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SUMMARY

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal
outcome. To improve understanding of sequential microbiome changes during
PDAC development we analyzed mouse models of pancreatic carcinogenesis
(KC mice recapitulating pre-invasive PanIN formation, as well as KPC mice reca-
pitulating invasive PDAC) during early tumor development and subsequent
tumor progression. Diversity and community composition were analyzed de-
pending on genotype, age, and gender. Both mouse models demonstrated
concordant abundance changes of several genera influenced by one or more of
the investigated factors. Abundance was significantly impacted by gender, high-
lighting the need to further elucidate the impact of gender differences. The find-
ings underline the importance of the microbiome in PDAC development and
indicate that microbiological screening of patients at risk and targeting themicro-
biome in PDAC development may be feasible in future.
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INTRODUCTION

The outcome of pancreatic cancer patients is still dismal and pancreatic ductal adenocarcinoma (PDAC) is

expected to be the second leading cause of cancer-related deaths in the United States by 2030.1 Further

understanding of mechanisms contributing to PDAC development is needed to facilitate the development

of novel screening tools and to improve therapeutic approaches. The risk to develop PDAC has been

related to several risk factors such as obesity, chronic pancreatitis and smoking. In addition, alterations

of the microbiome were reported to induce and modulate the disease or influence progression.2,3

In human PDAC, changes of the oral and also the fecal microbiota correlated with tumor progression.4–6 Of

interest, fecal microbiota signatures as a non-invasive diagnostic tool demonstrated an intriguing prog-

nostic capacity to detect PDAC in humans in two independent cohorts.7,8 Also, the pancreas itself was

shown to harbor its own microbiota.9 Recently it was demonstrated that the intratumoral microbiota of

PDAC long-term survivors had a higher a-diversity compared to short-term survivors and a characteristic

microbiome signature was prognostic for longer survival.10 Transplantation of the respective human fecal

microbiota into mice showed its capability to modulate tumor progression, associated with altered recruit-

ment and activation patterns of CD8+T-cells in the tumor microenvironment as possible mediator.

In line with these human data, several studies used murine in vivomodels to improve the understanding of

underlying PDAC mechanisms. For example, one of the oral pathogens associated with PDAC, Porphyro-

monas gingivalis, was demonstrated to accelerate the development of pancreatic intraepithelial neoplasia

(PanIN) lesions in the established KCmouse model, most likely via enhancing transforming growth factor-b

(TGF- ß) signaling.11

Distinct microbiome signatures have been shown to alter the immunogenic tumor microenvironment by

influencing M1 macrophage and TH1 differentiation as well as CD8+T cell activation.12 This implies that

certain immunophenotypes can be generated by therapeutic intervention in the microbiome. It is impor-

tant to note that nearly all available studies so far have investigated microbiota changes in patients already
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diagnosed with PDAC or in tumor-bearing mice, recapitulating an advanced stage of the disease. Subse-

quently, the identified microbiome signatures were then used for in vitro and in vivo modeling to demon-

strate that the observed changes indeed influence tumor progression. However, these findings only

partially reflect the proposed disease continuum from preneoplastic lesions to cancer.

In this context, changes of gut microbiota networks in the adenoma-to-carcinoma sequence observed in

colorectal cancer highlight the importance to further elucidate this dynamic process that might be the basis

for an early diagnostic tool in the future.13 Recent studies have investigated the microbiota in potentially

preneoplastic cystic lesions of the pancreas.14,15 Of interest, intra-cystic bacterial 16S rRNA gene content

differed significantly between intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasms

and serous cystic neoplasms, specifically increasing in IPMN with higher grade of dysplasia where also oral

taxa were enriched.14 This observation underscores the need to elucidate the role of microbiota during the

progression from pancreatic precursor lesions to PDAC.

For the in vivo analysis of pancreatic cancer development, the established KC model harboring mutated

Kras which recapitulates PanIN progression, and the KPC model with mutated Kras and Trp53 frequently

developing invasive PDAC are widely used.16,17 Both complimentary models offer the opportunity to

improve the understanding of the dynamic process of early carcinogenesis as well as later cancer develop-

ment and progression. In addition to the impact of these genotypes, the temporal dynamics and potential

gender effects in both models were examined to identify microbiome signatures contributing to cancer

development and possible age- and gender-dependent confounders.
RESULTS

In total, 191 fecal samples of the three genotypes (Pdx1-Cre, n = 17; KC, n = 20; KPC, n = 28) collected at the

three indicated time points (5, 11, 17 weeks) were analyzed. Following sequencing and rarefying of library

sizes, 1560 phylotypes were observed. The phylotypes belonged to 99 genera and 10 phyla, with sequences

of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Deferribacteres comprising approxi-

mately 99% of the total bacterial community (Tables S1 and S2).
Similarities in the bacterial community assemblages

Formal comparisons between the global bacterial assemblages were performed using a three-way design

to analyze the influence of the factors mouse genotype (Pdx1-Cre versus KC versus KPC), age and gender.

PERMANOVA revealed that all three factors had a statistically significant influence on the community struc-

ture on the phylotype level (genotype, pseudo-F = 6.52, p = 0.001; gender, pseudo-F = 6.26, p = 0.001; age,

pseudo-F = 4.53, p = 0.001). This difference retained significance in all three parameters at low taxonomic

ranks up to the family level. At higher taxonomic ranks, only age had a significant impact (Table S3). More-

over, a statistically significant interaction in the effects of genotype and gender was observed (up to the

genus level). Otherwise, a clear interaction was seen in the effects of genotype and age up to the class level.

These significant effects are also indicated in the non-metric multidimensional scaling (nMDS) plot

(Figure 1).

Pairwise tests revealed that the differences between Pdx1-Cre versus KC or KPC mice were more pro-

nounced compared to differences between KC versus KPC mice (Table 1). During aging the most striking

changes were observed between mice of 5 and 11 weeks of age whereas further changes in older mice re-

mained significant but were less pronounced.

Pairwise analysis of the interactions between the different factors revealed differences between female and

male mice. For example, the communities were significantly different on the genus and family level in male

KC and KPC mice only (Table S5). Moreover, assemblages in Pdx1-Cre versus KC or KPC mice were signif-

icantly different at all analyzed ages, including 5 weeks of age when morphological differences within the

pancreas were minimal. Assemblages between KC versus KPC mice were significantly different only after

17 weeks (Table S5).
The diversity of fecal communities depends on genotype, age and gender

Further differences in the microbial communities were indicated by one-way analysis of a-diversity mea-

sures (Tables S6 and S7). Phylotype richness was significantly higher in Pdx1-Cre compared to KPC mice
2 iScience 26, 106841, June 16, 2023



Figure 1. - Differences in global bacterial community structures

In Pdx1-Cre, KC and KPCmice of 5, 11 and 17 weeks of age (or date of death see Table S4) the global bacterial community

structure was assessed by non-metric multidimensional scaling (nMDS). The global community structure is based on

standardized genus abundance data and similarities were calculated using the Bray–Curtis similarity algorithm. The

community structures influenced by genotype, age (1 = 5 weeks, 2 = 11 weeks and 3 = 17 weeks) and gender are indicated.

Gender: M = male, F = female.
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(562 G 49 versus 533 G 83 phylotypes, p = 0.0391), with KC mice communities adopting mean values

(544 G 59). Also, older mice showed a higher phylotype richness compared to younger animals (554 G

82 versus 529 G 60 phylotypes, p = 0.036) and females had a higher phylotype richness than male mice

(557 G 52 versus 536 G 77 phylotypes, p = 0.0224). Significant differences in diversity were observed be-

tween female and male mice (Shannon index H= 4.301 G 0.28 versus 4.192 G 0.366, p = 0.0207; Simpsons

index 1-l = 0.9711 G 0.014 versus 0.9580 G 0.021, p = 0.0363 (Table S6 and Figure S1).
iScience 26, 106841, June 16, 2023 3



Table 1. Factors influencing global community structures as indicated by PERMANOVA

Factor Groups compared

Phylotype Genus Family Order Class Phylum

t p(MC) t p(MC) t p(MC) t P(MC) t p(MC) t p(MC)

Genotype KC, KPC 1.70 0.003 1.66 0.018 1.54 0.045 1.04 0.325 1.03 0.335 0.43 0.844

KC, Cre 2.73 0.001 2.38 0.001 2.28 0.006 1.68 0.054 1.69 0.040 0.65 0.666

KPC, Cre 3.12 0.001 2.71 0.001 2.60 0.002 1.33 0.146 1.34 0.156 0.79 0.502

Age 1, 2 2.23 0.001 2.67 0.001 2.91 0.001 3.27 0.001 3.28 0.001 4.86 0.001

1, 3 2.52 0.001 2.50 0.001 2.60 0.001 2.91 0.002 2.91 0.002 4.14 0.001

2, 3 1.48 0.011 1.80 0.009 1.86 0.011 1.30 0.158 1.31 0.146 0.84 0.504

Gender M, F 2.50 0.001 2.62 0.001 2.55 0.001 1.64 0.043 1.60 0.053 1.24 0.202

The influence of genotype, age and gender on microbial structures was calculated by PERMANOVA (pairwise test). The t statistics and the Monte Carlo pvalues

are given for each pair of groups of the factors performed at different taxonomic levels (from phylotype to phylum). Age: 1 = 5 weeks, 2 = 11 weeks and 3 =

17 weeks (or date of death); gender: M = male, F = female.
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More detailed differentiations could be obtained through two-way ANOVA analyses, which showed that

diversity increased with age in Pdx1-Cre but not in KC or KPC mice (Figure 2 and Table S8) such that

17-week-old Pdx1-Cre mice exhibited a significantly higher diversity compared to KC or KPC mice at the

same age.

In addition, two-way analysis revealed that whereas in female mice, the fecal communities of different ge-

notypes did not differ significantly in diversity, specifically male KPC mice showed a rather low diversity,

which was significantly lower than that of female mice (Figure 2 and Table S9). As diversity increased

with age in Pdx1-Cre mice, it was also analyzed if this increase was influenced by gender. As shown in Fig-

ure 2 and Table S10 female Pdx1-Cre mice showed a significant increase in fecal microbial community di-

versity (Shannon and Simpsons index) and evenness and a trend in phylotype richness (p = 0.066) with

increasing age whereas a significant increase in phylotype richness only was visible in male Pdx1-Cre mice.
The microbial community composition depends on genotype, age and gender

Differences in microbial community composition depending on the different genotypes, age and gender

were initially evaluated independently by one-way analyses. Out of the 99 identified genera or genus level

taxa (Table S2), 74 were observed with a prevalence of >20% in at least one subgroup and thus subject to a

differential abundance analysis. Overall, 59 out of 74 genera (79.7%) were influenced by at least one of

these factors as summarized in Figure S2.

Out of the 15 genera and genus level taxa mainly influenced by age, the strongest effect was observed for

Turicibacter, where the mean abundance increased by one order of magnitude (Figure 3 and Table S11).

Ten genera and genus level taxa were mainly influenced by genotype (Figure 3 and Table S12). The

most pronounced effects were observed for Monoglobus, which was practically absent from KPC mice

and showed roughly one order of magnitude lower abundance in KC compared to Pdx1-Cre mice. Like-

wise, Enterocloster, Vampirovibrio and Saccharibacteria were all found in Pdx1-Cre mice in a mean abun-

dance at least twice or thrice that of KC or KPC mice. Genera influenced by gender were scarce. Ligilacto-

bacillus and Acetatifactor seemed to be influenced by gender only, being slightly more abundant in female

mice. However, for some genera that were also influenced by genotype such as Faecalibaculum (6-fold

higher mean abundance in male mice) or by age such as Bifidobacterium (more than 10-fold higher

mean abundance in male mice), marked gender influences were visible. Overall, 18 genera and genus level

taxa were significantly influenced by gender (Figure 3 and Table S13). Fifteen genera and genus level taxa,

respectively, were influenced by age and genotype and 10 were affected by all three factors. For example,

three Bacteroidales genera, i.e., Bacteroides, Prevotella, and Parabacteroides, showed similar effects with

increasing abundances both with age and from Pdx1-Cre over KC to KPCmice, with higher levels in females

compared to male mice.

A phylogenetic analysis indicated that Bacteroidales were typically affected by all three factors and Erysi-

pelotrichiaceae were prone to be influenced by gender (Figure S3). In contrast, Proteobacteria were mainly
4 iScience 26, 106841, June 16, 2023
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Figure 2. - Fecal bacterial community diversity

Diversity is indicated (from top to bottom) by total phylotype number, Shannon diversity (H0), Pielou’s evenness (J0) and Simpsons diversity (1-l), respectively.

Analysis was performed by two-way ANOVA analysis using genotype (left), genotype and gender (middle) or age and gender (left) as factors (see also

Tables S8–S10 for detailed data). Statistically significant differences between animals with the same genotype (Pdx1-Cre, KC and KPC) but different age (1 =

5 weeks, 2 = 11 weeks and 3 = 17 weeks), or of animals with the same age, but distinct genotypes is indicated on the left. Statistically significant differences

between animals of distinct gender (M, F) of the genotypes (Pdx1-Cre, KC or KPC) are indicated in the middle. Statistically significant differences between

animals of different age (1 = 5 weeks, 2 = 11 weeks or 3 = 17 weeks) and gender (M, F) of Pdx1-Cre mice are indicated on the right. Significance is shown as

*p<0.05 or **p<0.01. The mean is indicated by + and the median by a black line. The box represents the interquartile range. The whiskers extend to the

upper adjacent value (largest value = 75th percentile +1.5 x IQR) and the lower adjacent value (lowest value = 25th percentile - 1.5 x IQR) and dots represent

outliers. Gender: M = male, F = female.
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influenced by genotype (Figures 3 and S3). Various Clostridiales genera were influenced by both genotype

and age. However, whereas for example Anaerotruncus and Anaerotignum of the Ruminococcaceae and

Lachnospiraceae were of lower abundance in Pdx1-Cre mice, Monoglobus and Enterocloster from the

same families exhibited a higher abundance in Pdx1-Cre mice. Therefore, the influence of the genotype

was clearly observed at the genus level, but to a lesser extent at higher phylogenetic levels (Figure 4). Simi-

larly, genotype effects were observed for various genera and families inside the Bacteroidales, but not at

class level for the Bacteroidales itself (Figure 4).

As possible interactions between the different factors could be expected, we performed three-way ANOVA

analysis on the genus level. Here, the results of the one-way analysis could be largely confirmed. In 44 of the

46 cases (96%) where a comparison by one of the methods had indicated a significant difference in abun-

dance to be caused by one factor with p<0.001, the secondmethod also indicated a significant influence. In

addition, in 73 of the 90 cases (81%) where a significant influence of one of the factors with p<0.01 was

observed by one method, the second method gave concordant results (Figure 5).

In a few cases, a significant interaction between factors was observed. For Bacteroides all three factors

significantly influenced its relative abundance (Figure 5). The abundance increased from Pdx1-Cre over

KC to KPC mice at nearly all time points and in both males and females (Figure 6). Interactions were

observed for Parabacteroides and specifically Prevotella between genotype and gender (Figure 6). There

was a pronounced effect of genotype on the abundance of Parabacteroides in female, however, only a poor

effect in male mice. In case of Prevotella, a higher abundance was observed in female KC and KPC

compared to Pdx1-Cre mice, whereas no such effect was visible in male mice.

A strong interaction was also observed between gender and genotype for the abundance of Catabacter.

Whereas female mice of the different genotypes harbored similar abundances, the abundance of this

genus was dramatically higher in male Pdx1-Cre compared to male KC or KPC mice. In the Oscillibacter

genus strong interactions were visible between genotype and gender but even more drastically between

genotype and age. As shown in Figure 6 only male but not female Pdx1-Cre mice showed higher abun-

dances compared to KC or KPC animals and only in aged mice an effect of the genotype was visible.
Differentially distributed species level taxa

Three-way analyses have also been performed to evaluate significant differences in distribution of species

level taxa. This has been done specifically to distinguish between different Bacteroides, Duncaniella, Para-

bacteroides and Prevotella species, as well as between different groups of unclassified Eggerthellaceae,

unclassified Lachnospiraceae, unclassified Muribaculaceae and unclassified Ruminococcaceae (see Fig-

ure S4). In case of the Bacteroides genus, nine of the clusters of similar sequence were observed in

>20% of the samples and most of them were influenced by age, genotype and gender, with increasing

abundance with age, increasing abundance from Pdx1-Cre over KC to KPC mice and a higher abundance

in femalemice indicating that most Bacteroides spp. behaved similarly. Parabacteroides distasonis showed

a very similar behavior (Figure S5 and Table S14).

Generally, only in a few cases the 16S rRNA gene sequence gave an indication of the harboring species and

frequently, closely related isolates of a defined species were not available. For example, 15 prevalent

sequence types indicating the presence of different Duncaniella species were observed. These bacteria,

with only three species being available so far (Duncaniella muris, Duncaniella dubosii, Duncaniella freteri),

exhibited clearly different behavior regarding abundance depending on gender, genotype and age.
6 iScience 26, 106841, June 16, 2023



Figure 3. Relative mean abundance of genera and genus level taxa

The mean relative abundance of genera and genus level taxa (Table S2) dependent on the genotype (light red, Pdx1-Cre mice; medium red KC mice; dark

red KPC mice), age (light green, 5 weeks; medium green, 11 weeks; dark green, 17 weeks) and gender (light blue, female; dark blue, male mice) is displayed
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Figure 3. Continued

as well as the standard error of mean. For each taxon, eight mean relative abundances are therefore shown. Differences in taxon distribution were

evaluated independently for each factor by one-way analyses using the Kruskal-Wallis test (factor genotype), the Friedmann test (factor age) or the

Mann-Whitney test (factor gender). pvalues are compiled in Tables S11, S12, and S13. The taxa are sorted according to the factors influencing their

abundance, which are indicated in the figure.
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Different behavior was also observed for Anaerotignum sequence types. Obviously, different species of

these genera have very distinct characteristics enabling them to react differently to environmental changes.

Similar observations were made for bacterial families, which could not be further classified to the genus or

species level. A distinct behavior was evident for the 36 clusters of the unclassified Lachnospiraceae

regarding their response to age and genotype. However, only a minority (three clusters) was influenced

by gender. This contrasted with Bacteroidales for which various clusters were affected by gender. Analysis

on the species level gave further insights into interactions between the analyzed factors, specifically on dif-

ferences in gender-dependent genotype effects. Such gender-specific effects were observed for several of

the analyzed taxa (Figure 7).

Duncaniella duboisii belongs to the most abundant species observed here, with a mean abundance of 3%.

In female mice its abundance decreased significantly from Pdx1-Cre over KC to KPC mice. However, this

was not the case in male KC and KPC mice that showed an increased abundance. Similarly, a pronounced

genotype effect was seen in female mice in which Alistipes 2 increased significantly, in contrast to male

mice. Even more strikingly the abundance of Lachnospiraceae 29 increased from Pdx1-Cre over KC to

KPC in female, but decreased in male mice. Of note, Bacteroides 3 was absent from all Pdx1-Cre animals

with a reasonable abundance in KPC animals and in female KC animals only. Various species level taxa

showed an interaction between the effects of genotype and age or between gender and age (Figure 7).

As an example, Lachnospiraceae 27 bacteria were observed with a high abundance in Pdx1-Cre mice

only with an age-dependent increase. Duncaniella 9 showed a constant abundance with age in Pdx1-Cre

mice but decreased in abundance with age in KC and KPC mice.
DISCUSSION

Perturbations of themicrobiome have in various cases been associated with cancer development or various

non-malignant diseases, but it often remains unclear whether changes of the microbiome are the cause or

consequence of the disease.18 In PDAC, most of the published studies investigated alterations of the mi-

crobiome in patients with established cancers, whereas data on the microbiome in patients with preinva-

sive pancreatic precursor lesions are scarce.10,12,19 Microbiota associated with PDAC development were

investigated in vitro and in vivo and potentially relevant mechanisms for PDAC development were eluci-

dated. The current study used both the slowly progressing murine KC mouse model as well as the rapidly

progressing KPC model of pancreatic cancer and distinct changes of the fecal microbiome in a genotype

(control vs. KC vs. KPC), age, and gender dependent manner, strikingly preceding clinical symptoms or

pronounced morphological changes in the pancreas could be revealed.

An important observation was that microbiota composition developed in a similar fashion and sequentially

in both models despite their substantially distinct PDAC development with more pronounced effects in

KPC mice. However, also differences in microbiota development were visible reflecting these differences

in the models. Of interest, cancer-associated changes were – at least in part – strongly affected by gender.

As an example, whereas the abundance of Bacteroides increased from Pdx1-Cre to KC or KPC both in fe-

male and male mice, Parabacteroides and Prevotella increased in females only. So far, it seems that such

gender effects have not been considered sufficiently in studies of cancer development and only limited

data are available. However, it has been shown that the commensal microbial community alters sex hor-

mone levels and regulates autoimmune disease fate.20 Furthermore, it is becomingmore andmore evident

that the microbiota differs between genders, both in animal models and in humans, and that these differ-

ences often lead to gender-dependent changes in local inflammation, systemic immunity and susceptibility

to a range of inflammatory diseases.21

Specifically, Bacteroides and related organisms are often reported to be differently distributed between

males and females, however, results are sometimes contradictory. In a cross-sectional study from four Eu-

ropean countries, gender effects were observed for the Bacteroides-Prevotella group, with higher levels in
8 iScience 26, 106841, June 16, 2023



Figure 4. Phylogenetic taxa (genera, families, orders, classes and phyla) influenced by genotype, age and gender

Relative abundance date dependent on age, genotype and gender were used (Table S2) and differences in taxon distribution were evaluated independently

for each factor by one-way analyses using the Kruskal-Wallis test (factor genotype), the Friedman test (factor age) or the Mann-Whitney test (factor gender)

(Tables S11, S12, and S13). Factors significantly influencing the relative abundance of a given taxon are indicated in yellow (age), dark green (genotype) or

magenta (gender) if p <0.01 and by orange (age), light green (genotype) or light magenta (gender) if p = 0.01–0.05. A significant increase (p<0.01) with age or

from Pdx1-Cre over KC to KPC mice is indicated by a large: symbol, a decrease by a large; symbol. A significant increase/decrease with p = 0.01–0.05 is

indicated by the small symbols : or ;. The comparisons given for each factor and for each taxon are 5 weeks/11 weeks, 5 weeks/17 weeks and 11 weeks/

17 weeks and Pdx1-Cre/KC, Pdx1-Cre/KPC and KC/KPC, respectively. In case of gender, the gender with the higher abundance is indicated as F (female) or

M (male).
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males than in females.22 Contrary, others reported a higher abundance of Bacteroides in females23 and

Haro et al.24 showed a lower abundance in males with a high body mass index. In mice, P. distasonis

was enriched in B6 females compared to B6 males.25

Bacteroides and Parabacteroides also represented key-genera of gender-specific dysbiosis in BTBR T +

Itpr3tf/J mice used as autism model. Both genera were significantly more abundant in female and male

BTBR mice compared to controls, but abundance differences were more pronounced in females.26 This

is in line with the results of our study where both genera were specifically enriched in females. Of interest,

at least for Prevotella, which were enriched in female mice in our study, such enrichment has been associ-

ated with several inflammatory diseases.27 According to the current data, specific genera seem to have

gender-specific effects in PDAC development and this observation needs to be accounted for in future

studies. Whether this is also of importance in the human situation remains to be elucidated.

Another finding was the sequential change of abundances with age of various genera in both cancer

models. This observation indicated that changes of the microbiome may even be found in the preneoplas-

tic state represented by precursor PanIN lesions in the KC model at ages well before PDAC or advanced

lesions developed.16,28 Therefore, it seems reasonable to assume that changes of the microbiome occur

in a continuum like in colorectal cancer patients where sequential changes of the microbiome correlated

with distinct disease stages.29 This offers opportunities for screening of microbiota signatures to detect
iScience 26, 106841, June 16, 2023 9
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Figure 5. Genera influenced by genotype, age and gender as indicated by one-way and three-way analyses

Relative abundance date dependent on age, genotype and gender were used (Table S2) and differences in taxon distribution were evaluated independently

for each factor by one-way analyses using the Kruskal-Wallis test (factor genotype), the Friedmann test (factor age) or the Mann-Whitney test (factor gender)

(Tables S11, S12, and S13). Differences were also evaluated by a three-way ANOVA using square root transformed relative abundance data. Factors

influencing significantly the relative abundance are indicated in yellow (age), green (genotype) or magenta (gender). *, p<0.05; **, p<0.01; ***, p<0.001; ****,

p<0.0001; t (trend), p<0.1. Possible significant interactions between factors were evaluated by three-way analysis.
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predisposing factors associated with PDAC development in cohorts with increased PDAC risk, such as pa-

tients with mucinous cystic lesions, new-onset diabetes or genetic cancer predispositions. The feasibility of

screening for fecal microbiota signatures was recently demonstrated by large multi-center studies in Asian

and European cohorts.7,8 In two independent investigations, areas under the curve to predict PDAC ranged

from 0.75–0.84. So far, the predictive potential of these signaturesmight not be sufficient to stand alone but

needs to be applied in conjunction with other factors such as exposome data, clinical parameters and/or

circulating biomarkers.

As retrograde migration of microbiota from the duodenum to the pancreas is a potential access route, a

recent study analyzed bacterial profiles from duodenal fluid in patients with pancreatic cysts, PDAC and

controls as possible indicators of PDAC risk.30 PDAC patients displayed significantly decreased alpha-di-

versity and enrichment of Fusobacterium, Enterococcus, and Bifidobacterium, which, however, did not

reach significance after multiple testing.30 Considering these findings, future comprehensive analyses of

patient cohorts at risk for PDAC development may help to identify pro-tumorigenic microbiota signatures

with predictive capacity.

The understanding of mechanisms by which abundant microbiota members like Bacteroides or Parabacter-

oides are involved in PDAC development is still limited. Potential modes of action might be inferred from

data obtained in other tumor entities. Of interest, in multiple intestinal neoplasia (Min) mice (a mouse

model for intestinal tumorigenesis) colonized with human enterotoxigenic Bacteroides fragilis the secreted

toxin induced selective colonic signal transducer and activator of transcription-3 (Stat3) activation and

colonic tumor formation.31,32 The effect was reversed by Interleukin-17 (IL) or IL-23 receptor blockade using

specific antibodies. Enhanced Stat3 activation has been reported as important pro-tumorigenic signaling

pathway in PDAC, operative also in KPC mice.33 However, Bacteroides fragilis has not been reported to be

enriched in any human study reported thus far, nor was it observed in the models analyzed here.

Contrary to the observed enrichment of P. distasonis in the cancer models analyzed here, studies in a

mouse model of azoxymethane (AOM)-induced colon cancer demonstrated a protective role of

P. distasonis based on observed effects on stabilization of the intestinal epithelial barrier.34 Furthermore,

in AOM-treated mice under a high-fat diet P. distasonis attenuated toll-like receptor 4 signaling and Akt

(protein Kinase B) activation and thereby blocked colonic tumor formation.35 The enrichment of Parabac-

teroides observed here during PDAC development may indicate the relevance of mechanisms different

from those in colon cancer. However, Parabacteroides was also enriched in Asian patients with early hepa-

tocellular carcinoma. This data suggest that different mechanisms might be functional in various cancers

depending on the cell type- and microenvironmental context.36

Of interest, increased Enterobacteriaceae and Parabacteroides relative abundances have been observed

in two distinct mousemodels with tumor cachexia.37 The authors concluded that these changes occur inde-

pendently from food intake and are because of effects of cancer development. Noteworthy, frailty and

chronic inflammatory states in humans have been correlated with increased levels of Parabacteroides

and Alistipes, in individuals in long-term care.38 All these findings imply that the Parabacteroides relative

abundance correlates with tumor development accompanied or even sustained by changes of inflamma-

tory processes. Nevertheless, the specific influence and way of action of Bacteroides or Parabacteroides

in PDAC development remains to be elucidated.

In addition to endocrine and exocrine function the pancreas secretes antimicrobial peptides. Deletion of

the acinar Ca2+ channel Orai in mice led to high levels of mortality by bacterial outgrowth, dysbiosis and

finally systemic translocation.39 Such effects may influence microbiome composition in animals over time

and therefore could have been responsible for results depicted in our study. As we investigated early

stages of pancreatic cancer development where most pancreatic acinar cells are not affected and large

numbers of KC and KPC mice, we assume such effects not to be relevant for the findings of our study.16
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Figure 6. Relative abundance of Bacteroides, Parabacteroides, Prevotella, Catabacter and Oscillibacter as

influenced by genotype, age and gender

The left graph (except for Oscillibacter) shows relative abundances separately for each genotype, age and gender

(Table S2). In case of Oscillibacter, the left graph shows the relative abundances for the different genotypes and gender

overall ages. The right graph always shows the relative abundances for the different genotypes and gender overall ages.

The mean is indicated by + and the median by a black line. The box represents the interquartile range. The whiskers

extend to the upper adjacent value (largest value = 75th percentile +1.5 x IQR) and the lower adjacent value (lowest

value = 25th percentile - 1.5 x IQR) and dots represent outliers. F, female; M, male.
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In conclusion, our study in two different murine pancreatic cancer models showed distinct genotype, age,

and gender specific alterations of the microbiome during tumor development. The use of two distinct tu-

mor progression models confirmed that these alterations develop continuously with age and supports the

possibility of a functionally relevant crosstalk between intestinal microbiome and genetically induced

pancreatic lesions even at preinvasive, early stages.

Genera and species level data of our analysis as such identify suitable candidates like species of the Bac-

teroides genus or P. distasonis that should be further evaluated in their capacity to contribute to PDAC

development.

The corroboration of distinct microbiota signatures associated with preneoplasia, and early tumorigenesis

offers the opportunity to further develop diagnostic markers in humans and novel treatment targets.

Nevertheless, more studies are needed to clarify mechanisms relevant in pancreatic carcinogenesis with

a special focus on gender-related effects reported here.

Limitations of the study

Our study is limited by the fact that no specific mechanistic insights in processes induced by genera spe-

cifically enriched or depleted in cancer models can be provided. Next, antimicrobial peptides secreted by

the pancreas might corroborate results. In addition, the correlations observed in fecal samples have not

been investigated for their spatial relevance. As such, it remains unclear which of the enriched or depleted

genera are relevant in the pancreatic parenchyma or mediate their effects indirectly. However, the patterns

retrieved are significant and consistent between the two most widely used murine PDACmodels, support-

ing an important association between fecal microbiome composition and PDAC development.
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Figure 7. Relative abundance of Duncaniella duboisii, Alistipes 2, Lachnospiraceae 29, Bacteroides 3,

Lachnospiraceae 27 and Duncaniella 9 as influenced by genotype, age and gender

For Duncaniella duboisii, Alistipes 2, Lachnospiraceae 29, Bacteroides 3, the left graph shows abundances separately for

each genotype, age and gender, whereas the right graph shows the relative abundances for the different genotypes and

gender overall ages (Tables S2 and S14). For Lachnospiraceae 27 and Duncaniella 9 the graphs show the relative

abundances for the different genotypes and gender overall ages. The mean is indicated by + and the median by a black

line. The box represents the interquartile range. The whiskers extend to the upper adjacent value (largest value = 75th

percentile +1.5 x IQR) and the lower adjacent value (lowest value = 25th percentile - 1.5 x IQR) and dots represent outliers.

F, female; M, male.
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Bülow, R., Kühn, J.P., Franke, A., Heinsen,
F.A., Pietzner, M., Nauck, M., Völker, U., et al.
(2019). Impaired exocrine pancreatic function
associates with changes in intestinal
microbiota composition and diversity.
Gastroenterology 156, 1010–1015. https://
doi.org/10.1053/j.gastro.2018.10.047.

19. Chandra, V., and McAllister, F. (2021).
Therapeutic potential of microbial
modulation in pancreatic cancer. Gut 70,
1419–1425. https://doi.org/10.1136/gutjnl-
2019-319807.

20. Markle, J.G.M., Frank, D.N., Mortin-Toth, S.,
Robertson, C.E., Feazel, L.M., Rolle-
Kampczyk, U., von Bergen, M., McCoy, K.D.,
Macpherson, A.J., and Danska, J.S. (2013).
Sex differences in the gut microbiome drive
hormone-dependent regulation of
autoimmunity. Science 339, 1084–1088.
https://doi.org/10.1126/science.1233521.

21. Vemuri, R., Sylvia, K.E., Klein, S.L., Forster,
S.C., Plebanski, M., Eri, R., and Flanagan, K.L.
(2019). The microgenderome revealed: sex
differences in bidirectional interactions
between the microbiota, hormones,
immunity and disease susceptibility. Semin.
Immunopathol. 41, 265–275. https://doi.org/
10.1007/s00281-018-0716-7.
16 iScience 26, 106841, June 16, 2023
22. Mueller, S., Saunier, K., Hanisch, C., Norin, E.,
Alm, L., Midtvedt, T., Cresci, A., Silvi, S.,
Orpianesi, C., Verdenelli, M.C., et al. (2006).
Differences in fecal microbiota in different
European study populations in relation to
age, gender, and country: a cross-sectional
study. Appl. Environ. Microbiol. 72, 1027–
1033. https://doi.org/10.1128/AEM.72.2.
1027-1033.2006.

23. Singh, P., andManning, S.D. (2016). Impact of
age and sex on the composition and
abundance of the intestinal microbiota in
individuals with and without enteric
infections. Ann. Epidemiol. 26, 380–385.
https://doi.org/10.1016/j.annepidem.2016.
03.007.

24. Haro, C., Rangel-Zúñiga, O.A., Alcalá-Dı́az,
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KEY RESOURCES TABLE
REAGENT or RESOURCES SOURCE IDENTIFIER

Critical commercial assays

FastDNA Spin Kit for Soil MP Biomedicals� https://www.mpbio.com

Deposited data

Sequencing datasets NCBI SRA PRJNA820878

Experimental models: Organisms/strains

Pdx1-Cre The Jackson Laboratory RRID:IMSR_JAX:014647

LSL-KrasG12D The Jackson Laboratory RRID:IMSR_JAX:008179

LSL-p53R172H The Jackson Laboratory RRID:IMSR_JAX:008652

Software and algorithms

MOTHUR Patrick Schloss https://mothur.org

SILVA SILVA rRNA database project https://www.arb-silva.de

RDP Ribosomal Database Project http://rdp.cme.msu.edu

Prism 7 Graphpad Software https://www.graphpad.com

PRIMER v.7.0.11 PRIMER-E, Plymouth Marine Laboratory https://Primer-e.com

JMP15 SAS Institute GmbH https://www.sas.com
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Dietmar H. Pieper (dpi@helmholtz-hzi.de)
Materials availability

This study did not generate new unique reagents.

Data and code availability

Demultiplexed raw data for all the amplicon sequencing pair-end datasets have been deposited at the

NCBI Sequence Reads Archive (SRA) and are publicly available as of the date of the publication. Accession

numbers are listed in the key resources table.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request or in the Supplementary Tables.
METHOD DETAILS

Experimental model and subject details

In this study we used the spontaneous pancreatic carcinoma models KC (KrasG12D/+ expressing mice) and

KPC (KrasG12D/+ p53R172H/+ expressing mice), that were generated by mating floxed LSL-KrasG12D/+ LSL-

p53R172H/+ with homozygous Pdx1-Cre mice.16,17 Mice were housed under specific-pathogen-free

conditions and fed with standard mouse chow. Littermates were genotyped after 2 and separated after

3–4 weeks with 1–4 animals living in each cage. Genotype specific housing prevented microbial contam-

ination from one to the other genotype. Fecal samples were collected after 5, 11 and 17 weeks. All sam-

ples were collected from individual animals under pathogen-free conditions between 9 and 10 a.m. to

avoid influence of circadian rhythm. At 17 weeks or when defined stopping criteria were given (KPC

mice, n = 7, lifetime %105d/15 weeks), the animals were killed with cervical dislocation. KPC mice sacri-

ficed before week 17 were analyzed within the overall KPC cohort. Tissue samples were flash frozen or
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formalin-fixed for paraffin embedding. Fecal specimens were stored in sterile tubes at �80�C until further

use. The experimental design is summarized in Figure S6 and a detailed histological description as well as

the gender distribution of the cohorts is described in Table S4. All animal experiments were conducted in

accordance with the file reference MLU 2-1348 (Landesverwaltungsamt Sachsen-Anhalt).
DNA extraction and 16S rRNA gene amplicon sequencing

DNA was extracted using the FastDNA Spin Kit for Soil (MP BiomedicalsTM) following the manufacturer’s

instructions. A 2-step PCR-approach was used to amplify the V1-V2 variable region of the 16S rRNA

gene. PCR with primers 27Fbif and 338R containing part of the sequencing primer sites as short overhangs

(given in italics) (ACGACGCTCTTCCGATCTAGRGTTHGATYMTGGCTCAG and GACGTGTGCTCTTCC

GATCTTGCTGCCTCCCGTAGGAGT, respectively) was used to enrich for target sequences (20 cycles).

A second amplification step of 10 cycles added the two indices and Illumina adapters to amplicons.40 Ob-

tained products were pooled in equimolar ratios and sequenced on an Illumina MiSeq (2X300 bases, San

Diego, USA). Demultiplexed raw data for all the amplicon sequencing pair-end datasets are publicly avail-

able at the NCBI Sequence Reads Archive (SRA) under BioProject accession number PRJNA820878.
QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatic processing was performed as previously described.41 Raw reads were merged with the RDP

assembler.42 Sequences were aligned within MOTHUR (gotoh algorithm using the SILVA reference data-

base) and subjected to pre-clustering (diffs = 2) yielding so-called phylotypes that were filtered for an

average abundance of R0.001% and a sequence length R250bp before analysis.43 Overall, 8.796.506

paired-ends reads were obtained with a mean of 46.055 G 6951 reads per sample. All samples were re-

sampled to equal the smallest library size of 25.366 reads using the phyloseq package returning 1560 phy-

lotypes.44 Phylotypes were assigned to a taxonomic affiliation based on the naı̈ve Bayesian classification

with a pseudo-bootstrap threshold of 80%.45 Phylotypes were then manually analyzed against the RDP

database using the Seqmatch function as well as against the NCBI database to define the discriminatory

power of each sequence read. A species name was assigned to a phylotype when 16S rRNA gene frag-

ments of previously described isolates of that species showed %2 mismatches with the respective repre-

sentative sequence read.41 Relative abundances (in percentage) of phylotypes or genera were used for

downstream analyses. Calculation of diversity indices (species richness S, Shannon diversity index H, Pie-

lous evenness J, Simpson diversity index 1-ʌ and multivariate analyses were performed using PRIMER

(v.7.0.11, PRIMER-E, Plymouth Marine Laboratory, UK), whereas univariate analyses were performed using

Prism 7 (Graphpad Software, Inc.). Differences in diversity indices were tested for by ordinary ANOVA and

2-way ANOVA analysis where multiple comparisons were corrected using the Holm-Sidak test (compari-

sons of genotypes, J) or theWelch ANOVA test where multiple comparisons were corrected using the Dun-

nett T3 test (comparisons of genotypes, S, H and 1-ʌ), by the repeated measures ANOVA where multiple

comparisons were corrected using the Tukey test (comparison of different ages, J) or the repeated mea-

sures ANOVA with the Geissler-Greenhouse correction where multiple comparisons were corrected using

the Tukey test (comparison of different ages, S, H and 1-ʌ), or by unpaired t-test (comparison of different

gender, J) or by the unpaired t-test with Welch’s correction (comparison of different gender, S, H and 1-ʌ).
Three-way ANOVA analysis taking into consideration the factors genotype, age and gender was performed

using JMP15 (SAS Institute GmbH Heidelberg).

The datamatrices comprising 1560 phylotypes, 87 genera or other taxa were used to construct sample-sim-

ilarity matrices applying the Bray-Curtis algorithm, where samples were ordinated using non-metric multi-

dimensional scaling (nMDS) with 50 random restarts.46,47 Significant differences between a priori prede-

fined groups of samples were evaluated using Permutational Multivariate Analysis of Variance

(PERMANOVA), allowing for type III (partial) sums of squares, fixed effects sum to zero for mixed terms.

Monte Carlo p-values were generated using unrestricted permutation of raw data.48 Groups of samples

were considered significantly different if the p-value was <0.05. The abundances of phyla, genera and of

those phylotypes that were present in the community of at least 20% of the samples, were compared by

the Kruskal-Wallis test with Benjamini-Hochberg corrections for multiple comparisons.49 Groups of sam-

ples were considered significantly different if the adjusted p-value was <0.05. Three-way ANOVA analysis

was performed using JMP15 (SAS Institute GmbH Heidelberg) on square root transformed data. Groups of

samples were considered significantly different if the Benjamini-Hochberg corrected p-value was <0.05. If

multiple pairwise comparisons were performed values were corrected using the Tukey test.
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