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Summary 
 

The release of neurotransmitters is restricted to the specialized region of the 

presynaptic nerve terminal called the active zone (AZ). At the ultra-structural level, the AZ 

is characterized as an electron-dense region beneath the presynaptic plasma membrane 

composed of a meshwork of cytoskeleton and associated proteins, so called, cytomatrix of 

the AZ (CAZ). To date several CAZ-specific proteins have been characterized: RIMs, 

Munc13s, ELKS/CAST/ERCs, Bassoon (Bsn) and Piccolo/Aczonin (Pclo).  

The first aim of my doctoral thesis was to investigate whether the loss of functional 

Bassoon and Piccolo may influence assembly, maturation and/or morphological 

organization of synapses. Since animals double-mutant for both proteins are not viable, 

we performed an ultra-structural characterization of synapses in primary cultured 

hippocampal neurons from Bsn-Pclo double mutant mice. We could show that synapses 

are formed in these double-mutant cultures. Comparing the features of the major 

presynaptic parameters (AZ length, number of synaptic vesicles (SVs), number of docked 

SVs) between wild-type and Bsn-Pclo-double mutant animals, we found that, although two 

major AZ scaffolding proteins are missing, there is no major difference in the ultra-

structure of the presynaptic bouton between these two groups of animals.   

As Piccolo and Bassoon are transported to the presynaptic site on specific 

membrane carriers, the so-called Piccolo-Bassoon transport vesicles (PTVs), we 

assessed the existence of these 80-nm dense-core organelles in double-mutant cultures. 

The number of 80-nm dense-core vesicles was found to be significantly reduced 

suggesting that these AZ precursor vesicles are missing in the absence of Piccolo and 

Bassoon. Interestingly, the thickness of postsynaptic density (PSD) was significantly 

reduced. These data suggest that Bassoon and Piccolo are not necessary for synapse 

formation and assembly, but they have significant role in synapse maturation.   

As synapses are complex and highly dynamic structures that are constantly 

remodelled during development as well as during learning and memory processes, the 

second aim of my PhD thesis was to investigate whether synaptic activity may alter the 

molecular composition of the AZ and, if yes, what might be possible molecular 

mechanisms underlying these activity-dependent changes.  

Our experiments revealed that prolonged inhibition of excitatory synaptic 

transmission (e.g. by blocking ionotropic glutamate receptors) significantly decreases the 

expression levels of the most CAZ-associated proteins and some of postsynaptic 

scaffolds, but the expression of SV and SNARE-family proteins was not affected. Also, 

activity deprivation did not influence the overall number of synapses. Changes in the 

molecular content of the AZ are reversible within 48 hrs after removal of activity 

suppressing drugs underpinning the physiological relevance of the observed phenomena. 

With respect to the mechanisms that governing the activity-dependent remodeling of 

synapses, we found that inhibition of proteasome-function prevented activity induced 

decrease of CAZ proteins. This suggests that the ubiquitin-proteasome system might 

control activity-dependent protein turnover and global compositional changes in the 

presynaptic AZ. Taken together, our data revealed an unexpected dramatic regulation of 

CAZ proteins during synaptic plasticity.  

 



 

 

Zusammenfassung 
 

Die Freisetzung von Neurotransmittern ist auf eine spezialisierte Region der 

präsynaptischen Nervenendigung beschränkt, die als aktive Zone bezeichnet wird. Auf 

ultrastruktureller Ebene wird die aktive Zone durch eine elektronendichte Struktur 

charakterisiert, die direkt an die präsynaptische Plasmamembran angelagert ist. Sie 

besteht aus einem Geflecht von cytoskelettalen und damit assoziierten Proteinen, die die 

so genannte Cytomatrix der aktiven Zone (CAZ) bilden. Bislang sind einige wenige CAZ-

spezifische Proteine identifiziert worden. Zu ihnen gehören Mitglieder der Proteinfamilie 

der RIMs, Munc13, ELKS/CAST/ERCs sowie  die Proteine Bassoon(Bsn) und 

Piccolo/Aczonin (Pclo). 

Das erste Ziel meiner Dissertation befasste sich mit der Frage, ob der Verlust von 

funktionellem Bassoon und Piccolo den Zusammenbau, die Reifung und/oder die 

morphologische Organisation von Synapsen beeinflussen kann. Da Tiere, bei denen 

beide Proteine mutiert sind, rasch nach der Geburt sterben, wurde eine ultrastrukturelle 

Charakterisierung von Bsn-Pclo-defizienten Synapsen an hippokampalen Primärkulturen 

von doppelmutanten Mäusen vorgenommen. Wir konnten zeigen, dass Synapsen in 

solchen Kulturen gebildet werden. Der Vergleich der präsynaptischen Hauptparameter 

(Länge der aktiven Zone, Anzahl von synaptischen Vesikeln, Anzahl der gedockten 

synaptischen Vesikel) zwischen wildtypischen und Bsn-Pclo-doppelmutanten  Tieren 

ergab keinen auffälligen Unterschied in der Ultrastruktur der präsynaptischen Endigungen 

beider Tiergruppen, obgleich zwei Hauptgrundgerüstproteine der aktiven Zone fehlen.  

Da Piccolo und Bassoon zu den präsynaptischen Endigungen auf für sie 

spezifische membranbasierte Transportorganellen, den so genannten Piccolo-Bassoon-

Transportvesikeln (PTVs), transportiert werden, wurde der Frage nachgegangen, ob diese 

80 nm großen Vesikel mit elektronendichter Füllung (dense core-Vesikel) in 

Doppelmutanten noch existieren. Es stellte sich heraus, dass die Menge an diesen dense 

core-Vesikeln signifikant reduziert ist, was auf einen Verlust dieser Vesikel in Abwesenheit 

von Piccolo und Bassoon hindeutet. Interessanterweise war die Dicke der 

postsynaptischen Dichte (PSD), ein elektronendichtes Proteinnetzwerk in der 

posytsynaptischen Endigung,  signifikant reduziert. Zusammengefasst lassen diese Daten 

darauf schließen, dass Bassoon und Piccolo zwar nicht notwendig für die Bildung von 

Synapsen sind, beide Proteine aber eine signifikante Rolle bei der Reifung von Synapsen 

besitzen.  

Synapsen sind komplexe und hochdynamische Strukturen, die sowohl während 

der Entwicklung als auch im Verlauf von Lern- und Gedächtnisvorgängen ständig 

Prozessen der Ummodellierung unterliegen. Das zweite Ziel meiner Arbeit ging daher der 

Frage nach, inwieweit synaptische Aktivität die molekulare Komposition der aktiven Zone 

verändert und, wenn ja, welche molekularen Prozesse diesen aktivitätsabhängigen 

Änderungen zu Grunde liegen.  

Unsere Ergebnisse zeigten, dass eine andauernde Inhibition der exzitatorischen 

Transmission (z.B. durch Blockierung von ionotropen Glutamat-Rezeptoren) zu einer 

signifikanten Reduktion der Expressionrate der meisten CAZ-assoziierten Proteine führt. 

Die Expression einiger postsynaptische Gerüstproteine war ebenfalls reduziert, 

wohingegen die Expression von synaptischen Vesikel-Proteinen und von Mitgliedern der 

SNARE-Proteinfamilie unverändert blieb. Ebenso hatte die  Stilllegung der Aktivität keinen 



 

 

Einfluss auf die Gesamtzahl an Synapsen. Die Änderungen in der molekularen 

Zusammensetzung der aktiven Zone waren innerhalb von 48 Stunden nach der 

Beendigung der aktivitätsblockierenden Behandlung reversibel, was auf eine 

physiologische Relevanz dieses Phänomens hindeutet. Im Hinblick auf die Mechanismen, 

die diesen aktivitätsabhängigen Umbau von Synapsen steuern, konnten wir zeigen, dass 

eine Inhibition der Proteasomen-Funktion eine aktivitätsinduzierte Abnahme an CAZ-

Proteinen verhindert. Dies deutet darauf hin, dass das Ubiquitin-Proteasom-System den 

aktivitätsabhängigen Protein-Umsatz sowie globale Änderungen in der molekularen 

Zusammensetzung der aktiven Zone kontrollieren könnte. Zusammenfassend weisen 

unsere Daten auf eine unerwartet starke Regulation von CAZ-Proteinen während 

synaptischer Plastizität hin.  
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1. INTRODUCTION 

1.1. The Synapse  

Chemical synapses are functional connections between neuronal cells in the brain. 

The human brain contains about 10
15

 synaptic contacts, connecting 10
10

-10
11

 neurons. 

They are crucial for the interneuronal signaling required for the processing and integration 

of information during development, learning and memory formation. Synapses are 

composed of three compartments: presynaptic bouton, synaptic cleft and postsynaptic 

part containing postsynaptic reception apparatus.  

The presynaptic terminal (also called presynaptic bouton) contains clear, 40-50 nm 

diameter vesicles, named synaptic vesicles (SV) where neurotransmitters are stored. The 

release of neurotransmitters is restricted to a specialized region of the presynaptic bouton, 

called, the active zone (AZ). Typically, a presynaptic bouton contains hundreds of vesicles 

that are clustered in close proximity of the AZ. However, it is thought that not all SVs in the 

presynaptic terminal are functionally identical. They seem to belong to different pools of 

vesicles, i.e., either to the reserve (also called the resting) pool or to the recycling pool of 

SVs (reviewed in Gundelfinger et al., 2003). A subpopulation of the vesicles of the 

recycling pool is tethered to the presynaptic plasma membrane and primed for the fusion 

step (i.e. the readily releasable pool, RRP) (Fig.1.). In response to action potentials (AP) 

arriving in the presynapse and increased levels of Ca2+ ions in the nerve terminal, the SV 

membrane fuses with the presynaptic plasma membrane and neurotransmitters are 

rapidly released into the about 20 nm wide space between the membranes of the pre- and 

the post-synaptic cell, called synaptic cleft. Discharged neurotransmitter molecules then 

diffuse across the cleft and activate receptors in the postsynaptic membrane thus 

signaling can be further transmitted to downstream target cells. In general, 

neurotransmission can be excitatory or inhibitory, depending of the type of 

neurotransmitters that are released from the presynapse and, on the postsynaptic 

receptors that are activated upon their release. The majority of the excitatory synaptic 

transmission in the mammalian brain is mediated by the neurotransmitter glutamate, and 

there are two major pharmacologically distinct classes of ionotropic glutamate receptors: 

the NMDA (N-methyl-D-aspartate) receptors and AMPA (amino-3-hydroxy-5-methyl-

isoxazole-4-propionic acid) receptors. AMPA receptors mediate rapid synaptic 

transmission whereas NMDA receptors are important in the activity-dependent synaptic 

plasticity which underlies learning and memory (reviewed in Kim J.H. & Huganir R., 1999). 
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GABA (gamma-aminobutyric-acid) is an inhibitory neurotransmitter which activates 

inhibitory GABAergic receptors (GABAA and GABAB receptors).  

The receptors are incorporated into the postsynaptic membrane. Their proper 

localization and function is organized by a variety of the postsynaptic proteins, referred as 

PSD proteins (PSD, postsynaptic density), as they can be observed under electron 

microscope (EM) as electron-dense material beneath the postsynaptic membrane. 

Studies on biochemically isolated PSDs revealed that, apart from the receptors, the major 

constituents of the PSD at excitatory synapses include cytoskeletal proteins (actin, tubulin, 

fodrin), signalling molecules (CaMKII, calmodulin) and scaffolding proteins (PSD-95, 

Homer, Shank/ProSAPs, GKAP/SAPAP etc.) (reviewed by Okabe., 2007). 

 

 

Fig. 1. The synapse. (A) Electron micrograph of the central synapse (V. Lazarevic, unpublished). 
Elecron-dense material might be observed at both, presynaptic (CAZ, Cytomatrix at the Active 
Zone) and postsynaptic site (PSD, postsynaptic density). (B) Distinct synaptic vesicle pools in 
presynaptic bouton (reviewed in Gundelfinger et al., 2003). (C) Integration of the glutamatergic 
receptors through Shank and the attached postsynaptic proteins PSD-95, Homer and SAPAP 
(reviewed in Kreienkamp, 2008). 
 
 

Upon stimulation of the nerve terminal by depolarizing axon potentials the SV 

membrane is incorporated into the plasma membrane by exocytosis and then needs to be 

retrieved by the compensatory mechanism, called endocytosis. Both, exo- and endo-

cytosis, are part of the SV cycle and have to be coordinated in a very efficient way to 

ensure proper signal transduction from the presynaptic to the postsynaptic neuron. It is 
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believed that a meshwork of cytoskeletal and associated proteins, called cytomatrix of the 

AZ (CAZ), plays a key role in the spatial and temporal coordination of the SV cycle. Under 

the electron microscope (EM), the CAZ can be observed as electron-dense material that 

is adjacent to the presynaptic membrane (Fig. 1). To date, only a few CAZ-specific 

proteins, including RIMs, Munc13, CAST/ERCs, Bassoon and Piccolo/Aczonin have been 

characterized. During recent years, a lot of efforts have been made to highlight the 

contribution of these proteins in the coordination and modulation of exo- and endocytosis, 

as well as, to elucidate their role in synapse assembly, maturation and remodelling during 

development and plasticity processes such as learning and memory formation. 

 

1.1.1. The architecture of the presynaptic active zone 

The AZ in the presynaptic nerve terminal is a highly organized, complexly 

designed and dynamic structure. Although the morphology of the AZs and the molecular 

composition might vary among species, tissues and cells, their architectural design seems 

to be conserved. All AZs consist of three morphologically and functionally distinct 

components: (1) the plasma membrane of the AZ where SVs fuse; (2) the cytomatrix 

associated with the plasma membrane where SVs are docked, and (3) electron-dense 

projections extending from the cytomatrix into the cytoplasm on which SVs are tethered 

(Zhai and Bellen, 2004) 

The plasma membrane of the AZ is precisely aligned with the PSD and its primary 

function during neurotransmitter release is to mediate fusion of the SVs upon Ca2+ entry. 

This is achieved by localization of the SVs fusion machinery (SNARE complex) in the 

close proximity of the voltage-gated Ca2+ channels.  

In the electron microscope, the cytomatrix underlying the AZ plasma membrane 

and projections extending from the cytomatrix are displayed as an electron-dense web-

like network with docked SVs nested between them. The electron-dense nature of this 

cytomatrix suggests that a large number of proteins is densely packed there (cytoskeletal 

proteins, presynaptic scaffolds and CAZ-specific proteins). Dense projections extending 

from the cytomatrix of the AZ might have different size and shape in different types of the 

synapses, but their main function might be to tether SVs. At the Drosophila neuromuscular 

junctions (NMJs) there are T-shaped dense projections, called T-bars. In vertebrate 

sensory synapses involved in vision, hearing and balance specialized projections are 

called synaptic ribbons. 

More recently, an elegant study using electron tomography combined with high-

pressure freezing without aldehyde fixative has provided the first three-dimensional views 
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of the presynaptic terminal cytomatrix (Siksou et al., 2007). This study revealed that SVs 

are interconnected via a dense meshwork of the filaments: one kind of 30-60nm in lengths 

might represent Synapsin molecules and longer ones (~60nm) that are connecting SVs to 

the AZ plasma membrane. They might represent CAZ proteins, but currently their real 

nature is unclear. It is just known that these filaments are more abundant at the AZ than 

extra-synaptically and they could anchor the network of the bridged SVs in front of the AZ.  

 

1.1.2. Molecular organization of the presynaptic active zone 

To ensure proper neurotransmission AZs possess unique structural and functional 

specializations that are not seen in other secretory systems (Rosenmund et al., 2003.). 

First, it is known that neurotransmission is a very fast process, meaning that the AZs have 

to be specialized for temporal coordination of synaptic inputs (action potential) and 

neurotransmitter release. Second, for direct and accurate signal propagation in neuronal 

network it is important that the release of neurotransmitters is spatially restricted to the 

area of the AZ, which typically has a diameter of 200-300 nm. And third, an important 

feature of the AZ is the dynamic regulation of the overall efficiency and reliability of the 

transmitter release. Over the past decades, a number of proteins and protein families 

have been identified that are important for AZ assembly and function. The core molecular 

structure of the AZ is made by CAZ proteins, but there are also a variety of the proteins 

that are associated with the CAZ, the occurrence of which is not restricted to the AZ. 

These proteins include: 1) SV proteins and proteins involved in SV fusion, like SV2, 

synaptotagmins, SNARE-proteins, syntaxins, Munc18; 2) the cytoskelatal proteins actin, 

tubulin, myosin; 3) presynaptic scaffolds, such as, synapsins, CASK, Mint; 4) voltage-

dependent Ca2+-channels; and 5) cell adhesion molecules, e.g. neurorexins, cadhedrins, 

integrins (Schoch & Gundelfinger, 2006) (Fig. 2) 
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Fig. 2.  Schematic diagram of interactions of CAZ proteins (in black) and the resulting 
network at the AZ (modified from Schoch and Gundelfinger, 2006) 

 
 

1.1.3. Cytomatrix at the Active Zone (CAZ) 

As mentioned above, the spatial and temporal organization of SV cycle is a tightly 

controlled process coordinated by a CAZ protein network. To date, five CAZ-specific 

protein families have been characterized: Bassoon, Piccolo/Aczonin, RIMs, Munc13s, 

ELKS/CAST/ERC proteins and Liprin-proteins It is believed, that these multi-domain 

proteins form a scaffold at the AZ through their physical interactions and play a role not 

only in organization of the exo- and endocytotic processes, but also in synapse assembly 

and maturation, and in the regulation of the neurotransmitter release during synaptic 

plasticity.  

 

Munc13 proteins 

Munc13 proteins constitute a family of three highly homologous molecules 

(Munc13-1, Munc13-2 and Munc13-3.) and with the exception of the ubiquitously 

expressed Munc13-2 all other Munc13s are brain-specific and preferentially localized to 

presynaptic terminals. Immunoelectron microscopic data have demonstrated that Munc13-

1 is highly enriched in presynaptic AZ (Betz et al., 1998). The key role of Munc13 proteins 

is SVs priming. SVs that are docked to the plasma membrane at the site of release have 

to be primed to a fusion competence. Fusion of SVs with the plasma membrane requires 

the formation of the SNARE (soluble N-ethylmaleimid-sensitive factor attachment protein 
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receptor) complex and Munc13 proteins are thought to facilitate SNARE complex 

assembly by inducing a conformational switch in Syntaxin from a “closed” to an “open” 

conformation or, by providing a template for the assembly of Syntaxin1/SNAP-25 

heterodimers (reviewed by Rizo & Rosenmund, 2008.). Munc13-mediated SV priming is 

absolutely essential for SV fusion as illustrated by the total abrogation of the spontaneous 

and evoked release in the hippocampal neurons of Munc13-1/2 double knockout mice 

(Varoqueaux et al., 2002.). Recently, high-pressure freezing combined with electron 

tomography was used for the ultrastructural characterization of the synapses from 

Munc13-deficient mice (Siksou et al., 2009). The authors could show that in mutant mice, 

SVs are not docked to the plasma membrane of the AZ, but remain at the short distance 

from the membrane. These findings suggest that SVs docking and priming are 

morphological and physiological manifestations of the same molecular process that is 

mediated by both, SNARE complexes and Munc13 proteins.   

 

RIM proteins 

RIM (Rab3-interactions molecule) proteins have been initially discovered by Wang 

et al. (1997) as putative effectors for the small SV-binding protein Rab3 which is important 

for the SV fusion during exocytosis.  In vertebrates, there are 4 RIM genes that encode six 

principal isoforms (RIM1RIM2RIM2RIM2RIM3, RIM4). As shown in Fig. 2, 

RIMs might interact with multiple synaptic proteins, such as, Munc13, Bassoon, 

ELKS/CAST/ERC, Liprins, voltage-gated Ca2+ channels, 14-3-3 adaptor proteins etc. 

Munc13-1/RIM1 interaction is essential for a step in the SV cycle that precedes vesicle 

fusion (Betz et al., 2001). Similar to the total loss of Munc13-1, disruption of this 

interaction in wild-type hippocampal neurons leads to a drastically reduced primed and 

readily releasable pool of vesicles, which in turn, causes a strong reduction in evoked 

release.  One of the possible molecular mechanisms underlying this process could be 

through the formation of the tripartite complex, Rab3-RIM-Munc13, that would bring SVs 

in the close proximity to the priming machinery. Analyzing RIM1 knockout mice revealed 

that this protein also has the important role during priming and post-priming steps related 

to calcium–triggered vesicle fusion (Calakos et al., 2004.). Deletion of RIM1α is not lethal 

and RIM1α deficient synapses do not exhibit major ultrastructural alternations suggesting 

that this protein probably is either complemented by another family member or not 

involved in SV docking or in the assembly of the AZ as such. On the other hand, RIM1α 

deficiency causes a large reduction in the readily releasable pool of vesicles (by 50%, 

correlating with the 50% decrease of Munc13-1 observed in the brain of these mice) and 

changes the properties of evoked asynchronous release. Moreover, the Rab3A-RIM1 
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pathway was also identified as a key player in presynaptic LTP. Lonart et al. (2003) found 

that PKA phosphorylation of RIM1α triggers presynaptic LTP at cerebellar parallel fibre 

synapses. Behavioral studies showed that RIM1α might be critical for normal learning and 

memory formation (Powell et al. 2004).  

 

ELKS/CAST/ERC proteins 

The name ELKS was given to these proteins according to high content of the 

amino acids glutamate (E), leucine (L), lysine (K) and serine (S), but since they were 

isolated independently in two different screens, where they were also named ERCs 

(Wang et al., 2002) or CASTs (CAZ-associated structural protein; Ohtsuka et al., 2002). In 

mammals, there are two ELKS genes encoding for two homologous ELKS proteins: 

ELKS1, also known as ERC1/CAST2; and ELKS2 (ERC2/CAST). Alternative splicing of 

the ELKS1 transcript produces two isoforms (ELKS1A and ELKS1B) with the different 

tissue distributions and biochemical properties. ELKS1B and ELKS2 are brain-specific 

and ELKS1A is primarily synthesized outside the brain. Also, it was shown that ELKS2 is 

specifically localized to the AZ whereas ELKS1B is present in both, AZ and cytoplasm 

(reviewed in Schoch & Gundelfinger, 2006.). The exact role of these proteins in mammals 

is not known, but it has been shown that they can form large molecular complexes with 

other CAZ proteins (RIMs, Bassoon, Piccolo, Liprin-α). Binding of ELKS to RIM1 is 

necessary for the proper localization of the RIM at the AZ (Ohtsuka et al., 2002). Since 

RIM1 is a target for the small SV-binding protein, Rab3, and also interacts with Munc13 it 

is believed that this complex might control recruitment of SVs and regulate their 

subsequent fusion with the presynaptic plasma membrane. In addition, it was shown that 

interfering with ELKS binding to RIM and Bassoon might diminish synaptic transmission 

(Takao-Rikitsu et al., 2004). The Drosophila homologue of ELKS is called Bruchpilot 

(BRP) and is important for the assembly of T-bars and correct localization of the AZ 

components in neuromuscular synapses (Kittel et al., 2006). Recently, Fouquet et al 

(2009) identified BRP as an integral T-bar component responsible for the effective 

clustering of Ca2+-channels during AZ maturation. The other AZ-organizing protein in 

Drosophila, DLiprin-α, (see below) enters nascent AZs substantially earlier then BRP. 

According to this, the emergence of presynaptic dense bodies (T-bars), which are 

involved in clustering Ca2+-channels, represent the central aspect of synapse maturation 

in Drosophila. Whether similar mechanisms operate during synapse formation and 

maturation in mammals remains an open question. 
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Liprin-α proteins 

The Liprin-α family of proteins was first identified by their interaction with the LAR-

RPTPs (LAR family of receptor protein tyrosine phosphatases) (Serra-Pages et al., 1995). 

In vertebrates, four liprin-α genes were found, liprin-α1, α2, α3 and α4, whereas C. 

elegans and Drosophila have only a single liprin-α gene: syd-2 (synapse-defective-2) and 

D-liprin. Liprin-α2 and liprin-α3 are expressed primarily in mammalian brain, while liprin-α1 

and liprin-α4 are also found in non-neuronal tissues. Liprin-α proteins are well conserved 

with ~50% amino acid identity between human liprin-α1 and worm SYD-2. To date Liprin-α 

proteins have been implicated in multiple processes important for proper cellular and 

synaptic function (Spangler and Hoogenraad, 2007). In immature neurons, liprin-α 

proteins are necessary for presynaptic development. Analyzing the SYD-2 mutants (a 

loss-of-function mutant of the C. elegans) revealed that its absence causes a variety of 

structural presynaptic defects. AZs in these mutants were lengthened and SV proteins 

were diffusely localized rather than clustered at presynaptic sites, implying that SYD-2 

protein is specifically responsible for the recruitment of synaptic proteins. Drosophila 

Dliprin-α mutants display a similar defect in active zone morphology, an increase in the 

synapse size and abnormal AZ structure. Liprin-α proteins are also important for normal 

neurotransmitter release as shown that, in both of the above-described invertebrate 

mutants, synaptic transmission was impaired. In mammals, liprin-α proteins associate with 

two major synaptic protein complexes that have been closely linked to presynaptic 

neurotransmitter release and vesicle cycling: ELKS (CAST/ERCs) and RIM. Binding to the 

RIMs is thought to link RIM-containing active zones to Rab3A-positive synaptic vesicles. 

In addition the interaction of the Liprin-α is with the MALS (mammalian LIN-seven protein) 

– CASK (Ca2+/calmodulin-dependent serine protein kinase) – Mint1 complex seems to 

impartant. It is believed that both these presynaptic Liprin-α complexes might be involved 

in recruiting components of the synaptic release machinery to the AZ and thereby 

facilitating neurotransmitter release. Furthermore, it was also shown that Liprin-α proteins 

are involved in multiple processes related to the postsynaptic development, e.g. via 

interaction with the glutamate receptor interacting protein GRIP (Wyszynski et al. 2002), 

and in intracellular trafficking via their interactions with the motor protein KIF1A (Shin et al. 

2003)). 

 

Bassoon and Piccolo/Aczonin 

Bassoon (tom Dieck et al., 1998) and Piccolo/Aczonin (Cases-Langhoff et al., 

1996; Fenster et al., 2000; Wang et al., 1999) are structurally related and the largest 

known CAZ-specific proteins (420 and 530 kDa, respectively). They are present in both, 
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excitatory and inhibitory synapses of all brain regions, but especially abundant in 

hippocampus, cerebellum and cortex (Richter et al., 1999). Both proteins share 10 regions 

of high sequence homology, called Piccolo-Bassoon homology domains (PBH) (Fig. 3).  

 

 

Fig. 3. Piccolo-Bassoon homology domains. Bassoon and Piccolo are structurally related 
proteins composed of two zinc finger domains (Zn1, Zn2), three coiled-coil domains (CC), several 
proline-rich sequences (e.g. Q in Piccolo), and 10 regions of homology called Piccolo-Bassoon 
homology domains (PBH1–10) (adopted from Schoch & Gundelfinger, 2006).  
 

 
The functions of Bassoon and Piccolo are not fully clarified. Their multi-domain 

structure and large size suggest that these proteins can act as major scaffolding proteins 

of the CAZ. Moreover, they are among the earliest proteins incorporated into nascent 

synapses during synaptogenesis suggesting a possible role for them in the assembly of 

the AZ (Zhai et al., 2000). Through the interaction with the CAZ protein ELKS (Takao-

Rikitsu et al., 2004) they might be involved in AZ organization and neurotransmitter 

release. In the mouse retina, Bassoon directly binds and functionally interacts with the 

CtBP-family member, RIBEYE, the protein postulated to serve as a central building block 

of synaptic ribbons (Schmitz et al., 2000; tom Dieck et al., 2005). In Bassoon-deficient 

mice, due to the loss of this interaction, photoreceptor ribbons are not anchored at the 

presynaptic AZ, but float freely at the cytoplasm (Dick et al., 2003). Piccolo might interact 

with SV-associated protein PRA1 taking a role in the trafficking of the SVs at the AZ 

(Fenster et al., 2000) and through the interaction with Actin/Dynamin-binding protein 

Abp1, it might act as a link between the dynamic actin cytoskeleton and SV recycling 

(Fenster et al., 2003). Using RNA interference to eliminate Piccolo expression, Leal-Ortiz 

et al. (2008) could show that, although Piccolo is not required for synapse formation, it 

does influence presynaptic function by modulation of Synapsin1a dynamics in presynaptic 

bouton. More recently, Fejtova et al (2009) reported the direct interaction of Bassoon with 

Dynein light chains (DLCs) through which Bassoon may function as a cargo adapter for 

retrograde axonal transport. In this study, we showed that disruption of the Bassoon-DLC 

interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution 

of both Bassoon and Piccolo among synapses. Taken together, all data support the view 

that Bassoon and Piccolo play an important role in synapse assembly, maturation and 

function. 
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1.1.4. Assembly of the presynaptic active zone – the role of Piccolo-
Bassoon transport vesicles (PTVs) 

The mechanisms of synaptogenesis in the CNS are under intense research. Cell-

cell contacts initiated by filopodia are thought to play a central role in inducing synapse 

formation, but what signals promote filopodia formation, which key adhesion molecules 

are involved in this process and what presynaptic and postsynaptic cascades are 

triggered by these adhesion-induced events is still largely unknown. 

However, it has been shown that synapse assembly occurs already 1 to 2 hrs after 

the initial axo-dendritic contact and, interestingly, it seems that presynaptic active zone 

may become functionally active prior to the maturation of the postsynaptic reception 

apparatus (Vardinon-Friedman et al., 2000). This momentum of synapse formation could 

be achieved by a rapid recruitment of pre-assembled synaptic components to the sites of 

cell-cell contact.  

A study performed by Ahmari et al., (2000) showed that at sites of newly forming 

synapses some clusters of vesicles containing synaptic proteins can be found. Further 

analysis of synaptogenesis in cultured hippocampal neurons has revealed that major 

scaffolds of the AZ, Bassoon and Piccolo, are expressed during early stages of neuronal 

differentiation, and in axons of immature neurons they are specifically associated with a 

class of 80 nm dense-core vesicles, which have been termed Piccolo-Bassoon transport 

vesicles (PTVs) (Zhai et al., 2001; Shapira et al., 2003). Interestingly, a variety of 

additional molecules, including RIMs, Syntaxin, SNAP25 and N-cadhedrin were also 

found on these vesicles, but not SV proteins like VAMP2/Synaptobrevin, Synaptophysin or 

Synaptotagmin.  

Based on our current knowledge it is hypothesised that PTVs may represent AZ 

precursor vesicles. During development these precursor vesicles transport AZ 

components into nascent synapses, providing scaffolds for the recruitment of the exocytic 

apparatus including SVs. Time-lapse imaging showed that PTVs are highly mobile entities 

and quantitative analysis of their content reveals that 2-3 PTVs are necessary to be 

inserted into presynaptic plasma membrane to form functional AZ (Shapira et al., 2003). 

More recently, Dresbach et al. (2006) showed that both, Bassoon and Piccolo co-localize 

with markers of the trans-Golgi network, suggesting that association of PTVs with trans-

Golgi compartment is an obligatory step in transport of presynaptic cytomatrix proteins to 

the synapse (Fig. 4).  
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Fig. 4. The active zone transport vesicle hypothesis (modified from Dresbach et al. 2003). 
During brain development the active zones are pre-assembled in neuronal cell bodies. They are 
transported along the axons as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of 
synaptogenesis where can fuse with the presynaptic plasma membrane and form functional 
synapse.  
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1.2. Bassoon and Piccolo mutant mice 

1.2.1. Bassoon mutant mice 

To establish the role of Bassoon in the assembly and functional organization of the 

AZ, mutant mice lacking the central region of the Bassoon protein were generated by 

Altrock et al., (2003). In these Bsn-mutant mice, exons 4 and 5 of the Bsn gene are not 

expressed removing the amino acids 505 to 2889 from Bassoon protein (the C-terminal 

half of the second zinc finger to a region N-terminal of the third CC domain of wild-type 

Bsn). These mice still express a 180-kDa mutant protein, which is not present in wild type 

animals and which is encoded by 9-kb transcript resulting from joining exons 3 and 6 (Fig. 

5). 

 

 

Fig. 5. Bassoon mutant mice. Targeted disruption of the Bassoon gene and analysis of transcript  
and protein expression in Bassoon mutant mice (Altrock et al., 2003). 
(A) Maps of the Bassoon gene, the targeting vector and the resulting mutant gene. (B) Southern 
blot analysis o genomic DNA of WT (+/+), heterozygous (+/-) and homozygous mutant (-/-) mice. 
(C) Alternative splicing of the mutant allele results in two transcripts. The 6kb transcript encodes 

the N-terminal 67 kDa fragment of Bassoon and galactosidase. In frame spicing from exon 3 to 

exon 6 gives rise to a 9 kb transcript encoding BsnEx4/5. (D) Northern analysis of brain RNA 
reveals two transcripts (>13kb) in WT mice, the two transcripts depicted in (C) in -/- mutants, and 
all four transcripts in +/- mice. Blotes were hybridized with an exon 2 probe. (E) Schematic 
representation of Bassoon proteins derived from WT and mutant transcripts. (F) Immunoblot 
analysis of brain homogenate from +/+, +/- and -/- mice. 
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Mutant Bassoon is more diffusely distributed in comparison with WT protein and 

unlike WT-Bsn, it does not co-localize with Piccolo in cultured hippocampal neurons. 

Biochemical data revealed that in comparison to WT protein, which co-purifies with 

synaptic junctions, the mutant 180-kDa Bassoon is not enriched in this fraction, but a large 

fraction is found in the cytoplasmic protein fraction. These findings suggest that the central 

part of Bassoon, which is absent in mutant protein, is responsible for its anchoring to the 

AZ and tight association with CAZ. Consistently the region for efficient synaptic targeting 

of Bassoon via the trans-Golgi network has been localized within this central region 

(Dresbach et al., 2003). Interestingly, the loss of WT Bassoon did not influence synaptic 

localization or expression level of other CAZ-specific proteins (RIMs or Munc13s) but did 

influence the expression level of related protein Piccolo, which is up-regulated 1.4-fold in 

Bassoon mutant mice.  

Bassoon-mutant mice are viable and normal at the birth, but 50% of the 

homozygous animals die during the first 6 months of life due to rapidly generalizing 

epileptic seizures. Electrophysiological recordings revealed that the loss of functional 

Bassoon causes a reduction in normal synaptic transmission due to inactivation of a 

significant fraction of excitatory synapses (Altrock et al., 2003). At these synapses, SVs 

are clustered and docked in normal numbers but they are unable to fuse. Although 

Bassoon is thought to be one of the major presynaptic scaffolds, loss of its function did not 

alter synapse morphology. It has been shown that, at the ultra-structural level, 

conventional synapses of Bassoon-mutant mice appear normal concerning the length of 

the AZ, number of docked SVs or SVs density. Characterization of the brain architecture 

in mice lacking functional Bassoon (Angenstein et al. 2007) showed a significant increase 

in the total brain volume, mainly caused by changes in cortex and hippocampus. More 

recently, interesting studies by Ghiglieri et al., (2009), on Bassoon-mutant mice 

concerning the epilepsy-induced changes in striatal synaptic plasticity revealed that 

mutant mice exerted reduced long-term potentiation in striatal spiny neurons, alternations 

in their dendritic morphology and higher number of fast-spiking interneurons. Using a 

biochemical approach, the authors showed an altered NMDA receptor subunit 

composition in mutant animals (a significant increase in NR2A and decrease in NR2B 

subunit of NMDA receptors). Interestingly, chronic antiepileptic treatment of mutant 

animals with valproic acid did not only reduce the epileptic seizures, but also normalized 

synaptic plasticity and NMDA subunit composition in these mice. Taken together, this 

study revealed new insights into previously described electrophysiological and molecular 

alternations in mutants, suggesting that the observed changes probably are not all 

induced directly by the lack of functional Bassoon, but most could be a consequence of 

the seizure activity. On the other hand, anti-epileptic treatment failed to reverse 
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morphological alternations in Bassoon mutant mice, meaning, that these changes might 

represent a direct effect of the lacking of functional Bassoon.  

As Bassoon is highly expressed in the rodent retina, Dick et al. (2003) used the 

same mouse model to investigate the role of Bassoon in ribbon synapse formation. The 

ribbon is a structurally and functionally specialized type of presynaptic AZ in retinal 

photoreceptors, and it is actually thought that the synaptic ribbon is an equivalent to the 

CAZ of conventional synapses (Zhai & Bellen, 2004; tom Dieck et al., 2005). Analyzing 

the retinas from Bassoon-deficient mice the authors found that retinal anatomy remained 

unaffected, but the mutation of Bassoon prevented the anchoring of the synaptic ribbon to 

the presynaptic active of the photoreceptor cell. This resulted in impaired photoreceptor 

synaptic transmission, altered differentiation of dendrites of postsynaptic neurons and 

formation of ectopic synapses. Ribbon synapses are also present in cochlear inner hair 

cells (IHCs) and it has been shown that in Bassoon-mutant mice anchoring of IHC ribbons 

are largely impaired causing disturbed synchronous auditory signaling. In these mice, a 

dramatic shift in the threshold of sound detection has been observed (Khimich et al., 

2005).  

Taken together, these studies suggest that Bassoon plays an important role in 

assembling and functioning of various types of synapses. 
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1.2.2. Piccolo mutant mice 

In Piccolo-mutant mice the first C2 domain is deleted, resulting in the down-

regulation of both, Piccolo transcript and protein product, presumably due to impaired 

transcript stability (T. Südhof, personal communication). Western blot analysis showed 

that mutant mice still express truncated mutant protein at about 6% of WT Piccolo levels 

(A. Fejtova, personal communication; Fig. 6.). Piccolo mutants are viable but often smaller 

then WT littermates, possibly due to impaired endocrine secretion of insulin or growth 

hormones. A detailed characterization of this phenotype is still in progress. 

 

 

Fig. 6. Piccolo mutant mice. (A) The map of the Piccolo gene with targeted deletion of the first C2 
domain (red squire). (B) RT-PCR from Pclo mutant mice (-/-) and WT animals (+/+) and (C) 
corresponding Western blots from WT (+/+), heterozygote (+/-) and mutant mice (-/-). Figure by 
courtesy of A. Fejtova. 
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1.3. Activity-dependent remodelling of synapses – Homeostatic plasticity 
and synaptic scaling 

Synapses are highly complex and dynamic structures that are continuously 

remodelled during development, learning and memory formation. Remodelling of synaptic 

properties occurs also during neural damages (e.g. stroke), neurodegenerative diseases 

(Parkinson’s or Alzheimer’s disease) or drug applications (anesthetics, anticonvulsants, 

street drugs). On the other hand, neurons and circuits have to maintain stable 

interneuronal signaling over the time and under different conditions not to impair normal 

synaptic network functions. There are several cellular processes, which may regulate the 

function and transmission properties of the synapses. According to Hebbian rules for 

plasticity the strength of synaptic transmission can be modulated through concerted 

activity at individual synapses. This form of synaptic plasticity includes long-term 

potentiation (LTP) and long-term depression (LTD), which are thought to contribute to 

higher functions of the central nervous system such as learning and memory. It has been 

shown that LTP at one individual synapse can facilitate LTP also at neighboring excitatory 

synapses. Similarly, the induction of LTP at excitatory synapses elicits LTD of inhibitory 

synapses through Ca2+-dependent activation of the phosphatase Calcineurin, leading to 

an increased excitability of the neuron (Lu et al., 2000). This indicates that synapses of a 

neuron react as a dynamic entity with limited independence one from another. 

On the other hand, changes in synaptic strength can arise from homeostatic 

control of neuronal activity. One form of the homeostatic plasticity that attracted high 

interest of researchers over past few years is activity-dependent synaptic scaling. This is a 

mechanism by which the global synaptic strength (strength of all synapses onto a 

postsynaptic neuron) is adjusted or “scaled” up or down together in response to activity-

dependent changes of network function (Turrigiano et al., 1998). This means that, if a 

neuron experiences a change in activity its equilibrium will shift in order to minimize that 

change. The classic experimental method of inducing homeostatic plasticity is application 

of pharmacological agents to block or increase synapse activity.   

As shown by Turrigiano and colleagues, chronic deprivation of excitatory synaptic 

transmission in cortical neurons resulted in increased amplitudes of miniature excitatory 

postsynaptic currents (mEPSC) and increased postsynaptic glutamate sensitivity. It is 

believed that these changes are due to a class-switch and other alterations in AMPA-type 

glutamate receptors. O’Brien et al. (1998) have reported that increased mEPSC amplitude 

upon inhibition of the excitatory transmission in cultured spinal neurons is accompanied 

with accumulation of the GluR1 subunits of the AMPA receptors at synapses. In cultured 

neocortical cells, TTX-induced synaptic scaling proportionally increases both, GluR1 and 
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GluR2 accumulation at synaptic sites (Wierenga et al., 2005). A large body of evidence 

further indicates that synaptic activity affects postsynaptic properties apart from the 

glutamate receptors localization. Kirov and Harris (1999) have reported that in mature 

hippocampal neurons when synapses are inactivated, dendrites display a higher spine 

density. It was hypothesized that neurons compensate the loss of the synaptic activity 

potentially by increasing the number of spines. Work done by Ehlers (2003) showed that 

activity level controls postsynaptic composition and, moreover, that those activity-

dependent changes in the PSD require ubiquitin-proteasome-mediated degradation. This 

promoted the idea that activity-dependent protein degradation might be a new mechanism 

controlling synapse remodeling, apart from gene transcription and translation, which were 

extensively studied in past.  

Synaptic network activity may affect presynaptic function as well, but, compared to 

the postsynapse, there is considerable less knowledge about the activity-dependent 

remodeling of the presynaptic site. Using primary cultures of hippocampal neurons, as a 

model system, Bacci et al. (2001) have found that chronic blockade of glutamate 

receptors during synaptogenesis produces an enhancement of presynaptic 

neurotransmitter release, indicated by an increased mEPSC frequency without changes in 

the mEPSC amplitude or in the number of the synapses. The increase in mEPSC 

frequency correlates with an increase in the basal rate of SV exo-endocytotic recycling 

and down-regulates the interaction between Synaptophysin-Synaptobrevin/vesicle-

associated membrane protein 2 (VAMP2). The lack of an effect on mEPSC amplitude is in 

contrast with some previously published work but this discrepancy probably occurred due 

to differences between culture preparations (embryonic vs. postnatal cultures) or other 

experimental variables (e.g. presence vs. absence of glial cells, which are known to 

influence both the number and the properties of newly formed synapses). Evaluating the 

ultra-structural changes of the synapses, Murthy et al. (2001) reported that synaptic 

network inactivity increases the size of all synaptic components (AZ, PSD), the total 

number of vesicles per synapse and the number of docked SVs, which correlates with the 

increased release probability. It is known that the strength of synapses might be altered 

presynaptically not only by changing the probability with which SV will undergo exocytosis, 

but also by changing the amount of the transmitter contained in each SV. This latter can 

be achieved by scaling the amount of vesicular transporter proteins per vesicle, which 

increase or decrease the vesicular loading capacity. A study done by De Gois et al. (2005) 

showed homeostatic scaling of vesicular glutamate (VGLUT1 and VGLUT2) and inhibitory 

GABA (VIAAT) transporter expression in rat neurocortical cultures. While prolonged 

activity deprivation increases the expression level of VGLUT1, the expression level of 
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GABA transporter is decreased. In contrast, prolonged hyperexcitation of neurons causes 

the opposite effect.  

Data reported above clearly demonstrate that homeostatic synaptic compensation 

could occur through a variety of presynaptic and postsynaptic changes. However, for 

longer time ranges the question, whether the expression locus of homeostatic plasticity is 

pre- or postsynaptic has been discussed controversially. Wierenga et al. (2006) have 

tackled this issue by testing the response of cortical and hippocampal neurons to the 

same activity deprivation paradigm after different periods of time in vitro. Their study 

showed that the site of expression of homeostatic plasticity is temporally regulated. In 

young neurons, activity deprivation scales up excitatory synaptic strengths through 

postsynaptic changes in receptor accumulation, without detectable changes in presynaptic 

function (the amplitude but not the frequency of mEPSCs is increased). By contrast, in 

older neurons activity blockade produces a more complex set of changes. In addition to 

the postsynaptic changes, there is an additional set of presynaptic changes including 

increased glutamate packaging into vesicles, an increase in the number of functional 

release sites and an increase in vesicle release probability (now both, amplitude and 

frequency of mEPSCs are increased) (Fig. 7.).  

 

 

 

Fig. 7. Expression loci of synaptic homeostasis at central synapses (adopted from Turrigiano, 
2007). (a) In young neurons (<2.5 weeks in vitro) there is purely postsynaptic response to activity 
blockade (receptor accumulation, increased mEPSC amplitude) (b) By contrast, older neurons 
(>2.5 weeks in vitro) have a mixed presynaptic and postsynaptic response (increased glutamate 
packaging into vesicles, number of functional release sites, SV release probability and increased 
both, the amplitude and frequency of mEPSCs).  
 



INTRODUCTION 

 

 19 

Taken together in a variety of systems the existence of homeostatic plasticity 

phenomena is well established, but still little is known about the underlying molecular and 

signaling mechanisms. The activity-dependent changes in the molecular content of 

synapses could arise either from incorporation of new proteins or by removal of existing 

ones or both, but how exactly processes like gene transcription, protein synthesis and 

degradation are controlled by synaptic network activity is still not clear. Work performed by 

Ehlers brought some new insides into the understanding the activity-dependent 

remodeling of PSD, the role of the ubiquitination and subsequent protein degradation in 

homeostatic plasticity and activity-induced alternations in synaptic signaling to CREB and 

ERK-MAPK. However, whether the presynaptic density (CAZ) undergoes similar changes 

upon network activity alternations and what are molecular and signaling mechanism 

operating there is not known. Complete understanding of the molecular and signaling 

mechanisms underlying both pre- and postsynaptic homeostatic signaling will be of major 

importance for the understanding of processes that underlie activity-dependent refinement 

of neuronal circuitry, diseases and developmental disorders, during which the balance 

between excitation and inhibition is disrupted.  
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1.4. Aims of this work 

 
There were two major aims of my PhD thesis: 

 

I) Ultrastructural characterizations of synapses of Bsn-Pclo double mutant mice 

Bassoon and Piccolo are homologous proteins that might be functionally partially 

redundant. Both have an exquisite presynaptic, AZ localization, and both proteins are 

present in synapses very early during development. Therefore, the study of mice mutant 

for both genes should reveal a better understanding of their role in the 

assembly/maturation and function of the CAZ. Double-mutant mice are not viable and the 

first interesting question was, whether in absence of the two proteins synapses are still 

formed? If yes, whether they exhibit some morphological alternations regarding to their 

size, number and/or density of SVs or general appearance of the pre- or/and postsynaptic 

compartments (length of the AZ, thickness of PSD etc).   

 

II) Activity-dependent remodelling of presynaptic AZ 

Synapses are complex and highly dynamic structures that are constantly 

remodelled during development, learning and memory processes. Physiologically activity-

dependent changes in the synaptic properties are well described, especially for the 

postsynaptic compartment, however, whether similar activity-dependent changes occur on 

the presynaptic site remained unknown. The aim of this study was therefore to investigate 

whether synaptic activity may alter the molecular composition of the AZ and, if yes, what 

might be possible molecular mechanisms underlying this activity-dependent remodelling.  
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2. Materials and Methods 

2.1. Materials  

The chemicals used in this work were purchased from the described companies. 

The quality of the reagents was of analytical grade.  

 

2.1.1. Animals 

Animal lines used for organ harvesting are listed in the table 1. Animals were bred 

in the animal facility od the Leibniz Institute For Neurobiology, Magdeburg and in the 

ZENIT, Magdeburg. 

 
Table 1. Animal lines 

Animal line Notes  Origin 

C57Bl6|J cre Wild type mice Charles River 

SV129EMSJ Wild type mice Jackson Laboratoreis 

Bsn mutant mice Genetic background: 50% C57Bl|J cre 
and 50% SV129EMSJ 

Altrock et al., 2003 

Pclo mutant mice  A gift from T.C. Südhof 
Dallas, Texas, USA 

Whister rats Rattus norvegicus familiaris Leibniz Institute for 
Neurobiology 

 

 

2.1.2. Pharmacological reagents  

Table 2. Pharmacological reagents 

Compound  Biological activity   Company 

D-(-)-2-Amino-5-phosphonopentanoic 
acid (D-AP5) 

competitive NMDA antagonist 
 

Tocris 

6-Cyano-7-nitroquinoxaline-2,3-dione 
disodium (CNQX) 

AMPA/kainate antagonist Tocris 

Picrotoxin (PTX) GABAA receptor antagonist Tocris 

Tetrodotoxin (TTX) Selective inhibitor of Na
+
 channel 

conductance 
Tocris 

Carbobenzoxy-L-leucyl-L-leucyl-L-
leucinal (MG132) 

potent, reversible, and cell-
permeable proteasome inhibitor 

Calbiochem 

* Complete Protease inhibitor cocktail tablets Roche 

* PhosStop Phosphatase inhibitor cocktail 
tablets 

Roche 
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2.1.3. Commonly used buffers 

Table 3. Commonly used buffers 

Cortical cultures washing buffer 10mM Tris; 300mM sucrose, pH 7.4 

Cortical cultures lysis buffer 
 

10mM Tris-HCl, pH7.4; 150mM NaCl; 2% SDS; 
1% Deoxycholate, 1% TritonX-100; 1x Complete*; 1x 
PhosStop* 

PBS 2.7mM KCl;1.5mM KH2PO4;8mM Na2HPO4, pH 7.4 

PBS-T 2.7mM KCl;1.5mM KH2PO4;8mM Na2HPO4, pH 7.4; 
0.1% Tween20 

 

2.1.4. Cell Cultures 

Cortical neuronal cultures used in this work were prepared by Sabine Opitz and 

Heidi Wickborn from E16-E17 rats. Primary neurons were cultured in 5% CO2 at 37OC with 

humidity of 95%. All supplemented cell culture medias were sterile filtrated in sterilfiltartion 

bottles of 0.22 m pore size and kept until usage at 4OC.  

 
Table 4. Cell culture media 
 

Media and Reagents Ingredients / Companies 

DMEM (mouse culture) 2% B27(Gibko); 1mM Sodium Pyruvate 100x (Gibco); 
2% AlbuMax II (Gibco); 2mM L-Glutamine 100x 
(Gibco); in DMEM (without: Phenolred, L-Gln, NaPyr) 
(Gibco)  

DMEM (10% FCS) 10% FCS (Gibco); 1% Peniciline/Streptomycine 100x 
(Gibco); 2mM L-Glutamine 100x (Gibco) in DMEM 
(Gibco) 

DMEM (4% FCS) 4% FCS (Gibco); 1% Peniciline/Streptomycine 100x 
(Gibco); 2mM L-Glutamine 100x (Gibco) in DMEM 
(Gibco) 

NB 2% B27 (Gibco); 2mM L-Glutamine (Gibco); 1% 
Peniciline/Streptomycine 100x (Gibco) in Neurobasal 

Distillate Water  Gibco/ Millipore 

HBSS+ (with Mg
2+

 and Ca
2+

) Gibco 

HBSS-  Gibco 

Optimem Gibco 

Ara C 1.5mM Calbiochem 

10x Trypsin Gibco 

1X Trypsin 10% 10x Trypsin (Gibco); DMEM (10% FCS)  

Paraffin Paraplast embedding medium (Fisher) 
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2.2. Experimental procedures 

2.2.1. Genotyping of P0 animals 

Newborn (P0) mice were labeled and tailcut samples were taken for DNA 

extraction. The tailcuts were incubated in 500 μl of lysis buffer including freshly added 

Proteinase K at 550C for 20 min under shaking. Inactivation of the enzyme was done by 

incubation for 10 minutes at 980C and subsequently, the samples were subjected for PCR 

(4 μl of the sample for one PCR reaction). The tube without tailcut sample was used as a 

negative control. Polymerase chain reaction (PCR) was performed using 21 μl of master 

mix containing: 1pM forward primer, 1pM reverse primer, 2.5 mM MgCl2, 0.1 units/μl Taq-

polymerase (Qiagen), 0.2 mM dNTPs (Fermentas) in Q-solution (Qiagen, 5 X) and PCR 

buffer (Qiagen, 10 X). PCR products were then separated based on their size via gel 

electrophoresis using 1.5% of agarose in TAE buffer and voltage of 120mV. 

Solutions for DNA extraction, agarose gel electrophoresis, primer sequences and PCR 

program for genotyping of P0 animals are listed in the following tables: 

 

Table 5. Solutions for DNA extraction, agarose gel electrophoresis 
 

solution composition 

Lysis buffer 10mM Tris/HCl, 100mM NaCl, pH 8.0 

Proteinase K-stock 10mg/ml in 40% glycerol (v/v), 10mM Tris/HCl pH7.5, 
1mM calcium acetate,  

6x DNA sample buffer 30% (v/v) glycerol, 50mM EDTA, 0.25% bromophenol blue, 
0.25% xylene xyanol 

TAE 40mM Tris, 0.2mM acetic acid, 1mM EDTA, pH 7.6 

 
 
Table 6. Primer sequences for genotyping 
 

Genotype Forward primer Reverse primer 

Bsn WT 
Bsn KO 

5’-agttgtcaagcctgttccagaagc-3’ 
5’-ggtatcctgttctgaaagactttc-3’ 

5’-acaccgtcggaggagtagcctgt-3’ 
5’-aagcttgatatcgaatttggcctg-3’ 

Pclo WT 
Pclo KO 

5’-gctctgcagaggtaaagcttgc-3’ 
5’-ccttgaggtcaatgtgatcagc-3’ 

5’-ttgtgtcacgtagtcagactg-3’ 
5’-ccaagttctaattccatcagaagc-3’ 

 
 
Table 7. PCR program for genotyping 
 

 PCR for Bassoon PCR for Piccolo 

Proces Time and  
temperature 

Cycle Time and  
temperature 

Cycle 

Initial denaturation 3 min at 95
0
C 1  1 

Denaturation 
Annealing 
Extension 

30 sec at 95
0
C 

40 sec at 63
0
C 

30 sec at 72
0
C 

 
35 

20 sec at 95
0
C 

45 sec at 63
0
C 

30 sec at 72
0
C 

 
35 

Final extension 2 min at 72
0
C 1 2 min at 72

0
C 1 
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2.2.2. Protein concentration determination: Amidoblack protein assay 

Protein concentration was determined by the colorimetric amidoblack assay. To 

prepare the calibration curve, 0 - 20 μg BSA and 5 - 10 μl of sample were brought to a 

total volume of 100 μl with dH2O. 200 μl of amidoblack solution were added to both, the 

standard and sample solutions. All samples were incubated for 20 minutes at room 

temperature and centrifuged at maximum speed for 5 minutes. The supernatant was 

decanted, the pellet was washed tree times with methanol-acetic acid. Finally the pellet 

was resuspended in 500 μl of NaOH (0.1 N). The absorption was measured at 620 nm 

against NaOH.  

 

Table 8. Solutions for Amidoblack protein assay 

Solution  Composition  

Amidoblack solution  14.4 g amidoblack in 1 l methanol-acetic acid  

Methanol-acetic acid  Methanol:acetic acid = 9:1  

BSA stock solution  0.5 mg/ml  

 

 

2.2.3. SDS-PAGE  

In this work two different SDS-PAGE systems were used, the Laemmli and the 

Tris-acetate system. Proteins were separated using one-dimensional sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under fully denaturing and 

reducing conditions (Laemmli 1970). SDS-PAGE was performed in a gradient gel: a 

stacking gel was layered on top of a separating gel. The samples were first incubated with 

SDS-sample buffer at 95°C for 5 minutes and then loaded onto the gel. Gels were allowed 

to run at a constant current strength of 12 mA in an electrophoresis chamber (Hoefer 

Mighty Small System SE 250 from Amersham Biosciences) filled with 1x electrophoresis 

buffer. Subsequently the gels were either stained with Coomassie blue or were used for 

immunoblotting. The SDS-PAGE by the Tris-acetate-system is based on the NuPAGE-

system (Invitrogen). The system was developed for resolving big proteins and further 

Western blot analysis (8% to 4% gradient). 
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Table 9. Laemmli system 
 

Buffer  Composition  

5x SDS-sample buffer  250 mM Tris/HCl, pH 6.8, 1% (w/v) SDS, 40 % (v/v), glycerol, 4 % β-
mercaptoethanol, 0.02 % bromophenol blue  

Electrophoresis buffer  192 mM glycine, 0.1 % (w/v) SDS, 25 mM Tris-base, pH 8.3  

4x separating buffer  0.4 % (w/v) SDS, 1.5 M Tris/HCl, pH 6.8  

Separation gel (20 %)  8.25 ml separation buffer, 7.5 ml 87 % Glycerol, 16.5 ml 40 % 
Acrylamyde, 330 μl EDTA (0.2 M), 22 μl TEMED, 120 μl 0.5 % 
Bromophenol blue and 75 μl 10 % APS  

Separation gel (5 %)  8.25 ml separation buffer, 17.94 ml dH2O, 1.89 ml 87% Glycerol, 4.12 
ml 40% Acrylamide, 330 μl EDTA (0.2 M), 22 μl TEMED and 118 μl 
APS.  

Stacking gel (5 %)  6 ml stacking buffer, 7.95 ml dH2O, 5.52 ml 87 % Glycerol, 3.90 ml 30 
% Acrylamyde, 240 μl EDTA (0.2 M), 240 μl 10 % SDS, 17.2 μl 
TEMED, 30 μl Phenol red and 137 μl 10 % APS  

 
 
 
Table 10. SDS-PAGE under reducing conditions by the Tris-acetate system 

 
Buffer  Composition  

4x stacking and separation gel  0.5 M Tris-acetat; pH 7.0  

Rotiphorese 30  30 % Acrylamid, 0.8 % Bisacrylamide (Carl Roth)  

Separation gel (8 %)  
(for 5 gels)  

3.2 ml 4x buffer, 3.47 ml Rotiphorese 30, 3 ml 87 % Glycerine, 
3.28 ml H2O, 10 μl TEMED, 50 μl Ammoniapersulfate, 10 μl 
Bromophenolblue  

Separation solution (3.5 %)  
(for 5 gels)  

3.25 ml 4x buffer, 1.52 ml Rotiphorese 30, 3 ml 87 % 
Glycerine, 7.48 ml H2O, 10 μl TEMED, 50 μl 
Ammoniumpersulfate  

Stacking-gel  2.5 ml 4x buffer, 1 ml Rotiphorese 30, 2.3 ml 87 % Glycerine, 
4.2 ml H2O, 10 μl TEMED, 60 μl 10 % Ammoniumpersulfate, 5 
μl Bromophenol blue  

5x SDS loading buffer  500 mM Tris-HCl, 20 % Glycerine, 4 % SDS, 1 mM EDTA, 
0.001 % Bromophenol blue, pH 8.5. 30 mg/ml of DTT (200 mM 
) was added prior to use.  

20x gel running buffer  1 M TrisBase, 1 M Tricine, 2 % SDS  
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2.2.4. Coommassie staining of SDS-polyacrylamide gels  

Polyacrylamide gels were stained with Coommassie solution for 30 minutes. 

Proteins were visualized by incubating the gel in distaining solution for 2 hours or 

overnight by shaking. Gels were visualized by Odyssey Infrared Imaging System (LI-COR 

Bioscience) or alternatively, the distained gels were incubated for 15 minutes with drying 

solution for preservation and mounted between two cellophane membranes in a drying 

device. 

 

Table 11.  Solutions for Coommassie staining 

Coommassie blue staining solution  1 mg/l Coommassie brilliant blue R-250, 60 % (v/v) 
methanol, 10 % (v/v) acetic acid  

Distaining solution  7 % (v/v) acetic acid, 5 % (v/v) methanol  

Drying solution  5 % (v/v) glycerin, 50 % (v/v) methanol  

 
 

2.2.5. Western blotting 

Proteins were electrotransfered from polyacrylamide gels to Millipore Immobilon-

FL transfer membranes (polyvinylidene fluoride membrane (PVDF)). The transfer was 

performed in blotting buffer at 4°C for 1.30h with 200 mA for Tris-Glycine gels, or 3.30h 

with 250mA for Tris-Acetate gels.  

 

Table 12. Blotting buffers 

 
Buffer  Composition  

Blotting buffer for Tris-acetate  25 mM Bicine, 25 mM BisTris, 1 mM EDTA, 5% methanol  

Blotting buffer for TrisGlycin  192 mM Glycine, 0.2 % (w/v) SDS, 18 % (v/v) methanol, 25 mM 
Tris-Base, pH 8.3  

 

2.2.6. Immunoblot detection  

After transfer PVDF membranes were briefly pre-wet in 100% methanol, rinse with 

distilled water and dry at room temperature. Then membranes were wetted in PBS for 

several minutes.  Blots were incubated at 4°C overnight with the primary antibody diluted 

in PBS-T containing 5 % of BSA and 0.025% of sodium azide.  After three washing steps 

with PBS-T for 10 minutes each time, the membranes were submerged in peroxidise-

coupled secondary antibodies (diluted in 1% of BSA) for 1 hour at room temperature. 

Membranes were rinsed again three times with PBS-T and immunodetection was carried 
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out employing ECL films (GE Healthcare, Amersham HyperfilmTM ECL), which were 

developed automatically using Agfa Curix 60 developing machine.  

For all quantitative immunoblotting, protein transfer and incubation with primary 

antibodies were done in the same manner as described above. Fluorescently-labeled 

secondary antibodies were diluted in PBS-T containing 5 % of BSA and 0.01% of SDS 

(addition of SDS reduce membrane background, particularly when using PVDF), and 

membranes were incubated for 1 hour at room temperature. After four washing steps in 

PBS-T and two in PBS, membranes were scanned in the appropriate channels (700 or 

800 nm) using Odyssey Infrared Imagine System. From obtained intensity for each band 

the background subtraction was made (background intensity was taken as mean of the 

three empty places from the membrane).  

 

2.2.7. Immunocytochemistry  

The cells were fixed with 4% paraformaldehyde, 4% sucrose in PBS, pH 7.4, for 

10 minutes at room temperature. Prior to immunostaining, the cells were block for 1 hour 

in PBS containing 10% fetal calf serum (FCS), 0.1% glycine and 0.3% TritonX-100. 

Primary antibodies were applied overnight at 4°C. After three washing steps with PBS at 

room temperature, the Cy3- 488- or Cy5-labelled secondary antibodies were applied to 

the cells for one hour (at room temperature). Both, primary and secondary antibodies 

were diluted in PBS containing 3% FCS. Coverslips were maintained on slides with 

Mowiol (Calbiochem) including and were incubated overnight at 4°C before microscopy 

analysis.  

Images were taken with Zeiss Axioplan2 (Zeiss Microimaging), Spot RT-KE 

camera (Diagnostics Instruments, Inc.) and MataVue software (Molecular Devices). For 

each couple of coverslips (treated vs. control) the same exposure time was taken.  

 

Primary and secondary antibodies used for immunobloting and 

immunocytochemistry are listed in Tables 13 and 14: 

 

 

 

 

 

 

 



MATERIALS AND METHODS 

 

 28 

Table 13. Primary antibodies for Western blot and Immunostaining 

Antibodies Species WB dilution ICC dilution Company 

AKAP 150  
(N-19: sc-6446) 

goat 1:500  Santa Cruz 

Bassoon (Sap7f) rabbit 1:2.000 1:2.000 Tom Dieck et al., 
1998 

ERC 1b/2  
(ELKS 1b/2) 

rabbit 1:1.000  Synaptic Systems 

Homer 1 (VesL1) rabbit 1:1.000 1:2.000 Synaptic Systems 

Liprin alpha3 rabbit 1:1.000  Synaptic Systems 

MAP2 (clone HM-2) mouse  1:2000 Sigma Aldrich 

Munc13-1 rabbit 1:1.000 1:1.000 Synaptic Systems 

Piccolo  guinea pig 1:1.000 1: 500 Dick et al., 2001 

PSD-95  
(clone K28/43) 

mouse 1:2000  Upstate 

RIM1,2  
(Zn-finger domain) 

rabbit 1:1.000 1:1.000 Synaptic Systems 

SV2B rabbit 1:1.000 1:1.000 Synaptic Systems 

Synapsin rabbit 1:1.000  Synaptic Systems 

Synaptophysin rabbit  1:5.000 Gift of Dr. R. Jahn 

Synaptophysin  
(clone SVP-38) 

mouse 1:1000  Sigma Aldrich 

Synaptophysin 1 guinea pig  1:2.000 Synaptic Systems 

Syntaxin 1  mouse 1:1000  Synaptic Systems 

Syntaxin 6 rabbit 1:1.000  Synaptic Systems 

Tubulin-beta III mouse 1:5000  Sigma Aldrich 

VGLUT1 rabbit  1:1000 Synaptic Systems 

Voltage-gated-Ca
2+ 

channel (P/Q-type, 
alpha-1A subunit) 

rabbit  1:1000 Synaptic Systems 

 
 
 
Table 14. Secondary antibodies for Western blot and Immunostaining 

Antibodies Species WB 
dilution 

ICC  
dilution 

Company 

anti-mouse, rabbit or  
guinea pig IgG, Alexa 
Fluor™  488 - conjugated 

goat or donkey   1:2.000 Invitrogen 

anti-mouse, rabbit or  
guinea pig IgG Cy3™-
conjugated 

goat or donkey  1:2.000 Jackson Immuno 
Research 

anti-mouse, rabbit or  
guinea pig IgG Cy5™-
conjugated 

goat or donkey  1:1.000 Jackson Immuno 
Research 

anti-mouse, -rabbit or  
guinea pig IgG, 
peroxidase-conjugated  

goat, donkey or  
rabbit 

1:20.000  Jackson Immuno 
Research 

anti-mouse, -rabbit or 
goat IgG Alexa 680 

goat or donkey  1:20.000  Invitrogen 

anti-mouse or -rabbit IgG, 
IRDye™-800CW 

Goat or donkey  1:20.000  Rockland 
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2.2.8. Electron microscopy (EM) 

Mouse hippocampal cultures were prepared by Dr. Anna Fejtova from P0 mice 

following the protocol described by Goslin et al. (1998).  

Neurons were grown on coverslips for 16 days and subsequently processed for 

conventional EM. After removing the media, cells were fixed with buffer containing 1% 

formaldehyde and 1% glutaraldehyde in 0.1M NaPi (pH 7.4) for 10 minutes at room 

temperature. After three washing steps in 0.1M NaPi and three washing steps in 0.1M 

cacodylate buffer cells were incubated for 1hour in 1% OsO4. Then, dehydration in a 

series of several ethanol concentratons (50%, 70%, 80%, 90%, 96% up to 100%) was 

performed with a blocking staining with 2% uranyl acetate during the 70% ethanol step for 

1 hour. The coverslips were then embedded in Durcupan by sandwiching between two 

sheets of plastic foil for next 48h.  After that the pieces of selected cells were cut out and 

glued on Durcupan blocks over night. The ultrathin sections (50nm) were obtained with an 

Ultracut E (Reichert-Jung, Heidelberg, F.R.G.) and mounted on grids. Samples were 

examined and photographed at 12500x magnification using Leica EM 912 Omega 

electron microscope. 

 

2.3. Data analysis 

In general, images were adjusted and analyzed using ImageJ (NIH, Bethesda, 

MD), Metamorph, Photoshop (Adobe) or OpenView software (written by N. Ziv; Tsuriel et 

al., 2006). Images for EM study were processed by ImageJ. Synaptic parameters were 

measured as described in Results section (page 31). Quantitative Western blot analyses 

were done using Odyssey Infrared Imaging System (LI-COR). All statistical analyzes were 

performed with Prism 4 software (GraphPad Software) using one-way ANOVA or t-test (as 

indicated in each experiment).  
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3. RESULTS  

3.1. Ultrastructural characterization of Bassoon-Piccolo double mutant mice 

Mice heterozygous for the Bassoon mutations (Bsn+/-) were crossed with 

heterozygous Piccolo-mutant mice (Pclo+/-) to produce animals homozygous for both 

genes (Bsn-Pclo double mutants). Genotyping of newborn (day P0) animals was 

performed by PCR (primers and conditions are given in Material and Methods) (Fig. 8. A). 

In contrast to Bsn and Pclo single mutant mice, which are viable at the birth, double 

mutants die a few hours after birth probably because of reduced breathing rate and/or 

dehydration, as they do not feed (Fig. 8. B).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 8.  Basson-Piccolo double mutant mice. A. Genotyping of three (1,2,3) P0 animals by PCR. 
Note that animal 1 is Bassoon-Piccolo double mutant, animal 2 is WT and animal 3 is heretozygous 
for both genes. B. Bassoon-Piccolo double mutant mice are born but die a few hours after birth. 
The lack of milk in their stomach (arrow) suggests that they are not able to feed and therefore may 
die because of dehydration. 

 

To evaluate synapse formation and synaptic structure a cell culture system had to 

be established. Banker-type primary cultures of newborn homozygous mutants and wild-

type littermates were established for this purpose by Dr. Fejtova in our laboratory. In 

double-mutant background synapses can be formed as shown by immunostaining of 

hippocampal cultures using anti-Synapsin antibody as synaptic marker (Fig. 9. A). 

Similarly postsynaptic marker proteins can be detected as well (Fejtova personal 

communication). By contrast, staining with Bassoon and Piccolo antibodies completely 

abolished the fluorescence signal in double-mutant cultures (Fig. 9. B and C). There were 

no obvious differences between cultured neurons from WT and Bsn-Pclo-dMut cultures 

regarding to cells shape, culture density or survival. Moreover, as tested in autaptic 

culture systems of hippocampal neurons, synapses in double mutant background are 

A                                                               B 

 

 

        1       2       3                         1      2      3   
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functional and display a phenotype similar to Bsn mutants (A. Meyer, A. Siegler & C. 

Rosenmund,, personal communication; Altrock et al., 2003).  

 

Fig. 9. Staining of the cultured hippocampal neurons from WT and Bsn-Pclo double mutant 
mice for synaptic proteins. Cultured hippocampal neurons (16 DIV) from WT or Bsn-Pclo double 
mutant mice were fixed, permeabilized and stained for synaptic marker protein (Synapsin, A) or 
CAZ proteins Bassoon (B) and Piccolo (C). The figure was provided by Dr. Fejtova.  

 

In order to evaluate the consequences of Bsn and Pclo deficiencies for synaptic 

structure and function we carried out a morphological analysis of central synapses from 

Bsn-Pclo double mutant mice using electron microscope (EM). Primary hippocampal 

neurons from double-mutant and comparable wild-type animals were grown for 16 days in 

culture and processed for conventional EM including formaldehyde and glutaraldehyde 

fixation and Durkopan embedding. For this study 50nm ultra-thin sections were mounted 

on grids and further post contrasted utilizing uranyl acetate. In total 258 synapses from 4 

WT and 325 synapses from 4 double mutant animals were analysed. In each synapse the 

following parameters were measured (Fig. 10.): (a) AZ length characterized as the length 

of PSD; (b) Number of SVs in the proximal zone (inside the semicircle around the AZ); (c) 

Number of docked vesicles per 100 nm of AZ (docked vesicles defined as SVs, which are 

lying within 50nm distance from the presynaptic plasma membrane, divided by length of 

the active zone multiplied by 100); (d) Width of the postsynaptic density (PSD) measured 

in the centre of the synaptic junction and (e) Number of potential PTVs in presynaptic 

buttons (as potential PTVs are counted only 80 nm dense core vesicles). 

A 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
C 
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Fig. 10. Parameters that morphologically define the synapses 

 

This evaluation revealed that in Bsn-Pclo double mutants the thickness of the PSD 

was significantly reduced compared to WT animals (0.026 ± 0.001 m for WT vs. 0.016 ± 

0.0008 m for Bsn-Pclo double mutants; mean ± SEM; P=0.0017). Also, the number of 

80nm dense core vesicles in presynaptic buttons was significantly reduced in double 

mutant mice as compared to WT (0.5 ± 0.07 WT vs. 0.13 ± 0.04 Bsn-Pclo double mutants; 

mean ± SEM; P=0.0049). We assume that these 80nm dense core vesicles represent AZ 

transport vesicles (PTVs) but in the absence of two major constituents, Bsn and Pclo, one 

can name them as “potential PTVs”.  

No significant differences were found in the AZ-length (0.36 ± 0.01m WT vs. 0.38 

± 0.01 m Bsn-Pclo double mutants; mean ± SEM; P=0.5043) and in the number of SVs 

in the proximal zone (4.75 ± 0.14 WT vs. 4.35 ± 0.63 mutants; mean ± SEM; P=0.5550). 

The number of docked SVs per AZ was not significantly different, although there was clear 

tendency in the whole data set towards less docked vesicles in double mutants (0.45 ± 

0.01 WT vs. 0.38 ± 0.03 double mutants; mean ± SEM; P=0.1388). The number of docked 

vesicles was significantly reduced in 3 out of 4 double mutant animals analyzed (Table 15, 

Fig. 11.). 
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Table 15. Morphometric analysis of synapses in cultured hippocampal neurons of WT and 

Bassoon-Piccolo double mutant mice 

 control Bsn-Pclo double mutants 

parameters N 
(animals/ 
synapses) 

mean ±SEM N 
(animals / 
synapses) 

mean ±SEM 

AZ-length (m) 4 /  0.36 ± 0.01 4 0.38 ± 0.01 

dSV/100nm AZ 4 / 0.45 ± 0.01 4 0.38 ± 0.03 

SVs in PZ 4 4.75 ± 0.14 4 4.35 ± 0.63 

PSD-

thickness(m) 4 0.026 ± 0.0008  4 0.016  ± 0.002** 

Number of 
“PTVs” 

4 0.57 ± 0.07 4 0.13 ± 0.04** 

Total 136 “PTVs” in 258 
synapses 

Total 47 “PTVs” in 325  synapses 

 
Data were obtained from high-magnification electron micrographs of synapses from 4 WT and 4 
Bsn-Pclo double mutant animals (n-number of animals). The total number of analysed synapses 
(N) is 258 of WT and 325 of Bsn-Pclo double mutants. dSV-docked synaptic vesicles; SEM- 
standard error of the mean; **p< 0.01 All analyses were carried out by investigator without any 
knowledge of the genotype. Statistical analysis (t-test) was performed using GraphPad Prism 4 
program. 
 
 
 
 
 

 
 
Fig. 11. The ultra-structure of synapses from hippocampal neurons in culture (16 div). The 
difference in the width of PSD (arrows) in WT (A) and Bsn-Pclo double mutants (B) is apparent 
from individual examples.  Samples were examined and photographed at 12500x magnification 
using Leica EM 912 Omega electron microscope. Scale bar 100nm. Right panels provide higher 
magnifications of selected area.  

 

 



RESULTS 

 

 34 

Taken together, the ultrastructural examination of Bsn-Pclo double mutant 

synapses revealed unexpected change in the postsynaptic compartment.  On the other 

hand the reduced number of 80-nm dense-core precursor vesicles is in line with the 

assumption that Bsn and Pclo are necessary for PTVs formation. The fact that some of 

those vesicles are still present in double-mutant mice suggests that other molecules are 

also carried by PTVs. These can be e.g. RIMs and/or Munc13s, Ion channels, 

neurotrophic and growth factors, adhesion molecules or other signalling molecules. Based 

on the results we can hypothesize that Bsn and Pclo are not necessary for synapse 

formation, but they might be crucial for their maturation during later development.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

 

 35 

3.2. Activity-dependent remodelling of presynaptic active zone 

3.2.1. Activity-dependent modulation of synaptic proteins expression level 

Physiologically, a variety of activity-dependent changes in the synaptic properties 

have been described. While postsynpatic molecular mechanisms have been analyzed to 

some extent, our knowledge about the molecular mechanisms underlying the activity-

dependent remodelling of the presynaptic side is spare.  

To examine whether synaptic activity may alter the molecular composition of the 

active zone, cultured cortical neurons were used as a convenient model system for 

various activity-related pharmacological manipulations. Global synaptic network activity 

was altered pharmacologically by application of glutamate antagonists (APV and CNQX) 

which leads to silencing of synaptic transmission, or GABAA receptor blocker (PTX) which 

increases global activity by network disinhibition. To examine the effect of the treatment 

on expression level of selected proteins, lysates from treated and control cells were 

subjected to quantitative Western blot analysis using the Odyssey system. Cortical 

neurons were initially maintained in culture in the absence of receptor antagonists for 21 

days, and subsequently, incubated for 48 hrs, either in media containing APV and CNQX 

(inhibited cells), or in media containing PTX (active cells). Control neurons were kept in 

control media (Fig. 12.).   

 

 

Fig. 12. Experimental setup. Cortical neurons were initially maintained in culture in the absence of 
receptor antagonists for 21 days (yellow) and subsequently, incubated for 48 hrs, either in media 
containing APV and CNQX (blue), or in media containing PTX (red).  
 

 
Cells were lysed under very harsh conditions, i.e., in a buffer containing 1% 

TritonX-100, 1% deoxycholate and 2% SDS, detergents which help to extract and 

solubilize majority of the cellular proteins. Total protein levels were determined by an 

amido black assay and equal amounts of the lysates (7-10g per lane) was loaded onto a 

gel (fig. 13. A.). All data presented in Fig. 13. were obtained from two independent 

experiments. In each experiment three samples per condition were loaded onto the gel in 

triplicates. Protein band intensities were normalized to the intensity of tubulin-beta3 

staining, expression level of which was not influenced by activity manipulations (Fig. 13. 

C).  



RESULTS 

 

 36 

The results showed that, in three weeks old cultures, prolonged inhibition of 

excitatory synaptic transmission (48h treatment with 50 M APV and 10 M CNQX) 

significantly decreases the expression level of the presynaptic, CAZ proteins including 

Bassoon, Piccolo, RIMs, Munc13, CAST/ELKS/ERCs and Liprin-alpha and the 

presynaptic scaffolding protein Synapsin as well as some of the postsynaptic scaffold 

proteins (PSD-95, AKAP-150, Homer), as compared to the synaptic network excitation 

(48h of 50 M PTX application) or the control state (Fig. 13. B). On the other hand, the 

same condition does not influence the expression of synaptic vesicle proteins, such as 

SV2B and Synaptophysin, or the SNARE-family proteins (Syntaxin1 and Syntaxin6) (Fig 

13. C). The quantitative analysis also revealed that in our culture system further excitation 

of synaptic network (48hrs of PTX treatment) did not alter the protein composition as 

compared to the control state probably due to already high level of its basal activity (Table 

16, Fig. 13.).  

 

Table 16. Percent change (relative to control) in synaptic protein levels 48hrs after adding 
PTX or    APV/CNQX 
 

Protein PTX_48hrs 
Protein levels: % of control 

APV/CNQX_48hrs 
Protein levels: % of control 

 

Bassoon 

RIMs 

CAST/ELKS/ERCs 

Munc13 

Liprin_alpha3 

Synapsin 

PSD95 

Homer1 

AKAP150 

Synaptophysin 

SV2B 

Syntaxin1 

Syntaxin6 

 

  98.85 ± 8.9 

112.15 ± 15.2 

   73.30 ± 10.6 

  94.50 ± 7.4 

108.05 ± 9.1 

  88.20 ± 6.2 

  86.95 ± 8.9 

108.55 ± 9.7 

  82.90 ± 6.7 

  89.20 ± 9.3 

  95.50 ± 8.5 

102.30 ± 6.6 

114.15 ± 7.0 

 

49.39 ± 6.7
***

 

 53.40 ± 10.0
**
 

23.50 ± 4.9
***

 

53.65 ± 6.7
***

 

63.70 ± 6.3
***

 

67.15 ± 5.5
***

 

52.25 ± 6.8
***

 

60.45 ± 6.9
***

 

39.20 ± 5.9
***

 

             81.65 ± 8.5 

             84.85 ± 7.8 

           116.15 ± 11.0 

           101.55 ± 9.1 

 

Note allover reduction in the intensity level for all CAZ-proteins (Bassoon, RIMs, 
CAST/ELKS/ERCs, Munc13, Liprin; Synapsin and selected postsynaptic scaffolds (PSD95, 
Homer1, AKAP150) after activity deprivation. No statistically significant changes in the expression 
of SV (SV2B, Synaptophysin) and SNARE proteins (Syntaxin1 and 6) (

***
, p<0.001; **, p<0.01, 

one-way ANOVA followed by Bonferoni post test. Data represents mean ± SEM ) 
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Fig.13. Synaptic activity regulates the composition of CAZ and 
PSD. A. Total protein stains of lysates from DIV-23 cortical cultures 
treated for 48h with APV and CNQX or picrotoxin (PTX) or control 
solution (CTRL). Equal protein amounts were loaded in all cases. B,C. 
Immunoblot analysis for selected presynaptic and postsynaptic proteins. 
D. Quantitative analysis of band intensities of the selected synaptic 
proteins form CTRL lysate (set to 1) or after adding APV and CNQX or 
PTX treatment for 48hrs. All values were first normalized to tubulin-
beta3 intensity, which was not changed by the treatments. Data 
represent means ± s.e.m. of the band intensities obtained from two 
independent experiments normalized to control values from untreated 
(CTRL) neurons. (

#
, p<0.001; *, p<0.01; one-way ANOVA followed by 

Bonferoni post test)  
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3.2.2. Activity-dependent reduction of CAZ proteins at synaptic sites 

The decrease in expression level of CAZ-associated proteins during synaptic 

scaling induced by silencing of network activity could be due to downscaling of proteins 

level at all synapses or to an allover reduction of synapse number. To distinguish between 

these two possibilities comparative immunocytochemical experiments were performed. 

DIV-21 neurons grown under control conditions or treated for 48hrs with APV and CNQX 

were fixed, permeabilized with 0.3% of TritonX-100 and stained with antibodies against 

various synaptic proteins. Co-staining with an anti-MAP2 antibody was used to select 

20m long dendritic segments 10 m apart of the cell body. First, the number of puncta 

positive for staining with anti-Synaptophysin antibody in such dendritic segments was 

analyzed.  No differences were found between control and treated cells (41.51±1.69 vs. 

43.28±1.754 puncta per 20µm dendrite; mean±SEM, n=59 vs. 54 cells) showing that upon 

activity deprivation there is no change in overall number of synapses (Fig.14.).  

 

 

 

Also, no quantitative changes were observed in immunostainings for synaptic 

vesicle proteins SV2B (37.92±2.656 vs. 37.69±1.970 puncta per 20µm of the dendrite, 

mean±SEM, n=12 vs. 16 cells) and Synaptotagmin (23.13±2.503 vs. 21.22±2.454 puncta 

per 20µm of the dendrite, mean±SEM, n=9 vs. 8 cells) (Fig. 15).  

Fig.14. Overall number of 
synapses revealed by 
Synaptophysin staining 
was unchanged upon 
synaptic network activity 
deprivation. Cortical 
neurons (after 21 DIV) were 

treated for 48hrs with 50M 

APV and 10 M CNQX or 
kept in control solution 
(CTRL). The graph 
represents the number of 
Synaptophysin positive 
puncta (stained in green) 
counted along MAP2 

staining (red) per 20m of 
the dendrite. Data were 
obtained from two indepen-
dent experiments; in total 59 
control and 54 treated cells 
were analyzed (the number 
of Synaptophysin positive 

puncta per 20m is 
displayed: 41.51±1.69 
(CTRL) vs. 43.28±1.754 
(APV/CNQX);    mean±SEM, 
t-test). 
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Fig.15. Prolonged synaptic network inhibition did not alter the amount of SV proteins (SV2B, 
Synaptotagmin). Cultured cortical neurons (21 DIV) were either treated with APV/CNQX for 48hrs 
or kept in control solution before fixation, permeabilization and staining for selected proteins. Scale 
bar, 5 microns. Quantitative analysis showed no statistically significant changes in the number of 
protein puncta per 20 microns of dendrite. SV2B (37.92±2.656 vs. 37.69±1.970 puncta per 20µm of 
the dendrite, mean±SEM, n=12 vs. 16 cells) and Synaptotagmin (23.13±2.503 vs. 21.22±2.454 
puncta per 20µm of the dendrite, mean±SEM, n=9 vs. 8 cells). The observed deference between 
SV2B and Synaptotagmin positive number of puncta might be due to different sensitivities of anti-
SV2B and anti-Synaptotagmin andantibodies that have been used in the experiment. 
 

 
Analogous quantitative analysis using antibodies against CAZ proteins Bsn, Pclo, 

Munc13 and RIMs (Fig. 16.) and postsynaptic scaffolding protein Homer1 (Fig. 17.) 

revealed a dramatic decrease in the number of immunoreactive puncta in silenced 

neurons. Furthermore, the fluorescence intensity of all CAZ-proteins was also changed 

upon activity blockade (Table 17.). 
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Table 17. APV/CNQX treatment reduces the levels of CAZ and PSD proteins in synapses 
 

 
 

Protein 
 

 

Number of puncta/ 
20 microns of dendrite 

Fluorescence intensity/ 
20 microns of dendrite 

 
N 

 

 
CTRL 

 

 
n 

 

 
APV/CNQX_48hrs 

 

 
N 
 

 
CTRL 

 

 
N 

 

 
APV/CNQX_48hrs 

 

 

 

Bassoon 

Piccolo 

RIMs 

Munc13 

Homer1 

 

 

 

39 

38 

33 

25 

15 

 

 

48.03 ± 1.96 

51.84 ± 2.12 

45.58 ± 1.25 

56.28 ± 5.07 

53.6 ± 3.36 

 

 

 

38 

36 

36 

28 

14 

 

 

 

35.03 ± 1.33*** 

36.72 ± 1.97*** 

30.61 ± 1.01*** 

42.01 ± 3.53** 

40.57 ± 3.19** 

 

 

 

1787 

1021 

1504 

527 

 

 

 

888.9 ±13.07 

685.6 ± 13.37 

691.1±14.73*** 

471.7 ± 7.76 

 

 

 

 

1444 

  631 

1102 

  440 

 

 

 

753.7± 14.67*** 

529.5 ± 16.86*** 

1119 ± 24.11 

333.5 ± 6.44*** 

 

The number of protein puncta and relative synaptic fluorescence intensity per 20 microns of 
dendrite from control (CTRL) and APV/CNQX treated cells (21 DIV). Data represent means ±SEM. 
n-number of cells per each condition; N- number of puncta whose intensity was measured.  
***P<0.001; **P<0.01, t-test 
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Fig. 16. Activity-dependent reduction of CAZ proteins at synaptic sites. Cultured cortical 
neurons (21 DIV) were treated with either APV/CNQX for 48hrs or kept in control solution (CTRL). 
Cells were fixed, permeabilized and stained for CAZ-specific proteins: (A) Bassoon, (B) Piccolo, (C) 
RIMs and (D) Munc13. Quantitative analysis showed changes in both, number of CAZ protein 
puncta per 20 microns of dendrite and in synaptic fluorescence intensity. Scale bar, 10 microns in 
overlay picture, 5microns in selected region of interest. Data represent means ± s.e.m. **P<0.01; 
***P<0.001 relative to control (Table 17.), t-test.  

 

ctrl apv/cnqx
0

10

20

30

40

50

***

n
u

m
b

e
r 

o
f 

p
u

n
c
ta

/

2
0
m

ic
ro

n
s
 o

f 
d

e
n

d
ri

te

 

 

ctrl apv/cnqx
0

100
200
300
400
500
600
700
800
900

1000
1100
1200

***

in
te

n
s
it

y
 o

f 
R

IM
s

fl
u

o
re

s
c
e
n

c
e
/p

u
n

c
ta

 

 

ctrl apv/cnqx
0
5

10
15
20
25
30
35
40
45
50
55
60
65

**
n

u
m

b
e
r 

o
f 

p
u

n
c
ta

/

2
0
m

ic
ro

n
s
 o

f 
d

e
n

d
ri

te

 

ctrl apv/cnqx
0

100

200

300

400

500

***

in
te

n
s
it

y
 o

f 
M

u
n

c
1
3

fl
u

o
re

s
c
e
n

c
e
/p

u
n

c
ta

 

C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D 



RESULTS 

 

 43 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Activity-dependent reduction of the postsynaptic scaffold protein Homer1. Cultured 
cortical neurons (21 DIV) were treated with either APV/CNQX for 48hrs or kept in control solution 
(CTRL). Cells were fixed, permeabilized and stained for PSD protein Homer1. Quantitative analysis 
showed changes in number of Homer1 puncta per 20 microns of dendrite. Scale bar, 10 microns. 
**P<0.01; ***P<0.001 relative to control (means ± SEM, Table 17.), t-test. 

 

 

For a functional assessment of these findings electrophysiological recordings were 

performed in the same model system under similar experimental conditions by my 

colleague C. Schoene (see Appendix 1 for the results). These data revealed an increased 

mEPSC frequency and amplitude upon activity deprivation compared to control cells. The 

mEPSC frequency is thought to represent a presynaptic response to altered activity 

probably due to an increased vesicular release probability. Changes in the release 

probability might be due to changes in Ca2+ influx through voltage-dependent Ca2+ 

channels. To test whether an up-regulation of voltage-dependent Ca2+ channels contribute 

to this phenomena immunocytochemistry was performed using an antibody against P/Q-

type Ca2+. No significant differences were observed in activity-deprived vs. control cells 

(53.68±2.514 in CTRL vs. 48.53±4.09 puncta in APV/CNQX treated neurons (mean±SEM, 

n=19 vs. 17 cells). Puncta were counted per 20 µm of dendrite as described above) (Fig. 

18.) 
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Fig. 18. No activity-dependent changes in the number of voltage-dependent Ca2+ channels. 
Activity deprived (48hrs in APV/CNQX) and contro (CTRL) cultured cortical neurons (21DIV) were 
stained with the antibody against P/Q-type of Ca2

+
 channels. Scale bar, 5 microns. Quantitative 

analysis showed no statistically significant changes in the number of protein puncta per 20 microns 

of dendrite from CTRL (53.68±2.514, n=19) and APV/CNQX (48.53±4.09, n=17 ) treated cells. 

Data represents the mean±SEM. t-test. 
 

 
Increased mEPSC amplitude after prolonged activity blockade might be either due 

to accumulation of AMPA receptors at postsynaptic side or due to increased glutamate 

levels within SVs. Vesicular glutamate transporter (VGLUT1) is in charged for SV filling 

and it was already shown that VGLUT1 accumulates at synaptic site in silenced neurons 

(De Gois et al., 2005). Using our culture system and counting the number of VGLUT1 

positive puncta in CTRL and activity deprived cells we also could show up-regulation of 

the VGLUT1 amount upon activity blockade (CTRL 29.55±1.519 (n=20); APV/CNQX: 

35.00±1.548 (n=19); mean±SEM) (Fig.19.) 

 

 

 
Fig. 19. Prolonged activity blockade increases the number of VGLUT1 positive puncta per 20 
microns of dendrite. Control (CTRL) and activity deprived cells (APV/CNQX for48hrs) were 
stained with an antibody against VGLUT1. The number of VGLUT1 positive puncta were counted 
along 20 microns of dendrite. Quantitative analysis showed significant upregulation of VGLUT 
amaunt upon activity blockade (CTRL 29.55±1.519 (n=20); APV/CNQX: 35.00±1.548 (n=19); 
mean±SEM) * P<0.05; t-test). 
 

 

Taken together, the obtained results revealed that chronic inhibition of synaptic 

network activity reduces the global amount of CAZ proteins in silenced neurons (reduction 

in the total number of immunoreactive puncta). In the same neurons the amount of 

Bassoon, Piccolo and Munc13 proteins is also downscaled per individual synapse, as 

suggested by reduced fluorescence intensity measurements. In contrary, upon network 
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activity deprivation, the intensity of RIM immunofluorescence per individual synapse was 

significantly up-regulated compared to control state, suggesting that these synapses might 

be more active than RIMs depleted ones.  

 The total number of synapses measured by number of Synaptophysin positive 

puncta stayed unchanged upon activity deprivation, as well as, the number of 

immunoreactive puncta for SV proteins or P/Q-typeCa2+ channels. By contrast, the 

amount of glutamate transporter, VGLUT1, is significantly up-regulated upon activity 

blockade suggesting that more glutamate transporter is present on indivdual SVs 

potentially leading to higher uptake rates of the neurotransmitter.  

 

3.2.3. Prolonged activity deprivation decreases the expression level of 
synaptic proteins in young cultures  

Activity induced reduction of CAZ protein expression levels was also observed in 

younger cultures (15div) after 48h of synaptic deprivation (APV/CNQX) (Fig. 20. line 1.) 

compared to network activation by PTX or the control state (CTRL). Application of the Na+ 

channel blocker tetrodotoxin (2M TTX), which also leads to silencing of the network 

activity by suppressing the propagation of action potentials, resulted in down-regulation of 

expression levels of selected proteins in the similar manner as glutamate antagonists (Fig. 

20. line 3). Thus, the observed effect of downscaling of CAZ protein expression was more 

likely due to general changes in network activity rather than only specific effects of 

blocking synaptic glutamate receptor function by APV/CNQX. 
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To determine the kinetics of protein profile changes in active and inactive neuronal 

networks, samples were prepared from the cultures of cortical neurons treated for only 

24hrs with the various pharmacological agents. Quantitative analysis showed that 24hrs 

treatment with glutamate blocker (APV/CNQX) is not sufficient to alter the expression of 

synaptic proteins as it was observed after 48hrs treatment (Fig. 21.).  

 

Fig. 20. Prolonged activity deprivation 
decreases the expression level of synaptic 
proteins in young cultures (15 DIV).  
Immunoblot analysis present changes in the 
expression level of selected proteins in response 
to prolonged activity blockade (APV/CNQX or 
TTX for 48h) compared to synaptic activation 
(PTX) or control state (CTRL). Note that overall 
tubulin intensity remained unchanged upon 
activity manipulations.  
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Fig. 21. Immunoblot analysis of synaptic proteins 24hrs after synaptic network deprivation 
(APV/CNQX) or activity enhancement (PTX). Quantification of the band intensities normalized to 
control values showed no significant differences of protein level expressions under different 
conditions (data represent means ± SEM of the band intensities normalized to tubulin-beta3 
staining, which was not changed upon activity manipulations).  

 

3.2.4. Activity-dependent remodeling of the AZ is reversible 

If alterations in the expression level of CAZ-specific proteins underlie presynaptic 

homeostatic plasticity during activity inhibition, then the observed changes in the 

molecular content of synapses in silenced neurons should be reversible after removing 

the drug. To test this, the basic experiment was done in the same way as above: three 

weeks-old cells were incubated for 48 hrs in the presence of 50 M APV and 10 M 

CNQX and then, for further 24hrs or 48hrs in normal medium (Fig. 22.). 
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Fig. 22.  Scheme of the four experimental groups to test the reversibility of drug traetment. 

Activity inhibition in all cases was done for 48hrs (blue box). Control cells were kept in control 
medium all the time.  
 

Western blot analysis showed that removing the drug leads to a visible recovery of 

the proteins level already after 24hrs, with an even more pronounced effect after 48hrs 

(Fig. 23.). 

 

 

 

Therefore the quantitative immunoblot analysis was performed using the cell lysate 

48hrs after the drug removal. Compared to treated cells statistically significant recovery 

could be observed for all CAZ proteins after 48 hrs of recovery (Bassoon, RIMs, Munc13, 

Liprin, CAST/ELKS/ERCs) and for postsynaptic scaffolding protein Homer 1 (Table 18, 

Fig. 24.). 

 

 

 

  

Fig. 23. Activity dependent reduction in the 
expression level of CAZ-specific proteins is 
reversible. Three weeks-old cortical neurons were 

incubated for 48hrs in the presence of 50 M APV 

and 10 M CNQX (lane 3) and then, subsequently 

for next 24 hrs (lane 2) or 48 hrs (lane 1) in a fresh 
medium without drugs. As immunoblotting revealed, 
washing out the drugs for 24 hrs leads already to a 
visible recovery of the proteins expression. The effect 
is much more pronounced when the washing step is 
48 hrs. Control cells (lane 4, CTRL) were kept all the 
time in a control solution. 
 
 
 solution 
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Table 18. Percent change in protein levels after adding of APV/CNQX for 48hrs and 

recovery of the protein expression level 48 hrs after removing the drug 

Protein APV/CNQX_48hrs APV/CNQX_48hrs 
Washout_48hrs 

 

Bassoon 

RIMs 

Munc13 

Liprin_alpha3     

CAST/ELKS/ERCs 

Homer1 

 

   

27.4 ± 2.04 

55.6 ± 5.72 

46.5 ± 9.22 

83.6 ± 5.08 

64.2 ± 5.40 

60.8 ± 8.44 

 

 

 62.8 ± 3.49*** 

 83.2 ± 4.94*** 

             64.2 ± 6.37* 

           102.1 ± 0.12** 

79.33 ± 4.85* 

   96.57 ± 13.18** 

 

Values indicate the percentage of the protein intensity obtained from the control (untreated) sister 
cultures.  Data represents the mean±SEM (*P<0.05; **P<0.01; ***P<0.001; t-test) 

 

 

 

Fig. 24. Activity dependent down-regulation of selected synaptic proteins is reversible. Note 
significant recovery of the protein expression levels 48hrs after removing the drug from activity 
deprived cells (line 2) comparing to activity deprived cells (line 1). However, the protein expression 
level did not reach control state (line 3). 
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3.2.5. Activity controls protein degradation 

As shown by quantitative immunoblotting and immunostaining, the amount of CAZ 

proteins is decreased after blockade of the excitatory transmission. Therefore we 

addressed the question what might be the possible molecular mechanism for the 

observed effects and does synaptic activity control proteasome-dependent protein 

degradation? To address this question we applied MG132, a potent inhibitor of 

proteasome-mediated protein degradation. Biochemical data indicated that inhibition of 

the proteasome for 6 hrs prevented activity induced decrease of CAZ proteins (Fig. 25.), 

suggesting that proteasome-mediated degradation might be at least one molecular 

mechanism underlying the activity-dependent protein turnover and global compositional 

changes in the presynaptic AZ.  
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Fig. 25. Activity dependent reduction in the expression level of 
CAZ-specific proteins upon activity blockade (line 1. 
APV/CNQX for 48hrs) can be rescued by proteasome blockade. 
Application of MG132, a potent proteasome blocker, to activity 
deprived cells (line 2. APV/CNQX (48hrs) +MG132 (6hrs)) 
significantly increases the expression level of selected CAZ and 
PSD proteins. ***P<0.001; t-test. However, the recovery was not to 
control state. 
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4. DISCUSSION 

4.1. Ultra-structural characterization Bsn-Pclo double mutant mice 

During the last decades a lot of molecular biological, biochemical and genetic 

studies have been performed in order to better understand mechanisms involved in 

processes of synaptogenesis in the central nervous system. Most likely, the specific 

adhesion reaction initiated by cell-cell contact between presynaptic and postsynaptic 

partners is the key triggering event for synapse formation, but what molecular 

mechanisms and signaling molecules underlie this process is still largely unknown.  

In the present study, the intention was to investigate the possible role of two major 

presynaptic, CAZ-specific proteins, Bassoon and Piccolo, in synapse assembly and/or 

maturation during brain development. Both proteins are transported to the nascent 

synapse via 80-nm dense-core precursor vesicles called PTVs. It was shown that only 60 

min after the initial cell-cell contact synapses are formed (Vardinon-Friedman et al., 2000) 

and both Bassoon and Piccolo are found to be in the place of newly formed synapse very 

early during development (Zhai et al., 2001). Based on these findings and the new 

observation that Bsn-Pclo double mutant animals are not viable, it was assumed that 

these two proteins might be important for synapse formation and/or function.  

In Bsn-Pclo double deficient mice synapses are formed, as revealed by 

immunostaining of hippocampal cultures using anti-Synapsin antibody as synaptic marker. 

Synapses could also be observed at the ultrastructural level with synaptic contacts 

defined as sites where presynaptic boutons containing SVs are opposing postsynaptic 

electron dense material. Whether these synapses differ in their ultra-structure from WT 

synapses was one major question of the present work. To address this question 

conventional electron microscopy was used to examine and compare the morphology of 

the central synapses of cultured hippocampal neurons in the double-mutant vs. wild type 

animals. Previously, in work done by Altrock et al. (2003) it was shown that the absence of 

functional Bassoon did not alter the morphology of central synapses regarding to the 

length of the AZ, number of docked SVs or SV density. A detailed study on Pclo single 

mutant mice has not been done yet. At the first glance, however, no major phenotype 

could be seen. Therefore we focused our interest on double mutants first.  

Electrophysiological properties of Bsn and Pclo single and Bsn-Pclo double mutant 

mice were studied by Alexander Meyer and Christian Rosenmund (unpublished data). 

Previously it was shown by Altrock et al. (2003) that loss of functional Bassoon causes a 

30-50% reduction of EPSC amplitude and RRP size. The same results were obtained 
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from excitatory synapses of Bsn-Pclo double deficient mice. However, in inhibitory cells 

the size of the readily releasable pool (RRP) in Bsn single and Bsn-Pclo double mutants 

was reduced comparing to WT (reduction was 40%-45%), whereas in Pclo mutant mice 

the reduction was not significant (only 15% less then in WT neurons). The release 

probability did not differ between WT and Bsn mutant neurons, but in neurons lacking Pclo 

or in Bsn-Pclo double mutant neurons depression was slightly more pronounced then in 

control cells.  

Comparing the features of the major presynaptic parameters between WT and 

Bsn-Pclo double mutant animals, we found that, although two major AZ scaffolds are 

missing, there is no significant difference in the ultra-structure of the presynaptic bouton 

between these two groups of animals. The length of the AZ (taken as a length of 

postsynaptic electron dense structure, the PSD), as well as total number of SV in proximal 

zone of the presynaptic terminal were not significantly changed in the absence of 

functional Bassoon and Piccolo. The number of docked SV (defined as SVs which are not 

more then 50 nm in distance from presynaptic plasma membrane) showed clear tendency 

towards reduction in double mutant mice. In three out of four animals that were analyzed 

the number of docked SVs was significantly down-regulated. This might be due to 

technical limitations using conventional EM with glutaraldehyde fixation. Aldehyde 

fixatives aggregate filaments (which are probably CAZ proteins and other presynaptic 

scaffolds) and therefore are not good for studying the ultra-structural architecture of 

synapses. To preserve the cytomatrix and to avoid the collapse of the presynaptic 

terminals, the electron tomography after high pressure freezing (HPF) of tissue can be 

used in order to analyze the distribution of SVs and filaments within the AZ. This method 

permits the discrimination of detailed morphological features such as the cytoskeleton or 

tethering and docking of SVs. Recently, using the HPF Siksou et al. (2009) reinvestigated 

the ultra-structure of Munc13 deficient mice, and by contrast to previously reported study 

(Varoqueaux et al., 2002) the authors found that in mutant mice SVs are not docked to the 

AZ plasma membrane. This finding brought the new understanding of the role of Munc13 

proteins in membrane docking and functional priming of SV. Accordingly, Bsn-Pclo double 

mutants need to be reinvestigated in the same way. 

However, counting the number of 80-nm dense-core vesicles in boutons from WT 

and double-mutant animals, we found a significant reduction of these sturctures in mutant 

mice. Our assumption is that PTVs constitute a major fraction of these vesicles, which 

serve as AZ precursor vesicles. But in the absence of the major marker proteins they 

cannot be identified as authentic PTVs. Previously it was shown that PTVs carry not only 

Bassoon and Piccolo, but also other AZ proteins that have been implicated in SV 

exocytosis, such as Munc13, Munc18, syntaxin, SNAP25 and N-type calcium channels 



DISCUSSION 

 

 53 

(Shapira et al., 2003). Therefore, the reduction, but not complete disappearance of 

“potential PTVs”, might be explained by their involvement in the delivery of these 

molecules to the nascent AZ during synaptogenesis. Actually our findings support the idea 

that multiple types of active zone transport vesicles might exist and that in the double 

mutant PTVs are missing. However, this hypothesis needs further attention in future.  

The second important finding of the present work is a significant reduction of the 

thickness of PSD in Bsn-Pclo double deficient mice. The fact that mutation of two major 

presynaptic molecules influences the postsynaptic compartment might be surprising at the 

first glance. However, it is actually known that both pre- and post-synaptic compartments 

act synchronously during synaptogenesis in order to establish functional synapse (Fig. 

26). 

 

 

 

 

 

 

 

 

 

In general, there are several possible explanations how Bassoon and Piccolo 

might influence PSD formation. One is that, during development, establishing of 

postsynaptic compartment requires mature, fully assembled presynaptic AZ, which is 

lacking in synapses of Bsn-Pclo double mutant mice due to absence of major AZ players. 

Fig. 26. Model of excitatory central synapse formation (adopted from Goda et al., 2003) 
A. Early synaptogenetic signaling events involving secreted factors procede cell contact and 
motile filopodia search for potential partners. Neurotransmitters are released from exocytic 
hot spots where small clusters of synaptic vesicles are found (blue circles). Transport 
packets that contain active zone elements traverse along the axons (yellow circles). B. Cell 
adhesion molecules (red triangles) stabilize select cell contact sites. C. Active zone 
elements and synaptic vesicles accumulate at the presynaptic terminal. Postsynaptic 
terminal assembly follows presynaptic assembly by recruiting neurotransmitter receptors 
(double ellipses) and postsynaptic scaffolds (green triangle). D. In the assembled synapse, 
the presynaptic terminal has docked and reserve pool of synaptic vesicles and the 
postsynaptic terminal show neurotransmitter receptors embedded with the scaffold proteins. 
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Whether and how this is signaled to the postsynapse is not know. It is well established 

that interaction of presynaptic neurexins and postsynaptic neuroligins promote the 

adhesion between dendrites and axons and recruitment of presynaptic and postsynaptic 

molecules to form a functional synapse. Therefore, the neuroligin-neurexin interaction has 

the ability to act as a bi-directional trigger of synapse formation (reviewed in Dean C and 

Dresbach T, 2006). Directly or indirectly it is possible that Bassoon and/or Piccolo as large 

multidomain proteins with many interaction partners regulate this interaction, which can 

explain why the postsynapse is not fully formed in their absence. The second hypothesis 

would be that  80-nm AZ precursor vesicles deliver to the nascent synapse not only AZ 

elements but also cell-adhesion proteins, growth factors, neurotrophins or signaling 

molecules, which will promote postsynaptic assembly and maturation. N-cadherin is one 

of the promising candidate molecules in that context, since it was shown to be important 

for synaptogenesis (Benson et al., 1998) and initially, N-cadhedrins were found on PTVs 

as well. Unfortunately, biochemical isolation and analysis of PTVs is a very difficult task 

and has not been accomplished to date. Future experiments will be necessary to gain 

knowledge about synapse formation and the potential role of Bassoon and Piccolo and/or 

other PTV components during synaptogenesis.  

Recent work in our lab revealed that synaptic localization of CtBP1, a protein that 

is an interaction partner of Bassoon (tom Dieck, 2005, Jose et al., 2008) and probably can 

interact with Piccolo as well, strongly dependent on Bassoon and Piccolo (A. Fejtova, C. 

Schoene, unpublished). It is known that CtBPs are proteins with multiple functions 

including the transcriptional co-repression in the nucleus (reviewed in Chinnadurai, 2007). 

If the absence of Bassoon and Piccolo impaired the synaptic targeting of CtBP1 it is 

possible that its nuclear level rise and disturb normal transcriptional regulation including 

transcription of postsynaptic scaffolds. This might also explain the aberrant appearence of 

the PSD in double mutants. On the other hand, up-regulated CtBP1 in the nucleus might 

alter the epigenetic state of chromatin, since CtBP1 also has been shown to recruit 

HDACs (histon deacetylases) (Subramanian, 2003) and that might cause early neonatal 

lethality of Bsn-Pclo double mutant animals.   

Based on the data described here, we can assume that Bassoon and Piccolo, 

although the major constituents of the AZs present in the synapses very early during 

development, are not essential for synapse formation per se. Since, their absence 

influences the postsynaptic formation we can conclude that both, Bassoon and Piccolo 

are important for synapse maturation and therefore for establishment of the functional 

synaptic contacts. Function of synapses formed in the absence of these two proteins is 

not compatible with life causing early neonathal lethality of Bsn-Pclo double mutant 

animals.  
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4.2. Activity dependent remodelling of the AZ 

Homeostatic plasticity and synaptic scaling are concepts used to describe the 

modifications that neurons undergo while adapting to persistent alternations in input 

strength. The cellular mechanisms underlying these forms of plasticity are still poorly 

understood and for a long time the question whether the expression locus of homeostatic 

plasticity is presynaptic or postsynaptic was controversial. Work done by Wierenga et al. 

(2006) shed new light on this issue providing evidence that there is a developmental 

switch in the expression locus, from purely postsynaptic response in young neurons to 

mixed pre- and postsynaptic response in older ones. In case of activity deprivation, 

presynaptic response is represented as increased mEPSC frequency and postsynaptic 

response is assessed as increased mEPSC amplitude (Turrigiano et al., 1998). Increased 

mEPSC frequency is assumed to be driven by presynaptic modifications of release 

properties (i.e. probability of SV release), whereas changes in the amplitude are 

underlined by receptor accumulation at postsynaptic site (O’Brien et al., 1998) or by 

changes in the glutamate filing into SVs (Wilson et al. 2005).  

In the present study we have investigated whether and how the altered synaptic 

network activity influences the molecular composition of presynaptic AZ. Also, we wanted 

to address the question what might be possible mechanism underlying activity-dependent 

AZ remodelling.  

Using cortical neurons as a convenient and well established model system 

accessible for various activity-dependent manipulations we could show that prolonged 

network activity deprivation in three weeks old cultures exerted significant down-regulation 

of the expression level of all CAZ-specific proteins (Bassoon, Piccolo, Munc13, RIMs, 

Liprin-alphas) as well as the presynaptic scaffolding protein Synapsin. Interestingly, the 

same condition did not alter the expression level of SV (SV2B and Synaptophysin) and 

SNARE family proteins (Syntaxins), and moreover, we were able to confirm in our 

experimental setup previously reported downscaling of some of the PSD scaffolding 

proteins (PSD-95, Homer) (Ehlers, 2003). By contrast to activity deprivation, further 

excitation of synaptic activity, by blocking inhibitory GABAA receptors, did not alter protein 

composition as compared to the control state. This might be explained, at least partially, 

by already high level of basal activity in our culture system due to high density of plated 

cells (300.000/well).  

To distinguish whether the observed downscaling of CAZ-associated proteins 

during synaptic blockade is due to reduced amount of these proteins in all synapses or 

due to reduced total number of synapses in activity deprived neurons, we applied an 

immunocytochemical approach. The data revealed that, in spite of deprived synaptic 
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network activity, the overall number of synapses is not changed. However, the number of 

synaptic punta stained with antibody against different CAZ proteins (Bassoon, Piccolo, 

RIMs, Munc13) was significantly reduced. Very interestingly, the intensity of RIM 

fluorescence in individual synapse was significantly up-regulated compared to the control 

state, in contrast to Bassoon, Piccolo and Munc13 whose intensities per synapse were 

reduced upon network activity deprivation. Since the expression levels of RIMs are down-

regulated and the total number of RIM-positive puncta is significantly reduced in silenced 

neurons, the measurements of the RIM fluorescence intensity suggest that a 

subpopulation of synapses with enhanced RIM fluorescence upon activity deprivation 

might become more active in comparison with RIM-depleted ones. Labeling of active 

synapses in living cells using the antibody against luminal domain of synaptic vesicle 

protein Synaptotagmin and subsequent double staining with RIMs antibody should help to 

clarify this point in future experiments. Also, comparing the total number of active 

synapses and/or the ratio between total number of synapses (using Synaptophysin 

antibody as a synaptic marker) and the active ones will gain the new insights for the 

understanding of how global network activity deprivation modulates synaptic transmission 

at single synapses.  

To provide physiological relevance for the present data electrophysiological 

recordings were performed to measure the synaptic strength in the same model system 

and under same conditions that were used for biochemical and immunocytochemical 

approach (Schöne, 2009, diploma thesis). Increased synaptic strength, assessed by 

measuring amplitudes and frequencies of mEPSC, upon chronic network activity blockade 

has been already well documented (Turrigiano et al., 1998; O’Brien et al., 1998; Bacci et 

al., 2001; Galvan et al., 2003). In our experimental setup we could confirm previously 

reported findings that prolonged network activity blockade increases both, mEPSC 

amplitude and frequency (C. Schoene, 2009; see Fig. S1 of appendix 1). As increased 

mEPSC amplitude might indicate changes in the glutamate filing into SVs, we have looked 

for the amount of the glutamate transporter (VGLUT1), which is in charged for SVs filling. 

The data confirmed an accumulation of VGLUT1 at synaptic sites upon network activity 

blockade comparing to control state, which is in agreement with published results of De 

Gois et al. (2005).  

An increase of mEPSC frequency, as a presynaptic response to neuronal activity 

blockade, is believed to reflect an enhancement of SV release probability. Analysing the 

ultra-structure of hippocampal synapses upon prolonged activity deprivation, Murthy et al. 

(2001) showed an increase in AZ length, PSD and volume of presynaptic bouton. In 

parallel with anatomical changes, the physiologically measured size of the RRP and the 

release probability were also increased. Since, physiologically defined RRP correlates 
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with the docked vesicle pool, the authors could also observe an enhanced number of 

docked SV in silenced neurons. The possible mechanism underlying increased release 

probability can include CaMKII- (Ca2+-Calmodulin-dependent proteinkinase II-) dependent 

phosphorylation of Synapsin. CaMKII is shown to be negatively regulated by Piccolo and 

since we could show that Piccolo is down-regulated after activity deprivation, CaMKII can 

increase the phosphorylation of Synapsin which then accelerates SV exocytosis by 

enhancing Synapsin dispersion and mobility (Leal-Ortiz, 2008; Coleman and Bykhovskaia, 

2009). We found an overall reduction of Synapsin in silenced neurons, but whether there 

is activity-dependent increase in the amount of phosphorylated ones might be assessed 

by immunoblotting using phosphospecific anti-Synapsin antibody. Changes in the 

probability of release are also known to be mediated by changes in the Ca2+ entry through 

P/Q-type Ca2+ channels. Our data showed no significant differences in the amount of 

these channels per synapse, but whether there is a change in Ca2+ influx upon activity 

blockade might be further investigated by recording whole-cell calcium currents and 

comparing it to control cells.  

Recently, Ibata et al. (2008) showed that drop in Ca2+ influx triggers scaling up of 

synaptic strength via signal that leads to increase in AMPA receptors at synaptic site. Ca2+ 

influx can be sensed by different calcium-dependent protein kinases (CaMKs) and 

CaMKIV is one of the family members that might be involved in synaptic scaling (Ibata et 

al., 2008). CaMKIV has a strong nuclear localization and acts there as transcriptional 

regulator. Under normal conditions CaMKIV is highly activated but network activity 

blockade reduces the pool of active kinases and that might influence the expression of 

factors that will in turn enhance synaptic accumulation of AMPA receptors.  

The role of CAZ-associated proteins in increased release probability upon activity 

blockade might be viewed also form the side of CAZ proteins as spatial organisers of the 

AZ, a place where neurotransmission occurs. CAZ proteins are thought to make a grid or 

a web-like platform within the AZ, which keeps the SVs in a close proximity to the fusion 

machinery and presynaptic plasma membrane where the exocytosis will take a place. SVs 

within the presynaptic terminal are not functionally identical and they belong to different 

pools of vesicles, either to reserve (resting) pool or to recycling pool (reviewed in 

Gundelfinger et al., 2003). A subpopulation of the vesicles from recycling pool is tethered 

to presynaptic plasma membrane and primed for fusion step and those SV represent 

RRP. If activity blockade reduces the amount of all CAZ proteins as our data showed, 

than the grid becomes weaker and not able anymore to hold SVs in proper order. More 

SVs might move from reserve to the RRP and therefore enhance the probability of 

release.  
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Activity-dependent changes in the molecular content of the silenced AZs are 

reversible, giving further physiological relevance to the observed phenomena.  We could 

show that removing of the receptor blockers leads to a visible recovery of the CAZ 

proteins level already after 24h, with an even more significant effect after 48h, as 

compared to activity-deprived neurons, but without full recovery to control state. 

Electrophysiological recordings performed in the same system, showed reversed mEPSC 

amplitude after drugs were washed out for 48hrs, but the frequency did not reverse (C. 

Schoene, 2009; see appendix 1, Figs. S2 and S3). This later observation can be 

explained by the fact that probably only fully established presynaptic grid made by CAZ 

proteins might properly regulate SVs release. Since 48hrs after the drugs were washed 

out the CAZ proteins level did not reach the control state, the release probability might 

stay still high and cause the enhanced frequency.  

 

4.2.1. Potential role of the ubiquitin-proteasome system in homeostatic 
plasticity 

The data presented above demonstrate an activity-dependent modulation of 

neurotransmitter release and activity-dependent involvement of CAZ proteins in this 

process. The neurotransmission can be regulated by modifying the composition of 

proteins which are involved in SV cycle, by activity-dependent synthesis, degradation or 

activity-dependent posttranslational modifications. 

The ubiquitin-proteasome system (UPS) is emerging as a powerful modulator of 

synaptic function, acting at both, postsynaptic and presynaptic sites. Ehlers (2003) could 

show that activity-dependent changes in PSD require ubiquitin-proteasome-mediated 

degradation. Colledge et al. (2003) described a proteasomal-target model in which 

postsynaptic scaffold, PSD-95, is rapidly ubiquitinated in response to NMDA-receptor 

activation and Saliba et al. (2007) showed that chronic blockade of neuronal activity 

dramatically increases the level of GABAA receptor ubiquitination and its subsequent 

proteasomal degradation. That proteasoms can modulate synaptic transmission 

presynaptically was shown at Drosophyla NMJ (Aravamudan and Broady, 2003) and in 

the Aplysia sensory-motor synapse (Zhao et al., 2003). In Drosophila this regulation 

appears to be dependent on the activity of protein kinase A (PKA) and includes Dunc13 

protein (Drosophila’s only homologue of mammalian Munc13s) which is involved in vesicle 

priming. Proteasome inhibition at the Drosophila NMJ increased the level of Dunc13 

protein and this effect could be abolished by PKA antagonists (Aravamudan and Broady, 

2003). Furthermore, in cultured hippocampal neurons, it was shown that proteasome 

inhibition triggers activity-dependent increase in the size of recycling vesicle pool through 
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the mechanism that probably involves PKA. Activation of cAMP-PKA pathway is capable 

of recruiting vesicles to the RRP, but in the presence of proteasome inhibitors the PKA 

pathway does not further modulate the vesicle recycling pool (Willeumier et al., 2006).  

Taken together, activity-dependent protein degradation appears as a new 

mechanism, apart of gene transcription and translation strongly contributing to the 

homeostatic plasticity.  

In our study we could show that activity-induced proteasomal degradation might be 

a mechanism underlying observed downscaling of CAZ proteins as well. The effect of 

activity deprivation which leads to downscaling of the CAZ-associated proteins might be 

partially rescued by proteasomal inhibition. Six hrs after proteasomal inhibition of activity 

deprived cells we could observe significant (comparing to silenced cells) but not full 

recovery (comparing to control cells) of all CAZ proteins.  

Again the physiological relevance of the obtained data was assessed by 

electrophysiological recordings (appendix 1, Figs. S2 and S3). Interestingly, although 

MG132 treatment did not affect mean amplitudes of control cells, activity deprived cells 

treated with MG132 showed further increases of mEPSC amplitude compared to control 

cells. This suggests that there must be an activity-dependent modification (maybe 

ubiquitination) of AMPA receptors which, since the proteasomes are blocked, will not 

undergo degradation but will be recycled or their internalization from the postsynaptic 

membrane will be reduced and more receptors will stay at the surface available for 

neurotransmitters contributing to enhanced amplitude.  

The mEPSC frequency of activity deprived neurons upon proteasome inhibition is 

significantly higher than in control cells. This might be explained by insufficient recovery of 

CAZ proteins upon proteasome blockade of silenced neurons (since the protein levels did 

not reach control state) and therefore a still high rate of SV release. MG132 treatment of 

control cells also significantly increased frequency compared to control condition, probably 

accumulating other molecules (apart from the CAZ) involved in neurotransmitter release. 

Further investigation should address the question which of the proteins involved in SV 

cycle are upregulated upon proteasome inhibition. Obtained data suggested that pre- and 

postsynaptic compartment behaving differently upon proteasomal inhibition and activity 

state of the system plays an important role in this process.  This further places the activity-

dependent protein degradation as an important mechanism during homeostatic plasticity.  

The experiment with proteasomal inhibitors also raised a question regarding to 

activity-dependent protein synthesis that was not investigated in this study. According to 

our data, activity deprivation down-regulates the expression of CAZ proteins, which then 

can be rescued by blocking of proteasomes. This suggests a higher degradation rate of 

CAZ proteins upon activity blockade. Whether activity-deprivation alters global protein 
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turnover can be measured using 35S-cysteine/methionine metabolic labeling pulse-chase 

analysis.  

Taken together our data revealed that chronical modulation of global network 

activity alter synaptic strength and CAZ proteins might contribute to the presynaptic 

homeostatic plasticity by downscaling of the expression level during activity deprivation. 

The effect is reversible and involves the ubiquitin-proteasome system. Interestingly, all 

CAZ proteins showed similar pattern of behavior upon different activity manipulations. 

This implies that at the active zone CAZ proteins really exist as functional and/or 

physiological ensembles (grid), although each protein has its unique and specific function 

as well. On the other hand, this resemblance in the activity-induced behavior of CAZ 

proteins suggests that control over composition of CAZ may be governed by the 

incorporation or removal of certain “scaling molecules” that preserve stoichiometric 

relationships between CAZ proteins. A similar paradigm exists at the postsynaptic site, 

regarding the activity-induced composition of PSD proteins (Ehlers, 2003). The nature of 

these “scaling molecules” remains to be discovered. They might be e.g. E3 ligases 

promoting ubiquitination of proteins and their targeting to the activity-dependent 

proteasomal degradation, but also they might be some signaling molecules, which are 

produced by the postsynapse and act retrogradely on presynaptic plasma membrane, 

since it is still unclear how exactly glutamate receptor blockade generates a modulation of 

the presynaptic properties.  

We believe that our study brought new insights into understanding the basic 

processes that undergo in activity dependent manner and especially how the presynaptic 

AZ might contribute to the homeostatic plasticity. That is very important issue because 

homeostatic processes are basis for normal neuronal network functioning during 

development, plastic changes underlying learning and memory, but also, during different 

neuropathies and pathological conditions.    
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6. APPENDIX 1 

This work has been done by Cornelia Schoene as a part of her Diploma thesis (2009). 
Similar experimental conditions were used as in the present Ph.D. thesis (see page 35). 
 

 

 
 
Supplementary Fig. S1. Quantification of mEPSC amplitudes (A) and frequencies (B) of 
cortical cultures in control conditions and after activity deprivation with CNQX/APV. All data 
were obtained from sister cultures of the same preparation. Different cell densities were analyzed: 
HD: 300.000 cells/ well, LD: 100.000 cells/well. A significant increase in frequency could be seen in 
activity deprived neurons at DIV21 (data pooled from 19 to 22 DIV) only for LD cultures (Mean 
frequency = 7.7±0.8 Hz, n = 13) compared to controls (4.2±0.6 Hz, n = 14), whereas HD cultures of 
the same age did not change their frequencies (CNQX/APV: 9.6±2 Hz, control: 9.6±2 Hz, n = 8 
each). HD cultures show a tendency to increase their frequencies after treatment with CNQX/APV 
(7.2±1.8 Hz) at 16 DIV compared to controls (4.5±0.8 Hz)(n = 10 each, p = 0.2). In all conditions, 
amplitudes were increased after CNQX/APV-treatment (** p < 0.01, *** p < 0.001, t-test). 
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Supplementary Fig. S2. Quantification of mEPSC amplitudes of five experimental groups: 
(from left to right n = 19, 17, 8, 13, 8) Treatment for two days with CNQX/APV leads to a significant 
increase in mEPSP amplitudes compared to untreated controls. This was further increased by 
addition of proteasome inhibitor MG132 for the last 6 hours of treatment. Effects of CNQX/APV-
treatment can be reversed by 2 days washing out with normal media. MG132 alone did not affect 
mEPSC amplitudes (** p < 0.01, *** p < 0.001, one-way ANOVA followed by Bonferoni post test). 
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Supplementary Fig. S3.   Mean mEPSC frequencies of five experimental groups: Control (n = 
14); CNQX/APV (n = 13); Washout (n = 6); CNQX/APV/MG132 (n = 13); MG132 (n = 6); All 
treatments lead to a significant increase in frequency. Highest and lowest values of each group 
were excluded to reduce standard deviation. (** p < 0.01, * p < 0.05, Kruskal-Wallis test followed by 
Dunn´s Multiple Comparisons test). 
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7. Abbreviations  

 
Abp1   Actin/Dynamin-binding protein 1 

AMPA   alpha-amino-3-hydroxy-5-methyl-isoxasole-4-propionic acid 

AP   action potential 

AZ   active zone 

BRP   bruchpilot 

Bsn   Bassoon 

Bsn/Pclo dMut  Bassoon/Piccolo double mutant 

CAMKII  Ca2+ - Calmodulin dependent kinase II 

CaMKII  Ca2+/calmodulin-dependent protein kinases 

CASK   Ca2+/calmodulin-dependent serine protein kinases 

CAST   cytomatrix at the active zone associated structural protein  

CAZ cytomatrix of the acive zone 

CC   coiled-coiled domain 

CNQX   6-Cyano-7-nitroquinoxaline-2,3-dione disodium 

CNS   central nervous system 

CREB   cAMP response element binding 

CtBP   C-terminal binding protein 

CTRL   Control 

D-AP5   D-(-)-2-Amino-5-phosphonopentanoic acid 

Div   Day in vitro 

DLS   Dynein light chain 

DNA   Deoxyribonucleic acid 

dSV   docked synaptic vesicles 

EM   electron microscope 

ERC    

ERK   Extracellular Signal-Regulated Kinase 

FCS   fetal calf serum 

GABA   gamma-aminobutyric-acid 

GKAP   guanylate kinase-associated protein 

GluR1   Glutamate receptor 1 

GluR2    Glutamate receptor 2 

GRIP   gluatamate receptor interacting protein 

HDACs  histon deacetylases 
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ICC   immunocytochemistry 

IHC   inner hair cell 

KIF1A   kinesin-family member 1A 

LAR-RPTP  LAR family of receptor protein tyrosine phosphatase 

LTD   long-term depression 

LTP   long-term potentiation 

MALS   mammalian LIN-seven protein 

MAP2   microtubule-associated protein 2    

MAPK   Mitogen-Activated Protein Kinase 

ME-MRI  manganese-enhanced magnetic resonance imaging 

mEPSC  miniature excitatory postsynaptic current 

NMDA   N-methyl-D-aspartate 

NMJ neuromuscular junction 

PBH   Piccolo-Bassoon homology domain 

PBS   Phosphate-buffered saline 

Pclo   Piccoolo 

PCR   polymerase chain reaction 

PKA   protein kinase A 

PKA   protein kinase A 

PRA1   Prenylated Rab acceptor protein 1 

ProSAP  proline-rich synapse associated protein 

PSD   postsynaptic density 

PTV   Piccolo-Bassoon transport vesicle 

PTX   Picrotoxin 

PVDF   polyvinylidene fluoride  

RIM Rab3-interacting molecule 

RNA   Ribonucleic acid 

RRP   readily releasable pool 

RT-PCR  reverse transcriptase- polymerase chain reaction 

SAP97   synapse associated protein 97 

SAPAP Synapse-Associated Protein 90/Postsynaptic Density-95-

Associated Protein 

SDS-PAGE  sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM   standard error of the mean 

SNAP-25 synaptosomal-associated protein of 25 kDa 

SNARE soluble N-ethylmaleimid-sensitive factor attachment protein receptor 

SV   synaptic vesicle 
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Syd-2   synapse-defective-2 

TTX   tetrodotoxin 

UPS   ubiquitin-proteasome system 

VAMP2  vesicle-associated membrane protein 2 

VGLUT  Vesicular glutamate transporter 

VIAAT   Vesicular Inhibitory Amino Acid Transporter 

WB   Western Blot 

WT   wild type 
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