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ABSTRACT Here, we present the Nanopore-only genome sequence of Aneurinibacillus
sp. Ricciae_BoGa-3. It was isolated from Riccia fluitans ecotype BoGa-3 and its source was
Botanical Garden Osnabrück (Germany). The complete circular genome is 4,981,254 bp
with a GC content of 44.8%.

Members of the Gram-positive, endospore-forming, and rod-shaped bacterial ge-
nus Aneurinibacillus (1) occupy diverse habitats like the plant rhizosphere (2),

geothermal soil (3), or marine environments (4). Several Aneurinibacillus species are
known to produce useful metabolites, such as antibiotics (5) and biosurfactants (4), or
exhibit plant-growth-promoting traits, such as phosphate solubilization and growth in-
hibition of plant pathogens (2). Of this genus, so far, only seven type strains have been
published according to the Type Strain Genome Server (TYGS) (6, 7). Therefore, there
may be a great potential within this genus for further discoveries of species that have
useful properties for agricultural or biotechnological applications (8).

We isolated Aneurinibacillus sp. Ricciae_BoGa-3 from a laboratory-grown Riccia flui-
tans (floating crystalwort) (9) line, ecotype BoGa, named after its original source, the
Botanical Garden of Osnabrück University (Germany) (10, 11). The medium used was 1/
2 Gamborg B5 medium with 1% glucose. Plants were grown at room temperature with
a 16:8 day:night regime, and after colonies had formed around the plants, DNA was
isolated from a single colony, with the NucleoSpin microbial DNA minikit (Macherey-
Nagel, Düren, Germany). Sequencing was performed with the kit SQK-LSK109 on a
GridION device with a R9.4.1 flow cell (Oxford Nanopore, Oxford, UK). Next, we per-
formed base calling at super accuracy (Guppy v5.0.11), assembly (Canu v2.1.1) (12),
and polishing with Racon (v1.4.20) (13) in combination with BWA (v0.7.17) (14) and
Medaka (v1.4.3). The final contig was circularized and oriented manually. Default set-
tings were used for all tools.

Raw sequencing generated 1.25 million reads, an N50 of 9.07 kilobases, and 3.22
total gigabases. Assembly showed 511� coverage, a GC content of 44.8%, and a length
of 4,981,254 bp. Annotation showed 5,938 total genes and 5,472 coding genes.
Genome completeness was determined with BUSCO and included 98.3% complete (C),
96.7% single copy (S), 1.6% duplicated (D), 1.1% fragmented (F), and 0.6% missing (M)
orthologues genes (15, 16). Annotation was based on NCBI PGAP (v6.4) annotation of
CP116887 on 1 January 2023 (17).

For the genome sequence of Aneurinibacillus sp. Ricciae_BoGa-3 and the seven pub-
lished type strains, a phylogenetic network was calculated using SplitsTree (18) (Fig. 1)
with default settings on an alignment of 16S sequences created with Clustal Omega
(19). Complementary to the 16S-based network, TYGS (6, 7) was used to calculate a
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whole-proteome-based tree (not shown). The obtained average branch support for the
tree is 98.1%. The network and tree both support the finding that Aneurinibacillus sp.
Ricciae_BoGa-3 is closest to Aneurinibacillus terranovensis but with enough phyloge-
netic distance to indicate that Aneurinibacillus sp. Ricciae_BoGa-3 is distinct from previ-
ously known species. Neither the addition of not-type-strain species to the network
nor a BLAST search against the NCBI nonredundant (nr) database (20, 21) for the 16S
sequence provide additional candidates for more closely related species. The digital
DNA-DNA hybridization (dDDH) values for Aneurinibacillus sp. Ricciae_BoGa-3 and A.
terranovensis for all three distance formulas are significantly below the 70% cutoff (22).

Although Aneurinibacillus sp. Ricciae_BoGa-3 formed colonies when cocultivated
with its host, it did not grow on 1/2 Gamborg medium with 1% glucose. This finding
suggests a dependency on one or more plant exudates. According to a mapping of
genes on KEGG pathways (23, 24), the bacterium may be auxotrophic for several B vita-
mins. These findings combined with the existing literature base of the genus indicate
that Aneurinibacillus sp. Ricciae_BoGa-3 is a plant-associated species and possible sym-
biont. The genome presented here was determined with Nanopore only and despite
deep sequencing (511�) might still contain Nanopore sequencing-related errors.

Data availability. This whole-genome shotgun project has been deposited in GenBank
under the BioProject no. PRJNA914707, BioSample no. SAMN32348813, and accession no.
CP116887. Raw sequence reads can be found in SRA under SRR23191365.
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