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The causes of biodiversity change are of great scientific interest and central
to policy efforts aimed at meeting biodiversity targets. Changes in species
diversity and high rates of compositional turnover have been reported
worldwide. In many cases, trends in biodiversity are detected, but these
trends are rarely causally attributed to possible drivers. A formal framework
and guidelines for the detection and attribution of biodiversity change is
needed. We propose an inferential framework to guide detection and
attribution analyses, which identifies five steps—causal modelling, obser-
vation, estimation, detection and attribution—for robust attribution. This
workflow provides evidence of biodiversity change in relation to hypoth-
esized impacts of multiple potential drivers and can eliminate putative
drivers from contention. The framework encourages a formal and reprodu-
cible statement of confidence about the role of drivers after robust methods
for trend detection and attribution have been deployed. Confidence in trend
attribution requires that data and analyses used in all steps of the framework
follow best practices reducing uncertainty at each step. We illustrate these
steps with examples. This framework could strengthen the bridge between
biodiversity science and policy and support effective actions to halt
biodiversity loss and the impacts this has on ecosystems.

This article is part of the theme issue ‘Detecting and attributing the
causes of biodiversity change: needs, gaps and solutions’.
1. Introduction
Humans have transformed the processes generating and maintaining bio-
diversity from the smallest to the largest spatial scales of the biosphere.
While the magnitudes and even directions of biodiversity change are
varying from place to place, there is considerable evidence that multiple
dimensions of biodiversity are changing rapidly in many places, including
genetic diversity [1], population abundances [2], range sizes and distribution
[3,4], turnover in community composition [5] and global species number [6].
We also know that local and regional diversity are changed by human and
natural drivers, including land and sea use change, climate change, pollution,
exploitation and invasive species [7] as well as many conservation activities
designed to protect and restore biodiversity [8,9]. Human drivers interact and
exert their influence at different spatial scales [10], and this makes the task of
attributing trends in biodiversity to human causes across scales particularly
challenging [11–14].

Formalizing howwe update our understanding of how andwhy biodiversity
is changing is vital if we are to track our progress to the goals and targets of the
global biodiversity framework under the United Nations (UN) Convention for
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Figure 1. Example of detection and attribution in climate science, in the
form of detection of trends in global temperature, and attribution to
human versus natural factors using comparison of observations (anomalies)
with different ways of modelling temperature that do (a), or do not (b)
include human-driven elevation of greenhouse gas concentrations and related
forcing [35]. This detection and attribution analysis and figures representing it
like this one proved highly influential in the process of accepting the infer-
ence that climate change in the present era is generally anthropogenic in
nature. (Online version in colour.)
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Biological Diversity and UN Sustainable Development Goals.
To date, our knowledge of the pace and direction of biodiver-
sity change has accumulated from synthesis assessments of
many relevant studies [15]. For example, statements that the
current rate of extinction is 10–100 times the background rate
in the fossil record involves the detection of a significant
increase in estimated extinction rate [16]. However, this esti-
mate has high uncertainty because of incomplete knowledge
of past and current extinction rates estimates for known and
unknown taxa [16,17]. Estimates of extinction rates are comple-
mented by analyses mapping biogeographic trends in
biodiversity with large datasets synthesizing time series from
long-term experimental sites or systematic surveys. These
analyses are revising our understanding of biodiversity
change and its impacts on ecosystems at different scales
[1,5,12,18–21] and the geographically variable influence of
human drivers [22]. However, these studies adopt different
criteria and statistical procedures for detecting biodiversity
change and understanding its impacts. A literature composed
of inferences based on different criteria makes robust assess-
ments difficult because uncertainty in the attribution process
cannot easily be aggregated across studies. A framework
is needed to support a common approach to assessing and
understanding biodiversity trends that produces updated
statements of confidence in their attribution over time [19,23].

In climate science, a detection and attribution framework has
been developed under the auspices of the Intergovernmental
Panel on Climate Change (IPCC) [24,25]. In this context, the
first objective is to assess the evidence that some aspect of cli-
mate (e.g. extreme weather [26]), and/or a system affected by
climate (e.g. ocean chemistry as indicated by pH), has changed
over time (detection). The second objective is then to evaluate
the contributions of multiple potential drivers of this change
(attribution). The climate detection and attribution framework
defines climate change in an explicitly statistical sense using
scientific observations and measurements (e.g. the Keeling
curve of CO2), inference methods, and criteria for evaluating
uncertainty at different scales (global, regional, etc.; [25]).
This exercise led to highly influential knowledge products
such as the robust attribution of global temperature change
to natural versus anthropogenic factors (figure 1). O’Connor
et al. [28] outlined how to set criteria for data, statistical analysis
and inference about detection and attribution for climate
change impacts, and these standards may also be useful for
biodiversity change detection and attribution.

Here, we introduce a detection and attribution framework
designed explicitly for biodiversity change and its ecosystem
impacts (figure 2b). We are motivated to define the features
of this framework because of the focus on changing trends
under the UN Convention on Biological Diversity’s Global
Biodiversity Framework (GBF). Realization of the GBF goals
and 2030 targets will require rapid detection of improvements
in biodiversity and ecosystem trends coupledwith assessments
of changing driver impacts where conservation action has
succeeded or failed [29].

The framework for the detection and attribution of tem-
poral change in biodiversity is based on clear statements of
causality, based on alternative models and hypotheses, the
best methods for observing and quantifying biodiversity,
and statistical methods to detect and attribute change. We
link five steps—causal modelling, observation, estimation,
detection and attribution—to form an iterative cycle of infer-
ence that produces a clear and regularly updated statement of
confidence in the reported outcomes. An important feature of
this framework is the need to ensure standards that
maximize confidence as information is transferred from step
to step and guide analytical choices away from those that
produce low confidence. We close by outlining how a frame-
work for detecting biodiversity change with an objective of
attribution for policy action should guide monitoring to
provide data as input into biodiversity models and scen-
ario-based projections of future outcomes for biodiversity
and ecosystem change impacts on the economy and human
wellbeing [30].
2. Defining key concepts for detection and
attribution in biodiversity science

We start by defining the key concepts—detection and
attribution—for biodiversity change by adapting existing
definitions used in climate and Earth system science provided
by [25]. For a biodiversity framework, these terms would be
defined as below.



Box 1. Biodiversity fluctuations: the backdrop for detecting and attributing human influence

Biological diversity is a measure of life’s compositional variation across different levels of organization—genome, population,
species, and ecosystems—and its changing state over dimensions of space and time [31,32]. Irrespective of the metric we
chose to quantify biodiversity (i.e. richness, entropy-based measures of diversity, turnover) our aim is to observe and
detect temporal change (figure, panel (a)). With a reliable observation processes we may see sustained (stationary) fluctu-
ations in the metric but no systematic change (trend) in the statistics describing those fluctuations in the time series
(mean, variance or autocorrelation); by contrast, non-stationary fluctuations may involve systematic trends in these statistical
moments over time and space. These shifts in the statistics of the biodiversity metric may be visualized by changes in the
distributions describing these fluctuations (figure, panel (b)). A comparison with a reference distribution, either from a his-
torical pre-perturbation period, or from a contemporary unperturbed reference site (a counterfactual condition) is needed to
assess change.
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Biodiversity change is inherently scale dependent in space and time [33]. A rate of change detected at one scale may not be
representative of the rate of change at another scale. For this reason, biodiversity change may not be ergodic (i.e. where
averages over time equal averages over space); biodiversity change detected from a single, or small number of, short time
series, may not capture the spatio-temporal dynamics of biodiversity change over large spatial extents. Scale explicit analyses
are needed resolve contrasting trends in biodiversity change [11,12].

It is against this highly dynamic backdrop of change that we must detect the signal of human impacts on biodiversity
change. Change in human drivers is also scale-dependent, so an attribution of causes for patterns of biodiversity change
at one scale may not lead to the same conclusion if the attribution is conducted at another scale. For example, the impacts
of habitat loss and fragmentation on biodiversity may be great at the scale of local habitat patches, but not apparent at land-
scape or broader scales until levels of habitat loss pass a threshold of fragmentation. As a result, detection and attribution
should involve a joint analysis of biodiversity (gains and losses) and driver variables, and involve a clear statement of
confidence, an explicit reference to the dimension of scale in space and time.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220182

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

ul
y 

20
23

 

Detection: the process of demonstrating that a measure of
biodiversity has changed relative to a baseline or reference distri-
bution characterising undisturbed variation (counterfactual
state), or an appropriate model-derived null expectation of biodi-
versity change in the absence of a human driver(s). A clear
statement of statistical confidence should be given.
Detecting temporal change in biodiversity is the process
of distinguishing change over time from an alternative
hypothesis of no change over time (figure 2c). Detecting
change therefore requires distinguishing a real trend reflect-
ing historical influence or systemic change by some causal
driver or drivers to be determined in an attribution process
from a spurious trend, which might be owing to measure-
ment or estimation error or process error.

Crucial to the detection step is the form of change to be
detected (see box 1). This can be a linear or nonlinear trend
in the mean, or a shift in the variance, or other description
of the variability of a time series (periodicity, autocorrela-
tion). Alternatively, we may detect a one-off ecological
event that is highly circumscribed in time but may represent
a significant loss or gain of biodiversity and impact on
ecosystem processes and services.

Usually, a comparison of a measure of biodiversity
change is made with respect to a reference state such as a his-
torical baseline, or to a spatial reference state if historical
baselines are unavailable or inappropriate (e.g. if the system
is undergoing directional change). We will return to this
issue of detecting change below.
Attribution: the process of evaluating the relative contributions
of multiple potentially causal factors to detected biodiversity
change with an assignment of statistical confidence to the
causal models used to estimate these effects.
Attribution is the identification of cause-and-effect relation-
ships between hypothesized drivers and changes in
biodiversity variables. By cause, we mean that X causes Y if
a perturbation in a driver variable X can result in a change in
future values of a biodiversity variable Y [34]. Causality in
complex systems is assumed to be probabilistic, in which
case we say X causes Y, if a change in X causes a change in
the probability distribution of biodiversity variable Y (box 1).
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Figure 2. (a) The relationships among the systems involved in climate detection and attribution (after [27]). Climate attribution as the identification of the causal
links between human climate forcing via greenhouse gases emissions as the explanation for climate warming, impact attribution as the attribution of climate impacts
on natural, human and managed systems. (b) Human driver attribution as the identification of the causal links explaining how human drivers and pressures result in
altered patterns of biodiversity change, and the consequences this has for natural and managed ecosystems. (c) Attribution of human pressures as causes of observed
biodiversity change (black line) requires a model including the putative human factor (blue line), and a comparison with a counterfactual series (obtained from a
model or observations from reference sites) showing how biodiversity would change in the absence of the putative driver. Attribution can focus on trends in the
mean, variance and fluctuation event sizes. (d ) The detection and attribution framework for biodiversity change places biodiversity variables at the centre of the
analysis. Conceptual models are formalized as causal (directed) graphs identifying the direct and indirect effects of driver and pressure variables (Xn) on the bio-
diversity response variable (Y1, green). The dotted arrow indicates dependency owing to an unobserved latent variable (v) that may represent the eco-evolutionary
processes governing internal variability of the focal biodiversity response variable. (Online version in colour.)
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Crucially, we do not require that Y responds to X in the same
manner (e.g. magnitude, direction) in all contexts to identify
X as the cause of Y.

We can attribute a detected change in a specific causal
factor X if the pattern of change in Y is consistent with a stat-
istical and/or process-based model that includes X and is
inconsistent with a model that is otherwise identical but
excludes X (counterfactual case) (figure 2c, or figure 1b for
global average temperature trends). Attribution in coupled
human and natural systems [36] may involve accounting
for multiple variables, including those with direct and indir-
ect causal effects that may have lags in time and over space.
The relationship among the variables is typically shown as a
causal graph (figure 2d ). Attribution must also account
for the inherent variability in describing the probability
distribution for the focal biodiversity variable, Y.

For biodiversity change detection and attribution, two
other key concepts are necessary—observation and estimation.
Observation: the process of recording elements that represent
aspects of biodiversity (e.g. genes, species, traits, etc.) using
methods of recording that ascribe to scientific principles of
reproducibility, replication, and objectivity.
Observations can range from one-time observation events with
unique geospatial coordinates to repeated time series from
experiments or systematic surveys from unmanipulated
ecosystems [37]. Efforts are underway to establish standards
(e.g. essential variables) for the capture of biological inventories
for biodiversity monitoring, modelling and assessment [38,39].
Ideally, observations of biodiversity should be accompanied by
observations of human impacts and other environmental
factors hypothesized to be causally linked to biodiversity
change to allow a stronger attribution analysis downstream.
Estimation: the process of combining observations into
statistical estimates of metrics quantifying aspects of biodiversity,
including the use of measures of uncertainty and replication.
The methods of biodiversity estimation have a long and rich
history [40–42]. The detection and attribution framework we
outline below builds on this history and focuses on the gener-
ation of biodiversity observations and estimates of metrics, in
particular with regard to the unique nature of estimating biodi-
versity change with incomplete observations [43]. We focus
our discussion below on the particularities of applying the
detection and attribution framework to biodiversity datasets.
3. A detection and attribution framework for
biodiversity change

A detection and attribution framework for biodiversity change
is a formalized interlinked process for model-based detection
of change and causal inference based on iterative data collec-
tion and monitoring. It must be built on best practices for
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Figure 3. The five steps in the detection and attribution workflow. The process begins with causal models of our understanding of biodiversity change, which in
turn guide the work of observation, estimation of essential biodiversity variables and their use in the detection and attribution steps. Information generally flows
from left to right, but the workflow is repeated iteratively as new data are collected, technologies are deployed, and our confidence in the methods used to detect
and attribute causes is improved. Increases in confidence will arise from observations and adaptive monitoring that are designed and coordinated to detect change
and reduce uncertainty in the attribution of human drivers as causes for trends. (Online version in colour.)
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collecting data via biodiversity observation and measurement
[37]. However, it is not possible to complete the detection
and attribution process with data alone; there needs to be a
clear and intentional consideration of inference and the con-
trasting model(s) upon which the inference is made. This is
because we cannot make strong inferences without making
assumptions, so that grounding these assumptions in alterna-
tive formal models allows us to make these assumptions
clear. The confidence we have in the final statement will also
depend on the accurate propagation of uncertainty along the
chain of steps.

The framework has five steps (figure 3). It describes an
analytical workflow that involves a rigorous transfer of infor-
mation across the steps needed to reliably detect change and
achieve strong inference for causal attribution.
(a) Step 1: causal models
The causal structure of an ecosystem is assessed by per-
forming a physical intervention on one or more variables
(e.g. manipulating precipitation, pollution or species
addition or removal), while observing the response of
other variables over time. However, in many cases relevant
to biodiversity change assessments, experiments and
related interventions are unethical, expensive, or impossible
to realize and so we must rely on observational data from
repeated surveys at one or more sites. Reference sites with
and without a history of relevant drivers can provide valu-
able causal understanding. Recent developments in causal
discovery and inference open the door to the estimation
of alternative causal models needed for detection and
attribution [44–49].
(i) Defining hypotheses
The framework begins by defining hypotheses and assump-
tions that will guide the detection and attribution workflow.
This step draws upon general scientific understanding from
the relevant literature on the focal biodiversity variable(s)
and drivers. For example, observations, theory and exper-
iments guide clear hypotheses for how habitat loss and
fragmentation can change biodiversity, and this understanding
has been used to formally frame detection and attribution
research [50,51].
(ii) From hypothesis to causal models
We advocate applying the principles of causal analysis and
causal networks as the basis for the analyses in the next
steps of the framework [44,52,53]. A causal network diagram
(i.e. a directed acyclic graph (DAG); [53]; figure 2d ) describes
the relationship between the putative causal factors hypo-
thesized to drive biodiversity change. It can be seen as a
non-parametric structural equation model that explicitly
lays out directed paths between variables, but the form of
the relationship between two variables does not matter,
only its direction. The rules underpinning DAGs are consist-
ent whether the relationship is linear or more complicated. A
causal analysis is the logical approach to assessing the influ-
ence of different direct and indirect relationships among the
multiple potential interacting factors, typically a suite of natu-
ral and human drivers. Causal analyses can be a simple
logical structure of relationships, or a fully dynamic Bayesian
network model.

Potential causal links in a model can be derived from
expert knowledge and findings from controlled experiments
and theory (step 1b). When we lack a model for causal



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220182

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

ul
y 

20
23

 

inference, we can apply methods for causal discovery [54,55].
Methods and algorithms for causal discovery derive causal
knowledge in the form of a DAG directly from patterns in
the observational data and require time series of the response
and predictor variables. These methods, which also make
assumptions, can provide understanding of the relationships
among the variables causing change in biodiversity owing to
human drivers (e.g. [36,44,53]). In climate science, these
causal graph models are called ‘causal fingerprints’ that are
learned from multivariate climate datasets [56–58]. A similar
methodology may be applied to the identification of causal
fingerprints for biodiversity change, assuming the properties
of the available time series (e.g. stationarity) meet the
assumptions of the algorithm used to identify the causal
graph (e.g. causal sufficiency that assumes that all variables
are observed versus the case where we suspect unobserved
latent variables are involved [59]).

An alternative approach is to build process-based models
that encode ecological processes as coupled (stochastic)
equations [60]. These models are mechanistic in the sense
that parameters correspond to states and rate processes
linked to measurable constraints (e.g. trait-based functional
responses to the environment) that interact to govern the
dynamical state of the system. An example would be consu-
mer–resource systems of equations typically used to model
ecological dynamics [61]. A process model can be fitted to
time series data with and without potential causal drivers
to support detection and attribution [62]. When such para-
metric dynamical models cannot be built, agent-based
models may be used for causal inference [63]. When formal
causal models are not readily available, verbal or graphical
expressions of directed causal relationships are valuable,
and in fact a necessary starting point in this framework.

We recommend strong hypothesis tests by comparing
alternative causal network models (fingerprints) to make the
strongest inference possible for attribution in step 4 below
[44,53]. Knowing this, the collection of observations in step 2
should be guided by the hypothesized causal dependence
between the drivers and biodiversity variables formalized by
the graphical models used for attribution.
(b) Step 2: observation
Given the framework’s emphasis on biodiversity change, the
relevant observation process is on time-ordered sequences of
biodiversity observations. Modern biodiversity science has an
array of methods and technologies for observing individuals
and their state (their genotype, taxonomic identity, functional
form and traits comprising their phenotypes), and the
diversity and composition of the assemblages they make
up. Observation and subsequent steps in this framework
can involve a combination of observations using different
methods, as long as uncertainties are accounted for [37].

Observations are almost always incomplete samples of
biodiversity in nature, that when combined translate into
incomplete representations of biodiversity change over time
and space [43,64,65]. Difference in the detectability of species
by different methods and instruments is a key consideration
and potential source of bias in this step that can intervene
in subsequent steps [66]. Observations of a particular place
or ecological group are stored as a site × variable table (e.g.
a site × abundances or site × species), which when ordered
by time fills a multi-dimensional data cube (site × variable
× time; [67]) or hypercube when there are more than three
dimensions [68]. If the table is incomplete, gaps can be
completed with estimates made in step 3.

Observations made or used post hoc in the context of this
framework are placed in an analytical framework that
requires an estimate of uncertainty (are differences among
observations real, or rather owing to methodological differ-
ences or sampling error?). Other aspects of observations
such as the choice of sites to be monitored, and the duration,
frequency and coverage of effort mobilized for the obser-
vation step are crucial to the strength of the inferences that
can be made in subsequent steps (estimation, detection and
attribution). Recent work by Zhang and colleagues [69]
revealed an important bias whereby high levels of habitat
change led to the cessation of bird sampling in biodiversity
time series, resulting in a potential underestimate of biodiver-
sity loss; survey routes that were continued despite major
habitat changes were more likely to experience reduced
diversity.

For strongest inference at the end of the detection and
attribution process, we recommend prioritizing observations
based on the requirements for estimating (step 3) essential
biodiversity and ecosystem variables (EBVs; [70,71]), that
can be shared easily across studies and used in multiple
workflows for subsequent modelling and comparison. EBV
workflows offer methodological standards for making obser-
vations and providing them in usable open data forms [72].
The joint observation of drivers (e.g. land cover, climate vari-
ables) that are hypothesized to be important for the
attribution step (step 5) with data that are downscaled to
the relevant scales of the focal organisms and assemblages
should also be made.
(c) Step 3: estimation
Estimation is the process of calculating a biodiversity metric
from an incomplete sample (the observation or set
of observations), with the aim of reducing the influence of
sampling bias and imperfect detection of species. There are
multiple metrics used to capture different dimensions of bio-
diversity [70], which are associated with different biases and
other forms of uncertainty [73]. The accuracy and errors
associated with different metrics also inherently depend on
the scale and spatial resolution of observation [65].

The choice of metric for estimation, its scale dependence
and sensitivity to bias or uncertainty can strongly influence
interpretation of biodiversity change in steps 4 and 5 below
[74–76]. Humans directly and indirectly impact different
biodiversity variables by changing the genetic structure of
populations, the number of species and their relative abun-
dances, and the composition of the species in the assemblage
[77,78]. Measures for changing species composition via species
turnover may be more sensitive to human drivers than esti-
mates of the total number of species, owing both to
constraints (e.g. resources) on species richness in changing
environments [31,79], as well as the insensitivity of this estima-
tor to changes in harder-to-detect rare species [76,80].

Some metrics provide more reliable (less biased) estimates
of biodiversity and its change than others [76,81]. Lande et al.
[82] suggest the metric chosen should be non-parametric,
applicable to any community, statistically accurate, with
small bias and variance in samples ofmoderate size. A decision
must be made early in the detection and attribution workflow
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to choose the relative sensitivity of the diversitymetric towards
rare or common species, although it is generally preferable to
use multiple metrics [73]. For example, the most common
metrics, and their effective number equivalents [83] are species
richness, variants of Shannon information and Simpson
concentration. Each index reveals different dimensions of bio-
diversity and its change, but also have different biases; some
better capture change in rare species (e.g. species richness),
abundant species (e.g. Shannon) or evenness (e.g. Simpson,
or 1-Simpson, which is the probability of interspecific encoun-
ter). Ultimately, they can all be derived as particular cases
of a general entropy [84,85] which provides a rigorous basis
for comparison.

Hierarchical Bayesian multispecies site-occupancy and
distribution models have been developed [86,87] to improve
the estimate of diversity in landscapes from an incompletely
observed species × site incidence matrix (obtained in step 2).
These models compute unbiased estimates of site-specific
and total species richness, species-specific site occupancy
and similarity between sites and between species, and
allow covariates to be introduced, while accounting for par-
ameter uncertainty. These hierarchical Bayesian models
require that survey sites are distributed randomly or are an
otherwise representative sample of the greater area about
which inference is required. Otherwise, inference is restricted
to the quadrats sampled.
(d) Step 4: detection
In this step the detection of biodiversity change ismade relative
to a baseline or reference distribution characterizing a relatively
undisturbed site (a counterfactual state, or system), or an
appropriate model-derived null expectation of biodiversity
change in the absence of a human driver(s) (figure 2c).

The biodiversity time series generated from datasets
produced in steps 2 and 3 provide the basis for detecting
temporal change in biodiversitymetrics. Trends can be assessed
in univariate analysis of biodiversity metrics, such as estimated
species richness (e.g. [81]), or via direct multivariate time series
analysis of trends in multispecies assemblages, where trends in
species’ (or functional group) abundances are assessed within
and across assemblages often using a generalized or Bayesian
mixed model framework accounting for random effects of
time, survey sites, autocorrelation and hierarchical errors
(e.g. [77,88]).

The statistical procedures we choose should reflect key
aspects of the causal model (step 1), such as whether we
have hypothesized linear or nonlinear trends in the mean of
the metric, or in other statistical moments, such as the var-
iance or autocorrelation. Depending on the number of
observations and the estimation procedures available, there
are many options for statistical tests to detect trends and dis-
tinguish biodiversity change from the alternate hypothesis of
no change [89].

Time series length is well known to influence trend
detection. Short time series are often statistically under-
powered and so false conclusions about the presence or
absence of change (e.g. trends in mean or variance) may
arise [81,90]. Longer time series tend to provide more reliable
estimates of the trends detected and this will have conse-
quences for the attribution conducted in step 5. The power
to detect long-term trends in multispecies occupancy
depends on whether the area covered by survey sites
effectively cover species’ ranges and regions experiencing
trends in occupancy [91].

Statistical power analysis provides a framework for asses-
sing our ability to detect a certain magnitude of biodiversity
change given the level of variability in the time series data
and under a null hypothesis or an informed prior expectation
of change [92,93]. Southwell et al. [93] found that the power to
detect trends in species occupancy is sensitive to the direction
and magnitude of the change in occupancy, detectability,
initial occupancy levels, and the rarity of species. The statisti-
cal power required to detect a change of a given effect size
will also vary with the statistical analyses used, and so it is
advisable to compare multiple analyses to assess confidence
in each result.

Historical baselines are needed to estimate the full extent
of change in biodiversity over time, but limited data avail-
ability at appropriate time scales is a barrier. Mihoub et al.
[94] reported most biodiversity monitoring schemes in
Europe were initiated late in the twentieth century, well
after anthropogenic pressures had already reached half of
their current magnitude. Temporal baselines set long after
the inception of biodiversity change will therefore underesti-
mate the full range of impacts of anthropogenic drivers [19].
In addition, unbalanced datasets in terms of taxa and organ-
ization levels provide a biased understanding of biodiversity
change over time. In the absence of adequate historical base-
lines, change can be assessed by comparing impacted sites
with contemporary reference sites where putative drivers
are absent [95].
(e) Step 5: attribution
Attribution is the process of evaluating the relative contri-
butions of causal factors explaining detected biodiversity
change with an assignment of statistical confidence. In this
step, the goal is to estimate the causal effects of one or
more drivers on the focal biodiversity metrics via the causal
models defined in step 1. This workflow leads to attribution
of biodiversity change to one or more specific causal
drivers if the observed trend is consistent with the prediction
of the causal statistical model where the drivers cause a
change in the probability distribution of the focal biodiversity
variable. Alternatively, the observed trends is consistent with
a process-based model including the hypothesized driver and
is inconsistent with a counterfactual case that is otherwise
identical but excludes the factor [96,97]. When a system
model is absent, the attribution step can begin by assessing
the relative explanatory power of informal models put
down in step 1.

Systematic biodiversity change may involve long-term
change in both anthropogenic (e.g. ongoing climate change,
nutrient deposition) and natural drivers (e.g. successional
change, changes in fire regimes). Models may inform the
impacts of human drivers acting alone or as complexes invol-
ving compound effects [10,98,99]. In most cases, the strength
and influence of these drivers will vary through time and
over space, potentially involving feedbacks [100] and causal
drivers may be geographically distant from the site where
biodiversity change is observed (i.e. telecoupled effects, [57]).

Three key ingredients of attribution are required: evidence
of consistency, evidence of inconsistency, and a statement of
confidence [27].



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220182

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

ul
y 

20
23

 

Evidence of consistency requires that the detected change
in biodiversity is consistent with the assumed driver(s) of
change. For example, if we detect a change in species richness
in a habitat fragment and we hypothesize this is owing to habi-
tat isolation, then we must show that the effects owing to
isolation translates into the observed change in richness (e.g.
owing to loss of dispersal connectivity; [101]). The strength of
our evidence of consistency is based on our ability to demon-
strate the sign and magnitude of the relationship between
cause and effect. Meta-analyses and other large scale syntheses
provide a valuable means of demonstrating the strength of
existing evidence for causal relationships across study systems.

Evidence of inconsistency reveals that the detected change
in diversity is inconsistent with changes owing to alternative
drivers. If more than one driver of change is acting on a
community, and because we only observe the integral
response of the community to all acting drivers, attribution
requires evidence that the observed change has not been
caused by alternative drivers. Evidence of inconsistency is
necessary to avoid confirmation bias (i.e. the tendency to
favour information that confirms existing preconceptions or
hypotheses). Similarly, we want to avoid biased interpret-
ation (i.e. where some hypotheses are not confronted with
high standards of evidence).

Several methods exist for quantifying the strength of the
causal links among variables that go beyond conventional
regression models and explicitly include counterfactuals to
assess the consistency (inconsistency) of the observed effect
with the variables included (not included). We point the
reader to several recent reviews of causal analysis for time
series that use different definitions of cause and different
assumptions and criteria for assigning it [34,44,45,96,102].

A statement of confidence in the attribution step is essential
because we are always dealing with uncertainties associated
with limited observational data from step 1 (i.e. samples,
monitoring sites, studies in a meta-analysis), limited infor-
mation about drivers (observation), imperfect correction for
bias in diversity estimators, and uncertainty in our under-
standing of the nature of the ecological system (i.e. trophic
structure), and uncertainties inherent to our modelling tools
used to make inferences. A statement of confidence forces
us to acknowledge these limits and quantifies the strength
of our attribution statement in terms of a likelihood statement
regarding how likely the change is caused by a given driver
or set of drivers. The language adopted by the IPCC to
convey measures of certainty expressed probabilistically
(e.g. from virtually certain at greater than 99% probability,
to exceptionally unlikely at less than 1%) could be used
here to provide clarity for policymakers and consistency
across UN conventions [103].

Single step versus multi-step attribution: attribution can be
done in a single step or involve multiple steps of modelling
and hypothesis testing. In the single step approach to attribu-
tion, one analysis can achieve full detection and attribution.
The likelihood of detected biodiversity change is established
from a model incorporating known causal drivers of change
(step 1). This approach can be extended to multiple sites if
time series are available across a network of sites. Hegerl
et al. [25] introduced the idea of multi-step attribution when
the conditions for single step attribution cannot be met. The
multi-step approach includes first obtaining robust estimates
of biodiversity change (detection), and then second, obtain-
ing predictor drivers—either directly measured (from a
designed survey or experiment) or derived from land use/cli-
mate change models. Then statistical models are used to
combine predictors and estimates of biodiversity change to
assess the likelihood that the trend found in the first step is
explained by these drivers (e.g. [104]). Care is required to
reduce the propagation of uncertainty across steps in the
multi-step approach.
4. Examples
Elements of the detection and attribution process in
biodiversity change research are not new, and many studies,
syntheses and assessments have carried out at least part of
the process we define. The best examples of detection and
attribution inference will meet all criteria in each step
outlined above, which includes the explicit consideration of
uncertainties. Some attempts are more robust than others [28].

The attribution of habitat fragmentation to elevated rates
and scales of biodiversity change is an area of current focus
[50,51] and debate [105]. Boulinier et al. [78,106] provide a
good example of an analysis detecting and attributing
change in North American breeding bird assemblages
owing to habitat fragmentation. They found that fragmenta-
tion was associated with higher temporal variability in
community composition as a result of higher local extinc-
tion/colonization rates. They presented a clear verbal causal
model (step 1) for biodiversity patterns and temporal
change in breeding birds that informs the choice of sampling
method (step 2), estimator (step 3), detection analysis (step 4)
and partial attribution (step 5). Consistent with the causal
model, which was based on habitat patch size, multiple
scales of analysis were considered, and species were analysed
in two groups: area-sensitive species (i.e. those most likely to
change in diversity over time in fragmented landscapes) and
non-area-sensitive species. The observation method was the
breeding bird survey, for which sampling methods are under-
stood and uncertainties can be quantified. The estimation
method involved an EBV (species site occupancy) to estimate
species richness while accounting for observation error. For
the detection of change analysis, the authors used two par-
ameters suited to the purpose: the rate of species’ local
extinction and the rate of species local turnover. These were
based on the community analyses and on the estimation
methods in the previous step. Missing from this analysis
relative to the framework we outline is a statistical causal
model and estimate; their analysis linear modes (regression
and ANCOVA) to relate variables. Also missing were several
elements of the attribution step, including consideration of
alternate drivers of change over the period, or potentially
confounding factors such as uncertainties in estimation of
fragmentation and how it changed over time. Noting the
limitations allows a more complete understanding of how
we might further synthesize knowledge gained from detec-
tion and attribution exercises, especially when most studies
can only report part of the process.

There are many other good examples in the literature
to draw from that are clear on key elements of this frame-
work. An example of a single step attribution analysis is by
Harrison et al. [107] who show that trends in grassland
species richness could be attributed to changing patterns of
precipitation using a clear causal verbal model, standardized
observation and estimation methods over time, and linear
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mixed effect models that allowed the assessment of alternate
climate predictors. Millette et al. [1] use a multi-step approach
with generalized additive models to attribute change in gen-
etic diversity over space and time to human drivers (land use
intensity, human population density). Elahi et al. [108] detect
increases in marine species richness over time and were able
to rule out certain potential drivers of biodiversity change
through attribution using a model comparison approach.
Daskalova et al. [109] used a multi-step attribution approach
to assess trends in population change in the Living
Planet Database. Chang et al. [47] applied a causal network
approach (convergent cross mapping) to reveal that climate
warming destabilizes plankton dynamics. We expect the
strong causal inference framework for detection and attribu-
tion we have proposed will lead to a deeper understanding of
the direct and indirect effects of multiple human drivers on
biodiversity and other ecological impacts.

5. Next steps
The detection and attribution framework for biodiversity
change outlines a workflow that has the potential to produce
inferences about biodiversity change that are more transpar-
ent in their limitations and therefore potentially more robust
than is possible in the ad hoc, post hoc and piecemeal fashion
that is more common in the absence of the framework. These
benefits are possible because the framework centres on strong
inference for detection of change and attribution of that
change to drivers. As a result, users can assess how best to
design data syntheses, assessments or monitoring to mini-
mize uncertainty and bias in detection and attribution that
could arise upstream in steps 1–3.

The framework can guide the research and assessment pro-
cess in a variety of ways and has the potential to bridge
knowledge gains across disparate areas of biodiversity science.
Research is still requiredwithin each step and for the transfer of
information and uncertainty across steps. Developments in
causal analysis are particularly relevant and can be coupled
with ongoing developments in ecological theory [46].
Controlled experimental tests of theory provide a firm
knowledge base to reinforce our confidence in the causal
models formulated for step 1. Multi-causal models defining
the relationships between biodiversity change and multiple
interacting drivers at different scales are particularly challen-
ging. Technological and theoretical advances are now linking
remote observations to estimates of biodiversity change (e.g.
for plant species [110–112]). Extensive effort is required to
scale-up observations of biodiversity change at specific sites
to broader regions [112] and reconstruct historical observations.

New biodiversity indices are being developed to quantify
the link between the changing state of biodiversity and the
resulting impacts of these changes on ecosystem benefits to
people. For example, Soto-Navarro et al. [113] proposed the
multidimensional biodiversity index designed to support
national application and decision making for the Sustainable
Development Goals. This addresses the common use
of several unidimensional measures of biodiversity that are
disconnected from ecosystem and societal outcomes. New
research and innovation are needed in the estimation step
for these indices and to deepen our understanding of the
sampling and monitoring strategies that lead to sustainable
collection of the time series they will need.

As has been done with climate change and its impacts,
we can extend the detection and attribution workflow to
the ecosystem impacts arising from the observed change in
biodiversity (figure 2b ). For example, we can estimate how
changes in the rate of compositional turnover, or the rate of
species loss, impacts measures of ecosystem functioning
and stability, and how in turn they influence ecosystem
services that determine outcomes for people and their liveli-
hoods [20,100,114–116]. Advances in monitoring ecosystem
services following the detection and attribution framework
are needed [117]. The cumulative knowledge from these
studies will form the basis for robust multilevel detection
and attribution assessments in the field. This need has
added importance as increasing numbers of businesses and
companies in the financial sector are reporting their
biodiversity impacts, assessing the risks arising from biodi-
versity loss and looking for means to diminish and offset
their impacts [118].
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6. Embedding the detection and attribution
framework into systematic biodiversity
monitoring and assessments of progress to
international targets

Systematic monitoring for biodiversity change is often
designed to detect trends up to a certain level of statistical
power, but few are designed with detection and attribution
objectives linked to specific biodiversity targets [119]. By
embedding the detection and attribution framework in an
iterative monitoring cycle, we expect improved confidence
in the causes of the detected biodiversity trends that can
be used to guide more effective conservation actions and
long-term planning [120] (figure 4). This should spur the
widespread adoption of a detection and attribution frame-
work to guide monitoring that is required to assess and
rapidly update our knowledge of how conservation action
is leading to progress towards the Convention on Biological
Diversity’s post-2020 Global Biodiversity Framework.

(a) Detection and attribution for biodiversity
assessments

Biodiversity assessments are conducted via an extensive
expert-based synthesis of the primary literature, such as the
assessment reports conducted by the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Ser-
vices (IPBES; e.g. IPBES 2019, the global assessment report).
The climate research community has seen the benefits of
the integration of detection and attribution into its assess-
ment process as it has sought to attribute extreme weather
and climate events to human caused climate change. A
quote from Stott et al. [121, p. 310] is relevant here:
the overarching challenge for the community is to move beyond
research-mode case studies and to develop systems that can deli-
ver regular, reliable and timely assessments in the aftermath of
notable weather and climate-related events, typically in the
weeks or months following (and not many years later as is the
case with some research-mode studies).
This quote holds for biodiversity science if we replace
‘notable weather and climate-related events’ with ‘notable
ecological events’. We see a future where the systematic
application of a detection and attribution framework for
biodiversity supports the rapid attribution of causes for eco-
logical or ecosystem impacts arising from large magnitude
changes in biodiversity (gains or losses).
7. Conclusion
We have outlined a framework for detecting and attributing
biodiversity change. The challenge of understanding the
nature and causes of biodiversity change is one of the greatest
facing science and society, and clear robust answers are essen-
tial to serve the increasing societal demands for actions that
reverse current biodiversity trends while maximizing social
and economic benefits [30]. We believe this framework con-
tributes to ongoing efforts to expand the scale and
investment in biodiversity change assessments. The frame-
work’s essential features include the integration of causal
models and robust inference practices, including explicit
treatment of uncertainty and estimation biases. The detection
and attribution framework outlines how our confidence
about biodiversity change and its consequences are
constrained by our evidence and how we report it. Though
work must be done to achieve a full implementation
of the framework with clear reporting standards, this could
be implemented, for example, by the work of an ad hoc Detec-
tion and Attribution Working Group of the Group on Earth
Observations Biodiversity Observation Network. We believe
that the field of biodiversity change science can meet this
challenge given the urgency of the need and the recent
rapid and ongoing advances in the observation technologies,
computational tools and inferential methods required for
rapidly detecting and understanding biodiversity change.
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