

University of Magdeburg

School of Computer Science

D
S E
B

Databases

Software
Engineering

and

Dissertation

Mastering Dependencies in
Multi-Language Software

Applications

Author:

Hagen Schink

March 7, 2018

Reviewers:

Prof. Dr. Gunter Saake (University of Magdeburg, Germany)

Prof. Dr. Ralf Lämmel (University of Koblenz - Landau, Germany)

Prof. Dr.-Ing. Norbert Siegmund (Bauhaus-Universität Weimar, Germany)

Schink, Hagen:
Mastering Dependencies in Multi-Language Software Applications
Dissertation, University of Magdeburg, 2018.

Abstract

In software development, developers use source-code restructurings or refactorings to
preserve or improve a source-code’s maintainability, that is, the source-code’s capabil-
ity to be adopted to new requirements. For that purpose, a refactoring modifies the
source-code’s structure without modifying the behavior implemented by the source-
code. Practitioners and researchers formulated a number of refactorings for different
programming languages and programming paradigms.

Usually, software developers use more than a single programming language to implement
a software application. For instance, software developers embed SQL statements in the
source-code of a general-purpose language to create, read, modify, and delete datasets
in a database. The practice of using more than one programming language is called
polyglot programming. The result of polyglot programming is a Multi-Language Software
Application (MLSA) in which source-code of many languages interact.

Though polyglot programming is common in software development, refactorings are
defined for source-code of a single programming language or programming paradigm.
However, by restructuring source code of a single language the interaction in an MLSA
can break. We give examples how refactoring can break a database application com-
prising the object-oriented, the functional, and the relational paradigm. We also discuss
why a general approach to automated refactorings for MLSAs, so called multi-language
refactorings, are hard to realize.

Our goal is to provide sufficient support for software developers who refactor an MLSA.
For that purpose, we introduce an approach that takes the challenges in refactoring ML-
SAs into account. We present implementations of our approach for two programming-
paradigm pairs: the object-oriented and relational paradigm and the object-oriented
and functional paradigm. Finally, we report the results of an evaluation of one of our
tools. The evaluation studied the effect of our tool on the development performance of
79 participants who are asked to fix an MLSA with broken language interaction.

Zusammenfassung

Software-Entwickler reorganisieren Quellcode mit Hilfe Semantik-erhaltender Struk-
turveränderungen, genannt Refactorings, um die Wartbarkeit von Quellcode zu erhal-
ten oder zu verbessern. Wartbarkeit beschreibt dabei die Tauglichkeit von Quellcode an
neue Anforderungen angepasst zu werden. Software-Entwicklern aus Wissenschaft und
Wirtschaft formulieren Refactorings für verschiedene Programmiersprachen als auch
Programmierparadigmen.

In der Software-Entwicklung ist es üblich, mehr als eine Programmiersprache zu verwen-
den. So betten Software-Entwickler SQL-Anweisungen in den in einer General-Purpose-
Programmiersprache geschriebenen Quellcode ein, um Datensätze in einer Datenbank
anzulegen, zu lesen, zu aktualisieren und zu löschen. Der Einsatz mehr als einer
Programmiersprache wird als mehrsprachige Programmierung bezeichnet. Das Ergeb-
nis der mehrsprachigen Programmierung ist eine sogenannte mehrsprachige Software-
Anwendung. In mehrsprachigen Software-Anwendungen interagieren die in verschiede-
nen Programmiersprachen entwickelten Funktionen miteinander.

Obwohl mehrsprachige Programmierung in der Software-Entwicklung verbreitet ist,
werden Refactorings bisher nur für einzelne Programmiersprachen beziehungsweise Pro-
grammierparadigmen beschrieben. Jedoch kann durch die Semantik-erhaltende Um-
strukturierung des Quellcodes einer Programmiersprache durch Refactoring die Inter-
aktion mit Stukturelementen, die in anderen Programmiersprachen definiert worden
sind, beschädigt werden. Wir zeigen anhand einer Datenbank-Anwendung beispiel-
haft, wie die Interaktion von in verschiedenen Programmiersprachen definierten Struk-
turelementen durch Refactorings beschädigt werden kann. Die Datenbank-Anwendung
selbst ist mit Hilfe der Objekt-orientierten, relationalen und funktionalen Paradig-
men implementiert. Wir diskutieren ebenfalls, welche Herausforderungen einem all-
gemeinen Ansatz zur Automatisierung von Refactorings in mehrsprachigen Software-
Anwendungen, dem mehrsprachigen Refactoring, entgegenstehen.

Ziel dieser Arbeit ist es, einen Ansatz zur Unterstützung von Software-Entwicklern
bei der Umstrukturierung von Quellcode einer mehrsprachigen Software-Anwendung
zu entwickeln. Dazu beschreiben wir eine Lösung, die die speziellen Anforderungen
beim Refactoring von mehrsprachigen Software-Anwendungen beachtet. Wir stellen
außerdem zwei prototypische Implementierungen unseres Ansatzes für die Kombination
aus Objekt-orientiertem und relationalem sowie Objekt-orientiertem und funktionalem

vi

Paradigma vor. Schließlich präsentieren wir die Ergebnisse einer Studie, die den Ef-
fekt einer unserer Prototypen auf die Produktivität von Software-Entwicklern evaluiert.
Die Studie basiert auf Daten von 79 Teilnehmern. Die Aufgabe der Teilnehmer in der
Studie ist es, die Interaktion zwischen den Strukturelementen verschiedener Program-
miersprachen innerhalb einer mehrsprachigen Software-Anwendung wiederherzustellen.

Acknowledgements

Being an external PhD student poses challenges of its own. Being an external PhD
student whose day-to-day job offers only limited connection to his research poses even
more challenges. Yet Gunter Saake gave me the opportunity to follow my research
interests in his working group while gaining experience in the industry. Gunter, I am
very grateful to you for this opportunity.

I also like to thank Ralf Lämmel for his steady support of my research and the warm
welcome when I visited his working group. Ralf, though I did not manage to get to
Koblenz more often, I really enjoyed the few occasions as well as our remote discussions.
Thank you!

One part of research is to evaluate the results. The evaluation presented in this thesis
would not have been possible without the expertise and support of Janet Siegmund,
Reimar Schröter, David Broneske, and Georg Seibt. It was a pleasure to work with
you; thank you!

I would like to thank Wolfram Fenske in particular and Gunter Saake’s working group
in general for their feedback on my research topic and papers. When we met, I always
felt like a regular member of your working group, thank you folks!

The first time I got in touch with my research topic was when Martin Kuhlemann asked
me to investigate multi-language refactoring in regard to Refactoring Feature Modules.
Since then, Martin supported my research efforts and cheered me up when I raised
concerns. Thanks a lot for everything, Martin!

Like so many before me, I depended on numerous tools to develop prototypes, to eval-
uate my research, even to write this thesis. Therefore, I would like to thank the open-
source community for their myriad of contributions.

Finally, I would like to thank my wife for her understanding. Thank you!

Contents

List of Figures xiii

List of Tables xv

List of Code Listings xvii

List of Acronyms xix

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2
1.3 Referenced Publications . 3

2 Background 5
2.1 Refactoring . 5
2.2 Multi-Language Software Application 6

2.2.1 Types of Language Interaction 7
2.2.2 An Example MLSA . 9

2.3 Multi-Language Refactoring . 13
2.4 Foundations of Graph-Theory . 14
2.5 Summary . 17

3 Issues of Refactoring Multi-Language Software Applications 19
3.1 Applying Refactorings can Cause Inconsistent Changes 19

3.1.1 Object-oriented Refactorings . 21
3.1.2 Database Refactorings . 25
3.1.3 Functional Refactorings . 30

3.2 Challenges of Multi-language Refactoring 34
3.3 Summary . 36

4 Structure Graphs 39
4.1 Modeling Elements of Language Interaction 40
4.2 Referential Integrity Between Languages 42
4.3 Changes to the Source-Code Structure 43
4.4 Classification of Matching Algorithms 46

x Contents

4.5 Performance and Generality . 48
4.5.1 Performance of the Integrity Check 48
4.5.2 Performance of the Change Detection 48
4.5.3 Generality of the Approach . 49

4.6 Summary . 51

5 Implementation and Application of Structure Graphs 53
5.1 The Structure-Graph Library . 53

5.1.1 Implementation . 54
5.1.2 Usage of the Framework . 56

5.2 The Sql-Schema-Comparer Library . 58
5.2.1 Implementation Details . 59
5.2.2 Application of the Sql-Schema-Comparer Library 64

5.3 The Clojure-Java-Interface-Checker Library 68
5.3.1 The Clojure Programming Language 68
5.3.2 Implementation Details . 70

5.4 Summary . 71

6 Evaluation 75
6.1 Experimental Design . 76

6.1.1 Hypotheses, and Variables . 76
6.1.2 Material . 77
6.1.3 Participants . 79
6.1.4 Tasks . 80
6.1.5 Tooling . 85

6.2 Execution . 86
6.3 Analysis . 87
6.4 Interpretation . 89
6.5 Threats to Validity . 91

6.5.1 Internal Validity . 91
6.5.2 External Validity . 92

6.6 Summary . 92

7 Related Work 95
7.1 Re-use of Refactorings . 96
7.2 Multi-language Refactoring Approaches 97
7.3 Studies on Refactoring Tools and MLSAs 101

7.3.1 Studies on Refactoring Tools . 101
7.3.2 Studies on MLSAs . 104

7.4 Change Detection . 106

8 Conclusion and Future Work 109
8.1 Summary of the Thesis . 110
8.2 Contribution . 110

Contents xi

8.3 Future Work . 111

A Appendix 113
A.1 Implementation . 113

A.1.1 Structure Graph Library . 113
A.1.2 Sql-Schema-Comparer Library 116
A.1.3 Clojure-Java-Interface-Checker Library 123

A.2 Evaluation . 124
A.2.1 Introduction . 124
A.2.2 Questionnaire . 132
A.2.3 Tasks . 133
A.2.4 Data . 136

Bibliography 139

List of Figures

2.3 Class hierarchy of superclass Employee. 10

4.5 Excerpt of a taxonomy of schema matching approaches. 47

5.1 Package org.iti.structureGraph.nodes with interfaces for imple-
menting structure element representations. 54

5.3 Method definition and invocation, and their respective structure graphs. 58

6.1 Distribution of programming experience. 79

6.4 Distribution of development times for Task 1. 89

6.5 ANOVA results for Task 1. 89

6.6 Distribution of development times for Task 2. 90

6.7 ANOVA results for Task 2. 90

6.8 Distribution of development times for Task 3. 91

6.9 ANOVA results for Task 3. 91

A.1 Package org.iti.structureGraph with interfaces and classes for imple-
menting structure graphs. 113

A.2 Package org.iti.structureGraph.comparison with interfaces and
classes for implementing structure-graph comparison. 114

A.3 Package org.iti.structureGraph.comparison.result with interfaces
and classes for implementing structure-graph comparison results. 115

A.4 Package org.iti.schemaComparison.edge with interfaces for imple-
menting edges between structure elements for database schemata. . . . 117

A.5 Package org.iti.schemaComparison.vertex with interfaces for imple-
menting structure elements for database schemata. 118

xiv List of Figures

A.6 Package org.iti.schemaComparison.frontends with interfaces for im-
plementing front-ends for extracting database schemata. 119

A.7 Package org.iti.schemaComparison with classes for comparing
database schemata with each other and database schemata with SQL
SELECT statements. 120

A.8 Package org.iti.schemaComparison with an enumeration to distin-
guish different database schema modifications. 121

A.9 Package org.iti.schemaComparison.reachability with utility class
to check reachability of column nodes. 122

A.10 Package org.iti.clojureJavaInterfaceVerifier.edges with edges
for connecting elements of Clojure functions. 123

List of Tables

6.1 Questions about the experience with Apache Syncope and AppFuse. . . 78

6.2 Number of answers to the question about the experience with Eclipse. . 85

6.3 Available number of results for each task. 87

A.2 Questions in the original questionnaire. 132

A.4 Base data used for the analysis. 138

xvi List of Tables

List of Code Listings

2.1 Excerpt of the ORM of the class Employee. 12

2.2 Excerpt of the hibernate.cfg.xml. 12

2.3 Application of the @Column annotation. 12

2.4 Referencing the Clojure function sumSalary from the Java source code. 12

3.1 Utilizing the @Column annotation for restoring the ORM. 22

3.2 Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner. 23

3.3 Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner by reusing a modified implementation of List-
ing 3.2. 24

3.4 Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner with a single string comparison after the Pull
Up Method refactoring is applied. 24

3.5 A loop printing names of managers. 26

3.6 Method definition setAccount. 27

3.7 Possible options to access persistent data via Hibernate. 30

3.8 Definition of the function sumSalary. 31

3.9 The function sumSalary with the additional letfn (Line 3) statement
defining the function isEmployee?. 32

3.10 The function sumSalary with the globally visible definition of isEm-

ployee?. 33

3.11 An excerpt of the reference to the function managersWithBoss in Java
after the application of the Move Definition refactoring. 34

5.1 Java Persistence API (JPA) entity Department. 62

5.2 Select statement on table departments. 62

xviii List of Code Listings

5.3 Select statement including missing tables and columns. 63

5.4 Select statement including a missing but reachable column. 63

5.5 Create a schema instance of an SQLite file 65

5.6 Compare two schema instances . 65

5.7 Create a schema instance of an Structured Query Language (SQL) state-
ment . 66

5.8 Compare a database and a statement schema 66

5.9 Definition of a namespace and a function in Clojure. 70

5.10 Invocation of Clojure function in Java. 70

6.1 JPA entity Department . 81

List of Acronyms

ANOVA Analysis of Variance
API Application Programming Interface
ASP Active Server Pages
AST Abstract Syntax Tree

CDIF CASE Data Interchange Format

DLL Dynamic-link library
DML Data Manipulation Language
DSL Domain Specific Language

FFI Foreign Function Interface

GPL General-Purpose Programming Language

HQL Hibernate Query Language
HTML Hypertext Markup Language

IDE Integrated Development Environment

JDBC Java Database Connectivity
JNI Java Native Interface
JPA Java Persistence API
JPQL Java Persistence Query Language
JSP Java Server Pages
JVM Java Virtual Machine

LOC Lines of Code

MLR Multi-Language Refactoring

xx List of Acronyms

MLSA Multi-Language Software Application

ORM Object Relational Mapping

SQL Structured Query Language

UML Unified Modeling Language
URL Uniform Resource Locator

VCS Version Control System

XLL Cross Language Link
XMI XML Metadata Interchange
XML Extensible Markup Language

1. Introduction

As business requirements evolve [Robertson and Robertson, 2012, p. 26], source code
may needs to be adapted to new or changed requirements [Fowler, 1999, p. 57; Lehman,
1980]. A source code’s capability to be adapted to new requirements is described by its
maintainability [ISO/IEC/IEEE 24765:2010, E, p. 204]. An approach to preserve the
maintainability of source code is to restructure the source code [Griswold and Notkin,
1993]. Today, we usually refer to program restructuring as refactoring, that is a mod-
ification to the structure of source code which preserves the behavior implemented in
the source code. Refactorings exist for all programming paradigms relevant in practice
such as object-oriented programming-languages [Fowler, 1999; Opdyke, 1992], func-
tional programming-languages [Li and Thompson, 2008], and relational schemata [Am-
bler, 2003].

Today, it is common in software development for developers to use more than a single
programming language to implement a software application [Chen and Johnson, 2008;
Ford, 2008; Grechanik et al., 2004; Jones, 1998; Kullbach et al., 1998; Linos et al., 2006;
Mayer and Bauer, 2015; Mayer and Schroeder, 2012; Strein et al., 2006; Tomassetti and
Torchiano, 2014; Vetro et al., 2012]. One reason for developers to use more than a single
programming language may be the wish of developers to use features of a modern pro-
gramming languages while a complete migration of legacy code is not practical [Delorey
et al., 2007]. Another reason may be that by using a Domain Specific Language (DSL)
a developer is able to describe problems of a certain domain in an efficient way. For
instance, we use SQL to query relational databases [Ford, 2008, p. 169]. Whatever the
reason for using more than a single programming language is, we refer to an application
implemented with the help of more than one programming language as Multi-Language
Software Application (MLSA) as introduced in [Linos et al., 2006].

In an MLSA, developers let source code of different programming languages interact
to accomplish or simplify certain tasks. For instance, developers use SQL queries in a
General-Purpose Programming Language (GPL) such as Java to process data stored

2 1. Introduction

in a relational database or developers use interfaces to C and C++ to access platform-
specific functions. However, a compiler for one language does not check the interaction
with source-code written in another language, if the interaction is implemented based
on Application Programming Interfaces (APIs). For instance, the Java compiler does
not check SQL statements embedded in the Java source code. Likewise, the Java
compiler does not check the interaction with source-code written in C and C++. Thus,
structural modifications to source code of either of two interacting languages can break
the interaction between the languages. For instance, a simple typo in an SQL statement
used in a Java application can break the entire application. If the developer misses the
typo, she will not notice the typo before running the affected part of the application.
In the best case, automated tests detect the broken language interaction by failing. In
the worst case, the customer encounters the error in the production environment.

In this thesis, we describe challenges in the refactoring of MLSAs and provide a first
attempt to explain why refactoring of MLSAs has to be considered hard [Chen and John-
son, 2008]. We present an approach based on tree structures that allows developers of
refactoring tools to provide means to support refactoring in MLSAs taking into account
the challenges of refactoring MLSAs. We describe a prototypical implementation of our
approach for the following combinations of language paradigms: object-oriented and
relational paradigm as well as object-oriented and functional paradigm. We also report
on a study in which we evaluated the effect of one of our prototypical implementations
on the development performance of 79 participants.

1.1 Contribution
In the course of this thesis, we make the following contributions.

1. We describe challenges in refactoring database applications. Additionally, we
describe a generalized model of the structure of MLSAs. Based on this model, we
formulate general challenges of refactoring in MLSAs.

2. We describe, implement, and evaluate an approach that supports refactoring in
MLSAs. The approach is based on tree structures and considers the challenges
we describe in our first contribution.

3. We present an experimental design for the evaluation of refactoring tools for
MLSAs.

1.2 Outline
The thesis is structured as follows. In Chapter 2, we introduce basic concepts and
terms we use in this thesis. In Chapter 3, we describe application-specific and general
challenges of refactoring MLSAs. In Chapter 4, we present an approach based on tree
structures for supporting refactoring in MLSAs. In Chapter 5, we describe prototypes
implementing our approach for two language combinations and, in Chapter 6, we report
on an evaluation of one of the prototypes. We present related work in Chapter 7 before
we conclude the thesis and give an outlook on future work in Chapter 8.

1.3. Referenced Publications 3

1.3 Referenced Publications

In this thesis, we share material with the following publications:

Chapter 3 [Schink and Kuhlemann, 2010; Schink et al., 2011]

Chapter 4 [Schink et al., 2016a]

Chapter 5 [Schink, 2013; Schink et al., 2016a]

Chapter 6 [Schink et al., 2016b]

Chapter 3 shares the description of applying nine refactorings on the prototypical ap-
plication HRManager with [Schink and Kuhlemann, 2010] and [Schink et al., 2011].
In Chapter 4, we describe an approach to check the referential integrity between source
code of different languages which was published in [Schink et al., 2016a]. The description
of the structure-graph library, the sql-schema-comparer, and the clojure-java-interface-
checker in Chapter 5 shares material with [Schink, 2013] (only sql-schema-comparer)
and [Schink et al., 2016a]. We published parts of Chapter 6 in [Schink et al., 2016b].

4 1. Introduction

2. Background

This chapter covers the concepts we generally depend on throughout this thesis. In Sec-
tion 2.1, we introduce the term Refactoring and explain the different understandings as
well as the usage of this term in this thesis. It follows an introduction to the concept
of a Multi-Language Software Application (MLSA), that is, an approach to utilize the
abilities of more than one programming language to implement a software application
in Section 2.2. Then, we introduce the concept of Multi-Language Refactoring (MLR)
which relates the discussion about refactoring to MLSAs. At the end, we recapitulate
concepts of graph theory that are necessary to understand our approach to support
refactoring in MLSAs and summarize this chapter.

2.1 Refactoring

In software development, it is necessary to adapt the functionality of an application to
new or changed requirements. However, an application’s existing source-code structure
may not allow developers to readily extend or change the existing functionality. To
preserve the maintainability of the application’s source code and to improve the exten-
sibility of its functionality, developers may need to restructure the application’s source
code [Opdyke, 1992, p. 1]. However, the larger the application grows, the harder it is
for developers to ensure the correctness of the source-code after restructuring [Opdyke,
1992, p. 8].

The term Refactoring was coined by Opdyke who describes refactoring as methodical
approaches for altering the source-code structure of object-oriented software without
changing the source-code’s behavior. For Opdyke, the source-code’s behavior is defined
by the output for a given input [Opdyke, 1992, p. 2]. Martin Fowler, who introduced
the refactoring term to a broader audience, mentions a more general term of behavior
preservation which he calls observable-behavior or semantics [Fowler, 1999, p. 46 and
p. 61]. By observable behavior or semantics, Fowler refers to any kind of behavior, not

6 2. Background

only the output for a given input as Opdyke does. The term semantics-preservation was
also adopted by the scientific community [Balaban et al., 2005; Counsell et al., 2006;
Daniel et al., 2007; Lämmel, 2002; Li, 2006; Mayer and Schroeder, 2012; Mens, 2005;
Soares et al., 2009; Streckenbach and Snelting, 2004; Strein et al., 2006]. We follow the
definition of the term Refactoring according to [Fowler, 1999, p. 46]:

Definition 2.1. Refactoring (noun): a change made to the internal structure of soft-
ware to make it easier to understand and cheaper to modify without changing its ob-
servable behavior.

With the introduction of the term observable behavior or semantics, we also have to
consider a different understanding on the effects of refactoring. The term behavior is
based on the equivalence of the output for a given input. Thus, the term behavior
covers only an application’s functional aspects. In contrast, the term semantics could
also include non-functional aspects of an application. For instance, execution time
and memory consumption are important aspects for real-time and embedded systems.
However, refactorings can affect these properties [Mens and Tourwé, 2004]. That is,
we may not call a source-code transformation a refactoring in all application domains
depending on whether the refactoring affects properties or not that are important to
the application’s applicability to a given domain.

A term that is directly related to that of refactoring is software restructuring. Soft-
ware restructuring “is the transformation from one representation form to another at
the same relative abstraction level, while preserving the subject system’s external be-
havior (functionality and semantics)” [Chikofsky and II, 1990]. Opdyke emphasizes
that while software restructuring focuses on understanding and infusing structure into
unstructured code, the purpose of refactoring of object-oriented code is “to refine the
design of an already structured program, and make it easier to reuse” [Opdyke, 1992,
p. 10]. However, in following works this difference has not been preserved and refac-
toring became an object-oriented variety of software restructuring [Mens and Tourwé,
2004]. Consequently, we consider the term refactoring and software restructuring to be
interchangeable.

2.2 Multi-Language Software Application

Section 2.2 shares material with [Schink and Kuhlemann, 2010; Schink et al., 2011,
2016a].

A software application is an MLSA1 when it is implemented with the help of differ-
ent General-Purpose Programming Languages (GPLs) or Domain Specific Languages
(DSLs) [Linos et al., 2006]. The usage of different GPLs or DSLs is referred to as
polyglot programming [Fjeldberg, 2008; Ford, 2008, p. 169].

1The term Multi-Language Software System is used synonymously [Pfeiffer and W ↪asowski, 2012a,b].

2.2. Multi-Language Software Application 7

Polyglot programming is common in modern software development [Ford, 2008]. How-
ever, which GPL or DSL are used for software development differs between software ap-
plications. In the following, we introduce common use cases for polyglot programming.
A detailed analysis of use cases for polyglot programming in respect to open-source
projects can be found in [Mayer and Bauer, 2015].

� Structured Query Language (SQL) is a standardized query language for databases
and, therefore, was not intended itself as a GPL [Michels et al., 2003]. It is possible
to reference SQL statements in GPLs like C++ or Java [Anderson, Lance, 2006;
ISO/IEC 9075-1:2008].

� Extensible Markup Language (XML) is used in different application areas mainly
for data exchange purposes [Harold and Means, 2002]. XML is also used for
describing configuration files or structured data that can be referenced in GPLs
like C++ or Java [Chen and Johnson, 2008; Harold and Means, 2002] in order to
access data in databases.

� C++ and different scripting languages, e.g. JavaScript, can be called from or em-
bedded in Java [Grogan, 2006; Liang, 1999]. The interfaces to Java are described
by the Java Native Interface for C++, and the Java Specification Request 223 for
scripting languages [Grogan, 2006; Liang, 1999].

Using polyglot programming makes common tasks in software development easier, e.g.
database access and data exchange [Fjeldberg, 2008, p. 9-10].

In general, a software application contains source-code written in one programming lan-
guage that initializes that application. In an MLSA, we call the programming language
in which the application’s initialization code is written the application’s host language.
From the code of the host language, developers invoke source-code implemented in
different languages. We call these languages guest languages.

2.2.1 Types of Language Interaction

How host and guest language interact depends on the relation between those languages.
We distinguish three kinds of relations:

1. No relation

2. Host and guest language share the same platform

3. The guest language is implemented in the host language

If the host and the guest language interact via an Application Programming Interface
(API), then we consider the host and the guest language to have no relation (1st kind).
Examples for languages with no relation are Java and SQL via Java Database Con-
nectivity (JDBC) and Java Persistence API (JPA) or Java and C++ via Java Native

8 2. Background

APIHost Guest

(a) No Relation

Host Guest

Platform

(b) Platform

Host

Macro

Guest

(c) Language

Figure 2.1: Relations between host and guest language.

Interface (JNI) where in both cases Java is the host language which interacts via APIs
with the guest languages. In the Java programming language, JDBC and JPA allow
to query relational databases via SQL and JNI allows to invoke C/C++ functions.
Platforms such as Java and .Net represent the second kind. For instance, the program-
ming languages Java, Clojure, and Scala can all be compiled to Java bytecode [EPFL,
2017; Hickey, 2017] and all languages can invoke Java bytecode [EPFL, 2015; Hickey,
2017]. Other examples are the languages F# and Ceylon which are able to interact with
other languages running on the .Net runtime or Java Virtual Machine (JVM), respec-
tively [Sixto Ortiz Jr., 2012]. By compiling the source code of guest languages to the
intermediate language of the platform, source-code implemented in the host language
can interact with source-code implemented in the guest language and vice versa. The
SugarJ language is another example of platform based language interaction[Erdweg,
2012]. In SugarJ, the programming language Java, the grammar formalism SDF [Heer-
ing et al., 1989], and the transformation system Stratego [Visser, 2001] provide the
common platform on which the guest languages interact with each other and the host
language Java. The third kind describes programming languages which provide means
to define internal DSLs such as Lisp, Ruby, and Smalltalk [Renggli, 2010]. For instance,
developers can use Lisp’s macro system and Ruby’s support for multiple paradigms to
define new language elements or DSLs [Günther, 2010; Sheard, 2001]. The new lan-
guage elements and DSLs part of the host language and, thus, cannot exist on their
own.

In Figure 2.1, we summarize possible relations of a host and guest language. In the
figure we emphasize that language interaction depends on an API, a common platform,
or facilities of the host language to describe internal DSLs such as a macro system.
Without these prerequisites no language interaction takes place.

In [Renggli, 2010, p. 11 ff.], the author distinguishes three approaches for defining
DSLs: internal languages, external languages, and embedded languages. In contrast, our
definition distinguishes approaches of host and guest language interaction. However,
in the following we show how our definition relates to the definition in [Renggli, 2010].
Internal languages are DSLs which are defined by means of a host language. This
definition matches our definition of guest languages implemented in a host language
(third kind). External languages are DSLs such as SQL which are self-contained. Thus,
external languages have no relation to a host language (first kind). [Renggli, 2010,
p. 22 ff.] describes five categories of language embedding: extensible compilers, meta-

2.2. Multi-Language Software Application 9

SQLHibernateJavaClojure

Figure 2.2: The different document types in HRManager and their relation.

programming systems, language workbenches, language transformations, and modeling
languages. These categories describe a common basis for implementing DSLs. Thus, we
can combine embedded languages by the means of the platform on which the languages
are defined (second kind).

In this work, we solely focus on language interaction with no relation because for this
kind of interaction no tool support exists to check language interaction [Renggli, 2010,
p. 21]. For instance, in case the guest language is implemented in the host language, the
guest language’s source-code is actually valid source code of the host language. Thus,
developers can reuse existing tools for static code analysis of the host language to check
the interaction between source code of the guest and the host language. Likewise, in
case the guest language’s source code can be compiled to the host language’s platform,
developers can reference the compiled code of the guest language in the host language
and the host language’s compiler can check the interaction between source code of
the guest and the host language. For instance, F# source code can be compiled to a
managed Dynamic-link library (DLL) which a developer can reference in C# source
code. No such support exists for language interactions with no relation.

In the next section, we introduce an example MLSA that implements language inter-
action based on APIs.

2.2.2 An Example MLSA

The HRManager is a prototypical software application implemented by the author to
manage employee data. With the help of HRManager, we show effects of refactoring on
MLSAs. The software application has been implemented using the object-oriented, the
functional, and the relational paradigm. In particular, we used the programming lan-
guages Java2 and Clojure3, the object-relational mapper Hibernate4, and the relational
database SQLite5. Figure 2.2 shows the document types used in HRManager and how
respective documents interact. We use HRManager as our running example. For that
purpose we will present the different kinds of documents and their relations in detail.

Java is used to declare classes and class hierarchies with which we model the objects
of the business domain. For instance, we defined the class hierarchy of class Employee

including Manager and Salesperson in Java to model different kinds of employees.
Figure 2.3 shows the class hierarchy of Employee with the subclasses Manager and
Salesperson.

2http://www.oracle.com/technetwork/java/index.html
3http://clojure.org
4http://www.hibernate.org
5https://www.sqlite.org/

http://www.oracle.com/technetwork/java/index.html
http://clojure.org
http://www.hibernate.org
https://www.sqlite.org/

10 2. Background

Employee
id:int
name:String
surname:String
salary:float
department:Department
getId():int
setId(id:int):void
getFirstName():String
setFirstName(name:String):void
getSurname():String
setSurname(name:String):void
getSalary():float
setSalary(salary:float)
getDepartment():Department
setDepartment(department:Department):void

Manager
boss: Manager
account: String
companyCarLicensePlate: String
getBoss():Employee
setBoss(boss:Employee)
getAccount():String
setAccount(account:String):void
getCompanyCarLicensePlate():String
setCompanyCarLicensePlate(companyCarLicensePlate:String):void

Salesperson
takesCareOf: Set<Customer>
getTakesCareOf():Set<Customer>
setTakesCareOf(takesCareOf:Set<Customer>):void

Figure 2.3: Class hierarchy of superclass Employee.

Each class in HRManager that represents a business object has a counterpart in the re-
lational database schema. For instance, the database schema defines the tables employ-
ees, managers as well as salespersons and a column for every field in the respective
classes. We have two options to map the class hierarchy to the database schema: in one
table or multiple tables. In HRManager, we map the class hierarchy to multiple tables.
In that approach, class hierarchies are emulated by foreign key references between the
tables in the database, e.g., a tuple of the table managers has a foreign key reference to
the key of the table employees because class Manager is a subclass of class Employee

(cf. Figure 2.3).

The object-relational mapper Hibernate maps classes and class attributes onto their
counterparts in the relational schema. This connection is called Object Relational
Mapping (ORM). To connect Java classes with the respective tables in the database
schema, we have to define which classes are part of the ORM and how these classes

2.2. Multi-Language Software Application 11

Employee

ISA

Manager

ISA

Salesperson

boss of
[0,*]

[0,1]

company car license plate

account

Figure 2.4: Database schema of class hierarchy of superclass Employee.

map onto the relational schema in the database. We use the Hibernate configuration file
hibernate.cfg.xml to define which classes are part of the ORM [Red Hat Inc. and the
various authors, 2004]. Listing 2.2 shows an excerpt of the Hibernate configuration file
we use in HRManager. In Line 9, we define the class Department as part of the ORM.
For the definition of the actual mapping, we use Java annotations.6 Listing 2.1 shows
an excerpt of the ORM of class Employee. HRManager uses the @Entity annotation
(Line 1) to let class Employee become part of the ORM. In Line 2, we specify the table
name employees for the class Employee with the @Table annotation. Without using
the @Table annotation, Hibernate maps the class Employee to an equally named table
Employee (case-insensitive).

Similar to the way in which classes are mapped to tables, Hibernate also maps class
attributes to the respective table columns. By default, Hibernate uses the setter and
getter methods to map class attributes to database columns. For instance, Hibernate
maps the getter and setter methods getName and setName of class Employee onto
the column name of table employees (cf. Listing 2.1) [Keith and Schincariol, 2006, p.
73]. With the @Column annotation we can override the default behavior. Listing 2.3
shows how we map the getter and setter methods of companyCarLicensePlate onto
the column company_car_license_plate.

6Another option is to define the mapping in an XML file.

12 2. Background

1 @Entity
2 @Table(name=" employees ")
3 public class Employee implements Serializable {
4 /* snip further attributes */
5 private String name;
6
7 /* snip further methods */
8 public void setName(String name) {
9 this.name = name;

10 }
11
12 public String getName() {
13 return name;
14 }
15 }

Listing 2.1: Excerpt of the ORM of the class Employee.

1 <?xml version=" 1 .0 " encoding="UTF−8"?>
2 <!DOCTYPE hibernate−configuration PUBLIC "−//Hibernate /Hibernate

Conf igurat ion DTD 3.0//EN"
3 " h t tp : // h ibe rnate . s ou r c e f o r g e . net / hibernate−con f i gu ra t i on −3.0 . dtd">
4
5 <hibernate−configuration>
6 <session−factory>
7 <property name=" d i a l e c t ">dialect.SQLiteDialect</property>
8 <!−− more properties−−>
9 <mapping class="hrm . Department"/>

10 <!−− more mappings −−>
11 </session−factory>
12 </hibernate−configuration>

Listing 2.2: Excerpt of the hibernate.cfg.xml.

1 @Column(name = " company_car_license_plate ")
2 public String getCompanyCarLicensePlate() {
3 return companyCarLicensePlate;
4 }

Listing 2.3: Application of the @Column annotation.

1 Var sumSalary = RT.var(" s c r i p t i n g ", " sumSalary");
2 float sum = (Float)sumSalary.invoke(managers);

Listing 2.4: Referencing the Clojure function sumSalary from the Java source code.

2.3. Multi-Language Refactoring 13

Besides Java, the ORM, and the relational database, the HRManager contains source
code of the functional programming language Clojure. We use Clojure to add scripting
facilities to HRManager, that is, to allow the adaption of program logic without the
need to recompile the entire application. More specifically, we use Clojure to compute
the overall salary of employees and to find employees with certain attributes. Clojure
allows us to access methods defined in Java from Clojure and vice versa. In Java, we
build references to Clojure functions by method var of class RT [VanderHart, 2010, p.
149-150].7 Listing 2.4 shows in Line 1 how the Clojure function sumSalary defined
in the namespace scripting is referenced from Java code. In Line 2, we invoke the
function sumSalary on a list of managers. The function returns the sum of type float
as result of the function invocation.

2.3 Multi-Language Refactoring

We call a refactoring that considers language interaction in an MLSA an MLR8 [Chen
and Johnson, 2008; Mayer and Schroeder, 2012, 2014; Pfeiffer and W ↪asowski, 2012b].
In particular, a refactoring aware of language interaction not only considers the source-
code written in one language, but also considers interacting source-code implemented in
other languages. That is, if the refactoring of the source-code written in one language
breaks the language interaction, an MLR will also refactor the interacting source-code
implemented in other languages. For instance, in a Java application that is configured
with the help of an XML configuration file, a multi-language Class Rename refactoring
applied on a Java class referenced in the configuration file will also apply a rename
refactoring on the class references in the configuration file [Chen and Johnson, 2008].

In general, we describe an MLR as a set of single-language refactorings for all the
languages that may be affected in an MLSA. So, in regard to the previous example, the
MLR is a set of Class Rename refactorings for Java class identifiers in Java source code
and in XML configuration files. In Figure 2.5, we illustrate the general idea of MLR
with respect to an MLSA which consists of n interacting languages. An MLR applies
a single-language refactoring to the source-code implemented in language x as well as
to all other source-code artifacts of the interacting languages.

We do not set any restrictions on the set of single-language refactorings represented by
an MLR. Thus, an MLR either contains only one type of single-language refactorings
(like Rename refactorings) or different types of single-language refactorings (like Pull-
Up Method and Extract Method refactorings). We call MLRs only containing only one
type of single-language refactoring homogeneous. Accordingly, we call MLRs containing
different types of single-language refactorings inhomogeneous. Homogeneous MLRs
have been described in respect to the Rename refactoring [Chen and Johnson, 2008;
Mayer and Schroeder, 2012, 2014; Pfeiffer and W ↪asowski, 2012b; Strein et al., 2006;

7Since version 1.6, the preferred way of calling a Clojure function is to use class Clojure that
returns an instance of class IFn. Nevertheless, the basic principle has not changed.

8The terms Cross-Language Refactoring [Pfeiffer and W ↪asowski, 2012a; Strein et al., 2006] and Deep
Refactoring [Tatlock et al., 2008] are used synonymously with MLR.

14 2. Background

MLR

Language 1

...

Language x

...

Language n

Figure 2.5: Illustration of MLR.

Tatlock et al., 2008]. In a database application, an MLR may be inhomogeneous [Schink
et al., 2011].

2.4 Foundations of Graph-Theory

In the course of this work, we will present an approach to support developers who
refactor MLSAs. The approach is based on graph and tree structures. In this section,
we recapitulate the fundamental terms of graph theory as well as the specific definitions
that we use in order to define our approach. The definitions are taken from [Valiente,
2002].

A graph is a mathematical structure consisting of vertices and edges. We distinguish
directed and undirected graphs:

Definition 2.2. A (directed) graph G = (V,E) consists of a finite nonempty set V
of vertices and a finite set E ⊆ V × V of edges. An edge e = (v, w) with v, w ∈ V is
incident with vertices v and w, where v is the source and w is the target of edge e.

In a directed graph each edge e = (v, w) defines a direction for the connection from the
source v to the target w. An undirected graph gives no direction on the edges and is
defined as follows:

Definition 2.3. A graph G = (V,E) is undirected if (v, w) ∈ E implies (w, v) ∈ E for
all v, w ∈ V .

Thus, in an undirected graph for each edge (w, v) and edge (v, w), that is an
edge with the opposite direction exists. In Figure 2.6, we illustrate a directed
graph with the vertices V = {v1, v2, v3, v4, v5, v6, v7, v8} and the edges E =
{(v1, v2), (v3, v1), (v1, v4), (v3, v5), (v3, v6), (v7, v4), (v4, v8)}.
A subgraph of graph G is a graph whose vertices and edges are contained in the set of
the vertices and edges of G. The term subgraph is defined as follows:

2.4. Foundations of Graph-Theory 15

v1

v2

v3v4

v5v6

v7

v8

Figure 2.6: A graph with 8 vertices (v1 - v8) and 7 edges.

v1

v2

v3v4

v6
v5

v7

v8

Figure 2.7: {v1, v2, v3, v4, v6} and their connection edges forming a subgraph of the
graph in Figure 2.6.

Definition 2.4. Let G = (V,E) be a graph, and let W ⊆ V . A graph (W,S) is a
subgraph of G if S ⊆ E.

In Figure 2.7, we illustrate a subgraph of the graph shown in Figure 2.6 with the vertices
V = {v1, v2, v3, v4, v6} and the edges E = {(v1, v2), (v3, v1), (v1, v4), (v3, v6)}.
A labeled graph is a graph whose vertices and edges have additional attributes. The
content of the labels depends on the application of the graph. For instance, we can
define a graph representing distances between cities (see Figure 2.8). For that purpose,
the vertices are labeled with city names and the edges are labeled with the distance
between the cities represented by the two connected vertices. We denote the label of
node n with label[n].

Our approach to support refactoring in MLSAs is based on trees, which are graphs with
specific properties. However, before we can define the structure of a tree, we have to
introduce the definitions of a walk and a connected undirected graph:

Definition 2.5. A walk from vertex vi to vertex vj in a graph is an alternating sequence
[vi, ei+1, vi+1, ei+2, . . . , vj−1, ej, vj] of vertices and edges in the graph, such that ek =
(vk−1, vk) for k = i+ 1, . . . , j.

Definition 2.6. An undirected graph G = (V,E) is connected if for every pair of
vertices v, w ∈ E, there is a walk between v and w.

16 2. Background

Berlin
Magdeburg

Bad Honnef

Koblenz

Eindhoven

Sevilla

129

347

152

411805

Figure 2.8: A labeled graph with distance information.

Taking these definitions into consideration, we define the structure of a tree as follows:

Definition 2.7. A connected graph G = (V,E) is said to be a tree T if the underlying
undirected graph has no cycles and there is a distinguished node r ∈ V , called the root
of the tree and denoted by root[T] such that for all nodes v ∈ V , there is a path in G
from the root r to node v.

In Figure 2.9, we illustrate a tree that contains the same number of vertices, but only
a subset of the edges of our initial graph (see Figure 2.6).9 A tree has a hierarchical
structure that allows us to distinguish parent and child nodes. Parent and child nodes
are defined as follows:

Definition 2.8. Let T = (V,E) be a tree. Node v ∈ V is said to be the parent of node
w ∈ V , denoted by parent[w], if (v, w) ∈ E and, in such a case, node w is said to be a
child of node v.

For instance, in Figure 2.9, the node v3 is the parent of nodes v5 and v6. Respectively,
nodes v5 and v6 are the children of node v3.

The height of a node determines how many nodes are between an initial node and
another node rooted in the initial node. Accordingly, the height of a tree is the maximum
number of nodes between all nodes and the root node of that tree. We will use the height
to determine the costs of the algorithms we use in our tree-based approach. We define
height as follows:

Definition 2.9. Let T = (V,E) be a tree. The height of node v ∈ V , denoted by
height[v], is the length of a longest path from node v to any node in the subtree of T

9Please note that the underlying undirected graph of the tree in Figure 2.9 matches the undirected
graph in Figure 2.6.

2.5. Summary 17

v1

v4

v7

v8

v3

v6v5

v2

Figure 2.9: A tree based on graph Figure 2.6.

rooted at node v, for all nodes v ∈ V . The height of T is the maximum among the
heights of all nodes v ∈ V .

For instance, the tree shown in Figure 2.9 has a height of 3, the node v7 has a height
of 2 in respect to node v1.

For our tree-based approach, we use the concept of a subtree, in particular, a top-down
subtree. We define a subtree as follows:

Definition 2.10. Let T = (V,E) be an unordered tree, and W ⊆ V . An unordered tree
(W,S) is a subtree of T if S ⊆ E.

In Figure 2.10, we give an example for a subtree of the tree given in Figure 2.9 which
contains the nodes W = {v3, v5, v6}. We call a subtree a top-down subtree if the
following condition holds additionally to that of a subtree:

Definition 2.11. A subtree (W,S) is a top-down subtree if parent[v] ∈ W , for all
nodes v ∈ W different from the root [...].

In Figure 2.11, we present an example for a top-down subtree of the tree given in Fig-
ure 2.9 which contains the nodes W = {v1, v4, v7}. Please note that W contains the
parent nodes for the non-root nodes v7 (v4) and v4 (v1) in W .

2.5 Summary

In this chapter, we introduced refactoring as a methodology for improving the internal
structure of source code without affecting the source code’s observable behavior. We
also discussed how different understandings of source-code semantics affect the appli-
cability of refactoring. We introduced the term MLSA describing software applications
implemented in more than one GPL or DSL. For the following discussion of challenges
in MLSAs, we introduced the HRManager as a running example for an MLSA. With the
introduction of the term MLR, we connected the discussions on refactoring and MLSAs.

18 2. Background

v1

v4

v7

v8

v3

v6v5

v2

Figure 2.10: A subtree based on tree Figure 2.9.

v1

v4

v7

v8

v3

v6v5

v2

Figure 2.11: A top-down subtree based on tree Figure 2.9.

We described the current approach to refactoring in MLSAs discussed in the scientific
community. Finally, we recapitulated definitions of graph theory that are necessary to
follow the discussion on our approach to support developers who refactor MLSAs which
we will introduce later in this work. More specifically, our approach compares single
trees with a graph of trees. Each single tree represents a statement in the source-code
written in the host language which contains elements of language interaction. The ele-
ments of language interaction in the single trees are expected to exist in the source-code
written in the guest language. The graph of trees represents actually existing elements
of language interaction in the source-code written in the guest language. With the
comparison, the approach checks if the single trees are top-down subtrees of the trees
in the graph of trees. If a single tree is a top-down subtree of a tree in the graph of
trees, the elements of language interaction referenced in the source-code written in the
host language exist in the source-code written in the guest language.

3. Issues of Refactoring
Multi-Language Software
Applications

Chapter 3 shares material with [Schink et al., 2011] and [Schink and Kuhlemann,
2010].

In this chapter, we illustrate how refactoring an Multi-Language Software Application
(MLSA) poses new challenges for developers and how these challenges make it difficult
to automate refactorings on MLSAs. For that purpose, we present the diverse effects
of single-language refactorings on MLSAs with the help of a prototypical software ap-
plication.

Apart from the specific challenges single-language refactorings pose, it is considered
hard to realize Multi-Language Refactorings (MLRs) for MLSAs in general [Chen and
Johnson, 2008]. In this chapter, we describe possible reasons why previous approaches
have not been able to realize a general approach to automatic MLR and, thus, why
MLR has not found widespread adoption, yet.

This chapter is structured as follows. In Section 3.1, we illustrate the effects of refac-
torings for different programming languages and paradigms that we applied on the
prototypical software application HRManager (see Section 2.2.2). In Section 3.2, we
describe general challenges of realizing automated MLR approaches before we summa-
rize this chapter.

3.1 Applying Known Refactorings on HRManager

may Cause Inconsistent Changes
In the following, we report on effects we observed when we applied nine single-language
refactorings on different parts of HRManager. We applied all refactorings manually and

20 3. Issues of Refactoring Multi-Language Software Applications

evaluated whether the refactoring can be automated. We call a manual refactoring on
HRManager successful, if a possibly empty set of source-code modifications exists that
adheres to the following conditions:

1. Applying the set of source-code modifications preserves the semantics of HRMan-
ager.

2. Each source-code modification in the set of source-code modifications is a refac-
toring.

These conditions describe the definition of MLR given in Section 2.3. By semantics, we
refer to the specification of HRManager.1

In contrast to source code, relational databases consists of a schema and data. Thus,
when refactoring a database, we have to take the effect of the refactoring on the schema
as well as the data into account. For that purpose, we distinguish two terms of se-
mantic preservation that describe how undoing a database refactoring affects the data:
reversible and symmetrically reversible [Hainaut, 1996]. A transformation of a database
schema and the related data instances is semantic-preserving, if the transformation is
reversible [Hainaut, 1996]. That is, for transformation T1 a transformation T2 exists,
that undoes T1. However, please note that a reversible transformation is only semantic-
preserving in respect to the database schema of T1 and not on the data. An example for
a reversible transformation can be given by the Replace Column refactoring [Ambler,
2003, p. 416]. The purpose of the Replace Column refactoring is to adapt a column’s
type to a new definition or usage. For instance, let us assume that we store a customer
identifier as an integer. However, the business wants to be able to identify the customer
type by the identifier. For that purpose, we change the identifier’s definition in such a
way that allows to include an alphanumeric type-code [Ambler, 2003, p. 416]. So, after
we applied the Replace Column refactoring, the database can include customer identi-
fiers such as 4711 or 4711EXT. However, if we revert the refactoring, customer identifiers
including letters cannot be represented in the database schema and customer identi-
fiers such as 4711EXT need to be adapted manually to the reverted database schema.
Ergo, in the presented example the Replace Column refactoring is a reversible but not
a symmetrically reversible transformation.

A transformation of a database schema and the related data instances is symmetrically
reversible, if for T1 a transformation T2 exists, so that T2 is the inverse transformation
of T1 and vice versa [Hainaut, 1996]. Hence, in contrast to reversible transformations,
we can undo symmetrically reversible transformations without losing any data. An
example for a symmetrically reversible transformation can be given by the Split Column
refactoring [Ambler, 2003, p. 420]. The purpose of the Split Column refactoring is to
separate different purpose or data elements from each other. For instance, a column
contains an amount of money and its currency. To separate the amount from the actual

1As HRManager is a simple software application, we refer to the behavior of the unmodified HRMan-
ager source code as specification.

3.1. Applying Refactorings can Cause Inconsistent Changes 21

currency, we split the original column into two columns holding either the amount or
the currency. If we revert the refactoring, we do not need any special treatment of
data that has been created in the database schema with the split columns, since we
only need to merge the amount with the currency information. Thus, the Split Column
refactoring is a symmetrically reversible transformation.

3.1.1 Object-oriented Refactorings

At its introduction, practitioners expected the object-oriented paradigm to be a signifi-
cant leap towards easing the implementation of reusable software. However, researchers
and practitioners recognized that object-oriented source code is not reusable by design
and, thus, also needs to be restructured to enable or preserve the reusability of the
source code [Opdyke, 1992]. In [Opdyke, 1992], Opdyke described the basis for the
disciplined refactoring of object-oriented source code. With the widespread adoption
of the object-oriented paradigm, also object-oriented refactoring found its way into
software development. The adoption and automation of object-oriented refactorings in
state-of-the art IDEs like Eclipse or Visual Studio prove the practical importance of
object-oriented refactorings in software development.

In the following, we describe the effects of the

� Rename Method [Fowler, 1999, p. 273],

� Pull Up Method [Fowler, 1999, p. 322], and

� Move Class [Opdyke, 1992]

refactoring when applied to the Java source-code of HRManager. We selected these
refactorings because of the following reasons: (1) The refactorings modify the class
hierarchy which is an important concept in the object-oriented paradigm, (2) the refac-
torings’ usage has been proven in studies [Murphy-Hill et al., 2009; Weißgerber and
Diehl, 2006], and (3) we find possible candidates for applying these refactoring in the
source code of HRManager.

Rename Method Refactoring

The Rename Method refactoring is used when the name of a method does not describe
the purpose of the method correctly. In HRManager, class Employee defines the method
getSalary, but the method’s name getSalary does not describe the purpose of the
method precisely. The method getSalary returns the monthly salary, so we rename
the method to getMonthlySalary. To preserve the semantics of HRManager, we must
perform the following actions:

1. Rename getSalary to getMonthlySalary.

2. Rename setSalary to setMonthlySalary.

22 3. Issues of Refactoring Multi-Language Software Applications

1 @Column(name = " s a l a r y ")
2 public float getMonthlySalary() {
3 return salary;
4 }

Listing 3.1: Utilizing the @Column annotation for restoring the ORM.

3. Restore the Object Relational Mapping (ORM) by applying one of the following
alternatives.

(a) Rename column salary in table employees to monthlysalary.

(b) Add @Column annotation to the method getSalary with the name attribute
of the annotation set to the column name salary.

Recall that by default, Hibernate maps getter and setter pairs defined in the Java class
on columns defined in the database schema, so we need to apply the Item 2 to restore
the ORM.

We made two interesting observations when we performed this refactoring. First, we
had to refactor a document twice, that is we rename the methods getSalary of the
class Employee and setSalary of the same class (see Item 1 and Item 2). Second, in
Item 3 we have the choice between two actions for restoring the ORM. If we select the
first action (Item 3a) we have to rename the column and we must change an unknown
number of Structured Query Language (SQL) statements referring to that column. The
second action (Item 3b) includes a single modification. Listing 3.1 shows the @Column

annotation in Line 1. We use the attribute name of the annotation to restore the ORM
to the column salary of the database table employees.

In comparison, the modifications described in Item 3a and Item 3b differ in their com-
plexity since Item 3b makes the modification of SQL statements unnecessary. Further-
more, without the modification of SQL we also prevent the clash with keywords. For
instance, if we rename a method to getTable, we have to rename the database column
to table too. But in SQL, TABLE is a reserved keyword, hence, we cannot rename the
database column to table without provoking database errors which would force us to
abort the MLR.

In summary, the Rename Method refactoring can become a challenging source code
modification if the developer chooses to adapt the database schema to the renamed
method. Knowledge about the object-relational mapper and its ability to decouple the
source code from the database schema can reduce the effort to implement the Rename
Method refactoring significantly. The knowledge may even be necessary to prevent name
clashes that would perhaps prevent the developer from applying a Rename Method
refactoring otherwise.

Pull Up Method Refactoring

The Pull Up Method refactoring unifies identical or similar methods of several subclasses
in a superclass. By unifying and moving the methods in the superclass, we reduce code

3.1. Applying Refactorings can Cause Inconsistent Changes 23

1 UPDATE managers
2 SET boss = (SELECT id FROM employees WHERE surname = 'Gartner ')
3 WHERE (SELECT id FROM employees
4 WHERE employees.surname = 'Greenspan '

5 AND employees.id = managers.id);

Listing 3.2: Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner.

duplicates and promote code reuse. In HRManager, only the class Manager provides
the methods getBoss and setBoss to manage the supervisor of a manager. But also
employees have a supervisor, though, the class Employee does not provide any methods
to manage supervisors. We want to pull-up the methods getBoss and setBoss from
Manager to Employee in order to be able to reuse code to manage supervisors on all
kinds of employees. The following modifications are necessary to preserve the semantics
of HRManager:

1. Pull-up method getBoss from Manager to Employee.

2. Pull-up field boss from Manager to Employee.

3. Pull-up method setBoss from Manager to Employee.

4. Move column boss from table managers and all related data instances to table
employees.

5. Update all references to column boss of table managers to reference column boss

in table employees.

Recall that, since Hibernate maps pairs of getter and setter methods defined in a Java
class on columns defined in the database schema, we need to apply the Item 3 to restore
the getter and setter pair getBoss and setBoss inside class Employee.

The transformation of the database schema informally described by Items 4 and 5 is
reversible, because we can move the column boss from employee back to managers

without losing any of the original information in column boss. Therefore, we call the
Pull Up Method refactoring an MLR in HRManager. However, the transformation is not
symmetrically reversible, because by removing the column boss from table employees

(required when inverting the refactoring) tuples of pure employees lose the relation
to a boss. That is, we cannot guarantee the informational integrity of each tuple in
employees when undoing the Pull Up Method refactoring. Hence, we may not be able
to revert the Pull Up Method refactoring without losing information.

The modification of other SQL statements referencing the column boss can be chal-
lenging as Listings 3.2 and 3.4 show. In Listing 3.2, the UPDATE statement introduces a
subordinate-boss-relation between the datasets with the surnames Gartner (boss) and

24 3. Issues of Refactoring Multi-Language Software Applications

1 UPDATE employees
2 SET boss = (SELECT id FROM employees WHERE surname = 'Gartner ')
3 WHERE (SELECT id FROM managers
4 WHERE employees.surname = 'Greenspan '

5 AND employees.id = managers.id);

Listing 3.3: Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner by reusing a modified implementation of Listing 3.2.

1 UPDATE employees
2 SET boss = (SELECT id FROM employees WHERE surname = 'Gartner ')
3 WHERE employees.surname = 'Greenspan ';

Listing 3.4: Establishing a supervisor relationship between the manager Greenspan
and the supervisor Gartner with a single string comparison after the Pull Up Method
refactoring is applied.

Greenspan (subordinate). One way to adapt the UPDATE statement in Listing 3.2 to
the new database schema is to swap the table referenced in Line 1 (managers) and the
table referenced in the FROM clause of the SELECT statement in Line 3 (employees) as
presented in Listing 3.3. However, this modification only ensures that we can establish
a supervisor relationship between managers in the refactored schema. Listing 3.4 shows
an additional option to modify the SQL statement that allows to establish a supervisor
relationship between any two employees: We can simplify the WHERE statement in List-
ing 3.2, Line 3 by changing the nested SELECT statement to a single string comparison
(Listing 3.4, Line 3). Therefore, there exist at least two possible modifications of the
UPDATE statement in Listing 3.2 that differ in the amount of changes to apply and may
also differ in their performance (assuming that the single string comparison provides a
better performance than the nested SELECT statement). However, we argue that the
transformations of the nested SELECT statement to a single string comparison can only
be accomplished by semantic analysis of the source statement (e.g., Listing 3.2). In
our opinion, only by the structure of SQL we cannot fathom how to change UPDATE

statements like the one in Listing 3.2 in general.

We conclude that adapting existing SQL statements to a moved column could be chal-
lenging depending on the complexity of the SQL statement at hand. The unknown
complexity of the adaption makes it demanding to automate the Pull Up Method refac-
toring in a database application context.

Move Class Refactoring

The Move Class refactoring changes the superclass of a class to allow reuse of the class’s
functionality. The new superclass can be part of the current class hierarchy or be part
of a different one. We examine moving a class within a class hierarchy.

In HRManager, the class Salesperson extends the class Manager, because managers
and salespersons share the attribute company car (cf. Figure 2.3). However, the in-

3.1. Applying Refactorings can Cause Inconsistent Changes 25

heritance relationship between Salesperson and Manager is purely artificial and only
established to enable the re-use of the attribute company car. In reality, salespersons are
not managers, hence, we want to change the superclass of Salesperson to Employee.
Therefore, we apply the Move Class refactoring as follows:

1. Copy the fields account, companyCarLicensePlate and their respective getter
and setter methods from class Manager to class Salesperson.

2. Change the superclass of Salesperson to Employee.

3. Copy the columns account and company_car_license_plate from the table
managers to the table salespersons.

4. In the table definition of salespersons change every foreign key relation from
table managers to table employees.

5. Change SQL statements accessing datasets in the table managers, if the datasets
belong to salespersons.

The database transformation described by the Items 3 and 5 are reversible, because we
can undo the changes described without losing any data of the original table salesper-
sons. Furthermore, the transformation is symmetrically reversible, because datasets in
the tables salespersons and managers are unambiguously identifiable by the id in ta-
ble employees. That is, we can undo the changes of the Move Class refactoring without
violating the data integrity. Thus, these steps can be considered an MLR.

After the Move Class refactoring, Salesperson is not a subclass of Manager anymore.
Thus, code that assumes that all instances of Salesperson are also instances of Manager
breaks. Let us consider for instance Listing 3.5: Before the refactoring, the loop will
print all managers and salespersons. After the refactoring, the loop will print only the
names of managers, but not of salespersons. Therefore, we can only call the Move Class
refactoring an MLR when there is no code assuming salespersons to be a subset of
managers. We cannot detect code automatically that was built with this assumption
in mind. Eventually, only the developer is able to assess if a change of the inheritance
relationship affects a piece of code as in Listing 3.5. Thus, we depend on manual or
automatic tests that check the a existing dependency on the inheritance relationship
between class Salesperson and Manager.

In summary, the Move Class refactoring can be considered an MLR in the context of
a database application. However, we have to carefully investigate if the change in the
inheritance hierarchy does not impact implicit assumptions about the types we access
in the database. This investigation may be challenging to automate.

3.1.2 Database Refactorings

In a database application, we also need to be able to adapt the database schema to new
requirements. In [Ambler, 2003], Ambler distinguishes the following database refac-
toring categories: Architectural, Data Quality, Performance, Structural, Referential

26 3. Issues of Refactoring Multi-Language Software Applications

1 Query query = sess.createQuery(" from Manager");
2 List<Manager> managers = (List<Manager>) query.list();
3
4 for (Manager manager : managers) {
5 System.out.print(manager.getFirstName() + " " + manager.getSurname());
6 }

Listing 3.5: A loop printing names of managers.

Integrity. In [Ambler and Sadalage, 2006], Ambler and Sadalage replace the category
performance by two new categories: Transformation and Method Refactoring.

In the following, we describe the effects of the

� Introduce Default Value [Ambler, 2003, p. 408],

� Introduce Redundant Column [Ambler, 2003, p. 409], and

� Remove Table [Ambler, 2003, p. 413]

refactoring when applied to the database schema of HRManager. We selected these
refactorings because we are interested in the sole effect of structural changes of the
database schema on the database application. For that purpose, all three refactorings
belong to the category structural. Furthermore, all three refactorings do either involve
no or a minimum effort to migrate existing data.

Introduce Default Value Refactoring

The Introduce Default Value refactoring introduces a default value for a table column.
We use the Introduce Default Value refactoring to unify already existing default values
(in the database itself or in applications which use the database) by introducing a single
default value for a column in a database table.

In HRManager, we want to set the default value for the column account defined in
the table managers to "acquisition", because a manager has to book to the account
acquisition by default. We have to modify HRManager in the following way to introduce
the default value "acquisition":

1. Define the default value "acquisition" for the column account.

2. Initialize the field account of the class Manager with the value "acquisition".

Item 2 is necessary to preserve the semantics of the default value defined in the database
for classes defined in Java. Consider that we would not have applied Item 2: In the Java
source code, on the creation of a new instance of the class Manager, the field account

is initialized with null according to the Java semantics. When we store the instance of

3.1. Applying Refactorings can Cause Inconsistent Changes 27

1 public void setAccount(String account) {
2 int len = account.length();
3
4 this.accountName = account.substring(0, len − 3));
5 this.accountID = Integer.parse(account.substring(len − 3, len));
6 }

Listing 3.6: Method definition setAccount.

the class Manager in the database, all field values are stored in the database, whether
they have been set explicitly or only implicitly during instance construction. Therefore,
null is written to the column account. The default value of the column account is
never applied to instances of class Manager.

The modification described in Item 2 can be semantic-changing, because there can be
methods assuming the field account is initialized with null instead of being set to
"acquisition" after initialization. Those methods would behave differently after the
refactoring. Additionally, since we only know that the column account maps onto the
getter and setter methods getAccount and setAccount, setting the initial value in
Item 2 requires semantic analysis of the getter and setter to identify the fields accessed
and modified by the getter and setter methods. The analysis of the implementation
of getter and setter methods is not hard for trivial implementations, but needs ad-
vanced treatment for non-trivial getter and setter methods. In Listing 3.6, we defined
a non-trivial example for the setter method setAccount. In the method setAccount,
we parse a parameter of type String and store the parsed values in two different fields
accountName (Line 4) and accountID (Line 5). Without semantic analysis of setAc-

count, we would not know how to apply a default value defined in the database on
the fields accountName and accountID. Hence, by the semantic analysis the refactoring
becomes more complex and can hardly be automated.

During the application of the Introduce Default Value refactoring, we have identified
two problems. First, we cannot guarantee that the Introduce Default Value refactor-
ing preserves the semantics of HRManager, since we do not know which behavior the
application expects regarding the initialization of field account with a null value. Fur-
thermore, we need to analyze the semantics of getter and setter methods to set the
initializing value for fields correctly.

Introduce Redundant Column Refactoring

The Introduce Redundant Column refactoring creates a copy of a column of a source
table in a target table. This refactoring is used to improve the performance of database
queries in the case that the column of the source table is queried frequently when
a dataset of the target table is queried. In Figure 3.1, the tables employees and
departments are related. Each time we query a dataset from the table employees, we
also query the name of the department referenced by the queried dataset. By creating
a copy of the column name in table employees, the joins to retrieve the department

28 3. Issues of Refactoring Multi-Language Software Applications

Employee works in Department
[0,1] [0,*]

department name name

Figure 3.1: Extended ER schema showing the entities Employee and Department,
whereas attribute department_name of Employee is derived from attribute name of
Department.

an employee is working for become unnecessary. The decrease of join operations may
result in a performance gain for certain SQL queries. The following steps are necessary
for the Introduce Redundant Column refactoring:

1. Create a copy of the column name in the table employees with the name depart-

ment_name.

2. Copy all entries from column name to the column department_name.

3. Create database triggers to preserve the data consistency between the columns
name and department_name.

Additionally, we have to apply the following modifications to make the performance
gain available in Java:

4. Add a field department_name with getters and setters to the class Employee as
required by the object-relational mapper.

5. Extend the functionality of the classes Employee and Department to maintain
the consistency between the fields department_name and name in the Java source
code.

Items 4 and 5 are not necessary to preserve the functionality of HRManager. However,
if we do not implement Item 4 and Item 5 we cannot benefit from the performance
gain available through the database schema. Thus, in this particular case the database
refactoring demands an extension of the Java application in order to take advantage of
the potential performance improvement.

The modifications described in Items 1 to 3 conform to the steps in the refactoring
definition and are semantic preserving [Ambler, 2003, p. 409]. Hence, we can call the
modifications of Items 1 to 3 an MLR.

3.1. Applying Refactorings can Cause Inconsistent Changes 29

The extension of functionality described in Item 5 violates the refactoring definition.
Two modifications are required to implement the extended functionality. First, we have
to secure field department_name in class Employee against unauthorized writes (only
the object-relational mapper and the referenced instance of type Department may write
the field). Second, we have to implement a source-code pattern like the Observer Pat-
tern [Gamma et al., 1993, p. 293] to preserve the consistency between the department
name in instances of Employee and Department. Thus, the modifications described in
the Items 1 and 5 do not adhere to the definition of MLR, because Item 5 does not
describe a refactoring. Only the modifications in the Items 1 to 3 preserve the semantics
of HRManager. Thus, we found two alternative ways to adapt the HRManager to the
Introduce Redundant Column refactoring applied to HRManager’s database. However,
only one of the possible ways to implement the Introduce Column refactoring makes the
possible performance gain available in the Java source code. That is, the refactoring of
the database schema leads to semantics-changing modifications of the Java source code,
if we want to comply with the refactoring of the database schema. However, semantics-
changing modifications are not only leaving the refactoring domain, additionally, these
modifications have to be done in the context of a specific application and, thus, are
hard to automate.

Remove Table Refactoring

The Remove Table refactoring is used to remove a table from a database schema, if the
table is deprecated or not used.

In HRManager, the table external_staff stores information about staff employed
through external contractors. Because the table external_staff is not used anymore,
we want to remove the table from HRManager. Assuming that that class External-

Staff is not used in conjunction with the ORM, we have to modify the HRManager in
the following way:

1. Remove the table external_staff from the database schema.

2. Remove class ExternalStaff from the ORM.

To remove the class ExternalStaff from the ORM, we have to remove the mapping
entry <mapping>hrm.ExternalStaff</mapping> from the hibernate.cfg.xml. The
configuration file hibernate.cfg.xml is specific to Hibernate. For instance, Java Per-
sistence API (JPA) specifies the persistence.xml for the definition of classes that
should be considered in the ORM. Thus, in general, we have to consider framework
specific differences when applying this refactoring in a database application which uses
an object-relational mapper.

For this refactoring to be successful, we have to ensure that no other parts of the ap-
plication access the table external_staff. Otherwise, since after the refactoring class
ExternalStaff is not part of the ORM, the object-relational mapper will throw an er-
ror. With Hibernate, the developer has many different options to access the database.

30 3. Issues of Refactoring Multi-Language Software Applications

1 // Hibernate native API
2 Department department1 = session.get(Department.class, 1);
3
4 // HQL/JPQL
5 Query query1 = session.createQuery(" from Department d where d . id = 2");
6 Department department2 = (Department) query1.list().iterator().next();
7
8 // Criteria API
9 List<Department> results = session.createCriteria(Department.class)

10 .add(Restrictions.eq(" id ", new Integer(3)))
11 .list();
12 Department department3 = results.get(0);
13
14 // Native SQL
15 String sqlQuery = "SELECT * FROM departments WHERE id = 4";
16 List<Object[]> departments = sess.createSQLQuery(sqlQuery).list();
17
18 Department department4 = new Department();
19 department4.setId((Integer)departments.get(0)[0]);
20 department4.setName((String)departments.get(0)[1]);

Listing 3.7: Possible options to access persistent data via Hibernate.

Listing 3.7 lists four of the Hibernate-specific options to query the database for a spe-
cific dataset2. Additionally, the developer may uses the interfaces defined by the JPA
specification which Hibernate implements. Thus, to be able to determine whether the
developer still accesses the table external_staff or not, we have to consider a number
of interfaces that developers could possibly use to access data within the application.
Additionally, in respect to the Hibernate Query Language (HQL) and the Java Persis-
tence Query Language (JPQL) or the native SQL Application Programming Interface
(API), we have to consider possible dynamic string manipulation.

In summary, for the Remove Table refactoring we have to take framework-specific con-
figurations and interfaces into account. Especially, when we check the preconditions for
the Remove Table refactoring, we need to consider the API usage and the additional
problems that may related to it. For instance, if the API of an object-relational mapper
allows access the database based on strings like Hibernate’s HQL or native SQL API,
we have to consider the dynamic creation of strings as a possible pitfall for correctly
determining the tables accessed in the database.

3.1.3 Functional Refactorings

The functional paradigm naturally supports the implementation of parallel algo-
rithms [Lämmel, 2008; Loidl et al., 2003]. Since the importance of parallel execution

2The example of the Criteria API in Listing 3.7 is based on a deprecated version of the Criteria API,
since the HRManager is using Hibernate 3.3.0.SP1 while the latest Hibernate version is 5.2. However,
the current version of Hibernate still provides a Criteria API which is based on the JPA specification.
Thus, also recent Hibernate releases provide diverse options to access specific datasets.

3.1. Applying Refactorings can Cause Inconsistent Changes 31

1 (def sumSalary (fn [x]
2 (if (and (not (empty? x))
3 (not (instance? hrm.Employee (first x))))
4 (throw (new java.lang.IllegalArgumentException))
5 (if (empty? x) 0 (+ (. (first x) getSalary)
6 (sumSalary (rest x)))))))

Listing 3.8: Definition of the function sumSalary.

increased in the recent years, also functional programming languages received increas-
ing interest. We assume that the increasing interest will result in an increasing amount
of functional code in MLSAs and, thus, increased need to adapt functional code to new
or changed requirements.

In the following, we describe the effects of the

� Introduce New Definition [Li, 2006, p. 18],

� Promote Definition [Li, 2006, p. 16], and

� Move Definition [Li, 2006, p. 20]

refactoring when applied to the Clojure source code of HRManager. We selected these
refactorings because other refactorings described in Li [2006] are either specific to the
Haskell programming language or we already applied the object-oriented equivalents to
the Java source code of HRManager.

Introduce New Definition Refactoring

The Introduce New Definition refactoring defines a local definition for an anonymous
expression. The purpose of this refactoring is to enable the re-use of an otherwise
anonymous function. Thus, this refactoring may be compared to the Extract Method
refactoring [Fowler, 1999, p. 110] for object-oriented source code.

In HRManager, we defined the Clojure function sumSalary which computes the total
salary of all instances of the class Employee in list x. Listing 3.8 shows the definition
of function sumSalary. In Line 3, we test if the first element of list x is an instance of
the class Employee (in the following we call this expression instance expression) with
the anonymous expression (instance? hrm.Employee (first x)).

We want to apply the Introduce New Definition refactoring in order to create a function
isEmployee? from the instance expression. To this end, we need to apply the following
modifications to HRManager:

1. Enclose the instance expression with a letfn statement.

2. Within the parameter list of the letfn statement defined in Item 1, define the
instance expression as the body of the function isEmployee?.

32 3. Issues of Refactoring Multi-Language Software Applications

1 (def sumSalary (fn [x]
2 (if (and (not (empty? x))
3 (not (letfn [(isEmployee? [x]
4 (instance? hrm.Employee x))]
5 (isEmployee? (first x)))))
6 (throw (new java.lang.IllegalArgumentException))
7 (if (empty? x) 0 (+ (. (first x) getSalary)
8 (sumSalary (rest x))))))))

Listing 3.9: The function sumSalary with the additional letfn (Line 3) statement
defining the function isEmployee?.

3. Within the body of the letfn statement, replace the instance expression by a call
to the new function isEmployee?.

With the help of the letfn statement introduced in Item 1, we can define local functions.
Local functions defined with letfn are visible within the body of the letfn statement.
Listing 3.9 shows the refactoring result, i.e., the definition of the function isEmployee?

in Line 3 and the body of the function isEmployee? in Line 4. We can use the function
isEmployee? within the body of the letfn statement as shown in Line 5. Admittedly,
the local function isEmployee? may even reduce the readability of the actual source
code. We tackle this issue in the next section.

In this example, we are not able to reference the refactored code, that is, the anony-
mous function (instance? hrm.Employee (first x)). Thus, there cannot exist any
reference to this expression from source code of other languages. Hence, since there
cannot be effects on source code of other languages, we can call the Introduce New
Definition refactoring an MLR.

We conclude that being an MLR is inherent in the Introduce New Definition refactoring:
The refactoring does not affect the interaction with source code of other languages,
since the refactoring introduces structural elements that cannot have been part of the
language interaction before the refactoring. Thus, we call refactorings which only create
new structural elements MLRs.

Promote Definition Refactoring

The Promote Definition refactoring increases the scope or visibility of a definition. By
increasing its scope, the definition can be re-used by other definitions.

In HRManager, we defined the function isEmployee? with a letfn statement, as
shown in Listing 3.9, Lines 3 and 4. That is, the function isEmployee? is only visible
within the scope of the letfn statement (Line 5). We want to increase the visibility
of isEmployee? in such a way that we are able to reuse isEmployee? in other func-
tions. To promote the definition of isEmployee? into a new, globally visible function
isEmployee?, we need to apply the following modifications to HRManager:

3.1. Applying Refactorings can Cause Inconsistent Changes 33

1 (def isEmployee? (fn [x] (instance? hrm.Employee x)))
2
3 (def sumSalary (fn [x]
4 (if (and (not (empty? x))
5 (not (isEmployee? (first x))))
6 (throw (new java.lang.IllegalArgumentException))
7 (if (empty? x) 0 (+ (. (first x) getSalary)
8 (sumSalary (rest x))))))))

Listing 3.10: The function sumSalary with the globally visible definition of
isEmployee?.

1. Introduce the new function definition isEmployee? in the global scope.

2. Let the body of the isEmployee? function defined in the letfn statement be the
new body of the function isEmployee? introduced in Item 1.

3. Remove the letfn statement from the function sumSalary.

Listing 3.10, Line 1, shows the function isEmployee? introduced by the Promote
Definition refactoring. The letfn statement is removed, only the body is preserved
(Listing 3.10, Line 5).

Because the function isEmployee? was not visible before the Promote Definition refac-
toring, again, source code of other languages could not reference the function isEm-

ployee?. Thus, we do not need to apply further modifications to Java source code. For
that reason we call the Promote Definition refactoring an MLR.

Move Definition Refactoring

Clojure provides namespaces to group functions [VanderHart, 2010, p. 24]. The Move
Definition refactoring describes how functions can be moved between different name-
spaces.

In HRManager, the function managersWithBoss is defined in the namespace salary.
The namespace salary defines functions for the computation of salaries. The function
managersWithBoss computes employees who have a supervisor. Thus, the function
managersWithBoss is not related to the namespace salary. Instead we want to move
the function to the namespace management. We need to perform the following modifi-
cations to change the namespace:

1. Move function managersWithBoss from the namespace salary to namespace man-
agement.

2. Modify calls to managersWithBoss from Java source code.

34 3. Issues of Refactoring Multi-Language Software Applications

1 RT.var(" s a l a r y ", "managersWithBoss"); // before
2 RT.var("management", "managersWithBoss"); // after

Listing 3.11: An excerpt of the reference to the function managersWithBoss in Java
after the application of the Move Definition refactoring.

Line 1 in Listing 3.11 shows how calls to managersWithBoss look before before and
Line 2 shows how calls to managersWithBosss must look like in the Java source code
after performing Item 2.

In Java, we resolve dependencies to missing classes by using Java’s import statement.
For dynamic calls of functions defined in Clojure, we have to use the Java class RT

and the method var, respectively. Hence, we use the Clojure-specific Java class RT to
reference functions defined in Clojure instead of Java’s import statements. Thus, we
have to take Clojure’s language-specific functions into account, if we want to preserve
the language interaction between Java and Clojure code.

3.2 Challenges of Multi-language Refactoring

Chen and Johnson stated that: “While finding a general solution for extending refac-
toring across multiple languages is hard, it is simple and possible to support automated
refactorings for some common cases that programmers already encounter in their pro-
grams today” [Chen and Johnson, 2008]. In this section, we attempt to explain why it
is hard to find a general approach to MLR.

Chen’s and Johnson’s statement actually describes one challenge of refactoring MLSAs:
How does a refactoring affect the interaction between languages? Obviously, as Chen
and Johnson stated, we can answer this question for known cases. However, tracking
all possible language interactions affected by a refactoring poses an entirely different
challenge.

Besides the information if two programming languages interact with each other, for an
MLR, we need to know how the interaction between two programming languages is
implemented. Otherwise, we are unable to adapt the source code written in the host
language to the refactored source-code written in the guest programming language and
vice versa. Recall that we defined an MLR as a possible empty set of refactorings that
preserve the semantics of the application. However, in order to preserve the seman-
tics of the overall application, we may need to apply semantics-changing modifications
(cf. Section 3.1.1 and Section 3.1.2). Thus, in an MLSA, we cannot generally assume
that a refactoring of source code written in one language will either have no affect on
source code written in other languages or lead to only semantics-preserving modifica-
tions, that is, additional refactorings, on interacting source code. Consequently, in order
to preserve the semantics of the entire software application, a refactoring of one part of
the application may forces us to apply semantics-changing modifications to other parts
of the application.

3.2. Challenges of Multi-language Refactoring 35

(SH)

(SG1;1)

(SG1;n)

(SG2;1)

(SG2;n)

...

(SGn;m)

(SGn;n)

Figure 3.2: Illustration of the general structure of an MLSA.

So far, we addressed issues of MLRs only considering a pair of programming languages.
However, in an MLSA a guest language may be itself a host language interacting with
another guest language. Thus, a refactoring of source-code written in the host lan-
guage may not only affect source code written in one but any number of different
guest languages. That is, assuming that all programming languages may be used as
host language, we have to address all possible host and guest language combinations.
Additionally, we have to take into account how refactorings affect different host- and
guest-language interactions and how we can adapt the source code written in the guest
language to refactorings in the host language and vice versa. We describe the set of
all possible host and guest language combinations as the transitive closure of all lan-
guage interactions. We assume that the extent of the transitive closure of all language
interactions renders a general approach to automated MLR practically infeasible.

In Figure 3.2, we illustrate the general structure of an MLSA. We have a single host
language SH and interacting guest languages SGm;n . Guest languages that directly
interact with the host language have the index (1;n) and guest languages indirectly
interacting with the host language have an index (x;n) with x > 1. A tool developer has
to know not only the host language SH , but also all possible interacting programming
languages SG1;1 to SGn;n . Let us assume that a tool developer implements an MLR
which only considers the languages used in SG1;1 to SG1;n . Applying the refactoring
may cause changes to the source code structure of SG1;1 to SG1;n which may break the
interaction with SG2;1 or SG2;n . Thus, an MLR that considers only certain language
interactions can break an MLSA in the general case.

36 3. Issues of Refactoring Multi-Language Software Applications

In practice, tool developers seem to follow the advice given by Chen and Johnson
and integrate refactoring support for specific language interactions. For instance, the
refactoring tool ReSharper integrates support for the Rename refactoring on HTML,
CSS, JavaScript, and TypeScript [JetBrains s.r.o., 2017] and the Google Plugin for
Eclipse supports the Rename refactoring on Java and interacting JavaScript source
code [Google Inc., 2017] for applications implemented with the Google Web Toolkit. To
the best of our knowledge, also all existing attempts in the scientific community focus
on specific language interactions [Kempf et al., 2008; Mayer and Schroeder, 2012; Strein
et al., 2006; Tatlock et al., 2008]. The advantage of focussing on a specific language
interaction is that we can seize all oportunities for automating MLRs between the two
languages of the language interaction. However, only developers of these two languages
can take advantage of the automated MLRs. In the next chapter, we will present an
approach that introduces a common scheme for representing language interaction. We
will show that we can provide already basic support for refactoring in an MLSA for
any two languages based on that common scheme. Our approach does not focus on
automated refactorings in MLSAs. However, based on the observations outlined in this
chapter, we argue that automation can only be achieved in certain cases and, thus, a
more general support for refactoring MLSA is necessary.

3.3 Summary

In this chapter, we presented specific challenges that arise when developers apply single-
language refactorings on an MLSA. In particular, we have shown issues in the context of
refactoring a prototypical database application. The prototypical database application
comprises code of four General-Purpose Programming Languages (GPLs) and Domain
Specific Languages (DSLs) of different programming paradigms. We assume that the
issues we encountered on our prototypical database application can be generalized to
other MLSAs that employ different GPLs and DSLs.

Furthermore, we illustrated the challenges that prevent the practical realization of au-
tomatic MLR in general. Because of the general challenges we face in the realization
of automatic MLR, we not only consider a general approach to automatic MLR hard,
but we question the practical feasibility of it at all. Especially the need for semantic-
changing code modifications contradicts approaches which are based on the assumption
that refactoring an MLSA is the application of a set of refactorings on different interact-
ing source-code documents. Thus, as Chen and Johnson already pointed out, automatic
MLRs are possible and useful for specific use cases, but do not provide the basis for
improving the refactoring experience in MLSAs in general.

Nevertheless, if the current approach to MLRs is only applicable to specific MLSA se-
tups, how could we support refactoring in arbitrary MLSAs? Based on the results of
this chapter, we have to conclude that we cannot apply the same approach for refac-
toring MLSAs that proved to be successful for single-language refactorings: In general,
we cannot rely on MLR, that is a set of single-language refactorings applied to a num-
ber of interacting source-code documents written in different programming languages.

3.3. Summary 37

Since automation is not as easy to accomplish for MLR as compared to single-language
refactorings, we propose to step back and to start thinking about tools that support
developers in the manual refactoring of an MLSA. An automated MLR would preserve
the interaction between the considered programming languages by design. However,
without any tool support developers who manually apply refactorings on MLSAs need
to check the preservation of language interaction manually as well. Even if developers
can fall back on a suite of automated tests, there is a chance that broken language
interaction will find its way into production code. Thus, first and foremost, tool sup-
port for manual refactoring of MLSAs should help developers to determine if language
interaction is affected by a refactoring. Based on this insight, we present an approach
to highlight the mechanics of language interaction in the following chapter.

38 3. Issues of Refactoring Multi-Language Software Applications

4. Structure Graphs

Chapter 4 shares material with [Schink et al., 2016a].

In Chapter 3, we learned about the diverse effects of refactorings within Multi-Language
Software Applications (MLSAs). In summary, refactorings defined for single languages
or language paradigms do not respect language interaction in MLSAs and, thus, single
language refactorings can break the interaction of languages in MLSAs. A possible
approach to improve refactoring in MLSAs would be the definition of multi-language
refactorings [Chen and Johnson, 2008; Kempf et al., 2008; Mayer and Schroeder, 2012;
Strein et al., 2006]. However, because of the high number of possible language inter-
actions and techniques involved in establishing an interaction between two languages,
Multi-Language Refactorings (MLRs) only provide a practical approach for specific lan-
guage combinations and refactorings. Thus, because of the practical limitations, we do
not expect MLRs to become as pervasive as single-language refactorings.

In [Chen and Johnson, 2008], the authors state that “[...] refactoring across multiple
languages is hard [...]”. Since we cannot expect refactorings to preserve behavior in an
MLSA, developers have to rely on a sufficient suite of tests to ensure that after the
refactoring of the source code of one language the interaction with other languages is
not affected. However, even if the test suite fails, because a single-language refactoring
broke the language interaction within an MLSA, developers still need to investigate the
reason for the broken language interaction to be able to provide a manual fix. Thus, it
is desirable for developers not only to detect broken language interactions, but to get
information describing the possible reason for the broken language interaction. Thus,
we formulate the following two abilities a tool must provide to ease a developer’s effort
to refactor an MLSA: (1) The tool presents interactions between artifacts within an
MLSA in such a way that developers are able to fix broken interactions manually and
(2) the tool provides developers with sufficient information about the modification that

40 4. Structure Graphs

caused the broken language interaction, so the developer can fix the broken language
interaction correctly.

In this section, we introduce an approach to support refactoring in MLSAs based on
graphs of trees. We selected an approach based on graphs for two reasons:

1. Since graphs or more specifically trees are already used to represent source-code
elements, we assume that graphs are a practical choice for representing source-
code elements involved in language interaction as well.

2. Graph theory provides the necessary theoretical and practical foundation to ana-
lyze and implement our approach to support refactoring in MLSAs.

In the following, we present two algorithms which detect broken language interactions
and compute the changes that preceded a broken language interaction, respectively.
These pieces of information support developers in fixing broken language interactions.
Since both algorithms are based on graphs, we start with discussing the representation
of source-code elements involved in language interaction with graphs.

4.1 Modeling Elements of Language Interaction

We implement language interaction between a host language and a guest language
(see Section 2.2): A guest language defines structure elements like methods and classes
and a host language invokes or references these structure elements. Thus, the host
language expects certain structure elements in the source code implemented in the
guest language. The interaction of source code written in two programming languages
is preserved if the actual structure elements defined in the source code written in the
guest language match the structure elements expected, that is invoked or referenced,
in the source code written in the host language. For the comparison of the actual with
the expected structure elements, we need to model the respective structure elements
involved in language interaction.

For the source-code structure SG written in guest language G and the source-code
structure SH written in host language H, we call the references to SG extracted from
the host language’s structure RSH→SG

. Additionally, we call the structure elements in
the source code written in the guest language involved in a language interaction RSG

.
Since RSH→RG

and RSG
represent not all structure elements, but those that are involved

in language interaction, the following relations hold:

RSH→SG
⊆ SH (4.1)

and
RSG

⊆ SG (4.2)

Elements involved in language interaction are source-code elements. We can represent
source-code elements in Abstract Syntax Tree (AST) [Aho et al., 2006, p. 91 ff.]. Based

4.1. Modeling Elements of Language Interaction 41

a

ge

f

b

dc

(a) Labeled tree Ga representing the actual
source-code structure.

a

ie

hgf

b

c

(b) Labeled tree Ge representing the expected
source-code structure.

Figure 4.1: Illustrating example for different node types.

on the general representation of source-code elements in tree structures, we represent
RSH→SG

and RSG
as sets of labeled trees. In this context, we call a set of labeled

trees structure graphs. Consequently, rSH→SG
∈ RSH→SG

is a tree representing a single
invocation of a structure element defined in the guest language from the host language.
Likewise, rSG

∈ RSG
is a tree representing a single structure element defined in the

guest language that is involved in language interaction.

Before developers are able to invoke any element in the guest language from the host
language, they must define elements in the source code written in the guest language.
Hence, on the one hand, RSG

contains only definitions of elements involved in a language
interaction. On the other hand, RSH→SG

contains only invocations of the source-code
elements defined in RSG

. Thus, a representation for modeling language interaction must
be able to describe two elements involved in language interaction: element definitions
and element invocations. Element invocations explicitly define all parts involved in
the invocation. For instance, a function call contains the function name and a set of
parameters. However, element definitions may describe variability or define required
information that must be present when the element is invoked. For instance, function
definitions can define required parameters as well as an arbitrary number of parame-
ters in the case of variadic functions. Thus, a structure graph contains one or more
of the following types of nodes: plain, mandatory, and optional list. These three node
types exist to control the comparison of two given structure graphs of which one de-
scribes element definitions and the other describes element invocations. We explain
their purpose in detail in the following by means of the trees Ga (see Figure 4.1a) and
Ge (see Figure 4.1b).

Plain nodes trigger a comparison of the labels of nodes. The comparison of a node’s
label is also done for the mandatory and optional list nodes. However, if a plain node
is defined in the graph with the actual source-code structure, but is missing in the
graph with the expected source-code structure, we will still assume that the expected
source-code structure matches the actual source-code structure. For instance, in the
labeled tree Ga, the node g exists. However, the node g does not exist in labeled tree
Ge at the same depth as in node Ga. However, node i, which does not have the same
label as node g, causes a mismatch between the two graphs Ga and Ge. In contrast,
in Ga the node d exists which has no counterpart in Ge and, thus, does not trigger

42 4. Structure Graphs

a mismatch between the two graphs Ga and Ge. Thus, in summary a plain node in
the expected source-code structure (Ge) must exist in the actual source-code structure
(Ga). However, a plain node in Ga does not need to have a counterpart in Ge.

Mandatory nodes enforce a check of their existence during the comparison. Thus, in
contrast to a plain node, a mandatory node must exist if the mandatory node’s parent
exists. For instance, let us assume node d in Ga is a mandatory node. Then, the missing
node d in Ge causes a mismatch between the two graphs Ga and Ge.

Optional list nodes represent a variable number of nodes whereas plain and mandatory
nodes represent a single node. For instance, let us assume that node f in Ga is an
optional list node. Then, during a comparison between Ga and Ge, the nodes f , g, and
h in Ge are matched by f in Ga.

4.2 Referential Integrity Between Languages

We check the referential integrity between languages by comparing each individual tree
in RSH→SG

with the trees in RSG
. To ensure the referential integrity, for all rSH→SG

∈
RSH→SG

there must be one rSG
∈ RSG

, so that the following condition is satisfied:

rSH→SG
is a top-down subtree of rSG

(4.3)

However, this precondition is not sufficient because nodes may be missing in rSH→SG

that are mandatory for language interaction. Hence, for the set of mandatory nodes
rM , we additionally have to check if

rM ⊆ rSH→SG
(4.4)

The set rM is defined as follows for mandatory nodes m and the function parent[x]
which returns x’s parent node:

rM = {m | m ∈ rSG
∧ parent[m] ∈ rSH→SG

} (4.5)

Thus, we check Equation (4.4) only for mandatory nodes whose parents exist in rSH→SG
.

In Figure 4.2, we illustrate the process of checking language interaction: First, we need
to extract RSH→SG

from SH and RSG
from SG. In accordance with Equation (4.6), we

compute the set of mandatory nodes RM for RSG
and RSH→SG

:

RM = {m | m ∈ RSG
∧ parent[m] ∈ RSH→SG

} (4.6)

Then, we can compare the extracted references RSH→SG
and RSG

. The comparison
returns a result which contains the possibly empty sets

NG = RSH→SG
\RSG

(4.7)

and
NM = RM \RSH→SG

(4.8)

4.3. Changes to the Source-Code Structure 43

H
os

t
G

u
es

t

SH

SG

Code

Extract

a

eb

z

y

RSH→SG

a

eb

dc

z

x

w

y

RSG

References

RM = {b, e, y, x}
Compare

NG

∪
NM

Result

Figure 4.2: The process of checking language interaction.

NG contains the elements which were extracted from the source code written in the host
language, but are missing in the source code written in the guest language. NM is the set
of mandatory elements defined in the source code written in the guest language that are
not referenced in the source code written in the host language. In short, NG is the set of
missing guest language nodes and NM is the set of missing mandatory nodes. Language
interaction is preserved if both sets NG and NM are empty. Otherwise, the sets contain
the structure elements which are involved in the broken language interaction.

4.3 Changes to the Source-Code Structure

In Section 4.2, we present a method which allows developers to detect broken language
interaction. However, developers still need to detect the changes that are responsible
for the broken language interaction. For instance, in a development team, different
developers may be responsible for the host- and guest-language structures SH and SG.
Let us assume that one team changes SG in such a way that the references for language
interaction RSG

are changed, too. The development team of SH detects the broken lan-
guage interaction between SH and SG. However, without knowing the changes applied
by the development team of SG, the team of SH will not be able to fix the broken lan-
guage interaction adequately. In this section, we present an approach based on structure
graphs to detect the applied changes.

In the following, we consider changes to source code S in general. However, the following
approach may be especially useful for the developers of the source code SH : Developers
of source code SH may not be involved in or do not immediately detect changes to the
source code SG. This forces developers of SH to refer to the developers of SG or to
the source code SG itself to adapt SH accordingly. Thus, detecting changes in SG is
sufficient to support developers of SH in restoring language interaction. Nevertheless,
the following method may also be applied to detect changes to SH .

44 4. Structure Graphs

We detect changes to S by extracting and comparing different revisions of RS. We
may extract different revision of RS from a version control system, IDE, or any other
appropriate source. However, the following approach is independent from the actual
source of the revisions.

We distinguish different revisions of RS by the index rev, so that the current revision
is RS;rev and the previous revision is RS;rev−1. The result of the comparison is a set of
tree modifications containing the added nodes Na with

Na = RSrev \RSrev−1 (4.9)

and the removed nodes Nr with

Nr = RSrev−1 \RSrev (4.10)

In Figure 4.3, we illustrate the process of extracting added and removed nodes by
comparing the revisions RSrev and RSrev−1 .

R
ev

R
ev

-1

Srev

Srev−1

Code

Extract

a

e

f

b

dc

z

x

w

y

RSrev

a

b

dc

z

e

f

x

w

y

RSrev−1

References

Compare
Na ∪Nr

Result

Figure 4.3: The process of detecting changes to the guest language structure.

Addition and removal are elementary tree-edit operations [Valiente, 2002, p. 56].1

However, addition and removal only allow to detect new or missing nodes. Thus,
a change to an existing node would be represented as a removal and a subsequent
addition. But having a removal and an addition for a change obfuscates that the same
node has changed. Hence, the developer may not be sure whether the added node is a
new element or a modification of an existing one. Therefore, additionally, we introduce
the move and rename modification to preserve information about changes to an existing
node that would be lost otherwise.

1Another elementary tree-edit operation is substitution [Valiente, 2002, p. 56]. We consider substi-
tution in the move and rename operation.

4.3. Changes to the Source-Code Structure 45

a

a.e

a.e.f

a.b

a.b.da.b.c

RSrev−1

a

a.e’

a.e’.f

a.b

a.b.da.b.c

RSrev

(a) Renamed node detection.

a

a.e

a.e.f

a.b

a.b.da.b.c

z

z.x

z.x.w

z.y

RSrev−1

a

a.b

a.b.da.b.c

z

z.e

z.e.f

z.x

z.x.w

z.y

RSrev

(b) Moved node detection.

a

a.e

a.e.f

a.b

a.b.da.b.c

RSrev−1

a

a.ga.e’

a.e’.f

a.b

a.b.da.b.c

RSrev

(c) Ambiguous node modification.

Figure 4.4: Detection of renamed or moved nodes.

46 4. Structure Graphs

We consider a node n ∈ RS;rev−1 renamed in RS;rev if the following equation holds:

n ∈ RS;rev−1,∃!n′ ∈ RS;rev(parent[n] = parent[n′] ∧ label[n] 6= label[n′]) (4.11)

That is, for n exactly one node n′ ∈ RS;rev exists which has the same parent but not
the same label. Figure 4.4a presents how the node na.e ∈ RS;rev−1 is renamed to na.e′

in RS;rev. We consider a node n ∈ RS;rev−1 moved in RS;rev if holds

n ∈ RS;rev−1,∃!n′ ∈ RS;rev(parent[n] 6= parent[n′] ∧ label[n] = label[n′]) (4.12)

That is, for n exactly one node n′ ∈ RS;rev exists which has the same label but not
the same parent. Figure 4.4b presents how the node na.e ∈ RS;rev−1 is moved to nz.e in
RS;rev.

The Equations (4.11) and (4.12) hold only for unambiguous node modifications. How-
ever, ambiguous node modifications may appear. For instance, in Figure 4.4c, node
na.e ∈ RS;rev−1 is renamed to na.e′ in RS;rev, additionally, a new node na.g is added to
RS;rev. According to Equation (4.11), no renaming occurred, because na.e′ ∈ RS;rev and
na.g ∈ RS;rev share the same parent with na.e ∈ RS;rev−1. In practice, two source-code
revisions RS;rev and RS;rev−1 can differ in more than one modification. Thus, due to
ambiguity, we may not be able to detect renamed and moved node modifications that
actually occurred. However, approaches to schema matching offer (semi-)automatic
techniques to find suitable matchings. In [Rahm and Bernstein, 2001; Shvaiko and
Euzenat, 2005], the authors provide a classification and a comparison of existing ap-
proaches to schema matching. We assume that a composite matcher, which extends
our graph-based approach by other matching approaches, will enable developers to deal
with ambiguous node modifications. In Section 4.4, we classify the integrity check and
change detection algorithm according to Rahm and Bernstein [2001] to underpin this
assumption.

In this section, we present an approach to extract changes between source-code revisions.
The purpose of this approach is to enable developers to detect the source-code changes
that led to a broken language interaction. For instance, based on the change-detection
algorithm, developers are able to distinguish whether a broken language interaction is
caused by a missing or renamed element in the SG. Thus, developers do not need to
consult the source code written in a maybe unknown guest language nor do they need
to check the revision history of the source code.

4.4 Classification of Matching Algorithms

The referential-integrity check and the change-detection algorithm compare two struc-
ture graphs with each other and check if both structure graphs match. Thus, in simple
terms, we can classify both algorithms as matching algorithms. According to the defini-
tion in [Rahm and Bernstein, 2001], a match algorithm2 takes two schemas and returns

2In [Rahm and Bernstein, 2001], the authors use the term match operator. Since we defined algo-
rithms and not operators, we use the term match algorithm instead to stay consistent.

4.4. Classification of Matching Algorithms 47

Schema Matching Approaches

Combining matchersIndividual matcher approaches

Instance/contents based

Element-level

Schema-only based

Structure-levelElement-level

Figure 4.5: Excerpt of a taxonomy of schema matching approaches as defined by Rahm
and Bernstein [2001].

a match result. A schema as defined by the authors “is a set of elements connected
by some structure”. The authors mention directed graphs among others as valid rep-
resentations of such schemas. The match result returns possibly matching candidates.
The outermatch algorithm is an extension of the match algorithm that, additionally,
considers elements with no matching counterpart [Bernstein and Rahm, 2000; Rahm
and Bernstein, 2001]. In contrast, our algorithms return only the elements that have
no matching counterpart. In the following, we classify our algorithms according to the
taxonomy defined in [Rahm and Bernstein, 2001] (cf. Figure 4.5) to show opportunities
for further extending the existing algorithms.

We distinguish two matching granularities: element-level and structure-level. Element-
level matchers compare two elements by the elements’ properties. Structure-level match-
ers compare two elements based on their position in a higher-level structure. That is,
in a structure-level approach also the surrounding elements are considered. We repre-
sent source-code elements involved in language interaction as structure graphs, that is,
graphs of labeled trees. The nodes and edges of a structure graph define its schema
and the labels define the actual instance of the schema element as defined by the source
code. For instance, in source code of an object-oriented programming language, nodes
may represent structure elements like namespaces, classes, and methods. Then, the
node labels represent the namespace identifiers, class and method names, respectively.
Our matching algorithms use structure information to check if the elements of two
structure graphs are composed identically and instance information to check if the ac-
tual instances represented by two nodes at the same position match. Thus, according
to the taxonomy, our matching algorithms possess properties of structure-level and
element-level approaches.

The matching cardinality describes how many matching elements a matcher can assign
to a single element. For instance, an element of one schema may represents a single or
a number of elements in another schema. The change detection algorithm possesses a
match cardinality of 1 : 1, that is, for each element in one structure graph it finds at
most one matching element in the other structure graph. The integrity check algorithm

48 4. Structure Graphs

needs to match optional list nodes, that is, the algorithm must be able to match a
number of nodes in one structure graph with a single optional list node in another
structure graph.

Our two matching algorithms do not possess any other approaches like linguistic and
constraint-based approaches. Thus, both matching algorithms represent hybrid match-
ers with a cardinality of 1 : 1 (change detection) and 1 : n (integrity check). Neverthe-
less, the algorithms to not integrate any auxiliary information like user input. Auxiliary
information can be used to solve ambiguous node modifications.

4.5 Performance and Generality

In Section 4.2, we discussed an algorithm for checking the interaction between a host and
a guest language that builds on a tree-based representation of syntax elements involved
in language interaction. In the following, we discuss the theoretical performance of the
integrity check discussed in Section 4.2 and the change detection approach presented in
Section 4.3 as well as the generality of our approach.

4.5.1 Performance of the Integrity Check

For Condition (4.3), we check that for each node in RSH→SG
a node exists in RSG

. In a
tree structure, each node has a unique path, thus, we need to check at most hG nodes
in RSG

for each node in RSH→SG
, where hG is the height of RSG

. Hence, we get each
missing node in O(nHhG), where nH is the number of nodes in RSH→SG

.

For Condition (4.4), we check that for each mandatory node in RM a node exists in
RSH→SG

. Again, we need to check at most hH nodes in RSH→SG
for each node in RM ,

where hH is the height of RSH→SG
. Hence, we get each missing mandatory node in

O(nMhH), where nM is the number of nodes in RM .

Checking both Conditions 4.3 and 4.4 results in a complexity of O(nHhG+nMhH). The
heights of the trees RSH→SG

and RSG
depend on how the host and the guest language

are modeled in the structure graph, respectively. However, since we know the model,
we also know the maximum height a tree can have in regard to that model. There will
be no tree with a height above the maximum height the model defines. Thus, for a
specific model, we can consider the maximum height to be constant. This consideration
leads to a complexity of O(nH + nM) for checking all conditions.

4.5.2 Performance of the Change Detection

To get the set of all added nodes Na (see Equation (4.9)), we check for each node
rSrev ∈ RSrev , if rSrev exists in RSrev−1 . Again, in a tree structure each node has a
unique path. Thus, we need to check at most hSrev−1 nodes in RSrev−1 . Hence, we get
each added node in O(nSrevhSrev−1), where nSrev is the number of nodes in RSrev and
hSrev−1 is the height of RSrev−1 .

4.5. Performance and Generality 49

To get the set of all removed nodes Nr (see Equation (4.10)), we check for each node
rSrev−1 ∈ RSrev−1 , if rSrev−1 exists in RSrev . According to the discussion in the preceding
paragraph, we get each removed node in O(nSrev−1hSrev), where nSrev−1 is the number
of nodes in RSrev−1 and hSrev is the height of RSrev .

Additionally, we need to check for each node r ∈ Na if r has been renamed or moved.
Let’s assume that we need constant time to check whether a node has been renamed or
moved, then we find all renamed or moved nodes in O(nNa) with nNa being the number
of nodes in Na.

In summary, the complexity of the change detection approach is O(nSrevhSrev−1 +
nSrev−1hSrev + nNa). Since, again, the maximum height of a tree is known, we can
assume the height to be constant. Thus, we get a complexity of O(nSrev +nSrev−1 +nNa)
for the detection of changes between two revisions.

4.5.3 Generality of the Approach

Until now, we discussed our approach based on an MLSA consisting of one host and
one guest programming language. However, MLSAs can consist of more than two
programming languages. Thus, we need to discuss our approach to check the integrity
of an MLSA in the context of generalized MLSA setups to show the generality of our
approach.

In this section, we only consider the integrity check as presented in Section 4.2 because
in an MLSA we may have more than two languages interacting with each other. In
contrast, the approach to detect changes in the language structure as presented in Sec-
tion 4.3 is defined for exactly two source-code revision. Thus, the change detection
approach is already defined for the general case.

In the following, we describe three different MLSA setups and how our approach han-
dles these setups (cf. Figure 4.6). To the best of our knowledge, all existing MLSAs
constitute special cases of the three MLSA setups shown in Figure 4.6a to 4.6c. Since
our approach supports all three MLSA setups, we conclude that our approach supports
the refactoring of arbitrary MLSAs.

Multiple Guest and Single Host Programming Languages

The first generalization we consider is to assume not only one, but an arbitrary number
of guest languages. Then, in the source code written in a single host programming
language SH , different interfaces are used by developers to interact with source code
written in multiple guest languages SG;n with n being the nth guest language of the
MLSA (cf. Figure 4.6a). Thus, to check the referential integrity of the language in-
teraction, we need to extract and compare the references in the source code written
in the host language to the source code written in the nth guest language RSH→SG;n

and all possible guest language structures for the nth language involved in language
interaction RSG;n

. That is, for guest language n, we compute the set of missing guest
language nodes NG;n and the set of missing mandatory nodes NM ;n as follows:

NG;n = RSH→SG;n
\RSG;n

(4.13)

50 4. Structure Graphs

(SH)

(SG;1)
...

(SG;n)

(a) Single host and multiple guest program-
ming languages.

(SG)

(SH;1)
...

(SH;n)

(b) Multiple host and single guest program-
ming languages.

(SH;2)(SH;1) (SG)

(c) A host is also a guest programming language.

Figure 4.6: MLSA setups.

and

NM ;n = RM \RSH→SG;n
(4.14)

Single Guest and Multiple Host Programming Languages

The second generalization we consider is to assume not only one, but an arbitrary num-
ber of host languages. Then, in the source code written in multiple host programming
language SH;n, the same elements of the guest programming language are used by de-
velopers to interact with source code written in a single guest language SG with n being
the nth host language of the MLSA (cf. Figure 4.6b). Thus, to check the referential
integrity of the language interaction, we need to compute and compare the references
in the source code written in the nth host language to the source code in the single
guest language RSH;n→SG

with all possible guest language structures involved in lan-
guage interaction RSG

. That is, for host language n, we compute the set of missing
guest language nodes NG;n and the set of missing mandatory nodes NM ;n as follows:

NG;n = RSH;n→SG
\RSG

(4.15)

and

NM ;n = RM \RSH;n→SG
(4.16)

4.6. Summary 51

A Host is also a Guest Programming Language

Given source code of three programming languages SG, SH;1, SH;2 involved in an MLSA
where SG is accessed by SH;2 and SH;2 is accessed by SH;1 (cf. Figure 4.6c). Hence, this
MLSA contains code of two guest programming languages (SG and SH;2) and code of
two host programming languages (SH;1 and SH;2). In other words, we have multiple
guest and multiple host programming languages. However, having multiple guest and
multiple host programming languages corresponds to a combination of the preceding
cases.

Let us index the different languages used in an MLSA by depth d and a language counter
n, so that Sd;n describes the source-code structure of the nth language at language depth
d. That is, S0;n represents the source-code structure of the nth host language and Sd;n

with d > 0 the source-code structure of the nth guest language. Please note that
for the language structure Sd;n only language structures Sd+1;o represent possible guest
languages for language interaction. According to this convention, for SH;1, SH;2, and
SG in Figure 4.6c, we get S0;0, S1;0, and S2;0, respectively. That is, for the general
case, we compute the set of missing guest language nodes NGd;n;o

and the set of missing
mandatory nodes NMd;n;o

for the nth host and oth guest language as follows:

NMd;n;o
= RSd;n→Sd+1;o

\RSd+1;o
(4.17)

and
NMd;n;o

= RM \RSd;n→Sd+1;o
(4.18)

4.6 Summary

In this chapter, we introduced structure graphs as a basis to describe source-code ele-
ments involved in language interaction. Developers can use structure graphs to represent
elements defined in the source code written in the guest language as well as invocations
of those elements in the source code written in the host language.

Guest languages do not define a uniform set of elements involved in language interaction.
Additionally, we neither can consider all current structure elements, nor foresee all
future elements involved in language interaction. Consequently, we cannot use a single
type of labeled tree to represent a definition or invocation of an element involved in
language interaction. Thus, we need to define specialized types of trees which only
represent the structure elements in the guest language that are actually involved in
language interaction.

We presented two algorithms based on structure graphs to support developers in their
endeavor to refactor MLSAs. The first algorithm checks the referential integrity between
the source code written in the host language and the source code written in the guest
language. The second algorithm uncovers changes to the structure of the source code
written in the guest language, that may lead to broken language interaction. We showed
that the algorithms’ complexity has a linear dependency on the number of nodes.

52 4. Structure Graphs

Though we used a simplified MLSA setup consisting only of one host and one guest
language to introduce our approach to support refactoring MLSAs, we demonstrated
that our approach is generally applicable.

5. Implementation and Application
of Structure Graphs

Chapter 5 shares material with [Schink, 2013; Schink et al., 2016a].

In Chapter 4, we introduced an approach to support developers who refactor an Multi-
Language Software Application (MLSA). The approach consists of two algorithms on
graph structures: The first algorithm detects broken language interactions between
source code implemented in two programming languages by checking the referential
integrity of the source-code elements involved in language interaction. The second
algorithm detects changes of the source-code elements involved in language interaction.
These changes may help the developer to fix the broken language interaction. In this
chapter, we present the prototypical realization of the two algorithms.

We present the prototypical realization of the two algorithms in respect to three dif-
ferent programming paradigms: object-oriented, declarative, and functional. For that
purpose, we implemented our approach for the object-oriented programming language
Java, the declarative language SQL, and the functional programming language Clojure.

We begin with the presentation of the structure-graph library that implements the two
algorithms introduced in Chapter 4. We also describe a general approach to utilize the
library for the MLSA at hand. Then, we present two applications of the structure-
graph library for database applications implemented in Java and a relational database
as well as for Java applications dynamically accessing code written in the programming
language Clojure.

5.1 The Structure-Graph Library
The structure-graph library provides a prototypical implementation of a framework
for checking language interaction in MLSAs in general. Therefore, the structure-graph

54 5. Implementation and Application of Structure Graphs

org.iti.structureGraph.nodes

<<interface>>

IStructureElement

getName():String

<<interface>>

IMandatoryElement

isMandatory():boolean

<<interface>>

IOptionalListElement

isOptionalList():boolean

Figure 5.1: Package org.iti.structureGraph.nodes with interfaces for implementing
structure element representations.

library does not contain any assumptions about language interaction, but focuses on the
graph-based representation and comparison of structure elements involved in language
interaction. The implementation of the structure-graph library follows the concept
presented in Chapter 4.

In this section, we first describe how a developer can utilize the structure-graph library
to implement tools for checking language interaction for the MLSA at hand. We, then,
describe details of the implementation of the structure-graph library.

5.1.1 Implementation

The purpose of the structure-graph library is to ease the implementation of tools for
checking and fixing language interaction. To represent structure elements involved in
language interaction, the structure-graph library provides the IStructureElement in-
terface. The interface must be implemented by all representations of structure elements.
The IStructureElement interface extends the IMandatory and IOptionalList inter-
faces. These interfaces allow the comparison algorithm to distinguish mandatory nodes
and nodes that represent optional parameters. Figure 5.1 presents the Java package
org.iti.structureGraph.nodes that contains the aforementioned interfaces.

Within the structure-graph library, we use JGraphT1 for representing structure graphs.
By using JGraphT, we are able to re-use certain graph algorithms already implemented
in JGraphT like different algorithms to determine the shortest path between two nodes.
In particular, we use the class DirectedGraph to build graphs of labeled trees repre-
senting either RSH;n→SG

or RSG
and RSrev or RSreṽ1

, respectively. A labeled tree itself
consists of nodes that are represented by instances of the interface IStructureElement.
These nodes are connected by edges of JGraphT’s type DefaultEdge. DefaultEdge

connects exactly two nodes.

1http://jgrapht.org/, visited 15.12.2016

http://jgrapht.org/

5.1. The Structure-Graph Library 55

Structures represented with JGraphT are encapsulated with the help of the structure-
graph library’s class StructureGraph. The class StructureGraph provides a convenient
interface to implement the graph comparison algorithms presented in Chapter 4. For
instance, the class StructureGraph provides the function getIdentifiers() which
returns the identifiers for each structural element in the underlying labeled tree. A
node’s identifier is determined by the concatenation of the node’s label and the node’s
ancestors’ labels and the labels of the edges in between. The sets of identifiers is used
to determine the difference between two graphs.

The structure-graph library provides three different classes for graph comparison: Sim-
pleStructureGraphComparer, StatementStructureGraphComparer, and Structure-

GraphComparer. The StatementStructureGraphComparer implements the algorithm
for checking the referential integrity involved in language interaction as presented in Sec-
tion 4.2. The StructureGraphComparer implements the algorithm to detect changes
the structure-elements involved in language interaction as presented in Section 4.3.
The SimpleStructureGraphComparer provides the StatementStructureGraphCom-

parer and StructureGraphComparer with the difference between two structure-graphs
(added and removed nodes).

SimpleStructureGraphComparer

The class SimpleStructureGraphComparer compares two structure graphs with each
other. The result of the comparison is an instance of class StructureGraphCompar-

isonResult which contains a list of all added and removed nodes. Let us assume we
pass two graphs GS and GT to an instance of SimpleStructureGraphComparer. Then,
a node v with its identifier id(v) is added if id(v) ∈ GT ∧ id(v) /∈ GS. Respectively, a
node v is removed if id(v) /∈ GT ∧ id(v) ∈ GS.

StatementStructureGraphComparer

The class StatementStructureGraphComparer allows developers to check if a source
graph GS that represents a statement referencing a structural element in the source code
implemented in the guest language (represented by the target graph GT) is actually
valid. Therefore, the class performs the following modifications on the result of the
SimpleStructureGraphComparer:

1. Remove all added nodes that are not mandatory or optional list nodes,

2. Remove all added mandatory nodes if the parent of the mandatory node does not
exist in the source graph GS, and

3. Remove all added nodes that share the path with an optional list in the target
graph GT node and do not belong to a mandatory node in the target graph.

If the modifications leave an empty result, then GS represents a valid invocation to
structural elements in GT . However, if the result is not empty, either one or both of
the following problems exist:

56 5. Implementation and Application of Structure Graphs

1. The result contains removed nodes, thus, GS references elements that do not exist
in GT .

2. The result contains added nodes, thus, GS misses nodes that are mandatory for
the invocation of structure elements in GT .

In the first case, the developer either misspelled the structure elements’ identifiers or
referenced structure elements that either stopped to exist or have not existed at all.
Issues of the first kind can be fixed by correcting misspelled structure-element identifiers,
removing non-existing structure-element identifiers, or updating the referenced source
code. In the second case, the developer forgot to reference structure elements that are
mandatory for the invocation of a parent structure element. For instance, an invocation
of a function misses the mandatory parameters and, thus, cannot be called. Adding
the missing mandatory structure elements or removing the invocation of the parent
structure elements with missing mandatory nodes fixes issues of the second kind.

StructureGraphComparer

The class StructureGraphComparer allows developers to compare two structure graphs
GS and GT with each other. Like the StatementStructureGraphComparer, the class
StructureGraphComparer takes the result of the SimpleStructureGraphComparer,
that is a set of added and removed nodes, and tries to detect renamed or moved nodes.
We consider a removed node n to be renamed, if we can find a single added node n′, so
that path(n) = path(n′) ∧ name(n) 6= name(n′) applies (cf. Section 4.3). Accordingly,
we consider a removed node n to be moved, if we can find a single added node n′, so
that path(n) 6= path(n′) ∧ name(n) = name(n′) applies (cf. Section 4.3).

5.1.2 Usage of the Framework

Developers need to embed the structure-graph library into another tool that translates
language-specific elements into structure graphs and interprets the results generated
by the structure-graph library. In the following, we call the part responsible for the
translation of language-specific elements language front-end and the part responsible
for the interpretation of the comparison results user front-end (cf. Figure 5.2).

The purpose of the language front-end is to translate the elements present in an applica-
tion’s source code involved in language interaction into structure graphs. For checking
the language interaction (cf. Section 4.2), the language front-end must be able to parse
source code of at least two languages, a host and a guest language. The framework
provides the necessary means to represent structure elements of the parsed languages
as structure graphs.

Certain information may need to be generalized to allow the comparison of the structure
graphs. For instance, function or method parameters are only present in the source
code written in the guest language. In the source code written in the host language,
the function or method parameters are replaced by actual values (see the call of method

5.1. The Structure-Graph Library 57

SH

SG

Language
Front-end

a

eb

z

y

RSH→SG

a

eb

dc

z

x

w

y

RSG

Structure-Graph
Library

User
Front-end

SH ... Source code written in the host language

SG... Source code written in the guest language

RSH→SG
... References from SH to SH

RSG
... Structure elements in SG involved in language interaction

Figure 5.2: General implementation approach for tools with the structure-graph library.

58 5. Implementation and Application of Structure Graphs

void foo(int bar1, int bar2)

foo

bar2bar1

foo(47, 11);

foo

21

Figure 5.3: Method definition and invocation, and their respective structure graphs.

foo in Figure 5.3). Accordingly, in the source code written in the host language only the
order of the parameters is known, and, thus, also the structure graph for the function
or method call can contain only the order of the parameters (see the structure graph for
the call of method foo in Figure 5.3). Hence, in order to ensure that we can compare
the structure graph when building the structure graph for the source code written in
the guest language, we may not use the parameter names like in the structure graph for
the method definition of method foo, but the order to identify a function’s or method’s
parameters like in the structure graph of the invocation of method foo.

Since the developer creates customized classes for representing the source-code elements
involved in language interactions, these customized classes can be augmented by addi-
tional information useful for the interpretation of results. For instance, developers can
store position information to identify elements in the source code. This information
may be useful when presenting the results in the user front-end.

The user front-end translates the results of the integrity check (cf. Section 4.2) or the
detection of structural modifications (cf. Section 4.3) into language-specific results. For
instance, whereas the integrity check and the detection of the structural modifications
are based on labeled graphs with nodes and edges, programming languages provide dif-
ferent elements like functions and parameters. Therefore, in the user front-end devel-
opers take the results in the instances of the class StructureGraphComparisonResult
returned by the graph comparer classes (see Section 5.1.1) and map the nodes listed
in the results to actual source-code elements that can be recognized by the end user.
For instance, developers can use position information stored in the classes which rep-
resent structural elements to highlight affected source-code elements in an Integrated
Development Environment (IDE).

5.2 The Sql-Schema-Comparer Library
Based on the structure-graph library, We implemented two tools which assist developers
with refactoring MLSAs. In this section, we present the first of these tools: The sql-

5.2. The Sql-Schema-Comparer Library 59

schema-comparer, is a software library to compare and check SQL schemes.2 The library
allows to compare:

1. two Structured Query Language (SQL) schemata with each other, or

2. an SQL statement in respect to an SQL schema

with each other. The library provides support for SELECT statements and schemata of
SQLite3 and H24 databases and elementary support for Java Persistence API (JPA)
annotations in Java files.

According to Section 5.1.2, the sql-schema-comparer uses the structure-graph library
to check the integrity of SQL statements and JPA entity definitions in respect to a
given database schema and to detect changes between two given database schemata.
Therefore, the sql-schema-comparer implements language front-ends for SQLite and H2
database schemata, for SQL’s SELECT statement, and for JPA entity definitions. The
sql-schema-comparer also extends the structure-graph library’s comparison algorithms
by providing SQL-specific comparisons based on the results of the structure-graph com-
parison.

In this section, we describe the implementation of the sql-schema-comparer and how
we realized SQL-specific checks on the existing graph representation. We also describe
the integration of the library into Eclipse.

5.2.1 Implementation Details

The language front-end provided by the sql-schema-comparer library translates
database schemata and SQL statements into a structure-graph representation by im-
plementing the IStructureElement interface and extending JGraphT’s DefaultEdge

class for the different elements of a database schema. Figure 5.4 presents a generalized
representation of a structure graph with the possible node and edge types as defined in
the sql-schema-comparer. In the sql-schema-comparer library, edge types are defined in
package org.iti.sqlSchemaComparison.edges (cf. Figure A.4) and nodes types are
defined in package org.iti.sqlSchemaComparison.vertex (cf. Figure A.5). We will
omit the package identifier in the following description. The root of each tree (tab1
in Figure 5.4) is represented by instances of class SqlTableVertex. Edges of type
TableHasColumn (eTab2Col in Figure 5.4) connect the root node with one or more nodes
representing columns (col1 to coln in Figure 5.4) of type SqlColumnVertex. Each col-
umn node is connected with one ore more nodes representing the column type (typ1
in Figure 5.4) or the column constraints (con1 to conn in Figure 5.4) like NOT NULL,
DEFAULT, and PRIMARY KEY constraints. Column type nodes are represented by in-
stances of type ColumnTypeVertex and column constraint nodes are represented by in-
stances of type ColumnConstraintVertex. Edges of type ColumnHasType (represented

2https://github.com/hschink/sql-schema-comparer
3https://www.sqlite.org/
4http://www.h2database.com/

https://github.com/hschink/sql-schema-comparer
https://www.sqlite.org/
http://www.h2database.com/

60 5. Implementation and Application of Structure Graphs

tab1

coln

...

col1

conncon1typ1

eCol2Type eCol2Constraint

eTab2Col eTab2Col

...

...

Figure 5.4: Generalized representation of a table schema as structure graph.

by eCol2Type in Figure 5.4) and ColumnHasConstraint (represented by eCol2Constraint

in Figure 5.4) connect column nodes with column type and column constraint nodes,
respectively.

Besides tables, columns, column types, and column constraints, the sql-schema-
comparer considers foreign-key relationships defined in a relational schema. For that
purpose, instances of the class ForeignKeyRelationEdge contain a reference to the
table that defines the referenced primary key. Figure 5.5 shows an example structure
graph that contains two table nodes tab1 and tab2 of type SqlTableVertex. Each table
node references two columns: Columns col1 and col12 from table tab1 and columns col21
and col2 from table tab2 of type SqlColumnVertex. Each column references a single
type node: typ1, typ12, typ21, and typ2, respectively. The type nodes are instances of
class ColumnTypeVertex. Table and column nodes are connected by edges labeled as
eTab2Col of type TableHasColumnEdge. Column and column type nodes are connected
via edges labeled eCol2Typ of type ColumnHasType. Additionally, the structure graph
contains an edge labeled eFK of type ForeignKeyRelationEdge with an outgoing path
and two ingoing paths. This edge represents a foreign-key relationship between the
columns col12 and col21. As stated above, a foreign-key relationship also contains infor-
mation about the foreign-key table. In Figure 5.5, the table involved in the foreign-key
relationship is tab2.

The sql-schema-comparer library is able to create structure graphs of H2 and SQLite
database schemata, SQL SELECT statements, and JPA entity source files. JPA en-
tity source files are regular Java source files in which the defined Java classes are an-
notated with @Entity from JPA’s namespace javax.persistence. All the classes
in the sql-schema-comparer that implement front-ends, that is H2SchemaFrontend,
SqliteSchemaFrontend, JPASchemaFrontend, and SqlStatementFrontend, imple-
ment the ISqlSchemaFrontend interface (see Figure A.6). Table A.1 lists all front-end
implementations available in the sql-schema-comparer library.

For the language front-ends for database schemata and JPA entities a type deduction
is possible by analyzing the database schema or the return types of the methods in

5.2. The Sql-Schema-Comparer Library 61

tab1

col12

typ12

eCol2Typ

col1

typ1

eCol2Typ

eTab2Col eTab2Col

tab2

col2

typ2

eCol2Typ

col21

typ21

eCol2Typ

eTab2Col eTab2Col

eFK

Figure 5.5: Database schema with a foreign-key relationship.

departments

labelid

Figure 5.6: Structure graph for JPA entity and SELECT statement in Listing 5.1 and
Listing 5.2, respectively.

the JPA entity definition, respectively. In contrast, for SQL SELECT statements, a type
interference is not possible since the statement does not contain any type information.5

However, it is possible to pass the constructor of the class SqlStatementFrontend a
structure graph representing a database schema. The structure graph is then used to
augment the schema graph of the SELECT statement with type information.

Though we use different programming and domain-specific languages to define JPA en-
tities and SQL SELECT statements (cf. Listing 5.1 and Listing 5.2), we can understand
both, entities and statements, as SQL queries. Thus, JPA entity definitions and SE-

LECT statements create the same type of structure graph. For example, let us consider
the definition of the JPA entity Department in Listing 5.1 and the SELECT statement
on table departments in Listing 5.2. Both definitions query the table departments

(see Line 2 on the JPA entity definition) with the columns id and label. Conse-
quently, the language front-ends for JPA and SELECT create the same structure graph
as presented in Figure 5.6. Thus, we can use the same structure-graph representation
for SQL statements and JPA entities.

The sql-schema-comparer supports the check of referential integrity between SQL SE-

LECT statements and a database schema and between JPA entities and a database
schema, respectively (cf. Section 4.2), as well as the detection of changes between two
versions of a database schema (cf. Section 4.3). The check of referential integrity is
implemented in class SqlStatementExpectationValidator (see Figure A.7). The con-

5If a number of SQL statements are available, the type interference approach described in [Weisheng,
2004] may be applicable to deduce the types of columns though.

62 5. Implementation and Application of Structure Graphs

1 @Entity
2 @Table(name="departments ")
3 public class Department implements Serializable {
4
5 private int id;
6 private String label;
7
8 public void setId(int id) { this.id = id; }
9

10 @Id
11 public int getId() { return id; }
12
13 public void setLabel(String label) { this.label = label; }
14
15 public String getLabel() { return label; }
16 }

Listing 5.1: JPA entity Department.

1 SELECT id, label FROM departments;

Listing 5.2: Select statement on table departments.

5.2. The Sql-Schema-Comparer Library 63

1 SELECT col_11, col_12 FROM tab_1, tab_4;

Listing 5.3: Select statement including missing tables and columns.

1 SELECT col_x FROM tab_1;

Listing 5.4: Select statement including a missing but reachable column.

structor of class SqlStatementExpectationValidator takes one argument: The struc-
ture graph of the database schema against which the SqlStatementExpectationVal-

idator checks the integrity of SQL SELECT statements and JPA entities. To perform the
actual integrity check, we call the method computeGraphMatching of class SqlState-

mentExpectationValidator with the structure graph of an SQL SELECT statement or
JPA entity as parameter. Internally, the SqlStatementExpectationValidator uses
the structure-graph library’s StatementStructureGraphComparer class to perform the
comparison. The method computeGraphMatching returns a result of type SqlState-

mentExpectationValidationResult that contains a list of all table and column nodes
that are present in the SQL SELECT statement or JPA entity, respectively, but are
missing in the database schema.

For instance, let us assume that we want to check the integrity of the SQL statement
in Listing 5.3 against the structure graph of a database schema in Figure 5.7. The
integrity check detects one missing table and one missing column, because neither col12
nor tab4 are defined in the database schema. Additionally, if a column is moved from a
source table to a target table and source and target table are connected by a foreign key
reference, this column is marked as missing but reachable. For instance, in Figure 5.7,
in the initial database schema column colx is part of table tab1, but, in the current state,
column colx is part of table tab2. However, the SQL statement in Listing 5.4 is still
based on the initial state. Thus, the integrity check would detect column colx as missing.
Nevertheless, in the current state, table tab2 is connected to table tab1 by a foreign-key
relationship. Hence, column colx is still reachable from table tab1 by joining table tab2.
For the purpose of detecting missing but reachable columns, the integrity check uses
the class SqlColumnReachabilityChecker (cf. Figure A.9). The SqlColumnReacha-

bilityChecker uses Dijkstra’s algorithm as implemented in JGraphT6 to check the
reachability of a column node. The developer can use the results in the SqlStatement-

ExpectationValidationResult to highlight erroneous SELECT statements and JPA
entities.

6http://jgrapht.org/javadoc/org/jgrapht/alg/DijkstraShortestPath.html, visited 15.12.2016

http://jgrapht.org/javadoc/org/jgrapht/alg/DijkstraShortestPath.html

64 5. Implementation and Application of Structure Graphs

tab1

colxcol11

tab2

colxcol21

tab3

colxcol31

eFK

Figure 5.7: Resolving moved nodes by foreign-key relationships.

The sql-schema-comparer supports the detection of changes to the language structure as
described in Section 4.3. That is, the sql-schema-comparer can detect changes between
two revisions of a database schema. The detection of database schema changes is
implemented in class SqlSchemaComparer (cf. Figure A.7). The implementation is able
to detect the following database schema modifications (cf. Figure A.8):

� Table

– Create

– Delete

– Rename

� Column Type

– Create

– Delete

– Change

� Column

– Create

– Delete

– Rename

– Move

� Column Constraint

– Create

– Delete

All database schema modifications refer directly to the node modifications described
in Section 4.3. That is, create modifications refer to added nodes, delete modifications
refer to removed nodes, rename modifications refer to renamed nodes, and move mod-
ifications refer to moved nodes. Thus, for instance, the sql-schema-comparer refers to
an added table node as create table modification. However, for the column type one
exception exists: The change column type modification refers to a renamed column
type node. In a structure graph for a database schema, a column does always have a
type node. The label of the type node is the name of the type the node presents. Thus,
a change of a column type is reflected as a change of the respective type node’s label.
However, we consider the change of a node label to be a renaming.

5.2.2 Application of the Sql-Schema-Comparer Library

The sql-schema-comparer library allows developers to compare two SQL schemata with
each other or an SQL statement or JPA entity definition with an SQL schema, re-

5.2. The Sql-Schema-Comparer Library 65

1 ISqlSchemaFrontend f rontend
2 = new SqliteSchemaFrontend (SQLITE FILE) ;
3 Graph<ISqlElement , DefaultEdge> schema
4 = frontend . createSqlSchema () ;

Listing 5.5: Create a schema instance of an SQLite file

1 SqlSchemaComparer comparer
2 = new SqlSchemaComparer (oldSchema , currentSchema) ;
3 SqlSchemaComparisonResult r e s u l t = comparer . comparisonResult ;

Listing 5.6: Compare two schema instances

spectively. In this section we describe the library’s application within a third-party
application. In this section, we first describe how developers can integrate the sql-
schema-comparer library in their development tools. Then, we describe a prototypical
integration of the sql-schema-comparer library into the Eclipse IDE.

Integration of the Sql-Schema-Comparer Library

In the following, we describe how a developer can utilize the Application Programming
Interface (API) of the sql-schema-comparer library (1) to detect differences between
two SQL schemata and (2) to check the referential integrity between an SQL statement
or JPA entity and an SQL schema.

For schema comparison, we need to create a structure graph representation for each
schema. Structure graphs are instances of class DirectedGraph (JGraphT) with the
node type IStructureElement and edge type DefaultEdge (JGraphT). We may create
instances manually or by parsing SQLite or H2 files. The latter is described in the
following based on the SQLite front-end. The schema creation for the H2 front-end
works accordingly.

First of all, we need to create an instance of the SQLite front-end as described in List-
ing 5.5, Line 2. The method createSqlSchema of the front-end returns the structure
graph instance for the SQLite file (see Listing 5.5, Line 4).

The schema comparison is implemented in class SqlSchemaComparer. The class takes
two structure-graph instances on construction (see Listing 5.6, Line 2). The field com-

parisonResult of an SqlSchemaComparer instance contains the match result. The
match result contains the affected tables, columns, column types, and column con-
straints.

In the following, we describes the comparison of an SQL statement with a database
schema. However, the comparison of a JPA entity with a database schema works ac-
cordingly. Just use the class JPASchemaFrontend instead of the class SQLStatement-

Frontend.

66 5. Implementation and Application of Structure Graphs

1 ISqlSchemaFrontend f rontend
2 = new SqlStatementFrontend (STATEMENT, nu l l) ;
3 Graph<ISqlElement , DefaultEdge> statementSchema
4 = frontend . createSqlSchema () ;

Listing 5.7: Create a schema instance of an SQL statement

1 SqlStatementExpectat ionVal idator v a l i d a t o r
2 = new SqlStatementExpectat ionVal idator (databaseSchema) ;
3 SqlStatementExpectat ionVal idat ionResu l t r e s u l t
4 = v a l i d a t o r . computeGraphMatching (statementSchema) ;

Listing 5.8: Compare a database and a statement schema

To compare an SQL schema with an SQL statement, we need to extract a structure
graph for the database schema (cf. Listing 5.5) as well as for the SQL statement. Latter
is possible with class SqlStatementFrontend as shown in Listing 5.7, Line 2. The front-
end takes at least an SQL statement. Additionally, it is possible to pass a database
schema, for augmenting the columns referenced in the SQL statement with type and
constraint information.

The database and statement comparison is implemented in class SqlStatementExpec-
tationValidator (see Listing 5.8, Line 2). The class takes a structure-graph instance
on construction. Calling the method computeGraphMatching with the structure graph
of the SQL statement’s schema returns a matching result (see Listing 5.8, Line 4). The
result contains missing tables or columns and columns that appear to be moved to
different tables.

The Sql-Schema-Comparer Eclipse Plug-in

Since the usage of IDEs is common for software development in Java [Murphy et al.,
2006], developers would benefit from an integration of the sql-schema-comparer library
into a Java IDE, because it allows developers to check the integrity of their MLSA
within their usual development environment.

We implemented the sql-schema-comparer Eclipse Plug-in7 to integrate the sql-schema-
comparer into the Eclipse IDE8. The Eclipse Plug-in provides an interface for the in-
tegrity check between a relational schema and an SQL statement and for the comparison
of the two most recent revisions of a relational schema. In the following, we describe
how developers can access both functionalities with the sql-schema-comparer Eclipse
Plug-in.

The sql-schema-comparer Eclipse Plug-in checks the integrity of an MLSA on each
build of a Java project. If the plug-in detects a violation of the integrity, it marks

7https://github.com/hschink/sql-schema-comparer-eclipse-plugin
8http://www.eclipse.org/

https://github.com/hschink/sql-schema-comparer-eclipse-plugin
http://www.eclipse.org/

5.2. The Sql-Schema-Comparer Library 67

Figure 5.8: Missing column name for SQL statement SELECT name FROM departments.

the affected positions in the source code. For instance, in Figure 5.8, the SQL state-
ment references a column name. However, since a column with this identifier does not
exist in table departments, the plug-in marks the statement as incorrect. The sql-
schema-comparer Eclipse Plug-in also supports the integrity check for JPA entities.
For instance, in Figure 5.10, the Eclipse plug-in marks the method getName9 of en-
tity Department as incorrect to make the developer aware of the missing column in
the database schema. Additionally, the plug-in detects missing but reachable columns
as described for the sql-schema-comparer in Section 5.2.1: In Figure 5.9, the query
SELECT account FROM customers references the column account which does not ex-
ist on table customers. However, the column account exists on table managers that
is connected to table customers via table salespersons_customers. Accordingly, the
plug-in presents a possible JOIN path which the developer can use to access the column
account.

Besides the integrity check of SQL statements and JPA entities, the sql-schema-
comparer Eclipse Plug-in provides information about the last schema changes applied
to a project’s database. For that purpose, on the first build of a Java project, the
sql-schema-comparer Plug-in retrieves and saves the database schema from the Java
project’s database. On the subsequent builds of the Java project, the plug-in compares
the current database schema with the saved database schema. If the current schema
is different to the saved one, the plug-in replaces the saved one by the current one.
Additionally, the plug-in displays a list of changes retrieved by the comparison of the
saved and the current database schema in a separate Eclipse view. Figure 5.11 presents
the Schema Changes View which contains a list of modifications for each of the three
subsequent builds of the Java project. On the first subsequent build, the plug-in de-
tected a change of the column title and the column title’s default value in table
departments. On the second subsequent build, a change to the title column’s type

9Actually, both methods, that is getter and setter, are incorrect. However, we assume that the
developer is aware of the fact that both methods need to be renamed to preserve the mapping to
column name. It is possible to mark both methods, though.

68 5. Implementation and Application of Structure Graphs

Figure 5.9: Missing but reachable column account for SQL statement
SELECT account FROM customers.

was detected in table departments. And, on the last subsequent build, an addition of
the NOT NULL constraint to the title column was detected in table departments.

Because of the sql-schema-comparer Eclipse plug-in being a prototype, a number of
limitations exist. First of all, the plug-in does only support SQLite and H2 databases for
now. Second, the database must be part of the Java project in Eclipse. If several SQLite
or H2 database files exist, the plug-in will only consider the first detected database file.
Finally, the plug-in does not save the changes to a database schema nor the most recent
database schema on the disk. Thus, after Eclipse is closed, the SQL schema comparison
will be lost. A solution exists for all of the above mentioned limitations. However, the
current prototype shows how developers can integrate the sql-schema-comparer in their
daily work and, thus, is sufficient for our purpose at its current state.

5.3 The Clojure-Java-Interface-Checker Library

The sql-schema-comparer library checks the interaction between a relational database
and an application implemented in Java. However, Java not only offers means to interact
with relational databases, but with source code of a number of other programming
languages like C/C++, JavaScript, and Clojure. We implemented the clojure-java-
interface-checker 10 to show that our structure-graph based approach is also applicable
to interactions of other languages than Java and SQL. In the following, we introduce
the programming language Clojure and describe details of the implementation of the
clojure-java-interface-checker.

5.3.1 The Clojure Programming Language

Clojure is a functional programming language that runs on the Java Virtual Machine
(JVM). Syntactically, Clojure is a Lisp dialect. Since Clojure runs on the JVM, devel-

10https://github.com/hschink/clojure-java-interface-checker

https://github.com/hschink/clojure-java-interface-checker

5.3. The Clojure-Java-Interface-Checker Library 69

Figure 5.10: Missing column name on table departments.

Figure 5.11: Three change sets applied to a database schema.

70 5. Implementation and Application of Structure Graphs

opers can directly use libraries available for the programming language Java. Addition-
ally, compiled Clojure source code can be directly called from the Java programming
language.

Since Clojure and Java share the same platform, developers do not need additional
means to call Clojure source code from Java and vice versa. However, calling Clojure
functions in Java without additional means works only for compiled Clojure source
code. However, additionally, the Clojure library provides means to dynamically load
Clojure source code directly from Java source code.

For dynamically calling Clojure functions from Java source code, developers must pro-
vide the namespace and the name of the function to be called. For instance, to call the
function add2 in namespace i.o.c.Test (see Listing 5.9), developers use the class RT11

shown in Listing 5.10.

1 (ns o . i . c . Test)
2

3 (defn add2 [x]
4 (+ x 2))

Listing 5.9: Definition of a namespace and a function in Clojure.

1 Var f = RT. var ("o . i . c . Test " , "add2") ;
2

3 f . invoke (2) ;

Listing 5.10: Invocation of Clojure function in Java.

5.3.2 Implementation Details

Unlike the sql-schema-comparer library, the clojure-java-interface-checker’s only pur-
pose is to show the applicability of the structure-graph approach on a different set of
programming paradigms. Thus, the clojure-java-interface-checker does not provide any
interfaces for the integration into third-party tools. Therefore, we do not describe how
to integrate the clojure-java-interface checker into third-party tools.

The clojure-java-interface-checker is a Java library that checks the dynamic invocation
of Clojure functions in Java source code (see Section 5.3.1). Therefor, the library creates
a structure graph for the function invocations defined in the Java source code and for
the actual functions defined in the Clojure source code. The structure graph contains
a tree for each namespace defined in the Clojure source code. Each namespace has
a child node for each function defined in that namespace. Additionally, each node

11Since version 1.6, the preferred way of calling a Clojure function is to use class Clojure that
returns an instance of class IFn. Our implementation is based on version 1.5. Nevertheless, the basic
principle has not changed.

5.4. Summary 71

ns1

funn

...

fun1

parn...par1

eHasParamter eHasParamter

eHasMethod eHasMethod

...

Figure 5.12: Generalized representation of Clojure namespaces as structure graph.

representing a function has a child node for each function parameter. Having a node
for each parameter allows to check that the function invocation in the Java source code
contains the correct number of parameters. Figure 5.12 shows the generalized structure
of a tree for a Clojure namespace definition.

In an SQL statement, the statement specifies all tables and columns that the statement
accesses. Thus, when we extract the structure graph from an SQL statement, we get
the identifiers as defined in the relational schema of the respective database. However,
in contrast to SQL statements, function calls only specify the function name, but not
the parameter name.12 Thus, the argument’s position is the only information we can
extract from the function invocation. For instance, for the function definition in List-
ing 5.9 and function invocation in Listing 5.10, the library creates two different trees
(see Figure 5.13): The only difference between the two trees is that, in Java, we have no
information about the called parameter but its position. Therefore, in Figure 5.13b the
parameter x is represented by the parameter’s position 0. Thus, accordingly, before we
can compare two structure graphs representing a function declaration and a function
invocation, we need to replace the parameter names in the structure graph of the func-
tion declaration Figure 5.13a by their position in the function definition. This allows
us to compare the structure graph of the function declaration with the structure graph
of the function call without the information of the actual parameter name.

5.4 Summary

In this chapter, we presented three libraries and an Eclipse plug-in which check the
integrity between the source code of two languages and detect changes between two
revisions of the source code of one language. In particular, we first presented the
structure-graph library which provides all the necessary data structures and algorithms

12Some languages like Clojure and Groovy support keyword arguments, that is, the ability to specify
a parameter regardless of its position. For brevity and generality, we ignore keyword arguments in the
discussion.

72 5. Implementation and Application of Structure Graphs

o.i.c.Test

add2

x

(a) Graph representing the function in List-
ing 5.9.

o.i.c.Test

add2

0

(b) Graph representing the invocation in List-
ing 5.10.

Figure 5.13: Function graphs.

to create language front-ends and to compare structure graphs created in the language
front-ends with each other. Then, we introduced the sql-schema-comparer library as
the first implementation of a language front-end which allows to check the integrity
between a database application implemented in the programming language Java and a
relational database. Furthermore, we showed the library’s ability to compare two revi-
sions of a relational schema with each other. We also presented the sql-schema-comparer
Eclipse plug-in which integrates the sql-schema-comparer library’s functionality into
the Eclipse IDE. Finally, we introduced the clojure-java-interface-checker library which
allows developers to check the integrity between source code written in Clojure and
dynamic invocations of the Clojure source code in a Java application. The clojure-
java-interface-checker also confirms the applicability of the structure-graph approach
for different language interactions.

With the sql-schema-comparer, we show two aspects: (1) The adaption of the structure-
graph library to the interaction of Java and SQL and (2) the augmentation of the
structure-graph library’s functionality by language-specific features. The second point
is illustrated by the sql-schema-comparer’s ability to use foreign-key relationships to
detect possibly moved columns. The sql-schema-comparer Eclipse plug-in highlights
the feasibility to integrate our approach into state-of-the-art IDEs. With the clojure-
java-interface-verifier, however, we show that we can apply the structure-graph library
to different interacting languages and language paradigms.

The structure-graph library provides and implements all the necessary data structures
and algorithms to build and compare structure graphs. However, the developer is still re-
quired to implement the language front-ends for the interacting programming languages
at hand. In particular, the developer needs to parse the source code of the languages
and create suitable structure graphs. Additionally, the developer needs to implement
a user front-end which interprets the node changes detected by the structure-graph
library. A possible approach to ease the implementation for language-specific tools is
to automatically create parsers for the language front-ends that process the interacting
languages at hand with the help of a parser generator and a syntax definition. Also the
mapping of the source-code elements to structure-graph nodes could be automated by
a mapping description. Thus, eventually, the developer needs to provide an interpreta-
tion of the results of the structure-graph library for the user front-end. However, the

5.4. Summary 73

last may not be necessary, if special cases like the detection of moved columns in the
sql-schema-comparer (see Section 5.2.1 on Section 5.2.1) do not exist for the interaction
of the programming languages at hand.

The structure-graph approach as presented in Chapter 4 describes a generalized ap-
proach to support refactoring in MLSAs. Though, developers still need to implement
language-specific front-ends to use the structure-graph approach as implemented by
the structure-graph library for the interacting languages at hand. However, when we
introduced the structure-graph approach, we outlined that we do not think a generally
applicable approach to automated Multi-Language Refactoring (MLR) exists because
of the number of different structure-elements and refactorings. Thus, as stated above,
we do not question that approaches exist to automate the language-specifics to a certain
extend, but we do not assume that we can find an approach completely independent
of any language specifics. Following this assumption, the structure-graph library only
implements a limited set of features and is dependent on language-specific extensions
to be useful for the language interaction at hand.

74 5. Implementation and Application of Structure Graphs

6. Evaluation

Chapter 6 shares material with [Schink et al., 2016b].

In this chapter, we present an evaluation of the sql-schema-comparer library and its
Eclipse plug-in which we described in Chapter 5. The sql-schema-comparer library
supports the refactoring of database applications that are implemented in the Java
programming language and access a relational database. Specifically, the sql-schema-
comparer detects mismatches between the schema of a relational database and the
schema expected by the Java code that accesses the relational database. We used
Eclipse’s plug-in infrastructure to integrate the sql-schema-comparer into the Eclipse
Integrated Development Environment (IDE) and called the result the sql-schema-
comparer Eclipse plug-in. The plug-in allows developers to detect mismatches at com-
pile time. To investigate if the sql-schema-comparer can improve the productivity of
developers who refactor a database application, we conducted a controlled experiment.

The goal of our experiment was to evaluate if participants supported by the sql-schema-
comparer Eclipse plug-in achieve a significant higher development productivity than
without the plug-in’s support. Additionally, in our experiment we considered develop-
ment experience as a cofounding parameter to distinguish between improvements of the
development productivity induced by the tool and by the participants’ programmming
experience. To the best of our knowledge, no other experiment for evaluating refactor-
ing tools in an Multi-Language Software Application (MLSA) setup exists. Thus, we
devised a novel experimental design for the evaluation of the sql-schema-comparer li-
brary and its Eclipse plug-in. The experiment consists of two refactorings and a control
task on two open-source projects. The open-source projects consists of several thou-
sand lines of code. With the help of this experimental setup, we gathered data of 79
undergraduate and graduate students.

This chapter is divided in six parts. In the first part in Section 6.1, we describe the
experimental design in detail. In the second part in Section 6.2, we report on the

76 6. Evaluation

execution of the experiment. We analyze the results of the experiment in the third part
in Section 6.3 and interpret the results in Section 6.4. We discuss threats to validity
in Section 6.5 before we summarize this chapter in the sixth section.

6.1 Experimental Design

We designed the experiment according to the guidelines proposed by [Wohlin et al.,
2012]. In the following, we describe the details of the experimental design. First, we
describe which hypotheses we want to falsify and the material on which we built the
experiment. Then, we describe the participants who took part in the experiment and
the tasks the participants had to work on. Finally, we describe the tools with which we
gathered the experimental data.

6.1.1 Hypotheses, and Variables

We expect that developers supported by the sql-schema-comparer Eclipse plug-in adapt
Java source code to a refactored database schema more productively than developers
without its support. Additionally, we hypothesize that our tool increases productivity
independently of the developers’ programming experience. In other words, we assume
that inexperienced users who use the sql-schema-comparer Eclipse plug-in are more
productive than inexperienced user who do not use the tool and that experienced user
with tool support are as well more productive with the Eclipse plug-in than without.

We consider one measure of productivity1: Development time (µT). Development time
describes the time a developer needs to successfully adapt Java source code to a refac-
tored database schema. We assume that development time is lower for developers having
tool support than for developers without tool support.

We can summarize our hypotheses as follows:

H0: µTwith plug-in
≥ µTwithout plug-in

H1: µTwith plug-in
< µTwithout plug-in

That is, we expect that the development time µT with the sql-schema-comparer Eclipse
plug-in is less than the development time without the plug-in (cf. H1). If we cannot
reject the null hypothesis H0, the experiment provides no evidence for our expectation
and, as long as we cannot prove otherwise, we have to assume that the µT with the tool
is either equal or larger to the development time without the tool.

We consider programming experience as a major confounding parameter. That is, we
assume that programming experience influences the development time µT . Assuming

1Initially, we conducted the experiment with two measures of productivity. Since unit testing is
an important part of software development, we considered the number of unit-test runs as the second
measure of productivity. The assumption was that with tool support developers are able to decrease
the number of unit-test runs and, thus, the amount of time to fix broken language interaction in an
MLSA. However, based on the unit-test runs, we have not been able to draw reasonable conclusions.

6.1. Experimental Design 77

that we would not consider programming experience as a confounding parameter, we
would not be able to distinguish whether an improvement in productivity is induced by
the tool or by the programming experience of the participant. To control the influence
of programming experience, we measure it based on a questionnaire [Feigenspan et al.,
2012] (see Table A.2 for the questions defined in that questionnaire) and analyze its
effect on the results.

6.1.2 Material

We selected the two open-source applications Apache Syncope2 and AppFuse3 as ob-
jects for our experiment. Apache Syncope is a web application for identity management
and AppFuse is a framework for building web applications based on the Java Virtual
Machine (JVM). Both applications access a relational database via the Java Persis-
tence API (JPA). Additionally, we used the MLSA HRManager (cf. Section 2.2.2) as a
minimal example for the training session.

We selected Apache Syncope and AppFuse for several reasons. First of all, both projects
implement a realistic use case for the interaction between Java source code and a re-
lational database via JPA. Second, both projects contain a code base of realistic size:
Apache Syncope and AppFuse consist of 77 400 and 24 331 Lines of Code (LOC), re-
spectively. The implementation of the database interface consists of 10 169 LOC in
Apache Syncope and 527 LOC in AppFuse. This is an important attribute since ef-
fects of tool support may easily be diminished by a small code base that can be easily
overseen by the participants. In regard to our participants it is important that both
projects are implemented in the programming language Java, since Java is the only
language with which the participants have sufficient experience. Finally, both projects
provide a set of unit tests. Based on the unit tests, we checked if the participants have
been able to successfully complete the tasks.

In the experiment, we allow participants to run the unit tests of Apache Syncope and
AppFuse, so the participants are able to check their source-code modifications. However,
by default each unit-test run in Apache Syncope and AppFuse re-creates the database
schema according to the JPA entity definition in the Java source code. Thus, executing
the unit tests would overwrite the refactored database schema. We solved this issue by
switching off the automatic schema creation in the unit-test configuration of Apache
Syncope4 and AppFuse5 accordingly. Changing the configuration has no effect on the
results of the unit-test runs.

Specific experience with Apache Syncope or AppFuse may affects the outcome of the
experiment. Thus, we have to consider experience with the experimental objects as
well. To assess the participants’ experience with Apache Syncope and AppFuse, we
extended the questionnaire from [Feigenspan et al., 2012]. Table 6.1 summarizes the
additional questions.

2http://syncope.apache.org, visited 15.12.2016
3http://appfuse.org, visited 15.12.2016
4https://github.com/hschink/syncope/commit/96553ad7061a361ff0f49f623c54834822efe5fe
5https://github.com/hschink/appfuse/commit/bd93bc5cc401b423b10df2082c70ce6cedff014b

http://syncope.apache.org
http://appfuse.org
https://github.com/hschink/syncope/commit/96553ad7061a361ff0f49f623c54834822efe5fe
https://github.com/hschink/appfuse/commit/bd93bc5cc401b423b10df2082c70ce6cedff014b

78 6. Evaluation

Question Scale

Do you know the Java Persistence API (JPA)? Yes or No

How experienced are you with libraries implementing
the JPA (e.g., Hibernate or EclipseLink)?

-1 (I don’t know any of them)
to 4 (very experienced)

Do you know Apache Syncope and AppFuse, respec-
tively?

Yes or No

How familiar are you with the source code of Apache
Syncope?

0 (not at all) to 3 (much)

How familiar are you with the source code of App-
Fuse?

0 (not at all) to 3 (much)

Table 6.1: Questions about the experience with Apache Syncope and AppFuse.

6.1. Experimental Design 79

6.1.3 Participants

We recruited 79 students of the University of Magdeburg as participants for our ex-
periment. All students attended a database course. The sample consisted of 76 under-
graduate and 3 graduate students. As compensation for their participation, we offered
all participants a bonus point for their homework assignments. We informed all par-
ticipants that they take part in an experiment and that the participation is entirely
voluntary. All participants have been assured that they can leave the experiment at
any time. We gathered all data anonymously.

All but one participants stated that they know neither the two open-source projects
Apache Syncope and AppFuse, nor the code base of the two projects. Only a single
participant stated to know both projects. This participant also stated to have minor
knowledge of the projects’ code bases. However, the performance of this single partici-
pant did not suggest any particular familiarity with either Apache Syncope or AppFuse.
We, thus, included the participant’s data in the analysis.

We considered programming experience as a confounding parameter in our experiment.
We determined the participants’ programming experience based on the questionnaire
and analysis of [Feigenspan et al., 2012]. The computation of the experience involves a
participant’s answer to the following two questions:

s.ClassMates How do you estimate your programming experience compared to
your class mates?

s.Logical How experienced are you with the logical programming paradigm?

The scale of the questions range from 1 (very inexperienced) to 5 (very experienced).
The value for the programming experience is then computed by the formula: 0.441 ∗
s.ClassMates + 0.286 ∗ s.Logical [Feigenspan et al., 2012]. Figure 6.1 presents the
distribution of the programming experience for the participants with and without tool
support ranging from 0 to 2.908.

0.8

2.2

0

1

2

3

without Plug−In with Plug−In

E
xp

er
ie

nc
e

Figure 6.1: Distribution of programming experience.

80 6. Evaluation

The distribution shows that participants accumulate on three experience levels. The
first level includes experience values less or equal to 800. The second level contains expe-
rience values greater than 800 and less than 2200 and the third level contains experience
values greater or equal to 2200. Based on the experience distribution, we formed two
almost equally-sized programming-experience groups: A group inexperienced with ex-
perience values less or equal to 800 and a group experienced with experience values
greater than 800. The group inexperienced contains 40 participants and the group ex-
perienced contains 39 participants. To have two almost equally-sized experience groups
can be beneficial for the expressiveness of statistical tests.

6.1.4 Tasks

We designed four tasks for the experiment: An introductory task for the training session
and three experimental tasks. However, we introduced the third experimental task only
as a means to check that no other confounding parameter is affecting the experiment’s
outcome. In the introductory, we used the source code of HRManager (cf. Section 2.2.2).
The first experimental task is based on Apache Syncope’s code base and the second and
third experimental tasks are based on AppFuse’s code base.

All tasks follow the same central theme (cf. Appendix A.2.3): A team of software
developers agrees on refactoring the database schema of an application. However, the
refactoring of the database schema led to failing unit tests. It is the participant’s task
to fix the failing unit test by adapting the Java source code to the refactored database
schema.

For our experiment, we selected the Rename Column and Move Column refactoring.
We selected these refactorings based on the following criteria:

1. Does the refactoring break the database application?

2. How much JPA and application specific knowledge is necessary to understand the
effect of the refactoring?

3. How much effort is necessary to fix the database application?

We selected these refactorings, because, considering the participants knowledge, the
effects of these refactorings require to know only the fundamental concepts of JPA.
Furthermore, for fixing the effects of these refactorings, the participants only need to
know a minimum of application-specific details.

In the following, we introduce the Rename Column and Move Column refactoring in
detail. Then, we describe the introductory task and the three experimental tasks.

6.1. Experimental Design 81

1 @Entity
2 @Table (name="departments ")
3 pub l i c c l a s s Department implements S e r i a l i z a b l e {
4

5 pr iva te i n t id ;
6 pr iva te St r ing name ;
7

8 pub l i c void s e t I d (i n t id) {
9 t h i s . id = id ;

10 }
11

12 @Id
13 pub l i c i n t get Id () {
14 return id ;
15 }
16

17 pub l i c void setName (St r ing name) {
18 t h i s . name = name ;
19 }
20

21 pub l i c St r ing getName () {
22 return name ;
23 }
24 }

Listing 6.1: JPA entity Department

Rename Column Refactoring

The purpose of the Rename Column refactoring is to give an inappropriately named
table column a suitable identifier.

Let us assume we have a database table departments with a column name (cf. Fig-
ure 6.2). The column name stores a department’s name. We rename the column name

to label to make the usage consistent with columns in other tables. However, renaming
the column breaks the Object Relational Mapping (ORM): We cannot use the methods
getName and setName of class Department (cf. Listing 6.1) to access the column label.

Department idname

Figure 6.2: Entity relationship model of table departments.

We have two options to adapt the Java source code in Listing 6.1 to the refactoring:

� Rename the methods getName and setName of the class Department to getLabel

and setLabel or

82 6. Evaluation

Employee

ISA

Salesperson bonus

move

Figure 6.3: Entity relationship model of tables Employee and Salesperson.

� annotate the method getName with @Column and assign the value label to the
annotation’s name attribute.

The first option allows us to preserve the naming of related elements between source
code and database schema. The second option allows us to rename the database column
without the need to rename all occurrences of the methods getName and setName.
Though, the first would preserve a common naming convention across the different
parts of the application, we may prefer the second option which has less impact on the
entire code base and may also avoid other issues like name clashes (cf. Section 3.1.1).

Move Column Refactoring

The purpose of the Move Column refactoring is to move a column from one table to a
different table if the target table is more appropriate to store the column’s values.

Let us assume we have two database tables salespersons and employees (see Fig-
ure 6.3). The table salespersons contains a column bonus that stores the amount
of the bonus that a salespersons gets. Now, assume that management decides that all
employees should get a bonus. To avoid redundancies, we want to manage the bonus of
all employees in the table employees. Hence, we want to move the column bonus from
table salespersons to table employees. However, after moving the column bonus,
the ORM is broken and we cannot use the methods getBonus and setBonus of class
Salesperson to manage the bonus of a salesperson. Furthermore, we cannot manage
the bonus from the class Employee, because the class misses the required getter and
setter methods.

For adapting the ORM in the Java source code, we have to move the methods getBonus
and setBonus from class Salesperson to class Employee. Additionally, we may have
to adapt the application logic, such as the user interface that expects bonus information
in the class Salesperson instead of class Employee (cf. Section 3.1.1).

6.1. Experimental Design 83

Experimental Tasks

In this section, we introduce the experimental tasks in detail and describe possible
approaches to adapt the Java source code to the refactored database schema.

Introductory Task

The introductory is based on a Rename Column refactoring that renames column sur-

name of table customers to lastname. The renaming breaks the ORM between the
database and the source code of HRManager. The task of the participants is to fix the
ORM in HRManager’s source code. The following steps describe a possible solution:

1. Find the methods getSurname and setSurname in the class Customer.

2. Fix the ORM by either

(a) renaming the methods to getSurname and setSurname or
(b) applying JPA’s @Column annotation on the method getSurname with the

attribute name set to lastname.

For participants with tool support, the sql-schema-comparer highlights the method
getSurname of class Customer. In contrast, participants without tool support need
to use the information in the task description or unit-test log to identify the methods
mentioned in Step 1. We explained the participants how to detect and fix the error in
respect to the assigned group. For participants without tool support, we described how
to use the task description, unit-test log, and the built-in search function in Eclipse to
find the erroneous spot. For participants with tool support, we explained how to use
the sql-schema-comparer to locate the defective source code.

Task 1

Task 1 describes a Rename Column refactoring that renames column CHANGEPWDDATE of
table SYNCOPEUSER to CHANGEPASSWORDDATE. Due to renaming, the ORM between the
database and the Java source code breaks. The task for the participants is to fix the
ORM in Apache Syncope’s Java source code. The following steps describe a possible
solution to fix the ORM:

1. Find the methods getChangePwdDate and setChangePwdDate in the class Syn-

copeUser.

2. Fix the ORM by either

(a) renaming the methods to getChangePasswordDate and setChangePass-

wordDate or
(b) applying JPA’s @Column annotation on the method getChangePwdDate with

the attribute name set to CHANGEPASSWORDDATE.

84 6. Evaluation

For participants with tool support, the sql-schema-comparer highlights the method
getChangePwdDate of class SyncopeUser. In contrast, participants without tool sup-
port need to use the information in the task description or unit-test log to identify the
methods mentioned in Step 1.

Task 2

Task 2 describes a Move Column refactoring that moves the column POSITION from table
ROLE to table APP_USER. Due to moving the column, the ORM between the database
and the Java source code breaks. The participant is asked to fix the ORM in AppFuse’s
Java source code. The following steps describe a possible solution to fix the ORM:

1. Find the methods getPosition and setPosition in class Role.

2. Find the class User that maps onto the table APP_USER.

3. Fix the ORM by moving the methods getPosition and setPosition to class
User.

For participants with tool support, the sql-schema-comparer highlights the method
getPosition of class Role. In contrast, participants without tool support need to
use the information in the task description or unit-test log to identify the methods
mentioned in Step 1. However, the sql-schema-comparer does not mark the class that
maps to the target table of the Move-Column refactoring (cf. Step 2). Thus, the sql-
schema-comparer does not provide complete support for this refactoring task.

Originally, AppFuse’s database schema does not contain an obvious candidate for the
Move Column refactoring. To not let participants waste time on irrelevant details, we
decided to introduce the column POSITION on table ROLE as candidate for the refactor-
ing.

Task 3

The purpose of Task 3 is to serve as a sanity check for the results of Task 1 and
Task 2. That is, the results should give us a hint whether other effects than tool
support influenced the development productivity for Task 3. For this purpose, no
database refactoring is applied to the relational schema in Task 3 and, thus, the sql-
schema-comparer does not provide any support for this task.

This task asks participants to ensure the data validity of the Uniform Resource Locators
(URLs) stored in column WEBSITE of table APP_USER in the application’s Java source
code. The relational database H26 used in the experiment does not provide a dedicated
data type for URLs. Thus, the database cannot distinguish URLs from other strings.
The following steps describe a possible approach to ensure the data validity:

6http://www.h2database.com

http://www.h2database.com

6.1. Experimental Design 85

1. Find the methods getWebsite and setWebsite in class User.

2. Change the parameter of getWebsite and the return type of setWebsite from
java.lang.String to java.net.URL.

Since no database refactoring or other source-code modification is applied beforehand
to AppFuse’s code base, the unit tests complete successfully from the beginning. Thus,
participants are asked to do the necessary modifications without breaking the applica-
tion.

6.1.5 Tooling

We used Prophet7 to present the questionnaire and the tasks to the participants and to
collect the data [Feigenspan et al., 2011]. For browsing the source code and executing
the unit tests, the participants used Eclipse. We provided scripts that started a pre-
configured Eclipse environment for each task. The pre-configured Eclipse environment
only included the Java source code of the respective task. The scripts also logged
their invocation time. Furthermore, we configured Eclipse to log the results and the
completion time of the unit-test runs.

In the questionnaire, we asked participants how familiar they are with the Eclipse
IDE. The question allowed answers ranging from 0 (very inexperienced) to 4 (very
experienced). Table 6.2 shows the possible answers related to the number of participants
who chose the answer. We could not verify any relation between the participants’
experience with Eclipse and the results of the experiment.

Experience with Eclipse Number of Answers

0 6
1 10
2 37
3 24
4 2

Table 6.2: Number of answers to the question about the experience with Eclipse.

For the participants who were assigned to work on the tasks with tool support, we pro-
vided an Eclipse with the sql-schema-comparer Eclipse plug-in pre-configured. Although
the plug-in was pre-configured, it was not activated. Thus, we let the participants acti-
vate the plug-in. We considered the time to activate the plug-in in the measurement of
the development time. The activation triggers the comparison of the Java source code
and the relational schema. In case the interaction between the Java application and the
database is broken, the plug-in immediately provides error markers in the Java source

7https://github.com/feigensp/Prophet, visited 15.12.2016

https://github.com/feigensp/Prophet

86 6. Evaluation

code. We have not considered measuring the performance of the sql-schema-comparer
Eclipse plug-in on checking the referential integrity. Thus, we do not know how much
time participants spent to wait for the sql-schema-comparer Eclipse plug-in.

6.2 Execution

We offered seven appointments that students could choose according to their conve-
nience. We randomly assigned all students of an appointment to a group with or
without tool support. Thus, always all students of an appointment have been working
either with or without tool support.

The laboratory where we conducted the experiment had a limited number of 16 work
stations. Some appointments were chosen by more students than we had work stations
available for the experiment. So, we randomly selected participants by lot. Students
who could not take part nevertheless received their bonus point.

After every participant successfully logged into their work stations, we continued with
the introduction. First, we introduced the general topic before we presented the nec-
essary details of the ORM with JPA. Additionally, the participants assigned to the
experiment with tool support got an introduction to the sql-schema-comparer Eclipse
plug-in. To perform the introduction similarly in all groups, we created a presenta-
tion that set the content for the introduction (cf. Appendix A.2.1). The introduction
was closed with an example refactoring on the HRManager (see Section 6.1.4) and a
question and answer session. We ensured that all participants successfully completed
the introductory example before we asked the participants to start the experiment by
answering the questionnaire and solving the tasks. Additionally, we asked all partici-
pants to initially run the unit tests on each task to ensure that all participants have the
same starting point. When a participant had finished the experiment, she could leave
without disturbing the others.

Though we checked that the sql-schema-comparer works correctly on the laboratory’s
work stations, when conducting the experiment, the participants were not able to suc-
cessfully activate the plug-in due to a technical problem. We offered participants help
to initialize the plug-in correctly by an additional manually activation of the plug-in.

In some cases, unit tests were failing although no obvious error was found. We asked the
participants affected by these unit tests to continue with the next task. For Task 2, some
participants applied incorrect source-code modifications that left the source code in a
broken and hard to fix state. For instance, participants applied Eclipse’s built-in Move
Method refactoring on the methods getPosition and setPosition. However, the
participants did not move the methods to the class User, but rather to an automatically
created new class. We explained the technical reasons for the broken source code shortly
to the participants and asked the participants to continue with the next task. We did
not consider tasks with failing unit-tests or broken source-code for the analysis.

6.3. Analysis 87

6.3 Analysis

The result set contains data of 79 participants. Before we analyzed the data we cleaned
the data set (see Table 6.3 for an overview). We started with removing measurements
of unsuccessful tasks. For Task 1 and Task 2, we identified an unsuccessful task by a
missing successful unit-test run in the unit test log. Hence, we removed also incomplete
tasks, because these miss a successful unit-test run, too. For Task 3, the application
is not broken, that is, initially, the unit tests complete successfully. Thus, we analyzed
the participants’ actual source-code modifications to detect successful completions of
Task 3.

We checked the development times for soundness by comparing the times measured
in Prophet with the timestamps created in Eclipse. Since we did not enforce to start
Eclipse after reading the task in Prophet, we use the development times measured in
Prophet for the following analysis.

Though we asked the participants to run the unit tests at the beginning of each task,
the gathered data shows that some participants ran unit tests only once. Especially
participants with tool support did not invoke an initial unit-test run. However, running
unit tests can take a reasonable amount of time: In case of Task 1, the first unit-test
run can take more than a minute. For Task 2, unit-test runs take about seven seconds.
Thus, the missing initial unit-test runs can bias the results in favor for the evaluated
tool: For each task and participant, we extracted the execution time for the first unit-
test run and calculated the mean of the extracted execution times for each task. To
correct the bias, we applied a penalty to the development times of the results with only
one unit test run: We added the mean of the execution times of the first unit-test runs
of the respective task to the development time of the results with only one unit-test
run.

After the removal of unsuccessful tasks and the correction of time measurements, we
removed outliers, that is, development times that deviate more than 1.5 standard devia-
tions from the mean. Table 6.3 summarizes the number of successfully completed tasks
in column Valid. Additionally, for development time µT , the table presents the number
of outliers in the column Outliers and the total number of results in column Total. You
find the adjusted dataset that we used in our analysis in Table A.4 in Appendix A.2.4.

Valid Outliers Total

Task 1 69 2 67
Task 2 72 1 71
Task 3 77 3 74

Table 6.3: Available number of results for each task.

For the analysis, we applied the two-way Analysis of Variance (ANOVA). The two-
way ANOVA allows us to evaluate the influence of two independent variables on one

88 6. Evaluation

dependent variable. Thus, in our case we are able to evaluate the effect of tool support
and programming experience on the development times of the participants. The two-
way ANOVA assumes the data to be normally distributed and to have the same variance.
We applied the Shapiro-Wilk test to test for normality and Bartlett’s test to test for
variance. We found that based on the Shapiro-Wilk test we can assume normality for
the data of Task 1 and Task 3, but not for Task 2. Thus, we need to be especially
careful making conclusions based on the results of Task 2. Based on Bartlett’s test
we can assume variance equality for Task 2 and Task 3, but not Task 1. However, we
found that the correction of data leads the Bartlett’s test to reject variance homogeneity.
Recall that we had to correct some of the development times because of a missing initial
unit-test run. The data without the correction adheres to the variance homogeneity
assumption. To evaluate how intense the effect of the missing variance homogeneity is
on the analysis result of Task 1, we compared the results of the two-way ANOVA for
the development times with and without the corrections. We found that the result of
the corrected data is in line with the unmodified data.

Figures 6.4, 6.6 and 6.8 present the development times grouped by tool support and
programming experience. We applied a two-way ANOVA on the results of each task with
the independent variable tool support (plg) and the confounding variable programming
experience (exp) as the two factors. The results of the two-way ANOVA for tool support,
programming experience, and the interaction of tool support and experience (plg:exp)
are summarized in Figures 6.5, 6.7 and 6.9.

For Task 1, the groups with tool support were faster than the groups without tool
support. The result of the two-way ANOVA in Figure 6.5 shows a significant effect of
the variable plg (p-value in column Pr(>F): 0.0089) with a small effect size (η2: 0.12).
Considering the means of the different experience groups, the performance differs for
inexperienced participants by 284.3 seconds and for experienced participants by 53.7
seconds. The results show no significant interaction of plg and exp (cf. Figure 6.4).

For Task 2, the groups with tool support were slower than the experienced group without
tool support, but faster than the inexperienced group without tool support. The results
of the two-way ANOVA in Figure 6.7 show no significant effect of plg, but of exp on
the development time. Since the data for Task 2 does not adhere to the normality
assumption, we have to be especially careful relying on results of Task 2. To examine
the effect of experience, we calculated the Kendall rank correlation coefficient (Kendall’s
τ) to evaluate the correlation between development time and development experience
for Task 2. The Kendall rank correlation coefficient does not make any assumptions
on the distribution of the data. For Task 2, Kendall’s τ is −0.1688977 with a p-
value of 0.032944. That is, a small negative correlation between development time and
development experience.

For Task 3, the groups with tool support were faster than the groups without it. How-
ever, neither plg nor exp show a significant effect on development time (cf. Figure 6.9).
Furthermore, there is no significant interaction of plg and exp.

6.4. Interpretation 89

Without tool support With tool support

●

●

●
●

500

1000

1500

Inexperienced Experienced Inexperienced Experienced
Experience

T
im

e
in

 s
ec

on
ds

Figure 6.4: Distribution of development times for Task 1.

Df Sum Sq Mean Sq F value Pr(>F) η2

plg 1 470751.26 470751.26 7.29 0.0089 0.12
exp 1 125622.11 125622.11 1.94 0.1680 0.031
plg:exp 1 215142.02 215142.02 3.33 0.0727 0.053
Residuals 63 4069218.23 64590.77

Figure 6.5: ANOVA results for Task 1.

In summary, for Task 1 we can reject the null-hypothesis H0 regardless of the par-
ticipants’ programming experience. We cannot reject the null-hypothesis for Task 2
and 3.

6.4 Interpretation

For Task 1, tool support allowed participants significant faster adaption of the broken
source code regardless of their programming experience. Since all participants success-
fully completed the introductory task, which shares the same rationale with Task 1,
we assume that all participants were equally prepared for Task 1. Thus, we conclude
that the sql-schema-comparer actually improved the participants’ performance with its
ability to mark the getter method that maps to the renamed column. A plain Eclipse
does not provide such information.

Tool support has no significant influence on Task 2. Thus, we cannot reject H0 based
on the results of Task 2. However, programming experience shows a significant effect
on the results of Task 2. The additionally calculated result of the Kendall rank cor-
relation coefficient (τ = −0.1688977 with a p-value of 0.032944) suggests that there is
a certain probability that a very small negative correlation between development time
and development experience in Task 2 exists (cf. Section 6.3). Based on this finding,
the reason for sql-schema-comparer plug-in having no effect on the outcome of Task 2

90 6. Evaluation

Without tool support With tool support

●

●

● ●

500

1000

1500

Inexperienced Experienced Inexperienced Experienced
Experience

T
im

e
in

 s
ec

on
ds

Figure 6.6: Distribution of development times for Task 2.

Df Sum Sq Mean Sq F value Pr(>F) η2

plg 1 1322.72 1322.72 0.03 0.8731 0.00038
exp 1 207182.00 207182.00 4.03 0.0488 0.06
plg:exp 1 124933.44 124933.44 2.43 0.1238 0.036
Residuals 67 3445465.16 51424.85

Figure 6.7: ANOVA results for Task 2.

could be the following: Two relational tables ROLE and APP_USER are affected by the
Move Column refactoring and, thus, the two Java classes Role and User needed to
be adapted. The Eclipse plug-in helps developers to find the method getPosition in
class Role which, after the Move Column refactoring, has no matching column in the
related database table. However, the plug-in does not highlight the Java class User

which needs to contain the methods getPosition and setPosition in order to fix the
ORM. In contrast, participants without tool support just continued to use Eclipse’s
built-in search functionality and the refactoring description given with each task to
detect the affected methods and classes. Participants with tool support and an higher
programming experience might have been able to adapt faster to a refactoring without
complete tool support and to use the built-in search of Eclipse instead.

In Task 2, the advantage of the plug-in could have been diminished by showing only
one affected class. Though the sql-schema-comparer may help developers to find the
class that maps to the source table of the Move Column refactoring, our tool does not
indicate the class that maps to the target table of the refactoring. However, technically
the sql-schema-comparer is able to detect moved columns in a relational schema. By
integrating this feature to the Eclipse front-end, we may be able to support the Move
Column refactoring entirely.

For Task 3, participants with tool support required less time to adapt the Java source
code to the database refactoring compared to participants with tool support (cf. Fig-

6.5. Threats to Validity 91

Without tool support With tool support

●
●

●
●

300

600

900

Inexperienced Experienced Inexperienced Experienced
Experience

T
im

e
in

 s
ec

on
ds

Figure 6.8: Distribution of development times for Task 3.

Df Sum Sq Mean Sq F value Pr(>F) η2

plg 1 66967.13 66967.13 1.83 0.1799 0.026
exp 1 350.78 350.78 0.01 0.9222 0.00014
plg:exp 1 13953.30 13953.30 0.38 0.5384 0.0055
Residuals 70 2555216.15 36503.09

Figure 6.9: ANOVA results for Task 3.

ure 6.8). However, the difference in the development time is not significant. We ex-
pected this result for variable tool support, because our plug-in does not support the
refactoring of Task 3.

6.5 Threats to Validity

When an experiment is planned, experimenters have to consider the different effects
that may influence the outcome of the experiment and risk its validity. In literature,
either two or four different types of threats to validity are distinguished [Wohlin et al.,
2012]. In the following, we classify the threats to validity of our experiment by two
types according to [Campbell and Stanley, 1963]: the internal and the external validity.

6.5.1 Internal Validity

A steady performance by the participants is an important attribute to preserve the
informational value of the experiment: An abnormal performance can have a positive
or negative effect that cannot be reproduced in different settings. Participants in need
for a bonus point may not share the same motivation than participants who take part
voluntarily, and, thus, do not show their usual performance. Though all participants
took part voluntarily, they may be forced indirectly to take part in the experiment in
need for the promised bonus point. Thus, participants in need of a bonus point may not

92 6. Evaluation

take part voluntarily, but are forced to participate indirectly. According to the exercise
instructor of the database course, the bonus point for the experiment was not crucial
to any of the participants.

Wrong assumptions about the participants’ behavior can lead to wrong conclusions. In
the experiment, we assumed that all participants do an initial unit-test run. However,
we did not enforce an initial run of the tasks’ unit-tests run. Thus, participants were
able to and actually did finish a task only with a single, successful unit test. This
can affect the validity of our results. We minimized this threat by applying the mean
execution time of the first unit-test runs to the results with only a single unit-test run.

The Rosenthal effect describes the influence of the experimenters’ expectations on the
participants’ performance. To avoid it, we developed standardized instructions for the
introduction. We ensured that the instructions are not biased towards the sql-schema-
comparer by discussion among the authors until reaching interpersonal consensus.

6.5.2 External Validity

We did a convenience sampling and selected only students attending the exercise of a
database course as participants for the experiment. Thus, the results can only be care-
fully applied to different populations such as Ph.D. students or practitioners. Neverthe-
less, our results are useful for comparison with the many experiments that researchers
conduct with students.

We modified the unit-test configuration of Apache Syncope and AppFuse, so unit tests
do not overwrite the refactored database schema. Thus, the results of the experiment
cannot be applied to applications that depend on the automatic database-schema cre-
ation. Nevertheless, the automatic database-schema creation just drops a database
schema and does not migrate data from an old to a new database schema. Hence,
the results are still relevant for applications that use JPA to access legacy instances of
relational databases.

For Task 2, we added an artificial column POSITION to table ROLE and the artificial
methods getPosition and setPosition to class Role. One may argue that because
of the artificial extension the results of Task 2 cannot be applied to different code
bases. Nevertheless, the purpose of the experiment is to evaluate the influence of
tool support on adapting source code to a database refactoring, i.e., the experiment
focuses on fixing the ORM between the Java source code and the database schema.
Thus, further adaption of the application logic is not considered by the experiment.
Additionally, we could imagine that in an initial design a position is associated with a
role in the application. Thus, we argue that having a position information associated
to a role is not entirely unusual.

6.6 Summary

We conducted a controlled experiment to evaluate whether the Eclipse plug-in of the
sql-schema-comparer can improve the productivity of developers who adapt Java source

6.6. Summary 93

code to a refactored database schema. The sql-schema-comparer’s Eclipse plug-in allows
developers to detect broken language interactions before executing the application’s unit
tests or the application itself.

We conducted an experiment with 79 student participants based on two open source
projects (Apache Syncope and AppFuse). The task of the participants was to adapt
the Java source code of the two open source applications to a Rename Column (Task 1)
and a Move column (Task 2) refactoring which we applied to the applications’ database
back-end beforehand. We found that depending on the task the sql-schema-comparer
can improve the development productivity of inexperienced as well as experienced par-
ticipants. For instance, for Task 1 we could provide evidence that using the sql-schema-
comparer Eclipse plug-in results in a significant better performance. However, in Task 2
we could not detect any significant improvement of the development times for partici-
pants using the sql-schema-comparer Eclipse plug-in. But we found possible causes for
the missing improvement: We conclude that the Eclipse plug-in needs to expose the
full feature-set of the sql-schema-comparer and the structure-graph library to support
refactorings that involve incomplete but valid ORMs. However, according to the out-
come of Task 1, the plug-in can already be considered useful for the common rename
refactoring.

Furthermore, since all participants in the group with tool support used the sql-schema-
comparer Eclipse plug-in, we conclude that the plug-in performed reasonably well on
code bases up to the size of Apache Syncope and AppFuse to make a significant differ-
ence on the participants’ development time on Task 1. This is a relevant result because
(1) it supports our claim of the practicability of the approach and (2) it suggests that
a prototypical implementation can already provide a significant benefit. Especially the
last suggestion may ease the practical adoption of the structure-graph approach.

94 6. Evaluation

7. Related Work

Since its introduction in [Opdyke, 1992], the scientific community explored different
topics in the field of refactoring. Among these topics we find the following:

� Search for new refactorings [Ambler and Sadalage, 2006; Fowler, 1999; Li, 2006]

� Automation of refactorings [Dig, 2007; Li and Thompson, 2008; Roberts, 1999;
Streckenbach and Snelting, 2004]

� Detection of applied refactorings [Taneja et al., 2007; Xing and Stroulia, 2005,
2008]

� Proof of the behavior-preservation property of existing refactorings [Bannwart
and Müller, 2006; Mens et al., 2005; Soares et al., 2011]

� Improvement of the tool support for refactoring [Murphy-Hill and Black, 2008;
Xing and Stroulia, 2008]

� Re-use of refactorings for different languages [Ducasse et al., 2000; Strein et al.,
2007; Tichelaar, 2001]

� Refactoring of Multi-Language Software Applications (MLSAs) [Mayer and
Schroeder, 2012; Pfeiffer and W ↪asowski, 2011, 2012b; Strein et al., 2006]

This list is not exhaustive. However, the list emphasizes the diversity of the field of
refactoring. In this chapter, we focus on a subset of the topics listed above. In partic-
ular, we introduce attempts for re-using refactorings, since these attempts influenced
how refactoring was realized in MLSAs initially. We present work that represents the
state-of-the-art in Multi-Language Refactoring (MLR) and work that is related to our
attempt to support refactoring in MLSAs. Last but not least, we present evaluations

96 7. Related Work

of refactoring tools and how these evaluations are related to the one presented in this
thesis.

In this thesis, we focus on language interactions in which no relation between host and
guest language1 exists, because this kind of interaction lacks tool support for checking
language interaction (cf. Section 2.2.1). In [Renggli, 2010], the authors provide an
overview about different approaches to define Domain Specific Languages (DSLs) and
a list of techniques to embedd languages.

We structured this chapter as follows. First, we present approaches to re-use refactorings
in different languages. Second, we give an overview about work on MLR. Then, we
present other evaluations of refactoring tools and relate these evaluations to ours. In
the last section, we present approaches to change detection that are related to the
change detection with structure graphs (cf. Section 4.3).

7.1 Re-use of Refactorings
In this section, we discuss approaches which allow to re-use one refactoring implementa-
tion for different languages to a greater or lesser extent. Nevertheless, these approaches
are and remain noteworthy in the context of MLSAs since they provide refactoring
solutions for MLSAs that are build of programming languages which share a common
ground like programming languages that are based on a common platform (cf. Fig-
ure 2.1).

The tool environment MOOSE provides means to reverse engineer and re-engineer
object-oriented systems [Ducasse et al., 2000]. For that purpose, MOOSE is able
to import source code of different languages with the help of common exchange for-
mats like CASE Data Interchange Format (CDIF) and XML Metadata Interchange
(XMI) [Tichelaar et al., 2000]. The source code of different languages is represented in
a meta model called FAMIX. The meta model FAMIX can represent source code written
in object-oriented as well as procedural programming languages [Tichelaar, 2001, p. 37].
The meta model is specifically designed to allow tools contained in MOOSE a uniform
treatment of source code written in different programming languages. One of these
tools is the MOOSE Refactoring Engine which provides 15 language-independent im-
plementations [Tichelaar, 2001, p. 65] of refactorings described in [Fowler, 1999; Opdyke,
1992; Roberts, 1999; Werner, 1999]. Though, language independence is not achieved
entirely [Tichelaar, 2001, p. 115 ff.].

With FAMIX, the tool environment MOOSE contains a new meta-model for represent-
ing object-oriented programming languages. Although, the authors of FAMIX consid-
ered the Unified Modeling Language (UML), they found version 1.3 of UML [Object
Management Group (OMG), 2000] to be inadequate in respect to the considered re-
engineering use cases [Tichelaar, 2001, p. 46 ff.]. Also the next version 1.4 of UML [Ob-
ject Management Group (OMG), 2001] was considered inadequate for refactoring pur-
poses [Gorp et al., 2003]. However, Gorp et al. [2003] propose extensions to UML called

1According to the classification in [Renggli, 2010], we focus on language interaction with external
languages.

7.2. Multi-language Refactoring Approaches 97

GrammyUML and evaluate if GrammyUML allows the authors to provide an abstract
description of two refactorings for the programming language C. Although the authors
showed the feasibility of their approach, like for FAMIX the refactoring description in
GrammyUML is not entirely independent of language-specific properties.

Lämmel presents a refactoring framework based on generic functional program-
ming [Lämmel, 2002]. The framework provides generic interfaces for different refac-
torings. By implementing the generic interfaces for a specific programming language,
developers are able to re-use the generic refactoring implementation provided by the
refactoring framework. The author presents two generic interfaces for the extraction and
the introduction refactorings and implements these interfaces for the method definition
of the academic programming language JOOS2. By providing these implementations,
the author is able to implement the Extract Method refactoring (extraction) and Create
Method refactoring (introduction) for JOOS by re-using the definition in the refactoring
framework.

In [Strein et al., 2007], the authors describe a meta model called Common Meta-Model
that uses trees to represent a software application. The Common Meta-Model consists
of different node types and relations between these node types. Language-specific front-
ends parse source code and create instances of front-end specific meta-models. Front-
end specific meta-models are an abstract representation of the source code written
in the programming language, e.g., an Abstract Syntax Tree (AST). The Common
Meta-Model defines mappings between elements of front-end specific meta-models and
elements of the Common Meta-Model. By applying these mappings on instances of
front-end specific meta-models, developers can create an instance of the Common Meta-
Model for a specific software application. Like the approaches above, the Common
Meta-Model allows developers to describe refactorings on an abstract level. However,
the authors note that the Common Meta-Model only supports refactorings that can be
described based on the elements included in the Common Meta-Model.

Although the authors emphasize the possibility of re-using refactoring implementations
with the Common Meta-Model, they also recognized how useful the representation of
MLSAs with the help of the Common Meta-Model [Strein et al., 2006] is. We consider
this a major milestone in the effort to refactor MLSAs which culminated in the advent
of MLR. We discuss related work in respect to MLR in the following section.

7.2 Multi-language Refactoring Approaches
In this section, we present works that describe approaches to MLR and related terms
like Cross-Language Refactoring, Deep Refactoring, and Coupled Software Transfor-
mations. Coupled Software Transformations is related to MLR as Coupled Software
Transformations also describe changes that may affect more than one artifact of a soft-
ware application, e.g., source code of different programming languages and documen-
tation [Lämmel, 2004; Lämmel, 2016]. However, in contrast to MLR Coupled Software

2JOOS represents a subset of the programming language Java and was originally designed by Laurie
Hendren.

98 7. Related Work

Transformations do not define any restrictions on the kind of change and, thus, changes
may also modify behavior. Nevertheless, like MLRs, Coupled Software Transformations
need a notion of consistency between artifacts, though the allowed modifications may
differ.

In the previous section, we presented the work of Gorp et al. [2003] as an example
for using UML as means to generalize the refactoring implementation across different
languages. In [Bottoni et al., 2003], the authors provide a different perspective: The
authors consider UML diagrams as equivalent target for refactoring and present an ap-
proach to preserve the consistency between source code and different UML diagrams
based on distributed graph transformations. In particular, the authors considered the
effects of refactorings on source code as well as UML’s class, sequence, and state dia-
grams. The authors demonstrate how distributed graphs propagate changes between
source code and the UML diagrams with the help of the Extract Method and Move
Method refactoring.

Also in the previous section, we presented the Common Meta-Model that captures the
commonalities of different programming languages [Strein et al., 2007]. In [Strein et al.,
2006], the authors of the Common Meta-Model present the Integrated Development
Environment (IDE) X-Develop which represents the source code of a software applica-
tion with the help of the Common Meta-Model. X-Develop provides front-ends for the
following General-Purpose Programming Languages (GPLs) and DSLs: C#, Java, Vi-
sual Basic, J#, Hypertext Markup Language (HTML), Extensible Markup Language
(XML), Active Server Pages (ASP), Java Server Pages (JSP), and JavaScript. The
Common Meta-Model represents a subset of the elements extracted by the front-ends
among which are class, method, and type information from programming languages like
C# and Java as well as element and attribute information from markup languages like
HTML and ASP.

The Common Meta-Model and X-Develop comprise many characteristics of the
structure-graph approach we presented in Chapter 4. Hence, it is appropriate to dis-
cuss the differences in detail. First, though both approaches use graphs to represent
an MLSA, the approaches differ in the way of representing language interaction: X-
Develop uses a single meta-model to capture all kinds of language interaction, while the
structure-graph approach allows to use different models to represent language interac-
tion between two languages. Second, the front-ends in X-Develop do not expose any
information about how language interaction is established. Accordingly, also the Com-
mon Meta-Model does not contain any information about the mechanics of language
interaction. In contrast, the structure-graph approach exposes how language interac-
tion is established by modeling both the expected structure implemented in the host
language and the actual structure implemented in the guest language. Based on the
information about the mechanics of language interaction, developers are able to work
on software applications with broken language interaction. Third and last, X-Develop
is based on the assumption that the Common Meta-Model allows us to readily re-use
once implemented refactorings even in an MLSA. However, the authors do not investi-
gate other MLR setups apart from web applications that are based on the GPLs and

7.2. Multi-language Refactoring Approaches 99

DSLs mentioned above. In Chapter 3, we present diverse challenges that can arise when
refactoring MLSAs. Consequently, we focus on support for developers who refactor an
MLSA rather than automating refactorings in the first place.

In [Chen and Johnson, 2008] and [Kempf et al., 2008], the authors present solutions
for the Rename Refactoring in two different MLSA setups. Both solutions are imple-
mented in the Eclipse IDE. The refactoring tool by Chen and Johnson [2008] focuses on
the interaction between the Java frameworks Struts, Hibernate, and Spring and their
respective XML-based configuration files. As soon as the developer triggers a Rename
Class refactoring, the tool adapts corresponding references in the configuration files.
Additionally, the refactoring tool also considers JSP files. Kempf et al. [2008] present
an idea on how to implement refactoring support for MLSAs written in Java and Groovy.
The idea is based on the Java search-engine which is part of the core components of
Eclipse’s Java development tools3. The approaches of Chen and Johnson [2008] and
Kempf et al. [2008] are based on the development and refactoring infrastructure pro-
vided by the Eclipse IDE. Ideas for supporting MLR beyond Rename refactorings are
not part of these works. However, Chen and Johnson [2008] recognize that supporting
MLR in general is hard to achieve, though the authors do not further underpin this
statement (cf. Section 3.2).

Tatlock et al. [2008] present the idea of Deep Typechecking to support developers who
use the Java Persistence API (JPA) for accessing databases. More specifically, the
approach checks types in respect to queries written in the Java Persistence Query Lan-
guage (JPQL)4. For instance, Deep Typechecking checks the types of parameters which
are passed to a JPQL query. In contrast to the sql-schema-comparer, the Deep Type-
checking approach considers the interaction between Java and JPQL queries and not
the interaction between the ORM defined with JPA and the database schema. Thus,
in comparison with Deep Typechecking, the sql-schema-comparer currently checks a
different level of language interaction. Based on Deep Typechecking, the authors also
present a refactoring approach called Deep Refactoring. More specifically, the authors
implemented the Rename Class and Rename Method refactoring. Due to the focus on
the interaction between Java and JPQL, the authors do not investigate possible effects
of other refactorings on the interaction between Java, JPQL, and the database.

Another approach to type checking that considers programming languages with auto-
mated memory management is presented in [Furr and Foster, 2008]. In particular, the
authors examine OCaml’s Foreign Function Interface (FFI) to C: In C source code the
types of the values passed via OCaml’s FFI need to be determined at runtime because
all the OCaml types passed to C share the same memory layout and, thus, cannot be
distinguished statically. Based on the examination, the authors present a multi-lingual
type interference system that is able to check the correct usage of OCaml types in C
source code. Additionally, the approach is also able to check if C source code references

3https://eclipse.org/jdt/core/index.php, visited 15.12.2016
4JPQL is a Data Manipulation Language (DML) which is based on the Object Relational Mapping

(ORM) defined by JPA. The syntax of JPQL is based on SQL.

https://eclipse.org/jdt/core/index.php

100 7. Related Work

data on OCaml’s heap and to determine whether the reference is safe in respect to the
garbage collection of the OCaml runtime system. The type interference system uses
dataflow analysis to check the correct usage of OCaml types in the C source code.

In his thesis, Cleve [2009] presents coupled software transformations5 between a
database schema and source code of a procedural programming language called LDA.
Though the author uses the term coupled software transformation, he actually refers to
refactoring because he only considers semantic-preserving transformations [Cleve, 2009,
p. 237]. The definition of semantic-preservation used in the thesis is based on Hainaut
[1996] (cf. Section 3.1). The author states that by using semantic-preserving transforma-
tions “Program conversion mainly consists in adapting the related [Data Management
System] statements to the modified data structure” [Cleve, 2009, p 240]. This statement
is based on the coupled software transformations (refactorings) the author defines in
the course of his thesis. Nevertheless, the author does not consider refactorings defined
elsewhere (for instance in [Ambler, 2003] and [Ambler and Sadalage, 2006]). Conse-
quently, the author does not take into account semantic-changing effects of database
refactorings (cf. Section 3.1.2). However, these effects may lead to more complex mod-
ifications of the refactored software application than only adapting the related DML
statements.

In [Mayer and Schroeder, 2012], the authors present an approach called Cross Language
Link (XLL) that is based on so called semantic links between artifacts. Semantic links
relate artifacts of two GPLs or DSLs with each other. Based on the relations between
artifacts, XLL supports program understanding, code analysis, and refactoring. The
links are described with the help of relations as defined by the QVT specification [Ob-
ject Management Group (OMG), 2011, p. 13]. By parsing artifacts like source code
and configuration files, the XLL framework resolves links between artifacts of different
languages and returns a set of semantic links. In [Mayer and Schroeder, 2014], the
authors emphasize the refactoring use case and replace the QVT-based approach by
custom binding resolvers for each supported language pair. The result is not a set of
semantic links, but a linking model.

The XLL framework with semantic links as well as the custom binding resolver with the
linking model is very closely related to our work. Thus, we want to hightlight two impor-
tant differences in the following. The first difference between XLL and custom binding
resolvers and our approach is about the assumed methods of language interaction. We
explicitly take different methods of language interaction into account. For instance,
there exists different frameworks to establish an interaction between Java source code
and a relational database [Anderson, Lance, 2006; Oracle America, Inc., 2013]. For this
reason, the check of referential integrity between two interacting languages is not based
on specifics of the involved framework. In contrast, with the XLL framework developers
define links directly on the involved structure elements like classes, methods, and XML

5Throughout the thesis the author uses the term co-transformation. However, the author explicitly
refers to the definition of coupled software transformation given in [Lämmel, 2004]. Thus, we can use
the terms interchangeably.

7.3. Studies on Refactoring Tools and MLSAs 101

elements. Thus, our approach includes a further abstraction between structure elements
and the actual check of the referential integrity. The second difference is about the pos-
sible propagation of refactorings in an MLSA. For the XLL framework and the custom
binding resolver approach the authors assume that refactorings can be distributed over
artifacts of different GPLs and DSLs as soon as the set of semantic links or the linking
model is available. Additionally, the authors only take the Rename refactoring into
account. In contrast, in Chapter 3 we showed that we cannot generally propagate a
refactoring for one programming languages on artifacts implemented in a different GPL
or DSL. Consequently, we extracted the mechanics of language interaction by repre-
senting all elements involved in language interaction in structure graphs. In the XLL
framework and with custom binding resolvers the mechanics of language interaction
are hidden in the QVT-based description of semantics links and the implementation
of binding resolvers, respectively. However, we would like to emphasize that structure
graphs as presented in Chapter 4 are an attempt to approach refactoring in MLSAs in
general. If only a fraction of language interactions may be relevant, XLL and custom
binding resolvers still represent an feasible approach to this issue.

In [Pfeiffer and W ↪asowski, 2012b], the authors present a so called Multi-Language De-
velopment Environment (MLDE) called TexMo. Like XLL, TexMo supports program
understanding, code analysis, and refactoring. The relation between artifacts of differ-
ent GPLs and DSLs is represented by a Relation Model (RM). The RM is text-based
and, thus, depends solely on the textual elements contained in the source code. In
the version of TexMo presented in [Pfeiffer and W ↪asowski, 2012b], the RM has to be
established manually. However, the authors plan to integrate GenDeMoG [Pfeiffer and
W ↪asowski, 2011] in TexMo. GenDeMoG generates programs that search for dependency
patterns in source code and create a dependency graph based on the findings. Devel-
opers create dependency patterns between elements of language-specific meta-models.

TexMo with GenDeMoG and XLL implement similar approaches on a different technol-
ogy stack. Thus, the discussion on differences between XLL and our approach can be
applied to TexMo and GenDeMoG as well. However, due to the fact that GenDeMoG al-
lows developers to implement the detection of language interaction automatically based
on meta-models and dependency patterns, GenDeMoG may eases the burden for the
actual tool implementation.

7.3 Studies on Refactoring Tools and MLSAs

In this section, we present studies which investigate either the effect of tool support
on refactoring performance or properties of MLSAs. We relate the former to our ex-
periment which we describe in Chapter 6. The latter give insight into how MLSAs are
implemented.

7.3.1 Studies on Refactoring Tools

In an empirical study, Murphy-Hill et al. [2009] evaluated data from different sources
to answer the general question how refactorings are used in practice. In particular, the

102 7. Related Work

authors considered data from different usage reports and source code repositories. In
the curse of the evaluation, the authors also investigated how refactoring tools are used
in practice. The authors report two findings: First, developers do not often configure
refactoring tools before the developers use the tools. Second, developers tend to prefer
manual refactoring. However, the authors state that the underlying analysis for both
findings suffer several limitations. Thus, the findings have to be considered with caution.

In [Negara et al., 2013], the authors report on a study about refactoring-tool usage
that is based on 1, 520 hours of work recorded from 23 developers. The recorded work
consists of continuous changes which the developers applied to their code base. Based
on the continuous changes, the authors are able to infer refactorings applied to the
code base. Moreover, the authors are able to distinguish manually and automatically
applied refactorings. The authors affirm the finding of Murphy-Hill et al. [2009] that
refactoring tools are underused. Additionally, the authors found that refactoring-tool
usage changes with development experience. For instance, novice developers as well as
developers with more than 10 years of experience tend to use automated refactorings
less often than developers with 5− 10 years experience. The authors hypothesize that
novice developers have not yet learned to use refactoring tools while experienced users
have learned to apply refactorings manually before tool support was even available.

In [Murphy-Hill and Black, 2008], the authors first report about the support for the
Extract Method refactoring in the Eclipse IDE. In a pre-study, the authors found that
participants faced two main challenges when applying the Extract Method refactoring:
(1) Participants made avoidable mistakes when applying the Extract Method refactor-
ing and (2) error messages missed the necessary expressiveness to help participants to
recover from an erroneous Extract Method refactorings. Based on these findings, the
authors evaluated two new refactoring tools which implement additional support for the
Extract Method refactoring. In the evaluation, the authors gathered data of 16 partic-
ipants. The authors conclude that the additional information provided by the two new
refactoring tools can significantly improve the participants’ performance. Furthermore,
the authors give general recommendations on how refactoring tools can improve the
refactoring performance.

Pfeiffer and W ↪asowski [2012a] present an evaluation of the tool TexMo [Pfeiffer and W ↪a-
sowski, 2012b] conducted with 22 participants on the open-source bug-tracker JTrack6.
The participants were asked to perform three tasks: In the first task, participants are
asked to fix an instance of JTrac on which a rename refactoring was applied only on
one artifact, but not on the interacting artifacts. In the second task, the participants
are requested to apply a Rename refactoring. In the third task, participants are asked
to replace a code block by another one and to report on the artifacts affected by the
replacement. All participants were evenly distributed among two groups of which one
group had support for MLSAs and the control group had no specific support for MLSAs.
No unit or acceptance tests were provided, so that participants without tool support
had to start JTrack and detect errors manually. The authors found that TexMo im-

6http://www.jtrac.info/

http://www.jtrac.info/

7.3. Studies on Refactoring Tools and MLSAs 103

proves refactoring productivity. Additionally, the authors found that TexMo improves
the refactoring productivity regardless of the participants’ experience.

The study of Pfeiffer and W ↪asowski [2012a] is the first one which evaluates development
performance in the context of an MLSA. In the following, we highlight the differences
in the experimental designs of the study in [Pfeiffer and W ↪asowski, 2012a] and our
evaluation presented in Chapter 6. The first difference is the number of experimen-
tal objects. In [Pfeiffer and W ↪asowski, 2012a], the experimental design considers the
source code of JTrac. In our study, the experimental design considers the source code
of Apache Syncope and AppFuse to mitigate threats to the external validity caused
by a non-representative code-base. The second difference is the number of measures.
Pfeiffer and W ↪asowski [2012a] measure four different metrics while we measure only the
time to fix the error. The third difference is the number of participants: 22 partici-
pants took part in [Pfeiffer and W ↪asowski, 2012a] and 79 participants took part in our
experiment. As fourth difference we consider the derivation of programming experi-
ence. The participants’ professional experience is derived from the participants’ years
of work experience in [Pfeiffer and W ↪asowski, 2012a]. In contrast, we derived the par-
ticipants’ programming experience based on the results reported by Feigenspan et al.
[2012]. Fifth, the tutorials of both studies considered different information. In [Pfeiffer
and W ↪asowski, 2012a], participants received no information about the specific mechan-
ics of language interaction in JTrac. In our experiment, we gave all participants an
introduction to JPA (cf. Slide 6). Sixth, the tasks differ between the two studies. In
[Pfeiffer and W ↪asowski, 2012a], all three tasks contain a variation of the Rename Field
refactoring: The first task is based on source code with renamed fields, the second task
asks the participant to rename specific fields, and the third task asks the participant
to replace one code block with a code block with renamed field names. In contrast, the
tasks in our experimental design comprise different refactorings. Finally, the features
available in the tools TexMo and the sql-schema-comparer Eclipse Plug-in are different
in respect to both experiments. In [Pfeiffer and W ↪asowski, 2012a], the cross-language
relation model for JTrac was established manually before the experiment started. In
contrast, the sql-schema-comparer Eclipse Plug-in automatically created the structure
graphs for Apache Syncope and AppFuse during the experiment. In summary, partici-
pants of our experiment with tool support had less informational advantage than those
in [Pfeiffer and W ↪asowski, 2012a]. Furthermore, the time to retrieve the language in-
teraction model (cross-language relations and structure graphs, respectively) was part
of our experiment, but the time was not considered in [Pfeiffer and W ↪asowski, 2012a].
Thus, our experimental design focuses on the evaluation of the refactoring tool itself.
In contrast, the study in [Pfeiffer and W ↪asowski, 2012a] also considers the performance
of the participants without tool support.

In [Mayer and Schroeder, 2014], the authors present an evaluation of the XLL frame-
work [Mayer and Schroeder, 2012] in respect to seven software applications which are
implemented in Java and either Spring, Hibernate, Wicket, or any possible combina-
tion of these three frameworks. In particular, the authors evaluate three different use
cases: artifact discovery, artifact binding resolution, and refactoring change closures.

104 7. Related Work

The purpose of the artifact discovery use case is to evaluate how many artifacts in-
volved in language interaction can be correctly identified by XLL. With the artifact
binding resolution use case, the authors determine how many links between discovered
artifacts are established correctly. At last, the purpose of the refactoring change clo-
sures use case is to evaluate how many Rename refactorings XLL applies correctly. Due
to limitations of the static analysis of certain artifacts, XLL was not able to detect
all artifacts involved in language interaction. This problem has to be considered for
the structure-graph approach as well. However, we would not relate the issue of non-
detected artifacts involved in language interaction to the approach itself, but to the
availability of language front-ends which are able to extract the information necessary
for deducing the language interaction.

In summary, only a few studies exist on the evaluation of refactoring tools in the con-
text of MLSAs. These studies either do not take development performance into ac-
count [Mayer and Schroeder, 2014] or do not entirely focus on the effect induced by the
tool [Pfeiffer and W ↪asowski, 2012a]. Furthermore, none of the studies takes experience
as a confounding parameter into account. To the best of our knowledge, our evalua-
tion is the only one in the context of MLSA which, on the one hand, solely focuses
on the evaluation of a refactoring tool and, on the other hand, takes the participants’
development experience into account.

7.3.2 Studies on MLSAs

A study on language interaction between Java and either the Android UI framework,
the Spring Inversion-Of-Control framework, or the Hibernate Query Language (HQL)
is presented in [Mayer and Schroeder, 2013]. The authors derived patterns of language
interaction from the three frameworks. Overall, the authors identified eight different
patterns assigned to three categories. The authors conclude that the implementation
of language interaction can be complex. Furthermore, the authors evaluated the cor-
rectness of the patterns by applying them to software applications implemented with
the help of one of the frameworks. For the evaluation, the authors implemented a pro-
totypical tool which extracts a meta-model representation for Java and the frameworks
in use, respectively. Then, the tool establishes links between elements of the Java and
the framework meta-model based on the derived patterns.

The patterns derived in [Mayer and Schroeder, 2013] are relevant for our approach as
well because we also depend on the extraction of structure element involved in language
interaction. However, as the authors pointed out, these patterns need to be considered
when creating language front-ends (cf. Section 5.1.2). Nevertheless, by distinguishing
the actual source-code structure present in the guest language from the source-code
structure expected by the host language (cf. Section 4.1), we preserve the elements in-
volved in language interaction. A linking model as described in [Mayer and Schroeder,
2013, 2014; Pfeiffer and W ↪asowski, 2012b] does not contain information about the me-
chanics of linking. Thus, the mechanics of linking remain an implementation detail of
the dependency patterns.

7.3. Studies on Refactoring Tools and MLSAs 105

In order to provide support for specific language combinations, it is useful to know
which language interactions exist in practice. The most convenient way to investigate
language combinations used in practice is to examine open-source projects because
the source code of free software is typically readily available. For instance in [Delorey
et al., 2007], the authors describe an investigation on the structure of about 10, 000 open-
source projects hosted on SourceForge7. The authors found that 32% of the investigated
projects use two or three different programming languages. Additionally, the authors
identified C and Perl, C and C++, and JavaScript and PHP as most used language
combinations for projects implemented with two programming languages.

In [Vetro et al., 2012], the authors investigate three questions: (1) How much language
interaction is present in software applications, (2) which GPLs and DSLs interact most
extensively, and (3) are MLSAs more defect-prone than applications implemented with
a single programming-language. The study takes the source code and the issue tracker
of the Hadoop project8 as basis for the examination. The results show that 56% of the
commits to the Hadoop repository involve artifacts implemented with the help of more
than one programming language. Additionally, the source code of Hadoop contains
interactions between artifacts of most of the GPLs and DSLs in use within Hadoop.
Finally, the authors observed that certain interactions are more error-prone than others.
For instance, the interaction between C and XML is more error prone than the inter-
action between Java and XML. The authors did not investigate possible effects which
could explain the differences in error-proneness for different language combinations.

Tomassetti and Torchiano [2014] report on a study about the application of polyglot
programming in 15, 216 open-source projects hosted on GitHub9. In particular, the
authors assess how many languages are used within a single project and which lan-
guages are typically used together. In the study, the authors distinguish programming,
documentation, presentation, data, and automation languages. The authors found that
six languages are used on average in a single project. However, without considering
documentation languages which are used for describing programming artifacts such as
architecture and design decisions, the number decreases to about five languages per
project on average. Additionally, the authors discovered that certain languages typi-
cally appear together. For instance, the build management tool make is mainly used in
projects with C and C++ as main languages while XML typically appears with GPLs
such as Objective-C and Java. Though the study revealed that developers use a couple
of GPLs and DSLs, it is not clear whether the languages actually interact as described
in Section 2.2. For instance, the only interaction between the build management tool
make and source code written in C is that make builds C source code at build time.
However, we have to assume that, in general, no interaction exists between make and
an application written in C at runtime.

In [Mayer and Bauer, 2015], the authors present one of the most recent studies on the
structure of open-source projects in respect to polyglot programming. In this study,

7https://sourceforge.net/
8http://hadoop.apache.org/
9https://www.github.com/

https://sourceforge.net/
http://hadoop.apache.org/
https://www.github.com/

106 7. Related Work

the authors examine 1, 150 open-source projects hosted on GitHub10. The authors
found that on average developers use five different programming languages within an
open-source project. Based on the results, the authors also observed a relation between
certain project attributes and the number of languages used in that project. In partic-
ular, the authors observed a direct relation between number of commits, project size,
and some of the GPLs used in the examined projects. For instance, there is a direct
relation between C as the project’s main language and the number of other languages
used in that project. The authors observed the same effect for languages used for web
development such as JavaScript and Ruby. Finally, in accordance with Tomassetti and
Torchiano [2014] the authors discovered that certain language combinations are more
frequently used than others. For instance, the build management tool make is mainly
used in projects with C and C++ as main languages while shell scripts are also used
within projects that use Python and Perl as main languages. However, also this study
does not investigate whether the languages just appear together or interact with each
other.

7.4 Change Detection

In this section, we list approaches which are related to our approach to change detec-
tion based on structure graphs (cf. Section 4.3). We focus on approaches related to
refactoring.

UMLDiff returns a change set based on the comparison of two class models [Xing and
Stroulia, 2005]. UMLDiff is part of a development tool suite called JDEvAn [Xing and
Stroulia, 2008]. JDEvAn is able to extract a data model of a software application’s
class hierarchy directly from the application’s source-code repository. The data model
is based on UML. The UMLDiff approach comprises different algorithms and heuristics
to detect renamed, added, and removed elements. These algorithms and heuristics may
be useful to improve change detection between structure graphs because our current ap-
proach is based on the assumption that we only detect unambiguous node modifications
between two revisions of a structure graph.

In [Dig et al., 2006; Taneja et al., 2007], the authors present tools for detecting refac-
torings applied between two versions of a framework or library, respectively: Refactor-
ingCrawler and RefacLib. The RefactoringCrawler uses shingles [Broder, 1997] to find
similar methods, classes, and packages. Then, RefactoringCrawler applies the strate-
gies of each of the supported refactorings until it cannot detect any new refactorings.
The refactorings supported by RefactoringCrawler are Rename Package, Rename Class,
Rename Method, Pull Up Method, Push Down Method, Move Method, and Change
Method Signature. The refactoring strategies apply a combination of syntactic and
semantic checks to identify a refactoring. The semantic checks are based on reference
counts. For instance, the Rename Method strategy checks syntactically, if a method
shares the same package and class but not name between two versions of a framework.

10https://www.github.com/

https://www.github.com/

7.4. Change Detection 107

Then, the strategy checks semantically, if the method is referenced as often in version
one as in version two. If both conditions hold, the strategy considers the method to
be renamed. The refactoring strategies share a refactoring log which contains already
detected refactorings. By sharing the log, strategies are able to detect compound refac-
torings such as a Rename Class and Rename Method refactoring. Without the log
the Rename Method refactoring would go undetected because the classes between two
versions do not share the same name. The RefacLib replaces the semantic check based
on references implemented in the RefactoringCrawler by heuristics. Taneja et al. [2007]
show that heuristics detect more refactorings in libraries where references to a library’s
Application Programming Interface (API) are missing because a library exposes, but
does not use its API.

In [Robbes, 2007], the author presents the idea of change-based software repositories as
a technical approach to improve the assessment of the evolution of software applications.
A change-based software repository represents software systems not as a consecutive list
of file states, but as a list of changes to the software application’s AST. The repository
actively logs and distinguishes atomic change operations like node creation and removal
as well as composite change operations which aggregate a number of atomic change
operations like refactorings. In [Robbes and Lanza, 2008], the authors implement a
tool called SpyWare based on the idea of change-based software repositories. The
sql-schema-comparer Eclipse Plug-in actively logs changes on the structure elements
involved in language interaction, too (cf. Section 5.2.2 and Figure 5.11). Thus, our
approach to change detection could be seen as a first attempt to a multi-language
change-based software repository. Adding support for composite change operations
and refactoring detection as proposed in [Robbes, 2007] would be an interesting next
step to further improve the refactoring support in MLSAs for developers.

In [Negara et al., 2012, 2013], the authors present a tool called CodingTracker which
allows the authors to track source-code edits in the Eclipse IDE. Moreover, the recorded
data allows the authors to reproduce the exact state of the source code at any point
in time. Apart from the actual source-code modifications, CodeTracker records other
development activities such as interactions with the Version Control System (VCS) and
unit-test runs. Though CodingTracker implements a notion of a change-based software
repository similar to SpyWare, CodingTracker does not rely on an AST, but on actual
source-code changes. The authors of CodingTracker emphasize that recording source-
code changes allows for a more complete tracking of the coding activities and, thus, for
a more fine-grained analysis of source-code evolution.

108 7. Related Work

8. Conclusion and Future Work

Polyglot programming is a paradigm that emphasizes the importance of using the right
tool for the right job in contrast to using only one tool to implement the requirements
of a software application. To be able to efficiently use different programming languages
in a software project, developers must be able to call program logic implemented in
one programming language from program logic implemented in another programming
language. That is, developers need to be able to implement an interaction between
program logic implemented in different programming languages. The desired result
is a Multi-Language Software Application (MLSA), that is an application in which
developers achieve optimal results in respect to maintainability and performance for all
implemented requirements.

With each programming language, may it be a General-Purpose Programming Lan-
guage (GPL) or Domain Specific Language (DSL), the developer may be faced with
a new tool chain which allows developers to compile or to interpret, to debug, and to
analyze that language. However, in general all these tools are not aware of the different
programming languages developers use to implement an MLSA. Thus, developers have
no means to statically check language interaction when they refactor or extend an ap-
plication. Without any support of compilers and other code-analysis tools, developers
depend on a sufficient test coverage for instance by integration tests to check the func-
tionality of the language interaction. However, in practice we cannot rely on a sufficient
coverage by such tests.

In this thesis, we described specific challenges of refactoring MLSAs in respect to a
database application and we introduced a generalized structure of MLSAs to show the
diverse challenges developers of automated refactoring solutions have to solve in re-
spect to polyglot programming and MLSAs. We introduced an approach to support
developers who refactor MLSAs. The approach considers the possible diversity of lan-
guages present in an MLSA and the unknown effects which source-code modifications
could have on the interaction between program logic implemented in different languages.

110 8. Conclusion and Future Work

The main idea of our approach is to allow specialized abstractions based on graphs of
trees for modeling the interaction between a number of programming languages. With
graphs, we can use a single mechanism for checking the interaction between languages.

8.1 Summary of the Thesis

In Chapter 3, we described the diverse challenges developers may face by refactoring a
database application implemented with the object-oriented programming language Java
and the functional programming language Clojure as well as the relational database
SQLite. The interaction between Java and Clojure is implemented by dynamic invo-
cations of functions defined in Clojure from program logic implemented in Java. The
interaction between Java and SQLite is implemented with the object-relational mapper
Hibernate. Additionally, we theoretically discussed general challenges in respect to a
generalized model of MLSAs.

In Chapter 4, we introduced a tree-based approach to support refactoring in an MLSA.
The approach focusses on developer support rather than refactoring automation. We
also described how developers can follow-up on changes that affect language interaction
based on our approach. Furthermore, we justified the general applicability and discussed
the performance of our approach.

In Chapter 5, we presented the implementation of our approach for two language com-
binations: Java and SQL as well as Java and Clojure. We also presented a single
library which implements the integrity check for both of the language combinations
and a prototypical integration of our approach into the Eclipse IDE. In Chapter 6, we
reported on results of an evaluation of our approach for Java and SQL conducted with
79 participants.

Finally, in Chapter 7 we drew a line from approaches to re-use refactorings for different
languages to the current approaches to Multi-Language Refactoring (MLR). We also
discussed studies on refactoring tools for MLR and studies on the structure of open-
source MLSAs. This chapter contains also a discussion of other works related to our
approach or its implementation.

8.2 Contribution

In this thesis, we described specific as well as general challenges implementors of auto-
mated MLRs are faced with in an MLSA. We presented, implemented, and evaluated an
approach taking the possible diversity of MLSAs into account by providing direct sup-
port for developers who refactor an MLSA. Furthermore, we provided a experimental
design for evaluating refactoring tools’ impact on development performance in respect
to different refactoring tasks in an MLSA.

8.3. Future Work 111

Challenges for automated refactoring in MLSAs.

We reported on specific challenges for refactoring within a database application imple-
mented with the help of the object-oriented programming language Java, the functional
programming language Clojure, and the relational database SQLite. In particular, we
found that (1) not only different options exist to adapt an MLSA to a refactoring, but
that the complexity of the different options can be significantly different, (2) a refactor-
ing of one artifact can lead to a semantic-changing adaption of another artifact, and (3)
the implementation of language interaction depends on the framework that implements
the interaction. With the help of a generalized description of the structure of MLSAs,
we deduced the general challenges for realizing automated MLR.

Approach to general refactoring support in MLSAs.

We presented an approach based on tree structures to provide developers with refactor-
ing support in MLSAs. In particular, based on tree structures, which we call structure
graphs in this context, we are able to implement checks for language interaction and
to provide information on previous changes of structure elements involved in language
interaction. We described two tools that provide specific refactoring support for the in-
teraction between the programming languages Java and Clojure and between Java and
SQL. Both tools re-use the same implementation for the check of language interaction
which we implemented in a separate library. Additionally, we evaluated one of our tools
and provided a differentiated analysis of the tool’s effect on developers’ performance.

Experimental design for evaluating refactoring tools for MLSAs.

We introduced an experimental design for the evaluation of the tool which checks the
interaction between Java and SQL. The experimental design considers different refactor-
ing tasks and, additionally, the participants’ development experience as a confounding
parameter. Thus, with the help of this experimental design we are able to compare
the effect of different tools on the same language interaction on the one hand. On the
other hand, by modifying the tasks and experimental objects we are able to re-use the
experimental design for different language combinations.

8.3 Future Work

In Chapter 3, we described effects of different refactorings on an MLSA to emphasize
the diversity of refactoring challenges. In order to guide the future development of refac-
toring tools for MLSAs, we think it is beneficial to extend this investigation to other
combinations of GPLs and DSLs. Furthermore, we think that with such a catalog of
implementations it becomes easier for researchers and practitioner to further investigate
commonalities and differences of language interaction. Such information could be used
to further improve the implementation of existing language interactions and of develop-
ment tools that explicitly consider MLSAs. For instance, in Section 5.2 we augmented
the our model for language interaction between Java and SQL with information about

112 8. Conclusion and Future Work

foreign-key relationships. Based on this language-specific extension our tool can provide
additional information about broken language interaction.

We described how to use specialized tree structures to enable the check of diverse lan-
guage combinations (cf. Section 4.2). Specialized tree structures allow tool developers
to model the specific structure elements which are involved in language interaction. In
practice, only a small number of structure elements may be relevant. For instance,
for the interaction with a relational database only structure elements such as tables,
columns, and column types may be of interest. Thus, we believe that only structure
elements present in popular language paradigms like the aforementioned elements of the
relational model, classes, and methods are relevant in practice. Further investigation of
this question could potentially lead to a small number of models which are sufficient to
represent the language interaction between most of the languages relevant in practice.

With the change detection algorithm (see Section 4.3), we described a possible ap-
proach to track changes to structure elements involved in language interaction based on
structure graphs. We stated that information about changes of the elements involved
in language interaction can help developers to fix broken language interactions. The
sql-schema-comparer Eclipse plug-in in fact tracks change information, but does not
persist this information yet. Furthermore, since not all developers use IDEs, it could
be beneficial to extract such information from source-code repositories.

In Chapter 5, we described our implementation of the structure-graph approach. Based
on our experience with the implementation, we recognized the effort for creating the
language front-ends. However, we believe that significant steps for creating language
front-ends can be automated. For instance, existing parsers and parser generators
can easily retrieve the structure elements involved in language interaction. Based on
a mapping between language-specific types of structure elements and node types for
a structure graph, an automated processing can build instances of structure graphs
automatically. By automating these steps, tool developers gain time to extract further
information like type information that may not straight-forward to deduce by static
code analysis.

In respect to the evaluation of refactoring tools for MLSAs, a number of opportunities
exist to further improve and extend the experimental design presented in Chapter 6.
For instance, different measures of productivity might be relevant and should be con-
sidered. A differentiated evaluation of productivity will become even more important
the more tools mature. In our study, we considered two experimental objects, that is
two open-source projects implemented in Java which access a relational database via an
object-relational mapper. We believe that a catalogue of experimental objects is nec-
essary to reflect the diversity of MLSA implementations. A catalogue of experimental
objects would also help us to assess the generality of the implementation in respect to
different language combinations. However, an interesting question is how differences in
the quality of language front-ends could be considered as a confounding parameter. As
for the experimental objects, a catalogue of refactoring tasks for different MLSA setups
is helpful to implement an easily reproducible experimental design.

A. Appendix

A.1 Implementation

A.1.1 Structure Graph Library

org.iti.structureGraph

<<interface>>

IStructureGraph

getStructureElement(String):IStructureElement
getEdge(String):DefaultEdge
getSourceElement(DefaultEdge):IStructureElement
getTargetElement(DefaultEdge):IStructureElement
getParent(IStructureElement):IStructureElement
getIdentifier(IStructureElement):String
getPath(IStructureElement):String
getPath(IStructureElement,boolean):String
getStructureElements(String):List<IStructureElement>
getStructureElements(String, boolean):List<IStructureElement>
getIdentifiers():List<String>
getPathes():List<String>

StructureGraph

StructureGraph(DirectedGraph<IStructureElement, DefaultEdge>)

Figure A.1: Package org.iti.structureGraph with interfaces and classes for imple-
menting structure graphs.

114 A. Appendix

org.iti.structureGraph.comparison

<<interface>>

IStructureGraphComparer

getStructureElement(String):IStructureElement
getEdge(String):DefaultEdge
getSourceElement(DefaultEdge):IStructureElement
getTargetElement(DefaultEdge):IStructureElement
getParent(IStructureElement):IStructureElement
getIdentifier(IStructureElement):String
getPath(IStructureElement):String
getPath(IStructureElement,boolean):String
getStructureElements(String):List<IStructureElement>
getStructureElements(String, boolean):List<IStructureElement>
getIdentifiers():List<String>
getPathes():List<String>

SimpleStructureGraphComparer StatementStructureGraphComparer StructureGraphComparer

StructureGraphComparisonException

Figure A.2: Package org.iti.structureGraph.comparison with interfaces and classes
for implementing structure-graph comparison.

A.1. Implementation 115

or
g.

iti
.s

tr
uc

tu
re

G
ra

ph
.c

om
pa

ri
so

n.
re

su
lt

<<
in

te
rf

ac
e>

>

IM
od

if
ic

at
io

nD
et

ai
l

ge
tI

de
nt

if
ie

r(
):

St
ri

ng

<<
in

te
rf

ac
e>

>

IS
tr

uc
tu

re
M

od
if

ic
at

io
n

ge
tI

de
nt

if
ie

r(
):

St
ri

ng
ge

tT
yp

e(
):

Ty
pe

ge
tM

od
if

ic
at

io
nD

et
ai

l(
):

IM
od

ifi
ca

tio
nD

et
ai

l

O
ri

gi
na

lS
tr

ut
ur

eE
le

m
en

t

O
ri

gi
na

lS
tr

ut
ur

eE
le

m
en

t(
St

ri
ng

)

St
ru

tu
re

E
le

m
en

tM
od

if
ic

at
io

n

St
ru

tu
re

E
le

m
en

tM
od

if
ic

at
io

n(
St

ri
ng

, S
tr

in
g,

 T
yp

e)
St

ru
tu

re
E

le
m

en
tM

od
if

ic
at

io
n(

St
ri

ng
, S

tr
in

g,
 T

yp
e,

 IM
od

ifi
ca

tio
nD

et
ai

l)
ge

tP
at

h(
):

St
ri

ng

St
ru

tu
re

Pa
th

M
od

if
ic

at
io

n

St
ru

tu
re

Pa
th

M
od

if
ic

at
io

n(
St

ri
ng

, D
ef

au
ltE

dg
e,

 IS
tr

uc
tu

re
E

le
m

en
t,

IS
tr

uc
tu

re
E

le
m

en
t,

Ty
pe

)
St

ru
tu

re
Pa

th
M

od
if

ic
at

io
n(

St
ri

ng
, D

ef
au

ltE
dg

e,
 IS

tr
uc

tu
re

E
le

m
en

t,
IS

tr
uc

tu
re

E
le

m
en

t,
Ty

pe
, I

M
od

ifi
ca

tio
nD

et
ai

l)
ge

tE
dg

e(
):

D
ef

au
ltE

dg
e

ge
tS

ou
rc

eE
le

m
en

t(
):

IS
tr

uc
tu

re
E

le
m

en
t

ge
tT

ar
ge

tE
le

m
en

t(
):

IS
tr

uc
tu

re
E

le
m

en
t

ge
tM

od
if

ic
at

io
nD

et
ai

l(
):

IM
od

ifi
ca

tio
nD

et
ai

l

<<
en

um
er

at
io

n>
>

T
yp

e

N
on

e
N

od
eA

dd
ed

N
od

eM
ov

ed
N

od
eR

en
am

ed
N

od
eD

el
et

ed
Pa

th
A

dd
ed

Pa
th

R
en

am
ed

Pa
th

D
el

et
ed

St
ru

ct
ur

eG
ra

ph
C

om
pa

ri
so

nR
es

ul
t

St
ru

ct
ur

eG
ra

ph
C

om
pa

ri
so

nR
es

ul
t(

IS
tr

uc
tu

re
G

ra
ph

, I
St

ru
ct

ur
eG

ra
ph

)
ge

tO
ld

G
ra

ph
()

:I
St

ru
ct

ur
eG

ra
ph

ge
tN

ew
G

ra
ph

()
:I

St
ru

ct
ur

eG
ra

ph
ge

tM
od

if
ic

at
io

ns
()

:M
ap

<S
tr

in
g,

 IS
tr

uc
tu

re
M

od
ifi

ca
tio

n>
ge

tN
od

eM
od

if
ic

at
io

ns
()

:M
ap

<S
tr

in
g,

 IS
tr

uc
tu

re
M

od
ifi

ca
tio

n>
ge

tP
at

hM
od

if
ic

at
io

ns
()

:M
ap

<S
tr

in
g,

 IS
tr

uc
tu

re
M

od
ifi

ca
tio

n>
ge

tM
od

if
ic

at
io

ns
(C

la
ss

<?
>)

:M
ap

<S
tr

in
g,

 IS
tr

uc
tu

re
M

od
ifi

ca
tio

n>
ad

dM
od

if
ic

at
io

n(
St

ri
ng

, I
St

ru
ct

ur
eM

od
ifi

ca
tio

n)
re

m
ov

eM
od

if
ic

at
io

n(
St

ri
ng

)
ge

tE
le

m
en

ts
B

yM
od

if
ic

at
io

n(
Ty

pe
):

C
ol

le
ct

io
n<

IS
tr

uc
tu

re
E

le
m

en
t>

ge
tE

le
m

en
ts

B
yN

am
e(

St
ri

ng
, T

yp
e)

:C
ol

le
ct

io
n<

IS
tr

uc
tu

re
E

le
m

en
t>

ge
tE

le
m

en
tB

yN
am

e(
St

ri
ng

, T
yp

e)
:C

ol
le

ct
io

n<
IS

tr
uc

tu
re

E
le

m
en

t>

F
ig

u
re

A
.3

:
P

ac
ka

ge
o
r
g
.
i
t
i
.
s
t
r
u
c
t
u
r
e
G
r
a
p
h
.
c
o
m
p
a
r
i
s
o
n
.
r
e
s
u
l
t

w
it

h
in

te
rf

ac
es

an
d

cl
as

se
s

fo
r

im
p
le

m
en

ti
n
g

st
ru

ct
u
re

-
gr

ap
h

co
m

p
ar

is
on

re
su

lt
s.

116 A. Appendix

A.1.2 Sql-Schema-Comparer Library

Source Type Class

H2 H2SchemaFrontend

SQLite SqliteSchemaFrontend

SELECT statement SqlStatementFrontend

JPA entity JPASchemaFrontend

Table A.1: Available front-ends for structure-graph creation in the sql-schema-comparer
library.

A.1. Implementation 117

or
g.

iti
.s

ql
Sc

he
m

aC
om

pa
ri

so
n.

ed
ge

<<
in

te
rf

ac
e>

>

IT
ab

le
H

as
C

ol
um

n

ge
tT

ab
le

()
:S

ql
Ta

bl
eV

er
te

x
ge

tC
ol

um
n(

):
Sq

lC
ol

um
nV

er
te

x

T
ab

le
H

as
C

ol
um

n

T
ab

le
H

as
C

ol
um

nE
dg

e(
IS

tr
uc

tu
re

E
le

m
en

t,
IS

tr
uc

tu
re

E
le

m
en

t

<<
in

te
rf

ac
e>

>

IC
ol

um
nH

as
C

on
st

ra
in

t

C
ol

um
nH

as
T

yp
e

C
ol

um
nH

as
C

on
st

ra
in

t

<<
in

te
rf

ac
e>

>

IF
or

ei
gn

K
ey

R
el

at
io

nE
dg

e

ge
tR

ef
er

en
ci

ng
C

ol
um

n(
):

Sq
lC

ol
um

nV
er

te
x

ge
tF

or
ei

gn
K

ey
T

ab
le

()
:S

ql
Ta

bl
eV

er
te

x
ge

tF
or

ei
gn

K
ey

C
ol

um
n(

):
Sq

lC
ol

um
nV

er
te

x

Fo
re

ig
nK

ey
R

el
at

io
nE

dg
e

Fo
re

ig
nK

ey
R

el
at

io
nE

dg
e(

IS
tr

uc
tu

re
E

le
m

en
t,

IS
tr

uc
tu

re
E

le
m

en
t,

IS
tr

uc
tu

re
E

le
m

en
t)

F
ig

u
re

A
.4

:
P

ac
ka

ge
o
r
g
.
i
t
i
.
s
c
h
e
m
a
C
o
m
p
a
r
i
s
o
n
.
e
d
g
e

w
it

h
in

te
rf

ac
es

fo
r

im
p
le

m
en

ti
n
g

ed
ge

s
b

et
w

ee
n

st
ru

ct
u
re

el
em

en
ts

fo
r

d
at

ab
as

e
sc

h
em

at
a.

118 A. Appendix

org.iti.sqlSchem
aC

om
parison.vertex

<<interface>>

ISqlE
lem

ent

getSourceE
lem

ent():O
bject

setSourceE
lem

ent(O
bject)

SqlT
ableV

ertex

SqlT
ableV

ertex(String)

SqlC
olum

nV
ertex

SqlC
olum

nV
ertex(String,String)

C
olum

nT
ypeV

ertex

C
olum

nT
ypeV

ertex(String,String)

<<interface>>

IC
olum

nC
onstraint

getC
onstraintT

ype():C
onstraintType

getC
onstraintE

xpression(String)

C
olum

nC
onstraintV

ertex

C
olum

nC
onstraintV

ertex(String,C
onstraintType)

C
olum

nC
onstraintV

ertex(String,C
onstraintType,String)

F
igu

re
A

.5:
P

ackage
o
r
g
.
i
t
i
.
s
c
h
e
m
a
C
o
m
p
a
r
i
s
o
n
.
v
e
r
t
e
x

w
ith

in
terfaces

for
im

p
lem

en
tin

g
stru

ctu
re

elem
en

ts
for

d
atab

ase
sch

em
ata.

A.1. Implementation 119

or
g.

iti
.s

ql
Sc

he
m

aC
om

pa
ri

so
n.

fr
on

te
nd

s

IS
ql

Q
ue

ry
Fr

on
te

nd

ge
tQ

ue
ry

T
yp

e(
):

Q
ue

ry
Ty

pe

<<
en

um
er

at
io

n>
>

Q
ue

ry
T

yp
e

D
M

L
D

Q
L

IS
ql

Sc
he

m
aF

ro
nt

en
d

cr
ea

te
Sq

lS
ch

em
a(

):
D

ir
ec

te
dG

ra
ph

<I
St

ru
ct

ur
eE

le
m

en
t,

D
ef

au
ltE

dg
e>

Sq
lS

ta
te

m
en

tF
ro

nt
en

d

Sq
lS

ta
te

m
en

tF
ro

nt
en

d(
St

ri
ng

, D
ir

ec
te

dG
ra

ph
<I

St
ru

ct
ur

eE
le

m
en

t,
D

ef
au

ltE
dg

e>
)

ge
tS

ta
te

m
en

tS
tr

in
g(

):
St

ri
ng

ge
tD

at
ab

as
eS

ch
em

a(
):

D
ir

ec
te

dG
ra

ph
<I

St
ru

ct
ur

eE
le

m
en

t,
D

ef
au

ltE
dg

e>

or
g.

iti
.s

ql
Sc

he
m

aC
om

pa
ri

so
n.

da
ta

ba
se

H
2S

ch
em

aF
ro

nt
en

d

H
2S

ch
em

aF
ro

nt
en

d(
St

ri
ng

)

Sq
lit

eS
ch

em
aF

ro
nt

en
d

Sq
lit

eS
ch

em
aF

ro
nt

en
d(

St
ri

ng
)

or
g.

iti
.s

ql
Sc

he
m

aC
om

pa
ri

so
n.

te
ch

no
lo

gi
es

IJ
PA

Sc
he

m
aF

ro
nt

en
d

JP
A

Sc
he

m
aF

ro
nt

en
d

JP
A

Sc
he

m
aF

ro
nt

en
d(

St
ri

ng
)

F
ig

u
re

A
.6

:
P

ac
ka

ge
o
r
g
.
i
t
i
.
s
c
h
e
m
a
C
o
m
p
a
r
i
s
o
n
.
f
r
o
n
t
e
n
d
s

w
it

h
in

te
rf

ac
es

fo
r

im
p
le

m
en

ti
n
g

fr
on

t-
en

d
s

fo
r

ex
tr

ac
ti

n
g

d
at

ab
as

e
sc

h
em

at
a.

120 A. Appendix

org.iti.sqlSchem
aC

om
parison

SqlSchem
aC

om
parer

com
parisonR

esult:SqlSchem
aC

om
parisonR

esult
SqlSchem

aC
om

parer(D
irectedG

raph<IStructureE
lem

ent, D
efaultE

dge>,D
irectedG

raph<IStructureE
lem

ent, D
efaultE

dge>)
isIsom

orphic():boolean

SqlSchem
aC

om
parisonR

esult

getM
odifications():M

ap<ISqlE
lem

ent, Schem
aM

odification>
rem

oveM
odification():ISqlE

lem
ent

getA
ddedForeignK

eyR
elations():L

ist<IForeignK
eyR

elationE
dge>

setA
ddedForeignK

eyR
elations(L

ist<IForeignK
eyR

elationE
dge>)

getR
em

ovedForeignK
eyR

elations():L
ist<IForeignK

eyR
elationE

dge>
setR

em
ovedForeignK

eyR
elations(L

ist<IForeignK
eyR

elationE
dge)

SqlStatem
entE

xpectationV
alidator

SqlStatem
entE

xpectationV
alidator(D

irectedG
raph<IStructureE

lem
ent, D

efaultE
dge>)

com
puteG

raphM
atching(D

irectedG
raph<IStructureE

lem
ent, D

efaultE
dge>):SqlStatem

entE
xpectationV

alidationR
esult

com
puteG

raphM
atching(D

irectedG
raph<IStructureE

lem
ent, D

efaultE
dge>, Q

ueryType):SqlStatem
entE

xpectationV
alidationR

esult

SqlStatem
entE

xpectationV
alidationR

esult

SqlStatem
entE

xpectationV
alidationR

esult(L
ist<IStructureE

lem
ent>, L

ist<IStructureE
lem

ent>, M
ap<IStructureE

lem
ent, L

ist<L
ist<IStructureE

lem
ent»>)

getM
issingT

ables():L
ist<ISqlE

lem
ent>

getM
issingC

olum
ns():L

ist<ISqlE
lem

ent>
getM

issingB
utR

eachableC
olum

ns():M
ap<ISqlE

lem
ent, L

ist<L
ist<ISqlE

lem
ent»>

isStatem
entV

alid():boolean

F
igu

re
A

.7:
P

ackage
o
r
g
.
i
t
i
.
s
c
h
e
m
a
C
o
m
p
a
r
i
s
o
n

w
ith

classes
for

com
p
arin

g
d
atab

ase
sch

em
ata

w
ith

each
oth

er
an

d
d
atab

ase
sch

em
ata

w
ith

S
Q

L
S
E
L
E
C
T

statem
en

ts.

A.1. Implementation 121

org.iti.sqlSchemaComparison

<<enumeration>>

SchemaModification

NO_MODIFICATION
CREATE_TABLE
DELETE_TABLE
RENAME_TABLE
CREATE_COLUMN
DELETE_COLUMN
RENAME_COLUMN
MOVE_COLUMN
CREATE_CONSTRAINT
DELETE_CONSTRAINT
CREATE_COLUMN_TYPE
DELETE_COLUMN_TYPE
CHANGE_COLUMN_TYPE

Figure A.8: Package org.iti.schemaComparison with an enumeration to distinguish
different database schema modifications.

122 A. Appendix

org.iti.sqlSchem
aC

om
parison.reachability

<<interface>>

ISqlE
lem

entR
eachabilityC

hecker

isR
eachable():boolean

getPath():L
ist<ISqlE

lem
ent>

SqlC
olum

nR
eachabilityC

hecker

SqlC
olum

nR
eachabilityC

hecker(D
irectedG

raph<IStructureE
lem

ent, D
efaultE

dge>, ISqlE
lem

ent, ISqlE
lem

ent)

F
igu

re
A

.9:
P

ackage
o
r
g
.
i
t
i
.
s
c
h
e
m
a
C
o
m
p
a
r
i
s
o
n
.
r
e
a
c
h
a
b
i
l
i
t
y

w
ith

u
tility

class
to

ch
eck

reach
ab

ility
of

colu
m

n
n
o
d
es.

A.1. Implementation 123

A.1.3 Clojure-Java-Interface-Checker Library

org.iti.clojureJavaInterfaceVerifier.edge

HasParameter HasMethod

Figure A.10: Package org.iti.clojureJavaInterfaceVerifier.edges with edges for
connecting elements of Clojure functions.

Introduction Tasks

Experiment
Multi-Language Refactoring

Tasks

Hagen Schink

Institute of Technical and Business Information Systems
Otto-von-Guericke-University of Magdeburg, Germany

Hagen Schink

Experiment - Multi-Language Refactoring 1/10

124 A. Appendix

A.2 Evaluation

A.2.1 Introduction

Introduction Tasks

MLR

A Short Intro to Multi-Language Refactoring (MLR)

Many programming languages (PL) exist

Different PLs may be used to implement a software

The different PLs interact with each other

Refactoring code of one PL may affect code of another PL

A refactoring considering different PLs is called MLR

Example

Java code includes an SQL query referencing a table in a relational
database. If we change the queried table’s identifier, we need to
adapt the SQL query in the Java code too.

Hagen Schink

Experiment - Multi-Language Refactoring 2/10

Introduction Tasks

MLR

MLR Setup in the Experiment

The experiment focuses on the interaction between Java
source-code and relational databases. More specifically, on the
interaction between JPA1 annotated Java classes and H22

databases.

1https://jcp.org/en/jsr/detail?id=338
2http://www.h2database.com/

Hagen Schink

Experiment - Multi-Language Refactoring 3/10

A.2. Evaluation 125

Introduction Tasks

Syncope & AppFuse

Objects of the Experiment

Apache Syncope3

...is an Open Source system for managing digital identities in
enterprise environments, implemented in JEE technology... .

AppFuse4

...is a full-stack framework for building web applications on the
JVM.

3http://syncope.apache.org/
4http://appfuse.org/

Hagen Schink

Experiment - Multi-Language Refactoring 4/10

Introduction Tasks

Syncope & AppFuse

Schema of Java/Database Interaction

JPA/Hibernate

H2
DatabaseAppFuse/Syncope

Java
classJava

classJava
class

AppFuse DB Seeds (Tests)

DbUnit

Hagen Schink

Experiment - Multi-Language Refactoring 5/10

126 A. Appendix

Introduction Tasks

Syncope & AppFuse

A short Introduction to JPA

A Java class annotated with @Entity is persisted to a table

The mapped table’s name is...

either derived from the class name
or set with the @Table annotation

Persisted class’ getter/setter methods map to table columns

Methods annotated with @Transient are ignored

Getter/Setter method identifiers must match
(getName/setName)

The mapped column’s name is...

either derived from the method name (getName → name)
or set with the @Column annotation

Hagen Schink

Experiment - Multi-Language Refactoring 6/10

Introduction Tasks

Syncope & AppFuse

Organization of Tasks and how to run Unit Tests

Each task has a link on the desktop

Each link starts a pre-configured Eclipse

You start unit tests using the Run menu, more specifically

A the run configuration dialog
B the run history

Hagen Schink

Experiment - Multi-Language Refactoring 7/10

A.2. Evaluation 127

Introduction Tasks

Introductory Task - Rename of Column Refactoring

In the database of project HRManager a developer applied a
rename column refactoring to column surname of table
customers and renamed it to lastname. Because of the
refactoring HRManager’s unit tests fail.

Task

Fix the unit tests by adapting HRManager’s source code to the
rename of the database column. Don’t revert the database
refactoring or remove the unit tests!

Hagen Schink

Experiment - Multi-Language Refactoring 8/10

Introduction Tasks

Before we start...

On the desktop you find a link
Fragebogen und Aufgaben (questionnaire and tasks).

Please answer the questionnaire.

Following the questionnaire you’ll find the tasks.

Hagen Schink

Experiment - Multi-Language Refactoring 9/10

128 A. Appendix

Introduction Tasks

Any Questions?

Have fun!

Hagen Schink

Experiment - Multi-Language Refactoring 10/10

SQL Schema Comparer Eclipse Plug-In

Introduction

The SQL Schema Comparer Eclipse Plug-In...

compares SQL queries/JPA entities with a database schema

detects

invalid table references
invalid column references
moved columns

marks affected SQL queries/JPA entities in Eclipse IDE

Hagen Schink

Experiment - Multi-Language Refactoring 1/3

A.2. Evaluation 129

SQL Schema Comparer Eclipse Plug-In

Usage

Activate the SSCEP by using the switch in the context menu

Hagen Schink

Experiment - Multi-Language Refactoring 2/3

SQL Schema Comparer Eclipse Plug-In

Notes about the Plug-In Behavior

If you close Eclipse while the plug-in is activated, you need to set
trigger the switch in the context menu twice on the next start.

Hagen Schink

Experiment - Multi-Language Refactoring 3/3

130 A. Appendix

A.2. Evaluation 131

132 A. Appendix

A.2.2 Questionnaire
Q

u
e
st

io
n

S
ca

le

Q
1.

H
ow

ol
d

ar
e

yo
u
?

Q
2.

W
h
at

ye
ar

d
id

yo
u

en
ro

ll
at

u
n
iv

er
si

ty
?

Q
3.

G
en

d
er

F
em

al
e

or
M

al
e

Q
4.

W
h
at

is
yo

u
r

m
a
jo

r?
Q

5.
H

ow
d
o

yo
u

es
ti

m
at

e
yo

u
r

p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

?
1

(v
er

y
li
tt

le
)

to
10

(v
er

y
m

u
ch

)
Q

6.
F

or
h
ow

m
an

y
ye

ar
s

h
av

e
yo

u
b

ee
n

p
ro

gr
am

m
in

g?
Q

7.
H

ow
m

an
y

co
u
rs

es
d
id

yo
u

ta
ke

in
w

h
ic

h
yo

u
h
ad

to
im

p
le

m
en

t
so

u
rc

e
co

d
e?

Q
8.

H
ow

ex
p

er
ie

n
ce

d
ar

e
yo

u
w

it
h

th
e

fo
ll
ow

in
g

la
n
gu

ag
es

?
(J

av
a,

C
,

H
as

ke
ll
,

P
ro

lo
g)

0
(v

er
y

in
ex

p
er

ie
n
ce

d
)

to
4

(v
er

y
ex

p
er

ie
n
ce

d
)

Q
9.

H
ow

m
an

y
ad

d
it

io
n
al

la
n
gu

ag
es

d
o

yo
u

k
n
ow

(m
ed

iu
m

ex
p

er
ie

n
ce

or
b

et
te

r)
?

Q
10

.
H

ow
ex

p
er

ie
n
ce

d
ar

e
yo

u
w

it
h

th
e

fo
ll
ow

in
g

p
ro

gr
am

m
in

g
p
ar

ad
ig

m
s?

(l
og

ic
al

,
fu

n
ct

io
n
al

,
im

p
er

at
iv

e,
ob

je
ct

-o
ri

en
te

d
)

0
(v

er
y

in
ex

p
er

ie
n
ce

d
)

to
4

(v
er

y
ex

p
er

ie
n
ce

d
)

Q
11

.
A

re
yo

u
or

h
av

e
yo

u
b

ee
n

w
or

k
in

g
on

a
la

rg
er

p
ro

gr
am

m
in

g
p
ro

je
ct

in
a

co
m

p
an

y
or

at
th

e
u
n
iv

er
si

ty
?

Y
es

or
N

o

Q
12

.
F

or
h
ow

m
an

y
ye

ar
s

h
av

e
yo

u
b

ee
n

p
ro

gr
am

m
in

g
fo

r
la

rg
er

so
ft

w
ar

e
p
ro

je
ct

s?
Q

13
.

W
h
at

d
om

ai
n

w
er

e
th

es
e

p
ro

je
ct

s
re

la
te

d
to

(D
at

ab
as

es
,

O
p

er
at

in
g

S
y
st

em
s,

W
eb

A
p
p
li
ca

ti
on

s)
?

Q
14

.
H

ow
la

rg
e

w
er

e
th

e
p
ro

fe
ss

io
n
al

p
ro

je
ct

s
ty

p
ic

al
ly

(i
n

li
n
es

of
co

d
e)

?
<

90
0;

90
0
−

40
,0

00
;

>
40
,0

00
Q

15
a.

H
ow

d
o

yo
u

es
ti

m
at

e
yo

u
r

p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

co
m

p
ar

ed
to

yo
u
r

cl
as

s
m

at
es

?
0

(c
on

si
d
er

ab
ly

w
or

se
)

to
4

(c
on

-
si

d
er

ab
ly

b
et

te
r)

Q
15

b
.

H
ow

d
o

yo
u

es
ti

m
at

e
yo

u
r

p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

co
m

p
ar

ed
to

to
ex

p
er

ts
w

it
h

20
ye

ar
s

of
p
ra

ct
ic

al
ex

p
er

ie
n
ce

?
0

(c
on

si
d
er

ab
ly

w
or

se
)

to
4

(c
on

-
si

d
er

ab
ly

b
et

te
r)

T
ab

le
A

.2
:

Q
u
es

ti
on

s
in

th
e

q
u
es

ti
on

n
ai

re
as

d
efi

n
ed

b
y

[F
ei

ge
n
sp

an
et

al
.,

20
12

].

A.2. Evaluation 133

A.2.3 Tasks

Task 1 - Rename Column Refactoring

The Syncope team decided to rename the column CHANGEPWDDATE of table SYNCOPEUSER
to CHANGEPASSWORDDATE to make the purpose of the column easier to understand. One
of the developers went ahead and changed the column name already in the development
database. Because of the renaming the Java application’s unit tests fail.

Prerequisite

Start Eclipse with C:\path\to\eclipse\executable\for\Task\1

Task

Fix the unit tests by adapting Syncope’s source code to the rename of the database
column. Don’t revert the database refactoring or remove the unit tests!

Task 2 - Move Column Refactoring

Because of an error during the creation of the AppFuse database the colum POSITION

was initially created in table ROLE and not in table APP_USER. Another developer already
moved the column and also adapted the unit tests to the new database schema. But now
the adapted unit tests fail because the actual application code remained unchanged.

Prerequisite

Start Eclipse with C:\path\to\eclipse\executable\for\Task\2

Task

Adapt AppFuse’s source code to the rename of the database column. Please note: The
unit tests are already adapted to the new database schema and you must not change
them! Don’t revert the database refactoring or remove the unit tests!

Task 3 - Change Java Attribute’s Type

In the AppFuse database the table APP_USER has a column WEBSITE that holds an URL
to the user’s website. Nevertheless, this column is treated as plain string in AppFuse’s
Java code. As H2’s Structured Query Language (SQL) dialect has no special type for
URLs, we need to ensure the validity of the URL in the Java code.

Prerequisite

Start Eclipse with C:\path\to\eclipse\executable\for\Task\3

134 A. Appendix

Task

Change the type of the Java class attribute corresponding to column WEBSITE of table
APP_USER to class URL and adapt the corresponding code and unit tests if necessary.

A.2. Evaluation 135

136 A. Appendix

A.2.4 Data

P
ar

ti
ci

p
an

t
Y

ea
r

of
M

at
ri

cu
la

ti
on

S
em

es
te

r
T

o
ol

S
u
p
p

or
t

E
x
p

er
ie

n
ce

Is E
x
p

er
ie

n
ce

d
T

as
k

1
T

as
k

2
T

as
k

3

1
20

13
3

1
72

7
0

47
7

62
7

2
20

14
7

1
0

0
59

5
57

0
3

20
13

3
1

21
81

1
91

6
62

2
26

0
4

20
13

3
1

72
7

0
76

7
75

9
20

8
5

20
13

3
1

72
7

0
74

4
78

3
79

8
6

20
13

3
1

72
7

0
54

3
63

3
7

20
13

3
1

21
81

1
62

9
62

6
8

20
12

5
1

0
0

76
3

79
5

44
6

9
20

13
3

1
21

81
1

47
8

40
8

10
20

13
3

1
14

54
1

77
6

63
7

48
1

11
20

12
5

1
14

54
1

12
09

49
6

27
8

12
20

12
5

1
72

7
0

65
0

59
4

13
20

13
3

1
14

54
1

69
5

67
3

96
3

14
20

13
3

1
72

7
0

80
0

55
7

42
6

15
20

14
7

1
72

7
0

69
9

16
20

13
3

1
14

54
1

56
1

17
20

12
5

1
14

54
1

50
0

48
7

18
20

12
5

1
72

7
0

72
6

40
0

37
4

19
20

13
3

1
14

54
1

71
4

58
4

20
20

14
7

1
72

7
0

58
1

69
1

21
20

13
3

1
14

54
1

84
9

61
3

76
7

22
20

13
3

1
72

7
0

62
4

63
6

23
20

12
5

1
72

7
0

89
1

58
8

58
6

24
20

14
7

1
72

7
0

92
6

54
7

50
2

25
20

13
3

1
72

7
0

52
3

11
78

26
20

13
3

1
21

81
1

61
2

10
19

63
0

A
.2.

E
valu

ation
137

Participant
Year of
Matriculation

Semester
Tool
Support

Experience
Is
Experienced

Task 1 Task 2 Task 3

27 2013 3 1 1454 1 670 664 785
28 2008 13 1 1454 1 975 779 759
29 2013 3 1 2181 1 442 476 313
30 2013 3 1 727 0 958 499 285
31 2012 5 1 727 0 613 247 349
32 2013 3 1 1454 1 250 393 387
33 2012 5 1 727 0 501 567 552
34 2012 5 1 727 0 446 476 768
35 2013 3 1 0 0 470 440 541
36 2013 3 1 2181 1 474 283 406
37 2012 5 1 2181 1 808 481
38 2012 5 1 1454 1 680 767 1149
39 2014 7 1 727 0 578 752 744
40 2013 3 1 727 0 743 1160 593
41 2013 3 1 1454 1 626
42 2012 5 0 1454 1 703 669 902
43 2014 7 0 727 0 1193 484 539
44 2012 5 0 1454 1 714 612
45 2012 5 0 1454 1 1295 315 368
46 2014 7 0 727 0 663 982 779
47 2009 11 0 727 0 1445 481 720
48 2014 7 0 727 0 1374 560 739
49 2013 3 0 1454 1 174 436 791
50 2011 7 0 727 0
51 2013 3 0 2908 1 1240 284 349
52 2014 7 0 727 0 1119 685 501
53 2013 3 0 727 0 1153 619 500
54 2012 5 0 727 0 883 1007 511

138
A

.
A

p
p

en
d
ix

Participant
Year of
Matriculation

Semester
Tool
Support

Experience
Is
Experienced

Task 1 Task 2 Task 3

55 2013 3 0 2181 1 983 702 685
56 2013 3 0 727 0 1000 758 881
57 2011 7 0 727 0 530 512 492
58 2013 3 0 727 0 831 386
59 2012 5 0 1454 1 609 985 430
60 2014 7 0 727 0 850 658 648
61 2014 7 0 1454 1 872 266 333
62 2013 3 0 2181 1 714 698 449
63 2014 7 0 727 0 716 626 861
64 2012 5 0 2181 1 513 411 600
65 2012 5 0 727 0 780 1450
66 2014 7 0 1454 1 814 481
67 2012 5 0 727 0 958 911 528
68 2013 3 0 1454 1 667 468 634
69 2012 5 0 2181 1 617 326 400
70 2013 3 0 2181 1 767 408 954
71 2012 5 0 1454 1 1317 1073 564
72 2013 3 0 1454 1 1005 560 640
73 2012 5 0 1454 1 454 356 736
74 2013 3 0 0 0 459 481 671
75 2013 3 0 1454 1 785 767 604
76 2013 3 0 727 0 1081 901 743
77 2012 5 0 1454 1 537 533 621
78 2012 5 0 1454 1 488 483 1054
79 2014 7 0 0 0 1245 789 652

Table A.4: Base data used for the analysis.

Bibliography

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006. ISBN 0321486811. (cited on Page 40)

Scott Ambler. Agile Database Techniques: Effective Strategies for the Agile Software De-
veloper. John Wiley & Sons, Inc., New York, NY, USA, 2003. ISBN 9780471202837.
(cited on Page 1, 20, 25, 26, 28, and 100)

Scott Ambler and Pramodkumar Sadalage. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Professional, Boston, MA, USA, 2006. ISBN
9780321293534. (cited on Page 26, 95, and 100)

Anderson, Lance. JSR 211, JDBC 4.1 Specification. http://download.oracle.com/
otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/, 2006. (cited on Page 7 and 100)

Ittai Balaban, Frank Tip, and Robert M. Fuhrer. Refactoring Support for Class Library
Migration. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005), San
Diego, CA, USA, October 16-20, 2005. ACM, 2005. (cited on Page 6)

Fabian Bannwart and Peter Müller. Changing Programs Correctly: Refactoring with
Specifications. In Proceedings of the 14th International Symposium on Formal Meth-
ods (FM 2006), Hamilton, Canada, August 21-27, 2006. Springer, 2006. (cited on

Page 95)

Philip A. Bernstein and Erhard Rahm. Data Warehouse Scenarios for Model Manage-
ment. In Proceedings of the 19th International Conference on Conceptual Modeling
(ER 2000), Salt Lake City, Utah, USA, October 9-12, 2000. Springer, 2000. (cited

on Page 47)

Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Specifying Integrated
Refactoring with Distributed Graph Transformations. In Proceedings of the 2nd In-
ternational Workshop on Applications of Graph Transformations with Industrial Rel-
evance (AGTIVE 2003), Charlottesville, VA, USA, September 27 - October 1, 2003.
Springer, 2003. (cited on Page 98)

http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/

140 Bibliography

A. Broder. On the Resemblance and Containment of Documents. In Proceedings of
the Compression and Complexity of Sequences (SEQUENCES 1997), Salerno, Italy,
June 11 - 13, 1997. IEEE Computer Society, 1997. (cited on Page 106)

Donald T. Campbell and Julian C. Stanley. Experimental and Quasi-Experimental
Designs for Research. Rand McNally College Publishing, Skokie, IL, USA, 1963.
ISBN 9780395307878. (cited on Page 91)

Nicholas Chen and Ralph E. Johnson. Toward Refactoring in a Polyglot World Ex-
tending Automated Refactoring Support Across Java and XML. In Proceedings of
the 2nd ACM Workshop on Refactoring Tools (WRT 2008), Nashville, TN, USA,
October 19, 2008. ACM, 2008. (cited on Page 1, 2, 7, 13, 19, 34, 39, and 99)

Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design Recovery:
A Taxonomy. IEEE Software, 7(1), 1990. (cited on Page 6)

Anthony Cleve. Program Analysis and Transformation for Data-Intensive System Evo-
lution. PhD thesis, University of Namur, Namur, Belgium, October 2009. (cited on

Page 100)

Steve Counsell, Robert M. Hierons, Rajaa Najjar, George Loizou, and Youssef Hassoun.
The Effectiveness of Refactoring, Based on a Compatibility Testing Taxonomy and a
Dependency Graph. In Testing: Academia and Industry Conference - Practice And
Research Techniques (TAIC PART 2006), Windsor, United Kingdom, 29-31 August
2006. IEEE Computer Society, 2006. (cited on Page 6)

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated Testing of
Refactoring Engines. In Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007.
ACM, 2007. (cited on Page 6)

Daniel Delorey, Charles D. Knutson, and Christophe Giraud-Carrier. Programming
Language Trends in Open Source Development: An Evaluation Using Data from
All Production Phase SourceForge Projects. In Proceedings of the 2nd International
Workshop on Public Data about Software Development (WoPDaSD 2007), Limerick,
Ireland, June 11-14, 2007. ACM, 2007. (cited on Page 1 and 105)

Danny Dig. Practical Analysis for Refactoring. PhD thesis, University of Illinois,
Champaign, IL, USA, 2007. (cited on Page 95)

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph E. Johnson. Automated De-
tection of Refactorings in Evolving Components. In Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP 2006), Nantes, France, July
3-7, 2006. Springer, 2006. (cited on Page 106)

Bibliography 141

Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an Extensible
Language-Independent Environment for Reengineering Object-Oriented Systems. In
Proceedings of the 2nd International Symposium on Constructing Software Engineer-
ing Tools (CoSET 2000), Limerick, Ireland, June 4-11, 2000, 2000. (cited on Page 95

and 96)

EPFL - École Polytechnique Fédérale de Lausanne. A Scala Tutorial for
Java Programmers – Interaction with Java. http://docs.scala-lang.org/tutorials/
scala-for-java-programmers.html#interaction-with-java, 2015. Accessed: 2017-01-30.
(cited on Page 8)

EPFL - École Polytechnique Fédérale de Lausanne. Getting Started – Compile it! http:
//www.scala-lang.org/documentation/getting-started.html#compile-it, 2017. Ac-
cessed: 2017-01-30. (cited on Page 8)

Sebastian Thore Erdweg. Extensible Languages for Flexible and Principled Domain
Abstraction. PhD thesis, University of Marburg, Marburg, Germany, November 2012.
(cited on Page 8)

Janet Feigenspan, Norbert Siegmund, Andreas Hasselberg, and Markus Köppen.
PROPHET : Tool Infrastructure To Support Program Comprehension Experiments.
In Proceedings of the 5th International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM 2011), Banff, Alberta, Canada, September 22-23, 2011.
IEEE Computer Society, 2011. (cited on Page 85)

Janet Feigenspan, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
Measuring Programming Experience. In Proceedings of the 20th International Con-
ference on Program Comprehension (ICPC 2012), Passau, Germany, June 11-13,
2012. IEEE Computer Society, 2012. (cited on Page 77, 79, 103, and 132)

Hans-Christian Fjeldberg. Polyglot Programming. Master’s thesis, Norwegian Univer-
sity of Science and Technology, Trondheim, Norwegian, June 2008. (cited on Page 6

and 7)

Neil Ford. The Productive Programmer. O’Reilly Media, Inc., Sebastopol, CA, USA,
2008. ISBN 9780596519780. (cited on Page 1, 6, and 7)

Martin Fowler. Refactoring: Improving the Design of existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 9780201485677. (cited

on Page 1, 5, 6, 21, 31, 95, and 96)

Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls. ACM
Transactions on Programming Languages and Systems, 30(4), 2008. (cited on Page 99)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Abstraction and Reuse of Object-Oriented Design. Springer Berlin Heidelberg, Berlin,
Germany, 1993. ISBN 9783540479109. (cited on Page 29)

http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html#interaction-with-java
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html#interaction-with-java
http://www.scala-lang.org/documentation/getting-started.html#compile-it
http://www.scala-lang.org/documentation/getting-started.html#compile-it

142 Bibliography

Google Inc. Working with JSNI. https://developers.google.com/eclipse/docs/gwt jsni,
2017. Accessed: 2017-01-11. (cited on Page 36)

Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards Automat-
ing Source-Consistent UML Refactorings. In Proceedings of the 6th International
Conference on the Unified Modeling Language, Modeling Languages and Applications
(UML 2003), San Francisco, CA, USA, October 20-24, 2003. Springer, 2003. (cited

on Page 96 and 98)

Mark Grechanik, Don S. Batory, and Dewayne E. Perry. Design of Large-Scale Polylin-
gual Systems. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE 2004), Edinburgh, United Kingdom, May 23-28 2004. IEEE Computer
Society, 2004. (cited on Page 1)

William G. Griswold and David Notkin. Automated Assistance for Program Restruc-
turing. ACM Transactions on Software Engineering and Methodology, 2(3), 1993.
(cited on Page 1)

Mike Grogan. JSR-223, Scripting for the Java � Platform. https://jcp.org/aboutJava/
communityprocess/final/jsr223/index.html, 2006. (cited on Page 7)

Sebastian Günther. Multi-DSL Applications with Ruby. IEEE Software, 27(5), 2010.
(cited on Page 8)

Jean-Luc Hainaut. Specification Preservation in Schema Transformations - Application
to Semantics and Statistics. Data & Knowledge Engineering, 19(2), 1996. (cited on

Page 20 and 100)

Elliote Rusty Harold and W. Scott Means. XML in a nutshell. O’Reilly Media, Inc.,
Sebastopol, CA, USA, 2002. ISBN 9780596002923. (cited on Page 7)

Jan Heering, P. R. H. Hendriks, Paul Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11), 1989. (cited on Page 8)

Rich Hickey. Ahead-of-time Compilation and Class Generation. https://clojure.org/
reference/compilation, 2017a. Accessed: 2017-01-30. (cited on Page 8)

Rich Hickey. Ahead-of-time Compilation and Class Generation. https://clojure.org/
reference/libs, 2017b. Accessed: 2017-01-30. (cited on Page 8)

ISO/IEC 9075-1:2008. Plastics – Determination of fracture toughness – Linear elas-
tic fracture mechanics (LEFM) approach. Standard, International Organization for
Standardization, Geneva, Switzerland, July 2008. (cited on Page 7)

ISO/IEC/IEEE 24765:2010(E). Systems and software engineering – Vocabulary. Stan-
dard, International Organization for Standardization, Geneva, Switzerland, Decem-
ber 2010. (cited on Page 1)

https://developers.google.com/eclipse/docs/gwt_jsni
https://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
https://clojure.org/reference/compilation
https://clojure.org/reference/compilation
https://clojure.org/reference/libs
https://clojure.org/reference/libs

Bibliography 143

JetBrains s.r.o. Refactorings for HTML. https://www.jetbrains.com/help/resharper/
2016.3/Refactorings for HTML.html, 2017. Accessed: 2017-01-11. (cited on Page 36)

T. Capers Jones. Estimating Software Costs. McGraw-Hill, Inc., Hightstown, NJ, USA,
1998. ISBN 9780079130945. (cited on Page 1)

Mike Keith and Merrick Schincariol. Pro EJB 3: Java Persistence API (Pro). Apress,
Berkely, CA, USA, 2006. ISBN 9781590596456. (cited on Page 11)

Martin Kempf, Reto Kleeb, Michael Klenk, and Peter Sommerlad. Cross language
refactoring for Eclipse plug-ins. In Proceedings of the 2nd ACM Workshop on Refac-
toring Tools (WRT 2008) Nashville, TN, USA, October 19, 2008. ACM, 2008. (cited

on Page 36, 39, and 99)

Bernt Kullbach, Andreas Winter, Peter Dahm, and Jürgen Ebert. Program Compre-
hension in Multi-Language Systems. In Proceedings of the 5th Working Conference
on Reverse Engineering (WCRE ’98), Honolulu, Hawai, USA, October 12-14, 1998.
IEEE Computer Society, 1998. (cited on Page 1)

Ralf Lämmel. Towards Generic Refactoring. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Rule-based Programming (RULE 2002), Pittsburgh, PA, USA, October
5, 2002. ACM, 2002. (cited on Page 6 and 97)

Ralf Lämmel. Coupled Software Transformations. In Proceedings of the 1st Interna-
tional Workshop on Software Evolution Transformations, Delft, Netherlands, Novem-
ber 9, 2004. IEEE Computer Society, 2004. (cited on Page 97 and 100)

Ralf Lämmel. Google’s MapReduce programming model - Revisited. Science of Com-
puter Programming, 70(1), 2008. (cited on Page 30)

Ralf Lämmel. Coupled software transformations revisited. In Proceedings of the 2016
ACM SIGPLAN International Conference on Software Language Engineering, Ams-
terdam, Netherlands, October 31 - November 1, 2016. ACM, 2016. (cited on Page 97)

M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9), 1980. (cited on Page 1)

Huiqing Li. Refactoring Haskell Programs. PhD thesis, University of Kent, Canterbury,
Kent, United Kingdom, September 2006. (cited on Page 6, 31, and 95)

Huiqing Li and Simon J. Thompson. Tool support for refactoring functional programs.
In Proceedings of the 14th ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM 2008), San Francisco, California,
USA, January 7-8, 2008. ACM, 2008. (cited on Page 1 and 95)

https://www.jetbrains.com/help/resharper/2016.3/Refactorings_for_HTML.html
https://www.jetbrains.com/help/resharper/2016.3/Refactorings_for_HTML.html

144 Bibliography

Sheng Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 9780201325775.
(cited on Page 7)

Panos K Linos, Whitney Lucas, Sig Myers, and Ezekiel Maier. A Metrics Tool for Multi-
Language Software. In Proceedings of the 11th IASTED International Conference on
Software Engineering and Applications (SEA 2006), Dallas, TX, USA, November
13-15, 2006. ACTA Press, 2006. (cited on Page 1 and 6)

Hans-Wolfgang Loidl, Fernando Rubio, Norman Scaife, Kevin Hammond, Susumu
Horiguchi, Ulrike Klusik, Rita Loogen, Greg Michaelson, Ricardo Pena, Steffen
Priebe, Álvaro J. Rebón Portillo, and Philip W. Trinder. Comparing Parallel Func-
tional Languages: Programming and Performance. Higher-Order and Symbolic Com-
putation, 16(3), 2003. (cited on Page 30)

Philip Mayer and Alexander Bauer. An Empirical Analysis of the Utilization of Multiple
Programming Languages in Open Source Projects. In Proceedings of the 19th Inter-
national Conference on Evaluation and Assessment in Software Engineering (EASE
2015), Nanjing, China, April 27-29, 2015. ACM, 2015. (cited on Page 1, 7, and 105)

Philip Mayer and Andreas Schroeder. Cross-Language Code Analysis and Refactoring.
In Proceedings of the 12th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2012), Riva del Garda, Italy, September 23-24,
2012. IEEE Computer Society, 2012. (cited on Page 1, 6, 13, 36, 39, 95, 100, and 103)

Philip Mayer and Andreas Schroeder. Patterns of Cross-Language Linking in Java
Frameworks. In Proceddings of the 21st IEEE International Conference on Program
Comprehension (ICPC 2013), San Francisco, CA, USA, May 20-21, 2013. IEEE
Computer Society, 2013. (cited on Page 104)

Philip Mayer and Andreas Schroeder. Automated Multi-Language Artifact Binding
and Rename Refactoring between Java and DSLs Used by Java Frameworks. In
Proceedings of the 28th European Conference Object-Oriented Programming (ECOOP
2014), Uppsala, Sweden, July 28 - August 1, 2014. Springer, 2014. (cited on Page 13,

100, 103, and 104)

Tom Mens. On the Use of Graph Transformations for Model Refactoring. In Generative
and Transformational Techniques in Software Engineering, International Summer
School (GTTSE 2005), Braga, Portugal, July 4-8, 2005. Springer, 2005. (cited on

Page 6)

Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, 30(2), 2004. (cited on Page 6)

Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formalizing Refac-
torings with Graph Transformations. Journal of Software Maintenance, 17(4), 2005.
(cited on Page 95)

Bibliography 145

J.-E. Michels, K. Kulkarni, M. C. Farrar, A. Eisenberg, N. Mattos, and H. Darwen.
The SQL Standard. it — Information Technology, 45, 2003. (cited on Page 7)

Gail C. Murphy, Mik Kersten, and Leah Findlater. How Are Java Software Developers
Using the Eclipse IDE? IEEE Software, 23(4), 2006. (cited on Page 66)

Emerson R. Murphy-Hill and Andrew P. Black. Breaking the Barriers to Successful
Refactoring : Observations and Tools for Extract Method. In Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008. ACM, 2008. (cited on Page 95 and 102)

Emerson R. Murphy-Hill, Chris Parnin, and Andrew P. Black. How We Refactor, and
How We Know It. In Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), Vancouver, Canada May 16-24, 2009. IEEE, 2009. (cited

on Page 21, 101, and 102)

Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig.
Is It Dangerous to Use Version Control Histories to Study Source Code Evolution?
In Proceedings of the 26th European Conference on Object-Oriented Programming
(ECOOP 2012), Beijing, China, June 11-16, 2012. Springer, 2012. (cited on Page 107)

Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. A
Comparative Study of Manual and Automated Refactorings. In Proceedings of the
27th European Conference on Object-Oriented Programming (ECOOP 2013), Mont-
pellier, France, July 1-5, 2013. Springer, 2013. (cited on Page 102 and 107)

Object Management Group (OMG). OMG Unified Modeling Language Specifica-
tion Version 1.3. OMG Document Number formal/2000-03-01 (http://doc.omg.org/
formal/2000-03-01.pdf), 2000. (cited on Page 96)

Object Management Group (OMG). OMG Unified Modeling Language Specifica-
tion Version 1.4. OMG Document Number formal/2001-09-67 (http://doc.omg.org/
formal/2001-09-67.pdf), 2001. (cited on Page 96)

Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification Version 1.1. OMG Document Number formal/2011-01-
01 (http://www.omg.org/spec/QVT/), 2011. (cited on Page 100)

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois, Champaign, IL, USA, 1992. (cited on Page 1, 5, 6, 21, 95, and 96)

Oracle America, Inc. JSR-338, Java Persistence API, Version 2.1. http://download.
oracle.com/otndocs/jcp/persistence-2 1-fr-eval-spec/index.html, 2013. (cited on

Page 100)

http://doc.omg.org/formal/2000-03-01.pdf
http://doc.omg.org/formal/2000-03-01.pdf
http://doc.omg.org/formal/2001-09-67.pdf
http://doc.omg.org/formal/2001-09-67.pdf
http://www.omg.org/spec/QVT/
http://download.oracle.com/otndocs/jcp/persistence-2_1-fr-eval-spec/index.html
http://download.oracle.com/otndocs/jcp/persistence-2_1-fr-eval-spec/index.html

146 Bibliography

Rolf-Helge Pfeiffer and Andrzej W ↪asowski. Taming the Confusion of Languages. In
Proceedings of the 7th European Conference Modelling Foundations and Applications
(ECMFA 2011), Birmingham, United Kingdom, June 6 - 9, 2011. Springer, 2011.
(cited on Page 95 and 101)

Rolf-Helge Pfeiffer and Andrzej W ↪asowski. Cross-Language Support Mechanisms Signif-
icantly Aid Software Development. In Proceedings of the 15th International Confer-
ence Model Driven Engineering Languages and Systems (MODELS 2012), Innsbruck,
Austria, September 30 - October 5, 2012. Springer, 2012a. (cited on Page 6, 13, 102,

103, and 104)

Rolf-Helge Pfeiffer and Andrzej W ↪asowski. TexMo: A Multi-language Development En-
vironment. In In Proceedings of the 8th European Conference Modelling Foundations
and Applications (ECMFA 2012), Kgs. Lyngby, Denmark, July 2-5, 2012. Springer,
2012b. (cited on Page 6, 13, 95, 101, 102, and 104)

Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The International Journal on Very Large Data Bases, 10(4), 2001. (cited

on Page 46 and 47)

Red Hat Inc. and the various authors. Chapter 1. Setting up an annotations
project. https://docs.jboss.org/hibernate/stable/annotations/reference/en/html/
ch01.html, 2004. Accessed: 2017-01-26. (cited on Page 11)

Lukas Renggli. Dynamic Language Embedding With Homogeneous Tool Support. PhD
thesis, University of Berne, Berne, Switzerland, October 2010. (cited on Page 8, 9,

and 96)

Romain Robbes. Mining a Change-Based Software Repository. In Proceedings of the 4th
International Workshop on Mining Software Repositories (MSR 2007), Minneapolis,
MN, USA, May 19-20, 2007. IEEE Computer Society, 2007. (cited on Page 107)

Romain Robbes and Michele Lanza. SpyWare: a change-aware development toolset.
In Proceedings of the 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008. ACM, 2008. (cited on Page 107)

Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois, Champaign, IL, USA, 1999. (cited on Page 95 and 96)

Suzanne Robertson and James Robertson. Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley Professional, Boston, MA, USA, 2012. ISBN
9780321815743. (cited on Page 1)

Hagen Schink. sql-schema-comparer: Support of Multi-Language Refactoring with Rela-
tional Databases. In Proceedings of the 13th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2013), Eindhoven, Netherlands,
September 22-23, 2013. IEEE Computer Society, 2013. (cited on Page 3 and 53)

https://docs.jboss.org/hibernate/stable/annotations/reference/en/html/ch01.html
https://docs.jboss.org/hibernate/stable/annotations/reference/en/html/ch01.html

Bibliography 147

Hagen Schink and Martin Kuhlemann. Hurdles in refactoring multi-language programs.
Technical Report FIN-007-2010, University of Magdeburg, Germany, November 2010.
(cited on Page 3, 6, and 19)

Hagen Schink, Martin Kuhlemann, Gunter Saake, and Ralf Lämmel. Hurdles in Multi-
language Refactoring of Hibernate Applications. In Proceedings of the 6th Interna-
tional Conference on Software and Data Technologies (ICSOFT 2011), Seville, Spain,
July 18-21, 2011. SciTePress, 2011. (cited on Page 3, 6, 14, and 19)

Hagen Schink, David Broneske, Reimar Schröter, and Wolfram Fenske. A Tree-Based
Approach to Support Refactoring in Multi-Language Software Applications. In Pro-
ceedings of the 2nd International Conference on Advances and Trends in Software
Engineering, Lisbon, Portugal, February 21-25, 2016. IARIA, 2016a. (cited on Page 3,

6, 39, and 53)

Hagen Schink, Janet Siegmund, Reimar Schröter, Thomas Thüm, and Gunter Saake.
A Study on Tool Support for Refactoring in Database Applications. Softwaretechnik-
Trends, 36(2), 2016b. (cited on Page 3 and 75)

Tim Sheard. Accomplishments and Research Challenges in Meta-programming. In Pro-
ceedings of the 2nd International Workshop on Semantics, Applications, and Imple-
mentation of Program Generation (SAIG 2001), Florence, Italy, September 6, 2001.
Springer, 2001. (cited on Page 8)

Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching approaches.
Journal on Data Semantics IV, 3730(1), 2005. (cited on Page 46)

Sixto Ortiz Jr. Computing Trends Lead to New Programming Languages. Computer,
45, 2012. (cited on Page 8)

Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Generating Unit Tests for Checking
Refactoring Safety. In Proceedings of the 13th Brazilian Symposium on Programming
Languages (SBLP 2009), Gramado, RS, Brazil, August 19-21, 2009. n.p., 2009. (cited

on Page 6)

Gustavo Soares, Melina Mongiovi, and Rohit Gheyi. Identifying overly strong conditions
in refactoring implementations. In Proceedings of the 27th IEEE International Con-
ference on Software Maintenance (ICSM 2011), Williamsburg, VA, USA, September
25-30, 2011. IEEE Computer Society, 2011. (cited on Page 95)

Mirko Streckenbach and Gregor Snelting. Refactoring class hierarchies with KABA.
In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2004), October 24-
28, 2004, Vancouver, BC, Canada. ACM, 2004. (cited on Page 6 and 95)

D. Strein, R. Lincke, J. Lundberg, and W. Löwe. An extensible meta-model for program
analysis. IEEE Transactions on Software Engineering, 33(9), 2007. (cited on Page 95,

97, and 98)

148 Bibliography

Dennis Strein, Hans Kratz, and Welf Löwe. Cross-Language Program Analysis and
Refactoring. In Proceedings of the 6th IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2006), Philadelphia, Pennsylvania, USA,
September 27-29, 2006. IEEE Computer Society, 2006. (cited on Page 1, 6, 13, 36, 39,

95, 97, and 98)

Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of api refactorings in
libraries. In Proceedings of the 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia,
USA. ACM, 2007. (cited on Page 95, 106, and 107)

Zachary Tatlock, Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Deep
Typechecking and Refactoring. In Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2008), Nashville, TN, USA, October 19-23, 2008. ACM, 2008. (cited on

Page 13, 14, 36, and 99)

Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. PhD thesis, University of Berne, Berne, Switzerland, December 2001.
(cited on Page 95 and 96)

Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX: Exchange Experi-
ences with CDIF and XMI. In Proceedings of the ICSE 2000 Workshop on Standard
Exchange Format (WoSEF 2000), Limerick, Ireland, June 4-11, 2000. ACM, 2000.
(cited on Page 96)

Federico Tomassetti and Marco Torchiano. An empirical assessment of polyglot-ism in
GitHub. In Proceedings of the 18th International Conference on Evaluation and As-
sessment in Software Engineering (EASE 2014), London, England, United Kingdom,
May 13-14, 2014, 2014. (cited on Page 1, 105, and 106)

Gabriel Valiente. Algorithms on Trees and Graphs. Springer, Berlin, Germany, 2002.
ISBN 9783540435501. (cited on Page 14 and 44)

Luke VanderHart. Practical Clojure. Apress, Berkely, CA, USA, 2010. ISBN
9781430272311. (cited on Page 13 and 33)

Antonio Vetro, Federico Tomassetti, Marco Torchiano, and Maurizio Morisio. Language
Interaction and Quality Issues: An Exploratory Study. In Proceedings of the 6th
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2012), Lund, Sweden, September 19-20, 2012. ACM, 2012. (cited

on Page 1 and 105)

Eelco Visser. Stratego: A Language for Program Transformation Based on Rewrit-
ing Strategies. In Proceedings of the 12th International Conference on Rewriting
Techniques and Applications (RTA 2001), Utrecht, Netherlands, May 22-24, 2001.
Springer, 2001. (cited on Page 8)

Bibliography 149

Lin Weisheng. Type Inference in SQL. Master’s thesis, Concordia University, Montréal,
Québec, Canada, April 2004. (cited on Page 61)

Peter Weißgerber and Stephan Diehl. Are Refactorings Less Error-prone Than Other
Changes? In Stephan Diehl, Harald C. Gall, and Ahmed E. Hassan, editors, Pro-
ceedings of the 3rd International Workshop on Mining Software Repositories (MSR
2006), Shanghai, China, May 22-23, 2006. ACM, 2006. (cited on Page 21)

Michael M Werner. Facilitating Schema Evolution With Automatic Program Transfor-
mations. PhD thesis, Northeastern University, Boston, MA, USA, July 1999. (cited

on Page 96)

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering. Springer Berlin Heidelberg,
Berlin, Germany, 2012. ISBN 9783642290435. (cited on Page 76 and 91)

Zhenchang Xing and Eleni Stroulia. UMLDiff: An Algorithm for Object-Oriented
Design Differencing. In Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), Long Beach, CA, USA, November
7-11, 2005. ACM, 2005. (cited on Page 95 and 106)

Zhenchang Xing and Eleni Stroulia. The JDEvAn Tool Suite in Support of Object-
Oriented Evolutionary Development. In Proceedings of the 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008.
ACM, 2008. (cited on Page 95 and 106)

150 Bibliography

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Magdeburg, den

14.05.2017

Hagen Schink

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	1 Introduction
	1.1 Contribution
	1.2 Outline
	1.3 Referenced Publications

	2 Background
	2.1 Refactoring
	2.2 Multi-Language Software Application
	2.2.1 Types of Language Interaction
	2.2.2 An Example MLSA

	2.3 Multi-Language Refactoring
	2.4 Foundations of Graph-Theory
	2.5 Summary

	3 Issues of Refactoring Multi-Language Software Applications
	3.1 Applying Refactorings can Cause Inconsistent Changes
	3.1.1 Object-oriented Refactorings
	3.1.2 Database Refactorings
	3.1.3 Functional Refactorings

	3.2 Challenges of Multi-language Refactoring
	3.3 Summary

	4 Structure Graphs
	4.1 Modeling Elements of Language Interaction
	4.2 Referential Integrity Between Languages
	4.3 Changes to the Source-Code Structure
	4.4 Classification of Matching Algorithms
	4.5 Performance and Generality
	4.5.1 Performance of the Integrity Check
	4.5.2 Performance of the Change Detection
	4.5.3 Generality of the Approach

	4.6 Summary

	5 Implementation and Application of Structure Graphs
	5.1 The Structure-Graph Library
	5.1.1 Implementation
	5.1.2 Usage of the Framework

	5.2 The Sql-Schema-Comparer Library
	5.2.1 Implementation Details
	5.2.2 Application of the Sql-Schema-Comparer Library

	5.3 The Clojure-Java-Interface-Checker Library
	5.3.1 The Clojure Programming Language
	5.3.2 Implementation Details

	5.4 Summary

	6 Evaluation
	6.1 Experimental Design
	6.1.1 Hypotheses, and Variables
	6.1.2 Material
	6.1.3 Participants
	6.1.4 Tasks
	6.1.5 Tooling

	6.2 Execution
	6.3 Analysis
	6.4 Interpretation
	6.5 Threats to Validity
	6.5.1 Internal Validity
	6.5.2 External Validity

	6.6 Summary

	7 Related Work
	7.1 Re-use of Refactorings
	7.2 Multi-language Refactoring Approaches
	7.3 Studies on Refactoring Tools and MLSAs
	7.3.1 Studies on Refactoring Tools
	7.3.2 Studies on MLSAs

	7.4 Change Detection

	8 Conclusion and Future Work
	8.1 Summary of the Thesis
	8.2 Contribution
	8.3 Future Work

	A Appendix
	A.1 Implementation
	A.1.1 Structure Graph Library
	A.1.2 Sql-Schema-Comparer Library
	A.1.3 Clojure-Java-Interface-Checker Library

	A.2 Evaluation
	A.2.1 Introduction
	A.2.2 Questionnaire
	A.2.3 Tasks
	A.2.4 Data

	Bibliography

