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Summary 
Chemical synapses are highly specialized cellular junctions between neurons and their target 
cells, composed of a presynaptic bouton, which harbors synaptic vesicles (SVs), a 
postsynaptic terminal, which contains receptors for neurotransmitters and a synaptic cleft, 
which separates the pre- and postsynaptic compartments. In presynaptic terminals, SVs form 
clusters around a specialized region of the plasma membrane, known as the active zone. At 
the active zone a complex protein network forms the cytomatrix at the active zone (CAZ). It is 
thought to be involved in tethering SVs and in the spatial and temporal organization of the 
exocytosis machinery. Bassoon and Piccolo, two related proteins, are core components of 
this CAZ. 
Bassoon and Piccolo are transported on membranous organelles, called Piccolo-Bassoon 
transport vesicles (PTVs). They are transported from the neuronal soma to distal axonal 
locations, where they participate in assembling new presynaptic terminals. Despite their net 
anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to 
retrograde motors is unclear. In this study, a direct interaction of Bassoon with dynein light 
chains (DLCs) DLC1 and DLC2 is reported. This interaction potentially links PTVs to 
retrograde dynein motor complexes. Three independently functional DLC-binding sites were 
identified on Bassoon, all resembling but not exactly matching the DLC-binding consensus 
sequence (K/R)XTQT. Both DLCs interact with Bassoon in yeast and mammalian cells. A 
newly developed mito-targeting system confirmed the functionality of the heterologous 
expression in COS-7 cells. Quantitative binding assays revealed a significantly higher affinity 
of Bassoon for DLC2 than for DLC1. These data suggest that, via its interaction with DLCs, 
Bassoon might function as a cargo adapter for the retrograde motor dynein.  
In a mouse mutant for Bassoon the lack of functional protein leads to impaired fast 
exocytosis and reduced Ca2+ current in cochlea inner hair cells, suggesting insufficient 
recruitment and/or stabilization of voltage-dependent calcium channels (VDCCs) in the 
presynaptic active zone. The molecular mechanism for these findings is unclear. In this study 
an interaction between the CAZ proteins Bassoon and Piccolo with Rim-binding proteins 
(RBPs), binding partners for the Rab3-effector Rim as well as VDCCs – CaV2.1 and CaV2.2, 
is reported. RBP1 and RBP2 interact with specific PXXP motifs in Bassoon and Piccolo 
preferentially via their first SH3 domain. The interaction between RBPs and Bassoon can be 
inhibited by phosphorylation of the Ser-2893 residue in the RBP-interacting PSPP motif of 
Bassoon, while Piccolo’s interaction with RBPs is phosphorylation-independent. The 
existence of three SH3 domains in RBPs and several described binding partners – Rim1, 
CaV2.2, Bassoon and Piccolo – raised the question whether RBPs might serve as physical 
modules linking VDCCs with SVs and components of the CAZ. Indeed, quantitative in vitro 
assays disclosed clear differences in binding affinities of distinct RBP-SH3 domains to Rim1, 
CaV2.2, Bassoon and Piccolo. This suggests that RBPs might interact with these proteins 
simultaneously in a RBP-based protein complex. In immunofluorescence analysis the 
amount of presynaptic CaV2.1 was significantly reduced in Bassoon knockout compared with 
wild-type synapses. To assess whether Bassoon effects on VDCC localization require RBPs 
as linkers connecting these two proteins, the distribution of CaV2.1 in rat hippocampal 
neurons transfected either with EGFP-tagged wild-type Bassoon or RBP-binding deficient 
Bassoon mutant was compared. Bassoon clustering in the cell body was observed in both 
cases, while endogenous RBP2 and CaV2.1 were co-recruited only to clusters formed by 
wild-type Bassoon. At synapses formed by axons of neurons transfected with EGFP-tagged 
wild-type Bassoon the intensities of immunofluorescence of both RBP2 and CaV2.1 showed 
strong positive correlation with the intensity of EGFP fluorescence. On the contrary, a 
negative correlation was observed for the RBP2 and CaV2.1 immunofluorescence intensities 
and EGFP fluorescence intensity at synapses containing RBP binding-deficient Bassoon 
mutant. Overall, the data suggest that Bassoon is involved in recruitment and exact 
localization of VDCCs in the presynaptic terminal active zones. This mechanism requires 
RBPs, which interact simultaneously with Bassoon and VDCCs and therefore can serve as 
physical linkers for this protein complex assembly.  
These findings provide a new insight in the mechanism contributing to the organization of the 
exocytosis machinery and regulation of synaptic transmission. 
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Zusammenfassung 
Chemische Synapsen sind hoch spezialisierte Zell-Zell-Kontakte zwischen Neuronen und 
ihren Zielzellen. Sie bestehen aus einem präsynaptischen Bouton, der mit synaptischen 
Vesikeln angefüllt ist, einem postsynaptischen Kompartiment, welches die Neurotrans-
mitterrezeptoren und dem damit verknüpften Apparat zur Signaltransduktion  enthält, und 
einem synaptischen Spalt, der Prä- und Postsynapse voneinander trennt. In der präsynap-
tischen Endigung bilden die synaptischen Vesikel eine Traube an der aktive Zonen – jener 
spezialisierten Region der Plasmamembran an der die Neurotransmitterfreisetzung erfolgt. 
An der aktiven Zone befindet sich ein hoch komplexes Proteinnetzwerk, welches als 
Cytomatrix an der aktiven Zone (CAZ) oder präsynaptisches Gitter bekannt ist. Es wird 
vermutet, dass Komponenten dieser CAZ an der Rekrutierung von synaptischen Vesikeln 
und der Organisation der Exocytosemaschinerie beteiligt sind. Bassoon und Piccolo, zwei 
nahe miteinander verwandte Proteine, sind integrale Komponenten dieser CAZ. 
Diese beiden ungewöhnlich großen Proteine werden auf membranären Organellen, den so 
genannten Piccolo-Bassoon-Transportvesikeln (PTVs), aus dem Soma ins Axon bis hin zu 
deren distalen Enden transportiert. Sie sind entlang des Axons am Aufbau neuer 
synaptischer Verbindungen beteiligt sind. Trotz ihres in der Summe anterograden Transports 
werden die PTVs innerhalb des Axons in beide Richtungen transportiert. Bislang war unklar, 
wie PTVs an einen dafür notwendigen retrograden Motor gekoppelt sein könnten. In dieser 
Studie wird eine Interaktion von Bassoon mit den leichten Ketten von Dynein, der dynein light 
chain 1 (DLC1) sowie der dynein light chain 2 (DLC2) untersucht. Hierdurch könnten PTVs 
mit Dyneinkomplexen, die als retrograde Motoren an axonalen Microtubuli fungieren, 
verknüpft sein. Es zeigte sich, dass Bassoon drei voneinander unabhängig funktionierende 
DLC-Bindungsstellen besitzt, die zwar alle der Konsensussequenz (K/R)XTQT ähneln, aber 
nicht exakt mit ihr übereinstimmen. Diese Bindungsstellen sind in der homologen Region von 
Piccolo nicht zu finden. Die beiden DLC-Isoformen interagieren mit Bassoon im Hefe-Zwei-
Hybrid-System und in Säugetierzellen. Quantitative Bindungstests ergaben weiterhin, dass 
DLC2 eine signifikant höhere Affinität zu Bassoon besitzt als DLC1. Interaktionsstudien in 
einem im Rahmen der Arbeit neu etablierten heterologen Expressionsystem in COS7-Zellen, 
dem Mito-targeting-Ssytem, bestätigte die Funktionalität der Bassoon-DLC-Interaktion. 
Werden Mitochondrien in COS7-Zellen durch die Expression von Bassoon-Fusionsproteinen 
mit Mito-targeting-Signalen auf der Oberfläche dekoriert so können diese über DLC an 
Microtubili-Motoren binden und retrograd transportiert werden. Sie reichern sich dann 
nachweislich am Microtubuli-Organisationszentrum (MTOC) an. Diese Daten lassen 
vermuten, dass Bassoon durch die Interaktion mit DLCs als Cargo-Adaptor der PTVs für den 
retrograden Motor Dynein fungiert. 
In einer Mausmutanten für Bassoon kommt es in Abwesenheit von funktionellem Bassoon-
Protein in den inneren Haarzellen der Cochlea zu einer behinderten Exocytose und 
reduzierten Ca2+-Strömen, was auf eine unvollständige Rekrutierung und/oder  Stabilisierung 
von spannungsabhängigen Calciumkanälen (voltage-dependent calcium channels: VDCCs) 
in der aktiven Zone hindeutet [Khimich et al. (2005) Nature 434:889-894]. Der genaue 
molekulare Mechanismus hierfür ist jedoch bisher unklar.  In dieser Studie wird eine Bindung 
von Bassoon und Piccolo an RIM-bindende Proteine (RBPs), gezeigt. RBPs binden neben 
dem CAZ-Protein RIM (Rab3-interacting molecule) auch VDCCs und könnten somit als 
Bindeglieder zwischen CAZ-Netzwerk, Exocytose-Maschinerie und Calciumkanälen der 
präsynaptischen Membran von großem Interesse sein.  
RBP1 und RBP2 interagieren vorrangig über die erste SH3-Domäne mit spezifischen PXXP-
Motiven in Bassoon und Piccolo. Bemerkenswerterweise kann die Interaktion von RBPs und 
Bassoon durch Phosphorylierung des Ser-2893-Restes im mit RBP interagierenden PSPP-
Motiv von Bassoon inhibiert werden.  Die Interaktion mit Piccolo ist dagegen 
phosphorylierungsunabhängig. Die Existenz von drei SH3-Domänen in RBPs und mehreren 
verschiedenen Bindungspartnern – Rim1, Cav2.1, Bassoon und Piccolo – stellte die Frage 
auf, ob RBPs wirklich als Bindungsmodule fungieren, die VDCCs mit SVs und Komponenten 
der CAZ verknüpfen, oder ob die Interaktionspartner um Bindung an RBPs konkurrieren. 
Tatsächlich deckten in vitro-Experimente deutliche Unterschiede in den Bindungsaffinitäten 
verschiedener RBP-SH3-Domänen zu Rim1, Cav2.1, Bassoon und Piccolo auf. Dies lässt 
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darauf schließen, dass RBPs tatsächlich mit allen diesen Proteinen gleichzeitig in einem 
RBP-basierten Proteinkomplex interagieren könnten. Um herauszufinden, ob der Einfluss 
von Bassoon auf die Lokalisation von VDCCs von RBPs als Verknüpfungselemente beider 
Proteine abhängt, wurde die Verteilung von Cav2.1 in hippocampalen Primärkultur-Neuronen 
aus der Ratte verglichen, die entweder mit EGFP-markiertem wildtypischen Bassoon oder 
einer entprechend markierten RBP-Bindungsmutanten von Bassoon transfiziert wurden. In 
beiden Fällen wurden Ansammlungen von Bassoon im Zellkörper beobachtet, wobei 
endogene RBP2 und Cav2.1 jedoch nur zu Ansammlungen von wildtypischen Bassoon, nicht 
aber zu Bassoon, das nicht zur Interaktion mit RBP in der Lage war, rekrutiert wurden. An 
Synpasen von Axonen, die von mit EGFP-markierten wildtypischen Bassoon transfizierten 
Neuronen stammen, wurde eine starke positive Korrelation zwischen den Immunfluoreszenz-
Intensitäten von RBP2 und Cav2.1 mit der EGFP-Intensität gemessen. Im Gegensatz dazu 
war eine negative Korrelation zwischen der RBP2- und Cav2.1-Intensität mit der EGFP-
Intensität an Synapsen vorhanden, die die RBP-Bindungsmutante von Bassoon enthielten. In 
dieser Studie konnte weiter gezeigt werden, dass die Menge an präsynaptischem 
Calciumkanal Cav2.1 in Synapsen der Bassoon-mutanten Maus im Vergleich zu 
wildtypischen Synapsen signifikant kleiner ist.  
Zusammenfassend lassen die Daten darauf schließen, dass Bassoon an der Retention 
und/oder der exakten Lokalisation von VDCCs in den präsynaptischen Nervenendigungen 
beteiligt ist. Der Retentionsmechanismus benötigt RBPs, die gleichzeitig mit Bassoon und 
VDCCs interagieren können und demnach als Integrationsglied für die Bildung dieses 
Proteinkomplexes dienen kann. Diese Resultate ermöglichen einen neuen Einblick in die 
Mechanismen, die zur Organisation der Exocytosemaschinerie und der Regulation von 
synaptischer Transmission beitragen.  
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1. Introduction 
 

1.1 Chemical synapses. Presynaptic boutons: organization and 

function   

Chemical synapses are highly specialized cellular junctions between neurons and their target 

cells, designed for the rapid and efficient transmission of signals between these cells. They 

are asymmetric structures, composed of a presynaptic bouton, which harbors 

neurotransmitter filled synaptic vesicles (SVs), and a postsynaptic compartment, which 

contains receptors for the neurotransmitters. The two synaptic compartments are separated 

from each other by an approximately 20 nm wide synaptic cleft.  

At these synapses signals are transduced by temporally and spatially tightly regulated 

release of neurotransmitters from the presynaptic terminal. In response to the action potential 

calcium ions pass through voltage-dependent calcium channels (VDCCs) and enter the 

presynaptic terminal. The rise in intracellular calcium concentration causes SVs to fuse with 

the presynaptic membrane and thereby release neurotransmitters into the synaptic cleft, 

where they diffuse towards the postsynaptic membrane and bind to specific receptors.  

Presynaptic boutons of conventional central nervous system synapses are composed of 

distinct structural and functional compartments. These include the large reservoir of synaptic 

vesicles and the active zone (AZ) where SVs dock and fuse. The AZ is characterized by a 

distinctive electron-dense meshwork of proteins facing the synaptic cleft (Landis, 1988). This 

protein network is thought to represent the molecular machinery that mediates and regulates 

transmitter release. Using electron microscope tomography, Harlow et al. (2001) provided 

the first three-dimensional view of the cytoskeletal matrix of the active zone (CAZ) at the frog 

neuromascular junction. It consists of three identifiable structures: beams, ribs and pegs. The 

presynaptic membrane underneath the CAZ is curved outwards forming a ridge and the 

beams run parallel to the ridge’s long axis, whereas the pegs connect the CAZ and the 

presynaptic membrane. The ribs extend orthogonally to the ridge’s long axis and form 7-12 

connections to docked vesicles located on each flank of the ridge. At conventional synapses 

SVs were also shown to be interconnected and connected to the presynaptic membrane via 

a dense meshwork of filaments (Siksou et al., 2007).  Although the full molecular composition 

of the CAZ is still not defined, several CAZ-specific proteins including Rim1, Munc13-1, 

Bassoon, Piccolo/Aczonin, CAST and liprin-α were identified (Fig. 1). These proteins act in 

spatial and functional regulation of SV cycle including vesicle tethering to their release sites, 

docking and priming, fusion with the presynaptic membrane and compensatory endocytosis. 
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FIGURE 1. MOLECULAR ORGANIZATION OF THE CAZ (FROM FEJTOVA AND GUNDELFINGER, 2006).  
The CAZ-specific proteins RIMs, Munc13s, Bassoon, Piccolo and CAST/ERC are thought to localize 
and organize membrane trafficking events of the synaptic vesicle cycle and connect it to the active 
zone membrane proteins including VDCCs and cell adhesion molecules such as the neurexins. 
Further components that are not exclusive CAZ components include Ca2+/calmodulin kinase domain-
containing membrane-associated guanylate kinase CASK, the transcriptional co-repressor 
CtBP1/BARS50, the RIM-binding proteins (RBP), the prenylated Rab3 acceptor protein PRA1, the 
ARF-GTPase-activating protein GIT, the receptor tyrosine phosphatase LAR and its interacting protein 
Liprin, components of the SNARE complex and its control elements (e.g. Munc18). The interaction 
between Piccolo and the actin-binding protein Abp1 is thought to link the active zone to the 
neighboring endocytic zone. 
 

Each SV can be assigned to one of three pools, which are called as readily releasable pool 

(RRP), the recycling pool and the reserve pool (reviewed in Rizzoli and Betz, 2005). The 

RRP comprises all SVs that are available to be exocytosed immediately upon stimulation. 

These vesicles are generally thought to be docked and primed for release at the AZ. The 

recycling pool is defined as the pool of vesicles that maintain neurotransmitter release upon 

physiological stimulation. This pool is thought to contain about 5-20% of all SVs (reviewed in 

Südhof, 2004). Physiological frequencies of stimulation cause a continuous recycling of the 

cycling pool, so that it is constantly refilled by newly endocytosed and refilled vesicles. The 

reserve pool is defined as a depot of SVs from which release is only triggered during intense 

stimulation. These vesicles constitute the majority (typically 80-90%) of SVs in most 

presynaptic terminals. Notably, the recycling and reserve vesicle pools are spatially 

intermingled and can not be distinguished by their location relative to the active zone (Rizzoli 

and Betz, 2005). In resting terminals most SVs are immobile (Henkel et al., 1996; Kraszewski 

et al., 1996). It is believed that the best candidates to hold them together are the synapsins. 

Several studies using synapsin knockout mice (Li et al., 1995; Takei et al., 1995) and acute 

anti-synapsin antibody injection (Pieribone et al., 1995) showed that lack of functional 
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synapsins leads to the specific loss of SVs distant from the presynaptic membrane. These 

observations led to the suggestion that synapsin holds SVs together specifically in the 

reserve pool (Rizzoli and Betz, 2005). However, other observations show that synapsin 

molecules do not always discriminate between reserve and non-reserve vesicles (reviewed 

in Rizzoli and Betz, 2005). 

In order to release neurotransmitter into the synaptic cleft, SVs undergo a series of trafficking 

events including tethering, docking, priming and, finally, fusion of SV membrane with the 

presynaptic membrane at the AZ.  

Tethering and docking of SVs to the presynaptic membrane is most likely mediated by 

members of Rab family of small GTPases, which interact with various effectors on the 

plasma membrane side (reviewed in Zerial and McBridge, 2001). In presynaptic terminals of 

conventional synapses tethering is thought to be achieved through the interaction of CAZ 

specific protein Rim1 (Rab3 interacting molecule 1) and the vesicular Rab3 (Rosenmund et 

al., 2003). Two proteins have been firmly implicated in docking, Munc18-1 (Voets, 2001) and 

syntaxin-1 (de Wit et al., 2006). Currently a new model for the docking step was proposed by 

de Wit and co-workers (2009): first, Munc18-1 binds the closed conformation of syntaxin-1. 

Second, SNAP-25 binds the syntaxin-1/Munc18-1 heterodimer. Third, secretory vesicles 

reach the target membrane area and associate via synaptotagmin-1 to this trimeric syntaxin-

1/Munc18-1/SNAP-25 complex, which effectuates docking.  

Synaptic vesicles then have to undergo the priming procedure, which is initiated by the CAZ 

protein of Munc13 family (Rosenmund et al., 2002; reviewed in Rosenmund et al., 2003). In 

the absence of Munc13 proteins, no fusion-competent vesicles are available and transmitter 

release is completely blocked (Varoqueaux et al., 2002). Munc13 proteins are regulated by 

multiple proteins, e.g. Rims, and second messengers, e.g. diacylglycerol, making SV priming 

a highly dynamic regulated process (reviewed in Rosenmund et al., 2003).  

In the presynaptic AZ, after arrival of the action potential calcium influx into the cells occurs 

through VDCCs. Synaptotagmin 1, located on the SV membrane (Tucker et al., 2004), 

functions as a Ca2+ sensor and triggers the fusion of primed synaptic vesicles with 

presynaptic plasma membrane, in turn releasing neurotransmitter into the cleft. Functional 

studies established that fast-regulated exocytosis requires the interaction of small 

cytoplasmically exposed membrane proteins called SNAREs (soluble N-ethyl-maleimide-

sensitive fusion protein attachment protein receptors). For regulated-exocytosis, the relevant 

SNAREs are synaptobrevin/VAMP (located on vesicle membrane), syntaxin-1 and SNAP-25 

(synaptosome-associated protein 25 kDa) (both located on the plasma membrane), which 

form a complex and represent the minimal machinery for fusion (Jahn and Südhof, 1999; 

Chen and Scheller, 2001). Fusion is driven by the progressive zippering of vesicle and 

plasma membrane SNAREs to form a four-helix bundle, referred in literature as the SNARE 
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complex (Hayashi et al., 1994; Fasshauer et al., 1998; Poirier et al., 1998). Fully primed 

vesicles require additional interactions with complexins to increase vesicle release probability 

and to speed up the release time course (reviewed in Rosenmund et al., 2003).  

Two structurally related CAZ components, Bassoon and Piccolo/Aczonin, are known to be 

involved in the assembly of the active zone (Zhai et al., 2001; Shapira et al., 2003). Analysis 

of Bassoon mutant mice has revealed that Bassoon is essential for the attachment of the 

retinal (Altrock et al., 2003; Dick et al., 2003) and inner hear cell (IHC) (Khimich et al., 2005) 

synaptic ribbons to the active zone. Synaptic ribbons are thought to correspond to the CAZ of 

conventional synapses (Zhai and Bellen, 2004; tom Dieck et al. 2005). CAST (CAZ-

associated structural protein) can directly bind Rim1, Bassoon and Piccolo and is believed to 

be involved in neurotransmitter release through these interactions (Takao-Rikitsu et al., 

2004). Several studies have defined crucial functions for liprin-α in the regulation of the 

active zone assembly (reviewed in Stryker and Johnson, 2007). Moreover, a number of 

studies on the invertebrate neuromuscular junction support a model, in which liprin-α and its 

binding partner the receptor protein tyrosine phosphatase LAR cooperate to maintain 

presynaptic proteins (such as ERC2, Rim, the MALS/Veli-Cask-Mint1 complex) in a dense 

molecular scaffold at the AZ. In their absence, the tight association of active zone 

components that is crucial for optimal synaptic vesicle release is severely disrupted 

(reviewed in Stryker and Johnson, 2007). 

 

1.2 Presynaptic voltage dependent calcium channels: structure and 

function and regulation 

Entry of Ca2+ ions through presynaptic VDCCs can be measured electrophysiologically as 

calcium currents. These currents have diverse physiological roles and pharmacological 

properties in different cell types, and a systematic nomenclature has evolved for the distinct 

classes of calcium currents (Tsien et al., 1988). N-type, P/Q-type, and R-type calcium 

currents require strong depolarization for activation (Tsien et al., 1991) and are blocked by 

specific polypeptide toxins from snail and spider venoms (Miljanich and Ramachandran, 

1995). N-type and P/Q-type calcium currents are observed primarily in neurons, where they 

initiate neurotransmission at most fast conventional synapses (Catterall, 2000; Dunlap et al., 

1995; Olivera et al., 1994). The calcium channels are composed of four or five distinct 

subunits (Fig. 2A) (Catterall, 2000; Takahashi et al., 1987). The α1 subunit of 190–250 kDa 

is the largest subunit, and it harbors the conduction pore, the voltage sensors and gating 

apparatus, and most of the known sites of channel regulation by second messengers, drugs, 

and toxins. The ~2000 amino acid residues of the α1 subunit are organized in four 

homologous domains (I–IV). Each domain of the α1 subunit consists of six transmembrane α 
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helices (S1 through S6) and a membrane-associated P loop between S5 and S6. The S1 

through S4 segments serve as the voltage sensor module (Fig. 2B, yellow), whereas 

transmembrane segments S5 and S6 in each domain and the P loop between them form the 

pore module (Fig. 2B, green). The α1 subunits are associated with four distinct auxiliary 

protein subunits (Catterall, 2000) (Fig. 2A and 2B). The intracellular β subunit is a hydrophilic 

protein of 50–65 kDa. The transmembrane, disulfide-linked α2δ subunit complex is encoded 

by a single gene, but the resulting pre-polypeptide is cleaved posttranslationally and linked 

via disulfide-bonds to yield the mature α2 and δ subunits. A γ-subunit having four 

transmembrane segments is a component of skeletal muscle calcium channels, and related 

subunits are expressed in heart and brain.  

 

 
FIGURE 2. SUBUNIT STRUCTURE OF VDCCS (FROM CATTERALL AND FEW, 2008). 
(A and B) The subunit composition and structure of VDCCs are illustrated. (B) Predicted helices are 
depicted as cylinders. The lengths of lines correspond approximately to the lengths of the polypeptide 
segments represented. The voltage-sensing module is illustrated in yellow and the pore-forming 
module in green. 
 

The auxiliary subunits of VDCCs have an important influence on their function (Dolphin, 

2003; Hofmann et al., 1999). CaVβ subunits greatly enhance the cell surface expression of 

the α1 subunits and shift their kinetics and voltage dependence of activation and inactivation. 

The α2δ subunits also enhance cell surface expression of α1 subunits, but have smaller and 

less consistent effects on the kinetics and voltage dependence of gating (Davies et al., 

2007). The γ−subunits do not increase cell surface expression of VDCCs and, in some 

cases, even reduce it substantially. The functional role of the γ subunits of VDCCs is the 

least well defined. Although these four auxiliary subunits modulate the functional properties 

of the calcium channel complex, the pharmacological and physiological diversity of VDCCs 

arises primarily from the existence of multiple α1 subunits. CaVα1 subunits are encoded by 

ten distinct genes in mammals, which are divided into three subfamilies by sequence 

similarity (Catterall, 2000; Ertel et al., 2000; Snutch and Reiner, 1992). The CaV2 subfamily 

members (CaV2.1, CaV2.2, and CaV2.3) conduct P/Q-type, N-type, and R-type Ca2+ currents, 

respectively (Catterall, 2000; Ertel et al., 2000; Olivera et al., 1994; Snutch and Reiner, 
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1992). Ca2+ entering neurons through CaV2.1 and CaV2.2 channels is primarily responsible 

for initiating synaptic transmission at fast conventional synapses (Dunlap et al., 1995; Olivera 

et al., 1994). CaV2.2 channels, which conduct N-type Ca2+ current, are most important at 

synapses formed by neurons of the peripheral nervous system. In contrast, CaV2.1 channels, 

which conduct P/Q-type Ca2+ currents, play the major role at most synapses formed by 

neurons of the adult mammalian central nervous system. However, in some central 

synapses, including a subset of inhibitory interneurons of the hippocampus (Poncer et al., 

1997), CaV2.2 channels are predominant in neurotransmitter release. N-type currents also 

seem to play an important role during development. CaV2.2 start to function on DIV3-4. At 

this developmental stage preceding synaptogenesis, CaV2.2 are involved in controlling 

synaptic vesicle recycling. It is only at later developmental stages (10–12 DIV), when the 

neurons have established a clear axodendritic polarity and form synaptic contacts, that these 

channels are progressively excluded from the axon (Pravettoni et al., 2000) and substituted 

with CaV2.1. 

 

1.3 Presynaptic voltage dependent calcium channels: precise 

localization is essential 

Ca2+ entry through a single calcium channel can trigger vesicular release  (Fig. 3) (Stanley, 

1993), and Ca2+-triggered synaptic vesicle exocytosis depends on the assembly of the 

SNARE complex. Neurotransmitter release is proportional to the third or fourth power of Ca2+ 

entry (Augustine et al., 1987; Regehr, 2002). Thus, regulation of presynaptic Ca2+ channels 

provides a sensitive and efficient tool to regulate neurotransmitter release, as a 2-fold 

change in the presynaptic Ca2+ current results in an 8- to 16-fold change in exocytosis. 

The precise co-localization of VDCCs and the fusion machinery can be maintained through a 

direct interaction of Ca2+ channels with SNARE proteins. Both CaV2.1 and CaV2.2 channels 

co-localize tightly with syntaxin-1 in presynaptic nerve terminals (Cohen et al., 1991; 

Westenbroek et al., 1992, 1995). These channels can be isolated as a complex with SNARE 

proteins (Bennett et al., 1992; Leveque et al., 1994; Yoshida et al., 1992). The plasma 

membrane SNARE proteins syntaxin-1A and SNAP-25, but not the synaptic vesicle SNARE 

synaptobrevin, specifically interact with the CaV2.2 channel by binding to the intracellular 

loop between domains II and III (LII-III) of the α1 subunit (Sheng et al., 1994) at the synaptic 

protein interaction (synprint) site. This interaction is Ca2+ dependent, with maximal binding at 

20 µM Ca2+ and reduced binding at lower or higher Ca2+ concentrations (Sheng et al., 1996). 

CaV2.1 channels have an analogous synprint site, and different channel isoforms have 

distinct interactions with syntaxin and SNAP-25 (Kim and Catterall, 1997; Rettig et al., 1996), 

what may confer specialized regulatory pathways that contribute to synaptic modulation. The 
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molecular interaction between syntaxin and presynaptic CaV2.2 channels has been 

confirmed in intact nerve terminals by molecular imaging and correlation analysis (Li et al., 

2004). The interaction between presynaptic calcium channels and the synprint is a regulated 

process, which might be influenced by phosphorylation of specific amino acids of synprint by 

PKC or CaMKII (Yokoyama et al., 1997, 2005). These studies suggest that phosphorylation 

of the synprint site may serve as a biochemical switch controlling the SNARE-synprint 

interaction. Despite the clear evidence of synprint involvement in VDCCs co-localization with 

SV fusion apparatus, two CaV2.2 splice variants lack large parts of the cytoplasmic II-III loop 

(Δ1 R756-L1139, Δ2 K737-A1001) including the synprint protein–protein interaction domain 

were targeted into the axons (Szabo et al., 2006). Nevertheless, their ability to form 

presynaptic clusters was almost abolished for CaV2.2-Δ1 and significantly reduced for 

CaV2.2-Δ2. Thus, the synprint site is important for normal synaptic targeting of CaV2.2 but not 

essential. Based on their observations, the authors of the original paper suggested that 

protein–protein interactions with the synprint site must cooperate with other targeting 

mechanisms in the incorporation of CaV2.2 into presynaptic specializations of hippocampal 

neurons but are neither necessary nor sufficient for axonal targeting.  

 
FIGURE 3. MODEL FOR THE ORGANIZATION OF NEUROTRANSMITTER RELEASE SITE (FROM STANLEY, 1993). 
 Single calcium domain model of fast neurotransmitter secretion with inter-element distances 
approximately to scale. The 10 µM iso-concentration line of the calcium domain is shown. 
 

Three lines of evidence indicate that the interactions with synprint are unlikely to be the 

primary mechanism for targeting presynaptic VDCCs to nerve terminals. First, inhibition of 

synprint interaction or deletion of the synprint site on both CaV2.1 and CaV2.2 channels 

reduces the efficiency of exocytosis but does not completely abolish synaptic transmission or 

hormone secretion (Harkins et al., 2004; Mochida et al., 1996, 2003; Rettig et al., 1997). 
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Second, although invertebrate CaV2 channels effectively initiate synaptic transmission, they 

lack a synprint site (Spafford et al., 2003). Third, SNARE proteins are not selectively 

localized at nerve terminals themselves, making it unlikely that SNARE proteins provide the 

primary targeting information. Evidently, interactions with other proteins are also involved in 

targeting and trafficking of presynaptic Ca2+ channels. 

Consistent with this idea, the specific association of CaV2.2 alpha carboxyl termini with the 

first PDZ domain of Mint1 and SH3 domain of CASK has been reported (Maximov et al., 

1999; Maximov and Bezprozvanny, 2002). Furthermore, for Lymnaea CaV2 channels, lacking 

the synprint region, the interaction with Mint1 and CASK has been shown to be required for 

proper targeting of channels to the synapse (Spafford et al., 2003). The other line of 

evidence speaking for involvement of scaffolding proteins in calcium channel targeting 

comes from studies on Drosophila protein Bruchpilot (BRP). BRP is a large coiled-coil 

domain structural protein, which shows homologies to mammalian scaffolding protein CAST. 

BRP was visualized as donut-form structures at active zones of Drosophila neuromuscular 

junctions (Kittel et al., 2006). BRP mutant active zones were lacking electron dense 

projections (T-bars). Ca2+ channel density was reduced and their active zone localization was 

altered as well as evoked vesicle release and short-term plasticity. Authors of the original 

paper suggested that BRP is not part of the T-bar structure itself but rather tightly surrounds 

it establishing a matrix, required for both a T-bar assembly as well as the appropriate 

localization of its components, including VDCCs. Similar mechanisms might be involved in 

the formation of the mammalian AZ. The presynaptic plasma membrane glycoprotein 

neurexin is similarly required for development of functional synapses containing presynaptic 

VDCCs in mice (Missler et al., 2003). Mice deficient for α-neurexins showed a severe 

reduction in neurotransmitter release due to impairment in VDCCs function. This is 

presumably mediated by neurexins interaction with synaptotagmin, Mint1 or CASK - direct 

VDCCs binding molecules. The regulation of VDCCs by α-neurexins predominantly affects 

calcium currents evoked by Cav2.2 and Cav2.1 (Zhang et al., 2005). 

 

1.4 Rim Binding Proteins (RBPs): possible linkers of VDCCs and 

synaptic vesicle fusion machinery  

Vesicle release is modulated by the GTP binding protein Rab3 and the associated proteins 

rabphilin (Shirataki et al., 1993), Noc2 (Haynes et al., 2001) and Rim1 (Wang et al., 1997). 

Rab3 is a negative regulator of exocytosis (reviewed in Geppert and Südhof, 1998). In its 

GTP-bound form, Rab3 is associated with synaptic vesicles as well as with rabphilin, Noc2, 

and Rim1. Because Rim1 is specifically associated with the synaptic plasma membrane at 

the AZ, it may act as a regulator of SV fusion by including the formation of a GTP-dependent 
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complex between SVs and the plasma membrane (Wang et al., 1997; Schoch and 

Gundelfinger, 2006). Two homologous Rim-binding partners named RBP1 and RBP2 were 

identified (Wang et al., 2000). A sequence related to rat RBP1 was isolated from human 

brain cDNA library and published as that of PRAX-1, a protein interacting with mitochondrial 

peripheral benzodiazepine receptor (Galiegue et al., 1999). Sequence analyses revealed that 

RBPs contain three dispersed SH3 domains and three contiguous fibronectin type III repeats 

(Fig. 4; Wang et al., 2000). These domains are the most closely related sequences in RBPs 

and are flanked by highly charged sequences that are less well conserved. The sequences 

outside of the SH3 domains and fibronectin type III repeats are rich in charged amino acid 

residues. 

Comparative and phylogenetic analyses with RBPs and related genes in different organism 

performed by Mittelstaedt and Schoch (2007) revealed that while invertebrate genomes 

contain only one, vertebrates include at least two RBP genes. They also identified an 

additional gene, RBP3, which is exclusively expressed in mammals (Fig. 4A). Quantitative 

real-time PCR analyses of mouse tissue showed that RBP1 and RBP2 were synthesized at 

high levels exclusively in brain. RBP3 mRNA in contrast was detected ubiquitously, with the 

highest level of expression in testis (Mittelstaedt and Schoch, 2007).  

 
FIGURE 4. STRUCTURE OF THE RBP PROTEIN FAMILY (FROM MITTELSTAEDT AND SCHOCH, 2007).  
(A) Diagram of the domain composition of RBPs. RBPs share a similar domain organization with an 
SH3-domain and a cluster of fibronectin type III (FNIII) repeats in the center of the protein and a 
doublet of SH3-domain in the C-terminus. Asterisks mark the three sites of alternative splicing in 
RBP1 and -2. (B) The RBP SH3- and FNIII domains are highly homologous, as shown here for SH3-1 
and FNIII-3. Filled black boxes mark amino acids identical in all three human RBP proteins and grey 
boxes indicate conserved residues. 
 

In brain both RBP1 and RBP2 showed neuron-specific expression (Mittelstaedt and Schoch, 
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2007). RBP1 mRNA is present throughout the brain with highest levels in the cerebellum, 

cortex, hippocampus and olfactory bulb. Striatum, thalamus and the pontine nuclei also show 

strong RBP1 expression (Mittelstaedt and Schoch, 2007; Chardenot et al., 2002). RBP2 

mRNA is highly concentrated in the telencephalon, consisting of hippocampus, olfactory 

bulb, and cortex, while it is expressed at lower levels in all other brain regions (Mittelstaedt 

and Schoch, 2007).  

The second SH3 domain of RBP1 and RBP2 bind to PXXP-motifs present in Rim1 and Rim2 

(RQLPQL/VP) (Wang et al., 2000; Hibino et al., 2002). This sequence is present in the short 

region between the two alternatively spliced sequences in the C terminus of the Rims and is 

the only conserved sequence in this short region. RBPs were also identified as direct 

interaction partners for CaVα1D subunit of L-type VDCCs (CaV1.3) in afferent synapses of 

inner ear hair cells (Hibino et al., 2002), where these channels initiate neurotransmitter 

release (Zidanic and Fuchs, 1995). In yeast-two hybrid system the C-terminal part of CaV1.3 

interacted with each of the three SH3 domains of RBP2, but not with the fibronectin III 

repeats (Hibino et al., 2002). The RBP-interaction site of CaV1.3 was narrowed down to a 

specific PXXP motif – RLLPPTP.  

Two major classes of ligands for SH3 domains have been identified (Mayer et al., 2001). 

Class I ligands have the general consensus +XφPXφP whereas class II ligands display the 

consensus sequence φPXφPX+, in which + is a basic residue, usually arginine, X is any 

amino acid, and φ is a hydrophobic residue. The CaV1.3 motif, RLLPPTP, fits the consensus 

sequence for class I ligands, differing only by a non-hydrophobic threonine residue in the 

sixth position. Screening of protein databases for the presence of other CaVα subunits that 

contain a motif similar to SH3-binding motif of CaV1.3 revealed that it is conserved in α1A 

(CaV2.1), B (CaV2.2) and F (CaV1.4) subunits. The α1E (CaV2.3) subunit lacks the threonine 

residue in the sixth position but otherwise fits to the α1D sequence. Therefore CaV2.2 was 

examined for its ability to interact with RBP2 (Hibino et al., 2002). A fusion protein containing 

the last two SH3 domains of RBP2 quantitatively precipitated a full-length α1B subunit 

expressed in tsA201 cells. Furthermore, native RBPs were precipitated from brain extracts 

by a GST fusion protein containing the RQLPQTP motif of α1B and its flanking sequences. 

Taken together, these results suggest that RBPs can interact with α1B and perhaps with 

other α1 subunits in the brain. Finally, based on their observations, Hibino and collegues 

suggested that by virtue of their multiple SH3 domains RBPs could serve as bifunctional 

linkers between Rims and VDCCs (Fig.5) (Hibino et al., 2002). 
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FIGURE 5. RBPS CAN SERVE AS LINKERS BETWEEN VDCCS AND SYNAPTIC VESICLE FUSION MACHINERY 
(FROM HIBINO ET AL., 2002).  
By virtue of their multiple SH3 domains, RBPs may act as linkers between Rims and VDCCs, thus 
forming a physical connection between the priming and fusion apparatus constituted by the SNARE 
complex and the vesicles tethered by Rim and Rab3 at the presynaptic active zone. The proteins 
cAMP-GEPII and UNC-13 also interact with Rim. 
 

1.5 Bassoon and Piccolo: two major components of the cytomatrix 

at the active zone 

Bassoon and Piccolo are two key components of CAZ network. They are present in this CAZ 

at both excitatory and inhibitory synapses (tom Dieck et al., 1998; Richter et al., 1999) and 

appear very early during synaptogenesis at nascent synapse (Zhai et al., 2001), suggesting 

a role in the assembly of functional AZs. Ten regions of high homology (50%-80% identity) 

referred to as Piccolo-Bassoon homology (PBH) regions were identified (Fenster et al., 2000) 

in Bassoon and Piccolo (Fig. 6).  

To date, among all CAZ proteins only liprin-α and Bassoon are known to be involved in 

aspects of AZ formation and structure. At retina photoreceptor synapses the physical 

interaction of Bassoon with the ribbon-specific polypeptide Ribeye has been shown to be 

essential for the assembly of ribbon complex and in turn for a proper neurotransmitter 

release. It has also been shown that Bassoon-mutant mice lack AZ-anchored ribbons in 

retinal photoreceptors and display impaired vision (Dick et al., 2005; tom Dieck et al., 2005). 

Similar abnormalities were demonstrated in inner hair cells of knockout mice (Khimich et al., 

2005). Here, calcium currents were reduced and fast exocytosis was strongly decreased in 

mutant IHC. The authors suggested that the proper localization and/or plasma membrane 

anchoring of CaV1.3 in the active zone is impaired in the absence of Bassoon, which 

implicates Bassoon in clustering of VDCCs. While Ribeye is specific for ribbon synapses its 

close homologue CtBP1 is present at conventional synapses as well, where it also can 
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interact with Bassoon (tom Dieck et al., 2005).  

At hippocampal neurons lack of functional Bassoon causes a reduction in normal synaptic 

transmission (Altrock et al., 2003). A significant fraction of glutamatergic synapses at 

hippocampal neurons of knockout mice was inactivated. At these synapses, vesicles were 

clustered and docked in normal numbers but were unable to fuse. According to these data 

Bassoon is not essential for the formation of conventional synapses but plays a crucial role in 

the regulated neurotransmitter release. Another line of evidence for Bassoon’s involvement 

in neurotransmitter release comes from discovery of a CAST-dependent large molecular 

complex at CAZ. The C-terminal region of CAST can interact with Rim1 and Bassoon and 

Piccolo, thus leading to a formation of a triple complex between these proteins. Furthermore, 

a link to another genuine CAZ component, Munc-13, can be provided via its direct interaction 

with Rim1 (Brose et al., 2000). A dominant-negative approach used to interfere with this 

complex formation leads to impaired synaptic transmission in cultured superior cervical 

ganglion neurons (Takao-Rikitsu et al., 2004).  

In our recent paper we showed that Bassoon but not Piccolo interacts with dynein light 

chains (Fejtova et al., 2009). Through these interactions Bassoon is involved in trafficking 

and synaptic delivery of AZ components.  

 
FIGURE 6. BASSOON AND PICCOLO ARE TWO MAJOR COMPONENTS OF THE CAZ.  
(A) Schematic representation of Bassoon and Piccolo domain composition. Zn1/2, zink fingers; CC1-
3, coiled-coil regions; PDZ, PSD-95/Dlg/zonula occludens-1 homology domain; C2A/B, C2 domains; 
PBHD1-10, regions of the Piccolo - Bassoon homology. (B and C) Electron micrographs showing Bsn 
(B) and (Pclo) exclusive presynaptic localization (kindly provided by K. Richter, Otto-von-Guericke 
University Magdeburg). 
  
Piccolo is a multidomain zinc finger protein structurally related to Bassoon. At the C terminus, 

Piccolo/Aczonin contains a single PDZ and one or two C2 domains which are absent in 
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Bassoon (Wang et al., 2000; Fenster et al., 2000). The Piccolo-Bassoon zinc fingers are 

most similar to those found in rabphilin-3A and Rim (40% and 39% similarity, respectively) 

(Fenster et al., 2000). The second zinc finger domain of Piccolo interacts with rab3-

VAMP2/SynaptobrevinII-interacting protein PRA1. Through this interaction Piccolo might be 

involved in the recycling of synaptic vesicles in nerve terminals. The C2 domain of Piccolo is 

able to bind Ca2+, suggesting that calcium influx through VDCCs at the AZ may regulate the 

biological activity of Piccolo (Fenster et al., 2000). Furthermore, Fujimoto et al. (2002) 

showed that Piccolo can form homodimers through its first C2 domain in a Ca2+-dependent 

manner. The PDZ domain of Piccolo, absent in Bassoon, interacts with cAMP-GEFII (cAMP-

guanidine nucleotide exchange factor II) in pancreatic beta-cells (Fujimoto et al., 2002). 

Treatment of pancreatic islets with antisense oligodeoxynucleotides against Piccolo inhibited 

insulin secretion induced by cAMP analogue 8-bromo-cyclic AMP plus high glucose 

stimulation, suggesting that Piccolo serves as a Ca2+ sensor in exocytosis in pancreatic beta-

cells and that the formation of a cAMP-GEFII - Rim2 - Piccolo complex is important in cAMP-

induced insulin secretion. In addition Piccolo directly binds CaV1.2 in pancreatic beta-cells 

(Shibasaki et al., 2004). Recently, Piccolo has been shown to act as a negative regulator of 

SV exocytosis in neurons (Leal-Ortiz et al., 2008). Using interference RNAs to disrupt 

expression of Piccolo in developing neurons, Leal-Ortiz and colleagues showed that Piccolo 

negatively regulates SV exocytosis by modulating synapsin dynamics, thus potentially 

coupling the mobilization of SVs in the reserve pool to events at the AZ.   

Piccolo but not Bassoon directly interacts with GIT1 (Kim et al., 2003) – a member of GIT 

family, known to regulate endocytosis of various membrane proteins (Premont et al., 1998) 

and the assembly of focal adhesion complexes (reviewed in Zhao et al., 2000). In brain, 

Piccolo forms a complex with GIT1 and various GIT-associated proteins. Although the 

specific function for GIT1 in neurons remains unclear, it may be involved in receptor 

trafficking, actin cytoskeleton rearrangement, and neurotransmitter release at the AZ (Kim et 

al., 2003), where it is recruited via interaction with Piccolo. The actin-binding protein Abp1 is 

also recruited to the AZ in a Piccolo-dependent manner. A direct interaction between these 

two proteins has been reported by Fenster et al. (2003). Abp1 binds to both F-actin and the 

GTPase dynamin and has been implicated in linking the actin cytoskeleton to clathrin-

mediated endocytosis. The authors suggested that Piccolo, as a structural protein of the 

CAZ, might serve to localize Abp1 at AZs where it can actively participate in creating a 

functional connection between the dynamic actin cytoskeleton and SV recycling.  

The high structural similarity of Bassoon and Piccolo and the overlap of many binding 

partners suggest that they may share functions in synaptic boutons. In line with this 

assumption, while neither lack of Bassoon (Altrock et al., 2003) nor Piccolo has lethal effect, 

the Bsn/Pclo double knockout mice are not viable (Anna Fejtova, personal communication).  
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1.6 Axonal transport of presynaptic components: a role for dynein 

motors? 

When a developing axon meets an appropriate target, a functioning synapse can form within 

minutes. This speed can only be achieved because axonal transport has already brought the 

key components of the synapse into the growing axon. In neurons, the transport of 

membranous organelles along axons is based on molecular motors that propel organelles 

along microtubules, which in axons are oriented uniformly, with their plus ends pointing 

toward the growing tips (Burton and Paige, 1981). Anterograde transport is driven by 

members of the kinesin family of molecular motors, whereas retrograde transport relies 

mainly on the cytoplasmic dynein 1 motor complex (Vale, 2003). The role of anterograde 

transport in trafficking of axonal proteins is well documented and molecular motors carrying 

axonal cargos were identified (Hirokawa and Takemura, 2005).  

In a developing neuron, the components needed for synaptogenesis travel in armadas 

composed of multiple vesicular organelles that contain at least two classes of transport 

vesicles. The first component, SV precursors (SVPs), contains markers of SV (Jin and 

Garner, 2008). The second vesicle class, the Piccolo-Bassoon transport vesicles (PTVs), are 

dense-core 80 nm vesicles with a coat of electron-dense material that contain AZ proteins. 

Though PTVs and SVPs cluster together while moving and are recruited together to new 

synaptic sites, they may in fact use distinct kinesins (reviewed in Goldstein et al., 2008). The 

transport of SVPs is dependent on kinesin-3 heavy chain KIF1A (Okada et al., 1995). Liprin-

α has been suggested either to act as a cargo adaptor protein linking SVPs to KIF1A (Miller 

et al., 2005) or to be a molecule that signals the motor to unload its vesicles at the synapse 

(Patel et al., 2006). 

PTVs were originally characterized as vesicles carrying Bassoon and Piccolo (Zhai et al., 

2001). Furthermore, PTVs were found to contain additional AZ proteins but not SV proteins 

or periactive zonal proteins (Zhai et al., 2001; Shapira et al., 2003). These studies indicate 

that PTVs may serve as preassembled AZ precursor vesicles, which can be directly inserted 

into the presynaptic plasma membrane to constitute a functional AZ (Shapira et al., 2003). 

Whereas kinesin-3 family members predominate in transport of SVPs, the transport of PTVs 

is more complex. In hippocampal neurons, a protein called syntabulin is implicated in 

transport of PTVs (Cai et al., 2007; reviewed in Goldstein et al., 2008). This protein has been 

shown to act as a cargo adaptor for PTV transport via its binding to the kinesin-1 motor 

KIF5b. Reduced syntabulin levels also decreased activity-dependent formation of new 

synapses, therefore confirming the crucial role of PTV transport for this form of plasticity (Cai 

et al., 2007).    
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Imaging of most anterogradely transported axonal cargos reveals that they move 

bidirectionally (Miller et al., 2005; Schroer et al., 1985; Shapira et al., 2003) suggesting that 

most cargos are able to associate with both anterograde and retrograde motors. The 

retrograde transport of vesicles might be necessary for even distribution of material over the 

axon before synaptogenesis. However, little attention has been paid to the understanding of 

the molecular mechanisms and physiological meaning of retrograde transport of material 

predestined for delivery to distal axonal locations. 

In a yeast-two hybrid screen dynein light chain LC8 (DLC or DYNLL) has been discovered as 

a novel interaction partner for Bassoon by our laboratory. DLC represents one of 3 dimeric 

light chains of the cytoplasmic dynein motor complex (Pfister et al., 2005; Vallee et al., 2004). 

In mammals, two DLC isoforms DLC1 and DLC2, were reported to link cargos to the dynein 

motor (Lee et al., 2006; Navarro et al., 2004; Schnorrer et al., 2000), to associate with the 

actin-dependent motor myosinV (Espindola et al., 2000), where it might also function as a 

cargo adaptor (Puthalakath et al., 2001), and to have additional, motor-independent cellular 

functions (Jaffrey and Snyder, 1996; Vadlamudi et al., 2004). 

 

1.7 Aims of this work 

Several interaction partners of Bassoon, including dynein light chain-1 (DLC1) and Rim-

binding protein-1 (RBP1) had been identified in a yeast-two hybrid screen by Dr. Wilko 

Altrock. In order to confirm these interactions and to investigate their physiological 

significance it was necessary to study them in independent heterologous and homologous 

expression systems.  

To this end a new expression system was established to test the interactions in living 

mammalian cells. The assay is based on the idea of targeting one binding partner artificially 

to the surface of mitochondria and to study the co-recruitment of co-expressed potential 

binding partners – the mito-targeting system. 

A second assay to be established for my work was designed to study direct protein-protein 

interactions in a quantitative manner based on the surface plasmon resonance technology 

using Biacore device. 

Based on these techniques and applying further technologies established in the laboratory it 

was the aim of my thesis to study the role of Bassoon in assembling the active zone of 

neurotransmitter release.  In this context I have studied the interactions (1) between Bassoon 

and DLCs and (2) between Bassoon and RBPs in more details. As Piccolo, a closely related 

protein to Bassoon, is present in the same compartment, it was further of interest to study 

potential interactions also with this CAZ protein.  
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1) As described above, the interaction of Bassoon with DLCs may serve to link Bassoon and 

subsequently entire PTV to the retrograde microtubular motor dynein. This in turn may 

have implication for the appropriate distribution of active zone material along axons and 

between synapses. Therefore it is of high importance to study the nature of this interaction 

in more detail. In frame of this project following aspects were addressed: 

• Bassoon binding to DLC1 and DLC2, previously shown only in yeast cells, 

were further characterized in living mammalian cells using newly developed 

mito-targeting assay.  

• Since both DLC1 and DLC2 were shown to interact with three independent 

sites in Bassoon molecule, the other goal in this study was to characterize 

those interactions in terms of preferences of distinct DLC-binding motifs of 

Bassoon to DLCs. To tackle this question surface plasmon resonance 

technique was applied to measure relative binding affinities for distinct DLC-

binding motifs of Bassoon to DLC1 and DLC2. 

 

2) Reduced Ca2+ currents and impaired exocytosis in ribbon synapses of Bassoon mutant 

mice indicated the possible mislocalization and/or instability of VDCCs in the presynaptic 

active zone in the absence of functional Bassoon. RBPs had been shown to interact with 

both Rims and VDCCs, thus forming a physical connection between Ca2+ channels and 

synaptic vesicles tethered by Rim and Rab3 at the presynaptic active zone. Given this 

and taking into account the newly discovered interaction of RBPs and Bassoon, my 

working hypothesis was that the interaction of Bassoon and/ or Piccolo with RBPs might 

contribute to VDCCs retention and accurate localization in the active zone of the 

presynaptic plasma membrane. More specifically three aspects were addressed: 

• First, Bassoon and Piccolo bindings to RBP1 and RBP2 were characterized: 

the interaction motifs in these proteins were pinpointed and a possible 

regulation of these interactions by phosphorylation was investigated. 

• The other goal was to characterize RBPs as organizers of the presynaptic 

active zone in terms of linker molecules connecting CAZ proteins with VDCCs: 

the linking abilities of RBPs were assessed by investigating whether binding to 

different proteins is simultaneous or competitive. 

Finally, the role of Bassoon in synaptic targeting of VDCCs was assessed: the effect of 

Bassoon loss on amount of VDCCs at synapses as well as the ability of Bassoon to recruit 

VDCCs through RBPs were investigated. 
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2. Materials and methods 
 

2.1 Materials 
 

2.1.1 Chemicals 
The kits and chemicals that were used in this work were purchased from the described 

companies. The quality of the reagents was of analytical grade. If special reagents were 

used for experiments, it is described at the beginning of each section. 

 

2.1.2 Kits, enzymes and molecular biology reagents 
 

Item  Company  
Endonucleases (Restriction enzymes)  New England Biolabs; 

Fermentas 
Taq DNA polymerase  Qiagen  
Phusion® DNA Polymerase Finnzymes 
Alkaline Phosphatase from calf intestine (CIAP) Fermentas 
Deoxynucleoside Triphosphate Set (dNTPs) Fermentas 
T4 DNA ligase  Fermentas 
T4 Polynucleotide Kinase (PNK) Fermentas 
Oligonucleotides (Primer)  Invitrogen  
Nucleospin PCR cleanup gel extraction Kit  Macherey-Nagel  

TABLE 1: MOLECULAR BIOLOGY REAGENTS 
 

2.1.3 Molecular weight markers 
 

DNA molecular weight markers  Company  
Smart Ladder DNA  Eurogentec 
GeneRuler™ 1 kb DNA Ladder, ready-to-use Fermentas 
GeneRuler™ 100 bp Plus DNA Ladder, ready-to-use Fermentas 
Protein molecular weight markers  Company 
Precision Plus ProteinTM Standarts  BIO-RAD 

TABLE 2: MOLECULAR WEIGHT MARKERS FOR DNA AND PROTEINS 
 

2.1.4 Bacteria and yeast cells 
 

Bacterial Cells  Company 
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E.coli BL21-CodonPlus(DE3)-RIPL  Stratagene 
E.coli XL10 Gold Bacteria  Stratagene 

TABLE 3: BACTERIA AND YEAST CELLS 
 
 

Yeast 
strains  

Genotype  Transform
ation 
marker  

Reporter 
gene 

Company 

S. cerevisiae  
AH 109  

MAT a, trp 1-901, leu2-3, 112, 
ura-3-52, his3-200, gal4Δ, 
gal80Δ, LYS2::GAL1uas-
GAL1TATA-HIS3, GAL2UAS-
GAL2TATA-ADE2, 
URA3::MEL1UAS-MEL1TATA-lacZ 

trp1, leu2  LacZ, HIS3  Clontech 

TABLE 4: YEAST CELL STRAINS 
 

2.1.5 Mammalian cells 
 

Mammalian cell line  Company 
Kidney Fibroblast Cells from African green monkey  
(COS-7 cells)  

Clontech  

Human Embrionic Kidney Cells (HEK293-T)  ATCC 
TABLE 5: MAMMALIAN CELL LINES 
 

 2.1.6 Cell culture media and reagents for mammalian cells 
 

Item  Composition  
COS-7 and 
HEK293-T cell 
culture medium  

DMEM (Invitrogen), 10% fetal calf serum, 2 mM L-glutamine, 100 U/ml 
penicillin, 100 µg/ml streptomycin  

Trypsin  0.5% Stock solution, diluted 1:10 in HBSS (Invitrogen)  
Poly-D-lysin  100 mg/l poly-D-lysin in 100 mM boric acid, pH 8.5, sterile filtered.  
HBSS  Hank’s balanced salt solution, Ca2+and Mg2+ free (Invitrogen)  

TABLE 6: MEDIA AND REAGENTS FOR MAMMALIAN CELL CULTURE 
 

2.1.7 Culture media and additives for yeast and bacteria cells 
 

Culture medium   
Bacterial-culture medium  Composition 

LB-medium  20 g LB Broth Base (Invitrogen) / 1000 ml H2O  
SOC-medium  
 

20 g/l peptone 140 (Gibco); 5 g/l yeast extract (Gibco); 10 
mM NaCl; 2.5mM KCl; 10 mM MgSO4; 20 mM Glucose  

LB-Agar  15 g Select Agar (Invitrogen) / 1000 ml LB-medium  
Yeast medium  Composition 
YPDA-medium  50 Broth (Gibco) / 1000 ml H2O; plus 10 ml 0.3% 
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Adeninehemisulfate  
Minimal-SD-medium  20 g Glucose; 1.7 g Yeast-Nitrogen Base (Gibco), 5 g 

(NH4)2SO4/ l000 ml H2O; pH 7.0.  

-LW-medium  0.64g -Leu/-Trp DO Supplement (Clontech) pro 1l Minimal 
SD-Medium  

-ALWH-medium  0.60g -Ade/-Leu/-Trp/-His DO Supplement (Clontech) pro 1l 
Minimal-SD-medium; 1 mM 3-amino-1,2,4-triazole 

TABLE 7: MEDIA AND REAGENTS FOR YEAST AND BACTERIA CELL CULTURE 
 
All media were autoclavated at 121°C for 15 minutes. The additives were filtered with a 0.2 

µm filter-unit (Schleicher & Schuell) and stored at –20°C.  

2.1.8 Buffers used in biochemical or molecular biology work 

  
Buffer  Composition  
PBS  2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 8 mM 

Na2HPO4, pH 7.4 
PBST 2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 8 mM 

Na2HPO4, pH 7.4, 0.1% Tween 20 
6× DNA sample buffer 30% (v/v) Glycerine, 50 mM EDTA, 0.25% Bromophenol-

blue, 0.25% Xylene Cyanol 
Cell lysis buffer 10 mM Hepes (pH 7.5), 100 mM NaCl, 0.5% Triton-X100, 

protease inhibitors Complete mini (Roche) 1 Tbl per 10 ml 
TABLE 8: BUFFERES USED IN BIOCHEMICAL AND MOLECULAR BIOLOGICAL ASSAYS 
 

2.1.9 Yeast assay buffers  
 

Solution  Composition  
10× LiAc  1 M LiAc in H2O, pH 7.5  
10× TE  0.1 M Tris-HCl, 10 mM EDTA, pH 7.5  
PEG  50 % ( v/v ) polyethylenteglycol 4000 (PEG) in H2O 
PEG/TE/LiAc  8 ml PE; 1 ml 10x TE; 1 ml 10x LiAc  

TABLE 9: BUFFERS USED IN YEAST ASSAYS 
 

2.1.10 Antibodies: Primary antibodies for Western blot and 
immunocitochemistry  
 

Antibodies  Antigen  WB dilution  ICC 
dilution  

Company/ Origin 

rb(1) Sap7f Bassoon  1:2000 tom Dieck, 1998 
gp(2) Synapsin 1,2 Synapsin 1,2  1:1000 SySy 

                                                
(1) rb - rabbit 
(2) gp – guinea pig  
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rb Synapsin 1,2 Synapsin 1,2  1:2000 SySy 
m(3) Synapsin 1,2 Synapsin 1,2  1:2000 SySy 
rb CaV2.1 CaV2.1  1:1000 Alamone labs 
gp RBP2 RBP2  1:1000 provided by A. Fejtova 
m α-tubulin α-tubulin  1:1000 Sigma Aldrich 
phalloidin– Alexa 
Fluor 568 

actin  1:500 Invitrogen 

rb GFP GFP 1:10000  Abcam 
m c-myc 9C10 c-myc 1:1000  Santa Cruz 

Biotechnology, Inc. 
TABLE 10: PRIMARY ANTIBODIES FOR WB AND ICC 
 

2.1.11 Antibodies: Secondary antibodies for Western blot and 
immunocitochemistry  
 

Antibodies Antigen WB 
dilution 

ICC 
dilution 

Company 

donkey or goat Alexa 
FluorTM488  

rb or m or gp 
IgG 

 1:2000  Invitrogen 

donkey or goat Cy3 rb or m or gp 
IgG 

 1:2000  Jackson 
ImmunoResearch 

donkey or goat Cy5  rb or m or gp 
IgG 

 1:1000  Jackson 
ImmunoResearch 

goat IgG, peroxidase-
conjugated 

rb or m IgG 1:20000  Jackson 
ImmunoResearch 

TABLE 11: SECONDARY ANTIBODIES USED FOR WB AND ICC 
 

2.1.12 Animals  
Rodent lines used for organ harvesting are listed in Table 2. They were bred in the animal 

facilities of the Leibniz Institute for Neurobiology, Magdeburg and of the ZENIT, Magdeburg. 

Homozygot mutant mice were obtained from heterozygot breedings. 

 

TABLE 12: ANIMAL LINES 
 

                                                
(3) m - mouse 

Animal line Notes Origin 
C57Bl6|J cre Mus musculus (wild type) Charles River 
SV129EMSJ Mus musculus (wild type)  Jackson Laboratories 
BGT KO Omnibank clone 486029; Gene trapping 

vector VICTR 48; mixed genetic 
background 

Lexicon pharmaceutics 
 

Wistar rats 
 

Rattus norvegicus familiaris 
 

Leibniz Institute for 
Neurobiology 
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2.2 Methods 

 
2.2.1 Molecular biological methods  
All molecular biological work was carried out corresponding to standard protocols. All 

methods are described in the literature in detail: Current Protocols in Molecular Biology 

(Ausubel et al., 1990) and Molecular Cloning (Sambrook et al., 1989). Therefore, only a brief 

description will be given and the modifications will be described in more detail if this applies.  

 

2.2.1.1 Genotyping of mutant mice 
 

2.2.1.1a DNA extraction for genotyping of mutant mice 
Newborn pups were labeled and tailcut samples were taken for DNA extraction. The tailcut 

samples were incubated together with 500 µl lysis buffer including freshly added Proteinase 

K at 55°C for 20 min under shaking. Inactivation of the enzyme followed by incubation for 10 

minutes at 98°C. The samples were now ready for PCR. One tube without tailcut sample was 

used as a negative control. 

 

2.2.1.1b Polymerase chain reaction (PCR) for genotyping 
PCR was performed using 21 µl of master mix for WT and KO PCR with freshly added Taq 

Polymerase and 4 µl of DNA extract for genotyping. The final concentrations of the PCR 

reagents were: 1 pM forward primer, 1 pM reverse primer (see Table 13 for sequences), 2.5 

mM MgCl2, 0.1 units/µl Taq-polymerase, 0.2 mM dNTPs in Q-solution (Qiagen, 5x) and PCR 

buffer (Qiagen, 10x). For reagents used see Table 1. The temperature profile of the PCR is 

highlighted in Table 14. 

 

Genotype Forward primer Reverse primer Product size 

BGT WT 

BGT KO 

5’-ctaagctattgcttcctcctcac-3’ 

5’-ctaagctattgcttcctcctcac-3’ 

5’-ctgaggctcttgagttcctacga-3’ 

5’-ataaaccctcttgcagttgcatc-3’ 

600 bp 

400 bp 

TABLE 13: PRIMER SEQUENCES USED FOR GENOTYPING OF BGT AND WILD-TYPE ALLELES AS WELL AS SIZE OF 
EXPECTED PCR PRODUCTS 
 

Process Time and temperature Cycles 

Initial denaturation 5 minutes at 95°C 1 

Denaturation 

Annealing 

Extension 

45 seconds at 95°C 

45 seconds at 65°C 

60 seconds at 72°C 

34 
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Final extension 30 seconds at 72°C 1 

TABLE 14: PCR PROGRAMMES USED FOR GENOTYPING OF BGT MOUSE PUPS 
 

2.2.1.2 PCR for amplification 
If cDNA constructs were generated by PCR, specific primers were resuspended at a 

concentration of 100 pmol/µl and used in the amplification reaction at a final concentration of 

10 pmol/µl. The concentration of the dNTPs was 0.2 mM plus 2 U of Phusion® DNA 

Polymerase in PCR buffer HF (Finnzymes). For reagents used see Table 1. The temperature 

profile used for PCR is highlighted in Table 15 (Annealing temperature is primer depending 

and was for this reason specific for the pair of primers; the amount of cycles varied between 

experiments).  

 

Process Time and temperature Cycles 

Initial denaturation 1 minute at 98°C 1 

Denaturation 

Annealing 

Extension 

30 seconds at 98°C 

30 seconds at 50-70°C 

60 seconds at 72°C 

30-40 

Final extension 1 minute at 72°C 1 

TABLE 15: PCR PROGRAMMES USED FOR GENERATION OF CDNA FRAGMENTS 
 

2.2.1.3 Introduction of point mutations by PCR 
All mutations described were introduced by inverse PCR using primers with mutated 

sequence and corresponding Bassoon fragments subcloned in pBluescriptII SK– (Agilent 

Technologies) as a template (Ausubei et al., 2003). The final reaction mixture and the 

tempriture profile used are the same as described in 2.2.1.2 part of this thesis). 

 

2.2.1.4 DNA agarose gel electrophoresis  
DNA fragments obtained after PCR (2.2.1.2) or after restriction digestion (2.2.1.8) were 

separated according to their size by one-dimensional agarose gel electrophoresis. Agarose 

gels (0.75-1.5 % w/v) were prepared by melting the agarose (UltraPure, Gibco). To visualize 

the DNA under UV light, 5 -10 µl Ethidium bromide solution (10 mg/ml in H2O) was added 

before gel polymerization. The DNA samples were prepared in 6x loading buffer and were 

loaded onto the gel. Gels were run at 80V in 1× TAE buffer. The DNA fragments were 

visualized under UV-light and photographed with an Eagle-Eye (Stratagene) using the gel 

documentation system Gel Doc (Biorad, München, Germany).  
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2.2.1.5 cDNA cloning into expression vectors 
DNA fragments of interest were amplified by PCR (2.2.1.2). Following agarose gel 

electrophoresis in TAE buffer (2.2.1.4), the fragments were purified by the PCR cleanup gel 

extraction kit (Macherey-Nagel). The fragments were subjected to enzymatic digestion 

(2.2.1.8) and ligated with T4 DNA ligase to the pre-digested vector. The ligations were 

performed at 16 – 20°C for 2 – 8 hour. The used DNA fragment/vector ratio was 3:1. To 

select for positive clones, the ligated fragment-vectors were transformed into E. coli XL10 

Gold competent cells for subsequent DNA mini-prep isolation.  

 

2.2.1.6 Heat shock transformation of competent E.coli XL 10 Gold bacteria cells 
The DNA ligation mixture (2.2.1.5) was incubated together with 100 µl of heat shock 

competent XL10 Gold bacteria for 10 minutes on ice. Heat shocking for 30 seconds at 42°C 

was followed by incubation on ice for 1 minute. Then 1 ml of prewarmed SOC medium was 

added and the tube incubated at 37°C for 1 h shaking at low speed. Bacterials were spined 

down at 1000×g for 1 min and the supernatant was decanted. The pellet was resuspented by 

vortexing in the remaining drops of liquid. The entire suspension was plated on LB agar 

plates containing the respective antibiotics. Plates were incubated over night at 37°C. 

 

2.2.1.7 Plasmid isolation (Mini DNA preparation) 
 

Buffer Composition 
P1 Buffer:  50 mM Tris/HCl pH 8.0, 10 mM EDTA, 100 µg/ml RNase A (4°C). 
P2 Buffer:  200 mM NaOH, 1% (w/v) SDS  
P3 Buffer:  3 M potassium acetate, pH 5.5  

TABLE 16: BUFFERS FOR DNA PREPARATION (MINI SCALE) 
 
DNA plasmids were purified from a 2 ml LB overnight culture by alkaline lysis. The cells were 

pelleted, resuspended in 300 µl of P1 buffer and lysed with 300 µl of P2 buffer. In this step 

proteins and DNA were denatured and RNA hydrolyzed. With 300 µl of P3 buffer the mixture 

was neutralized, which leads to the precipitation of denatured proteins and chromosomal 

DNA. The debris were removed by centrifugation of the lysate at 6000×g for 10 minutes. The 

supernatant was transferred to a new tube and 630 µl of isopropanol were added and mixed. 

The plasmid DNA was precipitated by centrifugation at 13000×g for 10 minutes at 4°C. The 

pelleted DNA was washed with ice-cold 500 µl of 70% (v/v) ethanol and centrifuged for 10 

minutes at top speed. The pellet was dried, resuspended in 50 µl of dH2O and stored at -

20°C.  

For mammalian cell transfection, DNA with high concentration and purity was prepared using 

the Plasmid Midi Kit (Qiagen) and/or the EndoFree Plasmid Maxi Kit (Qiagen500-EF). The 
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DNA concentration was determined by spectrophotometrical quantification at 260 nm by A260 

* 50 = x µg/µl.  

 

2.2.1.8 DNA restriction enzyme digestion 
For analytical digestions 1 µg of DNA, harboring 1 restriction site, was incubated with 1 U of 

enzyme for 1 h (alternatively, 0.5 U for 2 h; 0.25 U per 4 h). For preparative digestions 5 to 

10 fold overdigestion was made. Reaction mixture was incubated at 37°C, unless another 

temperature was recomended by manufacturer.    

 

2.2.2 Yeast experiments 
Twenty five ml of yeast culture medium (YPDA) were inoculated with one AH109 colony 

(from a plate kept at 4°C) and were cultured overnight at 30°C with shaking. 100 ml of fresh 

YPDA medium were inoculated with 10 ml of the overnight culture to a OD600 of 0.1 – 0.2 and 

grown for 5 hours at 30°C with shaking till the OD600 reached 0.9 - 1.0. Then, the yeast were 

centrifuged at 500×g for 2 minutes at room temperature. The pellet was washed for 2 

minutes with 50 ml of 1× TE buffer and again centrifuged for 2 minutes at 500×g at room 

temperature. A following pellet-washing step with 1× TE/LiAc was performed for 10 minutes 

at room temperature and centrifuged at the same conditions as before. The washed pellet 

was resuspended in 1.5 ml 1× TE/LiAc to finally get the competent yeast. 10 µl of Carrier 

DNA, minimum 500 ng of BD and AD-plasmid and 50 µl of competent yeast cells were added 

to one reaction tube. The components were mixed by shaking and 300 µl of PEG/TE/LiAc 

was added and vortexed at medium speed for 10 seconds. The plasmid incorporation was 

achieved with heat shock for 40 minutes at 42°C. Cells were subsequently chilled on ice for 2 

minutes. The yeast were collected by centrifugation at 500 x g for 1 minute at room 

temperature and then resuspended in 200 µl of water. 100 µl of the resupended pellet were 

plated on appropriate SD medium. 

Cotransformed cells were selected by growth on –LW-medium. The interaction of 

coexpressed proteins activating expression of reporter genes was monitored as growth on –

ALWH-medium after 4 and 7 days. Potential self-activation of constructs was always tested 

in parallel by cotransformation with empty prey or bait vectors. 
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2.2.3 Biochemical methods  
 

2.2.3.1 Protein concentration determination: Micro amidoblack protein assay 
 

Solution  Composition  

Amidoblack solution  14.4 g amidoblack in 1 l methanol-acetic acid  
Methanol-acetic acid  Methanol:acetic acid = 9:1  
BSA stock solution  0.5 mg/ml  

 TABLE 17: SOLUTIONS FOR MICRO AMIDOBLACK PROTEIN ASSAY 
 
Protein concentration was determined by the colorimetric amidoblack assay. To prepare the 

calibration curve, 0 – 20 µg BSA and 5 – 10 µl of sample were brought to a total volume of 

100 µl with H2O. 200 µl of amidoblack solution were added to both, the standard and sample 

solutions. All samples were incubated for 20 minutes at room temperature and centrifuged at 

maximum speed for 5 minutes. The supernatant was decanted and the pellet was washed 

tree times with methanol-acetic acid. Finally the pellet was resuspended in 500 µl of NaOH 

(0.1 N). The absorption was measured at 620 nm against NaOH. 

 

2.2.3.2 SDS-PAGE using Laemmli system  
 

Buffer Composition 
4x SDS-sample buffer  250 mM Tris/HCl, pH 6.8, 1% (w/v) SDS, 40% (v/v), glycerol, 

4% β-mercaptoethanol, 0.02% bromophenol blue  
Electrophoresis buffer  192 mM glycine, 0.1% (w/v) SDS, 25 mM Tris-base, pH 8.3  
4x separating buffer  0.4% (w/v) SDS, 1.5 M Tris/HCl, pH 6.8  
Separation gel (20%)  8.25 ml separation buffer, 7.5 ml 87% Glycerol, 16.5 ml 40% 

Acrylamyde, 330 µl EDTA (0.2 M), 22 µl TEMED, 120 µl 0.5% 
Bromophenol blue and 75 µl 10% APS  

Separation gel (5%)  8.25 ml separation buffer, 17.94 ml dH2O, 1.89 ml 87% 
Glycerol, 4.12 ml 40% Acrylamide, 330 µl EDTA (0.2 M), 22 
µl TEMED and 118 µl APS.  

Stacking gel (5%)  6 ml stacking buffer, 7.95 ml dH2O, 5.52 ml 87% Glycerol, 
3.90 ml 30 % Acrylamyde, 240 µl EDTA (0.2 M), 240 µl 10% 
SDS, 17.2 µl TEMED, 30 µl Phenol red and 137 µl 10% APS  

TABLE 18: BUFFERS FOR TRIS-GLYCINE SDS-PAGE 
 
Proteins were separated using one-dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) under fully denaturating conditions (Laemmli 1970). SDS-

PAGE was performed in a gradient gel: a stacking gel was layered on top of a separating gel. 

The samples were first incubated with SDS-sample buffer at 95°C for 5 minutes and then 

loaded onto the gel. Gels were allowed to run at a constant current strength of 8 mA in an 

electrophoresis chamber (Hoefer Mighty Small System SE 250 from Amersham Biosciences) 

filled with 1x electrophoresis buffer. Subsequently the gels were either stained with 
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Coomassie blue or were used for immunoblotting.  
 

 

2.2.3.3 Coommassie staining of SDS-PAGE  
 

Solution Composition 
Coommassie blue staining 
solution  

1 mg/1000 ml Coommassie brilliant blue R-250, 
60% (v/v) methanol, 10% (v/v) acetic acid  

Distaining solution  7% (v/v) acetic acid, 5% (v/v) methanol  
Drying solution  5% (v/v) glycerin, 50% (v/v) methanol  

TABLE 19: SOLUTIONS FOR COOMMASSIE STAINING OF SDS-PAGE 
 

Polyacrylamide gels were stained with Coommassie solution for 30 minutes. Proteins were 

visualized by incubating the gel in distaining solution for 2 hours or overnight by shaking. 

Gels were visualized by Odyssey Infrared Imaging System (LI-COR Bioscience). 

 
 

2.2.3.4 Western blotting 
Proteins were electrotransfered from polyacrylamide gels to Millipore Immobilon-FL transfer 

membranes (polyvinylidene fluoride membrane (PVDF)). The transfer was performed in 

blotting buffer (192 mM Glycine, 0.2 % (w/v) SDS, 18 % (v/v) methanol, 25 mM Tris-Base, 

pH 8.3) at 4°C for 2 h with 200 mA. 

 

2.2.3.5 Immunoblot detection  
After transfer PVDF membranes were briefly pre-wet in 100% methanol, rinse with distilled 

water and dry at room temperature. Then membranes were wetted in PBS for several 

minutes.  Blots were incubated at 4°C overnight with the primary antibody diluted in PBS-T 

containing 5 % of BSA and 0.025% of sodium azide.  After three washing steps with PBS-T 

for 10 minutes each time, the membranes were submerged in peroxidise-coupled secondary 

antibodies (diluted in 1% of BSA) for 1 hour at room temperature. Membranes were rinsed 

again three times with PBS-T and immunodetection was carried out employing ECL films 

(GE Healthcare, Amersham HyperfilmTM ECL), which were developed automatically using 

Agfa Curix 60 developing machine.  
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2.2.3.6 Purification of fusion proteins 
  

2.2.3.6.1 Induction of fusion protein synthesis (GST and His-Trx) 
E.coli BL21 cells were transformed either with pGEX- or pET-vector. 100 ml of LB medium 

containing appropriate antibiotics were inoculated with one colony and cultured overnight at 

37°C with shaking. 1000 ml of 2×YT culture medium including the appropriate antibiotics and 

0,2% glucose was inoculated with 50 ml overnight culture. The dilution was incubated with 

shaking at 37°C until OD600 reached 0.5 - 0.7. Then the culture was induced with 0.3 mM 

IPTG and incubated at 20°C for 10 h (over night). Cells were harvested at 3000×g for 5 min 

at 4°C. Then bacteria were resuspended in 25 ml of icecold PBS; transfered in 50 ml Falcon 

tube and stored at -80°C. 

 

2.2.3.6.2 Bacterial extract preparation 
Frozen bacterial pellet was mixed with volume (25 ml) of 2× PBS buffer containing 1 tablet of 

EDTA-free CompleteTM protease inhibitor (Roche), DNAse I (5 µg/ml) and RNAse A (10 

µg/ml) and thawed on ice. Bacteria were lysed at 20000 psi using the french press. The 

lysate was diluted 1:1 with 2× PBS and 20% Triton X-100 was added to the final 

concentration 0.1%. The final dilution was stirred gently for 30 min at 4°C and then 

centrifuged for 10 min at 4°C. The supernatant was then transformed into a 50 ml 

centrifugation tube containing the affinity resin. 

 

2.2.3.6.3 Affinity purification 
 

Buffer Composition 

Elution buffer for GST-tagged proteins 10 mM Glutathione in 50 mM Tris/HCl, pH 8.0  
Elution buffer for His-Trx-tagged 

proteins 

150 mM imidazol in 2× PBS, pH 7.0 

TABLE 20: BUFFERS FOR AFFINITY PURIFICATION OF FUSION PROTEINS FROM BACTERIA 
 

The equilibration of 2 ml Talon Metal Affinity Resin (BD/Clontech) or glutathione Sepharose 4 

Fast Flow (GE Healthcare) for purification of His-Trx- or GST-fusion proteins, respectively, 

was made in 50 ml centrifugation tube by washing two times with 2× PBS (pH 7.0). Then 

bacterial extract was transfered to the beads; mixed end-over-end for 1 h at 4°C and 

centrifuged for 3 min at 500×g. Supernatant was discarded. Talon beads were washed 3 

times with 50 ml 2× PBS (pH 7.0) at 4°C for 3 min each and transfered to a disposible 



Materials and Methods 

 37 

column. 10 ml of 2× PBS was used for the last washing step. Fusion proteins were eluted by 

adding 2 ml elution buffer 3 times with 5 min incubation at room temperature. Three elution 

fractions were combined and elution buffer was exchanged by over night dialysis against 1× 

PBS. Dialysed protein fractions were stored at -80°C or, alternatively, were mixed with 

glycerol 1:1 and stored at -20°C. 

 

2.2.3.7 EGFP-fusion proteins precipitation from transfected HEK293-T cells 
HEK293-T cells grown in 75-cm2 flasks were transfected using the Ca phosphate method 

(2.2.4.6.1). Cells were lysed in 50 mM Tris-HCl, pH 7.4, 0.5% TritonX-100, 100 mM NaCl, 

10% glycerol, 1.5 mM MgCl2, and Complete protease inhibitors for 15 min on ice 48 h after 

transfection. Cleared cell lysate was used for immunoprecipitation using MicroMACS anti-

GFP Micro-Beads and MicroColumns (Miltenyi Biotec) according to the manufacturer’s 

instructions, but using lysis buffer in all washing steps. 

  

2.2.4 Cell culture techniques 
Primary neurons, HEK293-T and COS-7 cells were cultured in 5% CO2 at 37°C and a 

humidity of 95%. All supplemented cell culture media were filtrated using sterile filtration 

bottles with a pore size of 0.22 µm and kept at 4°C until usage. Media and reagents used for 

eucaryotic culture are listed in Table 23. All media were preincubated at 37°C before addition 

to cells. 

 

Media and reagents for 
eukaryotes 

 

Ingredients/Company 
 

DMEM(mouse culture) 
 

2% B27 (Gibco); 1 mM sodium pyruvate 100× 
(Gibco); 5 g/l AlbuMax II (Gibco); 2 mM L-glutamine 
100X (Gibco) in DMEM (without: phenol red, L-
glutamine, sodium pyruvate) (Gibco) 

DMEM(10% FCS) 
 

10% FCS (Gibco);1% Penicillin/Streptomycin 100× 
(Gibco); 2 mM L-Glutamine 100× (Gibco) in DMEM 
(Gibco) 

NB (Neurobasal) 
 

2% B27 (Gibco); 2 mM L-glutamine (Gibco); 1% 
Penicillin/Streptomycin 100× (Gibco) in Neurobasal 

Distilled Water Gibco /Millipore 
HBSS+ (with Mg2+ and Ca2+) Gibco 
HBSS- Gibco 
Optimem Gibco 
AraC 1.5 mM Calbiochem 
10× Trypsin Gibco 
1× Trypsin 10% 10× Trypsin (Gibco); DMEM (10%FCS) 
Paraffin Paraplast embedding medium (Fischer) 

TABLE 21: MEDIA AND REAGENTS FOR EUKARYOTIC CELL CULTURES 
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2.2.4.1 Splitting of cells into culture plates 

HEK293-T and COS-7 cells were split by Heidi Wickborn, Sabine Opitz and Janina Juhle. 

Cells were washed twice with prewarmed HBSS- and subsequently incubated with 1 ml of 1× 

Trypsin per 75 cm2 flask for 5 minutes at 37°C. After checking the dissociation of the cells 

from the plate, degradation of extracellular proteins by the protease trypsin was blocked by 

adding 9 ml of fresh, prewarmed DMEM (10% FCS). The cells then were transferred into 

plates with additional medium as indicated in each section. 

 

2.2.4.2 Preparation of glass coverslips 

Washing Glass coverslips for cell culture were placed into 50 ml tubes with 50% HNO3 and 

incubated in an end-over-end shaker over night. On the next day, pH was neutralized by 

washing with cell culture or milipore water. Coverslips then were boiled in cell culture water 

using a microwave oven three times with exchanging the water in between. After washing 

one additional time they were separately dried on precision wipes and baked for 4 h at 200°C 

for sterilisation. 

 

Coating Coverslips were transferred into a Ø 10 cm microbiological plastic dish and three 

paraffin dots were attached to each of them (paraffin heated to 150°C) (only for neuronal cell 

culture). They were coated with 100 µl of poly-D-lysine working solution (see Table 6) per 

coverslip and incubated over night in the cell culture incubator. On the next day cell culture 

water was added to each plate. Before usage of the coverslips they were washed three times 

with cell culture water and dried completely prior to plating of the cells. 

 

2.2.4.3 Glial cells 

Plating P1 to P3 pups (C57Bl6|J cre strain for mice culture and Wistar rat strain for rat 

culture) were decapitated and both brain hemispheres were removed, washed twice with 

HBSS- and incubated in 4.5 ml HBSS- with 0.5 ml 10× Trypsin for 20 minutes at 37°C. After 

washing once with HBSS+ medium was exchanged for 1 ml DMEM (10% FCS). Trituration of 

the hemispheres followed using a 1 ml pipette to obtain a nearly homogeneous cell solution. 

The material from two hemispheres filled up to a volume of 10 ml with DMEM (10% FCS) 

and was plated in one 75 cm2 or it was filled up to a volume of 50 ml and plated into ten Ø 6 

cm plates for direct usage.  

 

Freezing Before freezing glial, glial cells were brought in solution using trypsin. The cell 

suspension of one bottle was transferred to 50 ml tubes and spinned down for 5 minutes at 
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1000×g. Resuspension in 1 ml ice cold DMEM (10% FCS) containing 10% DMSO followed. 

Slow freezing of the sample was performed by quick transfer into a bio safe freezing tube, 

initially on ice and then at -80°C. On the next day aliquots were transferred to -150°C and 

stored until usage.  

 

Plating from Stocks 2-4 frozen glial cell aliquots were incubated at 37°C until melting 

started. Then 1 ml of prewarmed DMEM (10% FCS) was added. Cells were triturated and 

transferred to fresh DMEM (10% FCS) and plated on twenty Ø 6 cm plates with a final 

volume of 5 ml each. 

 

2.2.4.4 Mouse hippocampal neurons 

Mouse hippocampal neuron cultures were prepared by Cornelia Schoene. P0 mouse pups 

were genotyped (see 2.2.1.1) and decapitated and the heads were kept in HBSS+ on ice 

until dissection. Hippocampi were collected in fresh tubes on ice with HBSS+ and washed 

three times with cold HBSS-. After the last washing step, 4.5 ml HBSS- and 500 µl of 10× 

Trypsin were added and incubated for 20 min at 37°C. Hippocampi were washed once with 

HBSS+ and the medium was replaced by 1 ml DMEM (10% FCS). Trituration using a 1 ml 

pipette was performed by pipetting up and down 10 times. After counting the cells, the 

suspension was diluted to 250000 cells/ml. 100 µl of cell suspension were plated on the 

coated, washed and dried Ø 18 mm coverslips (see 2.3.4.2) and incubated for 1 h in the cell 

culture incubator. The media of the Ø 6 cm glial cell plates was exchanged by 5 ml DMEM 

(mouse culture) and five coverslips were turned into each plate with neurons and paraffin 

dots facing down. After two days 5 µl AraC (100×) were added to inhibit glial cell proliferation. 

The cells were fed every week by replacing 1 ml of old media with fresh one. 

 

2.2.4.5 Rat hippocampal neurons 

Rat hippocampal neuron cultures were prepared by Sabine Opitz and Heidi Wickborn from 

E16 to E17 rats. The general procedure for preparing rat hippocampal neurons is equivalent 

to the protocol for mouse hippocampal neurons 2.2.4.4. Neurons were cultivated in NB 

medium. 7.5 µl AraC was added to the cells at DIV3. 
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2.2.4.6 Transfections 
 

2.2.4.6.1 Transfection of HEK293-T cells with Ca phosphate method 
 

Solution Composition 
Solution A 0.5 M CaCl2 
Solution B 140 mM NaCl, 50 mM Hepes, 1.5 mM 

Na2PO4, pH 7.05 
TABLE 22: SOLUTIONS FOR TRANSFECTION OF HEK293-T CELLS WITH CA PHOSPHATE METHOD 
 

HEK293-T cells were grown in 75 cm2 flasks in DMEM (10% FCS). 0,5 ml of Solution A was 

mixed with 25 µg DNA (for double transfection; 12.5 µg of each DNA). Then, 0.5 ml of 

Solution B, were added and, after 1 min, applied to cells in culture. The cells were incubated 

for 4 h at 37°C in 5% CO2 atmosphere before exchange of growth media. Cells were grown 

for 24 hours before applied for further analyses. 

 

2.2.4.6.2 Transfection of COS-7 cells on 24 well plates 

The cells were grown on poly-D-lysine coated glass coverslips to 50–70% confluency. For a 

single construct transfection 1.5 µg DNA were used for 4 wells. For a double transfection 1 

µg of each construct was used for the same number of wells. The DNA was resuspended in 

200 µl DMEM without supplements, 8 µl of Polyfect (Qiagen, San Jose, CA, USA) was added 

and the transfection reaction was well mixed. After 5 minutes at room temperature 400 µl of 

COS-7 cells culture medium was added and 150 µl of this mixture was carefully dropped to 

each 4 wells and incubated for 48 hours.  

 

2.2.4.6.3 Transfection of rat hippocampal neurons with EGFP-Bsn and EGFP-

BsnRBM  

Hippocampal neurons were transfected using the calcium phosphate method at 3 DIV. Prior 

transfection Ø 18 mm coverslips that showd have been transfected were transferred into a 

new 12-well plate containing 1 ml/well of prewarmed and equilibrated Optimem media (see 

Table 22) and kept in the incubator for 30 min. To prepare the precipitates 180 µl of 

transfection buffer (274 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 15 mM Glucose, 42 mM 

Hepes) was added dropwise to a solution containing 12 µg of DNA and 250 mM CaCl2, 

under gentle stirring. The resulting mix was placed for 20 min at room temperature in the 

dark; 60 µl of the mix was then added per well, and neurons were placed in the incubator for 

40 to 60 min. Medium was then exchanged for 1 ml 37°C prewarmed Neurobasal (see Table 
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22), followed by two 750-µl exchanges. Finally, the coverslips were transfered into the plate 

with original medium.  

 

2.2.5 Immunocytochemistry, microscopy and image analysis 

All primary antibodies for immunocytochemistry (ICC) were prediluted in 50% glycerol and 

stored at -20◦C (Table 10). Secondary antibodies were stored at 4◦C (Table 11). 

 

2.2.5.1 Immunostaining of cell cultures 

Cells were grown on Ø 18 mm (mouse and rat hippocampal neurons) and Ø 12 mm (COS-7 

cells) coverslips and fixed for 3 to 5 minutes with 37°C prewarmed 4% PFA, 4% succrose in 

PBS. Blocking of PFA-reactivity and permeabilization of the cells was achieved by 15 

minutes incubation in 10% FCS, 0.1% glycine, 0.3% Triton X-100 in PBS. The antibodies 

were diluted in 50 µl 3% FCS in PBS per Ø 18 mm coverslip and pipetted on a paraffin film in 

a wet chamber (For list of antibodies and corresponding dilutions see Table 10). The 

coverslips were turned with cells facing down on top of the antibody drop. Incubation with the 

primary antibody at 4°C over night was followed by three times washing with PBS. The 

secondary antibody was applied at RT for one hour. After washing three times for 15 min in 

PBS, coverslips were mounted in Mowiol (10 µl per Ø 18 mm coverslip). Mounted coverslips 

were stored at 4°C until usage.  

 

2.2.5.2 Microscopy and image analysis 

Hard- and software Images were taken using a Zeiss Axioplan 2 epifluorescence microscope 

(Metaview software, version 7.1.3) or a Leica SP5 confocal miroscope (LAS AF software, 

version 2.0.2) with a dynamice range of 12 bit. Image processing and analysis were 

performed using ImageJ (MacBiophotonics ImageJ Version 1.41a), Adobe Photoshop 

(Version 8.0) and Openview (Version 1.5 from Noam Ziv) software. 

 

2.2.5.3 Analysis of synaptic immunofluorescence (IF) 

To analyze IF at synapses as a relative measure for the synaptic amount of a protein mouse 

or rat hippocampal cultures were fixed and stained for a synaptic marker in the infrared 

channel (Cy5) and the protein of interest in the red channel (Cy3). Z-stacks were recorded 

using a confocal microscope (512x512 pixels, 12bit, 63x objective, 3x zoom, 3x frame 

averaging, z-step = 0.3 µm) and processed with ImageJ. Images then were opened with 

Photoshop and saved with a bite order for IBM PC. Analysis of synaptic IF was performed 
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using the Openview software. The software can detect synaptic puncta in one channel 

(Synaptic marker) and look for colocalization in a second (protein of interest). A third channel 

could be used to split synapses into two separate pools and to compare IF intensities. 

 

2.2.6 Biosensor analysis  
 

2.2.6.1 Biosensor analysis of RBPs interaction with Bassoon, Piccolo, Rim1 
and CaV2.2 (direct amine coupling) 

GST- and His-tagged fusion proteins were expressed and purified by affinity chromatography 

and dialyzed against PBS before biosensor analysis (2.2.3.6). All experiments were 

performed using a Biacore 2000 (Biacore) and a sensor chip (CM5; Biacore) at 25°C. His-

Trx-fusion proteins were cupled to the chip surface the Amine Coupling kit (Biacore) 

according to the procedure recommended by the manufacturer. Soluble ligands (GST-tagged  

RBP fragments) were applied in HBS-EP (0.01 M Hepes buffer, pH 7.4, and 0.15 M NaCl 

with 0.005% surfactant P20) running buffer at a concentration of 20 µg/ml at a flow rate 20 

µl/min for 6 min. The surface was regenerated using 15 mM NaOH, for 2 min at 20 µl/min. To 

standardize the results of measurements using ligands with different molecular masses, the 

molecular-binding activities (MBA) were calculated according to the equation: 

 

 
(Catimel et al., 1997). 

 

2.2.6.2 Biosensor analysis of Bassoon interactions with DLCs (GST capturing) 

GST- and His-tagged fusion proteins were expressed, purified and dyalyzed against PBS 

before biosensor analysis (2.2.3.6). Strep-His fusion proteins were purified by doublestep 

chromatography using HisPur matrix (Thermo Fisher Scientific) and Strep-Tactin Superflow 

(IBA). All experiments were performed using a Biacore 2000 (Biacore) and a sensor chip 

(CM5; Biacore) at 25°C. The active surface (with immobilized anti-GST antibody) was 

prepared using the Amine Coupling kit (Biacore) combined with the GST Capture kit 

(Biacore) according to the procedure recommended by the manufacturer. Binding GST-

DLC1, GST-DLC2, and GST as control was performed in HBS-EP (0.01 M Hepes buffer, pH 

7.4, and 0.15 M NaCl with 0.005% surfactant P20) running buffer at a concentration of 20 

µg/ml and a flow rate of 20 µl/min for 6 min. Soluble ligands (Bassoon fragments) were 
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applied in HBS-EP running buffer containing 0.105% surfactant P20 at a concentration of 20 

µg/ml at a flow rate 20 µl/min for 6 min. The parallel application of soluble ligand to the GST 

reference cell allowed controlling for nonspecific binding. The surface was regenerated using 

10 mM Gly-HCl, pH 2.2, for 2 min at 20 µl/min. To standardize the results of measurements 

using ligands with different molecular masses, the molecular-binding activities (MBA) were 

calculated as described above (see 2.4.1). 

 

2.2.7 Statistical data analysis 

Statistical data analyses (t-test, ANOVA, curve fit, correlation analysis) was performed using 

GraphPad Prism 4.
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3. Results 
 

3.1 Characterization of Bassoon interaction with Dynein Light 
Chain* 
 

3.1.1 Development of a new mito-targeting system 

A majority of fusion proteins stays soluble and shows a relatively diffuse localization being 

over-expressed in heterologous cell system. This makes co-localization assays and 

accordingly visualization of protein interaction ineffective. To overcome these problems a co-

recruitment assay utilizing the mitochondrial targeting sequence of Mas70p, fused to a 

protein of interest has been developed (Kessels & Qualmann, 2002; tom Dieck et al., 2005). 

As this initial mito-targeting system was not applicable in all instances, we have modified and 

improved it. The new system is based on the expression of one of the interaction partners 

fused to the mitochondrial targeting sequence of the rat mitochondrial transporter protein 

Tom20 and EGFP (enhanced green fluorescent protein) as a reporter. Tom20 is a major 

receptor of the mitochondrial preprotein translocation system and is bound to the outer 

membrane through the NH2-terminal transmembrane domain (TMD) in a type I orientation, 

extruding the bulk of the COOH-terminal domain to the cytosol (Nin-Ccyt orientation). The 

mitochondria-targeting sequence of rat Tom20 (rTom20) was analyzed in COS-7 cells by 

Kanaji et al. (2000), who showed that moderate TMD hydrophobicity and a net positive 

charge within five residues of the COOH-terminal flanking region were both critical for 

efficient recruitment to mitochondria. Using specific primers we cloned rTom20 amino acid 

sequence 1-33 containing TMD and the essential flanking positive residues into an 

expression vector (Fig. 7A). 

The new mito-targeting expression vector was generated on the backbone of vector pCMV-

Tag3A (Invitrogen) (Fig. 7B). The nucleotide sequence 669 – 718 of pCMV-Tag3A vector 

was exchanged by Tom20 mito-targeting sequence leading to the creation of an intermediate 

vector pMito3-0. The EGFP sequence was inserted at position 779 of pMito3-0 and the 

obtained vector, called pMito3-EGFP, was used for further experiments. 

 

                                                
* This part of the study was performed in close collaboration with Dr. Anna Fejtova (Fejtova 
et al., 2009) 
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FIGURE 7. DEVELOPMENT OF A NEW MITO-TARGETING SYSTEM.  
(A) Schematic structure of rTom20. Amino acid sequences of the trans-membrane domain (TMD) and 
the flanking region are shown (adapted from Kanaji et al., 2000). Amino acid sequence (Mito3) used to 
construct pMito3-EGFP expression vector is highlighted. (B) Schematic presentation of the cloning 
strategy for pMito3-EGFP. (C) COS-7 cells were transfected mito-targeting vector (Mito3-EGFP) 
(green) and stained with MitoTracker® (magenda) 18 h after transfection. Bar, 20 µm.  
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To control for proper subcellular targeting of Mito3-EGFP fusion protein, COS-7 cells were 

transfected with pMito3-EGFP vector. Approximately 80% of cells expressed EGFP 18 hours 

after transfection. Mitochondrial localization of EGFP was confirmed using MitoTracker. 

Comparison transfected vs. nontranfected cells revealed neither difference in the cell shape 

nor in mitochondria localization (Fig. 7C).  

 

3.1.2 Interaction of Bassoon with Dynein Light Chain (DLC) in living cells 
tested by mito-targeting assay 

DLC1 was identified to interact with Bassoon when cDNA fragment Bsn2 covering amino 

acid residues (aa) 609 - 1692 of rat Bassoon was used as bait in a yeast two-hybrid (Y2H) 

screen (Fejtova et al., 2009). Seven independent positive clones carried the cDNA of DLC1. 

In subsequent experiments, the DLC-binding interface of Bassoon was narrowed down to 

fragment Bsn16 (aa1360 – 1441) and Bsn15 (aa1441 – 1692). DLC2 also interacted with 

those fragments in yeast (Fejtova et al., 2009).  

To confirm the Y2H analyses, an interaction of Bassoon’s DLC-binding region with DLC1 and 

DLC2 was examined using the newly established mito-targeting assay. COS-7 cells were 

transfected with pMito3-EGFP-DLC1 and pMito3-EGFP-DLC2 constructs. Staining of 

transfected cells with MitoTracker® demonstrated mitochondrial targeting of Mito-EGFP-

DLC1, Mito-EGFP-DLC2 and the control fusion protein Mito-EGFP. Fragment Bsn14 (aa 

1206 – 1692) fused to monomeric red fluorescent protein (mRFP) exhibited a rather uniform 

distribution in the cytoplasm, when co-expressed with Mito-EGFP (Fig. 8A2). In contrast, 

mRFP-Bsn14 was recruited to mitochondria when co-expressed with Mito-EGFP-DLC1 or 

Mito-EGFP-DLC2 (Fig. 8C2, 8E2). Recruitment of mRFP to mitochondria could not be 

detected when co-transfected with Mito-EGFP-DLC1 or Mito-EGFP-DLC2 (Fig. 8B2, 8D2).  

 

3.1.3 DLC1 and DLC2 bind Bassoon with different strength 

DLC1 and DLC2 are very similar proteins with 93% sequence identity. However, it has been 

proposed that they are sequestered to distinct protein complexes as shown for dynein or 

myosinV motor complexes (Naisbitt et al., 2000; Puthalakath et al., 2001). To assess a 

possible preference of the binding sites on Bassoon for the two DLC isoforms, we expressed 

and purified a set of His-thioredoxin fusion proteins covering first, second and third or all 

three binding motifs (Fig. 9B) and tested their relative binding affinities to purified GST-DLC1 

or GST-DLC2 (Fig. 9A) using surface plasmon resonance technology. The results did not 

reveal any binding preference for single motifs, but we observed significantly higher binding 
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of fragments Bsn15 (motifs II and III) and Bsn13 (all 3 motifs) to GST-DLC2 as compared to 

GST-DLC1 (Fig. 9B, for numeric values see Fig. 9C).  

 
FIGURE 8. BASSOON INTERACTS WITH DLC1 AND DLC2 IN MITO-TARGETING ASSAY.  
Mito-targeting assays in COS-7 cells. Cells were fixed 18 h after transfection. Mito-targeted EGFP 
(green) or EGFP-DLCs (green) are localized at mitochondria (compare A1–E1 with Fig. 1C). mRFP-
Bsn14 (magenda) shows a uniform cytoplasmic distribution when coexpressed with Mito3-EGFP 
control construct (A2) but is co-recruited to mitochondria when mito-targeted DLC1 or DLC2 are 
coexpressed (C2 and E2). Targeting of DLC to mitochondria does not affect the localization of mRFP 
(magenda) (B2 and D2). The arrows in A1 indicate the normally distributed localization of mitochondria 
in cell protrusions. In contrast, mitochondria are clustered near the cell centers when Mito3-EGFP-
DLC1 and Mito3-EGFP-DLC2 are expressed (C1 and E1, arrows). Bar, 10 µm. 
 
The assay also confirms that the interaction of Bassoon and DLC is direct. Notably, we 

observed an increase of the relative binding affinities starting with fragments Bsn15II and 

Bsn15III (containing one DLC-binding site), to Bsn15 (containing two) and finally Bsn13 with 

three binding sites (Fig. 9C). 
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Thereby, site I seems to bind more tightly than sites II and III, and the relative binding 

affinities seem to be additive as DLC binding of Bsn13 represented roughly the sum of that of 

Bsn15 and Bsn16.  These observations imply that the arrangement of three DLC-binding 

motifs in close proximity facilitates binding of Bassoon to DLC in vivo. 

 

 
FIGURE 9. DLC1 AND DLC2 BIND BASSOON WITH DIFFERENT AFFINITY IN SURFACE PLASMON RESONANCE 
ASSAY. 
(A) Molecular-binding activities (MBA) of purified Bsn fragments to DLC1 and DLC2 in surface 
plasmon resonance assays. Error bars indicate SEM. **, P < 0.01. (B) Recombinant proteins used for 
the binding assays are shown on a Coomassie-stained SDS gel. Molecular mass is indicated in 
kilodaltons. (C) Quantitative results of surface plasmon resonance binding assays. The molecular 
binding activity (MBA) was calculated from 3-5 association-dissociation cycles performed for each 
interaction pair. The results shown were confirmed by a second measurement set, in which proteins 
coming from independent purifications were used. 
 

 

3.1.4 Bassoon can function as a cargo adaptor in COS-7 cells 

Two independent Bassoon regions, located on fragments Bsn15 and Bsn16, bind DLCs. To 

identify the exact DLC-binding site the aa sequence of both regions was screened for 

sequences similar to published DLC-binding consensus motifs (K/R)XTQT (Lo et al., 2001) 

and GIQVD (Fan et al., 2001; Liang et al., 1999). The sequence analysis revealed three TQT 

motifs (two in the fragment Bsn15 and one in the fragment Bsn16). A series of Y2H analysis 

using mutant constructs with TQT motif replaced by AAA (Fig. 10A) revealed that each of the 
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three identified TQT motifs could bind Bassoon independently and was sufficient for the 

binding. Those results were also confirmed in Mito-targeting assay in COS-7 cells and are 

tabulated in Fig. 10B (Fejtova et al., 2009).  

 

 
FIGURE 10. MAPPING OF THREE INDEPENDENTLY FUNCTIONAL DLC-BINDING SITES IN BASSOON. 
(A) Bassoon constructs including the amino acid substitutions introduced at interaction sites I, II, and 
III and their relative lengths; bordering amino acid numbers refer to rat Bassoon. (B) Summary of 
binding assays in yeast (yeast two-hybrid [Y2H]) and in corecruitment assay by mito-targeting in COS-
7 cells (Mito). 
 

When DLC1 or DLC2 were targeted to the outer mitochondrial membrane in COS-7 cells the 

localization of mitochondria was remarkably distinct from that of mitochondria in cells 

expressing the control construct Mito3-EGFP (see Fig. 11A1, B1, D1). Normally, 

mitochondria are distributed throughout the cytoplasm of cells, sometimes even in their most 

distal regions (arrows in Fig. 8A1 and Fig. 11A1). In contrast, targeting of DLC to 

mitochondria results in their accumulation near the cell center, presumably due to DLC-

mediated retrograde transport along microtubules via dynein. To test whether Bassoon can 

function as a cargo adaptor, we targeted the fragment Bsn15 to the outer mitochondrial 

membrane and observed the subcellular localization of mitochondria. After expression of 

Mito3-EGFP-Bsn15, mitochondria were clustered near the microtubule-organizing center 

(MTOC) of COS-7 cells visualized by co-staining of microtubules (Fig. 11B1,2). Targeting of 

the mutant fragment Bsn15II,III, which can not bind DLC, to mitochondria did not alter their 

subcellular localization, confirming that an interaction with DLC was required for retrograde 

transport in COS-7 cells (Fig. 11C1). Treatment of COS-7 cells expressing Mito3-EGFP-

Bsn15 with the microtubule depolymerizing drug nocodazole for 2 hrs prior to fixation and 

staining led to a disruption of clusters, whereas the treatment with the actin polymerization 

inhibitor cytochalasin D had no effect on cluster formation (Fig. 11D1, E1). These data 

suggest that fragment Bsn15 can operate as cargo adaptor via its binding to DLC and 

induces a microtubule-dependent retrograde transport of organelles in living cells. They also 
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suggest that Mito-targeting system can be used not only as a classical co-recruitment assay 

but also to shed light on a functional role of an examined protein interaction. 

 

 
FIGURE 11. BASSOON CAN SERVE AS A CARGO ADAPTER FOR RETROGRADE TRANSPORT IN COS-7 CELLS. 
(A–E) Cells were transfected with mito-targeting constructs (green) and fixed 18 h later. The position 
of the MTOC is visualized by staining with anti–α-tubulin antibody (magenda) in A2–D2; actin is 
visualized with Alexa Fluor 568–coupled phalloidin (magenda) (E2). In cells expressing mito-targeted 
fragment Bsn15 containing the DLC-binding sites II and III, mitochondria accumulate at the MTOC. 
Mitochondria are distributed throughout the cytoplasm in cells expressing mito-targeted EGFP (row A), 
fragment Bsn15II,III with mutated DLC-binding sites (row C), or in cells expressing mito-targeted 
Bsn15 after treatment with nocodazole for 2 h before fixation (row D). Depolymerization of actin 
filaments with cytochalasin D (2 h before fixation) does not prevent the effect of Bsn15 (E1–E3). Bar, 
20 µm. 



Results 

 51 

3.2 Characterization of Bassoon and Piccolo interactions with Rim 
binding proteins 
 

3.2.1 Bassoon can interact with Rim binding proteins 

Rim binding protein 1 (RBP1) was originally identified by Wilko Altrock as a novel interaction 

partner of Bassoon in an Y2H screen using Bassoon fragment Bsn3 covering aa 1692 - 3263 

of rat Bassoon as a bait (Fig.12).  

 

 
FIGURE 12. MAPPING OF RBP INTERACTION REGIONS ON BASSOON AND PICCOLO.  
Overview of Bassoon and Piccolo fragments tested for binding to RBP1 and RBP2 in yeast-two hybrid 
assays. The extension of positive Bsn and Pclo clones is displayed in black and non-binding clones 
are indicated in grey. Number in brackets indicate amino acid num The corresponding region of 
Piccolo showed 54% of identity. In line with this, the Piccolo cDNA fragment Pclo1 (aa 3607 - 
3792) interacted with RBPs in Y2H assays (Fig. 12) suggesting that functional RBP-binding 
interface is conserved between the two proteins.bers refering to rat Bassoon and Piccolo. Zn1/2, 
zinc fingers; CC1-3, coiled-coil regions; PDZ, PSD-95/Dlg/zonula occludence-1 homology domain; 
C2A/B, C2 domains; PBH1-10, regions of the Piccolo - Bassoon homology (depicted as grey boxes). 
 
In subsequent experiments, which were done in close collaboration with Ferdinand Bischof, 

the RBP-binding interface of Bassoon was narrowed down to fragment Bsn10 (aa 2821 - 

3013). Baits covering the other parts of Bassoon molecule did not show any binding. In Y2H 

assays Bsn10 was also able to interact with the other member of Rim binding proteins family 
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– RBP2. The binding region Bsn10 is situated within Piccolo-Bassoon homology (PBH) 

region 7. 

To confirm the Y2H data in mammalian cells, an interaction of RBP-binding region of 

Bassoon with RBP1 and RBP2 was examined in the mito-targeting system after 

heterologous expression in COS-7 cells (Fig. 13). Staining of transfected cells with 

MitoTracker® demonstrated mitochondrial targeting of Mito3-EGFP-RBP1 and Mito3-EGFP-

RBP2. mRFP-Bsn10 was recruited to mitochondria when co-expressed with Mito-EGFP-

RBP2_SH3 II+III (Fig. 13B1). Recruitment of mRFP to mitochondria could not be detected 

when co-transfected with Mito-EGFP-RBP2_SH3 II+III (Fig. 13C1). Binding of RBP1 to 

Bassoon was also confirmed in mito-targeting system (Fig. 13A). 

To further confirm the interaction in cells, co-immunoprecipitation experiments were done. 

These experiments were performed by Claudia Marini under my supervision during her 

practical training in the group of Prof. E. D. Gundelfinger. To this end c-myc-RBP2 was 

expressed together with EGFP-Bsn10 in HEK293-T cells and 24 hrs after transfection cell 

lysates were prepared and protein complexes were immunoprecipitated using anti-GFP 

antibody. Western blot analysis confirmed the successful co-precipitation of c-myc-RBP2 

with over-expressed EGFP-Bsn10. In control experiments, we were unable to co-

immunoprecipitate cmyc-tagged RBP2 when co-expressed with EGFP.  

While c-myc-RBP2 was highly expressed in HEK293-T cells, neither c-myc-RBP1 nor EGFP-

RBP1 was found in transfected cell lysates, probably due to low expression level and/ or fast 

degradation. 
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FIGURE 13. BASSOON INTERACTS WITH RIM BINDING PROTEINS IN MAMMALIAN CELLS.  
(A – C) Cos-7 cells were fixed 18 h after transfection. Mito-targeted EGFP-RBP1/2_SH3 II+III (green) 
are localized at mitochondria (A2, B2, C2). RFP-Bsn10 (red) is co-recruited to mitochondria when co-
expressed with mito-targeted EGFP-RBP1/2_SH3 II+III (A1, B1). Targeting of RBP2_SH3 II+III to 
mitochondria does not affect the localization of mRFP (red) (C1). Bar, 10 µm. (D) Overexpressed c-
myc-RBP2 was precipitated with EGFP-Bsn10 but neither with EGFP alone nor with EGFP-
Bsn10_PA. Molecular mass is indicated in kilodaltons. Figure 7D is provided by Claudia Marini. 
 

3.2.2 Mapping of functional Bassoon and Piccolo binding motifs on 
RBP1 and RBP2 

Sequence analysis of Bassoon fragment Bsn10, which bound RBPs in Y2H and Mito-

targeting assays, revealed the existence of a proline-rich motif, which are known to bind to 

SH3 domains (reviewed in Mayer et al., 2001). Therefore we considered SH3 domains of 

RBPs as potential interaction regions for Bassoon and Piccolo. Using specific primers a 

number of cDNA fragments of the three SH3 domains of RBP1 and RBP2 was cloned from a 

rat cDNA library (Fig. 14A). This work was initiated by Ferdinand Bischof and taken over by 

me in initial phases of my doctoral thesis. The construct RBP1_0  (aa 1357 – 1556) does not 

contain any predictable structural features and is not conserved in RBP2. Bait constructs 

covering Bsn10 and the corresponding sequence of Piccolo (Pclo1) were shown to bind each 

of three SH3 domains of both RBP1 and RBP2 (constructs RBP1/2_SH3 I, RBP1/2_SH3 II 

and RBP1/2_SH3 III) in the Y2H assay (Fig. 14B). Constructs RBP1_SH3_II+III (aa 1557 – 

1786) and RBP2_SH3_II+III (aa 873 – 1076) covering the second and the third SH3 domains 

simultaneously showed higher binding activity to Bassoon and Piccolo as was assessed by 
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colony number and size. In line with this observation, while single SH3 domains of RBPs 

were not able to co-recruit Bsn10 in Mito-targeting assay, Mito3-EGFP-RBP1/2_SH3 II+III 

showed clear co-recruitment (Fig. 13). RBP1_0 construct, which does not contain SH3 

domains, bound neither Bassoon nor Piccolo in Y2H assays (Fig. 14B) and surface plasmon 

resonance assays (data not shown). Comparison of binding activities of distinct SH3 

domains to Bassoon and Piccolo was performed using surface plasmon resonance 

technology (Fig. 15D-E) and discussed in chapter 3.2.4 of this thesis.   

 

 
FIGURE 14. RIM BINDING PROTEINS CAN INTERACT WITH BASSOON AND PICCOLO THROUGH THEIR THREE 
SH3 DOMAINS. 
(A) Overview of RBP1 and RBP2 fragments tested for binding to Bsn10 and Pclo1 in yeast two-hybrid 
assay. (B) Summary of results for Y2H assays. - = no interaction; +++ =  interaction as strong as 
positive control for Y2H. Numbers in brackets indicate amino acid numbers corresponding to rat RBP1 
and RBP2. 
 

3.2.3 Identification of functional RBP-binding motifs on Bassoon and 
Piccolo 

Mapping of RBP-interacting region on Bassoon in Y2H assays narrowed the interacting 

region to cDNA fragment Bsn10 (aa 2821 – 3013), which bound SH3 domains of RBPs. SH3 

domains usually interact with proline-rich domains (reviewed in Mayer, 2001). Therefore we 

screened Bsn10 sequence for presence of PXXP motifs, two of which occur within this 

fragment. Two major classes of ligands for SH3 domains have been identified (Mayer, 2001). 
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Class I ligands have the general consensus +XφPXφP whereas class II ligands display the 

consensus sequence φPXφPX+, in which + is a basic residue, usually arginine, X is any 

amino acid, and φ is a hydrophobic residue. While the first identified PXXP motif 

(DPKPLSPTA) did fit neither class I nor class II ligands, the second one, RTLPSPP, fit the 

consensus sequences for class I and therefore was proposed as a binding motif for SH3 

domains of RBPs. In line with this, a further shortened construct Bsn12 (aa 2869 – 2899) 

(Fig. 15A), which contains only the second PXXP motif interacted with SH3 domains of RBPs 

in the Y2H assay (Fig. 15B). The respective mutant construct where both proline residues 

(positions 4 and 7) and arginine residue (position 1) were exchanged to alanine (Bsn12_PA, 

Fig. 15A) did not bind RBPs in this assay (Fig. 15B). To verify that there were no additional 

RBP-interacting motifs in Bsn10 sequence the same point mutations were introduced into 

this construct (Bsn10_PA, Fig. 15A). Y2H analysis showed that the mutation of RTLPSPP 

was sufficient to disrupt the Bsn10 interaction with RBPs.  

The corresponding sequence of Piccolo encoded in fragment Pclo1 showed the interaction 

with RBPs in Y2H assay (Fig. 12; Fig. 15B). Sequence analysis showed the presence of a 

corresponding PXXP motif – RTLPNPP. A further shortened fragment Pclo2 (aa 3653 – 

3683) (Fig. 15A) also bound RBPs in this assay (Fig. 15B). Assessment of colony number 

and size suggested that Bassoon PXXP motif bound RBPs stronger in comparison to the 

homologous Piccolo sequence. 

 

3.2.4 Distinct SH3 domains of RBPs bind Bassoon and Piccolo with 
relatively different strength 

To further assess a possible preference of RBP-SH3 domains for Bassoon and Piccolo, we 

expressed and purified His-Thioredoxin (Trx)-Pclo2, His-Trx-Bsn12 and a respective mutant 

construct His-Trx-Bsn12_PA and tested their binding to purified GST fusion proteins covering 

distinct SH3 domains of RBPs using surface plasmon resonance technology. His-Trx-

Bsn12_PA binding to RBP-SH3 domains did not show significant difference in comparison to 

His-Trx alone, which was used for normalization (Fig. 15C). This observation confirmed 

previously obtained Y2H data showing that mutation of both prolines (positions 4 an 7) and 

arginine residue at position 1 is sufficient to disrupt the PXXP motif of Bassoon and prevents 

its interaction with RBPs. MBAs of His-Trx-Bsn12 and His-Trx-Pclo2 to RBP-SH3 domains 

were measured and normalized to His-Trx alone (Fig. 15D). While both RBP1_SH3 I and 

RBP1_SH3 III showed detectable binding to both Bassoon and Piccolo, only RBP2_SH3 III 

could interact with these proteins in this assay. The MBA of RBP1_SH3 III was 

approximately 40% higher compared to the corresponding region of RBP2 (RBP2_SH3 III). 

Comparison of binding activities of distinct SH3 domains of RBP1 showed the significant 
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preference for RBP1_SH3 I to interact with both Bassoon and Piccolo (33% for Bassoon and 

38% for Piccolo compared to RBP1_SH3 III and no significant binding to RBP1_SH3 II). In 

line with the Y2H data RBP1_SH3 III showed 20% higher binding activity to Bassoon than to 

Piccolo. The same tendency was observed for RBP1_SH3 I and RBP2_SH3 III. To verify that 

RBP2_SH3 bound neither Bassoon nor Piccolo not due to the wrong folding of this fusion 

protein we cloned longer fragment including the first SH3 domain of RBP2 (RBP2_SH3 

I_long, aa 125 – 314 of rat RBP2). The corresponding longer version of SH3 I domain of 

RBP1 was also cloned (RBP1_SH3 I_long, aa 591 – 773 of rat RBP1) to control the 

construct length influence on affinity. MBAs of His-Trx-Bsn12 and His-Trx-Pclo2 to GST-

RBP1_SH3 I_long and RBP2_SH3 I_long were measured and normalized to His-Trx alone 

(Fig. 15E). RBP1_SH3 I_long interacted with Bsn12 and Pclo2 with MBAs comparable with 

the shorter version – RBP1_SH3 I (for comparison see Fig. 15D). Both Bassoon and Piccolo 

bound RBP2_SH3 I_long slightly stronger than the corresponding RBP1 construct. In 

agreement with our Y2H data RBP2_SH3 I interaction with Bassoon was stronger compared 

to Piccolo.   

 

3.2.5 Bassoon’s but not Piccolo’s interaction with RBPs might be 
regulated by phosphorylation 

Sequence analysis of RBP-interacting PXXP motifs on Bassoon and Piccolo revealed that 

they differ in one aa residue at position 5, which is serine in Bassoon instead of asparagine 

in Piccolo (RTLPSPP vs. RTLPNPP). Furthermore, a proteomic study by Collins et al. (2005) 

showed that this particular serine residue in Bassoon (S2893 in rBsn) could be 

phosphorylated in vivo potentially by p38 MAPK. These findings raised the question if the 

affinity of Bassoon to RBPs can be influenced by phosphorylation. To assess this we 

generated Bassoon constructs, in which hyper- and hypophosphorylation mimicking 

mutations were introduced into the Bassoon construct Bsn12 by the mutation of serine to 

aspartate (hyper) or serine to alanine (hypo). The mutated fragments, Bsn12_SD and 

Bsn12_SA respectively, were assayed for binding to RBP1 constructs in the Y2H assay (Fig. 

16A). Both Bsn12_SD and Bsn12_SA interacted with RBP1 constructs RBP1_SH3 I and 

RBP1_SH3 II+III in this assay. The construct Bsn12_PA containing nonfunctional PXXP 

motif was used as a negative control and did not show any interaction with any of the RBP1 

constructs tested. The assessment of yeast colonies growth on a selection medium showed 

no difference for Bsn12_SD and Bsn12_SA in comparison to the wild type construct Bsn12.  
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FIGURE 15. BASSOON AND PICCOLO CAN INTERACT WITH RBPS THROUGH PXXP MOTIFS.  
(A) Bassoon and Piccolo constructs including the amino acid substitutions introduced at RBP-
interacting PXXP motifs; bordering amino acid numbers refer to rat Bassoon and Piccolo. (B) 
Summery of binding assays in yeasts (Y2H, yeast two-hybrid) and using surface plasmon resonance 
technology (BIA, Biacore). Whenever a construct was not used in a distinct assay the respective box 
is in gray. (C) The sensorgram shows the slope of response units (RU) over time after injection of 
GST-RBP1_SH3 I over immobilized His-Trx (blue), His-Trx-Bsn12_PA (green), His-Trx-Bsn12 
(yellow), His-Trx-Pclo2 (dark red). (D - E) Molar-binding activities (MBA) of purified fragments of RBP1 
and RBP2 to Bassoon and Piccolo constructs containing RBP-interacting PXXP motifs (Bsn12 and 
Pclo2 respectively) in surface plasmon resonance assay. Bar graphs show mean MBAs for each 
interaction, and error bars indicate SEM. **, P < 0,01; ***, P < 0,001.  
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Y2H assay provides positive results for interactions with broad range of binding affinities. 

While the phosphorylation of RBP-binding interface in Bassoon did not abolish its interaction 

with RBP, it could still affect their binding affinity. To test this possibility a competition assay 

was performed using surface plasmon resonance technology.  

 

 

 
FIGURE 16. THE INTERACTION OF BASSOON, BUT NOT OF PICCOLO, WITH RBPS CAN BE MODULATED BY 
PHOSPHORYLATION. 
 (A) Yeast two-hybrid results of Bassoon phosphomimicking mutants with RBP1. Bsn12 – Bassoon 
fragment containing PXXP interaction motif for RBP1. Bsn12_SD – Bassoon mutant mimicking 
hyperphosphorylation state. Bsn12_SA – Bassoon mutant mimicking hypophosphorylation state. 
Bsn12_PA – Bassoon mutant with disrupted PXXP motif. The regions, which are encoded by 
RBP1_SH3 I, RBP1_SH3 II+III and RBP1_0, are indicated in the scheme for RBP1.  - = no interaction; 
+++ =  interaction as strong as positive control for Y2H. (B - E) Competitive inhibition of His-Trx-Bsn12 
interaction with GST-RBP1_SH3 I_long (B), GST-RBP2_SH3 I_long (C), GST-RBP1_SH3 III (D) and 
GST-RBP2_SH3 III (E) by peptides encoding Bsn PXXP motif with non-phosphorylated serine residue 
at position 5 (S2893) and phosphorylated serine residue (pS2893) in a competition assay using 
surface plasmon resonance technology. 
 
Bacterially expressed, thus non-phosphorylated, His-Trx-Bsn12, was used as a ligand 

immobilized on a chip surface. GST fusion proteins containing SH3 I and SH3 III of RBP1 
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and RBP2 were applied as soluble analytes and the binding was detected. Peptides 

corresponding to Bassoon’s PPSP motif and its flanking sequences with phosphorylated 

(pS2893) or nonphosphorylated (S2893) serine residue was then used to inhibit RBP-

constructs binding to His-Trx-Bsn12. For all RBP-constructs checked the inhibition was 

concentration dependent when S2893 or pS2893 was applied. In general the binding affinity 

of pS2893 peptide to all tested RBP-constructs was lower comparing to S2893 (Fig. 16B - E). 

Bsn12 interaction with RBP1_SH3 III (Fig. 16D) and RBP2_SH3 III (Fig. 16E) showed a 

similar inhibition pattern with approximately 15-fold excess of pS2893 comparing to S2893 

needed to reach a 50% inhibition level (RBP1_SH3 III: 60 µM of pS2893 vs. 4 µM of S2893; 

RBP2_SH3 III: 70 µM of pS2893 vs. 4,5 µM of S2893). 50% inhibition of Bsn12 – RBP1_SH3 

I_long interaction  (Fig. 10B) was reached with 8-fold excess of pS2893 in comparison to 

S2893 (62,3 µM of pS2893 vs. 7,7 µM of S2893). For Bsn12 - RBP2_SH3 I_long interaction 

(Fig. 16C) 3,4-fold excess of pS2893 compared to S2893 peptide was necessary to reach a 

50% inhibition level (54 µM of pS2893 vs. 16 µM of S2893). These observations imply that 

phosphorylation of a serine residue in RBP-interacting region of Bassoon decreases its 

binding capacity to RBP-SH3 domains. 

 

3.3 Distinct SH3 domains of RBPs have different binding affinities 

to Rim1, CaV2.2, Bassoon, and Piccolo 

RBP1 and RBP2 contain three structurally homologous SH3 domains, each interacting with 

more than one partner. RBP1 and a fragment of RBP2 were first identified by their capacity 

to interact with RIM1 (Wang et al., 2000). The authors of the original study suggested that 

the interaction between the RBPs and Rim1 resulted from binding of an SH3 domain of 

RBPs to a PXXP motif located between the two C2 domains of Rims (Fig. 17A). This 

suggestion was further confirmed by Hibino et al. (2002), who also showed that three SH3 

domains of RBPs bound to PXXP motifs in α1 subunits of VDCCs (Fig. 17A). Our data 

postulates that SH3 domains of RBP1 and RBP2 can interact with specific PXXP motifs in 

Bassoon and Piccolo. So far, all known RBPs interaction partners, which are Rims, Cav2.1, 

Cav2.2, Bassoon and Piccolo, can interact with more than one SH3 domain in vitro (Fig. 

17B). These observations raise the question – whether all these interactions take place 

simultaneously i.e. is there preference of SH3 domains for particular binding partners, or 

whether there is a competition between different partners for the same binding site. To tackle 

this question His-Trx fusion proteins covering PXXP motifs of Rim1, CaV2.2 (RIM1_1 and 

CaV2.2_1 respectively, Fig. 17C), Bassoon and Piccolo (Bsn12 and Pclo2, Fig. 14A) 

expressed in bacteria were tested for binding to GST-tagged SH3 domains of RBP1 and 

RBP2 using surface plasmon resonance technique. Molar binding activities for each distinct 
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SH3 domain of RBP1 and RBP2 to all known interaction partners were measured and 

normalized to the MBA of RBP1_SH3 I to Bsn12 (Fig. 17D). 

 

 

 
FIGURE 17. RIM BINDING PROTEINS CAN INTERACT SIMULTANEOUSLY WITH BASSOON OR PICCOLO, RIM1 
AND CAV2.2. 
(A) A schematic diagram depicts the structure of Rab3-interacting molecules (Rims) and alpha 1 
subunit of voltage dependent calcium channels (α1). RBP-interacting PXXP motifs are indicated. (B) 
Summary of known interaction partners for RBPs and their identified binding regions. SH3_I, II, III, 
SH3 domains; FN III, fibronectin III repeats. (C) RIM1 and CaV2.2 constructs covering RBP-interacting 
PXXP motifs used in surface plasmon resonance assay; bordering amino acid numbers refer to rat 
RIM1 and CaV2.2. (D) Molar binding activities (MBA) of purified RBP1 and RBP2 fragments to Bsn, 
Pclo, RIM1 and CaV2.2 fragments in surface plasmon resonance assays. MBAs are related to the 
MBA of RBP1_SH3 I to the Bsn fragment (=1). (E) MBAs of fragments covering SH3 I of RBP1 and 
RBP2 with prolonged flanking regions to Bsn, Pclo, RIM1 and CaV2.2 in surface plasmon resonance 
assay. MBAs are related to the MBA of RBP1_SH3 I_long to Bsn12 (=1). 
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For RBP1 clear differences in binding affinities were observed for distinct SH3 domains. 

RBP1_SH3 III showed approximately twice higher affinity to CaV2.2 PXXP (CaV2.2_1) than to 

the corresponding sequence of Rim1 (RIM1_1) and 11-times higher compared to Bassoon 

and Piccolo (Bsn12 and Pclo2, respectively). These observations make CaV2.2 the most 

prominent candidate to interact with RBP1 through its SH3 III domain in vivo assuming that 

molar abundance of all RBP-interacting proteins is similar. RBP1_SH3 II bound neither 

Bsn12 nor Pclo2, but showed clear interaction with both CaV2.2_1 and RIM1_1. Although its 

binding activities for RIM1_1 and CaV2.2_1 were comparable, taking into account a much 

higher probability for CaV2.2 to interact with RBP1 through its SH3 III domain, we suggest 

Rim1 as the most prominent candidate to bind RBP1_SH3 II in vivo. In contrast to SH3 II and 

SH3 III, the SH3 I domain of RBP1 showed significantly higher binding activity to Bassoon 

and Piccolo than to CaV2.2 or RIM1 and was suggested to bind one of these two proteins in 

vivo. SH3 III domain of RBP2 showed a binding pattern similar to the corresponding region of 

RBP1, although its overall binding activity to all investigated interaction partners was 

approximately 2-fold lower. RBP2_SH3 I and RBP2_SH3 II did not interact with any of the 

potential binding partners we checked in this assay probably due to misfolding of these 

constructs. RBP1_SH3 I_long and RBP2_SH3 I_long (Fig. 15A) were checked for their 

binding to all proteins of interest (Fig. 17E). RBP1_SH3 I_long showed the same interaction 

pattern as RBP1_SH3 I construct, interacting with Bassoon and Piccolo, while the binding of 

CaV2.2 and Rim1 was much weaker. The length of the fragment did not influence its binding 

activity, since the numerical MBAs for RBP1_SH3 I and RBP1_SH3 I_long did not show any 

difference. RBP2_SH3 I_long interacted with both Bsn12 and Pclo2 but not with RIM1_1 or 

CaV2.2_1. Comparison of relative binding activities for RBP1_SH3 I_long and RBP2_SH3 

I_long revealed a slight preference for Bassoon and Piccolo to bind RBP2_SH3 I as 

compared to RBP1_SH3 I (postulating the same molar amounts of both proteins).   

Next, we wanted to verify the localization of RBPs and their interaction partners in 

hippocampal neurons. Antibody raised against fragment RBP2_10 covering aa 589 – 869 of 

rat RBP2 CDS were provided for following experiments by Anna Fejtova. Rat hippocampal 

neurons were plated and cultured. Immunostainings with antibodies against Bassoon, 

CaV2.1, RBP2 and the presynaptic marker Synapsin, were performed at 14 DIV. In primary 

hippocampal neurons RBP2 immunoreactivity clearly overlapped Bassoon immunoreactivity 

at synaptic areas (Fig. 18A). The synaptic localization of puncta was confirmed by co-

staining with anti-Synapsin antibodies. Anti-RBP2 antibody labeling was also observed in cell 

bodies of hippocampal neurons. Labeling for CaV2.1 (Fig. 18B) also partially co-localized with 

Bassoon immunoreactivity at synaptic puncta. To confirm that Bassoon, RBP2 and CaV2.1 

can be present at the same synapses, counterstaining for those proteins was performed. The 
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significant amount of puncta showed the overlapped immunostaining for Bassoon, RBP2 and 

CaV2.1 (Fig. 18C).  

Overall, our data imply that RBPs can interact simultaneously with Bassoon or Piccolo, RIM1 

and VDCCs. 

 

 

 
FIGURE 18. BASSOON CO-LOCALIZES WITH RBP2 AND CAV2.1 AT SYNAPSES.  
Rat hippocampal neurons were fixed at 14 DIV and immunostained to visualize the co-localization of 
Bassoon with RBP2 (A1-4) and CaV2.1 (B1-4) at synapses. The co-localization of Bassoon with RBP2 
and CaV2.1 at the same puncta has been also demonstrated (C1-4). Higher magnifications of boxed 
regions are shown below the respective image. Bars: (A – C) 20 µm; (inserts) 10 µm.  
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3.4 Potential physiological functions of Bassoon interaction with 
Rim binding proteins 
 

3.4.1 The lack of functional Bassoon reduces the amount of CaV2.1 at 
synapses 

Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were 

generated and characterized previously (Altrock et al., 2003). In the original study the 

authors showed that the lack of functional Bassoon causes a reduction in normal synaptic 

transmission. At the ribbon synapses of cochlear inner hair cells (IHCs) and photoreceptor 

cells Bassoon mutation leads to impaired ribbons anchoring at the presynaptic membrane 

(Khimich et al., 2005; Dick et al., 2003). Furthermore, calcium currents were significantly 

reduced in mutant IHCs, potentially due to insufficient recruitment and/or stabilization of 

VDCCs at the active zone (Khimich et al., 2005).  

Based on these observations we sought to analyze the effect of lack of Bassoon on the 

levels of CaV2.1 at synaptic terminals.  These experiments were done in close collaboration 

with Claudia Marini during her practical training (under my supervision) in the group of Prof. 

E. D. Gundelfinger. For our analysis we used a new mouse mutant, where the bsn gene is 

targeted by a retroviral insertion diminishing translation of Bassoon mRNA and transcription 

of Bassoon protein. Hippocampal neurons from BGT (bsn gene trap) mice and their wild type 

littermates were mixed in equal ratio, plated and co-cultured. Immunostainings with 

antibodies against synaptic marker Synapsin, SV protein Synaptophysin, CaV2.1 and 

Bassoon were performed at 16 and 23 DIV. This experimental setup allowed direct 

comparison of immunoreactivity for CaV2.1 and Synaptophysin between Bassoon negative 

(mutants) and Bassoon positive (WT) synapses, which were defined by staining for synapsin 

(Fig. 19A). The relative synaptic amounts of CaV2.1 were determined as the intensity of 

immunostaining normalized to mean CaV2.1 immunoreactivity of synapses formed by axons 

of wild type neurons in the same image. The relative synaptic amounts of Synaptophysin 

were used to control possible non-specific effects of the lack of Bassoon on the synapse 

molecular composition. The quantitative analysis revealed a significant decrease in mean 

amounts of CaV2.1 at 16 DIV (20%) and 23 DIV (30%) at Bassoon mutant synapses 

compared with synapses formed by axons of wild type neurons (Fig. 19B). Interestingly, 

while at 16 DIV the mean amounts of Synaptophysin were also significantly decreased (34%) 

comparing to the wild type synapses, they were not changed at 23 DIV, when there was no 

significant difference between Bassoon mutant synapses and the wild type ones (Fig 19C). 

These results suggest that Bassoon is involved in recruitment or retention of VDCC at the 

presynaptic terminals.  
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FIGURE 19. THE LACK OF FUNCTIONAL BASSOON REDUCES THE AMOUNT OF CAV2.1 AT SYNAPSES. 
(A) Co-staining of CaV2.1 (red) with Bassoon (green) and Synapsin (blue) in hippocampal neurons 
derived from Bassoon mutant and wild type mice at 16 DIV. Indicated are Bassoon mutant 
(arrowhead) and wild type (arrow) synapses. (B - C) Quantification of relative staining intensities for 
CaV2.1 (B) and Synaptophysin (C). Bar graphs show mean values of relative fluorescence intensity for 
each staining and error bars indicate SEM. Values are derived from three independent experiments. 
**, P < 0,01; ***, P < 0,001. Figures 13B and 13C are provided by Claudia Marini. 

3.4.2 Bassoon recruits calcium channels through the interaction with 
Rim binding proteins 

GFP-Bsn expressed in hippocampal neurons targets to synapses, but also forms aggregates 

within a cell body. Interestingly, these aggregates are positive for CaV2.1. To test the 

hypothesis that Bassoon is involved in calcium channels recruitment through the interaction 

with RBPs, an EGFP-tagged RBP-binding mutant (RBM) of Bassoon (EGFP-BsnRBM) 

unable to interact with RBPs was produced by introducing the aforementioned amino acid 

exchanges into RBP-binding PXXP motif of Bassoon. In this study, we compared the effects 

caused by EGFP-Bsn vs. EGFP-BsnRBM overexpression on localization of CaV2.1, RBP2 

and synapsin. Rat hippocampal neurons were transfected with EGFP-Bsn or EGFP-BsnRBM 

at 3 DIV. Immunostainings with antibodies against synaptic marker Synapsin, CaV2.1 and 

RBP2 were performed at 14 DIV. 
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FIGURE 20. BASSOON BUT NOT BASSOON DEFICIENT FOR RBP BINDING RECRUITS CAV2.1.  
(A – D) Cells transfected at 3 DIV with EGFP-Bsn (A and B) and EGFP-BsnRBM (C and D) were fixed 
at 14 DIV and counterstained to visualize Synapsin, RBP2 (A and C) and CaV2.1 (B and D). Higher 
magnifications of the boxed regions are shown in the right up corner of the respective image. Bar, 20 
µm (E – F) Quantification of correlation coefficients for synaptic RBP2 (E) and CaV2.1 (F) 
immunofluorescence intensities towards intensity of EGFP fluorescence caused by overexpressed 
EGFP-Bsn or EGFP-BsnRBM. Bar graphs show mean correlation coefficients for each staining, and 
error bars indicate SEM. **, P < 0,01; ***, P < 0,001. 
 



Results 

 66 

As was expected, CaV2.1 were enriched at GFP-Bsn positive puncta (Fig. 20B2). The same 

effect was observed for RBP2 immunoreactivity (Fig. 20A2). On the contrary, we did not see 

any enrichment of synapsin (Fig. 20A3, 20B3) at Bsn-formed clusters; therefore the observed 

co-recruitment of RBP2 and CaV2.1 is rather specific than an over-expression artefact. When 

EGFP-BsnRBM was over-expressed it formed clusters similar to those formed by EGFP-Bsn 

(Fig. 20C1 and D1 compare to A1 and B1), but neither RBP2 (Fig. 20C2) nor CaV2.1 (Fig. 

20D2) were co-recruited.  

To verify whether Bassoon is involved in VDCC recruitment to synapses and whether this 

involvement is RBP-dependent the synaptic immunofluorescence (IF) intensities of CaV2.1 

and RBP2 were correlated to the intensity of EGFP fluorescence caused by overexpressed 

EGFP-Bsn or EGFP-BsnRBM. Both CaV2.1 and RBP2 IF intensities showed positive 

correlation with EGFP intensity (r=0,38±0,14 and 0,43±0,05 for CaV2.1 and RBP2, 

respectively) at EGFP-Bsn transfected synapses (Fig. 20E, 20F). On the contrary, at 

synapses transfected with EGFP-BsnRBM the negative correlation between CaV2.1 and 

RBP2 IF intensities with EGFP fluorescence (r= [-0,32±0,14] and [-0,14±0,07] for CaV2.1 and 

RBP2, respectively) was observed (Fig. 20E, 20F). 

Overall, the lack of CaV2.1 co-recruitment by Bassoon due to the mutation of RBP-interacting 

PXXP motif, confirms that Bassoon effects the localization of calcium channels interacting 

with them through RBPs. 
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4. Discussion  
 

4.1 Bassoon – DLC interaction: three functional DLC-binding sites 

in Bassoon, role of Bassoon as a cargo adaptor protein for dynein 

motors 

We have identified three independently functioning DLC-binding sites on Bassoon, all 

resembling, but not exactly matching, the DLC-binding consensus sequence (K/R)XTQT (Lo 

et al., 2001). This is in line with previously reported high diversity of binding sites identified 

among known DLC interacting partners (Lajoix et al., 2004). Notably, none of the three DLC-

binding sites of Bassoon is conserved in its paralogue Piccolo. Mutated Bassoon fragments, 

where the essential (T/S)QT motifs were replaced by AAA did neither interact with DLCs in 

biochemical assays nor in yeast or mammalian cells. It is therefore likely that Bassoon binds 

DLCs via the target-interacting groove of DLCs, the interaction interface shared also by other 

known DLC interaction partners (Fan et al., 2001; Liang et al., 1999; Lo et al., 2001). 

Quantitative in vitro binding assays revealed that all three sites are active, that site I has a 

higher relative affinity for DLCs than sites II and III and that binding strengths seem to be 

additive. Thus the cluster of three DLC-binding motifs constitutes a multivalent interaction 

interface in Bassoon that is likely to facilitate DLC-Bassoon interaction. 

In agreement with the high homology of DLC1 and DLC2, Bassoon was observed to bind 

both isoforms. However, quantitative binding assays with Bassoon fragments containing two 

or three DLC-binding interfaces showed significantly higher affinity for DLC2 than for DLC1. 

One important cellular function of DLCs is to link their binding partners to dynein- or 

myosinV-dependent transport processes. In neurons, DLCs were shown to bind postsynaptic 

scaffold molecules like GKAP (Naisbitt et al., 2000) or gephyrin (Fuhrmann et al., 2002) and 

active retrograde transport was proposed as a mechanism contributing to activity-dependent 

remodeling of the postsynaptic receptor apparatus (Maas et al., 2006). However, the 

functional role of DLCs as cargo adaptors for dynein motors has become a subject of debate 

recently (Barbar, 2008; Vallee et al., 2004). The binding of DLC cargos occurs in the same 

binding groove as the binding to dynein motor complex via IC74 (Williams et al., 2007). In 

this configuration, the DLC-interaction partners would probably compete with the dynein 

motor complex for binding to DLC, rather than being linked to the dynein motor complex via 

DLC. 

When DLC1 or DLC2 were targeted to the outer mitochondrial membrane in COS-7 cells, the 

localization of mitochondria was remarkably changed: normally, mitochondria are distributed 

throughout the cytoplasm of cells, in contrast, targeting of DLCs to mitochondria results in 
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their accumulation near the cell center. This finding could be explained by DLC-mediated 

retrograde transport of mitochondria along microtubules. To test whether Bassoon can 

function as a cargo adapter, the Bassoon fragment harboring DLC-binding sites was targeted 

to the outer mitochondrial membrane the subcellular localization of mitochondria was 

observed. After expression of DLC-interacting Bassoon sequence, mitochondria were 

clustered near the microtubule-organizing center (MTOC). This accumulation was dependent 

on both intact DLC-binding motifs and assembled microtubules and is best explained by 

assuming retrograde transport of Bassoon-tagged mitochondria. These findings support the 

view that Bassoon via its interaction with DLCs might function as a cargo adaptor for the 

retrograde motor dynein (Fig. 21). Methodologically, experiments done in frame of this 

project revealed the suitability of the novel mito-targeting assay developed here, to not only 

demonstrate existence of protein-protein interactions in living cells but also in some cases to 

tackle functional significance of these interactions. 

 

 
FIGURE 21. BASSOON VIA ITS INTERACTION WITH DLCS FUNCTIONS AS A CARGO ADAPTOR FOR THE 
RETROGRADE MOTOR DYNEIN IN COS-7 CELLS. 
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4.2 Piccolo and nonphosphorylated Bassoon bind preferentially to 

the first SH3 domain of RBPs 

Here we report a novel interaction between the presynaptic active zone proteins Bassoon 

and Piccolo with RBP1 and RBP2. We identified specific PXXP motifs in Bassoon 

(RTLPSPP) and Piccolo (RTLPNPP), which can bind SH3 domains of RBPs. Mutated 

Bassoon fragments, in which the essential prolines at positions 4 and 7 and arginine at 

position 1 were replaced by alanine residues, did not interact with RBPs neither in 

biochemical assays nor in yeast cells. Initial Y2H analyses of Bassoon and Piccolo 

interactions with RBPs revealed that each of the three SH3 domains of both RBP1 and RBP2 

were able to interact with both Bassoon and Piccolo. Y2H assays provide positive results for 

interactions within a broad range of binding affinities. Therefore to further assess a possible 

preference of RBP-SH3 domains for Bassoon and Piccolo, surface plasmon resonance 

technology was used to compare binding affinities of distinct RBP-SH3 domains for Bassoon 

and Piccolo PXXP motifs. These analyses revealed that both Bassoon and Piccolo interact 

preferentially with the SH3-I domain of RBPs. Sequence analysis showed a closer 

relationship between respective SH3 domains of RBP1 and RBP2 (for alignment of RBP1 

and RBP2 see 6.1) compared to distinct SH3 domains within one protein sequence (e.g., 

RBP1_SH3 I is more homologous to RBP2_SH3 I [74% of identity] than to RBP1_SH3 II 

[56% of identity] or RBP1_SH3 III [62% of identity]). The target specificity of particular SH3 

domains can be increased due to the interaction of ligand residues outside the core binding 

motif (PXXP) with surfaces on the SH3 domain outside the PPII binding groove (Feng et al., 

1995). Given this, the relatively higher homology of RBP-SH3 I domains compared to the 

other SH3 domains of RBPs may provide a basis for the similar interaction patterns and, in 

turn, contribute to the higher affinities of RBP-SH3 I domains for Bassoon and Piccolo as 

compared to the other SH3 domains of RBPs.  

Sequence analysis of RBP-interacting PXXP motifs in Bassoon and Piccolo revealed that 

they differ in one aa residue at position 5, which is a serine in Bassoon instead of an 

asparigine in Piccolo (RTLPSPP vs. RTLPNPP). Interestingly, a proteomic study by Collins 

et al. (2005) showed that this particular serine residue in Bassoon (S2893 in rBsn) can be 

phosphorylated in vivo. In vitro competition assays performed in this study revealed that 

phosphorylation of the serine residue in the RBP-interacting PPSP motif of Bassoon 

significantly hinders its interaction with RBP-SH3 I and RBP-SH3 III domains. Similarly, it has 

been reported that phosphorylation of Pak1 at S21, which is in the PXXP motif recognized by 

SH3 domain of Nck, leads to reduction in binding of Nck to Pak1 (Zhao et al., 2000); also the 

phosphorylation of several serine residues within or in close proximity to the PXXP motifs of 

tau inhibits its interactions with SH3 domain of several important signaling molecules, 

including Fyn, cSrc, Lck and 14-3-3 (Reynolds et al., 2008). Phosphorylation of two serine 
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residues located in close proximity to PXXP motif of the nonreceptor tyrosine kinase Abl, 

inhibits Abl interaction with SH3 domain of Abi2 up to 90% as compared to 

nonphosphorylated Abl (Jung et al., 2008). The authors of this paper suggested that negative 

charges introduced by phosphorylation disrupt electrostatic interactions with the arginine 

residue within the Abi2-interacting motif of Abl, resulting in dissociation of Abi2 from the Abl 

PXXP motif. A similar explanation for phosphorylation-dependent inhibition of interactions 

between SH3 domains and PXXP motifs would apply to the interaction of Bassoon and RBPs 

described in this study. 

In quantitative in vitro assays, non-phosphorylated Bassoon had a slight preference for 

binding RBPs as compared to Piccolo. However, when Bassoon is phosphorylated Piccolo 

should bind more avidly to the SH3 I domains of RBPs. In this way phosphorylation may 

regulate which of two binding partners interacts with RBPs. Although due to their high 

structural similarity Bassoon and Piccolo are partially functionally redundant, several unique 

interaction partners suggest that these two proteins might be involved in distinct protein 

networks within presynaptic terminals. This is also indicated by the distinct phenotypes 

displayed by mouse mutants for Bassoon and Piccolo. Interestingly, the RBP1_SH3-I 

interaction with Bassoon was approximately twice more sensitive to phosphorylation of the 

serine residue within RBP-interacting PPSP motif of Bassoon compared to RBP2_SH3 I in 

vitro, suggesting a more dramatic effect of phosphorylation on Bassoon–RBP1 than on 

Bassoon–RBP2 interaction in vivo. This phenomenon may as well regulate the composition 

of RBP-containing protein complex in vivo. 

The serine residue in RBP-interacting PSPP motif of Bassoon was predicted to be 

phosphorylated by p38 MAPK (Collins et al., 2005). In brain MAPKs can be activated by 

synaptic activity and are essential for some forms of synaptic plasticity (Imprey et al., 1999). 

In hippocampal neurons p38 MAPK is expressed both presynaptically (Maruyama et al., 

2000) and postsynaptically (Bolshakov et al., 2000).  P38 MAPK has also been implicated in 

presynaptic inhibition, because its activation is involved in the inhibition of CaV2.2 channels 

(Wilk-Blaszczak et al., 1998; Brust et al., 2006). Thus the reported effects of MAPK on Ca2+ 

currents might be mediated via modulation of the Bassoon/Piccolo–RBP–VDCC multiprotein 

complex. 

 

4.3 RBPs can play an integrative role interacting simultaneously 

with Rim1, VDCCs and Bassoon or Piccolo 

To date several presynaptic proteins have been shown to bind RBP-SH3 domains via 

specific PXXP motifs. Rim1 and VDCCs interact with both RBP1 and RBP2 (Wang et al., 

2000; Hibino et al., 2002) and a model was suggested where RBPs can serve as linkers 
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between Rims and VDCCs (Hibino et al., 2002). Here we report that RBPs can also interact 

with specific PXXP motifs in Bassoon and Piccolo, preferentially via their SH3-I domains. The 

existence of three SH3 domains in RBPs and several potential binding partners raised the 

question whether these interactions take place simultaneously or whether there is a 

competition between distinct binding partners for the same binding site. To tackle this 

question the relative binding affinities for each SH3 domain of RBP1 and RBP2 for Rim1, 

CaV2.2, Bassoon and Piccolo were measured and, indeed, clear differences were observed: 

RBP-SH3-I domains bound preferentially Bassoon and Piccolo, while their ability to interact 

with Rim1 and CaV2.2 was very low. RBP-SH3-III domains could interact with all four 

analyzed partners but showed a clear preference for CaV2.2. RBP1-SH3-II had high binding 

strength for both – Rim1 and CaV2.2 (although the SH3-II binding strength towards CaV2.2 

was approximately twice lower as compared to SH3-III), while its relative binding affinities for 

Bassoon and Piccolo were relatively low. The RBP2-SH3-II did not interact with any 

examined interaction partner, most likely due to the misfolding of the corresponding fusion 

protein in bacterial cells. A similar problem with RBP2-SH3-I was overcome by using longer 

fusion proteins containing SH3 domain with expanded flanking regions (RBP2_SH3-I_long). 

In our experiments, RBP2_SH3-I_long showed the same binding pattern as RBP1_SH3-I. 

Given this and taking into account the high homology between RBP-SH3-II domains (78% of 

identity) RBP2-SH3-II has probably the same interaction pattern as the corresponding region 

of RBP1, preferentially binding Rim1 and CaV2.2.  

Assuming approximately equal molar ratios of these proteins in vivo, we here propose a 

model for RBP-based protein complex (Fig. 22). In this model RBPs might serve as structural 

modules for protein complex assembly, interacting simultaneously with Bassoon or Piccolo 

via RBP-SH3-I, Rim1 via RBP-SH3-II and VDCCs via RBP-SH3-III. The described complex 

might be involved in recruitment and/ or retention of VDCCs in presynaptic terminals and 

their co-clustering with docked SVs. 

Experiments done in context of this project revealed the preferential interaction between the 

SH3-III domain of RBPs and the specific PXXP motif in CaV2.2 (RQLPQTP).  The second 

type of VDCCs involved in neurotransmitter release, CaV2.1, contains the corresponding 

PXXP motif of exactly the same primary structure, suggesting that CaV2.1 channels also can 

interact with RBPs via their SH3-III in vivo. In this study, we show that RBP interaction with 

Bassoon might be regulated via phosphorylation of the S2893 residue in RBP-interacting 

PXXP motif of Bassoon. Sequence analysis of the corresponding PXXP motifs in CaV2.2 and 

CaV2.1 (RQLPQTPLTPR) revealed the presence of two threonine residues (positions 6 and 

9) which potentially can be phosphorylated by p38 MAPK, cdk5 or GSK3β (according to 

NetPhosK 1.0). Whether phosphorylations of these residues take place in vivo and whether 
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these phosphorylations are implicated in regulation of VDCC interaction with RBPs is not 

known and will require further analyses.  

The here reported interaction of core CAZ proteins Bassoon and Piccolo with VDCCs via 

RBPs might provide a physical link for Ca2+ channels to the scaffolding complex of the 

presynaptic cytomatrix. It might be essential for the functional organization of the AZ by 

linking Ca2+ channels of the presynaptic membrane to components of the exocytosis 

machinery for SVs. Moreover the observed modulation of interactions in the complex by 

phosphorylation inspires speculations about an activity-dependent regulation of the 

interactions and in turn a role in presynaptic plasticity processes. 

 

 
FIGURE 22. VIA THEIR MULTIPLE SH3 DOMAINS, RBPS INTERACTING WITH BASSOON AND PICCOLO MAY ACT 
AS LINKERS BETWEEN RIMS AND VOLTAGE-DEPENDENT CALCIUM CHANNELS, THUS ORGANIZING INDIVIDUAL 
STEPS OF THE SV CYCLE AND LOCALIZING THE PRIMING AND FUSION APPARATUS IN THE VICINITY OF THE 
VDCC.  
  
 

4.4 Bassoon might be involved in retention of VDCCs at synapses 

The first evidence that Bassoon might be involved in the retention or exact localization of 

VDCCs in presynaptic terminals came from studies on Bassoon mutant mice. In the original 

paper of Altrock et al. (2003), the authors showed that the lack of functional Bassoon causes 

a reduction in normal synaptic transmission. At the ribbon synapses of cochlear inner hair 

cells and photoreceptor cells, Bassoon mutation leads to impaired anchoring of ribbons at 

the presynaptic membrane (Khimich et al., 2005; Dick et al., 2003). Furthermore, calcium 

currents were significantly reduced in mutant inner hair cells, potentially due to insufficient 

recruitment and/or stabilization of VDCCs at the active zone (Khimich et al., 2005). Following 

this observations we investigated the effect of the absence of Bassoon on the amount of 

presynaptic CaV2.1 in mouse hippocampal neurons at 16 and 23 DIV. These analyses 

showed a significant reduction of synaptic CaV2.1 immunofluorescence intensity at both time 
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points in Bassoon knockout cultures as compared to wild-type ones. The intensity of the SV 

marker Synaptophysin immunofluorescence was also reduced in Bassoon knockout 

compared to the wild-type synapses at 16 DIV, but no significant difference was observed 

one week later, suggesting that in the absence of Bassoon maturation of synapses might be 

impaired or delayed. In contrast, the reduction of CaV2.1 immunofluorescence intensity in 

Bassoon knockout vs. wild type synapses followed an opposite trend; it was more 

pronounced at 23 DIV, than at 16 DIV (30% and 20%, respectively).   

To assess whether Bassoon effects on VDCC localization require RBPs as linkers 

connecting these two proteins, the distribution of CaV2.1 in rat hippocampal neurons 

transfected either with EGFP-tagged wild type Bassoon or RBP-binding deficient Bassoon 

mutant was compared. Bassoon clustering in the cell body was observed in both cases, 

while endogenous RBP2 and CaV2.1 were co-recruited only to clusters formed by wild-type 

Bassoon. At synapses formed by axons of neurons transfected with EGFP-tagged wild-type 

Bassoon the immunofluorescence intensities of both RBP2 and CaV2.1 showed strong 

positive correlation with the intensity of EGFP fluorescence. On the contrary, the negative 

correlation was observed for the RBP2 and CaV2.1 immunofluorescence intensities and 

EGFP fluorescence intensity at synapses containing RBP binding-deficient Bassoon mutant. 

A plausible explanation might be that Bassoon contributes to definition of presynaptic slots 

for CaV2.1. Clues about the possible existence of presynaptic slots for VDCCs came from 

morphological studies of putative calcium channel organization at transmitter release sites 

(Heuser et al., 1979). Multiple studies showed that the precise localization of VDCCs in close 

proximity to synaptic vesicles requires their specific interactions with other proteins, such as 

plasma membrane SNARE proteins (Sheng et al., 1994; Mochida et al., 2003; Harkins et al., 

2004) and the AZ scaffolding proteins Mint and CASK (Maximov and Bezprozvanny, 2002; 

Spafford et al., 2003; Spafford and Zamponi, 2003). Thus, the concept of slots may be 

broadened to include any sites of interaction that regulates the final localization of channels 

at the presynaptic AZ. Given this, the negative correlation observed for CaV2.1 at synapses 

transfected with RBP binding-deficient Bassoon mutant may indicate that this mutated 

protein fails to form slots for VDCCs when integrated into the presynaptic cytomatrix.  

Interestingly, these slots may be specific for the calcium channel type (Cao et al., 2004). The 

mechanism for this discrimination needs further attention. RBP-interacting PXXP motif in 

CaV2.2 has the same primary structure as the corresponding region in CaV2.1, suggesting 

that Bassoon can be also involved in retention of CaV2.2 at presynaptic terminals. Overall, 

our data suggest that Bassoon might be involved in the retention and/or exact localization of 

VDCCs in presynaptic terminals. This mechanism requires RBPs, which interact 

simultaneously with Bassoon and VDCCs and therefore can serve as physical linkers for this 

protein complex assembly.  
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4.5 Perspectives 

What might be the physiological significance of VDCC–RBP–Bassoon complex formation? 

Neurotransmitter release is proportional to the third or fourth power of Ca2+ entry (Augustine 

et al., 1987). Thus, regulation of presynaptic Ca2+ channels provides a sensitive and efficient 

tool to regulate neurotransmitter release, as a 2-fold change in the presynaptic Ca2+ current 

results in an 8- to 16-fold change in exocytosis. This, in turn, effects synaptic transmission 

and may contribute to short-term synaptic plasticity. In this regard the interesting direction for 

further analyses would be to directly assess the role of VDCC–RBP–Bassoon complex in 

synaptic transmission. To this end the dominant-negative approach to interfere with Bassoon 

binding to RBPs can be combined with paired patch-clamp recordings allowing estimation of 

possible changes in vesicular release probabilities. We expect that interference with Bassoon 

binding to RBPs will lead to impaired localization of VDCCs in presynaptic terminals, which, 

in turn, will cause the reduction of miniature EPSC frequencies or failures of evoked EPSPs. 

Notably, for this set of experiments, the previously arisen question, whether CaV2.2 are 

regulated by Bassoon in the same manner as CaV2.1, is of particular importance, due to their 

possible compensatory role in synaptic transmission (Cao et al., 2004). 
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6. Appendix 

6.1 RBP1 and RBP2 sequence alignment 
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FIGURE 23. PRIMARY STRUCTURE OF RIM BINDING PROTEINS: COMPARISON OF RBP1 AND RBP2. 
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The sequences of rat RBP1 (NCBI Reference Sequence: XP_213427.4) and RBP2 (NCBI Reference 
Sequence: XP-341072.3) are aligned in single letter amino acid code. RBPs are composed of three 
dispersed SH3 domains (highlighted in yellow) and three consecutive fibronectin III repeat domains 
(undelined in green). The amino acid numbering corresponds to RBP1_rn sequence. 
 

6.2 Constructs used in this project 

Construct name 
(Gene) 

Amino acids 
 (rat cDNA) 

vector tag done by 

Bsn 95-3938 pCSM-EGFP EGFP T. Dresbach 
BsnRBM 95-3938;  

R2888A; P2891A; P2894A 
pCSM-EGFP EGFP D. Davydova 

Bsn1 1-609 pGBKT7  W. Altrock 
Bsn2 609-1692 pGBKT7  W. Altrock 
Bsn3 1692-3263 pGBKT7  W. Altrock 
Bsn4 3263-3938 pGBKT7  W. Altrock 
Bsn5 1653-2348 pGBKT7  W. Altrock 
Bsn6 2088-2563 pGBKT7  W. Altrock 
Bsn7 2715-3013 pGBKT7  W. Altrock 
Bsn8 2979-3263 pGBKT7  W. Altrock 
Bsn9 2715-2868 pGBKT7  W. Altrock 
Bsn10 2821-3013 pGBKT7  W. Altrock 
Bsn10 2821-3013 pEGFP-C2 EGFP D. Davydova 
Bsn10 2821-3013 pRFP-C2 mRFP F. Bischof 
Bsn10_PA 2821-3013;  

R2888A; P2891A; P2894A 
pGBKT7  D. Davydova 

Bsn10_PA 2821-3013;  
R2888A; P2891A; P2894A 

pEGFP-C2 EGFP D.Davydova 

Bsn11 2929-3017 pGBKT7  W. Altrock 
Bsn12 2869-2899 pGBKT7  F. Bischof 
Bsn12 2869-2899 pET-32a(+) His-Trx F. Bischof 
Bsn12_PA 2869-2899; 

R2888A; P2891A; P2894A 
pGBKT7  D. Davydova 

Bsn12_PA 2869-2899; 
R2888A; P2891A; P2894A 

pET-32a(+) His-Trx D. Davydova 

Bsn12_SD 2869-2899; S2893D pGBKT7  D. Davydova 
Bsn12_SD 2869-2899; S2893D pET-32a(+) His-Trx D. Davydova 
Bsn12_SA 2869-2899; S2893A pGBKT7  D. Davydova 
Bsn12_SA 2869-2899; S2893A pET-32a(+) His-Trx D. Davydova 
Bsn13 1360-1692 pET-32a(+) His-Trx A. Fejtova 
Bsn13I,II,III 1360-1692; 

SQT1424AAA; 
TQT1500AAA; 
TQT1526AAA 

pET-32a(a) His-Trx A. Fejtova 

Bsn14 1206-1692 pRFP-C2 mRFP A. Fejtova 
Bsn15 1441-1692 pET-32a(+) His-Trx A. Fejtova 
Bsn15 1441-1692 pMito3-EGFP Mito-EGFP A. Fejtova 
Bsn15II 1441-1692; 

TQT1500AAA 
pET-32a(+) His-Trx A. Fejtova 

Bsn15III 1441-1692; 
TQT1526AAA 

pET-32a(+) His-Trx A. Fejtova 

Bsn15II,III 1441-1692; 
TQT1500AAA; 
TQT1526AAA 

pET-32a(+) His-Trx A. Fejtova 

Bsn16 1360-1441 pET-32a(+) His-Trx A. Fejtova 
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Bsn16I 1360-1441; 
SQT1424AAA 

pET-32a(+) His-Trx A. Fejtova 

CaV2.2_1 2165-2195 pET-32a(+) His-Trx D. Davydova 
DLC1 1-89 pGEX-5X-1 GST A. Fejtova 
DLC1 1-89 pMito3-EGFP Mito-EGFP A. Fejtova 
DLC2 1-89 pGEX-5X-1 GST A. Fejtova 
DLC2 1-89 pMito3-EGFP Mito-EGFP A. Fejtova 
Pclo1 3607-3792 pGBKT7  D. Davydova 
Pclo2 3653-3683 pGBKT7  D. Davydova 
Pclo2 3653-3683 pET-32a(+) His-Trx D. Davydova 
RBP1 1-1786 pEGFP-C2 EGFP D. Davydova 
RBP1 1-1786 pCMV-Tag3B myc D. Davydova 
RBP1_SH3 I 652-712 pGADT7  D. Davydova 
RBP1_SH3 I 652-712 pGEX-5X-1 GST D. Davydova 
RBP1_SH3 I_long 591-773 pGADT7  D. Davydova 
RBP1_SH3 I_long 591-773 pGEX-5X-1 GST D. Davydova 
RBP1_SH3 II 1557-1622 pGADT7  F. Bischof 
RBP1_SH3 II 1557-1622 pGEX-5X-1 GST F. Bischof 
RBP1_SH3 III 1697-1758 pGADT7  F. Bischof 
RBP1_SH3 III 1697-1758 pGEX-5X-1 GST F. Bischof 
RBP1_SH3 II+III 1557-1786 pGADT7  F. Bischof 
RBP1_SH3 II+III 1557-1786 pMito3-EGFP EGFP F. Bischof 
RBP1_0 1357-1556 pGADT7  F. Bischof 
RBP1_0 1357-1556 pGEX-5X-1 GST F. Bischof 
RBP2 1-1076 pCMV-Tag3B myc D. Davydova 
RBP2_SH3 I 191-251 pGADT7  D. Davydova 
RBP2_SH3 I 191-251 pGEX-5X-1 GST D. Davydova 
RBP2_SH3 I_long 125-314 pGADT7  D. Davydova 
RBP2_SH3 I_long 125-314 pGEX-5X-1 GST D. Davydova 
RBP2_SH3 II 873-938 pGADT7  D. Davydova 
RBP2_SH3 II 873-938 pGEX-5X-1 GST D. Davydova 
RBP2_SH3 III 978-1039 pGADT7  D. Davydova 
RBP2_SH3 III 978-1039 pGEX-5X-1 GST D. Davydova 
RBP2_SH3 II+III 873-1076 pGADT7  D. Davydova 
RBP2_SH3 II+III 873-1076 pMito3-EGFP Mito-EGFP D. Davydova 
RIM1_1 1110-1140 pET-32a(+) His-Trx D. Davydova 
Tom20_TMD 1-35 pMito3-EGFP Mito-EGFP D. Davydova 
 

6.3 Abbreviations 

 
 
% (v/v) – percent by volume  
% (w/v) – percent by mass  
aa – amino acid  
Abp1 – amiloride binding protein 1  
AMP – adenosine monophosphate 
ATP – adenosin triphosphate  
AZ – active zone 
BGT Mice – Bassoon gene trap mice 
BRP – Bruchpilot 
BSA – bovine serum albumin  
Bsn – Bassoon 
BsnRBM – Bassoon Rim binding protein mutant 
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cAMP – cyclic adenosine monophosphate 
cAMP-GEFII – cAMP-guanidine nucleotide exchange factor II 
CASK – calcium/calmodulin-dependent serine protein kinase 
CAST – CAZ-associated structural protein 
CAZ – cytomatrix at the active zone 
Cdk – Cyclin-dependent kinase  
cDNA – complementary DNA  
CDS – coding sequence 
COS-7 – african green monkey cell line  
CtBP – C-terminal binding protein 
COOH-terminal – carboxy-terminal   
DIV – Days in vitro  
DLC – dynein light chain 
DMEM – Dulbecco´s Modified Eagle Medium  
DMSO – dimethyl sulfoxide  
DNA – deoxyribonucleic acid  
DTT – dithiothreitol  
E.coli –  Escherichia coli  
EDTA – ethylenediamine-N,N,N´,N´-tetraacetic acid  
EGFP – Enhanced green fluorescent protein 
ERC protein – expressed in renal carcinoma 
F-actin – filamentous actin  
FCS – fetal calf serum  
Fig. – figure  
GDP – guanosine diphosphate  
GIT1 – G protein-coupled receptor kinase interacting ArfGAP 1 
Gp – Guinea pig 
GSK3β – Glykogen Synthase Kinase 3β 
GST – glutathion-S-transferase  
GTP – guanosine triphosphate  
GTPase – guanosine triphosphatase  
HBSS – Hank´s Balanced salts  
HEK cells – human embryonic kidney cells 
HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
IF – immunofluorescence  
IgG – immunoglobulin G  
IHC – inner hair cell 
IP – immunoprecipitation  
IPSC – inhibitory postsynaptic currents  
IPTG – isopropyl-f-D-l-thiogalactopyranoside  
kDa – kilo Dalton  
m – Mouse 
MAPK – Mitogen-activated protein kinase 
MBA – molar binding activity 
Mint – Munc-18 interacting protein  
mRFP – monomeric red fluorescence protein 
mRNA – messenger ribonucleic acid 
MTOC – mitochondria organizing centre 
NH2-terminal – amino-terminal  
P – postnatal day  
PAGE – polyacrylamide gel electrophoresis  
PBH domain – Piccolo-Bassoon homology domain 
PBS – phosphate buffered saline  
Pclo – Piccolo 
PCR – polymerase chain reaction 
PEG – polyethylene glycol  
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PFA – Paraformaldehyde 
PTV – Piccolo-Bassoon transport vesicle 
PVDF – Polyvinyliden fluiride 
Rab protein – Ras-related in brain protein 
Rb – rabbit 
RBP – Rim binding protein 
Rim – Rab3 interacting molecule 
RNA – ribonucleic acid  
rpm – revolutions per minute  
RRP – ready releasable pool 
RT – Room temperature 
SDS – sodium dodecyl sulfate  
SDS-PAGE – sodium dodecyl sulfate polyacrylamide gel electrophoresis  
SH3 domain – Src-homology 3 domain 
SNAP-25 – synaptosome-associated protein 25 kDa 
SNARE – soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors 
SV – synaptic vesicle 
SVP – synaptic vesicle precursor  
TEMED – N,N,N´,N´-Tetramethylethylenediamine  
TMD – transmembrane domain 
Tris – Tris(hydorxymethyl)-aminomethane  
Tris/HCl – Tris(hydorxymethyl)-aminomethanhydrochloride  
Trx – theoredoxin   
TX-100 – triton X-100  
U – unit  
VDCC – voltage-dependent calcium channel 
Y2H – yeast two hybrid 
Δ – deletion 
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