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Abstract
Effective monitoring of agricultural lands requires accurate spatial information about the locations and boundaries of agri-
cultural fields. Through satellite imagery, such information can be mapped on a large scale at a high temporal frequency. 
Various methods exist in the literature for segmenting agricultural fields from satellite images. Edge-based, region-based, or 
hybrid segmentation methods are traditional methods that have widely been used for segmenting agricultural fields. Lately, 
the use of deep neural networks (DNNs) for various tasks in remote sensing has been gaining traction. Therefore, to iden-
tify the optimal method for segmenting agricultural fields from satellite images, we evaluated three state-of-the-art DNNs, 
namely Mask R-CNN, U-Net, and FracTAL ResUNet against the multiresolution segmentation (MRS) algorithm, which 
is a region-based and a more traditional segmentation method. Given that the DNNs are supervised methods, we used an 
optimised version of the MRS algorithm based on supervised Bayesian optimisation. Monotemporal Sentinel-2 (S2) images 
acquired in Lower Saxony, Germany were used in this study. Based on the agricultural parcels declared by farmers within 
the European Common Agricultural Policy (CAP) framework, the segmentation results of each method were evaluated using 
the F-score and intersection over union (IoU) metrics. The respective average F-score and IoU obtained by each method are 
0.682 and 0.524 for Mask R-CNN, 0.781 and 0.646 for U-Net, 0.808 and 0.683 for FracTAL ResUNet, and 0.805 and 0.678 
for the optimised MRS approach. This study shows that DNNs, particularly FracTAL ResUNet, can be effectively used for 
large-scale segmentation of agricultural fields from satellite images.
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1  Introduction

Agriculture is an important sector of the world economy 
and provides humanity with essential products like food 
(Pandey et al. 2022). The increasing global population is 
accompanied by the growing demand for different varie-
ties of food. To ensure global food security, food produc-
tion must substantially increase and in parallel, the negative 

environmental footprint of agriculture ought to be minimised 
(Foley et al. 2011). This aspiration is aptly captured within 
the second goal (“End hunger, achieve food security and 
improved nutrition and promote sustainable agriculture”) of 
the United Nation’s Sustainable Development Goals (SDGs) 
(United Nations 2015). To sustainably achieve food security, 
policymakers must design agricultural policies that incen-
tivise farmers to use sustainable agricultural practices while 
ensuring a decent standard of living for the farmers.

To effectively create and monitor sustainable agricultural 
policies, spatially explicit information about all agricultural 
lands is required. Further, the dynamic nature of agricultural 
lands requires them to be monitored in near real-time to 
sustainably optimise agricultural practices and react to any 
emerging environmental threats (Weiss et al. 2020). Remote 
sensing (RS) is primed for near real-time monitoring of agri-
cultural lands (Atzberger 2013; Weiss et al. 2020). The use 
of RS for mapping agricultural lands has been demonstrated 
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in the literature at the regional (Sun et al. 2020; You et al. 
2021), national (Boryan et al. 2011; Blickensdörfer et al. 
2022), and continental (d’Andrimont et al. 2021) scales. The 
aforementioned studies classified the land-use (LU) types of 
agricultural lands at the pixel level. Although pixel-based 
image analysis is computationally efficient, especially for 
wide-area monitoring of agricultural lands, object-based 
image analysis (OBIA) generally produces more accurate 
LU maps as was demonstrated by some studies (Castillejo-
González et al. 2009; Gilbertson et al. 2017; Belgiu and 
Csillik 2018). Using OBIA to map agricultural lands from 
RS images involves the segmentation of agricultural fields 
followed by the assignment of a LU type to each segmented 
field. The object-based crop type maps generated through 
OBIA enable the effective assessment of the agricultural 
practices being used at the field level and also allow for the 
accurate computation of agricultural statistics such as field 
sizes and shapes.

Image segmentation is the building block of OBIA 
(Blaschke 2010). There is a direct correlation between image 
segmentation quality and object-based classification accuracy 
(Liu and Xia 2010; Gao et al. 2011; Akcay et al. 2018). The 
traditional approach to segmenting agricultural fields from 
RS images involves the use of edge-based methods (Ji 1996; 
Turker and Kok 2013; Graesser and Ramankutty 2017; North 
et al. 2019; Wagner and Oppelt 2020), region-based methods 
(Möller et al. 2007; García-Pedrero et al. 2017; Belgiu and 
Csillik 2018; Nasrallah et al. 2018; Tetteh et al. 2020a; Luo 
et al. 2021), and hybrid methods (Rydberg and Borgefors 
2001; Li and Xiao 2007; Yan and Roy 2014; Watkins and van 
Niekerk 2019) that combine edge-based and region-based 
methods. Choosing which method to use for image segmen-
tation largely depends on the application needs of the user. 
According to Kotaridis and Lazaridou (2021), the region-
based methods, particularly the multiresolution segmentation 
(MRS) (Baatz and Schäpe 2000) algorithm in eCognition 
(Trimble Germany GmbH 2019), are by far the most widely 
used for segmentation within the OBIA paradigm. The study 
of Ma et al. (2017) also revealed the popularity of the MRS 
algorithm.

Lately, the use of deep neural networks (DNNs) for various 
RS tasks like image segmentation has been gaining popularity 
(Ma et al. 2019). The extensive usage of DNNs in RS particu-
larly for supporting the SDGs was recently reviewed by Persello 
et al. (2022). The popularity of DNNs has been facilitated by 
several factors including the availability of high-performance 
graphic cards, cloud computing, increased public availability 
of annotated data, and the superior performance of DNNs over 
shallow models (Kattenborn et al. 2021). Compared with other 
image segmentation methods, Kotaridis and Lazaridou (2021) 
showed that more peer-reviewed studies in 2020 used DNNs for 
segmentation. Without any manual feature engineering, DNNs, 
particularly deep convolutional neural networks, can exploit 

hierarchical relationships between high-level and low-level fea-
tures in an image, thereby making them suitable for delineating 
agricultural fields (Waldner and Diakogiannis 2020). Different 
DNNs have been used in the literature to delineate agricultural 
fields from RS images (García-Pedrero et al. 2019; Persello 
et al. 2019; Lv et al. 2020; Masoud et al. 2020; Aung et al. 
2020; Waldner and Diakogiannis 2020; Meyer et al. 2020; Yang 
et al. 2020; Taravat et al. 2021; Waldner et al. 2021; Zhang et al. 
2021; Wang et al. 2022; Jong et al. 2022; Long et al. 2022). 
U-Net (Ronneberger et al. 2015) and its various derivatives 
were the most used DNNs. The U-Net model and its deriva-
tives are geared towards semantic segmentation; hence, they do 
not differentiate between objects belonging to the same class. 
This problem can be resolved through instance segmentation. 
To extract agricultural fields through instance segmentation, 
the DNN that was mostly utilised was Mask R-CNN (He et al. 
2017).

The superiority of DNNs to shallow machine learning mod-
els such as support vector machines and random forests for 
various RS tasks such as land-cover and land-use classification 
has been highlighted in the literature (Ma et al. 2019; Katten-
born et al. 2021). However, it remains to be seen how different 
DNNs will compare with each other and also compare with 
more traditional segmentation methods like MRS for the delin-
eation of agricultural fields from RS images. Both Yang et al. 
(2020) and Taravat et al. (2021) compared different DNNs for 
the semantic segmentation of agricultural fields but instance 
segmentation was not evaluated. Further, both studies did 
not compare their results to a more traditional segmentation 
method like MRS. Even though Masoud et al. (2020) com-
pared their DNN with MRS for segmenting agricultural fields, 
their study had a small geographical scope (only ten tiles) and 
they did not evaluate any DNN for instance segmentation.

In this study, we present a large-scale comparison of the 
MRS algorithm with three different DNNs that have already 
been used in the literature to segment agricultural fields. For 
MRS, we used the optimised approach that was proposed 
by Tetteh et al. (2020a) for the segmentation of agricultural 
fields. Regarding the three DNNs, we selected (1) U-Net 
for its popularity and widespread usage for semantic seg-
mentation, (2) Mask R-CNN for being the foremost model 
when it comes to instance segmentation, and (3) FracTAL 
ResUNet (Diakogiannis et al. 2021) for its recent usage for 
the effective segmentation of agricultural fields on a large 
scale as evidenced by these studies (Waldner et al. 2021; 
Wang et al. 2022).

2 � Study Area and Data

As the study area, we chose Lower Saxony (Fig. 1). With 
about 62% of its total landmass being used as agricultural 
land (Tetteh et al. 2020a), Lower Saxony plays an important 



297PFG (2023) 91:295–312	

1 3

role in Germany’s economy regarding food production. Its 
agricultural areas are mostly covered by grasslands, cere-
als, potatoes, winter rapeseed, and sugar beet (Tetteh et al. 
2020a). Lower Saxony has the largest acreage of potatoes 
and sugar beets in Germany, which reemphasises its key 
contribution to food production in Germany.

Sentinel-2 (S2) images covering Lower Saxony acquired 
in May of 2018 were used in this study. As suggested by 
Tetteh et al. (2020a), we selected May because field bound-
aries become more visible in this month, hence easier to 
delineate. Similar to Tetteh et al. (2021), the top-of-atmos-
phere (TOA) S2 images provided by the European Space 
Agency (ESA) were converted to bottom-of-atmosphere 
(BOA) images using the FORCE (Framework for Opera-
tional Radiometric Correction for Environmental monitor-
ing) (Frantz 2019) processing software. With the red, green, 
blue, and near-infrared bands having the highest spatial reso-
lution of S2, they were extracted from each BOA image. 
For each of those four bands, a mean band was created by 
averaging the spectral values of all pixels over the month. 
The four mean bands were then stacked together to create a 
monthly mean composite (MMC) image for May. This MMC 
was used in subsequent processes.

To limit the segmentation process to only agricultural 
areas, we masked out all non-agricultural areas from each 
MMC. In this study, agricultural areas equate to arable 
lands and grasslands. Following our previous studies 
(Tetteh et al. 2020a, 2020b, 2021), we extracted polygons 
belonging to the arable lands and grasslands in Lower 
Saxony from the digital landscape model (DLM) of the 
German Official Topographic Cartographic Information 
System (ATKIS). The DLM is a spatial database contain-
ing the land cover of Germany. All pixels spatially falling 
outside the arable lands and grasslands were removed from 
the MMC images.

As reference data, we used the agricultural parcels 
of the Geospatial Aid Application (GSAA). For farmers 
within the European Union (EU) to access the subsidies of 
the Common Agricultural Policy (CAP) (European Com-
mission 2017), they declare the boundaries of their agri-
cultural parcels and the corresponding LU types through 
the GSAA. This declaration is usually done in May of 
a particular year. We used the GSAA parcels of 2018. 
The size of the agricultural parcels ranges from 0.1 ha to 
155 ha and the average size is 3 ha (Tetteh et al. 2020a).

Fig. 1   The geographical location of the study area (Lower Saxony, 
which is labelled NI on the map above). The coordinates are in 
EPSG:3035. BB Brandenburg, BE Berlin, BW Baden-Württemberg, 
BY Bavaria, HB Bremen, HE Hesse, HH Hamburg, MV Mecklenburg-

Western Pomerania, NW North Rhine-Westphalia, RP Rhineland-
Palatinate, SH Schleswig-Holstein, SL Saarland, SN Saxony, ST Sax-
ony-Anhalt, TH Thuringia
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3 � Methodology

Figure 2 is the workflow that was employed in this study. 
The main components of the workflow will be explained in 
the proceeding subsections.

3.1 � Data Preparation

To ensure the efficient segmentation of the agricultural fields 
by the three DNNs using a graphic processing unit (NVIDIA 
GRID T4-16Q) with a dedicated memory of 14 GB, Lower 
Saxony was partitioned into 8417 tiles with each tile being 
2.56 km × 2.56 km (256 pixels × 256 pixels). On average, the 
number of GSAA parcels per tile is 140. To ensure that there 
are enough GSAA parcels per tile for both the training and 
testing, we removed the tiles with less than 50 parcels. This 
brought down the number of tiles to 7169.

From the 7169 tiles, a stratified random sampling 
approach was used to split the tiles into 70% training tiles 
(5018) and 30% test tiles (2151). To do the stratification, 
we used two steps. Following the approach of Tetteh et al. 
(2021), we first computed the shape factor (SF) per tile as 
shown in Eq. (1);

where X is a GSAA parcel and n is the number of GSAA 
parcels per tile. The SF, which is based on the method of 
Polsby and Popper (1991), is a measure of the level of com-
pactness per tile. It ranges from 0 (lowest compactness) to 
1 (highest compactness). A tile with low compactness indi-
cates that the agricultural fields present at that tile are more 
elongated and a tile dominated by more circular fields will 
have high compactness. Second, after some visual analysis, 

(1)SF =
1

n

n
∑

i=1

4 × π × Area
(

X
i

)

(

Perimeter
(

X
i

))2

Fig. 2   Overview of the work-
flow used in this study. ATKIS 
German Official Topographic 
Cartographic Information Sys-
tem, MMCs monthly mean com-
posites, GSAA Geospatial Aid 
Application, DNNs deep neural 
networks, MRS multiresolution 
segmentation
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we categorised the SFs of the tiles into three classes namely 
low compactness (0.0 < SF ≤ 0.4), medium compactness 
(0.4 < SF ≤ 0.6), and high compactness (0.6 < SF ≤ 1.0). 
The stratification was done based on this categorization. 
Figures 3 and 4, respectively, show the training and test tiles, 
where each tile is coloured by its corresponding SF class.

For each tile, a corresponding image chip was clipped out 
from the masked MMC images. In all, 5018 training images 
and 2151 test images were created.

3.2 � Segmentation Methods

3.2.1 � U‑Net

U-Net was initially designed for the semantic labelling of 
pixels in biomedical images. It is now widely used for the 
semantic segmentation of different types of images including 
RS images. Its use for delineating agricultural fields from 
RS images has been demonstrated in the literature (García-
Pedrero et al. 2019; Aung et al. 2020; Yang et al. 2020; 
Taravat et al. 2021). U-Net has two parts: a contracting path 
(encoder) for extracting features from an input image and an 
expansive path (decoder) for precise localization and upsam-
pling of the extracted features to the same dimension as the 
input image. The contracting path is a typical convolutional 

network consisting of the repeated application of two convo-
lutions, each followed by a rectified linear unit (ReLU) and 
max pooling. Every step in the expansive path consists of 
up-convolution and concatenation followed by the applica-
tion of two convolutions with a ReLU. As the final layer, a 
convolution is applied to translate the extracted features to 
the desired number of classes, and an activation function 
(softmax in our study) is used to assign class probabilities 
to each pixel. Further details about U-Net can be found in 
Ronneberger et al. (2015).

3.2.2 � FracTAL ResUNet

Following the encoder–decoder style of U-Net, Diakogian-
nis et al. (2020) proposed ResUNet-a, a novel network for 
semantic segmentation. The encoder and decoder blocks 
of ResUNet-a are composed of residual blocks of convo-
lutional layers (He et al. 2016) followed by pyramid scene 
parsing pooling (Zhao et al. 2017). In each residual block, 
multiple parallel atrous convolutions (Chen et al. 2017a, 
2017b) with different dilation rates were used. A more 
detailed explanation of ResUNet-a can be found in Diako-
giannis et al. (2020). In a change detection study, Diako-
giannis et al. (2021) defined a new model by introducing 
a self-attention mechanism to the ResUNet-a architecture. 

Fig. 3   The tiles that were selected for training. Each tile is coloured by its shape factor (SF) class
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Each residual block of ResUNet-a with the atrous convolu-
tions was replaced by a residual block with a Fractal Tani-
moto Attention Layer (FracTAL). The authors consequently 
named this new network FracTAL ResUNet. This network 
was used by Waldner et al. (2021) and Wang et al. (2022) for 
agricultural field delineation from satellite images.

3.2.3 � Mask R‑CNN

Mask R-CNN is an extension of Faster R-CNN (Ren et al. 
2016). It maintains the bounding box recognition and clas-
sification branches of Faster R-CNN and in parallel adds a 
branch for predicting binary segmentation masks on each 
Region of Interest (RoI) (He et al. 2017). Therefore, Mask 
R-CNN is meant for instance segmentation (semantic seg-
mentation and object detection). The Mask R-CNN architec-
ture has two components: a backbone and a head. The back-
bone uses a convolutional neural network (CNN) typically 
Resnet-101 (He et al. 2015) and the Feature Pyramid Net-
work (FPN) (Lin et al. 2017) to extract feature maps from the 
input image. The head section uses a Region Proposal Net-
work (RPN) for extracting the RoIs, an RoI alignment layer 
for aligning the RoIs with the corresponding regions in the 
input image, fully connected layers for bounding box regres-
sion and softmax classification, and a fully convolutional 

network (FCN) for generating a binary segmentation mask 
for each user-defined class. More details about Mask R-CNN 
can be found in He et al. (2017). Some researchers (Lv et al. 
2020; Meyer et al. 2020) have used Mask R-CNN for seg-
menting agricultural fields.

3.2.4 � Optimised MRS

Unlike the DNNs, the MRS algorithm does not require train-
ing. It can simply be applied to any image of interest to gener-
ate corresponding segments. The outcome of the algorithm 
is controlled by three main parameters namely scale, shape, 
and compactness. With each parameter taking varying input 
values, an endless number of parameter combinations could 
be generated. Determining the optimal parameter combination 
to use for the segmentation of each test image could be done 
through supervised or unsupervised optimisation. Supervised 
optimisation involves the use of reference data while unsuper-
vised optimisation involves the direct use of the image content 
to identify the optimal combination. We demonstrated in our 
previous study (Tetteh et al. 2020b) that optimising the MRS 
parameters in an unsupervised manner produces significantly 
lower segmentation accuracies when compared to supervised 
optimisation. Therefore, in this study, we used the supervised 
segmentation optimisation (SSO) approach proposed by 

Fig. 4   The tiles that were selected for testing. Each tile is coloured by its shape factor (SF) class
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Tetteh et al. (2020a). The core of that SSO approach is the use 
of the MRS algorithm in eCognition, Bayesian optimisation, 
and supervised segmentation evaluation. To use Bayesian 
optimisation, one would have to define an objective function 
to optimise (maximise or minimise). An objective function 
is a function that takes some input (here, a combination of 
scale, shape, and compactness) and then returns a metric. In 
the SSO approach, this metric was computed through super-
vised segmentation evaluation, which involves the geometric 
comparison of segments created with the MRS algorithm with 
their corresponding GSAA parcels. The specific metric that 
we computed was the area-weighted average of the Jaccard 
index (Jaccard 1901). The Jaccard index is popularly known 
as intersection over union (IoU). The parameter combination 
with the highest area-weighted IoU value is considered the 
best combination and the corresponding segmentation result 
is returned by the SSO.

3.3 � Segmentation Experiments

To train the DNNs, we generated two classes namely field 
(class label = 1) and boundary (class label = 2) from the 
GSAA parcels per training tile. For each GSAA parcel, we 
applied an inward buffer of 5 m. The inwardly buffered poly-
gons represented the field layer. The geometric difference 
between the GSAA parcels and the field layer constituted 
the boundary layer. Those two layers were subsequently ras-
terised to create a reference image per training tile. Using 
all four bands, each training and test image had a size of 
256 × 256 × 4. For all DNNs, the number of training epochs 
was set at 50.

Following the approach of García-Pedrero et al. (2019), 
we compiled U-Net using the Adam optimiser (Kingma and 
Ba 2017) with a learning rate of 0.0001. For the loss func-
tion, we used categorical cross-entropy as is usually done in 
the literature when it comes to multiclass classification with 
DNNs. The U-Net model was trained in TensorFlow (Abadi 
et al. 2016) using a batch size of 20. The trained U-Net 
model, when applied to any test image, returns a pixel-wise 
probability image in which each pixel is allocated the prob-
abilities of the field and boundary classes. The actual class 
label per pixel is then determined as the arg max of the prob-
ability image. The outcome of this arg max is an image in 
which each pixel is either assigned to a field or a boundary.

Regarding FracTAL ResUNet, we used the model and 
corresponding hyperparameters that were defined in Wald-
ner et al. (2021). To train FracTAL ResUNet, three refer-
ence images must be generated for each training image. The 
three reference images are the extent mask, boundary mask, 
and distance image. The extent mask is a binary image, 
where all field pixels (class label 1) are one and other pixels 
are zero. The boundary mask is also a binary image with 
boundary pixels (class label 2) being one and other pixels 

being zero. The distance image is created by applying a dis-
tance transform to the extent mask and then normalising 
the resultant image between zero and one. The training of 
the model was done with the MXNet (Chen et al. 2015) 
deep learning library. Here, the batch size was reduced to 
four to enable MXNet to run without raising memory errors. 
When the trained FracTAL ResUNet model is applied to 
any test image, it generates three output layers namely an 
extent (field) probability image, a boundary probability 
image, and a distance image. To delineate the agricultural 
fields, Waldner et al. (2021) used the extent and boundary 
probability images as inputs to hierarchical watershed seg-
mentation. The quality of the delineated agricultural fields 
depends on the specific dynamics threshold ( t

b
 ) applied to 

the edge-weighted graph generated from the boundary prob-
ability image and the extent threshold ( t

e
 ) applied to the 

extent probability image. Just like Waldner et al. (2021), 
we set t

b
 to 0.2 and t

e
 to 0.4. The outcome of the heirachi-

cal watershed segmentation is an image in which a unique 
number is assigned to all pixels belonging to each detected 
field instance.

When it comes to Mask R-CNN, we used the Tensor-
Flow implementation of Abdulla (2017). To enable Mask 
R-CNN correctly learn the variable field sizes and shapes 
contained in a satellite image, we followed the approach 
of Meyer et al. (2020) by changing the RPN anchor scales 
from (32, 64, 128, 256, 512) to (8, 16, 32, 64, 128) and the 
anchor ratios from (0.5, 1, 2) to (0.1, 0.5, 1, 2, 4). Further, 
we changed the maximum number of ground truth instances 
to use per image from 100 to 554 to ensure that all available 
GSAA parcels per image are used during training. We used 
554 because it is the maximum number of GSAA parcels 
per tile. The number of image channels to use was changed 
from three to four. We set the number of classes to one cor-
responding to class label 1, given that we are only interested 
in field instances. The batch size was set to eight to avoid the 
memory errors raised by TensorFlow when the batch size 
was set higher than eight. After applying the trained Mask 
R-CNN model to any test image, a binary image is created 
in which pixels belonging to each detected field instance are 
assigned a value of one and non-field pixels are set to zero.

To effectively use the SSO approach in delineating agri-
cultural fields in any input image, Tetteh et al. (2021) pro-
posed an image masking approach in which the agricultural 
land-cover polygons extracted from the DLM of ATKIS 
were first inwardly (negatively) buffered by 5 m to create a 
separation between adjacent polygons. These inwardly buff-
ered polygons were then used to mask out the non-agricul-
tural areas. This masking process pre-segmented the input 
image. We adopted this masking approach in this study to 
mask the test images before applying the SSO to segment 
the fields.
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3.4 � Evaluation of Segmentation Accuracy

In semantic and instance segmentation tasks, the accuracy 
of a segmentation output is usually measured at the pixel 
level from a confusion matrix. However, we are interested in 
the geometric accuracy of only the segmented fields; hence, 
we opted for object-based accuracy assessment (OBAA). 
Before the OBAA, we first created field polygons by simply 
vectorising only the field pixels of the segmented output 
image generated by each DNN. The output of MRS is a 
vector layer; hence, no vectorization was needed. For each 
method, we calculated two OBAA metrics commonly used 
in computer vision tasks to assess the geometric similarity 
between target objects (vectorised field layers) and their cor-
responding reference objects (GSAA parcels) per test tile. 
The first metric was the IoU (Eq. (2)):

where X refers to all GSAA parcels, Y refers to all vectorised 
fields, ∩ is the spatial intersection operator, and ∪ represents 
the spatial union operator. The IoU metric ranges from 0 (no 
geometric match) to 1 (complete geometric match). Smaller 
fields are generally more sensitive to the IoU metric than 
bigger fields, especially where there is a small spatial mis-
alignment between the fields and their corresponding refer-
ence objects (Tetteh et al. 2021). Therefore, as a second met-
ric, we computed F-score, which is captured as F1 in Eq. (3):

where Precision (Eq. (4)) measures the level of under-seg-
mentation in the segmentation output and Recall (Eq. (5)) 
measures the level of over-segmentation:

The variables and symbols in Eqs. (4) and (5) have the 
same meaning as in Eq. (2). The F-score, precision, and 
recall metrics also range from 0 (worst segmentation) to 1 
(perfect segmentation).

4 � Results

The performance of each method averaged over the 2151 test 
tiles is reported in Table 1. The distribution of the precision, 
recall, F-score, and IoU values can, respectively, be seen 
in Figs. 10, 11, 12, and 13 of the appendix. From Table 1, 

(2)IoU =
Area(X ∩ Y)

Area(X ∪ Y)

(3)F
1
= 2 ×

Precision × Recall

Precision + Recall

(4)Precision =
Area(X ∩ Y)

Area(Y)

(5)Recall =
Area(X ∩ Y)

Area(X)

the FracTAL ResUNet method achieved the highest average 
recall, F-score, and IoU values. The performance of the opti-
mised MRS approach was close to that of FracTAL ResU-
Net. Except for the precision metric, Mask R-CNN obtained 
the worst performance in all other metrics. The optimised 
MRS and FracTAL ResUNet methods obtained the lowest 
precision with U-Net achieving the highest precision.

Based on the F-score and IoU metrics, we analysed the 
performance of each method for the three SF classes created 
at the data preparation stage. Figures 5 and 6 are violin plots, 
respectively, showing the distribution of the F-score and IoU 
values per SF class for the four methods. In both figures, 
the density curves of the methods, particularly for Mask 
R-CNN, have wider spreads at the low compactness class 
but narrower spreads at the medium and high compactness 
classes. Regardless of which method, on average, the lowest 
F-score and IoU values were obtained by test tiles with low 
compactness, and the highest F-score and IoU values were 
obtained by test tiles with medium or high compactness.

A visual inspection (Figs. 7, 8, 9) of the segmentation 
results of the methods at three tiles, respectively, selected 
from the three SF classes reaffirms the results shown in 
Figs. 5 and 6. The segmentation outcome for a tile with 
low compactness is shown in Fig. 7, the outcome for a tile 
with medium compactness is captured by Fig. 8, and the 
outcome for a tile with high compactness is shown in Fig. 9. 
For each of those three figures, the corresponding F-score 
and IoU values obtained by each method are also reported in 
Table 2. As discernible from Table 2, the lowest accuracies 
were obtained in the low compactness class, and the highest 
accuracy was achieved in the high compactness class.

5 � Discussion

Looking at Tables 1 and 2, a positive correlation can be 
established between the F-score and IoU metrics. This corre-
lation can be linked to the similar mathematical formulations 
of those two metrics (Maxwell et al. 2021). The F-score val-
ues were higher than the IoU values due to the higher weight 
put on correctly delineated areas (intersection between the 
reference and target objects) by F-score. Regardless of which 

Table 1   The performance achieved by each method averaged over the 
2151 test tiles

The best performances are in bold font

Method Precision Recall F-score IoU

Mask R-CNN 0.726 0.654 0.682 0.524
U-Net 0.733 0.843 0.781 0.646
MRS 0.715 0.928 0.805 0.678
FracTAL ResUNet 0.714 0.940 0.808 0.683
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of those two metrics is opted for, FracTAL ResUNet proved 
to be the clear-cut winner among the DNNs and ultimately 
the best method as it also outperformed the optimised MRS. 
Although the respective differences in the F-Score and IoU 
values between the FracTAL ResUNet and optimised MRS 
as captured in Table 1 were the smallest, a paired t-test, 
respectively, performed with all the F-score and IoU values 
revealed that the differences were statistically significant (p 
value < 0.006 for F-score and p value < 0.001 for IoU). Over-
all, Mask R-CNN had the worst performance. Just like the 
segmentation results generated for France and Denmark by 
Meyer et al. (2020) from S2 images, the segments created 
with Mask R-CNN in this study as captured in Figs. 7c, 8c, 
and 9c were often wobbly and did not properly capture the 
spatial boundaries (edges) of the agricultural fields. Conse-
quently, Mask R-CNN generally produced the most over-
segmented results as can be observed in Table 1, where it 
had the worst average recall. With very similar precision 
values (Table 1), all four methods generated segmentation 
results with acceptable under-segmentation rates.

The impact of the size and shape of agricultural fields 
on the accuracy of the subsequent segmentation process 
has been well documented in previous studies (Tetteh 

et al. 2020a, 2020b, 2021). In those previous studies, it 
was observed that in areas where the agricultural fields 
were small and/or elongated (i.e. small compactness), the 
segmentation accuracy was low, and in areas with big and 
more compact fields (high compactness), the segmenta-
tion accuracies were high. This observation is coterminous 
with the results shown in Figs. 5 and 6, where the F-score 
and IoU values of all methods increased with increasing 
compactness. The negative impact of elongated fields on 
segmentation accuracies was more prominent in the results 
of the Mask R-CNN method. As visible in Fig. 7c, where 
the tile had low compactness, Mask R-CNN obtained the 
worst F-score and IoU values (see Table 2). A look at Fig. 7c 
clearly shows that Mask R-CNN was unable to detect numer-
ous agricultural fields at that tile, which led to massive over-
segmentation. Beyond the low compactness, the agricultural 
fields at the tile shown in Fig. 7a were mostly dominated 
by mowing pasture, thereby making it difficult to identify 
visible boundaries between the individual fields. In discuss-
ing their segmentation results, Waldner et al. (2021) noted 
that in areas where pasture was prevalent, the field delinea-
tion was less accurate. Therefore, tiles such as Fig. 7a will 
pose problems for any segmentation algorithm because the 

Fig. 5   Violin plots showing the distribution of the F-score values for each method for the test tiles with a low compactness, b medium compact-
ness, and c high compactness
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spatial resolution of S2 does not allow for the proper reso-
lution of the agricultural fields present at such tiles (Tetteh 
et al. 2020a, 2020b, 2021). In Fig. 7, although the results 
of U-Net (Fig. 7d), FracTAL ResUNet (Fig. 7e), and the 
optimised MRS (Fig. 7f) had numerous instances of under-
segmentation, those three methods performed fairly well 
as they correctly delineated most of the agricultural fields, 
unlike Mask R-CNN. In Figs. 8 and 9, where the agricultural 
fields were more compact and had different LU types, the 
corresponding segments generated by all methods had bet-
ter geometric matches to the GSAA parcels when compared 
with the segmentation results of Fig. 7 as aptly captured by 
the F-score and IoU values of Table 2. For both the F-score 
and IoU metrics, the highest leap in segmentation accuracy 
was recorded for Mask R-CNN from low compactness to 
medium compactness (see Table 2). From the low compact-
ness to the medium compactness, the segmentation accura-
cies of U-Net, FracTAL ResUNet, and the optimised MRS 
remained fairly stable (see Table 2).

In this study, the two methods that stood out were Frac-
TAL ResUNet and the optimised MRS. The performance of 
FracTAL ResUNet could be linked to (1) the use of residual 

convolution blocks to deal with the problem of vanishing 
or exploding gradients while training a DNN (Diakogian-
nis et al. 2020), (2) the use of the self-attention mecha-
nism to emphasise important features in convolution layers 
(Waldner et al. 2021), and (3) the use of conditioned mul-
titasking whereby a distance image is first predicted, then 
this information is used to predict boundaries, and finally, 
both predictions are used as the basis to predict extents. It 
is important to emphasise here that FracTAL ResUNet as 
was used by Waldner et al. (2021) could best be described 
as a feature engineering method to extract features (extent 
probability and boundary probability images) that will be 
post-processed to generate the agricultural fields. It remains 
to be seen how FracTAL ResUNet would perform when 
it is directly used to extract agricultural fields through 
pixel-wise semantic labelling without applying any post-
processing method like hierarchical watershed segmenta-
tion. As implemented by Waldner et al. (2021), the accuracy 
of the segmented agricultural fields would largely depend 
on the specific dynamics threshold ( t

b
 ) and extent thresh-

old ( t
e
 ) passed to the hierarchical watershed segmentation 

algorithm.

Fig. 6   Violin plots showing the distribution of the intersection over union (IoU) values for each method for the test tiles with a low compactness, 
b medium compactness, and c high compactness
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The performance of the MRS algorithm could largely 
be linked to the direct use of the reference GSAA par-
cels to guide the segmentation process at each test tile. 
Another factor that might have helped the MRS approach 
was the creation of the masks from the inwardly buffered 
land-cover polygons extracted from ATKIS and the subse-
quent use of those masks to pre-segment the test images. 
In the study of Tetteh et al. (2020a), where the size of 
each tile was 10 km × 10 km, the average segmentation 
accuracy achieved for Lower Saxony was lower than in 
this study. Largely, this can be attributed to the smaller 
sizes (2.56 km × 2.56 km) of tiles used in this study. It 

was reported by Drăguţ et al. (2019) that the segmentation 
accuracy achieved by the MRS algorithm inversely cor-
relates with the spatial extent of the input image.

The three DNNs used in this study are supervised meth-
ods. The DNNs can be trained on some training images, the 
trained model can be saved, and then the saved model can 
be subsequently applied to segment unseen (test) images. 
This concept does not apply to the MRS algorithm because 
it is designed for unsupervised segmentation, hence no 
training is required. Therefore, to ensure a fair comparison 
between the DNNs and the MRS algorithm, we used the 
SSO approach to optimise the MRS parameters. The optimal 

Fig. 7   The segmentation result 
obtained at a tile with low com-
pactness. a The masked MMC 
image of the tile, b the GSAA 
parcels (cyan outlines) overlaid 
on the masked MMC image, c 
the segmentation result (yellow 
outlines) of Mask R-CNN, d 
the segmentation result (orange 
outlines) of U-Net, e the seg-
mentation result (blue outlines) 
of FracTAL ResUNet, and f 
the segmentation result (red out-
lines) of the optimised MRS
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MRS parameter combination established for a tile with the 
SSO approach is specific to that tile, and hence cannot be 
transferred in space to a different tile. This informed our 
decision to optimise the MRS parameters at each test tile. 
Optimising the MRS parameters at the training tiles and then 
transferring the parameters to the test tiles would produce 
very poor segmentation results because in many instances 
tiles with close spatial proximity or the same SF class have 
completely different MRS parameters. Unlike the MRS algo-
rithm, a trained DNN model can be transferred in space to 
segment unseen images.

In their review paper, Persello et al. (2022) highlighted 
how DNNs and earth observation data can be applied to sup-
port the SDGs of the UN. Specific to the second goal of the 
SDGs, fashioning out policies to sustainably achieve food 
security will require agricultural lands to be monitored at 
regional, national, and global scales. The ability of DNNs, 
particularly FracTAL ResUNet, once trained on sample 
images to generalise well on unseen images (Waldner et al. 
2021; Wang et al. 2022), opens up the possibility to deline-
ate agricultural fields on a large scale even in areas where 
reference data are unavailable.

Fig. 8   The segmentation result 
obtained at a tile with medium 
compactness. a The masked 
MMC image of the tile, b the 
GSAA parcels (cyan outlines) 
overlaid on the masked MMC 
image, c the segmentation 
result (yellow outlines) of 
Mask R-CNN, d the segmenta-
tion result (orange outlines) of 
U-Net, e the segmentation result 
(blue outlines) of FracTAL 
ResUNet, and f the segmenta-
tion result (red outlines) of the 
optimised MRS
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Fig. 9   The segmentation result 
obtained at a tile with high com-
pactness. a The masked MMC 
image of the tile, b the GSAA 
parcels (cyan outlines) overlaid 
on the masked MMC image, c 
the segmentation result (yellow 
outlines) of Mask R-CNN, d 
the segmentation result (orange 
outlines) of U-Net, e the seg-
mentation result (blue outlines) 
of FracTAL ResUNet, and f 
the segmentation result (red out-
lines) of the optimised MRS

Table 2   The F-score and IoU values obtained by each method at the three test tiles, respectively, shown in Figs. 7, 8, and 9

The best performance for each method is highlighted in bold font

Figure Shape factor class F-score IoU

Mask R-CNN U-Net FracTAL 
ResUNet

MRS Mask R-CNN U-Net FracTAL 
ResUNet

MRS

Figure 7 Low compactness 0.470 0.758 0.801 0.760 0.307 0.611 0.668 0.612
Figure 8 Medium compactness 0.664 0.791 0.842 0.774 0.498 0.655 0.727 0.632
Figure 9 High compactness 0.756 0.838 0.869 0.860 0.608 0.722 0.769 0.754
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6 � Conclusions

To determine the optimal method for delineating agricul-
tural fields from Sentinel-2 images acquired in Lower Sax-
ony (Germany), we evaluated three state-of-the-art deep 
neural networks (DNNs), namely Mask R-CNN, U-Net, 
and FracTAL ResUNet against an optimised multiresolu-
tion segmentation (MRS) approach. Based on the agri-
cultural parcels declared by farmers within the European 
Common Agricultural Policy (CAP) framework, the seg-
mentation results generated by each method were evalu-
ated using two main metrics namely F-score and intersec-
tion over union (IoU). With an average F-score of 0.808 
and IoU of 0.683, FracTAL ResUNet combined with a 
post-processing approach called hierarchical watershed 
segmentation generated the best segmentation results. 
FracTAL ResUNet was closely followed by the optimised 
MRS approach with an average F-score of 0.805 and IoU 
of 0.678.

For researchers working on the large-scale object-based 
mapping of agricultural land-use types from satellite 
images, this study can serve as a guide regarding which seg-
mentation method to use for the delineation of agricultural 
fields. Based on the outcome of this study, for large-scale 

segmentation of agricultural fields, we recommend the 
use of FracTAL ResUNet. Once the FracTAL ResUNet 
model has been trained, it generalises very well and can be 
transferred in space to effectively segment unseen images. 
This is in sharp contrast to the optimised MRS approach, 
which is not transferable in space. To segment any unseen 
image with the optimised MRS approach, reference data 
are always required.

Future work would focus on: (1) combining FracTAL 
ResUNet and the hierarchical watershed segmentation 
algorithm to delineate all agricultural fields in Germany 
based on multitemporal Sentinel-2 images, (2) the use of 
Bayesian optimisation to optimise the hyperparameters of 
FracTAL ResUNet and the hierarchical watershed segmen-
tation algorithm, and (3) testing the temporal transferabil-
ity of FracTAL ResUNet from one year to another year of 
interest.

Appendix

See Figs. 10, 11, 12 and 13.

Fig. 10   Violin plots showing 
the distribution of the precision 
values for each method for all 
test tiles
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Fig. 11   Violin plots showing 
the distribution of the recall 
values for each method for all 
test tiles

Fig. 12   Violin plots showing 
the distribution of the F-score 
values for each method for all 
test tiles
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