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Simple Summary: The New Zealand species of a genus of black fungus gnats show clear phylogeo-
graphic patterns, at the species level and above. North Island harbours more species than South
Island, and according to our phylogeographic analyses, was more often the starting point of dispersal
events to South Island than vice versa. We therefore deduce that North Island is a radiation centre.
Initial colonisations of New Zealand took place three times, most likely starting from Australia, with
the earliest in the late Miocene.

Abstract: Sciaridae (Diptera) is a widespread insect family of which some species can reach high
abundances in arboreal habitats. This trait, together with their (passive) mobility, enables them to
quickly colonise suitable habitats. To reveal the biogeographic history of the New Zealand members
of the sciarid genus Pseudolycoriella, we analysed three molecular markers of selected species and
populations in a Bayesian approach. At the intra- and interspecific levels, we detected a pattern of
northern richness vs. southern purity, which has probably developed as a result of Pleistocene glacial
cycles. Since the late Miocene, we identified 13 dispersal events across the sea strait separating New
Zealand’s main islands. As nine of these dispersal events were south-directed, North Island can be
considered the centre of radiation for this genus. An unequivocal re-colonisation of North Island
was only observed once. Based on the inclusion of three undescribed species from Tasmania and on
previously published data, three colonisations of New Zealand are likely, all of them assumed to be
of Australian origin. One of these most probably took place during the late Miocene, and the other
two during the late Pliocene or at the Pliocene–Pleistocene boundary.

Keywords: Australia; colonisation; intraspecific distribution; island biogeography; phylogeography

1. Introduction

New Zealand and its biogeography have been investigated by generations of natural
scientists. In this context, the origin of its unique biota as well as their distributions have
been a focus of interest, and several studies have already addressed the biogeography of
New Zealand’s insects (see [1–3]). The cause of this uniqueness is New Zealand’s outstand-
ing geological genesis, and in particular its long and ongoing isolation from neighbouring
landmasses. At the end of the Mesozoic, Zealandia—a landmass that comprised what
today is New Caledonia and New Zealand—separated from Australia and then was further
fragmented [1,4]. These fragments then experienced even more drastic geological events.
At the Oligocene–Miocene boundary, the future New Zealand was affected by major in-
undations and almost entirely disappeared in the ocean, although the archipelago was
never completely submerged [5,6]. The re-emerging landmasses were strongly affected
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by plate tectonics, as a new plate boundary had formed in the Eocene, with today’s North
Island and the western part of South Island located on the Australian plate, while the
remaining part of today’s South Island is located on the Pacific plate. The land masses that
represent the two extant main islands were separated by sea most of the time [7,8]. In the
Pleistocene, ca. 1 Ma ago [8], eustatic lowering of the sea level formed land connections be-
tween the islands for the first time. However, due to the glacial cycles with their associated
sea level oscillations, land bridges were ephemeral. Another still persisting consequence
of these Pleistocene cycles is the well-known “beech gap”—a region in central South Is-
land where the iconic southern beeches (Nothofagus spp.) have not re-colonised glacially
devastated areas [9].

In arboreal habitats, Sciaridae are rich in species and in abundance [10]. These globally
distributed gnats are minute to medium-sized, and due to their uniform habitus, they are
easy to recognize as a group, but determination to the species level usually proves to be
challenging. Therefore, it is not surprising that, despite their prominence and commonness,
only the small minority of pest species has attracted wider attention. This is regrettable,
because due to their ecological role as decomposers [11,12], their ability to establish popula-
tions at high abundances [10], and their ability to fly or disperse passively, they seem to be
well-suited as model organisms for the assessment of biogeographic events. For instance,
airborne dispersal was recorded at altitudes up to 3350 m above the South Pacific [13], and
they have been found in arthropod fallout on snow fields near the summit of Mt. Teide on
Tenerife [14]. Even the drifting of different developmental stages with plant material, or
pure surface-floating, is easily conceivable [15].

A sciarid taxon well-suited for unravelling the colonisation and biogeographic history
of New Zealand might be the genus Pseudolycoriella. In the course of a recent revision by
Köhler [16], the number of known species on these islands rose from seven to thirty-eight.
Two of these still do not have valid names, because formal descriptions are lacking: males
of these—a prerequisite for species descriptions in sciarids—are not available. Only one of
these New Zealand species, P. cavatica, is also known from other countries. Its wide distri-
bution (recorded from Australia, Hawaii, New Caledonia, Seychelles, South Africa, and
Tristan da Cunha [16]), intraspecific molecular data [17], and lack of a closer phylogenetic
relationship to any other Pseudolycoriella species occurring in New Zealand [16] support the
hypothesis that P. cavatica is an introduced species. Accordingly, this species was omitted
from the subsequent analyses. Of the 37 autochthonous and endemic New Zealand species
(both described and undescribed), 25 are known from more than one sample site. These
species can be roughly assigned to four broad distribution patterns (Table 1). Only three
native species are distributed throughout New Zealand. Another four species are found on
North Island and the northern part of South Island. Twelve species are restricted to North
Island, and six to South Island. The relative distribution of endemics in Pseudolycoriella
on the two main islands differs significantly from the ratio expected according to Trewick
et al. [18], who reviewed the regional insect endemicity of five major regions, but also from
the expectation in relation to the area ratio of the two islands (Chi-square goodness of fit
test: X2 ≈ 4.5 resp. X2 ≈ 4.1, α = 0.05, df = 1). Thus, compared to South Island, North
Island has a higher number of species than expected. Even the number of species currently
known from only one sample site tends to show this biased distribution across both islands
(six species from North Island vs. six from South Island).

Consequently, we decided to attempt a phylogenetic study in order to make these
inhomogeneous distribution patterns comprehensible. We address the question of whether
there is evidence that these patterns are the result of Pleistocene glaciation, or even of
older geological phenomena. We also intend to draw conclusions on New Zealand’s black
gnat colonisation history. These data are compared against the background of the already
known biogeographic patterns of New Zealand insects.
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Table 1. Distribution of 26 out of 38 Pseudolycoriella species found at more than one sample locality
across New Zealand according to Köhler [16]. A probably introduced species is marked with
an asterisk.

Widely Distributed
on Both Islands

Distributed on North Island
and Northern South Island Endemic to North Island Endemic to South Island

P. cavatica * P. dagae P. aoteraoa P. fiordlandia
P. subtilitegmenta P. gonotegmenta P. bispina P. jaschhofi
P. tonnoiri P. macrotegmenta P. breviseta P. jejunella
P. zealandica P. whena P. frederickedwardsi P. mahanga

P. jejuna P. sudhausi
P. maddisoni P. tewaipounamu
P. orite
P. porotaka
P. puhihi
P. raki
P. robustotegmenta
P. wernermohrigi

2. Materials and Methods

Specimens were either collected by Catrin and Mathias Jaschhof in 2001 and 2002 (col-
lecting permit #9900/143/3/04 issued by the Department of Conservation, New Zealand)
or by Peter A. Maddison from 2014 to 2016. Thus, our biogeographic analyses are based
on the material previously used by Köhler [16] for a taxonomic revision and description
of new species. In addition to the material from New Zealand, specimens from Tasmania
collected with Malaise traps at the Warra Long-term Ecological Research Site [19] were
incorporated in the analyses.

DNA extraction and sequencing were performed as in Köhler [16]. We analysed three
genes: cytochrome c oxidase subunit I (COI; 658 bp), the domains IV and V of the mitochondrial
large subunit rRNA gene (16S; 538 bp), and the nuclear 28S ribosomal gene (28S; 1857 bp). The
gene selection was based on the first phylogenetic study of sciarids by Shin et al. [11]. This
mixture of rapidly evolving mitochondrial genes and a more conservative nuclear gene seems
to be appropriate for the time scale under investigation, as already applied by Köhler [16].
In some cases, residual DNA from the DNA extraction by Köhler [16] was re-sequenced to
eliminate ambiguities in COI or 16S sequence of some specimens. For this purpose, the primer
Psl_COI_for (5′–ATTATAATTTTTTTYATAGTDATACC–3′) was designed and successfully
applied. All sequences are available from GenBank, with the corresponding GenBank accession
numbers listed in the electronic supplement (Table S1).

To enable intraspecific spatial analyses, the software Popart 1.7 [20] was used to
generate median-joining haplotype networks [21] based on COI and 16S sequences. For
the interspecific relationships and especially for the divergence time estimates, a Bayesian
analysis was performed using the multilocus sequence data package *BEAST from the
program BEAST 2.6.0 [22]. As two different monophyletic Pseudolycoriella species clades
exist in New Zealand [16], we conducted two independent *BEAST analyses. Input files
were generated with Beauti [23] using the following parameter settings: the HKY model
as a substitution model, estimated base frequencies, four gamma categories, a strict clock
model, and a birth–death model for the speciation process. If specimens of a species had
identical haplotypes in all three genes, only the haplotype combination of one specimen
was included in the input files. The input files comprise sequences from 95 specimens
of 35 species (35 specimens of 13 species belonging to the P. macrotegmenta clade, and
60 specimens of 22 species of the second monophyletic group).

The (current) lack of fossil sciarids from New Zealand (this taxon is not mentioned
by Schmidt et al. [24]) and of Pseudolycoriella globally does not permit direct calibration.
Thus, fixed substitution rates were used: 0.01345 for the mitochondrial markers and 0.0006
for the nuclear marker. These rates were derived by Papadopoulou et al. [25] for the
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same genes used in the present study based on the biogeography of tenebrionoid beetles
driven by the formation of the Mid-Aegean trench 9–12 Ma ago. The Markov Chain Monte
Carlo (MCMC) was set to a length of 20,000,000 generations with a sampling interval of
7500 iterations. The obtained samples were checked for sufficient effective sample size
(ESS) values using the software Tracer 1.7.1 [26]. The initial 10% of the sampled generations
were discarded as burn-in. The coalescence tree was generated with TreeAnnotator [23].

To draw inferences about the ancestral origin of New Zealand Pseudolycoriella species,
the RASP 4.2 software [27,28] was used, applying the statistical dispersal–extinction–
cladogenesis model (S-DEC). For this purpose, all specimen records were assigned to
four major regions, i.e., Tasmania, North Island, the northern part of South Island, and
the southern part of South Island including Stewart Island. Thereby, South Island was
divided along 43◦S, roughly corresponding to the northern edge of the “beech gap” [9]. A
contiguous distribution is assumed for P. subtilitegementa, which was recorded in southern
North Island and southern South Island [16].

For easier comprehension, all nodes of the two resulting chronograms are numbered
consecutively, and branches are named after their delimiting nodes (indicated in the text
with braces).

3. Results
3.1. Intraspecific Biogeographic Patterns

Four species were well-suited for the analyses of intraspecific biogeographic patterns.
Two of these are distributed across both main islands, i.e., P. tonnoiri and P. zealandica. For
these, 26 COI and 20 16S sequences as well as 44 COI and 42 16S sequences, respectively,
were available. The calculated haplotype networks revealed a subdivision into populations
on both sides of Cook Strait (Figure 1). While P. tonnoiri possesses two haplotypes, which
only differ in one single substitution in COI (Figure 1A), P. zealandica was found to have a
tripartite population structure with clear spatial structure (Figure 1B). The genetic diversity
of the latter declines from North Island to South Island: five different haplotypes of both
COI and 16S were recorded for North Island from two geographically very close localities
(the corresponding points overlap in Figure 1B), while only three COI haplotypes and one
16S haplotype were obtained for South Island.

The two species P. tewaipounamu and P. sudhausi solely inhabit South Island and exhibit
remarkable haplotype patterns. Pseudolycoriella tewaipounamu (50 COI, 46 16S sequences)
has three genetic lineages exhibiting a clear phylogeographic pattern: in the north-west
(Buller District; yellow circles in Figure 2A), the south-west (Westland and Southland
Districts; red circles), and the south-east (Clutha District; blue circles) of South Island. The
genetic diversity of the populations within these lineages varies strongly. Specimens from
the north-western lineage exhibit the greatest differences and diversity in COI; the south-
eastern lineage is also genetically diverse and well differentiated from the north-western
lineage, while the sequences of the south-western lineage are all identical and represent a
haplotype shared with the north-western lineage (Figure 2A). The 16S haplotype network
indicates a pattern consistent with that of COI, although the differences at the population
level are less marked or absent. The only major difference is the occurrence of a second
haplotype in the south-western linage, resulting from an additional transition.

For P. sudhausi (19 COI, 16 16S sequences), three clusters are distinguished: on Stewart
Island (blue circles in Figure 3A), and in the south-western (south of Fiordland; red circles)
and western parts of South Island (north of Fiordland and on the West Coast; yellow circles).
The shortest known geographic distance between sampling localities belonging to different
genetic clusters lies in Fiordland and is only about 23 km (Figure 3B). Specimens of a
southern lineage population were sampled along the Eglinton River West Branch valley,
while members of the northern lineage were caught in the Hollyford River valley.
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mens are indicated by a DNA symbol.
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the LGM and potential dispersal (indicated by an arrow). Glacier extent after the −4 ◦C model of
Golledge et al. [30]. The ice shield extent during LGM is outlined in white.
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and the National Aeronautics and Space Administration, USA.

3.2. Interspecific Differentiation and Phylogeny

The first monophylum of autochthonous New Zealand Pseudolycoriella species com-
prises the species closely related to P. macrotegmenta and is partitioned into three subclades
(Figure 4). One includes the majority of nine species (P. macrotegmenta s. str. clade) and
stands in a sister relationship with a subclade composed of three still—undescribed species
from Tasmania. The most basal subclade is represented by a single New Zealand species
(P. jaschhofi) and originated in a species split during the Pliocene or Pleistocene (node 1,
2.98 Ma; 95% HPD interval: 1.87–4.30 Ma). Of the subsequent eleven speciation events,
three most likely took place in the early Pleistocene, while the others occurred not ear-
lier than one million years ago. According to a RASP analysis, the most recent common
ancestor (MRCA) of the P. macrotegmenta s. str. clade most likely inhabited North Island
(node 5, 63.1%). The MRCA of the Tasmanian species and the P. macrotegmenta s. str. clade
was probably distributed across Tasmania and North Island (node 2, 43.5%). The second
most likely scenario—a solely Tasmanian distribution—has a probability value of 17.9%.
For node 1, i.e., the most basal one, the probability values for the different distribution
scenarios are close together and do not exceed 12.5%; thus, the distribution at this node
remains unsolved.

The chronogram of the second monophyletic group of New Zealand Pseudolycoriella
species (Figure 5) replicated the tripartite structure already shown in Köhler [16]. Accord-
ingly, the naming of the three subclades after species whose names have been known for
decades is retained (P. zealandica, P. bispina, and P. jejuna clade; indicated by different
colours in Figure 5). Compared with the P. macrotegmenta clade, this monophyletic group
has a longer speciation history. The first speciation occurred in the late Miocene (node 18,
9.95 Ma; 95% HPD interval: 7.45–12.38 Ma), and was followed by 20 species splits until
the Pleistocene, evenly distributed across time. The phylogeographic analysis yielded
a probability value of 51.8% that the MRCA of this group inhabited North Island (node
18). The P. zealandica clade is the youngest of these three taxa; the basal species split took
place in the early Pliocene (node 19, 4.95 Ma; 95% HPD interval: 3.64–6.35 Ma). Its MRCA
probably inhabited entire New Zealand (72.8%). The basal splits of the other species clades
were assigned to the late Miocene: the speciation of the MRCA of the P. bispina clade was
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estimated at 7.90 Ma (node 24; 95% HPD interval: 6.02–9.62 Ma) and that of the P. jejuna
clade at 6.09 Ma (node 33; 95% HPD interval: 4.92–7.41 Ma). The most likely distribution of
the MRCA of the P. bispina clade was North Island (87.3%). The probability values of the
distribution of the P. jejuna clade are as follows: entire New Zealand 41.9%; North Island
and the northern part of South Island 22.8%; and only North Island 29.0%. Based only on
the highest probability values assigned to each MRCA of the 20 species splits that occurred
in the three Pseudolycoriella clades, nine MRCAs were distributed in North Island, nine in
both main islands, and two (nodes 38 and 41) in South Island.
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analysis (based on COI, 16S, and 28S). For each interspecific node, the probability of distributions of Figure 4. Chronogram of the Pseudolycoriella macrotegmenta species clade according to a *BEAST
analysis (based on COI, 16S, and 28S). For each interspecific node, the probability of distributions of
the respective taxon is depicted as a pie chart obtained from a RASP analysis (S-DEC). The distribution
of each extant species is given by inserted maps (NI, North Island; nNI, northern North Island; nSI,
northern South Island; SI, South Island; sNI, southern North Island; TAS, Tasmania).
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of the stem species’ distribution is depicted as a pie chart obtained from a RASP analysis (S-DEC).
The distribution of each extant species is given by inserted maps (BP, Bay of Plenty; cSI, central
South Island; FN, Fiordland North; FS, Fiordland South; NI, North Island; nSI, northern South Island;
SI, South Island; NT, Taupo North; sNI, southern North Island; sSI, southern South Island; STI,
Stewart Island).

Supplementary Tables S2 and S3 give the time estimates and probability values for
each region of origin for all species distributions shown in Figures 4 and 5.

4. Discussion
4.1. Ice Ages and Their Influence on New Zealand’s Scarids

The two analysed species, which are distributed across both large islands, i.e., P. tonnoiri
and P. zealandica, both show spatial structuring of their haplotypes, with a clear split
along Cook Strait. However, the level of diversity of haplotypes and their geographic
distribution differs greatly between these species. In P. tonnoiri, the lineages differ in
only a single base substitution. However, this species belongs to the P. macrotegmenta s.
str. clade, whose species are generally not strongly genetically differentiated. This led
Köhler [16] to the conclusion that their radiation is more recent than in other New Zealand
Pseudolycoriella species groups. Consistent with this, the split between the two lineages of
P. tonnoiri has an estimated median age of 28 ka, making it the most recent in our analysis
(node 13 in Figure 4). As its ancestor (node 9 in Figures 4 and 6A–C) most likely inhabited
only North Island, the most parsimonious explanation is that this region was the origin
of P. tonnoiri. Interestingly, P. tonnoiri was recently reported from Auckland Island, more
than 450 km south of New Zealand’s main islands [31]. Thus, its occurrence on the remote
Auckland Island might be a consequence of an ongoing southward dispersal.

In contrast, P. zealandica possesses several haplotypes, which are well-differentiated
from each other by several mutational steps and exhibit a clear spatial structure. The
genetic diversity of this species decreases from North Island to South Island, making an
origin on North Island and a later dispersal to South Island the most probable scenario.
Pseudolycoriella zealandica clearly manifests a pattern of northern richness and southern
purity (also known as out-of-north pattern; cf. [18]). The tripartite spatial haplotype
structure of P. tewaipounamu repeats this pattern, although the species is restricted to South
Island. The phylogeographic structure within this species might be explained by the last
ice age: two genetic lineages, estimated to be at least 112 ka old (node 42 in Figure 6), were
forced to retreat into northern and south-eastern refugia on South Island as the ice shield
of the Southern Alps reached its largest extent during the Last Glacial Maximum (LGM,
Figure 2B). Shulmeister et al. [32] found evidence for a gradual warming during the early
deglaciation instead of an abrupt warming. Thus, the retreat of the Southern Alps’ ice sheet
presumably started earlier on its northern margin. This might have allowed a leading-edge
southwards expansion out of the north-western refugium, while the south-eastern lineage
was still trapped (Figure 2C). It should be mentioned in this context that the Catlins (i.e., the
most south-eastern part of South Island) have an extraordinary inventory of Pseudolycoriella
species. Besides the aforementioned P. tewaipounamu, five other Pseudolycoriella species
were collected there. Three of them (P. hauta, P. plicitegmenta, and P. porehu) were found
exclusively in this region and seem to be endemic [16].

In the case of P. sudhausi, a recolonisation of the areas formerly covered by glaciers
occurred not only from the North but also from the South. During postglacial range
expansion, the lineages originating in the south-western and the western parts of South
Island spread with the advancing forest habitats, finally meeting at the Divide (a pass of
532 m asl; Figure 3B) after approaching through two valley systems from opposite sides
of the pass. However, a subsequent fusion of these lineages was probably prevented by
high-density blocking [33]. The high density of specimens of a single lineage within the
respective populations reduces the probability that immigrants from other populations will
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find a suitable mate. Consequently, the possibility of them successfully reproducing with
members of the local population is greatly reduced.
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The intraspecific phylogeographic patterns of these Pseudolycoriella species resemble
those known for other New Zealand taxa. Thus, a phylogeographic break along Cook
Strait has been observed for several insect species, such as Kikihia subalpina (Cicadidae,
Hemiptera) [34] and Talitropsis sedilotti (Rhaphidophoridae, Orthoptera) [35]. Examples
of spatially structured subpopulations on South Island were found in K. subalpina [34],
as well as the zopherid beetles Epistranus lawsoni and Pristoderus bakewelli (Zopheridae,
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Coleoptera) [36]. Consequently, if a sufficient degree of taxonomic knowledge exists,
Sciaridae is also a group that is well-suited for biogeographic analyses. This is particularly
due to their high (albeit passive) mobility and their ability to quickly establish dense and
large populations, which apparently do not intermix with other intraspecific lineages at
secondary contact zones [37].

4.2. Island Hopping and Speciation

Speciation events can only occur on one of the main islands due to the (almost)
persistent separation of these islands and the limited gene flow between the separate
Pseudolycoriella lineages (see above). In the case of a species distributed throughout New
Zealand, the speciation must therefore have been followed by a colonisation event. Hence,
two principal basic types of colonisation have to be distinguished within New Zealand:
from North Island to South Island, and vice versa. In most cases, the direction of these
colonisation events can be deduced from the region of origin of the respective lineage
as revealed by RASP analyses, similar to the interpretation approach applied above to
P. tonnoiri, where an intraspecific differentiation on North Island was followed by a south-
ward dispersal. Similar reasoning can also be applied to P. macrotegmenta at the intraspecific
level, where a southward dispersal most likely took place before differentiation into the
two island-specific lineages (branch {14,15} in Figure 4).

Besides these biogeographically clear cases, RASP analyses did not always reveal
a conclusive indication of the regions of origin of consecutive species. Thus, the results
for the closely related species P. gonotegmenta, P. plicitegmenta, P. robustotegmenta, and
P. subtilitegmenta (outgoing from node 10 in Figures 4 and 6A) suggest a sequence of
MRCAs with a distribution across entire New Zealand (node 11 and 12). The existence
of descendants of a widespread species which also occur on both large islands would
contradict our hypothesis of limited dispersal and thus a restricted gene flow between these
islands. This scenario would require additional colonisation and extinction events and thus
violate the principle of parsimony. However, the probability values for the origin of the root
(node 10) of this four-species complex do not allow a clear distinction between the scenarios
that the MRCA inhabited entire New Zealand (Figure 6B) or solely North Island (Figure 6C).
Thus, a southward dispersal event might be assigned to branch {9,10} or branch {10,11}.
The biogeographic events outgoing from node 11 also remain vague. Starting with the
ancient species at node 11, which most likely existed across entire New Zealand, we have
to account for at least one dispersal event (Figure 6D–E). This dispersal must have taken
place either during the anagenesis of P. gonotegmenta (Figure 6D) or during the existence
of its adelphotaxon prior to the differentiation at node 12 (Figure 6E). However, we could
not deduce the direction, because it was not possible to assign the species split at node 11
to any region. A third possibility is a vicariance event which took place during the time
of differentiation at node 11 (Figure 6F). In this case, the adelphotaxon of P. gonotegmenta
(i.e., branch {11,12}) inhabited the southern part of South Island, from where it must have
rapidly dispersed northwards. The dating estimate according to *Beast analysis supports
such a scenario: an estimated mean age of 30.4 ka (95% HPD interval: 3.2–68.6 ka) is given
for node 11. Thus, the species’ split coincides with the time frame of the LGM (29–31 ka
according to Williams et al. [38]), when New Zealand’s islands were connected and the
Southern Alps were largely covered by glaciers. A spatial separation of populations by
these glaciers might be regarded as a plausible cause for the differentiation into two species
initiated at node 11. Nevertheless, we consider this particular dispersal event to have an
undetermined direction and that it occurred after the time frame of node 11. In total, the
P. macrotegmenta s. str. clade—all species descend from node 5—has most likely undergone
three North-to-South dispersal events and one of unknown direction.

Several dispersal events were also detectable for the second monophyletic group of
autochthonous New Zealand Pseudolycoriella species. A dispersal event at the intraspecific
level was already shown above for P. zealandica, assigned to branch {21,22}. A second
intraspecific dispersal, with the same direction, was detected for P. dagae. Above the species



Insects 2023, 14, 548 12 of 18

level, dispersal events were identified during the existence of branches {18,19}, {24,32},
{26,27}, and {39,40} (Figure 5). The dispersal event during the existence of branch {39,40} is
particularly important, because it is the only one that was unequivocally in the direction of
South Island to North Island.

At the root of the P. jejuna clade, a similar situation exists to that described above for
the P. gonotegmenta species group. RASP analysis again reveals an entire-New-Zealand
distribution of the MRCA and also for one of its descendants (node 33 and 37 in Figures 5
and 7). The MRCA was either distributed across entire New Zealand or solely on North
Island. Thus, two scenarios are plausible: a southward dispersal before the split at node
33 (Figure 7A), or this dispersal event occurring in the time frame between split 33 and
37 (Figure 7B). Both scenarios require three dispersal events: in the first scenario, three
south-directed events, and in the second scenario, one south-directed and two north-
directed dispersal events. On average, the probability values of ancestral species ranges
are higher in the first scenario. However, because of this ambiguity, we instead assign the
first southward dispersal event on the composite branches {23,33,37} to a single branch.
The subsequent events on branches {37,43,44} and {44,present} were regarded as events for
which the direction of dispersal cannot be resolved.
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node, the probability values for the considered MRCA distribution are given.

Branches to which biogeographical events could be assigned were taken from both
chronograms and are shown comparatively in Figure 8. A total of 13 colonisation events
can be shown for both Pseudolycoriella species groups, with a clear directional disparity:
nine events had a southern direction, one a northern direction, and three an unresolved
direction. However, this picture is still incomplete, because genetic data are not available
for all known species. Three of these genetically unsampled taxa inhabit North Island, and
two South Island. Existing morphological data unfortunately do not allow their precise
placement in the phylogenetic system (compare Figure 61 in Köhler [16]). Nevertheless, at
least one further southward dispersal event has to be assumed for one species from South
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Island (i.e., P. porehu), because morphology implies a closer relationship with the northern
P. orite than the southern P. mahanga [16].
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The dispersal events within New Zealand do not show any clear temporal pattern
(Figure 8). Since the initial colonisation of New Zealand (see below), dispersal across the
sea straits separating the main islands (Kuripapango Strait during the late Miocene–early
Pliocene; Manawatu Strait during the late Pliocene; Cook Strait in recent years [8]), seems
to be evenly distributed from the late Miocene to the present. Presumably, the number of
events is too low and their resolution in time is not fine enough for the identification of
possible periods with increased colonisation rates.

Due to imbalance in the migration direction, North Island has to be regarded as a
radiation centre, while South Island is a receptor of immigrating taxa. Thus, taxa invading
South Island from the North rarely speciated and even more rarely recolonised North Island.
Consequently, the pattern of northern richness vs. southern purity, already demonstrated
at the intraspecific level, is repeated at the species level.
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In general, a poleward impoverishment of genetic diversity has commonly been
observed, as shown by Hewitt [39] for Europe and North America, and is explained by
the Pleistocene climatic cycles. The main reasons in the northern hemisphere are the
extirpation of northern populations and the concentration of populations in southern
refugia during glacial periods, and genetic bottlenecks during leading-edge expansions
during interglacials. These general effects also apply to New Zealand, of course, with the
compass directions reversed. However, forest communities persisted even in the southern
parts of South Island during glacial maxima [4], speaking against a complete extinction
of all southern populations of Pseudolycoriella. This assumption of constant survival of
Pseudolycoriella even in the extreme South of New Zealand is clearly supported by our
genetic data and also by the existence of species such as P. hauta, P. plicitegmenta, and
P. porehu, which occur exclusively in this region.

Hence, an increased extinction rate cannot be considered to be the main cause of the
lower biodiversity on South Island. As an alternative, a reduced speciation rate has to
be taken into consideration, as observed by Buckley et al. [6] for zopherid beetles during
the Miocene and Pliocene for New Zealand as a whole. At first glance, the presence of
multiple forest refugia should lead to a greater number of geographically separated popu-
lations and thus to a higher probability of speciation events, but also to genetic bottlenecks.
Furthermore, all southern populations presumably faced a time-lag in their postglacial
dispersal opportunities, as we suggested for P. tewaipounamu. Therefore, southern popula-
tions could not colonise such large areas as their northern counterparts during interglacials.
Consequently, they were not able to disperse to as many areas that became refugia during
subsequent ice ages, which resulted in an on-average lower chance of becoming separated
and erecting reproductive barriers within their ranges.

Although the existence of undiscovered Pseudolycoriella species is not unlikely, we
consider our conclusions to be plausible. For one thing, we do not expect many undiscov-
ered species, because although the focus of the fieldwork was on South Island, this was
not reflected in a higher number of species compared to North Island. Furthermore, we
consider it highly unlikely that our sample was so biased that the discovery of additional
species would lead to significantly different patterns.

4.3. Colonisation of New Zealand

The most likely areas of origin for the colonisation of New Zealand are Australia
and New Caledonia. Phylogenetic connections between Australia and New Zealand
have been frequently observed, and were, for example, demonstrated for the well-known
bioluminescent fungus gnat genus Arachnocampa (Keroplatidae, Diptera) [40]. However,
links to New Caledonia are also possible, as for example known in New Zealand cicadas,
for which two independent colonisations were identified: one from Australia and one from
New Caledonia [41]. Although six publications from the last decade address the occurrence
of Pseudolycoriella species in the countries neighbouring New Zealand, reporting 17 species
for Australia and 14 for New Caledonia [42–47], the sciarid fauna of the Australasian and
wider Pacific region is still poorly understood. Furthermore, all these studies are exclusively
based on morphological analyses, which currently do not allow species-level hypotheses of
relationships to be formulated, as would be possible with the use of appropriate molecular
markers. Therefore, it was not possible to identify phylogenetic relationships outside New
Zealand. The inclusion of three undescribed species from Tasmania in our study revealed
that these represent a monophyletic group within the P. macrotegmenta lineage comprising
New Zealand species. Thus, we must ask how often New Zealand was colonised by
this genus.

In light of the fact that the genus Pseudolycoriella did not originate in New Zealand,
as shown by the phylogenetic tree of Köhler [16], two mutually exclusive scenarios arise:
two colonisation events by the MRCAs of the two monophyletic groups with a subsequent
(re)colonisation of Tasmania starting from New Zealand, or three colonisation events. In the
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latter case, the MRCA of the complete P. macrotegmenta lineage would also have originated
in Tasmania/Eastern Australia.

To assess the likelihood of each possibility, we have to consider the ancient meteoro-
logical, oceanographic, and climatic conditions in the New Zealand region. An eastward
aeolian or pleustonic transport of tiny dipterans from eastern Australia to New Zealand
is easily conceivable because of (i) the steady westerly wind regime caused by the mid-
latitude westerlies [48] as well as (ii) the eastward sea currents (eastern extension of the
East Auckland Current between Australia and the northern tip of New Zealand [49] and
the Subtropical Front reaching the southern parts of New Zealand [50]). Furthermore, these
eastward-directed meteorological and oceanographic constellations are not of recent origin.
Thus, the wind regime is assumed to already have existed in the Pliocene, as Li et al. [51]
revealed that the westerlies experienced a poleward shift of 1.9 degrees 3.3 to 3.0 Ma ago.
The sea currents reaching New Zealand are extensions of major global currents such as the
South Pacific Gyre or the Antarctic Circumpolar Current, which also existed several million
years ago [52].

Assuming that the probability of a single dispersal event is not homogeneously dis-
tributed over the associated branch of the chronogram, but rather that the colonisation events
precede the splitting of the species only by a short time span, the first colonisation of New
Zealand by an ancient Pseudolycoriella species might be hypothesised to have occurred approx-
imately 10 Ma ago (on branch {past,18}). This is later than the mid-Miocene climatic optimum
(~16.9–14.7 Ma [53]), after which the global climate started cooling down [54]. This cooling
has also led to changes in New Zealand’s vegetation structure [4,55,56], for example towards
the dominance of southern beeches (Nothofagus spp.) in forest communities [55]. During
this period, the rainforests in inland south-eastern Australia decreased, but the rainforest
communities on the east coast persisted [57], which supports the hypothesis that the latter
have been highly suitable for gnats and therefore might have served as a donor region for
individuals drifting to New Zealand. For the other two potential colonisation events dated
during the late Pliocene or to the Pliocene–Pleistocene boundary (on branches {past,1} and
{1,2}), further cooling must be taken into consideration. Prebble et al. [56] dated the second
major cooling episode of the last 30 Ma to this time frame. That the events in question
are likely to have occurred during cooling periods, when species’ ranges shift towards the
equator [39], also points to an origin in temperate regions of Australia and not in tropical
New Caledonia. However, the presumed steady patterns of air and water circulation cannot
automatically be considered to have led to successful colonisation events, because these
can be prevented by high-density blocking, as shown at a more regional and intraspecific
level in the case of P. sudhausi. Consequently, in order to successfully colonise, arriving
individuals would have to have a competitive advantage over the indigenous species in
utilising the available resources. If climatic changes did not occur simultaneously in New
Zealand and south-eastern Australia, the ancestors of today’s New Zealand Pseudolycoriella
species may already have been better adapted to cooler climates than New Zealand species
using the same resources.

On the basis of all these considerations, we think that it is more likely that New
Zealand was colonised three times by ancient Pseudolycoriella species originating from
Australia. In this respect, our gnats are not special and join numerous examples of New
Zealand insect taxa that originated in Australia [5]. Nevertheless, further faunistic and
taxonomic work is needed on the sciarids of the Australian and the Oceanian realms, thus
allowing increased use of Sciaridae to address biogeographic assessments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14060548/s1: Table S1. Sequenced specimens of Pseudoly-
coriella spp. (Sciaridae, Diptera) from New Zealand and Tasmania with GenBank accession numbers;
Table S2. Time estimates and probability values for the MRCA distribution for each node of Figure 4;
Table S3. Time estimates and probability values for the MRCA distribution for each node of Figure 5.

https://www.mdpi.com/article/10.3390/insects14060548/s1
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