 and ST1.n4 and ST2.n3 is 0.98.

3. Sibling context similarity. To compute the sibling context similarity between two

elements, we compare their sibling context sets. For this, first, the sibling context

set is extracted for each element, say S set1 = sibling(Eℓ1) = {Eℓ11, Eℓ12, ..., Eℓ1k}
and S set2 = sibling(Eℓ2) = {Eℓ21, Eℓ22, ..., Eℓ2k′}. The internal similarity between

each pair of siblings in the two sets is then determined, the matching pairs with

maximum similarity values are selected, and finally the average of best similarity

values is computed. The sibling context similarity, SibSim, can be computed using

SibSim(Eℓ1, Eℓ2) =

∑i=k

i=1[maxj=k′

j=1 InterSim(Eℓ1i, Eℓ2j)]

max(|k|, |k′|)
�

�

�

�5.10

where InterSim(Eℓ1i, Eℓ2j) is the internal similarity computed using Definition 5.5.

4. Ancestor context similarity. The ancestor context similarity captures the similarity

between two elements based on their ancestor contexts. As mentioned before, the

ancestor context for a given element Eℓi is the path extending from the root node

to Eℓi. To compute the ancestor similarity between two elements Eℓ1 ∈ ST1and

Eℓ2 ∈ ST2, first we extract each ancestor context for each element, say P1 =

ancestor(Eℓ1) and P2 = ancestor(Eℓ2). Then, we compare two paths, P1 and P2

74

5.3. EXTERNAL ELEMENT SIMILARITY MEASURES

assuming |P1| < |P2| and utilizing three of four scores established in [39] and

reused in [37].

• LCS(P1,P2); This score is used to ensure that path P1 includes most of the

nodes of P2 in the right order. To this end, a classical dynamic programming

algorithm is employed to compute a Longest Common Subsequence (LCS) be-

tween the two paths represented as element (node) sequences P1[Eℓroot1...Eℓk]

and P2[Eℓroot2...Eℓk′]. Finding the longest common subsequence is a well-

defined problem in the literature [27]. The process is computed by finding

the LCS lengths for all possible prefix combinations of P1 and P2. The com-

puted LCS lengths are stored in a matrix. The recursive equation, Equation

5.11, illustrates the matrix entries, where InterSim(Eℓi, Eℓj) is the internal

similarity computed using Definition 5.5 that assesses the internal similarity

between the two elements Eℓi and Eℓj, and th is a predefined threshold.

LCSM [i, j] =







0 if i = 0, j = 0

LCSM [i− 1, j − 1] + 1 InterSim(Eℓi, Eℓj) ≥ th

max(LCSM [i− 1, j], LCSM [i, j − 1]) InterSim(Eℓi, Eℓj) < th
�

�

�

�5.11

The bottom-right corner entry LCSM [k, k′] contains the overall LCS length.

Then, we normalize this score in [0,1] by the length of path P1. The normalized

score is given by:

LCSn(P1, P2) =
|LCS(P1, P2)|

|P1|
�

�

�

�5.12

• GAPS(P1,P2); This measure is used to ensure that the occurrences of the P1

nodes in P2 are close to each other. For this, another version of the LCS

algorithm is exploited in order to capture the LCS alignment with minimum

gaps. We propose to normalize it by the length of the common subsequence

added to the gaps value so as to ensure that the total score will be less than

1. Equation 5.13 presents the normalized measure.

GAPS(P1, P2) =
gaps

gaps + LSC(P1, P2)

�

�

�

�5.13

• LD(P1,P2): Finally, in order to give higher values to source paths whose lengths

75

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

are similar to target paths, we compute the length difference, LD, between P2

and LCS(P1,P2) normalized by the length of P2. Thus, the final factor that

evaluates the length difference can be computed as:

LD(P1, P2) =
|P2| − LCS(P1, P2)

|P2|
�

�

�

�5.14

These scores are combined to compute the similarity between the two paths P1 and

P2 PSim as follows:

PSim(P1, P2) = LCSn(P1, P2)− γGAPS(P1, P2)− δLD(P1, P2)
�

�

�

�5.15

where γ and δ are positive parameters ranging from 0 to 1 that represent the com-

parative importance of each factor.

Example 5.8 Considering the two schema trees shown in Example 5.1, the ancestor

context path of ST1.n5 is P1= ancestor(n5)=n1/n4/n5 = CSDeptUS/People/Fac-

ulty, and the ancestor context path of ST2.n10 is P2= ancestor(n10)=n1/n3/n4/n10=

CSDeptAust/Staff/AcademicStaff/Professor. We have |LCS(P1, P2) = 1|,
gaps(P1, P2) = 0, and LD(P1, P2) = 4−1

4
= 0.75. Setting γ = 0.25 and δ = 0.2,

the path similarity between the two paths becomes PSim(P1, P2) = 0.18.

5.3.3 Putting all together

To get precise structural similarities between elements, it is desirable to consider all the

element contexts. In this situation, the arising conflict is how to combine these context

measures. In the light of this, we are now in a position to define the external element

similarity measure.

Definition 5.8 The external similarity of two elements Eℓ1 ∈ ST1 and Eℓ2 ∈ ST2 is

the combination of the child context similarity (ChSim), leaf context similarity (LeafSim),

sibling context similarity (SibSim), and path similarity (PSim):

ExterSim (Eℓ1, Eℓ2) = CombineE (ChSim (Eℓ1, Eℓ2) ,

LeafSim (Eℓ1, Eℓ2) ,

SibSim (Eℓ1, Eℓ2) ,

PSim (Eℓ1, Eℓ2))

76

5.4. THE UTILIZATION OF ELEMENT SIMILARITY MEASURES

where CombineE is an aggregation function used to combine the external similarity mea-

sures.

5.4 The utilization of element similarity measures

In the previous sections, we defined and adopted several measures to assess the similarity

between XML schema elements. We classified these measures based on the exploited

information of schema elements either on internal own features or on external relationships

between elements. The arising question is how to utilize these measures in a both effective

and efficient way to achieve the highest matching result.

The tree representation of XML schemas can only ensure the matching quality and

cannot guarantee the matching efficiency, especially in the large-scale context. Schema

trees are required to be traversed many times during the application of similarity measures.

As known, the time complexity of tree-based algorithms is expensive and as a result the

matching efficiency declines radically. To overcome these challenges, instead of applying

similarity measures to schema trees, we represent schema trees as sequences using the

Prüfer encoding method [115]. The idea of Prüfer’s method is to find a one-to-one

correspondence between the set of the schema trees and a set of Prüfer sequences.

Definition 5.9 A Prüfer sequence of length n− 2, for n ≥ 2, is any sequence of integers

between 1 and n with repetitions allowed.

Example 5.9 [142] The set of Prüfer sequences of length 2 (n = 4) is {(1,1), (1,2),

(1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,1), (4,3), (4,4)}.
In total, there are 44−2 = 16 Prüfer sequences of length 2.

Given a schema tree with nodes labeled by 1, 2, 3, ..., n the Prüfer encoding method

outputs a unique Prüfer sequence of length n− 2. It initializes with an empty sequence.

If the tree has more than two nodes, the algorithm finds the leaf with the lowest label,

and appends the label of the parent of that leaf to the sequence. Then, the leaf with the

lowest label is deleted from the tree. This operation is repeated n − 2 times until only

two nodes remain in the tree. The algorithm ends up deleting n−2 nodes. Therefore, the

resulting sequence is of length n− 2. Figure 5.5 illustrates the Prüfer sequence (Pr.Seq)

construction for a schema tree whose nodes are randomly labeled. As shown in Fig. 5.5,

since the regular Prüfer sequences include only the information of parent nodes, these

sequences cannot represent the leaf nodes. In order to incorporate them, a modified

version of the regular Prüfer sequence is exploited in the next section.

77

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

Figure 5.5: Prüfer sequence construction.

5.4.1 Prüfer sequences construction

We now describe the tree sequence representation method, which provides a bijection be-

tween ordered, labeled trees and sequences. This representation is inspired from classical

Prüfer sequences [115] and particularly from what is called Consolidated Prüfer Sequence,

CPS, proposed in [133].

CPS of a schema tree ST consists of two sequences, Number Prüfer Sequence NPS

and Label Prüfer Sequence LPS. They are constructed by doing a postorder traversal

that tags each node in the schema tree with a unique traversal number. NPS is then

constructed iteratively by removing the node with the smallest traversal number and

appending its parent node number to the already structured partial sequence. LPS is

constructed similarly, but by taking the node labels of deleted nodes instead of their

parent node numbers. Both NPS and LPS convey completely different but complementary

information—NPS that is constructed from unique postorder traversal numbers gives tree

structure information and LPS gives tree semantic information. CPS representation thus

provides a bijection between ordered, labeled trees and sequences. Therefore, CPS =

(NPS, LPS) uniquely represents a rooted, ordered, labeled tree, where each entry in the

CPS corresponds to an edge in the schema tree. For more details see [133].

Example 5.10 Considering schema trees ST1 and ST2 shown in Fig. 5.1, each node is

associated with its OID and its postorder number. Table 5.2 illustrates CPS for ST1 and

ST2. For example, CPS of ST1 can be written as the NPS(ST1)= (11 11 5 5 8 8 8 10

10 11 -), and the LPS(ST1).name= (UnderGradCourses, GradCourses, Name, Degree,

78

5.4. THE UTILIZATION OF ELEMENT SIMILARITY MEASURES

AssistantProfessor, AssociateProfessor, Professor, Faculty, Staff, People, CSDeptUS).

This example shows that using CPS to represent schema trees as sequences has the

advantage of capturing semantic and structural information of the schema tree including

atomic nodes. The following section formally presents CPS properties.

Table 5.2: Schema tree nodes properties

Schema Tree ST1 Schema Tree ST2

NPS LPS NPS LPS

OID name type/data type cardinality constraint OID name type/data type cardinality constraint
minOccurs maxOccurs minOccurs maxOccurs

11 n2 UnderGradCourses element/string 0 1 11 n2 Courses element/string 0 1
11 n3 GradCourses element/string 0 1 5 n6 FirstName element/string 0 1
5 n7 Name element/string 0 1 5 n7 LastName element/string 0 1
5 n8 Degree element/string 0 1 5 n8 Education element/string 0 1
8 n6 AssistantProfessor element/- 0 unbounded 8 n5 Lecturer element/- 0 unbounded
8 n9 AssociateProfessor element/string 0 1 8 n9 SeniorLecturer element/string 0 1
8 n10 Professor element/string 0 1 8 n10 Professor element/string 0 1
10 n5 Faculty element/- 0 unbounded 10 n4 AcademicStaff element/- 0 unbounded
10 n11 Staff element/string 0 1 10 n11 TecnicalStaff element/string 0 1
11 n4 People element/- 0 unbounded 11 n3 Staff element/- 0 unbounded
- n1 CSDeptUS element/- 0 unbounded - n1 CSDeptAust element/- 0 unbounded

CPS Properties

In the following, we list the structural properties behind the CPS representation of schema

trees. If we construct a CPS=(NPS, LPS) from a schema tree ST, we can classify these

properties into:

• Unary Properties. Let Eℓi be an element having a postorder number k,

1. atomic element ; Eℓi is an atomic element iff k 6∈ NPS

2. complex element ; Eℓi is a complex element iff k ∈ NPS

3. root node; Eℓi is the root node (nroot) iff k = max(NPS), where max is a

function which returns the maximum number in NPS.

• Binary Properties

1. edge relationship; Let CPSi = (ki, LPSi) ∈ CPS of a schema tree ST be an

entry. This entry represents an edge from the node whose postorder number

is ki to a node ni = LPSi.OID. This property shows both child and parent

relationships. This means that the node ni = LPSi.OID is an immediate child

of the node whose postorder number is ki.

79

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

2. sibling relationship; Let CPSi = (ki, LPSi) and CPSj = (kj, LPSj) be two

entries ∈ CPS of a schema tree ST . The two elements ni = LPSi.OID and

nj = LPSj .OID are two sibling nodes iff ki = kj .

Connecting between element context and CPS

After introducing the concept of Consolidated Prüfer Sequence (CPS) and listing its

properties, we build a connection between the element context and the CPS sequence. To

build such a connection, we make use of CPS properties described as follows.

Algorithm 1: Child context algorithm, child(Eℓ)
input : A schema tree element, Eℓ
output: child context set, C set

C set ← φ;1

if atomic Element (Eℓ) then2

return C set;3

else4

k ← postorder(Eℓ);5

i← getIndex(Eℓ);6

repeat7

if k = CPS.NPS[i] then8

C set ← C set
⋃

CPS.LPS.OID[i];9

end10

i← i + 1;11

until k < CPS.NPS[i] ;12

end13

return C set;14

• The child context; Using the edge relationship property, we can identify immediate

children of a complex node and their number. The number of immediate children

of a complex node from the NPS sequence is obtained by counting its postorder

traversal number in the sequence, and then we can identify these children.

To identify the child context of an element, we first use the atomic element function,

as shown in Algorithm 1. If this function returns true, then the element is an

atomic (leaf) element and its child context set is empty, line 3. If the function

returns false, the edge relationship property is used to extract the element child set,

lines 7 to 12. To do this, we first determine the postorder traversal number and the

80

5.4. THE UTILIZATION OF ELEMENT SIMILARITY MEASURES

first occurrence of this number in the CPS representations, lines 5&6. Then, we scan

the CPS representation starting from that index from left to right (conceptually) till

the first appearance of a CPS entry whose NPS is greater than the traversal number

of the elements. During this scan, we determine the entries whose NPSs equal the

postorder traversal number of the element, line 8. The elements in the corresponding

LPSs represent the child context of the element, line 9, and are added to the child

context set, C set, of the element. The scanning process will be terminated when

there is a CPS entry with NPS greater than the element traversal number.

For example, consider the schema tree ST1 of Example 5.1, the postorder number

of node n1 is 11. This number occurs three times. This means that it has three

immediate children {n2, n3, n4}. While, the postorder number 6 does not appear in

NPS(ST1), this means that the node n9 is an atomic node (atomic node property)

and its child context set is empty.

Algorithm 1 shows several interesting points. The most significant is the limitation

of the scanning process. This process does not start from the beginning of the CPS

representation, however, it starts at the first appearance of the traversal number

of the element and it stops when the index goes one level higher than the element

level.

• The leaf context; The CPS properties assert that the postorder numbers of atomic

elements (nodes) do not appear in the NPS sequence. Considering this assertion and

taking into account the child context, we could recursively obtain the leaf context

of a given element.

The leaf context set (L set) can be identified by a procedure similar to that of child

context. As shown in Algorithm 2, it starts by examining if the element is an atomic

element or not using the atomic element property, line 1. When the element is a

complex element, the algorithm starts by extracting the element child context set,

line 4. Then, the algorithm iterates through the elements of the child context set,

lines 6 to14. If the element of the child set, Eℓi, is an atomic element, it is added to

the leaf context set, line 9, otherwise the function recursively call itself, line 11.

For example, consider the schema tree ST1 of Example 5.1, nodes {n2, n3, n7, n8,

n9, n10, n11} are the leaf node set. Node n6 has two children n7, n8, which are

leaves. They form the leaf context set of node n6.

• The sibling context; Using the sibling relationship property facilitates the identifi-

81

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

Algorithm 2: Leaf context algorithm, leaf(Eℓ)
input : A schema tree element, Eℓ
output: leaf context set, L set
if atomic Element (Eℓ) then1

return φ ;2

else3

C set ← child (Eℓ);4

i← 1;5

while C set has more elements do6

Eℓi ← C set[i];7

if atomic Element (Eℓi) then8

L set ← L set
⋃ Eℓi;9

else10

leaf Context (Eℓi);11

end12

i← i + 1;13

end14

end15

return L set;16

cation of the sibling context for an element. To this, different procedures can be

used. One of these is to first identify the parent of this element using the edge

relationship property, and then applying the child context procedure of that parent.

For example, consider the schema tree ST1 of Example 5.1, the node {n9} has a

parent element {n5}. The child context set of {n5} is {n5, n9, n10}. Therefore, the

sibling context set of the element n9 is {n5, n10}.

• The ancestor context; To determine the ancestor context of an element, we utilize

the CPS properties, as shown in Algorithm 3. We first examine if the element is

a root, line1, atomic, line3, or complex, line7, element. When the element is a

root element, the algorithm returns a Null path, line2. Otherwise, the algorithm

calls a function, getAncestor, lines4&8, that determines the ancestor context for

the element. When the element is an atomic element, the algorithm passes the

parent of the specified element instead of it. The getAncestor function starts by a

set of initialization to get the element postorder number, first occurrence in NPS,

line 12. For a passed element, we obtain the ancestor context by scanning the NPS

sequence from the first occurrence of the element in the sequence to the first reach to

the root element, line19, (conceptually from the left to the right) and by identifying

82

5.4. THE UTILIZATION OF ELEMENT SIMILARITY MEASURES

the numbers which are larger than the postorder number of the node until the first

occurrence of the root node. While scanning from the left to the right, we ignore

nodes whose postorder numbers are less than postorder numbers of already scanned

nodes. For an atomic (leaf) node, the ancestor context is the ancestor context of its

parent union of the parent node itself. For example, consider the schema tree ST1

of Example 5.1, the ancestor context of node n5 (non-atomic node) is the path n1/

n4/ n5, while the ancestor context of node n9 (atomic node) is the path n1/n4/ n5/

n9.

Algorithm 3: Ancestor context algorithm, ancestor(Eℓ)
input : A schema tree element, Eℓ
output: Ancestor context path, PEℓ

if root Element (Eℓ) then1

return Null;2

else if atomic Element (Eℓ) then3

PEℓ ← Eℓ ∪ getAncestor (parent(Eℓ));4

return PEℓ;5

6

else7

PEℓ ← getAncestor (Eℓ);8

return PEℓ;9

end10

getAncestor (Eℓ);11

k ← postorder(Eℓ); i← getIndex(Eℓ);12

PEℓ ← Eℓ; max ← k;13

repeat14

k′ ← CPS.NPS[i + 1];15

if k′ > max then16

max ← k′; PEℓ ← PEℓ

⋃
node with k′;17

end18

until the first reach to the root ;19

return PEℓ;20

This algorithm also presents several interesting points. The most significant one is the

limitation of the scanning process. This process does not start from the beginning of the

CPS representation, however, it starts at the first appearance of the traversal number of

the element and it stops when the index reaches the first occurrence of the root element.

83

CHAPTER 5. XML ELEMENT SIMILARITY MEASURES

5.5 Summary

As shared XML data proliferates, the need to develop high performance techniques to

identify and discover semantic correspondences across these data is always in great de-

mand. The most dominant step is to define, adopt, and utilize similarity measures between

XML data elements. In this chapter, we introduced several element similarity measures,

and classified them based on the exploited information: the internal element similarity

measures that exploit element features, and external measures that consider element sur-

roundings. In order to effectively and efficiently utilize these measures, we proposed the

sequence representation of schema trees using the Prüfer encoding method. Finally, we

constructed a link between the sequence representation and element similarity measures

using properties of CPSs.

84

6
Sequence-based XML schema matching

In this chapter, we present our matching techniques that are based on the sequence rep-

resentation of XML schema trees. The key idea is to exploit both semantic and structural

information of schema trees in proficient means. Exploiting the semantic and structure

information aims at improving the matching quality and effectiveness, while exploiting

them in competent means endeavors to improve the matching efficiency. Indeed, the

sequence representation of XML schema trees assists to achieve these objectives.

Regarding the matching quality point of view, a matching system has high matching

result if the system is able to identify and discover complex matches as well as simple

matches. During the matching system design we take this aspect into account. Therefore,

we start by developing a matching system able to discover simple matches, then we further

widen the system to discover complex matches. We observe that the system becomes more

efficient than before during the system extension.

The material presented in this chapter has been developed and published in [17, 15, 14].

6.1 Introduction & motivations

As we mentioned before, the proliferation of shared XML data necessitates the need for

high performance techniques to identify and discover semantic correspondences across the

XML data. Two equally important aspects should be considered: matching effectiveness

and matching efficiency. Existing schema matching systems such as Cupid [96], CO-

MA/COMA++ [47, 48], LSD/GLUE [50, 49], and S-Match [70] heavily rely on either

rule-based approaches or learner-based approaches. In rule-based systems, schemas to be

85

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

matched are represented as schema trees or schema graphs which in turn requires travers-

ing these trees (or graphs) many times. On the other hand, learning-based systems need

much pre-effort to train their learners. As a consequence, especially in large number and

large-scale schemas and dynamic environments, matching performance declines radically.

Additionally, these systems produce score schema elements, which results in discovering

only simple (one-to-one) matches. Discovering one-to-one matches only solves the schema

matching problem partially. In order to completely solve the problem, the matching sys-

tem should discover complex matchings as well as simple ones. Few work has addressed

the problem of discovering complex matching [44, 77, 81], because of the greater complex-

ity of finding complex matches than of discovering simple ones. Therefore, discovering

complex matching taking into account schema matching scalability against both the large

number of schemas and large-scale schemas is considered a real challenge.

Motivated by the above challenges and by the fact that the most prominent feature

for an XML schema is its hierarchical structure, we propose a novel approach for match-

ing XML schemas. In particular, we develop and implement the XPrüM system, which

mainly consists of two parts—schema preparation and schema matching. Schemas are

first parsed and represented internally using rooted ordered labeled trees, called schema

trees. Then, we construct a Prüfer sequence for each schema tree. Prüfer sequences

construct a one-to-one correspondence between schema trees and sequences [115]. We

capture schema tree semantic information in the Label Prüfer Sequence (LPS) and schema

tree structural information in the Number Prüfer Sequence (NPS). LPS is exploited by

a linguistic matcher to compute terminological similarities among the whole schema ele-

ments including both atomic and complex elements. Then, we apply our new structural

algorithm schema elements exploiting NPS and previously computed linguistic similar-

ity. The two similarity values are then combined and the top-k mappings are selected to

produce the matching result.

To improve the matching result, especially to discover complex matches, we widen the

XPrüM system. In particular, we introduce the concept of compatible nodes.

6.2 The XPrüM system

In this section, we describe the core parts of the XPrüM system. As shown in Fig. 6.1, the

system has two main parts: schema preparation and schema matching. First, schemas are

86

6.2. THE XPRÜM SYSTEM

Figure 6.1: Matching process phases

parsed using a SAX parser 1 and represented internally as schema trees. Then, using the

Prüfer encoding method, we extract both label sequences and number sequences. Then,

the schema matching part discovers the set of matches between two schema elements

utilizing both sequences. In the following, we present the core parts of the proposed

system in details. The methodologies are discussed via our running example described in

Ch.5 (Example 5.1).

6.2.1 Schema preparation

This thesis considers only XML schema matching. However, our approach is a generic

framework, i.e., it has the ability to identify semantic correspondences between different

models from different domains. In order to make the matching process a more generic

process, schemas should be represented internally by a common representation. This

uniform representation reduces the complexity of subsequent algorithms by not having to

cope with different schema representations. We use rooted ordered labeled trees as the

internal model. We call the output of this step the schema tree (ST). As shown in Fig.

6.1, two XML schemas are parsed using the SAX parser and are represented internally as

schema trees, ST1 and ST2.

Unlike existing rule-based matching systems that rely on schema trees (or schema

graphs) to apply their matching algorithms, we extend schema tree representations into

sequences using the Prüfer sequence method, as described in Chapter 5. As a result, each

schema tree is represented as a CPS(NPS, LPS), such that the Label Prüfer Sequence,

(LPS), captures the semantic information of schema tree elements, while the Number

Prüfer Sequence, (NPS), captures the structure information of the schema tree, as shown

in Table 5.2.

1http://www.saxproject.org

87

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

6.2.2 Matching algorithms

The proposed matching algorithms operate on the sequential representation of schema

trees to discover semantic correspondences between them. Generally speaking, the process

of schema matching is performed, as shown in Fig. 6.1, in two phases—element matchers

(both internal and structural measures) and combiner & selector.

Recent empirical analysis shows that there is no single dominant element matcher that

performs best, regardless of the data model and application domain [55]. This is due

to the fact that schema matching is an intricate problem due to the reasons described in

details in Chapter 2. As a result, we should exploit different kinds of matchers. In our

approach, we utilize two schema-based matchers—the internal (linguistic) matcher and

the external (structural) matcher, which are based on the element similarity measures

described in Chapter 5.

First, a degree of linguistic similarity is automatically computed for all element pairs

using the linguistic matcher phase. In our approach, we make use of the name similarity

measure to exploit element names; the data type similarity measure to exploit element

types/data types, and the constraint measure to exploit element cardinality constraints.

Once the degree of linguistic similarity is computed, the second matcher, structural sim-

ilarity measure, starts to structure similarity between schema elements. After a degree

of similarity is computed, in the second phase it is addressed how to combine different

similarities from different element matchers and select top−K mappings.

In the following section, we are going to describe matcher algorithms. Without loss of

generality, let the number of nodes in ST1 and ST2 be n and m, respectively.

6.2.3 Internal matching algorithms

The aim of this phase is to obtain an initial similarity value between the elements of the

two schema trees based on the similarity of their features (labels). To this end, we make

use of the internal similarity measures described in Chapter 5. In particular, we utilize

basic schema-based matchers—the name similarity measure, type/data type similarity

measure and constraint similarity measure.

Name similarity algorithm

The name similarity between two (or more) schema tree elements is computed using the

name similarity measure described in Chapter 5. Based on this measure, we develop a

88

6.2. THE XPRÜM SYSTEM

name similarity algorithm, as shown in Algorithm 4. The algorithm accepts two label

Prüfer sequences of the two schema trees ST1 and ST2, LPSST1&LPSST2 as input and

calculates and constructs an n ×m name similarity matrix, NsimM . For each element

name of the first label sequence, line 3, the algorithm extracts element names from the

second sequence, line 5, and then it applies the name similarity measure to every element

pair, lines 6&7&8. Finally, the algorithm uses a weighted sum function to combine the

three similarity values, line 9.

Algorithm 4: Name similarity algorithm

input : LPSST1 & LPSST2

output: Name similarity matrix NsimM

NsimM [][]← 0;1

for i← 1 to n do2

s1 ← LPSST1[i].name;3

for j ← 1 to m do4

s2 ← LPSST2[j].name;5

sim1 ←simedit(s1, s2);6

sim2 ←simtri(s1, s2);7

sim3 ←simJaro(s1, s2);8

NsimM [i][j]←combinename(sim1, sim2, sim3);9

end10

end11

Example 6.1 Applying Algorithm 4 on CPSs illustrated in Table 5.2, we get a 11×11

NsimM matrix. Of course, these initial candidates contain many false positive matches.

For example, ST1.staff correspondences initially with ST2.staff with a name similarity

value that equals 1.0.

Data type & constraint similarity algorithms

The name similarity measure is a necessary measure to produce initial similarity values

between schema elements, however, it is insufficient measure, as shown in the above exam-

ple. To enhance the matching result and to prune some of the false positive candidates,

we make use of both data type and cardinality constraint measures, described in Chapter

5. Based on these measures, we propose a data type/constraint algorithm, as shown in

Algorithm 5.

89

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

The algorithm accepts label Prüfer sequences of schema trees, LPSST1&LPSST2, and

the name similarity matrix computed previously as input and constructs an n×m linguis-

tic similarity matrix, LsimM , as output. For each element in the first sequence, extracting

its type and constraint, lines 2&3, it extracts types and constraints for all elements in the

second sequence, lines 5&6,. The algorithm then determines the type similarity (cardinal-

ity similarity) between all element type (constraint) pairs using the built type (constraint)

similarity table described in Chapter 5, line 7(8). We store the type (constraint) similarity

values in a type (constraint) similarity matrix, TsimM(CsimM). In fact, we need these

similarity values for studying the effect of individual element matchers, as will be shown

in the next chapter. Hence, we keep them in a matrix rather than in a single variable.

Finally, the algorithm combines the name, type, and constraint similarity values using an

aggregation function, line 9, and constructs the linguistic similarity matrix, LsimM .

Algorithm 5: Datatype/constrain similarity algorithm

input : LPSST1 & LPSST2 & NsimM
output: Linguistic similarity matrix LsimM

for i← 1 to n do1

dt1 ← LPSST1[i].datatype;2

car1 ← LPSST1[i].cardinality;3

for j ← 1 to m do4

dt2 ← LPSST2[j].datatype;5

car2 ← LPSST2[j].cardinality;6

TsimM [i][j] ←Tsim(dt1, dt2);7

CsimM [i][j] ←Csim(car1, car2);8

LsimM [i][j] ← CombineI(NsimM [i][j], T simM [i][j], CsimM [i][j]);9

end10

end11

6.2.4 Structural matching algorithms

The matching algorithms described above consider only the label information and ig-

nore the structural information. There can be multiple match candidates which differ

in structure but have the same label. The structural matching algorithm prunes these

false positive candidates by considering the structural information represented in the CPS

sequence.

As mentioned in Chapter 5, our structural matcher is motivated by the fact that the

most prominent feature in an XML schema is its hierarchical structure, and this matcher

90

6.2. THE XPRÜM SYSTEM

is based on the element context described there. The structural node context defined

above relies on the notion of path and set. In order to compare two ancestor contexts, we

essentially compare their corresponding paths. On the other hand, in order to compare

two child contexts and/or leaf contexts, we need to compare their corresponding sets. In

the following, we describe how to compute structural context measures:

Algorithm 6: Child context similarity measure, ChSim(Eℓ1, Eℓ2)

input : two elements, Eℓ1 & Eℓ2

output: a child context similarity child sim

if Eℓ1 or Eℓ2 is atomic then1

return 0;2

else3

sum← 0;4

child set1 ←child(Eℓ1);5

child set2 ←child(Eℓ2);6

foreach Eℓi in child set1 do7

max← 0;8

foreach Eℓj in child set2 do9

sim ←InterSim(Eℓi, Eℓj);10

if sim > max then11

max← sim;12

end13

end14

sum← sum + max;15

end16

return average(sum)17

end18

Child context similarity algorithm

To obtain the child context similarity between two nodes, we compare the two child

context sets for the two nodes. The steps required to achieve this task is illustrated in

Algorithm 6. The algorithm starts by examining either one of the two elements or both is

an atomic element, line 1, it returns with child similarity value of 0. If not, the algorithm

first extracts the child context set for each node from the NPS and LPS sequences,

lines 5&6. Second, we get the linguistic similarity between each pair of children in the

two sets, line 10. Third, we select the matching pairs with maximum similarity values,

lines 11 to 13. And finally, we take the average of best similarity values, line 17.

91

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

Leaf context similarity algorithm

To compute the leaf context similarity between two elements, we compare their leaf con-

text sets. To this end, first, we extract the leaf context set for each node. Second, we

determine the gap between each node and its leaf context set. We call this vector the gap

vector. Third, we apply the cosine measure between two vectors (see Algorithm 7).

Algorithm 7: Leaf context algorithm, LeafSim(Eℓ1, Eℓ2)

input : two elements, Eℓ1 & Eℓ2

output: a leaf context similarity leaf sim

if Eℓ1 or Eℓ2 is atomic then1

return 0;2

else3

v1 ←nodegapvector(Eℓ1);4

v2 ←nodegapvector(Eℓ2);5

return CM(v1, v2)6

end7

Sibling context algorithm

To get the sibling context similarity, we use an algorithm similar to the algorithm, Algo-

rithm 6, used to compute the child context similarity, except that this algorithm extracts

the sibling context sets instead of the child context sets.

Ancestor context algorithm

Algorithm is used to assess the ancestor similarity between every element pair. If one

or both of them is a root element, line 1 , the algorithm returns a value of 0, line 2.

Otherwise, it extracts the ancestor path for each element, lines 3&4. Then the algorithm

uses the equation (5.14) to compute the path similarity between two ancestor pathes,

line 6.

Putting it all together

Our complete structural matching algorithm is shown in Algorithm 9. The algorithm ac-

cepts CPS(NPS, LPS) for each schema tree and the linguistic similarity matrix as inputs

to produce a structural similarity matrix, SsimM . For all element pairs (lines 2&3) the

92

6.2. THE XPRÜM SYSTEM

Algorithm 8: Ancestor context algorithm, PSim(Eℓ1, Eℓ2)

input : two elements, Eℓ1 & Eℓ2

output: ancestor context similarity p sim

if Eℓ1 or Eℓ2 is a root then1

return 0;2

else3

p1 ←ancestor(Eℓ1);4

p2 ←ancestor(Eℓ2);5

return PSim(v1, v2)6

end7

context similarity is computed using child context similarity algorithm(Algorithm 6), an-

cestor context similarity algorithm (line 5) (Algorithm 8) leaf context similarity algorithm

(Algorithm 7), and the sibling context similarity algorithm. The context similarity values

are then combined (line 7) using an aggregation function.

Algorithm 9: Structural similarity algorithm

input : CPSST1(NPS, LPS) & CPSST2(NPS, LPS) & LsimM
output: Structural similarity matrix SsimM

SsimM [][] ← 0;1

for i← 1 to n do2

for j ← 1 to m do3

sim1 ←ChSim(Eℓi, Eℓj);4

sim3 ←SibSim(Eℓi, Eℓj);5

sim2 ←LeafSim(Eℓi, Eℓj);6

sim4 ←PathSim(Eℓi, Eℓj);7

SsimM [i][j] ←CombineE(sim1, sim2, sim3, sim4);8

end9

end10

6.2.5 Combining element similarity measures

As shown in the previous sections both the internal and external measures encompass

multiple measures. This multi-measure nature is potent in that it makes a matching sys-

tem highly flexible and adaptable to a particular application domain. However, it results

in considerable challenges on how to combine these measures. Without a proper means of

combining, the element similarity measures fail to produce correct correspondences across

93

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

Figure 6.2: Similarity combining scenarios.

schema elements. To get a total similarity value between pairs of schema elements, we

should combine their individual similarity values resulted from the internal and external

measures. Indeed, combining similarity values are needed in the following scenarios, as

shown in Fig. 6.2:

1. Within the individual measures, the name measure consists of three measures (

Levenshtein distance, Jaro, and tri-gram) for determining the degree of syntactic

similarity. To get the name similarity value, these individual measures should be

then combined;

2. Within either the internal measure or the external measure, the internal measure

comprises three element similarity measures (name, data type, and cardinality).

Consequently, to obtain a total similarity value of the internal measure, the similar-

ity values produced by these element measures should be combined. For example,

the function CombineI in Definition 5.5 is a combination function used to combine

similarity measures of the internal measure, as shown in Fig. 6.2, and

3. Within the element measure; An element measure composes of two parts, internal

and external. As a result, a total similarity value between pairs of schema elements

is obtained by combining similarity values produced by both parts.

Similarity combining is far from being trivial, due to the wide variety of combining

techniques employed. Furthermore, the number of element similarity measures is contin-

uously growing, and this diversity by itself complicates the choice of the most appropriate

94

6.2. THE XPRÜM SYSTEM

combining strategy for a given application domain. Commonly, similarity combining can

be done using aggregation functions that can be defined as follows [26]:

Definition 6.1 An aggregation function ̥ is a function of n > 1 arguments that maps

the (n-dimensional) unit cube onto the unit interval ̥ : [0, 1]n → [0, 1], with the following

properties

1. ̥(0, 0, · · · , 0
︸ ︷︷ ︸

n−times

) = 0 and ̥(1, 1, · · · , 1
︸ ︷︷ ︸

n−times

) = 1.

2. x � y implies ̥(x) ≤ ̥(y) for all x, y ∈ [0, 1]n

The input value of 0 is interpreted as no membership, or no evidence, and naturally,

an aggregation of n 0s yields 0. Similarly, the value of 1 is interpreted as full membership,

and an aggregation of n 1s yields 1. This is the first fundamental property of aggregation

functions, the preservation of bounds. The second property is the monotonicity condition.

The condition can be stated that for every x1, x2, · · · , xn ∈ [0, 1] and y1, y2, · · · , yn ∈ [0, 1]

such that xi ≤ yi, ̥(x1, x2, · · · , xn) ≤ ̥(y1, y2, · · · , yn).

In the literature, many aggregation functions have been proposed. The question is

how to choose the most suitable aggregation function for a specific application. In the

context of schema matching, the existing aggregation methods focus on linear combina-

tion functions, which cannot sufficiently explore the interdependencies between different

element similarities [48, 55, 97]. Moreover, a single (fixed) aggregation function is always

applied to combine similarities from different schemas without considering the special

features of each schema pair. To the best of our knowledge, no work has proposed the use

of nonlinear combination to aggregate the element similarity measures. To this context,

we propose and evaluate different combination strategies to combine element measures.

• Linear fixed methods ; These methods only consider the effect of individual similari-

ties without considering the interdependencies between them. One of the following

methods can be used [47, 48]:

– Max. This method selects the largest similarity value of any measure.

– Min. This method selects the smallest similarity value of any measure.

– Weighted-sum. This method determines a weighted sum of similarity values

of the individual measures and needs relative weights which should correspond

to the expected importance of the measures. The weighted-sum function can

be defined as follows

95

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

Definition 6.2 Given a weighted vector w, such that
∑n

i=1 wi = 1, the

weighted-sum function is the function ̥w(X) = w1x1 + w2x2 · · ·wnxn =
∑n

i=1 wixi

– Average. This method represents a special case of Weighted-sum and returns

the average similarity over all measures, i.e. considers them equally important.

As seen, these methods focus on linear combination functions, which cannot suffi-

ciently explore the interdependencies between element measures. To address this

problem, we propose using the nonlinear methods. Furthermore, the linear fixed

methods make use of constant weight values, which need to be specified manually

in most cases. To make weight values adaptable, the linear adaptive methods can

be used.

• Linear adaptive methods ; These methods do not also consider the interdependencies

between similarity measures, however, they deem the adaptive behavior of weights.

The values of weights should be determined through a learning process using a

learning technique. The similarity combining function, ̥w(X) =
∑n

i=1 wixi, is con-

sidered as an optimization problem, where the weights should be chosen to maximize

̥w(X). The Hopfield Neural Network [78] or the machine-learning techniques [97]

can solve these optimization problems.

• Nonlinear methods; These methods consider the interdependencies between element

measures by using nonlinear techniques, such as nonlinear networks. Since the

similarity values are ranging between 0 and 1, so the similarity combining function

should be restricted to the second order. In this direction, the similarity combining

function can be defined as follows:

Sim (Eℓ1, Eℓ2) = λ
N∑

i=1

wiSimi (Eℓ1, Eℓ2)

±(1− λ)
N−1∑

j=1

N∑

k=j

Simj (Eℓ1, Eℓ2)Simk (Eℓ1, Eℓ2)

The first term in this equation presents similarity combining without considering

the similarity measures interdependencies, while the second part presents these in-

terdependencies. The equation also shows that the two values are either added or

96

6.2. THE XPRÜM SYSTEM

subtracted depending on the linear similarity value. The intuition behind this is that

the higher (linear) similarity between elements is, elements are likely to be similar

and the two parts should be added. In contrast, the low similarity, elements are not

likely to similar and the two parts should be subtracted. Finally, the constant λ is

used to ensure the total similarity value in the normalized range, i.e., [0,1].

In the thesis, we make use of the first and the third methods and experimentally compare

between them, while the second method is left for future work.

After obtaining the match similarity matrix, an element selector is used to select

matches from the given matrix. In fact, several methods can be used. The simplest

selection strategy is thresholding : all pairs of elements with a similarity value exceeding

a given threshold are returned as matches [47, 48]. More complex strategies include

formulating the selection as an optimization problem over a weighted bipartite graph

[55]. In our implementation we make use of the thresholding strategy.

6.2.6 Complexity analysis

The worst case time complexity of the XPrüM system can be expressed as a function of

the number of nodes and the number of input schemas. Let n be the average schema size

and S be the number of input schemas. Following the same process in [62], we can prove

the overall time complexity of our system as follows:

• Prüfer sequences construction; Schemas to be matched are first postorder traversed

and represented as CPSs with a time complexity of O(nS).

• Internal matching algorithms; This phase requires a comparison between the whole

schema nodes with a time complexity of O(n2S2).

• Structure matching algorithms; This phase also requires a comparison between the

whole schema nodes with a time complexity of O(n2S2).

Along the light of these observations, the overall worst-case time complexity of the XPrüM

system is O(n2S2). This is due to the large complexity of linguistic matching. However,

the system shows additional improvements specially in the other phases. The following

chapter experimentally confirms this complexity.

97

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

6.3 EXPrüM: Enhancement of XPrüM

Although simple (one-to-one) matching has got great attention, complex matching has

not been extensively investigated, mainly due to the much more complex search space

of exploring all possible combinations of schema elements. Furthermore, simple matches

are common, however, they only solve the schema matching problem partially. In order

to completely solve the problem, a matching system should discover complex matches as

well as simple ones.

for the following reason [44], discovering complex matches is fundamentally harder than

simple matches. While the number of candidate 1-1 matches between a pair of schemas is

bounded (by the product of the sizes of the two schemas), the number of candidate com-

plex matches is not. There is an unbounded number of functions for combining elements

in a schema, and each one of these could be a candidate match. Hence, in addition to

the inherent difficulties in generating a match to start with, the problem is exacerbated

by having to examine an unbounded number of match candidates. Consider two schema

trees with n and m elements, respectively, while there n×m simple matches, the number

of possible complex matches is exponential. Therefore, many systems including XPrüM

have been developed focusing on the problem of discovering simple matching, while, a few

matching systems have addressed the problem of discovering complex matches in small-

scale schemas [44, 77, 145, 81]. Discovering complex matching taking into account schema

matching scalability against both a large number of schemas and large-scale schemas is

considered a real challenge.

In this thesis, we assume that simple matches exist and should be discovered among

either simple and/or complex elements, while complex matches are discovered only among

simple elements. The motivation behind this assumption is that a complex element com-

prises simple and/or complex elements. We notice that it rarely occurs that a complex

element in a schema corresponds to more than one complex element in another schema.

However, it is obvious for one (or more) simple element in one schema to correspond to

one or more simple elements from another schema.

To this end, we modify the XPrüM system to be able to discover complex matches

considering large-scale schemas. As shown in Fig. 6.3, the EXPrüM system has two main

parts compared to XPrüM : schema preparation and schema matching. The schema prepa-

ration part, as described before, accepts XML schemas and presents them as sequences,

CPSs, using the Prüfer encoding method, while the schema matching part has a slightly

different structure than that in the original system. It contains three phases—linguistic

98

6.3. EXPRÜM: ENHANCEMENT OF XPRÜM

Figure 6.3: EXPrüM system

matching, compatible elements identification, and matching refinement.

First, a degree of a linguistic similarity matrix, LSimM , is automatically computed for

all element pairs using the internal (linguistic) matcher phase, as in the XPrüM system.

Once the degree of linguistic similarity is computed, the second phase starts to identify

compatible elements (nodes). In this phase, we apply our structural matcher only to com-

plex elements. Then we combine both linguistic and structural similarity measures for

complex elements and select compatible elements among them. Finally, a matching refine-

ment phase is carried out to discover atomic elements inside each compatible node pair.

The set of compatible elements and semantic corresponding atomic elements constitutes

the matching result.

6.3.1 Compatible elements identification

Before detailing the process to identify and discover compatible elements (nodes), we

define what compatible elements are.

Definition 6.3 Let Eℓi ∈ ST1 and Eℓj ∈ ST2 be two complex elements. If the computed

similarity (linguistic and structural) exceeds a predefined threshold th, Sim(Eℓi, Eℓj) ≥ th,

then, the two elements are compatible elements.

Unlike state-of-the-art approaches, we first apply our structural algorithm only to

complex nodes to compute structural similarities between them, assuming that no match

99

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

Table 6.1: Similarity values Top-3 ranking for each node

ST1 ST2 similarity value status

n1

n1 0.624 X

n5 0.4950
n4 0.4837

n4

n3 0.5816 X

n5 0.457
n1 0.4406

n5

n4 0.6145 X

n3 0.500
n1 0.4863

n6

n5 0.524 X

n3 0.514
n4 0.482

between atomic and complex nodes exists. Then, we combine both linguistic similarity

and structural similarity for complex nodes using the weighted sum aggregation. Due to

uncertainty inherent in schema matching, the best matching can actually be an unsuc-

cessful choice [66]. To overcome this shortcoming, matching candidates are ranked up

to top-3 ranking for each element. Then, we select matching candidates that exceed a

threshold, which equals to the smallest similarity value of a true positive candidate. The

resulting matching set constitutes a set of compatible element pairs.

Example 6.2 Considering the two schema trees shown in Fig. 5.1 and their CPSs illus-

trated in Table 5.2. Table 6.1 represents top-3 ranking, where a check mark Xin the status

column denotes a true positive match, whereas an empty cell stands for a false positive

match. Let there be a threshold value of 0.524, then the set of compatible node pairs is

{(ST1.n1, ST2.n1), (ST1.n4, ST2.n3), (ST1.n5, ST2.n4), (ST1.n6, ST2.n5)}.

6.3.2 Matching refinement

By identifying compatible nodes and the category set for each element, we have obtained

top-level matchings (complex elements). In the following, we continue with bottom-level

matchings (atomic nodes). We have already computed the linguistic similarity of these

nodes, now we have to compute their structural similarity. In this phase, we ought not

to carry out the structural similarity algorithm on all simple nodes. Compatible elements

(similar complex elements) have the chance to bear similar simple nodes. Along this

100

6.3. EXPRÜM: ENHANCEMENT OF XPRÜM

Table 6.2: category set for each compatible node

ST1 ST2
Comp. node Category set Comp. node Category set

n1 C1={n2, n3} n1 C1={n2}
n4 C2={n11} n3 C2={n11}
n5 C3={n9, n10} n4 C3={n9, n10}
n6 C4={n7, n8} n5 C4={n6, n7, n8}

light of thinking, we apply structural algorithms on simple nodes inside every compatible

element pair. To this, we first give a definition for the compatible element category.

Definition 6.4 A category of a given compatible element Eℓi is a set of elements including

• all immediate atomic children nodes of Eℓi,

• all non-compatible (complex) nodes which are immediate children of Eℓi and their

atomic children.

Example 6.3 Considering the two schema trees and their compatible nodes represented

in Example 5.1, Table 6.2 illustrates these compatible nodes and the associated category

for each one.

In general, atomic elements neither have a child context nor a leaf context. Therefore,

to compute structural similarity for atomic elements, we only compare nodes in each

compatible category pair using the ancestor context algorithm presented in the previous

section. For example, the category ST1.C1= {n2, n3} is only compared to its compatible

category ST2.C1= {n2}. At first, we extract the ancestor context for each node. Consider

P2 represents the ancestor context of ST1.n2 and P ′
2 represents the ancestor context of

ST2.n2. Then, the structural similarity between the two nodes is given by

SSim(ST1.n2, ST2.n2) = PSim(P2, P
′
2)

�

�

�

�6.1

where PSim(P2, P
′
2) is computed using Equation 5.15. Then, we combine both linguistic

and structural similarities using a weighted sum function and select the best candidate(s)

based on a predefined threshold.

By this mechanism we gain two main advantages.

101

CHAPTER 6. SEQUENCE-BASED XML SCHEMA MATCHING

• First, we reduce the search space complexity for atomic nodes.

• Second, many false positive candidates are pruned. Furthermore, we can easily

discover complex matchings.

Discovering complex matchings

XPrüM identifies element-level matchings between either atomic or complex elements.

This solves the schema matching problem partially. To fully solve the problem, we should

cope with complex matchings.

Definition 6.5 If one or more nodes in a category Ci from the source schema correspond

with two or more nodes in a compatible category Cj from the target schema, the resulting

match is a complex match.

Example 6.4 From our running example, the two categories ST1.C1 and ST2.C1 are

compatible (see Table 6.2). Applying matching algorithms on their nodes, we obtain the

complex match, ST2.C1.n2 matches (ST1.C1.n2, ST1.C1.n3). Indeed, the Courses element

in the second schema ST2 is the union of the two UnderGrdCourses and GradCourse el-

ements of the first schema ST1. Moreover, the two categories ST1.C4 and ST2.C4 are

compatible (see Table 4). Applying matching algorithms on their nodes, we obtain the com-

plex match, ST1.C4.n7 matches (ST2.C4.n6, ST2.C4.n7). The name element (ST1.n7) is

the concatenation of the two elements FirstName and LastName from the second schema.

6.3.3 Complexity analysis

As derived in XPrüM system, the worst case time complexity of the EXPrüM system can

also be expressed as a function of the number of nodes and the number of input schemas.

Let n be the average schema size and S be the number of input schemas, we can prove

the overall time complexity of the enhanced system as follows:

• Prüfer sequences construction; As in XPrüM, input schemas are first post-order

traversed and represented as CPSs with a time complexity of O(nS).

• Linguistic matching phase; This phase requires a comparison between all schema

elements with a time complexity of O(n2S2).

102

6.4. SUMMARY

• Compatible elements identification; Intuitively, the number of complex nodes is less

than the number of atomic nodes in an XML schema tree. Consider this number is

given by c = n
N

, where N is an integer number showing the ratio of complex nodes

to the total nodes. The compatible nodes identification phase needs to compare

only complex nodes with a time complexity of O(c2) (≪ O(n2)).

• Matching refinement ; In this phase, we only compare atomic nodes inside a cate-

gory with atomic nodes inside the corresponding compatible category. Consider the

number of compatible nodes c′ (≤ c) and each category contains n′ (≪ n) atomic

nodes. This phase is performed with a time complexity of O(c′ n′2).

Along the light of these observations, the overall worst-case time complexity of the

EXPrüM system is O(n2S2). This is due to the large complexity of linguistic match-

ing. However, the system shows additional improvements specially in the other phases.

The following chapter experimentally confirms this complexity.

6.4 Summary

With the emergence of XML as a standard for information representation, analysis, and

exchange on the Web, the development of automatic techniques for XML schema match-

ing will be crucial to their success. In this chapter, we have addressed an intricate problem

associated to the XML schema matching problem—discovering complex matching consid-

ering matching scalability. To tackle this, we have proposed and developed the XPrüM

system, a hybrid matching algorithm, which automatically discovers semantic correspon-

dences between XML schema elements. The system starts by transforming schemas into

schema trees and then constructs a consolidated Prüfer sequence, which constructs a

one-to-one correspondence between schema trees and sequences. We capture schema tree

semantic information in Label Prüfer Sequences and schema tree structural information in

Number Prüfer Sequences. XPrüM is defined to identify element level matchings, there-

fore, we have extended it to discover both simple and complex matches. The enhanced

version, EXPrüM introduces the concept of compatible elements that provides the pro-

cess of discovering complex matches. During the development of our systems, we have

presented the detailed description of implementation algorithms and analyzed the time

complexity of proposed systems. In the following chapter, we present the experimental

evaluation that validates the system’s performance.

103

7
Implementation & evaluation

There are a myriad of schema matching approaches and prototypes, and there has been

a growing need for evaluating these methods. Matching systems are difficult to compare,

but we, well as [124], believe that the schema matching field can only evolve if evaluation

criteria are provided and satisfied. These should help system designers to assess the

strengths and weaknesses of their systems and help application developers to choose the

most appropriate algorithm.

In this chapter, we introduce the experimental evaluation to validate the performance

of our proposed schema matching approach. We first present the evaluation measures and

criteria used during the evaluation process introducing a new measure, cost-effectiveness

to combine two performance aspects. We then show several evaluation scenarios consid-

ering used data sets and experimental results.

The algorithms described in this thesis have been implemented using Java. We ran all

our experiments on a 2.4 GHz Intel core2 processor with 2 GB RAM running Windows

XP.

The material presented in this chapter has been developed and published in [17, 5, 15,

9].

7.1 Evaluation measures

Our matching systems XPrüM and its enhanced version EXPrüM are concerned with

both performance aspects—matching effectiveness (quality) and matching efficiency.

Therefore, we have carried out two sets of experiments. The first set demonstrates the ef-

105

CHAPTER 7. IMPLEMENTATION & EVALUATION

Figure 7.1: Complete set of correspondences.

fectiveness of our matching system, while the second one investigates the system efficiency.

To evaluate our matching system, we utilize both performance aspects.

7.1.1 Effectiveness measures

First, the match task should be manually solved to get the real correspondences (matches)

Rm. Then, the matching system solves the same problem to obtain automatic correspon-

dences (matches) Am. After identifying both real and automatic matches, it is possible

to define some terms that will be used in computing match effectiveness, as shown in Fig.

7.1. False negatives A =Rm - Am: are the needed matches but not identified by the sys-

tem; True positives B =Rm ∩ Am: are the correct matches and identified correctly by the

system; False positives C =Am - Rm: are the false matches but identified by the system;

and True negatives D: are the false matches and correctly discarded by the system. To

measure the effectiveness of the matching result, we use the same measures used in the

literature, including the following.

• Precision & Recall. Precision and recall are the most prominent criteria used

to evaluate matching effectiveness. They originate from the information retrieval

(IR) field [23, 126] and are based on and can be computed from real and automatic

matches.

Precision P is meant to determine the degree of correctness of the matching system.

It measures the ratio of correctly identified matches (true positives, B) over the

total number of identified matches (automatic matches, Am). It can be computed

from

P =
|B|

|B|+ |C|
�

�

�

�7.1

106

7.1. EVALUATION MEASURES

Recall R is meant to determine the degree of completeness of the matching system.

It measures the ratio of correctly identified matches (true positives, B) over the

total number of correct matches (correct matches, Rm). It can be computed from

R =
|B|

|B|+ |A|
�

�

�

�7.2

However, neither precision nor recall alone can accurately assess the match quality.

Since precision evaluates the post-match effort needed to remove false positives,

while recall evaluates the post-match effort needed to add true negatives from the

final match result. Hence, it is necessary to consider a trade-off between them.

There are several methods to handle such a trade-off, one of them is to combine

both measures. The most used combined measures are:

• F-measure. F-Measure is the weighted harmonic mean of precision and recall. The

traditional F-measure or balanced F-score is:

F =
2 ∗ |B|

(|B|+ |A|) + (|B|+ |C|) = 2 ∗ P ∗R

P + R

�

�

�

�7.3

Two other commonly used F-measures are the F2 measure, which weights recall

twice as much as precision, and the F0.5 measure, which weights precision twice as

much as recall.

• Overall. Overall is developed specifically in the schema matching context and

embodies the idea to quantify the effort needed to add false negatives and removing

false positives. It is introduced in the Similarity Flooding (SF) system [101] and is

given by

OV = 1− |A|+ |C||A|+ |B| = R ∗ (2− 1

P
)

�

�

�

�7.4

For the same precision and recall values, F-measure has higher values than over-

all. The values of F-measure are always positive and equal zero only when either

precision or recall has zero value, while overall has negative values when P < 0.5

(i.e., if the number of false positives is larger than the number of true positives).

Overall may be zero at different precision values ,e.g. P = 0.5. Both measures

reach their maximum values of 1.0 when P = R = 1. In all other cases, the value

of F-measure is within the range determined by precision and recall, while overall

107

CHAPTER 7. IMPLEMENTATION & EVALUATION

is smaller than both precision and recall. Finally, F-measure weights both precision

and recall equally, i.e., the effort to add false negatives and the effort to remove false

positives, while the overall measure is more sensitive to precision than recall.

7.1.2 Efficiency measures

Efficiency is mainly contained in two properties: speed (the time it takes for an operation

to complete), and space (the memory or non-volatile storage used up by the construct).

Speed should be measured in the same conditions, i.e., same processor and same memory

consumption for all the systems. If user interaction is required, it has to be ensured that

only the processing time of the matching algorithm is measured. In this thesis, we take

the response time (T) as an indicator for the schema matching efficiency.

7.1.3 Combining effectiveness and efficiency for schema match-

ing evaluation

Many real-world problems, such as the schema matching problem, involve multiple mea-

sures of performance, which should be optimized simultaneously. Optimal performance

according to one objective, if such an optimum exists, often implies unacceptably low

performance in one or more of the other objective dimensions, creating the need for a

compromise to be reached. In the schema matching problem, the performance of a match-

ing system involves multiple aspects, among them effectiveness and efficiency. Optimiz-

ing one aspect, for example, effectiveness will affect the other aspects such as efficiency.

Hence, we need a compromise between them, and we could consider the trade-off between

effectiveness and efficiency matching result as a multi-objective problem. In practice,

multi-objective problems have to be reformulated as a single objective problem.

To this end, in this thesis, we propose a method for computing the cost-effectiveness of

a schema matching system. Such a method is intended to be used in a combined evaluation

of schema matching systems. This evaluation concentrates on the cost-effectiveness of

schema matching approaches, i.e., the trade-off between effectiveness and efficiency. The

motivation behind this is that suppose we want to compare two schema matching systems

to solve a specific matching problem. Suppose that we have a schema matching problem

P, and two matching systems SA and SB. The system SA is more effective than system SB,

while the system SB is more efficient than system SA. The arising question here is which

system to use to solve the given problem. So far, most existing matching systems [47,

108

7.1. EVALUATION MEASURES

96, 101] only evaluate their performance according to effectiveness issues, hence they all

choose the system SA (more effective).

Combining effectiveness and efficiency

From the above criteria we could conclude that the trade-off between effectiveness and

efficiency of a schema matching system is considered as a multi-objective optimization

problem (MOOP). In this section, we present a definition for the MOOP and the ap-

proaches used to solve the problem [151, 98]. In the following definitions we will assume

minimization (without loss of generality).

Definition 7.1 (Multi-objective Optimization Problem) A MOOP is defined as

“Find x that minimizes F (X) = (f1(x)), f2(x), ..., fK(x))T s.t. x ∈ S and x =

(x1, x2, ..., xn)T where f1(x), f2(x), ..., fk(x) are the k-objective functions, (x1, x2, ..., xn)

are the n optimization parameters, and S ∈ Rn is the solution.

In our approach, we have two objective functions, overall, OV , (or F-measure) as a

measure of effectiveness, and time, T, as a measure of efficiency. Therefore, we could

rewrite the multi-objective function as: CE = (f1(OV), f2(T)), where CE is the cost-

effectiveness which has to be maximized here. In a multi-objective problem, the optimum

solution consists of a set of solutions, rather than a single solution as in global optimiza-

tion. This optimal set is known as the Pareto Optimal set and is defined as follows:

P := {x ∈ S| ∃x′ ∈ S F (x′) � F (x)}. Pareto optimal solutions are known as the

non-dominated or efficient solutions.

There are many methods available to tackle multi-objective optimization problems.

Among them, we choose priori articulation of preference information. This means that

before the actual optimization is conducted, the different objectives are somehow aggre-

gated to one single figure of merit. This can be done in many ways, we choose weighted-sum

approaches.

Weighted-sum approaches: The easiest and perhaps most widely used method is the

weighted-sum approach. The objective function is formulated as a weighted function, as

given min(or max)
∑k

i=1 wi×fi(x) s.t. x ∈ S and wi ∈ R |wi > 0,
∑

wi = 1. By choosing

different weightings for the different objectives, the preference of the application domain

is taken into account. As the objective functions are generally of different magnitudes

and units, they first should be normalized.

109

CHAPTER 7. IMPLEMENTATION & EVALUATION

The cost-effectiveness of schema matching

Consider we have two schema matching systems SA and SB to solve the same matching

problem. Let OVA and TA represent the overall and time measures of the system SA

respectively, while OVB and TB denote the same measures for the system SB.

To analyze the cost-effectiveness of a schema matching system, we make use of the

MOOP and its method to solve it, namely the weighted-sum approach. Here, we have two

objectives, namely effectiveness (measured by overall OV) and efficiency (measured by

response time T). Obviously, we can not directly add up an overall value to a response time

value, since the resulting sum would be meaningless due to the difference of dimensional

units. The overall value of a schema matching system is a normalized value, i.e., its range

is between 0 and 1 (considering Precision > 0.5), while the processing time is measured

in seconds. Therefore, before summing (e.g., weighted average) the two quantities, we

should normalize the processing time.

To normalize the response time, for instance, the response time of the slower system

(here TA) is normalized to the value 1, while the response time of the faster system (TB)

can be normalized to a value in the range [0,1] by dividing TB and TA, i.e., TB

TA
.

We name the objective function of a schema matching system the cost-effectiveness

(CE) and it should be maximized. The cost-effectiveness is given by

CE =

2∑

i=1

wi × fi(x) = w1 × OVn + w2 ×
1

Tn

�

�

�

�7.5

where w1 is the weighting for the overall objective and denoted by (wov) and w2 is the

weighting for the time objective and denoted by (wt). In case of comparing two schema

matching systems, we have the following normalized quantities OVAn, OVBn, TAn and

TBn where OVAn = OVA, OVBn= OVB, TAn =1, and TBn = TB

TA
.

We now endeavor to come up with a single formula involving two quantities, namely

normalized overall OVn and normalized response time Tn, where each of these quantities

is associated with a numerical weight to indicate its importance for the evaluation of the

overall performance and to enrich the flexibility of the method. We write the equations

that describe the cost-effectiveness (CE)for each system as follows:

CEA = wovA ∗OVAn + wtA ∗
1

TAn

�

�

�

�7.6

CEB = wovB ∗OVBn + wtB ∗
1

TBn

�

�

�

�7.7

110

7.2. EVALUATION SCENARIOS

where wov and wt are the numerical weights for the overall and time response quantities,

respectively. If we let the time weights equal to zero, i.e., wt=0, then the cost-effectiveness

becomes the same normal evaluation considering only the effectiveness aspects (wov=1).

The most cost-effectiveness schema matching system is the system having a larger

CE as measured by the above formulas. Equations 7.6 and 7.7 present a simple but a

valuable method to combine the effectiveness and the efficiency of a schema matching

system. Moreover, this method is based on and supported by a proven and verified

method; the multi-objective optimization problem. Although the method is effective,

it still has an inherent problem. It would be difficult to determine good values for the

numerical weights, since the relative importance of overall and time response is highly

domain-dependent and, of course, very subjective. For example, when we are dealing

with small-scale schemas, the overall measure is more dominant than the response time.

Hence, we may select wov=0.8 and wt=0.2. For the critical time systems, the response

time may have the same importance as the overall measure, then we may choose wov =

wt=0.5.

To accommodate this problem, we need an optimization technique which enables us

to determine the optimal (or close to optimal) numerical weights. In this thesis, we set

these values manually in the selected case studies. Automatic determination of numerical

weight values is left for future work.

7.2 Evaluation scenarios

The main objective of this thesis is to develop a matching system that is able to discover

simple matches as well as complex ones considering large-scale schemas. Along this light

of thinking, we conducted intensive sets of experiments aiming to:

• evaluate the effect of individual element measures on matching performance,

• validate the match effectiveness,

• validate the matching efficiency, and

• compare our system with two well-known matching systems, namely COMA++ [48,

21, 47] and Similarity Flooding (SF) [101].

To realize these goals, we have conducted three main sets of experiments. The first set is

to evaluate individual XML element similarity measures, the second set is used to evaluate

111

CHAPTER 7. IMPLEMENTATION & EVALUATION

the XPrüM system, while the third set is conducted to validate the performance of the

EXPrüM system. Both the first and the second sets of experiments have been conducted

considering both linear and nonlinear combining strategies, while the third set has been

conducted making use of the linear combining strategy.

7.3 First scenario: Element similarity measures evaluation

Our strategy in this scenario is to evaluate XML element similarity measures using dif-

ferent settings: (1) every element similarity measure alone and (2) different combinations

of similarity measures. Furthermore, the sets of experiments in this scenario have been

conducted considering linear and nonlinear combining strategies. We aim to draw general

conclusions from this scenario that could be used as a guide through the other scenarios.

The quality of the element similarity measures is verified using precision (P), recall (R),

and F-measure. To realize these goals, we experimented with the two schemas described

in Fig. 5.1 and their properties in Table 5.2.

7.3.1 Experimental results

Quality of element similarity measures

1. Internal measures without external information sources.

• Using the linear fixed combination strategy.

We implemented a set of experiments to observe the quality of internal element

similarity measures without exploiting external information sources. The qual-

ity of each internal similarity measure (name, data type, and cardinality con-

straint) is first evaluated alone and then different combinations between them

are also evaluated using the linear fixed combination strategy. The similarity

values between schema tree elements are first computed using the specified ele-

ment measures. These values are then ranked and the ones that are higher than

a predefined threshold (th) are selected. The results of these evaluations are

reported in Fig. 7.2. Figures 7.2(a,b) indicate that no single element measure

is able to discover the qualitative correspondences. The name measure achieves

F-measure ranging between 20% to 58%, the data type measure produces F-

measures between 29% and 32%, while the cardinality constraint measure gives

F-measure between 17% and 37%.

112

7.3. FIRST SCENARIO: ELEMENT SIMILARITY MEASURES EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold, th

Precision
Recall
F−measure

(a) Name measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.25

0.3

0.35

0.4

Threshold, th

F−
m

ea
su

re

data type measure
cardinality measure

(b) Type and cardinality measures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Threshold, th

F−
m

ea
su

re

name+thype measures

name+cardinality measures

(c) Name measure with one of other internal measures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th
F−

m
ea

su
re

wn=0.8, wt=0.1, wc=0.1
wn=0.7, wt=0.2, wc=0.1

(d) Internal measures with different combinations

Figure 7.2: Internal measures quality using the linear combining strategy.

To get better matching quality, different combinations have been used. First,

the name measure is combined with one of the other internal measures. The

results reported in Fig. 7.2(c) show that combining name and type/data type

measures performed better than the other combination. Then, the name mea-

sure is combined with the two other measures. Figure 7.2(d) illustrates that

F-measure improves and its value reaches 67% when combining name, type,

and cardinality constraints measures with weights wn = 0.7, wt = 0.2, and

wc = 0.1 for the name, data type, and cardinality constraint measures, respec-

tively.

• Using nonlinear combination methods.

The above set of experiments have been repeated using the nonlinear combining

strategy with all internal measures. Further, these experiments are directed

and guided by the results obtained from the first set. The results of these

experiments are reported in Fig. 7.3. The figure presents two interesting

findings. (1) The largest F-measure occurs at lower threshold values, as shown

in Fig. 7.3(a), compared to the results obtained using the linear strategy,

113

CHAPTER 7. IMPLEMENTATION & EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F
−m

ea
su

re
Name+type measures
Name+cardinality measures

(a) Name+ one of internal measures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
m

ea
su

re

using linear combination
using nonlinear combination

(b) Internal measure with nonlinear/linear combina-
tion

Figure 7.3: Internal measures quality using the nonlinear combination strategy.

as shown in Fig. 7.2(c). (2) Using the nonlinear combination strategy to

aggregate a small number of element measures is not effective as using it to

combine a large number of element measures. Figure 7.3(b) shows that using

the nonlinear combining strategy achieves higher F-measure than the linear

strategy. However, using the nonlinear strategy, as shown in Fig. 7.3(a), to

aggregate the name measure with another element measure does not achieve

higher quality.

2. Internal & external measures quality.

• Using the linear fixed combination method

The second set of experiments was implemented to observe the quality of inter-

nal element similarity measure with different combinations of external element

measures. This set of experiments has the same procedure as the first one:

similarity values are first computed, ranked, and ones that are higher than

the predefined threshold (th) are selected. The results of these evaluations are

reported in Fig. 7.4. Combining the leaf context with the internal measure

deteriorates the matching quality, as shown in Fig. 7.4(a), while the child

context outperformed the other combinations. Figure 7.4(b) shows that com-

bining also the child context with another element context other than the leaf

context surpasses the other combinations, while Figure 7.4(c) gives the results

of combining three of the external measures with the internal measure. Figure

7.4(d) outlines the results produced by combining the internal and external

measures. The figure presents an interesting finding regarding to the used

threshold (th). Small values of threshold result in a large number of false posi-

114

7.3. FIRST SCENARIO: ELEMENT SIMILARITY MEASURES EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
me

as
ure

Internal+child
Internal+sibling
Internal+leaf
Intenal+ancestor

(a) Internal+one context measure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
me

as
ure

Internal+child+leaf
Internal+child+sibling
Internal+child+ancestor
Internal+sibling+ancestor
Internal+leaf+ancestor
Internal+leaf+sibling

(b) Internal+two context measures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
m

ea
su

re

Internal+child+leaf+sibling
Internal+child+leaf+ancestor
Internal+child+ancestor+sibling
Internal+ancestor+leaf+sibling

(c) Internal+three context measures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold, th

Precision

Recall

F−measure

(d) Internal+ external measures.

Figure 7.4: Internal & external measures quality using the linear combining strategy.

tives (small precision values) and a small number of false negatives (large recall

values). Increasing the value of threshold causes an opposite situation. The

highest F-measure (0.76) was obtained at a threshold of 0.5. It should be noted

that the highest F-measure using only the internal measure is 0.67 at the same

threshold.

• Using the nonlinear combination method.

We evaluated the quality of the external measures again using the nonlinear

combining strategy. These set of experiments are also directed and guided

by the results obtained from the set using the linear strategy. The results of

these experiments are reported in Fig. 7.5. The figure presents two interesting

findings. (1) The largest F-measure does not occur at lower threshold values,

as shown in Fig. 7.5(a,b). Compared to the results using the linear strategy,

largest F-measure occurs at the same threshold value. Indeed, combining the

internal measure with external measures increases the element similarity that

results in higher F-measure values at higher threshold values. (2) Using the

nonlinear combination strategy achieves higher F-measure than the linear strat-

115

CHAPTER 7. IMPLEMENTATION & EVALUATION

egy, as shown in Fig. 7.5(b). It should be noted that F-measure increase from

76% using the linear combining strategy to 84% using the nonlinear strategy

at the same threshold.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
m

ea
su

re

Internal+child

Internal+leaf

Internal+sibling

Internal+ancestor

(a) Internal with one of context measures.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold, th

F−
m

ea
su

re

using nonlinear combination
Using linear combination

(b) Internal& external measure with nonlinear/linear
combination

Figure 7.5: Internal & external measures quality using the nonlinear combination strategy.

3. Effect of external information sources.

Although the tested schemas are small, matching is not of high quality due to

different heterogeneities existing in them. F-measure values range between 17%

and 76% depending on the used element measures and the selected threshold. To

improve the matching quality, one method is to use semantic measures. To this end,

we built a domain-specific dictionary, and we developed another set of experiments

to observe the effect of external information sources on the matching quality. The

results of these evaluations are reported in Fig. 7.6(a). The figure presents the effect

of using an external dictionary on the matching quality using the linear combining

strategy. Compared to results shown in Figure 7.4, F-measure has nearly the same

value with/without the external dictionary at a threshold value of 0.1. At higher

threshold values, F-measure has been improved gradually. It increases from 26% to

30% at a threshold value of 0.2, from 61% to 65% at 0.4, and from 76% to 80% at

0.5. The best F-measure obtained is 80% at a threshold of 0.5 using the external

dictionary, and 76% without the dictionary.

To study the trade-off between matching quality and matching efficiency due to

adding the domain-specific dictionary on the matching performance, we calculate

116

7.3. FIRST SCENARIO: ELEMENT SIMILARITY MEASURES EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold, th

F−
me

as
ur

e
without dictionary
with dictionary

(a) using linear combining strategy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold, th

F−
m

ea
su

re

without dictionary
with dictionary

(b) using nonlinear combining strategy

Figure 7.6: Effect of using external dictionary.

the quality improvement ratio (QIR) of using the external source as:

QIR =
quality increment

quality without external source
=

4

76
= 5.26%

�

�

�

�7.8

This quality improvement normally causes a decline in matching efficiency, com-

puted as the time needed to perform the matching task. The element measures

need 200 ms to complete the matching task without external dictionary, while they

need 235 ms in the presence of the external dictionary. We calculate the performance

decline ratio (PDR) as:

PDR =
performance decrease

performance without external source
=

35

200
= 17.5%

�

�

�

�7.9

This means that in order to improve the matching quality by a ratio of 5.26%,

we must pay a performance cost ratio of 17.5%. Therefore, a trade-off between

matching quality and matching efficiency should be considered, especially in the

large-scale context.

In case of utilizing the nonlinear combining strategy, as shown in Fig. 7.6(b), the

effect of using the external dictionary on the matching quality is not significant. It

increases F-measure from 0.846 to 0.857 at a threshold of 0.5, which results in a

quality improvement ratio of 1.3% (85.7−84.6
84.6

× 100) at the same performance decline

ratio.

117

CHAPTER 7. IMPLEMENTATION & EVALUATION

7.3.2 Lessons learned from the first scenario.

The experiments that we conducted in the first scenario present several interesting findings

that can be used as a guide to develop experiments in the second scenario. These findings

include:

• Using a single element similarity measure is not sufficient to assess the similarity

between XML schema elements. This necessitates the need to utilize several element

measures exploiting both internal element features and external element relation-

ships.

• Utilizing several element measures provides the advantage of our matching algo-

rithms to be more flexible. However, it also embeds a disadvantage of how to

combine these similarity measures. We settle on selecting the aggregation function

(weighted-sum) as a combining strategy making use of the two combining strategies:

linear and nonlinear. According to the linear strategy, equations in Def. 5.5 and 5.8

can be written as follows

InterSim (Eℓ1, Eℓ2) = wn ×Nsim (Eℓ1.name, Eℓ2.name) +

wd × Tsim (Eℓ1.type, Eℓ2.type) +

wc × Csim (Eℓ1.card, Eℓ2.card)

ExterSim (Eℓ1, Eℓ2) = wch × ChSim (Eℓ1, Eℓ2) +

wl × LeafSim (Eℓ1, Eℓ2) +

wsib × SibSim (Eℓ1, Eℓ2) +

wan × PSim (Eℓ1, Eℓ2)

Reported results demonstrate that the name measure has the most effect of the

internal measures, while external measures are nearly of equal effect. As a result,

we set wn ≫ (wd
∼= wc), and wch

∼= wl
∼= wsib

∼= wan. Using the nonlinear combining

strategy provides the possibility to consider the interdependencies between element

similarities, and thus improves the matching quality compared to the linear strategy.

118

7.4. SECOND SCENARIO: XPRÜM EVALUATION

• Selecting the candidate correspondences is largely based on the value of threshold.

Low values of threshold result in a large number of false positives (very low precision)

and a small number of false negatives (high recall), while high values of threshold

cause an inverse situation, as shown in Fig. 7.6. Therefore, we settle on medium

values for thresholds ranging between 0.4 to 0.5.

• Exploiting external information sources, such as WordNet or domain-specific dic-

tionaries, improves the matching quality. However, to get this improvement, the

matching efficiency declines. In the large-scale context, a trade-off between match-

ing effectiveness and matching efficiency should be considered. As a consequence,

we decide not to exploit external information sources and we depend largely on our

matching algorithms.

7.4 Second scenario: XPrüM evaluation

Our strategy in this scenario is to validate different element measures and their combina-

tions using real-world data sets guided by the experimental results from the first scenario.

Both the effectiveness and the efficiency of element measures have been evaluated as

follows.

7.4.1 Data set

In this scenario, we experimented with data sets from 6 different domains. Schemas

from the university domain are heterogeneous, i.e., they are developed independently,

while schemas from the other five domains are homogenous, i.e. they are derived from

their XML documents. From each domain, we collected four schemas. We choose the

data sets because they capture different characteristics in the number of schema elements

(schema size) and their depth (the number of node nesting), and they represent different

application domains, as shown in Table 7.1.

Table 7.1: Data set details

Domain No. of Schemas/elements Avg. No. elements Min./max. depth total size (KB)
Article 4/530 135 5/10 100

bibliography 4/60 15 6/6 8
Car 4/344 83 5/6 30

Company 4/60 15 6/6 8
Movie 4/40 10 5/6 8

University 4/38 10 4/5 8

119

CHAPTER 7. IMPLEMENTATION & EVALUATION

7.4.2 Evaluation methodology

Every schema pair inside the corresponding domain has been matched at a time. Hence,

we have a total of 36 (S×(S−1)
2
×d, where S is the number of schemas in each domain and d

is the number of domains) matching tasks. The required parameters, such as the threshold

value, are selected guided by the findings obtained from the first scenario. Furthermore,

each matching task has been conducted utilizing both combining strategies. To evaluate

the performance of element measures, we make use of the performance criteria mentioned

above. The performance for each matching task is first evaluated and then matching tasks

within the same domain have been averaged.

7.4.3 Experimental results

Quality evaluation. For each schema pair in the same domain, we conducted two sets

of experiments—one using the linear combining strategy and the other using the nonlinear

strategy. Element similarity measures (all matchers) discover candidate matchings that

exceed the predefined threshold. The matching quality criteria are then computed for

the schema pair. The quality criteria for all schema pairs in the same domain are then

averaged to obtain the final quality criteria for the domain. Results are summarized in

Figure 7.7, and present several interesting findings. (1) The nonlinear combining strategy

outperforms the linear strategy across all the tested domains. Using the nonlinear strat-

egy, F-measure ranges between 76% (the university domain) and 98% (the movie domain),

while the linear strategy achieves F-measure between 68% (the university domain) and

95% (the car domain). This is due to the nonlinear strategy considers the interdepen-

dencies between element similarities. (2) Both combining strategies produce matching

quality over the Article, Bibliography, Car, Company, and Movie domains higher than

the matching quality over the University domain. This results due to the fact that XML

schemas in the first set of domains are more homogeneous than XML schemas in the

second set of domains.

Efficiency evaluation. To validate the efficiency of element measures, we collected

more schemas from the 6 used domains. The number of schemas used in this set of

experiments reaches 250 with a total of schema tree elements of 8000. The total size of

tested schemas is 1.2 MB. Every schema pair in the data set (from different domains) is

matched at a time. We determined the response time required to perform the matching

task as a function of either the number of schemas or the number of elements.

120

7.4. SECOND SCENARIO: XPRÜM EVALUATION

(a) Using the linear combination. (b) Using the nonlinear combination.

Figure 7.7: Matching quality for real-world data sets.

Experimental results Figure 7.8 represents the results of the efficiency evaluation.

The figure shows that the time complexity of the matching process is quadratic (O(n2),

where n is the number of schema elements). The effect of the internal element measures

on the matching efficiency is illustrated in Figure 7.8(a). The figure indicates that the

cardinality constraint measure performs better than the other internal measures. This is

due to the fact that the cardinality measure is based on small look up table. The figure

also shows that while the type and constraint measures are based on similarity tables,

however, the constraint measure is faster than the data type measure. This is due to the

reason that the number of built-in XML data types is more than the number of cardinality

constraints.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

R
e

sp
o

n
se

 t
im

e
,

S
e

c.

Percentage of input data

Name measure
Tyep measure
Cardinality measure
Internal measure
Intrenal + external

(a) Efficiency of internal measures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

R
e

sp
o

n
se

 t
im

e
,

S
e

c.

Percentage of input data

Internal +ancestor

Internal + child

Internal + sibling

Internal + leaf

Internal

Internal + external

(b) Efficiency of external measures.

Figure 7.8: Response time for real-world data sets.

Figure 7.8(b) presents the effect of the external element measures on the matching

121

CHAPTER 7. IMPLEMENTATION & EVALUATION

efficiency. The figure indicates that the ancestor context measures performs the worst

among the other external measures. It can also be seen that child, sibling, and leaf context

measures add insignificant response times to the matching efficiency. The reason behind

this can be explained as follows: the ancestor measure is based on the path comparison,

which requires the identification of paths to be compared. This identification process

consumes much time.

7.4.4 More lessons learned.

The experimental results conducted in this study present several interesting findings that

can be used as a guide during the development of schema matching. These findings

include:

• It is evident that using a single element similarity measure is not sufficient to assess

the similarity between XML schema elements. As the results in the first scenario

indicate that no single measure is adequate to assess the similarity between ele-

ment. The name measure has the strong effect among the internal measures on

the matching quality, while, the child measure achieves the best matching quality

among external measures when combining with the internal measure. This necessi-

tates the need to utilize several element measures exploiting both internal features

and external relationships of the elements. On the other hand, as the results from

the second scenario states that the type measure is the most costly internal measure,

while the ancestor measure is the most expensive external measure.

• Utilizing several element measures provides the advantage of the matching algo-

rithms to be more flexible. However, it also embeds a disadvantage of how to

combine these similarity measures. Furthermore, combining the internal measure

with either the child or sibling context measure achieve better matching quality

than combining the internal measures with the ancestor measure. The results in the

second scenario also indicate that the ancestor measure consumes much time com-

pared to the other external measures. They also confirm the fact that utilizing more

measures results in better matching quality, however, with much response times.

• The strategy used to combine element similarity measures affects the matching

quality, but it has no effect on the matching efficiency. According to results in the

introduced scenarios, using the nonlinear combining strategy improves the matching

quality.

122

7.5. THIRD SCENARIO: EXPRÜM EVALUATION

7.5 Third scenario: EXPrüM evaluation

The set of experiments in this scenario is considered with analyzing the performance of

the EXPrüM system in terms of matching quality and matching efficiency guided by

the lessons learned from the first two scenarios. Moreover, to validate the performance of

EXPrüM we compare it with two well schema matching systems, namely COMA++1 [21,

48] and Similarity Flooding (SF) [101] as implemented in Rondo2 [102].

7.5.1 Data sets

We experimented with the data sets shown in Table 7.2. These data sets were obtained

from3. We choose them because they capture different characteristics in the numbers of

nodes (schema size) and their depth (the number of nodes nesting), and they represent

different application domains. We utilized two different data sets depending on the mea-

sured performance criterion: matching effectiveness or matching efficiency. The first set,

Table 7.2 Part(A), is used to evaluate matching effectiveness, wherein schemas from the

TPC H and bioinformatics domains do not contain complex matches, while schemas from

the other two domains contain complex matches. Data sets described in Table 7.2, Part

(B), are used to validate matching efficiency.

Table 7.2: Data set details

Part (A) Effectiveness Part (B) Efficiency
TPC H Bibliography Auction Bioinformatics Domain No. of Schemas/nodes Schema size

No. nodes(S1/ S2) 43/17 22/28 38/37 101/69 University 44/550 < 1KB
Avg. No. nodes 30 25 38 85 XCBL 570/3500 < 10 KB

Max. depth (S1/ S2) 3/6 6/7 3/4 6/6 OAGIS 4000/3600 <100 KB
OAGIS 100/65000 >100 KB

Using these data sets, we defined 8 match tasks divided into two groups. The first

group contains 4 match tasks, each matching two different schemas from data sets de-

scribed in Table 7.2, Part (A) to validate the matching effectiveness. For each task, we

1http://dbs.uni-leipzig.de/Research/coma.html
2http://infolab.stanford.edu/ melnik/mm/rondo/
3

• http://www.cs.toronto.edu/db/clio/testSchemas.html

• http://sbml.org/Documents/Specifications/XML Schemas

• http://www.xcbl.com

• http://www.oagi.org

123

CHAPTER 7. IMPLEMENTATION & EVALUATION

manually derived the real (correct) matches. The second group contains 4 match tasks,

each matching a set of schemas from the same domain utilizing data sets described in

Table 7.2, Part (B) to validate the matching efficiency.

7.5.2 Matching quality

The data set Part (A) illustrated in Table 7.2 is introduced to the EXPrüM system two

schemas at a time. For each domain, we performed two experiments—from S1 to S2 and

from S2 to S1. Matcher algorithms discover candidate matchings that exceed a predefined

threshold. Then, these candidates are ranked for each element up to the top-3 ranking

(if found). Finally, matching quality measures are computed. We also computed the

matching quality of both the COMA++ system and the Similarity Flooding SF (RONDO)

system and we compared them to our system. The results are summarized in Fig. 7.9.

The results show that EXPrüM achieves high matching quality in terms of precision,

recall, and F-measure across all four domains ranging from 80% to 100%. Compared

to COMA++, which is mostly independent from the match direction (from S1 to S2

or from S2 to S1), our system, like SF, depends on the match direction. Figure 7.9

illustrates that matching quality measures for COMA++ using the TPC H, Auction and

Bioinformatics domains are the same from S1 to S2 (Fig. 7.9(a)) and from S2 to S1

(Fig. 7.9(b)). However, this is not true for the bibliography domain. The reason is that

schemas from the bibliography domain contain more complex matches, which are harder

to discover. As shown in Fig. 7.9, our system, which is able to cope with complex matches,

achieves higher precision, recall, and F-measure than both COMA++ and SF across the

bibliography domain. The best matching results for EXPrüM are achieved from the

Auction domain that includes less semantic and structural heterogeneities. We wish to

remark that our system can identify all matchings including complex ones, whereas both

COMA++ and SF only identify element-level matchings with F-measure of 94%.

Individual matchers effectiveness. For each domain, we performed a set of exper-

iments to study the effect of individual matchers on the whole matching quality. To

this end, we considered the following combinations of matchers: (1) the name matcher

alone, (2) the name matcher with the data type compatibility, and (3) the name matcher

with the data type compatibility and the structural context matcher (i.e., the complete

EXPrüM system). We use precision as a matching quality measure. Figure 7.10 shows

the matching quality for these scenarios.

124

7.5. THIRD SCENARIO: EXPRÜM EVALUATION

Precision Recall F-measure
(a) Computed from S1 to S2

Precision Recall F-measure
(b) Computed from S2 to S1

Figure 7.9: Matching quality measures for XPrüM, COMA++, and SF systems.

Figure 7.10 clearly shows the effect of each individual matcher on the total matching

quality. The name matcher alone has very low accuracy on the first domain (10%),

because the two schemas S1 and S2 present names with many slight variations and the

name matcher utilizes very simple string similarity functions. Some more accurate results

have been achieved for the other two domains (21.5% on the bibliography domain and

26% on the auction domain). Using the data type compatibility matcher with the name

matcher provides an irrelevant improvement of matching accuracy (between 4% to 10%).

In contrast, the best matching results of matcher combinations are achieved by adding the

structural context matcher. This matcher improves matching precision by approximately

64%. Finally, we choose precision as a measure for matching quality in this scenario, since

precision quantifies efforts needed to remove false positive candidates.

Matching quality for complex matchings. As stated before, we select the tested

data set to reflect different features and characteristics. The TPC H domain does

not contain any complex matching and it is suitable for element-level matchings. The

bibliography domain contains 4 complex matchings out of 20 total matchings. When

performing match from S1 to S2, EXPrüM could correctly identify 2 out of 4 producing

a precision of 50%. While performing match from S2 to S1, the system could correctly

125

CHAPTER 7. IMPLEMENTATION & EVALUATION

Figure 7.10: Matching precision for different combinations of matchers.

identify 3 out of 4 producing a precision of 75%. The third domain, the Auction domain,

contains 5 complex matchings out of 32 total matchings. EXPrüM could identify all

complex matchings along two matching directions, i.e., from S1 to S2 and from S2 to S1.

7.5.3 Matching efficiency

We measure the time response of our matching system as a function of the number of

schemas and nodes through the data set Part (B) illustrated in Table 7.2. For schemas

whose sizes are less than 10KB, the matching response time is a function of the number

of schemas. Otherwise, the response time is measured as a function of the number of

nodes. Results are summarized in Figure 7.11.

Figure 7.11 shows that EXPrüM scales well across all three domains. The system could

identify and discover correspondences across 44 schemas of 550 nodes from the university

domain in a time of 0.4 seconds, while the approach needs 1.8 seconds to match 570

schemas with approximately 3500 nodes from the XCBL domain. This demonstrates that

EXPrüM is scalable with a large number of schemas. To demonstrate the scalability

of the system with large-scale schemas, we carried out two other sets of experiments.

First, we considered the OAGIS domain that contains schemas whose sizes range between

10KB and 100KB. Figure 7.11(c) shows that the system needs 26 seconds to match 4000

schemas containing 36000 nodes. Then, in the same domain, we considered 100 schemas

whose sizes are larger than 100KB. EXPrüM requires more than 1000 seconds to match

65000 nodes, as shown in Figure 7.11(d).

Effect of individual matchers on matching efficiency. In this subsection, we dis-

cuss the effect of the individual matcher combination on the matching efficiency. To this

126

7.5. THIRD SCENARIO: EXPRÜM EVALUATION

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

Number of Schemas

R
es

po
ns

e
tim

e
in

 m
s

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Schemas

R
es

po
ns

e
tim

e
in

 m
s

(a) Response time of University schemas. (b) Response time of XCBL schemas.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Number of nodes x 1000

R
es

po
ns

e
tim

e
in

 S
ec

.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Number of nodes x 1000

R
es

po
ns

e
tim

e
in

 S
ec

.

(c) Res. time of OAGIS schema nodes 1. (d) Res. time of OAGIS schema nodes 2.

Figure 7.11: Performance analysis of EXPrüM system with real-world schemas.

end, we performed a set of experiments by using the OAGIS domain with sizes ranging

between 10KB and 100KB for the following scenarios: (1) the name matcher alone, (2)

the name matcher with the data type compatibility, and (3) the name matcher with data

type compatibility and the structural context matcher (i.e., the complete XPrüM system).

Figure 7.12 shows the matching response time for these scenarios.

The results show that the name matcher needs less time than the other combinations,

as it was expected. This matcher takes 16 seconds to match 36000 nodes. Adding the

data type compatibility matcher increases the response time to 23 seconds, with an asso-

ciated matching quality improvement ranging between 4% to 10%. It is interesting that

by adding the structural context matcher it needs only 3 seconds more to perform the

matching process, with an associated matching quality improvement of approximately

63%.

127

CHAPTER 7. IMPLEMENTATION & EVALUATION

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Number of nodes x 1000

Re
sp

on
se

 tim
e i

n S
ec

.

complete algorithm
Name+ datatype matchers
Name Matcher

Figure 7.12: Matching response time for different combinations of matchers.

Matching quality/matching efficiency cost ratio

In order to evaluate the benefits behind the structural context matcher, we compute the

ratio between matching quality improvement and matching efficiency cost. This ratio

could be used to evaluate different combinations of matchers, and is denoted by ηmatcher.

The data type matcher is evaluated as follows:

ηdatatype =
MQI

MEC
=

10

30
= 0.33

�

�

�

�7.10

where MQI, Matching Quality Improvement, is the incremental value of matching quality

because of adding the data type matcher, and MEC, Matching Efficiency Cost, is com-

puted by computing the percentage of increasing response time due to adding the matcher

(i.e. 30 = 23−16
23
× 100). The structural matcher is computed as follows:

ηstructural =
MQI

MEC
=

63

11
= 5.7

�

�

�

�7.11

Equations 7.10 and 7.11 show that the relative performance benefits from our new struc-

tural matcher. Although the match achieves 63% improvement in matching quality, this

requires only a matching efficiency cost of 11%

7.5.4 Cost-effectiveness comparison

In addition to the above two scenarios, we evaluated our approach by comparing the

cost-effectiveness of it with two recently well-known schema matching systems, namely

COMA++ and PORSCHE. The two systems share our system in some features, including

128

7.5. THIRD SCENARIO: EXPRÜM EVALUATION

Table 7.3: Cost-effectiveness data set details from [59]

University Biology
No. nodes(S1/ S2) 18/18 719/80

Avg No. nodes 18 400
Max. depth (S1/ S2) 5/3 7/3

No. mappings 15 57

that they are schema-based approaches; they utilize rule-based algorithms; and they ac-

cept XML schemas as input. However, they produce element-level mappings (one-to-one);

they need pre-match effort, e.g., tuning match parameters and defining match strategy;

they evaluate matching effectiveness using precision, recall, and F-measure (overall).

To conduct this set of experiments, we used two sets of XML schemas, each containing

two schemas. These schemas are described and used in [59]. To make this work self-

contained, we summarize the properties of the data sets in Table 7.3. The first one

describes university courses and is used in the small-scale context, while the second one

comes from the biology domain, and is used in the large-scale context.

Small-scale schemas: The cost-effectiveness of test matchers using small-scale

schemas, the university domain, can be computed by the following equations:

CECOMA++s = wOV ∗OVCOMA++ + wt ∗
1

TCOMA++n

�

�

�

�7.12

CEPors
= wOV ∗OVPor + wt ∗

1

TPorn

�

�

�

�7.13

CEEXPruMs = wOV ∗OVEXPruM + wt ∗
1

TEXPruMn

�

�

�

�7.14

where OVCOMA++=0.53, OVPor=0.67, OVWXPruM=0.75 TCOMA++=0.9 s, TPor=0.6s,

TEXPruM=0.188s and wOV =0.8 (for small-scale schemas), and wt=0.2, then

CECOMAs
=0.424 + 0.2

1
=0.624,

CEPors
=0.536 + 0.2

0.6
0.9

=0.836 , and

CEEXPruM=0.6 + 0.2
0.188
0.9

=1.56

129

CHAPTER 7. IMPLEMENTATION & EVALUATION

Table 7.4: Summary of cost-effectiveness comparison results

Evaluated System OV T CE
small-scale large-scale small-scale large-scale small-scale large-scale

COMA++ 0.53 0.4 0.9s 4s 0.624 0.64
PORSCHE 0.67 0.3 0.6s 2s 0.836 0.98
EXPrüM 0.75 0.6 0.188s 1.87s 1.56 1.25

Large-scale schemas: The cost-effectiveness of test matchers using large-scale

schemas, the biology domain, can be computed by the following equations:

CECOMA++l
= wOV ∗OVCOMA++ + wt ∗

1

TCOMA++n

�

�

�

�7.15

CEPorl
= wOV ∗OVPor + wt ∗

1

TPorn

�

�

�

�7.16

CEEXPruMl
= wOV ∗OVEXPruM + wt ∗

1

TEXPruMn

�

�

�

�7.17

where OVCOMA++=0.4, OVPor=0.3, OVXPruM=0.6, TCOMA++=4s, TPor =2s,

TXPruM=1.8 and wOV =0.6 (for large-scale schemas), and wt=0.4, then

CECOMAl
=0.24 + 0.4

1
=0.64,

CEPorl
=0.18 + 0.4

2

4

=0.98,

CEEXPruMl
=0.36 + 0.4

1.8
4

=1.25

Discussion.

In this section, we conducted a comparison between our proposed system and two recently

well-known systems, COMA++ [48] and PORSCHE [122], considering both performance

aspects: matching effectiveness and matching efficiency. The three systems have been

evaluated using small-scale schemas (university schemas) and large-scale schemas (order

schemas) and their cost-effectiveness have been computed. Table 7.4 reports these re-

sults. We observed that EXPrüM outperforms over the other two systems in both cases,

small-scale and large-scale. This observation can be explained, as EXPrüM exploits the

semantic and structure information of schema trees in an efficient way that provides high

matching quality and matching efficiency.

We studied the relationship between cost-effectiveness and both performance aspects

(overall and response time). Figure 7.13 illustrates this relationship, where the squared

line only represents the overall, the dashed line represents the response time, and the

130

7.6. SUMMARY

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

3

response timeoverall

co
st

−e
ffe

ct
iv

en
es

s
both
response time
overall

(a) small-scale schemas

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

3

response timeoverall

co
st

−e
ffe

ct
iv

en
es

s

both
response time
overall

(b) large-scale schemas

Figure 7.13: Performance aspects with cost-effectiveness.

solid line represents both. Figure 7.13(a) is drawn for the small-scale case (i.e.wOV =.8

and wt=.2) while Fig. 7.13(b) is drawn for the large-scale schemas (wOV =.5 and wt

=.5). In case of small-scale schemas, the cost-effectiveness is more biased to the overall

measure than the response time of the system, while in case of large-scale schemas, the

cost-effectiveness is biased by both performance aspects.

7.6 Summary

In this chapter, we presented the experimental evaluation that validated the performance

of our proposed system. To realize our goals, we have three different scenarios. The first

is to evaluate XML element similarity measures with different combination strategies to

extract lessons that can be used as a guide during conducting experiments in the other

scenarios. Experiments in the second scenario have been used to validate the performance

of our system, XPrüM utilizing real-world data sets. The third scenario is devoted to

evaluate the performance of EXPrüM and to compare it with two well-known schema

matching systems. The results are encouraging and empirically prove the strength of our

approach. Finally, we have conducted another set of experiments to consider the cost-

effectiveness measure, a new measure that we introduced to consider both performance

aspects at the same time.

Experimental results have shown that XPrüM /EXPrüM scales well in terms of both

large numbers of schemas and large-scale schemas. Moreover, it can preserve matching

quality considering both simple and complex matching. We have introduced and measured

the matching quality improvement/matching efficiency cost ratio to validate our new

131

CHAPTER 7. IMPLEMENTATION & EVALUATION

structural matcher.

Our system includes other features: it is almost automatic; it does not make use of

any external dictionary or ontology; moreover, it is independent from data models and

application domains of matched schemas. In the following chapters, we show how to

deploy our sequence-based matching approach in several applications and domains, such

as XML data clustering and Web service discovery.

132

Part IV

Deployment of the proposed schema

matching system

133

8
SeqXClust: XML schema clustering

framework

XML is emerging as a de facto standard for information representation and exchange

on the Web and within organizations. There has been a growing need to develop high-

performance techniques that manage large XML data repositories efficiently. A nice and

elegant solution is to group similar XML data based on their content or their structure

or both. The process of grouping similar XML data is called XML data clustering.

The relationship between XML data clustering and schema matching is bidirectional.

On the one side, clustering techniques have been adopted to improve the matching per-

formance, and on the other side schema matching is a fundamental step to clustering

techniques. In this chapter, we aim to deploy our sequence-based schema matching ap-

proach developed and implemented in the previous chapters. Particularly, we utilize the

approach to compute the similarity between XML data as a guide to cluster them. We first

introduce the XML data clustering process demonstrating the need to new approaches.

We then present a novel XML schema clustering framework, called SeqXClust, that is

based on our schema matching algorithms. To validate the proposed framework, we con-

ducted a set of experimental evaluations showing that our framework is accurate and

scales well in clustering large and heterogeneous XML data.

The material presented in this chapter has been developed and published in [13, 7].

135

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

8.1 Introduction

Due to XML’s inherent features, XML is emerging as a standard for information repre-

sentation and exchange among various applications on the Web and within organizations.

As a result, a huge amount of information is formatted in XML data and several tools

have been developed to deliver, store, integrate, and query XML data [32, 71]. There has

been a growing need for developing high-performance techniques to manage and analyze

these giant XML data efficiently. In order to do this, a possible and elegant solution is to

group similar XML data according to their content or their structures or both. Grouping

similar XML data across heterogeneous ones is known as XML data clustering.

Commonly, clustering is a useful technique for grouping data objects, such that ob-

jects within a single group/cluster have similar features, while objects in different groups

are dissimilar [82, 28]. There are two types of XML data—XML documents and XML

schemas, as stated in Chapter 2. An XML schema is the description of the structure and

the legal building blocks for an XML document. Several XML schema languages have

been proposed [88]. Among them, XML DTD and XML Schema Definition (XSD) are

commonly used. An XML document (document instance) represents a snapshot of the

content of the XML document, since the document definition outlined in a schema holds

true for all document instances of that schema. Therefore, the result produced from the

clustering of schemas will hold true for all document instances of those schemas and can

be reused for any other instances. On the contrary, the result of clustering of document

instances will only hold true for included document instances [108]. The clustering pro-

cess should be repeated for new document instances. Therefore, in this chapter, we only

consider the clustering of XML schemas.

Clustering XML data is an intricate process and differs significantly from clustering of

flat data and text. The difficulties of clustering XML data are due to several reasons [3].

Among them are:

• Clustering algorithms require the computation of similarity between different sets

of XML data, which is itself a difficult research problem (the heterogeneity in XML

data presents many challenges to identify the ideal similarity function). For example,

Figure 8.1 shows three XML data representing journal and conference papers in the

DBLP database. The data sets have common elements such as author and title.

Even if D1 and D2 have only one different element, they should be in two different

clusters according to usual semantics that give different relevance to publications

136

8.1. INTRODUCTION

Figure 8.1: Different XML data

in journals and conferences. In contrast, even if D2 and D3 have only one different

element, they should be in the same cluster because they refer to conference papers.

• The structural organization of the XML data increases implicit dimensionality that

a clustering algorithm needs to handle, which leads to meaningless clusters.

Research on clustering XML data is gaining momentum to address these chal-

lenges [108, 106, 92, 94, 3, 89] both for clustering XML documents and clustering XML

schemas. Motivated by the above challenges, in this chapter, we present a new schema

matching-based approach to XML schema clustering. The work in this chapter presents

a novel methodology that quantitative determines the similarity between XML schemas

by considering both semantic and structural features of XML data. This work enhances

XML data clustering by representing XML schemas as sequence representations utiliz-

ing the Prüfer encoding method [115]. This representation improves clustering solution

quality as well as clustering solution performance. We carried out a set of experiments

utilizing different real data sets to evaluate the proposed framework. Our experimental

results show that the proposed framework is fast and accurate in clustering heterogenous

XML data.

Before detailing the proposed clustering framework, we present a brief description of

XML data clustering in general. As stated in Chapter 3, XML data clustering activity

typically involves three phases [82, 28].

8.1.1 Data representation

In this phase, the focus is to represent the XML data using a common data model such

as rooted labeled trees, directed acyclic graphs, or vector-based techniques as well as to

identify what to consider in the next phase—similarity computation. This common model

137

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

(a) XML schema of D1 (b) Data tree

Figure 8.2: Tree representation of XML schema of D1

should capture both content and structure features of XML data. Data representation

starts with parsing XML data using an XML parsing tool such as the SAX parser1. In

case of XML schema clustering, the parsing process may be followed by a normalization

process to simplify the schema structure according to a series of predefined transformation

procedures similar to those in [89]. The commonly used method to represent XML data

is labeled trees, such as trees defined in Definition 5.1, (XML data can be represented as

data tree. A data tree (DT) is a rooted labeled tree defined as a 3-tuple DT = (NT , ET ,

LabNT)).

Figure 8.2 illustrates a data tree of an XML schema of the XML data D1 represented

in Fig. 8.1. Each node in the data tree is associated with the name label, such as “paper”

and “journal” as well as its OID, such as n1 and n2. The nodes n1, n2 and n3 represent

examples of the element nodes, while node n6 is an attribute node. A data tree DT

is called an ordered labeled tree if a left-to-right order among siblings in DT is given,

otherwise it is called unordered tree.

8.1.2 Similarity computation

The main aim of the similarity computation phase is to assess and determine the similarity

between XML data exploiting their elements’ features and/or relationships among them

identified in the data representation phase. There are several methodologies to perform

this task depending on the used data representation [134].

1http://www.saxproject.org

138

8.1. INTRODUCTION

Tree-based similarity approaches

The computation of similarity among XML data represented as data trees depends on

the exploited elements on which similarity function are applied. Based on the exploited

elements, we classify the similarity measures into: element-level measures and tree-level

measures.

Element-level measures, also known as schema matching-based methods, consider el-

ement details either as internal features or external relationships, such as the element

similarity measures described in Chapter 5. In element-level measures, the similarity be-

tween XML data is based on the computed similarities among the elements of the schema.

On the other hand, tree-level measures, also known as tree-editing methods, exploit

complex objects without taking into account the detailed object components in the data

tree. The tree-editing problem is the generalization of the problem of computing the

distance between two strings to labeled trees. As usual, the edit distance relies on three

elementary edit operations: the relabeling, which consists of replacing a label of a node

by another label, the insertion of a node, and the deletion of a node.

Let DT1 and DT2 be two data trees. The edit distance between DT1 and DT2, denoted

δ(DT1, DT2), is the minimal cost of edit operations needed to transform DT1 into DT2,

that is:

δ(DT1, DT2) = min{γ(S)|S is an edit operation sequence transformingDT1 to DT2}
�

�

�

�8.1

Figure 8.3 illustrates that the edit operations required to transform DT1 to DT2

equal to those required to transform DT2 to DT3, because only one relabeling operation

is required in both cases to transform the source tree into the target tree. A dotted line

from a node in a data tree, such as DT1, to a node in another data tree, such as DT2,

indicates that a relabeling operation is required. Assigning a constant cost for the edit

operations results in an equal tree distance between DT1 and DT2 and DT2 and DT3.

This simple example shows that the tree editing method may not be able to distinguish

the hierarchical difference in some situations. To overcome this problem, as we will show

below, both semantic and structural features of data trees should be exploited. Moreover,

computing tree edit distances turns out to be expensive, as it requires a quadratic number

of comparisons between data tree elements. That makes using the tree-editing method to

compute the similarity among XML data unpractical, especially when dealing with large

139

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

Figure 8.3: Tree distance between XML data

XML data sources.

8.1.3 Clustering/grouping

This phase proceeds for data mining. XML data that are similar in structures and se-

mantics are grouped together to form a cluster using a suitable clustering algorithm [82].

Clustering methods are generally divided into two broad categories. Non-hierarchical

methods group a data set into a number of clusters using a pairwise distance matrix

that records the similarity between each pair of documents in the data set. Hierarchical

methods produce nested sets of data (hierarchies), in which pairs of elements or clusters

are successively linked until every element in the data set becomes connected. Non-

hierarchical methods have low computational requirements, but certain parameters like

the number of formed clusters must be known a priori. Hierarchical methods are com-

putationally expensive. However, these methods have been used extensively as a means

of increasing the effectiveness and efficiency of retrieval. For a wide-ranging overview of

clustering methods one can refer to [82, 28].

Despite the widespread use, the performance of both hierarchal and non-hierarchal

clustering solutions decreases radically when they are used to cluster large scale and/or

large number of XML data. Therefore the need to another set of clustering algorithms

arises. Among them are the incremental clustering [106] and constrained hierarchal

agglomerative algorithms [80].

8.2 SeqXClust: The clustering framework

Our proposed approach is based on the exploitation of the structure and semantic in-

formation from XML schemas. The objective is to deploy our sequence-based matching

140

8.2. SEQXCLUST: THE CLUSTERING FRAMEWORK

Figure 8.4: XML clustering framework architecture

approach that assesses the similarity between XML schemas. The measured similarity is

then used as a guide to group similar XML data.

To realize this goal, we have developed and implemented an XML schema similarity

assessment framework, called SeqXClust. The framework, as shown in Fig. 8.4 and in-

spired from data clustering activity phases, consists of three main phases: Pre-processing,

similarity computation, and clustering. The Pre-processing phase is considered with the

representation of XML schemas as schema trees and then the extension of schema trees to

sequence representations using the Prüfer encoding method. The sequences should cap-

ture both semantic and structure information of schema trees. The similarity computation

phase aims to assess the similarity between XML schemas exploiting both information to

construct a schema similarity matrix. Then, the clustering algorithm makes use of the

similarity matrix to group the similar XML data. As shown in Fig. 8.4, the first two

phases constitute our schema matching approach.

The outline of the algorithm implementing the proposed framework is shown in Al-

gorithm 10. The algorithm accepts a set of XML schemas as input, S = {S1, S2, ..., Sn},
to group the similar XML schemas according to their structure and semantics. To this,

141

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

we first analyze each XML schema and represent it as a data tree, line 2, using a SAX

parser. Each data tree is then examined and represented as a sequence representation,

CPS, line 3. The algorithm proceeds to compare all CPS pairs to assess the similarity

between them using our developed sequence matching algorithms, line 11. The returned

similarity value is stored in its corresponding position in the schema similarity matrix,

SSimMat. Finally, the similarity matrix will be exploited by a suitable clustering algo-

rithm, line 15, to produce the cluster set, Clust Set.

In fact, this outline indicates that the XML schema clustering framework has common

aspects with our developed schema matching techniques. Therefore, in the following

section, we shed light on two specific aspects: schema similarity matrix construction and

used clustering algorithms.

Algorithm 10: XML schema clustering algorithm

input : A set of XML schemas, S = {S1, S2, ..., Sn}
output: A set of clusters, Clust Set

for i← 1 to n do1

DT [i] ← buildDT (Si);2

CPS[i] ← buildCPS (DT [i]);3

end4

SSimMat[][] ← 0;5

for i← 1 to n− 1 do6

CPSi ← (CPS [i]);7

MatchRes ← 0;8

for j ← i + 1 to n do9

CPSj ← (CPS [j]);10

MatchRes ← schemaMatch (CPSi, CPSj);11

SSimMat[i][j] ← average (MatchRes);12

end13

end14

Clust Set ← cluster (SSimMat)15

8.2.1 Schema similarity matrix

The first two phases, Pre-processing and Similarity Computation, have the same steps and

details as our schema matching approaches, as shown in Fig. 8.4. Therefore, we consider

only how to construct the output of these two phases. We name the output of these

phases as Schema Similarity Matrix, SSimMat. The problem of constructing SSimMat

142

8.2. SEQXCLUST: THE CLUSTERING FRAMEWORK

can be stated as follows. Given a set of XML schemas, S = {S1, S2, ..., Sn}, construct an

n× n schema similarity matrix.

After the Pre-processing phase that constructs corresponding CPSs from XML

schemas, as shown in Algorithm 10, the algorithm starts by initializing matrix ele-

ments, line 5. Then, it processes individual CPS pairs in the data set, CPSi and CPSj,

lines 7& 10. For each pair, the algorithm calls our schema matching algorithm, line 11,

to identify and determine the semantic correspondences between every schema pair and

stores them in a matching result list, MatchRes. Each item in the list represents a

mapping element. To get a similarity value between two schemas, the algorithm uses an

average function that sums up all element similarity values in the lists and returns the

average value. The return similarity value is then assigned to its corresponding position in

the similarity matrix, line 12. Before determining the similarity between another schema

pair, the matching result list must be reinitialized, line 8.

Example 8.1 Applying Algorithm 10 to XML schemas shown in Fig. 8.5, we get the

following matrix

SSimMat =






1 0.478 0.41

1 0.53

1






�

�

�

�8.2

This simple example shows that the similarity value between S1 and S2 is less than that

between S2 and S3. In contrast to the tree-editing approach, this gives the possibility

that clustering this data set (may) results in S2 and S3 in a separate cluster than S1.

8.2.2 Clustering algorithms

There are many techniques for clustering algorithms. Among them are hierarchical clus-

tering algorithms [82]. Hierarchical clustering solutions are in the form of trees called

dendrograms, which provide a view of the data at different levels of abstraction. The

consistency of clustering solutions at different levels of granularity allows flat partitions of

different granularity to be extracted during the data analysis, making them ideal for inter-

active exploration and visualization [80, 150]. There are two primary methods to obtain

hierarchical clustering solutions: agglomerative algorithms and partitional algorithms.

In agglomerative algorithms, objects are initially assigned to its own cluster and then

the pairs of clusters are repeatedly merged until the whole tree is formed. Thus, these

algorithms build the dendrograms from bottom up. The key parameter in agglomerative

143

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

XML schema S1 XML schema S2

XML schema S3

Figure 8.5: XML schemas of XML data shown in Fig.8.1

algorithms is the method used to determine pair of clusters to be merged at each step.

This task can be achieved by selecting the most similar pair of clusters. Three common

methods have been proposed and used to realize this task:

• Single-link ; This method measures the similarity between two clusters by the maxi-

mum similarity between XML data from each cluster. That is, the similarity between

two clusters ClustJ and ClustI is given by

Simsingle(ClustI , ClustJ) = max
DTi∈ClustI ,DTj∈ClustJ

{Sim(DTi, DTj)}
�

�

�

�8.3

• Complete-link ; This method measures the similarity between two clusters by the

minimum similarity between XML data from each cluster. That is,

Simcomplete(ClustI , ClustJ) = min
DTi∈ClustI ,DTj∈ClustJ

{Sim(DTi, DTj)}
�

�

�

�8.4

• Group average (UPGMA); This method measures the similarity between two clus-

ters as the average similarity between XML data from each cluster. That is,

144

8.2. SEQXCLUST: THE CLUSTERING FRAMEWORK

SimUPGMA(ClustI , ClustJ) =
1

ninj

∑

DTi∈ClustI ,DTj∈ClustJ

{Sim(DTi, DTj)}
�

�

�

�8.5

Agglomerative algorithms have the feature that it is easy for them to group XML data

that form small and cohesive clusters. However, they are computationally expensive

and they have the disadvantage that if XML data are not part of cohesive groups, the

initial merging decision may contain some errors, which tend to be multiplied during the

clustering process [80, 150].

Unlike agglomerative algorithms, partitional clustering algorithms build the hierarchi-

cal solution from top to down by using a repeated bisectional approach [149]. In this

approach, all data sets are initially partitioned into two clusters. Each cluster containing

more than one XML data is selected and bisected. The process of bisection continues till

each cluster contains one XML data. A key parameter of these algorithms is the use of

a global criterion function whose optimization drives the clustering process. There are

serval clustering criterion functions that optimize many aspects of intra-cluster similarity,

inter-cluster dissimilarity, and their combinations [149, 150].

Partitional algorithms present different advantages. One of these advantages is that

these algorithms have low computational requirement. Another advantage of these al-

gorithms is that they use information about the entire collection of the data sets when

they partition the data sets into a number of clusters. Thus, partitional algorithms are

well-suited for clustering large datasets due to their relatively low computational require-

ments. However, the agglomerative algorithms outperform partitional algorithms. For

this, in our implementation we make use of another hierarchical clustering algorithm

called the constrained agglomerative algorithm [80].

Constrained agglomerative clustering algorithm

To gain features introduced by both agglomerative and partitional algorithms, the con-

strained agglomerative clustering algorithm has been proposed. The advantage of this

algorithm is that it is able to benefit from the global view of collection used by the

partitional algorithms and the local view of agglomerative algorithms. Moreover, the

computational complexity of this algorithm will be improved over that of agglomerative

algorithms. This gain can be achieved by using a partitional clustering algorithm to con-

strain the space over which the agglomerative clustering algorithm is performed by only

145

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

allowing each XML data tree to merge with other XML data that are from the same

partitionally discovered cluster.

The following are the steps needed to perform a constrained agglomerative clustering

algorithm [150]:

• A partitional clustering algorithm is used to produce a k−way clustering solution.

These clusters are known as constrained clusters.

• Each constrained cluster is treated as a separate data set, and an agglomerative

clustering algorithm is used to construct a dendrogram for each one.

• The k dendrograms are combined into a single one by merging them using an ag-

glomerative algorithm.

8.3 Experimental evaluation

In this section we describe the experiments that we have carried out to evaluate our

proposed framework. In the rest of this section we first describe the used datasets and

our experimental methodology, followed by a description of the experimental results.

8.3.1 Data set

We used two different data sets depending on the evaluation criteria, as shown in Table

8.1. Part (A) is used to validate the clustering solution quality, while Part (B) is used

to evaluate the clustering solution efficiency. These data sets have been obtained from

different domains 2 3 4 and represent different characteristics. Each domain consists of

a number of different categories that have structural and semantic differences. XML

schemas from the same domain also vary in structures and semantics.

8.3.2 Experimental methodology and metrics

Different data sets are first extracted and modified to be ready for the clustering frame-

work. The current implementation supports only clustering XSD schemas, hence we

transformed DTDs into XSDs. The quality of clustering solutions has been verified using

2http://www.dbis.informatik.uni-goettingen.de/Mondial/
3http://www.cs.washington.edu/research/xmldatasets/
4http://www.cs.toronto.edu/db/clio/testSchemas.html

146

8.3. EXPERIMENTAL EVALUATION

Table 8.1: Data set details

Part (A): Quality Part (B): Efficiency
Domain No. of schemas No. of nodes No. of levels Domain No. of schemas size
Auction 4 35/39 4/6 Genex 2 18KB
Mondial 7 11- 4/8 Auction 4 12KB
Financial 2 14/14 3/6 Book 15 23KB
TPC-H 10 8/45 2/6 ACM SIGMOD 12 76KB
GeneX 2 75/85 3/8 University 90 980KB

University 25 8-20 3/7 XCBL 90 590KB
OAGIS 13 1.2MB

two common measures: (1) FScore as an external measure, and (2) intra-clustering simi-

larity and inter-clustering similarity as internal measures, while the response time is used

as a measure for the efficiency of the proposed approach.

FScore5 is a trade-off between two popular information retrieval metrics, precision P

and recall R. Precision considers the rate of correct matches in the generated solution,

and recall considers the rate of correct matches in the model solution. Given a cluster

Ci, let TP be the number of XML data in Ci which are similar (correctly clustered), FP

be the number of documents Ci which are not similar (misclustered), FN be the number

of documents which are not in Ci but should be. Precision and recall of a cluster Ci are

defined as Pi = TP
TP+FP

, and Ri = TP
TP+FN

.

FScore combining precision and recall with equal weights for the given cluster Ci is

defined by, FScorei = 2× Pi×Ri

Pi+Ri
. The FScore of the overall clustering approach is defined

as the sum of the individual class FScores weighted differently according to the number

of XML data in the class

FScore =

∑k

i=1 ni × FScorei

n

�

�

�

�8.6

where k, ni and n are the number of clusters, the number of XML data in a cluster Ci,

and the number of XML data, respectively. A good clustering solution has the FScore

value closer to one.

The internal clustering solution quality measures are evaluated by calculating the

average inter and intra-clustering similarity. The intra-clustering similarity measures the

cohesion within a cluster, how similar the XML data within a cluster are. This is computed

by measuring the similarity between each pair of data within a cluster, and the intra-

5We use this label here which is more common for the data clustering community, it is named F-
measure elsewhere in the thesis.

147

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

Figure 8.6: FScore

clustering similarity of a clustering solution is determined by averaging all computed

similarities taking into account the number of XML data within each cluster

IntraSim =

∑k

i=1 ni × IntraSim(Ci)

n
.

�

�

�

�8.7

The larger the values of the intra-clustering similarity (IntraSim) are, the better is the

clustering solution. The inter-clustering similarity measures the separation among differ-

ent clusters. It is computed by measuring the similarity between two clusters. A good

clustering solution has lower inter-clustering similarity values.

The response time, a measure for the framework efficiency, is the time required for the

clustering framework to perform its task. This includes all specified three phases in the

framework.

8.3.3 Experimental results

Quality evaluation

Data set Part(A) illustrated in Table 8.1 is used through quality evaluation utilizing both

internal and external measures. Figure 8.6 illustrates the FScore of the data sets over 16

different clustering solutions. With k = 2, all the 25 schemas from the university domain

are in one group, while the other schemas from the other domains are in the second

group. This results in a high FScore at k = 2. As k increase, FScore increases until

the best FScore occurs at k = 8. When the process reaches the 12 clustering solutions,

148

8.4. RELATED WORK

(a) Inter-clustering similarity (b) Intra-clustering similarity

Figure 8.7: Internal quality measures

the clustering quality is stabilized. Fig. 8.6 also shows that the quality (FScore) of our

proposed algorithm ranges between 79% and 93%, i. e. it is almost accurate.

The better clustering solution is the one having both higher intra-clustering similarity

and lower inter-clustering similarity. Figure 8.7 supports this fact. The figure shows

that as the clustering process continues, clusters are further decomposed into smaller sub-

clusters that contain highly similar schemas, and the similarity between XML data within

a cluster (intra-similarity) increases, as shown in Fig. 8.7. The figure also illustrates that

as the number of clusters increases, the similarity between individual clusters (inter-

similarity) decreases.

Scalability evaluation

In this case, we carried out two sets of experiments. The first involves the whole data set

to observe the effect of large-scale schema (OAGIA data set), while the second does not

involve the OAGIA data set. The results are reported in Fig. 8.8, which shows that our

approach scales well especially in the second experiment. The figure also illustrates that

our system could group similar XML schemas across 226 schemas with a size of 3MB in

a time of 900 seconds, while the approach needs 150 seconds to cluster 213 schemas.

8.4 Related Work

The relationship between XML schema clustering and schema matching is bidirectional.

From the viewpoint of using clustering to support and improve schema matching, research

149

CHAPTER 8. SEQXCLUST: XML SCHEMA CLUSTERING FRAMEWORK

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

R
es

po
ns

e
tim

e
in

 S
ec

on
ds

Percentage of input data set

With OAGIS data set
Without OAGIS

Figure 8.8: The framework response time.

in this direction depends heavily on the fact that it is easier to find element correspon-

dences between schemas that are contextually similar. The approach proposed in [112]

develops a clustered-based approach to schema matching. The approach clusters schemas

based on their contextual similarity, and then it clusters attributes of schemas within the

same schema cluster. Afterwards, attributes across different schema clusters are clustered

using statistical information gleaned from existing attribute clusters to find attribute

correspondences among different schemas. However, the approach deals only with flat

schemas. Authors in [129] propose a clustered schema matching technique. Clustering is

used to identify clusters in the large schema repository which are likely to produce map-

pings for a personal schema. Other approaches, which make use of clustering to identify

element correspondences in the context of integrating heterogeneous data sources, can be

found in [148, 113].

From the other point of view, research on clustering XML data is gaining momentum.

Based on the data to be clustered, XML data clustering can be broadly classified into two

categories: clustering XML documents and clustering XML schemas. Many approaches

have been developed in the context of XML document clustering [73], while only little work

is done in the context of XML schema clustering [89, 108]. [89] proposed an integration

strategy, called XClust, that involves the clustering of DTDs. A matching algorithm,

based on the semantic and structural properties of schema’ elements has been proposed.

[108] also developed a framework, called XMine, to cluster XML schemas (both DTTs

and XSDs). XMine makes use of semantic, syntactic and structural properties of schema’

elements.

150

8.5. SUMMARY

Both XClust and XMine, as our proposed framework, represent XML schemas as

rooted (ordered) labeled trees. However, we extend the tree representation of XML

schemas into a sequence representation in order to efficiently deal with schema elements

instead of traversing schema trees many times. Moreover, the two clustering frameworks

make use of WordNet to determine semantic (synonyms) similarity. XMine additionally

implements a user-defined dictionary in order to identify abbreviations and finally makes

use of syntactic string functions (string edit distance) to compare between element names

if no semantic relationships exist. In contrast, we only use simple string functions in order

to determine initial similarity values for the structural matcher. Our structural matcher is

similar to the one in [89]. They both depend on the node context utilizing both ancestor

and descendant contexts of a node. However, our approach benefits from the sequence

representation of schema trees.

8.5 Summary

In this chapter, we introduced a schema matching-based approach to cluster XML schemas

showing the deployment of our schema matching algorithms in several application domain.

In particular, we developed and implemented a clustering framework that consists of three

phases: Pre-processing; to represent XML schemas as sequence representations, Similarity

computation; to determine the similarity across XML schemas, and Clustering; to group

similar XML schemas into clusters using the hierarchical clustering algorithm. To validate

the performance of the proposed framework, we conducted a set of experimental evalua-

tion. Through our validation, we measured both the clustering solution quality and the

clustering scalability. The experimental evaluation showed that our proposed framework

is almost accurate with FScore ranging between 80% and 93%, and the evaluation showed

that the framework scaled well w.r.t. large number and large-scale schemas.

151

9
SeqDisc: Supporting Web service discovery

In the previous chapter we showed that how we could effectively and efficiently deploy

our schema matching approach in clustering XML data. In this chapter, we strive the

deployment of the approach in another application domain, Web service discovery.

Locating desired Web services has become a challenging research problem due to the

vast number of available Web services within an organization and on the Web. This

necessitates the need for developing flexible, effective, and efficient Web service discovery

frameworks. To this purpose, both the semantic description and the structure information

of Web services should be exploited in an efficient manner. In this chapter, we aim to

put our developed schema matching techniques into use within the context of Web service

discovery. In particular, we present a flexible and efficient service discovery approach,

called SeqDisc, which is based on the use of the Prüfer encoding method to construct a

one-to-one correspondence between Web services and sequence representations. First, we

motivate the Web service discovery process. We then introduce basic concepts related to

Web services. We finally describe and experimentally evaluate our Web service discovery

approach.

The material presented in this chapter has been developed and published in [16, 6].

9.1 Introduction

The continuous and rapid evolution of service-oriented technologies provides methods for

systems development and integration where systems group functionality around business

processes and package these as interoperable services. As a result, Web services have

153

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

emerged as one of the distributed computing technologies, and sparked a new round of

interest from research and industrial communities. Web, once solely a repository for text

and images, is evolving into a provider of services, such as flight information providers,

temperature sensors, and world-altering services, such as flight booking programs, and

a variety of e-commerce and business-to-business applications [99]. These web-based

applications rely heavily on permitting generic software components to be developed and

shared. With the adoption of XML as a standard and common language for information

representation and exchange on the Web, the underlying principles have been gained

wide scale adoption through the definition of Web service standards. Web services are

well-defined, reusable software components that perform specific, encapsulated tasks via

standardized Web-oriented mechanisms [38]. They can be discovered, invoked, and the

composition of several services can be choreographed using well-defined workflow modeling

frameworks. Based on this, the research community has identified two major areas of

interest: Web service discovery and Web service composition [95]. In this chapter, we

present the issue of locating Web services efficiently.

As the number of Web services increases, the problem of locating Web services of

interest from a large pool becomes a challenging research problem [140, 56, 76, 36]. Several

solutions have proposed, however, most of them suffer from the following disadvantages:

• A large number of these solutions are syntactic-based. Several simple search en-

gines, which provide only simple keyword search on Web service descriptions, and

traditional attribute-based matchmaking algorithms have been proposed. In the Web

service discovery context, it becomes apparent that keyword search and attribute-

based mechanisms are insufficient since they do not capture the underlying semantic

of Web services and/or they partially satisfy the need of user search. This is due

to the fact that keywords are often described by a natural language. As a result,

the number of retrieved services with respect to the keywords are huge and/or the

retrieved services might be irrelevant to the need of their consumers [95]. More re-

cently, this issue sparked a new research into the Semantic Web where some research

uses ontology to annotate the elements in Web services [19, 109]. Nevertheless, in-

tegrating different ontologies may be difficult while the creation and maintenance

of ontologies may involve a huge amount of human effort. To address the second

aspect, clustering algorithms are used for discovering Web services. However, they

are based on keyword search [56, 109, 95].

• Most of the existing approaches are not scale well. This means that they are not

154

9.1. INTRODUCTION

able to scale to large-scale and to large numbers of services, service publishers, and

service requesters. This is due to the fact that they mostly follow a centralized

registry approach. In such an approach, there is a registry that works as a store

of WS advertisements and as the location where service publication and discovery

takes place. The scalability issue of centralized approaches is usually addressed

with the help of replication (e.g., UDDI). However, replicated Registries have high

operational and maintenance cost. Furthermore, they are not transparent due to

the fact that updates occur only periodically

We see Web service discovery as a matching process, where available services’ capabil-

ities satisfy a service requester’s requirement. Hence the problem of locating the desired

service is converted to a matching process. As we stated, two main aspects should be

considered during solving the matching process: the quality of the discovered service and

the efficiency especially in large-scale environments. To obtain a better quality, not only

is the textual description of Web services sufficient, but also the underlying structures and

semantics should be exploited. Also to get a better performance, an efficient methodology

should be advised.

To this context, in this chapter, we propose a flexible and efficient approach, called

SeqDisc, for assessing the similarity of Web services, which can be used to support lo-

cating Web services on the Web. We first represent Web service document specifications

described in WSDL as rooted, labeled trees, called service trees. By investigating service

trees, we observe that each tree can be divided into two parts (subtrees), namely the

concrete and abstract parts. We discover that the concrete parts from different WSDL

documents have the same hierarchal structure, but may have different names. Therefore,

we develop a level matching approach, which computes the name similarity between con-

crete elements at the same level. However, the abstract parts of the WSDL documents

have differences in structure and semantics. To efficiently access the abstract elements,

we represent them using the Prüfer encoding method [115], and then apply our sequence-

based schema matching approach to the sequence representation. A set of experiments

is conducted in order to validate our proposed approach employing real data sets. The

experimental results showed that the approach is accurate and scale well.

The remainder of the chapter is organized as follows: We briefly discuss some of the

research work related to the Web service discovery problem. We then provide basic con-

cepts and definitions used throughout the chapter. An overview of the SeqDisc approach

is discussed. Different methods advised to assess the similarity between Web services are

155

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

then described. We finally report on experimental results.

9.2 Related Work

As pointed out by [69], web service discovery mechanisms originated from the agent

match-making scheme. It consists of a set of general activities, including advertising and

storing web services to middle agents, asking a middle agent for a specific request, and

answering the user request. Furthermore, the discovery mechanisms differ according to

the way the web services are specified. In general, two common languages have been

widely used: WSDL1 is popular and adopted by the industry due to its simplicity, while

OWL-S2 and WSMO3 are well accepted by researchers as they offer much structured and

detailed semantic mark-ups. The discussion presented in section is based on the way the

services themselves are modeled, i.e. the representation of Web services. In general there

are two techniques to represent Web services: the Information Retrieval (IR) approach

and the semantics approach [69].

9.2.1 Information Retrieval Approach

Keyword-based is one possible and the simplest approach to do web service discovery.

However, it suffers from several shortcomings, such as it does not exploit well-defined

semantics and is limited because of the ambiguity of natural language. To tackle the

inadequacy of keyword-based Web service discovery an approach was proposed in [121].

The key concept in the approach is to represent service description as document vectors,

a dominant approach in the IR field [23]. A description text corresponds to a vector V

in the vector space spanned by all terms used in the service description texts. Authors

go one step further by representing all document vectors as columns in a term-document

matrix A.

Other approaches, which combine IR techniques [23] with structure and/or schema

matching have been developed, e.g. [140, 76, 132, 85]. The approach, in [140], is based

on information retrieval and structure matching. Given a potential partial specification of

the desired service, all textual elements of the specification are extracted and are compared

against the textual elements of the available services, to identify the most similar service

1http://www.w3.org/TR/wsdl20/
2http://www.daml.org/services/owl-s/
3http://www.wsmo.org/wsml/

156

9.2. RELATED WORK

description files and to order them according to their similarity. Next, given this set

of likely candidates, a structure-matching method further refines the candidate set and

assesses its quality. The drawback is that simple structural matching may be invalid

when two web-service operations have many similar substructures on data types. In [76],

authors develop an approach which uses the traditional IR technique TF (term frequency)

and IDF (inverse document frequency). They extract words from Web service operation

descriptions in WSDL. These words are pre-processed and assigned weights based on

IDF . According to these weights, the similarity between the given description and a Web

service operation description can be measured. After obtaining candidate operations,

a schema-based method to measure similarity among them using tree edit distance is

applied. However, using the tree edit distance method is a computational cost process,

which declines the Web service discovery performance.

The author in [85] recognizes the fact that keyword-based matching methods can help

users to locate quickly the set of useful services, but they are insufficient for automatic

retrieval, and the high cost of formal ontology-based methods alienates service designers

from their use in practice. Therefore, to assess the similarity between Web services, the

author makes use of several IR techniques, such as the Vector Space model and WordNet.

Further, the proposed approach combines the lexical and structural information of several

concepts of Web service description to assess the similarity. The approach, in [132],

developed a set of methods that assess the similarity between two WSDL specifications

based on the structure of their data types and operations and the semantics of their

natural language descriptions and identifiers. Given only a textual description of the

desired service, a semantic information-retrieval method can be used to identify and order

the most relevant WSDL specifications based on the similarity of the element descriptions

of the available specifications with the query. If a (potentially partial) specification of the

desired service behavior is also available, this set of likely candidates can be further refined

by a semantic structure-matching step, assessing the structural similarity of the desired

vs the retrieved services and the semantic similarity of their identifiers. Our approach is

similar to [76], but we focus on both structure and semantic matching like [132, 85].

However, we exploit more information about Web service and advice a level and schema

matching algorithm. Further, to improve the performance of the discovery process, we

represent Web services as sequences using the Prüfer encoding method [115].

157

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

9.2.2 Semantics Approach

Recent prototypes have been proposed to improve the accuracy of Web service discovery

by applying various ontology based discovery frameworks [79, 4, 33] and data mining tech-

niques [109, 107, 36]. The framework in [79] uses ontologies to discover the Web services

that best match a specific operation domain. The available data are represented with do-

main ontologies, and the available operations with operation ontologies. Generalization

relationships on both models are encoded in XML formats. In [33], the authors propose

an ontology-based hybrid approach where different kinds of matchmaking strategies are

combined together to provide a flexible service discovery environment. The approach ex-

tends the keyword-based method based on the use of two ontologies: domain and service.

It considers three different matchmaking models: (1) a deductive model to determine the

kind of match; (2) a similarity-based model to measure the degree of match between ser-

vices and (3) a hybrid model to combine the previous ones. In [109], authors concentrate

on Web service discovery with OWL-S and clustering technology, which consists of three

main steps. The OWL-S is first combined with WSDL to represent service semantics

before a clustering algorithm is used to group the collections of heterogeneous services

together. Finally, a user query is matched against the clusters, in order to return the

suitable services.

9.3 Preliminaries

In this section we present some definitions and basic preliminaries concerning Web services

and Web service modeling.

9.3.1 Web services

A Web service is a software component identified by an URI, which can be accessed via the

Internet through its exposed interface. The interface description declares the operations

which can be performed by the service, the types of messages being exchanged, and the

physical location of ports, where information should be exchanged.

Web service architecture

Three fundamental layers are required to provide or use Web services [22]. First, Web

services must be network-accessible to be invoked, HTTP is the de-facto standard network

158

9.3. PRELIMINARIES

Figure 9.1: A hierarchal representation of a WSDL document.

protocol for Internet available Web services. Second, Web services should be XML-based

messaging for exchanging information, and SOAP4 is the chosen protocol. Finally, it is

through a service description that all the specification for invoking a Web service are made

available; WSDL5 is the de-facto standard for XML-based service description.

Web service description

The Web Service Description Language (WSDL) is an XML-based language to describe

Web services and how to access them. A Web service is seen as a set of end points

operating on messages containing either document-oriented or procedure-oriented data.

The operations and messages are described abstractly, and then bound to a concrete

network protocol and message format to define an endpoint. Related concrete set of

operations are bundled into abstract endpoints (services). Typically, a WSDL document

specification contains the following elements, as shown in Fig. 9.1:

• types ; The types element encloses data type definitions that are relevant for the

exchanged messages. For maximum interoperability and platform neutrality, WSDL

prefers the use of XSD (XML schema) as the canonical type system.

• message; A message element represents an abstract, typed definition of the data

being communicated. A message consists of one or more logical parts, each of which

4http://www.w3.org/TR/soap/
5http://www.w3.org/TR/wsdl20/

159

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

is associated with a type system using a message-typing attribute.

• operation; An operation element is an abstract description of an action supported

by the service.

• portType; The portType element is an abstract set of operations. Each operation

refers to an input message and output messages.

• binding ; A binding element specifies concrete protocol and data format specifications

for the operations and messages defined by a particular portType.

• port ; A port element is a single endpoint defined as a combination of a binding and

a network address.

• service; The service element is a collection of related endpoints (ports).

A WSDL description is typically composed of an abstract part and a concrete part.

The abstract part of a service definition contains WSDL elements that can be reused

and referenced by multiple service implementations, such as binding, portType, message

and types elements. The concrete part contains WSDL elements that describe how a

particular service is implemented, such as service and port elements. Figure 9.1 depicts

the concepts defined by a WSDL document.

9.3.2 Web service representation

In order to capture both semantic information and structural information of a WSDL

document, we model it as a rooted labeled tree. Following Definition 5.1, a WSDL

document is represented as rooted labeled tree, called service tree ST , ST = (N, E, Lab),

where N is the set of nodes representing WSDL document elements, E is the set of edges

representing the parent-child relationship between WSDL document elements, and Lab is

a set of labels associated to WSDL document elements describing the properties of them.

All WSDL document elements, except the part elements, have two main properties: the

type property to indicate the type of the element (port, binding, operation,...), and the

name property to distinguish between similar type elements.

Figure 9.1 also delineates the hierarchal structure of a WSDL document. The figure

indicates that a service consists of a set of ports, each contains only one binding. A binding

contains only one portType. Each portType consists of a set of operations, each contains

160

9.4. SEQDISC: THE DISCOVERY FRAMEWORK

an input message and output messages. A message consists of a set of parts, where each

part describes the logical content of the message.

From the hierarchal structure of a Web service tree, we divide its elements into a

concrete part and abstract part. The intuition for this classification is that service trees

representing different web services have the same structure from the root node to the part

node, while the structure of the remaining depends on the content of operation messages.

The following are definitions for concrete and abstract parts of a service tree.

Definition 9.1 A concrete part of a service tree (ST) is the subtree (STC) extending

from the root node to the portType element, such that STC = {NC , EC , LabC} ⊂ ST ,

NC = {nroot, nport1, nbinding1, nportType1, ..., nportTypel
} ⊂ N , where l is the number of con-

crete elements in the service tree.

Definition 9.2 An Abstract part of a service tree (ST) is the set of subtrees rooted at

operation elements, such that STA = {STA1
, STA2

, ..., STAk
}, where k is the number of

operations in the service tree.

This means that a service tree comprises a concrete part and an abstract part, i.e., ST =

STC ∪ STA. To assess the similarity between two web services, we consequently compare

their concrete and abstract parts. Thus the problem of measuring similarity between Web

services is converted into the problem of tree matching.

9.3.3 An illustrative example

Let us now introduce an illustrative example of assessing the similarity between two Web

services, which is taken from [140]. As shown in Fig. 9.2, we have two Web services

described by two WSDL documents WS1 and WS2, respectively. WS1 contains one

operation , getData, that takes a string as input and returns a complex data type named

POType, which is a product order. The second WSDL document contains one operation,

getProduct, that takes an integer as input and returns the complex data type MyProduct

as output.

9.4 SeqDisc: the discovery framework

Our proposed approach is based on the exploitation of the structure and semantic infor-

mation from WSDL documents. The objective is to develop an efficient approach that

161

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

(a) WS1: getData Web service. (b) WS2: getProduct Web service.

Figure 9.2: Two Web service specifications.

measures the similarity between Web services. The measured similarity is then used as a

guide to locate the desired Web service.

The basic idea underlying our research is that, although WSDL does not explicitly

provide support for semantic specifications, it does contain information that can poten-

tially be used to infer the semantics of the specified Web service [132]. (1) The WSDL

specification contains several elements whose features are textual descriptions, explaining

types, parts, and operations of the service. (2) The internal structure of operation types,

represented in the XML format, is designed to capture the domain-specific relations of

various data required and provided by the service. (3) Each WSDL element has a name

feature that is also usually meaningful.

To realize this goal, we first analyze WSDL documents and represent them as service

trees using Java APIs for WSDL (JWSDL) and a SAX parser for the contents of the

XML schema (the types element). Then, each service tree is examined to extract its

concrete and its abstract parts. We subsequently develop a level matching algorithm to

measure the similarity between concrete parts from different service trees, while to assess

the similarity between abstract parts, we propose a sequence-based matching algorithm.

By this mechanism we gain a high flexibility in determining the similarity between web

services. As it will be shown in the experimental evaluation, we have two possibilities

162

9.4. SEQDISC: THE DISCOVERY FRAMEWORK

Figure 9.3: Web services similarity measure framework.

to compute the similarity. The first is to only exploit abstract parts (operations), while

the second is to use both the abstract and concrete parts. Furthermore, the proposed

approach scales well. As it will be shown, the level matching algorithm has a linear

time complexity as a function of the number of concrete elements, while the sequence-

based matching algorithm benefits from the sequence representation to reduce the time

complexity. Figure 9.3 illustrates the outline of the proposed approach.

The outline of the algorithm implementing the proposed framework is shown in

Algorithm 11. The algorithm accepts a set of Web service specifications as input,

WS1, WS2, ..., WSn, to assess the similarity between them as output. The algorithm

constructs a web service similarity matrix, WSSimMat. To this, we first analyze

each WSDL document and represent it as a service tree, line 3, using Java APIs for

WSDL(JWSDL)6and a SAX parser7 for the contents of the XML schema (the types el-

ement). Then, each service tree is examined to identify and extract the concrete part,

line 4, and a set of abstract parts, line 5, of the service tree. In fact, all these tasks, rep-

6http://www.jcp.org/en/jsr/detail?id=110
7http://www.saxproject.org

163

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

resenting web services as service trees and identifying both abstract and concrete parts,

are performed at the same time to improve the performance. This means that during the

parsing phase of each WSDL document, we identify and construct concrete and abstract

parts of its service tree. We observe that concrete parts from different service trees have

the same hierarchical structure, therefore we develop a level matching method to measure

the similarity between their elements, line 13. To measure the similarity between abstract

parts, we use our developed schema matching algorithm, line 14. Finally, the output of

the level match and schema matching algorithms are refined in a refine match algorithm,

line 15, to determine the total similarity between every Web service pair, and store it in

the corresponding position in the similarity matrix. In the following section, we describe

in details the similarity measuring phase.

Algorithm 11: Web service similarity algorithm

input : A set of web service specifications, WS1, WS2, ..., WSn

output: A WS similarity matrix, WSSimMat

WSSimMat[][]← 0;1

for i← 1 to n do2

ST [i] ← buildST (WSi);3

concrete[i] ← identifyConcrete (ST [i]);4

abstractList[i] ← identifyAbstract (ST [i]);5

end6

for i← 1 to n− 1 do7

concrete1 ← (concrete [i]);8

abstractList1 ← (abstractList [j]);9

for j ← i + 1 to n do10

concrete2 ← (concrete [j]);11

abstractList2 ← (abstractList [j]);12

levSim ← levelMatch (concrete1, concrete2);13

schSim ← schemaMatch (abstractList1, abstractList2);14

WSSimMat[i][j] ←refineMatch (levSim, schSim);15

end16

end17

9.5 Similarity assessment

To assess the similarity between two web services given their WSDL specifications

WSDL1 & WSDL2, we first represent them as service trees (ST1 & ST2). Each ser-

164

9.5. SIMILARITY ASSESSMENT

(a) Concrete parts of ST1 & ST2. (b) Abstract parts of ST1 & ST2.

Figure 9.4: Concrete & abstract parts of ST1 & ST2.

vice tree is then classified into concrete and abstract parts. The concrete parts from

different service trees have the same hierarchal structure. Hence, the similarity between

concrete parts of two web services is computed using only concrete part element names

by comparing elements with the same level. We call this type of matching level matching.

Abstract parts from different service trees have different structures based on the message

contents. Therefore, we advise a sequence-based schema matching approach to measure

the similarity between them.

During the discussion of similarity measuring algorithms, we refer to the two Web

service documents WS1 & WS2 illustrated in Figure 9.2. Each WSDL document is

parsed and represented as a service tree (ST), as shown in Fig. 9.4. The concrete and

abstract parts of each service tree are then identified and extracted. Figure 9.4(a) presents

the concrete parts of the two service trees, ST1 and ST2, while Fig. 9.4(b) gives abstract

parts.

9.5.1 Level matching

Once obtaining the concrete parts of service trees, STC1 ⊂ ST1 and STC2 ⊂ ST2, we

apply our level matching algorithm that linguistically compares nodes at the same level,

as shown in Fig. 9.4(a). The level matching approach considers only semantic information

of concrete elements. It measures the elements (tag names) similarity by comparing each

pair of elements at the same level based on their names.

Algorithm 12 outlines the steps needed to determine level matching. The algorithm ac-

165

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

cepts the concrete parts of the service tress, STC1, STC2, and produces the name similarity

between the elements of the concrete parts. It starts by initializing the matrices, wherein

the name similarities are kept. We have three levels for each service tree, line 2. When the

loop index equals 1, i = 1, the algorithm deals with the port nodes, when i = 2 deals with

the binding nodes, and with the portType nodes when i = 3. To compute the similarity

between elements at the same level, the algorithm uses two inner loops, lines 3, &, 5. It

first extracts the name of the node j at the level i, line 4, and the name of the node k at

the same level, line 6. Then, the algorithm uses a name similarity function to compute

the name similarity between the names of the nodes, line 7. Finally, depending on the

level, it stores the name similarity matrix into the corresponding element matrix.

Algorithm 12: Level matching algorithm

Require: Two concrete parts, STC1&STC2

Ensure: 3Name similarity matrices, NSimM
1: PortSimM [][]⇐ 0, BindSimM [][]⇐ 0, PTypeSimM [][]⇐ 0;
2: for i = 1 to 3 do
3: for j = 1 to l do
4: name1 ⇐ getName(STC1(i, j));
5: for k = 1 to l′ do
6: name2 ⇐ getName(STC2(i, k));
7: NSimM [i][j] ⇐ NSim(name1, name2);
8: end for
9: end for

10: if i = 1 then
11: PortSimM ⇐ NSimM ;
12: else if i = 2 then
13: BindSimM ⇐ NSimM ;
14: else
15: PTypeSimM ⇐ NSimM ;
16: end if
17: end for

To compute the name similarity between two element names represented as strings,

we first break each string into a set of tokens T1 and T2 through a customizable tokenizer

using punctuation, upper case, special symbols, and digits, e.g, getDataService → {get,

Data, Service}. We then determine the name similarity between the two sets of name

tokens T1 and T2 as the average best similarity of each token with a token in the other

set. It is computed as follow:

166

9.5. SIMILARITY ASSESSMENT

Nsim(T1, T2) =

∑

t1∈T1
[maxt2∈T2

sim(t1, t2)] +
∑

t2∈T2
[maxt1∈T1

sim(t1, t2)]

|T1|+ |T2|
�

�

�

�9.1

To measure the string similarity between a pair of tokens, sim(t1, t2), we use two string

similarity measures, namely the edit distance and trigrams [41]. The name similarity

between two nodes is computed as the combination (weighted sum) of the two similarity

values. The output of this stage is 3 (l × l′) name similarity matrices, NSimM , where

l is the number of concrete part elements of STC1 and l′ is the number of concrete part

elements of STC2 per level (knowing that the number of ports, the number of bindings,

and the number of protType are equal). In the running example, see Fig. 9.4(a), l = 1

and l′ = 1.

Algorithm Complexity The algorithm runs three times, one for every level. Through

each run, it compares l elements of STC1 with l′ elements of the second concrete part.

This leads to a time complexity of O(l× l′), knowing that the number of elements in each

level is very small.

Example 9.1 Applying the level matching approach on the concrete parts shown in Fig.

9.4(a), we obtain the following result shown in Table 9.1 (notice that n′ = m′ = 1 in this

example).

Table 9.1: Example 9.1 result

ST1 ST2 NSimM
getDataPort getProductPort 0.438

getDataBinding getProductBinding 0.6607
Data PortType Product PortType 0.545

9.5.2 Schema matching

In contrast to concrete parts, the abstract parts from different service trees have different

structures. Therefore, to compute the similarity between them, we should capture both

semantic and structural information of the abstract parts of the service trees. To realize

this goal, we deploy our sequence-based matching approach developed in the previous

chapters (Part III). As mentioned there, the approach consists of two stages: Prüfer Se-

quence Construction and Similarity computation. The Pre-processing phase is considered

167

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

with the representation of each abstract item (subtree) as a sequence representation using

the Prüfer encoding method. The similarity computation phase aims to assess the simi-

larity between abstract parts of different service trees exploiting semantic and structural

information to construct an operation similarity matrix.

The outline of the algorithm implementing the proposed schema matching approach

is shown in Algorithm 13. The algorithm accepts two sets of abstract parts of the service

trees input, STA1 = {STA11, STA12, ..., STA1k} and STA2 = {STA21, STA22, ..., STA2k′}, to

compute the similarity between them, where each item in the sets represents an operation

in the service tree, k and k′ are the number of operations in the two abstract parts,

respectively. To this, we first analyze each operation (abstract item) and represent it

as a sequence representation using the Prüfer encoding method, CPS, line 3& 6. Then,

the algorithm proceeds to compare all CPS pairs to assess the similarity between every

operation pair using our developed sequence matching algorithms, line 10. The returned

similarity value is stored in its corresponding position in the operation similarity matrix,

OpSimM . Finally, the similarity matrix is returned for further investigation, line 13.

Algorithm 13: Schema matching algorithm

Require: Two abstract parts, STA1&STA2

STA1 = {STA11, STA12, ..., STA1k}
STA2 = {STA21, STA22, ..., STA2k′}

Ensure: Operation similarity matrix, OpSimM
1: OpSimM [][]⇐ 0;
2: for i = 1 to k do
3: CPS1[i]⇐ buildCPS(STA1i)
4: end for
5: for j = 1 to k′ do
6: CPS2[j]⇐ buildCPS(STA2j)
7: end for
8: for i = 1 to k do
9: for j = 1 to k′ do

10: OpSimM [i][j]⇐ computeSim(CPS1[i], CPS2[j]);
11: end for
12: end for
13: return OpSimM ;

In the following, we first present an example of applying the CPS construction method

introduced in Chapter 5 to abstract parts of service trees, we then give a brief discussion

of how to apply sequence-based stages to assess the similarity between abstract parts.

168

9.5. SIMILARITY ASSESSMENT

Example 9.2 Consider the abstract parts of the two service trees ST1 & ST2

shown in Figure 9.4(b). CPS(ST1) = (NPS, LPS), where NPS(ST1) =

(2, 10, 8, 8, 7, 7, 8, 9, 10,−) and LPS(ST1).name = (id, getDataReequest, id, name, quan-

tity, product, item, POType, getDataResponse, getData).

Matching Algorithms

In this stage, we aim to assess the similarity between abstract parts of service trees

(operations). This task can be stated as follows: Consider we have two Web ser-

vice document specifications WS1 and WS2, each containing a set of operations.

OpSet1 = {op11, op12, ..., op1k} represents the operation set belonging to WS1, while

OpSet2 = {op21, op22, ..., op2k′} is the operation set of WS2. The task at hand is to

construct k × k′ operation similarity matrix, OpSimM . Each entry in the matrix,

OpSimM [i][j], represents the similarity between operation op1i from the first set and

operation op2j from the second one. The proposed matching algorithm operates on the

sequence representations of service tree operations and consists of three steps, as described

in the previous chapters in more details. We give here a quick overview of the approach

to present more explanation.

1. Linguistic matcher. First, we make use of our linguistic algorithm developed in Part

III to compute a degree of linguistic similarity for elements of service tree operation

pairs exploiting semantic information represented in LPSs. The output of this step

are k×k′ linguistic similarity matrices, LSimM , where k is the number of operations

in ST1 and k′ is the number of operations in ST2. Equation 9.2 gives the entries of

a matrix, where Nsim(Ti, Tj) is the name similarity measure, Tsim is a similarity

function to compute the type/data type similarity between nodes, and combinel is

an aggregation function that combines the name and data type similarities.

LSimM [i, j] = combinel(Nsim(Ti, Tj), T sim(ni, nj))
�

�

�

�9.2

2. Structural matcher. Once a degree of linguistic similarity is computed, we make

use of the structural algorithm developed in Part III to compute the structural

similarity between abstract part elements. As shown, to measure the structural

similarity between two nodes, we compute the similarity of their child, sibling,

ancestor, and leaf contexts, utilizing the structural properties carried by sequence

representations of service trees. The output of this phase are k × k′ structural

169

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

similarity matrices, SSimM . Equation 9.3 gives entries of a matrix, where ChSim,

SibSim, LeafSim, and PSim are similarity functions to compute the child, sibling,

leaf, and ancestor context similarity between nodes respectively, and combines is an

aggregation function to combine these similarities.

SSimM [i, j] = combines(ChSim(ni, nj), SibSim(ni, nj), LeafSim(ni, nj), PSim(ni, nj))
�

�

�

�9.3

3. After computing both linguistic and structural similarities between Web service tree

operations, we combine them. The output of this phase are k × k′ total similarity

matrices, TSimM . Equation 9.4 gives the entries of a matrix, where combine is an

aggregation function combining these similarities.

TSimM [i, j] = combine(LSimM [i, j], SSimM [i, j])
�

�

�

�9.4

Web Service Operation Similarity Matrix. We use k× k′ total similarity matrices

to construct the Web service operation similarity matrix, OpSimM . We compute the

total similarity between every operation pairs by ranking element similarities in their

total similarity matrix per element, selecting the best one, and averaging these selected

similarities. Each computed value represents an entry in the matrix, OpSimM [i, j], which

represents the similarity between operation op1i from the first set and operation op2j from

the second set.

Example 9.3 Applying the proposed sequence-based matching approach to abstract parts

illustrated in Fig. 9.4(b), we get OpSim(getData, getProduct) = 0.75.

Algorithm complexity The worst case time complexity of the schema matching al-

gorithm can be expressed as a function of the number of nodes in each operation, the

number of operation in each WS, and the number of WSs. Let n be the average operation

size, k be the average operation number, and S be the number of input WSs. Following

the same process in Chapter 6, we can prove the overall time complexity of the algorithm

as O(n2k2).

9.5.3 Matching refinement

For every Web service pairs we have two sets of matrices: three NSimM matrices that

store the similarity between concrete elements, and one OpSimM that stores the similarity

170

9.6. EXPERIMENTAL EVALUATION

between two web service operations. This provides the SeqDisc approach more flexibility

in assessing the similarity between web services. As a consequence, we have two different

possibilities to get the similarity:

1. Using only abstract parts; Given, the operation similarity matrix, OpSimM , that

stores the similarity between operations of two web services, how to obtain the

similarity between them. We can simply get the similarity between the two web

services by averaging the similarity values in the matrix. However, this method

produce smaller values, which do not represent the actual similarity among services.

And due to uncertainty inherent in the matching process, the best matching can

actually be an unsuccessful choice [66]. To overcome these shortcomings, similarity

values are ranked up to top-2 ranking for each operation. Then, the average value

is computed for these candidates. For example, let we have two web services. The

first contains five operations (k = 5) and the number of operations in the second is

four (k′ = 4). And let after applying the proposed matching approach we get the

operation similarity matrix shown below.

OpSim =











0.2 0.1 0.03 0.6

0.3 0.025 0.58 0.045

0.015 0.36 0.48 0.1

0.13 0.1 0.8 0.7

0.8 0.75 0.62 0.2











The similarity between the two web service has a value of 0.346 using the simple

average function, while it has a value of 0.557 using the ranked method.

2. Using both abstract and concrete parts; The second possibility to assess the simi-

larity between web services is to exploit both abstract and concrete parts. For any

operation pair, op1i ∈ WSDL1 and op2j ∈ WSDL2, whose similarity is greater

than a predefined threshold (i.e. OpSimM [i, j] > th), we increase the similarity of

their corresponding parents (portType, binding, and port, respectively).

9.6 Experimental evaluation

To validate the performance of the SeqDisc approach, we present results obtained by

conducting a set of experiments. In the following, we describe the data sets used to validate

the approach throughout the evaluation, the performance criteria, and the experimental

results.

171

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

9.6.1 Data sets

In order to evaluate the degree to which the SeqDisc approach can distinguish between

Web services, we need to obtain families of related specifications. We found such a collec-

tion published by XMethods8 and QWS data set [4]. We selected 78 WSDL documents

from six different categories. Table 9.2 shows these categories and the number of Web

services inside each one. Using the “analyze WSDL” method provided by XMethods, we

identify the number of operations in each WS, and get the total number of operations

inside each category, as shown in the table. All the experiments below share the same

design: each service of the collection was used as the basis for the desired service; this

desired service was then matched against the complete set to identify the best target

service(s).

9.6.2 Performance Measure

We consider two performance aspects: the effectiveness and the efficiency of the approach.

We use precision, recall, and F-measure to evaluate effectiveness, while the response time

is used as a measure for efficiency. Precision (P) is the ability to provide the relevant Web

services from a set of retrieved Web services, while recall (R) is the ability to provide the

maximum number of Web services from a set of relevant Web services. F-measure is a

trade-off between precision and recall. Mathematically, they are defined as follows:

P =
|B|
|A| , R =

|B|
|C| , F −measure = 2× P × R

P + R

�

�

�

�9.5

where |B| is the number of returned relevant Web services, |A| is the number of returned

services, and |C| is the number of relevant services. The response time is the time required

to complete the task at hand, including both pre-processing and similarity measuring

phases.

9.6.3 Experimental Results

Effectiveness Evaluation

We have two possibilities to assess the similarity between Web services depending on the

exploited information of WSDL specifications.

8http://www.xmethods.net

172

9.6. EXPERIMENTAL EVALUATION

Table 9.2: Data set specifications

Category No. of WSs NO. of operations Size (KB)
Address 13 50 360
Currency 11 88 190

DNA 16 48 150
Email 10 50 205

Stock quite 14 130 375
Weather 13 110 266

(a) Quality measures (abstract parts only) (b) Quality measures (both parts)

Figure 9.5: Effectiveness evaluation of SeqDisc.

1. Assessing the Web service similarity using only abstract parts (operations).

In the first set of experiments, we match abstract parts of each service tree from

each category against the abstract parts of all other service trees from all categories.

Then, we select a set of candidate services, such that the similarity between indi-

vidual candidate services and the desired one is greater than a predefined threshold.

Precision and recall are then calculated for each service within a category. These

calculated values are averaged to determine the average precision and recall for each

category. Precision, recall and F-measure are calculated for all categories and illus-

trated in Fig.9.5(a). There are several interesting findings, which are evident in this

figure.

First, the SeqDisc approach has the ability to discover all web services from a set of

relevant services. As can be seen, across different six categories, the approach has

a recall rate of 100% without missing any candidate service. This ability reflects

the strong behavior of the approach of exploiting both semantic and structural

information of WSDL specifications in an effective way. Second, the figure also

shows that the ability of the approach to provide relevant web services from a set of

retrieved services is reasonable. The precision of the approach across six categories

ranges between 64% and 86%. This means that while the approach does not miss

173

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

any candidate service, however, it produces false match candidates. This is due to

the web service assessment approach is based on lightweight semantic information

and does not use any external dictionary or ontology. Finally, based on precision

and recall, our framework is almost accurate with F-measure ranging from 78% to

93%.

2. Assessing the Web service similarity using both abstract and concrete parts.

The second set of experiments to assess the similarity between web services exploits

the similarity between concrete parts as well as the similarity between their op-

erations. In this set of experiments, we matched the whole parts (both abstract

and concrete) of each service tree against all other service trees from all categories.

Then, we selected a set of candidate services, such that the similarity between indi-

vidual candidate services and the desired one is greater than a predefined threshold.

Precision and recall are then calculated for each service within a category. These

calculated values are averaged to determine the average precision and recall for each

category. Precision and F-measure are calculated for all categories and illustrated

in Fig. 9.5(b). We also compared them against the results of the first possibility.

The results are reported in Fig. 9.5(b). The figure represents a number of appealing

findings. (1) The recall of the approach remains at the unit level, i.e. no missing

candidate services. (2) Exploiting more information about WSDL documents im-

proves the approach precision, i.e. the number of false retrieved candidate services

decreases across six different categories. The figure shows that the precision of the

approach exploiting both concrete and abstract parts of service trees ranges between

86% in the Email category and 100% in the DNA category. (3) The first two find-

ings lead to the quality of the approach is almost accurate with F-measure ranging

between 90% and 100%.

Effect of Individual Matchers. We also performed another set of experiments to

study the effect of individual matchers (linguistic and structure) on the effectiveness of

web service similarity. To this end, we used data sets from the Address, Currency, DNA,

and Weather domains. We consider the linguistic matcher utilizing either abstract parts

or concrete and abstract parts. Figure 9.6 shows matching quality for these scenarios.

The results illustrated in Figure 9.6 show several interesting findings. (1) Recall of the

SeqDisc approach has a value of 1 across the four domains either exploiting only abstract

parts or exploiting both parts, as shown in Figure 9.6(a,b). This means that the approach

174

9.6. EXPERIMENTAL EVALUATION

(a) Utilizing abstract parts. (b) Utilizing both concrete and abstract parts.

Figure 9.6: Effectiveness evaluation of SeqDisc using linguistic matcher.

is able to discover the desired service even if the linguistic matcher is only used. (2) How-

ever, precision of the approach decreases across the tested domains (except only for the

DNA domain using the abstract parts). For example, in the Address domain, precision

decreases from 88% to 70% utilizing both parts, and it reduces from 92% to 60% utilizing

both parts in the Weather domain. This results in low F-measure values compared with

the results shown in Figure 9.5. (3) Exploiting both abstract and concrete parts outper-

forms exploiting only the abstract parts. This can be investigated by comparing results

shown in Figure 9.6(a) to results in Figure 9.6(b).

To sum, using only the linguistic matcher is not sufficient to assess the similarity

between web services. Hence, it is desirable to consider other matchers. As the results

in Figure 9.5 indicates that the SeqDisc approach employing the structure matcher is

sufficient to assess the similarity achieving F-measure between 90% and 100%.

Performance Comparison. Besides studying the performance of the SeqDisc ap-

proach, we also compared it with the discovery approach proposed in [36], called KerDisc9.

To assess the similarity between the desired Web service (user query) and the available

Web services, the KerDisc approach first extracts the content from the WSDL documents

followed by stop-word removal & stemming [36]. The constructed support-based semantic

kernel in the training phase is then used to find the similarity between WSDL documents

and a query when the query is provided. The topics of WSDL documents which are most

related to the query topics are considered to be the most relevant. Based on the similarity

computed using the support-based semantic kernel, the WSDLs are ranked and a list of

appropriate Web services is returned to the user.

Both SeqDisc and KerDisc have been validated using the data sets illustrated in Table

9We give the approach this name for easier reference.

175

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

9.2. The quality measures have been evaluated and results are reported in Figure 9.7. The

figure shows that, in general, SeqDisc is more effective than KerDisc. It achieves higher F-

measure than the other approach across five domains. It is worth noting that the KerDisc

approach indicates low quality across the Address and Email domains. This results due to

the two domains have common content, which produces many false positive candidates.

The large number of false candidates declines the approach precision. Compared to the

results of SeqDisc using only the linguistic matcher shown in Figure 9.6(b), our approach

outperforms across the Address and DNA domains, while the KerDisc approach is better

across the other domains. This reveals two interesting findings: (1) KerDisc can effectively

locate the desired service among heterogeneous web service, while it fails to discover

the desired service among a set of homogeneous services. In contrast, our approach

could effectively locate the desired service among either a set of homogeneous or a set

of heterogenous services. (2) SeqDisc clarifies the importance of exploiting the structure.

matcher.

Figure 9.7: Effectiveness evaluation comparison.

Efficiency Evaluation

From the response time point of view, Figure 9.8(a) gives the response time that is required

to complete the task at hand, including both pre-processing and similarity measuring

phases. The reported time is computed as a total time and an average time. The total

time is the time needed to locate desired Web services belonging to a certain category,

while the average time is the time required to discover a Web service of the category. The

figure also shows that the framework needs 124 seconds in order to identify all desired

Web services in the DNA category, and it requires 7 seconds to discover one service in

the category, while it needs 3.7 minutes to locate all services in the Email category. We

176

9.7. SUMMARY

(a) SeqDisc evaluation. (b) Using linguistic matcher.

Figure 9.8: Response time evaluation.

also considered the response time and compared it to the response time of the first set

(i.e, using only the abstract parts). The results are calculated and listed in Figure 9.8(a).

The figure shows that the response time required to locate the desired Web service using

both abstract and concrete parts equals to the response time when only using abstract

parts, or needs a few milliseconds more.

We also conducted another set of experiments to examine the effect of individual

matchers on the response time. To this context, we used the same data sets used before

in the section presenting the effect of individual matchers. Results are reported in Figure

9.8(b). The figure shows that using only the linguistic matcher consumes most time of the

SeqDisc approach. For example, the approach needs 124 seconds to locate services inside

the DNA domain, while it requires 118 seconds using only the linguistic matcher. This

reveals that SeqDisc is benefit from representing web services using the Prüfer encoding

method.

9.7 Summary

In this chapter we deployed our schema matching techniques in an important application

domain: Web Service. As web services have emerged as one of distributed computing tech-

nologies, new round of interests from industrial and research communities have sparked.

To be developed and reused, a web service relies on a set of related specifications, how to

web services should be specified (through WSDL), how they should be advertised so that

they can be discovered and accessed, and how they should be invoked at run time (through

SAOP). This chapter addressed only the issue of effectively and efficiently locating web

services.

To effectively and efficiently locate web service, in this chapter, we described a new

177

CHAPTER 9. SEQDISC: SUPPORTING WEB SERVICE DISCOVERY

and flexible approach to assess the similarity between Web services, which can be used

to support a more automated Web service discovery framework. The approach makes

use of the whole WSDL document specification and distinguishes between the concrete

part and abstract parts. We started by analyzing web services represented by WSDL

documents and modeled them as services trees. Then, we notice that concrete parts

from different Web services have the same hierarchal structure, hence we devised a level

matching approach. While the abstract parts have different structures, therefore, we

developed a sequence-based schema matching approach to compute the similarity between

them.

We have developed and implemented algorithms and methodologies that realize our

approach. To validate the performance of the approach, we have conducted two sets of

experiments depending on the exploited information of services trees. Two performance

aspects have been measured: the quality and the efficiency of the approach. Our exper-

imental results have shown that our method is accurate and scale-well. In particular,

exploiting both (concrete and abstract) parts in assessing the similarity between web

services outperforms exploiting only abstract parts. In the first case, the approach has

F-measure ranging between 90% and 100%, while in the second between 78% and 93%.

However and in fact, we are still a long way from automatic service discovery. This work

has been done to assess our schema matching techniques.

178

Part V

Summary and future directions

179

10
Conclusions

This dissertation investigated the problem of XML schema matching. XML has recently

emerged as a major means for information exchange on the Web and within organizations,

and has been broadly used for information representation. Consequently, XML databases

on the Web are proliferating. To enable and support the interoperability and exchange of

data, there has been a growing need to identify and discover semantically similar elements

across different data sources. Discovering simple mappings partially solves the schema

matching problem. However, discovering complex mappings increases the difficulties of the

problem, especially when dealing with large-scale schemas. To this context, we proposed a

new XML schema matching approach, called sequence-based schema matching, discussed

its technical details and its evaluation. The main findings of each chapter of the thesis

are summarized one by one in sequel, while the contributions of the thesis are reported

in the other section.

10.1 Summary of the thesis

We classified the dissertation in five cooperative parts. Part I is devoted to state the

schema matching problem, giving the different dimensions of the problem and objectives of

the dissertation, Part II is dedicated to present the state-of-the-art in the schema match-

ing problem, Part III is committed to introduce the sequence-based schema matching

approach and its evaluation, Part IV is dedicated to show how to deploy the proposed

approach in several application domains, and the final Part V is deployed to give a

summary of the thesis contributions and its future work.

181

CHAPTER 10. CONCLUSIONS

Part I is divided into two chapters. Chapter 1 outlined our motivations to investigate

the XML schema matching problem. Furthermore, it presented an abstract road map of

the dissertation. Chapter 2 introduced an (in)formal definition of the schema matching

problem, including problem statement, input data models, and the matching output. It

focused on different data models that represent input schemas, and paid more attention to

XML schemas identifying what different heterogeneities are, what issues in representing

large-scale schemas are and why they increase the complexity of schema matching.

Part II also included two chapters. In Chapter 3, we motivated the importance of

schema matching by reporting its use in several application domains. We showed that

a common feature of these applications is that their XML schemas are independently

developed resulting in semantic and structure heterogeneities. Furthermore, we pointed

out how these applications make use of schema matching techniques during either design

time or run time. In Chapter 4, we introduced a unified schema matching framework

in order to discuss and report on existing schema matching systems. We could differ-

entiate between these systems based on their input schemas, methodologies to identify

corresponding elements, and their matching results. The aim was to draw a clear picture

on the approaches, how far we can go with the current solutions, and what remains to

be achieved. Here, the focus is on the concepts, alternatives, and fundamentals of the

solutions, not on detailed technical discussions.

Part III encompassed three chapters. In Chapter 5, we introduced the definition,

adoption, and utilization of XML element similarity measures that can be used to assess

the similarity between XML schema elements. We gathered both the element features and

the element relationships while measuring their similarity. However, it has been shown

that representing XML schemas using schema trees (graphs) is not sufficient to achieve our

objectives. Therefore, we made use of the Prüfer encoding method that constructs a one-

to-one correspondence between schema trees and Prüfer sequences. This representation

provides the ability to exploit the semantic information of schema trees in Label Prüfer

sequences (LPS), and to exploit the structural information in Number Prüfer Sequences

(NPS). Furthermore, it helps to exploit of these information as quickly as possible. We

explained the relationships between the sequence representation and the element features

and element contexts.

In Chapter 6 we presented the sequence-based schema matching approach, introducing

several element similarity measure algorithms. We developed a new matching system,

called XPrüM, to identify and discover simple mappings in the context of large-scale XML

schema. To deal with complex mappings, we extended the original system and developed a

182

10.2. CONTRIBUTIONS

new matching system, called EXPrüM. We innovated the concept of compatible elements

to reduce the search space. The complexity analysis of both systems has been studied and

it has been shown that EXPrüM has a lower time complexity compared to the original

system. In Chapter 7 we started with discussing different criteria that can be used to

evaluate the performance of schema matching introducing a new criterion, called cost-

effectiveness, that combines both matching effectiveness and matching efficiency. We then

carried out three sets of experiments to evaluate and validate our proposed approaches.

The first set is to evaluate XML element similarity measures using different settings and

different combining strategies. The other two sets of experiments have been guided by the

results obtained from the first set. The second set is used to validate the XPrüM system,

while the third set is to evaluate the enhanced system.

Part V involved two chapters. In Chapter 8, we showed how to deploy the sequence-

based matching approach to cluster a set of heterogeneous XML schemas. To this end,

we developed a new clustering framework, called SeqXClust. In Chapter 9, we applied the

matching approach to another application domain. We used the matching approach to

assess the similarity between a set of Web services in order to automatically support the

discovery of desired Web service. To this context, we developed a new Web service assess-

ment framework, called SeqDisc. Both frameworks have been developed, implemented,

and validated using real-world data sets.

10.2 Contributions

This dissertation introduces several contributions. We categorize the set of our contribu-

tions as follows:

1. State-of-the-art;

• introducing a detailed and up-to-date survey of schema matching approaches

and systems under a unified framework.

• pointing out different application domains that can make use of schema match-

ing.

2. Methodology;

• introducing a set of XML element similarity measures based on either element

features or element relationships.

183

CHAPTER 10. CONCLUSIONS

• building a conceptual connection between the schema matching problem and

the Prüfer encoding method.

• proposing a new representation of XML schema trees using the Prüfer encoding

method.

• introducing a new strategy to combine element similarity measures.

3. Development and implementation;

• designing, developing, and implementing the XPrüM system to cope with sim-

ple mappings in the context of large-scale schemas.

• designing, developing, and implementing the EXPrüM to cope with both sim-

ple and complex mappings in the context of large-scale schemas.

4. Deployment;

• designing, developing, and implementing the SeqXClust to show the deploy-

ment of proposed matching approaches in XML schema clustering.

• designing, developing, and implementing the SeqDisc to point out how to utilize

our matching approaches in Web service discovery.

5. Evaluation;

• introducing the cost-effectiveness measure to combine both matching perfor-

mance aspects.

• conducting intensive sets of experiments to validate and evaluate our proposed

systems and frameworks using several real-world data sets.

• carrying out a set of comparisons with well-known and available schema match-

ing systems to validate the performance of our systems and frameworks.

184

11
Future directions

The schema/ontology matching problem is still an open research problem. In the near

future, we expect an ongoing increase of works on schema/ontology matching. This

expectation is build on the study of the distributions of many works devoted to diverse

aspects of schema matching and published at various conferences and journals. Using the

arnetminer search engine1, we study the effort devoted to schema matching w.r.t. either

the number of publications per year or the number of publications appeared in specific

conferences and journals. A result of this study is reported in Fig. 11.1. The figure

points out two interesting findings: (i) There is an increasing effort dedicated to schema

matching during this decade, as shown in Fig. 11.1a. (ii) Due to the arising importance

of the schema matching topic a large number of matching publications have appeared in

well-known and respective conferences and journals, as shown in Fig. 11.1b.

In this chapter, we discuss the ongoing and future works on schema matching along

the following three directions: (1) methodologies used to assess the similarity between

schema elements, (2) prototypes developed to implement matching methodologies, and

(3) evaluation used to validate the matching performance.

1http://www.arnetminer.org/

185

C
H

A
P
T

E
R

1
1
.

F
U

T
U

R
E

D
IR

E
C
T

IO
N

S(a) Publication distribution per year.

(b) Publication distribution over conferences and journals.

Figure 11.1: Publications focusing on schema matching.

1
8
6

11.1. METHODOLOGY DIRECTIONS

11.1 Methodology directions

This direction concerns the methodologies that are used to assess and combine the sim-

ilarity between schema elements. In general, these methodologies can be divided into

three categories: pairwise, incremental, or holistic. Pairwise schema matching identifies

and discovers semantic correspondences between two schemas at a time; the methodology

used to ascertain these correspondences between a mediated schema and a set of local

schemas is called incremental schema matching, while holistic schema matching deter-

mines similar elements among a set of schemas. Holistic schema matching is only used

to discover correspondences among web query interfaces, incremental schema matching

is used for mediated schema construction, and pairwise schema matching is the generic

matching methodology. Therefore, further investigations have to be devoted to the other

methods. In particular, the following issues should be considered.

• Element similarity measure (matcher); It has been shown that to effectively

assess the similarity between schema elements, both element features and element re-

lationships should be exploited. As a result, there exist element measures (matchers)

to quantify its similarity using element features and others using element relation-

ships. However, most of the existing matchers are based on Information Retrieval

approaches. There is a growing need to propose and develop schema matching-

specific matchers.

• Uncertainty in element matcher; The semantics of the involved elements can

be inferred from only a few information sources, typically the data creators, docu-

mentation, and associated schema and data [51]. Extracting semantics information

from these sources is often extremely bulky. Furthermore, element measures are

based on clues in the schema and data, such as element names, types, data values,

schema structures, and integrity constraints. However, these clues are often unreli-

able and incomplete. Therefore, the result of schema matching used in real-world

applications is often uncertain. To handle these uncertainties, several works have

been proposed [66, 57, 97, 67, 40]. However, more work is needed to fully automated

uncertainty in schema matching.

• Element similarity measure combining; It has been shown that using a single

element similarity measure is not sufficient to assess the similarity between schema

elements. This necessitates the need to utilize several element measures exploiting

187

CHAPTER 11. FUTURE DIRECTIONS

both internal element features and external element relationships. Utilizing several

element measures provides the advantage of matching algorithms to be more flexible.

However, it also embeds a disadvantage of how to combine these similarity measures.

Most of the existing matching systems make use of the linear combining strategy.

In this thesis, we utilized the (fixed) nonlinear combining strategy. However, this

strategy needs more investigations, especially the adaptive nonlinear method.

• Element similarity selector; It has been shown that combining element mea-

sures cannot guarantee that the optimal mapping will always be identified by pick-

ing up the correspondence with the highest score. To overcome such situations,

the approach in which K (and not just one) top-ranked schema mappings can be

adopted [55]. New schema matching-specific algorithms are needed to address the

correct mapping selection.

11.2 Prototype directions

This direction is devoted to the implementation details of the methodologies mentioned

above. In particular, we address the following issues.

• GUI; Here, we should distinguish between research and commercial prototypes

and systems. Commercial systems, such as BizTalk schema mapper2 and Altova

MapForce3 are interested in developing attractive Graphical User Interfaces (GUI)

to make the matching process more easier for the end user. However, the main

concern of research systems is to automate the matching process. However, some of

research systems, such as COMA++4 provide their matching prototypes with GUIs.

More efforts are needed in this direction to address the necessary requirements of

schema matching tools to be more generic and attractive.

• User context; It has been shown that fully automated schema matching is infea-

sible, specifically when discovering complex matches [138]. The arising task is to

accurately identify the critical points where user input is maximally useful. Another

related issue is how to map the user context information to input schema elements.

2http://www.microsoft.com/biztalk/en/us/roadmap.aspx
3http://www.altova.com/mapforce.html
4http://dbserv2.informatik.uni-leipzig.de/coma/

188

11.3. PERFORMANCE & EVALUATION DIRECTIONS

11.3 Performance & evaluation directions

• Performance; Schema matching is a complex process. The shift from manual

schema matching done by human experts, to automatic matching using various el-

ement similarity measures (schema matchers), and from the small-scale scenario

to the large-scale scenario increases the complexity of schema matching. In this

context, we should deal with two schema matching performance aspects. Match-

ing quality (effectiveness) is a crucial aspect in automatic schema matching, while

matching efficiency (scalability) is important in large-scale scenarios. Therefore, de-

veloping new schema matching approaches should balance between the two matching

performance aspects.

• Evaluation; Not only is the performance of schema matching still an open research

challenge, but also the methodology used to evaluate this performance. Almost

all existing matching systems deal with small-scale schemas, and hence, they make

use of effectiveness-based criteria to evaluate their systems [46]. Introducing large-

scale schemas to schema matching necessitates the need for additional criteria to

evaluate the matching performance. The response time has recently been used as

a measure for matching efficiency, and a new benchmark for schema matching has

been developed [59]. However, both aspects have been evaluated separately. An

attempt to combine the performance criteria has been proposed in [9]. However,

new methods that quantify both pre- and post-match effort are needed.

189

Bibliography

[1] Data integration glossary. In U.S. Department of Transportation, pages 1–18. USA,

2001.

[2] S. Abiteboul, D. Suciu, and P. Buneman. Data on the Web: From Relations to

Semistructed Data and XML. Morgan Kaumann, USA, 2000.

[3] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. J. Zaki. Xproj: a framework

for projected structural clustering of XML documents. In KDD 2007, pages 46–55,

2007.

[4] E. Al-Masri and Q. Mahmoud. Qos-based discovery and ranking of web services.

In ICCCN 2007, pages 529 – 534, 2007.

[5] A. Algergawy, R. Nayak, and G. Saake. XML schema element similarity mea-

sures: A schema matching context. In 8th International Conference on Ontologies,

Databases, and Applications of Semantics (ODBASE 2009) at OTM Conferences

Part II Lecture Notes in Computer Science 5871, pages 1246–1253. Vilamoura, Por-

tugal, Nov. 2009.

[6] A. Algergawy, R. Nayak, E. Schallehn, and G. Saake. Supporting web service

discovery by assessing web service similarity. In 13th East-European Conference

on Advances in Databases and Information Systems (ADBIS-2009). Riga, Latvia,

Sept. 2009.

[7] A. Algergawy and G. Saake. A classification scheme for XML data clutering tech-

niques. In 4th International Conference on Intelligent Computing and Information

Systems (ICICIS 2009), pages 550–555. Cairo, Egypt, March 2009.

[8] A. Algergawy, E. Schallehn, and G. Saake. A unified schema matching framework.

In 19. GI-Workshop on Foundations of Databases, pages 58–62. Bretten, Germany,

May 2007.

[9] A. Algergawy, E. Schallehn, and G. Saake. Combining effectiveness and efficiency

for schema matching evaluation. In First International Workshop on Model-Based

191

BIBLIOGRAPHY

Software and Data Integration (MBSDI 2008), volume 8 of CCIS, Springer, pages

19–30. Berlin, Germany, April 2008.

[10] A. Algergawy, E. Schallehn, and G. Saake. Fuzzy constraint-based schema matching

formulation. In Business Information Systems (BIS 2008) Workshops, pages 141–

152, Innsbruck, Austria, 2008. CEUR Workshop Proceedings 333.

[11] A. Algergawy, E. Schallehn, and G. Saake. Fuzzy constraint-based schema matching

formulation. Scalable Computing: Practice and Experience, Special Issue: The Web

on the Move, 9(4):303–314, Dec. 2008.

[12] A. Algergawy, E. Schallehn, and G. Saake. A Prufer sequence-based approach

for schema matching. In Eighth International Baltic Conference on Databases and

Information Systems (BalticDB&IS2008), pages 205–216. Estonia, June 2008.

[13] A. Algergawy, E. Schallehn, and G. Saake. A schema matching-based approach

to XML schema clustering. In The Tenth International Conference on Informa-

tion Integration and Web-based Applications Services (iiWAS), pages 131–136. Linz,

Austria, ACM, 2008.

[14] A. Algergawy, E. Schallehn, and G. Saake. A sequence-based ontology matching

approach. In Proceedings of the Fourth International Workshop on Contexts and

Ontologies (C&O) Collocated with the 18th European Conference on Artificial In-

telligence (ECAI-2008), pages 26–30. Patras, Greece, July 2008.

[15] A. Algergawy, E. Schallehn, and G. Saake. Databases and Information Systems

V - Selected Papers from the Eighth International Baltic Conference, volume 187,

chapter A New XML Schema Matching Approach Using Prüfer Sequences, pages

217–228. ISO Press, 2009.

[16] A. Algergawy, E. Schallehn, and G. Saake. Efficiently locating web services using

a sequence-based schema matching approach. In 11th International Conference on

Enterprise Information Systems (ICEIS), pages 287–290. Milan, Italy, May 2009.

[17] A. Algergawy, E. Schallehn, and G. Saake. Improving XML schema matching per-

formance using Prüfer sequences. Data & Knowledge Engineering, 68(8):728–747,

August 2009.

192

BIBLIOGRAPHY

[18] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In EDBT’02,

pages 89–102, 2002.

[19] C. Atkinson, P. Bostan, O. Hummel, and D. Stoll. A practical approach to web

service discovery and retrieval. In ICWS 2007, pages 241–248, 2007.

[20] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The

object-oriented database system manifesto. In Proceedings of the First International

Conference on Deductive and Object-Oriented Databases, pages 223–240. Kyoto,

Japan, 1989.

[21] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology match-

ing with COMA++. In ACM SIGMOD International Conference on Management

of Data, pages 906–908, 2005.

[22] A. Avila-rosas, L. Moreau, V. Dialani, S. Miles, and X. Liu. Agents for the grid:

A comparison with web services (part ii: Service discovery). In AAMAS02, pages

52–56, 2002.

[23] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM

Press/Addison-Wesley, 1999.

[24] M. Banek, B. Vrdoljak, A. M. Tjoa, and Z. Skocir. Automating the schema matching

process for heterogeneous data warehouses. In 9th International Conference on Data

Warehousing and Knowledge Discovery, pages 45–54, 2007.

[25] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies

for database schema integration. ACM Comput Surv, 18(4):323–364, 1986.

[26] G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Prac-

titioners, volume 221 of Studies in Fuzziness and Soft Computing. Springer, 2007.

[27] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence

algorithms. SPIRE, pages 39–48, 2004.

[28] P. Berkhin. Grouping Multidimensional Data: Recent Advances in Clustering, chap-

ter Survey of Clustering Data Mining Techniques, pages 25–71. Springer Berlin

Heidelberg, 2006.

193

BIBLIOGRAPHY

[29] P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, , and D. Shutt. Mi-

crosoft repository version 2 and the open information model. Information Systems,

24(2):71–98, 1999.

[30] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision for management of

complex models. SIGMOD Record, 29(4):55–63, 2000.

[31] P. A. Bernstein and E. Rahm. Data warehouse scenarios for model management.

In 19th International Conference on Conceptual Modeling, pages 1–15, 2000.

[32] E. Bertino and E. Ferrari. XML and data integration. IEEE Internet Computing,

5(6):75–76, 2001.

[33] D. Bianchini, V. Antonellis, and M. Melchiori. Flexible semantic-based service

matchmaking and discovery. World Wide Web, 11(2):227–251, 2008.

[34] A. Bonifati, G. Mecca, A. Pappalardo, and S. Raunich. The spicy project: A new

approach to data matching. In SEBD. Turkey, 2006.

[35] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema mapping

verification: the spicy way. In 11th International Conference on Extending Database

Technology (EDBT2008), pages 85–96. Nantes, France, 2008.

[36] A. Bose, R. Nayak, and P. Bruza. Improving web service discovery by using semantic

models. In WISE 2008, pages 366–380. New Zealand, 2008.

[37] A. Boukottaya and C. Vanoirbeek. Schema matching for transforming structured

documents. In DocEng’05, pages 101–110, 2005.

[38] L. Cabral, J. Domingue, E. Motta, T. R. Payne, and F. Hakimpour. Approaches

to semantic web services: an overview and comparisons. In ESWS 2004, pages

225–239. Greece, 2004.

[39] D. Carmel, N. Efraty, G. M. Landau, Y. S. Maarek, and Y. Mass. An extension of

the vector space model for querying XML documents via XML fragments. SIGIR

Forum, 36(2), 2002.

[40] R. Cheng, J. Gong, and D. W. Cheung. Managing uncertainty of XML schema

matching. In Proceedings of the 26th International Conference on Data Engineering,

ICDE 2009. California, USA, 2010.

194

BIBLIOGRAPHY

[41] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance

metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

[42] P. Cudr-Mauroux, S. Agarwal, and K. Aberer. Gridvine: An infrastructure for peer

information management. IEEE Internet Computing, 11(5):36–44, 2007.

[43] P. Cudr-Mauroux, S. Agarwal, A. Budura, P. Haghani, and K. Aberer:. Self-

organizing schema mappings in the GridVine peer data management system. In

the 33rd International Conference on Very Large Data Bases, VLDB2007, pages

1334–1337, 2007.

[44] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering

complex semantic matches between database schemas. In SIGMOD Conference

2004, pages 383–394, 2004.

[45] P. F. Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 122 – 127, 1982.

[46] H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations.

In the 2nd Int. Workshop on Web Databases, 2002.

[47] H. H. Do and E. Rahm. COMA- a system for flexible combination of schema

matching approaches. In VLDB 2002, pages 610–621, 2002.

[48] H. H. Do and E. Rahm. Matching large schemas: Approaches and evaluation.

Information Systems, 32(6):857–885, 2007.

[49] A. Doan. Learning to map between structured representations of datag. In Ph.D

Thesis. Washington University, 2002.

[50] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data

sources: A machine-learning approach. SIGMOD, pages 509–520, May 2001.

[51] A. Doan and A. Halevy. Semantic integration research in the database commu-

nity: A brief survey. AAAI AI Magazine, Special Issues on semantic Integration,

25(1):83–94, 2005.

[52] A. Doan, Y. Lu, Y. Lee, and J. Han. Profile-based object matching for information

integration. IEEE Intelligent Systems, 18(5):54–59, 2003.

195

BIBLIOGRAPHY

[53] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching: A ma-

chine learning approach. Handbook on Ontologies, International Handbooks on

Information Systems, 2004.

[54] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy:. Learning to map between

ontologies on the semantic web. In the Eleventh International World Wide Web

Conference, pages 662–673. USA, 2002.

[55] C. Domshlak, A. Gal, and H. Roitman. Rank aggregation for automatic schema

matching. IEEE on KDE, 19(4):538–553, April 2007.

[56] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for

web services. In VLDB 2004, pages 372–383. Canada, 2004.

[57] X. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In VLDB’07,

pages 687–698, 2007.

[58] C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm. Quickmig - automatic schema

matching for data migration projects. In the Sixteenth ACM Conference on Infor-

mation and Knowledge Management, CIKM07, pages 107–116. Portugal, 2007.

[59] F. Duchateau, Z. Bellahsene, and E. Hunt. Xbenchmatch: a benchmark for XML

schema matching tools. In VLDB 2007, pages 1318–1321. Austria, 2007.

[60] F. Duchateau, Z. Bellahsene, and M. Roche. A context-based measure for discover-

ing approximate semantic matching between schema elements. In RCIS 2007, pages

9–20. Morocco, 2007.

[61] F. Duchateau, Z. Bellahsene, and M. Roche. An indexing structure for automatic

schema matching. In SMDB Workshop. Turkey, 2007.

[62] M. Ehrig and S. Staab. QOM- quick ontology mapping. In International Semantic

Web Conference, pages 683–697, 2004.

[63] J. Euzenat and et al. State of the art on ontology alignment. In Part of research

project funded by the IST Program, Project number IST-2004-507482. Knowledge

Web Consortim, 2004.

[64] D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS.

IEEE Data Eng. Bull., 22(3):27–34, 1999.

196

BIBLIOGRAPHY

[65] A. Gal. On the cardinality of schema matching. In OTM Workshops, pages 947–956,

2005.

[66] A. Gal. Managing uncertainty in schema matching with top-k schema mappings.

Journal on Data Semantics, 6:90–114, 2006.

[67] A. Gal, M. V. Martinez, G. I. Simari, and V. S. Subrahmanian. Aggregate query

answering under uncertain schema mappings. In Proceedings of the 25th Inter-

national Conference on Data Engineering, ICDE 2009, pages 940–951. Shanghai,

China, 2009.

[68] A. Gal, A. Tavor, A. Trombetta, and D. Montesi. A framework for modeling and

evaluating automatic semantic reconciliation. VLDB Journal, 14(1):50–67, 2005.

[69] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis. Web service discovery

mechanisms: Looking for a needle in a haystack? In International Workshop on

Web Engineering. Santa Cruz, 2004.

[70] F. Giunchiglia, M. Yatskevich, and P. Shvaiko. Semantic matching: algorithms and

implementation. Journal on Data Semantics, 9:1–38, 2007.

[71] G. Gou and R. Chirkova. Efficiently querying large XML data repositories: A

survey. IEEE Trans. on Knowledge and Data Engineering, 19(10):1381–1403, 2007.

[72] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML schema evolution on valid

documents. In Seventh ACM International Workshop on Web Information and Data

Management (WIDM 2005), pages 39–44, 2005.

[73] G. Guerrini, M. Mesiti, and I. Sanz. An Overview of Similarity Measures for Clus-

tering XML Documents. Web Data Management Practices: Emerging Techniques

and Technologies. IDEA GROUP, 2007.

[74] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal,

10(4):270–294, 2001.

[75] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The

piazza peer data management system. IEEE Trans. Knowl. Data Eng., 16(7):787–

798, 2004.

197

BIBLIOGRAPHY

[76] Y. Hao and Y. Zhang. Web services discovery based on schema matching. In

ACSC2007, pages 107–113. Australia, 2007.

[77] B. He and K. C.-C. Chang. Automatic complex schema matching across web query

interfaces: A correlation mining approach. ACM Trans. on Database Systems,

31(1):346–395, 2006.

[78] J. Hopfield and D. Tank. Neural computation of decisions in optimization problems.

Biol Cybern., 52(3):52–141, 1985.

[79] Z. Hu. Using ontology to bind web services to the data model of automation systems.

In Web, Web-Services, and Database Systems, pages 154–168, 2002.

[80] Y. B. Idrissi and J. Vachon. Evaluation of hierarchical clustering algorithms for doc-

ument datasets. In the 11th International Conference on Information and knowledge

Management, pages 515–524, 2002.

[81] Y. B. Idrissi and J. Vachon. A context-based approach for the discovery of complex

matches between database sources. In DEXA 2007, LNCS 4653, page 864873, 2007.

[82] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing

Surveys, 31(3):264–323, 1999.

[83] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-ray: To-

wards integrating XML and relational database systems. In Proceedings of the 19th

International Conference on Conceptual Modeling (ER2000), pages 339–353. Kyoto,

Japan, 2000.

[84] T. Kohonen. Self-Organizing Maps, volume 30. Springer Series in Information

Sciences, Berlin, Germany, 3 edition, 2001.

[85] N. Kokash. A comparison of web service interface similarity measures. In the Third

Starting AI Researchers’ Symposium (STAIRS 2006), pages 220–231. Trentino,

Italy, 2006.

[86] D. Kramer. Xem: XML evolution management. Master’s thesis, Worchester Poly-

technic Institute, 2001.

[87] D. X. Le, J. W. Rahayu, and E. Pardede. Dynamic approach for integrating web

data warehouses. In ICCSA 2006, pages 207–216, 2006.

198

BIBLIOGRAPHY

[88] D. Lee and W. W. Chu. Comparative analysis of six XML schema languages.

SIGMOD Record, 29(3):76–87, 2000.

[89] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust: Clustering XML schemas for

effective integration. In CIKM’02, pages 63–74, 2002.

[90] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner: tuning schema matching

software using synthetic scenarios. VLDB J., 16(1):97–132, 2007.

[91] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the

Symposium on Principles of Database Systems (PODS), page 233246, 2002.

[92] H.-P. Leung, F.-L. Chung, and S. C.-F. Chan. On the use of hierarchical information

in sequential mining-based XML document similarity computation. Knowledge and

Information Systems, 7(4):476–498, 2005.

[93] W. Li and C. Clifton. Semint: A tool for identifying attribute correspondences in

heterogeneous databases using neural networks. Data and Knowledge Engineering,

33:49–84, 2000.

[94] W. Lian, D. W. lok Cheung, N. Mamoulis, and S.-M. Yiu. An efficient and scal-

able algorithm for clustering XML documents by structure. IEEE Trans. on KDE,

16(1):82–96, 2004.

[95] J. Ma, Y. Zhang, and J. He. Efficiently finding web services using a clustering

semantic approach. In CSSSIA 2008, page 5. China, 2008.

[96] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.

In VLDB 2001, pages 49–58. Roma, Italy, 2001.

[97] A. Marie and A. Gal. Boosting schema matchers. In Proceedings of the OTM 2008

Confederated International Conferences, pages 283 – 300, 2008.

[98] R. Marler and J. arora. Survey of multi-objective optimization methods for engi-

neering. Struct Multidisc Optim, 26:369–395, 2004.

[99] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent

Systems, 16(2):46–53, 2001.

[100] W. Meier. eXist: An open source native XML database. In Web, Web Services,

and Database Systems, pages 169–183. Erfurt, Germany, 2002.

199

BIBLIOGRAPHY

[101] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph

matching algorithm and its application to schema matching. In Proceedings of the

18th International Conference on Data Engineering (ICDE’02), 2002.

[102] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming platform for

generic model management. In Proceedings of the 2003 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 1193–204. California, USA, 2003.

[103] R. J. Miller, L. M. Haas, and M. A. Hernndez. Schema mapping as query discovery.

In Proc 26th Int Conf On Very Large Data Bases (VLDB), page 7788, 2000.

[104] H. J. Moon, C. Curino, H. MyungWon, and C. Zaniolo. PRIMA: Archiving and

querying historical data with evolving schemas. In SIGMOD Conference, 1019-1021

2009.

[105] G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88, 2001.

[106] R. Nayak. Fast and effective clustering of XML data using structural information.

Knowledge and Information Systems, 14(2):197–215, 2008.

[107] R. Nayak. Using data mining in web services planning, development and mainte-

nance. International Journal of Web Services Research, 5:62–80, 2008.

[108] R. Nayak and W. Iryadi. XML schema clustering with semantic and hierarchical

similarity measures. Knowledge-based Systems, 20:336–349, 2007.

[109] R. Nayak and B. Lee. Web service discovery with additional semantics and cluster-

ing. In IEEE/WIC/ACM International Conference on Web Intelligence, WI2007,

pages 555 – 558, 2007.

[110] N. Noy. Semantic integration: A survey of ontology-based approaches. SIGMOD

Record, 33(4):65–70, 2004.

[111] T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice

Hall, 1999.

[112] J. Pei, J. Hong, and D. A. Bell. A novel clustering-based approach to schema match-

ing. In 4th International Conference Advances in Information Systems (ADVIS),

pages 60–69, 2006.

200

BIBLIOGRAPHY

[113] C. Pluempitiwiriyawej and J. Hammer. Element matching across data-oriented XML

sources using a multi-strategy clustering model. Data & Knowledge Engineering,

48:297–333, 2004.

[114] R. Pottinger and P. A. Bernstein. Creating a mediated schema based on initial

correspondences. IEEE Data Eng. Bull., 25(3):26–31, 2002.

[115] H. Prufer. Neuer Beweis eines Satzes uber Permutationen. Archiv für Mathematik

und Physik, 27:142–144, 1918.

[116] J. W. Rahayu, E. Pardede, and D. Taniar. The new era of web data warehousing:

XML warehousing issues and challenges. In The Tenth International Conference on

Information Integration and Web-based Applications Services, page 4, Nov. 2008.

[117] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. VLDB Journal, 10(4):334–350, 2001.

[118] E. Rahm, H. H. Do, and S. Massmann. Matching large XML schemas. SIGMOD

Record, 33(4):26–31, 2004.

[119] A. Renner. XML data and object databases: the perfect couple? In 17th Inter.

Conf. on Data Engineering, pages 143–148, 2001.

[120] R. Rojas. Neural Networks - A Systematic Introduction. Springer Verlag, Berlin,

New York, 1996.

[121] A. Sajjanhar, J. Hou, and Y. Zhang. Algorithm for web services matching. In

APWeb 2004, LNCS 3007, pages 665–670, 2004.

[122] B. Saleem, Z. Bellahsene, and E. Hunt. PORSCHE: Performance oriented schema

mediation. Information Systems, 33(7-8):637–657, 2008.

[123] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational databases for querying XML documents: Limitations and opportunities.

In 25th VLDB, pages 302–314, 1999.

[124] P. Shvaiko. Iterative Schema-based Semantic Matching. PhD thesis, University of

Trento, 2006.

[125] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. J. Data

Semantics, 4:146–171, 2005.

201

BIBLIOGRAPHY

[126] A. Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull.,

24(4):35–43, 2001.

[127] M. Smiljanic. XML Schema Matching Balancing Efficiency and Effectiveness by

means of Clustering. PhD thesis, Twente University, 2006.

[128] M. Smiljanic, M. van Keulen, , and W. Jonker. Formalizing the XML schema match-

ing problem as a constraint optimization problem. In 16th International Conference

on Database and Expert Systems Applications (DEXA2005), pages 333–342, 2005.

[129] M. Smiljanic, M. van Keulen, and W. Jonker. Using element clustering to increase

the efficiency of XML schema matching. In ICDE Workshops 2006, pages 45–54,

2006.

[130] S. Staab and R. Studer. Handbook of ontologies. International handbooks on infor-

mation systems. Springer Verlag, Berlin, Germany, 2004.

[131] R. Steinmetz and K. (Eds.). Peer-to-Peer Systems and Applications. Lecture Notes

in Computer Science No. 3485. Springer Verlag, Berlin, Heidelberg, 2005.

[132] E. Stroulia and Y. Wang. Structural and semantic matching for assessing web-

service similarity. International Journal of Cooperative Information Systems (IJ-

CIS), 14(4):407–438, 2005.

[133] S. Tatikonda, S. Parthasarathy, and M. Goyder. LCS-TRIM: Dynamic programming

meets XML indexing and querying. In VLDB’07, pages 63–74, 2007.

[134] J. Tekli, R. Chbeir, , and K. Yetongnon. An overview on XML similarity: back-

ground, current trends and future directions. Computer Science Review, 3(3):151–

173, 2009.

[135] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.

Knowledge Engineering Review, 11(2), 1996.

[136] P. Valduriez and E. Pacitti. Data management in large-scale P2P systems. In

6th International Conference of Vector and Parallel Processing (VECPAR), pages

104–118, 2004.

[137] B. Vrdoljak, M. Banek, and Z. Skocir. Integrating XML sources into a data ware-

house. In Data Engineering Issues in E-Commerce and Services, Second Interna-

tional Workshop, DEECS 2006, pages 133–142, 2006.

202

BIBLIOGRAPHY

[138] G. Wang, J. A. Goguen, Y.-K. Nam, and K. Lin:. Critical points for interactive

schema matching. In Proceedings of 6th Asia-Pacific Web Conference, APWeb,

pages 654–664. Hangzhou, China, 2004.

[139] G. Wang, B. Sun, J. Lv, and G. Yu. RPE query processing and optimization

techniques for XML databases. J. Comput. Sci. Technol., 19(2):224–237, 2004.

[140] Y. Wang and E. Stroulia. Flexible interface matching for web-service discovery. In

WISE 2003, pages 147–156. Italy, 2003.

[141] I. W. S. Wicaksana and K. Ytongnon. A peer-to-peer based semantic agreement

approach for information systems interoperability. In OM-2006 ISWC-2006, pages

216–220, 2006.

[142] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems. Taylor &

Francis Group, USA, 2004.

[143] X. Wu and G. Liu. XML twig pattern matching using version tree. Data & Knowl-

edge Engineering, 64(3):580599, 2008.

[144] L. Xu. Source Discovery and Schema Mapping for Data Integration. PhD thesis,

Brigham Young University, 2003.

[145] L. Xu and D. W. Embley. A composite approach to automating direct and indirect

schema mappings. Information Systems, 31(8):697–732, 2006.

[146] I. Zaihrayeu. Towards Peer-to-Peer Information Management Systems. PhD thesis,

University of Trento, 2006.

[147] Z. Zhang, H. Che, P. Shi, Y. Sun, and J. Gu. Formulation schema matching problem

for combinatorial optimization problem. Interoperability in Business Information

systems (IBIS), 1(1):33–60, 2006.

[148] H. Zhao and S. Ram. Clustering schema elements for semantic integration of het-

erogeneous data sources. Journal of Database Management, 15(4):88–106, 2004.

[149] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected crite-

rion functions for document clustering. Machine Learning 55(3): 311-331 (2004),

55(3):311–331, 2004.

203

BIBLIOGRAPHY

[150] Y. Zhao and G. Karypis. Hierarchical clustering algorithms for document datasets.

Data Mining and Knowledge Discovery, 10(2):141–168, 2005.

[151] E. Zitzler and L. Thiele. Multiobjective evolutionaty algorithms: A comparative

case study and the strength pareto approach. IEEE Tran. on EC, 3:257–271, 1999.

204

	Abstract
	Zusammenfassung
	Acknowledgments
	I Introduction
	Motivations & Objectives
	Motivations
	Objectives & contributions
	Road map of the thesis

	Preliminaries
	Motivation example
	The schema matching problem
	Problem definition
	Data model
	Matching output

	Summary

	II Schema matching: The state of the art
	Application domains
	 Data integration
	Data warehousing
	Schema evolution & data migration
	Peer-to-peer systems
	XML data clustering
	Web service discovery
	XML Query processing
	Summary

	Schema matching systems: An overview
	Generic schema matching framework
	Transformation for matching (TransMat)
	Pre-Match phase
	Match phase
	Element matcher
	Similarity combiner
	Similarity selector

	Mappings Transformation (MapTrans)
	Summary

	III Design, architecture, and implementation
	XML element similarity measures
	Preliminaries
	Internal element similarity measures
	Name similarity measure
	Data type similarity measure
	Constraint similarity measure

	External element similarity measures
	Element context
	Element context measure
	Putting all together

	The utilization of element similarity measures
	Prüfer sequences construction

	Summary

	Sequence-based XML schema matching
	Introduction & motivations
	The XPrüM system
	Schema preparation
	Matching algorithms
	Internal matching algorithms
	Structural matching algorithms
	Combining element similarity measures
	Complexity analysis

	EXPrüM: Enhancement of XPrüM
	Compatible elements identification
	Matching refinement
	Complexity analysis

	Summary

	Implementation & evaluation
	Evaluation measures
	Effectiveness measures
	Efficiency measures
	Combining effectiveness and efficiency for schema matching evaluation

	Evaluation scenarios
	First scenario: Element similarity measures evaluation
	Experimental results
	Lessons learned from the first scenario.

	Second scenario: XPrüM evaluation
	Data set
	Evaluation methodology
	Experimental results
	More lessons learned.

	Third scenario: EXPrüM evaluation
	Data sets
	Matching quality
	Matching efficiency
	Cost-effectiveness comparison

	Summary

	IV Deployment of the proposed schema matching system
	SeqXClust: XML schema clustering framework
	Introduction
	Data representation
	Similarity computation
	Clustering/grouping

	SeqXClust: The clustering framework
	Schema similarity matrix
	Clustering algorithms

	Experimental evaluation
	Data set
	Experimental methodology and metrics
	Experimental results

	Related Work
	Summary

	SeqDisc: Supporting Web service discovery
	Introduction
	Related Work
	Information Retrieval Approach
	Semantics Approach

	Preliminaries
	Web services
	Web service representation
	An illustrative example

	SeqDisc: the discovery framework
	Similarity assessment
	Level matching
	Schema matching
	Matching refinement

	Experimental evaluation
	Data sets
	Performance Measure
	Experimental Results

	Summary

	V Summary and future directions
	Conclusions
	Summary of the thesis
	Contributions

	Future directions
	Methodology directions
	Prototype directions
	Performance & evaluation directions

	Bibliography

