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Abstract

Change-point detection is an important field in time series analysis. As early as
the 1950s, it starts with the question whether there is a change in a given time
series. Depending on the setting this may for example be a change in the underlying
distribution, in mean, variance or correlation. A further step may be to identify
the time at which the change occurs. More recently, change-point analysis for high-
dimensional and dependent data became important, as more of such data is available
and computational power allows for dealing with it.

This thesis consists of two main chapters. In the beginning of the first chapter,
the concepts of weakly dependent and functional data are explained. Then, a U -
statistic (where U stands for unbiased) for testing the hypothesis of no change is
introduced for such data. Subsequently, asymptotic results for this statistic in the
presence and absence of a change-point are given. Under the assumption of no
change, the limit distribution of the test statistic is established. Since it contains
an infinite covariance operator, a bootstrap procedure is introduced for practical
applications.
In a simulation study, the performance of the new test statistic is compared to the
well established cumulated sum statistic (CUSUM). Special attention is paid to sce-
narios were the data shows outliers or stems from a heavy tailed distribution.
The first chapter closes with a real world example and a test for a change in envi-
ronmental data.

The second chapter deals with the task of estimating the time and the direction
of change under the assumption of an unknown change-point. A consistent estima-
tor for the time of change is presented. This consistency does not only hold for fixed
magnitudes of change but also if the magnitude of the change vanishes in the long
run at a certain rate.
Given the consistent estimator of the time of change, an estimator for the direction
of change can be constructed, using the spatial median of the data.
The theoretical results are again supported by a simulation study, investigating sim-
ilar scenarios as in the first chapter. Finally, the example of environmental data of
the first chapter is revisited and time and direction of change are estimated for it.



Zusammenfassung

Das Erkennen von Change-Points ist ein wichtiger Teilbereich der Zeitreihenanal-
yse. Bereits in den 1950er Jahren kamen die ersten Teststatistiken auf, mit deren
Hilfe eine Zeitreihe auf Change-Points untersucht werden kann. Je nach Fragestel-
lung kann es an einem Change-Point unter anderem zu einer Veränderung der
zugrundeliegenden Verteilung oder einer Veränderung in Erwartungswert, Varianz
oder Korrelation kommen. Der nächste Schritt kann dann sein, den Zeitpunkt der
Veränderung zu identifizieren. In jüngerer Vergangenheit nimmt die Bedeutung
von Change-Point Analysen hochdimensionaler und abhängiger Daten zu, auch weil
mehr solcher Daten verfügbar sind und sich mit steigender Rechenleistung unter-
suchen lassen.

Die vorliegende Arbeit besteht aus zwei Kapiteln. Zu Beginn des ersten Kapitels
werden die Konzepte von schwacher Abhängigkeit und funktionalen Daten erklärt.
Eine U -Statistik (U steht für unbiased) wird eingeführt, die für solche Daten beim
Testen der Hypothese, dass keine Veränderung vorliegt, genutzt werden kann. An-
schließend werden asymptotische Ergebnisse für die Statistik unter der Annahme
des Vorliegens und Nichtvorliegens eines Change-Points dargestellt. Unter der An-
nahme, dass kein Change-Point vorliegt, wird die Grenzverteilung der Teststatistik
bestimmt. Da diese einen unendlich-dimensionalen Kovarianzoperator enthält, wird
ein Bootstrap-Verfahren für die praktische Nutzung eingeführt.
In einer Simulationsstudie wird das Verhalten der neuen Teststatistik mit dem
der bewährten Cumulated-Sum-Statistik (CUSUM) verglichen. Insbesondere wer-
den Szenarien betrachtet, in denen die Daten Ausreißer enthalten oder von einer
Verteilung mit schweren Rändern stammen. Das erste Kapitel schließt mit einem
realen Beispiel von Umweltdaten und einem darauf angewandten Hypothesentest
auf einen Change-Point.

Das zweite Kapitel beschäftigt sich unter der Annahme eines vorliegenden Change-
Points mit der Aufgabe, den Zeitpunkt und die Richtung der Veränderung zu schät-
zen. Für den Zeitpunkt wird ein konsistenter Schätzer präsentiert. Diese Konsis-
tenz gilt nicht nur für feste Veränderungsgrößen, sondern auch, wenn die Größe der
Veränderung langfristig mit einer bestimmten Rate verschwindet.
Mit Hilfe des konsistenten Schätzers für den Zeitpunkt der Veränderung und der
Nutzung des Spatial Median kann ein Schätzer für die Richtung der Veränderung
konstruiert werden.
Die theoretischen Ergebnisse werden wiederum durch eine Simulationsstudie gestützt,
in der ähnliche Szenarien wie im ersten Kapitel untersucht werden. Schließlich wird
das Beispiel der Umweltdaten aus dem ersten Kapitel wieder aufgegriffen, und es
werden Zeit und Richtung der Veränderung geschätzt.
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Notation

Let x ∈ H be an element in a Hilbert space H, r ∈ R, u ∈ Rn

DH2 [0, 1] Space of cadlag (right-continuous with left limits) functions
from [0, 1] to H2

∥x∥ = ∥x∥H Hilbert space norm of x
BH(0, 1) = {x ∈ H : ∥x∥ ≤ 1} Unit ball of H around zero
⌊r⌋ Floor function of r, equals greatest integer less than or equal to r
uT Transpose of u

Let A ⊂ H be a subset of a Hilbert space H

1A indicator function of set A
Ac Complement of A

Let X, Z, Z̃, (Xn)n∈N be random variables in a Hilbert space H, Z̃ independent of
X, Y a random variable in R, f : H ×H → H a function, p ≥ 1, p ∈ R

E[X] Expected value of random variable X

EX [f(X, Z̃)] Conditional expectation of f(X, Z̃) given Z̃ = z
Var(X) Variance of X
Cov(X,Z) Covariance of X and Z
E[|X|p]1/p = ∥X∥p p-norm / Lp-norm of X

Xn
P−→ X Xn converges to X in probability as n → ∞

Xn
D−→ X, Xn ⇒ X Xn converges to X in distribution as n → ∞

Xn
a.s.−−→ X Xn converges to X almost surely as n → ∞

X
D
= Z X and Z have the same distribution

X,Z i.i.d. X and Z are independent, identically
distributed random variables

a.s. Almost surely, with probability 1
Y ∼ N (µ, σ2) Y is normally distributed with mean µ and variance σ2

Y ∼ tn Y has a Student’s t-distribution with n degrees of
freedom



Let (an)n∈N, (bn)n∈N with an > 0 be deterministic sequences in R and (Xn)n∈N,
(Zn)n∈N with Xn > 0 a.s. be (stochastic) sequences in R

bn = O(an)
bn
an

n→∞−−−→ 0

bn = O(an) ∃ M > 0 s.t. |bn| ≤ Man ∀ n ∈ N
Zn = OP (Xn)

Zn

Xn

P−→ 0

Zn = OP (Xn) ∀ ε > 0 ∃ M > 0, N ∈ N such that P(|Zn| > M Xn) < ε ∀ n > N



1 Introduction

Imagine we observe the amount of fine dust particles (also called particulate mat-
ter or PM10) at Universitätsplatz in Magdeburg every hour of the day over the
course of some months. Naturally, the amount of dust varies during the day and
also depending on the day of the week. One could think that the amount is higher
in the morning and afternoon, when there is a lot of commuter traffic. This may
look differently on weekends. We can see our observations as a time series, where
each observation (Monday 7 a.m., Monday 8 a.m., ...) resembles a realization of one
random variable from our series.
Assume that after some time, we have an external event, having significant impact
on the amount of traffic at Universitätsplatz. This may be for example a road clo-
sure or more radical a driving ban imposed for the city. After observing the amount
of PM10 for some more weeks, we are asked whether there is a change in the amount
of particulate matter measured at Universitätsplatz.
This is a very typical question from application for time series analysis: Given obser-
vations from a fixed time frame, it is asked if there was a change in our observations.
The difficulty is that we do observe naturally varying values due to outside effects.
The question is, can we nevertheless find a structural change in the data? And
furthermore, can we even date the time of the change and its direction?

Taking the example further, imagine that we do not only observe the amount of
PM10 at Universitätsplatz, but at every major street in Magdeburg. Can we de-
tect a city-wide change in our observations after a driving ban in Magdeburg was
imposed? We get an additional problem here: Measuring at different locations over
the city means data behaving differently street by street. At some streets we may
observe higher values of PM10 in general, some may show more variance in the
amount of particulate matter over the course of the day than others. However, we
still want to evaluate if they share a common change in the amount of fine dust after
the driving ban was enforced.
Handling multidimensional observations (this may be really high-dimensional data
- maybe we even observe all streets in Magdeburg, not only the major ones) has
become a common problem in applications. Therefore, statistical theory for such
high-dimensional change-point problems is needed. Various results for real-valued in-
dependent multidimensional cases exist. In application though, independence within
and between observations can often not be assumed. Think of the streets again: If
we have high values of PM10 in the morning, they may also be high some hours
later. Additionally, it is reasonable to think that the values in neighbouring streets
are not independent from each other.
In recent time, theory was extended from independence to data with short range de-
pendence. The underlying assumption is that time points which lie closer together
are more likely to influence each other than time points more far away: Values
measured today are probably a good indicator of the values on the next day, but
presumably not for the same day next year, as too much may happen in between.
To further generalise the structure of the time series, we will work with Hilbert
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space valued short-range dependent functional data, since this grants a broad range
of applications. Functional data consists, as the name says, of functions that in our
context contain information of an object over time. Here, the measuring stations
in the streets are the objects that collect PM10-data every hour. Multivariate real-
valued time series can be expressed as special cases of this construction, but since
the functional data is defined to take values in a (potentially) infinite function space,
the tools from multivariate time-series analysis cannot be directly applied.
As said before, in practice, data often varies by some outside effects. Even if overall
the amount of particulate matter goes down after the driving ban, it may occur that
on some days the amount is higher than ever. The challenge is to develop a test
procedure that is not influenced (much) by such outlier observations, which is called
a robust test.
In general, a change-point test is some sort of hypothesis test, designed to investi-
gate the question whether there is a change in the data at some time. It does not
necessarily estimate the time of the change as well. Chapter 2 is dedicated to such
a hypothesis test. We will generalise a change-point test from the multivariate real
space to arbitrary Hilbert spaces, which are general spaces for functionals and in-
clude Rd as well as the often convenient space of square integrable functions. Hilbert
space analysis benefits from the generality of the space, which gives a broad range
of applications. For example, Hilbert space methods can also be used to analyse
real-valued non-linear statistics as the von Mises statistic.
We start by explaining the concepts of short-range dependent and functional data
in Section 2.1 and introducing Wilcoxon-type U -statistics (where U stands for un-
biased), which are the base for the test statistic, in Section 2.2. Asymptotic results
for this test are proven in Section 2.3 and 2.4. Under the hypothesis (“there is no
structural change in the data”), the limit distribution of the test statistic is given.
On the other hand, it is shown that the test statistic diverges under the alternative
(“there is a change at some time point”). To our knowledge, this has not been done
before for this theoretical context.
The divergence of the test statistic under the alternative lays the foundation for the
use of the test statistic in application. We propose an advancement of the Depen-
dent Wild Bootstrap in Section 2.5, for resampling observations which are in turn
used for the test decision. In a simulation study (Section 2.6) we compare our new
test to the well-established CUSUM test and observe that ours is indeed more ro-
bust in the case of outliers in the data or if the observations stem from some heavy
tailed distribution and is not inferior under normality assumptions. We conclude the
chapter with a closer look at a real-world example of particulate matter measured
all over Germany in the first half of 2020 in Section 2.7.
In Chapter 3, we will focus on estimating the time and direction of a change if our
test gives a significant result for the existence of a change-point. The first step is the
estimation of the time of change (Section 3.1). While an estimator can be derived
naturally from the test statistic, the main result is that this is actually a consistent
estimator for the time of change. It is sometimes assumed that the change gets
smaller when the sample size grows. One can think that the effect of a change at
some time t levels out in the long run. In an extension in Section 3.1.1, we will

2



prove that we can handle a vanishing difference in the sense that our estimator of
the time of change is still consistent.
The consistency of the estimator for the time of change is an essential property re-
quired to prove consistency of the estimator of the direction of change in Section 3.2
as well. Here, we encounter a double estimation problem: Even if we knew the true
time of change, we would still have to estimate the direction of change. However
we only estimated the time of change; so we prove that nevertheless we achieve a
suitable estimator for the direction of change if we only know the estimated time of
change.
Section 3.3 provides another simulation study, presenting the performance of the
estimations of time and direction. Again, we compare our method to the procedure
based on CUSUM. As for the hypothesis test, our method is clearly superior in the
case of heavy tailed data or data with outliers. We close this thesis by revisiting the
real world example of Chapter 2 in Section 3.4.

3
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2 Change-Point Detection

The problem of detecting and quantifying changes in time series data may be called
a classical problem in statistics. Change-point analysis offers a wide field for ques-
tions, dealing not only with changes in mean but among others with changes in
variance or with multiple change-points (see for example Csörgö and Horváth [1997]
for a brief overview). Page [1954] used the cumulative sum (CUSUM) to detect a
change in the mean of a quality parameter in manufacturing.
More recently, the focus shifted to change-point problems of high dimensional data.
As more and more of such data is available and computing power increases, there
is ambition to develop robust methods useful for various applications. It is often
convenient to think of these data as functional observations modelled as random
variables taking values in a Hilbert space. We recommend the book of Hörmann
and Kokoszka [2012] for an introduction.
There are mainly two approaches for working with functional data. One possibility
is to project the data on lower dimensional spaces using functional principal compo-
nents. Berkes et al. [2009] did this for independent data and Aston and Kirch [2012]
for weakly dependent time series. On the other hand, Change-point tests without
dimension reduction are also possible, as done by Horváth et al. [2014] under inde-
pendence and by Sharipov et al. [2016a] and Aue et al. [2018] under dependence.
Using the full information and no dimension reduction leads to some
infinite-dimensional covariance operator in the asymptotic distribution, which can
either be estimated (see for example Dehling and Fried [2012] for weakly dependent
data) or determined by using resampling techniques. In the context of change-point
detection for functional time series, the non-overlapping block bootstrap was studied
by Sharipov et al. [2016a], the dependent wild bootstrap by Bucchia and Wendler
[2017] and the block multiplier bootstrap (for Banachspace-valued times series) by
Dette et al. [2020].
In the tradition of Page [1954], these tests are typically based on variants of the
CUSUM-test. Since they make use of the sample mean, they are sensitive to outliers.
The Mann-Whitney-Wilcoxon-U-test, going back to Wilcoxon [1992] and Mann and
Whitney [1947], is a more robust option. Change-point tests based on Wilcoxon have
been studied before, mainly for real-valued observations, starting with Darkhovsky
[1976] and Pettitt [1979]. Yu and Chen [2022] used the maximum of component-
wise Wilcoxon-type statistics. As the Mann-Whitney-Wilcoxon-U-statistic is a spe-
cial case of a two-sample U-statistic, authors like Csörgő and Horváth [1989] studied
more general U-statistics for change point detection under independence and Dehling
et al. [2015] under dependence.
Leucht and Neumann [2013] have developed a variant of the dependent wild boot-
strap (introduced by Shao [2010]) for degenerate U-statistics. As the Wilcoxon-type
statistic is non-degenerate, we propose a new version of the dependent wild boot-
strap for this Wilcoxon-type of U-statistic in Section 2.5.

5



2.1 Functional Data and Dependence

In functional data analysis, a random variable takes values in a function space. Typ-
ical functionals in applications are for example annual curves of environmental data.
Instead of considering one (possibly non-stationary) series of observations over sev-
eral years, the curve is split into annual data, where each curve is one functional
observation. Other applications are simultaneously sampled data as for example
fMRI-data (functional magnetic resonance imaging) that measures brain activity at
several locations in the brain at once. The data collected from one location is one
functional observation. Thus, sequentially recorded data can be handled as func-
tional time series, that is a series of random variables, each of it taking values in
the function space. Ramsay and Silverman [2005] give a fundamental introduction
to functional data and its analysis for the independent case.

Definition 2.1 (Functionals). Let (Ω,F ,P) be a probability space, H a Hilbert space
and (ζn)n∈Z a stationary sequence of random variables taking values in a separable
measurable space S. The sequence (Xn)n∈Z is a functional of (ζn)n∈Z, if there exists
a measurable function f : SZ → H, such that Xn = f((ζn+k)k∈Z).

A very classic example in time series analysis are stock values. By considering
the whole stock market as functional observations, tools of functional time series
analysis can be used. The advantage of considering the complete market at once is
that systematic characteristics stand out against the individual ones. In Figure 2.1,
we see an example where one stock behaves rather differently than the others on
the stock market. One could guess that a change-point test on just the single stock
gives other results than a test for a systematic change in the overall market.

6
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Figure 2.1: Daily open prices in Euro for a single stock (Wirecard) and 29 stocks at
the DAX market (black dashed line corresponding to Wirecard) from May 06, 2019
to August 21, 2020. Data extracted from Yahoo!Finance.
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Looking at more general examples, we see that the concept of functionals fits for
well-known stochastic processes as well.

Example 2.1.

� Let (Xt)t∈Z be a d-variate moving average process of order q (MA(q)) with
mean zero, i.e.

Xt =

q∑
i=1

aiεt−i + εt ∀t ∈ Z,

where a1, ..., aq ∈ Rd×d and (εt)t∈Z a d-variate white noise process (i.e. (εt)t∈Z
is an uncorrelated process with E[εt] = 0, Cov(εs, εt) = 0 if s ̸= t and
Cov(εt, εt) = Σ ∈ Rd×d ∀t, s ∈ Z).
Clearly, (Xt)t∈Z is a functional of the white noise process (εt)t∈Z.

� Let (Xt)t∈Z be a univariate autoregressive process of order p (AR(p)), i.e.

Xt =

p∑
i=1

biXt−i + εt,

where b1, ..., bp ∈ R and (εn)n∈N a univariate white noise process.
If all roots of the characteristic polynomial lie outside the unit circle, we can
rewrite the process as a univariate moving average process of order ∞:

Xt =
∞∑
i=1

b̃iεt−i + εt,

where b̃1, b̃2, ... ∈ R. Thus, (Xn)n∈N is again a functional of the white noise
process (εn)n∈N.

� For stock prices, it often does not hold that the data is stationary. So, it is not
recommendable to model them as stationary processes like moving average or
autoregressive processes. Instead, a model for the log-returns of the stock price
can be set up. The log-return at time t = 1, 2, ... is defined as Xt = ln(Pt) −
ln(Pt−1), where Pt is the price of the stock at time t. Real-world observations
of log-returns show that they are uncorrelated but the squared/absolute log-
returns are correlated. This can be captured in a GARCH-process (GARCH
stands for Generalised AutoRegressive with Conditional Heteroscedasticity).
In the univariate setting, (Xt)t∈Z is called a GARCH(p, q) process if for a
univariate white noise process (εt)t∈Z it fulfils the equation Xt = σtεt ∀t ∈ Z,
where (σt)t∈Z is non-negative and the recursion

σ2
t = a0 +

p∑
i=1

aiX
2
t−i +

q∑
j=1

bjσ
2
t−j
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holds true for real, non-negative parameter a0, a1, ..., ap, b1, ..., bq with ap, bq ̸=
0.
For the special case p = q = 1, the equations

Xt = σtεt ∀t ∈ Z
σ2
t = a0 + aX2

t−1 + bσ2
t−1 ∀t ∈ Z

have a stationary solution if and only if E[ln(aε21 + b)] < 0. Especially it holds
that

σ2
t = a0

(
1 +

∞∑
j=1

j∏
i=1

(aε2t−j + b)
)
∀t ∈ Z

(see for example Theorem 14.3 Kreiß and Neuhaus [2006]) and it is thus a
functional of the white noise process.

As hinted before, we want to assume some short range dependence in the functional
processes. This is a reasonable assumption for many time series applications: Going
back to the stock market example, it is likely that a stock value today is dependent
on its value yesterday and the day before but not so much on its value one year ago.
We want to consider a combination of absolute regularity (introduced by Volkonskii
and Rozanov [1959]) and P-near-epoch dependence (introduced by Dehling et al.
[2017]). In the following, let H be a seperable Hilbert space with inner product ⟨·, ·⟩
and norm ∥x∥ =

√
⟨x, x⟩.

Definition 2.2 (Absolute Regularity). Let (ζn)n∈Z be a stationary sequence of ran-
dom variables. We define the mixing coefficients (βm)m∈Z by

βm = E
[

sup
A∈F∞

m

(
P(A|F0

−∞)− P(A)
) ]

,

where F b
a is the σ-field generated by ζa, . . . , ζb, and call the sequence (ζn)n∈Z abso-

lutely regular if βm → 0 as m → ∞.

Mixing coefficients are some sort of measure for dependence. The request βm → 0
as m → ∞ describes the weakening dependence in the data with growing distance,
as βm = 0 if (ζn)n∈Z is an independent sequence.
Several other mixing conditions can be found in the literature, the book of Doukhan
[1994] gives a broad introduction to mixing theory. See also Bradley [2005] for some
basic properties of different mixing coefficients and their connection.

Definition 2.3 (Lp-NED). Let (ζn)n∈Z be a stationary sequence of random variables.
(Xn)n∈Z is called Lp-near-epoch-dependent (Lp-NED) for p ≥ 1 on (ζn)n∈Z if there

exists a sequence of approximation constants (ak,p)k∈N with ak,p
k→∞−−−→ 0 and

E[∥X0 − E[X0|Fk
−k]∥p]

1
p ≤ ak,p,

where F b
a is the σ-field generated by ζa, . . . , ζb.
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Definition 2.4 (P-NED). Let (ζn)n∈Z be a stationary sequence of random variables.
(Xn)n∈Z is called near-epoch-dependent in probability (P-NED) on (ζn)n∈Z if there

exist sequences (ak)k∈N with ak
k→∞−−−→ 0 and (fk)k∈Z and a nonincreasing function

Φ : (0,∞) → (0,∞) such that

P(∥X0 − fk(ζ−k, ..., ζk)∥H > ϵ) ≤ akΦ(ϵ) ∀k ∈ N, ϵ > 0.

The concept of Lp-NED was introduced by Ibragimov [1962] presenting the idea of
weakly dependent data. It is known that ARMA(p, q) and GARCH(l, q) models
are Lp-NED (see for example Qiu and Lin [2011]). The concept of P-NED is more
general, as it does not require finite moments, which enlarges its application for
example to heavy tailed data. Dehling et al. [2017] already proved that any (Xn)n∈Z
being Lp-NED on (ζn)n∈Z is also P-NED on (ζn)n∈Z. If (Xn)n∈Z is bounded, the
inverse holds true as well.
For a series (Xn)n∈Z that is P-NED on (ζn)n∈Z, we introduce the following notation
for the “truncated” functional

Xn,k := fk(ζn−k, ..., ζn+k) n, k ∈ N.
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2.2 Wilcoxon-Type U-statistic for Change-Point Analysis

Originally introduced by Hoeffding [1948], U-statistics are a class of unbiased statis-
tics from estimation theory. In the context of two-sample problems, they can be used
to test for differences between the two samples, e.g. in location or distribution. The
Mann-Whitney-Wilcoxon-U-statistic for two real-valued samplesX1, ..., Xn1 ∈ R and
Z1, ..., Zn2 ∈ R can be written as

U(X1, ..., Xn1 , Z1, ..., Zn2) =
1

n1n2

n1∑
i=1

n2∑
j=1

sgn(Xi − Zj) =
1

n1n2

n1∑
i=1

n2∑
j=1

Xi − Zj

|Xi − Zj|

and can be used to test if the two samples have the same location. Chakraborty and
Chaudhuri [2017] have generalised this test statistic to Hilbert spaces by replacing
the sign by the so called spatial sign. For X1, ..., Xn1 , Z1, ..., Zn2 ∈ H it reads

U(X1, ..., Xn1 , Z1, ..., Zn2) =
1

n1n2

n1∑
i=1

n2∑
j=1

Xi − Zj

∥Xi − Zj∥

They have shown weak convergence against a Gaussian distribution for independent
random variables. This two-sample test statistic can be of use for change-point
detection. Assuming we have a sample X1, ..., Xn ∈ H and a potential change-point
1 < k < n, we want to compare the Xi before and after k to decide whether k is a
change-point or not. A natural approach is to split the sample at k and insert it in
the two-sample spatial sign statistic

U(X1, ..., Xk, Xk+1, ..., Xn) =
1

k(n− k)

k∑
i=1

n∑
j=k+1

Xi −Xj

∥Xi −Xj∥

to compare the location before and after k.
In practice, one encounters several problems. First of all, the change-point is typi-
cally unknown, so it is not known where to split the sequence of observations into
two samples. To tackle this problem, we will maximise the test statistic over all
possible splitting points.
We will treat the CUSUM statistic and the Wilcoxon-type statistic as two special
cases of a general class of change-point statistics based on two-sample U -statistics.
Let h : H2 → H be a kernel function. We define

Un,k(X) :=
k∑

i=1

n∑
j=k+1

h(Xi, Xj).

Example 2.2 (CUSUM). For h(x, y) = x − y, we can construct the CUSUM-
statistic for functional data by taking the maximum of the norm of Un,k combined
with a suitable factor:

max
1≤k<n

1

n3/2
∥Un,k(X)∥ = max

1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

(Xi −Xj)
∥∥
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= max
1≤k<n

1

n3/2

∥∥(n− k)
k∑

i=1

Xi − k

n∑
j=k+1

Xj

∥∥
= max

1≤k<n

1

n3/2

∥∥(n− k)X1 −
n∑

j=k+1

Xj + ...+ (n− k)Xk −
n∑

j=k+1

Xj ± k

k∑
j=1

Xj

∥∥
= max

1≤k<n

1

n3/2

∥∥nX1 −
n∑

j=1

Xj + ...+ nXk −
n∑

j=1

Xj

∥∥
= max

1≤k<n

1

n3/2

∥∥n k∑
i=1

(
Xi −

1

n

n∑
j=1

Xj

)∥∥ = max
1≤k<n

1

n1/2

∥∥ k∑
i=1

(
Xi − X̄

)∥∥
Example 2.3 (Wilcoxon-type). For h(x, y) = (x − y)/∥x − y∥, we can construct
the Wilcoxon-type changepoint statistic for functional data similar to Example 2.2.
The factor 1

n3/2 is chosen to achieve the desired asymptotic behaviour:

max
1≤k<n

1

n3/2
∥Un,k(X)∥ = max

1≤k<n

1

n3/2

∥∥∥∥∥
k∑

i=1

n∑
j=k+1

Xi −Xj

∥Xi −Xj∥

∥∥∥∥∥ .
2.2.1 The Kernel h

We will prove a limit theorem for a general class of change-point statistics given
by max1≤k<n

1
n3/2∥Un,k∥. Nevertheless, we have to make some assumptions on the

kernel function h.

Definition 2.5 (Antisymmetry). A kernel h : H2 → H is called antisymmetric, if
for all x, y ∈ H

h(x, y) = −h(y, x)

Antisymmetric kernels are natural candidates for comparing two distributions, be-
cause if X and X̃ are two independent H-valued random variables with the same
distribution and h is antisymmetric, we have

E[h(X, X̃)] = E[h(X̃,X)] = E[−h(X, X̃)] = −E[h(X, X̃)]

meaning E[h(X, X̃)] = 0, so our test statistic should have values close to 0 if there
is no change in the data.

Definition 2.6 (Uniform Moments). Let (Xn)n∈Z be a P-NED functional of (ζn)n∈Z.
If there exists M > 0 such that for all k, n ∈ N

E[∥h
(
X0,k, Xn,k

)
∥m] = E[∥h

(
fk(ζ−k, ..., ζk), fk(ζn−k, ..., ζn+k)

)
∥m] ≤ M,

E[∥h
(
X0, Xn,k

)
∥m] = E[∥h

(
X0, fk(ζn−k, ..., ζn+k)

)
∥m] ≤ M,

E[∥h
(
X0, Xn

)
∥m] ≤ M,

we say that the kernel has uniform m-th moments under approximation.
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Furthermore, we need the following mild continuity condition on the kernel, intro-
duced by Denker and Keller [1986].

Definition 2.7 (Variation condition). Let X,Z be two random variables in H. The
kernel h fulfils the variation condition, if there exist L > 0, ϵ0 > 0 such that for
every ϵ ∈ (0, ϵ0) it holds that

E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

∥h(x, y)− h(X,Z)∥
)2]

≤ Lϵ x, y ∈ H.

It can easily be seen that h(x, y) = x− y fulfils the condition. The kernel h(x, y) =
(x − y)/∥x − y∥ will fulfil the condition, as long as there exists a constant C such
that P (∥X1 − x∥ ≤ ϵ) ≤ Cϵ for all x ∈ H and ϵ > 0. This can be proved along the
lines of Remark 2 in Dehling et al. [2022].
Finally, we will need Hoeffding’s decomposition of the kernel to be able to define
the limit distribution:

Definition 2.8 (Hoeffding’s decomposition). Let h : H × H → H be an antisym-
metric kernel. Let X,Z be two independent random variables in H. Hoeffding’s
decomposition of h with respect to X,Z is defined as

h(x, y) = h
(Z)
1 (x)− h

(X)
1 (y) + h

(X,Z)
2 (x, y),

where
h
(X)
1 (y) = E[h(y,X)], h

(Z)
1 (x) = E[h(x, Z)]

h
(X,Z)
2 (x, y) = h(x, y)− h

(Z)
1 (x) + h

(X)
1 (y)

with x, y ∈ H.

We get a special case if X and Z follow the same distribution, which is explained in
the next remark.

Remark 2.1. For two independent random variables X, X ′ following the same
distribution, Hoeffding’s decomposition with respect to X,X ′ reads

h(x, y) = h
(X)
1 (x)− h

(X)
1 (y) + h

(X)
2 (x, y),

where
h
(X)
1 (x) = E[h(x,X)]

and
h
(X)
2 (x, y) = h(x, y)− h

(X)
1 (x) + h

(X)
1 (y)

with x, y ∈ H.

In our context, we want to use Hoeffdings’s decomposition with respect to samples
from a sequence which are not necessarily independent. To handle this, we introduce
independent copies:
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Remark 2.2. If X and Z are not independent, we construct Hoeffding’s decompo-
sition of the kernel h with respect to X,Z by introducing independent copies X̃ and
Z̃ of X resp. Z and say that

h(x, y) = h
(Z)
1 (x)− h

(X)
1 (y) + h

(X,Z)
2 (x, y),

where
h
(X)
1 (y) = E[h(y, X̃)], h

(Z)
1 (x) = E[h(x, Z̃)]

h
(X,Z)
2 (x, y) = h(x, y)− h

(Z)
1 (x) + h

(X)
1 (y)

for x, y ∈ H.
This ensures independence such that the expectation EX [h

(Z)
1 (X)] = E[h(X, Z̃)], but

note that EX [h(y,X)] = EX̃ [h(y, X̃)] since X̃ is a copy of X.

In the special case described in Remark 2.1, we get some important properties for
the expectation of h

(X)
1 (X) and h

(X)
2 (X, y):

Remark 2.3. Let X be a random variable in H, and X̃ and independent copy of X.
For the two types of functions in Hoeffding’s decomposition, the following properties
hold:

E[h(X)
1 (X)] = EX

[
EX̃ [h(X, X̃)]

]
= −EX

[
EX̃ [h(X̃,X)]

]
= −EX

[
EX̃ [h(X, X̃)]

]
= −E[h(X)

1 (X)].

Meaning that E[h(X)
1 (X)] = 0. Here we first used the antisymmetry of h and the fact

that X and X̃ follow the same distribution. Furthermore, it follows:

E[h(X)
2 (X, y)] = EX [h(X, y)]− EX [h

(X)
1 (X)] + h

(X)
1 (y)

= EX [h(X, y)] + EX̃ [h(y, X̃)]

= −EX [h(y,X)] + EX̃ [h(y, X̃)]

= 0

again using the antisymmetry of h and the fact that X and X̃ follow the same
distribution. Applying the same arguments, it holds that E[h(X)

2 (y,X)] = 0 as well.

h
(X)
2 with this property is called degenerate.

It is important to note that uniform moments and variation condition transfer to
the components of Hoeffding’s decomposition.

Proposition 2.1.

i) The variation condition holds for h
(X)
1 , h

(Z)
1 and h

(X,Z)
2 .

ii) h
(X)
2 has uniform m-th moments under approximation, if h has it.
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Proof.
i) Variation condition
By Hoeffding’s decomposition for h it holds that for all x, x′ ∈ H

∥h(X)
1 (x)− h

(X)
1 (x′)∥ = ∥E[h(x, X̃)]− E[h(x′, X̃)]∥.

Let X,Z be two random variables in H. Then by Jensen’s inequality for conditional
expectations and the variation condition for h it is

E
[(

sup
∥y−Z∥≤ϵ

∥h(X)
1 (y)− h

(X)
1 (Z)∥

)2]
(1)

= E
[(

sup
∥y−Z∥≤ϵ

E
[
∥h(y, X̃)− h(Z, X̃)

∣∣Z]∥)2]
≤ E

[(
sup

∥y−Z∥≤ϵ

∥h(y, X̃)− h(Z, X̃)∥
)2]

≤ E
[(

sup
∥y−Z∥≤ϵ

∥x−X̃∥≤ϵ

∥h(y, x)− h(Z, X̃)∥
)2]

≤ Lϵ.

For h
(Z)
1 it holds the same. Therefore it follows for h

(X,Z)
2 , using Hoeffding’s decom-

position:

E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

∥h(X,Z)
2 (x, y)− h

(X,Z)
2 (X,Z)∥

)2]1/2

≤ E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

∥h(x, y)− h(X,Z)∥
)2]1/2

+ E
[(

sup
∥x−X∥≤ϵ

∥h(Z)
1 (x)− h

(Z)
1 (X)∥

)2]1/2

+ E
[(

sup
∥y−Z∥≤ϵ

∥h(X)
1 (y)− h

(X)
1 (Z)∥

)2]1/2
≤ 3(Lϵ)1/2.

Taking the square gives the result.
ii) Uniform moments
This can again be shown by using Hoeffding’s decomposition and then Jensen’s
inequality. We will show this exemplary for E[∥h(X)

2 (X0, Xn)∥m]:

E[∥h(X)
2 (X0, Xn)∥m]1/m

≤ E[∥h(X0, Xn)∥m]1/m + E
[
∥EX̃ [h(X0, X̃)]∥m

]1/m
+ E

[
∥EX̃ [h(X̃,Xn)]∥m

]1/m
≤ E[∥h(X0, Xn)∥m]1/m + E

[
EX̃ [∥h(X0, X̃)∥m]

]1/m
+ E

[
EX̃ [∥h(X̃,Xn)∥m]

]1/m
≤ 3M1/m

by uniform moments of h.
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2.3 Main Result Under the Hypothesis

A change-point test can be seen as a hypothesis test on a sample X1, ..., Xn with
the hypothesis of no structural change in the data

H0 : X1
D
= X2

D
= ...

D
= Xn

against the alternative of at most one change

H1 : ∃ 1 < k < n such that X1
D
= ...

D
= Xk

D
̸= Xk+1

D
= ...

D
= Xn

Given the definitions and concepts introduced above, we can state our first theorem
on the asymptotic distribution of our test statistic max1≤k<n

1
n3/2∥Un,k∥ under the

hypothesis, that is the assumption of no change.

Theorem 2.1. Let (Xn)n∈Z be P−NED on an absolutely regular sequence (ζn)n∈Z

such that akΦ(k
−8 δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

δ
4+δ

k < ∞ for some δ > 0.
Assume that h : H2 → H is an antisymmetric kernel that fulfils the variation con-
dition and is either bounded or has uniform (4 + δ)-moments under approximation.
Then it holds that

max
1≤k<n

1

n3/2
∥Un,k(X)∥ = max

1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

h(Xi, Xj)
∥∥ D−→ sup

λ∈[0,1]
∥W (λ)− λW (1)∥,

where W is an H-valued Brownian motion and the covariance operator S of W (1)
is given by

⟨S(x), y⟩ =
∞∑

i=−∞

Cov (⟨h1(X0), x⟩, ⟨h1(Xi), y⟩) .

Remark 2.4. Since in the definition of absolute regularity it is assumed that (ζn)n∈Z
is a stationary process, this implies that the functional (Xn)n∈Z of (ζn)n∈Z is station-
ary as well.

For the kernel h(x, y) = x − y, we obtain as a special case a limit theorem for the
functional CUSUM-statistic similar to Corollary 1 of Sharipov et al. [2016a]. Before
we start proving this theorem, already note that the limit distribution depends on an
infinite dimensional covariance operator, which is unknown in practice. We propose
to use a new version of the dependent wild bootstrap for resampling. The actual
procedure and asymptotic validity of the method is presented in Chapter 2.5.
The proofs will make use of Hoeffding’s decomposition of the kernel h, which allows
us to prove asymptotic results each for the linear and degenerate part of the test
statistic. In this chapter, we will omit the superscript of h

(X)
1 and h

(X)
2 for notational

simplicity.
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Lemma 2.1 (Hoeffding’s decomposition of Un,k). Let h : H ×H → H be an anti-
symmetric kernel.
Under Hoeffding’s decomposition it holds for the test statistic that

Un,k(X) =
k∑

i=1

n∑
j=k+1

h(Xi, Xj) = n
k∑

i=1

(h1(Xi)− h1(X))︸ ︷︷ ︸
linear part

+
k∑

i=1

n∑
j=k+1

h2(Xi, Xj)︸ ︷︷ ︸
degenerate part

,

where h1(X) = 1
n

∑n
j=1 h1(Xj).

Proof. After using Hoeffding’s decomposition for h, some calculations lead to:

Un,k(X) =
k∑

i=1

n∑
j=k+1

h(Xi, Xj) =
k∑

i=1

n∑
j=k+1

[h1(Xi)− h1(Xj) + h2(Xi, Xj)]

=
k∑

i=1

n∑
j=k+1

[h1(Xi)− h1(Xj)] +
k∑

i=1

n∑
j=k+1

h2(Xi, Xj)

= (n− k)h1(X1)−
n∑

j=k+1

h1(Xj) + ...+ (n− k)h1(Xk)

−
n∑

j=k+1

h1(Xj) +
k∑

i=1

n∑
j=k+1

h2(Xi, Xj)

= nh1(X1)−
n∑

j=1

h1(Xj) + ...+ nh1(Xk)−
n∑

j=1

h1(Xj)

+
k∑

i=1

n∑
j=k+1

h2(Xi, Xj)

= n
( k∑

i=1

[h1(Xi)−
1

n

n∑
j=1

h1(Xj)]
)
+

k∑
i=1

n∑
j=k+1

h2(Xi, Xj)

= n
k∑

i=1

(
h1(Xi)− h1(X)

)
+

k∑
i=1

n∑
j=k+1

h2(Xi, Xj).

The idea of proof for Theorem 2.1 is to handle the linear and degenerate part
of max1≤k<n

1
n3/2∥Un,k(X)∥ separately. For the linear part, convergence results of

Sharipov et al. [2016a] for partial sums can be used, given some properties of
(h1(Xn))n∈Z that need to be checked. In fact, the linear part already converges
in distribution to the process given in Theorem 2.1. As a consequence, the second
(and bigger) task is to show that the degenerate part converges to zero in probabil-
ity.
To use existing results about partial sums for the linear part, it is first checked that
(h1(Xn))n∈Z is L2-NED:
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Lemma 2.2. Under the assumptions of Theorem 2.1, (h1(Xn))n∈Z is L2-NED with

approximation constants ak,2 = O(k−4 δ+3
δ ).

Proof. We recall the following notation Xn,k = fk(ζn−k, ..., ζn+k) and let X̃n,k be an
independent copy of this random variable. Now, we can find the approximation
constants of (h1(Xn))n∈Z by using its variation condition (1) stated in Corollary 2.1
and some further inequalities.

E[∥h1(X0)− E[h1(X0)|Fk
−k]∥2] ≤ E[∥h1(X0)− h1(X0,k)∥2]

= E[∥h1(X0)− h1(X0,k)∥21{∥X0−X0,k∥>sk}]

+ E[∥h1(X0)− h1(X0,k)∥21{∥X0−X0,k∥≤sk}]

≤ E[∥h1(X0)− h1(X0,k)∥21{∥X0−X0,k∥>sk}]

+ E
[(

sup
∥X0−X0,k∥≤sk

∥h1(X0)− h1(X0,k)∥
)2]

︸ ︷︷ ︸
(1)

≤Lsk

≤
∥∥∥h1(X0)− h1(X0, k)∥2

∥∥
2+δ
2

+
∥∥1{∥X0−X0,k∥>sk}

∥∥
2+δ
δ

+ Lsk

=
∥∥∥h1(X0)− h1(X0, k)∥2

∥∥
2+δ
2

+ P(∥X0 −X0,k∥ > sk)
δ

2+δ + Lsk

≤ E[∥h1(X0)− h1(X0,k)∥2+δ]
2

2+δ + (akΦ(sk))
δ

2+δ + Lsk

by using Hölder’s inequality and the fact that (Xn)n is P-NED. Now, also using
Jensen’s and Minkowski’s inequality and the uniform moment condition, it holds
that

E[∥h1(X0)− h1(X0,k)∥2+δ]
2

2+δ + (akΦ(sk))
δ

2+δ + Lsk

= E
[∥∥∥E[h(X0, X̃0)|X0, X0,k]− E[h(X0,k, X̃0,k)|X0, X0,k]

∥∥∥2+δ
] 2

2+δ

(akΦ(sk))
δ

2+δ

+ Lsk

≤ E
[
E[∥h(X0, X̃0)− h(X0,k, X̃0,k)∥2+δ|X0, X0,k]

] 2
2+δ

(akΦ(sk))
δ

2+δ + Lsk

=
(
E[∥h(X0, X̃0)− h(X0,k, X̃0,k)∥2+δ]

1
2+δ

)2
(akΦ(sk))

δ
2+δ + Lsk

≤
(
E[∥h(X0, X̃0)∥2+δ]

1
2+δ + E[∥h(X0,k, X̃0,k)∥2+δ]

1
2+δ

)2
(akΦ(sk))

δ
2+δ + Lsk

≤ (M
1

2+δ +M
1

2+δ )2(akΦ(sk))
δ

2+δ + Lsk.

Let sk = k−8 3+δ
δ and recall the assumptions on the P-NED coefficients to get

(M
1

2+δ +M
1

2+δ )2(akΦ(sk))
δ

2+δ + Lsk

≤ C(k−8
(3+δ)(2+δ)

δ2 )
δ

2+δ + Lk−8 3+δ
δ .

By taking the square root, we get the result:(
E[∥h1(X0)− E[h1(X0)|Fk

−k]∥2]
) 1

2 ≤ Ck−4 3+δ
δ =: ak,2.
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Since it holds that ak,2
k→∞−−−→ 0, (Xn)n∈Z is L2-NED.

Proposition 2.2. Under the assumptions of Theorem 2.1 it holds:

( 1√
n

⌊nλ⌋∑
i=1

h1(Xi)
)
λ∈[0,1]

D−→ (W (λ))λ∈[0,1],

where (W (λ))λ∈[0,1] is a Brownian motion with covariance operator as defined in
Theorem 2.1.

Proof. We want to use Theorem 1 Sharipov et al. [2016a] for (h1(Xn))n∈Z, so we
have to check its assumptions:
Assumption 1: (h1(Xn))n∈Z is L1-NED.
We know by Lemma 2.2 that (h1(Xn))n∈Z is L2-NED. Thus, L1-NED follows by
Jensen’s inequality:

E[∥h1(X0)− E[h1(X0)|Fk
−k]∥] ≤ E[∥h1(X0)− E[h1(X0)|Fk

−k]∥2]
1
2 ≤ ak,2.

So, (h1(Xn))n∈Z is L1-NED with constants ak,1 = ak,2 = Ck−4 3+δ
δ .

Assumption 2: Existing (4 + δ)-moments.
This follows from the assumption of uniform moments under approximation and
Jensen’s inequality:

E[∥h1(X0)∥4+δ] = E
[
∥E[h(X0, X̃0)|X0]∥4+δ

]
≤ E

[
E[∥h(X0, X̃0)∥4+δ|X0]

]
= E[∥h(X0, X̃0)∥4+δ] ≤ M < ∞.

In the case that h is bounded, h1 is bounded as well and thus moments exist.

Assumption 3:
∑∞

m=1m
2a

δ
3+δ

m,1 < ∞.
A short calculations leads to:

∞∑
m=1

m2a
δ

3+δ

m,1 = C
∞∑

m=1

m2(m−4 3+δ
δ )

δ
3+δ = C

∞∑
m=1

m2m−4 = C
∞∑

m=1

m−2 < ∞.

Assumption 4:
∑∞

m=1m
2β

δ
4+δ
m < ∞.

This holds directly by the assumed rate on the coefficients βm.
We have checked that all assumptions for Theorem 1 Sharipov et al. [2016a] are
fulfilled and since E[h1(X0)] = 0, the statement of the proposition follows directly
by the use of the said theorem.

With this result, we can already show the convergence of the linear part of
max1≤k<n

1
n3/2∥Un,k(X)∥. To complete the proof of Theorem 2.1, we will prove that

the degenerate part converges to zero in probability. To do so, we first state and
prove four technical lemmas, needed to handle the L2-norm of the degenerate part.
This is done by approximating h2 by some truncated counterparts that can in turn
be suitably bounded and are not too far away from h2.
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Lemma 2.3. Under the assumptions of Theorem 2.1, there exists a universal con-
stant C > 0 such that for every i, k, l ∈ N, ϵ > 0 it holds that

E[∥h2(Xi, Xi+k+2l)− h2(Xi,l, Xi+k+2l,l)∥2]
1
2 ≤ C

(√
ϵ+ β

δ
2(2+δ)

k + (alΦ(ϵ))
δ

2(2+δ)
)
,

where Xi,l = fl(ζi−l, ..., ζi+l).

Proof. By Lemma D1 Dehling et al. [2017] there exist independent copies (ζ ′n)n∈Z,
(ζ ′′n)n∈Z of (ζn)n∈Z satisfying

P((ζ ′n)n≥i+k+l = (ζn)n≥i+k+l) = 1− βk and P((ζ ′′n)n≤i+l = (ζn)n≤i+l) = 1− βk.
(2)

Define

X ′
i = f((ζ ′i+n)n∈Z) , X ′′

i = f((ζ ′′i+n)n∈Z)

X ′
i,l = fl(ζ

′
i−l, ..., ζ

′
i+l) , X ′′

i,l = fl(ζ
′′
i−l, ..., ζ

′′
i+l).

With the help of these, we can write

E[∥h2(Xi, Xi+k+2l)− h2(Xi,l, Xi+k+2l,l)∥2]
1
2

≤ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥2]

1
2 (3)

+ E[∥h2(X
′′
i , X

′
i+k+2l)− h2(X

′′
i,l, X

′
i+k+2l,l)∥2]

1
2 (4)

+ E[∥h2(X
′′
i,l, X

′
i+k+2l,l)− h2(Xi,l, Xi+k+2l,l)∥2]

1
2 (5)

by using the triangle inequality. We will look at the three summands separately.
For abbreviation, define

B = {(ζ ′n)n≥i+k+l = (ζn)n≥i+k+l, (ζ
′′
n)n≤i+l = (ζn)n≤i+l}

Bc = {(ζ ′n)n≥i+k+l ̸= (ζn)n≥i+k+l or (ζ
′′
n)n≤i+l ̸= (ζn)n≤i+l}

and write

(3) = E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥2]

1
2

≤ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21Bc ]

1
2 (3.A)

+ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21B]

1
2 . (3.B)

For (3.A), we use Hölder’s inequality together with our assumptions on uniform
moments under approximation and get

(3.A) ≤ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥

2(2+δ)
2 ]

2
2(2+δ)P(Bc)

δ
2(2+δ)

≤
(
E[∥h2(Xi, Xi+k+2l)∥2+δ]

1
2+δ + E[∥h2(X

′′
i , X

′
i+k+2l)∥2+δ]

1
2+δ

)
·
(
P({(ζ ′n)n≥i+k+l ̸= (ζn)n≥i+k+l}) + P({(ζ ′′n)n≤i+l ̸= (ζn)n≤i+l})

) δ
2(2+δ)
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≤ 2M
1

2+δ (2β
δ

2(2+δ)

k )

≤ Cβ
δ

2(2+δ)

k ,

where we used property (2) of the copied series (ζ ′n)n∈Z, (ζ
′′
n)n∈Z for the second to

last inequality. For (3.B), we split up again:

(3.B) ≤ E
[
∥h2(Xi, Xi+k+2l)− h2(X

′′
i , X

′
i+k+2l)∥21B

· 1{∥Xi−X′′
i ∥≤2ϵ, ∥Xi+k+2l−X′

i+k+2l∥≤2ϵ}

] 1
2

+ E
[
∥h2(Xi, Xi+k+2l)− h2(X

′′
i , X

′
i+k+2l)∥21B

· 1{∥Xi−X′′
i ∥>2ϵ or ∥Xi+k+2l−X′

i+k+2l∥>2ϵ}

] 1
2

For the first summand, we use the variation condition. For the second, notice that
on B:

∥Xi −X ′′
i ∥ ≤ ∥Xi −Xi,l∥+ ∥Xi,l −X ′′

i ∥ = ∥Xi −Xi,l∥+ ∥X ′′
i,l −X ′′

i ∥

and

∥Xi+k+2l −X ′
i+k+2l∥ ≤ ∥Xi+k+2l −Xi+k+2l,l∥+ ∥Xi+k+2l,l −X ′

i+k+2l∥
= ∥Xi+k+2l −Xi+k+2l,l∥+ ∥X ′

i+k+2l,l −X ′
i+k+2l∥.

So, by the moment assumptions and Hölder’s inequality

(3.B) ≤
√
L2ϵ

+ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21{∥Xi−Xi,l∥>ϵ}]

1
2

+ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21{∥X′′

i −X′′
i,l∥>ϵ}]

1
2

+ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21{∥Xi+k+2l−Xi+k+2l,l∥>ϵ}]

1
2

+ E[∥h2(Xi, Xi+k+2l)− h2(X
′′
i , X

′
i+k+2l)∥21{∥X′

i+k+2l−X′
i+k+2l,l∥>ϵ}]

1
2

≤
√
L2ϵ+ 4 · 2M

1
2+δ (P(∥Xi −Xi,l∥ > ϵ))

δ
2(2+δ)

≤
√
L2ϵ+ 4 · 2M

1
2+δ (alΦ(ϵ))

δ
2(2+δ)

≤ C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
,

using that (Xn)n∈Z is P-NED. Combining the results for (3.A) and (3.B) we get

(3) ≤ (3.A) + (3.B) ≤ C

(
β

δ
2(2+δ)

k +
√
ϵ+ (alΦ(ϵ))

δ
2(2+δ)

)
.

We can now look at (4). Again, split the term into two summands (similar as for
(3)), and use the variation condition for the first and Hölder’s inequality for the
second summand:

(4) = E[∥h2(X
′′
i , X

′
i+k+2l)− h2(X

′′
i,l, X

′
i+k+2l,l)∥2]

1
2
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≤ E
[
∥h2(X

′′
i , X

′
i+k+2l)− h2(X

′′
i,l, X

′
i+k+2l,l)∥2

· 1{∥X′′
i −X′′

i,l∥≤ϵ, ∥X′
i+k+2l−X′

i+k+2l,l∥≤ϵ}

] 1
2

+ E
[
∥h2(X

′′
i , X

′
i+k+2l)− h2(X

′′
i,l, X

′
i+k+2l,l)∥2

· 1{∥X′′
i −X′′

i,l∥>ϵ or ∥X′
i+k+2l−X′

i+k+2l,l∥>ϵ}

] 1
2

≤
√
Lϵ+

(
E[∥h2(X

′′
i , X

′
i+k+2l)∥2+δ]

1
2+δ + E[∥h2(X

′′
i,l, X

′
i+k+2l,l)∥2+δ]

1
2+δ

)
·
(
P(∥X ′′

i −X ′′
i,l∥ > ϵ) + P(∥X ′

i+k+2l −X ′
i+k+2l,l∥ > ϵ)

) δ
2(2+δ)

≤
√
Lϵ+ 2M

1
2+δ (2alΦ(ϵ))

δ
2(2+δ)

≤ C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
,

since (Xn)n∈Z is P-NED. Lastly, split up (5) as well and note that since on B it is
Xi+k+2l,l = X ′

i+k+2l,l and Xi,l = X ′′
i,l, the second summand equals zero. For the first

summand, use Hölder’s inequality again:

(5) = E[∥h2(X
′′
i,l, X

′
i+k+2l,l)− h2(Xi,l, Xi+k+2l,l)∥2]

1
2

≤ E[∥h2(X
′′
i,l, X

′
i+k+2l,l)− h2(Xi,l, Xi+k+2l,l)∥21Bc ]

1
2

+ E[∥h2(X
′′
i,l, X

′
i+k+2l,l)− h2(Xi,l, Xi+k+2l,l)∥21B]

1
2

≤ 2M
1

2+δ

(
P({(ζ ′n)n≥i+k+l ̸= (ζn)n≥i+k+l})+P({(ζ ′′n)n≤i+l ̸= (ζn)n≤i+l})

) δ
2(2+δ)

(2)

≤ 2M
1

2+δ (2βk)
δ

2(2+δ) ≤ Cβ
δ

2(2+δ)

k .

Finally, we can put everything together, which completes the proof:

E[∥h2(Xi, Xi+k+2l)− h2(Xi,l, Xi+k+2l,l)∥2]
1
2 ≤ (3) + (4) + (5)

≤ C

(
β

δ
2(2+δ)

k +
√
ϵ+ (alΦ(ϵ))

δ
2(2+δ)

)
+ C

(√
ϵ+ (alΦ(ϵ))

δ
2(2+δ)

)
+ Cβ

δ
2(2+δ)

k

≤ C

(√
ϵ+ β

δ
2(2+δ)

k + (alΦ(ϵ))
δ

2(2+δ)

)
.

Lemma 2.4. Under the assumptions of Theorem 2.1 it holds for any n1 < n2 <

n3 < n4 ≤ n and l =
⌊
n

3
16

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ C(n4 − n3)n
1
4 .

Proof. The important step of the proof is to bound the left hand side expectation
from above by a sum of E[∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥2]1/2 terms. We can then use
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Lemma 2.3 to achieve the stated approximation. First note that

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ E
[( ∑

1≤i<j

∑
n3≤j≤n4

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

.

For any fixed n3 ≤ j ≤ n4 it is

E
[ ∑

1≤i<j

∥h2(Xi, Xj)∥
]
= E

[ j−1∑
k=1

∥h2(Xj−k, Xj)∥
]
≤ E

[ n4∑
k=1

∥h2(Xj−k, Xj)∥
]
.

And for j there are at most (n4 − n3) possibilities. So,

E
[ ∑

n3≤j≤n4

∑
1≤i<j

∥h2(Xi, Xj)∥
]
≤ (n4 − n3)E

[ n4∑
k=1

∥h2(Xj−k, Xj)∥
]
.

The analogous holds for h2(Xi,l, Xj,l). Thus,

E
[( ∑

1≤i<j

∑
n3≤j≤n4

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤
∑

n3≤j≤n4

∑
1≤i<j

E[∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥2]
1
2

≤ (n4 − n3)

n4∑
k=1

E[∥h2(Xj−k, Xj)− h2(Xj−k,l, Xj,l)∥2]
1
2

≤ (n4 − n3)

n4∑
k=1

C

(√
ϵ+ β

δ
2(2+δ)

k−2l + (alΦ(ϵ))
δ

2(2+δ)

)
(6)

by Lemma 2.3.
Now set ϵ = l−8 3+δ

δ and define βk = 1 if k < 0. Then by the assumptions on the
approximation constants and the mixing coefficients

(6) = C(n4 − n3)

n4∑
k=1

(
l−8 3+δ

δ
1
2 + β

δ
2(2+δ)

k−2l + (alΦ(l
−8 3+δ

δ ))
δ

2(2+δ)

)
≤ C(n4 − n3)

n4∑
k=1

(
l−4 3+δ

δ + β
δ

2(2+δ)

k−2l + l−4 3+δ
δ

)

≤ C(n4 − n3)
( n4∑

k=1

l−4 +
2l−1∑
k=1

β
δ

4+δ

k−2l︸ ︷︷ ︸
=1

+

n4∑
k=2l

β
δ

4+δ

k−2l

)

≤ C(n4 − n3)
(
n4l

−4 + 2l +

n4∑
k=2l

(k − 2l)2β
δ

4+δ

k−2l︸ ︷︷ ︸
<∞

)
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≤ C(n4 − n3)
(
nl−4 + 2l

)
≤ C(n4 − n3)n

1
4 .

So the statement of the lemma is proven.

Lemma 2.5. Under the assumptions of Theorem 2.1, it holds for any n1 < n2 <

n3 < n4 ≤ n and l =
⌊
n

3
16

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ C(n4 − n3)n
1
4 .

where h2,l(x, y) = h(x, y) − E[h(x, X̃0,l)] − E[h(X̃0,l, y)] ∀ x, y ∈ H and X̃n,k =
fk(ζ̃n−k, ..., ζ̃n+k), where (ζ̃n)n∈Z is an independent copy of (ζn)n∈Z.

Remark 2.5. The “truncated” function h2,l is degenerated as well, meaning that
for all i ∈ N

E[h2,l(Xi,l, y)] = EX [h(Xi,l, y)]− EX [EX̃ [h(Xi,l, X̃i,l)]]︸ ︷︷ ︸
=0 by antisymmetry of h

−EX [EX̃ [h(X̃i,l, y)]]

= EX [h(Xi,l, y)]− EX̃ [h(X̃i,l, y)]

= 0,

since X̃i,l is a copy of Xi,l. And similarly it is E[h2,l(y,Xi,l)] = 0.

Proof of Lemma 2.5. For (ζ̃n)n∈Z an independent copy of (ζn)n∈Z, write
X̃n = f((ζ̃n+k)k∈Z). So (X̃n)n∈Z is an independent copy of (Xn)n∈Z. We will use
Hoeffding’s decomposition and rewrite h2 as h2(x, y) = h(x, y) − E[h(x, X̃j)] −
E[h(X̃i, y)] and similarly for h2,l. By doing so, we obtain

E[∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥2]
1
2

= E
[
∥ h(Xi,l, Xj,l)− EX̃ [h(Xi,l, X̃j,l)]− EX̃ [h(X̃i,l, Xj,l)]

− h(Xi,l, Xj,l) + EX̃ [h(Xi,l, X̃j)] + EX̃ [h(X̃i, Xj,l)]∥2
] 1

2

≤ E
[
∥h(Xi,l, X̃j,l)− h(Xi,l, X̃j)∥2

] 1
2 (7)

+ E
[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj,l)∥2

] 1
2 . (8)

We bound the two terms separately, starting with (8):

E
[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj,l)∥2

] 1
2

≤ E
[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj)∥2

] 1
2 (8.A)

+ E
[
∥h(X̃i, Xj,l)− h(X̃i, Xj)∥2

] 1
2 . (8.B)
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Now, decompose the first summand and use the variation condition and Hölder’s
inequality:

(8.A) = E
[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj)∥21{∥X̃i−X̃i,l∥≤ϵ, ∥Xj−Xj,l∥≤ϵ}

] 1
2

+ E
[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj)∥21{∥X̃i−X̃i,l∥>ϵ or ∥Xj−Xj,l∥>ϵ}

] 1
2

≤
√
Lϵ+ E

[
∥h(X̃i,l, Xj,l)− h(X̃i, Xj)∥2+δ

] 1
2+δ

·
(
P(∥X̃i − X̃i,l∥ > ϵ) + P(∥Xj −Xj,l∥ > ϵ)

) δ
2(2+δ)

≤
√
Lϵ+ 2M

1
2+δ (2alΦ(ϵ))

δ
2(2+δ)

≤ C
(√

ϵ+ (2alΦ(ϵ))
δ

2(2+δ)

)
by the moment and P-NED assumptions.
For (8.B) we use similar arguments:

(8.B) ≤ E
[
∥h(X̃i, Xj,l)− h(X̃i, Xj)∥21{∥Xj−Xj,l∥>ϵ}

] 1
2

+ E
[
∥h(X̃i, Xj,l)− h(X̃i, Xj)∥21{∥Xj−Xj,l∥≤ϵ}

] 1
2

≤ E
[
∥h(X̃i, Xj,l)− h(X̃i, Xj)∥2+δ

] 1
2+δ · P(∥Xj −Xj,l∥ > ϵ)

δ
2(2+δ) +

√
Lϵ

≤ 2M
1

2+δ (alΦ(ϵ))
δ

2(2+δ) +
√
Lϵ

≤ C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
.

Putting these two terms together, we get

(8) ≤ C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
.

Bounding (7) works completely analogous, just with i and j interchanged, so

(7) ≤
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
.

All together this yields

E[∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥2]
1
2 ≤ (7) + (8) ≤ C

(√
ϵ+ (alΦ(ϵ))

δ
2(2+δ)

)
.

So we finally get that

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ E
[( ∑

1≤i<j

∑
n3≤j≤n4

∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥
)2] 1

2
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≤
∑
1≤i<j

∑
n3≤j≤n4

E
[
∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥2

] 1
2

≤
∑
1≤i<j

∑
n3≤j≤n4

C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)

)
≤ C(n4 − n3)

n4∑
k=1

(√
ϵ+ (alΦ(ϵ))

δ
2(2+δ)

)
≤ C(n4 − n3)n

1
4 ,

where the last line is achieved by setting ϵ = l−8 3+δ
δ and similar calculations as in

Lemma 2.4.

Remark 2.6. If the kernel h is not antisymmetric, we get an additional expectation
in h2 and h2,l respectively. More precisely we get

h2(Xi,l, Xj,l) = h(Xi,l, Xj,l)− EX̃ [h(Xi,l, X̃j)]− EX̃ [h(X̃i, Xj,l)] + EX,X̃ [h(X̃i, Xj)]

and

h2,l(Xi,l, Xj,l) = h(Xi,l, Xj,l)−EX̃ [h(Xi,l, X̃j,l)]−EX̃ [h(X̃i,l, Xj,l)]+EX,X̃ [h(X̃i,l, Xj,l)].

This means we have to bound the additional term E[∥h(X̃i,l, Xj,l) − h(X̃i, Xj)∥2]
1
2

in Lemma 2.5. But notice that this equals the term (8.A), which we have bounded
above.

Lemma 2.6. Under the assumptions of Theorem 2.1, it holds for any n1, n2, n3, n4 ≤
n with n1 < n2, n3 < n4 and l =

⌊
n

3
16

⌋
:

E
[(∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l)
∥∥)2] ≤ C(n4 − n3)(n2 − n1)n

3
8 .

For the definition of h2,l, see Lemma 2.5.

Proof. In this proof, we will use Lemma 1 Yoshihara [1976], which is the following:
Let g(x1, ..., xk) be a Borel function. For any 0 ≤ j ≤ k − 1 with

E[|g(XI ,l ,X
′
IC ,l)|

1+δ̃] ≤ M (♢)

for some δ̃ > 0, where I = {i1, ..., ij}, IC = {ij+1, ..., ik} and X ′ an independent
copy of X, it holds that∣∣E[g(Xi1,l, ..., Xik,l)]− E[g(XI,l, X

′
IC ,l)]

∣∣ ≤ 4M1/(1+δ̃)β
δ̃/(1+δ̃)
(ij+1−ij)−2l. (Y)

Now, for the proof of the lemma, first observe that we can rewrite the squared norm
as the scalar product and thus:
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E
[∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l)
∥∥2]

= E
[
⟨
∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l),
∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l)⟩
]

=
∑

n1≤i1≤n2

∑
n3≤j1≤n4

∑
n1≤i2≤n2

∑
n3≤j2≤n4

(i1 ̸=i2) or (j1 ̸=j2) or both

E[⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi2,l, Xj2,l)⟩] (9)

+
∑

n1≤i≤n2

∑
n3≤j≤n4

E[⟨h2,l(Xi,l, Xj,l), h2,l(Xi,l, Xj,l)⟩]. (10)

We know by the uniform moments under approximation that (10) is bounded by
the following:

(10) =
∑

n1≤i≤n2

∑
n3≤j≤n4

E
[
∥h2,l(Xi,l, Xj,l)∥2

]
≤ (n2 − n1)(n4 − n3)M

≤ M(n2 − n1)(n4 − n3)n
3
8 .

For (9) we use the above mentioned lemma of Yoshihara [1976]. Note that by the
double summation, we have three different cases to analyse: (i1 ̸= i2) or (j1 ̸= j2)
or both. Universal, let m = max(j1 − i1, j2 − i2), first assume that m = j1 − i1 and
let δ̃ = δ/2 > 0.
First case: i1 ̸= i2 and j1 ̸= j2.
Define the function g(x1, x2, x3, x4) := ⟨h2,l(x1, x2), h2,l(x3, x4)⟩ and check that (♢)
holds true for I = {i1} and IC = {j1, i2, j2}:

E
[
|g(Xi1,l, X

′
j1,l

, X ′
i2,l

, X ′
j2,l

)|1+δ̃
]
≤ E

[
∥h2,l(Xi1,l, X

′
j1,l

)∥1+δ̃∥h2,l(X
′
i2,l

, X ′
j2,l

)∥1+δ̃
]

≤ E
[
∥h2,l(Xi1,l, X

′
j1,l

)∥2(1+δ̃)
]1/2E[∥h2,l(X

′
i2,l

, X ′
j2,l

)∥2(1+δ̃)
]1/2 ≤ M

by the moment assumptions and δ = δ̃/2. Here, we first use the Cauchy-Schwarz
inequality and then Hölder’s inequality. Now (Y) states that∣∣E[g(Xi1,l, Xj1,l, Xi2,l, Xj2,l)]− E[g(Xi1,l, X

′
j1,l

, X ′
i2,l

, X ′
j2,l

)]
∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l . (11)

The second expectation equals 0, which can be seen by using the law of the iterated
expectation:

E[g(Xi1,l, X
′
j1,l

, X ′
i2,l

, X ′
j2,l

)] = E
[
E[g(Xi1,l, X

′
j1,l

, X ′
i2,l

, X ′
j2,l

)|X ′
j1,l

, X ′
i2,l

, X ′
j2,l

]
]

= E
[
E[⟨h2,l(Xi1,l, X

′
j1,l

), h2,l(X
′
i2,l

, X ′
j2,l

)⟩|X ′
j1,l

, X ′
i2,l

, X ′
j2,l

]
]

= E
[
⟨E[h2,l(Xi1,l, X

′
j1,l

)|X ′
j1,l

, X ′
i2,l

, X ′
j2,l

], h2,l(X
′
i2,l

, X ′
j2,l

)⟩
]

(12)

since h2,l(X
′
i2,l

, X ′
j2,l

) is measurable with respect to the inner (conditional) expecta-
tion. In general it holds for random variables X, Y that E[⟨Y,X⟩|B] = ⟨Y,E[X|B]⟩
if Y is measurable with respect to B. So,

(12) = E
[
⟨E[h2,l(Xi1,l, X

′
j1,l

)|X ′
j1,l

, X ′
i2,l

, X ′
j2,l

]︸ ︷︷ ︸
= 0 because h2,l is degenerated

, h2,l(X
′
i2,l

, X ′
j2,l

)⟩
]
= 0.
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Plugging this into (11), we get that

E[⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi2,l, Xj2,l)⟩] ≤
∣∣E[g(Xi1,l, Xj1,l, Xi2,l, Xj2,l)]

∣∣ ≤ Cβ
δ̃/(1+δ̃)
m−2l .

We repeat the above argumentation for the other two cases:
Second case: i1 ̸= i2 but j1 = j2.
Define the function g(x1, x2, x3) := ⟨h2,l(x1, x2), h2,l(x3, x2)⟩ and check that (♢) holds
true for I = {i1} and IC = {j1, i2}:

E
[
|g(Xi1,l, X

′
j1,l

, X ′
j2,l

)|1+δ̃
]

≤ E
[
∥h2,l(Xi1,l, X

′
j1,l

)∥2(1+δ̃)
]1/2E[∥h2,l(X

′
i2,l

, X ′
j1,l

)∥2(1+δ̃)
]1/2 ≤ M.

Here, (Y) states that∣∣E[g(Xi1,l, Xj1,l, Xi2,l)]− E[g(Xi1,l, X
′
j1,l

, X ′
i2,l

)]
∣∣ ≤ Cβ

δ̃/(1+δ̃)
m−2l . (13)

Again, the second expectation equals zero:

E[g(Xi1,l, X
′
j1,l

, X ′
i2,l

)]

= E
[
E[⟨h2,l(Xi1,l, X

′
j1,l

), h2,l(X
′
i2,l

, X ′
j1,l

)⟩|X ′
i2,l

, X ′
j1,l

]
]

= E
[
⟨E[h2,l(Xi1,l, X

′
j1,l

)|X ′
i2,l

, X ′
j1,l

]︸ ︷︷ ︸
=0

, h2,l(X
′
i2,l

, X ′
j1,l

)⟩
]

= 0.

Plugging this into (13), we get that

E[⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi2,l, Xj1,l)⟩] ≤ |E[g(Xi1,l, Xj1,l, Xi2,l)]| ≤ Cβ
δ̃/(1+δ̃)
m−2l .

Third case: j1 ̸= j2 but i1 = i2.
Define the function g(x1, x2, x3) := ⟨h2,l(x1, x2), h2,l(x1, x3)⟩. Checking that (♢)
holds true for I = {i1} and IC = {j1, j2} works completely similar to the second
case. Noting that we have to condition on Xi1,l, X

′
j2,l

in this case, yields:

E[⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi1,l, Xj2,l)⟩] ≤
∣∣E[g(Xi1,l, Xj1,l, Xj2,l)]

∣∣ ≤ Cβ
δ̃/(1+δ̃)
m−2l .

We can conclude for the quadratic term

E
[∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l)
∥∥2]

=
∑

n1≤i1≤n2

∑
n3≤j1≤n4

∑
n1≤i2≤n2

∑
n3≤j2≤n4

(i1 ̸=i2) or (j1 ̸=j2) or both

Cβ
δ̃/(1+δ̃)
m−2l + (n4 − n3)(n2 − n1)M. (14)
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For a fixed m we have the following possibilities to choose:
Since we assumed m = j1 − i1, there are

� at most n2 − n1 possibilities for i1, so only 1 possibility for j1.

� at most (n4 −n3) possibilities for j2, so at most m possibilities for i2, since by
the definition of m the value j2 − i2 is smaller (or equal) than m.

So, recalling that δ = δ̃/2, we have for l > 1
2
:∑

n1≤i1≤n2

∑
n3≤j1≤n4

∑
n1≤i2≤n2,

∑
n3≤j2≤n4

(i1 ̸=i2) or (j1 ̸=j2) or both

Cβ
δ̃/(1+δ̃)
m−2l

≤ C(n4 − n3)(n2 − n1)
n∑

m=1

mβ
δ

2+δ

m−2l

= C(n4 − n3)(n2 − n1)

2l−1∑
m=1

mβ
δ

2+δ

m−2l︸ ︷︷ ︸
=1

+
n∑

m=2l

β
δ

2+δ

m−2l


≤ C(n4 − n3)(n2 − n1)

(
2l−1∑
m=1

m+
n∑

m=2l

(m− 2l)β
δ

2+δ

m−2l +
n∑

m=2l

2lβ
δ

2+δ

m−2l

)

≤ C(n4 − n3)(n2 − n1)

(
(2l)2 +

n∑
m=2l

(m− 2l)β
δ

2+δ

m−2l + 2l
n∑

m=2l

(m− 2l)β
δ

2+δ

m−2l

)

= C(n4 − n3)(n2 − n1)

(
l2 + (1 + 2l)

n∑
m=2l

(m− 2l)β
δ

2+δ

m−2l

)

≤ C(n4 − n3)(n2 − n1)

(
l2 + (2l)2

n∑
m=2l

(m− 2l)β
δ

2+δ

m−2l

)

≤ C(n4 − n3)(n2 − n1)
(
l2 + l2

n∑
m=2l

(m− 2l)2β
δ

2+δ

m−2l︸ ︷︷ ︸
<∞

)

≤ C(n4 − n3)(n2 − n1)l
2

≤ C(n4 − n3)(n2 − n1)n
3
8 .

Thus, it follows
(14) ≤ C(n4 − n3)(n2 − n1)n

3
8 .

If m = j2 − i2, it works very similar. Just a few comments on what changes: We
get in the first case I = {i1, j1, j2}, IC = {j2}, which leads to defining the func-
tion g(Xi1,l, Xj1,l, Xi2,l, X

′
j2,l

) := ⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi2,l, X
′
j2,l

)⟩ and conditioning
on Xi1,l, Xj1,l, Xi2,l. For the second case it is I = {i1, i2}, IC = {j2}. We define
g(Xi1,l, X

′
j2,l

, Xi2,l) := ⟨h2,l(Xi1,l, X
′
j2,l

), h2,l(Xi2,l, X
′
j2,l

)⟩ and condition on Xi2,l, X
′
j2,l

.
In the third case it is I = {i1, j1}, IC = {j2}, define
g(Xi1,l, Xj1,l, X

′
j2,l

) := ⟨h2,l(Xi1,l, Xj1,l), h2,l(Xi1,l, X
′
j2,l

)⟩ and condition on Xi1,l, Xj1,l.
This proves the lemma.
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We can now state the asymptotic behaviour of the degenerate part of the U -statistic.

Proposition 2.3. Under the assumptions of Theorem 2.1, it holds that

a)

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥)2] 1

2

≤ Cs22
5s
4

for s large enough that n ≤ 2s.

b)

max
1≤n1<n

1

n3/2

∥∥ n1∑
i=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥ a.s.−−→ 0 for n → ∞.

Proof.
Part a) We split the expectation with the help of the triangle inequality into three
parts:

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥)2] 1

2

≤ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

(15)

+ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥
)2] 1

2

(16)

+ E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2,l(Xi,l, Xj,l)
∥∥)2] 1

2

(17)

We will use Lemmas 2.4 to 2.6 to bound the three terms. The idea for all three terms
is to use a suitable partition to rewrite the double sum inside of the expectation.
By Lemma 2.4,

(15) ≤ CE
[( s∑

d=0

max
j̃=1,...,2s−d

(j̃−1)2d−1∑
i=1

j̃2d∑
j=(j̃−1)2d

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ Cs
s∑

d=0

2s−d∑
j̃=1

E
[( (j̃−1)2d−1∑

i=1

j̃2d∑
j=(j̃−1)2d

∥h2(Xi, Xj)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ Cs

s∑
d=0

2s−d∑
j̃=1

(j̃2d − (j̃ − 1)2d)2
s
4

≤ C2
s
4 s

s∑
d=0

2s−d∑
j̃=1

2d = C2
s
4 s

s∑
d=0

2s−d2d
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= C2
5s
4 s2.

For (16) it works similar:

(16) ≤ Cs

s∑
d=0

2s−d∑
j̃=1

E
[( (j̃−1)2d−1∑

i=1

j̃2d∑
j=(j̃−1)2d

∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥
)2] 1

2

≤ Cs

s∑
d=0

2s−d∑
j̃=1

(j̃2d − (j̃ − 1)2d)2
s
4

≤ Cs22
5s
4

by Lemma 2.5.
For (17), first look at its squared value and observe

(17)2 = E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2,l(Xi,l, Xj,l)
∥∥)2]

≤ E
[(

max
1≤n1<n

max
n1<n2≤n

∥∥ n1∑
i=1

n∑
j=n2

h2,l(Xi,l, Xj,l)
∥∥)2]

≤ CE
[( s∑

d=0

max
j̃=1,...,2s−d

max
1≤n1<n

∥∥ n1∑
i=1

j̃2d∑
j=(j̃−1)2d

h2,l(Xi,l, Xj,l)
∥∥)2]

≤ Cs2
s∑

d=0

2s−d∑
j̃=1

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

j̃2d∑
j=(j̃−1)2d

h2,l(Xi,l, Xj,l)
∥∥)2]

= Cs2
s∑

d=0

2s−d∑
j̃=1

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

X̂i,l

∥∥)2],
where X̂i,l =

∑j̃2d

j=(j̃−1)2d
h2,l(Xi,l, Xj,l).

We will use Theorem 1 of Móricz [1976] to bound the expectation of the maximum.
We know by Lemma 2.6 that

E
[∥∥ b+n∑

i=b+1

X̂i,l

∥∥2] = E
[∥∥ b+n∑

i=b+1

j̃2d∑
j=(j̃−1)2d

h2,l(Xi,l, Xj,l)
∥∥2]

≤ C(b+ n− b)(j̃2d − (j̃ − 1)2d)(n+ b)3/8 ≤ Cn9/82d(n+ b)3/8 ∀b ≥ 0.

In the notation of Móricz [1976], let g(Fb,n) = Cn2d8/9(n + b)3/9 and α = 9/8. We
need to check that g(Fb,n) fulfils

g(Fb,k) + g(Fb+k,l) ≤ g(Fb,k+l)

for all b ≥ 0, 1 ≤ k < k + l.
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So we calculate

g(Fb,k) = k2d8/9(b+ k)3/9 ≤ k2d8/9(b+ k + l)3/9

g(Fb+k,l) = l2d8/9(b+ k + l)3/9

g(Fb,k+l) = (k + l)2d8/9(b+ k + l)3/9

and see that the assumption on g(Fb,n) is fulfilled. Now, Theorem 1 of Móricz [1976]
states that

E
[(

max
1≤n1≤n

∥∥ b+n∑
i=b+1

X̂i,l

∥∥)2] ≤ Cgα(Fb,n) ∀b, n ≥ 0.

Using this for b = 0, we get that

E
[(

max
1≤n1≤n

∥∥ n∑
i=1

X̂i,l

∥∥)2] ≤ Cn9/82dn3/8 = Cn3/22d.

So,

(17)2 ≤ Cs2n3/2

s∑
d=0

2s−d∑
j̃=1

2d = Cs2n3/2

s∑
d=0

2s−d2d = Cs2n3/2

s∑
d=0

2s = Cs2n3/2s2s

≤ Cs32
5s
2

recalling that n ≤ 2s.
Taking the square root yields

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2,l(Xi,l, Xj,l)
∥∥)2]1/2 ≤ Cs3/22

5s
4 ≤ Cs22

5s
4 .

Combining all three parts gives us the stated result:

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥)2] 1

2

≤ Cs22
5s
4

Part b) Recall that s is chosen such that n ≤ 2s and thus n
3
2 ≤ 2

3s
2 . To prove almost

sure convergence, it is enough to prove that for any ϵ > 0

∞∑
s=1

P
(
2−

3s
2 max

1≤n1<n

∥∥ n1∑
s=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥ > ϵ

)
< ∞.

We do this by using Markov’s inequality and our result from part a):

∞∑
s=1

P
(
2−

3s
2 max

1≤n1<n

∥∥ n1∑
s=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥ > ϵ

)
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≤ 1

ϵ2

∞∑
s=1

E
[(

2−
3s
2 max

1≤n1<n

∥∥ n1∑
s=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥)2]

=
1

ϵ2

∞∑
s=1

2−3sE
[(

max
1≤n1<n

∥∥ n1∑
s=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥)2]

≤ 1

ϵ2

∞∑
s=1

2−3s(Cs22
5s
4 )2

=
C

ϵ2

∞∑
s=1

s42−
s
2 < ∞.

By the lemma of Borel-Cantelli almost sure convergence follows

max
1≤n1<n

1

n3/2

∥∥ n1∑
i=1

n∑
j=n1+1

h2(Xi, Xj)
∥∥ a.s.−−→ 0 for n → ∞.

To prove Theorem 2.1, it is left to combine the results for the linear and degenerate
part of the U -statistic.

Proof of Theorem 2.1. We will bound the maximum from above by the sum of the
degenerate and the linear part, using Hoeffding’s decomposition, as shown in Lemma
2.1 and using the triangle inequality afterwards:

max
1≤k<n

1

n3/2
∥Un,k∥ = max

1≤k<n

1

n3/2

∥∥n k∑
i=1

(h1(Xi)− h1(X)) +
k∑

i=1

n∑
j=k+1

h2(Xi, Xj)
∥∥

≤ max
1≤k<n

1

n3/2

∥∥n k∑
i=1

(h1(Xi)− h1(X))
∥∥+ max

1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

h2(Xi, Xj)
∥∥

For the degenerate part, use the convergence to zero from Proposition 2.3:

max
1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

h2(Xi, Xj)
∥∥ P−→ 0,

since convergence in probability follows from almost sure convergence.
Now observe that we can write the linear part for n large enough as

max
1≤k<n

1

n3/2

∥∥n k∑
i=1

(
h1(Xi)− h1(X)

)∥∥ = max
λ∈[0,1]

1

n3/2

∥∥n ⌊nλ⌋∑
i=1

(
h1(Xi)− h1(X)

)∥∥
= max

λ∈[0,1]

1

n3/2

∥∥n ⌊nλ⌋∑
i=1

h1(Xi)− n ⌊nλ⌋ 1

n

n∑
j=1

h1(Xj)
∥∥
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= max
λ∈[0,1]

∥∥ 1√
n

⌊nλ⌋∑
i=1

h1(Xi)−
⌊nλ⌋
n3/2

n∑
j=1

h1(Xj)
∥∥

≈ sup
λ∈[0,1]

∥∥ 1√
n

⌊nλ⌋∑
i=1

h1(Xi)︸ ︷︷ ︸
=:x(λ)

− λ√
n

n∑
j=1

h1(Xi)
∥∥

= sup
λ∈[0,1]

∥x(λ)− λx(1)∥.

We know by Proposition 2.2 that

(x(λ))λ∈[0,1]
D−→ (W (λ))λ∈[0,1].

By the continuous mapping theorem it follows that

(x(λ)− λx(1))λ∈[0,1]
D−→ (W (λ)− λW (1))λ∈[0,1].

And thus we can finally conclude

max
1≤k<n

1

n3/2
∥Un,k∥

D−→ sup
λ∈[0,1]

∥W (λ)− λW (1)∥.
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2.4 Validity Under the Alternative

The next theorem will show that the test statistic converges to infinity in probability
under the alternative, so a test based on it is consistent.
For this, we consider the following model: We have a stationary, H ⊗ H-valued
sequence (Xn, Zn)n∈Z and we observe Y1, ..., Yn with

Yi =

{
Xi for i ≤ ⌊nλ⋆⌋ = k⋆

Zi for i > ⌊nλ⋆⌋ = k⋆
,

so λ⋆ ∈ (0, 1) is the proportion of observations after which the change happens. The
change is detectable, if ∥E[h(X1, Z̃1)]∥ ≠ 0 for an independent copy Z̃1 of Z1.

Example 2.4 (Detectability). Let H = R2 and sequences of i.i.d. random variables
(Xi)i≤n and (Zi)i≤n in H. Define Yi = (Yi,1, Yi,2)

T = Xi − Zi for i = 1, ..., n and
assume that Yi,1 and Yi,2 are independent and have a density function f1 resp. f2
which is symmetric around E[Yi,1] resp. E[Yi,2] for all i = 1, ..., n. For example,
let Xi,1, Xi,2 and Zi,1, Zi,2 be independent and normal distributed, then Yi,1, Yi,2 are
independent and normal distributed as well with a density function symmetric around
its expected value.
For h(x, y) = x− y and h(x, y) = (x− y)/∥x− y∥ a change is detectable if

E[X1] ̸= E[Z1] ⇔ E[Y1] ̸= 0.

Or equivalently, a change is not detectable if

E[X1] = E[Z1] ⇔ E[Y1] = 0.

For h(x, y) = x− y this can quickly be seen by

∥E[h(X1, Z1)]∥ = ∥E[X1]− E[Z1]∥ = 0 ⇔ E[X1] = E[Z1].

For h(x, y) = (x− y)/∥x− y∥, first rewrite the expectation:

∥E[h(X1, Z2)]∥ = ∥E[(X1 − Z1)/∥X1 − Z1∥]∥ = ∥E[Y1/∥Y1∥]∥

= ∥(E[Y1,1/
√

Y 2
1,1 + Y 2

1,2],E[Y1,2/
√

Y 2
1,1 + Y 2

1,2])
T∥

Now, by independence and the existence of a density function, it holds that

E[Y1,1/
√

Y 2
1,1 + Y 2

1,2] =

∫ ∞

−∞

∫ ∞

−∞

y1√
y21 + y22

f1(y1)f2(y2)dy1dy2

=

∫ ∞

−∞

[ ∫ ∞

−∞

y1√
y21 + y22

f1(y1)dy1

]
f2(y2)dy2.
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Rewriting the inner integral yields:∫ ∞

−∞

y1√
y21 + y22

f1(y1)dy1

=

∫ 0

−∞

y1√
y21 + y22

f1(y1)dy1 +

∫ ∞

0

y1√
y21 + y22

f1(y1)dy1

= −
∫ −∞

0

y1√
y21 + y22

f1(y1)dy1 +

∫ ∞

0

y1√
y21 + y22

f1(y1)dy1

= −
∫ ∞

0

−y1√
y21 + y22

f1(−y1)(−1)dy1 +

∫ ∞

0

y1√
y21 + y22

f1(y1)dy1

=

∫ ∞

0

y1√
y21 + y22

(f1(y1)− f1(−y1))dy1,

first switching the limits of the first integral and then substituting −y1 = y1. At this
point, the symmetry of f1 becomes important. The integral equals zero if and only if
f1(y1) = f1(−y1) for all y1 > 0. And this holds true if and only if f1 is symmetric
in zero ⇔ E[Y1,1] = 0. Similarly one gets

E[Y1,2/
√
Y 2
1,1 + Y 2

1,2] = 0 ⇔ E[Y1,2] = 0.

Concluding that

∥E[h(X1, Z2)]∥ = ∥E[Y1/∥Y1∥]∥ = 0 ⇔ E[Y1] = 0,

which equivalently means that the change is detectable if E[Y1] ̸= 0 ⇔ E[X1] ̸= E[Z1].

From here on, we need one further assumption on the kernel function h to ensure
that we can handle “mixed” expectations with one sample from before and one after
the change.

Definition 2.9 (Mixed uniform moments). Let (Xn, Zn)n∈Z be a P-NED functional
of (ζn)n∈Z. If there exists M > 0 such that for all k, n ∈ N

E[∥h(X0,k, Zn,k)∥m] ≤ M

E[∥h(X0, Zn,k)∥m] ≤ M

E[∥h(X0, Zn)∥m] ≤ M,

we say that the kernel h has mixed uniform m-th moments under approximation.

We will also call this uniform moments, since it is a simple supplement of Definition
2.6.

Theorem 2.2. Let (Xn, Zn)n∈Z be P-NED on an absolutely regular sequence (ζn)n∈Z

such that akΦ(k
−8 δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

δ
4+δ

k < ∞ for some δ > 0.
Assume that h : H2 → H is an antisymmetric kernel that fulfils the variation
condition and is either bounded or has uniform (4+δ)-moments under approximation
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for processes (Xn)n∈Z, (Zn)n∈Z and (Xn, Zn)n∈Z and that E[h(X1, Z̃1)] ̸= 0, where
Z̃1 is an independent copy of Z1. Then

max
1≤k<n

1

n3/2
∥Un,k(Y )∥ = max

1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

h(Yi, Yj)
∥∥ P−→ ∞.

The idea to proof this theorem is to lower bound max1≤k<n
1

n3/2∥Un,k(Y )∥
by 1

n3/2∥Un,k⋆(Y )∥. Handling Un,k⋆(Y ) is easier, since we know that k⋆ is the change-
point. We can again split Un,k⋆(Y ) into a linear and degenerate part, but to use
previous results for convergence, some centralisation is needed. This gives an addi-
tional term of expectations E[h(X0, Z0)] that dominates the expression and ensures
divergence.
Rewriting Un,k⋆(Y ) =

∑k⋆

i=1

∑n
j=k⋆+1 h(Yi, Yj) with the help of Hoeffding’s decom-

position reads:

Un,k⋆(Y ) =
k⋆∑
i=1

n∑
j=k⋆+1

h(Xi, Zj)

=
k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj) + h

(X,Z)
2 (Xi, Zj)

)
= (n− k⋆)

k⋆∑
i=1

h
(Z)
1 (Xi)− k⋆

n∑
j=k⋆+1

h
(X)
1 (Zj) +

k⋆∑
i=1

n∑
j=k⋆+1

h
(X,Z)
2 (Xi, Zj).

For the behaviour of the three parts, we will give the two-sample counterparts of
Propositions 2.2 and 2.3 and their preparatory lemmas. We need to centralise by
the expectation to preserve all desired properties.

Proposition 2.4. Under the assumption of Theorem 2.2 it holds that

( 1√
n

⌊nλ⌋∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
))

λ∈[0,1]

D−→ (W1(λ))λ∈[0,1]

and ( 1√
n

⌊nλ⌋∑
i=1

(
h
(X)
1 (Zi)− E[h(X)

1 (Zi)]
))

λ∈[0,1]

D−→ (W2(λ))λ∈[0,1],

where (W1(λ))λ∈[0,1], (W2(λ))λ∈[0,1] are Brownian motions with covariance operator
as definded in Theorem 2.1.

Proof. The proof follows the steps of Proposition 2.2. So, we have to check the
assumptions of Theorem 1 Sharipov et al. [2016a]. We will do this for h

(Z)
1 (Xi), for

h
(X)
1 (Zi) everything holds similarly. First recall that E[h(Z)

1 (X0)] = E[h(X0, Z̃0)].

Assumption 1: (h
(Z)
1 (Xn)− E[h(Z)

1 (Xn)])n∈Z is L1-NED.

Along the lines of the proof of Lemma 2.2 we can show that (h
(Z)
1 (Xn))n∈Z is L2-NED

37



with approximating constants ak,2 = O(k−4 3+δ
δ ), since the variation condition still

holds and we assumed mixed uniform moments. By Jensen’s inequality it follows
that (h

(Z)
1 (Xn))n∈Z is L1-NED with approximating constants ak,1 = ak,2.

Now observe

E
[∥∥h(Z)

1 (X0)− E[h(Z)
1 (X0)]− E

[
h
(Z)
1 (X0)− E[h(Z)

1 (X0)]|Fk
−k

]∥∥]
= E

[∥∥h(Z)
1 (X0)− E[h(Z)

1 (X0)]− E[h(Z)
1 (X0)|Fk

−k] + E
[
E[h(Z)

1 (X0)]|Fk
−k

]∥∥]
= E

[∥∥h(Z)
1 (X0)− E[h(Z)

1 (X0)]− E[h(Z)
1 (X0)|Fk

−k] + E[h(Z)
1 (X0)]

∥∥]
= E

[∥∥h(Z)
1 (X0)− E[h(Z)

1 (X0)|Fk
−k]
∥∥]

≤ Ck−4 3+δ
δ = ak,1

since (h
(Z)
1 (Xn))n∈Z is L1-NED. So, (h

(Z)
1 (Xn)− E[h(Z)

1 (Xn)])n∈Z is L1-NED as well
with approximating constants ak,1.
Assumption 2: Existing (4 + δ)-moments.
Using the triangle inequality, Minkowski’s and Jensen’s inequality it holds that

E
[
∥h(Z)

1 (X0)− E[h(Z)
1 (X0)]∥4+δ

] 1
4+δ

≤ E
[
∥h(Z)

1 (X0)∥4+δ
] 1

4+δ + E
[
∥E[h(Z)

1 (X0)]∥4+δ
] 1

4+δ

≤ 2E
[
∥h(Z)

1 (X0)∥4+δ
] 1

4+δ

≤ 2M
1

4+δ

by uniform (4 + δ) moments of h
(Z)
1 .

Assumption 3:
∑∞

m=1m
2a

δ
3+δ

m,1 ≤ ∞ follows similar as in the proof of Theorem 2.2.

Assumption 4:
∑∞

m=1m
2β

δ
4+δ
m < ∞ is assumed in Theorem 2.2

Lastly, we observe that

E
[
h
(Z)
1 (X0)− E[h(Z)

1 (X0)]
]
= E[h(Z)

1 (X0)]− E[h(Z)
1 (X0)] = 0

and thus all requirements for Theorem 1 Sharipov et al. [2016a] are given and the
statement of the lemma follows.

Later, in the proof of Theorem 2.2, the following corollary will be of use:

Corollary 2.1. Under assumptions of Theorem 2.2, it holds that

1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj)− 2E[h(X̃0, Z̃0)]

)
is stochastically bounded, where X̃0 and Z̃0 are independent copies of X0 resp. Z0.
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Proof. This follows from Proposition 2.4 above:∣∣∣ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj)− 2E[h(X̃0, Z̃0)]

)∣∣∣
≤
∣∣∣ 1

n1/2

k⋆∑
i=1

h
(Z)
1 (Xi)− E[h(X̃0, Z̃0)]

∣∣∣+ ∣∣∣ 1

n1/2

n∑
j=k⋆+1

h
(X)
1 (Zj)− E[h(X̃0, Z̃0)]

∣∣∣
≤
∣∣∣ 1

n1/2

k⋆∑
i=1

(h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)])
∣∣∣+ ∣∣∣ 1

n1/2

n∑
j=k⋆+1

(h
(X)
1 (Zj)− E[h(X)

1 (Zj)])
∣∣∣.

Both summands converge weakly to a Gaussian limit and are stochastically bounded.

The following lemmas hold as two-sample analogues of Lemmas 2.3 to 2.6. We will
only point out the crucial points of the proofs.

Lemma 2.7. Under the assumptions of Theorem 2.2, there exists a universal con-
stant C > 0 such that for every i, k, l ∈ N, ϵ > 0 it holds that

E[∥h(X,Z)
2 (Xi, Zi+k+2l)− h

(X,Z)
2 (Xi,l, Zi+k+2l,l)∥2]

1
2 ≤ C(

√
ϵ+ β

δ
2(s+δ)

k + (alΦ(ϵ))
δ

2(s+δ) ).

Proof. For the P-NED series (Xn, Zn)n∈Z, we write (Xi,l, Zi,l) = fl(ζi−l, ..., ζi+l). By
Lemma D1 Dehling et al. [2017] there exist independent copies (ζ ′n)n∈Z, (ζ ′′n)n∈Z
satisfying

P((ζ ′n)n≥i+k+l = (ζn)n≥i+k+l) = 1− βk and P((ζ ′′n)n≤i+l = (ζn)n≤i+l) = 1− βk.

We define

(X ′
i, Z

′
i) = f((ζ ′i+n)n∈Z), (X ′′

i , Z
′′
i ) = f((ζ ′′i+n)n∈Z)

(X ′
i,l, Z

′
i,l) = fl(ζ

′
i−l, ..., ζ

′
i+l), (X ′′

i,l, Z
′′
i,l) = fl(ζ

′′
i−l, ..., ζ

′′
i+l)

and write

E[∥h(X,Z)
2 (Xi, Zi+k+2l)− h

(X,Z)
2 (Xi,l, Zi+k+2l,l)∥2]

1
2

≤ E[∥h(X,Z)
2 (Xi, Zi+k+2l)− h

(X,Z)
2 (X ′′

i , Z
′
i+k+2l)∥2]

1
2

+ E[∥h(X,Z)
2 (X ′′

i Z
′
i+k+2l)− h

(X,Z)
2 (X ′′

i,l, Z
′
i+k+2l,l)∥]

1
2

+ E[∥h(X,Z)
2 (X ′′

i,l, Z
′
i+k+2l,l)− h

(X,Z)
2 (Xi,l, Zi+k+2l,l)∥2]

1
2 .

The three parts can be handled completely analogous to the ones in Lemma 2.3,
thus we will leave it at this.

Lemma 2.8. Under the assumptions of Theorem 2.2 it holds for any n1 < n2 <

n3 < n4 ≤ n and l =
⌊
n

3
16
4

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h(X,Z)
2 (Xi, Zj)− h

(X,Z)
2 (Xi,l, Zj,l)∥

)2] 1
2

≤ C(n4 − n3)n
1
4 .
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Proof. This follows from Lemma 2.7 analogous to the proof of Lemma 2.4.

Lemma 2.9. Under the assumptions of Theorem 2.2, it holds for any n1 < n2 <

n3 < n4 ≤ n and l =
⌊
n

3
16
4

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥h(X,Z)
2,l (Xi,l, Zj,l)− h

(X,Z)
2 (Xi,l, Zj,l)∥

)2] 1
2

≤ C(n4 − n3)n
1
4 ,

where h
(X,Z)
2,l (x, y) = h(x, y)−E[h(x, Z̃0,l)]−E[h(X̃0,l, y)] ∀ x, y ∈ H and (X̃i,l, Z̃i,l) =

fl(ζ̃i−l, ..., ζ̃i+l) for (ζ̃n)n∈Z an independent copy of (ζn)n∈Z.

We will not give the proof here, since it is a complete analogue of the proof of Lemma
2.5.

For the following two-sample version of Lemma 2.6, we have to add some expecta-
tion to h

(X,Z)
2,l , since h

(X,Z)
2,l itself is not degenerate. As this is an important property

used in the proof, so we will consider h
(X,Z)
2,l (X0,l, Z0,l)−E[h(X,Z)

2,l (X̃0,l, Z̃0,l)] instead.
A short calculation shows that this is indeed degenerated:

EX

[
h
(X,Z)
2,l (X0,l, y)− E[h(X,Z)

2,l (X̃0,l, Z̃0,l)]
]

= EX

[
h(X0,l, y)− EZ [h(X0,l, Z̃0,l)]− EX [h(X̃0,l, y)]

− E
[
h(X̃0,l, Z̃0,l)− EZ [h(X̃0,l, Z̃0,l)]− EX [h(X̃0,l, Z̃0,l)]

]]
= EX [h(X0,l, y)]− E[h(X0,l, Z̃0,l)]− EX [h(X̃0,l, y)]

− E[h(X̃0,l, Z̃0,l)] + E[h(X̃0,l, Z̃0,l)] + E[h(X̃0,l, Z̃0,l)]

= 0

and similarly EZ

[
h
(X,Z)
2,l (x, Z0,l)− E[h(X,Z)

2,l (X̃0,l, Z̃0,l)]
]
= 0.

Lemma 2.10. Under the assumptions of Theorem 2.2, it holds for any n1, n2, n3, n4 ≤
n with n1 < n2, n3 < n4 and l = ⌊n⌋

3
16 :

E
[(∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h
(X,Z)
2,l (Xi,l, Zi,l)− E[h(X,Z)

2,l (X̃i,l, Z̃j,l)]
∥∥)2]

≤ C(n4 − n3)(n2 − n1)n
3
8 .

Since we have a degenerated function, we can prove this completely analogous to
Lemma 2.6.
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Proposition 2.5. Under the assumptions of Theorem 2.2 it holds that

a)

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
∥∥)2] 1

2

≤ Cs22
5s
4

for s large enough that n ≤ 2s.

b)

max
1≤n1<n

1

n3/2

∥∥ n1∑
i=1

n∑
j=n+1

h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
∥∥ a.s→ 0 for n → ∞.

Proof. The proof is again similar to the one-sample case stated in Proposition 2.3.
Part a)
We add some zeros and split the expectation with the help of the triangular inequal-
ity:

E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
∥∥)2] 1

2

≤ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h(X,Z)
2 (Xi, Zj)− h

(X,Z)
2 (Xi,l, Zi,l)∥

)2] 1
2

+ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥E[h(X,Z)
2 (X̃i, Z̃j)]− E[h(X,Z)

2 (X̃i,l, Z̃i,l)]∥
)2] 1

2

+ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h(X,Z)
2,l (Xi,l, Zj,l)− h

(X,Z)
2 (Xi,l, Zi,l)∥

)2] 1
2

+ E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥E[h(X,Z)
2,l (X̃i,l, Z̃j,l)]− E[h(X,Z)

2 (X̃i,l, Z̃i,l)]∥
)2] 1

2

+ E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h
(X,Z)
2,l (Xi,l, Zi,l)− E[h(X,Z)

2,l (X̃i,l, Z̃i,l)]
∥∥)2] 1

2

≤ 2E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h(X,Z)
2 (Xi, Zj)− h

(X,Z)
2 (Xi,l, Zi,l)∥

)2] 1
2

(18)

+ 2E
[(

max
1≤n1<n

n1∑
i=1

n∑
j=n1+1

∥h(X,Z)
2,l (Xi,l, Zj,l)− h

(X,Z)
2 (Xi,l, Zi,l)∥

)2] 1
2

(19)

+ E
[(

max
1≤n1<n

∥∥ n1∑
i=1

n∑
j=n1+1

h
(X,Z)
2,l (Xi,l, Zi,l)− E[h(X,Z)

2,l (X̃i,l, Z̃i,l)]
∥∥)2] 1

2

(20)
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The statement of Part a) follows by using a suitable partition for all three parts as
in the proof of Proposition 2.3. For (18) use Lemma 2.8, for (19) use Lemma 2.9
and for (20) we can use Lemma 2.10.
Part b)
Follows from Part a) as in Proposition 2.3 by using Markov’s inequality and the
lemma of Borel-Cantelli.

Proof of Theorem 2.2. We can bound the maximum from below using the reverse
triangle inequality and then make use of previous results, recalling that k⋆ = ⌊nλ⋆⌋:

max
1≤k≤n

∥ 1

n3/2
Un,k(Y )∥ ≥ ∥ 1

n3/2
Un,k⋆(Y )∥

=
∥∥ 1

n3/2

(
Un,k⋆(Y )− k⋆(n− k⋆)E[h(X̃0, Z̃0)]

)
+

k⋆(n− k⋆)

n3/2
E[h(X̃0, Z̃0)]

∥∥
≥
∣∣∣∥∥ 1

n3/2

(
Un,k⋆(Y )− k⋆(n− k⋆)E[h(X̃0, Z̃0)]

)∥∥− ∥∥k⋆(n− k⋆)

n3/2
E[h(X̃0, Z̃0)]

∥∥∣∣∣
=
∣∣∣∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj) + h

(X,Z)
2 (Xi, Zj)

− E[h(Z)
1 (X̃0)− h

(X)
1 (Z̃0) + h

(X,Z)
2 (X̃0, Z̃0)]

)∥∥− ∥∥k⋆(n− k⋆)

n3/2
E[h(X̃0, Z̃0)]

∥∥∣∣∣
≥

∣∣∣∣∣∣∣∣∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj)− 2E[h(X̃0, Z̃0)]

)∥∥
−
∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
)∥∥∣∣∣

−
∥∥k⋆(n− k⋆)

n3/2
E[h(X̃0, Z̃0)]

∥∥∣∣∣∣∣.
By Corollary 2.1 we know that the first part

∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj)− 2E[h(X̃0, Z̃0)]

)∥∥
is stochastically bounded. And by Proposition 2.5 it holds that

∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k⋆+1

h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
∥∥

≤ max
1≤n1<n

1

n3/2

∥∥ n1∑
i=1

n∑
j=n1+1

h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (X̃i, Z̃j)]
∥∥ n→∞−−−→ 0.
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But since E[h(X̃0, Z̃0)] ̸= 0 the last part diverges to infinity:

∥ 1

n3/2
k⋆(n− k⋆)E[h(X̃0, Z̃0)]∥ ≈ ∥

√
nλ⋆(1− λ⋆)E[h(X̃0, Z̃0)]∥

n→∞−−−→ ∞.

And thus max
1≤k≤n

∥ 1
n3/2Un,k(Y )∥ n→∞−−−→ ∞.
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2.5 Bootstrap

Since theoretical values of the limit distribution of our test-statistic cannot be eas-
ily calculated, we perform a bootstrap to find critical values for a test-decision. A
simple way to bootstrap U -statistics is to resample the observations X1, ..., Xn and
plug-in the derived bootstrap-observations X⋆

1 , ..., X
⋆
n into the U -statistic to get the

bootstrap variant
∑k

i=1

∑n
j=k+1 h(X

⋆
i , X

⋆
j ) of the U -statistic. In the case of i.i.d. ob-

servations one can produce a bootstrap sample by drawing with replacement from
the observations. In Janssen [1997] can be found an overview of various consistency
results for non-degenerate U -statistics in the independent case. For dependent ob-
servations, drawing single observations with replacement does not preserve the de-
pendence structure of the random variables. To transfer the dependence structure of
the sample X1, ..., Xn to the bootstrap sample at least section-wise, block bootstrap
methods were established. The book of Lahiri [2003] gives a broad and fundamental
overview of block bootstrap methods for dependent data. For a block bootstrap,
blocks of l ≥ 1 consecutive observations Xi, ..., Xi+l−1, which are drawn and placed
one after the other, form the bootstrap sample. Inside each block, the dependency
of the original sample is kept. l is naturally called blocklength.
Variants of the block bootstrap are for example the moving block bootstrap intro-
duced by Künsch [1989], where blocks are drawn from the set
{(X1, ..., Xl), (X2, ..., Xl+1), ..., (Xn−l+1, ..., Xn)}, or the non-overlapping block boot-
strap of Carlstein [1986], where blocks are drawn from the set
{(X1, ..., Xl), (Xl+1, ..., X2l), ..., (X(b−1)l+1, ..., Xbl)}, with b the largest integer such
that lb ≤ n.
Dehling and Wendler [2010] proved consistency for the bootstrap version of U-
statistics for weakly dependent data, using a circular bootstrap. This is essen-
tially an extension of the moving block bootstrap, where blocks are drawn from
{(X1, ..., Xl), ..., (Xn−l+1, ..., Xn), ..., (Xn, ..., Xn+l)} with Xn+i = Xi. Consistency
results for U -statistics using the non-overlapping block bootstrap for near-epoch de-
pendent random variables are given in Sharipov et al. [2016b].
An alternative method to transfer the dependence structure of X1, ..., Xn to
X⋆

1 , ..., X
⋆
n, is to use the idea of the dependent wild bootstrap, which was first in-

troduced by Shao [2010], for U -statistics. The original dependent wild bootstrap
sample is defined as X⋆

t = X̄n + (Xt − X̄n)εt, t = 1, ..., n, where X̄n = n−1
∑n

t=1Xt

and ε1, ..., εn are random variables chosen with a certain covariance structure but
independent of the original sample X1, ..., Xn. Leucht and Neumann [2013] based
their dependent wild bootstrap for degenerate U -statistics on this idea, but created
bootstrap samples (h(Xi, Xj)

⋆)1≤i,j≤n directly instead of plugging in X⋆
1 , ..., X

⋆
n into

the kernel function.
This is incorporated in the definition of our bootstrap version of the non-degenerate
U -statistic Un,k. For this, let (εi,n)i≤n,n∈N be a row-wise stationary triangular scheme
of variables with N (0, 1)-marginal distribution (we often drop the second index for
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notational convenience: εi = εi,n). The bootstrap version of Un,k(X) is then

U⋆
n,k(X) :=

k∑
i=1

n∑
j=k+1

h(Xi, Xj)(εi + εj).

Consistency results for weakly dependent data are given by Leucht and Neumann
[2013] for the degenerate case, but since our U -statistic is non-degenerate, we will
provide new consistency results for U⋆

n,k in the following, validating the usage of the
bootstrap. Subsequently, we state the practical bootstrap procedure and construc-
tion of the multiplier variables (εi)i≤n.

Theorem 2.3. Let the assumptions of Theorem 2.1 hold for (Xn)n∈Z and h :
H2 → H. Assume that (εi,n)i≤n,n∈N is independent of (Xn)n∈Z, has standard nor-
mal marginal distribution and Cov(εi, εj) = w(|i − j|/qn), where w is symmetric
and continuous with w(0) = 1 and

∫∞
−∞ |w(t)|dt < ∞ and qn ∈ R is the so-called

bandwidth. Assume that qn
n→∞−−−→ ∞ and qn/n

n→∞−−−→ 0 Then it holds that(
max
1≤k<n

1

n3/2
∥Un,k(X)∥, max

1≤k<n

1

n3/2
∥U⋆

n,k(X)∥
)

D−→
(

sup
λ∈[0,1]

∥W (λ)− λW (1)∥, sup
λ∈[0,1]

∥W ⋆(λ)− λW ⋆(1)∥
)
,

where W and W ⋆ are two independent, H-valued Brownian motions with covariance
operator as in Theorem 2.1.

From this statement, it follows that the bootstrap is consistent and it can be evalu-
ated using the Monte Carlo method: Several copies of the bootstrapped test statistic
independent conditional on X1, .., Xn are generated, the empirical quantiles of the
bootstrapped test statistics can be used as critical values for the test. For a deeper
discussion on bootstrap validity, see Bücher and Kojadinovic [2019]. Of course, in
practical applications, the function w and the bandwidth qn have to be chosen.
The idea of the proof is similar to that of Theorem 2.1. We will show that the
degenerate part with multiplier still vanishes and the linear part converge in distri-
bution to the desired process. Additionally, we need some variance result for the
linear part.

Proposition 2.6. Let (εi)i≤n,n∈N be a triangular scheme of random multiplier in-
dependent from (Xi)i∈Z, such that the moment condition E[|εi|2] < ∞ holds.
Then under the Assumptions of Theorem 2.1, it holds that

max
1≤k<n

1

n3/2

∥∥ k∑
i=1

n∑
j=k+1

h2(Xi, Xj)(εi + εj)
∥∥ a.s.−−→ 0 for n → ∞.

Proof. The statement follows along the lines of the proofs of Lemmas 2.4 to 2.6 and
Proposition 2.3. For this note that by the independence of (εi)i≤n,n∈N and (Xi)i∈Z
and by Lemma 2.3

E[∥h2(Xi, Xi+k+2l)(εi + εi+k+2l)− h2(Xi,l, Xi+k+2l,l)(εi + εi+k+2l)∥2]
1
2
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= E[∥h2(Xi, Xi+k+2l)− h2(Xi,l, Xi+k+2l,l)∥2]
1
2 · E[(εi + εi+k+2l)

2]
1
2

≤ C
(√

ε+ β
δ

2(2+δ)

k + (alΦ(ε))
δ

2(2+δ)
)
.

From this, we can conclude that for any n1 < n2 < n3 < n4 ≤ n and l =
⌊
n

3
16

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥∥(h2(Xi, Xj)− h2(Xi,l, Xj,l)
)
(εi + εj)

∥∥)2] 1
2

≤ C(n4 − n3)n
1
4

as in Lemma 2.4. Similary, we obtain (making use of the independence of (εi)i≤n,n∈N
and (Xi)i∈Z again)

E
[∥∥(h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)

)
(εi + εj)

∥∥2]
= E[∥h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)∥2]E[(εi + εj)

2]

≤ C
(√

ϵ+ (alΦ(ϵ))
δ

2(2+δ)
)
.

And along the lines of the proof of Lemma 2.5 for any n1 < n2 < n3 < n4 ≤ n and

l =
⌊
n

3
16

⌋
:

E
[( ∑

n1≤i≤n2

∑
n3≤j≤n4

∥∥(h2,l(Xi,l, Xj,l)− h2(Xi,l, Xj,l)
)
(εi + εj)

∥∥)2] 1
2

≤C(n4 − n3)n
1
4 .

With the same type of argument, we also obtain the analogous result to Lemma 2.6:

For any n1, n2, n3, n4 ≤ n with n1 < n2, n3 < n4 and l =
⌊
n

3
16

⌋
it holds that

E
[(∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h2,l(Xi,l, Xj,l)(εi + εj)
∥∥)2] ≤ C(n4 − n3)(n2 − n1)n

3
8

and then we can proceed as in the proof of Proposition 2.3.

The following Lemma 2.11 and Proposition 2.7 and their proofs are taken from
Wegner and Wendler [2022].

Lemma 2.11. Under the assumptions of Theorem 2.3, for any t0 = 0 < t1 <
t2, ..., tk = 1 and any a1, ..., ak ∈ H

Var

[
1√
n

k∑
j=1

⌊ntj⌋∑
i=⌊ntj−1⌋+1

⟨aj, h1(Xi)εi⟩
∣∣∣X1, ..., Xn

]
P−→ Var

[ k∑
j=1

⟨aj,W (tj)−W (tj−1)⟩
]

Proof. To simplify the notation, we introduce a triangular scheme Vi,n = ⟨aj, h1(Xi)⟩
for i = ⌊ntj−1⌋+ 1, ..., ⌊ntj⌋. By our assumptions, Cov(εi, εj) = w(|i− j|/qn), so we
obtain for the variance condition on X1, ..., Xn:

Var

[
1√
n

k∑
j=1

⌊ntj⌋∑
i=⌊ntj−1⌋+1

⟨aj, h1(Xi)εi⟩
∣∣∣X1, ..., Xn

]
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=
n∑

i=1

n∑
l=1

Vi,nVl,nCov(εi, εl) =
n∑

i=1

n∑
l=1

Vi,nVl,nw(|i− l|/qn).

This is the kernel estimator for the variance, which is consistent even for het-
eroscedastic time series under the assumptions of De Jong and Davidson [2000].
The L2-NED follows by Lemma 2.2. Note that the mixing coefficients for abso-
lute regularity are larger than the strong mixing coefficients used by De Jong and
Davidson [2000], so their mixing assumption follows directly from ours.

Proposition 2.7. Under the assumptions of Theorem 2.3, we have the weak con-
vergence (in the space DH2 [0, 1])(

1√
n

[nt]∑
i=1

(h1(Xi), h1(Xi)εi)

)
t∈[0,1]

D−→ (W (t),W ⋆(t))t∈[0,1]

in probability.

Proof. We have to proof finite dimensional convergence and tightness. As the tight-
ness for the first component was already established in the proof of Theorem 1 of
Sharipov et al. [2016a], we only have to deal with the second component. The tight-
ness of the partial sum process of (h1(Xi)εi)i∈N, can be shown along the lines of the
proof of the same theorem: For this note that by the independence of (εi)i≤n and
X1, ..., Xn

|E [⟨h1(Xi)εi, h1(Xj)εj⟩⟨h1(Xk)εk, h1(Xl)εl⟩]|
= |E [⟨h1(Xi), h1(Xj)⟩⟨h1(Xk), h1(Xl)⟩]E[εiεjεkεl]|
≤ 3 |E [⟨h1(Xi), h1(Xj)⟩⟨h1(Xk), h1(Xl)⟩]| .

The rest follows as in Lemma 2.24 of Borovkova et al. [2001] and in proof of Theorem
1 of Sharipov et al. [2016a].
For the finite dimensional convergence, we will show the weak convergence of the
second component conditional on (h1(Xi)εi)i∈N, because the weak convergence of
the first component is already established in Proposition 2.2. By the continuity of
the limit process, it is sufficient to study the distribution for t1, .., tk ∈ Q ∩ [0, 1]
and by the Cramér-Wold-device and the separability of H, it is enough to show the

convergence of the condition distribution of 1√
n

∑k
j=1

∑⌊ntj⌋
i=⌊ntj−1⌋+1⟨aj, h1(Xi)εi⟩ for

a1, ..., ak from a countable subset of H. Conditional on X1, ..., Xn, the distribution

of 1√
n

∑k
j=1

∑⌊ntj⌋
i=⌊ntj−1⌋+1⟨aj, h1(Xi)εi⟩ is Gaussian with expectation 0 and variance

converging to the right limit in probability by Lemma 2.11.
Using a well-known characterisation of convergence in probability, for every subseries
there is another subseries such that this convergence holds almost surely. So, we
can construct a subseries that the almost sure convergence holds for all k, t1, .., tk ∈
Q∩ [0, 1] and all a1, ..., ak from the countable subset of H, so we can find a subseries
such that the convergence of the finite-dimensional distributions holds almost surely.
Thus, the finite-dimensional convergence of the conditional distribution holds in
probability and the statement of the proposition is proved.
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Proof of Theorem 2.3. Because the convergence in distribution of
max1≤k<n

1
n3/2 ||Un,k|| has already been established in Theorem 2.1, it is enough to

proof the convergence in distribution of max1≤k<n
1

n3/2 ||U⋆
n,k|| conditional onX1, ..., Xn.

For this, we apply Hoeffding’s decomposition:

1

n3/2
U⋆
n,k =

1

n3/2

k∑
i=1

n∑
j=k+1

h(Xi, Xj)(εi + εj)

=
1

n3/2

k∑
i=1

n∑
j=k+1

(h1(Xi)− h1(Xj)(εi + εj) +
1

n3/2

k∑
i=1

n∑
j=k+1

h2(Xi, Xj)(εi + εj).

The second summand converges to 0 by Proposition 2.6. The first summand can be
split into three parts by a short calculation:

1

n3/2

k∑
i=1

n∑
j=k+1

(
h1(Xi)− h1(Xj

)
(εi + εj)

=
1√
n

(
k∑

i=1

h1(Xi)εi +
k

n

n∑
i=1

h1(Xi)εi

)

+
1

n3/2

k∑
i=1

h1(Xi)
n∑

j=1

εj +
1

n3/2

n∑
i=1

h1(Xi)
k∑

j=1

εj.

By Proposition 2.7 and the continuous mapping theorem, we have the weak conver-
gence

max
1≤k<n

1

n3/2

∥∥∥∥ 1√
n

( k∑
i=1

h1(Xi)εi +
k

n

n∑
i=1

h1(Xi)εi

)∥∥∥∥ D−→ sup
λ∈[0,1]

∥W ⋆(λ)− λW ⋆(1)∥

conditional on X1, ..., Xn. For the second part, note that

Var
( 1
n

n∑
i=1

εi

)
=

1

n2

n∑
i,j=1

w(|i− j|/qn) ≤
1

n

n∑
i=−n

|w(i/qn)| ≈
qn
n

∫ ∞

−∞
|w(x)|dx → 0

for n → ∞ by our assumptions on qn. So
1
n

∑n
i=1 εi → 0 in probability and

max
1≤k≤n

∣∣ 1

n3/2

k∑
i=1

h1(Xi)
n∑

j=1

εj
∣∣ = max

1≤k≤n

∣∣ 1

n1/2

k∑
i=1

h1(Xi)
∣∣ 1
n

n∑
j=1

εj
P−→ 0

for n → ∞ using the fact that 1
n1/2

∑k
i=1 h1(Xi) is stochastically bounded, see Propo-

sition 2.2. For the third part, we consider increments of the partial sum and bound
the variance of increments similarly as above by

Var
( k∑

i=l+1

εi

)
≤ Ckqn.
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Because the εi are Gaussian, it follows that

E
[( k∑

i=l+1

εi

)4]
≤ C(kqn)

2.

By Theorem 1 of Móricz [1976], we have

E
[
max
1≤k≤n

( k∑
i=1

εi

)4]
≤ C(nqn)

2

and 1
n
max1≤k≤n |

∑k
i=1 εi| → 0 in probability because qn/n → 0. So,

max
1≤k≤n

∣∣∣ 1

n3/2

n∑
i=1

h1(Xi)
k∑

j=1

εj

∣∣∣ = ∣∣∣ 1

n1/2

n∑
i=1

h1(Xi)
∣∣∣ max
1≤k≤n

∣∣∣ 1
n

k∑
j=1

εj

∣∣∣ n→∞−−−→ 0

which completes the proof.

2.5.1 Bootstrap Algorithm

The practical procedure to find the critical value for significance level α ∈ (0, 1) is
the following:

� Calculate h(Xi, Xj) for all i < j.

� Fix the number of bootstrap iterations m.

� For each of the bootstrap iterations t = 1, ...,m:

– Calculate h(Xi, Xj)(ε
(t)
i + ε

(t)
j ), where (ε

(t)
i )i<n are random multiplier.

– Calculate U
(t)
n,k =

∑k
i=1

∑n
j=k+1 h(Xi, Xj)(ε

(t)
i + ε

(t)
j ) for all k < n.

– Find max
1≤k<n

1
n3/2∥U

(t)
n,k∥.

� Identify the empirical α-quantile Uα of all max
1≤k<n

1
n3/2∥U

(1)
n,k∥, ..., max

1≤k<n

1
n3/2∥U

(m)
n,k ∥.

� Calculate Un,k =
∑k

i=1

∑n
j=k+1 h(Xi, Xj) for all 1 ≤ k < n.

� Test decision: If max
1≤k<n

1
n3/2∥Un,k∥ > Uα, reject the null hypothesis H0.

To ensure a certain covariance structure within the multiplier (that fulfils the as-
sumptions of Theorem 2.3), we calculate them as

(ε
(t)
i )i≤n = A(ηi)i≤n,

where η1, ..., ηi are i.i.d. N(0, 1)-distributed and A is the square root of the quadratic
spectral covariance matrix constructed with bandwidth-parameter q. That means
AAt = B, where B has the entries

Bi,j = v|i−j| ∀ 1 ≤ i, j ≤ n
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with

v0 = 1

vi =
25

12π2(i− 1)2/q2

(
sin(6π(i−1)/q

5
)

6π(i−1)/q
5

− cos(
6π(i− 1)/q

5
)

)
∀ 1 ≤ i ≤ n− 1.

Using the quadratic spectral kernel for the construction of the covariance matrix is
based on the recommendation of Rice and Shang [2017]. It turned out to be a good
overall-candidate from weakly to highly correlated data in their simulation study of
the performance of the long-run variance estimator for (Xn)n∈Z based on their data-
driven bandwidth. As the multiplier should mimic the dependence structure of the
original series, the same kernel is used for their construction. In the next subsection,
some more details about the connection of long-run variance and bandwidth is given.

2.5.2 Bandwidth and Long-run Variance

The choice of the bandwidth in the bootstrap is not trivial, as it can influence the
result of the hypothesis test similarly to the blocklength for a block bootstrap. To
illustrate this, we take a look at the close connections between the bandwidth (resp.
blocklength) and the estimation of the long-run variance of a time series.
Let (Xt)t∈Z be a stationary time series in R. Suppose for this excursus without loss
of generality E[Xt] = 0 and let γk = Cov(X0, Xk). The long-run variance is defined
as

σ2
∞ = lim

n→∞
Var(

√
nX̄n) =

∞∑
k=−∞

γk.

The long-run variance can also be defined via the spectral density function

f(λ) =
1

2π

∑
k∈Z

γk exp(−ikλ)

of the process (Xt)t∈Z by
σ2
∞ = 2πf(0).

So, estimating σ2
∞ is equivalent to estimating f(0). The sample autocovariance at

lag k, |k| ≤ n− 1,

γ̂k =
1

n

n∑
t=|k|+1

(Xt − X̄n)(Xt−|k| − X̄n),

where X̄n = n−1
∑n

t=1Xt, can be used to construct

f̂n(λ) =
1

2π

n−1∑
k=1−n

a

(
k

l

)
γ̂k cos(kλ),

where a(·) is a lag-window function and l the bandwidth. A function a(·) is called
lag-window function (also called kernel but not to be confused with our function h)
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if it is symmetric and continuous with a(0) = 1 and
∫∞
−∞ |a(t)|dt < ∞. The long-run

variance can then be estimated by

σ̂2
∞ = 2πf̂n(0).

If l
n→∞−−−→ ∞ and l/n

n→∞−−−→ 0, σ̂2
∞ is a consistent estimator of σ2

∞, as for example
explained by Lahiri [2003].
Alternatively, one can estimate σ2

∞ via bootstrapping. Let X̄⋆
n = 1

n

∑n
t=1X

⋆
t be the

bootstrap sample mean. Then,

σ̂2
B = Var⋆(

√
nX̄⋆

n)

is an estimator for σ2
∞. Var⋆ is the variance of the bootstrap random variable,

given the original sample. For a moving block bootstrap, σ̂2
B = 2πf̂n(0) if a(·)

is the Bartlett kernel a(x) = (1 − |x|)1{|x|≤1} (see Politis [2003] for more details).
This means, choosing the optimal bandwidth l is equivalent to choosing the optimal
blocklength in the moving block bootstrap, since it is

Var⋆(
√
nX̄⋆

n) = l
( 1

N

N∑
i=1

U2
i,MBB − (

1

N

N∑
i=1

Ui,MBB)
2
)
,

where Ui,MBB = 1
l
(Xi + ... +Xi+l−1), i ≥ 1 are the averages of the moving blocks,

N = n− l + 1 the number of blocks.
Using the dependent wild bootstrap instead of a block bootstrap, a similar connec-
tion can be established. Shao [2010] defines the bootstrap sample of the dependent
wild bootstrap as X⋆

i = X̄n + (Xi − X̄n)εi, i = 1, ..., n with (εi)i≤n independent of
(Xi)i≤n and E[εi] = 0, Var(εi) = 1 for i = 1, ..., n. Now, let (εi)i≤n be a stationary
process with Cov(εi, εj) = a( i−j

l
), where a(·) is a kernel function and l the band-

width parameter. Then, it holds again that σ̂2
B = 2πf̂n(0) for the dependent wild

bootstrap, since

Var⋆(
√
nX̄⋆

n) =
1

n

n∑
i,j=1

(Xi − X̄n)(Xj − X̄n) Cov
⋆(εi, εj)

=
1

n

n−1∑
h=1−n

min(n,n−h)∑
t=max(1,1−h)

(Xt − X̄n)(Xt+h − X̄n)a

(
h

l

)

=
1

n

n−1∑
h=1−n

n∑
t=|h|+1

(Xt − X̄n)(Xt−|h| − X̄n)a

(
h

l

)
= 2πf̂n(0).

So, for the moving block bootstrap and the dependent wild bootstrap, it holds that
σ̂2
B = σ̂2

∞. That is, finding an optimal estimator for the long-run variance is the dual
problem to finding an optimal l.
For the sake of completeness, note that the equality σ̂2

B = σ̂2
∞ may not hold if we
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use the dependent wild bootstrap for the non-degenerate Un,k as described in the
beginning of Chapter 2.5, since it creates (h(Xi, Xj)

⋆)1≤i,j≤n instead of a bootstrap
sample X⋆

1 , ..., X
⋆
n. Similarly, σ̂2

B = σ̂2
∞ cannot be assured if a non-overlapping block

bootstrap is used instead of a moving block bootstrap because it is

Var(
√
nX̄⋆

n) = l
(1
b

b∑
i=1

U2
i,NBB −

(1
b

b∑
i=1

Ui,NBB

)2)
,

where Ui,NBB = 1
l
(X(i−1)l+1+...+Xil), i ≥ 1, are the averages of the non-overlapping

blocks and b the number of blocks. In comparison to the variance from the moving
block bootstrap, some blocks are “left out” by construction of the bootstrap. As
a consequence, σ̂2

B does not necessarily equal 2πf̂n(0) if the non-overlapping block
bootstrap is used. Nevertheless, σ̂2

B is still a consistent estimator for σ2
∞ if l

n→∞−−−→ ∞
and l/n

n→∞−−−→ 0 (see for example Lahiri [2003] for more details on the consistency
of the different estimators).

2.5.3 Choice of the Bandwidth - Algorithm

The practical procedure to evaluate l = qadpt for the multiplier variables used in the
bootstrap version U⋆

n,k given the sample X1, ..., Xn is derived from the procedure of
Rice and Shang [2017]. Their data-driven proposal ensures consistency of the long-
run variance estimator and minimises the asymptotic mean-squared normed error
E[∥σ̂2

∞ − σ2
∞∥2]. In Section 2.5.4, we see simulations that indicate this method is a

reasonable choice.

� Calculate X̃1, ..., X̃n where X̃i =
1

n−1

∑n
j=1,j ̸=i h(Xi, Xj).

� Determine a starting value q0 = n1/5.

� Calculate matrices Vk =
1
n

∑n−(k−1)
i=1 X̃i ⊗ X̃k for k = 1, ..., q0,

where ⊗ is the outer product.

� Compute CP0 = V1 + 2
∑q0−1

k=1 w(k, q0)Vk+1

and CP1 = 2
∑q0−1

k=1 k w(k, q0)Vk+1,
where w is a kernel function, we use the quadratic spectral kernel

w(k, q) = 25
12π2k2/q2

(
sin(

6πk/q
5

)
6πk/q

5

− cos(6πk/q
5

)

)
.

� Receive the data adapted bandwidth

qadpt =


(

3n
∑d

i=1

∑d
j=1 CP1i,j∑d

i=1

∑d
j=1CP0i,j +

∑d
j=1 CP0

2
j,j

)1/5
 .

The bandwidth qadpt resulting from this method reflects the underlying dependence
structure of the functional time series: Under weak dependence, one gets a small
bandwidth, while under stronger dependence, the bandwidth gets larger.
Note that the first step is only necessary since we bootstrap h(Xi, Xj) instead of Xi.
If Xi is bootstrapped directly, then the procedure above can be used with X̃i = Xi.
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2.5.4 Influence of the Bandwidth - A Short Simulation Study

In the following, we see the influence of l on the results of a hypothesis test. For this,
we revise a simulation study of Choi and Shin [2020], who compare the performance
of different block bootstrap mean break tests for panel data. We will show that the
choice of l has an impact on the results and that in particular, the data-adapted
method of Rice and Shang [2017] is reasonable to use.
The data model used by Choi and Shin [2020] is a panel data model

Xi,t = µi + δi1t≥t0 + εi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T, 1 < t0 < T,

where (εi,t)1≤t≤T is a stationary process for each 1 ≤ i ≤ N with E[εi,t] = 0. In
this model, the mean of Xi,t changes from µi to µi + δi at an unknown time t0. The
considered hypothesis of no change in mean is tested against the alternative of a
mean in change at some point t0:

H0 : δi = 0 for all i ∈ {1, ..., N} vs. H1 : δi ̸= 0 for some i ∈ 1, ..., N.

The test statistic we want to focus on was introduced by Sharipov et al. [2016a]:

JN,T = max
1≤k≤T

1√
T

∥∥ k∑
t=1

Xt −
k

T

T∑
t=1

Xt

∥∥,
where Xt = (X1,t, ..., XN,t)

T . For theoretical properties and convergence results we
refer as well to Sharipov et al. [2016a]. Just note that JN,T resembles a CUSUM-
statistic for panel data and recall that we can construct CUSUM-statistics as a
special case of Un,k by using the kernel function h(x, y) = x− y.
For a given α ∈ (0, 1), the hypothesis of no break is rejected when JN,T is greater

than the right empirical α-quantile of m bootstrap counterparts J
⋆(j)
N,T , k = 1, ...,m,

using a non-overlapping block bootstrap, such that

J
⋆(j)
N,T = max

1≤k<bl

1√
bl

∥∥ k∑
t=1

X
⋆(j)
t − k

bl

bl∑
t=1

X
⋆(j)
t

∥∥,
where X

⋆(j)
1 , ..., X

⋆(j)
bl is the j-th bootstrap sample. We simulate data as described in

Choi and Shin [2020] and evaluate the empirical size and power of the test described
above, implemented with the blocklength l = qadpt proposed by Rice and Shang
[2017]. Simulation results are taken from Wegner and Wendler [2021]. We compare
the performance with the results of Choi and Shin [2020] for the same test statistic,
while they used the blocklength l = l̂opt recommended by Politis and White [2004].
It is constructed through the following idea: Let X1, ..., Xn be observations from a

stationary real-valued sequence. Using a circular bootstrap, lopt =
(

6n
4

)1/3(
G
σ2
∞

)2/3
is the blocklength such that the mean squared error of σ̂2

B is minimised, where
G =

∑
k∈Z |k|γ(k). Since lopt contains unknown parameters, especially σ2

∞ itself,

53



these are estimated. Instead of G it is used Ĝ =
∑M

k=−M a( k
M
)|k|γ̂(k) and σ2

∞ is

estimated by σ̂2
∞,M =

∑M
k=−M a( k

M
)γ̂(k), where

a(x) =


1 if 0 ≤ |x| ≤ 1

2

2(1− |x|) if 1
2
≤ |x| ≤ 1

0 otherwise

.

Now, l̂opt =
(

6n
4

)1/3(
Ĝ

σ̂2
∞,M

)2/3
. To make this usable for the panel data, Choi and

Shin [2020] used γ̂(k) as the sample autocovariance at lag k of the series R1, ..., RT .

For t = 1, ..., T it is defined as Rt =
∑N

i=1(Ei − Ē), where Ei =
(Xi,t−X̄i

sdi

)2
and

Ē = 1
N

∑N
i=1Ei. Here, sdi denotes the sample variance of Xi,1, ..., Xi,T and X̄i =

1
T

∑T
t=1Xi,t its sample mean. M is chosen to be the nearest integer to log(T ).

The essential difference between the two methods of choosing l is that l = l̂opt
minimise the MSE of σ̂2

B (given a circular bootstrap is used) and uses the estimate
σ̂2
∞ for the calculation, while l = qadpt minimises the asymptotic mean-squared

normed error of σ̂2
∞ itself, without giving a statement about σ̂2

B.
Now, coming to the simulation, let

Xi,t = δi1t>t0 + εi,t, εi,t = ρiεi,t−1 + ηi,t, ηi,t = ai,t + βift i = 1, ..., N, t = 1, ..., T.

To evaluate empirical size and power for serially and/or cross-sectionally correlated
panels, different combinations are simulated. For size analysis, the independent
mean zero error terms ai,t and ft are either standard normal or t5-distributed. For
the serial correlation parameter ρi ∈ {0.3, 0.5} is considered. The cross-sectional
correlation parameter is chosen as βi ∈ {0.5, 2}. Note here, that ft adds cross-
sectional correlation as well.
For power study, ai,t, ft are considered to be standard normal distributed and the
correlation parameters are chosen as ρi = βi = 0. For δi two uniform distributions
are considered: U(−1

2
, 1
2
) (cancelling break) and U( 1

10
, 1
2
) (non-cancelling break). For

the time of change, we study t0 = 0.3T and t0 = 0.5T .
The following Tables 2.1 and 2.2 summarise the results of the simulations. J⋆CS

denotes the variant of Choi and Shin [2020] and J⋆RS the variant with the blocklength
of Rice and Shang [2017]. It should be briefly noted that both bootstrap equivalents,
J⋆CS and J⋆RS, are produced by using a non-overlapping block bootstrap. This may
influence the optimality of l̂opt, as it is based on a circular bootstrap, and as we have
seen in Section 2.5.2, σ̂2

B is dependent on the choice of the bootstrap procedure.
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Empirical size of level α = 0.05 tests
N (0, 1) error terms t5 error terms

ρ β N T J⋆CS J⋆RS J⋆CS J⋆RS

0.3 0 50 50 0.216 0.045 0.237 0.075
50 100 0.252 0.033 0.230 0.032
100 50 0.257 0.009 0.252 0.007
100 100 0.254 0.006 0.242 0.007
200 100 0.234 0 0.249 0
100 1000 0.378 0.059 0.389 0.054

0.5 0 50 50 0.447 0.354 0.438 0.329
50 100 0.487 0.234 0.451 0.175
100 50 0.454 0.228 0.465 0.192
100 100 0.481 0.122 0.455 0.108
200 100 0.473 0.070 0.473 0.045
100 1000 0.659 0.272 0.646 0.279

0 0.5 50 50 0.024 0.048 0.018 0.038
50 100 0.032 0.047 0.032 0.029
100 50 0.016 0.038 0.014 0.030
100 100 0.026 0.038 0.023 0.023
200 100 0.034 0.023 0.023 0.015
100 1000 0.054 0.037 0.056 0.028

0 2 50 50 0.041 0.113 0.043 0.068
50 100 0.035 0.068 0.033 0.059
100 50 0.039 0.063 0.032 0.063
100 100 0.054 0.046 0.043 0.052
200 100 0.045 0.037 0.045 0.053
100 1000 0.067 0.043 0.065 0.050

0.3 0.5 50 50 0.123 0.139 0.157 0.111
50 100 0.156 0.100 0.154 0.083
100 50 0.157 0.091 0.175 0.072
100 100 0.149 0.058 0.148 0.068
200 100 0.154 0.061 0.155 0.065
100 1000 0.174 0.086 0.154 0.069

Table 2.1: Empirical rejection frequencies for 1000 simulation runs of the tests based
on J⋆CS and J⋆RS for different values of the correlation parameter (ρi, βi) and sample
sizes (N, T ). Values for J⋆CS are taken from Choi and Shin [2020].
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Empirical power of level α = 0.05 tests
δi ∼ U(−0.5, 0.5) δi ∼ U(0.1, 0.5)

t0 N T J⋆CS J⋆RS J⋆CS J⋆RS

0.5T 50 50 0.727 0.506 0.743 0.738
50 100 0.998 0.987 0.996 1
100 50 0.819 0.631 0.807 0.868
100 100 1 1 0.999 1
200 100 1 1 1 1
100 1000 1 1 1 1

0.3T 50 50 0.310 0.173 0.274 0.340
50 100 0.958 0.745 0.913 0.915
100 50 0.308 0.090 0.323 0.281
100 100 0.966 0.933 0.992 0.993
200 100 0.957 0.995 0.994 1
100 1000 1 1 1 1

Table 2.2: Empirical rejection frequencies of the tests based on J⋆CS and J⋆RS for
different times of change t0 and sample sizes (N, T ). Values for J⋆CS are taken from
Choi and Shin [2020].

It can be observed (Table 2.1) that J⋆RS is not oversized at least for mild serial
dependence (ρ = 0.3) and the size distortion for stronger serial dependence (ρ = 0.5)
is much less severe compared to J⋆CS. Under the alternative (Table 2.2), the power
does not seem to be much influenced by the choice of the block length. Especially
for larger N and T , both variants provide high empirical power. In this setting, the
choice of l clearly makes a difference at least for the empirical size of the test, and
is thus an important step.
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2.6 Simulation Study

In this section we report the results of our simulation study. We compare size
and power performance of our Wilcoxon-type test statistic with the well established
CUSUM. To do so, we construct different data examples which are described below.
Note that the bootstrap and the adapted bandwidth procedure described above
works for the Spatial Sign kernel funtion h(x, y) = (x − y)/∥x − y∥ as well as for
h(x, y) = x − y used for CUSUM. To compare both statistics, we execute the test
procedure for both simultaneously on each generated sample.

2.6.1 Generating Sample

We use a functional AR(1)-process on [0, 1], where the innovations are standard
Brownian motions. We use an approximation on a finite grid with d grid points, if
not indicated otherwise. To be more precise, we simulate data as follows:

X−BI = (ξ1, ξ1 + ξ2, ...,

d∑
i=1

ξi)/
√
d, ξi i.i.d. N (0, 1)-distributed.

Xt = aΦXT
t−1 +Wt ∀ −BI < t ≤ n,

where Φ ∈ Rd×d with entries Φi,j =

{
i/d2 i ≤ j

j/d2 i > j
= min(i, j)/d2

and Wt = (ξ
(t)
1 , ξ

(t)
1 + ξ

(t)
2 , ...,

d∑
i=1

ξ
(t)
i )/

√
d, ξ

(t)
i i.i.d. N (0, 1)-distributed.

The scalar a ∈ R is an AR-parameter, we use a = 1. The first (BI + 1) simula-
tions are not used, these are so-called burn-in iterations. Through this simulation
structure we achieve dependence within n and d. We consider n = 200 and d = 100.
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Figure 2.2: One sample of observations under the hypothesis simulated by the pro-
cedure described above. Each line corresponds to one D = 1, ..., d.

2.6.2 Size

To calculate the empirical size, the data simulation and test procedure via bootstrap
is repeated S = 3000 times with m = 1000 bootstrap repetitions. We count the
number of times the hypothesis was rejected both for the CUSUM-type and the
Wilcoxon-type statistic. To analyse how good the test statistics perform if outliers
are present or if gaussianity is not given, we study two additional simulations:

� Data simulated as above, but with presence of outliers:

Yi =

{
Xi i /∈ {0.2n, 0.4n, 0.6n, 0.8n}
10Xi i ∈ {0.2n, 0.4n, 0.6n, 0.8n}

� Data simulated similar to the above, but with ξi, ξ
(t)
i ∼ t1 ∀i ≤ d,

−BI ≤ t ≤ n, i.e. heavy tailed data.

As we can see in Table 2.3, Spatial Sign and CUSUM perform almost similarly under
normality. In the presence of outliers and for heavy tailed data, CUSUM shows a
slightly smaller size, whereas Spatial Sign is still not oversized. In summary, we note
that Spatial Sign is neither oversized in all observed simulations.
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Empirical size
Gaussian outliers heavy tails

α CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign
0.1 0.07967 0.07767 0.051 0.086 0.018 0.077
0.05 0.0333 0.032 0.0153 0.035 0.00267 0.02967
0.025 0.008 0.00083 0.0043 0.0123 0.0003 0.01
0.01 0.002 0.0023 0.001 0.00267 0 0.00167

Table 2.3: Empirical size of CUSUM and Spatial Sign for different significance level
α.

2.6.3 Power

To evaluate the performance of the test statistics in presence of a change in mean,
we construct four scenarios.

Scenario 1: Uniform jump of +0.3 after n/2 observations:

Yi =

{
Xi i < n/2

Xi + 0.3u i ≥ n/2

where u = (1, ..., 1)T .

Scenario 2: Sinus-jump after n/2 of observations:

Yi =

{
Xi i < n/2

Xi +
1

2
√
2
(sin(πD/d))D≤d i ≥ n/2

.

Scenario 3: Uniform jump of +0.3 after n/2 observations in presence of outliers
at 0.2n, 0.4n, 0.6n, 0.8n:

Yi =


Xi i < n/2, i /∈ {0.2n, 0.4n}
10Xi i ∈ {0.2n, 0.4n}
Xi + 0.3u i ≥ n/2, i /∈ {0.6n, 0.8n}
10Xi + 0.3u i ∈ {0.6n, 0.8n}

where u = (1, ..., 1)T .

Scenario 4: Heavy tails: In the simulation of (Xi)i≤n we use ξi, ξ
(t)
i ∼ t1 (Cauchy

distributed) ∀i ≤ d,−BI < t ≤ n and a uniform jump of +5 after n/2
observations.

As we can also see in Figure 2.3, the four scenarios resemble different difficulties
that can occur in a sample. Scenarios 1 and 2 only have rather small changes in
mean that may be difficult to detect. Scenario 3 has some additional outliers, while
the change in Scenario 4 is rather large but the heavy tails may overshadow this.
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Figure 2.3: One sample of observations for each of the Scenarios 1 (top left), 2 (top
right), 3 (bottom left) and 4 (bottom right) simulated by the procedure described
above.

As in the analysis under the hypothesis, we chose m = 1000 bootstrap repetitions.
The data simulation and test procedure via bootstrap is repeated S = 3000 times
for each scenario and the number of times the hypothesis was rejected is counted
to calculate the empirical power. To compare our test-statistic with CUSUM, we
calculate the Spatial Sign and CUSUM simultaneously in each simulation run.
Comparing the size-power-plots for both test statistics (Figure 2.4), we see that Spa-
tial Sign outperforms CUSUM clearly in Scenarios 1 and 2. For these two scenarios
with a jump after n/2 of the observations, Spatial Sign provides lower empirical size
and at the same time higher empirical power. In Scenario 1, we see that Spatial
Sign provides empirical power larger than 0.9 for α ∈ {0.1, 0.05}. For smaller α, the
empirical power declines but not as drastically as for CUSUM, which provides for
α = 0.01 only empirical power of about 0.4, while Spatial Sign still shows empirical
power greater than 0.6. In the second scenario we see a smaller empirical power for
both statistics compared to the first scenario. Nevertheless, the empirical power of
Spatial Sign is for all observed α greater than the one of CUSUM.
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Figure 2.4: Size-Power-Plot for CUSUM and Spatial Sign statistic, Scenario 1 and
2.

In the third scenario, the jump with outliers in the data, we see that CUSUM shows
a lower empirical size than Spatial Sign (Figure 2.5). On the other hand, Spatial
Sign shows clearly more empirical power. For larger α ∈ {0.1, 0.05}, the empirical
power of Spatial Sign is over 0.9 while CUSUM just provides an empirical power of
about 0.6 for α = 0.1.
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Figure 2.5: Size-Power-Plot for CUSUM and Spatial Sign statistic, Scenario 3 and
4.

In Scenario 4, we see that CUSUM barely provides any empirical power at all (Figure
2.5). Even for α = 0.1 CUSUM shows an empirical power < 0.04. In heavy contrast,
Spatial Sign shows relatively large empirical power, being greater than 0.9 for α ≥
0.025.
For exact values of the empirical power in each scenario, see Table 2.4.
Typically, change-point tests lose power, if the change-point lies closer to the begin-
ning (or symmetrically to the end) of the observations. To compare the effect of such
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Empirical power
Scenario 1 Scenario 2 Scenario 3 Scenario 4

α CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign
0.1 0.90667 0.97533 0.77367 0.903 0.63533 0.98067 0.03767 0.9943
0.05 0.79633 0.929 0.609 0.80167 0.45567 0.93433 0.01367 0.967
0.025 0.66033 0.846 0.45067 0.64967 0.28267 0.83933 0.00467 0.90567
0.01 0.40933 0.627 0.23067 0.405 0.11533 0.621 0.00067 0.72067

Table 2.4: Empirical power of CUSUM and Spatial Sign for different significance
level α, Scenario 1-4.

change-point locations on the Wilcoxon-type statistic with the effect on CUSUM,
we simulated data with the change-point after 30% resp. 15% of the observations.
Another interesting question is how size and power of the test changes, if d >> n.
This might happen in practice if we only have few observations given. We call these
two additional problem sets Scenario 5 and 6.

Scenario 5: Uniform Jump of +0.3 after γn observations:

Yi =

{
Xi i < γn

Xi + 0.3u i ≥ γn
with γ = 0.3 and γ = 0.15 resp.

where u = (1, ..., 1)T .

Scenario 6: As Scenario 1 but with n = 150, d = 350.

Empirical power
Scenario 5, γ = 0.3 Scenario 5, γ = 0.15 Scenario 6

α CUSUM Spatial Sign CUSUM Spatial Sign CUSUM Spatial Sign
0.1 0.79467 0.909 0.3373 0.3723 0.75867 0.903
0.05 0.61867 0.78267 0.173 0.1933 0.58633 0.757
0.025 0.439 0.599 0.076 0.08433 0.391 0.552
0.01 0.21833 0.32867 0.024 0.027 0.14533 0.239

Table 2.5: Empirical power of CUSUM and Spatial Sign for different significance
level α, Scenario 5 and 6.

The size-power-plots of Scenarios 5 and 6 (Figures 2.6 and 2.7) show that Spatial
Sign suffers less loss in power than CUSUM if the change-point lies closer to the
beginning of the observations or if d becomes larger than n.
In particular we see that in Scenario 5 with γ = 0.3 (Table 2.5), the power of both
statistics is smaller than in Scenario 1 where the change-point is in the middle of the
observations. Nevertheless, the empirical power of Spatial Sign is still larger than
the empirical power of CUSUM and for α = 0.1 Spatial Sign still provides empirical
power of about 0.9. For γ = 0.15 we see a drastic decline in power for both statistics,
with empirical power smaller than 0.4 even for α = 0.1. Spatial Sign, nevertheless,
keeps a small advantage over CUSUM in this scenario.
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Figure 2.6: Size-Power-Plot for CUSUM and Spatial Sign statistic, Scenario 5.
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Empirical Size - Scenario 6
α CUSUM Spatial Sign
0.1 0.06733 0.064
0.05 0.025 0.01967
0.025 0.00467 0.0067
0.01 0.00067 0.00167

Table 2.6: Empirical size of CUSUM and Spatial Sign for different significance level
α, Scenario 6.

In the last scenario we observe the situation of d >> n. For empirical size, we
generated data as described in Chapter 2.6.1, but with n = 150 and d = 350 and
received the values presented in Table 2.6. We see that the size of both statistics
is even smaller than under Scenario 1. However, looking at the empirical power
(Table 2.5), we see a reduction of power for both statistics compared to Scenario
1. Nevertheless, we can still observe that Spatial Sign provides a greater empirical
power than CUSUM. Particularly for α = 0.1, Spatial Sign still shows a power of
about 0.9.
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Figure 2.7: Size-Power-Plot for CUSUM and Spatial Sign statistic, Scenario 6.
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2.7 Data Example

We look at data of 344 measuring stations of the Umweltbundesamt [2020] for air
pollutants located all over Germany. The data of interest is the daily average of
particulate matter with particles smaller than 10 µm (PM10) measured in µg/m3

from January 1, 2020 to May 31, 2020. This means we have n = 152 observations
and treat the measurement of all stations on one day as data from R344.
Since the official restrictions of the German Government in course of the COVID-19
pandemic came into force on March 22, 2020, an often asked question was whether
these restrictions (e.g. social distancing, closed gastronomy, closed/reduced work or
work from home) had an effect on the air quality in Germany. This question comes
from the assumption that the restrictions may lead to reduced traffic, resulting in
reduced amount of particulate matter.
There are several publications from various countries studying the effects of lock-
down measures on air pollution parameters like nitrogen oxides (NO, NO2), ozone
(O3) and particulate matter (PM10, PM2.5). For example, Lian et al. [2020] inves-
tigated data from the city of Wuhan, or Zangari et al. [2020] for New York City.
Data for Berlin, as for 19 other cities around the world, are investigated by Fu et al.
[2020]. They observed a decline in particular matter (PM10 and PM2.5, significant
for PM2.5) in the period of lockdown. Although, the observed time period of one
month is rather short (Mar. 17 to Apr. 19, 2020) and the findings for a densely
populated city may not simply be transferred to the whole of Germany.
In contrast to that, we use data from measuring stations located across the whole
country, to investigate an overall and long-lasting effect on particulate matter.

Looking at the empirical p-values of CUSUM and Spatial Sign test resulting from
m = 3000 bootstrap iterations in Table 2.7, we see that with CUSUM H0 is never
rejected for any significance level α < 0.2. But the Spatial Sign test rejects H0 for
significance level α larger than 0.03.

p-values
CUSUM Spatial Sign
0.226 0.027

Table 2.7: Empirical p-values for CUSUM and Spatial Sign test with data adapted
bandwidth. m = 3000 bootstrap iterations were used.
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Figure 2.8: Daily average of PM10 in µg/m3 for 344 measure stations from January
1, 2020 to May 31, 2020. Each line corresponds to one measuring station. The
massive outlier on January 1 should result from New Year’s fireworks.

Since the data exhibits a massive outlier located on January 1 (likely due to New
Year’s firework), we repeated the test procedure without the data of this day. We
observed that the resulting p-value for Spatial Sign changed just slightly. Whereas
the p-value for CUSUM decreased notably to around 0.08 (Table 2.8).
This example shows again that CUSUM is clearly more influenced by the outlier in
the data than Spatial Sign. Evaluation showed that the data adapted bandwidth
was set to qadpt = 3 for both CUSUM and Spatial Sign for both scenarios.

p-values (data excluding Jan. 1)
CUSUM Spatial Sign
0.078 0.03

Table 2.8: Empirical p-values for CUSUM and Spatial Sign test with data adapted
bandwidth for data excluding January 1, 2020. m = 3000 bootstrap iterations were
used.
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3 Time and Direction of Change

After receiving a significant result from the hypothesis test from Chapter 2, it is
a comprehensible next step to estimate the time of change and its direction. In
the course of this chapter, we will present consistent estimators for both of these
problems.

3.1 Estimating the Time of Change

For real-valued i.i.d. settings, first works on the estimation of the time of change in
some distribution parameter were already published in the 1970s and 1980s. Hinkley
[1970] and Cobb [1978] addressed the problem via a maximum-likelihood approach.
Based on the likelihood ratio test, Worsley [1986] and Siegmund [1988] constructed
confidence intervals for the time of change for sequences from exponential families.
In a different approach, Antoch et al. [1995] proposed to find the value 1 < k < n
that maximises some CUSUM-like partial sum process and proved consistency for
this estimator.
Moving away from the i.i.d set-up, there have been several developments for weakly
dependent functional data in recent time. Aston and Kirch [2012] estimated the
time of change in the framework of principal component analysis, while Aue et al.
[2018] proposed a procedure based on the full functional information without di-
mension reduction.
For a change in the mean, a CUSUM-type test for dependent data was introduced by
Kokoszka and Leipus [1998] and rates of convergence are given. Since CUSUM-type
estimators encounter some robustness problems, Gerstenberger [2018] developed a
Wilcoxon-type estimator, based on the test by Dehling et al. [2015], for near-epoch
dependent processes.
Expanding this idea to P-NED functional data in Hilbert spaces, we will show that
the 1 ≤ k < n that maximises the Wilcoxon-type statistic introduced in Chapter 2,
is a robust and consistent estimator of the true time of change.

We recall the following model: We have a stationary, H ⊗ H-valued sequence
(Xn, Zn)n∈Z and we observe Y1, ..., Yn with

Yi =

{
Xi for i ≤ ⌊nλ⋆⌋ = k⋆

Zi for i > ⌊nλ⋆⌋ = k⋆
,

so λ⋆ ∈ (0, 1) is the proportion of observations after which the change happens. The
function h : H2 → H denotes a kernel function. Assume that it is of such form that
E[h(X0, Z̃0)] = ∆ ̸= 0.

Notation: We will often assume that n is eventually large enough that we can omit
the floor function and write k ≈ λn for some λ ∈ (0, 1).
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We know by the previous chapters that the Wilcoxon-type test statistic
max1≤k<n ∥ 1

n3/2Un,k(Y )∥ is suitable to detect change-points under the concepts and
assumptions given in Chapter 2. The natural choice for an estimator for the time
of change is given by

k̂ = min{k : ∥ 1

n3/2
Un,k(Y )∥ = max

1≤j<n
∥ 1

n3/2
Un,j(Y )∥},

since ∥E[ 1
n3/2Un,k(Y )]∥ achieves its maximum at k = k⋆, which is the true change

point. This can be seen by a short calculation:
If k ≤ k⋆,

E[
1

n3/2
Un,k(Y )] =

1

n3/2

k∑
i=1

n∑
j=k⋆+1

E[h(Xi, Zj)] +
1

n3/2

k∑
i=1

k⋆∑
j=k+1

E[h(Xi, Xj)]

=
1

n3/2
k(n− k⋆)∆ ≈ 1

n3/2
nλ · n(1− λ⋆)∆ = n1/2λ(1− λ⋆)∆.

If k ≥ k⋆,

E[
1

n3/2
Un,k(Y )] =

1

n3/2

k⋆∑
i=1

n∑
j=k+1

E[h(Xi, Zj)] +
1

n3/2

k∑
i=k⋆+1

n∑
j=k+1

E[h(Zi, Zj)]

=
1

n3/2
k⋆(n− k)∆ ≈ 1

n3/2
nλ⋆ · n(1− λ)∆ = n1/2λ⋆(1− λ)∆.

Here, it was used that E[h(Xi, Zj)] = ∆, but E[h(Xi, Xj)] = E[h(Zi, Zj)] = 0. Both
cases combined, read

E[
1

n3/2
Un,k(Y )] ≈

{√
n∆(1− λ⋆)λ if k ≤ k⋆ ⇔ λ ≤ λ⋆

√
n∆λ⋆(1− λ) if k ≥ k⋆ ⇔ λ ≥ λ⋆

,

where we can see that in both cases the maximum is attained at λ⋆, so

max
1≤k≤n

∥E[ 1

n3/2
Un,k(Y )]∥ = ∥E[ 1

n3/2
Un,k⋆(Y )]∥ ≈ ∥

√
n∆(1− λ⋆)λ⋆∥

Taking up the notation of λ⋆, let λ̂ ∈ (0, 1) be the estimated proportion of obser-

vations after which the change happens, meaning that we can also write k̂ =
⌊
nλ̂
⌋
.

Note that while we assume that λ⋆ is fixed, due to the estimation, λ̂ = λ̂(n) might
change with n.

First, we will see that a similar result as Theorem 2.1 holds for max
1≤k≤n

∥ 1
n3/2

(
Un,k(Y )−

E[Un,k(Y )]
)
∥, i.e. it converges in distribution:

Theorem 3.1. Let (Xn, Zn)n∈Z be P-NED on an absolutely regular sequence (ζn)n∈Z

such that akΦ(k
−8 δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

δ
4+δ

k < ∞ for some δ > 0.
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Assume that h : H2 → H is an antisymmetric kernel that fulfils the variation
condition and is either bounded or has uniform (4+δ)-moments under approximation
for processes (Xn)n∈Z, (Zn)n∈Z and (Xn, Zn)n∈Z, and that E[h(X1, Z̃1)] ̸= 0, were Z̃1

is an independent copy of Z1. Then it holds that

max
1≤k<n

∥ 1

n3/2

(
Un,k(Y )− E[Un,k(Y )]

)
∥

is bounded in probability.

To prove this theorem, Hoeffding’s decomposition is useful again. With the help
of the decomposition for h, we can as well decompose Un,k(Y ) into separate parts

of h
(X)
1 , h

(Z)
1 , h

(X,X)
2 , h

(Z,Z)
2 and h

(X,Z)
2 . We have to consider two cases, depending on

whether k is larger or smaller than k⋆.
If k ≤ k⋆,

Un,k(Y ) =
k∑

i=1

n∑
j=k+1

h(Yi, Yj)

=
k∑

i=1

n∑
j=k⋆+1

h(Xi, Zj) +
k∑

i=1

k⋆∑
j=k+1

h(Xi, Xj)

=
k∑

i=1

n∑
j=k⋆+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj) + h

(X,Z)
2 (Xi, Zj)

)
+

k∑
i=1

k⋆∑
j=k+1

(
h
(X)
1 (Xi)− h

(X)
1 (Xj) + h

(X,X)
2 (Xi, Xj)

)
= (n− k⋆)

k∑
i=1

h
(Z)
1 (Xi)− k

n∑
j=k+1

h
(X)
1 (Zj) +

k∑
i=1

n∑
j=k⋆+1

h
(X,Z)
2 (Xi, Zj)

+ (k⋆ − k)
k∑

i=1

h
(X)
1 (Xi)− k

k⋆∑
j=k+1

h
(X)
1 (Xj) +

k∑
i=1

k⋆∑
j=k+1

h
(X,X)
2 (Xi, Xj).

If k ≥ k⋆,

Un,k(Y ) =
k∑

i=1

n∑
j=k+1

h(Yi, Yj)

=
k⋆∑
i=1

n∑
j=k+1

h(Xi, Zj) +
k∑

i=k⋆+1

n∑
j=k+1

h(Zi, Zj)

=
k⋆∑
i=1

n∑
j=k+1

(
h
(Z)
1 (Xi)− h

(X)
1 (Zj) + h

(X,Z)
2 (Xi, Zj)

)
+

k∑
i=k⋆+1

n∑
j=k+1

(
h
(Z)
1 (Zi)− h

(Z)
1 (Zj) + h

(Z,Z)
2 (Zi, Zj)

)
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= (n− k)
k⋆∑
i=1

h
(Z)
1 (Xi)− k⋆

n∑
j=k+1

h
(X)
1 (Zj) +

k⋆∑
i=1

n∑
j=k+1

h
(X,Z)
2 (Xi, Zj)

+ (n− k)
k∑

i=k⋆+1

h
(Z)
1 (Zi)− (k − k⋆)

n∑
j=k+1

h
(Z)
1 (Zj) +

k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj).

In the following, we will mostly focus on the case k ≥ k⋆. This choice is arbitrary
and the other case works completely analogously.

Proof of Theorem 3.1. Let k ≥ k⋆. Using Hoeffding’s decomposition, we get that

max
1≤k<n

∥∥ 1

n3/2

(
Un,k(Y )− E[Un,k(Y )]

)∥∥
= max

1≤k<n

∥∥ 1

n3/2
(n− k)

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)

− 1

n3/2
k⋆

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)

+
1

n3/2

k⋆∑
i=1

n∑
j=k+1

(
h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (Xi, Zj)]
)

+
1

n3/2
(n− k)

k∑
i=k⋆+1

(
h
(Z)
1 (Zi)− E[h(Z)

1 (Zi)]︸ ︷︷ ︸
=0

)
− 1

n3/2
(k − k⋆)

n∑
j=k+1

(
h
(Z)
1 (Zj)− E[h(Z)

1 (Zj)]︸ ︷︷ ︸
=0

)

+
1

n3/2

k∑
i=k⋆+1

n∑
j=k+1

(
h
(Z,Z)
2 (Zi, Zj)− E[h(Z,Z)

2 (Zi, Zj)]︸ ︷︷ ︸
=0

)∥∥
≤ max

1≤k<n

∥∥n− k

n3/2

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)
− k⋆

n3/2

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)

+
n− k

n3/2

k∑
i=k⋆+1

h
(Z)
1 (Zi)−

k − k⋆

n3/2

n∑
j=k+1

h
(Z)
1 (Zj)

∥∥
+ max

1≤k<n

∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k+1

(
h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (Xi, Zj)]
)∥∥

+ max
1≤k<n

∥∥ 1

n3/2

k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj)

∥∥.
By using an analogue of Proposition 2.2 and Proposition 2.4 we get that for n large
enough

max
1≤k<n

∥∥n− k

n3/2

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)
− k⋆

n3/2

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)
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+
n− k

n3/2

k∑
i=k⋆+1

h
(Z)
1 (Zi)−

k − k⋆

n3/2

n∑
j=k+1

h
(Z)
1 (Zj)

∥∥
≤ max

1≤k<n

(∥∥n− k

n3/2

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥

+
∥∥ k⋆

n3/2

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)∥∥

+
∥∥n− k

n3/2

k∑
i=k⋆+1

h
(Z)
1 (Zi)

∥∥+ ∥∥k − k⋆

n3/2

n∑
j=k+1

h
(Z)
1 (Zj)

∥∥)

≈ sup
λ∈[0,1]

(∥∥1− λ

n1/2

⌊λ⋆n⌋∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥

+
∥∥ λ⋆

n1/2

n∑
j=⌊λn⌋+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)∥∥

+
∥∥1− λ

n1/2

⌊λn⌋∑
i=⌊λ⋆n⌋+1

h
(Z)
1 (Zi)

∥∥+ ∥∥λ− λ⋆

n1/2

n∑
j=⌊λn⌋+1

h
(Z)
1 (Zj)

∥∥)
D→ sup

λ∈[0,1]

(
∥(1− λ)W1(λ

⋆)∥+ ∥λ⋆(W2(1)−W2(λ))∥+ ∥(1− λ)(W̃ (λ)− W̃ (λ⋆))∥

+ ∥(λ− λ⋆)(W̃ (1)− W̃ (λ))∥
)
.

Where (W̃ (λ))λ∈[0,1] is a Brownian motion with covariance operator ⟨S̃(x), y⟩ =∑∞
i=−∞Cov(⟨h(Z)

1 (Z0), x⟩, ⟨h(Z)
1 (Zi), y⟩) similar to the Brownian motion given in

Proposition 2.2, but based on (h
(Z)
1 (Zi))i≤n instead of (h

(X)
1 (Xi))i≤n.

This implies that

max
1≤k<n

∥∥n− k

n3/2

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)
− k⋆

n3/2

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)

+
n− k

n3/2

k∑
i=k⋆+1

h
(Z)
1 (Zi)−

k − k⋆

n3/2

n∑
j=k+1

h
(Z)
1 (Zj)

∥∥ = OP (1).

Furthermore, using Propositions 2.3 and 2.5 gives

max
1≤k<n

∥∥ 1

n3/2

k⋆∑
i=1

n∑
j=k+1

(
h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (Xi, Zj)]
)∥∥

+ max
1≤k<n

∥∥ 1

n3/2

k∑
i=k∗+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj)

∥∥ a.s.−−→ 0 ,

which proves the theorem.
Note that we need to do one additional approximation step in the proofs of Propo-
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sitions 2.3 and 2.5, since the double sum looks a little bit different. For example, if
Proposition 2.3 is used for max1≤k<n ∥ 1

n3/2

∑k
i=k⋆+1

∑n
j=k+1 h

(Z,Z)
2 (Zi, Zj)∥, note that

E
[(

max
1≤k<n

∥∥ k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj)

∥∥)2]1/2
≤ E

[(
max
1≤k<n

k∑
i=k⋆+1

n∑
j=k+1

∥h(Z,Z)
2 (Zi, Zj)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ E

[(
max
1≤k<n

k∑
i=k⋆+1

n∑
j=k+1

∥h(Z,Z)
2,l (Zi,l, Zj,l)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ E

[(
max
1<k<n

∥∥ k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2,l (Zi,l, Zj,l)

∥∥)2]1/2
≤ E

[(
max
1≤k<n

k∑
i=1

n∑
j=k+1

∥h(Z,Z)
2 (Zi, Zj)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ E

[(
max
1≤k<n

k∑
i=1

n∑
j=k+1

∥h(Z,Z)
2,l (Zi,l, Zj,l)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ E

[(
max
1≤k<n

∥∥ k∑
i=1

n∑
j=k+1

h
(Z,Z)
2,l (Zi,l, Zj,l)−

k⋆∑
i=1

n∑
j=k+1

h
(Z,Z)
2,l (Zi,l, Zj,l)

∥∥)2]1/2
≤ E

[(
max
1≤k<n

k∑
i=1

n∑
j=k+1

∥h(Z,Z)
2 (Zi, Zj)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ E

[(
max
1≤k<n

k∑
i=1

n∑
j=k+1

∥h(Z,Z)
2,l (Zi,l, Zj,l)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
+ 2E

[(
max

1≤n1<n
max

1≤n2<n

n1∑
i=1

n∑
j=n2

∥h(Z,Z)
2 (Zi, Zj)− h

(Z,Z)
2 (Zi,l, Zj,l)∥

)2]1/2
and then we can proceed as in the proof of Proposition 2.3.
For max1≤k<n ∥ 1

n3/2

∑k⋆

i=1

∑n
j=k+1

(
h
(X,Z)
2 (Xi, Zj)−E[h(X,Z)

2 (Xi, Zj)]
)
∥ we can do sim-

ilar adjustments.

We will now formulate the main theorem of this section, stating that λ̂ is an consis-
tent estimator for λ⋆.

Theorem 3.2. Let (Xn, Zn)n∈Z be P-NED on an absolutely regular sequence (ζn)n∈Z

such that akΦ(k
−8 δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

δ
4+δ

k < ∞ for some δ > 0.
Assume that h : H2 → H is an antisymmetric kernel that fulfils the variation
condition and is either bounded or has uniform (4+δ)-moments under approximation
for processes (Xn)n∈Z, (Zn)n∈Z and (Xn, Zn)n∈Z, and that E[h(X1, Z̃1)] ̸= 0, were Z̃1

is an independent copy of Z1.
Then it holds that |λ⋆ − λ̂| a.s.−−→ 0 as n → ∞.
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For the proof of this, one preparatory lemma is needed:

Lemma 3.1. Under the assumptions of Theorem 3.2 it holds that

max
1≤k<n

∥∥ 1

n2

k∑
i=1

n∑
j=k+1

(h(Yi, Yj)− E[h(Yi, Yj)])
∥∥ a.s.−−→ 0.

Proof. Let k ≥ k⋆. Using Hoeffding’s decomposition once again, we can write

max
1≤k<n

∥∥ 1

n2

k∑
i=1

n∑
j=k+1

(
h(Yi, Yj)− E[h(Yi, Yj)]

)∥∥
≤ max

1≤k<n

∥∥ 1

n2
(n− k)

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥

+ max
1≤k<n

∥∥ 1

n2
k⋆

n∑
j=k+1

(
h
(X)
1 (Zj)− E[h(X)

1 (Zj)]
)∥∥

+ max
1≤k<n

∥∥ 1

n2
(n− k)

k∑
i=k⋆+1

(
h
(Z)
1 (Zi)− E[h(Z)

1 (Zi)]
)∥∥

+ max
1≤k<n

∥∥ 1

n2
(k − k⋆)

n∑
j=k+1

(
h
(Z)
1 (Zj)− E[h(Z)

1 (Zj)]
)∥∥

+ max
1≤k<n

∥∥ 1

n2

k⋆∑
i=1

n∑
j=k+1

(
h
(X,Z)
2 (Xi, Zj)− E[h(X,Z)

2 (Xi, Zj)]
)∥∥

+ max
1≤k<n

∥∥ 1

n2

k∑
i=k⋆+1

n∑
j=k+1

(
h
(Z,Z)
2 (Zi, Zj)− E[h(Z,Z)

2 (Zi, Zj)]
)∥∥.

For the convergence of the linear parts, we can rewrite each term and use Birkhoff’s
ergodic theorem for stationary ergodic processes: Simply note that the sequence
(Xn, Zn)n∈Z is a functional of a stationary absolutely regular sequence (ζn)n∈Z, which
means that it is stationary itself and furthermore ergodicity follows from the mixing
condition of (ζn)n∈Z.
For example, for the first term, write

∥∥ 1

n2
(n− k)

k⋆∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥

≈
∥∥ 1

n2
n(1− λ)

⌊λ⋆n⌋∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥

≤
∥∥(1− λ)

1

⌊λ⋆n⌋

⌊λ⋆n⌋∑
i=1

(
h
(Z)
1 (Xi)− E[h(Z)

1 (Xi)]
)∥∥ n→∞−−−→ 0
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Since this convergence holds a.s. uniformly, it holds for the maximum as well. The
other linear parts converge a.s. to zero by similar considerations.
For the degenerate parts, convergence holds by Proposition 2.3 resp. 2.5:

max
1≤k<n

∥∥ 1

n2

k∑
i=k⋆+1

n∑
j=k+1

(
h
(Z,Z)
2 (Zi, Zj)− E[h(Z,Z)

2 (Zi, Zj)]
)∥∥

≤ max
k⋆<k<n

∥∥ 1

n3/2

k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj)

∥∥
since h

(Z,Z)
2 is degenerated. Here, we use Proposition 2.3 with a suitable adjustment

in the proof, as explained in the proof of Theorem 3.1 and get that

max
k⋆<k<n

∥∥ 1

n3/2

k∑
i=k⋆+1

n∑
j=k+1

h
(Z,Z)
2 (Zi, Zj)

∥∥ n→∞−−−→ 0 almost surely.

For the second degenerate part, we use Proposition 2.5.

We have now everything we need to prove Theorem 3.2.

Proof of Theorem 3.2. For n large enough, calculate the two expectations as done
prior to the statement of Theorem 3.2:∥∥E[ 1

n3/2
Un,k⋆(Y )

]∥∥ =
√
n∥∆∥λ⋆(1− λ⋆) and

∥∥E[ 1

n3/2
Un,k̂(Y )

]∥∥ ≈

{√
n∥∆∥(1− λ⋆)λ̂ λ̂ ≤ λ⋆

√
n∥∆∥λ⋆(1− λ̂) λ̂ ≥ λ⋆

So,

∥∥E[ 1

n3/2
Un,k⋆(Y )

]∥∥− ∥∥E[ 1

n3/2
Un,k̂(Y )

]∥∥ ≈

{√
n∥∆∥(1− λ⋆)(λ⋆ − λ̂) λ̂ ≤ λ⋆

√
n∥∆∥λ⋆(λ̂− λ⋆) λ̂ ≥ λ⋆

=
√
n∥∆∥λ̄|λ⋆ − λ̂| ,where λ̄ = min{λ⋆, 1− λ⋆} (21)

Now, ∥∥ 1

n3/2
Un,k̂(Y )

∥∥− ∥∥ 1

n3/2
Un,k⋆(Y )

∥∥
≤
∥∥ 1

n3/2
Un,k̂(Y )− E

[ 1

n3/2
Un,k̂(Y )

]∥∥+ ∥∥E[ 1

n3/2
Un,k̂(Y )

]∥∥
+
∥∥ 1

n3/2
Un,k⋆(Y )− E

[ 1

n3/2
Un,k⋆(Y )

]∥∥− ∥∥E[ 1

n3/2
Un,k⋆(Y )

]∥∥
≤ 2 max

1≤k<n

∥∥ 1

n3/2
Un,k(Y )− E

[ 1

n3/2
Un,k(Y )

]∥∥
+
∥∥E[ 1

n3/2
Un,k̂(Y )

]∥∥− ∥∥E[ 1

n3/2
Un,k⋆(Y )

]∥∥
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and rearranging give us∥∥E[ 1

n3/2
Un,k⋆(Y )

]∥∥− ∥∥E[ 1

n3/2
Un,k̂(Y )

]∥∥
≤ 2 max

1≤k<n

∥∥ 1

n3/2
Un,k(Y )− E

[ 1

n3/2
Un,k(Y )

]∥∥+ ∥∥ 1

n3/2
Un,k⋆(Y )

∥∥︸ ︷︷ ︸
≤∥ 1

n3/2
Un,k̂(Y )∥

−
∥∥ 1

n3/2
Un,k̂(Y )

∥∥
≤ 2 max

1≤k<n

∥∥ 1

n3/2
Un,k(Y )− E

[ 1

n3/2
Un,k(Y )

]∥∥
(21)⇔

√
n∥∆∥λ̄|λ⋆ − λ̂| ≤ 2 max

1≤k<n

∥∥ 1

n3/2
Un,k(Y )− E

[ 1

n3/2
Un,k(Y )

]∥∥
⇔ |λ⋆ − λ̂| ≤ 2

∥∆∥λ̄
2 max
1≤k<n

∥∥ 1

n2
Un,k(Y )− E

[ 1
n2

Un,k(Y )
]∥∥ a.s.−−→ 0 for n → ∞

by Lemma 3.1. And thus, |λ⋆ − λ̂| a.s.−−→ 0 for n → ∞.

3.1.1 Shrinking Magnitude of Change

So far, we have dealt with a fixed difference in location, in other words, with a fixed
magnitude of change. For some applications it is reasonable to allow the difference
in location to shrink with larger sample size n
More formally, let (X

(n)
i , Z

(n)
i )i≤n, n∈N be a triangular scheme of H ⊗ H-valued

row-wise stationary random variables. For each n ∈ N, a series of observations
Y

(n)
1 , ..., Y

(n)
n is given by

Y
(n)
i =

{
X

(n)
i for i ≤ ⌊nλ⋆⌋ = k⋆

Z
(n)
i for i > ⌊nλ⋆⌋ = k⋆

,

assuming that E[h(X(n)
0 , Z̃

(n)
0 )] = ∆n ̸= 0 is dependent on n with ∥∆n∥

n→∞−−−→ 0
but

√
n∥∆n∥

n→∞−−−→ ∞, which characterises the speed of ∥∆n∥ going to zero when n
grows to infinity. Note that k⋆ = ⌊nλ⋆⌋ is proportional on n. We will proof that the
estimator of the time of change

k̂(n) = k̂ = min
{
k : ∥ 1

n3/2
Un,k(Y

(n))∥ = max
1≤j<n

∥ 1

n3/2
Un,j(Y

(n))∥
}

is still a consistent estimator of k⋆ with a rate of consistency dependent on ∆n.
Gerstenberger [2018] used a Wilcoxon-type estimator to formulate a result for real
L1-NED processes. We will extend and generalise the results for P-NED functional
processes in H.

Theorem 3.3. Let (X
(n)
i , Z

(n)
i )i≤n, n∈Z be P-NED, meaning it holds for every n ∈

Z that (X
(n)
i , Z

(n)
i )i≤n is P-NED on an absolutely regular sequence (ζ

(n)
i )i∈Z such

that a
(n)
k Φ(n)(k−8 δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

(n)
δ

4+δ

k < ∞ for some δ > 0
uniformly in n. Assume that h : H2 → H is an antisymmetric kernel that fulfils
the variation condition and is either bounded or has uniform (4+ δ)-moments under
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approximation for processes (X
(n)
i )i≤n, (Z

(n)
i )i≤n and (X

(n)
i , Z

(n)
i )i≤n. Furthermore

assume that E[h(X(n)
0 , Z̃

(n)
0 )] = ∆n, where Z̃

(n)
0 is an independent copy of Z

(n)
0 and

∥∆n∥
n→∞−−−→ 0,

√
n∥∆n∥

n→∞−−−→ ∞.
Then it holds that |k⋆ − k̂| = OP (

1
∥∆n∥2 ).

In order to prove this theorem, we will start by proving the following (slightly
simpler) lemma:

Lemma 3.2. Under the assumptions of Theorem 3.3, it holds that |k⋆−k̂| = OP (k
⋆).

Proof. First of all, note that for ϵ > 0 equivalently

|k⋆ − k| ≥ ϵk⋆ ⇔ k /∈ [k⋆(1− ϵ), k⋆(1 + ϵ)]

|k⋆ − k| ≤ ϵk⋆ ⇔ k ∈ [k⋆(1− ϵ), k⋆(1 + ϵ)].

Using this, we have the following equivalent statements

|k⋆ − k̂| = OP (k
⋆)

⇔∀ϵ > 0 P(|k⋆ − k̂| ≤ ϵk⋆)
n→∞→ 1

⇔∀ϵ > 0 P(k̂ ∈ [k⋆(1− ϵ), k⋆(1 + ϵ)])
n→∞→ 1. (22)

So, we want to show that with probability growing to 1, k̂ lies in an arbitrary small
neighbourhood of the true change-point k⋆. Or, in other words, the maximum of
∥Un,k(Y

(n))∥ is attained in the neighbourhood of k⋆. We will prove this by showing
that outside this neighbourhood, ∥Un,k(Y

(n))∥ does not exceed ∥Un,k⋆(Y
(n))∥ (in

probability) for n → ∞:

P
(

max
k:|k−k⋆|≥ϵk∗

∥Un,k(Y
(n))∥ < ∥Un,k⋆(Y

(n))∥
) n→∞−−−→ 1. (23)

Then, (22) is a consequence of (23) by the following arguments:
Let ϵ > 0 and assume (23) holds. By the definition, it is

k̂ = k̂(n) = argmax
1≤k≤n

∥Un,k(Y
(n))∥.

For the maximum over all k inside the neighbourhood of k⋆ it is

max
k:|k−k⋆|≤ϵk⋆

∥Un,k(Y
(n))∥ ≥ ∥Un,k⋆(Y

(n))∥.

On the other hand, for the maximum over all k outside the neighbourhood of k⋆ it
is

max
k:|k−k⋆|≥ϵk⋆

∥Un,k(Y
(n))∥ ≤ ∥Un,k⋆(Y

(n))∥ (in probability for n → ∞) by (23).

This means, the maximum is indeed attained inside the neighbourhood of k⋆, i.e. it
must be
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∥Un,k̂(Y
(n))∥ = max

k:|k−k⋆|≤ϵk⋆
∥Un,k(Y

(n))∥ (in probability for n → ∞)

⇔ k̂ ∈ [k⋆(1− ϵ), k⋆(1 + ϵ)] (in probability for n → ∞)

⇔ P
(
k̂ ∈ [k⋆(1− ϵ), k⋆(1 + ϵ)]

) n→∞→ 1.

It is left to show that (23) holds. We will do this by bounding the difference
∥Un,k⋆(Y

(n))∥ −maxk:|k−k⋆|>ϵk⋆ ∥Un,k(Y
(n))∥ from below.

Starting with Un,k⋆ , adding expectations and using the reverse triangle inequality,
yields

∥Un,k⋆(Y
(n))∥

=
∥∥ k⋆∑

i=1

n∑
j=k⋆+1

h(Y
(n)
i , Y

(n)
j )− E[h(Y (n)

i , Y
(n)
j )] +

k⋆∑
i=1

n∑
j=k⋆+1

E[h(Y (n)
i , Y

(n)
j )]

∥∥
≥
∣∣∣∥∥ k⋆∑

i=1

n∑
j=k⋆+1

E[h(X(n)
i , Z

(n)
j )]

∥∥− ∥∥ k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )− E[h(X(n)

i , Z
(n)
j )]

∥∥∣∣∣
≥ k⋆(n− k⋆)∥∆n∥ − OP (n

3/2).

Here, we used Hoeffding’s decomposition and Corollary 2.1 and Proposition 2.5 for
the first part. For maxk:|k−k⋆|>ϵk⋆ ∥Un,k(Y

(n))∥ we have to consider two cases, k < k⋆

and k > k⋆. We will only consider the first case here, since the other case works
very similarly.

max
k:|k−k⋆|>ϵk⋆

∥Un,k(Y
(n))∥ = max

1≤k<k⋆(1−ϵ)
∥Un,k(Y

(n))∥

≤ max
1≤k<k⋆(1−ϵ)

∥∥ k∑
i=1

n∑
j=k+1

h(Y
(n)
i , Y

(n)
j )− E[h(Y (n)

i , Y
(n)
j )]

∥∥
+ max

1≤k<k⋆(1−ϵ)

k∑
i=1

n∑
j=k⋆+1

∥E[h(X(n)
i , Z

(n)
j )]∥

+ max
1≤k<k⋆(1−ϵ)

k∑
i=1

k⋆∑
j=k+1

∥E[h(X(n)
i , X

(n)
j )]∥︸ ︷︷ ︸

=0

= OP (n
3/2) + k⋆(1− ϵ)(n− k⋆)∥∆n∥

by using Theorem 3.1 for the first part. Combining this, we get for the difference

∥Un,k⋆(Y
(n))∥ − max

k:|k−k⋆|>ϵk⋆
∥Un,k(Y

(n))∥

≥ ϵk⋆(n− k⋆)∥∆n∥ − OP (n
3/2) = ϵδn −OP (n

3/2),
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where we define δn := k⋆(n− k⋆)∥∆n∥.
Now, it holds that δ−1

n = O(n3/2), since for n large enough it is

n3/2δ−1
n ≈ n3/2 1

λ⋆n

1

n− λ⋆n

1

∥∆n∥
=

1

λ⋆(1− λ⋆)

1√
n∥∆n∥

n→∞−−−→ 0

by the assumption that
√
n∥∆n∥

n→∞−−−→ ∞.
Thus, it holds that

ϵδn −OP (n
3/2) = ϵδn − ϵδnδ

−1
n OP (n

3/2)

= ϵδn(1− OP (1))

and it follows, using δn
n→∞−−−→ ∞,

∥Un,k⋆(Y
(n))∥ − max

k:|k−k⋆|>ϵk⋆
∥Un,k(Y

(n))∥ ≥ ϵδn(1− OP (1))
n→∞−−−→ 0

in probability. And it follows that

P
(

max
k:|k−k⋆|>ϵk⋆

∥Un,k(Y
(n))∥ < ∥Un,k⋆(Y

(n))∥
) n→∞−−−→ 1.

For the proof of Theorem 3.3, we will need two further preparing lemmas.

Lemma 3.3. Under the assumptions of Theorem 3.3, it holds for any n1, n2, n3, n4 ≤
n with n1 < n2, n3 < n4 that

E
[∥∥ n2∑

i=n1

n4∑
j=n3

h
(X,X)
2 (X

(n)
i , X

(n)
j )
∥∥2] ≤ C(n2 − n1)(n4 − n3). (a1)

E
[∥∥ n2∑

i=n1

n4∑
j=n3

h
(X,Z)
2 (X

(n)
i , Z

(n)
j )
∥∥2] ≤ C(n2 − n1)(n4 − n3). (a2)

E
[∥∥ n2∑

i=n1

h
(X,X)
2 (X

(n)
i , X(n)

r )
∥∥2] ≤ C(n2 − n1) r /∈ {n1, ..., n2}. (b1)

E
[∥∥ n2∑

i=n1

h
(X,Z)
2 (X

(n)
i , Z(n)

r )
∥∥2] ≤ C(n2 − n1) r /∈ {n1, ..., n2}. (b2)

Proof. The statements of this lemma are variants of Lemmas 2.6 and 2.10 with the
difference that we do not work with the “truncated” versions h2,l and Xi,l, Zi,l. The
proof follows largely the proof of the cited lemmas. To make the difference clear, we
will shortly sketch the proof for (a1).
Rewrite the double sum as in the proof of Lemma 2.6:

E
[∥∥ ∑

n1≤i≤n2

∑
n3≤j≤n4

h
(X,X)
2 (X

(n)
i , X

(n)
j )
∥∥2]
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= E
[
⟨
∑

n1≤i≤n2

∑
n3≤j≤n4

h
(X,X)
2 (X

(n)
i , X

(n)
j ),

∑
n1≤i≤n2,

∑
n3≤j≤n4

h
(X,X)
2 (X

(n)
i , X

(n)
j )⟩]

=
∑

n1≤i1≤n2

∑
n3≤j1≤n4

∑
n1≤i2≤n2

∑
n3≤j2≤n4

(i1 ̸=i2) or (j1 ̸=j2) or both

E[⟨h(X,X)
2 (X

(n)
i1

, X
(n)
j1

), h
(X,X)
2 (X

(n)
i2

, X
(n)
j2

)⟩] (24)

+
∑

n1≤i≤n2

∑
n3≤j≤n4

E[⟨h(X,X)
2 (X

(n)
i , X

(n)
j ), h

(X,X)
2 (X

(n)
i , X

(n)
j )⟩]. (25)

We know by the uniform moments under approximation that (25) is bounded by
the following:

(25) =
∑

n1≤i≤n2

∑
n3≤j≤n4

E[∥h(X,X)
2 (X

(n)
i , X

(n)
j )∥2] ≤ (n2 − n1)(n4 − n3)M.

For (24), we use the lemma of Yoshihara [1976] just as in the proof of Lemma 2.6
and get

(24) =
∑

n1≤i1≤n2

∑
n3≤j1≤n4

∑
n1≤i2≤n2

∑
n3≤j2≤n4

(i1 ̸=i2) or (j1 ̸=j2) or both

Cβ(n)δ̃/(1+δ̃)

m .

Note that since we do not use the “truncated” versions, we get β
(n)
m here instead of

β
(n)
m−2l. With the combinatorical arguments given in the proof of Lemma 2.6, we get

(24) ≤ C(n4 − n3)(n2 − n1)
n∑

m=1

mβ(n)δ̃/(1+δ̃)

m ≤ C(n4 − n3)(n2 − n1)
∞∑

m=1

m2β(n)δ̃/(1+δ̃)

m︸ ︷︷ ︸
<∞

and thus, combining (25) and (24) gives (a1).
(a2) can be similarly proven as Lemma 2.10 with the same difference for the mixing
coefficient as explained above. Furthermore, (b1) and (b2) are special cases of the
first two statements.

The next lemma is a Hájek-Rényi-type inequality for Hilbert space-valued random
variables which adapts the idea of Theorem 4.1 in Kokoszka and Leipus [2000].

Lemma 3.4. Let (Rn)n≥1 be a series of H−valued random variables with E[∥Rn∥2] <
∞ and (cn)n≥1 ∈ R non-negative constants. Then it holds for any ϵ > 0

ϵ2P
(

max
1≤k≤m

ck
∥∥ k∑

i=1

Ri

∥∥ > ϵ
)

≤ c21E[∥R1∥2] +
m−1∑
k=1

(
|c2k+1 − c2k|E

[∥∥ k∑
i=1

Ri

∥∥2]
+ 2c2k+1E

[∥∥ k∑
i=1

Ri

∥∥ ∥Rk+1∥
]
+ c2k+1E[∥Rk+1∥2]

)
.
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Proof. Lemma 4.1 of Kokoszka and Leipus [2000] says:
For any series of random variables (Xn)n∈Z and events A = { max

1≤k≤m
Xk > ϵ}, Dk =

{X1 ≤ ϵ, ..., Xk ≤ ϵ} it holds

ϵ1A ≤ X1 +
m−1∑
k=1

(Xk+1 −Xk)1Dk
−Xm1Dm .

We will use the above cited lemma for random variables Xk = c2k∥
∑k

i=1 Ri∥2, ϵ2
instead of ϵ and take expectations. This yields

ϵ2P
(

max
1≤k≤m

c2k
∥∥ k∑

i=1

Ri

∥∥2 > ϵ2
)

≤ E[c21∥R1∥2] +
m−1∑
k=1

E
[((

ck+1

∥∥ k+1∑
i=1

Ri

∥∥)2 − (ck∥∥ k∑
i=1

Ri

∥∥)2)1D′
k

]
− E

[(
cm
∥∥ m∑

i=1

Ri

∥∥)21D′
m

]
︸ ︷︷ ︸

≥0

≤ E[c21∥R1∥2] +
m−1∑
k=1

E
[((

ck+1

∥∥ k+1∑
i=1

Ri

∥∥)2 − (ck∥∥ k∑
i=1

Ri

∥∥)2)1D′
k

]
,

where D′
k = {X1 ≤ ϵ2, ..., Xk ≤ ϵ2}. For each summand we calculate

((
ck+1

∥∥ k+1∑
i=1

Ri

∥∥)2 − (ck∥∥ k∑
i=1

Ri

∥∥)2)1D′
k

≤
(
c2k+1

∥∥ k∑
i=1

Ri

∥∥2 + 2c2k+1

∥∥ k∑
i=1

Ri

∥∥ ∥Rk+1∥+ c2k+1∥Rk+1∥2 − c2k
∥∥ k∑

i=1

Ri

∥∥2)1D′
k

≤ |c2k+1 − c2k|
∥∥ k∑

i=1

Ri

∥∥2 + 2c2k+1

∥∥ k∑
i=1

Ri

∥∥ ∥Rk+1∥+ c2k+1∥Rk+1∥2.

Therefore

ϵ2P
(

max
1≤k≤m

ck
∥∥ k∑

i=1

Ri

∥∥ > ϵ
)
= ϵ2P

(
max
1≤k≤m

c2k
∥∥ k∑

i=1

Ri

∥∥2 > ϵ2
)

≤ c21E[∥R1∥2] +
m−1∑
k=1

|c2k+1 − c2k|E
[∥∥ k∑

i=1

Ri

∥∥2]+ 2c2k+1E
[∥∥ k∑

i=1

Ri

∥∥ ∥Rk+1∥
]

+ c2k+1E[∥Rk+1∥2].

Now, we can prove Theorem 3.3.
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Proof of Theorem 3.3. Let a(n) = M
∥∆n∥2 , where M > 0 and a(n)

n→∞−−−→ ∞, as

∥∆n∥
n→∞−−−→ 0.

In the manner of Lemma 3.2, we will show

lim
n→∞

P(|k∗ − k̂| ≤ a(n))
M→∞−−−−→ 1

by showing

lim
n→∞

P
(

max
k:|k−k⋆|≥a(n)

∥Un,k(Y
(n))∥ ≤ ∥Un,k⋆(Y

(n))∥
) M→∞−−−−→ 1. (26)

To do so, define Vk(Y
(n)) := ∥Un,k(Y

(n))∥2 − ∥Un,k⋆(Y
(n))∥2 and note that whatever

1 ≤ k ≤ n maximises ∥Un,k(Y
(n))∥ also maximises Vk(Y

(n)), meaning that

k̂ = min
{
k : ∥Un,k(Y

(n))∥ = max
1≤l≤n

∥Un,l(Y
(n))∥

}
= min

{
k : Vk(Y

(n)) = max
1≤l≤n

Vl(Y
(n))
}
.

So instead of (26), show

lim
n→∞

P
(

max
k:|k−k⋆|≥a(n)

Vk(Y
(n)) < 0

) M→∞−−−−→ 1. (27)

It suffices to consider max{k : |k − k⋆| ≤ ϵk⋆, |k − k⋆| ≥ a(n)} as a subset of
max{k : |k − k⋆| ≥ a(n)}, because of P(k̂ ∈ [(1 − ϵ)k⋆, (1 + ϵ)k⋆])

n→∞−−−→ 1 (Lemma
3.2). Thus, if we define

k̃ = min
{
k : |k − k⋆| ≤ ϵk⋆, Vk(Y

(n)) = max
(1−ϵ)k⋆≤l≤(1+ϵ)k⋆

Vl(Y
(n))
}

it holds that lim
n→∞

P(k̂ = k̃) = 1. Meaning that if Vk(Y
(n)) attains its maximum, it

will be attained inside the interval [(1− ϵ)k⋆, (1+ ϵ)k⋆] (in probability, for n → ∞).
This results into two cases:

|k − k⋆| ≤ ϵk⋆, |k − k⋆| ≥ a(n) =

{
(1− ϵ)k⋆ ≤ k ≤ k⋆ − a(n) k < k⋆

k⋆ + a(n) ≤ k ≤ (1 + ϵ)k⋆ k > k⋆
.

Again, we will present the case k < k⋆, the other case works very similarly.
Since k⋆ − k > 0, (27) holds if

lim
n→∞

P
(

max
(1−ϵ)k⋆≤k≤k⋆−a(n)

Vk(Y
(n))

(n(k⋆ − k))2
< 0
)

M→∞−−−−→ 1. (28)

Now, we can write

−Vk(Y
(n))

(n(k⋆ − k))2
=

∥Un,k⋆(Y
(n))∥2 − ∥Un,k(Y

(n))∥2

(n(k⋆ − k))2

= −
(∥Un,k⋆(Y

(n))∥ − ∥Un,k(Y
(n))∥

n(k⋆ − k)

)2
(29)
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+ 2
(∥Un,k⋆(Y

(n))∥ − ∥Un,k(Y
(n))∥

n(k⋆ − k)

)∥Un,k⋆(Y
(n))∥

n(k⋆ − k)

= −
(∥Un,k⋆(Y

(n))∥ − ∥Un,k(Y
(n))∥

n(k⋆ − k)
− n− k⋆

n
∥∆n∥+

n− k⋆

n
∥∆n∥

)2
+ 2
(∥Un,k⋆(Y

(n))∥ − ∥Un,k(Y
(n))∥

n(k⋆ − k)
− n− k⋆

n
∥∆n∥+

n− k⋆

n
∥∆n∥

)
·
(∥Un,k⋆(Y

(n))∥ − (n− k⋆)k⋆∥∆n∥+ (n− k⋆)k⋆∥∆n∥
n(k⋆ − k)

)
. (30)

After this preparatory work, the main part of the proof is to show that

max
k:(k⋆−k)>a(n)

(∥Un,k⋆(Y
(n))∥ − ∥Un,k(Y

(n))∥
n(k⋆ − k)

− n− k⋆

n
∥∆n∥

)
= OP (∥∆n∥). (31)

By triangular inequality it holds that

∥Un,k⋆(Y
(n))∥ − ∥Un,k(Y

(n))∥
n(k⋆ − k)

− n− k⋆

n
∥∆n∥

≤ ∥Un,k⋆(Y
(n))− Un,k(Y

(n))

n(k⋆ − k)
− n− k⋆

n
∆n∥

=
∥∥ 1

n(k⋆ − k)

(
−

k∑
i=1

k⋆∑
j=k+1

h(X
(n)
i , X

(n)
j ) +

k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )

−
k∑

i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )
)
− n− k⋆

n
∆n

∥∥
≤
∥∥ 1

n(k⋆ − k)

k∑
i=1

k⋆∑
j=k+1

h(X
(n)
i , X

(n)
j )
∥∥

+
∥∥ 1

n(k⋆ − k)

( k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )−

k∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )
)
− n− k⋆

n
∆n

∥∥.
So, if both

P
( 1

n∥∆n∥
max

k:(k⋆−k)>a(n)

∥∥ 1

k⋆ − k

k∑
i=1

k⋆∑
j=k+1

h(X
(n)
i , X

(n)
j )
∥∥ > ϵ

)
n,M→∞−−−−−→ 0 (32)

and

P
( 1

n∥∆n∥
max

k:(k⋆−k)>a(n)

∥∥ 1

k⋆ − k

( k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )−

k∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )
)

− (n− k⋆)∆n

∥∥ > ϵ
)

n,M→∞−−−−−→ 0 (33)
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hold, then (31) holds as well.
For (32), use Hoeffding’s decomposition to further deconstruct:

k∑
i=1

k⋆∑
j=k+1

h(X
(n)
i , X

(n)
j )

= (k⋆ − k)
k∑

i=1

h
(X)
1 (X

(n)
i )︸ ︷︷ ︸

=:S̃X
k (X(n))

−k

k⋆∑
j=k+1

h
(X)
1 (X

(n)
j ) +

k∑
i=1

k⋆∑
j=k+1

h
(X,X)
2 (X

(n)
i , X

(n)
j )

= (k⋆ − k)S̃X
k (X(n))− k(S̃X

k⋆(X
(n))− S̃X

k (X(n))) +
k∑

i=1

k⋆∑
j=k+1

h
(X,X)
2 (X

(n)
i , X

(n)
j ).

Thus, it follows:

1

(k⋆ − k)n∥∆n∥
∥

k∑
i=1

k⋆∑
j=k+1

h(X
(n)
i , X

(n)
j )∥

≤ 1

∥∆n∥
∥S̃X

k (X(n))∥
n︸ ︷︷ ︸

ν(1)(X(n))

+
1

∥∆n∥
∥S̃X

k⋆(X
(n))− S̃X

k (X(n))∥
k⋆ − k︸ ︷︷ ︸

ν(2)(X(n))

+
1

(k⋆ − k)n∥∆n∥
∥

k∑
i=1

k⋆∑
j=k+1

h
(X,X)
2 (X

(n)
i , X

(n)
j )∥

︸ ︷︷ ︸
ν(3)(X(n))

.

Equation (32) holds, if P( max
1≤k≤k⋆−a(n)

ν(l)(X(n)) > ϵ)
M,n→∞→ 0 for l = 1, 2, 3.

We start with ν(1)(X(n)):

∥S̃X
k (X(n))∥

n
≤ ∥S̃X

n (X(n))− S̃X
k (X(n))∥

n
+

∥S̃X
n (X(n))∥

n
.

We will use Lemma A.2 from the online supplementary appendix of Gerstenberger
[2018] which states that 1

n
∥S̃X

n (X(n))∥ = OP (n
−1/2) and recall that 1

n
∥S̃X

n (X(n)) −
S̃X
k (X(n))∥ = 1

n
∥
∑n

i=k+1 h
(X)
1 (X

(n)
i )∥.

Now, by stationarity, it is

{∥∥ n∑
i=k+1

h
(X)
1 (X

(n)
i )
∥∥, 1 ≤ k ≤ k⋆ − a(n)

}
D
=
{∥∥ n−k∑

i=1

h
(X)
1 (X

(n)
i )
∥∥, 1 ≤ k ≤ k⋆ − a(n)

}
.

So it follows by Lemma A.2 Gerstenberger [2018] (online appendix)

max
1≤k≤k⋆−a(n)

∥S̃X
n (X(n))− S̃X

k (X(n))∥
n

D
= max

1≤k≤k⋆−a(n)

∥S̃X
n−k(X

(n))∥
n
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≤ max
1≤k≤k⋆−a(n)

∥S̃X
n−k(X

(n))∥
n− k

D
≤ max

a(n)≤j≤n

∥S̃X
j (X(n))∥

j
= OP (

1√
a(n)

).

And thus,

max
1≤k≤k⋆−a(n)

ν(1)(X(n))

≤ max
1≤k≤k⋆−a(n)

1

∥∆n∥
∥S̃X

n (X(n))− S̃X
k (X(n))∥

n
+

1

∥∆n∥
∥S̃X

n (X(n))∥
n

= OP

( 1

∥∆n∥
√

a(n)

)
+OP

( 1

∥∆n∥
√
n

)
= OP

( 1√
M

)
+OP

( 1

∥∆n∥
√
n

)
= OP (1) as M,n → ∞.

For ν(2)(X(n)) a similar argument is used:
By stationarity it is

{∥S̃X
k⋆(X

(n))− S̃X
k (X(n))∥, 1 ≤ k ≤ k⋆ − a(n)}

D
= {∥S̃X

k⋆−k(X
(n))∥, 1 ≤ k ≤ k⋆ − a(n)}.

Thus it follows by Lemma A.2 Gerstenberger [2018] (online appendix)

max
1≤k≤k⋆−a(n)

∥S̃X
k⋆(X

(n))− S̃X
k (X(n))∥

k⋆ − k
D
= max

1≤k≤k⋆−a(n)

∥S̃X
k⋆−k(X

(n))∥
k⋆ − k

D
= max

a(n)≤j≤n

∥S̃X
j (X(n))∥

j
= OP

( 1√
a(n)

)
So, it holds that

max
1≤k≤k⋆−a(n)

ν(2)(X(n)) = max
1≤k≤k⋆−a(n)

1

∥∆n∥
∥S̃X

k⋆(X
(n))− S̃X

k (X(n))∥
k⋆ − k

=
1

∥∆n∥
OP

( 1√
a(n)

)
= OP

( 1

∥∆n∥
√

a(n)

)
= OP

( 1√
M

)
= OP (1) as M → ∞.

To handle ν(3)(X(n)), a little more effort is needed:

Define X(2)(k) :=
∑k

i=1

∑k⋆

j=k+1 h
(X,X)
2 (X

(n)
i , X

(n)
j ), Rk := X(2)(k)−X(2)(k−1), with

X(2)(0) = 0, R0 = 0, and constants ck := (k⋆ − k)−1. Then, it is
∑k

i=1Ri = X(2)(k)
and by Lemma 3.4

P
(

max
1≤k≤k⋆−a(n)

ν(3)(X(2)(k)) > ϵ
)
= P

(
max

1≤k≤k⋆−a(n)
ck
∥∥ k∑

i=1

Ri

∥∥ > ϵn∥∆n∥
)

≤ 1

(ϵn∥∆n∥)2
(
c1E[∥R1∥2] +

k⋆−a(n)∑
k=1

(c2k+1 − c2k)E
[∥∥ k∑

i=1

Ri

∥∥2]
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+ 2c2k+1E
[∥∥ k∑

i=1

Ri

∥∥ ∥Rk+1∥
]
+ c2k+1E[∥Rk+1∥2]

)
.

Upper bound the expectations by Lemma 3.3:

E
[∥∥ k∑

i=1

Ri

∥∥2] = E[∥X(2)(k)∥2] = E
[∥∥ k∑

i=1

k⋆∑
j=k+1

h
(X,X)
2 (X

(n)
i , X

(n)
j )
∥∥2]

≤ Ck(k⋆ − k)

and

E[∥Rk+1∥2] = E[∥X(2)(k + 1)−X(2)(k)∥2]

= E
[∥∥ k+1∑

i=1

k⋆∑
j=k+2

h
(X,X)
2 (X

(n)
i , X

(n)
j )−

k∑
i=1

k⋆∑
j=k+1

h
(X,X)
2 (X

(n)
i , X

(n)
j )
∥∥2]

= E
[∥∥ k⋆∑

j=k+2

h
(X,X)
2 (X

(n)
k+1, X

(n)
j )−

k∑
i=1

h
(X,X)
2 (X

(n)
i , X

(n)
k+1)

∥∥2]
= E

[∥∥ k⋆∑
j=k+2

h
(X,X)
2 (X

(n)
k+1, X

(n)
j ) +

k∑
i=1

h
(X,X)
2 (X

(n)
k+1, X

(n)
i )
∥∥2]

= E
[∥∥ k⋆∑

i=1
i ̸=k+1

h
(X,X)
2 (X

(n)
k+1, X

(n)
i )
∥∥2]

≤ Ck⋆

using the anti-symmetry of h
(X,X)
2 .

By Hölder’s inequality and the above inequality

E
[∥∥ k∑

i=1

Ri

∥∥ ∥Rk+1∥
]
≤ E

[∥∥ k∑
i=1

Ri

∥∥2] 1
2 E[∥Rk+1∥2]

1
2 ≤ C

√
(k⋆ − k)k

√
k⋆.

Additionally, note that c2k+1 − c2k ≤ (k⋆ − k − 1)−2. Thus, it follows from the above
calculations:

P( max
1≤k≤k⋆−a(n)

ν(3)(X(n)) > ϵ)

≤ C

(ϵn∥∆n∥)2
( k⋆

(k⋆ − 1)2
+

k⋆−a(n)∑
k=1

(k⋆ − k)k +
√

(k⋆ − k)k
√
k⋆ + k⋆

(k⋆ − k − 1)2

)
≲

C

(ϵn∥∆n∥)2
( 1
n
+

n2

a(n)

)
(for n large)

=
C

ϵ

( 1

n3∥∆n∥2
+

1

M

)
n,M→∞−−−−−→ 0.
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Here, we used the following inequality to bound the sum: For some monotone de-
creasing function f , which takes non-negative values on the interval [a, b] and its

integral
∫ b

a
f(x)dx exists, it holds

b−1∑
n=a+1

f(n) ≤
∫ b

a

f(x) dx.

Thus, we can bound the sum by:

k⋆−a(n)∑
k=1

(k⋆ − k)k +
√

(k⋆ − k)k
√
k⋆ + k⋆

(k⋆ − k − 1)2
≤ n2

k⋆−a(n)∑
k=1

1

(k⋆ − k − 1)2

≤ n2

∫ k⋆−a(n)+1

0

1

(k⋆ − x− 1)2
dx = n2(

1

a(n)
− 1

k⋆ − 1
) ≤ n2

a(n)
.

With this, we have shown that (32) holds. Next, we turn to equation (33). As we
have done for (32), we first use Hoeffding’s decomposition again:

k∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , X

(n)
j )− (n− k⋆)k∆n

=
k∑

i=1

n∑
j=k⋆+1

(
h(X

(n)
i , Z

(n)
j )− E[h(X(n)

i , Z
(n)
j )]

)
= (n− k⋆)

k∑
i=1

(
h
(Z)
1 (X

(n)
i )− E[h(Z)

1 (X
(n)
i )]

)
︸ ︷︷ ︸

=:SZ
k (X(n))

−k
n∑

j=k⋆+1

(
h
(X)
1 (Z

(n)
j )− E[h(X)

1 (Z
(n)
j )]

)
︸ ︷︷ ︸

=:SX
n (Z(n))−SX

k⋆
(Z(n))

+
k∑

i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

)
= (n− k⋆)SZ

k (X
(n))− k

(
SX
n (Z(n))− SX

k⋆(Z
(n))
)

+
k∑

i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

)
and

k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )− (n− k⋆)k⋆∆n

= (n− k⋆)SZ
k⋆(X

(n))− k⋆
(
SX
n (Z(n))− SX

k⋆(Z
(n))
)

+
k⋆∑
i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

)
.

88



With this, we get

1

n∥∆n∥

∥∥∥ 1

k⋆ − k

( k⋆∑
i=1

n∑
j=k⋆+1

h(X
(n)
i , Z

(n)
j )

−
k∑

i=1

n∑
j=k⋆

h(X
(n)
i , Z

(n)
j )− (k⋆ − k)(n− k⋆)∆n

)∥∥∥
≤ 1

n∥∆n∥
n− k⋆

k⋆ − k
∥SZ

k⋆(X
(n))− SZ

k (X
(n))∥︸ ︷︷ ︸

=ι(1)(X(n),Z(n))

+
1

n∥∆n∥
∥SX

n (Z(n))− SX
k⋆(Z

(n))∥︸ ︷︷ ︸
=ι(2)(X(n),Z(n))

+
1

n∥∆n∥(k⋆ − k)

k⋆∑
i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

)
︸ ︷︷ ︸

=ι(3)(X(n),Z(n))

+
1

n∥∆n∥(k⋆ − k)

k∑
i=1

n∑
j=k⋆+1

(
h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

)
︸ ︷︷ ︸

=ι(4)(X(n),Z(n))

So, equation (33) holds if P(max1≤k≤k⋆−a(n) ι
(l)(X(n), Z(n)) > ϵ)

M,n→∞−−−−−→ 0 for l =
1, ...4. Considerations similar to those seen before help us to handle ι(1)(X(n), Z(n)):
By stationarity it is

{∥SZ
k⋆(X

(n))−SZ
k (X

(n))∥, 1 ≤ k ≤ k⋆−a(n)} D
= {∥SZ

k⋆−k(X
(n))∥, 1 ≤ k ≤ k⋆−a(n)}.

So by Lemma A.2 Gerstenberger [2018] (online appendix),

max
1≤k≤k⋆−a(n)

∥SZ
k⋆(X

(n))− SZ
k (X

(n))∥
k⋆ − k

D
= max

1≤k≤k⋆−a(n)

∥SZ
k⋆−k(X

(n))∥
k⋆ − k

D
= max

a(n)≤j≤n

∥SZ
j (X

(n))∥
j

= OP

( 1√
a(n)

)
and thus

max
1≤k≤k⋆−a(n)

ι(1)(X(n), Z(n)) ≤ 1

∥∆n∥
max

1≤k≤k⋆−a(n)

∥SZ
k⋆(X

(n))− SZ
k (X

(n))∥
k⋆ − k

= OP

( 1

∥∆n∥
√

a(n)

)
= OP

( 1√
M

)
= OP (1) as M → ∞.

For ι(2)(X(n), Z(n)), we use the convergence in distribution of the process
( 1√

n
SX
⌊nλ⌋(Z

(n)))λ∈(0,1). It is

1

n∥∆n∥
∥SX

n (Z(n))− SX
k⋆(Z

(n))∥ ≤ 1√
n∥∆n∥

(∥SX
n (Z(n))∥√

n
+

∥SX
k⋆(Z

(n))∥√
n

)
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and we know that by Proposition 2.4,

( 1√
n
SX
⌊nλ⌋(Z

(n))
)
λ∈(0,1)

=
( 1√

n

⌊nλ⌋∑
i=1

h
(X)
1 (Z

(n)
i )− E[h(X)

1 (Z
(n)
i )]

)
λ∈(0,1)

converges in distribution to some Brownian motion. Therefore, boundedness in

probability follows, i.e. ∥SX
n (Z(n))∥√

n
= OP (1) and

∥SX
k⋆

(Z(n))∥√
n

= OP (1). We can thus
conclude:

max
1≤k≤k⋆−a(n)

ι(2)(X(n), Z(n)) = OP

( 1√
n∥∆n∥

)
= OP (1) as n → ∞.

For ι(3)(X(n), Z(n)) observe that by Markov’s inequality and a variant of Lemma 3.3

for h
(X,Z)
2 (·, ·)− E[h(X,Z)

2 (·, ·)], which is a degenerate kernel it holds that

P( max
1≤k≤k⋆−a(n)

ι(3)(X(n), Z(n)) > ϵ)

= P
(

max
1≤k≤k⋆−a(n)

1

n∥∆n∥
∥
∑k⋆

i=1

∑n
j=k⋆+1 h

(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]∥

k⋆ − k
≥ ϵ
)

≤ P
( 1

a(n)
∥

k⋆∑
i=1

n∑
j=k⋆+1

h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]∥ > ϵn∥∆n∥

)

≤ 1

(ϵn∥∆n∥)2
E
[ 1

a(n)2
∥∥ k⋆∑

i=1

n∑
j=k⋆+1

h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

∥∥2]
≤ 1

(ϵn∥∆n∥)2
C(n− k⋆)k⋆

a(n)2

≤ C

ϵ2
1

∥∆n∥2a(n)2
≤ C

ϵ2
1

∥∆n∥2a(n)
for n large

=
C

ϵ2
1

M

M→∞−−−−→ 0.

For ι(4)(X(n), Z(n)) we proceed similarly to ν(3)(X(n)):

Define Y (2)(k) :=
∑k

i=1

∑n
j=k⋆+1 h

(X,Z)
2 (X

(n)
i , Z

(n)
j ) − E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]. Further

let Rk := Y (2)(k) − Y (2)(k − 1), with Y (2)(0) = 0, R0 = 0, and constants ck :=
(k⋆ − k)−1. Then, it is

∑k
i=1Ri = Y (2)(k) and by Lemma 3.4

P( max
1≤k≤k⋆−a(n)

ι(4)(X(n), Z(n)) > ϵ) = P( max
1≤k≤k⋆−a(n)

ck
∥∥ k∑

i=1

Ri

∥∥ > ϵn∥∆n∥)

≤ 1

(ϵn∥∆n∥)2
(
c1E[∥R1∥2] +

k⋆−a(n)∑
k=1

(c2k+1 − c2k)E
[∥∥ k∑

i=1

Ri

∥∥2]
+ 2c2k+1E

[∥∥ k∑
i=1

Ri

∥∥ ∥Rk+1∥
]
+ c2k+1E[∥Rk+1∥2]

)
.
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We upper bound the expectations by a variant of Lemma 3.3 for h
(X,Z)
2 (·, ·) −

E[h(X,Z)
2 (·, ·)], so that we get

E
[∥∥ k∑

i=1

Ri

∥∥2] = E[∥Y (2)(k)∥2]

= E
[∥∥ k∑

i=1

n∑
j=k⋆+1

h
(X,Z)
2 (X

(n)
i , Z

(n)
j )− E[h(X,Z)

2 (X
(n)
i , Z

(n)
j )]

∥∥2]
≤ C(n− k∗)k

and

E[∥Rk+1∥2] = E[∥Y (2)(k + 1)− Y (2)(k)∥2]

= E
[∥∥ n∑

j=k⋆+1

h
(X,Z)
2 (X

(n)
k+1, Z

(n)
j )− E[h(X,Z)

2 (X
(n)
k+1, Z

(n)
j )]

∥∥2]
≤ C(n− k⋆).

By Hölder’s inequality and the above inequality it holds:

E
[∥∥ k∑

i=1

Ri

∥∥ ∥Rk+1∥
]
≤ E

[∥∥ k∑
i=1

Ri

∥∥2] 1
2 E[∥Rk+1∥2]

1
2 ≤ C

√
(n− k⋆)k

√
(n− k⋆).

Noting that c2k+1 − c2k ≤ (k⋆ − k − 1)−1, it follows from the calculations above:

P( max
1≤k≤k⋆−a(n)

ι(4)(X(n), Z(n)) > ϵ)

≤ C

(ϵn∥∆n∥)2
( n− k⋆

(k⋆ − 1)2
+

k⋆−a(n)∑
k=1

(n− k⋆)k + (n− k⋆)
√
k + (n− k⋆)

(k⋆ − k − 1)2

)
≲

C

(ϵn∥∆n∥)2
( 1
n
+

n2

a(n)

)
(for n large)

=
C

ϵ

( 1

n3∥∆n∥2
+

1

M

)
n,M→∞−−−−−→ 0.

The sum is bounded by the same inequality as in the calculations for ν(3)(X(n)).
This means that (33) holds. So, we have that (31) holds. Therefore, we can conclude
that

max
k:(k⋆−k)>a(n)

(∥Un,k⋆(Y
(n))∥ − ∥Un,k(Y

(n))∥
n(k⋆ − k)

− n− k⋆

n
∥∆n∥+

n− k⋆

n
∥∆n∥

)
≈ OP (∥∆n∥) + (1− λ⋆)∥∆n∥
= (1− λ⋆)∥∆n∥(1 + OP (1)). (34)

We can now draw the conclusion for Vk(Y
(n)):

We know by Theorem 3.1 that

1

n

∥∥ k⋆∑
i=1

n∑
j=k⋆+1

h(Y
(n)
i , Y

(n)
j )− E[h(Y (n)

i , Y
(n)
j )]

∥∥ = OP (n
1
2 ).
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And thus it holds that

1

n
∥Un,k⋆(Y

(n))∥ − (n− k⋆)k⋆∥∆n∥

≤ 1

n

∥∥ k⋆∑
i=1

n∑
j=k⋆+1

h(Y
(n)
i , Y

(n)
j )− E[h(Y (n)

i , Y
(n)
j )]

∥∥ = OP (n
1
2 ).

So, it follows that

max
(1−ϵ)k⋆≤k≤k⋆−a(n)

∥Un,k⋆(Y
(n))∥ − (n− k⋆)k⋆∥∆n∥+ (n− k⋆)k⋆∥∆n∥

n(k⋆ − k)

≥ 1

ϵ

(∥Un,k⋆(Y
(n))∥ − (n− k⋆)k⋆∥∆n∥

n
+

(n− k⋆)k⋆∥∆n∥
n

)
≈ 1

ϵ

(
OP (n

1
2 ) +

1

n
δn
)
=

1

ϵ

1

n
δn(1 + OP (1)) ≥

1

ϵ
λ⋆(1− λ⋆)∥∆n∥(1 + OP (1))

≥ 1

ϵ
(1− λ⋆)∥∆n∥(1 + OP (1)). (35)

Combining (34) and (35), we receive for Vk(Y
(n)) (recall (30)):

max
(1−ϵ)k⋆≤k≤k⋆−a(n)

−Vk(Y
(n))

(n(k⋆ − k))2

≥ −
(
(1− λ⋆)∥∆n∥(1 + OP (1))

)2
+ 2
(
(1− λ⋆)∥∆n∥(1 + OP (1))

)1
ϵ
(1− λ⋆)∥∆n∥(1 + OP (1))

= − (1− λ⋆)2∥∆n∥2(1 + OP (1)) +
2

ϵ
(1− λ⋆)2∥∆n∥2(1 + OP (1))

= (
2

ϵ
− 1)(1− λ⋆)2∥∆n∥2(1 + OP (1))

> 0 (∀ϵ < 2),

which means that (28) holds and the statement is proven.
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3.2 Estimating the Direction of Change

In this section, we turn back to the fixed magnitude of change as stated in Section
3.1. We now focus our attention on the next step of our estimations, the direction
of change. For that we will utilise the quantile function of our process. In a change-
point setting, the median of the differences before and after the change equals the
direction of the change. We prove that we can use the estimated empirical median
based on the estimated change-point k̂ as a suitable estimator for the true median.
The idea of using the empirical median to quantify changes in location has a long
tradition:
For a sample x1, ..., xn ∈ R, the (sample) median is defined as the value Q ∈ R that
minimises the distance to all values:

∑n
i=1 |xi−Q|. One well-known example for the

usage of the median in statistics was introduced by Hodges and Lehmann [1963].
They proposed to use the median of all pair-wise averages {(xi + xj)/2, 1 ≤ i, j ≤
n, i ̸= j} for a robust estimation of location. Since then, there have been several
extensions to the median and Hodges-Lehmann-type estimators.
For a random variable X in Rd, define Q(u), u ∈ BRd(0, 1) as the value minimising
E[∥X−Q∥−∥X∥]−⟨u,Q⟩ with respect to Q. This type of function is called spatial
quantile function. Spatial originates from the fact that Q(u) is equivalent to the so-
lution Q of E[S(Q−X)] = u, where S(·) is the spatial sign function. Setting u = 0
gives the median, thus Q(0) is also called the spatial median. For the univariate case,
Bahadur [1966] approximated the quantile function by its empirical analogue and
provided asymptotic results, also known as Bahadur-Kiefer representation (see also
Kiefer [1967]). Chaudhuri [1996] established the version for the multivariate case, as
well as asymptotic results for a multivariate Hodges-Lehmann-type estimator with
m−wise averages. Chakraborty and Chaudhuri [2014] introduced the extension of
the concept to infinite dimensional Banach spaces as well as asymptotic Bahadur-
Kiefer-type results.
Generalizing the multivariate m-th order Hodges-Lehmann estimator, Zhou and
Serfling [2008] present a Bahadur-Kiefer representation for univariate spatial U-
quantiles: For i.i.d. random variables X1, ..., Xn and a kernel function h, the spatial
U-quantile function is defined as the solution Q of E[S(Q − h(Xi1 , ..., Xim))] = u,
where i1, ..., im are distinct indices from {1, ..., n}. Univariate empirical U-quantiles
have been studied for example by Dehling et al. [1987] in the i.i.d. case. Wendler
[2011] presented a Bahadur-Kiefer representation for functionals of absolutely regu-
lar processes.
Transferring the concepts of spatial U-quantiles to a two-sample setting, gives us
tools for the estimation of the direction of a detected change. To get the idea,
assume we have two samples x1, ..., xn1 ∈ R and z1, ..., zn2 ∈ R. The difference in
location can be estimated by Q = 1

n1

∑n1

i=1 xi − 1
n2

∑n2

j=1 zj. This is equivalent to
finding the solution Q of

1

n1

n1∑
i=1

xi −
1

n2

n2∑
j=1

zj −Q = 0
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⇔ 1

n1n2

n1∑
i=1

n2∑
j=1

(xi − zj −Q) = 0. (36)

So, (36) can be seen as some two-sample empirical quantile function (for u = 0).
Asymptotic results for two-sample empirical U -quantiles and U -statistics for weakly
dependent data are given by Dehling and Fried [2012].
For our purposes we have to connect all of the above to define the two-sample
quantile function in (infinite) Hilbert spaces and achieve asymptotic results for the
empirical version of weakly dependent data. Additionally, we have to handle the
problem of the unknown but estimated time of change.

First of all, we define the quantile function:

Definition 3.1. For two random variables X,Z ∈ H, the quantile function at u ∈
BH(0, 1) is the solution Q ∈ H of

E[S(Q− f(X,Z))] = u,

where f(x, y) = x− y.

Remark 3.1 (Uniqueness). Let µ be the law of f(X,Z), assuming µ is non-atomic.
Since a Hilbert space is a smooth, strictly convex Banach space, Theorem 3.1 of
Chakraborty and Chaudhuri [2014] gives that the map x 7→ E[S(x − f(X,Z))] is
strictly monotone if µ is not entirely supported on a straight line in H. This means
that in this case the solution Q of E[S(Q− f(X,Z))] = u is unique.

Example 3.1 (Non-uniqueness). Uniqueness arguments hold analogously for the
empirical quantile function: If all observations lie on a straight line, uniqueness is
not given. For a minimal example of non-uniqueness in R2, look for the solution
(q1, q2)

T of

1

2

(
S
(
(q1, q2)

T − (−1,−1)T
)
+ S

(
(q1, q2)

T − (1, 1)
)T)

= 0,

which is equivalent to solving the equations

(q1 − 1)
√

(q1 + 1)2 + (q2 + 1)2 + (q1 + 1)
√

(q1 − 1)2 + (q2 − 1)2 = 0

(q2 − 1)
√
(q1 + 1)2 + (q2 + 1)2 + (q2 + 1)

√
(q1 − 1)2 + (q2 − 1)2 = 0

simultaneously. In fact, any (q1, q2)
T = (q, q)T with q ∈ [−1, 1] solves the equations.

Given a sample of functional data (Yi)i≤n with an existing but unknown change-
point, the quantile function can only be estimated, splitting the sample at the es-
timated time of change. A more convenient way to formulate the spatial quantile
function and its empirical analogue is the following:

� Define Q⋆(u) as the minimiser (with respect to Q) of

φ(Q) := E[∥Q− f(X1, Z1)∥ − ∥f(X1, Z1)∥]− ⟨u,Q⟩ ,

where ⟨·, ·⟩ is the scalar product in H.
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� Define Q̂(u) as the minimiser (with respect to Q) of

φ̂(Q) :=
1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

(∥Q− f(Yi, Yj)∥ − ∥f(Yi, Yj)∥)− ⟨u,Q⟩ ,

where (Yi)i≤n is defined as stated in the beginning of this chapter. Call Q̂(u)
the estimated empirical version of Q(u).

Lemma 3.5. Q is solution of E[S(Q − f(X1, Z1))] = u if and only if it minimises
φ(Q(u)).

Proof. The proof is given by showing both implications of the statement.
First, assume that Q0 minimises φ. If φ is Gateaux-differentiable, we will utilise the
fact that the derivative will equal 0 at Q0. Let w ∈ H. The norm function w 7→ ∥w∥
is Gateaux-differentiable with derivative w

∥w∥ and for any v ∈ H, the inner product

w 7→ ⟨w, v⟩ is also Gateaux-differentiable with derivative v. Since φ is composed of
such functions, it is thus Gateaux-differentiable as well with its derivative

φ′(Q) = E
[ Q− f(X1, Z1)

∥Q− f(X1, Z1)∥

]
− u.

Inserting Q = Q0, we get that

φ′(Q0) = 0

⇔ E
[

Q0 − f(X1, Z1)

∥Q0 − f(X1, Z1)∥

]
− u = 0

⇔ E
[

Q0 − f(X1, Z1)

∥Q0 − f(X1, Z1)∥

]
= u,

which concludes the first part of the lemma.

For the other implication, we will show that if Q0 solves E
[

Q0−f(X1,Z1)
∥Q0−f(X1,Z1)∥

]
= u, it is

φ(Q0) ≤ φ(Q) for any Q ∈ H.
Note that for x ∈ H it is

⟨u, x⟩ =
〈
E
[

Q0 − f(X1, Z1)

∥Q0 − f(X1, Z1)∥

]
, x

〉
= E

[
1

∥Q0 − f(X1, Z1)∥
⟨Q0 − f(X1, Z1), x⟩

]
since Q0 solves E

[
Q0−f(X1,Z1)

∥Q0−f(X1,Z1)∥

]
= u. Now, upper bound the difference by using the

Cauchy-Schwarz-inequality

φ(Q0)− φ(Q)

= E[∥Q0 − f(X1, Z1)∥ − ∥f(X1, Z1)∥]− ⟨u,Q0⟩
− E[∥Q− f(X1, Z1)∥ − ∥f(X1, Z1)∥] + ⟨u,Q⟩

= E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]− ⟨u,Q0 −Q⟩
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= E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]

− E
[

1

∥Q0 − f(X1, Z1)∥
⟨Q0 − f(X1, Z1), Q0 −Q⟩

]
= E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]

− E
[

1

∥Q0 − f(X1, Z1)∥

(
⟨Q0 − f(X1, Z1), Q0 − f(X1, Z1)⟩

− ⟨Q0 − f(X1, Z1), Q− f(X1, Z1)⟩
)]

≤ E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]

− E
[

1

∥Q0 − f(X1, Z1)∥

(
∥Q0 − f(X1, Z1)∥2

− ∥Q0 − f(X1, Z1)∥ ∥Q− f(X1, Z1)∥
)]

= E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]
− E[∥Q0 − f(X1, Z1)∥ − ∥Q− f(X1, Z1)∥]

= 0.

Thus it is φ(Q0)− φ(Q) ≤ 0 ⇔ φ(Q0) ≤ φ(Q) and the lemma is proven.

Since Q⋆(u) minimises φ(Q) by definition, the lemma above gives us that Q⋆(u) is
actually the quantile function given in Definition 3.1. As an analogue, we will call
Q̂(u) the estimated quantile function.
Our goal is to show that ∥Q̂(0) − Q⋆(0)∥ n→∞−−−→ 0 in probability, which means that
the estimated spatial median is a suitable approximation of the spatial median.
The first step is to show that Q̂(0) “approximately” minimises φ in an almost sure
sense:

Theorem 3.4. Let (Xn, Zn)n∈Z be P-NED on an absolutely regular sequence (ζn)n∈Z

such that akΦ(k
− δ+3

δ ) = O(k−8
(δ+3)(δ+2)

δ2 ) and
∑∞

k=1 k
2β

δ
4+δ

k < ∞ for some δ > 0.
Denote f(X1, Z1) ∼ µ and assume that µ is δ-tight, i.e. for all ϵ > 0 there exists a
compact set K and a sequence δn

n→∞−−−→ 0 such that

µ(Kδn) = µ({x ∈ H|d(x,K) < δn}) > 1− ϵ ∀n.

Assume that ∥Q − f(x, z)∥ − ∥f(x, z)∥ fulfils the variation condition and is either
bounded or has uniform (4 + δ)-moments under approximation.
Then it holds for Q̂(0) and Q⋆(0) with ∥Q⋆(0)∥ ≤ M < ∞, that

φ(Q̂(0))− φ(Q⋆(0)) → 0 in probability as n → ∞.

For the purpose of proving Theorem 3.4, recall that Q⋆ minimises φ and extend
φ(Q̂(0))− φ(Q⋆(0)) by [−φ̂(Q̂(0)) + φ̂(Q̂(0))] to get

φ(Q̂(0))− φ(Q⋆(0)) = |φ(Q̂(0))− φ̂(Q̂(0)) + φ̂(Q̂(0))− φ(Q⋆(0))|
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≤ |φ(Q̂(0))− φ̂(Q̂(0))|+ |φ̂(Q⋆(0))− φ(Q⋆(0))|.

We will show the convergence of the two parts separately. Starting with the second
part, we will introduce a new kernel function and bound the difference |φ(Q)−φ̂(Q)|
for arbitrary Q ∈ H with ∥Q∥ ≤ M < ∞. In order to do this, we will rewrite the
double sum of φ̂(Q) and make use of asymptotic results from the last chapter.

Define a new kernel hQ(x, y) := ∥Q− f(x, y)∥−∥f(x, y)∥. Then, split up φ̂(Q) into
two parts:

φ̂(Q) =
1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

hQ(Yi, Yj)− ⟨u,Q⟩

=


1

k̂(n−k̂)

(∑k⋆

i=1

∑n
j=k̂+1 h

Q(Yi, Yj) +
∑k̂

i=k⋆+1

∑n
j=k̂+1 h

Q(Yi, Yj)
)
− ⟨u,Q⟩ k̂ ≥ k⋆

1

k̂(n−k̂)

(∑k̂
i=1

∑n
j=k⋆+1 h

Q(Yi, Yj) +
∑k̂

i=1

∑k⋆

j=k̂+1 h
Q(Yi, Yj)

)
− ⟨u,Q⟩ k̂ ≤ k⋆

=


1

k̂(n−k̂)

(∑k⋆

i=1

∑n
j=k̂+1 h

Q(Xi, Zj) +
∑k̂

i=k⋆+1

∑n
j=k̂+1 h

Q(Zi, Zj)
)
− ⟨u,Q⟩ k̂ ≥ k⋆

1

k̂(n−k̂)

(∑k̂
i=1

∑n
j=k⋆+1 h

Q(Xi, Zj) +
∑k̂

i=1

∑k⋆

j=k̂+1 h
Q(Xi, Xj)

)
− ⟨u,Q⟩ k̂ ≤ k⋆

.

From here on forward, we will handle the case k̂ ≥ k⋆. The other case works very
similar.
It follows for the difference

|φ(Q)− φ̂(Q)| =
∣∣ 1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

hQ(Yi, Yj)− E[hQ(X0, Z0)]
∣∣

=
∣∣ 1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

(hQ(Yi, Yj)− E[hQ(Xi, Zj)])
∣∣

=
∣∣ 1

k̂(n− k̂)

( k⋆∑
i=1

n∑
j=k̂+1

(hQ(Xi, Zj)− E[hQ(Xi, Zj)])

+
k̂∑

i=k⋆+1

n∑
j=k̂+1

(hQ(Zi, Zj)− E[hQ(Xi, Zj)])
)∣∣

≤
∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

(hQ(Xi, Zj)− E[hQ(Xi, Zj)])
∣∣

+
∣∣ 1

k̂(n− k̂)

k̂∑
i=k⋆+1

n∑
j=k̂+1

(hQ(Zi, Zj)− E[hQ(Xi, Zj)])
∣∣. (37)

We will now show that both parts converge almost surely to zero.
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Lemma 3.6. Under the assumptions of Theorem 3.4 it holds for any Q ∈ H that∣∣ 1

k̂(n− k̂)

k∗∑
i=1

n∑
j=k̂+1

(hQ(Xi, Zj)− E[hQ(Xi, Zj)])
∣∣ a.s.−−→ 0 as n → ∞.

Proof. Hoeffding’s decomposition of hQ(Xs, Zt) reads

hQ(Xs, Zt) = ϑX,Z + hZ,Q
1 (Xs) + hX,Q

1 (Zt) + h
(X,Z),Q
2 (Xs, Zt), s, t ∈ Z,

where ϑX,Z = E[hQ(X̃0, Z̃0)] , hZ,Q
1 (x) = E[hQ(x, Z̃0)]− ϑX,Z

hX,Q
1 (x) = E[hQ(X̃0, x)]− ϑX,Z ,

h
(X,Z),Q
2 (x, y) = hQ(x, y)− hZ,Q

1 (x)− hX,Q
1 (y)− ϑX,Z ,

where X̃0 and Z̃0 are independent copies of X0 and Z0. Note that Hoeffding’s
decomposition looks a little bit different than for other kernels used before, since

the kernel hQ is not antisymmetric. Nevertheless, by this decomposition h
(X,Z),Q
2 is

still degenerated.
We split our sum into three parts and use the decomposition:

∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

(hQ(Xi, Zj)− E[hQ(Xi, Zj)])
∣∣

≤
∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

hZ,Q1 (Xi)
∣∣+ ∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

hX,Q
1 (Zj)

∣∣
+
∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

h
(X,Z),Q
2 (Xi, Zj)

∣∣
=
∣∣1
k̂

k⋆∑
i=1

hZ,Q1 (Xi)
∣∣

︸ ︷︷ ︸
(a)

+
∣∣k⋆
k̂

1

n− k̂

n∑
j=k̂+1

hX,Q
1 (Zj)

∣∣
︸ ︷︷ ︸

(b)

+
∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

h
(X,Z),Q
2 (Xi, Zj)

∣∣
︸ ︷︷ ︸

(c)

.

Each of the parts converges almost surely to zero. We show this by arguments sim-
ilar to those seen before:

(a) ≤
∣∣ 1
k⋆

k⋆∑
i=1

hZ,Q
1 (Xi)

∣∣ = ∣∣ 1
k⋆

k⋆∑
i=1

hZ,Q
1 (Xi)− E[hZ,Q

1 (Xi)]︸ ︷︷ ︸
=0

∣∣
=
∣∣ 1

⌊λ⋆n⌋

⌊λ⋆n⌋∑
i=1

hZ,Q
1 (Xi)− E[hZ,Q

1 (Xi)]
∣∣ a.s.−−→ 0

as n → ∞ by Birkhoff’s ergodic theorem.
For (b) we observe that for n large enough∣∣ k⋆

k̂︸︷︷︸
≤1

1

n− k̂

n∑
j=k̂+1

hX,Q
1 (Zj)

∣∣ ≤ ∣∣ 1

n− k̂

n∑
j=k̂+1

hX,Q
1 (Zj)

∣∣
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=
∣∣ 1

n− k̂

n∑
j=k̂+1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]︸ ︷︷ ︸
=0

∣∣ = ∣∣ 1

n− k̂

n∑
j=k̂+1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

=
∣∣ 1

n− k̂

( n∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]−
k̂∑

j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
)∣∣

≤
∣∣ 1

n− k̂

n∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣+ ∣∣ 1

n− k̂

k̂∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

=
∣∣∣ 1

(n−
⌊
λ̂n
⌋
)

n∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣∣

+
∣∣∣ 1

(n−
⌊
λ̂n
⌋
)

⌊λ̂n⌋∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣∣

≤ n

(n−
⌊
λ̂n
⌋
)

∣∣ 1
n

n∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

+
n

(n−
⌊
λ̂n
⌋
)
max
0≤λ≤1

∣∣ 1
n

⌊λn⌋∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

≈ 1

1− λ̂

∣∣ 1
n

n∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

+
1

1− λ̂
max
0≤λ≤1

∣∣ 1
n

⌊λn⌋∑
j=1

hX,Q
1 (Zj)− E[hX,Q

1 (Zj)]
∣∣

a.s.−−→ 0,

since by continuous mapping theorem, 1

1−λ̂

n→∞−−−→ 1
1−λ∗ and the sums converge (uni-

formly) a.s. to zero as n → ∞ by Birkhoff’s ergodic theorem.
Lastly, (c) converges to zero as well, since for n large enough

∣∣ 1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k̂+1

h
(X,Z),Q
2 (Xi, Zj)

∣∣ ≈ 1

λ̂(1− λ̂)

∣∣ 1
n2

k⋆∑
i=1

n∑
j=k̂+1

h
(X,Z),Q
2 (Xi, Zj)

∣∣
≤ 1

λ̂(1− λ̂)
max

k⋆≤k<n

∣∣ 1
n2

k⋆∑
i=1

n∑
j=k+1

h
(X,Z),Q
2 (Xi, Zj)

∣∣ a.s.−−→ 0

because 1

λ̂(1−λ̂)

n→∞−−−→ 1
λ⋆(1−λ⋆)

(a.s.) and the maximum converges a.s. to zero by

using an analogue of Proposition 2.5, where h
(X,Z)
2 (Xi, Zj) − E[h(X,Z)

2 (X̃i, Z̃j)] is

replaced by h
(X,Z),Q
2 (Xi, Zj). Since this is degenerate, the proof can be adapted.

Just note that minor adjustments of the proof have to be made, since h
(X,Z),Q
2 is not
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antisymmetric. See also Remark 2.6 for this.
Combining all three parts, the statement of the lemma is proven.

We will now take care of the second summand of (37):

Lemma 3.7. Under the assumptions of Theorem 3.4 it holds for any Q ∈ H with
∥Q∥ ≤ M < ∞ that

∣∣ 1

k̂(n− k̂)

k̂∑
i=k⋆+1

n∑
j=k̂+1

(hQ(Zi, Zj)− E[hQ(Xi, Zj)])
∣∣ a.s.−−→ 0 as n → ∞.

Proof. We will make use of the fact that ∥Q∥ is bounded and the estimated time of
change converges to the real time of change:

∣∣ 1

k̂(n− k̂)

k̂∑
i=k⋆+1

n∑
j=k̂+1

(hQ(Zi, Zj)− E[hQ(Xi, Zj)])
∣∣

≤ 1

k̂(n− k̂)

k̂∑
i=k⋆+1

n∑
j=k̂+1

∣∣∥Q− f(Zi, Zj)∥ − ∥f(Zi, Zj)∥
∣∣

+
∣∣E[∥Q− f(Xi, Zj)∥ − ∥f(Xi, Zj)∥]

∣∣
≤ 1

k̂(n− k̂)

k̂∑
i=k∗+1

n∑
j=k̂+1

2∥Q∥ ≤ 2M
(k̂ − k⋆)(n− k̂)

k̂(n− k̂)

≤ 2M
λ̂− λ⋆

λ⋆

a.s.−−→ 0 as n → ∞.

Combining Lemmas 3.6 and 3.7, we can already conclude that

|φ(Q⋆(0))− φ̂(Q⋆(0))| n→∞−−−→ 0,

since ∥Q⋆(0)∥ < M under the assumptions of Theorem 3.4.
The next step is to show that |φ(Q̂(0)) − φ̂(Q̂(0))| n→∞−−−→ 0. We follow an idea of
Cadre [2001], where we need a metric of measures to show this.

Definition 3.2. Let L be the class of measurable functions g : H → R that are
1-Lipschitz and absolutely bounded by 1, i.e. |g(x)−g(y)| ≤ ∥x−y∥ for all x, y ∈ H
and supx∈H |g(x)| ≤ 1. Then, for any laws P and P̃ , the metric β(·, ·) is defined as

β(P, P̃ ) := sup
g∈L

∣∣ ∫ gd(P − P̃ )
∣∣.

Furthermore, denote

µn =
1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

δf(Xi,Zj)
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as the empirical measure based on the (unknown) true change-point k⋆ and

µ̂n =
1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

δf(Yi,Yj)

as the estimated empirical measure resulting from the estimated time of change k̂.
Now, Lemma 1 Cadre [2001] gives us for any Q ∈ H that

sup
n≥1

∣∣∣∣ φ̂(Q)

∥Q∥
− 1

∣∣∣∣→ 0 as ∥Q∥ → ∞.

Additionally, in the proof of Lemma 2 i) of Cadre [2001] it reads: Let r1 =
supn≥1 ∥Q̂(0)∥. Since Q̂ = argminQ∈H φ̂ for all n ≥ 1, Lemma 1 Cadre [2001]
shows that r1 < ∞. Then, for all n ≥ 1:

|φ̂(Q̂(0))− φ(Q̂(0))| =
∣∣ ∫ (∥Q̂(0)− x∥ − ∥x∥)(µ̂n − µ)dx

∣∣
= 3max(1, ∥Q̂(0)∥)

∣∣ ∫ ∥Q̂(0)− x∥ − ∥x∥
3max(1, ∥Q̂(0)∥)

(µ̂n − µ)dx
∣∣

≤ 3max(1, r1)β(µ̂n, µ).

This means, |φ(Q̂(0)) − φ̂(Q̂(0))| n→∞−−−→ 0 will follow if the estimated empirical
measure µ̂n converges to µ in metric β(·, ·).

Remark 3.2. It is actually given by Theorem 11.3.3 Dudley [2018] that on separable
metric spaces S, the equivalence

β(Pn, P ) → 0 ⇔ Pn → P

holds for laws Pn and P . Where Pn → P means that
∫
fdPn

n→∞−−−→
∫
fdP for all

bounded, continuous and real-valued functions f on S.

We will use the fact that β(µ̂n, µ) ≤ β(µ̂n, µn) + β(µn, µ) and show convergence for
both parts.

Lemma 3.8. Under the assumptions of Theorem 3.4,

β(µ̂n, µn)
n→∞−−−→ 0 alomst surely.

Proof. The convergence of the measures will follow from the convergence of the
estimated change-point to the true change-point. Let g ∈ L be arbitrary. Use the
fact that |g| is bounded by 1 and calculate for the case where k̂ ≥ k⋆:
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∣∣ ∫ gd(µn − µ̂n)
∣∣

=
∣∣ 1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

g(f(Xi, Zj))−
1

k̂(n− k̂)

k̂∑
i=1

n∑
j=k̂+1

g(f(Yi, Yj))
∣∣

=
∣∣ 1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

g(f(Xi, Zj))−
1

k̂(n− k̂)

k⋆∑
i=1

n∑
j=k⋆+1

g(f(Xi, Zj))

+
1

k̂(n− k̂)

k⋆∑
i=1

k̂∑
j=k⋆+1

g(f(Xi, Zj))−
1

k̂(n− k̂)

k̂∑
i=k⋆+1

n∑
j=k̂+1

g(f(Zi, Zj))
∣∣

≤
( 1

k⋆(n− k⋆)
− 1

k̂(n− k̂)

)
k⋆(n− k⋆) +

k⋆(k̂ − k⋆)

k̂(n− k̂)
+

(k̂ − k⋆)(n− k̂)

k̂(n− k̂)

≈
( 1

λ⋆n(n− λ⋆n)
− 1

λ̂n(n− λ̂n)

)
λ⋆n(n− λ⋆n)

+
λ⋆n(λ̂n− λ⋆n)

λ̂n(n− λ̂n)
+

(λ̂n− λ⋆n)(n− λ̂n)

λ̂n(n− λ̂n)

=
( 1

λ⋆(1− λ⋆)
− 1

λ̂(1− λ̂)

)
λ⋆(1− λ⋆) +

λ⋆(λ̂− λ⋆)

λ̂(1− λ̂)
+

(λ̂− λ⋆)(1− λ̂)

λ̂(1− λ̂)
a.s.−−→ 0 when n → ∞, since |τ̂ − τ ⋆| n→∞−−−→ 0 almost surely.

This almost sure convergence does not depend on the choice of g and thus uniform
convergence over L follows.

The convergence of µn to µ is based on Theorem 2.1 Politis et al. [1999] however it
has to be adapted to the change-point setting.

Lemma 3.9. Under the assumptions of Theorem 3.4,

β(µn, µ)
n→∞−−−→ 0 in probability.

Proof. Let L be as in Definition 3.2. For any function g ∈ L, it holds that µng−µg =∫
gd(µn − µ) has mean zero and variance converging to zero, which can be seen by

calculating:

E[µng] = E
[ 1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

g(f(Xi, Zj))
]

=
1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

E
[
g(f(Xi, Zj))

]
= E

[
g(f(X1, Z1))

]
= µg.

And thus E[µng − µg] = 0. Use this for the variance and get:

Var(µng − µg) = Var(µng) = E
[
(µng − E[µng])

2
]
= E

[
(µng − µg)2

]
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= E
[( 1

k⋆(n− k⋆)

k⋆∑
i=1

n∑
j=k⋆+1

g(f(Xi, Zj))− E[g(f(Xi, Zj))]
)2]

=
( 1

k⋆(n− k⋆)

)2
E
[( k⋆∑

i=1

n∑
j=k⋆+1

g(f(Xi, Zj))− E[g(f(Xi, Zj))]
)2]

. (38)

For the expectation, a variant of Lemma 2.6 can be applied with the difference that
here not the “truncated” versions of the process and kernel are used. This causes
the factor n3/8 to disappear. For more details on this, also see Lemma 3.3.
If the function ĝ(x, y) := g(f(x, y)) − E[g(f(x, y))] is degenerate, fulfils the varia-
tion condition and is bounded, the arguments of Lemma 2.6 can be used. These
properties can be verified by some short calculations, using the fact that g ∈ L =
{g : H → R | |g(x) − g(y)| ≤ ∥x − y∥ and supx∈H |g(x)| ≤ 1} and recalling that
f(x, y) = x− y. Thus, it indeed holds that

� ĝ is degenerate: E[ĝ(X, y)] = E
[
g(f(X, y))

]
− E

[
E[g(f(X, y))]

]
= 0 and

E[ĝ(x, Y )] = 0 as well.

� ĝ fulfils the variation condition:

E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

|ĝ(x, y)− ĝ(X,Z)|
)2]

≤ E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

(|g(f(x, y))− g(f(X,Z))|+ E
[
|g(f(x, y))− g(f(X,Z))|

]
)
)2]

≤ E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

(∥f(x, y)− f(X,Z)∥+ E[∥f(x, y)− f(X,Z)∥])
)2]

≤ E
[(

sup
∥x−X∥≤ϵ
∥y−Z∥≤ϵ

(∥x−X∥+ ∥y − Z∥+ E[∥x−X∥+ ∥y − Z∥])
)2]

≤ Lϵ.

� ĝ is bounded:

|ĝ(x, y)| ≤
∣∣g(f(x, y))∣∣+ ∣∣E[g(f(x, y))]∣∣

≤
∣∣g(f(x, y))∣∣+ E

[∣∣g(f(x, y))∣∣]
≤ 2.

Having checked the properties of ĝ, the before mentioned variation of Lemma 2.6
gives

(38) =
( 1

k⋆(n− k⋆)

)2
E
[( k⋆∑

i=1

n∑
j=k⋆+1

g(f(Xi, Zj))− E[g(f(Xi, Zj))]
)2]
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=
( 1

k⋆(n− k⋆)

)2
E
[( k⋆∑

i=1

n∑
j=k⋆+1

ĝ(Xi, Zj)
)2]

≤
( 1

k⋆(n− k⋆)

)2
Ck⋆(n− k⋆) = C

1

k⋆(n− k⋆)

n→∞−−−→ 0.

The rest of the proof follows from Theorem 2.1 Politis et al. [1999]. For the sake of
completeness, the arguments are included:
Let Ln be functions of the form g(x)1{x∈Kδn}, g ∈ L. It suffices to show
supg∈Ln

|
∫
gd(µn − µ)| → 0, since two properties hold:

A)
µ(Kδn) ≥ 1− ϵ

since µ is δ-tight.

B) By Chebychev’s inequality and the above variance calculation for 1Kδn ∈ L:

P
(
1− µn(K

δn) ≥ 2ϵ
)
= P

(
µn(K

δn)− µ(Kδn) ≤ 1− µ(Kδn)− 2ϵ
)

≤ P
(
µn(K

δn)− µ(Kδn) ≤ −ϵ
)
by A)

≤ P
(
|µn(K

δn)− µ(Kδn)| ≥ ϵ
)

≤ 1

ϵ2
Var

(
µn(K

δn)
)

≤ 1

ϵ2
1

k⋆(n− k⋆)

n→∞−−−→ 0.

Then,

sup
g∈L

∣∣ ∫ gd(µn − µ)
∣∣ ≤ sup

g∈Ln

∣∣ ∫ gd(µn − µ)
∣∣+ sup

g∈L′
n

∣∣ ∫ gd(µn − µ)
∣∣,

where L′
n are functions of the form g(x)(1− 1{x∈Kδn}), g ∈ L. However,

sup
g∈L′

n

∣∣ ∫ gd(µn − µ)
∣∣ ≤ sup

g∈L′
n

∣∣ ∫ gdµn

∣∣+ sup
g∈L′

n

∣∣ ∫ gdµ
∣∣

≤
(
1− µn(K

δn)
)
+ ϵ ≤ 2ϵ+ ϵ

with probability 1, by A) and B). Thus, it is left to show that

sup
g∈Ln

|
∫

gd(µn − µ)| → 0 in probability.

Fix some arbitrary ϵ > 0 and let LK be the functions of the form g(x)1x∈K , g ∈ L.
Let {g1, ..., gmϵ} be and ϵ-net for LK , i.e. if g ∈ L, there exists (at least) one function
gi from the collection {g1, ..., gmϵ} such that supx∈K |g(x) − gi(x)| < ϵ. Note that
since LK is a family of uniformly bounded and equicontinuous (since 1-Lipschitz)
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functions and K is compact, LK is relatively compact (also called precompact) by
the Arzela-Ascoli Theorem. Since the space of bounded functions g : H → R is a
complete metric space, LK is equivalently totally bounded. Which means that the
number mϵ of functions in the ϵ-net is finite. Furthermore, it can be assumed that
gi ∈ L for i = 1, ...,mϵ (see Theorems 6.1.1 and 11.2.3 Dudley [2018]).
Now, by the definition of Kδn , if x ∈ Kδn , there exists x̃ ∈ K such that ∥x− x̃∥ < δn.
Then, for any g ∈ L it holds

|g(x)− g(x̃)| ≤ ∥x− x̃∥ < δn by Lipschitz property of g

Recall that gi ∈ L as well, and thus

g(x) ≤ g(x̃) + δn = [g(x̃)− gi(x̃)] + [gi(x̃)− gi(x)] + gi(x) + δn

≤ ϵ+ δn + gi(x) + δn = gi(x) + ϵ+ 2δn.

This means for any g ∈ Ln, there exists i ≤ mϵ satisfying

sup
x∈Kδn

|g(x)− gi(x)| ≤ ϵ+ 2δn. (39)

Given g, let g̃ be the gi ∈ {g1, ..., gmϵ} satisfying (39). Then:

sup
g∈Ln

∣∣ ∫ gd(µn − µ)
∣∣

≤ sup
g∈Ln

∣∣ ∫ (g − g̃)d(µn − µ)
∣∣+ max

1≤i≤mϵ

∣∣ ∫ gid(µn − µ)
∣∣

≤ 2ϵ+ 4δn + max
1≤i≤mϵ

∣∣ ∫ gid(µn − µ)
∣∣.

Fix η > 0 and let ϵ = η/8. Using the above calculations yields

P
(
sup
g∈Ln

∣∣ ∫ gd(µn − µ)
∣∣ > η

)
≤ P

(
sup
g∈Ln

∣∣ ∫ (g − g̃)d(µn − µ)
∣∣ > η/2

)
+ P

(
max

1≤i≤mϵ

∣∣ ∫ gid(µn − µ)
∣∣ > η/2

)
≤ P

(
max

1≤i≤mϵ

∣∣ ∫ gid(µn − µ)
∣∣ > η/2

)
as soon as 2ϵ+4δn = η/4+4δn < η/2 holds true. Equivalently, this is the case when
η > 16δn.
Finally, the last term can be bounded by

4mϵ

η2

( 1

k⋆(n− k⋆)

)2
,

which converges in probability to zero, as n → ∞.

Proof of Theorem 3.4. The statement of the theorem follows directly by combining
Lemmas 3.6 to 3.9 as described before.
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The desired convergence of the estimated spatial median to the spatial median fi-
nally follows from the above theorem and Proposition 1 i) of Asplund [1968] and is
formulated in the following corollary:

Corollary 3.1. Under the assumptions of Theorem 3.4, it holds for Q⋆(0) and Q̂(0)
with ∥Q⋆(0)∥ ≤ M < ∞ that

∥Q̂(0)−Q⋆(0)∥ n→∞−−−→ 0 in probability.

Proof of Corollary 3.1. Let ΓU be the class of convex and left-continuous functions
γ : [0,∞) → [0,∞] with γ(0) = 0 and γ(t) > 0 if t > 0. Note that this charac-
terization of ΓU means that any γ ∈ ΓU is in fact continuous (especially in zero),
strictly convex and thus strictly monotone. It follows that γ is bijective and its
inverse function γ−1 exists and is continuous itself.

Proposition 1 i) Asplund [1968] applied to our setting gives that for some γ ∈ ΓU

φ(Q(u)) + ⟨u,Q(u)⟩
≥ φ(Q⋆(u)) + ⟨u,Q⋆(u)⟩+ ⟨Q(u)−Q⋆(u), u⟩+ γ(∥Q(u)−Q⋆(u)∥) ∀ Q ∈ H.

We can use this especially for u = 0 and Q = Q̂ to achieve

φ(Q̂(0)) ≥ φ(Q⋆(0)) + γ(∥Q̂(0)−Q⋆(0)∥)
⇒ φ(Q̂(0))− φ(Q⋆(0)) ≥ γ(∥Q̂(0)−Q⋆(0)∥)
⇒ γ−1

(
φ(Q̂(0))− φ(Q⋆(0))

)
≥ ∥Q̂(0)−Q⋆(0)∥.

Thus, it can be concluded that for any ϵ > 0

P(∥Q̂(0)−Q⋆(0)∥ > ϵ) ≤ P
(
γ−1
(
φ(Q̂(0))− φ(Q⋆(0))

)
> ϵ
)

n→∞→ 0

by the continuous mapping theorem and since φ(Q̂(0))−φ(Q⋆(0)) → 0 in probability
by Theorem 3.4.

106



3.3 Simulation Study

In this section, we present the results of the estimator for time and direction in a
simulation study.

3.3.1 Estimating the Time

Recall that we estimate the location of a change by the smallest 1 ≤ k < n for which
the test statistic attains its maximum:

k̂ = min
{
k :
∥∥ 1

n3/2
Un,k

∥∥ = max
1≤j<n

∥∥ 1

n3/2
Un,j

∥∥}.
We compare it to the change-point estimator given by the 1 ≤ k < n that maximises
the CUSUM statistic for the scenarios introduced in Section 2.6.3, to evaluate the
performance of the test:

Scenario 1: Uniform jump of +0.3 after n/2 observations:

Yi =

{
Xi i < n/2

Xi + 0.3u i ≥ n/2

where u = (1, ..., 1)T .

Scenario 2: Sinus-jump after n/2 of observations:

Yi =

{
Xi i < n/2

Xi +
1

2
√
2
(sin(πD/d))D≤d i ≥ n/2

.

Scenario 3: Uniform jump of +0.3 after n/2 observations in presence of outliers
at 0.2n, 0.4n, 0.6n, 0.8n:

Yi =


Xi i < n/2, i /∈ {0.2n, 0.4n}
10Xi i ∈ {0.2n, 0.4n}
Xi + 0.3u i ≥ n/2, i /∈ {0.6n, 0.8n}
10Xi + 0.3u i ∈ {0.6n, 0.8n}

where u = (1, ..., 1)T .

Scenario 4: Heavy tails: In the simulation of (Xi)i≤n we use ξi, ξ
(t)
i ∼ t1 (Cauchy

distributed) ∀i ≤ d,−BI < t ≤ n and a uniform jump of +5 after n/2
observations.

Scenario 5: Uniform Jump of +0.3 after γn observations:

Yi =

{
Xi i < γn

Xi + 0.3u i ≥ γn
with γ = 0.3 and γ = 0.15 resp.

where u = (1, ..., 1)T .
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Scenario 6: As Scenario 1 but with n = 150, d = 350.

If not stated otherwise, we simulated 3000 samples with n = 200 and d = 100 for
each scenario and calculated k̂ for CUSUM and our Wilcoxon-type statistic for each
sample simultaneously. The 3000 evaluated k̂ are presented in some histograms
(Figures 3.1 to 3.3) to compare both procedures. Furthermore, Table 3.1 gives the
proportion of k̂ in the 20 %-interval around k⋆ given by [k⋆ − 0.1n, k⋆ + 0.1n]. We
shortly remark that we did no pre-testing before calculating k̂, meaning k̂ was calcu-
lated no matter how the hypothesis-test for existence of a change-point would have
turned out.

Scenario CUSUM Spatial Sign
1 0.867 0.937

5, γ = 0.3n 0.776 0.835
5, γ = 0.15n 0.459 0.495

2 0.442 0.89
3 0.652 0.928
4 0.293 0.956
6 0.792 0.893

Table 3.1: Proportion of k̂ in [k⋆− 0.1n, k⋆+0.1n] for 3000 simulations of Scenarios
1-6.

The results for the simple jump after 0.5n, resp. 0.3n and 0.15n of the observations
(Scenarios 1 and 5) are grouped together in Figure 3.1. It is apparent that Spatial
Sign estimates the real time of change correctly more often than CUSUM does. The
advantage is the biggest in the case where k⋆ = 0.5n, however it still holds when
the change moves more to the beginning of the series. Especially for k⋆ = 0.3n, the
estimation of Spatial Sign is still superior.
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Scenario 5, γ = 0.3
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Scenario 5, γ = 0.3
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Scenario 5, γ = 0.15
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Scenario 5, γ = 0.15

Spatial Sign

location of estimated c.p.

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0 25 50 75 100 125 150 175 200k*

Figure 3.1: Histograms of k̂ from CUSUM and Spatial Sign for 3000 samples in
each of the Scenarios 1 and 5. k⋆ (red) marks the true change-point (c.p.) of the
simulated series.
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Figure 3.2: Histograms of k̂ from CUSUM and Spatial Sign for 3000 samples in each
of the Scenarios 2 to 4. k⋆ (red) marks the true change-point (c.p.) of the simulated
series. For Scenario 3, blue ticks mark the time of the simulated outliers.

110



In Scenarios 2 to 4, the advantage of the Wilcoxon-type test is very prominent, as
we can see in Figure 3.2. For Scenario 2, CUSUM has some big distortion at 0
and additionally no clear cumulation of k̂ around k⋆, while the Wilcoxon-type test
clearly does. In fact, for the Wilcoxon-type test, nearly 90 % of k̂ lie in the interval
[k⋆ − 0.1n, k⋆ + 0.1n], while for CUSUM it is just half of it (see Table 3.1).
For Scenario 3 we can see that CUSUM is clearly influenced by the outliers, as we
see high frequencies in the histogram around these times. For Spatial Sign, we do
not see such high frequencies around the time of the outliers, instead there is a clear
maximum at k⋆.
The difference for the two procedures is strongly pronounced for Scenario 4. The
histogram of k̂ from CUSUM looks almost like the result of a uniform distribution.
Even though the frequency around k⋆ is slightly increased, the 20 %-interval around
k⋆ only contains around 30 % of the k̂. In contrast to this, Spatial Sign is not really
influenced by the heavy tails. The histogram looks similar to that of Scenario 1,
showing a clear maximum at k⋆ and also around the same proportion of k̂ inside the
interval [k⋆ − 0.1n, k⋆ + 0.1n].

If d >> n (Scenario 6, see Figure 3.3), we still have a similar picture as in Scenario
1. As we can see in Table 3.1, the proportion of k̂ in the 20 %-interval around
k⋆ is smaller for both, the CUSUM and the Wilcoxon-type test, nevertheless the
Wilcoxon-type test is still superior in this scenario. The histogram shows high fre-
quencies around k⋆ and clearly a maximum at k⋆.

In summary, the Wilcoxon-type test statistic is superior to CUSUM in all of the
investigated scenarios. Especially in the cases of the sinus-jump, outliers or heavy
tails, Wilcoxon is not influenced much by this, while simultaneously we observe
a strong effect on CUSUM, partly resulting in drastically reduced proportions of
estimations around the true change-point.
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Figure 3.3: Histograms of k̂ from CUSUM and Spatial Sign for 3000 samples in
Scenario 6. k⋆ (red) marks the true change-point (c.p.) of the simulated series.

3.3.2 Estimating the Direction

As explained in the introduction of Section 3.2, the spatial median Q⋆(0) would be
a natural estimator of the direction of the change, if we knew the true change-point
k⋆. In application, we only know k̂. However, we know by Corollary 3.1, that the
estimated spatial median is an adequate substitute for the spatial median. Hence,
to estimate the direction of the change, we calculate Q̂(0) which minimises φ̂(Q(0)).
In order to evaluate the results of the estimation, we repeatedly simulated samples
similar to the scenarios described in Section 2.6.1 with some changes in the height
of the change, since the results are better to observe and compare.

Scenario 1: Uniform jump of +1 after k⋆ = γn observations, γ ∈ {0.25, 0.5}:

Yi =

{
Xi i < γn

Xi + u i ≥ γn

where u = (1, ..., 1)T .
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Scenario 2: Sinus-jump after k⋆ = n/2 of observations:

Yi =

{
Xi i < n/2

Xi + (sin(πD/d))D≤d i ≥ n/2
.

Scenario 3: Uniform jump of +1 after k⋆ = n/2 observations in presence of outliers
at 0.2n, 0.4n, 0.6n, 0.8n:

Yi =


Xi i < n/2, i /∈ {0.2n, 0.4n}
10Xi i ∈ {0.2n, 0.4n}
Xi + u i ≥ n/2, i /∈ {0.6n, 0.8n}
10Xi + u i ∈ {0.6n, 0.8n}

where u = (1, ..., 1)T .

Scenario 4: Heavy tails: In the simulation of (Xi)i≤n we use ξi, ξ
(t)
i ∼ t1 (Cauchy

distributed) ∀i ≤ d,−BI ≤ t ≤ n and a uniform jump of +10 after
k⋆ = n/2 observations.

First, k̂ is estimated and then Q̂(0) evaluated, using a steep gradient descent ap-
proach. Since the minimisation is time-consuming, we simulated 500 samples for
each scenario with n = 100 and d = 30. Again, we compare the two performances
in the sense that k̂ is calculated based on CUSUM and the Wilcoxon-type statistic
simultaneously for each sample and Q̂(0) is evaluated for both k̂. The results are
presented as box plots (Figures 3.4 to 3.6), illustrating the deviation from the true
direction of change for each coordinate D = 1, ..., d.

Starting with Scenario 1, we make multiple observations (see Figure 3.4): While
the boxes of the Wilcoxon-type procedure are a little bit smaller, meaning that the
first and third quantile of the estimations are closer together, the Wilcoxon-type
procedure produces in turn more outliers farer away from the true direction then
the CUSUM procedure. This effect enhances, if the time of change k⋆ moves closer
to the beginning of the series. Over all, we can see that both procedures get less
precise if k⋆ moves away from n/2.
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Figure 3.4: Box plots of Q̂(0) based on k̂ received from CUSUM (left) resp.
Wilcoxon-type statistic (right) for k⋆ = 25 (top row) and k⋆ = 50 (bottom row)
in Scenario 1. The red lines mark the true direction of the change for each coordi-
nate D = 1, ..., d presented on the x-axis.

For both procedures we observe the phenomenon that the estimations gain more
variability for growing coordinateD = 1, ..., d. This can be attributed to the variance
structure of our simulated data. Recall thatX−BI = (ξ1, ξ1+ξ2, ...,

∑d
i=1 ξi)/

√
d with

ξi i.i.d. N (0, 1)-distributed (and Wt, −BI < t ≤ n, has the same structure). So

Var(X−BI) =
(
Var

(
ξ1/

√
d
)
,Var

(
(ξ1 + ξ2)/

√
d
)
, ...,Var

(
(

d∑
i=1

ξi)/
√
d
))T

=
(1
d
,
2

d
, ..., 1

)T
.

The same holds for Wt. Meaning that a change in the direction of +1 is in relation
much larger for lower coordinates than for higher ones. Thus, the direction is de-
tected with higher precision for smaller D.
In Scenario 2 (Figure 3.5), we make similar observations as for Scenario 1. The
median in the Wilcoxon-type-estimation of Q̂(0) lies closer to the true direction of
change. In turn, the estimations show more outliers than the ones from CUSUM.
Nevertheless, overall the difference between the two procedures is not very big.
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Figure 3.5: Box plots of Q̂(0) based on k̂ received from CUSUM (top) resp.
Wilcoxon-type statistic (bottom) for k⋆ = 50 in Scenario 2. The red lines mark
the true direction of the change for each coordinate D = 1, ..., d presented on the
x-axis. 115



The results for Scenario 3 and 4 are more interesting (see Figure 3.6). Compared
to the results of Scenario 1, the Wilcoxon-type procedure loses precision. However,
compared to the estimations based on CUSUM it can handle outliers in the data or
heavy tails quiet well. In Scenario 3, CUSUM over-estimates the direction of change
by about 0.34 (D = 1) to 0.56 (D = 30) measured from the median of all 500
repetitions. The Wilcoxon-type on the other hand only over-estimates the direction
by a maximum of about 0.05.
For heavy tails (Scenario 4), the problems of the CUSUM-based procedure become
even more apparent. The misestimation of the Spatial Sign procedure grows as well,
now as a maximum we have +0.29. Whereas the CUSUM procedure overestimates
the maximum by around 4.2, which represents a deviation of nearly 50 % of the
size of change. Furthermore, the CUSUM procedure leads to very large outliers in
the estimation of the direction. We get results in the range of [−50, 100]. Thus, we
can conclude that the CUSUM procedure is hardly usable for heavy tailed data or
if outliers are present in the sample, which is very common for real-world examples.
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Figure 3.6: Box plots of Q̂(0) based on k̂ received from CUSUM (left) resp.
Wilcoxon-type statistic (right) for Scenario 3 (top row) and Scenario 4 (bottom row).
The red lines mark the true direction of the change for each coordinate D = 1, ..., d
presented on the x-axis.
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3.4 Data Example

We continue our example from Section 2.7 of particular matter in Germany in the
first five months of 2020. We have seen that the Wilcoxon-type test statistic gives a
significant result for a change-point. Thus, we want to estimate the location of that
change. The maximum of the Spatial Sign test statistic, which marks the estimated
change point, is received at March 15, 2020. (The maximum of the CUSUM statis-
tic is indeed located at the same point although it gave no significant result for the
existence of a change-point.)
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Figure 3.7: Daily average of PM10 in µg/m3 for 344 measure stations from January
1, 2020 to May 31, 2020. The vertical orange line denotes the estimated change, the
vertical magenta line marks the beginning of the official COVID-19 restrictions in
Germany.

The estimated change-point in our example lies one week before the official restric-
tions regarding COVID-19 were imposed (see Figure 3.7). It is possible that the
citizen, being aware of the situation, changed their behaviour beforehand, without
strict official restrictions. Data projects using mobile phone data (e.g., Covid-19
Mobility Project [2022] and Destatis - Deutsches Statistisches Bundesamt [2022])
indeed show a decline in mobility preceding the official restrictions on March 22,
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2020 by around a week.
However, if we look at the data (Figure 2.8), it seems like a change in mean would
rather be upwards than downwards, meaning that the daily average pollution in-
creased after March 15, 2020 compared to the beginning of the year.
We estimate the direction of the change by calculating Q̂(0) and see that the change
is indeed overall upwards. In Table 3.2 a summary of the estimation is given. We see
that the median change is of around +3.7, the lower quantile is greater than +2, the
upper quantile greater than +5. Even though the changes are not so pronounced,
they are consistent over most stations. The vast majority of stations recorded an
upwards change after March 15, with the maximum upwards change estimated of
slightly over +15. Only for 15 stations the estimated direction of change is down-
wards, and only by −4.44 in the most extreme case.
This means the findings do not support the theory of reduced PM10 after (or even
slightly ahead of) the COVID-19 restrictions.

lower quantile median upper quantile
2.359 3.696 5.146

max. number of stations max. number of stations

negative change with negative change positive change with positive change

−4.44 15 15.055 329

Table 3.2: Summary of the estimation of direction of change after March 15, 2020
for PM10 in µg/m3 for 344 measure stations.

Similar findings were made by Ropkins and Tate [2021]. They studied the impact
of the COVID-19 lockdown on air quality across the UK. While using long-term
data (Jan. 2015 to Jun. 2020) from rural background, urban background and urban
traffic stations, they observed an increase of PM10 and PM2.5 during active restric-
tions. Noting that this trend is ‘highly inconsistent with an air quality response
to the lockdown’, they discussed the possibility that the lockdown did not greatly
limit the largest impacts on particulate matter. We assume that the findings are
to some extend comparable to Germany due to the similar geographic and demo-
graphic characteristics of the countries.
Furthermore, the German Umweltbundesamt [2020] states that traffic is not the
main contributor to PM10 in Germany any more and that other sources of partic-
ular matter (e.g., fertilization, Saharan dust, soil erosion, fires) can overlay effects
of reduced traffic. It is known that one mayor meteorological effect on particulate
matter is precipitation, since it washes the dust out of the air (scavenging). Com-
paring the data with the meteorological recordings (Fig. 3.8) another explanation
for the change-point gets visible:
While January was relatively warm and dry, February and first half of March showed
increased precipitation. Beginning in the middle of March, a relatively drought pe-
riod started and lasted throughout April and May (Data extracted from DWD
Climate Data Center (CDC)).
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Figure 3.8: Daily average of PM10 in µg/m3 for 344 measure stations from January
1, 2020 to May 31, 2020 and daily precipitation in mm in Germany averaged over
1637 weather stations.

We see that this fits the PM10-data quite well. Especially in February and the first
half of March, where it was very wet, we have relatively low quantity of PM10.
Beginning with the drought weather, the concentration of PM10 increases and espe-
cially the lows are now higher than before, meaning that days with a concentration
of PM10 as low as in the beginning of the year, are more rare.
We would like to note that these findings do not contradict the satellite data pub-
lished by the European Space Agency [2020] which shows a reduced air pollution
over Europe in 2020 compared to 2019. While the satellites measure atmospheric
pollution, the data of the Umweltbundesamt is collected at stations at ground level.
It is known that there is a difference between these two sorts of pollution.
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