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Abstract

Even though automatic hand gesture recognition technology has been applied to real-

world applications with relative success, there are still several problems which need

to be addressed for wider applications of Human Computer Interaction (HCI). One of

such problems which arise in hand gesture recognition is to extract (spot) meaningful

gestures from the continuous sequence of the hand motions. Another problem is

caused by the fact that there is quite a bit of variability (i.e. in shape, trajectory and

duration) in the same gesture even for the same person. Throughout literature, the

backward spotting technique is used which first detects the end points of gestures and

then tracks back through their optimal paths to discover the start points of gestures.

Upon the detection of the start and the end points, in between points trajectory

is sent to the recognizer for recognition. So, a time delay is observed between the

meaningful gesture spotting and recognition. This time delay is unacceptable for

online applications. Given the fact of high variability of corresponding gesture to

other gestures, modeling the other gesture patterns (i.e. non-gesture patterns are

other movements which do not correspond to gestures) is a vital issue to accommodate

the infinite number of non-gesture patterns.

In this thesis, a forward gesture spotting system is proposed which handles hand

gesture spotting and recognition simultaneously in stereo color image sequences with-

out time delay. In addition, color and depth map which is obtained by passive stereo

measuring based on the mean absolute difference and the known calibration data of

the camera, are used to localize hands. Moreover, the hand trajectory is obtained

by using Mean-shift algorithm in conjunction with depth map. This structure cor-

rectly extracts a set of hand postures to track the hand motion and achieves accurate

and robust hand tracking with a stereo camera as an input device. One of the main

contributions in the work is to examine the capabilities of combined features of loca-

tion, orientation and velocity for gesture recognition with respect to Cartesian and

Polar coordinates. Furthermore, k-means clustering algorithm is used to quantize

the extracted features and employs them for Hidden Markov Models (HMMs) and

Conditional Random Fields (CRFs) codewords. The effectiveness of these features

yields reasonable recognition rates.

In this work, isolated gestures are handled according to two different classification
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techniques: generative model such as HMMs and discriminative models like CRFs,

Hidden Conditional Random Fields (HCRFs) and Latent-Dynamic Conditional Ran-

dom Fields (LDCRFs) to decide the best in terms of recognition results. To spot

meaningful gestures accurately, a stochastic method for designing a non-gesture model

with HMMs versus CRFs is proposed with no training data. The non-gesture model

provides a confidence measure which is used as an adaptive threshold to find the

start and the end points of meaningful gestures which are embedded in the input

video stream. The number of states of non-gesture model with HMMs increases as

the number of gesture models increases. However, an increase in the number of states

is nothing but lead to a waste of time and space. To alleviate this problem, a rela-

tive entropy which merges similar probability distribution states is used in order to

save time, space, and to increase the spotting speed. On the other hand, the non-

gesture model with CRFs is improved by adding a short gesture detector to further

increase gestures spotting accuracy and also tolerate errors caused by spatio-temporal

variabilities.

Another contribution is to use a forward spotting scheme in conjunction with

sliding window mechanism to handle hand gesture segmentation and recognition at

the same time. In addition, it solves the issues of time delay between meaningful

gesture spotting and recognition and achieves accurate, robust results, as well as

making the system capable of working for real-time applications.

To demonstrate coaction of the suggested components and the effectiveness of ges-

ture spotting and recognition system, an application of gesture-based interaction with

alphabets and numbers is implemented. The HMMs models are trained by Baum-

Welch (BW) algorithm while CRFs are trained using gradient ascent along Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization technique. The experiments demon-

strate that the proposed systems with HMMs and CRFs are accurate and efficient for

spatio-temporal variabilities. In addition, these systems automatically recognize iso-

lated and meaningful hand gestures with superior performance and low computational

complexity when applied to several video samples containing complex situations.
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Zusammenfassung

Obwohl eine Technologie zur Handgestenerkennung bereits mit relativ großem Er-

folg in Realworld-Applikationen Verwendung findet, existieren immer noch einige

Probleme die für tiefgreifendene Anwendungen im Bereich der Mensch-Computer-

Interaktion (HCI), gelöst werden müssen. Eines dieser Probleme, welches sich im

Bereich der Gestenerkennung aufgetan hat, ist die zuverlässige Extraktion bedeu-

tungsreicher Gesten aus kontinuierlichen Bildsequenzen. Ein anderes Problem besteht

in der Varianz (bezüglich Form, der Bahn, d.h. des zeitlichen Positionsverlaufs des er-

fassten Ziels und Dauer der Bewegung) von Gesten, sogar wenn diese von einer Person

stammen. In der Literatur wird stets die ,,backward spotting“ Technik angegeben,

bei welcher zunächst die Endpunkte einer Geste detektiert und anschließend deren

optimaler Pfad verfolgt wird, um den Anfangspunkt der Geste zu ermitteln. Nach-

dem Anfangs- und Endpunkt bestimmt sind, werden die dazwischen befindlichen

Punkte des Gestenpfades an den Klassifikator zur Erkennung weitergeleitet. In diesem

Zusammenhang wurde eine Verzögerung zwischen Beobachtung und der Erkennung

der bedeutungsreichen Gesten beobachtet. Diese zeitliche Verzögerung ist für online-

Anwendungen inakzeptabel. Aufgrund der hohen Korrespondenz zwichen unter-

schiedlichen Gesten ist es wichtig für diese ein Muster zu entwerfen, um sich an

die unendliche Anzahl von nicht-Gesten anzupassen.

In dieser Arbeit wird ein vorwärts gerichtetes Gestenerkennungssystem vorgestellt,

welches Handgestenverfolgung und Erkennung in Sequenzen von Stereo-Farbbildern

gleichzeitig und ohne zeitliche Verzögerung behandelt. Zusätzlich werden Farb- und

Tiefenkarten benutzt - welche durch passive Stereo-Messungen, basierend auf der

mittleren absoluten Differenz und den bekannten Kamerakalibrierungen berechnet

werden - um die Hände zu lokalisieren. Der Verlauf der Handbewegung kann mit

hilfe des Meanshift-Algorithmus in Verbindung mit den Tiefenkarten berechnet wer-

den. Diese Struktur extrahiert einen Satz von Handpositionen, mit welchen sich die

Handbewegung verfolgen und mit hilfe von Stereo-Kameras eine genaue und robuste

Handverfolgung erreichen lässt. Einer der wesentlichen Beiträge dieser Arbeit ist es zu

untersuchen, welche Möglichkeiten von kombinierten Merkmalen wie Position, Aus-

richtung und Beschleunigung für eine Gestenerkennung hinsichtlich der Kartesischen

und Polar-Koordinaten bestehen. Des Weiteren werden die extrahierten Merkmale
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von k-means Algorithmen quantisiert und für Hidden Markov Modelle (HMMs) und

Condition Random Fields (CRFs) eingesetzt. Die Effektivität dieser Merkmale kann

akzeptable Erkennungsraten sicherstellen.

In dieser Arbeit werden isolierte Gesten von zwei verschiedenen Klassifikation-

stechniken behandelt; Erzeugungsmodelle wie HMMs und Unterscheidungsmodelle

wie CRFs, Hidden Condition Random Fields (HCRFs) und latent-dynamischen CRFs,

um entscheiden zu können, welcher Ausdruck das beste Ergebniss repräsentiert. Es

wird eine stochastische Methode vorgeschlagen, die ohne Trainingsdaten nicht-Gesten

Modelle mit HMMs bzw. CRFs erstellt, um bedeutungsreiche Gesten akkurat ver-

folgen zu können, wobei die Ergebnisse beider Klassifikatoren miteinander verglichen

werden. Das nicht-Gesten Modell stellt dabei ein Konfidenzmaß bereit, das als adap-

tiver Schwellwert benutzt wird, um die Anfangs- und Endpunkte bedeutungsreicher

Gesten zu finden. Die Anzahl der Zustände der nicht-Gesten Modelle verhält sich bei

den HMMs proportional zur Anzahl der Gesten Modelle. Ferner ist eine Erhöhung der

Anzahl von Zuständen lediglich Verschwendung von Zeit und Speicherplatz. Um die

Anzahl von Zuständen zu reduzieren wird eine relative Entropie eingeführt und be-

nutzt um ähnliche Wahrscheinlichkeitsverteilungen zu mischen, um dadurch Zeit und

Speicherplatz zu sparen sowie die Geschwindigkeit der Zielverfolgung zu erhöhen. An-

dererseits wird das nicht-Gesten Modell mit CRFs verbessert, indem ein Kurzgesten

Detektor hinzugefügt wird, um die Genauigkeit der Gestenerkennung weiter ansteigen

zu lassen und Fehler tolerieren zu können, die durch raumzeitliche Variationen verur-

sacht werden.

Ein weiterer Beitrag besteht darin vorwärts gerichtete Verfolgungsschemata in

Verbindung mit sliding window Mechanismen zu benutzen, um eine Segmentierung

und Erkennung von Handgesten zur gleichen Zeit betreiben zu können, was das Prob-

lem der Zeitverzögerung löst und das System akkurat und robust macht, so dass es

sich für die Verwendung in Echtzeitapplikationen eignet.

Um das Zusammenspiel der vorgeschlagenen Komponenten und die Effektivität

der Gestenverfolgung und Erkennung zu demonstrieren, wurde eine Anwendung zur

gestenbasierten Interaktion mit Buchstaben und Nummern implementiert. Die HMMs

wurden mit dem Baum-Welch (BW) Algorithmus trainiert, wogegen für CRFs ein

Gradientenabstiegsverfahren nach der Optimierungstechnik von Broyden-Fletcher-

Goldfarb-Shanno (BFGS) trainiert wurden. Die Experimente zeigen, dass die vorgesc-

hlagenen Systeme mit HMMs und CRFs akkurat und effizient bezglich raumzeitlicher

Variationen arbeiten. Zudem vermag es das System isolierte und bedeutungsre-

iche Gesten mit überragender Performanz und geringer mathematischer Komplexität

automatisch zu erkennen, wenn es auf verschiedene Videos mit komplexem Inhalt

angewendet wird.
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Chapter 1

Introduction

1.1 Gestures and Human Computer Interaction

The process of communication is to transfer information from one entity to an-

other. Naturally, hand gestures are powerful human-to-human communication chan-

nel, which forms a major part of information transfer in our everyday life. There are

many ways to perform and interpret a human action using either hands and/or arms.

A gesture is a spatio-temporal pattern which may be static, dynamic or both1. The

performance of computers could be greatly enhanced if they were able to recognize

gestures and their interaction with humans to be more “human-like”. Keyboards,

mouses and joysticks are the most commonly used devices to deal with computer

until now. The interaction with the computer is emerged as a new research field

called Human Computer Interaction (HCI). The main theme of HCI is to propose

new methodologies and techniques to improve the interaction between humans and

computers. Researchers have exploited and combined different interfaces between

humans and computers which include both software and hardware components. The

initial attempts focused on the interpretation of languages allow the understanding

of human linguistics. Moreover, many hand recognition systems have been proposed,

which in turn play an important role in this area.

Recently, the focus of HCI is shifted to visual interaction with computers through

virtual interfaces, haptic interfaces and virtual reality [4]. The main goal is the inter-

action of humans virtually by the analysis of hand or body movements in 3D space

which is not possible with traditional 2D devices. The technological development is a

major achievement for HCI because it provides all the means of support and comfort

to interact with machines. Despite of the restricted area of computer vision with

HCI, it is an attractive area of research to invent new methodology of interaction be-

tween humans and machines. Until now, the natural interaction is a challenge for the

research and is yet to be addressed. So, there is an intensive research in the field of

1Static morphs of the hands are called postures and hand motions are called gestures.

1
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vision based gesture recognition. Therefore, many approaches have been proposed to

solve the research challenges in various commercial applications (e.g. gesture control

mobile interface and remote control). Additionally, the rapid technological develop-

ment in hardware and software (i.e. high processing, high capacity and low cost for

programs development) enhances the research in this field dramatically.

Hand gestures are easy to use and more convenient for humans to interact with

computers. For example, sign languages are considered as one of the main applications

areas which have been used among the deaf people (i.e. speech-disabled people)

[5]. In addition, the people with the ability to speak also use gestures in order to

communicate with each other. There are many successful applications of hand gesture

recognition like human-robot interaction [6], television control and computer game [7],

video annotation and indexing [8], and video surveillance [9]. In this thesis, we focus

on the problems of extracting meaningful motion patterns from input video stream.

1.1.1 Problem Statement

The task of extracting meaningful patterns from input signals is called pattern spot-

ting [10,11]. In gesture spotting, an instance of pattern spotting is required to locate

the start point and the end point of a gesture (Fig. 1.1). The gesture spotting has

two major challenges that arise in hand gesture recognition: segmentation [5,12] and

spatio-temporal variabilities2 [13, 14]. The segmentation problem is about determin-

ing the start and the end point of the gesture in a continuous hand trajectory. As the

user switches from one gesture to another, his hand makes an intermediate move link-

ing the two consecutive gestures. A gesture recognizer may attempt to recognize this

inevitable intermediate motion as a meaningful one. The other difficulty of gesture

spotting is caused because the same gesture varies dynamically in shape, trajectory

and duration even for the same person. Therefore, the recognition step should con-

sider both the spatial and temporal variabilities simultaneously. A robust recognition

phase extracts the gesture segments from the input signal and match them with the

reference patterns regardless of the spatio-temporal variabilities. Additionally, previ-

ous approaches [15,16,17] mostly use the backward spotting technique to first detect

the end point of gesture. Secondly, it tracks back to discover the start point of the

meaningful gesture through its optimal path and the segmented gesture is sent to the

classification phase for the recognition. In these approaches, there is an inevitable

time delay between the meaningful gesture spotting and recognition. This time delay

is unacceptable for online applications. Above all, few researchers have addressed

the problem of non-sign patterns, which include out-of-vocabulary signs and other

movements that do not correspond to signs. Hence, there is a difficulty in building a

model for non-sign patterns where the set of them is unknown for great diversity.

2Spatio means determining where the hand gesture is located at each frame. Temporal means
determining when the gesture starts and ends.
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Figure 1.1: Gesture spotting structure where the yellow color represents non-gesture
patterns and the red color represents meaningful gesture.

1.1.2 Miscellaneous Provisions

Every field has some problems and challenges that needs to be addressed. Similarly,

in the research area of hand gesture spotting and recognition, there are many issues

for data gathering, segmentation, gesture tracking and feature selection which still

need to be improved. These include:

• If the hand motion is fast in front of a normal camera system, it leads to

many problems, foremost is the segmentation problem and false detection of

the gesture (i.e. reconstruction problem of the movement).

• For each type of gesture, there is a quite bit of variability (even for the same

person) in terms of the pose of hand, the speed and duration of conducted

gesture and lapse of trajectory.

• How to select the optimal features of hand gesture model taking in account the

challenges that are faced by the generation parameters as rotation and scaling.

• In the case of acquisition failure of depth map sequences when projecting a 3D

scene to 2D plane, the reconstruction of the hand trajectory is almost impossible

dues to the existence of serious shortcomings in the segmentation process.

• How to segment the meaningful gestures (gesture spotting) that are introduced

into the system for the same continuous hand movements.

1.1.3 Motivation

The latest advancements in computer vision and computer hardware technologies

make the research of real-time hand tracking and gesture recognition promising. How-

ever, many current approaches still suffer from the limitation of accuracy, robustness
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and speed. This makes the gesture interaction indirect and unnatural. The objective

of this work is to build a real-time capable system for hand tracking, gesture spotting

and recognition. To achieve this goal, an application of image-based interaction with

alphabets (A-Z) and numbers (0-9) is considered to be the domain of the system. Our

system is built in a way that it focuses mainly on hand gesture spotting and recog-

nition without using colored gloves or markers. Moreover, the system uses a stereo

camera system for the image acquisition. The investigation of existing research led

us to make the following assertions:

• Real-time performance: For the real-time performance, the system is able to

analyze the image sequences at any frame rate with minimum process speed to

give the user instant feedback of the recognized gesture. In addition, the system

should be robust against the issue of time delay at any phase throughout the

process of gesture spotting and recognition.

• Accuracy: A hand gesture spotting and recognition system should be able to

tolerate some mistakes and errors such as spatio-temporal variabilities. How-

ever, it still needs to be accurate enough in order to be viable. For instance,

the system should achieve a higher detection rate while maintaining a low false

positive rate for each gesture. Moreover, the system should spot and recognize

different gestures without confusion among them.

• Robustness: The system should track the hand when applied on several video

sequences containing confusing situations such as partial occlusion and over-

lapping. Additionally, the hand gesture should be robustly recognized under

different illumination conditions and cluttered backgrounds.

• Scalability: The system is able to deal with a small or a large gesture vocabu-

lary by adding specific requirements (for instance, adding short gesture detector

in case of gesture spotting). Thus, it is practical and efficient when applied to

different situations like spatio-temporal variabilities.

• User-independence: The system should spot and recognize hand gestures

with different shapes, skin colors, trajectories and durations. The system should

also have the ability to deal with the movement of the hand signs for different

users rather than a specific user.

1.1.4 Applications

In the field of HCI, hand gesture recognition domain is a big challenges for researchers.

Moreover, the gesture spotting and interpretation are essential to make the human-

machine communication close to human-human interaction. Application areas for

gesture interactions include HCI, computer games and intention analysis. Further-

more, an important area for gesture interaction lies in the recognition of sign language.
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In addition, gesture recognition by computer offers new applications in industry (for

instance, steering and control of robots) and in security (e.g. event recognition). In

the following, some of the most active application areas of gesture recognition are

described.

• Human Computer Interaction: HCI is a successful application to recognize

the meaningful gestures from continuous video. The main goal of HCI is to

make the interaction between human and computer running normally. Specif-

ically, HCI is usually designed to interact with the practical applications of

real-world problems (e.g. computer access for deaf peoples and control virtual

environments etc.).

• Human Robot Interaction: Robots usually reach or manipulate objects

using their mechanical parts (e.g. equivalent to hand and arm). Gestures can

be used to control such movements. Also, to move in the physical world, robots

need guidance, therefore gestures can be easily used for such purposes.

• Television Control and Computer Games: The TV control is one of the

important applications for hand gestures. Hand gestures provide the user with

an appropriate speed for the various operations on TV (e.g. increase/decrease

the volume and TV on/off etc.). Another application is to play games, where

the hand gestures are used as an interacting modem in order to control the

games easily.

• Sign Language Recognition: Sign language recognition is considered as one

of the intuitive applications for hand gestures. There are many useful appli-

cations in our daily lives, which are based on the analysis of sign language.

Some of these applications include: sign-to-text, translation from one language

to other languages and vice versa.

• Gesture-to-Speech: By the gesture-to-speech application, the hand gestures

are analyzed and translated into speech. This type of application is important

for the people who are not fluent in sign language expression.

• Intention Analysis: The intention analysis deals with the recognition of words

and alphabets before they are completed. Furthermore, the intention system

inform the user about the successful goal before the gesture ends (i.e. predicting

of the event before it happens).

• Virtual Reality: Virtual reality interactions are applied to computer-simulated

environments which are similar to the real-world interaction (e.g. simulation

of the combat training). The users can interact with the virtual environment

using the interpretation of hand gestures as an input device for 3D display

interactions.
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1.1.5 Contributions

To face the mentioned challenges, a forward gesture spotting method is proposed,

which simultaneously handles the hand gesture spotting and recognition in stereo

color image sequences without time delay. To spot meaningful gestures accurately,

stochastic methods for designing a non-gesture model with Hidden Markov Models

(HMMs) and Conditional Random Fields (CRFs) are proposed with no training data.

The non-gesture model provides the confidence measure and is used as an adaptive

threshold to find the start and the end points of meaningful gestures which are em-

bedded in the input video stream. To demonstrate the coaction of the suggested

components and the effectiveness of our gesture spotting and recognition system, an

application of gesture-based interaction with alphabets (A-Z) and numbers (0-9) is

implemented. The major contributions of this thesis are presented as follow:

• Depth map: One of the main contributions of this work is to exploit depth

image sequences. The main motivation behind the use of depth information is

to identify the Region of Interest (ROI) without processing the whole image,

which consequently reduces the cost of ROI searching and increases the pro-

cessing speed. Furthermore, the depth information is used to resolve complex

backgrounds (i.e. neutralize complex background) completely, as well as illu-

mination variation and it also increases the accuracy of objects segmentation.

In the case of overlapping (i.e. ambiguities) between the hands and face, the

depth information is used to identify the objects under occlusion.

• Hand tracking and feature extraction: A robust method for hand tracking

in a complex environment using Mean-shift algorithm in conjunction with depth

map is proposed. This scheme correctly extracts a set of hand postures to track

the hand motion and achieves accurate and robust real-time hand tracking.

Features like location, orientation and velocity (which are obtained from spatio-

temporal hand gesture path) with respect to Cartesian and Polar coordinate

systems are combined and analyzed. This analysis determines the degree of

effectiveness of these combinations on the recognition results.

• Isolated gesture recognition: The isolated gestures are handled according

to two different classification techniques: generative model such as HMMs and

discriminative models like CRFs, Hidden Conditional Random Fields (HCRFs)

and Latent-Dynamic Conditional Random Fields (LDCRFs). Additionally, dif-

ferent HMMs topologies are analyzed and studied in terms of their impact on

isolated gesture recognition. This research is focused on the decision of HMMs

topology and classification techniques for the optimal results.

• Gesture spotting and recognition: A stochastic method with no training

data for designing a non-gesture model by HMMs and CRFs is proposed to
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spot meaningful gestures accurately. The non-gesture model provides confidence

measure and is used as an adaptive threshold. The main motivation of using

this adaptive threshold is to find the start and the end points of meaningful

gestures from hand continuous motion.

• Improving the performance of gesture spotting and recognition: The

non-gesture model with HMMs is modified by using relative entropy function

to cure the problem of increasing number of states. The main objective is to

save time and space, and to increase the spotting speed. Another modification

for non-gesture model with CRFs is to add a short gesture detector, which

increases the weights of self-transition feature functions for short gestures to

further improve the accuracy of gesture spotting. The effectiveness of improved

non-gesture model yields reasonable recognition rates. In addition, it is robust

against errors3 which are caused by spatio-temporal variabilities.

• Forward spotting: The drawback of the backward spotting technique is the

time delay between gesture segmentation and recognition, in which it has to

spend additional time for backtracking to find the gesture start point. In order

to solve this problem, a forward spotting method in conjunction with the sliding

window technique is proposed to handle hand gesture segmentation and recog-

nition simultaneously. The main objective is to resolve the following issues;

avoiding the time delay between meaningful gesture spotting and recognition,

achieving accurate, robust as well as making the system capable of working for

on-line applications.

1.2 Road Map of the Thesis

The thesis is structured in seven chapters as follows:

• Chapter 1 presents the relationship between gestures and HCI. The major chal-

lenges of gesture spotting problem are described. In addition, the motivation

and the contribution of the work are also given.

• Chapter 2 surveys the literature of hand gesture. The chapter starts with an

overview of the research highlights and the challenges which are present in the

research field from the aspect of three main points: 1) Hand gesture recognition

2) Gesture spotting 3) Sign language recognition. After that, the major ap-

proaches which include Neural Networks, template matching, HMMs and CRFs

are summarized. These approaches give more attentions to analyze and extract

patterns with spatial and temporal variabilities. Moreover, this chapter is im-

portant in the context of understanding the motivation of doing the research

and enables to investigate and compare the novel techniques.

3More details about these errors can be found in Section 6.4.1.
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• Chapter 3 gives an insight into the fundamental concepts which build the bases

for understanding this thesis. Firstly, the color models like RGB, Y CbCr are

discussed with some details. Secondly, normal Gaussian distribution and Gaus-

sian mixture models are presented for the segmentation of hands and face.

After that, the classification approaches (i.e. HMMs and CRFs) are explained.

Lastly, relative entropy and k-means algorithm are summarized which are used

to improve the hand gesture recognition.

• Chapter 4 describes the proposed isolated gesture recognition system in four

main phases: preprocessing, tracking, feature extraction and classification. The

object segmentation and tracking under occlusion are exploited with 3D depth

map. To motivate the extracted feature of gestures in this chapter, dynamic

features with respect to Cartesian and Polar coordinate systems are presented.

After that, major classification techniques based on HMMs, CRFs, HCRFs and

LDCRFs are discussed.

• Chapter 5 demonstrates the effectiveness of the isolated gesture recognition

system for HCI. This chapter examines the capabilities of combined features of

location, orientation and velocity for gesture recognition with respect to Carte-

sian and Polar coordinate systems. In addition, the effective of these features

are presented which yields reasonable recognition rates. The experiments are

carried out on isolated gestures (alphabets and numbers) according to two dif-

ferent classification techniques: a generative model such as HMMs and discrimi-

native models like CRFs, HCRFs and LDCRFs. Comparison of results between

generative and discriminative models are also provided.

• Chapter 6 describes the spotting system which is used to extract meaningful

gestures from the input video stream. The set of spotting rules which are used

in the system are derived according to HMMs and CRFs. This chapter presents

the modelling of gesture patterns discriminately and non-gesture model effec-

tively with no training data for non-gesture patterns. To motivate the gesture

spotting problem and to solve the issues of time delay between the gesture seg-

mentation and recognition, a forward spotting scheme is presented which uses a

stochastic method for designing a non-gesture model with HMMs or CRFs mod-

els. Moreover, the concept of relative entropy with HMMs and short gesture

detector with CRFs are introduced in order to improve the gesture spotting

system’s accuracy. At the end, the quantitative experiments conducted with

the proposed system and the performance measures used for their evaluation

are discussed.

• Chapter 7 concludes the thesis by summarizing the contributions of this work

as well as the possible improvements for future work.



Chapter 2

Literature Review

2.1 Gesture Recognition

In recent years, the hand gesture recognition has become a major research challenge

due to its large use in HCI, image/video coding, and content-based image/video re-

trieval. For example, a successful hand gesture recognition system provides valuable

insight into how one might approach other similar pattern recognition problems such

as facial expression interpretation, lip reading and human action identification. Gen-

erally speaking, gestures are predefined paths that have a symbolic meaning. They

can be made in either 2D or 3D space using a suitable input device. 2D gestures are

usually drawn with a mouse or stylus on a tablet. For the purpose of this proposal,

when we consider gestures in 3D, they tend to be hand gestures made with a suit-

able hand tracking device like the glove device or the camera. The gestures can be

classified into two classes according to the inclusion of the hand motions. The first

one is called posture in which static hand positions stay in the same space whereas

movement of dynamic hands and fingers are referred as gestures as shown in Fig.

2.1. Human-human communication acts a basis to develop human-computer com-

munication which is a considerable approach for more natural communication with

the computer. Communication between humans is often inaccurate which is usually

expressed by using hand gestures [15]. Entrance gesture sometimes be appropriate for

people who are unable to use a keyboard because they fear of using the keyboard and

may prefer having the system which responds to gestures guide. Vision based analysis

of hand gestures is the most natural way of constructing a human-computer gestural

interface. One or more cameras are used to capture hand motion for vision based

gesture recognition. Many vision techniques are applied to real-time video stream

of user gestures with unadorned hand [17, 18]. That is, the user can move his hand

without any equipment, and camera captures video frames of a user, and then vision

techniques are used to extract hand from the video frames. With cameras, the user

can conduct raw hand gestures as in human-human communication. However, vision

based systems require much more computing power for real-time applications because

9



2.2. Related Work 10

A                         B                        C                     D                       E

Continue           Left          Up            Rotate

Figure 2.1: The above samples represent the posture for alphabets from A to E, and
the down samples refer to the gestures [1, 2].

vision based techniques used for hand tracking are time consuming processes. One

of the main advantages for studying the hand gestures is that it is a step towards

the recognition of sign language. In order to realistically expect hand gestures to be

used for HCI, the gesture recognition module not only accurate but also as part of

a large system, it must be efficient since only a small portion of system resources is

devoted to the module. Hence, many of the design approaches like HMMs and CRFs

are constructed in favor of faster computation even if there is negligible degradation

of recognition performance.

2.2 Related Work

Pattern spotting is the process of segmenting meaningful patterns from input streams

and identifying them according to the classification technique. Spotting of sign lan-

guage is considered an instance of pattern spotting. There are many different tech-

niques and applications for pattern spotting which have been taken in account in this

work. This section briefly reviews the representative pattern spotting techniques in

addition to the related works from many different areas: hand gesture recognition

mainly from the area of computer science and HCI, and gesture spotting mainly from

the area of computer vision, artificial intelligence and speech recognition.

2.2.1 Hand Gesture Recognition

Hand gestures represent sequential data which can vary in both trajectories and

durations. A common gesture recognition technique is used to deal with gestures as

an output of observable task so that it holds the property of Markov. In Markov

models, the conditional probability density function of current state is based only on

recent states. HMMs are considered as one of this architecture and is employed as a
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probabilistic network with hidden and emission states. HMMs are the most common

approach used for gesture classification to score remarkable success in modeling spatio-

temporal time series [15,19]. In [20], an HMM was employed to recognize the tracked

gesture for control desktop applications like games, painting programs and browsers.

In [21], an application system by recognition of HMMs is integrated to health center in

which the patients used colored gloves to express their needs to the centralized system.

Instead of using colored gloves, Vogler and Metaxas [22,23] use 3D object shape and

motion extracted features with computer vision methods as well as a magnetic tracker

fixed with the signer’s wrists. They introduce a parallel algorithm using HMMs in

order to model and recognize gestures from continuous input stream. Shape, location

and trajectory of left hand, in addition to location and trajectory of right hand are

implemented using separate channels of HMMs. Each channel has been learned with

relevant data and combined features. Moreover, individual networks of HMMs have

been constructed for each channel and a modified Viterbi algorithm was employed to

search within the networks in parallel. From each network, the trajectory probabilities

with the same word sequences are combined together. Tanibata et al. [24] proposed

a similar scheme for isolated word recognition in the Japanese Sign Language (JSL).

The authors apply HMMs to model the gesture data from right and left hand in

a parallel mode. The information is merged by multiplying the resulting output

probabilities.

In HMMs, the current observations are based only on the current state, but the

current observations for the Maximum Entropy Markov Models (MEMMs) that is

proposed by McCallum et al. depend on the previous and the current states [25].

Although MEMMs use a directed graphical model such as HMMs, it suffers from the

bias problem because its states are locally normalized. CRFs are undirected graphical

model and use a single exponential model for the joint probability of state sequences

for a given observation sequences [26]. Let us denote the observation sequence as x

and the class label or hidden state sequence as y. Then, generative models specify

p(y, x), the joint probability distribution over observation and class label sequences,

whereas discriminative models specify p(y|x), the likelihood of the label sequence

conditioned on the input sequence. For sequence data, the most common generative

and discriminative approaches are HMMs and CRFs, respectively. CRFs do not

have the ability to learn the latent dynamics of gestures. HCRFs and LDCRFs are

CRFs variant which incorporate hidden states variables to deal well with gesture

substructure [27].

2.2.2 Gesture Spotting

In the gesture recognition system, one of the difficult problem is gesture spotting

which means how to find the start and the end points of meaningful gestures in a con-

tinuous input stream. In general, natural input consists of gestures and non-gestures.
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Non-gestures represent other movements which do not correspond to gestures such

as manipulative and coarticulatory gestures. In the literature of gestures spotting,

several methods were proposed for this purpose but without using the temporal seg-

mentation [28, 29, 30, 31]. Many existing methods have been performed under the

terms of codified (i.e. hands are unambiguously tracked in image sequences). Yet,

this leaves quite a bit of temporal variability in hand gestures and provides a challenge

for gesture spotting. A trade-off between the complexity of gesture recognition and

the naturalness of performing gestures must be made. After considering the existing

methods for gesture spotting, we found that these methods are classified into two

approaches: the direct approach and the indirect approach. The temporal segmen-

tation in direct approach precedes the recognition task of gestures. Direct approach

is based on either low-level or mid-level motion parameters to spot gestures. Accel-

eration, curvature of trajectory and velocity have been employed as low-level motion

parameters [32] while the activity of human body was considered as mid-level motion

parameter [33]. Consequently, abrupt changes (for instance, zero-crossings) in these

parameters were used as a main rule to identify meaningful gesture boundaries. The

drawback of such methods is to obtain a gesture first, and then followed by specific

intervals for non-gestures. As a result, these methods reflect unacceptable conditions

in continuous gesturing for scientific research.

Temporal segmentation in indirect approach is interwoven with recognition task

where indirect methods provide good recognition scores for the detected gesture

boundaries. The work mechanism for most indirect methods [28, 29, 34] are based

on the extension of dynamic programming such as Continuous Dynamic Program-

ming (CDP) [29], Dynamic Time Warping (DTW) [35, 36], HMMs [5, 37, 38] and

CRFs [16, 26, 39]. In these methods, the end point of meaningful gesture is found

by comparing its likelihood score to a static or an adaptive threshold which is esti-

mated by a non-gesture filler model as in signal processing field [15,40]. Most existing

systems are based on the use of fixed likelihood threshold to spot gestures, so that

the gestures are refused when their likelihood does not exceed the allocated score to

spotting threshold. Reliance on the use of a fixed threshold is considered as naive

and non-practical solution to handle the likelihood variabilities computed by models.

An HMM-based framework is proposed by Lee and Kim [15] which handles gesture

spotting and recognition effectively using adaptive threshold to distinguish between

gesture and non-gesture patterns. The non-gesture model is constructed by consider-

ing all reference states of the trained HMMs in the system (i.e. considers all reference

observations probabilities, self-state transitions and ignores state transition proba-

bilities). Furthermore, the non-gesture model provides a good confirmation for the

rejection of non-gesture patterns where its likelihood is smaller than the dedicated

model for a given gesture. Whereas, Yang et al. [16] proposed a threshold model

based on CRFs, which uses an adaptive threshold to spot and recognize gestures in

continuous input streams. A major limitation of such methods is that they used the
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backward spotting technique to first detect the gesture end point. After that, they

track back to discover the gesture start point and then the segmented gesture is sent

to the recognizer for recognition. Moreover, there is a time delay between gesture

spotting and recognition and this time delay is unacceptable for online applications.

2.2.3 Sign Language Recognition

Recognition of hand gesture is an active topic of research in computer vision especially

for the purpose of HCI and sign language. In contrast to gestures, a typical component

of spoken languages, the sign languages present the natural way for communication

among deaf people. Sign languages develop, like oral languages, in a self-organized

way. An example which shows that sign language appears wherever communities of

deaf people exist is reported by [41]. Three problems should be solved to recognize

sign language. The first challenge is the reliable tracking of the hands, followed by

robust feature extraction as the second problem. Finally, the third task concerns

the interpretation of the temporal feature sequence. The performance of the sign

language can be divided into manual (hand orientation, location and trajectory) and

non-manual (head, mouth and facial expression) parameters. Sometimes, the use of

manual parameters is enough to distinguish some signs but there are an ambiguities

in other signs which require non-manual information to identify them.

Hienz et al. [42], and Bauer and Kraiss [43] proposed an HMM-based continuous

sign recognition system where the signs have been divided into subunits for recog-

nizing separately. They simplified the extracted features from image segmentation

using different color gloves for hand palm and fingers. Thus, the vector sequences of

extracted features reflect the manual parameters of sign. By using the same group,

another system to recognize continuous signs has been constructed based on HMMs.

they have used skin color detection with multiple tracking hypothesis to extract geo-

metric features such as compactness, eccentricity and axis ratio [44, 45]. The winner

hypothesis is determined at the end of the sign. However, the authors include high

level knowledge of the human body and the signing process in order to compute the

likelihood of all hypothesized configurations per frame.

Vassilia et al. [1] proposed a system to recognize both isolated and continuous

Greek Sign Language (GSL) sentences for hand postures. The orientation codeword

is extracted from images and is then employed in sentences for input to HMMs.

Nianjun et al. [46] proposed a method to recognize all 26 letters from A to Z by using

different HMMs topologies with different states. Nguyen et al. [47] proposed a real-

time system to recognize 36 hand vocabularies like American Sign Language (ASL)

and digits in unconstrained environments. Their system is employed to study and

analyze hand postures, not the hand motion trajectory as in our system. Tanibata

et al. [24] introduced off-line method to recognize Japanese Sign Language (JSL)

and JSL word in a unconstrained background. Yang et al. [48] introduced an ASL
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recognition system based on a time-delay neural network. All of the presented works

are very inspiring and have different interesting approaches to overcome different

problems of sign language recognition. Most of the introduced systems are running

in off-line mode, i.e. they collect the feature sequence and start recognition when the

gesture has already been performed.

2.3 Gesture Recognition Approaches

Vision based recognition systems use cameras as the input source and are used to

interact with the computers. Gestures are tracked from the motion of the hands.

Application areas include the interaction with the virtual objects. Other applica-

tions include sign language recognition, graphical interface controls, simulation, robot

teaching, device control, and virtual reality. In addition, pattern spotting is an im-

portant topic of research in speech recognition and computer vision. Moreover, a

pattern spotting algorithm is required in order to find predefined patterns in the in-

put data. Major approaches for analyzing and extracting patterns with spatial and

temporal variabilities include Neural Network-Based approach (NN) [18, 49, 50, 51],

Template Matching-Based approach [12,34,52,53], Hidden Markov Models-Based ap-

proach [5, 22,54] and Conditional Random Fields-Based approach [25,26,55].

In these approaches, the features are extracted from the images and then tested

against the observed feature set. Specifically, the parameters derived from the hand

include contours, edges, image moments, eigenvectors, fingertip etc. Most of these

parameters are used as features in the recognition. Two major problems in these

approaches are feature selection and training of the data set. Feature selection means

how the features are selected for the system to classify correctly and how many

features are enough for the system. The second problem is the training of the data

set. For training the data, it is always difficult to decide how many samples are

enough for training. Classification is then performed on these feature sets. Unlike

3D model based approaches, they can work in real-time because of the extraction of

2D image features. The following sections explore a vision-based analysis of hand

gestures with spatio-temporal variabilities.

2.3.1 Neural Network-Based Approach

As large data sets become available, more emphasis is shifted on NN where two ap-

proaches of representing temporal information exist. The first is to use a recurrent NN

and the second is to use a multilayer feed-forward network, with a sophisticated pre-

processing architecture. Although, the neural networks have the ability to represent

and recognize static patterns (i.e. postures), they are not suitable for interpreting

dynamic gestures (i.e. gestures) [56]. One of main problems which arise in hand

gesture spotting is how to model non-gesture patterns.
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Vaananen and Boehm [56] have used NN to recognize user gestures and virtual

environment visitor which is called Gesture driven Interface in Virtual Environments

(GIVEN). The gesture recognition module of GIVEN includes two parts: posture

recognition and dynamic gesture recognition. From the DataGlove, the posture recog-

nition part obtains 10 inputs (i.e. two for each finger). After preprocessing, the scaled

inputs were fed into feed-forward network, which perform the recognition and send

the information to the GIVEN program for further processing. The dynamic gesture

recognition part uses back propagation neural network with a sophisticated prepro-

cessing architecture. They have used two sets of input information, ten finger angles

and six position information.

Fels [57] has developed Glove-Talk II that translates hand gestures to speech using

an adaptive interface. An adaptive interface was to improve the user’s performance

based on experience with the user. Fels has chosen neural networks because it gives

natural models for construction adaptive interfaces as well as the enough speed of

running process for real-time control after training. Hand gestures were mapped to

allow the hand to serve as an artificial vocal tract, which provides the speech in

real-time. The gesture-to-speech process has been divided into consonant and vowel

production. Additionally, a gating network has been used to weight the outputs of

consonant and vowel network. Different examples from the same user have been

employed to train the gating and consonant networks.

Kjeldsen et al. [50] have developed a control system for a window based user

interface which interacts with the user by visually recognizing hand gestures and

performing actions in response. Their approach used two layers architecture: hand

tracking and action layers. The hand tracking layer used cheap but coarse techniques

to identify and track the user’s hand in real-time. The action layer used a grammar

to map image events which are identified by the hand-tracking layer to actions of the

system. The basis of the grammar was a core cycle which represents three gesture

phases: preparation, gesticulation and retraction, and it makes use of both the motion

and pose of the hand. Whereas, Stiefelhagen et al. [49] used 3D position of head and

hands to recognize gestures based on two NNs; one for tilted orientation of a head

pose and another for panning. The purpose of using NNs was to process the head’s

intensity and the disparity where a stereo camera has been employed to capture the

data. The combination of gray and depth information achieve good results in contrast

to the separate use of gray or depth information.

2.3.2 Template Matching-Based Approach

Gesture models in template matching-based approaches are modeled as a spatio-

temporal template. In general, it is difficult to handle template matching for the

temporal variability domain because template matching depends on the spatial dis-

tance between input data and template. Despite of this difficulty, this approach is
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Figure 2.2: Output of CDP matching algorithm. CDP computes the optimal path
and the minimum cumulative distance between the gesture models and the input
sequence to detect a candidate gesture.

appropriate when the training data set is simple and the variance is small. Waldherr

et al. [58] introduced a command interface for hand gestures to control the equipped

mobile robot. A camera has been considered to track a human and recognize hand

gestures, which include arm trajectory. This method achieves promising results when

compared to a neural network-based approach. Whereas, Kortenkamp et al. [59] pro-

posed a method to recognize hand gestures based on a stereo vision system. This

method has the ability to recognize six different gestures like pointing and hand

signals. Takahashi et al. [12] proposed a Continuous Dynamic Programming (CDP)

algorithm in order to segment and recognize meaningful gestures with body and arms.

The proposed algorithm used a set of standard sequence patterns to represent mean-

ingful gestures in spatio-temporal form. The input image sequences were compared

using CDP matching algorithm for the recognition (Fig. 2.2). The experiments were

carried out to choose seven gestures and the results concluded that this model was

robust against clothes and background. Seki et al. [60] have also used CDP match-

ing for gesture recognition. In their system, the features were based on 2D power

spectrum and velocity extraction because the power spectrum of fourier transform

and the velocity of arms in images does not depend on parallel translation. They

concluded that the features make the gesture recognition system shift-invariant. The

drawback of the method is that it does not perform robustly with respect to shape

variations.

Alon et al. [61] proposed a novel algorithm for gesture spotting and recognition

based on CDP. Additionally, they used a pruning method in conjunction with subges-

ture reasoning process in order to efficiently spot and recognize short gestures. The

pruning method has been used to make the system relatively able to estimate small

number of hypotheses when compared to CDP. The process of subgesture reasoning
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has been employed to alleviate the problem of short gesture when matched to other

longer gestures. The experiments showed that the use of this method was faster and

18% more accurate unlike the use of CDP algorithm without any modifications. Alon

et al. [17] also proposed a unified framework to simultaneously spot and recognize

gestures. This framework contains three main processes. Firstly, a spatio-temporal

process has been employed to accommodate multiple candidate hand localizations in

each frame image. Secondly, a classifier-based pruning process was devised to early

refuse weak match patterns in gesture models. Finally, a subgesture reasoning pro-

cess was built to learn which gesture models could be matched with errors of their

parts to other longer gestures. The performance of this framework was the restoration

of gesture’s occurrence of gestures of interest from a video database which contains

continuous gestures in ASL. The experiments showed that the rate of correct detec-

tions for digits has been increased tenfold from 8.5% to 85% when compared to CDP

method of Oka [62].

Dynamic Time Warping (DTW) is considered as a template-based matching tech-

nique, which was used to deal with the problems of temporal variabilities. More-

over, DTW achieves successes in resolving small vocabulary problems. However, the

drawback of using DTW is that it requires more templates for representing spatial

variabilities during matching process. Another drawback for DTW is associated to

the prior selection of the start and the end points of input gestures. This prior selec-

tion is not suited for online recognition system because the start and the end points

of gestures are not easily inferred. Moreover, recognizing non-gesture patterns is a

major problem in case of DTW.

2.3.3 Hidden Markov Models-Based Approach

HMM is one of the best approaches used in pattern recognition as it has the ability

to overcome the problems of spatio-temporal variabilities [63]. In addition, HMMs

have been successfully applied to gesture recognition, speech recognition and pro-

tein modeling etc. [5, 15, 54]. Introduction of HMMs makes the recognition-based

segmentation more powerful because segmentation and recognition are optimized si-

multaneously during recognition with HMMs. Gesture can be divided into two types;

a communicative gesture (i.e. key gesture or meaningful gesture) and a noncommu-

nicative gesture (i.e. garbage gesture or transition gesture) [6, 64]. In other words,

a nature gesture includes three phases: pre-, key- and post-gesture as shown in Fig.

2.3. The key gesture can be defined as a part of hand trajectory which carries ex-

plicit meaning for human. Whereas, pre- and post-gestures represent unintentional

movement used to connect key gestures.

Vogler and Metaxas [22] introduced a system based on HMMs and three video

cameras to recognize ASL. They used an electromagnetic tracking system to extract

3D parameters of the user’s hand and arm. Their system has been carried out in two



2.3. Gesture Recognition Approaches 18

y

x

time

Spotting

pre-gesture key-gesture post-gesture

Figure 2.3: Gesture trajectory and spotting with three main phases.

experiments where 99 sentences and 22 signs were tested. The experiments have been

performed with isolated signs and continuous sentences. Their system has achieved

recognition rates of 94.5% and 84.5% for isolated signs and continuous sentences,

respectively. Whereas, Starner et al. [5] introduced two HMMs-based systems by

using a data set of 40 signs. The first system is depended on the presence of the

camera on a desk while the second system plants the camera on a cap worn by the

user. The experiments have been carried out on a continuous data set according to

hand shapes as extracted features. The systems achieved 92% and 98% accuracies

for the first and the second systems, respectively.

Bauer and Kraiss [43] presented HMMs-based system to recognize a German Sign

Language (GSL) using colored gloves. The system has been performed with isolated

and continuous signs. In their system, subunit HMMs were used to recognize isolated

signs and perform the spotting signs. Experiment results demonstrated that the sys-

tem was successfully recognized spotted hand signs with 81% recognition rate and

achieved 92.5% accuracy for 100 isolated signs. Braffort [65] proposed a recognition

system for French Sign Language (FSL) in which signs were divided into commu-

nicative signs, noncommunicative signs and variable signs. A colored glove was used

to extract features like hand appearance and position, which are then employed to

HMMs codewords. The experiments were run according to classifiers; one was to rec-

ognize communicative signs and the another was to recognize both noncommunicative

and variable signs. Their system has achieved 96% recognition rate for vocabulary of

seven signs.

The method of Lee and Kim [15] is considered as the first signs of the way dealing

with transition gestures as a pattern of separate modeling. This method has been

used to address 2D hand trajectory (i.e. gesture trajectory) regardless of taking the

hand shapes into account. The drawback of this method is that the number of samples

is not considered while merging two states. Kahol et al. [33,66] proposed Hierarchical
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Activity Segmentation (HAS) algorithm . HAS algorithm used hierarchical layered

structure in a dynamic way to represent the anatomy of person. This algorithm has

also considered low level parameters of motion to recognize up-bottom motions in

addition to conducting numerous attempts to segment a complex person motion se-

quence (e.g. dancing). The mechanism of this method were subjected to two main

steps. In the first step, the boundaries of potential gesture have been recognized with

three cues and then employed as second step to naive Bayesian classifier for bound-

ary detection of correct gesture. In order to spot dance sequences, 3D information

based on coupled HMMs (cHMMs) were used for individual gesture patterns. The

main advantage of this method is that all transition gestures in person motions are

considered, unlike other researches which are only interested in key gesture spotting.

To spot key gestures exactly, the transition gestures are explicitly modeled. In short,

HMMs are capable of modeling spatio-temporal of gestures effectively and can handle

non-gesture patterns easily.

2.3.4 Conditional Random Fields-Based Approach

Conditional Random Fields (CRFs) are undirected graphical models that were devel-

oped for labeling the sequential data [26]. The key features of CRFs than HMMs are

represented in their conditional nature and the dependency assumptions of their com-

putations to ensure tractable inference. HMMs are the generative models which define

a joint probability distribution to solve a conditional problem. Moreover, one HMM is

constructed per label where HMMs assume that all the observation are independent.

Whereas, CRFs overcome the weakness of directed graphical models which suffer from

the bias problem as in Maximum Entropy Markov models (MEMMs) [25, 26]. The

bias problem is due to the fact that the MEMMs states are locally normalized. There

is a difference between HMMs and MEMMs in the calculations for each state. In

HMMs, the current observations are based only on the current state, but the current

observations for MEMMs depend on the previous and the current states [16]. The

difference between CRFs and MEMMs is that CRFs use a single exponential distri-

bution to model all reference labels for a given observation sequence. This means that

there is a trade-off for each label according to the weights of each feature function.

In MEMMs, each state is employed as exponential model to conditional probabilities

of the next state for a given current state. Furthermore, CRFs combine the strength

of MEMMs and HMMs on the number of real-world sequence labeling tasks [67,68].

Yang et al. [16] proposed a threshold model based on CRFs which uses an adaptive

threshold to spot and recognize gestures in continuous input streams. The experi-

ments were performed with isolated and continuous dataset according to the extracted

features. Yang and Sarkar [69] proposed CRFs-based ASL spotting and recognition

system using Kanade-Lucas-Tomasi method to extract features from motion trajec-

tory. Their system has the ability to extract and recognize key frames from continuous
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sentences. Each key frame has been labeled with sign pattern or non-sign pattern. A

major limitation of such methods is that they used the backward spotting technique

to first detect the gesture end point. After that, they track back to discover the

gesture start point and recognize the segmented gesture.

2.4 Discussion and Conclusion

The aim of this chapter is to present a variety of methods for finding occurrences of

patterns in a long input streams. The chapter starts with an overview of the research

highlights and the challenges present in the research field from the aspect of three

main points: 1) Isolated gesture recognition, 2) Gesture spotting, 3) Sign language

spotting and recognition. One of the most challenging tasks associated with the

gesture recognition problem is gesture spotting, i.e. the task of detecting the start

and the end points of a meaningful gesture (temporal segmentation) to be located in

every frame of the sequence (spatial segmentation).

To motivate the gesture spotting problem, the major approaches that include neu-

ral network, template matching, HMMs and CRFs are summarized. These approaches

gave more attentions to analyze and extract patterns with spatial and temporal vari-

abilities. Two major problems in these approaches are feature selection and training

of the data set. Feature selection means how the features are selected for the system

to classify correctly and how many features are enough for the system. The second

problem is the training data set. For the training data, it is always difficult to decide

how many samples are enough for training. Although the neural networks have the

ability to represent and recognize static patterns (i.e. postures), they are not suit-

able for interpreting dynamic gestures (i.e. gestures). One of main problems, which

arise in hand gesture spotting is to how model non-gesture patterns. In general, it

is difficult to handle template matching for the temporal variability domain because

template matching depends on the spatial distance between input data and template.

Despite of this difficulty, this approach is appropriate when the training data set is

simple and the variance is small. On the other hand, HMMs and CRFs have the

capability to deal with the spatio-temporal problem in addition to building a model

for the non-gesture patterns with no training data.

These approaches mostly used the backward spotting technique to first detect the

gesture end point. Then, they track back to discover the gesture start point and

recognize the segmented gesture. Further, there is an inevitable time delay between

the meaningful gesture spotting and recognition and this time delay is unacceptable

for real-time applications. This chapter is important in the context of understanding

the motivation of doing the research and enables to investigate and compare the novel

techniques.



Chapter 3

Fundamental Concepts

3.1 Color Models

Color models are mathematical methods used for the synthesis of color spaces and are

defined by mixing specific proportions of the three chromatics of the Red (R), Green

(G), and Blue (B). The importance of a color is that it helps in object’s segmentation,

detection and classification. In contrast, gray scale algorithms are sensitive to lighting

variations. Image processing systems use different color spaces for different purposes.

Color models RGB, Y CbCr, Y UV , HSV and HSI are commonly used in image

processing and computer vision applications [70]. In the following sections, color

models RGB and Y CbCr are briefly described.

3.1.1 RGB Color Model

RGB color space is an additive color model in which the three primary colors red,

green and blue are mixed together in specific proportions to produce any color. Each

of the three primary colors is named a component (i.e. channel) and has an arbitrary

intensity in the scene. There is no doubt that the increase in the values of red, green

and blue additive primaries increase the amount of these values in the scene. Further-

more, zero intensity for each channel provides black color. When each channel has

maximum intensity value, the resulting color is white. When the intensity values of all

channels are equal, the resulting color is gray. Moreover, the lighter and darker shades

correspond to the lighter/darker gray intensity values 3.1(a)). The basic equation of

gray scale intensity I is computed from RGB color intensity as follows;

I =
1

3
· (R +G+B) (3.1)

It is easier to obtain a normalized RGB (nRGB) from the RGB values using a simple

normalization method as follows;

r =
R

R +G+B
, g =

G

R +G+B
, b =

B

R +G+B
(3.2)

21
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Figure 3.1: (a) RGB color model. (b) Y CbCr color model.

The third channel in nRGB can be ignored in order to reduce the space dimensionality

because it does not hold any significant information. In nRGB, summation of the

three normalized channels is equal to one (r+g+b = 1). The other channels are often

named as “pure colors”. By normalization of the source RGB, the color is diminished

based on the brightness of r and b. This representation has a better property notably

for shiny surfaces. In case of varied light, nRGB is invariant to changes of surface

orientation relatively. So, this color space is the most popular among researchers as

it can be obtained from RGB easily [71].

3.1.2 Y CbCr Color Model

Y CbCr color space is widely used for digital video, video transmission and compression

systems. In this format, luminance information contains gray scale intensities and is

stored as a single component (Y ) while chrominance information is stored as two

color-difference components (Cb, Cr). Cb and Cr represent blue and red difference

chroma components, respectively (Fig. 3.1(b)). Other color models like Y IQ and

Y UV are widely used for image processing and computer vision applications, and are

very similar to Y CbCr but not identical. Y IQ and Y UV are used for analog color

models while Y CbCr is a digital color model [72]. In fact, every single pixel in digital

RGB color encodings has different R, G and B samples. In contrast to Y CbCr, the

same is not true. In reality, our human eye is more sensitive to variations in the gray

scale intensity of a pixel rather than variations in chroma channels. The following

equations are used to convert RGB to Y CbCr color models [73];

Y = 0.299R + 0.587G+ 0.114B (3.3)

Cb = 0.564 · (B − Y ) (3.4)
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Cr = 0.713 · (R− Y ) (3.5)

3.2 3D Camera Model

In stereo matching technique, the depth is acquired from a pair of images by the left

and right cameras. Analysis and understanding of visible objects based as human

eye does is named stereo vision. The purpose of stereo vision is to acquire the depth

information through range measurements based on obtained images from cameras

with a certain offset [74,75,76]. To get the necessary depth information, a stereo vision

module called bumblebee is used (Fig. 3.2(a)), which was developed at Laboratory

for Computational Intelligence, University of British Columbia and is being marketed

by Point Grey Research1. It is a challenging problem to estimate the disparity (i.e.

determine the corresponding image points) in the stereo vision. This problem is

named as corresponding problem. Considering two images which are captured from

slightly different views of horizontally displaced cameras, a feature point can be found

in the left image IL at location (xl, yl) and in the right image IR at location (xr, yr).

The difference between coordinates of the same features in left and right images

is called disparity. Since the cameras are horizontally aligned, only the horizontal

displacement is relevant. If the disparity of feature A is different from the disparity

of another feature B, their distance to the camera system is different (e.g. point A

is closer to the camera than point B when the disparity of feature point A is greater

than the disparity of feature point B).

In Fig. 3.2(b), optical axes are normal and parallel to the baseline (b is the baseline

which represents the distance between optical centers of the left camera CL and the

right camera CR) in case of using a normal stereo matching geometry. This, in turn

leads to the disparity estimation, which is often applied in the literatures of stereo

matching technique [77]. According to Fig. 3.2(b), an object point P (X, Y, Z) is

located at (xr, yr) in the right image and at (xl, yl) in the left image. In addition, the

coordinate system of stereo camera is located between the right and the left cameras.

Furthermore, values of focal length f and baseline b are positive. The parameter

of depth Z that represents the distance between the object point and the baseline,

is also positive. Whereas, the coordinates xl, xr may be negative or positive. The

following equations can be used to measure the relation between the 3-D points with

respect to the coordinate systems of the right and the left cameras.

X + b/2 = Z · xl
f

(3.6)

and similarly for the right camera;

X − b/2 = Z · xr
f

(3.7)

1http://www.ptgrey.com/products/stereo.asp
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Figure 3.2: (a) Bumblebee stereo vision camera where its size is approximately 160×
40× 50 mm and consists of two Sony progressive scan CDDs color sensors with 6mm
focal length. (b)The geometry of stereo camera with normal optical axes.

removing X from Eq.3.6 and Eq.3.7;

Z =
b · f

(xl − xr)
(3.8)

then, the canonical expression relating horizontal disparity (xl − xr) to depth Z is

obtained as;

(xl − xr) =
b · f
Z

(3.9)

From a given stereo image pair, the disparity is estimated for each pair of corre-

sponding points. Moreover, this estimation infers 3-D coordinates points of visible

scene. There are many methods employed for disparity estimation [78,79,80]. These

methods differ from one another in many criteria. These criteria are matching primi-

tives, results density, estimation accuracy and implied computation time etc. As 3-D

measurement are based on the disparity, so, the accuracy of disparity estimation is

an important requirement and necessary to obtain the depth.

Correspondence problem is a big challenge in stereo matching. In addition, the

difference in the intensity of corresponding points is large since there is a projective

distortion in the occluded boundary. The intensity values of the right and the left

images are defined by Il and Ir respectively. So, the intensity value is computed as;

Il(x, y) = Ir(x+ d, y) (3.10)

where d represents the disparity function at a pixel position (x, y).

There are many techniques used to perform the matching criteria as Mean Ab-

solute Difference (MAD) and Normalized Cross Correlation (NCC) [78]. The depth
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(a)                                                     (b)                                                  (c)

Figure 3.3: (a) Left image of video stream (b) Right image of video stream (c) Depth
value of the left and right images.

is estimated in our system by using a MAD matching algorithm which builds the

correspondences between the images (Eq. 3.11).

MAD(x, y) =
1

m · n
·
m−1∑
i=0

n−1∑
j=0

|M(i, j)− S(i+ x, j + y)| (3.11)

where M(i, j) is a pixel in reference block that has a dimension m × n and S(i, j)

represents a pixel in search block. x, y are the displacement in x-and y-direction.

In matching tasks, correlation is often employed as an effective similarity measure.

Nevertheless, the matching criteria that based on traditional correlation are limited

to the short baseline case. The matching algorithm NCC can be employed to estimate

the similarity error for each pixel in the image by considering a fixed window in the

left image. After that, this window is shifted along the epipolar line in the right image.

The correlation between the reference blocks and the search blocks is computed by;

NCC(x, y) =

∑m−1
i=0

∑n−1
j=0 M(i, j) · S(i+ x, j + y)√∑m−1

i=0

∑n−1
j=0 M(i, j)2 ·

√∑m−1
i=0

∑n−1
j=0 S(i+ x, j + y)2

(3.12)

Increasing the disparity range increases the time for searching as well as the chances of

mismatch; thus it increases the depth range within the image. Decreasing the dispar-

ity range allows the system to run faster and decreases the chances of mismatch, and

therefore reduces the depth range within the image. The disadvantage of using NCC

is that the occlusion boundaries and the results at depth discontinuities are usually

unreliable. The reason to use MAD as compared to other (e.g. NCC) approaches is

the best optimization potential for speed because MAD method uses less calculations

than NCC. Since correspondence is only established at a small number of pixels, the

resulting depth map will be very sparse and suitable for on-line applications. The mo-

tivation of using the depth information is to define the region of interest in the image
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sequence instead of processing whole image. In addition, it resolves the ambiguities

between hand and face and identifies the objects under occlusion (Fig. 3.3).

3.3 Segmentation

The human skin is used in image processing research from the human face detection

to the hand tracking. The skin color segmentation is the first step which is applied on

the captured data after the image acquisition. The purpose of skin color detection is

to establish a decision rule which will differentiate between skin and non-skin pixels.

When building a system which uses skin color as a feature for hand detection, there

are three main difficulties. Firstly, what should be the color space? Secondly, how

the skin color distribution should be modeled? The final difficultly is the way of

color processing segmentation for the hand sense? There are non-parametric and

parametric methods employed for modeling skin color pixels in gesture recognition.

The non-parametric methods are the following: Self Organizing Maps (SOM) [81],

histogram based techniques and Bayes classifier [82].

The main idea of the non-parametric method is to infer skin color distribution

from the training data. Therefore, there is no need to an explicit model for the skin

color [71]. Consequently, the non-parametric methods are fast in training. The dis-

advantage of the non-parametric method is the requirement of much storage space

and the potential to generalize the training data. On the other hand, the paramet-

ric techniques such as normal Gaussian distribution and Gaussian Mixture Models

(GMMs) are based on the modeling of skin distribution. These techniques begin with

the modeling of skin and non-skin color using a database of skin and non-skin pixels

respectively. GMMs as well as a unimodal Gaussian are employed to estimate the

underlying density function. In Gaussian mixture model, a constructive technique is

automatically used for estimating the model order. Skin color is a simple but power-

ful pixel based feature. It allows detection/segmentation of the hands and face in an

image. Also, skin color analysis is robust to change in scale, resolution and partial

occlusion. The details of these techniques are explained as follow;

3.3.1 Skin Color Modeling Using a Unimodal Gaussian

Segmentation of skin colored regions becomes robust if only the chrominance is used

in analysis. Therefore, Y CbCr color space is used in our work where Y channel

represents brightness and Cb, Cr channels refer to chrominance [83]. The channel

Y is ignored to reduce the effect of brightness variation and use only chrominance

channels to fully represent the color information. Bumblebee stereo camera is used

for the input sequence which gives us 2D images along with the depth information.

The depth information defines the region of interest (i.e. hands and face regions)

in the image which results in the increase of processing speed. Furthermore, the
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depth information is used to resolve complex background (i.e. neutralize complex

background) completely, as well as illumination variation, and it also increases the

accuracy of objects segmentation. Moreover, the skin color region lies in a small region

of the chrominance components in Y CbCr color space (See Fig. A.2 in Appendix

A) [84]. So, the distribution of skin color in the chrominance plane is modeled as a

unimodal Gaussian. Images are collected which contain human skin pixels as well as

non-skin pixels. Therefore, a large database of skin and non-skin pixels is used to

train the Gaussian model. Mean and covariance values of the database are used to

characterize the model.

Suppose that x = [Cb;Cr]
T represents the chrominance vector of an input pixel.

The probability of skin pixel with vector x is calculated as follows;

p(x|skin) =
1

2π
√
|Σs|
· e−

1
2
·(x−µs)T Σ−1

s (c−µs) (3.13)

where µs and Σs represent the mean vector and the covariance matrix of sth com-

ponent respectively. Thus, the mean and covariance which are estimated from the

training data, are used to model the skin color distribution as a unimodal Gaussian.

The mean and the covariance are formalized as;

µ =
1

n

n∑
i=1

xi (3.14)

Σ =
1

n− 1

n∑
i=1

(xi − µ) · (xi − µ)T (3.15)

where n refers to the number of data points. This model is employed to determine

the skin probability image from an input color image (see Section 3.3.3).

3.3.2 Skin Color Modeling Using Gaussian Mixture Models

As described in the previous section, a unimodal Gaussian has been considered for

modelling the skin color distribution. The purpose of using a unimodel gaussian is the

localization of the skin color according to a small region in the (Cb, Cr) chrominance

space. Although, the values of skin color are distributed in a detected region, the

histogram of the training data illustrates randomly distributed peaks in this region.

Thus, a unimodel Gaussian with a single mean and a single covariance will not give

an accurate approximation of the underlying distribution function. On the other

hand, a mixture model including a number of Gaussian components do a better

approximation in such distributions. So, the mixture models have been developed in

order to combine advantages of non-parametric and parametric methods for density

estimation [85]. In a given data set, parametric methods are used to estimate the

parameters of a standard density function which fits in the given data. Therefore, the

density function using parametric techniques is estimated very quickly for new values
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of input data. However, the density function using the non-parametric methods can

be represented as a linear combination of kernel functions with respect to the center

of each kernel on each data point [85]. In general, the non-parametric methods are

valid for the forms of density function for the given data. This allows the number of

variables to grow partially based on the amount of training data in the model. Thus,

the evaluation of density function becomes computationally expensive for new values

of input data. According to the skin color modelling using Gaussian mixture, the

probability of each color value is a linear combination of their probabilities which are

computed from the K Gaussian components. Given a skin color, the probability of a

pixel x = [Cb;Cr]
T is as follow;

p(x|skin) =
K∑
i=1

p(x|i) · p(i) (3.16)

where K represents the number of Gaussian components (K = 3 in our experiment).

To decide the number of components, a method is used to observe the histogram of the

dataset in which the selection of K is based on number of peaks for this histogram. In

our work, a constructive algorithm which uses the criteria of maximizing a likelihood

function is employed to automatically decide the number of components [86]. p(i) is

the prior probability of the ith component. It is also called weighting function which

is generated from the component i of the mixture. p(x|i) is the Gaussian density

model of the ith component.

p(x|i) =
1

2π
√
|Σi|
· e−

1
2
·(x−µi)T Σ−1

i (x−µi) (3.17)

where µi and Σi represent the mean and the covariance of ith component, respectively.

K∑
i=1

p(i) = 1, 0 ≤ p(i) ≤ 1 (3.18)

After deciding the number of components K, the parameters of the mean, covariance

and the prior probability for each component are computed from the given dataset.

Many approaches have been developed to estimate the parameters of a mixture model

for the given dataset [85,86,87]. Moreover, these approaches differ from one another

in their calculations. One of these approaches is to maximize a likelihood function of

the parameters for the given data set [87]. The negative log-likelihood (i.e. an error

function E) of the given data set is computed using the following equation;

E = −
N∑
n=1

ln
( K∑
j=1

p(xn|i) · p(j)
)

(3.19)

where N represents the number of data points xn. Expectation Maximization (EM)

algorithm is a special case of Maximum Likelihood (ML) techniques [85,88] and in this
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algorithm, the parameters of mixture model which fits best for the given dataset are

estimated for the ML sense. The EM algorithm begins with the initial parameters of

Gaussian mixture model and these initial parameters are called ‘old’ parameter values.

Then, the values of new parameters are computed using the following equations [88];

µnewj =

∑N
n=1 p

old(j|xn) · xn∑N
n=1 p

old(j|xn)
(3.20)

Σnew
j =

∑N
n=1 p

old(j|xn) · (xn − µnewj ) · (xn − µnewj )T∑N
n=1 p

old(j|xn)
(3.21)

pold(j) =
1

N

N∑
n=1

pold(j|xn) (3.22)

where

pold(j|xn) =
pold(xn|j) · pold(j)∑K
i=1 p

old(xn|i) · pold(i)
(3.23)

The superscript ‘old’ denotes the evaluated quantities using old parameter values.

Similarly, the superscript ‘new’ is referred as the computed quantities using old pa-

rameters. The parameters of these equations are updated based on the minimization

of error function E for the given data set. Therefore, the ‘new’ parameter values

become the ‘old’ ones in the next step. This process is iterated until convergence of

the error function is reached.

To determine the number of Gaussian components in mixture model of skin data,

a cross validation technique is considered [86]. The main idea of this technique is

based on the partition of the available data into independent training and validation

sets. To minimize the error function, a number of models with different order are

examined on the training data set. For each model, the error function is computed

for the validation data using EM algorithm. Among these models, one of them with

the lowest error is considered as a general model and its order will be optimized in

this work.

3.3.3 Skin Probability Image

In the previous sections, the skin color was modeled using either an unimodel or

a mixture model Gaussian. The probability of an input pixel representing a skin

is computed by these models. According to Bayes formulation [84], the required

probability p(skin|x) is calculated as follows;

p(skin|x) =
p(x|skin) · p(skin)

p(x|skin) · p(skin) + p(x|non-skin) · p(non-skin)
(3.24)

where the probabilities of skin and non-skin classes have the same probability value

as in Eq. 3.25.

p(skin) = p(non-skin) = 0.5 (3.25)
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which provides,

p(skin|x) =
p(x|skin)

p(x|skin) + p(x|non-skin)
(3.26)

A similar Gaussian model is created for non-skin pixels to determine the probability

p(x|non-skin). This model is named the background model. Here, the background

is modeled as a unimodal Gaussian in order to reduce the computational complexity

for skin probability calculation. Given an input color image, the above ratio and

two conditional probabilities are calculated pixel-by-pixel to obtain the probability

of each pixel representing skin. Note that, this result in a gray level image where

the gray value for each pixel provides the probability of that pixel representing skin.

Thus, the skin probability image is determined by the following equation;

skin-prob(i, j ) = 255 · p(skin|xij) (3.27)

where xij represents the chrominance value of pixel (i, j).

3.4 Classification

In computer vision, a good choice for classification approaches helps the success of any

system and makes it suitable for real-world applications. Classification of symbols

in gesture recognition assigns them to a respective class. In this thesis, gestures are

handled according to two different classification techniques: generative model such as

Hidden Markov Models and discriminative model like Conditional Random Fields.

3.4.1 Hidden Markov Models

The most widely used recognition algorithm for gesture recognition is Hidden Markov

Models (HMMs) [63, 89, 90, 91]. Hidden Markov Models are mathematical models of

the stochastic process which generates a sequence of observations according to the

previously stored information. Statistical approach has many advantages in HMMs

like rich mathematical framework, powerful learning and decoding methods, good

sequences handling capabilities, flexible topology for the statistical phonology and

the syntax. The disadvantages lie in the poor discrimination between the models and

in unrealistic assumptions that must be make to construct the HMMs theory, namely

the independence of the successive feature frames (i.e. input vectors) and the first

order Markov process [92]. The developed algorithms in the statistical framework

which uses HMMs are rich and powerful in real-time situations. In addition, Hidden

Markov Models are the widely used in practice to implement gesture recognition and

understanding systems.

In the Markov chain, every state of the model can only observe a single symbol.

However, all states in Hidden Markov Models topology can observe one symbol out

of a distinct gesture. The probability of observing a symbol for each state is stored
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in the observation probability distribution matrix. For example, the observation

probability of a symbol in the state s1 is considered as the probability to emit the

symbol. So, in other words the observation probability distribution is named emission

distribution in the recognition task. Furthermore, HMMs states are called hidden for

the following reasons. Firstly, the decision of observing a symbol represents the second

process. Secondly, the emitter of an HMM only emits the observed symbol. finally,

the emitting states are unknown since the current states are based on the previous

states. In the gesture recognition, HMMs are very well known and more flexible due

to their stochastic nature.

3.4.1.1 Elements of HMMs

A Hidden Markov Model can be symbolized with λ = (A,B, π) and is characterized

by the following elements [63, 93,94,95];

• The set of states S = {s1, s2, ..., sN}. N represents the number of states in the

model.

• An initial probability distribution for each state π such that;

πi = P (si), 1 ≤ j ≤ N (3.28)

• An N -by-N transition matrix A = {aij}, which is given by;

aij = P (sj|si), 1 ≤ i, j ≤ N (3.29)

where aij is the probability of the transition from state si at time t to sj at time

t + 1. The sum of the entries in each row of matrix A must be 1 because it is

the sum of the probabilities of making a transition from a given state to each

other states. ∑
j

aij = 1 (3.30)

• The set of possible emission (an observation) O = {o1, o2, ..., oT} in which T is

the length of gesture path.

• The set of discrete symbols V = {v1, v2, ..., vM}, where M represents the number

of distinct observation symbols per state (i.e. the size of a codeword).

• An N -by-M observation matrix B = {bj(m)}, where

bj(m) = P (vm|sj), 1 ≤ j ≤ N, 1 ≤ m ≤M (3.31)∑
m

bj(m) = 1 (3.32)

where bj(m) gives the probability of emitting symbol vm at state sj. The sum

of the entries in each row of matrix B must be 1 for the same pervious reason.
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In short, a complete specification of the HMMs contains two model parameters

(N and M). Additionally, it also includes the observation symbols and the three

probabilistic parameters A, B and π. Thus, a compact notation of HMM is as follows;

λ = P (π,A,B) (3.33)

Here, λ refers to the parameters set of the model.

3.4.1.2 HMMs Basic Problems

Mathematically, three factors control the use of HMMs. These factors lie in their

topologies, the selected features to be emitted and their observation probabilities.

The feature selections are based on the observation task. There are three main prob-

lems for HMMs; and their solutions helps to employ transitions and observation

probabilities in a good way for real-world applications. The problems are:

• Evaluation problem: Given the observation sequence O and the model pa-

rameter λ, how to compute the probability of observed sequence given the model

parameter (i.e. P (O|λ))?

• Decoding problem: Given the observation sequence O and the model pa-

rameter λ, how to determine the best path through λ that generates O =

{o1, o2, ..., oT} with maximum likelihood (i.e. best explains the observations)?

• Estimation problem: Given the observation sequence O, how to adjust or

re-estimate the model λ = P (π,A,B) to generate O = {o1, o2, ..., oT} with

maximum likelihood?

Evaluation Problem

Given the observation sequence O and the model parameter λ, the straight forward

method is to calculate P (O|λ) through enumerating every possible state sequence s

of length T and calculates the corresponding probability P (O|s1, s2, ..., st). Suppose

that the forward variable αt(i) is defined as the probability of the partial observation

sequence O = o1, o2, ..., ot at state si [63] (Fig. 3.4). Hence,

αt(i) = P (o1, o2, ..., ot, si|λ) (3.34)

It is easy to compute all forward variables α’s at next times using the following

recursive relation.

αt+1(j) =
N∑
i=1

αt(i) · aij · bj(ot+1), 1 ≤ j ≤ N, 1 ≤ t ≤ T − 1 (3.35)

where the initial values of α’s are computed as follow;

α1(j) = πj · bj(o1), 1 ≤ j ≤ N (3.36)



3.4. Classification 33

jm

Figure 3.4: Trellis diagram for the forward algorithm.

The procedure is then terminated at T . Thus, the required probability P (O|λ) is

provided by;

P (O|λ) =
N∑
i=1

αT (i) (3.37)

Similarly, the backward variable βt(i) is defined as the probability of the partial

observation sequence ot+1, ot+2, ..., oT at state si. Hence

βt(i) = P (ot+1, ot+2, ..., oT , si|λ) (3.38)

In similar way, the following recursive relationship is used to compute βt(i) as in the

calculations of α’s.

βt(i) =
N∑
j=1

βt+1(j) · aij · bj(ot+1), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (3.39)

such that,

βT (i) = 1, 1 ≤ i ≤ N (3.40)

Then, the multiplication of α and β for state si at time t provides the following esti-

mation.

αt(i) · βt(i) = P (O, si|λ), 1 ≤ i ≤ N, 1 ≤ t ≤ T (3.41)

Thereby, this estimation provides another method to compute P (O|λ) using both

forward α’s and backward β’s variables (Eq. 3.42).

P (O|λ) =
N∑
i=1

αt(i) · βt(i) (3.42)
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Figure 3.5: Trellis diagram for the forward algorithm, where δt(j) is the highest
probability of landing in state j at time t after seeing the observation up to time t.

As a result, the previous equation is very important and more reliable in estimating

the required formulas for gradient based training.

Decoding Problem

The motivation behind solving this problem is to explain the best state sequence,

which generates the observations O = o1, o2, ..., ot through model parameter λ =

(A,B, π) with maximum likelihood. For this purpose, Viterbi algorithm is em-

ployed [96, 97]. The Viterbi algorithm is a dynamic programming algorithm, which

is applied to find the sequence of most likely hidden states to emit the sequence of

observed events (Fig. 3.5). The sequence of hidden states is called Viterbi path. The

Viterbi algorithm is similar to the implementation of the forward variable αt(i). The

difference is the maximization over the previous states during the recursion step. In

order to facilitate the computation, an auxiliary variable is defined as follow;

δt(j) = max{P (o1, o2, ..., ot, s1, s2, ..., st|λ)} (3.43)

The following steps demonstrate how Viterbi algorithm works:

• Initialization: for 1 ≤ i ≤ N,

a) δ1(i) = πi · bi(o1)

b) φ1(i) = 0

• Recursion: for 2 ≤ t ≤ T, 1 ≤ j ≤ N,

a) δt(j) = max
i

[δt−1(i) · aij] · bj(ot)

b) φt(j) = argmax
i

[δt−1(i) · aij]
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• Termination:

a) p∗ = max
i

[δT (i)]

b) q∗T = argmax
i

[δT (i)]

• Reconstruction: for t = T − 1, T − 2, ..., 1

q∗t = φt+1(q∗t+1)

The resulted optimal states sequence is q∗1, q
∗
2, ..., q

∗
T . φt(j) represents the index of

state j at time t, and p∗ is the state optimized likelihood function.

Estimation Problem

The training process plays an important role in system performance. To train a

HMM, its model parameters are adjusted to obtain the best describe for the obser-

vation sequence Otrain. Until now, there is no analytical solution available for the

optimization of HMMs parameters which maximize the probability of observed se-

quences from training data set [63]. Instead, the Baum-welch (BW) algorithm is used

to perform the training process in such a way the λ = (A,B, π) is optimized with

maximum likelihood P (O|λ) [98]. BW is a generalized expectation maximization algo-

rithm which is based on the forward and backward variables in its computation [70].

Additionally, this algorithm considers a number of repetitions for the observation

sequence to optimize the HMMs parameters. Given a set of observation sequences

otrain ∈ O, BW calculates the posterior mode estimation and the maximum likelihood

estimation for the HMMs parameters (A,B, π).

The Baum-Welch algorithm is also known as Forward-Backward algorithm. Ac-

cording to the forward and backward variables defined in evaluation problem, two

auxiliary variables are defined in order to explain the methodology of BW algorithm.

The first variable is the probability of traversing an arc from state i at time t to state

j at time t+ 1 (Fig. 3.6). Mathematically:

ξt(i, j) = P (si at t, sj at t+ 1|O, λ) (3.44)

where ξ represents the transition probability. Moreover, Eq. 3.44 is the same as;

ξt(i, j) =
P (si at t, sj at t+ 1|O, λ)

P (O|λ)
(3.45)

By using forward and backward variables, Eq. 3.45 can be calculated as follows;

ξt(i, j) =
αt(i) · aij · βt+1(j) · bj(ot+1)∑N

i=1

∑N
j=1 αt(i) · aij · βt+1(j) · bj(ot+1)

(3.46)

The second variable is the state probability (i.e. posteriori probability), which is

provided by;

γt(i) = P (si at t|O, λ) (3.47)
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(a)                                                                                   (b)

Figure 3.6: Trellis diagram for Baum-Welch learning process. (a) The probability of
traversing an arc from state i at time t to state j at time t + 1. (b) The probability
of state i at time t.

where γt(i) is the probability of state i at t for given the model parameters and the

observation sequence (Fig. 3.6). Similarly, Eq. 3.47 is calculated using forward and

backward variables as follows;

γt(i) =
αt · βt+1∑N
i=1 αt · βt+1

(3.48)

Then, the relationship between γt(i) and ξt(i, j) is provided by;

γt(i) =
N∑
i=1

ξt(i, j), 1 ≤ i ≤ N, 1 ≤ t ≤M (3.49)

Thus, the Baum-Welch algorithm adjusts the new parameters of the HMMs with

maximum likelihood of the criterion P (O|λ). Given the starting parameters λ =

(A,B, π), the ά and β́ can be computed using the recursive equations of 3.35 and

3.39. After that, the auxiliary variables of ξ́ and γ́ are calculated using Eq. 3.46 and

Eq. 3.49, respectively. Moreover, the HMMs parameters are updated by using the

following equations.

π́ = γ1(i), 1 ≤ i ≤ N, (3.50)

áij =

∑T
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, 1 ≤ i ≤ N, 1 ≤ j ≤ N, (3.51)

b́j(k) =

∑T
t=1 γt(j) · ζk,ot∑T

t=1 γt(j)
, 1 ≤ i ≤ N, 1 ≤ k ≤M, (3.52)

where ζk,ot is defined as follows;

ζk,ot =

 1 k = ot

0 otherwise
(3.53)
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3.4.1.3 Topologies of HMMs

The choice of HMMs topology has a significant impact in the success of the recognition

process as it depends on the available training data and intended model to represent.

HMMs have three topologies. The first topology is Ergodic model (Fully Connected

model) in which every state of the model can be reached from every other states.

Given the fact that every aij coefficient of Ergodic topology is positive. Fig. 3.7

illustrates this topology for an N= 4 state model.

a11 a22

a33 a44

a12

a23 a34

a21

a43

a24a42a13a31

a32
a41

a14

S1

S3

S2

S4

Figure 3.7: Ergodic model with four states.

Hence, for the example of Fig. 3.7, the transition among states has the following

form;

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 (3.54)

The second topology is called Left-Right model or Bakis model [89]. Each state of

this model can go to itself or to the following states (Fig. 3.8). In other words, the

underlying state sequences for this model have a fundamental property that the state

index either stays the same or increases as time increases. As shown in Fig. 3.8, for

an N=4, the state transition coefficients of this model have the property;

aij = 0, j < i (3.55)

The previous equation shows that the state transitions whose indexes are lower than

the current state are not allowed. In addition, the initial state probabilities of this

model have the property;

πi =

 0 i 6= j

1 i = j
(3.56)
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Here, the state sequence must begin from s1. So, the transition among states for the

example of Fig. 3.8 has the form;

A =


a11 a12 a13 0

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

 (3.57)

According to the rules of probability theory, the transition coefficients especially for

the last state in a left-right model are specified as;

aNN = 1, aNi = 0, i < N (3.58)

S1 S4

a11 a22 a33 a44
a12 a23 a34

a13
a24

a14

S2 S3

Figure 3.8: Left-Right model with four states.

Another model so-called linear model or Left-Right Banded model (LRB) [93] is

illustrated in Fig. 3.9. In LRB model, the states are proceeded from left to right as

well as every current state can go back to itself or to the next state with some positive

probability. Furthermore, the presented model has an ability to capture variations

very well in the temporal extension for the hand gestures introduced in chapter 4.

The state transition coefficients of this model (i.e. example of Fig. 3.9) have the

property;

A =


a11 a12 0 0

0 a22 a23 0

0 0 a33 a34

0 0 0 a44

 (3.59)

It should be clear that the state transition coefficients for the last state and the other

states in a LRB model are specified as;

aNN = 1, aij = 0, i < j; j − i ≥ 2 (3.60)

Note that, any parameter of HMMs which is initialized with zero value remains zero

throughout the re-estimation process. As a result, the Left-Right Banded model will

have a negative impact either on the training or the inferencing process.
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S1 S4

a11 a22 a33 a44

a12 a23 a34S2 S3

Figure 3.9: Left-Right Banded model with four states.

3.4.2 Conditional Random Fields

Conditional Random Fields (CRFs) are undirected graphical models that were de-

veloped for labeling sequential data. CRFs are different than HMMs in their con-

ditional nature and the dependencies assumptions in their computations to ensure

tractable inference. In addition, CRFs overcome the weakness of directed graphical

models, which suffer from the bias problem as in Maximum Entropy Markov models

(MEMMs) [25,26]. Furthermore, CRFs combine the strength of MEMMs and HMMs

on a number of real-world sequence labeling tasks [67]. In our work, each label (state)

corresponds to a gesture (e.g. alphabets from A to Z or numbers from 0 to 9). In

addition, there is a trade-off for each label according to the weights of each feature

function because CRFs use a single exponential distribution to model all reference la-

bels of given observation [16]. The CRFs are satisfied by defining the normalized each

product of potential function [99]. In the case of chain-structured CRFs as depicted

in Fig. 3.10, each potential function operates on pairs of adjacent label variables yi
and yi+1.

The probability of label sequence y for a given observation sequence x is calculated

by;

p(y|x, θ) =
1

Z(x, θ)
· exp

( n∑
i=1

Fθ(yi−1, yi, x, i)
)

(3.61)

where Z(x, θ) is the normalized factor given by;

Z(x, θ) =
∑
y

exp
( n∑
i=1

Fθ(yi−1, yi, x, i)
)

(3.62)

where parameter θ = (λ1, λ2, ..., λNf
;µ1, µ2, ..., µNg), Nf represents the number of

transition feature function, Ng refers to the number of state feature function and n

is the length of observation sequence x. Fθ is defined as follows;

Fθ(yi−1, yi, x, i) =
∑
f

λf tf (yi−1, yi, x, i) +
∑
g

µgsg(yi, x, i) (3.63)

where tf (yi−1, yi, x, i) ' tf (yi−1, yi, x) is a transition feature function of the en-

tire observation sequence and labels at positions i and i − 1 in the label sequence.
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y1 y2 y3

x1 x2 x3

yn-1 yn

xn-1 xn

Figure 3.10: Graphical structure of a chain-structured CRFs for sequences. The
variables corresponding to unshaded nodes are not generated by the model.

sg(yi, x, i) ' sg(yi, x) refers to a state feature function of the label at position i and

the observation sequence. λf and µg represent the weights of the transition and state

feature functions respectively, which can be estimated from training data.

From Eq. 3.61 and Eq. 3.63, the joint probability of a label sequence y given an

observation sequence x can be written as follows;

p(y|x, θ) =
1

Z(x, θ)
· exp

( n∑
i=1

∑
f

λf tf (yi−1, yi, x, i) +
n∑
i=1

∑
g

µgsg(yi, x, i)
)

(3.64)

As CRFs models are similar to HMMs models in their characteristics, it is easy to

build a CRFs model by defining a single feature for each label-observation pair (yb, x)

and label-label pair (ya, yb) according to the training data set as follow;

tya,yb(yu, yv, x) =

 1 if yu = ya and yv = yb

0 otherwise
(3.65)

syb,x(yv, xv) =

 1 if yv = yb and xv = x

0 otherwise
(3.66)

Based on the foregoing mentioned, the parameters µyb,x and λya,yb which corresponds

to syb,x(yv, xv) and tya,yb(yu, yv, x) features respectively are equivalent to the loga-

rithms of the HMMs observation and transition probabilities.

3.4.2.1 Learning Parameter for CRFs

The maximum likelihood parameter estimation problem for CRFs which defines the

probability distribution (Eq. 3.64) is the task of estimating the parameters θ =

(λ1, λ2, ..., λNf
;µ1, µ2, ..., µNg) from training data set D = {(x(j), y(j))}Tdj=1. Here, x(j)

is an observation sequence of training data set, y(j) represents the corresponding label

sequence and Td refers to the number of training sequences. The learning parameters

of CRFs are based on the maximum entropy. According to the principle of maximum
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entropy, it is considered a good measure for the variational problems as a finite

training data. In addition, it has the ability to justify the probability distribution

from incomplete information. The maximization of log-likelihood [99] that learns the

parameter θ is computed by2;

L(θ) =

Td∑
j=1

log p(y(j)|x(j), θ) =

Td∑
j=1

( n∑
i=1

Fθ(y
(j)
i−1, y

(j)
i , x(j), i)− logZ(x(j), θ)

)
(3.67)

Up to now, there is no closed solution to Eq. 3.67. Instead, iterative techniques

have been used to determine the best solution [16,26,99]. Likelihood maximization is

performed using a gradient ascent method with Broyden-Fletcher-Goldfarb-Shanno

(BFGS) optimization technique with 300 iterations to converge [100];

∂L(θ)

∂θ
=

Td∑
j=1

( n∑
i=1

∂Fθ(y
(j)
i−1, y

(j)
i , x(j), i)

∂θ
−

∑
x

p(y|x(j))
n∑
i=1

∂Fθ(yi−1, yi, x
(j), i)

∂θ

) (3.68)

3.4.2.2 Inference CRFs

To compute the probability p(y|x, θ) of label sequence y for the given new observation

sequence x, a set of matrices is computed [26,99,101]. To simplify some expressions,

special starting y0 and stopping yn+1 states are added. These states are dummy (i.e.

observe no symbol and are passed without time delay). Suppose that p(y|x, θ) is

given by Eq. 3.63. For each position i in the observation sequence, Mi(x) is |Y × Y|
matrix, which defined as follows;

Mi(y
′, y|x) = exp

(
Fθ(y

′, y, x, i)
)

(3.69)

where Y = y1, y2, ..., yl represents a set of labels of the training data set. l refers to

the number of the labels, and y′, y are the labels of Y at time i. Using this notation,

the conditional probability of a label sequence y given the observation sequence x can

be written as the product of the appropriate elements of the n + 1 matrices for that

pair of sequences (Eq. 3.70);

p(y|x, θ) =
1

Z(x, θ)
·
n+1∏
i

Mi(yi−1, yi|x) (3.70)

Similarly, the normalization factor Z(x, θ) for observation sequence x is given by the

(starting, stopping) entry of the product of all Mi(x) matrices;

Z(x, θ) =
( n+1∏
i=1

Mi(x)
)
starting,stopping

(3.71)

2More details about the derivation of Eq. 3.67 can be found in [99,100]
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3.4.2.3 CRFs with Hidden Variables

Other approaches including the hidden variables offer several advantages over previous

CRFs model. Although the CRFs model the transition among gestures and overcome

the weakness of directed graphical models which suffer from bias problem, it does

not have the ability to learn the internal sub-structure of gesture sequences. Hidden

Conditional Random Fields (HCRFs) are the extension of CRFs, which incorporate

hidden state variables to deal well with gesture sub-structure [39, 102]. The main

advantage of HCRFs is to automatically model the local interconnection between

labels (i.e. states) with hidden variables. However, it cannot model the dynamics

among the states (Fig. 3.11(a)).

Latent-Dynamic Conditional Random Fields (LDCRFs) are considered as one of

the approaches, which combine the advantages of CRFs and HCRFs by using both

extrinsic dynamics and intrinsic sub-structure [103]. The strategy of LDCRFs is

based on two main points. Firstly, they learn extrinsic dynamics by modeling the

class labels. Secondly, they learn the intrinsic sub-structure of gesture sequence using

intermediate hidden states. Thus, LDCRFs models have the ability to overcome

the main weaknesses of HCRFs models (Fig. 3.11(b)). LDCRFs models can be

used to recognize the un-segmented sequences because they contain a class label per

observation. Furthermore, LDCRFs models can efficiently infer the gesture sequences

during training and testing processes. HCRFs models have only one label associated

to each sequence while CRFs and LDCRFs have one label associated to each time

sample in the sequence. As shown in Fig. 3.11, xj refers to the jth corresponding

observation value, hj is a hidden state that assigned to xj. yj represents the label of

xj where the gray circles refer to the observed variables.

h1 h2 hn

x1 x2 xn

y

(a) HCRFs

hn

xn

h1 h2

x1

y1 y2 ym

x2

(b) LDCRFs

Figure 3.11: Different type of CRFs with hidden states.

3.5 Other Techniques

In this thesis, there are two different techniques which improve the hand gesture

recognition. The first one is a relative entropy which reduces the states number
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of HMMs topologies. Whereas, k-means algorithm is the second technique and is

employed to cluster the extracted features from gesture path.

3.5.1 Relative Entropy

The concept of entropy is to measure the expected uncertainty of a random variable.

The entropy function H(X) of a discrete random variable X is determined as follows;

H(X) = −
∑
x∈X

p(x) · log p(x) (3.72)

where p(x) represents a probability of mass function. Here, two probability distri-

butions p and q of random variable X ∈ R are considered. The main problem is to

measure the difference between these probability distributions. This leads to the idea

of the relative entropy of p for given q which was introduced by Kullback [104]. The

relative entropy D(p‖q) between two probability of mass functions p(x) and q(x) is

defined as;

D(p‖q) =
∑
x∈X

p(x) · log
p(x)

q(x)
(3.73)

such that: p log p
0

=∞ and 0 log 0
q

= 0.

So, the relative entropy value is always positive [105] and it has a zero value

when p = q. In fact, the relative entropy did not reflect the true distance among

distributions because it is not symmetric as well as it does not achieve the triangular

inequality. Many researchers often consider the relative entropy as the distance among

distributions since the distributions ordering can be easily defined and the compu-

tations are very simple [106]. Symmetrically, relative entropy is changed slightly as

follows;

D(p‖q) =
1

2

∑
x∈X

(
p(x) · log

p(x)

q(x)
+ q(x) · log

q(x)

p(x)

)
(3.74)

The relative entropy in Eq. 3.74 finds two states which have the most similar prob-

ability distributions. As in our case, the relative entropy provides a way of reducing

the number of states for non-gesture model.

3.5.2 Clustering Algorithm

The process of clustering is to classify a given set of patterns into disjoint clusters

[107]. To simplify the clustering idea, patterns which lie in the same cluster are alike

whereas patterns which belong to two different clusters are dissimilar. There are

two goals of clustering algorithms: (1) determining good clusters and (2) doing it

efficiently. Clustering has been a widely studied problem in a variety of application

domains including data mining and knowledge discovery [108], data compression and

vector quantization [109], pattern recognition and pattern classification [110], neural

networks, artificial intelligence, and statistics [88].
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Step 1                                  Step 2                                             Step 3                            Step 4

Figure 3.12: Demonstration of k-means clustering algorithm [3].

To represent and formulate the clustering problem, there are many different meth-

ods in which the obtained results of clusters or groups are based on the formulated

way for each method. For example, the clusters or groups may be exclusive so that

each group has its own characteristics which in turn lead to each pattern belongs

only to one cluster. On the other hand, the clusters may be overlapping, so, as a

consequence, one pattern may be located into different clusters. The clusters can also

be probabilistic which mean that a pattern belongs to each cluster is based on the

assigned probabilities to it. In addition, the clusters may be hierarchical in which

each pattern either assign to a larger cluster or smaller clusters depending on the

mechanism used for this method. Although in the literature, there are many different

classifications of clustering algorithms as the number of algorithms itself, there is one

simple classification so-called k-means algorithm [111], which is used in our work.

The motivation behind using cluster technique like k-means algorithm is to extract

more than one feature from hand trajectory. Furthermore, k-means algorithm has

many reasons which make it more popular in terms of use such as implementation

simplicity, convergence speed, scalability and adaptability to sparse data. Although

k-means has the greatest advantage of being easy to implement, it is strongly sensitive

to initial points, the quality of the obtained final clusters which depends strongly on

the given initial set of clusters. These problems have been addressed well in recent

years with significant degrees of success [112].

The main idea of k-means algorithm is very simple and is based on Euclidean

distance between all points and center points of clusters. i.e. Firstly, each point is

assigned to one of the initialized clusters, then, the cluster center point is recomputed

by the mean point on the competent cluster. These processes are iterated until

convergence. As shown in Fig. 3.12, k-means algorithm is summarized as follows.

Given an initial set of clusters, which may be assigned randomly or by using some

heuristic, the k-means algorithm will rotate between the two main steps: Assignment

step and Update step. In assignment step, each instance is assigned to the cluster

with the closest mean. While in the update step, the new mean point for each cluster

is calculated according to its instance. The following steps are better equipped to
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view the k-means in an interesting aspect.

• Step 1: An initial set of clusters K, which are randomly assigned from the data

set. In this case K=3 with red, green and blue colors.

• Step 2: Each instance is assigned to the cluster with the nearest mean.

• Step 3: The mean of each cluster is replaced with the mean of all instances of

its trained vector.

• Step 4: Steps 2 and 3 are repeated until convergence (i.e. there are no changes

between two successive iterations).

3.6 Discussion and Conclusion

In this chapter, we have discussed the fundamental techniques which build the basis

for understanding this thesis. Color is an important feature which helps in object

detection and segmentation. Consequently, different color models were explained in

order to demonstrate the different characteristic for each color space and then select

the optimal from them for our application. Bumblebee stereo vision camera is used

as an input device to capture image sequences. The purpose of the stereo vision

camera was to capture the depth information through range measurements based

on the obtained images from cameras with a certain offset. The depth information

is used to define the region of interest instead of processing whole image, which in

turn increases the processing speed. Furthermore, the depth information is used to

resolve problems of complex background as well as illumination variation. In case of

the overlapping between the hands and face, the depth information is also used to

identify the objects under occlusion.

In order to segment hands and face, segmentation technique is exploited which

is based on parametric modeling technique. However, the parametric modeling tech-

nique depends on skin distribution which includes normal Gaussian distribution and

Gaussian Mixture Models. A mixture model consists of a number of Gaussian compo-

nents and can better approximate such a distribution. Additionally, mixture models

combine the advantages of both parametric and non-parametric methods of density

estimation. After that, the fundamental formulation of HMMs and CRFs are dis-

cussed in details. HMMs are generative models which define the joint probability

distribution to solve a conditional problem, thus focusing on modeling the obser-

vation to compute the conditional probability. Whereas, CRFs use an undirected

graphical model to overcome the weakness of MEMMs. As a part of this opening

chapter, relative entropy and k-means algorithm are summarized which are used to

improve hand gesture recognition. The relative entropy merges similar probability

distributions states and reduces the number of states for a specific model. As the
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number of states is reduced, the models inferencing capability is increased and evalu-

ation time is decreased. The motivation behind using k-means algorithm is to extract

more than one feature from hand trajectory. Moreover, k-means algorithm is easy

and simple to implement, more scalable, converge fast and adaptable to sparse data.

The next chapter will explore the isolated hand gesture recognition using HMMs,

CRFs, HCRFs and LDCRFs.



Chapter 4

Isolated Hand Gesture Recognition

This chapter proposes a system to recognize the alphabets and the numbers from

stereo color image by the motion trajectory of a single hand. In addition, the gen-

erative model such as HMMs and the discriminative models like CRFs, HCRFs and

LDCRFs are studied to recognize isolated alphabets and numbers. Our system is

based on four main stages; automatic segmentation and preprocessing of the hand

regions, hand tracking, feature extraction and classification (Fig. 4.1).

In automatic segmentation and preprocessing stage, color and depth information

are used to detect hands and face in conjunction with morphological operation. In

addition, Gaussian Mixture Models (GMMs) is used for computing the skin proba-

bility. For the tracking stage, a robust method in a complex environment is proposed

using Mean-shift algorithm in conjunction with depth map. This structure extracts

a set of hand postures to track the hand motion with Bumblebee stereo camera as an

input device. The depth information computed from stereo camera system is used to

identify the region of interest without processing the whole image, which consequently

reduces the cost of searching and increases the processing speed. Furthermore, the

depth information is used to neutralize completely complex background, as well as

illumination variation and it also increases the accuracy of objects segmentation. In

case of overlapping between the hands and face, the depth information is also used to

identify and separate the objects under occlusion from the rest of image sequences.

Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity

function to derive the hand candidate which is mostly similar to a given hand target

model. Furthermore, the tracking takes place in the further steps to determine the

hand motion trajectory so-called gesture path. In the third stage, combined features

of location, orientation and velocity with respect to Cartesian and Polar coordinate

systems are computed. Additionally, k-means clustering is employed for HMMs and

CRFs codewords.

In the final stage, the isolated hand gesture is handled according to two different

classification techniques; HMMs and CRFs to decide which one is the optimal in term

of results. HMMs using Ergodic, Left-Right and Left-Right Banded topologies with

47
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Figure 4.1: Systematic concept of the isolated hand gesture recognition system.

different number of states ranging from 3 to 10 are applied. Additionally, CRFs,

HCRFs and LDCRFs with different numbers of window size are applied on com-

bined features of location, orientation and velocity. The proposed system for gesture

recognition presents good results under real world conditions with high performance.

Image acquisition step is done by Bumblebee stereo camera and contains two set of

images, namely 2D images and depth images. In the following sections, components

of the proposed gesture system are presented.

4.1 Preprocessing

Our main motivation is to improve the gesture recognition in natural conversations.

This requires powerful techniques for skin segmentation and occlusion handling be-

tween hands and face to overcome the difficulties of overlapping regions. Therefore,

a method for detection and segmentation of the hands in stereo color images with

complex background is described in which the hand segmentation and localization

takes place using depth map and color information. This stage contains two steps;

skin segmentation using GMMs with Y CbCr color space and hand localization using

blob analysis like regionprops function1 [93,113]. The following sections describe these

parts.

1measures a set of properties for each label region in the label matrix such as area, bounding box
and centroid etc. “image processing toolbox of Matlab”
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Table 4.1: Gaussian mixture model for skin color database which contains the mean
vector, covariance matrix and mixture weight for K = 3 clusters.

K Mean µ Covariance Σ Weight

1
(
−23.66; 30.01

) (
23.08 −24.1
−24.1 24.92

)
0.3422

2
(
−38.81; 47.36

) (
23.71 −16.31
−16.31 30.14

)
0.3612

3
(
−26.23; 35.29

) (
57.45 −17.03
−17.03 12.88

)
0.2966

4.1.1 Automatic Segmentation via GMMs

Segmentation of skin colored regions becomes robust if only the chrominance is used

in analysis. Therefore, Y CbCr color space is used in our system where Y channel

represents brightness and (Cb, Cr) channels refer to chrominance [91, 94, 114]. The

channel Y is ignored in order to reduce the effect of brightness variation and only the

chrominance channels are used which fully represent the color information. A large

database2 of skin and non-skin pixels is used to train the Gaussian model (see Fig.

A.1 and Fig. A.2 in Appendix A).

The GMMs technique begins with modeling of skin by using skin database where

a variant of k-means clustering algorithm performs the model training to determine

the initial configuration of mean vector µ, covariance matrix Σ and mixture weight

(Table 4.1). Suppose that x = [Cb;Cr]
T represents the chrominance vector of an

input pixel. The probability of skin pixel over vector x for mixture model is a linear

combination of its probabilities which is calculated as follows;

p(x|skin) =
K∑
i=1

p(x|i) · p(i) (4.1)

where K is the number of Gaussian components (K = 3 in our experiment, because

it relies on the skin database used) and is automatically estimated by a constructive

algorithm which uses the criteria of maximizing likelihood function [86], p(x|i) is the

Gaussian density model of the ith component and p(i) is the mixture weight. It is

computed as follows;

p(x|i) =
1

2π
√
|Σi|
· e−

1
2
·(x−µi)T Σ−1

i (x−µi) (4.2)

218972 skin pixels from 36 different races persons and 88320 non-skin pixels from 84 different
images are used to train Gaussian model.
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Table 4.2: Unimodel Gaussian for non skin color.

Mean µ Covariance Σ

(
−19.38; 52.71

) (
28.31 −17.61
−17.61 38.20

)

K∑
i=1

p(i) = 1, 0 ≤ p(i) ≤ 1 (4.3)

where µi and Σi represent the mean vector and the covariance matrix of the ith

component, respectively.

The expectation maximization algorithm is used to estimate the maximum likeli-

hood of parameters (mean vector, covariance matrix and mixture weight) which run

on the training database of skin pixels. For the probability p(non-skin), the non skin

color pixels are modeled as a unimodel Gaussian in order to reduce the computational

complexity of skin probability (Table 4.2). For more details, the reader can refer to

Section 3.3.

4.1.2 Depth Map

Image acquisition step contains 2D image sequences and depth image sequences. For

the skin color segmentation of hands and face in stereo color image sequences, an

algorithm is devised which calculates the depth value in addition to skin color in-

formation. The depth information is gathered by passive stereo measuring based on

mean absolute difference and the known calibration data of the cameras. Several

clusters are composed from the resulting 3D points. The clustering algorithm is con-

sidered as a kind of region growing in 3D which uses two criteria; skin color and

Euclidean distance. Furthermore, this method is more robust to the disadvantageous

lighting and partial occlusion which occur in real-time environment [115,116].

The classification of the skin pixels is improved from the top images in Fig. 4.2 by

exploiting the depth information which contains the depth value associated with 2D

image pixel. The depth information is used to identify the region of interest without

processing the whole image which consequently reduces the search cost of a region of

interest and increases the processing speed. The depth value lies in the range from

minimum depth 30 cm to maximum depth 200 cm in our application. However, the

depth range is adaptive according to the region of interest. The values of depth cor-

responding to the region of interest in the current frame are averaged. Consequently,

the depth range according to region of interest is re-calculated in the same way for

each subsequent frame. The top images in Fig. 4.2 show the normalized 2D and 3D
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Figure 4.2: (a) Original 2D image. (b) Normalized 2D depth image. (c) Normalized
3D depth. (d) The top image represents skin pixel detection with depth value up
to 10 m. In addition, the skin pixel detection without noise is represented in the
bottom image (the depth value ranges from 30 cm to 200 cm). Yellow color shows
skin pixels detection. F refers to the face, HL and HR represent the left and right
hands respectively.

depth image ranges up to 10 m. The normalized depth images are presented for visu-

alization in the range from 0 to 255. Bottom images in Fig. 4.2 show the normalized

2D and 3D depth range of interest (i.e. ranges from 30 cm to 200 cm). It should

be noted that the region of interest which includes the hands and face improve skin

detection results.

Zero depth image pixels are the pixels having depth value of zero. In some cases,

Bumblebee camera does not predict the depth value of pixel and mark its depth as

0 due to the corresponding problem for estimating the disparity (i.e. some pixels

of the object are present in one image and are unable to find in the other image).

Disparity is defined as the difference between coordinates of the same features in left

and right images. This results in a false detection of skin pixels and are marked as

non-skin pixels. These depth values are considered irrelevant in the classification of

skin pixels. By the given 3D depth map from camera set-up system, the overlapping

problem between hands and face is resolved since the hand regions are closer to the

camera rather than the face region (Fig. 4.4). Furthermore, the depth information is

used to resolve complex background (i.e. neutralize complex background to increase

the accuracy of skin segmentation for region of interest) completely.
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(a)                                                 (b)                                               (c)        

Figure 4.3: Skin color segmentation and hand localization. (a) Source image. (b)
Labeled skin detection. (c) Hand localization with a boundary area, bounding box
and centroid point.

4.1.3 Hand Localization

For removing the outliers (e.g. noise and spurious components) from the skin prob-

ability image, morphological operations (e.g. erosion and dilation) are used because

there are small regions which are closer to skin region but does not belong to the

human skin. The size and the shape of structuring element used to perform dilation

and erosion processes is two-dimensional to probe the input image. Dilation and ero-

sion are used in combination to yield a desired image processing affect. Thereby, the

skin color regions are detected (i.e. hands and face). After the labeled skin image is

determined (Fig. 4.3(b)), the hands and face are localized using a blob analysis func-

tion. This function determines the boundary area (i.e. contour), centroid point and

bounding box for each labeled region. Moreover, the contour points are based on a

chain code with 8-neighbor connectivity of the segments in a clockwise direction [117].

The area of an object is the summation of all object pixel values. Whereas, the rect-

angle of ROI is identified using the smallest and the largest x and y coordinates of

the localized object. The length of rectangle is the difference between the minimum

and the maximum of x coordinates. Similarly, the rectangle width is the difference

between minimum and maximum of the y coordinates. With this length and width,

the basic features of an object are calculated such as rectangularity, whose measure

is invariant to scaling, translation and rotation. Furthermore, the centroid points of

detected regions are easily computed by the rectangularity measure.

The next step is the localization of the hands and face and there are four basic

criteria to define them. The first criterion is related to x-coordinate values, so that

the right contour refers to the right hand, the middle contour is the face and the left

contour represents the left hand. The second criterion is the placement of hands and

face so that the presence of the face should be in the middle of the screen. Therefore,
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(a) (b)

Figure 4.4: Solving overlapping problem between hand and face using depth map.
(a) 2D image in which the face and the left hand are occluded. (b) 2D image with
labeled hands and face without occlusion.

in this case, it will search only in y-coordinate values for the middle. In the third

criterion, the localization of the hands is found by choosing the two small areas and

the face represents the big area and the furthest away from the camera. The fourth

criterion is to locate the hands and face by assigning them weights relative to the size

of their areas. The final detected objects (i.e. hands and face) are illustrated in Fig.

4.3(c). Our attention concentrates on the motion of a single hand in order to obtain

the hand trajectory so-called gesture path for a specific alphabet or number. After

hand detection, a refinement of the hand description takes place through fingertip

detection.

4.1.4 Fingertip Detection

The contour of hand plays a significant role in fingertips detection. At each pixel in

hand contour, the neighbor contour points are employed to compute the k-curvature

[118,119]. Here, the curvature is estimated at k, which represents the object bound-

ary point. The main idea is that contour points with high curvature values represent

potential peaks which are used as fingertips. The curvature is the ratio between

the length and the displacement. The length l is the summation of all distances

that a curve has while the displacement d is the distance from the first contour point

to last contour point. By the following equation, the curvature is computed as follows;

k -curvature =
l

d
=

∑i=(k+n/2)
i=(k−n/2) ‖(Pi − Pi+1)‖
‖(Pk−n/2 − Pk+n/2)‖

(4.4)

where n is the total number of pixels which is used for curvature estimation, Pi and

Pi+1 represent the consecutive points of objects boundary.
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Figure 4.5: Peak and valley detection. In the above graph, maximum local extreme
value selects contour points SCP1 and SCP2 from the two clusters C1 and C2. The
down graph shows that the normalized values greater than 0.5 are detected as fingertip
and signed by red point.

The depth map is adaptively set for the objects of interest. For accuracy, the range

of depth value is considered from 30 cm to 200 cm (see Section 4.1.2). Moreover, the

peaks in hand’s contour those curvature values above minimum threshold refer to the

fingertips. Empirically, the threshold value is equal to 1.4 in our work. Increasing this

threshold value allows for a large number of peaks to be detected. However, reducing

this value increases the false positive rate of peaks detection. As illustrated in Fig.

4.5, there are two clusters named as C1 and C2. From these clusters, the maximum

value is selected by using maximum local extreme value. As a result, the maximum

two points are signed as fingertips (e.g. SCP1 and SCP2). Nevertheless, the fingertip

can be wrongly detected because this technique considers both peak and valley points

as fingertips.

To alleviate this problem, the distance from the center point of an object (CP )

to the selected contour points (i.e. SCP1 and SCP2) is computed as shown in Fig.

4.5. In addition, the normalized is carried out to scale these points in range of 0 to

1. Thus, the values of points which are greater than 0.5 are classified as fingertips

representatives. In the bottom graph of Fig. 4.5, the green point represents a valley

whereas the red point represents a fingertip (peak). This technique is the best in term

of results for fingertips detection especially in case of using static background (Fig.

4.6(b)). It is because this technique considers the scaling problem to avoid wrong

classification between neighboring pixels. In addition, this technique in not costly as

compared to other techniques which use histogram analysis to detect fingertip [120],

and it works robustly under occlusion because of the depth information.
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(a) Source image. (b) Fingertip detection.

Figure 4.6: Fingertip detection is marked by red point for the left hand and the
centroid point is marked by white point.

4.2 Tracking

In this work, a robust method for hand tracking is proposed using Mean-shift anal-

ysis in conjunction with depth map. Mean-shift analysis uses the gradient of Bhat-

tacharyya coefficient as a similarity function to derive the candidate of the hand which

is mostly similar to a given hand target model. This structure correctly extracts a

set of hand postures to track the hand motion. The motivation behind mean-shift

analysis is to achieve accurate and robust hand tracking.

4.2.1 Mean-shift Analysis

Mean-shift algorithm is a kernel (i.e. non-parametric) density estimator which opti-

mizes a smooth similarity function to find the direction of the hand target’s movement.

16-bin histograms are considered as the representation of the hand’s color probability

density function (pdf’s), as they can satisfy the low-cost requirement for real-time

tracking. After localization of the hand’s target from the segmentation step, its color

histogram is considered with Epanechnikov kernel (monotonic decreasing kernel pro-

file k(x)) [121, 122, 123] (Fig.4.7). Epanechnikov kernel assigns smaller weights to

pixels farther from the center. Using these weights increase the robustness of the

density estimation because the peripheral pixels are the least reliable and are often

affected by occlusions.

Let x∗i , i = 1, ..., n be the normalized pixel locations in the hand target model.

The probability of the feature u = 1, ..., 16 in the hand target model histogram is

computed as;

qu = F
n∑
i=1

k(‖x∗i ‖2)δ[b(x∗i )− u] (4.5)

where b(x∗i ) is the index of x∗i bin in the normalized feature space, δ is the Kronecker
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Figure 4.7: Epanechnikov kernel and histogram for the left hand which is depicted in
Fig. 4.3. (a) Epanechnikov kernel for the hand target. (b) Projection of 2D weighted
histogram of left hand target by using Epanechnikov kernel for (Cb, Cr) components
with 16× 16 bins.

delta function, equal to 1 only at b(x∗i ) = u and 0 otherwise. The normalization

constant F is determined by imposing the condition
∑16

u=1 qu = 1 where,

F =
1∑n

i=1 k(‖x∗i ‖2)
(4.6)

For the hand candidate model in the next frame, Let xi, i = 1, ..., nh be the

normalized pixel locations of the hand candidate which is centered at y. Similarly,

the same kernel profile k(x) is used with bandwidth h. The probability of the feature

u = 1...16 in hand candidate histogram is calculated as;

pu(y) = Fn

nh∑
i=1

k(‖y − xi
h
‖2)δ[b(xi)− u] (4.7)

where the normalization constant Fh is determined as follows;

Fh =
1∑nh

i=1 k(‖y−xi
h
‖2)

(4.8)

Moreover, Bhattacharyya coefficient is more suitable to measure the similarity

between the hand target model and the chosen candidate. To find the best match of

our hand target in the sequential frames, Bhattacharyya coefficient is maximized for

Bayes error which arises from the comparison of the target and candidate pdf’s. The

maximization of Bhattacharyya coefficient between the unit vectors
√
q and

√
p(y)

which are representing the hand target histogram and hand candidate histogram

respectively takes the following form;

ρ[p(y0), q] =
16∑
u=1

√
pu(y0)qu (4.9)
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It means that the computations need to maximize the term of;

nh∑
i=1

wik(‖y − xi
h
‖2) (4.10)

where h is the kernel’s smoothing parameter or bandwidth and the weights wi is

derived according to Eq. 4.11.

wi =

nh∑
j=1

√
qu

pu(y0)
δ[b(xj)− u] (4.11)

The mean-shift procedure is defined recursively and performs the optimization for

computing the mean-shift vector. In short, mean-shift iteration uses the gradient of

similarity function as an indicator of the direction of hand’s movement (Eq. 4.12).

y =

∑nh

i=1 xiwi∑nh

i=1wi
(4.12)

Since the scale of the hand candidate often changes in time, the bandwidth h of the

kernel profile in Eq. 4.7 has been adapted accordingly. The bandwidth is measured

in the current frame by running the hand candidate localization by three times with

small fractions of ±0.1. The best yield of hand candidate localization is obtained

according to the largest Bhattacharyya coefficient.

There are three types of occluded problems which should be taken into account

during generation of hand trajectory. The problems are:

• hand-hand occlusion: this problem is occurred when the two hands overlap each

other during the motion, and this in turn leads to loss of real explanation for

the gesture path to infer wrong features.

• hand-face occlusion: this problem is occurred when the hand overlaps with the

face and vice versa.

• hand-face-hand occlusion: this problem is a far greater challenge in terms of the

implementation process when overlapping is occurred between the two hands

and face at the same time during the motion.

The problems faced by the system are simple as they only rely on the generation of left

hand trajectory. Hands are often in front of the face. So, hand-face occlusion problem

is more frequent in our system and therefore overcome by using depth information.

The depth information is important for at least two reasons. First, if some features of

hand exist in the background (for instance, background represents here the face), their

relevance of hand localization is diminished. Second, it is difficult to exactly localize

hand because of improper use of background features which makes the similarity

measure impossible to identify the appropriate hand target scale. The other two
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Figure 4.8: Hand gesture path for alphabet ‘N’ using the centroid point and number
‘8’ using fingertip detection.

problems (i.e. hand-hand occlusion and hand-face-hand occlusion) are solved by

using mean-shift algorithm in conjunction with Kalman filter [121,123], which will be

taking in account in future. In proposed system, mean-shift algorithm is used with

the help of depth map to retrieve the extracted features during occlusion. The hand

gesture path is obtained by finding the correspondences of detected hand between

successive images (Fig. 4.8). Fig. A.6 in appendix A shows successful tracking in

presence of partial occlusion and overlapping between hands and face. In addition,

the number of mean-shift iteration is 1.61 per frame for both left and right hands,

which in turn makes the system robust and capable for real-time implementation.

4.2.2 Trajectory Smoothing

The hand gesture path is determined either by connecting the centroid points or by

fingertip detection as described in the previous sections. The input images are usually

unstable due to change in illumination conditions, cluttered backgrounds and shaking

while moving. So, it will cause frequent, sharp changes in the centroid or fingertip

points. In order to efficiently overcome these unexpected changes, the trajectory

points are smoothed (i.e. the mean values of a specified point with its neighbors

points) using Eq. 4.13. Consequently, the obtained gesture path represents a set of

the points in a spatio-temporal space as described in Eq. 4.14. Fig. 4.9(a) shows an
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(a)                                      (b)

Figure 4.9: (a) Smoothing result for gesture path ‘W’, where the above curve refers
to original trajectory and the down curve represents a smoothed trajectory. (b) Hand
gesture path shapes for alphabets (A-Z) and numbers (0-9). Green points denote the
start points of gesture path explaining the trend.

example of the results of smoothing for gesture path ‘W’.

(x̂t, ŷt) =
(xt−1 + xt + xt+1

3
,
yt−1 + yt + yt+1

3

)
(4.13)

Gesture path = {(x̂1, ŷ1), (x̂2, ŷ2), ..., (x̂t, ŷt), ..., (x̂T , ŷT )} (4.14)

where (xt, yt) refers to the centroid or fingertip point at time t and T is the length

of the hand gesture path. The hand gesture paths for alphabets (A-Z) and numbers

(0-9) are depicted in Fig. 4.9(b).

4.3 Feature Extraction

Selection of good features for the recognition of the hand gesture path plays a signifi-

cant role in system performance. There are three basic features: location, orientation

and velocity. In the next subsections, the effectiveness of extracted features from

spatio-temporal hand gesture path are analyzed according to two categories; features

in Cartesian space (x, y) and features in Polar space (ρ, ϕ), to decide the optimal in

term of results. Additionally, the combination among these features are studied to

test their recognition rate.

4.3.1 Features Analysis in Cartesian Space

A gesture path is spatio-temporal pattern that consists of hand centroid points

(xhand, yhand). The coordinates in the Cartesian space can be extracted from ges-

ture frames directly. For this purpose, two types of location features are considered.
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Figure 4.10: (a) Orientation according to the centroid of gesture path. (b) The
directional codewords from 1 to 18 in case of dividing the orientation by 20◦.

The first location feature is Lc which measures the distance from the centroid point

to all points of gesture path because different location features are generated for the

same gesture according to different starting points (Eq. 4.15). The second location

feature is Lsc which is computed from the start point to the current point of gesture

path (Eq. 4.17).

Lct =
√

(xt+1 − Cx)2 + (yt+1 − Cy)2 (4.15)

(Cx, Cy) =
1

n
(
n∑
t=1

xt,
n∑
t=1

yt) (4.16)

Lsct =
√

(xt+1 − x1)2 + (yt+1 − y1)2 (4.17)

where, t = 1, 2, ..., T − 1 and T represents the length of hand gesture path. (Cx, Cy)

refers to the centroid of gravity at n points. To verify the real-time implementation,

the centroid point of gesture path is computed after each frame.

The second basic feature is the orientation which gives the direction of the hand

when traverses in space during the gesture making process. As described above,

orientation feature is based on the calculation of the hand displacement vector at

every point which is represented by the orientation according to the centroid of gesture

path (θ1t), the orientation between two consecutive points (θ2t) and the orientation

between start and current gesture point (θ3t) (Fig. 4.10).

θ1t = tan−1

(
yt+1 − Cy
xt+1 − Cx

)
, θ2t = tan−1

(
yt+1 − yt
xt+1 − xt

)
, θ3t = tan−1

(
yt+1 − y1

xt+1 − x1

)
(4.18)

The third basic feature is velocity which plays an important role during gesture

recognition phase particulary at some critical situations. The velocity is based on the
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Figure 4.11: Differences in velocity of gesture ‘A’ and gesture ‘K’.

fact that each individual hand gesture is constructed at different speeds, such that

the velocity of hand decreases at the corner points of gesture path. For example, the

simple gesture ‘A’ has an almost non-varying speed while a complex gesture ‘K’ has

varying speeds during gesture generation (Fig. 4.11). The velocity is calculated as

Euclidean distance between the two successive points divided by the time t (i.e. in

terms of the number of video frames) as follows;

Vt =

√(xt+1 − xt
t

)2

+
(yt+1 − yt

t

)2

(4.19)

In the Cartesian coordinate system, different combination of features is used to

obtain a variety of feature vectors. For example, the feature vector at frame t + 1

is obtained by union of locations features (Lct, Lsct), locations features with velocity

feature (Lct, Lsct, Vt), orientations features (θ1t, θ2t, θ3t), orientations features with

velocity feature (θ1t, θ2t, θ3t, Vt) and locations features with orientations features and

velocity feature (Lct, Lsct, θ1t, θ2t, θ3t, Vt).

Each frame contains a set of feature vectors at time t where the dimension of space

is proportional to the size of feature vectors. In this manner, gesture is represented

as an ordered sequence of feature vectors, which are projected and clustered in space

dimension to obtain discrete codeword and are used as an input to HMMs. This

is done using k-means clustering algorithm [124, 125, 126, 127], which classifies the

gesture pattern into K clusters in the feature space.

4.3.2 Features Analysis in Polar Space

Polar coordinate is directly calculated from the Cartesian coordinates which are gen-

erated from hand gesture path. To obtain the normalized polar coordinates, we use

the radius from center point of gesture path (Eq. 4.21) and the radius between the

start and the current gesture point (Eq. 4.23).

rcmax = max(Lct), ρct =
Lct
rcmax

, ϕct =
θ1t

2π
(4.20)
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Figure 4.12: Transformation of gesture path ‘R’ from Cartesian to Polar coordinate
spaces. (a) x-y space of gesture ‘R’. (b) ρc-ϕc space of gesture ‘R’. (c) ρsc-ϕsc space
of gesture ‘R’.

Fc = {(ρc1, ϕc1), (ρc2, ϕc2), ..., (ρcT−1, ϕcT−1)} (4.21)

rscmax = max(Lsct), ρsct =
Lsct
rscmax

, ϕsct =
θ3t

2π
(4.22)

Fsc = {(ρsc1, ϕsc1), (ρsc2, ϕsc2), ..., (ρscT−1, ϕscT−1)} (4.23)

where rcmax is the longest distance from the center point to each point of hand

trajectory at frame t + 1 and rscmax represents the longest distance from the start

point to each point in the hand gesture path (Eq. 4.22).

In polar space, different combination of features are used to obtain a variety of

feature vectors. For example, feature vector at frame t + 1 is obtained by union of

locations features from the centroid point with velocity feature (ρct, ϕct, Vt), locations

features from the start and the current point with velocity feature (ρsct, ϕsct, Vt), and

a combination of all (ρct, ϕct, ρsct, ϕsct, Vt). Figure 4.12 shows the representation of the

same gesture ‘R’ according to x-y, ρc-ϕc and ρsc-ϕsc spaces, respectively. It is observed

that there is an obvious variance in the representation of gesture ‘R’ especially in ρc-

ϕc and ρsc-ϕsc. This variance is important in order to find influential features for the

suggested system.

4.3.3 Vector Normalization and Quantization

The extracted features are normalized or quantized to obtain the discrete symbols

which are used as an input to HMMs and CRFs. The basic features such as location

and velocity are normalized with different scalar values (Scal.) ranging from 10 to

30 when used separately. The scalar values increase the robustness for selecting the

normalized feature values. The normalization is done as follows;

Normmax =
T−1
max
i=1

(Normi) (4.24)
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Figure 4.13: Simplified structure shows the main processes for feature extraction stage
of isolated gesture recognition system.

where Normi represents the feature vector of dimension i to be normalized and

Normmax is the maximum value of the feature vector which is determined from all

the T points in the gesture trajectory.

Fnormi =
Normi

Normmax

· Scal. (4.25)

According to Eq. 4.25, the normalized value of the feature vector Fnormi is

computed to obtain feature codes which lie between 10 to 30. The normalization

of orientation features is studied with different ranges for codewords to decide the

optimal range. Moreover, the normalization of the orientation features is estimated by

dividing them by 10◦, 20◦, 30◦ and 40◦ to obtain their codewords which are employed

for HMMs and CRFs. The main processes of feature extraction stage according to

Cartesian and Polar coordinate systems are illustrated in Fig. 4.13.

On our combined features (i.e. in Cartesian and Polar coordinate systems) as

described in pervious sections, k-mean clustering algorithm is used to classify the

gesture feature into K clusters on the feature space. The motivation behind using

k-means algorithm dues to the ease of representation, more scalable, converge faster

and adaptable to sparse data. In addition, more than one feature is extracted from

hand trajectory so that they are quantified into a discrete vector which is used as

an input to HMMs and CRFs. k-mean algorithm is based on the minimum distance

between the center of each cluster and the feature point [30, 128]. The set of feature

vectors is divided into set of clusters. This allows us to model the hand trajectory

in the feature space by different clusters. The calculated cluster index is used as an

input (i.e. observation symbol) to HMMs and CRFs. However, the best number of

clusters in the data set is usually unknown.

In order to specify the number of clusters K for each execution of k-means al-

gorithm, the values of K = 28, 29, ..., 37 are considered and studied to decide the

optimal in terms of their impact on gesture recognition. Theoretical, cluster num-

ber approximately ranges from 28 to 37, so it depends on the numbers of segmented

parts in alphabets from A to Z and numbers from 0 to 9; however, each straight-line

segment is classified into a single cluster.
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Suppose there is a trained data set, which contains n feature vectors x1, x2, ..., xn
such that all these vectors are from the same class. The number of clusters is k

with k < n condition. Let the mean of feature vectors that belong to cluster i

is symbolized by mi. Furthermore, the minimum distance classifier is employed to

efficiently separate the cluster. Note that, vector x belongs to cluster i if ‖x −mi‖
represents the minimum distance as compared to its other k distances. The following

procedure shows that how k-means algorithm works.

Input: Given a sample set of vectors and the desired Codebook size of k
Output: Determine the update Vector Quantization Codebook
——–
Build up randomly an initial Vector Quantization Codebook for the means
m1,m2, ...,mk

while there are changes between two successive iterations do
Use the estimated means to classify each sample of train vectors into one of
the clusters mi

for i = 1 to k do
Replace mi with the mean of all samples of the trained vector for
cluster i

end

end

Algorithm 1: k-means clustering algorithm for Vector quantization

4.4 Classification

In the proposed system, classification is the last stage of the work. Classification of

the symbols in gesture recognition assigns them to respective classes. Throughout

this stage, the isolated hand gesture is handled according to two different classi-

fication techniques HMMs and CRFs to decide which one is the best in terms of

performance. The following two sections discuss how HMMs and CRFs are employed

for the classification of alphabets and numbers.

4.4.1 Classification Using HMMs

Baum-Welch algorithm plays a significant role in the suggested system for gesture

classification where it is used for training of the initialized HMMs parameters λ =

(A,B, π). The gesture recognition module matches the tested gesture against database

of reference gestures to classify it in the class where it belongs to. Thereby, the hand

gesture path is recognized corresponding to the maximal likelihood of all gestures

models using Viterbi algorithm. The maximal gesture is defined as a gesture which

has the largest value among all the gestures models (Fig. 4.14).
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Figure 4.14: Block diagram of an isolated gestures by using HMMs (Viterbi) recog-
nizer.

4.4.1.1 Model Size

Before the HMMs training starts, the size of HMMs must be decided. How many

states do we need?

The number of states must be estimated by considering the complexity of the

various patterns that HMMs will be used to distinguish. In other words, the num-

ber of segmented parts in the graphical pattern is taken into consideration when we

represented it. When the number of training data samples is insufficient, the use of

excessive state numbers causes the over-fitting problem3. In addition, the discrimi-

nation power of the HMMs is decreased when insufficient number of states is used

because more than one segmented part of graphical pattern is modeled on one state.

The number of states in our gesture recognition system is determined by mapping

each straight-line segment into a single HMM state (Fig. 4.15). To represent various

graphical patterns, we must look at the possible patterns and estimate how many

distinguishable segments are contained in a pattern. It may be a good idea to use

different numbers of states in the different HMMs, which used to represent separate

classes of patterns. For example, to represent a graphical pattern ‘L’, only two states

3Over-fitting occurs when HMMs describe random error instead of the underlying relationship.
Potential over-fitting problem does not only depend on the number of parameters and data, but also
on the compatibility of model structure with the amount of model error and data shape. To avoid the
problem of over-fitting, additional techniques (e.g. regularization, early stopping, cross-validation
and etc.) are used when further training is not resulting in better generalization. For more details,
the reader can refer to [129].
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Figure 4.15: Straight-line segment for HMMs topologies (a) Gesture number from
hand motion trajectory (b) Line segment of gesture number (c) LRB model with line
segmented codewords.

are needed, whereas six states are required for a graphical pattern ‘E’, and four states

for graphical pattern ‘3’.

4.4.1.2 Initializing a Left-Right Banded Model

Before starting the iterative Baum-Welch algorithm, the initial values of all param-

eters in the HMMs must be assigned. There is only one general requirement; the

initial model must indicate, somehow, what we want to represent different model

states. However, this requirement has different consequences, depending on the type

of HMMs. In practice, the LRB model is considered because each state in Ergodic

topology has many transitions than LR and LRB topologies, so, the structure data

can be easily lost. On the other hand, LRB topology has no backward transition

so, the state index either increases or remains the same as time increases. In addi-

tion, LRB topology is more restricted than LR topology and simple for training data,

which can match the data to the model [93].

An intuitively observation is that, a good initialization for HMMs parameters

(A,B, π) achieves better results. Matrix A is the first parameter, where it is deter-

mined using Eq. 4.26.

A =


a11 1− a11 0 · · · 0

0 a22 1− a22 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (4.26)
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The diagonal elements aii of the transition matrix can be chosen to indicate approx-

imately the average state durations d such that;

aii = 1− 1

d
(4.27)

and

d =
T

N
(4.28)

where T is the length of gesture path and N represents the number of states.

This is sufficient for an automatic training procedure in which state 1 is intended

to represent the first part of the training data, state 2 the next part, etc. Therefore,

all output probability distributions for different states can be initialized with the same

parameters for all states. Consequently, the first step in Baum-welch iteration uses

the training data to calculate more correct output probability parameters for each

state. Since HMMs states are discrete, all elements of matrix B are initialized with

the same value for all different states (Eq. 4.30). Matrix B is an N -by-M observed

symbols where bim gives the probability of emitting symbol vm in state i (Eq. 3.31).

bim =
1

M
(4.29)

where i, m run over the number of states and the number of discrete symbols, respec-

tively.

B =


b11 b12 · · · b1M

b21 b22 · · · b2M

...
...

. . .
...

bN1 bN2 · · · bNM

 =


1
M

1
M
· · · 1

M

1
M

1
M
· · · 1

M
...

...
. . .

...

1
M

1
M
· · · 1

M

 (4.30)

For each new time sample, the state can jump back by itself, or only to the nearest

following state. Therefore, the initial probability vector π should be initialized as;

π =
(

1 0 · · · 0
)T

(4.31)

It is to ensure that it begins from the first state.

4.4.1.3 Termination of HMMs Training

The Baum-Welch training algorithm is very efficient. Often a good model is reached

already after 5-10 iterations. The trained model must be flexible enough to correctly

represent a new test sequence that never occurred during training. The training

step is repeated until the change of transition and emission matrix converges. The

convergence is satisfied if the change is less than 0.001 (i.e. tolerance ε = 0.001) as

described in Eq. 4.32, or reaches to the maximum number of iterations (i.e. 500).

N∑
i=1

N∑
j=1

|âij − aij|+
N∑
j=1

M∑
m=1

|b̂jm − bjm| < ε (4.32)



4.4. Classification 68

The main motivation behind using tolerance is to control the number steps required

by the Baum-Welch algorithm in order to successfully execute its purpose. This algo-

rithm is terminated if all of the following three quantities are less than the tolerance

value. First, log-likelihood for a given observation sequence O is generated using the

current estimated values of transition matrix A and observation matrix B. Second,

change in the normalization of the transition matrix A. At the end, change in the

normalization of the observation matrix B. Note that, increasing tolerance reduces

the number of steps to execute the Baum-Welch algorithm before it was terminated.

In fact, the maximum number of iterations controls the maximum number of steps to

execute the algorithm. If the Baum-Welch algorithm executes 500 iterations before

reaches to the specified tolerance value, the termination is occurred with a warning.

When this occurs, the value of maximum number of iterations should be increased so

that the algorithm reaches to the desired tolerance before termination.

It is usually very difficult to provide sufficient amounts of training data. There-

fore, some observation may never occur in the limited set of training data, although

we may know that they might have occurred with some small probability. If a dis-

crete HMM is trained on a such data, the Baum-Welch will assign zero observation

probability to some elements of the observation probability matrix. In such case, a

very small non-zero value may be assigned and re-normalization of the row matrix is

required. A similar problem can occur with the transition probability matrix. For a

left-right banded HMM we have intentionally defined many elements of the transition

probability matrix exactly zero values. These elements still have zero values after

the Baum-Welch training, and should remain zero. Furthermore, the adjustment of

HMMs parameters is important after performing the training operation.

4.4.2 Classification Using CRFs

CRFs use a single model of the joint probability of the label sequences (i.e. alphabets

and numbers) given an observation sequence. Therefore, there are trade-off in the

weights of occurrences of a feature value for each state [130]. The gesture recognition

module matches the tested gesture against database of reference gestures, to classify

which class it belongs to. Thereby, the hand gesture path is recognized corresponding

to the maximal likelihood of all gestures (i.e. labels) accumulatively until it receives

the gesture end signal. The maximal label of CRFs model is the gesture whose

observation probability is the largest among all the gestures labels (Fig. 4.16).

4.4.2.1 Data Format of CRFs

CRFs and LDCRFs models are applied to unsegmented sequences while HCRFs

should be apply to pre-segmented sequences (only one label per sequence). The

data and the label files are encoded using Comma Separated Values (CSV) format



4.4. Classification 69

Select max.

probability

Feature

analysis

Vector

quantization

Sequence 

of discrete 

symbols

Sequence 

of discrete 

symbols

Sequence 

of feature 

vectors

Sequence 

of feature 

vectors

Gesture 

path

Label (A)

Label (Z)

Label (0)

Label (9)

argmax p(yi|O)
i

Figure 4.16: Block diagram of an isolated gesture using CRFs recognizer.

according to hcrf library4. Each file contains multiple matrices or vectors encoding

the feature values (data files) or label values (label files). A data file contains mul-

tiple matrices, one for each sequence. For each matrix, the first line always contains

two numbers: the number of rows and the number of columns. The number of rows

for each matrix represents the number of features. All the matrices should have the

same number of features. The number of columns for a specific matrix represent the

number of time samples in the sequence.

Since HCRFs models have only one label associated to each sequence while CRFs

and LDCRFs have one label associated to each time sample in the sequence, the

HCRFs library supports two file format for labels. For HCRFs model, the label

file contains one integer per line, representing the label for the specific sequence. For

CRFs and LDCRFs models, the label file is encoded as a data file with matrix headers

specifying the number of rows and columns but in this case the matrices always have

one row. This row should have the same length as the corresponding sequence in the

data file, with one label for each time sample.

4.4.2.2 Matching CRFs Model

The learning parameters of CRFs are based on the maximum entropy5, which is

considered a good measure for the variational problems (e.g. a finite training data).

In addition, maximum entropy has the ability to justify the probability distribution

4The CRFs formulation is implemented by extending the software of the library of Hidden-state
Conditional Random Field [131]. This library implements three models: CRFs, HCRFs and LDCRFs
with C++ and Matlab languages.

5The principle of maximum entropy: when one has partial data with regard to possible outcomes
one should select the probabilities so as to maximize uncertainty with regard to the missing data,
as shown by Jaynes [132]
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from incomplete information. Likelihood maximization is employed using a gradient-

based method in conjunction with BFGS optimization technique. BFGS technique

solves nonlinear optimization problems which have limitations constraints in order to

determine the best parameter values by using the smallest number of computational

iterations. This technique uses first and second derivatives so that the gradient with

zero represents a necessary condition for optimality. HCRFs and LDCRFs models

have the same calculations in order to fully observe CRFs. For more details, the

reader can refer to Section 3.4.2.1.

The models of HCRFs and LDCRFs are more restricted to the number of hidden

states owned by each class label to make training and inferencing processes tractable.

Furthermore, the training is done directly on the sub-structure of gesture sequences

using intermediate hidden states. Each class label has a set of hidden states which

significantly improve recognition performance, and powerful in simplifying models

according to training and inferencing processes. The number of hidden states depends

on the complexity of each hand gesture during training and inferencing processes.

For instance, the number of hidden states per label is varied from 2 to 5 in our work

because each label consists of segmented parts as shown in Fig. 4.15. However, each

straight-line segment from gesture path for alphabets and numbers is mapped into a

single hidden state. On a standard desktop, training process is more expensive for

CRFs, HCRFs and LDCRFs than HMMs since the time which each model required

it ranged from 20 minutes to several hours due to an observation window. Inference

uses forward score of each sample to select the model with the highest likelihood.

Additionally, inference is fast for all models (i.e. in seconds) for sequences of several

frames. CRFs models with different input feature window size play a main role in

system performance. A window size of zero means that the feature vector at the

current frame is only used to construct the input feature. The window size of three

means that the input feature vector at each frame consists of seven feature vectors:

the current frame, the three preceding frames and the three future frames. Algorithm

2 summarizes the matching process of CRFs models for a given observation sequence.

4.5 Computational Complexity

For mean-shift algorithm, suppose K represents the average number of iterations per

frame. It is being observed that the cost of weighted and non-weighted histograms are

roughly equal because the values of their kernels are pre-calculated. In Eq. 4.12, the

direction of hand’s movement (i.e. centroid points) is determined by a division of two

weighted sum of two terms. Mathematically, the mean cost of mean-shift algorithm

for one scale is calculated as follows;

MeanCost = K · (CostH + nhCostD) ≈ KnhCostD (4.33)
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Input: An observation sequence O, T represents the length of O and the
number of labels is L

Output: Probability of label sequence y given CRFs parameters: p(y|O, θ)
——–
i = 1, initialize Z
while i ≤ T do

for j = 1 to L do
for k = 1 to L do

Mi(yj, yk) = exp
(∑

f λf tf (yj, yk, O, i) +
∑

g µgsg(yk, O, i)
)

end

end
Z = Z ×Mi % Z is a normalization factor
q∗ = Mi(yi−1, yi|O) % q∗ is the product of all matrices M
i = i + 1

end
p(y|O, θ) = 1

Z
× q∗

Algorithm 2: Matching CRFs model

where CostH refers to the cost of histogram and CostD represents an additional cost

for the division of two weighted sum of two terms.

Let the number of target pixels nh has the same range for the number of histogram

entries u (i.e. in our work, u = 1, ..., 16). The actual target histogram is determined

and updated by sliding
√
nh vertical steps and

√
nh horizontal steps. Thus, the effort

E is computed by;

E = CostH + 2nh
√
nhCostadd (4.34)

where Costadd represents an additional cost. Then, the total effort for target local-

ization is almost equal;

CostE = CostH + 2nh
√
nhCostadd + (u+ 2nh

√
nh) ≈ 2nh

√
nhCostD (4.35)

The ratio between Eq. 4.33 and Eq. 4.35 is equal to 2 ∗ √nh/K. In our work, the

target represents 16 × 16 pixels (i.e.
√
nh = 16) and the mean number of iterations

per frame is K = 1.61 (Fig. A.6). So, the optimization process for mean-shift

procedure decreases the time of computation 2 ∗ 16/1.6 ≈ 20 times. It is noted that

the computational time should be multiplied by three in case of scale adaptations for

hand target.

The time complexity of the CRFs matching algorithms presented in this chapter

is proportional to the number of cells which are visited by dynamic programming

method. CRFs takes O(TL2) where L is the number of labels (i.e. in our case the

alphabets and numbers) and T is the number of input feature vectors at every time

instance. The space complexity of the matching algorithm is similar to the time

complexity if the algorithm is running in offline and online modes.



4.6. Discussion and Conclusion 72

4.6 Discussion and Conclusion

In this chapter, the proposed system for isolated gestures (e.g. alphabets and num-

bers) has been described from image acquisition to classification phase. In the first

step, one of the main contributions of this work was to exploit depth image sequences.

The obtained depth information from stereo camera system defines the ROI instead

of processing whole image which consequently reduces the cost of ROI searching and

increases the processing speed. Furthermore, the depth information has been used to

increase the accuracy of objects segmentation as well as identifying the objects under

occlusion.

Improvements and extensions have been carried out for gesture system in the

second step. Precisely, a robust method for hand tracking in complex environment

using mean-shift algorithm in conjunction with depth map was proposed. Mean-shift

analysis used the gradient of Bhattacharyya coefficient as a similarity function to

derive the candidate of the hand which is most similar to a given hand target model.

This structure extracts a set of hand postures to track the hand motion, and achieves

accurate and robust hand tracking with a Bumblebee stereo camera as an input device.

The input images are unstable due to the changes in lighting conditions, background

color and hand shaking during movement. So, it causes frequent, sharp changes

of the centroid or fingertip points. To alleviate these changes, the spatio-temporal

trajectories are smoothed as the mean values of a specified point with its neighbors

points. In the third step, the features of location, orientation and velocity (which

are obtained from spatio-temporal hand gesture path) with respect to Cartesian and

Polar systems are combined and analyzed. This analysis determines the degree of

effectiveness of such combination on the recognition rates.

Classification is the final step in our proposed system. Classification of the symbols

in gesture recognition assigns them to a respective class. Throughout this stage, the

isolated gestures were handled according to two different classification techniques:

a generative model such as HMMs and discriminative models like CRFs, HCRFs

and LDCRFs. In addition, HMMs using Ergodic, Left-Right and Left-Right Banded

topologies with different number of states ranging from 3 to 10 have been analyzed and

studied in terms of their impact on gesture recognition. Furthermore, this research

contributes on the decision of which HMMs topology and classification technique

is the optimal in term of results. The next chapter demonstrates the experimental

results and the analysis of isolated hand gestures.



Chapter 5

Isolated Gesture Recognition Test

5.1 Data Set

The alphabets and numbers are classified using HMMs, CRFs, HCRFs and LDCRFs

by the motion trajectory of single hand. A database is developed containing 2160

video samples for gesture symbols taken from three subjects on a set of 26 alphabets

and 10 numbers. In other words, each isolated gesture is based on 60 video sequences

where 42 video samples for training and 18 video samples for testing ( In total, our

database contains 1512 video samples for training and 648 video samples for testing).

The sample test data is entirely different from the training data and is tested on

Intel(R) Core(TM)2 Duo CPU 2.2GHz PC with 4 GB of RAM. The input images

are captured by Bumblebee stereo camera system which has 6 mm focal length at

15FPS with 240 × 320 pixels image resolution, and Matlab implementation. Bum-

blebee camera is used for acquisition of 2D images along with depth map. Therefore

the databases are captured in IESK lab1, Otto-von-Guericke-University Magdeburg,

Germany (Fig. 5.1).

5.2 Experimental Discussion

A method for detection and segmentation of the hands in stereo color images is

developed with complex background where the hand segmentation and tracking take

place using depth map, color information, GMMs and mean-shift algorithm. Firstly,

segmentation of skin colored regions becomes robust if chrominance components are

used in analysis. Therefore, Y CbCr color space is used in our system where Y channel

represents brightness and (Cb, Cr) channels refer to chrominance. The luminance

channel Y is ignored to reduce the effect of brightness variation and use only the

chrominance channels, which fully represent the color information. A large database

of skin and non-skin pixels is used to train the Gaussian model. GMMs technique

1http://www.iesk.ovgu.de/
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Figure 5.1: IESK lab.

begins with modeling of skin pixels using skin database where a variant of k-means

clustering algorithm performs the training model to determine the initial configuration

of GMMs parameters. Additionally, blob analysis is used to derive the hand boundary

area, centroid point and bounding box.

Secondly, after localization of the hand’s target from segmentation step, its color

histogram is considered with Epanechnikov kernel. This kernel assigns smaller weights

to increase the robustness of the density estimation. To find the optimal match of

hand target in sequential frames, the Bhattacharyya coefficient is used to measure

the similarity by maximizing Bayes error which arises from the comparison of hand

target and candidate. The computed mean depth value from the previous frame for

hand region is taken into consideration. The depth information is used to define the

region of interest instead of processing whole image to increase the processing speed

as well as it resolves the complex background. Mean-shift procedure is recursively

defined and performs the optimization to compute the mean-shift vector. Thereby,

the hand gesture path is obtained by taking the correspondences of detected hand

among the successive frames. Combined features of location, orientation and velocity

with respect to Cartesian and Polar systems are used to increase the recognition rate.

After that, k-means clustering is employed for HMMs, CRFs, HCRFs and LDCRFs

codewords.

5.3 Experimental Results and Analysis

Our proposed system is capable for real-time implementation and showed good re-

sults to recognize isolated alphabets and numbers from stereo color image sequences.

Our experiments are carried out on isolated gestures according to two different clas-

sification techniques: generative model such as HMMs and discriminative models like

CRFs, HCRFs and LDCRFs. The following sections discuss the analysis of HMMs

and CRFs results in details.
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5.3.1 HMMs

In our experimental results, each isolated gesture was based on 60 video sequences in

which 42 video samples for training by Baum-Welch algorithm and 18 video samples

for testing (i.e. in total, our database contains 1512 video samples for training and

648 video samples for testing). The gesture recognition module matches the hand

gesture path against the database of reference gestures to classify in the class it

belongs to. The higher priority has been computed by Viterbi algorithm to recognize

the alphabets and numbers frame by frame.

There is no doubt that selecting good features to recognize the hand gesture path

plays a significant role in system performance. In addition, the selection of the best

HMMs topology plays an important role in the classification process and is presented

in the following subsections.

5.3.1.1 Feature Extraction Analysis

The main contribution of this section is to examine the capabilities of combined fea-

tures of location, orientation and velocity for gesture recognition. These features are

obtained from spatio-temporal hand gesture path. The importance of these features

are tested according to Cartesian and Polar coordinate systems. Furthermore, ex-

periments with varying features are performed to decide the best features in term of

results. The observation sequence for Left-right banded model is quantified either by

using the normalization in case of separated features or by using the k-means clus-

tering algorithm in case of combined features. For more details, the reader can refer

to Section 4.3.

According to the separated features in Fig. 5.2 (a) & (b), the orientation features

(θ1, θ2, θ3) are better in recognition rate than the recognition rate of location fea-

tures (Lc, Lsc) or velocity feature (V ). This in turn leads to the orientation feature

(θ1 = 93.06%) to be the most effective among the three basic features (i.e. location,

orientation and velocity). Furthermore, the velocity feature with 57.25% recognition

rate represents a lower discrimination power than the orientation features because

there is a quite bit of variability (i.e. varying speed during gesture generation) in the

same gesture even for the same person. Also, Lsc feature result has the lowest recog-

nition rate of 32.72%. In general, the testing results from the union of features show

that the combined features in Cartesian system yield a higher recognition ratio than

the combined features in Polar system (Table 5.1). Additionally, the (Lc, Lsc, V ),

(θ1, θ2, θ3, V ) and (Lc, Lsc, θ1, θ2, θ3, V ) features which contain the velocity informa-

tion provide higher recognition rate than the use of velocity feature alone (Fig. 5.2(c)).

But lower recognition results are observed in case of Polar coordinate (Fig. 5.3(a)).

Fig. 5.2 shows the results of the experiments which have been performed to

determine the optimal feature code numbers. Here, k-means is a coding method for

converting location, orientation and velocity values to feature code (i.e. codeword)
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Figure 5.2: The number of feature codes represents either the number of clusters in
case of combined features or the number of normalized codewords in case of separated
features. (a) The recognition of locations and velocity features according to different
number of codewords (10, 15, 20, 25, 30). (b) Results for three different orientations
with varying feature codewords number (9, 12, 18, 36). (c) Recognition rate of differ-
ent combined features in Cartesian system with different codewords number ranging
from 28 to 37.

which represents an element of a standardized code (for instance, cluster numbers

in our application). The optimal number of feature code is 33 for the combined

features (Lc, Lsc, θ1, θ2, θ3, V ). Fig. 5.2(b) shows the system output for isolated

gesture number ‘3’ in addition to the solved overlapping problem between hand and

face by using depth map. The cluster trajectories for gestures numbers (0-9) are

depicted in Fig. A.3, Fig. A.4 and Fig. A.5 (Appendix A).

In short, the effectiveness of these features yields reasonable recognition rates. The

proposed system has shown good performance when applied on several video samples

containing confusing situations such as partial occlusion and overlapping. The results

show that the proposed system successfully recognizes hand gestures with 94.75%

recognition rate. From table 5.1, the recognition ratio of isolated gestures achieves
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Figure 5.3: (c) Recognition rate according to combined features in Polar system with
different feature codewords number ranging from 28 to 37. (b) The highest priority
at t = 21 is gesture number ‘2’ and at t = 47 the final result is gesture number ‘3’.

best results using (Lc, Lsc, θ1, θ2, θ3, V ) features. The recognition ratio is the number

of correctly recognized gestures to the number of tested gestures (Eq. 5.1).

Recognition ratio =
# recognized gestures

# test gestures
× 100% (5.1)

5.3.1.2 Analysis Results of HMMs Topologies

In this thesis, the focus is to design HMMs topologies with different number of states

to decide the best topology in term of results for isolated gestures system. HMMs

using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies are applied

on a discrete vector feature which is extracted from stereo color image sequences.

These topologies are considered with different number of states ranging from 3 to 10.

The number of states in our gesture recognition system is based on the complexity of
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Figure 5.4: Isolated gesture recognition results for HMMs topologies with number of
states ranging from 3 to 10.

each gesture number and is determined by mapping each straight-line segment into a

single HMMs state.

The number of states is an important parameter for two reasons. First, when

the number of training data samples is insufficient, the use of excessive state num-

bers cause the over-fitting problem. Second, the discrimination power of HMMs is

decreased when using insufficient number of states because more than one segmented

part of graphical pattern is modeled on one state.

In practice, to ensure that all states are used, the LRB model with 5 states is

employed for gesture recognition system. Since each state in Ergodic topology has

many transitions rather than LR and LRB topologies, the structure data can easily

be lost. On the other hand, LRB topology has no backward transition where the state

index either increases or stays the same as time increases. In addition, LRB topology

is more restricted than LR topology and simple for training the data which will be

able to match the data to the model. Also, the gesture paths ‘4’ and ‘5’ contain the

largest number of segmented part and to ensure that all these parts are used, the use

of 5 states are considered. For more details the reader can refer to [91, 95], Section

4.4.1.1 and Fig. B.2 & Fig. B.3 (Appendix B).

In this experiment, each isolated gesture number (0-9) is based on 60 video se-

quences in which 42 video samples for training and 18 video samples for testing. In

other words, our database contains 420 video sequences for training and 180 video

sequences for testing the isolated gestures. The HMMs topologies are trained by BW

algorithm and tested using Viterbi algorithm. From Fig. 5.4, the LRB presents the

best performance where the average ratio of LRB topology from 3 to 10 states is

97.78%. Also, LR and LRB topologies with 4 states achieved the best recognition.
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In addition, LRB topology is always better than LR and Ergodic topologies. In Fig.

5.4, there is no large gap between LRB and LR in terms of results but the results of

Ergodic topology was poor when compared to LRB and LR topologies. In general,

LRB topology with number of states equal to 5 is the best in terms of their impact

on gesture recognition empirically, which in turn confirms the existing theoretical

discourse in Section 4.4.1.1.

5.3.2 CRFs, HCRFs and LDCRFs

In CRFs experimental results, each alphabet and number were based on 60 videos,

which contain 42 for training and 18 for testing. A CRFs, HCRFs and LDCRFs were

constructed using combined features of location, orientation and velocity as described

in Section 4.3. To handle isolated gesture, CRFs, HCRFs and LDCRFs with different

number of window sizes (W ) ranging from 0 to 7 are applied and tested to decide the

best in term of recognition results.
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Figure 5.5: Recognition accuracy with different window sizes (0-7) for CRFs, HCRFs
and LDCRFs on training and testing data.

A window size of zero means that the feature vector at the current frame is only

used to construct the input feature while the window size of three means that the

input feature vector at each frame consists of seven feature vectors which contain the

current frame, three preceding frames and three future frames. In our application,

the size of window is based on the complexity of each gesture as described in previous

section. So, multiple experiments have been conducted with a variety of window size

from 0 to 7 on the proposed system to empirically conclude the optimal outcome of the

system. Fig. 5.5 shows the recognition rate of CRFs, HCRFs and LDCRFs according
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Figure 5.6: Temporal evolution of the seven higher probabilities of the gestures ‘B’,
‘F’, ‘K’, ‘M’, ‘P’, ‘R’ and ‘T’ using CRFs. In the image sequences, the high priority
is alphabet ‘F’ at t = 28, at t = 45 the high priority is alphabet ‘P’ and at t = 70
the result is ‘R’. The hand motion trajectory is generated by connecting the centroid
point of hand region.
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Figure 5.7: Temporal evolution of the seven higher probabilities of the gestures ‘B’,
‘R’, ‘Z’, ‘2’, ‘3’, ‘7’ and ‘8’ using HCRFs. In the image sequences, the high priority is
number ‘2’ at t = 24, at t = 40 the high priority is number ‘8’ and at t = 53 the result
is ‘8’. The hand motion trajectory is generated by connecting the fingertip points of
the region of interest.
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to different window sizes for training and testing data. The recognition of hand

gesture path using LDCRFs is higher than CRFs and HCRFs. In addition, the yield

of training data is higher than testing data in the proposed system. Furthermore, the

gesture recognition rate is initially improved as the window size increases but degrades

as the window size further increases. Therefore, the proposed system achieves better

recognition at window size equal to 4 where it was automatically recognize tested

gestures with 87.19%, 92.44%, 96.14% for CRFs, HCRFs and LDCRFs, respectively.

Fig. 5.6 and Fig. 5.7 show the results of gesture paths ‘R’ and ‘8’ according to the

seven higher probabilities using CRFs and HCRFs models, respectively. In addition,

Fig. B.4 in Appendix B illustrates the result of gesture path ‘6’ using LDCRFs model.

5.3.3 Generative Model versus Discriminative Models

The difference between HMMs and CRFs is that HMMs are the generative models and

define a joint probability distribution to solve a conditional problem, thus focusing

on modeling the observation to compute the conditional probability. Moreover, one

HMM is constructed per label (i.e each alphabet or number) where HMMs assume

that all the observations are independent. Whereas CRFs are undirected graphical

models and are developed for labeling sequential data. The key features of CRFs than

HMMs are represented in their conditional nature and the dependencies assumptions

of their computations to ensure tractable inference. In addition, CRFs overcome

the weakness of directed graphical models which suffer from the bias problem as in

MEMMs [26]. Furthermore, CRFs combine the strength of MEMMs and HMMs

where they have all the characteristics of the directed graphical models as in HMMs.

In addition, each label in CRFs is employed as exponential model as in MEMMs to

conditional probabilities of the next label for a given current label. CRFs use a single

model for all alphabets and numbers.

HCRFs models are the extension of CRFs which incorporate hidden state variables

to deal well with gesture sub-structure [39,102]. The main advantage of HCRFs is to

automatically model the local interconnection between labels with hidden variables.

On the contrary, they can not model the dynamics among states. LDCRFs models

have the ability to overcome the main weaknesses of HCRFs models. In addition,

LDCRFs models combine the advantages of CRFs and HCRFs where they learn

extrinsic dynamics by modeling the class labels as well as they learn the intrinsic sub-

structure of gesture sequence using intermediate hidden states. LDCRFs models are

naturally used to recognize the un-segmented sequences because they contain a class

label per observation as described in Section 3.4.2.3. Furthermore, LDCRFs models

efficiently infer the gesture sequences during the training and testing processes.

Several experiments were run to compare between generative model like HMMs

and discriminative models like CRFs, HCRFs, LDCRFs [93, 130]. In HMMs, we

use a Left-Right Banded model based on Gaussian emission probabilities which have
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Table 5.2: Results of gestures recognition at W = 0

Model Data set Recognition result (%)

type Training Testing Training Testing Overall

CRFs 1512 648 60.34 52.78 56.56

HCRFs 1512 648 78.55 60.34 69.45

LDCRFs 1512 648 95.68 86.73 91.21

HMMs 1512 648 99.07 94.75 96.91

Training data Testing data Overall recognition
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Figure 5.8: Results of gestures recognition using CRFs, HCRFs, LDCRFs versus
HMMs at window size = 4.

a full covariance matrix for each state. The HMMs parameters (i.e. the emission

probability and the state transition matrix) are learned from the same training data

used by CRFs. HMMs are trained by BW algorithm while CRFs are trained using

gradient ascent with the BFGS optimization technique [26] with 300 iteration to

converge. On a standard desktop PC, training process is more expensive for CRFs,

HCRFs and LDCRFs than HMMs since the required time to model ranges from 20

minutes to several hours and is based on observation window. On the contrary, the

inference (i.e. recognition) process is less costly and very fast for all models with

sequences of several frames (e.g. more than 80 frames in a sequence). The type of

observed gesture is decided with HMMs by Viterbi algorithm, frame by frame. As

shown in Table 5.2, the overall recognition rate (the average of the training and the

testing of recognition result) of HCRFs at window size equal to 0 is higher than

CRFs. Also, in that case, the overall recognition rate achieved by HMMs is 96.91%.
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Furthermore, HMMs is the best in terms of results than CRFs, HCRFs and LDCRFs

at W = 0. Whereas at window size equal to 4, LDCRFs recognition rate is higher

than HMMs according to the training and the testing data (Fig. 5.8). Our results

show that the overall recognition rates are 91.51%, 95.22%, 96.91% and 97.99% for

CRFs, HCRFs, HMMs and LDCRFs, respectively. The high recognition rate achieved

by the proposed system is due to the following reasons; 1) As a benefit of depth

information, a high segmentation accuracy of the hand is achieved. 2) A set of

feature candidates that optimally discriminate among the input patterns is elected.

3) A carefully experimental based selection of initialization parameters for training

process. 4) HMMs, CRFs, HCRFs and LDCRFs classification techniques have the

ability to efficiently alleviate spatio-temporal variabilities.

5.4 Discussion and Conclusion

In this chapter, experiments were carried out on isolated gestures according to two dif-

ferent classification techniques: a generative model such as HMMs and discriminative

models like CRFs, HCRFs and LDCRFs.

For HMMs, the main contribution was to examine the capabilities of the combined

features of location, orientation and velocity with respect to Cartesian and Polar co-

ordinates. It has been shown that the effectiveness of these features yields reasonable

recognition rates. The velocity and location features showed a lower discrimination

power than orientation feature. Furthermore, the proposed system successfully recog-

nizes isolated hand gestures with 94.75% recognition rate using (Lc, Lsc, θ1, θ2, θ3, V )

feature. Another contribution was to handle HMMs topologies with different states to

decide best topology in terms of their impact on gesture recognition. It is concluded

that there is no large gap between Left-right Banded (LRB) model and Left-right

(LR) model in the recognition rates. On the contrary, the results of Ergodic topology

was poor when compared to LRB and LR topologies. In general, LRB topology with

5 states was the best in term of results.

For discriminative models, CRFs, HCRFs and LDCRFs with different number of

window sizes ranging from 0 to 7 were applied and tested to decide the best among

them. It is concluded that the optimal size of window is equal to 4 empirically, where

the proposed system automatically recognizes tested gestures with 87.19%, 92.44%,

96.14% for CRFs, HCRFs and LDCRFs respectively. In contrast to generative and

discriminative models, HMMs was the best in terms of results than CRFs, HCRFs

and LDCRFs at window size = 0. Whereas at window size equal to 4, LDCRFs

recognition results were higher than HMMs according to the training and the testing

data. Our results showed that, the overall recognition rates were 91.51%, 95.22%,

96.91% and 97.99% for CRFs, HCRFs, HMMs and LDCRFs, respectively. It is noted

that the proposed system achieves high recognition rate due to a high segmentation

accuracy of hand through the use of depth information. In addition, a good election
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for the set of feature candidates that optimally discriminate among input patterns.

Also, a careful experimental based selection ie required for initialization parameters

of training process. Above all, HMMs, CRFs, HCRFs and LDCRFs classification

techniques have the ability to efficiently alleviate spatio-temporal variabilities. The

next chapter will explore hand gesture spotting (i.e. extracting meaningful gestures

from continuous hand motion) and recognition using HMMs and CRFs.



Chapter 6

Gesture Spotting and Recognition

While automatic hand gesture recognition technology has been exits which applied

to real-world applications, there are still several problems which need to be solved

for wider applications of HCI. One of such problems, in hand gesture recognition is

to extract (spot) meaningful gestures from the continuous sequence of hand motions.

Another problem is due to the variability (i.e. varies in shape, trajectory and du-

ration) in the same gesture even for the same person. The goal of gesture spotting

and interpretation is to make the human-machine communication close to human-

human interaction. Gesture can be divided into two types; communicative gesture

(key/meaningful gesture) and noncommunicative gesture (garbage gesture or transi-

tion gesture) [6, 64]. In other words, a natural gesture includes three phases: pre-,

key- and post-gesture as in Fig. 6.1. The key gesture is defined as a part of hand

trajectory that carries explicitly meaning for human. Whereas, pre- and post-gestures

represent unintentional movements which are used to connect key gestures. Fig. 6.1

illustrates how a gesture path can be implemented with different phases and spotted

in spatio-temporal space.

Previous approaches mostly use backward spotting technique to first detect the

end point of gesture by comparing the probability of maximal gesture models and non-

gesture model [15,16,32,34]. Secondly, they track back to discover the start point of

gesture through their optimal path and recognize the segmented gesture. Thus, there

is a time delay between key gesture spotting and recognition and this time delay is

unacceptable for on-line applications. In addition, there is an inadequate research to

address the problems on non-gesture patterns (i.e. pre- and post-gestures) for gesture

spotting because the number of non-gesture patterns is infinity, which in turn lead to

the difficulty of modeling non-gesture patterns.

The main contribution of this chapter is to propose a forward gesture spotting

scheme which handles hand gesture spotting and recognition of numbers1 (0-9) simul-

taneously. This scheme uses a stochastic method for designing a non-gesture model by

1An application of gesture-based interaction with numbers is implemented to demonstrate the
coaction of suggested components and the effectiveness of gesture spotting and recognition system.
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Figure 6.1: Concept of the hand gesture spotting and recognition system.

HMMs versus CRFs models with no training data. Furthermore, this scheme solves

the issues of time delay between the spotting and the recognition task. The following

sections describe how HMMs and CRFs are used for hand gesture spotting and recog-

nition. In addition, how to model gesture patterns discriminately and how to model

non-gesture patterns effectively without training data for non-gesture patterns.

6.1 Spotting with HMMs

HMMs are capable of modeling spatio-temporal time series of gestures effectively and

can handle non-gesture patterns (garbage model or filler model) than NN and DTW.

To spot key gestures accurately, a non-gesture model is proposed. The non-gesture

model provides a confidence measure based on the calculated likelihood of gesture

models which is used as an adaptive threshold to find the start and the end points of

key gestures which are embedded in the input video sequences. The performance of

non-gesture model is improved using relative entropy measure to alleviate the problem

of increasing number of states [105]. The following subsections explain the stages of

spotting and designing a non-gesture model from gestures models (Fig. 6.2).

Geture models

Ten HMMs 

reference gestures

Spotting network

Gesture models & 

Sliding window

Non-geture model

Single HMM  

reference         

non-gesture

Model reduction

Relative entropy 

measure

Recognition

Accumulative 

recognition by 

Viterbi algorithm

Non-gesture model

Figure 6.2: Road map of gesture spotting and recognition using HMMs.

6.1.1 Gesture Model

For each reference gesture, each HMM state represents its local segmental part. How-

ever, the transition among states represent the sequential order structure in a gesture
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Figure 6.3: The hand gesture paths and straight-line segmentation. (a) The gesture
paths from hand motion trajectory for numbers (0-9) with its segmented parts. (b)
The LRB topology with segmented line for a gesture path ‘4’.

path. The number of HMMs states is an important parameter for each reference ges-

ture. When the number of training data samples is insufficient, the use of excessive

state numbers cause the over-fitting problem. In addition, the discrimination power

of HMMs is decreased in case of using insufficient number of states, because more

than one segmented part of graphical pattern is modeled on one state. Moreover,

the number of states in our gesture spotting system is based on the complexity of

each gesture number and is determined by mapping each straight-line segment into a

single HMM state (Fig. 6.3).

In practice, the LRB model is considered for the following reasons. Since each

state in Ergodic topology has many transitions than LR and LRB topologies, the

structure data can be lost easily. On the other hand, LRB topology has no backward

transition where the state index either increases or stays the same as time increases.

In addition, LRB topology is more restricted than LR topology and simple for training

data and is able to match the data with the model. Therefore, Baum-Welch algorithm

plays a significant role in our system, where it is used to do a full training for the

initialized HMMs parameters λ = (π,A,B). For more details, the reader can refer to

Section 4.4.1.2.

6.1.2 Non-gesture Model

It is not easy to obtain the set of non-gesture patterns because there are infinite

varities of meaningless motion. So, all other patterns other than reference patterns

are modeled by a single HMM called a non-gesture model (garbage model) [15, 133,

134,135]. A non-gesture model represents any motion trajectory or any part of it other
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Figure 6.4: (a) Ergodic topology (b) Simplified ergodic with two dummy states and
fewer transitions.

than gesture model. For the correct gesture spotting, the likelihood of a gesture model

for a given pattern ( i.e. previously mentioned) should be distinct enough. Although

the HMMs recognizer selects a model with the best likelihood, but we cannot ensure

that the pattern is really similar to the reference gesture model unless the likelihood

value is the highest among all other reference gestures. Thus, the non-gesture model

is proposed which gives a good confirmation for refusing the non-gesture patterns.

According to the property of HMM’s internal segmentation, the self-transition for

each state represents a line-segmented pattern of a gesture path and the outgoing

transition from states lead to the rest of sequential segmented patterns in a gesture.

Using this property, a model so-called Ergodic is created in which its states are copied

from all gesture references in the system and then fully connect these states (Fig.

6.4). The number of states increases as the number of gesture references increases.

As a result, the number of edges grows and soon the system becomes unreliable.

Therefore, a well-known method (i.e. this method considers all future possibilities for

the expansion of the proposed system if the number of reference gestures is increased)

is to use the topology of Fig. 6.4(b) where two dummy states are included to make

the structure simple. The dummy states (i.e. null states) are nothing and observe

no symbol with no time delay. The non-gesture model is constructed by copying the

states of all gesture models in the system as follows;

1. Copy all states from all gesture models, each with an output observation prob-

ability bj(m). Then, re-estimate the probabilities with gaussian distribution

smoothing filter to make the states represent any pattern. After that, the floor

smoothing is applied.

Non-gesture(bj(m)) =
1√
2πσ
· exp

((bj(m))2

2σ2

)
(6.1)

2. The probabilities of self-transitions are copied as in the gesture models because

each state represents a primitive unit (i.e. segmented pattern) of a gesture. The

number of these units constitute the target gesture.
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Figure 6.5: The general non-gesture model where the dotted arrows represent null
transitions, Gi,j refers to the state j for gesture number i, ST and ET are the two
dummy states for starting and ending, receptively.

3. The probabilities of all outgoing transitions are calculated as follow;

âij =
1− aij
N − 1

, for all j, i 6= j (6.2)

where âij represents the transition probabilities of non-gesture model from state si to

state sj, aij is the transition probabilities of gesture models from state si to state sj
and N in the number of states in all gesture models.

The non-gesture model (Fig. 6.5) is a weak model for all trained gesture models

and represents every possible pattern. In addition, the likelihood of non-gesture

model is smaller than the dedicated model for a given gesture because of the reduced

forward transition probabilities. Also, the likelihood of the non-gesture model gives

a confidence measure for the calculated likelihood by other gesture models because a

confidence measure is based on the differential probability value. This value represents

the difference between the observation probability of maximal gestures models and

non-gesture model for an input pattern. Thereby, the confidence measure is used as

an adaptive threshold for choosing the desired gesture model or gesture spotting.

6.1.3 Model Reduction

The number of states in the non-gesture model is equal to the sum of all states for all

gesture models except the two dummy states. This means the number of states for

non-gesture model increases as the number of gesture model increases. Furthermore,

an increase in the number of states does not affect the recognition rate, but dues

to a waste of time and space. To alleviate this problem, relative entropy [105] is

used to reduce the non-gesture model states because there are many states with

similar probability distribution. The relative entropy is a measure of the distance

between two probability distributions. Consider two random probability distributions
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P = p1, p2, ..., pM and Q = q1, q2, ..., qM , the symmetric relative entropy D(P‖Q) is

defined as;

D(P‖Q) =
1

2

M∑
i=1

(pi · log
pi
qi

+ qi · log
qi
pi

) (6.3)

The proposed state reduction is based on Eq. 6.3 and works as follows;

1. Calculate the symmetric relative entropy between each probability distribution

pair p(l) and q(k) of l and k states, respectively.

D(P (l)‖Q(k)) =
1

2

M∑
i=1

(p
(l)
i · log

p
(l)
i

q
(k)
i

+ q
(k)
i · log

q
(k)
i

p
(l)
i

) (6.4)

2. Determine the state pair (l, k) with the minimum symmetric relative entropy

D(P (l)‖Q(k)).

3. Recalculate the probability distribution output by merging these two states over

the M observation discrete symbol as;

p
(l)∗

i =
p

(l)
i + q

(k)
i

2
(6.5)

4. If the number of states is greater than a threshold value with 22 states empiri-

cally for spotting system, then go to 1, else re-estimate probability distribution

output by gaussian smoothing filter to make the states represent any pattern.

The discrimination of input pattern is computationally expensive when the number

of states for non-gesture model is increased. The main advantage of using relative

entropy is to reduce the number of states which constitutes the non-gesture model.

Thus, the speed of computational process is increased as well as reducing the time

and space.

6.1.4 Gesture Spotting Network

In continuous hand motion, key gestures appear intermittently with pre- and post-

gestures (i.e. transition for connecting key gestures). To spot these key gestures,

gesture spotting network is constructed as shown in Fig. 6.6. Moreover, the gesture

spotting network can be easily expanded the vocabularies by adding a new key gesture

HMM model and then rebuilding a non-gesture model. This network contains ten

gesture models for numbers from 0 to 9. These ten model are designed using LRB

model with number of states ranging from 3 to 5 based on its complexity. Additionally,

it also contains non-gesture model after states reduction by relative entropy measure

and the dummy start state S. The gesture spotting network finds the start and the end

points of key gestures which are embedded in the input video stream and performs

the segmentation and the recognition tasks simultaneously.
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Figure 6.6: The gesture spotting network which contains ten number gesture models
from 0 to 9 and are designed by using LRB model with varying states from 3 to 5
and the Non-gesture model.

6.1.5 Spotting and Recognition

For forward spotting, a differential probability (DP ) value is defined by the difference

between the observation probability value of maximal gesture models and non-gesture

model (Fig. 6.7). The maximal gesture is defined as a gesture having the largest

value among all ten gestures p(O|λg) (g is the index of gesture models from 0 to

9). The transition from non-gesture to gesture occurs when the DP value changes

from negative to positive (Eq. 6.6, where O is possibly as gesture g). Similarly, the

transition from gesture to non-gesture occurs at the time when the DP value changes

from positive to negative (Eq. 6.7, where O cannot be a gesture). Consequently, these

observation are employed as a rule to detect the start and the end point of gestures.

Here, the DP value represents an adaptive threshold which is used for selecting the

desired gesture model or gesture spotting.

∃g : P (O|λg) > P (O|λnon−gesture) (6.6)
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∀g : P (O|λg) < P (O|λnon−gesture) (6.7)

The proposed gesture spotting system contains two main modules: segmentation

module (segmentation module is also called spotting module) and recognition module.

In gesture segmentation module, a sliding window technique is used. This technique

calculates the observation probability of all gesture models and non-gesture model for

observed segmented parts to spot the start point by DP value. The sliding window

(Sw) contains a number of sequential observations instead of a single observation.

(Fig. 6.8). It is used to reduce the impact of observation changes for a short interval

which are caused by incomplete feature extraction. The optimal value of sliding

window is empirically2 determined with value 5 where the system is the best in term

of results. The gesture recognition module is activated after detecting the start point

from continuous image sequences. The main objective is to perform the recognition

process accumulatively for the segmented parts until it receives the end signal of key

gesture. Therefore, the type of observed gesture segmentation (arg maxP (O|λg) is

decided at this point using Viterbi algorithm. Then, the processes of these modules

are iterated until no more input stream of gesture images exist. Fig. 6.8 illustrates

the work of sliding window and the recognition of observed sequences accumulatively.

The next steps demonstrate the work of Viterbi algorithm on gesture model λg when

the number of states is N and the length of observation sequence is T .

1. Initialization:

δg1(i) = πi.b
g
i (o1); for 1 ≤ i ≤ N (6.8)

2Multiple experiments have been conducted with a variety of sliding window size from 1 to 8 on
the proposed system to empirically conclude the optimal on the outcome of the system.
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2. Recursion (accumulative observation probability computation):

δgt (j) = max
i

[δgt−1(i).agij].b
g
j (ot); for 2 ≤ t ≤ T, 1 ≤ j ≤ N (6.9)

3. Termination:

P (O|λg) = max
i

[δgT (i)] (6.10)

where agij is the transition probability from state i to state j, bgj (ot) refers to the

probability of emitting o at time t in state j, and δgt (j) represents the maximum

likelihood value in state j at time t.

Input: An observation sequence O with length T
Output: The probability of key gestures which are embedded in the input

stream with their start and end points
——–
Initialize the sliding window Sw
Set t = 0 % first time of first segmented pattern
O
′
= {} % initialize the key gesture

Compute DP (t)
if DP (t) is negative then

while DP (t) is negative do
Shift the sliding window one unit % the start point is not detected
t = t+ 1
Compute DP (t)

end
else

while DP (t) is positive do
O
′
= O

′ ∪ {ot} % the end point is not detected and union all key
gesture segments
Compute recognition task argmaxg p(O

′ |λg)
t = t+ 1
Compute DP (t)

end

end

end
if more gesture image then

Set t = t+ 1
Repeat the algorithm with re-initializing the sliding window at the value t
else

Terminate the algorithm
end

end

Algorithm 3: Gesture Spotting and Recognition
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Figure 6.8: Block diagram shows the work of sliding window. The Viterbi algorithm
recognizes the segmented parts after detecting the start point.

Assume that, the size of sliding window is Sw and the input observation sequence

with length T is O = {o1, o2, ..., ot, ..., oT}. Firstly, the window size is initialized with

an observation sequence Ot=0 = {o1, o2, ..., oSw}. The DP value is equal to difference

observation probability between the maximal gesture and the Non-gesture as follows;

DP (t) = max
g
P (Ot|λg)− P (Ot|λNon−gesture) (6.11)

When the value of DP (t) is negative, the start point in this case is not detected and

therefore the sliding window is shifted on unit (i.e. Ot+1 = {ot+1, ot+2, ..., oSw+t}).
This process is repeated until DP value is positive.

In the case of DP value is positive, assume that O
′
1 represents the first partial

key gesture segmented. Then, the observed key gesture segmented is represented by

union of all possible partial gesture segments O
′

= {O′1 ∪ O
′
2 ∪ ...}. At each step,

the gesture type of O
′

is determined. When the value of DP becomes negative again

or there is no gesture images, the final gesture type g of observed gesture segment

O
′

is determined by Viterbi algorithm. When there are more gesture images, the

previous steps are repeated with re-initializing the sliding window at the next time t.

Algorithm 3 illustrates the tasks of forward gesture spotting and recognition at the

same time according to the sliding window technique.

Thus, the use of HMMs in conjunction with a relative entropy measure and slid-

ing window scheme are capable of modeling spatio-temporal time series of gestures

as well as handling non-gesture patterns. In addition, a sophisticated method is pro-

posed for designing a non-gesture model without any training data for non-gesture

patterns. Furthermore, forward scheme has the ability to resolve the issues of time

delay between gesture spotting and recognition.
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6.2 Spotting with CRFs

The key features of CRFs are represented in their conditional nature and the depen-

dency assumptions of their computations to ensure tractable inference. CRFs have all

the characteristics of the directed graphical models. In addition, each label in CRFs

is employed as exponential model as in MEMMs [26] to conditional probabilities of

the next label for a given current label. To spot meaningful gestures of numbers

accurately, a stochastic method for designing a non-gesture model with CRFs is pro-

posed. The following subsections explain the stages of spotting and modelling gesture

patterns and non-gesture patterns effectively with no training data for non-gesture

patterns (Fig. 6.9).

Geture models
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Figure 6.9: Road map of gesture spotting and recognition using CRFs.

6.2.1 Gestures and Non-gesture Model

Conditional Random Fields are undirected graphical models and were developed for

labeling sequential data (i.e. determining the probability of a given label sequence for

a given input sequence) [16, 26, 136]. The current label is structured to form a chain

with an edge between itself and previous label. Moreover, each label corresponds to a

gesture number. The probability of label sequence y for a given observation sequence

O is calculated as;

p(y|O, θ) =
1

Z(O, θ)
· exp

( n∑
i=1

Fθ(yi−1, yi, O, i)
)

(6.12)

where in the parameter θ = (λ1, λ2, ..., λNf
;µ1, µ2, ..., µNg), Nf represents the number

of transition feature function, Ng refers to the number of state feature function and

n is the length of observation sequence O. Fθ is defined as;

Fθ(yi−1, yi, O, i) =
∑
f

λf tf (yi−1, yi, O, i) +
∑
g

µgsg(yi, O, i) (6.13)

where tf (yi−1, yi, O, i) is a transition feature function at position i and i − 1 (i.e.

represents the weight on the transition from label i to label i − 1 when the current

observation is O). sg(yi, O, i) refers to a state feature function at position i (i.e.

represents the weight on the label i when the current observation is O). λf and
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µg represent the weights of the transition and state feature functions, respectively.

Z(O, θ) is the normalized factor and is calculated as follows;

Z(O, θ) =
∑
y

exp
( n∑
i=1

Fθ(yi−1, yi, O, i)
)

(6.14)

Because CRFs use a single model for the joint probability of the sequences p(y|O, θ),
they are initially built without label for non-gesture pattern. Moreover, CRFs are

constructed using combined features of location, orientation and velocity as described

in Section 4.3. In addition, CRFs are trained using gradient ascent with the BFGS3

optimization technique [26] with 300 iteration to achieve optimal convergence. There-

fore, the labels of CRFs are y = {Y0, Y1, ..., Y9}.
All other patterns than gesture patterns are modeled by adding a label (N) for

non-gesture patterns to create the Non-gesture model (N-CRFs) using the weights of

transition and state features function of initial CRFs. Moreover, the labels of N-CRFs

are yN = {Y0, Y1, ..., Y9, YN}. The proposed N-CRFs model does not need non-gesture

patterns for training and also can better spot gestures and non-gesture patterns.

6.2.2 N-CRFs Model Parameters

There are two main parameters of CRFs named state feature function and transition

feature function as in Eq. 6.13. By using the weight of state and transition feature

function of the initialized CRFs model, the label of non-gesture pattern is created.

From the idea of Dugad et al. [137] to propose an adaptive threshold model based on

the mean and the variance of sample, the weight of state feature function is computed

as;

µg(N) = µ̄g + TN
√
σg (6.15)

where µ̄g is the mean of state feature functions of the labels of initial CRFs from Y0

to Y9 and σg represent the variance of the gth state feature functions. TN reflects the

width of state features function in some way. The optimal value of TN is 0.7 and

is determined by multiple experiments which have been conducted with a range of

values on a training data set.

A challenging problem is caused by the fact that there is a quite bit of variability

in the same gesture even for the same person. The main advantage of HMMs is its

capability of modeling spatio-temporal time series of gestures effectively. Whereas

this problem is one of difficulties which are faced for CRFs in recognition. In other

words, it is difficult to spot and recognize short gestures because short gestures have

3Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique is used to solve nonlinear optimization
problems which have lack constraints to determine the best parameter values by using the smallest
number of computational iterations. This technique uses the first and second derivatives so that the
gradient with zero represents a necessary condition for optimality.
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fewer samples than long gestures. To avoid this problem, a short gesture detector is

added where the weights of self-transition feature functions are increased as follows;

λf (Yl, Yl) =

 λf (Yl, Yl) + ψf (Yl), if Nframe(Yl) < (N̄frame − σNframe
)

λf (Yl, Yl), otherwise
(6.16)

and

ψf (Yl) =
(N̄frame − σNframe

)−Nframe(Yl)

maxlNframe(Yl)
(6.17)

where Nframe(Yl) is the average frame number of a gesture Yl, N̄frame represents the

average frame number of all gestures from Y0 to Y9 and σNframe
is the variance of

them. ψf (Yl) is additional weight of the gesture Yl notable in case of a short length

gesture. Fig. B.1 in Appendix B illustrates the average number of frames for each

isolated gesture from 0 to 9.

The weight of the self-transition feature function of the label of non-gesture pat-

terns is approximately assigned with the maximum weight of transition feature func-

tions to initialize CRFs as follows;

λf (YN , YN) = max
l
λf (Yl, Yl) +

∑l
i=1

∑Ng

g=1 µg(Yl)

N̄state−feature
(6.18)

where N̄state−feature is the average number of transition feature functions in which the

weight is greater than zero.

As described earlier in this chapter about the transition parameters of non-gesture

model via HMMs, nearly a similar method is employed to compute the weights of

transition feature functions between the labels of gesture models and the label of

non-gesture patterns. Therefore, the weights of transition feature functions from the

non-gesture label to other labels are computed by the following equation;

λf (YN , Yi) =
λf (YN , YN)

l
, ∀i ∈ {1, 2, ..., l} (6.19)

Also, the weights of transition feature functions from the gesture labels to non-gesture

label occurs by the given equation below;

λf (Yi, YN) =
λf (Yi, Yi)

l
, ∀i ∈ {1, 2, ..., l} (6.20)

Thus, the N-CRFs model can better spot gestures and non-gesture patterns.

6.2.3 Forward Gesture Spotting and Recognition

In order to spot and recognize the key gestures from continuous image sequences,

the two main modules are applied: segmentation module and recognition module.
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Figure 6.10: Simplified structure showing the main modules for hand gesture spotting
via CRFs.

In gesture segmentation module, the sliding window Sw with empirically estimated

optimal size of 5 is employed to calculate the observation probability of all gesture

labels and non-gesture label for the segmented parts using N-CRFs database. The

sliding window technique was described in Section 6.1.5 (Fig. 6.8). The start (end)

point of gesture is spotted by differential probability DP value between maximal

gestures labels and non-gesture label. When DP value changes from negative to

positive, the gesture starts. Similarly, the gesture ends at the time when the DP

value changes from positive to negative. These observations are employed as a rule

to detect the start and the end points of meaningful gestures. When the DP value

is negative, the process is repeated until the start point of key gesture is detected.

Spotted gesture in the segmentation module are temporarily saved. Therefore, the

correct spotting is defined as;

Correctspotting =

 true, if |Startframe − Endframe| ≥ ε

false, otherwise
(6.21)

where ε is the length of a short gesture path. Moreover, in proposed gesture spotting

system, a gesture path ‘1’ has a short length in which the minimum number of frames

assigned to it is equal to ε = 12 frames (Fig. B.1).

The gesture recognition module using LDCRFs database4 is activated after de-

tecting the start point from continuous image sequences to recognize the segmented

parts until it receives the end signal of key gestures. Then, the processes of these

4LDCRFs database is prepared according to 420 video samples for isolated gestures and are
captured from three subjects on a set of numbers. LDCRFs model is trained using gradient ascent
with the BFGS optimization technique.
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modules are iterated until no more input stream of gesture images exist (Fig. 6.10).

Here, LDCRFs model is considered because the recognition using LDCRFs is the best

in terms of result than CRFs. For more details about the comparison between CRFs

and LDCRFs according to their recognition results, the reader can refer to Section

5.3.3. In addition, Algorithm 3 is applied using the CRFs model with the same tasks

similar to HMMs.

6.3 Computational Complexity

In HMMs case, the adequate number of states for Non-gesture model is nearly equal to

one and a half number of observation symbols through a set of experiments. Thereby,

the time complexity C is computed which is employed to evaluate gesture spotting

as follows;

C = LaN̄T +N2
ngT (6.22)

where L is the number of gesture models (L = 10), a represents the number of

transition per state (the number of transition per state is 2 because of using LRB

topology), N̄ represents the average number of states of gesture models (i.e. N̄=

4) and T refers to the length of observation sequence. In gesture spotting system,

the codeword size (i.e. the average number of observation symbols) is nearly equal

to fifty and the number of states in the Non-gesture model is decreased from 40 to

22 using relative entropy (i.e. the number of states before reduction Nng = 40 and

the number of states after reduction is equal to 22). The relative entropy provides

a way of reducing the number of states where the increased number of states causes

the waste of time and space. Consequently, the expected rate for the reduction of the

evaluation time for gesture spotting is;

Evaluation time =
(LaN̄T +N2

ngT )− (LaN̄T + Ń2
ngT )

LaN̄T +N2
ngT

(6.23)

where Ńng represents the minimized number of states for the Non-gesture model. The

Eq. 6.23 is simplified as follows;

Evaluation time =
N2
ng − Ń2

ng

LaN̄ +N2
ng

=
402 − 222

(10) · (2) · (4) + 402
= 0.6642 (6.24)

Thus, the expected time saved for the evaluation is 66.42% (Eq. 6.24).

The time complexity of the Viterbi algorithms presented in this chapter is pro-

portional to the number of cells which are visited by dynamic programming method.

Each gesture path for numbers takes O(TN) where T is length of the gesture path

and N is the number of states for a specific gesture path. The space complexity of

the Viterbi matching algorithm is similar to the time complexity if the algorithm is

run in offline and online mode.
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6.4 Experimental Results and Analysis

The segmentation of the hand with complex background took place using depth map

and color information over Y CbCr color space. Gaussian Mixture Models were con-

sidered for this purpose where a large database of skin and non-skin pixel is used for

training. Furthermore, morphological operations and Mean-shift algorithm are used

to track the hand to generate gesture path. The features of hand gesture path were

extracted according to two different locations, three varying orientations and velocity.

The extracted features were quantized using k-means clustering algorithm to obtain

discrete symbols and applied to HMMs and CRFs models. The input images were

captured by Bumblebee stereo camera system which has 6 mm focal length at 15FPS

with 240× 320 pixels image resolution, Matlab and C++ language implementation.

Classification results are based on our database and it contains 600 video samples

for isolated gestures which are captured from three persons on a set of numbers.

Each number from 0 to 9 was based on 42 videos for training and 18 video samples

for testing (In total, 420 video samples for training and 180 video samples for testing).

Also, the database contains 280 video samples of continuous hand motion for testing.

Each video sample either contains one or more meaningful gestures. The HMMs have

been trained by BW algorithm while the CRFs model was trained using gradient

ascent with the BFGS optimization technique with 300 iteration to converge. The

inference (i.e. recognition) process uses forward score of each sample to select the

model with the highest likelihood. The experiments are carried out for an isolated

gesture recognition and key gestures spotting test. The following sections discuss the

analysis of HMMs and CRFs results in details.

6.4.1 Key Gesture Spotting with HMMs

The gesture recognition module match the tested gesture against database of refer-

ence gestures to classify which class it belongs to. The higher priority was computed

by Viterbi algorithm to recognize the numbers frame by frame using LRB topology

with different number of states ranging from 3 to 5 based on their complexity. Fig.

6.11 illustrates the result of isolated gesture ‘3’ with high four priorities while the

probability of Non-gesture model before and after state reduction is the same. More-

over, the number of states of Non-gesture model before state reduction is 40 and after

reduction is 22 state. This in turn leads to several advantages such as saving time and

space and most importantly, makes the system appropriate to real-time applications.

From table 6.1, the recognition ratio of isolated gestures achieves best results with

97.78%. The recognition ratio (Rec.) is the number of correctly (true) recognized

gestures to the number of tested gestures (Eq. 6.25).

Recognition ratio =
# recognized gestures

# test gestures
× 100 (6.25)
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Figure 6.11: Temporal evolution of four higher probabilities of the gestures ‘3’, ‘9’,
‘Non-gesture’ before and after state reduction. The probability of Non-gesture model
before and after state reduction is the same. In the image sequences, the high priority
is gesture ‘3’ and the second priority refers to Non-gesture ‘N’ at t = 24. The final
result is gesture number ‘3’ at t = 42.

In automatic gesture spotting task, there are three types of errors called insertion

(I), substitution (S) and deletion (D).

The insertion error is occurred when the spotter detects a nonexistent gesture. It is

because the emission probability of the current state for a given observation sequence

is equal to zero. A substitution error occurs when the key gesture is classified falsely

(i.e. classifies the gesture as another gesture). This error is usually happened when

the extracted features are falsely quantized to other codewords. The deletion error

happens when the spotter fails to detect a key gesture. In order to calculate the

recognition ratio (Eq. 6.25), insertion errors are totally not considered. However,

insertion errors are probably caused due to substitution and deletion errors because

they are often considered as strong decision in determining the end point of gestures

to eliminate all or part of the meaningful gestures from observation. Deletion errors

directly affect the recognition ratio whereas insertion errors do not. However, the
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Table 6.1: Isolated gesture recognition and key spotting gesture results for gesture
numbers from ‘0’ to ‘9’ using HMMs at sliding window equal to 5.

Gesture Train Isolated gestures results Key gestures spotting results

path data Test correct Rec.(%) Test I D S correct Rel.(%)

’0’ 42 18 17 94.44 28 2 1 2 25 83.33

’1’ 42 18 18 100.00 28 0 1 1 26 92.86

’2’ 42 18 17 94.44 28 0 0 2 26 92.86

’3’ 42 18 18 100.00 28 0 0 0 28 100.00

’4’ 42 18 18 100.00 28 0 0 1 27 96.43

’5’ 42 18 18 100.00 28 0 1 1 26 92.86

’6’ 42 18 17 94.44 28 1 1 1 26 89.66

’7’ 42 18 18 100.00 28 0 0 0 28 100.00

’8’ 42 18 17 94.44 28 1 0 2 26 89.66

’9’ 42 18 18 100.00 28 0 1 0 27 96.43

Total 420 180 176 97.78 280 4 5 10 265 93.31

insertion errors affect the gesture spotting ratio directly. To take into consideration

the effect of insertion errors, another performance measure called reliability (Rel.) is

proposed by the following equation;

Rel. =
# correctly recognized gestures

# test gestures+ # Inseration errors
× 100 (6.26)

The recognition ratio and the reliability are computed based on the number of

spotting errors (Table 6.2). The gesture spotting accuracy is measured according to

different sliding window size ranging from 1 to 8 (Fig. 6.12(a)). Furthermore, the

gesture spotting accuracy is improved initially as the sliding window size increase,

but degrades as sliding window size increase further. Therefore, the optimal size of

sliding window is 5 empirically where the reliability of automatic gesture spotting

system achieves 93.31%. In Fig. 6.12(b), the number of errors decreases sharply be-

tween Sw =1 and Sw = 4. However, deletion, insertion and substitute errors begin

to increase after Sw = 4. The increase in the size of Sw means that it contains some

of observation features belong to gesture patterns and others belong to non-gesture

patterns, and hence this leads to loss of starting and ending points of meaningful

gestures. Table 6.2 illustrates the recognition rate of isolated and key gestures rela-

tive to different window size ranging from 1 to 8. Furthermore, the yield of isolated

training data is higher than isolated testing data. In addition, the overall recognition
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Figure 6.12: (a) Spotting accuracy using HMMs relative to sliding window size ranging
from 1 to 8. (b) Insertion, deletion and substitution errors relative to sliding window
size.

rate is the average of training and testing recognition rate and achieved 98.35% at

the sliding window size equal to 5. Fig. 6.13 shows the results of continuous gesture

path which contains one meaningful gestures ‘6’ where the start point at frame in-

dex = 15 and the end point at frame index = 50. Moreover, the proposed system

automatically recognizes isolated and key hand gestures with superior performance

and low computational complexity when applied to several video samples contain-

ing confusing situations such as occlusion between hands and face. Experimental

results of HMMs show that the proposed system automatically recognizes isolated

gestures with 97.78% and key gestures with 93.31% reliability. It is noted that the

proposed system achieved high recognition rate for isolated gestures and is due to a

good election for the set of feature candidates to optimally discriminate among input

patterns. Also, a careful experimental based selection of initialization parameters
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Table 6.2: Results of isolated gestures recognition and key gestures spotting with
different size of sliding window (Sw) ranging from 1 to 8 via HMMs.

Train Isolated gestures results Spotting key gestures results

Sw data Test Recognition (%) Test Error types Spotting (%)

data Train Test Overall data I D S Rec. Rel.

1 420 180 86.79 86.11 86.45 280 11 22 34 80.00 76.98

2 420 180 89.29 87.78 88.53 280 8 19 31 82.14 79.86

3 420 180 92.50 91.11 91.81 280 5 9 16 91.07 89.47

4 420 180 95.00 92.22 93.61 280 4 9 16 91.07 89.79

5 420 180 98.93 97.78 98.35 280 4 5 10 94.64 93.31

6 420 180 96.07 93.89 94.98 280 4 8 13 92.50 91.20

7 420 180 95.71 94.44 95.08 280 5 7 14 92.50 90.88

8 420 180 95.35 94.44 94.90 280 6 7 17 91.43 89.51

Figure 6.13: Image sequences contain one meaningful gesture ‘6’, where the start
point at frame 15 and the end point at frame 50. ‘N’ refers to Non-gesture.
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for the training process. In addition, HMMs have the ability to efficiently alleviate

spatio-temporal variabilities. Thus, this system is capable for real-time applications

and resolves the issues of time delay between spotting and recognition tasks.

6.4.2 Key Gesture Spotting with CRFs

CRFs are constructed using the combined features of location, orientation and veloc-

ity as described in Section 4.3. On a standard desktop PC, training process is more

expensive for CRFs since the time which the model needs ranges from 20 minutes

to several hours based on observation window. On the contrary, the inference (i.e.

recognition) process is less costly and very fast for all models with sequences of sev-

eral frames. Moreover, CRFs run at window size = 2 which means that the input

feature vector at each frame consists of five feature vectors; the current frame, the

two preceding frames and the two future frames.

Table 6.3 shows the recognition rate of isolated gestures according to the training

and the testing data with different sizes of sliding window ranging from 1 to 8. The

yield of training data is higher than testing data because the training data repre-

sents the reference of the proposed system. The gesture recognition rate is improved

initially as the window size increase, but degrades as window size increase further.

The increase in window size leads to loss of starting and ending points of meaningful

gestures. Therefore, the optimal window size is chosen as 5 empirically, where the

proposed method automatically recognizes tested gestures with 94.44%. In addition,

the overall recognition rate achieved is 96.51%.

As described in previous section, there are three types of errors called insertion,

substitution and deletion. Deletion errors directly affect the recognition ratio whereas

insertion errors do not. Here, it is to be noted that, the insertion errors affect the ges-

ture spotting ratio directly since they are probable to cause substitution and deletion

errors. These errors are estimated, and then the recognition ratio and the reliability

are calculated (Table 6.3). The gesture spotting accuracy is measured according to

different sliding window sizes ranging from 1 to 8 (Fig. 6.14(a)). It noted that the

gesture spotting accuracy is improved initially as the sliding window size increase,

but degrades as sliding window size increase further. Therefore, the optimal sliding

window size = 5 where multiple experiments have been conducted with a variety of

sliding window size on the proposed system to empirically conclude the optimal on

the outcome of the system. The reliability of CRFs spotting system is improved from

86.12% to 90.49% using a short gesture detector (Table 6.3). In Fig. 6.14(b), the

number of errors decreases sharply between Sw =1 and Sw = 4. However, deletion,

insertion and substitute errors begin to increase after Sw = 4.

Fig. 6.15 illustrates a gesture spotting result for image sequences which are de-

picted in Fig. 6.16. The label of non-gesture has the greatest probability during the

first 19 frames. Then, it is followed by the gesture ‘3’ until frame number 51. After
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Figure 6.14: (a) Spotting accuracy using CRFs relative to sliding window sizes (1-8).
(b) Insertion, deletion and substitution errors relative to sliding window size.
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Figure 6.16: Temporal evolution of the probabilities of the gesture numbers (0-9) and
non-gesture label ‘N’. The image sequences contain one key gestures ‘3’, where the
start point is at frame 19 and the end point is at frame 51. In the first 18 frames, the
probability of non-gesture label is assigned the greatest value, which means that the
start point of the key gesture is not detected. At frame 19, the start point is detected
since the higher priority is assigned to gesture labels than the non-gesture label. At
frame 51, the higher priority is non-gesture label which means that the end point of
key gesture ‘3’ is detected.
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Figure 6.17: Temporal evolution of the probabilities of the gesture numbers (0-9) and
non-gesture label ‘N’. The image sequences contain two key gestures ‘3’, ‘2’, where
the end point of meaningful gesture ‘3’ at frame 66 and the start point of meaningful
gesture ‘2’ at frame 85. Between frame 67 and frame 85, the higher priority is assigned
to non-gesture label which means that the start point of the second key gesture is
not detected. At frame 86, a new key gesture is started where the probability value
of non-gesture label is not the highest value as compared to the other gesture labels.
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Figure 6.18: Temporal evolution of the probabilities of the gesture numbers ‘2’, ‘3’,
‘6’ and non-gesture label ‘N’. The image sequences contain three key gestures ‘3’, ‘2’,
‘6’. The end point of meaningful gesture ‘3’ is at frame 37. Between frame 37 and
frame 50, the higher priority is assigned to non-gesture label which means that the
start point of the second key gesture is not detected. At frame 51, a new key gesture
has started where the probability value of non-gesture label is not the highest value
as compared to the other gesture labels. The end point of meaningful gesture ‘2’
is at frame 75. Between frame 75 and frame 91, the higher priority is assigned to
non-gesture label. The start point of meaningful gesture ‘6’ is at frame 92. The final
result of the continuous gesture path is ‘326’.
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51 frames, the transition of non-gesture increase again. Therefore, the end point is

detected at frame index 51. Fig. 6.17 shows the temporal evolution of the probabili-

ties of the gestures number (0-9) and non-gesture. The image sequence contains two

key gestures ‘3’, ‘2’, where the gesture ‘3’ ends at frame index 66 and the start point

of gesture ‘2’ is at frame index 85. The image sequences depicted in Fig. 6.18 contain

three key gestures ‘3’, ‘2’ and ‘6’. The above graph of this figure considers only the

temporal evolution of the probabilities of gestures ‘2’, ‘3’, ‘6’ and non-gesture (for

simplicity, the other curves are eliminated because their probabilities are low). The

gesture ‘3’ ends at frame index 37. Between frame index 37 and frame index 50, the

higher priority is assigned to non-gesture label which means that the start point of

second key gesture is not detected. At frame index 51, a new key gesture is started

where the probability value of non-gesture label is not the highest value as compared

to the other gesture labels. The gesture ‘2’ ends at frame index 75. Between frame

index 75 and frame index 91, the higher priority is assigned to non-gesture label. The

gesture ‘6’ starts at frame index 92 and ends at frame index 121. Moreover, the pro-

posed system automatically recognizes isolated and key hand gestures with superior

performance and low computational complexity. Additionally, the system has the

ability to deal with several video samples which contain confusing situations such as

partial occlusion among hands and face. Experimental results with CRFs show that

the proposed system automatically recognizes isolated gestures with 94.44% and key

gestures with 90.49% reliability. For more results, the reader can refer to Fig. B.5,

Fig. B.6, Fig. B.7 and Fig. B.8 in Appendix B.

6.4.3 Gesture Spotting with HMMs versus CRFs

The difference between HMMs and CRFs is that HMMs are generative models which

define a joint probability distribution to solve a conditional problem, thus focusing

on modeling the observation to compute the conditional probability. Moreover, one

HMM is constructed per label (i.e. each gesture number) where HMMs assume that

all the observation are independent. Whereas, CRFs are undirected graphical mod-

els and were developed for labeling sequential data. In addition, CRFs overcome

the weakness of directed graphical models which suffer from the bias problem as in

MEMMs [26]. Moreover, CRFs use a single model for all numbers. The HMMs use

a Left-Right Banded model based on Gaussian emission probabilities having a full

covariance matrix for each state. The HMMs parameters (i.e. the emission probabil-

ity and the state transition matrix) are learned from the same training data used by

CRFs. The HMMs models were trained by BW algorithm while CRFs were trained

using gradient ascent with the BFGS optimization technique with 300 iteration to

converge. Training process is more expensive for CRFs than HMMs since the re-

quired time to model ranges from 20 minutes to several hours based on observation

window. On the contrary, the recognition process is less costly and very fast for all
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Figure 6.19: A comparison result between HMMs and CRFs. (a) Error types (In-
sertion: I, Deletion: D, substitution: S) of CRFs and HMMs. (b) The recognition
and the reliability of HMMs and CRFs where the reliability of system considers the
insertion error in calculation.

models with sequences of several frames. The type of observed gesture is decided

with HMMs by Viterbi algorithm frame by frame.

Fig. 6.19 and Table 6.4 show the comparison between HMMs and CRFs at sliding

window size = 5. The results show that the proposed system successfully spots and

recognizes key gestures with 93.31% and 90.49% reliability for HMMs and CRFs

respectively. In addition, the number of deletion and substitution errors for CRFs

are higher than its own ideals of HMMs. Whereas the insertion error is the same for

both HMMs and CRFs. In general, the proposed HMMs is the best in term of results

for spotting gestures than CRFs. After the reduction of the states in Non-gesture

model using HMMs, the model inference is faster and the evaluation time of 66.42%

is saved.

The backward spotting techniques firstly detect the end points of gestures and

then tracking back through their optimal paths to discover the start points of gestures.

Upon the detection of the start and the end points, in-between trajectory is sent to

recognizer for recognition. So, there is a time delay between the meaningful gesture

spotting and recognition and this time delay is unacceptable for online applications.

The main contribution of gesture spotting system was to propose a forward gesture

spotting to handle hand gesture segmentation and recognition at the same time. In

addition, a stochastic methods for designing a non-gesture model from HMMs and

CRFs model with no training data for non-gesture patterns are proposed.

Fig. 6.20 presents the average spotting time of the backward and the forward

spotting for each gesture (0-9) at Sw = 5. The backward spotting technique takes a
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Figure 6.20: Average segmentation time of forward and backward spotting method.

long time than the forward spotting technique because the backward technique has

to spend additional time for backtracking to find the gesture start point. In addition,

when the average number of frames of a desired gesture increases, the difference

in evaluation time between forward and backward spotting increases. The average

number of frames for each gesture number is listed in Fig. B.1 in Appendix B.

It is shown that the proposed system has the ability to perform the hand gesture

spotting and recognition tasks simultaneously for gesture numbers from 0 to 9. Fur-

thermore, it is capable for real-time applications and solves the issues of time delay

between the spotting and the recognition tasks.

6.5 Discussion and Conclusion

The main contribution of this chapter is to propose a forward gesture spotting method

to simultaneously handles hand gesture spotting and recognition of numbers (0-9).

To spot meaningful gestures of numbers accurately, a stochastic method was proposed

for designing a non-gesture model with no training data. The non-gesture model with

HMMs has been constructed by copying the states of all gesture models, each with

an output observation probabilities. In CRFs, all the patterns other than gesture

patterns are modeled by adding a label for non-gesture patterns. The non-gesture

label is created using the weights of transition and state features function of initial

CRFs. Moreover, the non-gesture model provides confidence measure which is used

as an adaptive threshold to find the start and the end points of meaningful gestures.

The number of states for non-gesture model with HMMs increases as the number

of gesture model increases. Furthermore, an increase in the number of states does not

affect the recognition rate of the system and moreover it is a waste of time and space.
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This problem was alleviated using relative entropy which merges similar probability

distributions states. As a result, the number of states was decreased from 40 to

22 states, and in consequence, the model inference was faster and the evaluation

time was saved ≈ 66.42%. On the other hand, it is difficult to spot and recognize

short gestures with CRFs. It is because short gestures have fewer samples than

long gestures. In order to avoid this problem, the weights of self-transition feature

functions are increased. As a result, the reliability of CRFs method is improved from

86.12% to 90.49%

Another contribution was to use a forward spotting method. This method was

based on two main modules: spotting module and recognition module. In spotting

module, the sliding window was employed to calculate the observation probability of

all gesture labels and non-gesture label (i.e. detect the start and the end points of

meaningful gestures). The sliding window contains a number of sequential observa-

tions instead of a single observation. It is used to reduce the impact of observation

changes for a short interval which are caused by incomplete feature extraction. The

optimal value of sliding window is determined empirically with value 5 where the sys-

tem shows the best performance in term of results. The gesture recognition module is

activated after detecting the start point from continuous image sequences. The main

objective is to perform the recognition process accumulatively for the segmented parts

until it receives the end signal of key gestures and at this point, the observed gesture

is recognized. Moreover, this method has solved the issues of time delay between the

spotting and the recognition task. Experimental results show that the proposed sys-

tem successfully spots and recognizes meaningful gestures with 93.31% and 90.49%

reliability for HMMs and CRFs, respectively.





Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

This dissertation investigated the problem of spotting and recognition of meaning-

ful gestures which are embedded in the input video stream. One of such problems

which arise in hand gesture recognition is to spot meaningful gestures from the con-

tinuous sequence of hand motions. Another problem is due to the variability in the

same gesture even for the same person. Most of the approaches have used the back-

ward spotting technique which causes inescapable time delay between the meaningful

gesture spotting and recognition tasks.

The aim of the work was to propose a forward gesture spotting system to handle

hand gesture segmentation and recognition at the same time. This system modeled

gesture patterns discriminately and non-gesture patterns effectively. In addition,

a stochastic method for designing a non-gesture model was proposed using HMMs

versus CRFs models with no training data for non-gesture patterns. The non-gesture

model provided a confidence measure which has been used as an adaptive threshold

to find the start and the end points of meaningful gestures. Furthermore, the issues

of time delay between the spotting and the recognition task has been solved.

The main findings of the thesis are summarized one by one in a sequel. Firstly, the

fundamental techniques which build the basis for understanding this thesis have been

briefly discussed. Different color models were explained; and after that, segmentation

technique was exploited to segment hands and face which are biased to parametric

modeling technique (e.g. Normal Gaussian distribution and Gaussian Mixture Mod-

els). A robust method for hand tracking in a complex environment using mean-shift

algorithm in conjunction with depth map has been proposed. This structure correctly

extracted a set of hand postures to track the hand motion and achieved accurate and

robust hand tracking. Mean-shift analysis used the gradient of Bhattacharyya co-

efficient as a similarity function to derive the candidate of the hand which is most

similar to a given hand target model. Depth information not only narrow down the

search for objects of interest but it also increases the processing speed. Furthermore,
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the depth information were used to completely solve complex background problem

(i.e. neutralize complex background), as well as illumination variation. In case of

the ambiguities (i.e. overlapping) between the hands and face, the depth information

has successfully identified the objects under occlusion. Moreover, the optimization

technique for mean-shift iteration reduced the computational time ≈ 20 times, which

in turn made the system capable to real-time application.

A database contains 2440 video samples for gesture symbols where it captured by

three persons on a set of twenty six alphabets and ten numbers. The input images were

captured by Bumblebee stereo camera system which has 6 mm focal length at 15FPS

with 240 × 320 pixels image resolution, Matlab implementation. Bumblebee stereo

camera was used for acquisition of 2D images along with depth map. The experiments

were carried out for an isolated gesture recognition and meaningful gesture spotting

test. The isolated gestures have been handled according to two different classification

techniques: a generative model such as HMMs and discriminative models like CRFs,

HCRFs and LDCRFs. One HMM was constructed per gesture (i.e. each alphabet

or number). Whereas, CRFs have been built using a single model for all reference

gestures (i.e. one model for all alphabets and numbers). So, there is a trade-off for

each gesture according to the weights of feature function. The HMMs parameters

(i.e. the emission probability and the state transition matrix) have been learned from

the same training data for CRFs. The HMMs were trained by BW algorithm while

the CRFs were trained using gradient ascent with BFGS optimization technique.

Training process was more expensive for CRFs than HMMs on a standard desktop

PC since the time which CRFs need ranges from 20 minutes to several hours based

on observation window. On the contrary, the recognition process is less costly and

very fast for all models with sequences of several frames (i.e. requires a few seconds

to recognize the sequence of frames).

One of main contribution using HMMs was to examine the capabilities of com-

bined features of location, orientation and velocity for gesture recognition with respect

to Cartesian and Polar coordinates. k-means clustering algorithm quantized the ex-

tracted features and employed them for the HMMs and CRFs codewords. It is noted

that the effectiveness of these features yields reasonable recognition rates for alphabets

and numbers. The results showed that the proposed system successfully recognizes

isolated hand gestures with 94.75% recognition rate using (Lc, Lsc, θ1, θ2, θ3, V ) fea-

tures. In addition, there was no large gap between LRB and LR topologies in term

of results but the results of Ergodic topology were not promising when compared to

LRB and LR topologies. On the other hand, LRB achieved promising results, and in

consequence, it is employed as a basic model to carry out the recognition task. For

discriminative models, CRFs, HCRFs and LDCRFs with different numbers of window

size ranging from 0 to 7 have been applied and tested to decide the best in terms of

their impact on gesture recognition. It is concluded that the optimal window size =

4 set empirically, when multiple experiments have been conducted with a variety of
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window size to conclude the optimal for the system outcomes. The proposed system

has automatically recognized tested gestures with 87.19%, 92.44%, 96.14% for CRFs,

HCRFs and LDCRFs, respectively.

In contrast to generative and discriminative models, HMMs was the best in terms

of results than CRFs, HCRFs and LDCRFs at window size = 0. The improvement

in performance of discriminative structure for trained data was increased when the

window size increases. As a result, LDCRFs was higher than HMMs according to the

training and the testing data set at window size equal to 4. Our results showed that

the overall recognition rates were 91.51%, 95.22%, 96.91% and 97.99% for CRFs,

HCRFs, HMMs and LDCRFs, respectively. It is noted that the proposed system

achieved high recognition rate due to a high segmentation accuracy of hand through

the use of depth information. In addition, a good election for the set of feature

candidates which optimally discriminate among input patterns. Also, a carefully

experimental based selection of initialization parameters for training process. Above

all, HMMs, CRFs, HCRFs and LDCRFs classification techniques have the ability to

efficiently alleviate spatio-temporal variabilities.

To spot meaningful gestures of numbers from 0 to 9 accurately, a stochastic

method was proposed for designing a non-gesture model without any training data

for non-gesture patterns. The non-gesture model provides confidence measures which

are used as an adaptive threshold to select the desired gesture model or spotting

meaningful gestures (i.e. find the start and the end points of meaningful gestures

which are embedded in the input video stream). The start and the end points of

gestures were based on the observation probability value which was determined by

the difference of observation probability (DP value) of maximal gesture models and

non-gesture model. The transition from non-gesture to gesture occurs when the DP

value changes from negative to positive (i.e. meaningful gestures start). Similarly,

the transition from gesture to non-gesture occurs at the time when the DP value

changes from positive to negative (i.e. meaningful gestures end). These observa-

tions have been employed as a rule to detect the start and the end point of gestures.

The number of states for non-gesture model with HMMs increases as the number of

gesture model increases. Furthermore, an increase in the number of states does not

affect the recognition rate of the system and moreover it is a waste of time and space.

This problem was alleviated using relative entropy which merged similar probability

distributions states. As a result, the number of states was decreased from 40 to 22

states, and in consequence, the model inference was faster and the evaluation time

was saved ≈ 66.42%. The reliability of CRFs methods have been improved by increas-

ing the weights of self-transition feature for a short gestures to deal efficiently with

spatio-temporal variabilities. Thus, the system has been appropriated to real-time

implementations.

Another contribution was to use a forward spotting method in conjunction with

different size of sliding window ranging from 1 to 8. Forward spotting was based on
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two main modules: spotting module and recognition module. In spotting module,

the start and the end points of meaningful gestures have been detected by DP value.

Moreover, the gesture recognition module has been activated after detecting the start

point from continuous image sequences. The main objective was to perform the

recognition process accumulatively for the segmented parts until it receives the end

signal of meaningful gestures. Furthermore, the comparison results between HMMs

and CRFs were in the best at sliding window size equal to 5 empirically. The results

showed that the proposed system successfully spotted and recognized meaningful

gestures which are embedded in the input video stream with 93.31% and 90.49%

reliability for HMMs and CRFs, respectively.

7.2 Future Work

The main objective of the proposed system was to make gesture spotting and recog-

nition beneficial in a wide range of applications which impose very few restrictions on

the users. We think the proposed system represents an important step towards achiev-

ing that goal, however there is still much room for improvement. The future work will

focus on improving hand localization which will lead to extract more meaningful hand

features and matching score. Specially at this point will be to use Adaboost-based

face detector that has a key role in locating the left and right hands with respect to

the face and the body of the gesturer. Adaboost technique can also be employed in

3D gesture recognition as a good choice to judge the quality of different features sets,

combine these sets and finally distill the optional subsets.

The representation of mean-shift algorithm has proven to be robust when dealing

with changes in shape, size, partial occlusion as well as stop and go conditions. In

order to consider the complete occlusion, an adaptive threshold can be assigned to the

similarity measure, in addition to adaptively skip a number of frames. The risk here

is to lose the true position of the target. Moreover, it is also possible to combine the

mean-shift with Kalman filter as another solution to alleviate the occlusion problem.

Here, the measurement vector is determined based on mean shifts and then the next

hand location is predicated by Kalman filter to predict and correct the states of linear

processes.

We also expect an ongoing increase of work on extending the proposed non-gesture

model with CRFs to LDCRFs. This expectation is build on try-and-errors of the

optimization parameters of LDCRFs model. In addition, the extended system can

included the words and sentences of sign language along with facial features of the

face. The objective behind the use of these multi-model system is to envision a wide

range of real-time applications and addresses the realistic situation. Furthermore,

the consideration of grammar is an important feature for continuous sign language

recognition. Moreover, the grammar will predict the appearance of the sign in the

context of the previously seen observations.
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Each gesture can begin and end with a specific hand shape (i.e. posture). So, in

order to detect and distinguish the gestures/postures with different hand shapes and

trajectories, the integration of posture and gesture can be considered for the utterance

data set. The motivation behind integration is to extract multiple signs at the same

time driven from different approaches (i.e. from gesture and posture systems) and

results in the inference of a new symbol.

The future research will also address the hand gestures by using fingertip trajec-

tory instead of hand centroid points to spot and recognize them with multi-camera

system. The aim is to consider both local and global hand motions, readiness of

the system to work in the event of loss of depth information from any camera, and

represents the hand gesture in small space which makes the system more realistic for

the applications. In addition, the gesture can be divided into subunits to speedup the

computational time for obtaining the best matching gestures. The main challenge

here is the decision of the number of subunits and the models to employ for those

subunits.
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Appendix A

Data Processing

This appendix explores three parts; skin and non-skin color database, clustering the

features which are extracted from hand gesture path, and mean-shift procedure for

the hand trajectory.

A.1 skin and non-skin database

In training data set, 18972 skin pixels from 36 different races persons and 88320 non-

skin pixels from 84 different images are used. The skin images which contain human

subjects have been downloaded from the internet. The database of skin images used

(a)                                                                                   (b)

Figure A.1: Cropped images for skin and non-skin pixels that were collected from
the World Wide Web. (a) Database of skin pixels for different races. (b) Database of
non-skin pixels for different background.

in the work is shown in Fig. A.1(a). Similarly, the non-skin images (i.e. background

regions) from the internet are collected and modeled for the system. The database

of non-skin images is shown in Fig. A.1(b). As discussed in Section 4.1.1, the skin
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color is localized in a small region of the chrominance (Cb, Cr) space as can be seen

in Fig. A.2(a). So, GMMs technique begins with modeling of skin by using skin

database where a variant of k-means clustering algorithm performs the model training

to determine the mean vector, covariance matrix and mixture weight. The number of

Gaussian components relies on the skin database used and is automatically estimated

by a constructive algorithm [86] which uses the criteria of maximizing likelihood

function.
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Figure A.2: Distribution values of skin and non-skin pixels projected onto the (Cb, Cr)
plane for training data. (a) Distribution values of skin pixels for training data where
the skin color is localized to a small region in the (Cb, Cr) chrominance space. (b)
Location of the mean points according to three components of Gaussian Mixture
Models for skin database. (c) Non-skin pixels distribution for training data.
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A.2 Cluster Hand Trajectory

This part illustrates the cluster trajectories for gesture numbers (0-9) according to

(Lc, Lsc, θ1, θ2, θ3, V ) features in Cartesian coordinate. In this manner, gesture is rep-

resented as an ordered sequence of feature vectors which are projected and clustered

using k-means algorithm in space dimension to obtain discrete codewords that are

used as an input to HMMs and CRFs [124,126,127].
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Figure A.3: Cluster trajectories in Cartesian system for gesture numbers according
to (Lc, Lsc, θ1, θ2, θ3, V ) features. The middle and bottom graphs are the same of the
top graph after eliminating the different cluster trajectories. Here, gesture paths ‘0’
and ‘6’ have the same cluster indices until frame 33.
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Fig. A.4 shows the Cluster trajectories of gesture path ‘3’ and ‘5’, which are projected

according to (Lc, Lsc, θ1, θ2, θ3, V ), (ρc, ϕc) and (θ1, θ2, θ3) features, respectively. It is

noted that the cluster trajectories for gesture paths ‘3’ and ‘5’ in the top graph nearly

have the same cluster indices from frame 21 to frame 43. So, this proves the reality

of combined features (Lc, Lsc, θ1, θ2, θ3, V ) in Cartesian coordinate.
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Figure A.4: Cluster trajectories for gesture ‘3’ and gesture ‘5’ according to features
(Lc, Lsc, θ1, θ2, θ3, V ), (ρc, ϕc) and (θ1, θ2, θ3), respectively. The cluster trajectories
which are depicted in the middle and bottom graphs are varying than the top graph,
notably in the later parts of gesture paths ‘3’ and ‘5’.
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A gesture is spatio-temporal pattern which may be static, dynamic or both. So,

there is a quite bit of variability (i.e. in shape, trajectory and duration) in the same

gesture even for the same person. The following figure illustrates varying trajectories

of gesture ‘3’ for the same person. The cluster trajectories of these gestures have the

same cluster indices but with slight variations.
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Figure A.5: Cluster trajectories for the gesture path ‘3’ with respect to different five
video samples. It is noted that the same gesture have similar cluster indices but with
slight variations in their cluster trajectories (i.e. spatio-temporal variabilities).
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A.3 Mean-shift Analysis

According to Section 4.2.1, mean-shift iteration uses the gradient of Bhattacharyya

coefficient as a similarity function to indicate the direction of hand’s movement. More-

over, the mean-shift procedure is defined recursively and performs the optimization

to compute the mean-shift vector.
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Figure A.6: Tracking result where at frame 109, both hands are correctly determined
notably in case of overlapping and partial occlusion. In top figure, the number of
mean-shift iteration is 1.61 per frame for both left and right hands, which in turn
makes the system capable for real-time implementation.



Appendix B

Classification Results

This appendix explores two parts. The first part is related to some results of isolated

gestures using HMMs and LDCRFs while the second part shows some results of

spotting meaningful gestures.

B.1 Isolated gestures

Sign Segmeted parts Average length Recognition by HMMs Problem

0 46 93.33% Confusion with G and 6

1 19 100.00%

2 39 96.67% Confusion with Z

3 42 100.00%

4 47 100.00%

5 44 93.33% Confusion with S

6 35 96.67% Confusion with 0

7 25 100.00%

8 46 96.67% Confusion with 3

9 34 100.00%
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Figure B.1: Hand gesture paths for gesture numbers from 0 to 9 with segmented
parts.
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Sign Segmeted parts Average length Recognition by HMMs Problem

A 39 100.00%

B 58 100.00%

C 25 93.33% Confusion with G and 6

D 44 96.67% Confusion with 0

E 41 100.00%

F 20 100.00%

G 31 93.33% Confusion with C and 6

H 34 96.67% Condusion with K

I 11 100.00%

J 20 100.00%

K 64 96.67% Confusion with H

L 18 100.00%

M 48 100.00%
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Figure B.2: Hand gesture paths for alphabets from A to M with segmented parts.
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Sign Segmeted parts Average length Recognition by HMMs Problem

N 35 100.00%

O 36 100.00%

P 26 96.67% Confusion with B 

Q 26 100.00%

R 60 96.67% Confusion with B

S 39 93.33% Confusion with 5

T 39 100.00%

U 37 100.00%

V 25 96.67% Confusion  with W

W 38 96.67% Confusion with U

X 35 100.00%

Y 32 100.00%

Z 32 96.67% Confusion with 2
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Figure B.3: Hand gesture paths for alphabets from N to Z with segmented parts.
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Figure B.4: Temporal evolution of the seven higher probabilities of the gestures ‘C’,
‘G’, ‘S’, ‘0’, ‘4’, ‘5’ and ‘6’ using LDCRFs. In the image sequences, the highest priority
is gesture number ‘6’ at frame 21 as well as in frame 31, and at frame 36 the result
is gesture number ‘6’.
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B.2 Gesture spotting

Forward spotting is based on two main modules; spotting module and recognition

module. In spotting module, the sliding window is employed to detect the start

and the end points of meaningful gestures. The gesture recognition module is fired

after detecting the start point to accumulatively perform the recognition process until

receiving the end signal of meaningful gesture.
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Figure B.5: Temporal evolution of the probabilities of the gestures number (0-9) and
non-gesture label ‘N’. The image sequences contain one meaningful gestures ‘6’. At
frame 15, the start point is detected since the highest priority is assigned to gesture
labels than the non-gesture label. At frame 50, the highest priority is assigned to non-
gesture label which means that the end point of meaningful gesture ‘6’ is detected.
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Figure B.6: Temporal evolution of the probabilities of the gestures number (0-9) and
non-gesture label ‘N’. The image sequences contain two key gestures ‘6’ ‘2’, where the
end point of gesture ‘6’ is at frame 56 and the start point of gesture ‘2’ is at frame
76. In the first 55 frames, the probability of non-gesture label is not the maximum
value, which means that the end point of the key gesture is not detected. At frame 56,
the first key gesture ‘6’ ends where the non-gesture label has a high probability than
other gesture labels. Between frame 56 and frame 75, the highest priority is assigned
to non-gesture label, which means that the start point of the second key gesture is
not detected. At frame 76, a new key gesture is started, where the probability value
of non-gesture label is not the highest value as compared to the other gesture labels.
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Figure B.7: Temporal evolution of the probabilities of the gestures number ‘4’, ‘5’,
‘8’ and non-gesture label ‘N’. The image sequences contain three key gestures ‘5’, ‘8’,
‘4’. The end point of gesture ‘5’ is at frame 41. Between frame 42 and frame 56, the
highest priority is assigned to non-gesture label, which means that the start point of
the second key gesture is not detected. At frame 57, a new key gesture is started
where the probability value of non-gesture label is not the highest value as compared
to the other gesture labels. The end point of gesture ‘8’ is at frame 93. Between
frame 94 and frame 102, the highest priority is assign to non-gesture label. The start
point of gesture path ‘4’ is at frame 103. The final result of the continuous gesture
path is ‘584’.
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Figure B.8: Temporal evolution of the probabilities of the gestures number ‘5’, ‘6’,
‘7’ and non-gesture label ‘N’. The image sequences contain three key gestures ‘7’, ‘6’,
‘5’. The end point of gesture ‘7’ is at frame 21. Between frame 22 and frame 34, the
highest priority is assigned to non-gesture label, which means that the start point of
the second key gesture is not detected. At frame 35, a new key gesture is started
where the probability value of non-gesture label is not the highest value as compared
to the other gesture labels. The end point of gesture ‘6’ is at frame 57. Between
frame 58 and frame 73, the highest priority is assign to non-gesture label. The start
point of gesture path ‘5’ is at frame 74. The final result of the continuous gesture
path is ‘765’.
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