
On the Stepwise and Disciplined Engineering of
Adaptive Service-Oriented Applications

H a b i l i t a t i o n s s c h r i f t

Zur Erlangung der Venia legendi für Informatik,

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

Von Dr. Ing. Nasreddine Aoumeur
geb. am 16 März 1964 in Mascara

Gutachter
Prof. Gunter Saake (Otto-von-Guericke-Universität Magdeburg)

Prof. Djamel Benslimane (Claude Bernard University, Lyon, France)

Prof. Karsten Wolf (Universität Rostock)

Magdeburg, den 6.10.2010

Acknowledgment

I am very grateful to Prof. Gunter Saake for offering me a scientific home all along this years. The

fruitful discussions within the Database group allowed me to significantly reshape and improve the

output of this work. Therefore, many thanks to each member of the group. I am also thankful

to the dean of our faculty, for providing me with all requested resources to achieve this work in

best conditions. The presented research results have grow out from my postdoctoral stay at the

University of Leicester, within the European Agile project. Therefore, I express my gratitude to

all members of the Project, and particularly Profs. Jose Fiadeiro and Martin Wirsing for their

constructive conversations and advices. I am specially further grateful to Prof. Kamel Barkaoui,

for the long-term and promising cooperation and the continuous support and encouragement. My

particular thanks go also to the reviewers of this work. For the practical side of this thesis, I am

particularly thankful to Msc. Ur Rahman Saif for implementing the approach vision on aspectual

.NET and Msc. Liu Manru for implementing the extended aspect-oriented Maude. I am forever

indebt to my fathers for supporting me on all stations of my life; your caring and love will always

enlighten my path. My big love goes also to my small family and kids. Last but not least, I am

graceful to my God for empowering me with all the strengths and faith to achieve this modest deed.

Abstract

Service technology geared by its SOA architecture and enabling Web-Services is rapidly gaining

in maturity and acceptance. Consequently, most of world-wide (private and corporate) cross-

organizations are embracing this paradigm by publishing, requesting and composing their busi-

nesses and inherent applications in form of (web-)services. Nevertheless, to face harsh competi-

tiveness, such service-oriented cross-organizational applications are increasing pressed to be highly

composite, adaptive, knowledge-intensive and very reliable. In contrast to that, Web Services

standards such as WSDL, BPEL, WS-CDL and many others offer just static, manual and purely

process-centric knowledge-scarce ah-doc techniques to deploy such services. Furthermore, current

research proposals to leverage such standards towards more correctness and adaptability are still

in their infancy stages and do not thus scale up to realistic and wide adoption. Indeed, poten-

tial service-oriented applications such as E-commerce, E-Banking and E-health are required to be

highly adaptive and dependable, while being mostly governed by volatile rule-centric knowledge.

The main aim of this thesis consists therefore in leveraging the development of service-oriented

applications towards more reliability, dynamic adaptability and knowledge-intensiveness. After a

throughout study and critical analysis of the current state-of-art, this thesis puts forwards an inno-

vative stepwise and disciplined approach towards engineering and deploying dynamically adaptive

rule-centric service-oriented applications. More specifically, the approach starts by intuitively elic-

iting structural service features through stereotyped service-based UML-class diagrams. For the

behavioral service features, the approach proposes to govern any involved business activity through

respective intensional event-driven business rules, we then leverage towards operational architec-

tural ECA-driven rules. For the crucial conceptual phase, the approach puts forwards a tailored

service-oriented Petri nets framework, we refer to as adaptive CSrv-Nets, that exhibits the follow-

ing potential characteristics. First, the framework smoothly builds on the previous business-level

phase, by soundly integrating behavioral event-driven business rules and stateful services, both at

the type and instance level. Second, with its intrinsic true-concurrent semantics based on rewriting-

logic, the framework provides formal validation through a tailored and compliant extension of the

Maude language and its reflection capabilities. Third, the framework explicitly separates between

orchestration for modelling rule-intensive single services and choreography for cooperating several

services through their balanced governing interactive business rules. Fourth, by capitalizing on

aspect-oriented potentials for separation of concerns and adaptability, the framework is smoothly

shifted towards runtime adaptability, through a compliant aspectual-level. Such adaptability-level

allows for dynamically shifting up and down any rule-centric behavior of the running CSrv-Nets-

based service-components. Last but not least, towards bridging the gap to Web-Service technology,

we developed an aspectual .Net framework that is fully compliant with the above approach founded

phases.

Zusammenfassung

Serviceorientierung mit ihrer Serviceorientierten Architektur (SOA) und die darauf basierende prax-

isorientierte Umsetzung in Form von Webservices gewinnen heutzutage zunehmend an Reife und

Bedeutung. Folglich verwenden viele weltweit operierende Unternehmen und Organisationen dieses

Paradigma, um ihre internen wie auch unternehmensübergreifenden Geschäftsprozesse umzusetzen.

Insbesondere werden diese Geschäftsanwendungen und Prozesse in Form von Webservices konzip-

iert, veröffentlicht, angefordert und komponiert. Der stärkere wirtschaftliche Wettbewerb erfordert,

dass diese unternehmensübergreifenden Dienstanwendungen anpassbarer, wissensbasiert und hoch

zuverlässig sein müssen. In Gegensatz zu diesen Forderungen bieten gegenwärtige Webstandards

wie WSDL, BPEL oder WS-CDL lediglich statische, rein prozesszentrische und wenigfundierte

Techniken. Forschungsvorhaben zur Verbesserung dieses Stands hinsichtlich mehr Korrektheit und

Anpassungsfähigkeit sind noch zu unausgereift, um realistische Szenarien zu bewältigen. Gle-

ichzeitig verlangen potenzielle Einsatzgebiete dienstorientierter Anwendungen wie elektronischen

Handel, Online-Banking und elektronisches Gesundheitswesen nach hoher Anpassungsfähigkeit und

Zuverlässigkeit. Ferner sind diese Anwendungen von sich schnell änderndem, regelbasiertem Ver-

halten gesteuert.

Diese Arbeit setzt sich zum Hauptziel, die Entwicklung von serviceorientierten Anwendungen

für mehr Zuverlässigkeit, dynamische Anpassungsfähigkeit und Unterstützung von Geschäftsregeln

voranzutreiben. Nach einer umfassenden Studie und kritischen Analyse des gegenwärtigen Stands

der Technik, führt diese Arbeit einen fundierten Ansatz für die Entwicklung von dynamischen,

anpassungsfähigen serviceorientierten Anwendungen ein. Der Ansatz beginnt mit einer intuitiven

Beschreibung der strukturellen Eigenschaften von Services durch stereotypisierte, dienstbasierte

UML-Klassendiagramme. Für die Beschreibung des Verhaltens von Services schlägt der Ansatz

für jede betroffene Geschäftsaktivität adaptive intentionale ereignisgesteuerte Geschäftsregeln

vor. Anschließend betrachten wir die Umsetzung dieser intentionalen Geschäftsregeln in eine

ECA-gesteuerte Architektur. Für die entscheidende formale Phase schlägt der Ansatz einen

maßgeschneiderten serviceorientierten Petri-Netz-Formalismus vor. Dieses als CSrv-Nets bezeich-

nete konzeptuelle Modell verfügt über folgende Eigenschaften: Das vorgeschlagene Framework baut

auf der vorhergehenden intuitiven Phase auf, indem es ECA-Geschäftsregeln und zustandsbehaftete

Dienste auf Typ- als auch Instanzebene integriert. Zweitens ermöglicht das Framework eine formale

Validierung, einerseits mit Hilfe seiner nebenläufigen, auf Termersetzung basierten Logik, und an-

derseits durch eine maßgeschneiderte Erweiterung der Sprache Maude. Drittens, das konzeptuelle

Modell trennt explizit zwischen der Orchestration für die Modellierung von Einzelservicen und

der Choreografie von globalen, kooperierenden Diensten durch balancierte dienstübergreifende

Geschäftsregeln. Viertens, die Verwendung von aspektorientierten Techniken zur Extraktion von

querschneidenen Belangen und die daraus resultierende Anpassbarkeit, ermöglicht uns eine trans-

parente Erweiterung des CSrv-Nets in Richtung regelbasierter Laufzeitanpassungen. Diese Adap-

tationsebene erlaubt unter anderen das Einweben von regelbasierten Verhalten in laufende CSrv-

Nets-Komponenten. Um schließlich die Lücke zu Webservice-Techniken zu überwinden, haben

wir ein aspektorientiertes .Net-Werkzeug entwickelt, welches den entwickelten fundierten Ansatz

vollständig umsetzt.

Contents

1 Introduction 1

1.1 Motivation and work scope . 1

1.2 Main envisioned work’s results . 4

1.3 Work Outline . 5

2 Web-Services Foundation and Adaptability: Survey and Criteria 8

2.1 SOA and Web-Services: Overview and main Ingredients 9

2.1.1 The Underlying Technologies for SOA . 10

2.1.2 Services-Oriented Architecture (SOA) . 13

2.1.3 Web services Specification and Composition Standards 14

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey 17

2.2.1 P/T Nets-based Foundations for Web services 18

2.2.2 Modelling Web services with High-level Petri Nets 21

2.3 Service Adaptability: Rules- and Aspect-based proposals 24

2.3.1 Business Rule-driven Proposals to Web-Service Adaptability 25

2.3.2 AOP and Adaptive Service-oriented Applications 27

2.4 Web-Services Modelling and Adaptability: Criteria and Assessment 28

2.4.1 Criteria for Web-Services Modelling and Adaptability 29

2.4.2 Service composition criteria . 30

2.4.3 Service Criteria applied on the state-of-art . 33

2.5 Chapter Summary . 34

3 Rule-centric Stepwise Development for Service Systems 35

3.1 Rational for the forwarded Conceptual framework . 35

3.1.1 HLPN as service foundation: Potentials and limitations 36

3.1.2 Necessity for Stepwise supporting Methodology 38

3.2 The UML-ECA-based semi-formal services description 40

3.2.1 Profiled UML class-diagrams: Application to the Travel Agency 41

3.2.2 Stepwise ECA-driven Description for Service Behaviors 42

3.3 CSrv-Nets: Structural Features Modelling . 51

3.3.1 Application to the Travel Agency . 54

3.4 CSrv-Nets: Behavioral Modelling of Services . 57

3.4.1 CSrv-Nets behavior from ECA-driven architectural rules 59

3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics 62

3.5.1 An intuitive CSrv-Nets behavioral semantics 62

3.5.2 CSrv-Nets Rewriting-logic based semantics 63

3.6 CSrv-Nets behavioral validation: A tailored Maude extension 68

3.7 Chapter Summary . 71

4 Collaborative Services—Choreography meets Orchestration 73

4.1 Choreographical Services Composition with CSrv-Nets: Further Motivations 75

4.1.1 Choreographical composition within the Travel-agency 78

4.2 Business-Rules pattern for Behavioral Choreography 78

4.2.1 Cross-service business rules for the Agency application 81

4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreography 85

4.3.1 Structural features in CCSrv-Nets . 85

4.3.2 Behaviorally composing services with CCSrv-Nets 87

4.4 CCSrv-Nets-based Formalization of the composite Travel-Agency 90

4.5 Chapter Summary . 90

5 From Design- to Runtime adaptive services—Foundation and Deployment 91

5.1 CSrv-Nets Design-time service Adaptability: Potentials and Flaws 93

5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts 96

5.2.1 CSrv-Nets-transitions: Towards an ”aspect”-representation 96

5.2.2 CSrv-Nets-based aspectual-Level: Informal presentation 99

5.2.3 CSrv-Nets-based aspectual-Level: Formal setting 101

5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and pointcuts at concerns 103

5.3.1 CSrv-Nets and its smooth Endowing with Jointpoints 103

5.3.2 Pointcuts for Connecting CSrv-Nets-Joinpoints to the Aspectual Net 105

5.3.3 AOCSrv-Nets: Aspect-oriented CSrv-Nets-extension Formalization 107

5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principles and Formalization . . 108

5.4.1 ”Non-woven” Rewriting rules governing aspect-oriented transitions 110

5.4.2 Dynamic-Weaving by Inferring ”Non-woven” Rules 111

5.5 Aspectual Leveraging for Adapting the CSrv-Nets Flight Service 114

5.5.1 Leveraging the CSrv-Nets Flight towards adaptability 114

5.5.2 Building and dynamically adapting the flight AOCSrv-Nets 114

5.5.3 Emerging the rules-as-advices at the aspectual-level 117

5.5.4 Runtime shifting down / up of rules-as-advices on the Flight CSrv-Nets

service . 118

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 118

5.6.1 Aspect-orientation of architectural ECA-driven rules for Dynamic Adaptability122

5.6.2 Towards an ECA-Compliant aspect-orientation of Maude 123

5.6.3 Dynamic (un)weaving of aspectual Maude service-interactions 126

5.7 Towards a compliant .NET environment WS-deploying of AOCSrv-Nets 128

5.7.1 Mapping and manipulation of Conceptual ECA in .NET 129

5.8 Chapter Summary . 130

6 Conclusions and Future Work 132

6.1 Main achieved contribution . 132

6.2 Envisioned further investigations . 134

Bibliography 136

A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview 144

A.1 Algebraic specification: an overview . 144

A.2 (High-level) Petri-Nets: Main Concepts . 146

A.2.1 Place/Transitions Petri nets . 147

A.2.2 High-level Petri nets (HLPN): An overview: 148

A.2.3 Object-oriented Petri Nets: An overview . 150

A.3 Rewriting techniques . 151

A.4 Rewriting logic . 153

A.4.1 Rewriting Logic and its Theory . 154

A.4.2 The meaning of Rewriting Logic . 155

A.5 Maude and its Reflection : Overview . 155

A.6 Maude main Features . 156

A.6.1 Maude Functional Modules . 157

A.6.2 System and object-oriented Modules . 157

A.6.3 Maude Reflection and internal Strategies . 160

A.6.4 Internal Strategies . 162

A.6.5 Maude-Workstation : presentation . 163

B N.Aoumeur Publications Related to this Thesis 166

C N. Aoumeur Further Postdoctoral Publications 169

List of Figures

1.1 On the Disciplined and Stepwise Engineering of Adaptive and Complex Service-

Oriented Systems . 5

2.1 Web services stack . 11

2.2 Web services architecture . 14

3.1 Disciplined Approach for Developing Adaptive Service-Oriented Systems 37

3.2 The approach two first phases, UmlRule--CSvr-Nets, as chapter focus 40

3.3 StereoTyped UML-Classes for Services Applied on Travel-Agency. 43

3.4 The generic ECA-driven architectural service interactions pattern 49

3.5 ECA-driven rule for the Flight-Request Activity . 50

3.6 ECA-driven rule for the Flight-Request Activity . 51

3.7 SteroTyped UML-Classes for Services Applied on The Airline Service. 55

3.8 The CSrv-Nets-based Behavioural Specification of the Flight Service. 61

3.9 Generic pattern for CSrv-Nets-transitions . 66

3.10 The CSrv-Nets Flight implemented using the extended Maude 70

3.11 Concrete CSrv-Nets-Flight service configuration scenarios 71

3.12 The resulting CSrv-Nets-Flight configuration by running the previous one 71

4.1 The Choreography with CSrv-Nets as third phase in the forwarded approach . . . 75

4.2 An Illustrative Complementarity of Orchestration and Choreography in the CSrv-

Nets Approach . 79

4.3 The general pattern of cross-service (choreographical) ECA-driven business rules . . 80

4.4 The transition pattern for collaborating services within CCSrv-Nets 88

4.5 Behavioral Choreographical Specification of Travel Agency Service 89

5.1 Dynamic Adaptability and its Deployment as fourth phase in the forwarded approach 92

5.2 The generic CSrv-Nets-transitions behavior . 97

5.3 Part of the Flight Service CSrv-Nets behavioral Specification. 99

5.4 The CSrv-Nets-based Aspectual Net for ECA-driven Rules dynamism 100

5.5 Leveraging (generic) CSrv-Nets-transitions with aspectual-variables as Joinpoints . 104

5.6 Generic transitions for the two-level Aspectual AOCSrv-Nets formalism 106

5.7 The Runtime Adaptable AOCSrv-Nets flight service before rules weaving 116

5.8 The Runtime Adaptable AOCSrv-Nets flight service after rules weaving 119

5.9 From ECA-driven service interactions into a Compliant Aspect-oriented Maude ex-

tension for AOCSrv-Nets . 120

5.10 Dynamic weaving of Std- and Crd-withdraw interaction rules 127

5.11 The IDE Environment and its main functionalities 128

5.12 The principles of mapping ECA-centric rules to the Aspectual .Net Env. 130

5.13 Translating steps from ECA-conceptual to the compliant .NET env. 130

A.1 The dining philosopher problem as a P / T-net. 148

A.2 The dining philosopher problem as an algebraic Petri net 150

A.3 Concurrent rewriting of bank accounts. 160

A.4 Strategies control the rules execution. 163

A.5 General view of Maude Workstation. 164

A.6 The result split panel of Maude Workstation. 165

List of Tables

2.1 Service criteria applied on proposals for service foundation and adaptability 32

1

Chapter 1

Introduction

1.1 Motivation and work scope

Along the recent years, we have been witnessing an increasingly dominating market globalization,

geared by highly unpredictable volatility and fierce competition. In parallel to that, the incredi-

ble advances and confluence of computation and wireless communications have been boosting the

pervasiveness of the internet and the World Wide Web to be available anywhere, anytime and

through any communication-aware devices and channels. As consequence, on the one hand, to

stay competitive most of (private and public) organizations and institutions are being intensively

collaborating their know-how. Thereby, they are dynamically building loosely-coupled networked

cross-organizational giants. On the other hand, the internet has been leveraged from simple glue

of (syntactical) information to an unavoidable complex scene for networking and composing such

cross-organizational knowledge-intensive and interaction-centric realities.

Service-oriented computing (SOC) represents nowadays the best emerging technological inno-

vations towards ”faithfully” (semi-)automating these new business cross-organizational realities.

Indeed, as a new computing paradigm, this technology treats distribution, loose-coupling and het-

erogeneity as the main driving first-class principles and mechanisms. Service technology principles

are thus centered on the unlimited capabilities and pervasiveness of Internet technologies and the

World-Wide-Web.

Web-services, as the main enabling of service-oriented architectures (SOA), represent platform-

independent self-contained software entities with explicit interfaces. Such interfaces are further

adequate tailored to be universally described, published, discovered, composed and deployed on

the Web. The readiness of Web-services to be (dynamically) composed from basic ones to form

large scale evolvable business applications (e.g. C2B and B2B), represents undoubtedly the most

distinguished feature of SOA—over other technology such as object and component-orientation.

As technology, Web-Services can thus be manipulated (e.g. described, published, discovered

and composed) using adequate standards. These are described in terms of XML-based languages,

2 1 Introduction

and mainly encompass: WSDL [Ved01] for service description, UDDI [Tec04] for service registry,

SOAP for communication and BPEL4WS [AB04] and WS-CDL [ACKM04] for composing services

(resp. as orchestration and choreography). These languages have been rapidly gaining in maturity

and wide adoption. Consequently, most organizations are embracing this service technology, for

automating their business and inherent networked information systems.

This significant technological shifting towards SOA and its enabling Web-Services at such rapid

pace, has been pressing for more ad-hoc deployment service techniques [PTDL07]. In other words,

we are going beyond ordinary process-centric static compositions of services, which traditionally

adopt WS-BPEL as service-focussed orchestration and partly WS-CDL as global inter-service chore-

ography. We are thus witnessing the emerging of ”advanced” services that are mainly featured by

the followings.

Persistency and Conversation: Complex realistic service-oriented business applications are

mostly characterized as long-span live (e.g. E-Commerce, E-health, E-Banking). They are

therefore required to be conversational and highly persistent. Handling persistency means

providing advanced abstraction mechanisms, such as those provided by the object paradigm

and its UML method [BJR98]), including classification, inheritance and roles. Unfortunately,

even the widely adopted BPEL uses very restricted data-variables that vanish after execution.

Knowledge-intensiveness: Potential Service-oriented applications (e.g. E-commerce, E-

banking, E-Government, E-health) are overwhelmingly governed by huge knowledge, ex-

pressed mostly in terms of business rules [BK05, OYP03]. These rules allow regulating how

to do business at the intra- and cross-organizational levels alike. Restricting business activ-

ities behavior to just exchanging messages—as Web standards WSDL and BPEL adopt—

represents serious obstacles to deal with such inherent rich knowledge.

Runtime adaptivity and evolution: To stay competitive, today’s services must cater for high

flexibility and adaptability. Otherwise, they become rapidly transcended by today’s business

market volatility and dynamism changes, where opportunistic alliances are favored. Particu-

larly, composite services require to be dynamically adaptable to cope with different variants

of requestors and their evolving requirements. Moreover, when the composition of services

is flexible and dynamically adaptable, most (cross-organizational) business processes become

reusable. Consequently, development efforts and costs become mastered.

Local vs. global composition: Any realistic service application is often composed of numerous

interacting services. We argue that both BPEL-like service-focussed orchestration as well as

WS-CDL-like global inter-service choreography are deemed necessary. Unfortunately, current

service practices exclusively adopt one of them, with more emphasis on BPEL orchestration.

We claim and demonstrate in this work, that a harmonious ”local-global” service composi-

tion represents an essential milestone towards adaptive knowledge-intensive service-oriented

applications.

1.1 Motivation and work scope 3

High Distribution and Mobility: Most of current standards for service composition do not

cope with decentralized architectures. They require that all business process activities and

their instances must reside in one (logical and physical) location. This missing capability,

intrinsically implies, on the one hand, the inability of intrinsically concurrently running dif-

ferent activities when it is possible. On the other hand, distribution enhances the migrating

of services and their activities in accordance with the target (user’s) location and compu-

tational resources. Indeed, with the increasing popularity of mobile devices like PDA and

mobile phones, addressing mobility is becoming more than a commodity.

The direct technological ad-hoc deployment of such intractable advanced services may lead to

serious pitfalls, limitations and unnecessary costly and risky investments, by organizations acquiring

them. Indeed, even with respect to simple services, the promise of service technology in deliver-

ing, by its own adaptive composite process-centric services, is still a far-reaching objective. Adding

such multi-concern requirements (e.g. knowledge-centricity, distribution, adaptability and mobility,

harmonious local / global composition) is just meaning more inflexible hard-coded services, impos-

sible to build let alone compose and adapt. The difficulties of uniformly and coherently addressing

the afore-mentioned service advanced characteristics, have resulted in deployment infrastructures

focussing at most one or two issues while ignoring the others.

In response to this unsatisfactory state-of-affair, we are thus witnessing a strong consensus.

This technology must be embolden and steered by prior and deep understanding and conceptual-

ization of such advanced service requirements. Only afterwards, one should addresses deployment

techniques, which accurately and gradually mirroring such validated and verified domain-level ser-

vice conceptualization, while reshaping available service techniques in consequence. Indeed, most

of the above crucial service requirements such as knowledge-intensiveness and inherent flexibility

and adaptability are by excellence domain-level issues. We are avoiding to vainly enforcing them

through syntactical ”codification” while losing their essence. Instead, in this work we endeavor to

faithfully eliciting, understanding and certifying them at the business-foundation levels. As cru-

cial advantages, we may cite, the direct involvement of all stake-holders (e.g. managers, analysts,

developers, users and finally programmers) in the development. Besides that, tailored semi- and

formal techniques ensure a high-level abstraction for flexibility and reliability (through validation

and certification).

We aim thus at leveraging the service paradigm from its dominating technology-dependency

towards more stepwise service engineering life-cycle development. In this strived life-cycle, early

phases of business requirements elicitation, modelling and certification become the driving forces.

Furthermore, the formal framework we are envisioning must intrinsically supports the above ad-

vanced service features (e.g. persistency, flexibility, knowledge-intensiveness, and full distribution).

After motivating the general context and research scope of this work, namely foundation and

adaptability in the service paradigm, the remaining sections of the introductory chapter are orga-

nized as follows. In the second section, we summarize the main envisioned contributions of this

4 1 Introduction

work, and how we aim at addressing the challenging issues while developing realistic flexible ser-

vices. In particular, we shed some light of the stepwise approach and its underlying service-oriented

formalism, for progressively engineering rule-intensive adaptive service-oriented applications. This

chapter is then wrapped up by highlighting the content of the remaining chapters.

1.2 Main envisioned work’s results

Along all this work, we have been indeed taking the above motivations and objectives as a roadmap

for our investigations. To recapitulate on the work achieved contributions, Figure 1.1 illustrates the

envisioned progressive approach. That is, for reliably engineering dynamically evolving knowledge-

intensive service-oriented applications, the forwarded approach is methodologically composed of

five main phases.

UML/Business-rules for service requirements: First, the service application structural fea-

tures are semi-formally expressed in terms of stereotyped UML class-diagrams [OMG05].

Then, we describe all related intra- and inter-organizational business rules [WKL03] govern-

ing behavioral features of involved basic and composite services. We do do by respecting the

Event-Condition-Action (ECA) paradigm. Furthermore, capitalizing on the strengths and

discipline of architectural techniques and their transient connectors [SG96], we leverage such

informal ECA-driven business to the service interconnection level.

Service foundation and validation: This phase is decisive as it precisely and concisely define all

functionalities and behaviors of involved service components and their interactions. It should

further formally validate them against misconception, misunderstandings and conflicts. We

forward a service-oriented Petri nets variant called CSrv-Nets, to gradually reflect all struc-

tural and behavioral features of services from their semi-formal previous phase. It inherently

addresses: Distribution, persistency (stateful), conversation and complex structuring mech-

anisms. For a true-concurrent operational semantics with rapid-prototyping capabilities, we

are semantically governing CSrv-Nets behavior using Meseguer’s rewriting logic through a

tailored rewrite theory and enrichment of its Maude language [CDE+07].

Synergical complementarity orchestration / choreography : We propose to independently

specify and validate any CSrv-Nets service behavior. Afterwards, we give the designer

the ability to compose such validated services. This composition is achieved at the global

choreographical-level, with a harmonious complementarity with CSrv-Nets (orchestration-

level) services. This service composition is knowledge-intensive, driven by ECA-driven archi-

tectural business rules at both the intra- and inter-service levels. Thereby, we are enhancing

service behavioral adaptability, both for elementary services and composite services.

Runtime Service Adaptability: This phase allows to endow the CSrv-Nets conceptual model

with an adaptability-level. This level is based on leveraging CSrv-Nets with aspect-oriented

1.3 Work Outline 5

mechanisms [Kea97], so that runtime adaptivity of different service behaviors are achieved

in a consistent and increment manner. At that adaptability-level, any business rules can be

dynamically manipulated (i.e. added, removed and/or adjusted) independently of the running

service components. Such adaptable ECA-driven business rules can be then dynamically

woven on running behavioral service components.

Compliant .NET aspectual environment: Although the work does not focus that much on

this implementation phase, we developed a tailored .NET environment that resumes on all

the previous intuitive and founded phases. In particular, we demonstrate how to derive rule-

centric aspectual .NET-based service components, where both orchestration and choreography

can be performed. In this environment the governing rules are separately conceived as XML-

based ECA-driven rules using RuleML-like syntax [TWB03]. Furthermore, in compliance with

the founded phase, such rules are conceived as aspectual advices and dynamically (un)woven

on respective running service components.

Ph−.NET

ServComp1 ServCompN. . .

 ECA−interaction ECA−interaction

Invariants−1
Messages−1
 events1

ServIntf1−SI1

Invariants−1
Messages−1
 events1

ServIntf1−SI1
Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

. .

events ...
participants ...
conditions ...
actions ...

events ...

participants ...

conditions ...

actions ...

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

In
fo

rm
al

 b
us

in
es

s
go

al
s,

 b
ro

ad
 p

ro
ce

ss
es

an
d

in
te

ns
io

na
l b

us
in

es
s

ru
le

s

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

Co−SrvNets

R1: (Ms1, ev1)... => (Msi, mi)... if cd1
.

In
vo

kd
 S

er
vi

ce
s

. . .

. . .
ru

l1 ru
lk

R
ul

es
−

st
at

e

DelR

AddR

UpdR
R

ul
2A

dd
R

ul
2D

el
R

ul
2C

ha
ng

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

C
o−

S
rv

N
et

s

ac
tiv

ity
.N

E
T

−
W

S
er

vi
ce

s
E

C
A

−
ba

se
d

.N
E

T
−

A
sp

ec
ts

(u
n−

)

w
ea

vi
ng

ServCompNServComp1ServComp1 ServCompN

Ph−Uml&Rule

ea
ch

A
sp

ec
tu

al
−

S
rv

N
et

s

Adaptiviy−Level

(un−)weaving

.

<<CompositeService>>

. . .

<<Service1>>

events
messages, properties

<<ServiceN>>

− messages1
− events1
− properties1

− messages−s1
− events−s1
− properties−s1

− messagesN
− eventsN
− propertiesN

<<SubServN>>

− messages−sN
− events−sN
− properties−sN

<<AggreServ1>>

Ph−CoServ−Nets Ph−AspServ−Nets

Figure 1.1: On the Disciplined and Stepwise Engineering of Adaptive and Complex Service-Oriented

Systems

1.3 Work Outline

In accordance with the motivated objectives and envisioned contributions of this work, we overview

in the following the remaining chapters by summarizing their content.

Chapter 2: Web-Services Foundation and Adaptability: Survey and Criteria. This

chapter aims at paving the road to the main topic of this work, namely the foundation and adap-

6 1 Introduction

tivity in the service paradigm. First, we provide the reader with all service backgrounds, so that

(s)he can smoothly follow the subsequent main chapters. Second, we survey different proposals

based on High-level Petri nets bringing formalization to Web-Services. Third, we survey recent

approaches to boost the service paradigm and its Web-Services with the required adaptability, by

focussing on those based on business rules and aspect-oriented techniques. We wrap this chapter,

by proposing a set of exhaustive criteria allowing to compare and assess such proposals to service

foundation and adaptability.

Chapter 3: Rule-centric Stepwise Development for Service Systems. This first main

chapter motivates and presents a stepwise and disciplined approach for developing adaptive service-

oriented applications. The crucial conceptual phase of this approach is based on the proposition of

a tailored variant of (high-level) Petri Nets, referred to as CSrv-Nets. In this variant a special em-

phasis is put on the role of ECA-driven rules, service-behavior, distribution and understandability.

With respect to scalability and understandability, we demonstrate through the travel agency case,

how starting from a stereotyped UML-based informal description, we smoothly shift to CSrv-Nets

formalization. The formalism is semantically governed by a tailored rewrite theory in rewriting-

logic, and formally validated by accordingly extending the Maude language inherent to this logic.

Chapter 4: Collaborative Services—Choreography meets Orchestration. In this chapter

we propose to leverage the introduced CSrv-Nets framework and its inherent methodology, so that

we can cope with the global choreographical perspective, while collaborating ECA-driven adaptive

services. The objective of this chapter consists thus in forwarding a sound extension of CSrv-Nets,

so that a harmonious complementarity between the local service-focussed orchestration perspective

and global inter-services choreographical perspective is achieved.

Chapter 5: From Design- to Runtime adaptive composite services—Foundation and

Deployment. The purpose of this chapter is to go beyond the design-time adaptability of be-

havioral service features. We thus soundly extend the conceptual model, by endowing it with an

aspectual-level. ECA-driven rules, at this CCSrv-Nets aspectual-level, can be independently and

dynamically manipulated. For the dynamic (un-)weaving of such business rules on service compo-

nents, we propose tailored inference mechanisms. For the formal validation, the chapter proposes

a tailored aspect-oriented Maude-based implementation. Furthermore, we propose a .NET envi-

ronment based on advanced Web-Services and aspect-oriented techniques for efficient deployment.

Chapter 6: Conclusions and Future work. This last chapter first recapitulates on the

achieved contributions. It also discusses alternatives towards extending this work both on the

conceptual and deployment tracks.

1.3 Work Outline 7

It is worth mentioning that an extended appendix is devoted to make this work self-contained.

First, the essentials about algebraic techniques are summarized, then main concepts about (high-

level) Petri nets are recalled. Rewriting techniques are then surveyed, followed by overviewing

the essential about rewriting logic. Finally, since we have been using Maude and its reflection

capabilities, the Maude-language main constructs are surveyed and illustrated.

8 2 Web-Services Foundation and Adaptability: Survey and Criteria

Chapter 2

Web-Services Foundation and

Adaptability: Survey and Criteria

The objectives of this preparatory chapter are fourfold. First, we overview the main ingredients

of the service technology and its underlying architecture and Web-Service standards. Second, we

survey most of ongoing formalizations for Web services, with a special focus on those based on

(High-Level) Petri nets. Third, since this work is mainly about service adaptability, we report

on different related proposals, by emphasizing the two dominating directions, namely business

rule-driven and aspect-oriented approaches. Third, towards benefiting from all strengths while pin-

pointing serious shortcomings of this state-of-art about (Petri Nets based) rigor and adaptability in

service-oriented applications, we further propose well-studied criteria to deeply assess and compare

the capabilities of the surveyed approaches and proposals. The overall objective of the chapter

is thus to come up with clear ideas on how should we envision an innovative approach, that is

able to inherently integrate and promote all potentials of this state-of-art and overcome its serious

limitations.

After a sketched overview of the service technology and its enabling Web-Services and architec-

ture, the next section surveys most of recent work about the foundation of Web-Services through

different variants of (High-level) Petri Nets. In the third section, we tackle the adaptability of

composite Web-Services, by summarizing most of ongoing related approaches. We do so by catego-

rizing the related state-of-art around its two dominating classes: Those based on the flexibility of

business rules [WKL03] and those exploiting the strengths of aspect-oriented mechanisms [Kea01],

for dynamically weaving concerns on running entities. In the fourth section, we put forward a set of

”Web service-based” criteria, featuring the most important characteristics and associated require-

ments to meet while developing advanced composite and adaptive service-oriented applications. We

then apply these criteria on the surveyed proposals and approaches. As we pointed out, this will

support us in reshaping the right direction to follow, so that we result in leveraging the strengths

of existing proposals while circumventing most of their shortcomings. Finally, we wrap up this

2.1 SOA and Web-Services: Overview and main Ingredients 9

chapter, by recalling some efforts about service formalizations beyond the Petri nets direction as

well as reporting on some ongoing methodologies for the stepwise development of service-oriented

applications.

2.1 SOA and Web-Services: Overview and main Ingredients

Service-oriented computing (SOC) [Pap07] represents the best emerging technological innova-

tions, towards faithfully automating distributed (inter-organizational) applications. In this sense,

SOC treats distribution, interaction, loose-coupling and heterogeneity as main driving principles.

Web-services (WS), as the main enabling of service-oriented architecture (SOA), are platform-

independent self-contained software entities, with explicit interfaces. Web-Services are adequately

tailored to be universally described, published, discovered and more importantly composed over

the Web. Specifically, service composition allow building large-scale evolvable business processes.

Web services (WS) are characterized as network -addressable software units (e.g. components,

modules, programs). As such, they are thus mostly developed to be used on the internet. Moreover,

and in contrast to other internet-based applications (e.g. Web-Sites), WS are exclusively accessible

using well-defined and explicit interfaces. Such interfaces are required to be easily and univer-

sally exposed, invoked and more importantly composed to reflect any complex service-oriented

(business process) application, involving several basic services. Nowadays, WS is widely known

by its rich package of interoperable technologies and standards (e.g. SOAP, UDDI, BPEL, and

UDDI) [ACKM04]. As technology, Web-Services can thus be manipulated (e.g. described, pub-

lished, discovered and composed) using adequate XML-based standards, including WSDL, UDDI,

SOAP [Pap07], WS-BPEL [CGK+04] and WS-CDL [KOMC04]. These standards are rapidly gain-

ing in maturity and acceptance. Thereby, increasingly emerging world-wide cross-organizational

alliances are embracing this service technology, for automating their inherently networked business

information systems.

What regards Web-Service definition, still no commonly agreed-on single definition is available.

Instead, different definitions are used depending on the features to emphasis, among them we

can mention the followings. In [CGS01], Web-Services have been defined as application-oriented

software using specific Web standards while serving application-to-application business processes.

In [New02], a web service is an interface that describes a collection of electronic operations that

are network accessible through standardized XML messaging. It provides a set of functionalities

to business and individual and enables universal accesses to these functionalities. On the other

side, Sun-research defines WS as ”services offered through the web, where typically any business

application sends a request to a service at a given URL using the SOAP protocol over HTTP. The

service receives the request, processes it, and returns a response” [Boo04a]. IBM defines WS as ”an

application integration technology that can be successfully used over the Internet” [Web08]. Last

but not least, a commonly referenced definition by the World Wide Web Consortium [Boo04b] sees

10 2 Web-Services Foundation and Adaptability: Survey and Criteria

a Web service, as a software system identified by a URI which is designed to support interoperable

machine-to-machine interaction over a network. It has an interface that is capable of being described

in a machine-processable format (specifically WSDL).

2.1.1 The Underlying Technologies for SOA

In this section, we first recall the Extensible Markup Language (XML) as it represents the backbone

of SOA and WS documents. Furthermore, we go through the so-called communication-stack.

Finally, different standardized languages used for describing and composing of Web services are

outlined.

Extensible Markup Language (XML). XML [Hun04] is an extensible markup language for

documents containing structured information. It provides all means to define, store, transmit and

exchange (tagged) information, in a standardized and universal format ready for exchanges via

the heterogeneous Web. It is important to realize that XML is a ”language” on its own, but a

standard for creating languages that meet the XML criteria. In other words, XML describes a

syntax that users use to create their own languages. XML schema provides a way to describe,

validate the structure and the contents of XML documents. An XML-document is a structured

document containing a top element which is enclosed by a start tag and end tag. Each elements

can contain child elements as well as attributes. Moreover, XML allows authors of documents to

define their own tags and own document structure tailored for the specific purpose.

Web Service Communication Stack. Web services communication stack is a collection of

standardized protocols and application programming interfaces (APIs) that let individuals and

applications locate and utilize Web services.

Web services applications are built on an architecture or software system design which can be

illustrated as a ’stack’ of processing layers. The software components in these layers are loosely-

coupled components that interact with one another via standard protocols which have standard

interfaces. The web service stack is divided up into three mains areas: communication protocols,

service description and service discovery as shown in figure 2.1. The foundation layer of the Web

services stack is the network layer. Web services have to be available over a network and be invoked

by a service requester. The network is often based on an HTTP protocol. However this does not

mean that HTTP is the only protocol that can be used. In fact there are other transport protocols

that may be used such as SMTP, FTP and HTTPR, etc.

Simple Object Access Protocol (SOAP): SOAP is an XML-based message protocol, which is

specified in a W3C specification. Moreover, SOAP provides the communication framework

for transporting XML-based messages anywhere across the net. Thereby, it facilitates the

communication between Web services and their clients. SOAP is the preferred XML messaging

2.1 SOA and Web-Services: Overview and main Ingredients 11

Figure 2.1: Web services stack

protocol for many reasons. First, it can be used in combination with or re-enveloped by a

variety of network protocols such as HTTP, FTP and SMTP. Second, it is the standardized

enveloping mechanism for communicating document-centric messages and remote procedure

call (RPC). SOAP is an XML protocol that facilitates the publish, find, bind, and invoke

operations. A SOAP message mainly consists of the following elements:

• Envelope: A required Envelope element that identifies the XML document as a SOAP

messages. It contains an optional header and mandotary body.

• Header: An optional Header element that contains meta-information about the mes-

sage, such as routing, security ,transaction management etc.

• Body: A required Body element that contains the actual payload of the message. (e.g.

call and response information) encoded as XML.

• Fault: An optional Fault element that provides information about errors that occurred

while processing the message

The SOAP Encoding mechanism is another important area of SOAP that is dealing with a

set of rules and mechanisms for encoding data in SOAP messages. The SOAP specification’s

encoding/serialization portion defines how objects are to be encoded or serialized into a

common XML syntax when transmit over SOAP. Having an encoding standard for SOAP

messages means that objects can be encoded in SOAP messages in a standard way, and then

12 2 Web-Services Foundation and Adaptability: Survey and Criteria

on the receipt side the message will be decoded. The SOAP library found on the client and the

server performs the encoding/decoding. SOAP’s encoding/serialization features are mainly

used in conjunction with the RPC (remote procedure calls[ST01]) mechanism, as explained

next. RPC is used for making a request message (procedure) or function calls to a server

node, and receiving the responses back. In other words, SOAP RPC defines the ability to

use the SOAP protocol to execute specific procedures on the server side of a SOAP message.

The RPC mechanism builds on the encoding portion by allowing encoded objects to pass as

arguments to a remote procedure.

Web-Services Description Language (WSDL): Web Service Description Language (WSDL)

is the layer above XML-based messaging which is a specification that describes available Web

services to requesters. These descriptions written in XML form, describes the public interface

and implementation of Web services. Businesses can use WSDL to advertise and then expose

their services by publishing them in the registry UDDI. A WSDL document defines services

as collections of network endpoints ports. In WSDL, the service definition is divided up

into two parts: the service interface definition and the concrete network definition for data

binding. This enables the reuse of abstract definitions: messages, which are the data typed

elements, and port types which are abstract collections of operations. The concrete protocol

and data format specifications for a particular port type constitutes a reusable binding. A

port is defined by associating a network address with a reusable binding, and a collection of

ports define a service. Hence, a WSDL document uses the following elements in the definition

of network services:

• Types: a container for data type definitions using some type system (such as XSD).

• Message: an abstract, typed definition of the data being communicated.

• Operation: an abstract description of an action supported by the service.

• Port Type: an abstract set of operations supported by one or more endpoints.

• Binding: a concrete protocol and data format specification for a particular port type.

• Port: a single endpoint defined as a combination of a binding and a network address.

• Service: a collection of related endpoints.

In addition, WSDL defines a common binding mechanism with SOAP, HTTP and MIME.

This is used to attach a specific protocol or data format or structure to an abstract message,

operation, or endpoint. It allows the reuse of abstract definitions. Finally, WSDL provides

the foundation on which Web Service composition languages build up on.

Universal Description, Discovery and Integration(UDDI): UDDI is a XML-based global,

public or private online directory which enables business or individuals to list businesses that

they provide as services or be discovered by other services around the global. It is responsable

2.1 SOA and Web-Services: Overview and main Ingredients 13

for indexing Web Services, so that their WSDL descriptions can be located by development

tools and applications. UDDI communicates through SOAP and acts as a directory for storing

information about Web Services. The UDDI XML schema defines four types of information

in order to use a partners’ Web service. These types are: business entities, business ser-

vices, binding templates and Models. Business entities describe information about business

including their name, description, services offered and contact information. Business services

provide more details on each service being offered. Each service can have multiple binding

templates, each describing a technical entry point for the service (e.g. HTTP, SMTP, etc.).

Finally, the model describes the particular protocol or standards a service uses. A registry

can be executed by a various vendors such as IBM and Microsoft. Registration allow busi-

ness’s publisher to obtain an authentication token and to log onto an operator’s site to post

its information via SOAP.

2.1.2 Services-Oriented Architecture (SOA)

Traditionally, there are a number of architectural styles to build and evolve distributed systems,

such as two-tier client-server, DCOM (Distributed Component Object Model), peer-to-peer and the

J2EE three-tier model [YK04]. Nowadays, current trend in the application development is shifted

towards loosely-coupled and browser-based applications. Therefore, HTTP is becoming one of the

communication transport protocols to many of the distributed computing problems and as the

future for electronic businesses. The latest evolution towards such loosely-coupled architecture is

undoubtedly the Service Oriented Architecture (SOA) [ACKM04]. (SOA) is an architectural style

which has been proposed recently, with promising functions to internet-based business applications.

It captures software functionality as services, which can be described, located and invoked over the

network.

The service-oriented paradigm for software development over the internet is thus governed

by the so-called ”triangular” service-oriented architecture (SOA). With respect to this generic

architecture, Web-Services represent the most adopted and practical instantiation of SOA, but it

is not obligatory the only way of using service technology. As depicted in the simplified Figure

below (Figure 2.1), SOA is based on three main principles: Publish-Find-Bind. That is, following

the SOA architecture, any software to used has to be published (not obligatory over the internet),

where subscribers can invoke it and finally bind it to others to build complex composite services.

The Service-Oriented Architecture describes three basic roles: Service provider, service requester

and service broker; and three basic activities: publish, discover, bind and invoke [Kre01].

Service provider: From a business perspective, this is the owner of the service. From an archi-

tectural perspective, it allows defining the service details and then publishes it to one or more

repositories (service registry), based on the UDDI standard for potential users to locate.

Service requester: From a business perspective, this is a business that requires a certain functions

14 2 Web-Services Foundation and Adaptability: Survey and Criteria

Figure 2.2: Web services architecture

that satisfy it needs. From an architectural perspective, this application permits discovering,

binding and initiating any interaction within a specific service. The service requester could

fall down into different categories such as a human-user requesting a service via browser-based

interface or an application program. It could also be another web service.

Service broker: This provides a searchable repository of a given service description where service

providers publish their services descriptions. service requester find services and request access

to those services by creating binding to the service provider.

2.1.3 Web services Specification and Composition Standards

Originally, Web services provide the basic technical platform required for application interoper-

ability. They do not, however, provide higher level-control, such as how Web services need to be

invoked by an application program or other services, or which operations should be executed and

in what order. Nor do they provide ways to describe the semantics of interfaces, the workflows and

underlying business processes.

Recalling first that the interaction model supported by WSDL is essentially stateless model

(i.e. unaware of states in-between operation). In contrast, realistic business collaborations require

long-running interactions driven by an explicit and transactional process model. Therefore, there

is a need for a formal, richer description languages to fill the gap between mere interface definition

languages (e.g. WSDL) and more complex and thus realistic flow-intensive service-oriented busi-

ness processes. Moreover, Web services composition languages have to support a set of minimal

requirements, before the full promised potentials of Web service composition could be realized.

More specifically, we require at-least five basic control patterns as described in [Aal03, SGS04] to

2.1 SOA and Web-Services: Overview and main Ingredients 15

cope with realistic service-oriented business processes.

Sequence: It defines the activities being executed one after the other. That is, after an activity

is finished, the next one starts.

Parallel split: It is a point in the workflow process, where multiple activities can be executed in

parallel.

Synchronization: It is the case where multiple parallel activities should join together, by waiting

each-other to finish, and then continuing the flow with next activity.

Exclusive choice: It is a point in an activity flow, where based on a decision or control data, one

of several activities is to be chosen for continuation.

Simple merge: It is the wait for the first out of many execution paths to finish, before the flow

continues.

Many specification languages have been proposed for the past years, which are aimed to support

different aspects of web service interactions. These include: WSFL [Bru02], XLANG [Tha01], WS-

CDL [W3C04] and WS-BPEL [AB04]. This section sketches some of such Web services languages,

along with a brief comparison between them.

Web Service Flow Language (WSFL). This Language was created by IBM. It is an XML-

based language which provides the mechanism to deal with complex interactions between one or

more services, acting both as clients and servers. It thus provides a support for any business

process description. WSFL represents a business process as graphical-oriented model (flowmodel),

which is a visual representation making it easy for the end-users to understand and communicate

it. Graphs defined using a set of activities / tasks. A flow model is an abstract definition of the

workflow process. It describes a usage patterns for a collection of a available services, so that their

composition captures the expected functionalities.

A flowmodel contains activity elements, which define a sets of an individual business tasks that

have to be performed as a part of a business process. Control Link specifies the execution order of

the individual business tasks to be performed. Data Link specifies the flow of data from one activity

to another. Service Providers are abstractions for the concrete business partners, with which the

flow model interacts. Service Provider type is defined by a WSDL portTypes, which represents an

involved service(s) provider(s). Next to the flow model there is a globalModel which defines how

a given business process is implemented, namely the identity, location and the implementation of

the participating services. Once the global model and the flow model for a given business process

are defined, the completed business process can be exported as single WS, that is, by making them

available for direct interactions to other business processes and service applications.

16 2 Web-Services Foundation and Adaptability: Survey and Criteria

Web services Business Process Execution Language (WS-BPEL). It is the modified

version of Business Process Execution Language for Web services (BPEL4WS), which has been

recently defined to describe process-centric compositions of services. WS-BPEL specification builds

on IBM‘s WSFL (Web Service Flow Language) and Microsoft‘s XLANG (Web service for Business

Process design) which allows a mixture of Block structured and graph structured process model.

WS-BPEL supports sequencing of peer-to-peer message exchange, both asynchronous and syn-

chronous, within a restricted stateful interactions involving two or more parties. Using WS-BPEL,

business processes can be described in two ways:

(1) Abstract Process: Also called Business protocols. It uses process descriptions that specify

the mutually visible message exchange behavior of each of the parties involved in the protocol,

while hiding their internal behavior.

(2) Invocable Process: Also called Executable business processes. It models actual behavior

of a participant in a business interaction. In other words, A business process defines how a

process instance coordinates the interactions with its partners.

WS-BPEL is used to model the behavior of both executable and abstract processes. WS-BPEL

scope covers the three following tracks. It specify the sequencing of process activities, especially

Web Service interactions. It correlates messages and process instances. Finally it allows recovery

behavior, in case of failures and exceptional conditions.

WS-BPEL fits into the core Web service architecture since it depends on the following XML-

based specifications: XML Schema, WSDL and XPath. In this sense, a WS-BPEL process definition

provides and/or uses one or more WSDL services, and provides the description of the behavior.

WS-BPEL process definition defines data variables, partners and process flow construct. A partner

link type characterize the conversational relationship between two services by defining the ”roles”

played by each services in the conversation and specifying the port types provided by each roles.

It is worth to finally mention that current web content is designed primely for human to read and

not for machine to understand. Moreover, current Web services standards such as WSDL, UDDI

and WSFL are not semantic-oriented. Therefore, there is a need to remedy this disadvantage

and to bring more meaningful information embedded into the web content by combining semantic

[TBL01] to the Web services. The realization of the so-called Semantic-Web services is underway

with the development of new AI-inspired content markup languages, such as OIL, DAML+OIL and

WSMO [Aa02a, Mar06]. These languages have a well-defined semantics and enable the markup and

manipulation of complex taxonomic and logical relations between entities on the Web. By doing so

will enable automated machine data processing such as discovery, negotiation and interaction with

a minimal human intervention.

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey 17

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey

There are currently several ongoing proposals dealing with this vivid area of research and practice,

namely the rigorous development (e.g. specification, validation, verification) of flexible and inten-

sively composite Web services. Therefore, any attempt toward an exhaustive comparison of such

proposals in this area seems to be premature. Moreover, due to the usual divergence in objectives,

formal settings and targeted application areas, it remains very hard to find a common basis for

comparing them.

We will therefore restraint ourselves to only those which are very close to the aspiration of

this thesis. That is, as we are envisioning a Petri Nets-based foundation for adaptive service-

oriented applications, we focus this state-of-art study on those based on different variants of (high-

Level) Petri nets. Moreover, for sake of readability and separation of concerns, we distinguish

between service foundations based on simple Place / Transition Petri nets and those based on more

elaborated high-level Petri nets.

Before presenting this state-of-art, we emphasis that towards making this thesis self-contained,

we have devoted a complete Appendix (A) to recall the main definitions, concepts and properties of

simple P/T Petri Nets as well as High-level algebraic Petri nets. We thus strongly advice readers,

not so familiar with Petri nets and their capabilities in specifying and certifying distributed systems,

to go through this Appendix before continuing this section.

Let us recalling that Petri nets [Rei91, Rei85] are among the leading specification frameworks for

complex distributed systems. They enjoin several determinant characteristics. First, they introduce

few concepts such as places for holding system states and transitions for capturing system func-

tionalities such as actions and operations and their behavior. Second, they are graphical promoting

more understandability (for non academic) and allowing system animation through the tokens

game. Third, they are mathematically founded, with the possibilities of different semantics (e.g.

interleaving, steps, concurrency) depending on the specificities of modeled applications. Fourth,

they allow system analysis to check properties such as deadlocks, liveness, safety, etc. Among the

well established analysis techniques we may cite Place- and Transition-invariants to siphons and

traps. Last but not least, with the development of High-level Petri nets [JR91], different structured

complex data can be dealt with leading to the specification/animation and verification of real-size

complex applications.

(High-level) Petri nets represent therefore excellent candidate for specifying and validating and

analyzing Web services. Confirmation of the claim is the growing interest and emerging approaches

in that direction. Among the benefits for modelling Web-Services with (High-Level) Petri Nets, we

may emphasize the followings. First, as Web-Services are by nature distributed applications, the

concurrency behavior that characterizes (High-Level) Petri nets put them among the most suitable

conceptual framework for Web services. Second, as Web services composition is driven mainly by

business processes, the inherent ability of (High-Level) Petri nets in capturing different activities

ordering (e.g. parallel, sequential, and-join, or-join, choice, etc.) promotes their modelling. Third,

18 2 Web-Services Foundation and Adaptability: Survey and Criteria

the explicit states in terms of places in (High-Level) Petri nets enhance the specification of reactive

and transactional Web service applications. These are omnipresent and represent challenging classes

to specify and reason about. Indeed, reactive Web services are stateful are require conceptual models

combining composition and conversation features. Fourth, the support of advanced structuring

mechanisms in High-level Petri nets (i.e. inheritance, composition, aggregations) [BB91, Aou02,

AS02], facilitate expressing complex constraints and conditions about Web services behavior.

2.2.1 P/T Nets-based Foundations for Web services

Depending on the goals of the formalization as well as the targeted service-oriented features and

domain, we have distinguished three main approaches aiming at bringing rigor to Web-Services

using Petri Nets. The first class focusses on the formalization and validation of (service-oriented)

business processes. It is mainly led by the research groups headed by W.Reisig, W. der Aalst and

M. Dumas, and belong to the most active and large direction. The second approach initiated by

H. Hammadi focusses in particular on the composition of Web-Services, though it has also been

recently extended to cope with adaptability. The third direction, we report on in this section

concerns on E-Services and their B2B composition.

Service-oriented BPs composition using Petri Nets [Mar03, OVvdA+07a, LMSW08].

This approach is concerned mainly with the application of Web services to distributed, cross-

organizational business processes. Each business process is conceived as an open Petri nets. An

open Petri nets are simple Petri nets with three classes of places: Input places allowing messages

to get in the process, output places to go out from the process, and internal places allowing for the

modeling of the process behavior. Each process net is called by the author a module net. From such

separate module nets, to capture the composite business processes workflow the authors use the

fusion of similar input/output places. They also add an extra transition at the beginning to allow

running composite modules in parallel. similarly, to get a unique final state from the composition

they add an extra-transition at the end relating all final places from each process.

On the basis of this module and composite module nets, the authors introduce two properties

called compatibility and usability. The compatibility property allows checking whether another

service module net (called here environment) is composable with a given module net. In other

words, for each input place should corresponds an output place (from the environment module);

otherwise the composition could not take place (i.e. incompatibility). The usability checks whether

the composite module net is weakly sound (i.e. each initiated process comes to a proper final state).

Nevertheless, the approach does not address complex data modeling such as message arguments

neither advanced business rules.

Related to this approach while using a simplified variant of open Petri nets called Workflow

P/T Net (i.e. WFN) [VdABHK00], the authors in [OVvdA+07a, OVvdA+07b] proposed a system-

atic back and forth mapping between such WFN and BPEL specifications. The benefits include

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey 19

mainly the formal analysis and verification of BPEL specifications using Petri Nets simulation and

verification capabilities (e.g. graph-reachability, P- and T-invariants).

More fundamental questions about services and their process-centric composition (using BPEL-

like standards) are recently being explored in [LMSW08]. First, a more BPEL-tailored variant of

Petri Nets called open Workflow Nets (short oWFN) [MRS05] is forwarded. On the basis of

oWFN, questions such as compatibility and usability have been re-visited. More process-centric

service properties have been formally analyzed and algorithmically automated [LMSW08]. These

include: (1) the notion of controllability, that is, the capability (or not) of a service process to

interact with others, and (2) the notion of operating guidelines, that is, the generic characterization

of strategies ensuring controllability.

Subsequently, we will abbreviate this model as WsBP-PN (i.e. WebService Business Process

with Petri N ets).

Web services composition and adaptation with Petri Nets [HB03]. This Place/transition

Petri Nets-based model to Web services proposes an expressive net-based algebra, to capture in

a declarative way different service combinations and their respective specificities. Moreover, the

proposed algebra caters for the creation of dynamic and transient relationships among services.

The authors first define the so-called Services Net, which is just a P/T Nets with one starting place

(without input arcs) and one final output place (without output arcs) and labels (as operation

names) associated to arcs. On the basis of this Service net notion, they define Web services as a

tuple (〈NameS; Desc; Loc; URL;CS; SN〉). With Names standing for the service name, Desc to get

the description of the service functionalities, Loc and URL stand for services location and URL, CS

is the name of the service components (in case being composite composed) and finally SN represent

the service behavior expressed in terms of a service net.

With this Web service description as tuple, they built a rich algebra that allows combining

several Web services in different ways (sequence [S1
⊙

S2], alternative choice [S1
⊕

S2], arbitrary

sequence [S1♦S2], iteration µS, parallelism with communication [S1‖CS2], discriminator operator

[(S1|S2) S3], refinement [(Ref(S1; a;S2)], selection [S1(p1, q1) : Sn(pn, qn)]).

Using usual Petri Nets flow capabilities, they semantically interpret each of these syntactical

constructs. The most noticeable effort was about the interpretation of the selection, where a specific

part of the service should concern the request for a selection.

As they have opted for a simple Petri nets, techniques for analysis of different properties

such as deadlock or liveness can be achieved using techniques like place/transition invariants and

siphon/trap in Petri nets. Also, they suggest the use of bi-simulation techniques. Although the

proposed algebra and the contribution in its whole is very rich and significant, we may point out

some limitations related to the practicability of the approach. The first shortcoming is the lack

of relating this work with the capabilities of current Web service technology such as BPEL and

WSDL for instance. Indeed, on the one side, the proposed algebra seems to be far expressive than

20 2 Web-Services Foundation and Adaptability: Survey and Criteria

these technology in terms of its richness in operators. That is, except from usual operators such

as sequence and parallelism, no current Web-based language uses the so-called advanced operators

like arbitrarily sequence, refinement or parallelism with communication. However, on the other

side, what is clearly missing is the handling of data, such as message parameters, conditions, etc,

which are among the main stones of WS languages like BPEL. Subsequently, we will abbreviate

this model as PN4WsC.

Finally it is worth-mentioning that the authors of this proposal have recently tackled service

adaptability. In fact, in the extension called self-adapting recovery net [HBM08], they propose how

to dynamically handle exceptions and errors, by dynamically changing of the structure of the net

(i.e. by dynamically deleting, adding and removing places and transitions). What is out of scope in

this adaptability is the runtime modification of existing arc-inscriptions and conditions (governing

business rules).

E-Service Orchestration Petri Nets Model [MPP02]. This approach proposes a specific

form of place/transition net for specifying business to business (B2B) composition. Instead of usual

Web services terminology, the authors used an equivalent concept to E-service. An E-service Net

is specified both in its static interfaces and in its behavior. Specifically, an E-service communicates

through messages, including both the ones the E-service receives and the messages it produces. So

it is more close to BPEL description but with reactive behavior. In this approach, each E-service

is formally specified by the so-celled E-service net, which is a Petri nets with three categories of

places. Input messages are drawn using rectangles as places. Output messages are drawn using

bold rectangles. Places capturing the internal behavior are modeled as usual circles and named as

control places. Transitions model the behavior using these places as input/output.

Using this E-service net construction, the authors proposed then the notion of E-service or-

chestration net. This form of net allows composing several E-service nets, which is a specific net

connecting at least two E-service Nets. It allows specifying the routing of messages and act on

passing the tasks to the orchestration, from an organization to another one. For such composition

they introduce a new type of places called orchestration places and drawn as hexagonal. Such or-

chestration places allow indicating the current organization performing the corresponding E-service

compositions, which may change as the composition goes on over time.

This E-service orchestration model provides thus a mechanism for supporting control of E-

services process evolution in terms both of control and data flows, and for distributing and assigning

process responsibilities. To enhance the practicability of their approach, the authors show how a

significant part of an E-government could be specified using E-service orchestration net. They

also mention the application of usual analysis techniques such as deadlock freeness of the overall

process and reachability of the final configuration of the involved E-services, which can be verified

by analyzing the configuration graph of the net.

This work is very interesting from a practical point of view, as it permits to easily understand

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey 21

E-service behavior and their orchestration (e.g. specific place form of input/output messages,

organizations, etc). However, one of the missing important issue is the relationship to current web

service composition languages such as BPEL and WS-CDL. The approach also uses just black-dot

tokens without advanced data structure as web-languages require. Subsequently, we will abbreviate

this model as E-SvPN.

2.2.2 Modelling Web services with High-level Petri Nets

By exploring the state-of-art about the application of high-level Petri nets to the precise under-

pinning of Web-Services, we mainly found three adopted variants of high-level Petri nets, namely

Jensen’s Colored Petri nets (CPNets) [Jen92], Valk’s nets-in-nets [Val01] and predicate Petri nets

[JR91].

CP-Nets-Based model for Web services [YK04, YK05, YTX05]. This very promising

approach for Web service modeling is based on Colored Petri Nets. Recalling that CPNets [Jen92]

are one of the mostly accepted and widely adopted variant of High-level Petri Nets both in academia

and industry. Colored Petri nets enhance standard Petri nets with advanced primitives for the

definition of the data types and the manipulations of their data values. Moreover, CPNets propose

advanced structuring mechanisms including Place/Transition fusion and Nets hierarchy.

This CP-Nets-based approach for Web services aims to achieve at least three objectives. First, it

captures complex service composition, incorporating partners with complex conversation protocols.

It permits an automatic derivation of conversation protocols from the composition for each involved

Web service. Third, it aims at the formal validation / verification of a Web services composition

and its conformance to service conversation protocols.

The Web service composition proposed in this approach is an orchestration one, specifically

based on a form of reactive stateful BPEL4WS. This extension of reactivity to BPEL is very

important as most of real-size service composition are long-term transactions, with instances play-

ing different roles. More precisely, the process aspect of a Web services composition specified in

BPEL4WS can be represented with CP-nets. This CP-nets-based process composition model is

defined as follows:

• The process of the composite service is represented by a CP-net (denoted by NetS); each

partner is represented with the CP-net model for its conversation protocol (denoted NetP).

NetS interacts with NetP through arcs connecting the in- and out-places of NetP. Each arc

must be labeled with a token variable that matches the colored set declared for the in-

place/out-place.

• Messages (events) and process variables are represented by tokens. Since the concrete content

of the messages (variables) is not known at design time, abstract color sets are declared for

the messages and variables. Therefore, each color set is kept small to speed up the analysis.

22 2 Web-Services Foundation and Adaptability: Survey and Criteria

• A BPEL4WS activity is usually mapped to a CP-nets transition. A <receive> activity is

represented by a transition which has an in-place. A <reply> activity is represented by a

transition which has an out-place. An <invoke> activity is represented by a pair of transitions,

one of them may fire a request token to NetP, and the other may wait for a token from NetP.

A structured activity is represented by a substitution transition. The control flow between

activities is captured by connecting the activity-related transitions with arcs, places, and

transitions purely used for control flow purpose. More refined control flow can be expressed

with arc inscriptions and transition guard expressions.

• Certain BPEL-like aspects of the composite services are still missing. For instance, compen-

sation handling, fault handling, and message correlation are not addressed.

This composition is illustrated with a travel agency example. For instance, Airlines op-

erations like CheckSeat, ReserveSeat, BookSeat or CancelSeat should be logically ordered

and more importantly synchronized or triggered by corresponding TravelAgency operations such

as FindBestIterinary and BuildIterinary. These Agency-AirLines operations have also to

be synchronized with the customer operations such as TripOrder, ReserveReq, BookReq and

CancelReq. The synchronization is captured by adequate transitions. The order between dif-

ferent operations within each service (as conversation model) are modeled using also appropriate

transitions and places.

The CPNets proposal for WS allows also for conceiving the conversation protocol as a WSPNet,

where:

• Each operation is represented by a transition. An inputPlace (if exists) connects to the

transition, and represents the reception and buffering of inbound messages for the operation.

The transition also connects to an outputPlace (if exists), which represents buffering and

transmission of outbound messages for the operation.

• Each WSDL operation is represented by a CP-net transition. The transition also has one

input place which stands for the pre-condition of the operation, and one output place which

stands for the post-condition of the operation.

• Messages exchanged by the service and its clients are modeled by tokens. Small-sized color

sets are used to capture the protocol-relevant feature of a message.

• The synchronization rules of the conversation protocol are captured by connecting the tran-

sitions (each of them representing an operation) with places, arcs, and dummy transitions

used only for control flow purposes.

This so-called service conversation model is automatically generated from the composition, using

a deterministic algorithm that the authors propose.

2.2 (High-Level) Petri nets-Based Foundation for WS: Survey 23

As we just emphasized, this approach is very expressive and more close to the current investi-

gations within Web services such as reactive complex composition and rich conversation models.

Nevertheless, we may point out the following crucial shortcomings. Firstly, although CP-Nets is a

very expressive formal framework, the fact that the authors where completely bounded with the

limited capabilities of BPEL, business rules governing different operations are completely missing.

This is very severe drawback as business rules allow changes over time, and regulate the service com-

position behavior. Secondly, the fact of associating with each operation several places (and several

transitions), the modeled service composition could easily become untractable and confusing (place

explosion). In this respect, advanced CP-Nets structuring mechanisms such as place/transition

fusion and hierarchy could be very helpful. Thirdly, the proposed Web service composition model

tackles just the orchestration. That is, the interaction between Web services is a choreographical

manner is completely missing. Subsequently, we will abbreviate this model as CpN-WS.

Nets in Nets-Based model for Web services [MOO04]. This work proposes to model Web-

engineering by adopting the strengths of the high-level Petri nets variant based on Nets in Nets

[Val01]. This variant allows tokens from places to be themselves place/transition nets. That means

by firing a transition, a new instance of a net could be creating as output inscriptions and another

net is destroyed from input places.

The authors exploit these advantages for modeling Web services. They put forward a four-

layer refinements based approach. First, giving a complex web-application composed of several

interconnected Web services, they conceive it as a net called service network. Each place of this

(network) Petri net is then itself conceived as a Petri net called Web service container. This

corresponding net allows managing the creation and deletion of service instances of this type. Places

from this service container Petri net are then at their turn regarded as a net called Web service.

This net allows for requesting/responding to different external invocations and for possibilities of

delegating tasks to other Web services. Finally, some places in this net correspond the flow of

elementary operations reflecting the proper behavior of such service.

Important to emphasize here is that this four-based layer approach to web-engineering modeling

is inspired by the authors previous work based specifying multi-agents using Nets in Nets approach.

This approach allows more flexibility and adaptation, besides separation of concerns. That is, the

composite Web service of abstractly conceived, then its details (service contain, behavior, etc.) are

further specified in incremental way.

The philosophy of nets in nets approach still remains very hard to understand, let alone apply

it in complex domain such as Web-engineering. Moreover, although the authors mention that their

work could be easily combined with existing Web service languages such as BPEL4WS, it seems

to be a non-obvious task. Indeed, as BPEL is based on a one layer-based methodology, where all

messages and conditions and their flow are explicitly described, the proposed approach makes it very

hard to obtain this whole and global model in a trackable manner. Besides that, the inter-relations

24 2 Web-Services Foundation and Adaptability: Survey and Criteria

between messages from different Web services as BPEL explicitly describes become impossible to

capture following this layered approach. In other words, the composition as understood in Web

service technology is missing. Subsequently, we will abbreviate this model as 2NetsWS.

Predicate-Nets-Based model for Semantic Web services [NM03]. This approach aims at

enriching the semantical capabilities of semantic web languages such as DAML-S and DAML-OIL.

For that purpose, the authors first adopt the situation calculus for enriching conditions and effects,

using the rules of this calculus. Situation calculus are more or less similar to first-order logic with

modality operations like possibilities.

Having expressed such advanced first-order formulas using an extension of DAML-S, the authors

propose to interpret them using Petri nets. The benefits here are to graphically animate and do

some property analysis of this enriched sematic web languages.

The translation is very intuitive and could be highlighted as follows. Each formula is captured

a specific transition. Input place types of such transitions correspond to different atomic processes

or predicates. The post-conditions are captured as output places. From these basic transitions,

different forms of service flow can be easily modeled using Petri nets. Such flow include sequence,

parallel, if-then-else, etc. Although situation calculus is very rich, it remains still very hard to be un-

derstandable by non-experts. This makes the translation to Petri nets more harder. Subsequently,

we will abbreviate this model as SmWbPN.

2.3 Service Adaptability: Rules- and Aspect-based proposals

Although service-orientation strives for flexible composition of complex Web services, current stan-

dards simply do not promote such adaptable composition. With BPEL4WS [CGK+04] and WS-

CDL [KOMC04] as the widely acceptable languages for composing services, any service-oriented

business process to develop must be predefined in design-time and remains static (i.e. non adaptive)

during time execution.

This inability of automatically and dynamically adapting Web service behavior, induces severe

problems for this technology to deliver all its promise. First, due to the increasing complexity of

realistic service-oriented applications, any manual adaptation is untractable and hard, error prone

and too slow to be effective. second, the lack of adaptation prevents modifying the composition be-

havior (e.g. activities ordering, operations, constraints, etc) at runtime, as customers or providers

frequently unexpectedly change or bring fresh requirements. Third, as Web services functionali-

ties unpredictability and rapidly change to stay competitive, static composition implies very often

working on obsolete and outdate versions of static Web services. Last but least, static compo-

sition makes very difficult dealing with optimal composition, as quality of services and optimal

performance implies runtime assessment.

2.3 Service Adaptability: Rules- and Aspect-based proposals 25

2.3.1 Business Rule-driven Proposals to Web-Service Adaptability

Business rules [KL04, RW02, WKL03] have been recognized as the main driving means towards

adaptable information systems. Business rules can be defined as ”projections of organization con-

straints and declarations of (internal/external) policy/conditions that must be satisfied for doing

business”. A more refined definition defines business rules [KEP00, LOS97] as: ”a set of policies

for regulating the whole business within and outside an organization”. As such, they play a crucial

role in determining how operational decisions within or between organizations must be made.

In particular, business rules specify actions on the occurrence of particular business events,

including ’state of being’ changes concerning individuals and groups of individuals, infrastructure,

informational resources, and business activities. These are the dominating Event-driven conditions

actions (ECA) business rules. They inform about guidelines and restrictions with respect to states

and processes in an organization. Therefore their collection, expression, structuring and organiza-

tion have been acknowledged as central activities within any business/software model. Business

rules are further coined as the most understandable communicating means for all stakeholders.

In the last two decades, business rules have become popular in information systems (IS) [BK05]

and active databases [PD99]. This is mostly because of their ability to make applications flexible and

amenable to change. Due to this sensitivity for changes, business rules require explicit treatment.

Otherwise many problems may occur, such as business logic becoming hard to maintain as being

tangled within application codes or scattered over distributed partner’s applications. With respect

to the field of IS, several categorizations of business rules have thus been proposed. We restrict

ourselves here to the two following categories, we are capitalizing on while developing rule-centric

service-oriented applications.

Intra- vrs. cross-organizational Rules: It is highly beneficial to distinguish between those

rules being internal from those externally driven. Internal rules are defined within the organi-

zation and are often derived from strategic elements that motivate their existence. External

rules, on the other hand, come from the outside world. They include government regulations

and laws that govern the behavior in a given industry, or rules that derive from professional

practice. For service-oriented applications, external rules necessitate special treatment as

emerging cross-organizational knowledge.

Intentional vrs. Operational Rules: Intentional rules are those seen from a general business

context perspective. They express business laws, external regulations as well as principles

for conducting business. Intentional rules are thus usually expressed in the form of natural

language statements, referring mostly to the targeted (cross-)organization goals, the way of

enforcing them (e.g. valid period, expiry date, status) and involved business processes and

activities.

Operational rules are instead approached from a more pragmatic business process perspective.

They prescribe actions on the occurrence of some business events, or describe valid states of

26 2 Web-Services Foundation and Adaptability: Survey and Criteria

organization entities and resources. Operational rules usually derive from the translation

of informal ’intentional rules’ to formal rule statements. They are developed in accordance

with a convenient rule pattern, also dealing with involved resources (e.g. actors, activities,

activity enablers, business entities). For reasoning about operational rules, several logic-based

environments exist (e.g. Jess, Prolog, Mandran) [AA02b, GLC99]. Detection of conflicts

and inconsistencies belong to the main goals behind such logic-based foundations [SS99]. For

practical reasons, we will thus exclusively focussing on operational ECA-driven business rules,

and thus assume that prior intentional requirements rules as given.

Business rules and Web-Services: State-of-art

Business rule-driven business models enjoin, therefore, very determinant advantages for coping with

dynamically evolving Web-Services and related service-oriented business processes. First, they are

specified independently of processes so they are intrinsically evolvable. Second, they focus on more

primary business-driven requirements. Last but not least, they respect declarative descriptions,

rather than specific operational ones, which opens different way of abstractly conceiving and val-

idating them. Recalling again that all service standards for Web-Services with mainly WSDL,

BPEL4WS and WS-CDL [WCL+05], are by essence rigid, static and process-centric, and thus

far from being able on their own to deal with evolving rule-centric knowledge. Nevertheless, a few

emerging approaches are aiming to exploit these capabilities while developing Web-Services, mainly

using BPEL. We survey all of them in the following.

Papazoglou et al.[OYP03] were the first to yield the potential of business rules in service-

orientation to endow BPEL with more dynamism. This approach proposes a complete business

rules-driven life cycle for dynamically composing Web services. Business rules are classified based

on the requirements of service composition, instead of general usual classification appeared in

[WKL03]. In this approach, starting from a very general specification, the composition is scheduled,

constructed and finally executed with the assistance of business rules judiciously classified in a

repository. Besides basic elements such as events, conditions, and messages, this classification

includes rules dealing with the activity flows, the data required for their composition and the

constraints to be respected. The direct construction and subsequent execution of the composition

from the business rules is performed in terms of XML-like descriptions. Nevertheless, no formal

verification / validation of the constructed composition is undertaken. In addition, this approach

copes only with functionality-driven rules.

In [CM04], the authors present a more pragmatic hybrid approach for realizing the integration

of business rules (modeled as aspects) with a BPEL orchestration. In this paper, they exploits thus

their integration of aspect-oriented mechanisms [FECA04] in BPEL leading to AO4BPEL language,

and capture as aspect any business rule. Such business rules as aspects are thus being woven on

BPEL codes. Moreover, the approach allows business rules to be specified / evolved independently

of the (standard) BPEL descriptions.

2.3 Service Adaptability: Rules- and Aspect-based proposals 27

S.Dustdar et al. [RD05] put forward another promising approach combining business rules and

Web-Services. In this work, business rules are conceived and externally exposed as Web-Services.

Instead of WSDL, they are described using reactive RuleML [Rul05]. The rules are thus conceived

as independent service agreements to be invoked over the Web as services. In contrast to the

static WSDL, rules can thus be discovered and composed like any service, while being (internally)

processed using any logic-based engine. The approach is automated with supporting tool called

ViDre [NRD06]. Nonetheless, the approach does not leverage to the conceptual-level, neither copes

with dynamic composition of the (WS) rules governing activities.

Another recently proposed approach [LLGL08], adopts Description Logic (DL) to formalize

business rules governing the temporal ordering of BPEL-like activities. That is, it enforces the

BPEL-workflow to stay always in compliance with the business logic, governed by business rules.

Potential advantage of the DL-based semantics is the formal handling of inconsistencies and redun-

dancies between the rules. We note, nevertheless, that the emphasis is more on the inter-activities

behavior. That is, rules governing activities and their agility are not tackled. A similar but more

deployment-oriented approach is proposed in [HJL+07].

Apart from these proposals that directly bring business rules into service technology, the conflu-

ence of Web-Services and the Semantic Web [BLHL01] could be regarded as a ”radical” alternative.

It permits incorporating ontologically interpreted knowledge in service technology. OWL-S [owl04]

belongs to the leading language in that category. Since we will be focussing just on explicit business

rules, semantics Web-Services remain out of the project scope.

2.3.2 AOP and Adaptive Service-oriented Applications

Aspect-oriented programming (AOP) was firstly forwarded by [Kea97], as the consequence to the

limitations of the object paradigm in factoring out cross-cutting concerns (e.g. Persistence, Logging,

Security, etc.). AOP allows thus extracting cross-cutting concerns from different code units (e.g.

components, modules or classes) and externalizing them in so-called advices, as factorized encapsu-

lated behavioral units ready to be accordingly ”injected” into specific positions in concerned units.

While the right positions, where these advices have to be woven, are referred by joinpoints, the

different ways of combining such advices before superposing them on respective units are referred

by pointcuts.

These main AOP mechanisms have been first implemented in the AspectJ language [Kea01].

Since then, different AOP languages have been introduced, by focussing on specific kinds of weaving

such as dynamic weaving and strategies for pointcuts. What concerns the explicit handling of

business rules as advices coupled by non-intrusive weaving, the JasCo language [DFS04] remains

the most suitable. Moreover, this language has been leveraged to cope with multi-concerns in Web

Services through a variant called WSML [VCJ03]. JasCo is based on two concepts: Aspect Beans for

defining reusable advices as hooks and connectors for coping with different weaving strategies. At

the requirements analysis, several aspect-based extensions to UML have been recently introduced

28 2 Web-Services Foundation and Adaptability: Survey and Criteria

[FS07, WSHG06]. At the architectural-level [CG01], several aspectual extensions to Architectural

languages (ADL) are being forwarded [GCB+06, BCG+06]. The main ideas consist in having

besides usual components and connectors, new forms of cross-cutting ”aspectual” components and

connectors.

AOP and Adaptive Web-Services: State-of-art

The first interesting proposal in this direction has been forwarded by A. Charfi et al. [CM04], as

we cited above. It aims mainly at bringing more agility and modularity to the BPEL language, by

enriching it with an extra aspectual level. The resulting new language named AO4BPEL [CM07],

allows thus externalizing cross-cutting concerns such as security, data handling and others by

separately codifying them as XML schemas and then (statically) weaving them on BPEL activities.

The approach has been abstracted recently to fit any workflow language (i.e. going beyond BPEL)

[CKM07].

The approach introduced by Erradi et al. [EM06] also adopts aspect-orientation, and is specif-

ically devoted to policies and QoS concerns. The approach is not tailored to just BPEL, and it

addresses runtime weaving of different policies on running services. An environment called MASC

is supporting the approach [ETM07]. In the same line, A.Finkelstein et al. proposed in [CF05]

a generic aspect-oriented language, they applied for dynamically weaving behavioral advices on

BPEL code.

Another aspect-driven approach to Web-services appeared most recently in [MBM+07]. In this

approach the emphasis is on the adaptability of business protocols while composing Web-services.

Indeed, very often both syntactical and semantic mismatches occur while invoking and composing

complex services. A higher aspectual level is conceived, where dynamic ordering could be resolved

on-the-fly.

2.4 Web-Services Modelling and Adaptability: Criteria and As-

sessment

In this section we endeavor leveraging the above informal and subjective surveys—about differ-

ent approaches to Web-Services formalization and adaptability—towards a more disciplined and

exhaustive assessment and comparison of their strengths and flaws. For that purpose, we are

capitalizing on the conducted intensive state-or-art investigations related to different issues and

concerns in the development of Web-Services and service-oriented applications in general. More

precisely, first we put forwards a set of criteria reflecting crucial features of services and the re-

quirements for their modelling. Then, we apply these criteria on the afore-discussed approaches.

This comparison allow us sheding all lights on different deficiencies and strengths of any of such

proposals. The ultimate results of this assessment will be playing the driving conceptual guidelines,

2.4 Web-Services Modelling and Adaptability: Criteria and Assessment 29

towards coming up in the next chapters with an innovative conceptual model, that overcomes most

of the shortcomings and takes profit of the advantages.

2.4.1 Criteria for Web-Services Modelling and Adaptability

Towards assessing and comparing current proposals to Web-Services formalization and adaptability,

we are coming up with a set of well-studied criteria to mirror crucial service features and require-

ments to meet to adequately handle them. For sake of clarity, we are classifying these criterions into

five categories: Service modelling, Service Composition, Practicability/expressiveness, adaptability

and mobility.

Service modelling Criteria

Under this crucial category, we refer to the capabilities of any adopted conceptual model to capture

the service behavior in satisfactory manner. These capabilities should include, among others,

the support of different abstraction mechanisms for taming the service complexity as well as the

ability of dealing with persistency and stateful composition. More precisely, we argue the following

criterions should be inherently supported by any serious conceptual service modelling candidate.

Abstract / concrete interfacing: As emphasized in [DD04], the explicit distinction between

abstract interface description and concrete one is a very beneficial. Indeed, this separation

allows at the abstract-level to concentrate more on the main functionalities of the service,

whereas at the concrete level more detail including qualities of selected services, their location

and costs have to be considered.

Service interface behavior: It is the ability to capture the behavior of the abstract service

description in expressive and stateful manner.

Concrete Service behavior: We argue that a good conceptual model should also allow modelling

the behavior of a concrete service with all its qualities of services and implementation details.

Service data abstraction: In modelling abstract or concrete (composite) services, the ability of

explicitly dealing with data such message parameters, operation conditions, etc is very crucial

for a conceptual model to be acceptable.

Service data structuring: To cope complex data-intensive services, more advanced structuring

mechanisms are required such as inheritance (i.e. service classes and subclasses) and service

aggregation.

Service state intra-concurrency: First, we argue that an explicit modelling of service states

in the service behavior specification or in its composition is very relevant. besides that, the

ability of concurrently applying more than one operation on different parts of such state

enhances the service performance.

30 2 Web-Services Foundation and Adaptability: Survey and Criteria

Service inter-concurrency: Concurrency should also be supported between different service

state instances.

2.4.2 Service composition criteria

As widely recognized, composition is the main essence in Web services and its underlying service-

oriented architecture. Composition is the ability to bring together the functionalities of more

than one service (interfaces) to built a complex service and achieve thereby any realistic customer

requirements and demands. Generally, Web-Services composition tackles inter-organizational ser-

vices, where different organizations participate with a specific know-how and added-value.

Beyond the offered partial-ordering operators (e.g. sequence, choice, parallel, etc.) for compos-

ing business activities, we argue that for coping realistic composite services more advanced features

and criterions should be available for any suitable modelling approach.

Choreorgraphy / Orchestration: This criterion means the explicit ability to distinguish be-

tween orchestration and choreography while composing services. Orchestration implies the

ability of specifying a specific service that interacts (i.e. be composed) with other services

through messages invocation, reception and replication. This restricted single-view compo-

sition is mainly promoted by languages like BPEL4WS and DAML-S. The choreography in

contrast aims at interacting or composing several services through their interfaces in decen-

tralized and balanced way, without any dominating service. Technologically, choreography is

particularly promoted by the WS-CDL [KOMC04, W3C04] language.

Stateful Orchestration: It is the ability to conceive the services orchestration instances in a

persistent and reactive way. It is a crucial property in advanced and realistic services as most

of them are becoming long-running and transactional.

Stateful Choreography: The ability to conceive the services choreography instances in a persis-

tent and reactive way leads to the development of complex service systems.

Stateful Conversation: To allow composing complex web-applications, service interfaces (e.g.

invoke, receive) are not sufficient. Instead a complex conversation is mostly required between

different invoked and received operation services [PTDL08]. Such conversation should also

be modeled in a stateful manner to cope with different instances and their persistent states.

Dynamic composition: Although Web services aims to generate composite services in a runtime

way, existing Web services languages still achieve it only statically and manually. As pointed

out in [OYP03] business rules may significantly contribute to make such composition more

dynamic. As we have reported, aspect-oriented mechanisms may also contribute to adapt

service composition.

2.4 Web-Services Modelling and Adaptability: Criteria and Assessment 31

Stepwise composition: Web services composition involves several activities including: Interface

definition, interface behavior specification, orchestration, conversation, choreography and run-

time adaptability [DD04]. Mastering this complexity requires a clear stepwise methodology,

so that such steps can be optimally organized and coordinated.

Practicability / Expressiveness criteria

Formal methods of any sort remains still very hard to use, in complex applications such as Web

services, even those based on Petri nets. To enhance such practicability, we argue that associated

criteria should be set. These criterions include, for instance, the capabilities of: Stepwise con-

struction of model, methodological support with semi-formal diagrammatical models such as UML

[OMG05], and the hiding of formal technicalities and semantics as much as possible. In detail, we

propose the following criterions to be fulfilled for enhancing the practicability and expressiveness

of any service conceptual modelling.

Expressiveness : As we just mentioned an adequate conceptual model for Web services should

be able to explicitly specifying service data, messages, states, etc. Moreover, to achieve a

high-expressiveness most if not all criterions related to the composition and the modelling as

above detailed should be met.

Compactiveness : Towards taming the complexity of real-size Web services at the modelling

phase, the model has to be compact enough to capture large services. Refinement steps

may be necessary to incrementally deals with all service details. With respect to Petri nets,

Place/transition-based models could easily lead to place/transition explosion. Even high-level

Petri nets need more structuring mechanisms to cope with service complexity.

Relationship to current WS technology : As XML-based Web services languages such as

WSDL, BPEL and WS-CDL are becoming the de-facto standards, any adequate conceptual

model should be able to intuitively and automatically be translated into such languages.

Semi-formal Diagrammatical support : As diagrammatical-based informal methods like UML

is gaining more and more acceptance in software-engineering, we argue that suitable concep-

tual models for Web services should be include some UML-diagrams in their earlier require-

ments elicitation and modelling phases.

Hiding of tedious formal semantics : The previous criterion is an important step towards

hiding formal details, when clear translation steps are proposed to automatically generating

the conceptual models from its UML-diagrammatical descriptions

Tools for validation / properties analysis : Tools are a determinant factor to enhance the

practicability of any conceptual model for Web services. It allows generating rapid-

prototyping for validation purpose and the verification of essential properties of the system.

32 2 Web-Services Foundation and Adaptability: Survey and Criteria

BPW-PN PN4WS E-SvPN SmWbPN 2NetsWS CpN-WS

Service Composition Criteria

Choreorgraphy/orchestration × × +/− × × ×
Stateful Orchestration +/− +/− +/− +/− √ √

Stateful Choreography × × × +/− × ×
Stateful Conversation +/− +/− +/− × +/− √

Automatic composition × +/− × × +/− +/−
Stepwise composition × × × × +/− +/−
Service behavior modelling

Abstract/concrete interface × × × × × ×
Service interface behavior +/− +/− +/− √ √ √

Concrete Service behavior × × × × × ×
Data abstraction × × × √ √ √

Data structuring × × × × × ×
State intra-concurrency × × × × × ×
Inter-concurrency +/− √ √ √ √ √

Practicability/Expressive.

Expressivity +/− × × +/− √ √

Compactness × × +/− +/− √
+/−

Relation to WS technology +/− × × +/− +/− √

Diagram. support × × × × × ×
Semantics Hiding +/− × +/− +/− +/− +/−
Tools +/− × +/− +/− √ √

WS Adaptability

Rule-driven modelling × × × × × ×
Architectural modelling × +/− × × × ×
Runtime adaptability × +/− × × × ×

Table 2.1: Service criteria applied on proposals for service foundation and adaptability

2.4 Web-Services Modelling and Adaptability: Criteria and Assessment 33

Adaptability and evolution criteria

Web services are promised to achieve dynamic adaptation while composing services. We argue

that the following criterions and requirements on conceptual models are essential to achieve more

adaptable and runtime dynamic services.

Rule-driven service modelling : Business rules are the most volatile part of any service-

oriented cross-organizational alliance [KL04]. They describe functionalities / policies and

rules for doing business. The ability of explicitly modelling such business rules is therefore

determinant prerequisite for making services adaptable.

Interaction-driven Service behavior : We argue that an explicit externalization of service

composition behavior using architectural connectors [SG96], enhances by far the reasoning

and adaptation such composition in a transparent manner.

Runtime adaptability : This ability implies explicitly separating between the adaptability-level

and the conceptual ”base-level” model. This allows shifting up/down at runtime any emerging

business from the adaptability-level to the conceptual model, and thus adapting and evolving

it as needed. Reflection techniques [YM01, CCL00] and aspect-oriented mechanisms [Kea97,

EFB01] represent the most advanced software-engineering mechanisms for addressing runtime

adaptability.

2.4.3 Service Criteria applied on the state-of-art

On the basis of the forwarded criteria for service features and modelling requirements, we assessed

and analyzed the discussed approaches to service foundation and service adaptation. The following

table summarizes the result of this analysis. The adopted abbreviations are as follows. We are

using the symbol ‘
√

’ when the respective criterion is fully supported by the model. In contrast,

the symbol ‘×’ is used when criterion is absent and thus not supported by the model. Finally,

when a non satisfactory fulfillment of the criterion we use the symbol ‘+/−’, that is, when the

criterion is only partially supported by the model.

As depicted in this comparative table, we may easily notice that all conceptual models fail

in coping with runtime adaptability in a satisfactory way. Moreover, the explicit distinction and

complementarity between service orchestration and choreography is fast missing in all approaches.

When it comes to the stepwise development, we also notice that little has been achieved on different

available proposals. Last but not least, the disciplined handling of knowledge in terms of evolving

ECA-driven business remain largely unexplored. For the other criteria, they are variably supported

by different conceptual models. High-level Petri nets-based approaches, for instance, are more

expressive and respond positively to more criteria than those based on simple Place / Transition

34 2 Web-Services Foundation and Adaptability: Survey and Criteria

nets. Nevertheless, when it comes to the formal verification as widely-known, P / T Petri nets are

more powerful.

2.5 Chapter Summary

As we reported in this preparatory chapter, the foundation underpinning as well as the adaptability

are among the most serious challenging concerns in the emerging service paradigm. In this respect,

after a general overview of main concepts of Web-Services and its underlying service-oriented archi-

tecture, we summarized different formalization based on different variants of (high-level) Petri nets.

We then reported on recent research advances about adaptability and knowledge-intensiveness in

Web-Services, by focusing on those based on business rules and aspect-oriented mechanisms. The

chapter also proposed well-conceived criteria for characterizing crucial features of web-services as

well as the requirements to fulfill them, and then assessed these criteria with respect to the discussed

approaches.

Nevertheless, we should emphasize that besides Petri-Nets based proposals, other formalisms are

being intensively applied to service orchestration and choreography. They include process-algebras

[FGV04], temporal logics [SCZ04], graph-transformations [HHL05] and event-calculus [MS04]; just

to cite few of them.

In parallel to these formalisms, methodologies supporting the development of service-oriented

applications are starting to gain in maturity. For instance, the Service Component Architecture

SCA [BBBea05], supported by graphical notations, aims at lifting up the service development to the

business-level. A first formalization of SCA is being forwarded in [ABFL07] using architectural tech-

niques. The so-called SOMA (Service-Oriented Modelling and Architecture) methodology [Ars04]

is being promoting at IBM. Starting from business processes, the methodology derives (abstract)

services and then service-components. Worth-mentioning is also the recent proposal for service

requirements elicitation [JFT07]. Though it does not explicitly speak about business rules, it han-

dles requirements with cross-organizational (event-driven) constraints. Last but not least, with

respect to the widely-accepted UML method, several recent approaches have been forwarded with

different goals such as the composition of services at the modelling and abstract integration of extra-

functional requirements such qualities and context concerns [OH06, RIM08, MSK08, SB05]. We

note here that most of these UML-based approaches to Web-Services have been recently surveyed

and assessed in [MSK08].

35

Chapter 3

Rule-centric Stepwise Development

for Service Systems

This chapter lies the foundational and methodological basis for developing adaptive knowledge-

intensive service-oriented systems and applications. More specifically, we puts forwards an advanced

disciplined and stepwise approach for semi-formally analyzing and then formally specifying and vali-

dating highly adaptive knowledge-intensive service-oriented applications. As conceptual milestones,

the approach capitalizes on advanced software-engineering concepts, methods and mechanisms in-

cluding: (1) Intentional business rules and stereotyped UML-classes for semi-formally handling

structural and behavioral service requirements; (2) ECA-driven business rules and their disciplined

architectural interconnections for reflecting the evolving and adaptive interaction-centric of compos-

ite services; (3) high-level (service-oriented) Petri nets for formally specifying distributed composite

services; and (4) leveraged rewriting logic and its efficient yet tailored Maude language for opera-

tionally. The next section brings more motivations and insights into both the envisioned formalism

and its supporting methodology, and how they mostly fit the development of adaptive and rule-

intensive service-oriented applications. The chapter then delves into details about the conceptual

model and its earlier semi-formal ECA-UML phases.

3.1 Rational for the forwarded Conceptual framework

Let us first revisit the pros-arguments and potentials towards leveraging high-level Petri nets to

formalize, validate and reason about adaptive rule-intensive service-oriented applications. As we

reported in the previous chapter, several ongoing (High-level) Petri nets-based (HLPN) proposals

are being proposed, for formalizing and reasoning about service-oriented applications and Web-

Services. In the following, we first recapitulate on key advantages of HLPN as a formal setting for

service-oriented applications. Afterwards, we focus on severe limitations of such existing Petri nets-

based proposals. These deficiencies will indeed pave us the way towards coming up with a variant

36 3 Rule-centric Stepwise Development for Service Systems

that allows overcoming them. The envisioned CSrv-Nets service-oriented Petri Nets formalism,

as well as its supporting methodology, will then be detailed in the subsequent sections.

3.1.1 HLPN as service foundation: Potentials and limitations

Recalling again some of the argumentations in favor of High-level Petri Nets, as a founded setting

for service-oriented applications and Web-Services. These advantages include at least the following

five main points:

Understandability via visualization: Experience shows that formalisms endowed with graph-

ical descriptions are more accepted by all cross-organizational stake-holders—and not just

IT-developers. Indeed, for any targeted service-oriented solution, understandability is essen-

tial in bridging the gap with the crucial business-level. Where at this level, decisive strategic

goals and objectives, broad business processes and high-level policies governing any (oppor-

tunistic) cross-organizational alliance are forwarded, debated, communicated and adapted.

The aligning of any ”business-foundation” and its IT-solution relies therefore on business re-

quirements and their understanding and handling. (High-level) Petri nets with their inherent

graphical modelling and execution (token games) promote at some extent this understand-

ability, particularly when their tedious mathematical sides are hidden.

Concurrent and distributed behavior: Distribution and mobility belong to the main charac-

teristics of (advanced composite) services. Consequently, we argue that any potential can-

didate for service foundation requires to inherently support concurrency and distribution.

High-level Petri nets are by essence concurrent, while supporting different distributed seman-

tics.

Type- and instance-level support: Coping with both the type- an instance-levels represent a

critical requirement to tackle service states, and so the explicit handling of persistency and

conversation. We should point out that most of WS standards (e.g WSDL, BPEL and WS-

CDL) are not stateful, and do not thus support long-term transactional (instances of) services.

High-level Petri Nets inherently support modelling at both levels, where even complex (rule-

centric) service states can be specified and reasoning about.

Validation and verification: Service requirements validation and verification are crucial to en-

hance the correctness of services, and thereby attract more requestors. Validation should

detect requirements misconception, missing and conflicts. As offered by High-level Petri Nets,

graphical validation significantly help in this respect. Besides that, High-level Petri nets also

support properties verification, using analysis techniques (e.g. P/T-invariants, siphons and

traps [ABS00]).

Service component abstraction mechanisms: Current WS standards propose just a mono-

lithic interfacing, where neither behavioral- nor structural-based hierarchy are possible. This

3.1 Rational for the forwarded Conceptual framework 37

significantly hinders the tailoring of (composite) services / interfaces to specific requestors

and their profiles. Object-oriented advanced mechanisms (e.g. inheritance, role and aggrega-

tion) have been well integrated in High-level Petri nets [BB91]. Since we are benefiting from

our previous component-based Petri nets Co-nets [AS02], we envision delivering complex

hierarchical service components and interfaces.

As detailed in the previous chapter, most of these advantages of High-level Petri nets have been

exploited, while formalizing and reasoning about Web-Services. Nevertheless, we still experience

severe limitations hindering the disciplined development of service-oriented applications, particu-

larly those required to be highly adaptive and knowledge-intensive. More specifically, among the

serious shortcomings, we aim overcoming with our envisioned CSrv-Nets formalism, we emphasize

the followings.

Ph−.NET

ServComp1 ServCompN. . .

 ECA−interaction ECA−interaction

Invariants−1
Messages−1
 events1

ServIntf1−SI1

Invariants−1
Messages−1
 events1

ServIntf1−SI1
Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

. .

events ...
participants ...
conditions ...
actions ...

events ...

participants ...

conditions ...

actions ...

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

In
fo

rm
al

 b
us

in
es

s
go

al
s,

 b
ro

ad
 p

ro
ce

ss
es

an
d

in
te

ns
io

na
l b

us
in

es
s

ru
le

s

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

Co−SrvNets

R1: (Ms1, ev1)... => (Msi, mi)... if cd1
.

In
vo

kd
 S

er
vi

ce
s

. . .

. . .

ru
l1 ru

lk
R

ul
es

−
st

at
e

DelR

AddR

UpdR

R
ul

2A
dd

R
ul

2D
el

R
ul

2C
ha

ng

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

C
o−

S
rv

N
et

s

ac
tiv

ity
.N

E
T

−
W

S
er

vi
ce

s
E

C
A

−
ba

se
d

.N
E

T
−

A
sp

ec
ts

(u
n−

)

w
ea

vi
ng

ServCompNServComp1ServComp1 ServCompN

Ph−Uml&Rule

ea
ch

A
sp

ec
tu

al
−

S
rv

N
et

s

Adaptiviy−Level

(un−)weaving

.

<<CompositeService>>

. . .

<<Service1>>

events
messages, properties

<<ServiceN>>

− messages1
− events1
− properties1

− messages−s1
− events−s1
− properties−s1

− messagesN
− eventsN
− propertiesN

<<SubServN>>

− messages−sN
− events−sN
− properties−sN

<<AggreServ1>>

Ph−CoServ−Nets Ph−AspServ−Nets

Figure 3.1: Disciplined Approach for Developing Adaptive Service-Oriented Systems

Explicit stateful services: Realistic services such as E-banking or E-health are mostly trans-

actional and thus intensively stateful. Current Petri nets proposals to service foundation

are instead mostly process-centric, with little to no handling of service data and states. We

claim this unfortunate situation is mostly influenced by WS standards such as WSDL and

BPEL. We aim thus at going beyond such standards by promoting long-running service in-

teractions with conversational and thus stateful features. For that purpose, an advanced

service states handling is proposed in CSrv-Nets. Moreover, we are inherently borrowing

advanced object-oriented abstraction mechanisms (e.g. hierarchy and inheritance, roles and

aggregations) while interfacing and composing such realistic services.

Behavioral ECA-driven rules: E-Banking, E-health and E-government as potential service-

38 3 Rule-centric Stepwise Development for Service Systems

oriented applications are inherently behavioral and rule-centric. These (composite) services

are mainly governed by several evolving event-driven business rules. Unfortunately, no exist-

ing (high-level) Petri nets-based service foundation explicitly deals with business rules. We

thus propose overcoming this severe problem by soundly and gradually integrating event-

driven business rules within the CSrv-Nets formalism.

True-concurrent operational semantics: As we reported on, all (High-level) Petri nets-based

service formalisms are governed using ad-hoc and simplistic algorithmic semantics. Besides

being mostly interleaving or even sequential, such direct interpretations restrict by far the

reasoning on the model. In the envisioned CSrv-Nets we go beyond such algorithmic (se-

quential) semantics, by proposing a true-concurrent semantics based on Meseguer’s rewriting

logic [Mes92] and its intrinsic yet efficient Maude implementation language [CDE+07]. Be-

sides that, with reflection capabilities of this logic, we show how to explicitly control the

execution of CSrv-Nets transitions.

(UML-centric) supporting methodology: Existing high-level Petri nets to service foundation

do not allow systematic and progressive construction of the behavioral features. This makes

it very hard to novice users to build any complex service models using such formalisms.

Furthermore, the tedious mathematical sides are not hidden, which leave too much confusion

and rooms for different behavioral interpretations. We circumvent this serious problem by

supporting the designer with explicit clear steps on how to conceive the behavioral issues,

i.e. net places and transitions and their inscriptions, from UML-based structural aspects and

related business rules.

Service orchestration vrs. choreography : Most existing founded approaches to service com-

position adopt the service-focussed orchestration, expressed mainly using BPEL standard.

That is, the most global inter-service choreography composition is severely disadvantaged. In

this work, we demonstrate that a harmonious complementarity between the two perspectives

is very essential to promote realistic composite knowledge-intensive services.

(Rule-centric) Service Adaptivity: Most approaches to service foundation, including Petri net

ones, do not handle adaptivity while composing services. That is, only rigid and static services

may be reasoned about, compromising thereby competitiveness and opening doors to ad-hoc

and risky service changes at deployment. The main objective of this work is to leverage

service foundation to inherently tackle both design and runtime adaptability.

3.1.2 Necessity for Stepwise supporting Methodology

At the methodological-level, formalisms such as high-level Petri nets remain unfortunately still

very difficult for (cross-)organizational stakeholders (e.g. managers, users, customers and even

programmers). To promote the practicability and wide-usability of Petri Nets, we need thus to

3.1 Rational for the forwarded Conceptual framework 39

hide as much as possible their tedious mathematical side. The adoption of widely-accepted semi-

formal diagrammatical, intuitive yet standardized artifacts represents therefore a best compromise,

while eliciting service-oriented applications.

We are therefore proposing to first describe any service structural features using stereotyped

UML2.0 use-cases and class-diagrams [BJR98, OMG05]. Service behavioral aspects, on their turns,

are captured through event-driven business rules [WKL03], which are inherently understandable,

evolving and process-independent. Only after deriving such widely-acceptable semi-formal descrip-

tions, we then propose to smoothly shift towards rigorous service-oriented Petri Nets specification

and validation.

As illustrated in Figure 3.1, the working architecture of whole approach, we are putting forwards

for developing adaptive rule-centric service applications, is composed of following progressive steps.

UML/ECA-rules at requirements phase: In this preliminary phase, an informal description

of the targeted service-oriented application is derived. For that purpose, we assume given at-

priori global goals / objectives as well as broad business processes and related intentional rules

governing such targeted (opportunistic) cross-organizational alliance. First, we diagrammati-

cally express any static and structural features of such alliance using stereotyped UML2.0 Use-

Cases and Class-diagrams. On the other side, we express any intra- and inter-organizational

business rules following the Event-Condition-Action (ECA) paradigm [JPHL07].

Service Nets specification / validation phase: This phase aims at precisely, coherently and

progressively defining all previous service functionalities and behaviors. The CSrv-Nets

formalism is forwarded to that purpose, while promoting service distribution, persistency

(stateful) and conversation. The validation is steered by a tailored rewriting logic-based

semantics, we faithfully implement by extending the Maude language.

Choreography and Orchestration Harmony: CSrv-Nets behaviorally support both local

service-focussed and global inter-service service compositions, also known as orchestration

and choreography respectively. We should mention here that WS technology proposes two

completely independent standards for these two perspectives, namely BPEL for orchestra-

tion and WS-CDL for choreography. We demonstrate how CSrv-Nets achieve a harmonious

complementarity of the two perspectives on (rule-centric) behavioral issues.

Adaptive service Nets for runtime evolution: This phase gradually leverages CSrv-Nets

with an adaptability-level based on aspect-oriented mechanisms [Kea97]. Through this evolv-

ing CSrv-Nets extension, rule-centric behavioral features are explicitly and dynamically

woven on running service components and interfaces in a non-intrusive manner.

.NET-based deployment phase: Though in this work, we will not go in too much detail about

Web-Services deployment phase, it is worth-mentioning that we have also been developing a

conceptually compliant aspectual .NET environment [URAS09, ABS09d].

40 3 Rule-centric Stepwise Development for Service Systems

In this chapter we will focus on the two first phases as depicted in Figure 3.2, in this approach

working architecture towards a disciplined engineering of adaptive knowledge-intensive service-

oriented applications. More precisely, the remaining sections will be structured as follows. In

the next section, we overview and illustrate the early semi-formal phase, where we describe both

structural and behavioral features in any aimed service-oriented cross-organizational alliance. In

the third section, we progressively refine the UML-based into a precise CSrv-Nets structural

features. In the fourth section, we focus on CSrv-Nets behavioral features, we gradually derive

from any already extracted ECA-driven rules. In the fifth section, we develop the rewriting-logic

based operational semantics, where an expressive CSrv-Nets rewrite theory is proposed. The

sixth section proposes a compliant extension of the Maude language that implements this rewrite

theory, allowing thereby symbolic validation and formal verification of CSrv-Nets services.

Ph−.NET

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

In
fo

rm
al

 b
us

in
es

s
go

al
s,

 b
ro

ad
 p

ro
ce

ss
es

an
d

in
te

ns
io

na
l b

us
in

es
s

ru
le

s

ServComp1 ServCompN. . .

 ECA−interaction ECA−interaction

Invariants−1
Messages−1
 events1

ServIntf1−SI1

Invariants−1
Messages−1
 events1

ServIntf1−SI1
Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

. .

events ...
participants ...
conditions ...
actions ...

events ...

participants ...

conditions ...

actions ...

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

Co−SrvNets

R1: (Ms1, ev1)... => (Msi, mi)... if cd1
.

In
vo

kd
 S

er
vi

ce
s

. . .

. . .

ru
l1 ru

lk
R

ul
es

−
st

at
e

DelR

AddR

UpdR

R
ul

2A
dd

R
ul

2D
el

R
ul

2C
ha

ng

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

C
o−

S
rv

N
et

s

ac
tiv

ity
.N

E
T

−
W

S
er

vi
ce

s
E

C
A

−
ba

se
d

.N
E

T
−

A
sp

ec
ts

(u
n−

)

w
ea

vi
ng

ServCompNServComp1ServComp1 ServCompN

Ph−Uml&Rule

ea
ch

A
sp

ec
tu

al
−

S
rv

N
et

s

Adaptiviy−Level

(un−)weaving

.

<<CompositeService>>

. . .

<<Service1>>

events
messages, properties

<<ServiceN>>

− messages1
− events1
− properties1

− messages−s1
− events−s1
− properties−s1

− messagesN
− eventsN
− propertiesN

<<SubServN>>

− messages−sN
− events−sN
− properties−sN

<<AggreServ1>>

Ph−CoServ−Nets Ph−AspServ−Nets

Figure 3.2: The approach two first phases, UmlRule--CSvr-Nets, as chapter focus

3.2 The UML-ECA-based semi-formal services description

We should first emphasize that for illustration and proof-of-concepts, we will be subsequently

adopting a typical variant of the travel agency. In its simplistic case, a travel agency offers airline

tickets and accommodations to its customers. Any travel agency needs thus to establish cross-

organizational business links, including at-least airlines and hotels and financial institutions (e.g.

bank or credit-card) for payment purpose. Further optional facilities such as sight attractions,

car-renting and others may enrich a given vacation package. The customers present thus their

requirements in terms of package option, period, member number, maximal-cost, location, etc.

The travel agency service enters into interactions with its partners and proposes tailored offers.

3.2 The UML-ECA-based semi-formal services description 41

Once specific offers are accepted by respective customers, the agency proceeds then to confirmation

and any other required formalities. Not that customers can always cancel any offers, even when

confirmed, against measured penalties. Refunds or alternatives should also be foreseen in case the

agency fails performing a specific package.

This flow - or process-centric description is mostly followed, when (semi-)formally modelling and

WS-standards deploying of Web-Services. For instance, with respect to the UML method which

interests us here, activity diagrams have been the driving forces in capturing such flow-centric

Web-service composition [DGS04, MSK08]. Formal techniques like Petri nets also fall in this

flow-centricity in composing services, as they mostly aim at reasoning about BPEL-like processes

[OVvdA+07a].

As we already emphasized, focusing only on service flow severely impedes any handling of

adaptable and stateful-conversational knowledge-intensive composite services. For instance, with

respect to the travel agency, by focussing only on the flow, it becomes hard to speak about evolving

customer profiles (e.g. silver, golden or normal) and related added-values and competitive benefits

(discounts, special offers, etc.). Moreover, with the absence of business rules governing activities

(e.g. request, offer, payment, cancel, etc.), the resulting service composition is static and rigid.

Besides that, the flow itself cannot be updated or tailored to the customer wishes.

Towards overcoming such severe limitations, we propose an early emphasis on different sources of

knowledge and involving rules governing different business activities, independently of their global

process. In contrast to the state-of-art, we are thus postponing the handling of the underlying

process logic. This will afterwards be handled at the service-oriented Petri nets formal level. More

precisely, on the one hand, we are upgrading UML class-diagrams to express different involved

service interfaces, in any opportunistic cross-organizational alliance (as composite services). On

the other side, we identify each required business activity and behaviorally govern it with evolving

ECA-driven business rules.

3.2.1 Profiled UML class-diagrams: Application to the Travel Agency

A straight reformulation in terms of UML use-cases of the above informal travel agency description,

could be given as depicted below the Figure on the right-side. That is, the main agency activities

(i.e. use-cases) have to include: (1) The dispatching of requests to all service partners (e.g. Airline

and Accommodation) once received from the customer(s); (2) The collection of returned offers and

their forwarding to the customer(s); (3) The collection of any confirmation for specific offers; (4)

The triggering of confirmations and collection of final bookings from the service partners; and (5)

finally the handling of the payment with financial partner(s). We note that, the canceling activity

could also be triggered.

42 3 Rule-centric Stepwise Development for Service Systems

Furthermore, from the Airline service

interface, we require the ability of re-

ceiving flight-requests, the suggestion

of respective flight offers, and the abil-

ity of booking chosen flights. The same

operations should be offered by the ho-

tel or accommodation service interface.

The credit-card or any selected banking

service should perform the debit, credit

and transfer of the requested cost. As

subsequent refinement of such general

Use-Cases, we propose an interaction-

centric upgrading of the usual UML-

class diagrams.

Customer

TravelRequest

TravelConfirm

FlgBook

FlgCancel

FlgPay

FlgReserv

TravelCancel

TravelPayment

TravelOffer

Banking_Service

Debit

Credit

Transfer

RoomReserv

RoomBook

Stay2Pay

Stay2Cancel

AirLine_Service

Accommodation_Service

Travel Agency

That is, since composition belongs to the essence of the service-paradigm, we are borrowing

ideas from architectural techniques [MT00] and the work in [HHL05] about UML-based graph-

transformations and Web-Services. Indeed, architectural techniques allow externalizing intercon-

nections as first-class transient connectors from service components through roles or interfaces.

As depicted in Figure 3.3, applied to the Agency case, the forwarded stereotyped UML-classes

and connections can be highlighted as follows. First, all involved service components are as expected

hidden units. The service interfaces are expressed as role classes. Furthermore, to facilitate service

composition, we explicitly separate triggering events from received messages and invoked messages;

each referred with a meaningful icon. Service interface properties (i.e. attributes) are abbreviated,

and will only be detailed in next steps to help formulating any involved business rules. For instance,

the customer properties can abstracted via the name CustInfo. We will see later, that such

CustInfo should at-least be composed of name, birth, age and profile.

Since the travel agency service composition is steered by the Agency service, we are stereotyping

it as a connector with that special lozenge icon. In this particular case, this service connector is also

to be regarded as a service-interface, thus with a hidden Agency service component. Consequently,

towards composing involved services, the agency puts into forces its own properties and messages.

Among the required properties for a given agency, we may cite, the list of its privileged partners

(e.g. airlines, hotels), list of privileged locations, targeted customers and so on.

3.2.2 Stepwise ECA-driven Description for Service Behaviors

As we overviewed in the previous chapter, business rules represent the best business and modelling

ingredients in organizations to reason about knowledge and adaptation. Business rules reflect

regulations and conditions for a competitive functioning of any (inter-)organization, both internally

3.2 The UML-ECA-based semi-formal services description 43

as well as externally. As such regulations change / evolve to promote competitiveness, the governing

business rules accordingly evolve [WKL03, KL04]. Business rules are mostly expressed in terms

of Event-Conditions-Actions (ECA) forms, that is, on the occurrence of triggering events, related

constraints should hold to perform necessary actions.

TravelAgency−Process: <<service interaction>>
UML profile Notations

: <<service component>>

: <<service−interface>>

: <<events>> (port)

: <<invoked messages>>

: <<outgoing messages>>

<<Service−Interface>>

− Hotel−Infos
− Rooms−Infos

RoomBook(FlgInfo)

RoomRqst(FlgInfo)

RoomCancel(FlgInfo)

StayOffer(FlgInfo)

Stay2Pay(FlgInfo)

Hotel−Service
<<Service−Interface>>

FlgBook(FlgInfo)

FlgRqst(FlgInfo)

FlgCancel(FlgInfo)

FlgOffer(FlgInfo)

Flg2Pay(FlgInfo)

− Airline−Infos
− Flight−Infos

Airline−Service

Debit(Amount, PayInfo)

DebitOk(PayInfo)

<<Service−Interface>>
CreditCard−Service

− Card−Infos
− BankInfos

Refund(Amount,PayInfo)

DebitNOK(PayInfo)

Credit−Card
 Service Component Service Component

Accommodation
 Service Component

TravelAgency
 Service Component

Airline
 Service Component

Customer

<<Service−Interface>>

(Name, profile, budget,..)

Trv2Acpt(OffrsTrv)
Trv2Cancel(OffrsTrv)

Trv2Rqs(TrvInfos)

TrvOffer(TrvInfos)

Trv2Pay(OffrsTrv)

− CustInfos

Customer−Service

<<Service Composition>>

− TravelAgency.Infos

TrvRqst(TrvInfo)

TrvOffer(TrvInfo)

TrvConfirm(TrvInfo)
TrvBookd (TrvInfo
TrvBookd (TrvInfo

Figure 3.3: StereoTyped UML-Classes for Services Applied on Travel-Agency.

As we reported in the related-work, few proposals have been forwarded bringing business rules

to Web-Services (e.g. [GS03], [CM04], [RD05]). Nevertheless, common to these approaches is

that, they all focus on the deployment phase by mainly enriching BPEL and WSDL standards in

ad-hoc manner. That is, existing approaches combining business rules and Web-Services do not

address crucial early phases of intuitive rule-centric elicitation, formal specification and validation

/ verification. Furthermore, such proposals do not address the dynamic adaptability and evolution

of involved rules, at both fine-grained activity and business process levels.

The envisioned approach endeavors thus to circumvent these shortcomings while benefiting from

their advantages. In some details, the main features and potentials of the envisioned approach, can

be summarized in the followings:

From intuitive to disciplined ECA-driven service interactions: Business rules belong to

the main assets for supporting stake-holders in doing business. As such, they require at-priori

to be discovered, described and evolved at that business-level. We aim thus at separating

business rules from any (service-oriented) concrete process. Towards achieving that, we pro-

44 3 Rule-centric Stepwise Development for Service Systems

ceed in a gradual manner. For that purpose, we smoothly shift from intuitive intentional

descriptive rules via more operational ECA-driven ones towards disciplined service-driven

conceptualization as tailored rule-centric architectural interconnections.

(1) Intensional rules: As we reported in the previous chapter, intentional rules are those

seen from a general business context perspective. They express business laws, external

regulations as well as principles for conducting business. Intentional rules are thus

usually expressed in the form of natural language statements, referring mostly to the

targeted (cross-)organization goals, the way of enforcing them (e.g. valid period, expiry

date, status) and involved business processes and activities.

(2) ECA-driven operational rules: Operational rules are instead approached from a

more pragmatic business process perspective. They prescribe actions on the occurrence

of some business events, or describe valid states of organization entities and resources.

Operational rules usually derive from the translation of informal ’intentional rules’ to

formal rule statements. They are developed in accordance with a convenient rule pattern,

also dealing with involved resources (e.g. actors, activities, activity enablers, business

entities). We will exclusively focus on operational ECA-driven business rules, and thus

assume that prior intentional requirements rules as given.

(3) ECA-driven architectural interactions: Finally, a more disciplined description of

these rules in terms as architectural connectors is then forwarded. The aim is to delve

inside each participants and detail what specific messages, events and / or attributes

and properties are required.

Formal modelling and Reasoning: This decisive phase is governed by the tailored service-

oriented Petri nets formalism CSrv-Nets, we will detail in next sections. That is, we propose

a smooth translation of any ECA-driven architectural connector, governing a given business

activity or process, into a precise CSrv-Nets transition. True-concurrent rewriting rules

system is then derived from these transitions. Both Formal validation through the net graph-

ical animation and Maude-based rewriting computations as well as verification are then

supported.

Design- and runtime explicit adaptability and evolution: Beyond design-time adaptability

of ECA-driven rules using the CSrv-Nets formalism, we are also tackling runtime adaptiv-

ity by leveraging that model with an aspectual-level. As will be detailed in next chapters,

ECA-driven rules are independently specified as advices at that aspectual-level. We then

dynamically woven them on running CSrv-Nets service components, by either enhancing or

replacing existing rules.

Intensional rules applied to the Travel-Agency. To stay competitive and attract more cus-

tomers, any travel agency has to offer competitive and context-dependent vacation packages. Com-

3.2 The UML-ECA-based semi-formal services description 45

petitive vacation packages should thus intrinsically depend among others on: (1) environmental

situations (i.e. seasons, events, years), (2) vacation specificities (short/long, individual/group,

small/ large package, etc.) as well (3) customers preferences (i.e. profile, budget, etc). In other

words, to promote competitiveness and adaptability, we have to explicitly put on the foreground any

appropriate business artifacts and conceptual mechanisms that dynamically handle such knowledge.

With respect to the travel-agency, at the business intuitive level, typical business rules governing

its competitive functioning may include the followings. These include both the agency inter-service

rules as well as intra-service rules for each of the involved partners (e.g. airline, accommodation,

car-renting, attraction-service, etc.).

BRs governing the agency composite service: As illustration of such composite business

rules, we may encounter the following:

Rule-ag1: When two or more persons decide for a join vacation for two weeks

during June-July to specific locations, they get 20% discounts and 60% for

any child. Further, when their booking is done one month in advance, they

can enjoin renting-car for free.

BRs for airline services: : Illustration of business rules regulating flight services may include:

Rule-air1: When the customer books a return in the period from X to Y and

(s)he is considered as golden one, his/her ticket is systematically upgraded

from economy to business one. Further, if the period is more than one week

and the destination belongs to specific list, a discount of 20% is applied.

BRs for the hotel service: Business rules regulating flight service may include:

Rule-acm1: For a stay more than 10 days, a discount of 10% is applied for the

period from X to Y.

For the rest of this chapter, we will particularly concentrate on the Airline service. More

specifically, we will illustrate all the concepts related to the first three phases on that service. That

is, first, we will propose intensional rules governing the main operations of that service, namely

the flight-order, flight-confirmation and flight-cancelling. These informal rules, will

then be fitted into the ECA-paradigm and finally refined as ECA-driven architectural interactions.

Subsequently, we develop on the formal contribution of these rules in the forwarded service nets

CSrv-Nets framework.

A typical general intentional rule for governing the behavior of the flight service could be

formulated as follows. The rule addresses all regulations about different business activities such

as: Flight-request, Flight-Confirmation and Flight-Canceling. Obviously, to attract customers

and improve competitiveness, such rule requires to evolve into different variants, depending on

customers, context and other quality requirements.

46 3 Rule-centric Stepwise Development for Service Systems

”Customers requesting for flights, beside basic mandatory information, may set their max budget

to spend. Customers under 18 years get a specific discount (10 %). Confirmation of reserved

flights should be done within one-week, otherwise an extra-charge is to pay within the second

week. If not confirmed after two-weeks the reservation is lost with a penalty to pay (5% of

the flight fare). After confirming a flight, canceling are still possible but only a percent of the

flight-fare (15%) is refunded”.

ECA-driven operational rules: Pattern and illustration. Towards bridging the gap be-

tween the above informal business-oriented (intensional) business rules and the service-oriented

conceptual-level, we first propose to slightly reformulate and refine them into more operational

event-driven rules. We thus propose to follow a specific ECA (Event-Conditions-Actions) generic

pattern to express rules governing any business activity, within a service-oriented business process.

More specifically, we propose the following structured clauses and related primitives to express

any operational business rule. First, under the clause COMPOS-RULE we assign an identifier to the

rule while mentioning the associated governed business activity. Second, under the clause EVENTS,

we describe all basic or composite events allowing the triggering of the rule and hence the activity.

Third, under the clause PARTNERS, we made explicit all involved business entities (e.g. resources,

actors). Fourth, under the clause CONSTRAINTS, we thus express all conditions to be observed

and to hold to perform the associated rule. Fifth, the clause ACTIONS describes the effects of

applying the rule, mainly in terms of messages, operations, and eventually post-triggering events

and post-conditions to be observed and performed on involved partners. Finally, we also consider

the case of exceptions and fault-tolerance, that is, in case of constraints violation, we prescribe

which exception-actions should be performed.

COMPOS-RULE: rule-identifier and respective activity-name.

EVENTS: Triggering events to enable to associated business activities.

PARTNERS: Participating business actors, entities and resources.

CONSTRAINTS: Conditions to be observed and holding to perform that rule.

ACTIONS: Actions including post-events and post-conditions to perform.

EXCEPTIONS: Concerns the actions to undertake when the constraints are violated.

It worth mentioning to emphasize the potentials of this ECA-driven pattern for governing any

business activity knowledge, towards smoothly bridging the gap with the service-oriented paradigm.

First, by explicitly distinguishing any triggering events for a given business activity, we are reflecting

the event-driven nature of SOA and its enabled Web-Services. Second, with the explicit description

of any involved business entities and resources as partners, we are reflecting the compositional

nature of SOA, where such partners will be later playing the role of service interfaces. Third, we

are allowing the actions to include, as optional elements, post-triggering events and post-conditions

to handle exceptions and fault-tolerant behavior. Last but not least, though we are associating

any ECA-driven rule to a given business activity (i.e. business ”activity-aware rules”), and will

3.2 The UML-ECA-based semi-formal services description 47

be detailed in next chapter, we are also tackling rules cross-cutting different activities. Since such

”process-aware rules” may involve several business processes and thus several services, we have

categorized them as choreography-enabling, as will thus be handled in the next chapter. In other

words, the present (business) ”activity-aware rules” are more suitable for service orchestration than

choreography.

◮ Example 3.2.1 In the previous paragraph, we presented a typical intentional business rule of

the Airline service, regulating different activities such as request, confirmation and canceling within

such service. Nevertheless, due to the nature of such informal language-dependent intentional rules,

tedious effort should be undertaken to bring such rule to the more disciplined ECA-driven pattern.

First, we should associate for each business activity at least one rule. That is to say, instead

one global intentional rule, we result now into three rules, to explicitly and separately govern the

request, confirm and cancel business activities. Second, for each of the resulting ECA-driven rule,

we have to explicitly describe all its ingredients (e.g. events, partners, constraints and actions).

More specifically, the three resulting ECA-driven rules from the refinement of the given Airline

intentional rule can be detailed as follows.

The request ECA-driven rule presents no particular difficulty and is straightforwardly derived

from the first sentence of the intentional rule. It remains just to mention that as involved partners,

we have here not just the Airline but also the Customer who is triggering the request event.

COMPOS-RULE: Rrq1-RequestFlight.

EVENTS: The customer request for a flight.

PARTNERS: Customer and Airline.

CONSTRAINTS: The fare must be less than the customer budget.

ACTIONS: Do Reservation (as action and post-event) with related discount (e.g. 10% for

less than 18 year-old).

Similarly, the ECA-driven rule governing the confirmation activity is directly extracted from

the intentional rule as given below, with the following peculiarities. The triggering events is not

just customer confirmation triggering but also the reservation event, that is, to do a confirmation

one should proceed a reservation first (could be of course simultaneously). In the same spirit, the

ECA-driven rule governing the canceling activity could be formulated.

COMPOS-RULE: Rcf1-ConfirmFlight.

EVENTS: The customer confirm a reserved a flight.

PARTNERS: Customer and Airline.

CONSTRAINTS: if Customer is late to confirm a penalty is assigned (after 15 days and

before a month).

ACTIONS: Payment of the fare and of eventually of the charge.

48 3 Rule-centric Stepwise Development for Service Systems

ECA-driven service-oriented Architectural Interactions. From the previous informal

ECA-driven description of any business activity, in any service-oriented business process, the pur-

pose of this phase is to shift to a more disciplined yet interaction-centric conceptual modelling.

Furthermore, we aim at bridging the gap with the service-oriented level, by emphasizing service

interfaces and their behavioural compositions. We thus propose architectural techniques and their

transient architectural connectors. Indeed, architectural techniques [SG96] permit externalizing

interactions as first-class entities called connectors. They involve service interfaces and behavioural

glues, reflecting different service interconnections and their composition logic.

Intuitively speaking, given an interaction ECA-driven business rule governing the behaviour

of a business activity in a service-oriented business process, we propose to seemingly shifting it

towards a corresponding architectural connector through the following steps:

Service Interface properties: Depending on the rule ingredients (e.g. events, attributes and

messages) required from different service partners, we transform each involved partner or

business entity name into a service interface. In the terminology of architectural techniques,

it corresponds to a connector role. That is, for any partner, we precisely define its service

interface as composed of all required messages, events and / or properties towards expressing

the intended behaviour at the interaction level by the rule.

Service interaction properties: Still depending on the rule, specifically the constraint part,

additional messages, attributes, constants and invariants could be defined as part of the

interaction itself. In such case, the interaction could be conceived later as an independent

third-party service; this could be located either at the provider side or independently conceived

to govern the cooperation between the involved services.

Service ECA-driven interactions: We finally capture the service interaction behavior itself is

a compliant ECA-driven manner. In terms of architectural terminology the rule corresponds

to the connector glue. Whereas, in terms of the service-oriented paradigm, that glue captures

a behavioural composition of services via their interfaces. The precise description of the rule,

as we detail below, promotes the afore-described ECA-driven intuitive pattern.

More precisely, the ECA-driven architectural service interactions conceptual model we are for-

warding to leverage intuitive ECA rules to a more discipline and interaction, can be summarized as

depicted in Figure 3.4. First, under the keyword ECA-Interaction, we give a name to that service

architectural interaction. Then, we define instances for participating service interfaces under the

clause participants. For any conditions that must always hold, we have reserved the keyword

invariant. We also consider the case where besides the interface information also proper constants /

attributes are required at the interaction-level. We describe them after the keyword constants, at-

tributes or operations depending on the associated case. The ECA-driven architectural interaction

rule itself begins with the keyword interaction rule, where a name for the specified rule is given.

3.2 The UML-ECA-based semi-formal services description 49

ECA-interaction <interaction-Identifier>

participants <list-of-participants>

invariant <unchanged interaction constraints>

constants/attributes/operations

<extra-required elements for the interaction>

interaction rules: <Rule-Name>

at-trigger <(set-of-)events>

under <conditions>

reacting <set-of-actions>

end Interaction

MessagesN

 Service−InterfaceI

AttributesI

MessagesI

Events(params)

Service ComponentI

Service ECA−Interaction

�
�
�
�

��

Service−Oriented
Business Process

Business activ

composed of

1−*

0..N

− Identifier
− Organizations
− Responsabilities

− Name
− Role
− Location

governed by

−
. . . .

��
��
��
��
��
��
��
��

Events(params)

Service ComponentN

 Service−InterfaceN

AttributesN

Figure 3.4: The generic ECA-driven architectural service interactions pattern

Then, we specify the triggering events of the rule under the clause at-trigger. The constraints

to be observed are specified after the clause under. Finally, the actions to be performed when the

triggering events and the constraints are holding are to be specified under the keyword acting.

As depicted in the right-hand side of Figure 3.4, this textual ECA-driven architectural service

modeling will be enhanced and completed with an intrinsic graphical representation, with the

following characteristics. We first attach the name of that behavioural interaction to a contract-like

graphical icon. Then, for each required interface, we conceive a graphical box within it we describe

its name accompanied with all required events, messages and attributes. Finally, a discounted line

is then relating the contract-icon to each of the interfaces. When necessary, we also mention the

involved (hidden) service components, from which the interfaces are extracted.

◮ Example 3.2.2 With the support of this detailed service-oriented ECA-driven architectural

interaction model, we refine in the following the ECA-driven business rules we already discussed

for different business activities related to the flight service. More precisely, we consider here the

architectural interaction rules related to the flight request and confirmation.

As depicted in Figure 3.5, to precisely express the request ECA-driven behavior at the architectural-

level, we have first to detail all information required from both the customer and flight services,

using their respective interfaces. That is, from the customer, we require as attributes the customer

identifer, name and the age (to check for discount). Furthermore, it is the customer who should

trigger the request for flight, through the event RequstFlg(...) parameterized by the wished flight

and the tolerated budget. At the flight service side, we need the flight-reference and -information

(i.e. departure, destination, date and time). We further need the seat-availability and reservation-

list (so that we can remove / insert new ones). Finally, to keep track of successful reservations, we

use the action RequstFlg(...).

The interaction behavior itself starts by assigning two instances for the customer and flight ser-

50 3 Rule-centric Stepwise Development for Service Systems

ECA-Interaction FlightRequst-SC

participants Cst: CustomerRqFlg-SI;

Flg: FlightRqFlg-SI;

attributes FlgRf, RsvRf: String;

interaction rule : FlightRqst-SC

at-trigger Cst.RqustFlg(FlgInfs,Bgd)

under (FlgInfs = Flg.FlgInfs(FlgRf)) and

((Flg.Avail(FlgRf) > 0) and

((Flg.FlgFar(FlgRf) ≤ Cst.Bdg)

acting Flg.Add([CustId.RsvFlg(FlgRf)], RsvFlg)

Let Price = FlgFar(FlgRf) and

if (Cst.Age < 18) then Price-= 0.2*Price

Flg.Requstd(RsvRf, Price, FlgInfs)

end FlightRequst-SC

 FlightRqFlg−SI

Customer Service

ECA−FlightRequest−SC

CustNm : String

CustAge : Nat

CustId : String

RequstFlg(FlgInfs, CustBdg)

Flight Service

AirId : SrvId

Avail(FlgRf) : Natural

FlgFar(FlgRf) : Money

FlgRf : String

FlgInfs(FlgRf) : [From.To.Date.Time]

RsvFlg : List (CustId.RsvRf)

RequstdFlg(RsvRf, Price, FlgInfs)

 CustomerRqFlg−SI

Figure 3.5: ECA-driven rule for the Flight-Request Activity

vices, namely Cst and Flg. Then as the informal rule stipulates, at the triggering of a request

for flight from the customer, different constraints have to be observed. These constraints are a

conjunction of the following conditions: (1) The wished customer flight information should coin-

cide with the discovered flight (FlgInfs = Flg.F lgInfs(FlgRf)); (2) There are still free seats of

that flight(Flg.Avail(FlgRf) > 0); and finally the flight fare is less than the tolerated customer

budget(Flg.F lgFar(FlgRf) ≤ Cst.Bdg). The actions to perform in this case consist of: (1) The

addition of this customer to the reserved list to that flight; and the invocation of the message con-

firmation of that flight-request (Requstd(RsvRf, Price, FlgInfs)), while considering the case of

discount for joung customers (i.e. 20% when the age is less than 20).

Similarly, the ECA-driven rule governing the confirmation business activity as depicted in Figure 3.6

can be precisely modelled using the following ECA-driven service architectural interaction. First,

like request the confirmation involves the customer and flight services. We note that a bank or

credit-card could come into play for the payment; instead we abstract it away just as a message to

be send by the flight service. The triggering events are now a conjunction of the request from the

customer and the presence of a triggering message that the flight has been already reserved. We

then check that this flight has been really reserved (i.e. it belongs to the reservation list). We also

check, whether the confirmation date is more than two-weeks, from the reservation date, but still

within a month period (i.e. 15 < CrDate−Date > 30, with CrDate standing for the current date).

In such case, we apply a penalty of 10 % on the price to pay. Finally, as actions we first add this

confirmation to the associated confirmation list and send a payment message (to the associated

payment service such as credit-card).

3.3 CSrv-Nets: Structural Features Modelling 51

ECA-Interaction FlightComfirm-SC

participants Cst: CustomerCfmFlg-SI;

Flg: FlightCfmFlg-SI;

attributes CrDate: Date;

interaction rule : FlightConfirm-SC

at-trigger Cst.ConfirmFlg(RsvFlg, Date) and

Flg.RequstFlg(RsvFlg, Price, Date)

under ([CustId.RsvRf] ∈ RsvFlg) and

Let Price = if (15 < CrDate-Date > 30)

then Price+= 0.1*Price and

acting

Flg.Add([CustId.RsvFlg(FlgRf)], CmfFlg)

Flg.Pay(RsvRf, Price, FlgInfs)

end FlightConfirm-SC

 FlightCfmFlg−SI

 ECA−FlightConfirm−SC

Customer Service

CustId : String

ConfirmFlg(FlgRf, Date)

AirId : SrvId

RsvFlg : List (CustId.RsvRf)

CfmFlg : List (CustId.CmfRf)

RequstdFlg(FlgRf, Date)

PayFlg(RsvRf, Price, FlgInfs)

Flight Service

 CustomerCfmFlg−SI

Figure 3.6: ECA-driven rule for the Flight-Request Activity

3.3 CSrv-Nets: Structural Features Modelling

As first step towards service foundation, we propose to precisely define different properties, events

and messages to be involved in basic or composite services. For that purpose, we recapitulate on

the previous phases of the stereotyped UML-classes. More specifically, to bridge the gap with the

discussed service-oriented UML-based descriptions, we will first introduce the concept of service-

state. Generally speaking, a service-state allows gathering different properties (i.e. attributes) of

a given service interface. The precise description of such service states enables us afterwards, to

specify the stateful and reactive concurrent behavior of respective services.

More precisely, we specify service-states as algebraic terms in the form of specific tuples. These

service states-as-tuples allow detailing in a precise manner any generic attributes, declared in the

previous UML phase. Furthermore, by adopting a Maude-like algebraic setting and rewriting

techniques [CDE+07, Mes92], we can also reason on such state properties. Let us first informally

highlight such service state-as-tuple:

• Any service state is conceived as an algebraic term of the form

〈SvId | sv pr1 : vl1, ..., sv prp : vlp, svh1(SvId), ..., svhq
(SvId)〉

− SvId is interpreted as an observed service state identity taking its values from a given

appropriate abstract data type ADT (that we assume denoted as STId);

− sv pr1,. . . , sv prk are the observed identifiers for service state properties, which we as-

sume having at a given time as current values respectively vl1,. . . ,vlk. We assume both

service states identifiers and values to be algebraically defined (elsewhere), by denoting

their respective ADT as SPId and SP Value (as abbreviation for Service Properties

52 3 Rule-centric Stepwise Development for Service Systems

Identifiers and Service Properties Values).

− To enhance privacy, we allow hiding values of specific service state properties when re-

quired. To declare such Hidden service state properties, we adopt the (co-algebraic)

notation of ”attribute-as-functions”; so if for instance the value of an attribute identi-

fier, denoted by svh1, is to be hidden, we denote it as a function svh1(SvId), with SvId

the corresponding service state identity1.

• Messages involved in a given service interface are specified as algebraic operations, including

at least one service state-identifier. Moreover, messages are declared as local when acting on

states only within an interface. Observed messages instead participate in a composite service

interactions (being it orchestration or choreography). Finally messages may be imported

from other interfaces to constraint the activity-flow as it should be in the composition. In

other words, to bring more expressiveness, we explicitly distinguish between three types of

messages. This allows us afterwards to adequately address their corresponding behavioural

semantics.

Local messages : These are messages that are declared and exclusively exchanged within a

given service interface. They either trigger state changes in such service interface and/or

allow controlling activity-flow.

Imported Messages : These messages are declared in other service interfaces and used by

the given service interface to facilitate defining the service process.

Exported Messages : These messages are declared within a given service interface and

used by other service interfaces to compose services.

On the basis of this intuitive notion of service-state, we formally define the notion of (CSrv-

Nets-)service state as follows.

Definition 3.3.1 (Service-state structure) A service state is defined as a pair (SvD ∪
STSv, {Op}STSv

) with:

• SvD is a set of (service data) sorts with at least: {Bool, STId, SPId, SP V alue} ⊂ SvD. To

allow aggregate service states, that is, service states with some properties being themselves service

state identities, we define STId as subsort of SP V alue (i.e. STId < SP V alue).

• STSv is a set of service state sorts (different from SvD), which we assume contains at least one

sort (so we can speak about statefull service interface).

• {Op}STSv
is a set of service state operations indexed by STId× (SPId× SP V alue)+ × STSv.

More precisely, with each service state sort from STSv a service state operation is associated

reflecting the corresponding tuple of such service state sort.

1Formally, hidden attributes are regarded as co-algebraic functions[HHJT98]. That is svh1 is a function from

service states to a corresponding type of the value, svh1: Service-State → SP Value.

3.3 CSrv-Nets: Structural Features Modelling 53

◮ Remark 3.3.2 As we emphasized, for sake of understandability each service state operation

indexed by STId× (SPId×SP V alue)+×STSv is represented as a service state tuple of the form:

〈SvId | sv pr1 : vl1, ..., sv prp : vlp, svh1(SvId), ..., svhq (SvId)〉

Where SvId ∈ STId and {sv pr1, .., sv prp, svh1, .., svhq} ⊂ SPId and

{vl1, .., vlp, svh1(SvId), .., svhq (SvId)} ⊂ SP V alue

The following presents a precise description of this service state as tuple in terms of notations
inspired from the functional-level of the Maude language [CDE+07].

omod Service-state is

importing SP Value STId SPId .

subsort Svr state < STSv .

subsort STId < SP Value .

subsort SP Value < St Property .

subsort St Property < St Properties .

subsort Obsv part Hidn part < Svr state .

op : : SPId SP Value → St Property . /* observed state properties */

op () : SPId : STId → St Property . /* hidden state properties */

op , : St Property St Properties → St Properties [associ. commu. Id:nil] .

op 〈 | 〉 : STId St Properties → Svr state .

omod.

In this description, the operator , is defined in a recurrent way using the subsort property.

Svr state is regarded as a specific instance of the service state sorts set STSv. As we described,

service state properties (i.e attributes) may be observed or hidden (as a co-algebraic function). We

can gather all observed (resp. hidden) properties together in new sort we called Obsv part (resp.

Hidn part).

By associating messages and events to such CSrv-Nets service-state, we then results in the

definition of CSrv-Nets service template specification as follows.

Definition 3.3.3 (Service-structure) The structure specification of a given service is defined

as a pair (SvD ∪ STSv ∪MsSv, {Op}STSv
∪ {Op}MsgSv

) with:

• (SvD ∪ STSv, {Op}STSv
) is a service state structure as defined above.

•MsgSv is a set of ‘message generator’ sorts different from SvD ∪ STSv. We assume that

MsgSv is composed of three sets of message sorts: {Mesl1 , ...,Mesll} for local message sorts,

{Mesi1 , ...,Mesii} for imported ones and {Mese1 , ..,Mesee} for exported ones.

• The message operations, {Op}MsgSv
is a set of message operations, that is, operations indexed

by STId+×Sv∗D×MsSv. Thus, with each message sort Mesij from MsgSv a message operation

(denoted msij) is associated. Each imported / exported service message has obviously to contain

at least two of its arguments of sort STId (i.e. it concerns at least two service states).

54 3 Rule-centric Stepwise Development for Service Systems

◮ Remark 3.3.4 CSrv-Nets template specification as similarly syntactically described using
the Maude notation. In this description, with Spri we refer to any specific sort for the i-th-state
property. Similarly, Sargi) refers to the sort associated with the i-th-argument of a given message.

omod Service-Template is

extending Service-state

subsort Spr1 ... Sprn Sprh1 ... Sprhm < SP Value .

subsort Sarg11,1 .. Sargl1,l1 .. Sargi1,1 .. Sargi1,i1 < SvD

subsort Mesl1, Mesl2,...,Mesll < Local Messages .

subsort Mese1, Mese2,...,Mesee < Exported Messages .

subsort Mesi1, Mesi2,...,Mesii < Imported Messages .

(* observed properties *)

op 〈 | sv pr1 : , . . . , sv pr1 : 〉 : STId Spr1 ...Sprk → Obsv part .

(* hidden properties or as functions *)

op 〈 | svh1(STId), ..., svhl
(STId) : 〉 : STId Sprh1 ...Sprhl → Hidn part .

(* local messages *)

op msl1:STId ...Sargl1,1 ...Sargl1,l1 → Mesip .

... ...

(* import messages *)

op msi1:STId ...STId ...Sargi1,1 ...Sargi1,i1 → Mesip .

... ...

(* export messages *)

op mse1: STId ...STId ...Sarge1,1 ...Sarge1,e1 → Mese1 .

... ...

omod.

3.3.1 Application to the Travel Agency

Following this CSrv-Nets-service template, we will restrict ourselves to the formalization of the

Airline service-state. The other services such as the accommodation and the Credit-Card can be

similarly formally defined. We note that the agency composite service will be structurally and

behaviorally specified in the next chapter. To concentrate our focus on the Airline service and

its interaction with the customer, we have extracted this interaction from the complete agency

UML-based description of Figure 3.3. This projection of the stereotyped UML-classes for the

Customer-Airline interactions, is depicted in Figure 3.7. We note of course that this externalized

Customer-Airline composition is to be hosted at the Airline service.

The corresponding Airline or CSrv-Nets flight service-state can thus be derived from this

UML-based service interactions, while following the above CSrv-Nets generic template. First, we

have to algebraically define in detail all required abstract data types (ADTs), involved in flight

properties or message and event parameters. Such ADTs should include, among others: Dates (of

departure / arrival), Cities (of departure / destination) and country names (shortly Dest and Dep),

reservation and booking codes (shortly RsvRef and CfrmRef), costs for flight fare. Information

about the customers such as name, address, age, members (e.g. child, infants) have also to be

precisely algebraically defined (shortly CUST INFO). Data related to requested and reserved

3.3 CSrv-Nets: Structural Features Modelling 55

FlightProcess

− FlightStatus
(Availseats, Fare,discounts,...)

: <<service interaction>>

UML profile Notations

: <<service component>>

: <<service−interface>>

: <<events>> (port)

: <<invoked messages>>

: <<outgoing messages>>

 Service Component
Airline

 Service Component
Customer

<<Service−Interface>>

(Name, profile, budget,..)

− CustInfos

Customer−Service

Flg2Cancel(FlgInfo)

Flg2Rqs(FlgInfo)
Flg2Acpt(FlgOffers)

Flg2Pay(FlgOffrs)

FlgOffer(FlgInfo)

<<Service−Interface>>

FlgBook(FlgInfo)

FlgCancel(FlgInfo)

− Airline−Infos
− Flight−Infos

Airline−Service

FlgReserv(FlgInfo)

FlgOffer(FlgInfo)

Flg2Pay(FlgInfo)

<<Service Composition>>

Figure 3.7: SteroTyped UML-Classes for Services Applied on The Airline Service.

flights are also gathered as tuples (shortly RQFLG INFO and RSFLG INFO). Reserved and confirmed

passengers are tracked with Ids and Refs (shortly PSSG RSV and PSSG CMFR). Worth-mentioning is

that defining such ADTs is required not just for sake of precise service-states, but also for their

crucial role in rigorously expressing business rules later. We gather all these required Data and

refer to it as Airline-Data, which we may be precisely algebraically defined as follows.

omod Airline-Data is

protecting nat string date money Time CustId

subsort RQFLG INFO RSFLG INFO < FLG INFO

subsort CUST INFO < CUST INFOS

sort StateRSV

subsort PSSG RSV PSSG CMFR PSSG < PSSGS

subsort Dest Depart RsvRef CmfrRef FlgRef CmfrRef < string .

subsort DtDepart DtReturn < date .

subsort Nb Adult Nb Child Nb Inf < nat .

subsort Cost Max Fare < money .

op [.] : FlgRef Depart Dest DtDepart DtReturn Cost Max → RQFLG INFO

op [. . . .] : RsvRef Depart Dest DtDepart DtReturn Fare → RSFLG INFO

op [. . . .] : CustNames CustAdrs CustAges Nb Adult Nb Child Nb Inf → CUST INFO

56 3 Rule-centric Stepwise Development for Service Systems

op < , > : CustId RsvRef → PSSG RSV

op < , > : CustId CmfrRef → PSSG CMFR

op [.] : PSSG PSSGS → PSSGS

(* variables to use in the service net behavior later *)

vars Fg : FlghtId ; Cs:CustId ; Gc:AGCYId .

Ag : nat ; Fr, To : String ; Dt:Date ; Tm:Time

Rs, Fm: PSSGS ; Mx, Cx, Py, Pn : Money

CsInf : CUST INFO ; RqFlg : RQFLG INFO ; RsFlg : RSFLG INFO

endo.

With the support of this flight data-level and the UML-based customer-airline interactions (from

Figure 3.7), we are able to precisely capture the corresponding CSrv-Nets template. We refer to

the flight service-state with Flight St. That flight state is identified by FlightId sort, is then

composed of the Airline name, flight data (i.e. depCity, DestCity, DepDate, DepTime, ArrDate,

ArrTime), available seats (AvSeat(FlghtId)2), and reserved / booked passengers. Secondly, for

each message declared in the corresponding UML class-diagram, we associate a corresponding

message sort. For instance, to the message FlightRequest we declare the sort FLGHT RQ and

the (imported) message FlgRq with all required parameters (e.g. customer-info, agencyID, flight

iterinary and preferences). The same reasoning is to be applied to all other messages.

omod Flight-Service is

extending Service-state

protecting AirLine-Data.

subsort FlghtId AirLId< STId .

subsort Flght St < Srv State

subsort CHK SEAT < local Msg.

subsort FLGHT RQ FLGHT RSV FLGHT BK FLGHT CL < imported Msg.

subsort FLGHT RQSTD FLGHT BKD FLGHT CLD PAY FLGHT PAY PNLY < exported Msg.

(* AirLine State Properties *)

op 〈 | AirLId : , F lInf : , AvSt(F lighId),RsvP : , CmfP : , DlRs : 〉 :

FlghtId string FLG INFOS nat PSSGS PSSGS Date→ AirLine State.

/* Local messages */

op ChkSt : FlgId Bool → CHK SEAT .

/* Imported i.e. received messages */

op FlgRq : CustId CUST INFO AGCYId AirLId RQFLG INFO → FLGHT RQ .

op FlgRs : CustId CUST INFO AGCYId AirLId RQFLG INFO → FLGHT RSV .

op FlgBk : CustId RsvRef CUST INFO BK INFO → FLGHT BK .

op FlgCl : CustId AGCYId ClRef → FLGHT CL .

/* Exported i.e. invoked messages */

op FlgRqsd : CustId FLG INFO AGCYId AirLId RsvRef → FLGHT RQSTD .

op FlgBkd : CustId AGCYId AirLId BkRef → FLGHT BKD .

2As a hidden property to be just checked.

3.4 CSrv-Nets: Behavioral Modelling of Services 57

op FlgCld : CustId AGCYId AirLId BkRef → FLGHT CLD .

op Payflg : CustId AGCYId BkRef money → PAY FLGHT .

op PayPnlt : CustId AGCYId BkRef money → PAY PNLTY .

(* variables to use in the service net specification *)

vars Dy : Date ; Gc:AGCYId .

endo.

3.4 CSrv-Nets: Behavioral Modelling of Services

In the previous section we defined the precise CSrv-Nets service template states, through a smooth

mapping from the semi-formal diagrammatical stereotyped UML-classes. This section aims at

behaviorally leveraging such service template states, by mainly capitalizing on the governing ECA-

driven business rules and their architectural modelling. More precisely, first we systematically

construct corresponding CSrv-Nets places from the specified service states. Then, we detail how

to derive CSrv-Nets transitions, from related ECA-driven architectural rules. Broadly speaking,

the CSrv-Nets net, we propose to associate with a given service template is constructed as follows.

• The places of the net are precisely defined by associating with each service message generator

one ‘message’ place. Graphically, we use colors to distinguish between events and invoked

messages as well as exported messages (resp. orange, green and blue) . Furthermore, events

and invoked messages will appear on the left, whereas exported messages will be gathered on

the right-hand side of the net model.

• With each service state sort we also conceive a ‘state’ place. We draw them as ellipse, to

highlight as much token forms as possible.

• Transitions reflect the effect of events and messages on service states. Their precise behavior,

i.e. input / output arc-inscriptions and condition will be derived from governing ECA-driven

architectural rules. When several conditions are to be associated within a given transition,

we split it into respective boxes.

Before we delve into the formal definition of such CSrv-Nets structure, by reflecting this

intuitive construction, some preliminary ingredients such as multi- and marking-terms are necessary.

Definition 3.4.1 Terms, Multi- and Marking-terms for services

• For any service state property sort Spri, we define and denote by TSpri(XSpri), the associated

(algebraic) terms. Where, XSpri is a set of variables for that sort (i.e. Spri). The concept

of service-state terms is then defined and denoted by TSTSv
(XSt), by composing as union

different state properties. The set of variables XSt is associated with the service state sorts

St. When no ambiguity presents, we uniformly use X as the union of all variables.

58 3 Rule-centric Stepwise Development for Service Systems

• Similarly, we define and denote by TMsSv
(XSarg), the algebraic terms associated with ser-

vice message sorts, where XSarg are variables of message arguments sorts. TSTSv
(∅) (resp.

TMsSv
(∅)) with denote the corresponding ground terms (i.e. without variables).

• To subsequently capture arc-inscriptions and service states and messages as tokens, we define

the notion of multi-terms over service state- and message-terms. First, we define and denote

by MTSTSv
(X) (resp. MTMsSv

(X)) the multi-terms over TSTSv
(X) (resp. over TMsSv

(X)).

We propose the operator ⊕ to built such multi-terms. Subsequently, for sake of abbreviation,

we refer such multi-terms as [TSTSv
(X)]⊕ and [TMsgSt

(X)]⊕ respectively.

• Finally, in order to capture any running service states, as a composition of different tokens

as multi-terms, we define and denote by BTSv(X) (resp. BTMs(X)), the multi-term over

the above multi-terms. More precisely, BTSv(X) is defined over SvP l × [TSTSv
(X)]⊕ and

[TMsgSv
(X)]⊕). The sort set SvP will correspond to the places in CSrv-Nets. The union

operator governing such multi-terms will be referred by ⊗. (with ∅B as identity). Again, we

will abbreviate such multi-terms with the notation: [SvP × ([TSTSv
(X)]⊕ ∪ [TMsSv

(X)]⊕)]⊗.

Definition 3.4.2 (CSrv-Nets specification) Given a CSrv-Nets-template specification as

previously defined, a Csrv-Net specification is a structure (SvP, SvT, I.SvT,O.SvT, s, SvTC)

where:

• SvP is a set of (service) places such that |SvP | = |STSv| + |MsSv|. That is, the service place

number corresponds exactly to the cardinality of sorts in StSv plus those in MsSv.

• s : SvP −→ STSv ∪MsSv is a bijection associating with each place identifier in SvP a corre-

sponding sort from STSv ∪MsSv as we informally commented.

• SvT is a set of (service) transitions different from the place identifiers (SvP ∩ SvT = ∅) .

• I.SvT : SvT −→ [SvP × ([TSTSv
(X)]⊕ ∪ [TMsSv

(X)]⊕)]⊗. That is, I.SvT (t) captures all input

arc-inscriptions (multi-terms) to a given transition. That is, by taking t as the transition, pi as

input places to t with mti as respective arc-inscriptions, then the function I.SvT can written as

⊗
i
(pi,mti). Here we assume the sort coherence condition, that is, mti ∈ [Ts(pi)]⊕ .

• O.SvT : SvT −→ [SvP × ([TSTSv
(X)]⊕ ∪ [TMsSt

(X)]⊕)]⊗. That is, O.SvT captures output

tokens with their corresponding places.

• SvTC : SvT −→ (TSTSv
(X) ∪ TMs(X))bool is a function associating a boolean expression over

(TSTSv
(x(t)) ∪ TMs(x(t))) with every transition t ∈ T ; where x(t) is the set of variables occurring

in I.SvT (t) (which as usual should include those in O.SvT (t)).

The concept of a CSrv-Nets service component, as society of service states and messages, can

be deduced from this definition. We first need the notion of a marked Csrv-Net.

Definition 3.4.3 (marked Csrv-Net) A marked Csrv-Net is an Csrv-Net with a function

SvM : SvP −→ [TStSv
(∅)∪TMs(∅)]⊕. That is, with each Csrv-Net place, we associate the current

3.4 CSrv-Nets: Behavioral Modelling of Services 59

service state or message instances.

From this notion of marked CSrv-Nets, it is now possible to define the notion of CSrv-Nets

state. It allows capturing the distribution of markings over different (state and message) places.

Definition 3.4.4 (CSrv-Nets-state) Given a marked Csrv-Net as defined above, a CSrv-Net

state is an element of [SvP × ([TStSv
(∅)]⊕ ∪ [TMs(∅)]⊕)]⊗. More precisely, by denoting such state

byMst, it can be written as follows: Mst = ⊗
pi∈SvP

(pi, SvM(pi)).

The Airline service behavior as CSrv-Nets. With respect to the above CSrv-Nets flight

service template., the application of these behavioral constructions results in the following flight

CSrv-Net behavioral service model as depicted in Figure 3.8. As defined above, for each service

state and message sort a corresponding (typed) place are conceived. That is, to the service state

sort Flght corresponds a service state place we denote by Flight-St. This service place regroups

thus all flight state instances in accordance with the flight service structure specification. On

the other side, with each service message a corresponding message place is constructed. So, for

the three received (i.e. imported) messages (from the agency composite service as will be detailed

later) namely Flight-Request, Flight-Booking, Flight-Cancel correspond three associated sort

messages places. Also, for the five invoked (exported) messages places, namely Flight-Requestd,

Flight-Booked, Flight-Canceld, PayFlight and PayPenalty correspond five messages. Besides

that, in order to capture all different exceptions and errors related to different behaviour, we have

added another message place we denote by FlghtOP-Err. As we will explained subsequently this

place receive all attempts for violating the business rules related to different message functionalities.

3.4.1 CSrv-Nets behavior from ECA-driven architectural rules

The crucial contribution and added-value of the proposed approach to the service paradigm concerns

thus the concurrent behaviour, we assign to different messages and services states. Such behavior

will be clearly captured by different transitions, with their inherent inscriptions and conditions.

For the conception of different transitions, we mainly relies on the previous detailed rule-based.

That is, at this formal stage, we assume given for each business activity: (1) different informal

intentional business rules, (2) their corresponding operational ECA-driven formulations and (3)

highly recommended but not mandatory their disciplined ECA-driven architectural modelling.

Let us first emphasize that with respect to the formal definition of CSrv-Nets, a transition

in its general pattern exhibits the following behavior. First, a transition involves some triggering

events and messages, entering into contact with corresponding (parts of) service states. The result

of this interaction leads to the change of invoked service states, to the absorption of the triggering

events and messages and apparition of new invoked messages. Such transition behavior should only

be permitted under valid constraints of the involved events / messages and service states. For this

general CSrv-Nets transition behavior, it becomes how close is the gap between such transitions

60 3 Rule-centric Stepwise Development for Service Systems

and the ECA-driven paradigm. In other words, any given ECA-driven rule can be straightforwardly

translated into a CSrv-Nets transition that correctly reflects its behaviour. That is:

Event-part : It corresponds to different triggering input inscriptions outgoing from the corre-

sponding event place. Recalling that for each event or message type, we are associating a

corresponding place to catch any event or message instances.

Condition-part : It has to be translated into a compatible transition condition, using declared

variables for message parameters and service state properties as well as any required constants.

Involved properties related to service states have to translated into input-arc inscriptions from

the service state place.

Action-part : It is expressed in terms of exported messages and changes targeting involved service

states. That is, we have to conceive output arc-inscriptions relating the involved transition

with respective (message and service-state) places associated with such outgoing messages

service state properties.

◮ Example 3.4.5 (The CSrv-Nets flight service behaviour): For the flight service interface,

we have associated three transitions to reflect the (business) semantics of the three received mes-

sages, namely: The transition Tflgh rq for capturing the request activity with the offered flights

(i.e. flight requested) as output result; the transition Tbkfl for capturing the booking activity and

finally the transition Tclfl to govern the cancel activity if any.

In the following, we detail the rigorous arc-inscriptions corresponding to the transition capturing

the flight-request business activity. That is, we explain how to formally derive such arc-inscriptions

from the already discussed and detailed ECA-driven architectural rule for that business activity.

The other transitions associated with the confirmation and cancelling activities can then afterwards

be similarly derived. For them we just hint how to capture them from their ECA-driven rules.

More precisely, following the above guidelines, from the detailed request ECA-driven architectural

rule, the gradual construction of the corresponding transition (Tflight rq) inscriptions could be

summarized as follows:

(1) To reflect the events part of this ECA-driven architectural rule, the transition Tflgh rq

must have one input inscription from the request message place Flight Requst and

one from the state flight place Flight St. By respecting the template message signa-

ture and declared variables, the inscription of the request message place takes the form:

FlgRq(Cs.Ag, Fr.To.Dt.Tm.Mx), that is, the parameters are ”CusName, Age, From city,

To city, Date, Time flight and max cost to bear”. The selected (abstract) flight should have

the same information (i.e. same variables). That is, the inscription from the flight state place

should be: 〈Fg|FgInf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs,RsD : Dy〉, with R as

the flight reference, Cx as the (normal) ticket price, and Dy the date limit for booking before

losing that reservation.

3.4 CSrv-Nets: Behavioral Modelling of Services 61

(2) To reflect the rule conditions, the transition condition should have the form: AvSt(Fg)−1 ≥
0∧Rs.[Cs.R]∧((Cx ≤Mx)∨((Ag ≤ 18)∧(Py = Cx∗08))). That is, the available seats have

to be decreased by one and be still positive; The reserved list has to be updated to include

the new customer and the flight reference, the ticket price Cx has to be less than customer

max, and finally if the age is less than 18, the payed amount will be just 80 percent of the

price.

(3) Finally, as output message we have to report back the processed reservation, by considering all

relevant information such as the flight references, the computed price and the date limit. This

is reflected by the arc-inscription associated with the message FlgRqd(Cs, Fg,R, Py,Dy)

E
xp

or
te

d
(in

vo
ke

d)
 m

es
sa

ge
s

. . .

. . .

. . .

. . .

FlgRq(Ann,...)

Flight_Cancel

FlgCl(anni,.....)

. . .

FlightOP_Err

FlgRqErr(Cs,...)

FlgBkErr(Cs,...)

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s
A

N
D

/O
R

 (
tr

ig
ge

rin
g)

 e
ve

nt
s

The Flight Service Interface Behavioural Specification

FlgBk(...)

Flight_Book

Flight_Requst

Tflight_rq

ChkSeat

. . .

Flight_St

. . .
ChSt(...)

. . .

FlgCl(Cs,...)

. . .

. . .

. . .

Flight_Bookd

. . .

Flight−Rsrvd

Flight_Refund

Flight_Pay

Flight_Cancld

FlgRfnd(Cs,...)

FlgPay(Cs,...)

PlgPnt(Cs,...)

Tflight_cl

Tflight_bk

FlgRsv(fl1,..)

Flgbkd(Cs,..)

〈F g1|F gInf : [K89.Uml.P aris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx)

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉

RsSt(Cs, F g)

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08)))

Else

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy)

F lgRsvErr(Cs,′ F lightRequestError′)

F lgBk(Cs, R, Dy, Py)

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := Py ∗ 0.1))
Else

F lgBkd(Cs, R.F r.To.Dt.Tm, Py)

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn)

F lgBkErr(Cm,′ F lightBookErr′)

F lgCl(Cs, R, Py, Dt)

〈F g|F gInf : [R.Dt], Rsv : Rs, Cmf : F m〉

((Cs ∈ Rs) ∧ (Rfnd := P y)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = Py ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = Py ∗ 0.45))
Else

F lgRfnd(Cs, R, Rfnd)

F lgCld(Cs, R)

F lgClErr(Cs,′ F lgCancelErr′)

Figure 3.8: The CSrv-Nets-based Behavioural Specification of the Flight Service.

In the same spirit, we have formalized the ECA-driven architectural rules concerning the con-

62 3 Rule-centric Stepwise Development for Service Systems

firmation or cancelling activities business activities. Indeed, as depicted in Figure 3.8, we have

smoothly derived the associated transitions (i.e. Tbkfl and Tclfl) reflecting these two business

activities. The confirmation ECA-driven business rule requires for instance that the reservation

deadline to respected. Otherwise, a penalty is to be paid besides the ticket price.

3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics

Re-emphasizing again that the crucial benefit, of adopting high-level service-oriented Petri nets as

a formal setting for service behavior, resides in their inherent ability to provide us with executable

graphical animated specification, which can further be formally validated and analyzed. The val-

idation by rapid-prototyping at the specification level permits thus detecting and circumventing

mistakes, misconception, inconsistency, etc. There are plethora of ways of semantically interpreting

the behavior governing transitions (e.g. algorithmic, process-based, operational, denotational, etc.)

of a given (algebraic high-level) Petri net.

In the following, we first sketch an intuitive algorithmic semantics for semantically interpreting

our CSrv-Nets. This first interpretation allows us a better understanding the more rigorous

concurrent operational semantics, we will subsequently and definitively adopting for CSrv-Nets,

namely, a rewriting-logic [Mes92] based semantics. We should pointed out that, the forwarded

rewriting-logic CSrv-Nets semantic interpretation is mainly inspired by our previous work on the

Co-nets framework for developing adaptive concurrent information systems [AS02, AS04, Aou02,

ASB07]. Other work relating (high-level) Petri nets with rewriting logic include [Ste98], [BGCM94]

and [BMSB93].

3.5.1 An intuitive CSrv-Nets behavioral semantics

The intuitive semantics we are proposing is mainly inspired by the algebraic semantics in [Rei91].

Informally speaking, given a transition, we have to find the right term substitutions, which allow

firing that transition. More precisely, for each input-arc inscription multi-term of a given input-place

to that transition, we have to find a substitution so that the instantiated multi-term corresponds

to tokens within that input place. Furthermore, such substitutions to input-arcs should result in

holding the transition condition at true. When such substitutions are found, the marking of all

involved (input / output) places to that transition are to be accordingly updated. That is, as usual

we have to delete all consumed tokens from input places and add of the newly created tokens to

the output places3.

In the following, we describe this intuitive firing of CSrv-Nets transitions, in a more un-

derstandable manner fitting the above CSrv-Nets definitions. First, we start with an intuitive

representation of any CSrv-Nets transition, as a general tuple of the form:

3Test and inhibitor arcs do not involve any deletion or creation

3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics 63

〈Transition Label | input inscription, output inscription, condition〉

In this tuple, input inscription and output inscription stand for the couple (place,

multi-term). That is, for input (resp. output) places, the couple refers to any input (resp.

output) place to that transition with its corresponding arc-inscription multi-term. With respect to

the precise CSrv-Nets definition above, and for a given transition denoted t, this general tuple

takes then the form:

〈t | I.SvT (t), O.SvT (t), SvTC(t)〉

Furthermore, as we already detailed in definition 3.4.2, we can represent I.SvT (t) as a multiset

of the form: ⊗
i
(pi,mti). Similarly, the output-inscriptions O.SvT (t) are captured as ⊗

i
(qj, ntj).

Finally we denote the condition SvTC(t) by its corresponding boolean multiterm. With these

details, we finally result in the following CSrv-Nets transition firing inference rule.

Definition 3.5.1 (CSrv-Nets-transition semantics) We assume given a marked CSrv-Nets

net, with its marking state denoted byMst = ⊗
k
(pk,M(pk)) as defined in definition 3.4.3. Further,

we assume as above that transitions are represented as a tuple:

〈t | ⊗
i

(pi,mti),⊗
j
(qj, ntj), [T (X)]bool〉

The firing conditions and outputs are formally expressed through the following inference rule:

∃ σ x(t)→ [Tpi(∅)] | σ(I.SvT (t)) = ⊗
i
(pi, σ(mti)) ∈Mst ∧ (σ([T (∅)]bool) = True)

M′
st =Mst − σ(I.SvT (t)) + σ(O.SvT (t))

With σ(O.SvT (t)) = ⊗
j
(qj, σ(ntj))

Note that, in this transition firing definition, we should manually search for the right substitu-

tion. Furthermore, it is very difficult to speak about any form of parallelism or even interleaving

while firing different transitions. These are among the main severe disadvantages of such ad-hoc in-

tuitive interpretation for CSrv-Nets transitions. In the following, we overcome that by proposing

an intrinsic true-concurrent semantics based on rewriting logic [Mes92].

3.5.2 CSrv-Nets Rewriting-logic based semantics

Worth-mentioning is that most of Petri-net formalisms (to service foundation) adopt a direct al-

gorithmic and hence ad-hoc behavioral interpretation, which prevents any rooms for explicitly

reasoning about or evolving that behavior. We instead forward a more disciplined, declarative

yet executable, efficient and flexible semantical interpretation for CSrv-Nets behavior in terms of

64 3 Rule-centric Stepwise Development for Service Systems

rewriting logic [Mes92]. More specifically, among the benefits we are targeting for such rewriting-

logic (RL) based CSrv-Nets behavioral interpretation, we emphasize the followings. First, RL

is based on rewriting techniques, that means on (rewrite) rules. This facilitates a uniform trans-

lation of any forwarded ECA-based rules governing architectural connectors. Besides that, since

RL semantically subsumes logic and functional paradigms [MOM96], most of existing logic-based

proposals for reasoning about (business) rules (e.g. [AA02b]) can find a common expression into

RL. Second, RL is true-concurrent by essence, enhancing thus distribution and decentralization

as promised by service-orientation. Third, RL is currently endowed with highly efficient Maude

language [CDE+07], allowing millions of rewritings per-second. Fourth, with its intrinsic reflection

capabilities [CM96], RL promotes separation of rules / modules specification from their composi-

tions and executions using strategies. Last but not least, for certification purposes, RL has been

endowed with property-oriented temporal logics [MOPF+05], plus the Maude LTL-based built-in

model-checker [CDE+07].

The rest of this section is organized as follows. First, we define the notion of CSrv-Nets-rewrite

rules that establish how any CSrv-Nets transition can be behaviorally captured as a rewrite-rule.

Second, based on such CSrv-Nets-rewrite rules, we forward a more refined generic pattern for

CSrv-Nets transitions and express it in terms of rewrite rules. We then illustrate this CSrv-

Nets semantics using the Airline CSrv-Nets specification. Third, with respect to such tailored

CSrv-Nets transitions pattern and rule, we define a CSrv-Nets-rewrite theory as a tailored form

of the general rewrite-logic theory. Since this tailored CSrv-Nets-rewrite theory cannot be directly

implemented and executed directly using the Maude language, we present how to leverage this

language accordingly. We then apply this CSrv-Nets-compliant Maude leveraging, using again

the Airline CSrv-Nets specification.

By adopting this logic, in the following we present a tailored instantiation, of the general rewrite

theory, fitting all the so-far described (syntactical) features of CSrv-Nets. We will refer to this

instantiation as CSrv-Nets-rewrite theory. Afterwards, we introduce the general transition pattern

and its corresponding interpretation in this logic.

CSrv-Nets rewrite theory and rules pattern. The following definition reflects the straight-

forward translation of any CSrv-Nets transition behavior as a corresponding rewrite rule.

Definition 3.5.2 (CSrv-Nets rewrite theory) We assume given an CSrv-Nets speci-

fication following definition 3.4.2. A CSrv-Nets-rewrite theory is then a set of quadruples

Rsv ⊂ SvT × ([SvP × [TSSv
(X)]⊕ ∪ [TMs(X)]⊕]⊗)2 × (TSSv

(X) ∪ TMs(X))bool. The elements of

Rsv are called rewrite rules, where for each transition t of the CSrv-Nets corresponds a rewrite

rule of the form:

(t, (|[
np

⊗
k=1

(pk, [lk]⊕)]⊗|), (|[
nq

⊗
k=1

(qk, [rk]⊕)]⊗|), SvTC(t))

Where:

3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics 65

• [lk]⊕ ∈ [Ts(pk)]⊕, [rk]⊕ ∈ [Ts(qk)]⊕ and t ∈ T

• TC(t) ∈ (TSSv
(x(t)) ∪ TMs(x(t)))bool as a boolean expression over TSSv

(x(t)) ∪ TMs(x(t)),

where x(t) denotes the variable set occurring in [lk]⊕.

• np ≤ |SvP |, nq ≤ |SvP |,⊗
k
(pk, [lk]⊕) ∈ Pre(t) and ⊗

k
(qk, [rk]⊕) ∈ Post(t)

Such rewrite rules will be denoted in a rewrite rule form as usual.

t : (|[
x
⊗

k=1
(pk, [lk]⊕)]⊗|)⇒ (|[

y
⊗

k=1
(qk, [rk]⊕)]⊗|) if SvTC(t)

Rules for CSrv-Nets-transitions generic pattern. We aim at automating the translation of

any CSrv-Nets transition behavior into a corresponding rewrite rule, while respecting the above

CSrv-Nets-rewrite theory. For that, we propose a generic pattern for CSrv-Nets-transitions,

which allows capturing any rule-centric business activity in a given service-oriented business process.

More precisely, as depicted in Figure 3.9, a CSrv-Nets-generic stateful and rule-centric transition,

reflecting an elementary (orchestration-based) service composition, puts into contact the following

service ingredients:

(1) Events and (exported) message instances for triggering the seervice composition. These events

and messages (i.e. ⊕
i=1

Msi ∧ · · · ∧ ⊕
k=1

Evnk) are initiated from a focussed-service and related

to a given business activity.

(2) The required service state parts (i.e.
k
⊕
i=1
〈Sidi|prsi〉) are selected, to express any constraint

related to the governing (business) rule of that activity.

(3) Imported and invoked messages (i.e. ⊕
j=1

Msij ∧ . . .) from other services may be participating

in such generic elementary composition.

By composing these service events, messages and states as inputs to a generic CSrv-Nets-

transition, we expect an outcome that reflects the following effect:

(1) The instantiated rule constraint as transition-condition being evaluated to true. That is, the

participating service states with their triggering events and messages fulfil the constraints

agreed on in the governing ECA-driven business rule.

(2) The triggering events and sent message instances being consumed by associated targeted

service states.

(3) Possible changes in the involved service state-parts in accordance with the governing rule in

place. That is, we result in
l
⊕

j=1
〈Sid′j |prs′j〉 where the prime(’) symbol reflects the changes in

service state attribute values.

66 3 Rule-centric Stepwise Development for Service Systems

. . .

msi1(...)

. . .

mso1(,..)
. . .

. . .

msi1(...)

M
sg

ok
M

sg
ik

. . .

. . .

msi1(...)

mso1(,..)
. . .

M
sg

ol
M

sg
il

. . .

In
vo

ke
d

S
er

vi
ce

In
vo

ke
d

S
er

vi
ceService−Nets orchestration transition pattern

Tgnr

. . .

St_Srv

. . .

. . .

msi1(...)

mso1(,..)
. . .

E
vn

1
M

sg
o

M
sg

i

〈Sid1|pr1 : v1, ...〉

k
⊕

i=1
〈Sidi|prsi〉

l
⊕

j=1
〈Sid′j |prs′j〉

⊕
i=1

Msi

⊕
j=1

Msj

⊕
k=1

Evnk

⊕
m=1

Ms′m

⊕
n=1

Ms′n

TC :conditions on states & param.

Figure 3.9: Generic pattern for CSrv-Nets-transitions

(4) The emerging of new message instances being sent either to the main focussed-service or to

other participating services. That the new messages ⊕
n=1

Ms′n are being emerged.

◮ Example 3.5.3 (Deriving the rules of the Flight CSrv-Nets service) By applying the

afore-described general form of rewrite rules, it is not difficult to generate the transition rules

associated with this CSrv-Nets account specification.

Tflg rq :(FLGRQ, F lgRq(Cs.Ag, Fr.T o.Dt.Tm.Mx))⊗
(FlgSt, 〈Fg|FgInf : [R.Fr.T o.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs〉)⊗ (Rsv, RsSt(Cs, Fg))

⇒ if ((AvSt(FG) ≥ 1) ∧Rs.[Cs.R] ∧ (Cx ≤Mx) ∧ (Py := Cx) ∧ ((Ag ≤ 18) ∧ (Py := Cx ∗ 08)))

then (FLGRQD, F lgRqd(Cs, Fg, [R.Fr.T o.Dt.Tm], Py, Dy))

else (FLGERR, F lgRsvErr(Cs,′ FlightRequestError′))

Tflg cfm :(FLGBK, F lgBk(Cs, R, Dy, Py))⊗ (FlgSt, 〈FG|FgInf : [R.Fr.T o.Dt.Tm.Cx], Rsv.Rs, Cmf :

Fm〉)
⇒ if ((Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (Py = Cx) ∧ (Pn = 0) ∧ (Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (Pn :=

Py ∗ 0.1)))

then (FLGBKD, F lgBkd(Cs, R.Fr.T o.Dt.Tm, Py)) ⊗ (FLGPAY, F lgPay(Cs, R, Py) ∧
FlgPnl(Cs, R, Pn))

else (FLGERR, F lgRsvErr(Cs,′ FlightBookError′))

Tflg cl :(FLGCL, F lgCl(Cs, R, Py, Dt))⊗ (FlgSt, 〈Fg|FgInf : [R.Dt], Rsv : Rs, Cmf : Fm〉)
⇒ if (((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ Fm) ∧ (Dc ≤ Dt) ∧ (Rfnd = Py ∗ 0.85)) ∨ ((Cs ∈
Fm) ∧ (Rfnd = Py ∗ 0.45)))

then (FLGCLD, F lgCld(Cs, R))⊗ FlgRfnd(Cs, R, Rfnd)∧ FlgPnl(Cs, R, Pn))

else (FLGERR, F lgRsvErr(Cs,′ FlightCancelError′))

3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics 67

Reasoning about CSrv-Nets services. As a result of this specific form of rules—in which we

have in particular the binary multiset operator ⊗ instead of any general function f(x1, ..., xn) as

given in general rewrite logic entailment inferences in definition ??— the four rewriting inference

rules has to be adapted in consequence. In addition, as we already pointed out, we aim to exhibit

a full intra- and inter service-state concurrency. For this purpose, on the one hand we allow the

service state and message instances within a given place to be split and recombined as needed;

this is achieved by introducing an additional inference rule we refer to as Service-configuration

Splitting and Recombining. On the other hand, to permit selecting from any service state just

the necessary service properties invoked by given event or message, an adequate inference rule is

proposed we refer to as service-state Splitting / Merging.

Definition 3.5.4 (CSrv-Nets-entailment inference rules) Given an CSrv-Nets rewrite the-

ory R, we say that R entails a sequent sf ⇒ sf ′, where (sf, sf ′) are a pair of CSrv-Nets states, iff

sf ⇒ sf ′ can be obtained by finite (and concurrent) applications of the following rules of deduction.

(1) Reflexivity : ∀ |[sf]⊗| ∈ ([SvP × [TStv(X)]⊕ ∪ [TMs(X)]⊕]⊗),

|[sf]⊗| ⇒ |[sf]⊗|

(2) Congruence : ∀ |[sf1]⊗|, |[sf ′
1]⊗|, |[sf2]⊗|, |[sf ′

2]⊗|
|[sf1]⊗| ⇒ |[sf ′

1]⊗| |[sf2]⊗| ⇒ |[sf ′
2]⊗|

|[sf1]⊗ ⊗ [sf2]⊗| ⇒ |[sf ′
1]⊗ ⊗ [sf ′

2]⊗|

(3) (Concurrent) Replacement: for each rule

t : |[sf(x1, .., xn)]⊗| ⇒ |[sf ′(x1, ..., xn)]⊗| if SvTC(
−
x(t)) in R,

[sv1]⇒ [sv′1] . . . [svn]⇒ [sv′n] ∧ SvTC(
−
sv/

−
x(t)) = True

|[sf(
−
sv /

−
x)]⊗| ⇒ |[sf ′(

−

sv′ /
−
x)]⊗|

(4) Transitivity : ∀ |[sf1]⊗|, |[sf2]⊗|, |[sf3]⊗|
|[sf1]⊗| ⇒ |[sf2]⊗| |[sf2]⊗| ⇒ |[sf3]⊗|

|[sf1]⊗| ⇒ |[sf3]⊗|

(5) Service-Configuration Splitting and Recombining: ∀ p ∈ P,∀ [n]⊕ ∈ [Ts(p)]⊕, and

∀ [mi]⊕ ∈ [Ts(p)]⊕; i ∈ {1, .., np}.

|[n]⊕| = |[
np

⊕
k=1

mi]|

|[(p, [n]⊕)]⊗| = |[
np

⊗
i=1

(p, [mi]⊕)]⊗|

∀ p ∈ P ; ∀ [n]⊕, [n′]⊕ ∈ [Ts(p)]⊕

|[(p, [n]⊕)]⊗| ⊗ |[(p, [n′]⊕)]⊗| = |[(p, [n]⊕ ⊕ [n′]⊕)]⊗|

68 3 Rule-centric Stepwise Development for Service Systems

(6) Service-state Splitting / Merging: ∀ 〈SvI | prs1, .., prsk〉 ∈ [TStv(X)]⊕. with prsi is a

list of pairs property-values).

True

〈SvI | prs1, .., prsk〉 =
k
⊕
i=1
〈SvI | prsi〉

With 〈SvI | ∅〉 = SvI

(7) Identity: ∀ p ∈ SvP

True

(p, ∅M) = ∅B

3.6 CSrv-Nets behavioral validation: A tailored Maude extension

As we recalled in the appendix, the Maude language cannot directly support a faithful imple-

mentation of the above CSrv-Nets rewrite theory, and this at-least for the following reasons.

First, whereas Maude supports only a holistic object-oriented perception, as a community of

concurrent object state and message instances, the above CSrv-Nets rewrite theory envisions a

more loosely-coupled distributed service-based configuration. Second, whereas Maude supports

only indivisible monolithic object-state (as tuple), the above CSrv-Nets rewrite theory explicitly

separate between local and observed service-states and permit their just-in-time split and recomb-

ing. Third, whereas Maude messaging does not distinguish between observed and local ones, we

require at the CSrv-Nets an explicit distinction between events, received and invoked messages

while triggering service states. Towards overcoming these serious Maude shortcomings, we are

leveraging in consequence the Maude holistic object-oriented configuration. This is, towards a

service-based CSrv-Nets-compliant configuration, we are re-visiting and adapting the Maude

general configuration to cope with the following envisioned features:

Scoped service (component) state : To allow extraction of observed ser-

vice interfaces, we propose a service component state of the form:

〈SvI | atl1 : vl1, .., atlk : vlk, atbs1 : vs1, .., atbsl : vsl〉. In this new ”colorful” tuple-state,

the part atli stands for local features, whereas atbsj stands of observed service properties.

Service State split / recombining : Moreover, we endow that service component state with an

axiomatization that permits splitting and recombining it at need. Such split / recombine ax-

iom can be summarized as: 〈SvI | prs1, prs2〉 = 〈Id | prs1〉 〈SvI|prs2〉With prsi abbreviation

pairs of ’attribute:value’.

Imported / exported service messages and events : We further allow service messages to

be observed. We thus distinguish between local service messages (to that service component)

3.6 CSrv-Nets behavioral validation: A tailored Maude extension 69

and observed ones to participate in external service interactions. Moreover, we distinguish

events as triggering messages for rules. they are messages appearing only at the left-hand

side of a given rule.

Concretely, we are introducing a new Maude-based configuration, we refer to as service-

configuration and denote by SRVCMP GNR (i.e. service component generic). In contrast to the

usual Maude object-configuration, this new Maude-based service-configuration is distinguished

by the following features in compliance with the CSrv-Nets ones. First, we are proposing two

distinct sorts obs StatSRV and loc StatSRV, to explicitly and separately declare observed service

properties from hidden ones. Second, we separate imported / exported observed messages from

local ones as well as from explicitly declared (triggering) events. Thrid, the service-state split/

recombing axiom is implemented using two rules, namely SplitAT and RecombAT. Below is a sketch

of the main features of such generic specification for service configurations. Note that we the split /

recombining leads to two rules to be judiciously applied using the reflection capabilities of Maude

as strategies.

1. mod SRVCMP GNR is

2. subsort obs StatSRV loc StatSRV evnt StatSRV< StatSRV.

3.subsort obs StatSRV loc StatSRV < StatSRV · · ·

15.op < | > :SRViD evnt Prop→evnt StatSRV .

16.op < | > :SRViD obs Prop→obs StatSRV .

17.op : ConfSRV ConfSRV → ConfSRV [ac] · · ·

21.rl [SplitAT] : < SvI |prs1, prs2 >⇒< SvI |prs1 >< SvI |prs2 > .

22.rl [RecombAT]: < SvI |prs1 >< I |prs2 >⇒< SvI |prs1, prs2 > .

◮ Example 3.6.1 Using the Maude workstation environment4, Figure 3.10 depicts the concrete

and complete implementation, of both the structural and behavioral features of the Flight service,

we discussed and detailed in the previous sections. Important to notice is the importing of the

service-configuration; otherwise the specification cannot be performed. After de specification of all

involved sorts for messages and service states, first the Flight service state properties are defined.

Then, the involved events and messages are declared. Equations for defining the requested discounts

are then specified. Finally, after defining all needed variables, we formalize the three rules reflecting

the request, confirmation and conceling business activities.

To validate this compliant CSrv-Nets-Flight Maude-based operational service specification, we

have experimented it through several concrete scenarios. Figure 3.11 depicts a simplified snapshots

from these experimentation. That is, we assume having some flight state instances and involved

trigerring events and messages for booking, confirming and cancelling such flight instances. After

running such service flight configuration, we result in new final configuration as depicted in Fig-

ure 3.12, where all messages have been consumed and the flight states have accordingly updated. In

4http://moment.dsic.upv.es/

70 3 Rule-centric Stepwise Development for Service Systems

Figure 3.10: The CSrv-Nets Flight implemented using the extended Maude

3.7 Chapter Summary 71

Figure 3.11: Concrete CSrv-Nets-Flight service configuration scenarios

reality as will be detailed in the fourth chapter, we have explicitly controlled the execution through

reflection strategies to avoid looping or canceling before flight requesting and similar inconsistent

behavior.

Figure 3.12: The resulting CSrv-Nets-Flight configuration by running the previous one

3.7 Chapter Summary

In this chapter we put forwards the milestones towards an advanced disciplined and stepwise

approach for developing adaptive service-oriented applications. The approach capitalizes on ad-

vanced software-engineering concepts and mechanisms including: Business rules and stereotyped

UML-classes, tailored high-level service-oriented Petri nets, rewriting logic and its efficient Maude

language and ECA-driven architectural interactions. The approach is illustrated and validated

through a typical rule-centric flight service. The chapter concentrates on the shifting from the

informal to the formal decisive phase. That is, we first presented how service requirements can be

captured through stereotyped UML-class diagrams and event-driven business rules. We then put

forwards a service-oriented Petri nets framework, that directly built on this intuitive phase. The

72 3 Rule-centric Stepwise Development for Service Systems

framework has been semantically governed by a tailored rewrite theory interpreted in rewriting

logic, and implemented by accordingly extending the Maude language.

73

Chapter 4

Collaborative

Services—Choreography meets

Orchestration

In contrast to the monolithic and global component-based composition[Gri98], the service paradigm

provides the developer with at-least two distinguished visions for composing services. As we re-

ported in the second chapter, towards building further added-value realistic service-oriented busi-

ness processes and applications, the service paradigm and particularly its technology is endowed

with the so-called service orchestration and service choreography for composing services.

Orchestration-based service composition is inherently associated with the BPEL standard

[CGK+04]. Therefore, the orchestration primarily focusses on composing a new service from exist-

ing services. It provides a common pattern of describing the process-based behavior of how different

services need to work together, mostly by exchanging messages, in order to realize another service.

As such the orchestration is based on a single-service perspective. That is, the orchestration al-

ways represents control from one partys perspective, as it enables the definition and execution of

business processes, with respect to a specific reference Web-Service. For instance, when we tackled

the flight service, though other services such customers and banks have been involved, the main

focus remained on the specification of that flight service (with the support of customer and bank

services).

Orchestration-based service composition as being defined cannot thus be used to describe a

system of services as peers, since it yields a new service. This service-focussed vision represents

one of the main difference to the choreographical composition. We should further point out the

(BPEL-based) orchestration has been attracting more attention and investigations, both at the

academia and industry, when compared to the choreography. This orchestration-trend is mainly

due to the availability of variety of advanced BPEL-driven engines (e.g. BPEL4WS, BPEL4J),

among other technological and business reasons. For instance, the intrinsic decentralization of

74 4 Collaborative Services—Choreography meets Orchestration

composition control promoted by choreography still remains a difficult and challenging problem.

Moreover, business ownership and other legal issues empower the single-partner control over shared

choreography-based responsibilities.

Choreography instead promotes more balanced collaborative and decentralized multi-party ser-

vice composition. It allows each involved party to explicitly describe its role in the interaction.

Choreography mainly tracks the message sequences to be exchanged among multiple parties (i.e.

Web-Services), rather than focussing on a specific business process that a single party executes.

Web Service Choreography relates to describing externally observable interactions, in a system

composed of several web services. WS-CDL [KOMC04] is the current standardized language for

describing such choreographical multi-party contracts, across a number of services (more than one).

Indeed, while WSDL describes web services interfaces, WS-CDL describes collaborations between

web services. WS-CDL is primarily for the case where multiple parties (business partners) do not

want to expose their actual business processes to each other. Its purpose is to clearly define the

interoperability needed to realize a system composed of many services.

In this sense, a system build of several services and described in WS-CDL, may be effectively

realized as a set of peered islands of (BPEL-based) orchestrations. That is, based on the rules of en-

gagement set by the choreography logic, such collaborating services have to work together to achieve

the expected system’s overall behavior. From this observation, it comes the crucial complementarity

of the choreography and orchestration while composing realistic services. Unfortunately, this po-

tential choreography-orchestration synergy remains badly unexplored, through the disadvantaging

of the choreography vision at the expense of the service-focussed orchestration. Indeed, though the

benefits of such complementary have been stressed at the descriptive-level [Pel03, BDO05], only

few proposals have rigorously addressed the problem, mainly by adopting process algebras-based

foundation [BGG+05, vdAWMO+06, MDM09]. Such investigations have been specifically tackling

the (un)coherence while projecting the system’s choreographical message exchanges on respective

orchestrated local services and their messages. At the technological level, we should mention the

so-called BPEL4Chor language [DKL+08, DW07]: A process-centric extension to BPEL towards

coping with choreography besides orchestration.

The purpose of this chapter aims thus at promoting the potentials of this choreography-

orchestration or ”system-service” complementarity, while going beyond the elementary studies of

local-global message exchanges. More specifically, capitalizing on the resulting stepwise approach

from the previous chapter, we propose to leverage the forwarded CSrv-Nets-based orchestration

towards a consistent yet behavioral and rule-centric choreography, where systems of CSrv-Nets-

based services can be developed. The remaining sections of this chapter are structured as follows. In

the next section, we bring more motivation and insights on how to leverage the proposed approach,

from independent CSrv-Nets-based orchestrated services toward complex system of choreographi-

cally collaborating composite services. The third section delves into the first step towards such lever-

aging, namely the intuitive conceptualization of a tailored generic pattern for cross-organizational

4.1 Choreographical Services Composition with CSrv-Nets: Further Motivations75

inter-service event-driven business rules. In the third main section, we progressively formalize and

illustrate such harmonious ECA-driven complementarity between the orchestration and choreogra-

phy, by soundly extending the CSrv-Nets framework. Towards graphically attracting the reader’s

attention, we slightly ”re-paint” the general approach architecture from the previous chapter (i.e.

Figure 3.1). More precisely, in this slightly re-painted Figure 4.1, we have first put into background

the non-concerned steps by this chapter. Second, at the concerned middle phase, we replaced the

single CSrv-Nets-based service by supposedly ”choreographically” collaborating services.

Ph−CoServ−Nets

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

In
fo

rm
al

 b
us

in
es

s
go

al
s,

 b
ro

ad
 p

ro
ce

ss
es

an
d

in
te

ns
io

na
l b

us
in

es
s

ru
le

s

ServComp1 ServCompN

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

m
s11

m
sj1

Srv−state

m
s11

M
s1

M
si

M
sj

ms11

msj1

S
rv−

state

ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

R1: (Ms1, ev1)... => (Msi, mi)... if cd1
.

C
C

S
rv

−
N

et
s

ServComp1 ServCompN. . .

 ECA−interaction ECA−interaction

Invariants−1
Messages−1
 events1

ServIntf1−SI1

Invariants−1
Messages−1
 events1

ServIntf1−SI1
Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

. .

events ...
participants ...
conditions ...
actions ...

events ...

participants ...

conditions ...

actions ...

Ph−Uml&Rule

<<CompositeService>>

. . .

<<Service1>>

events
messages, properties

<<ServiceN>>

− messages1
− events1
− properties1

− messages−s1
− events−s1
− properties−s1

− messagesN
− eventsN
− propertiesN

<<SubServN>>

− messages−sN
− events−sN
− properties−sN

<<AggreServ1>>

ru
l1 ru

lk
R

ul
es

−
st

at
e

DelR

AddR

UpdR

R
ul

2A
dd

R
ul

2D
el

R
ul

2C
ha

ng

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

C
o−

S
rv

N
et

s

ac
tiv

ity
.N

E
T

−
W

S
er

vi
ce

s
E

C
A

−
ba

se
d

.N
E

T
−

A
sp

ec
ts

(u
n−

)

w
ea

vi
ng

ServCompNServComp1

ea
ch

A
sp

ec
tu

al
−

S
rv

N
et

s

Adaptiviy−Level

(un−)weaving

. . .

Ph−AspServ−NetsPh−.NET

. . .

Figure 4.1: The Choreography with CSrv-Nets as third phase in the forwarded approach

4.1 Choreographical Services Composition with CSrv-Nets: Fur-

ther Motivations

In the previous chapter, we demonstrated how service interfaces and elementary services can be

progressively and rigorously leveraged to cope with concurrent rule-intensive behavioral features.

We achieved that, first by informally describing service structural features using stereo-typed UML

class-diagrams while capturing their behavioral features as architectural event-driven business rules.

We then proposed a rigorous formalization and certification through a tailored service-oriented high-

level Petri nets framework, we refer to as the CSrv-Nets. CSrv-Nets permit thus for precisely

defining structural features with explicit service states, and then smoothly capturing behavioral

features governed by a true-concurrent rewriting-logic semantics. This important achievement

encouraged us towards pushing the scope of this approach one step further, so that complex service

systems as collaborating composite services can be harmoniously tackled on top of already specified

and validated individual CSrv-Nets-based services.

More precisely, as we just discussed in terms of Web-Services terminology, in the previous chap-

76 4 Collaborative Services—Choreography meets Orchestration

ter we presented how individual services (e.g. Flights, Hotels, banking, etc.) can be orchestrated

in a behavioral, conversational and rigorous manner. In this chapter, we instead concentrate on

the choreographical composition of several participating (elementary or complex) services to de-

velop complex systems as cooperating services. A typical illustration is the travel-agency system

that requires the composition and coordination of several independent services such as: Airlines

(and/or trains/taxis/renting cars), Accommodations (hotel/hostel/private), financial institutions

(bank/credit-card), attraction services, etc. Each of these participating services are themselves

very complex, conversational, stateful and adaptive. We re-emphasize that WS-CDL [KOMC04],

as standard for choreography, proposes only pure static and structural descriptions, and does not

scale up to complex composite decentralized services. Furthermore, WS-CDL neither tackles behav-

ioral, adaptive and / or concurrent features characterizing today’s complex services, nor provides

any founded means for specification and certification.

Besides these serious deficiencies, existing proposals to Web-Services explicitly differentiate be-

tween orchestration and choreography, and focus mostly on BPEL-like orchestration than WS-CDL-

related descriptions. Indeed, choreography is surprisingly neglected with the strong believe that

BPEL-like descriptions of (elementary and composite) services seem quite satisfactory in most cases.

Unfortunately, with the current limited static and structural characterizations of Web standards

(e.g. BPEL and WS-CDL), the striking necessity of choreography in complementing orchestrated

descriptions and vis-versa, have just been further confused and obscured.

One of the main purpose of this section consists thus in demonstrating that, when the empha-

size is put on (rule-centric) behavioral features rather than structural ones, such strict distinction

between service orchestration and choreography and / or the focus on just one (e.g. orchestration

mostly) is not only unwished; but may also lead to incomplete service-oriented design and there-

after non-conform service deployment. To cater for such essential complementary, we propose to

optimally benefit from both service orchestration and choreography through a harmonious synergy.

Before delving into the formalization details about how to choreographically composing services, as

a sound extension to the presented behavior-intensive orchestration, let us motivate further, from

a methodological point of view, this synergy stepwise complementarity between orchestration and

composite choreography, while developing knowledge-intensive service-oriented applications.

(1) By opting for an ECA-driven approach, we are in fact assuming that both independent ser-

vices as well as their collaboration are governed by suitable event-driven business rules. That

is, as we so-far did, intra-service business rules allow governing independent service behav-

iors, and thus exclusively focus on a single service at-hand. For instance, while specifying the

Flight service, there are no links whatsoever to business rules about Banking, Hotel or any

other services. In other words, orchestration-driven business rules are local to their respective

services and interfaces. In contrast to that, inter-service business rules should govern compos-

ite services involving different regulations, policies and strategies for correctly collaborating

involved services towards a complete system of services. In this sense, the Travel-Agency

4.1 Choreographical Services Composition with CSrv-Nets: Further Motivations77

composite service, for instance, has to be governed by respective policies and regulations for

optimally and legally collaborating different involved (elementary) services such as hotels,

airlines, banks, attractions, etc.

(2) Having explained the relevance of such two-level categories of business rules—namely those

for governing intra-service behavior and those for cooperating such services—the remaining

central question consists in: How to establish a behavioral relationship between such intra-

and inter-service business rules while composing services?.

Towards answering such crucial question, in Figure 4.2 we are graphically forwarding an

intrinsic vision for such relationship, to coordinate independently formalized orchestrated

CSrv-Nets-based services. More precisely, the general conceptual milestones, we are for-

warding towards a harmonious and rule-centric behavioral complementarity between service-

level orchestration and system-level choreography, can be explained and motivated as follows:

• As the Figure explicitly illustrates, we have been so far focussing on the lower part

of this two-level based approach, namely the intra-service orchestration level. With

respect to the running example, we have been specifying and validating the intra-service

business rules of different independent services (e.g. Flights, Banks and Hotels). Due

to the autonomy of such services from each other, at the orchestration level, we could

not report on how requested / provided (events and) messages in such services are to

be coordinated, neither could we be able to describe the from / to where (i.e. which

services) such messages are invoked or provided and under which circumstances.

• With the explicit conceptualization of the choreographical-level over orchestrated ser-

vices, it becomes imperative to clarify how incoming / received and respective outgo-

ing / provided messages (from / to different participating interfaces) are semantically

invoked, produced and coordinated in order to fulfill the expected rule-based choreo-

graphical global behavior of the system. It also becomes further meaningful, why we

are labeling the resulting outgoing / provided messages from such involved services as

behaviorally-certified messages.

• As depicted in the Figure, by collaborating more than one service in a composite choreog-

raphy, different messages have to be accordingly requested by such composite level from

the participating services. Once such messages are received by the corresponding inde-

pendent services, they have to be certified against the associated intra-service business

rules (using corresponding CSrv-Nets-driven transitions). That is, invoked messages

at different services can either result in a behaviorally-certified outgoing messages or re-

sult in non-conform incorrect exception messages. Only behaviorally-certified (through

service interfaces orchestration) messages can further be invoked at the choreographical

composition level, to realize the expected value-added collaborative business activities

with respect to the inter-service business process at hand. In other words, there is now a

78 4 Collaborative Services—Choreography meets Orchestration

necessity and benefits for such two-level complementarity, which could not be discerned

with just structural capabilities of Web standards like BPEL and WS-CDL.

• Another benefit of this two-level rule-driven approach to service applications develop-

ment is that besides usual functional rule-based requirements, at the composite chore-

ographical level, non-functional rules and policies can also be straightforwardly applied

and enforced on the participating services. For instance, we may impose a response-time

on a given activity (request for flight or accommodation, etc.) or invoke only specific

airlines depending on reputation, trust, etc.

4.1.1 Choreographical composition within the Travel-agency

Concretely with the vacation running case study, the composite Travel-Agency once receiving a

triggering request from the customer, it first validate it with respect the customer service rules (i.e.

checking conditions such as age, address, minimal budget, name, etc.). Then depending on the

general agencies regulation and policy rules for specific context-aware incentives, the agency dis-

patches different request messages to involved respective services to get Tickets, Accommodations,

etc. In contrast to usual (BPEL or WS-CDL) Web-standards, with the forwarded two-level service

approach, there is no assumed systematic implicit ”positive” replies from such invoked service in-

terfaces, even when being fully available. That is, to get Tickets, Accommodations, etc, different

current local behavioral business rules put into place have to be checked and validated. This is,

only in the positive case, the Agency can proceed further with the vacation business process (with

the check-out of bank in the same way, etc) .

Towards a conceptualization of this rule-based choreographical behavior for composing services,

we first propose a general pattern for required cross-organizational choreography-level business

rules. Then, we formally extend the CSrv-Nets framework to rigorously reflect such interaction-

driven business rules, which are more close to transient architectural connectors [PPSGS04]. Finally,

we illustrate this crucial behavioral conceptualization of choreography with the running travel

agency.

4.2 Business-Rules pattern for Behavioral Choreography

To capture cross-organizational composite business rules, unlike intra-service business rules, we

have to take into consideration besides the concerned ECA rule itself, several other clauses with

the following determinant ingredients:

Participant services : In this clause, we have to precisely set different service (interfaces) types

(with some of their instances when needed) taking part in the composition. Once a (behav-

iorally specified) service interface is stated to be part of a given composition, all its incoming /

outgoing messages can be requested / provided by the composite level; they all participate in

4.2 Business-Rules pattern for Behavioral Choreography 79

RqMs_Sv1 PrvMs_Sv1 RqMs_Sv1 PrvMs_Sv1

Choreographical composition of different services

through ECA−driven cooperative business rules

. . .

In−msgN_Sv1

in−msgN−sv1,...)

.
in−msg1−sv1,...)

.

.

. . .

. . .

Out−msg1−Sv1(..)

Out−msgM−Sv1(..)

.

.

.

.

. . .
in−msgN−sv1,...)

In−msgN_SvK

In−msg1_SvK

Behavioural Specification/ Validation Service K

R
ec

ep
tio

n
of

 (v
al

id
at

ed
) m

es
sa

ge
s

fro
m

 S
er

vi
ce

 I

. . .

In
vo

ca
tio

n
of

 (I
np

ut
) m

es
sa

ge
s o

n
Ser

vic
e

I Invocation of (Input) m
essages on Service K

Reception of (validated) m
essages

from
 Service K

Requested / (valid) Provided messages from involved services

. . .

Behavioural Service Composition/ Validation

. . .

Behavioural Specification/ Validation Service I
In−msg1_Sv1

in−msg1−sv1,...)

.

.

Im
po

rt
ed

 m
es

sa
ge

s
/ e

ve
nt

s
 o

f S
er

vi
ce

 I

. . .

. . .

Out−msg1−Sv1(..)

Out−msgM−Sv1(..)

.

.

.

.

.

.

ORCHESTRATION
of different incoming
messages to valid
outcoming ones
with ECA− rules driven
Transitions

ORCHESTRATION
of different incoming
messages to valid
outcoming ones
with ECA− rules driven
Transitions

E
xp

or
te

d
(v

al
id

)
m

es
sa

ge
s

of
 S

er
vi

ce
 I

Out_msgM−Sv1

Out_msg1−Sv1
Im

po
rt

ed
 m

es
sa

ge
s

/ e
ve

nt
s

 o
f S

er
vi

ce
 K

Out_msgM−SvK

Out_msg1−SvK

E
xp

or
te

d
(v

al
id

)
m

es
sa

ge
s

of
 S

er
vi

ce
 K

Figure 4.2: An Illustrative Complementarity of Orchestration and Choreography in the CSrv-Nets

Approach .

formulating any inter-service choreographical business rules. Besides that, specific properties

from participating states, such as identities and other properties, may be part in the compo-

sition. We further note that, in contrast to intra-service rules where single service interface

can be involved, at the choreography-level we must have at-least two participating services

(apart from the trivial customer service). Otherwise, we could not speak about collaborating

system of services.

Extra proper properties for interacting : Depending on the composition behavioral seman-

tics, additional extra composition-driven properties such as messages, (stateful) attributes are

to be declared for expressing the intended composition. Such information can be provided as

an extra-service aimed at coordinating the other involved services (e.g. the travel-agency).

ECA-like effects on collaborating services : This main part formulates the rule itself, where

80 4 Collaborative Services—Choreography meets Orchestration

we have first to express the events triggering such rules, then the conditions to be observed

by the composition. Such conditions are in terms of constraints on the participating service

properties and proper ones as well as messages to be exchanged between involved services.

Finally, actions in terms of messages to perform on different partners and on the composi-

tion itself have to be explicitly defined following the intuitive semantics of the rule at-hand.

As will be detailed below, as intra-service business rules come also into play, we suggest to

explicitly declare at the composition-level the events for triggering such rules. That is, we dis-

tinguish between events triggering (choreographical) inter-service rules from those triggering

(orchestrated) intra-service rules.

Towards expressing this behavior-driven choreography in a disciplined but still at a descriptive-
level, while reflecting these constituents, we propose a general pattern for such cross-organizational
behavioral business rules as event-driven architectural connectors. This general pattern respects
the following form.

Choreographical ECA-behavior <Service-Composition-Identifier>

participant interfaces <list-of-service interfaces>

invariants <possible extra-interaction constraints>

attributes/messages <possible extra ingredients for interaction>

interaction rule: <Rule-Name1>

at-trigger <(set-of-)events>

under <cross-partner conditions>

acting <set-of-actions-and-events to perform and trigger>

. . .

Rul
e−

tri
gg

er

Rul
e−

re
su

lt

Rule−trigger

Rule−result

Service−Component1

Intra−service Activity

 ServInterface−SI1 ServInterface−SI1 ServInterface−SI1

Intra−service Activity
ECA−Interaction−I ECA−Interaction−N

 ServInterface−SIK

Properties1

Messages1

Events1

Propertiesk

Messagesk

Eventsk

PropertiesN1

MessagesN1

EventsN1

PropertiesNi

MessagesNi

EventsNi

ECA−Interaction
Inter−service Activity

Properties

Messages

 Cross−Services Interface

Events
Events as rule−triggers

Service−ComponentNService−Component2

Figure 4.3: The general pattern of cross-service (choreographical) ECA-driven business rules

As depicted in Figure 4.3, the choreographical cross-service rules bring into play the involved

intra-service rules to behaviorally harmonize and validate the collaborating services. Furthermore,

4.2 Business-Rules pattern for Behavioral Choreography 81

as we emphasized, important in this behavior-driven services composition is above all the partic-

ipating service interfaces. Secondly, when required we have to specify additional invariants and

constraints to be observed during the collaboration. Thirdly, besides exchanged messages, stateful

data and events from the participants, we may need additional properties such constants, attributes

and messages at the composition level to express complex interaction patterns. The ECA-based

interaction rule itself starts by describing the event(s) triggering the interaction, then which condi-

tions have to be fulfilled and finally what are the cooperative actions to be performed. Notice that in

some cases, among the actions we may have triggering events to directly initiate other semantically

related composite rules. This behavioral business rules pattern requires of course from different

participating entities explicit interfaces including different events, messages and other properties

(such as constants, variables ,etc). Such participating service interfaces, as we already motivated,

need to be already been specified and certified (i.e. orchestrated) in order to take part in a given

choreographically-driven cross-service business rules.

4.2.1 Cross-service business rules for the Agency application

To stay competitive, travel agencies are steadily offering different incentive packages for their cus-

tomers. For instance, depending on the customer profiles (e..g trust, frequency, status, individual

or group, etc.) different attractive offers can be provided. These vacation packages represent in

fact the main cross-organizational business rules regulating the cooperate behavioral functioning

of travel agencies, with respect to participating services such as: Accommodations (hotels, hostels,

apartments, etc), Transportation (e.g. Airlines, Trains, Renting-Cars, etc), Distraction (Visiting

sights, attraction places) and Financing (Credit-Cards, Banking, etc), among other participants.

An illustrative typical rule governing a given travel agency functioning, could be expressed as

follows:

Travel-Rule1 ”For a group of persons taking a vacation, different formulas are proposed to

them. If more than two persons, traveling to Location-X and booking T-weeks before their depar-

ture (with T ≥ 2 for instance), they are eligible to a specific reduction percent, we denote by P

with 10 ≥ P ≤ 30 as illustration. When they decide for specific accommodations they get extra

A reduction percent , and when they pay with credit cards, they get more C-percent. Finally, if

they stay more than W weeks, they get extra K-percent”.

In order to describe this simple cross-organizational rule in compliance with the above general

rule pattern, we further require several specific information from the composing agency-travel ser-

vice. First, besides its name and address, an agency should have usually favored airline partners,

favored accommodation hotels (series), and not least favored destination locations with correspond-

ing basic prices for specific periods (for individual customer). For sake of exhibiting more behaviors,

we assume that customer requests can only be processed for such privileged partners and destina-

tions; otherwise there will be for instance no discounts and promotion favors. Taking this agency

82 4 Collaborative Services—Choreography meets Orchestration

knowledge into play as well as the capabilities of the three involved services (e.g. airlines, accommo-

dations, banks but also the user service), the above agency rule could be enforced in fact through

three steps and thus has to be split in some sense into three ”sub-”rules.

(1) The first sub-rule concerns the request activity, where the agency by receiving the trigger-

ing event Request Travel from the customer service, has to check whether the destination

belongs the privileged ones, and more importantly if the ”spending-threshold” amount set

by the customer is within the range of the expected total budget. In the affirmative case,

the agency submits a corresponding request like Find Travel. This composite request mes-

sage should involve different request messages for ticket, accommodation and others involved

services (e.g. attraction visits, car renting, etc.) depending on the wish of the customer.

(2) The next sub-rule has to capture the acceptance / refusal of best offers (from these par-

ticipating services). That is, once receiving different offers from the involved services (e.g.

airlines-ticket booking, accommodation booking, etc), the agency asks the customer service

to confirm or infirm the composite complete offer, which has also to take into account the

afore-described reductions and promotions. That is, the main core of the afore-described

business rule has to be enforced at this stage, resulting in the effective booking of air-tickets,

hotel-rooms, etc. by respecting the local business rules at each corresponding service interface.

(3) The final phase in establishing this rule-driven vacation composite service consists in positively

receiving the final booking from different requested services. In such case, the customer has

to proceed to the payment. Once such payment is accepted (i.e. by credit-card or through

bank-transfer, etc.) the travel is enabled through the handing of tickets, etc.

(4) Finally, it is worth pointing out that the customer even after endorsing the acceptance of

the proposed travel offer, can still cancel it. Nevertheless, he/she must pay in this case an

accordingly rule-driven penalty amount.

Choreographical ECA-behavior Travel Agency

participant services

Flg: Airlines

Acom: Accommodation

Cust: Customer

Bank: Bank

constants

Prc1, Prc2: [0..1]

attributes

PvgTRP:List[Dest,{Cost Range.Duration}, ValidTil]

PvgFLG:List[AirL, Dest, Fare Range, ValidTil]

PvgACM:List[Dest, {Star.Fare Range},ValidTil]

messages

Trip ToFind Trip Found Trip Book Trip Booked

4.2 Business-Rules pattern for Behavioral Choreography 83

Trip Pay Trip Paid Trip Cancel Pay Penality

interaction rule : Found Trip (sub-rule1)

at-trigger Cust.Trip Reqstd(CsInf,TrInf, Mx Cst)

under (TrInf.Typ=’TRIP’)

if (TrInf.Dest ∈PvgTRIP.Dest) and (Mx Cst ≤PvgTRIP.Cost Range)

and (TrInf.DepDt ∈PvgTRIP.ValidTil)

let (var P = [TrInf.ReturnDt-TrInfo.DepDt])

if (PvgTRIP.{CxT.P}) and (TrInf.DepDt-DtNow≥30))

acting Flg.Flg Requst(CsInf, FlgInf, 3/4*Prc1*CxT) and

Acom.Hotel Requst(CsInf, HotlInfo, 1/4*Prc1*CxT)

and "Trip ToFind(AgInf, DtNow)"

under (TrInfo.Typ=’FLIGHT’)

if (TrInfo.Dest ∈PvgFLG.Dest) and (Mx Cst ≤PvgFLG.Fare Range)

and (TrInf.DepDt ∈PvgFLG.ValidTil) and (TrInf.DepDt-DtNw≥14))

acting Flg.Flg Requst(CsInf, FlgInf, Prc2*PvgFLG.Fare Range) and

interaction rule: Choose Trip (sub-rule2)

at-trigger Cust.Trip Choosed(FlgRefi,HtlRefj) and

{Flg Rsvd(Cust, FgRsv Info)} and {Htl Rsvd(Cust, HtRsv Info)}

under (FlgRef=Min(allFgRsv Info.Fare) and (HtlRef=Min(allHtRsv Info.Price)

acting Cust.Trip2Confirm(Flg Rsvd(FlgRefi), Htl Rsvd(HtlRefj))

interaction rule: Confirmed Trip (sub-rule3)

at-trigger Cust.Trip Confrimd(CsI, FlgRefi,HtlRefj)

under (True)

acting Cust.Trip2Book(Flg2Bk(CsI, FlgRefi), Htl2Bk(CsI, HtlRefj))

interaction rule : Booked Trip (sub-rule4)

at-trigger Cust.Trip Booked(CsI, FlgRefi,HtlRefj)

under (True)

acting Cust.Trip2Pay(Flg2Bk(CsI, FlgRefi), Htl2Bk(CsI, HtlRefj), Cost)

end Std-withdraw interaction rule: Cancel Trip (sub-rule5)

at-trigger Cust.Trip Cancel(CsI, FlgRefi,HtlRefj)

under Trip Booked(CsI, FlgRefi,HtlRefj) = True

acting TripCancelled(CsI, TrRefi)and Cust.Penalty2Pay(CsI, TrRefi, Cost-Penalty(formulas))

end Std-withdraw interaction rule: Pay Trip (sub-rule4)

at-trigger Cust.Trip Pay(CsI, TrpRefj, Cost(Trip))

under Trip Booked(CsI, FlgRefi,HtlRefj) = True

acting Bank.TripPaid(CsI, Cost(Trip))

end TravelAgent Rules

As depicted on the top of this choreography-driven cross-service business rule, four partners

are involved namely the Airlines, accommodations, customers and the banking services (besides

84 4 Collaborative Services—Choreography meets Orchestration

the Agency itself). In order to allow explicitly manipulating (i.e. invoking / receiving) messages

from these partners, we declare any required instances. In our case, we declared the service Flg for

Airlines, Acom for accommodation, Cust for Customer and finally Bank as instance of the bank

service.

As we emphasized, usually within each Travel agency there are seasonal offers such a list of

privileged trips with attractive prices, list of selected accommodations and /or list of privileged

flights and airlines partners. Each element in these list is composed with all necessary information;

so, for instance, for a given privileged Trip one may found the destination, a range of costs depending

of the duration and the date limit of such offers. The same is to observe for the privileged flights and

accommodations. We have regrouped all these specific information as attributes at the composite

service level. In addition to these variables, to capture the different discount percents, we have

defined some constants (e.g. Prc1, Prc2) those values ranging over the internal [0..1], that is, real

values between 0 and 1.

Besides these stateful static properties, with the aim to promote the adaptability we conceived

a set of messages that allow factoring out different invoked / received messages from the participat-

ing services. In this sense, for instance, through the (generic abstract) the message ”Trip ToFind”

we are factoring out all involved requested messages (from different changing partners) such as:

Find flight, Find accommodation, and so on. In such manner, we can thus add any other respec-

tive message when incorporating another service such as Find RentingCar or Find TouristSite

without modifying this generic message Trip ToFind.

Towards modelling business rules for Trips as choreographical service composition, as we mo-

tivated we propose to proceed in a conversational process-centric way, where the behavior of each

involved business activity is captured through associate cross-service business rule. These business

activities consist in: (1) Looking for candidate Trips (e.g. associated flights, accommodations, etc);

(2) choosing the best Trip from the found candidates; (3) Confirm the selected Trip ; (4) Paying

that Trip or Canceling it.

The principled (architectural) description of the first business rule governing the business activ-

ity ”Look for candidate Trips” may be explained as follows. This business rule has to be triggered

through a ”successful” request from the customer service, with information about this requester,

the wished trip details as well as the maximal cost that can be invested in such a Trip. In this

context a ”successful” request event from the customer, means that constraints and conditions

required from any customer have been already checked at the customer service level (such as the

age, address, etc.) through its CSrv-Nets specification. Please, note that to explicitly indicate

that such message is to-be received from the customer service, we have prefixed it with the variable

Cust, which refers to an instance of a customer service. Once such triggering Trip-request message

is being recognized by the agency, the first element to check from the Trip information is the type of

the Trip, that is: is it just a flight ?, accommodation? or complex composite Trip?. Afterwards, we

have to check whether the requested Trip (in case of a requested Trip) belongs to a privileged Trip

4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreography 85

that is still valid. In that case, we have also to ensure that the proposed customer threshold budget

is not surpassed. Under such minimal required constraints, we can now discuss different formulas

of possible discounts so that we set the maximal fares to be enforced while requesting candidate

flights and accommodations (by sending messages to respective services). We have depicted one of

such discount computations. That is, if the Trip request is made four weeks before traveling (i.e. 30

days), then the threshold fare to be enforced while requesting flights should be 3/4 ∗ Prc1 percent

of the normal cost of such privileged Trip (i.e. CxT). The price for the requested accommodations

should in consequence not more than the 1/4 ∗ Prc1 of that price.

In the same spirit of such modelling, one can further define any possible business rule for

imposing different discount regulations depending not only on the duration and date of request,

but also on the period such as during the summer, Christmas and so on. For the case of requesting

just the flight, instead of a complete Trip (i.e. no accommodation), a similar discount formulas

has been suggested. For instance, by requesting for flights before two weeks before from traveling,

then a discount of Prc2 is to be observed. In the same way, we have described the corresponding

business rules for the other business activities such as: Trip Selection, Trip Confirmation,

Trip Booking, Trip Cancelling and / or Trip Paying.

4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreogra-

phy

After motivating and intuitively presenting how composing services in cross-organizational alliances,

on the basis of inter-service ECA-driven business rules, and this once individual involved service

interfaces have been specified and validated. The purpose of the following sections is to leverage

these intuitive descriptions to a more rigorous level. As we pointed out, we aim achieving that by

soundly extending the sofar CSrv-Nets framework so that it can explicitly specify and validate

such dynamically interacting services. In the same spirit as we proceeded for the CSrv-Nets

presentation, first we address the structural features in composing different CSrv-Nets interface

specifications, then we formalize the behavioral features. Finally, we illustrate this composite

CSrv-Nets formalism (we refer to as CCSrv-Nets) with the same travel agency example, by

incrementally translating the above motivated ECA cross-organizational business rules to this new

choreography-driven formalism.

4.3.1 Structural features in CCSrv-Nets

As explained above, to achieve a conversational and behavior-driven composition we require in

most cases proper properties, besides requested / received messages from the participating services.

These proper properties may be attributes and/or (observed) messages and events to be declared

at the composition level. As for the specification of CSrv-Nets interfaces, we propose to adopt

the same algebraic specification setting for formally specifying them. That is, all proper attributes

86 4 Collaborative Services—Choreography meets Orchestration

are gathered in a tuple form, we refer to as the composition service state type, while each message

or event is explicitly specified as an algebraic operation.

All participating service interfaces (i.e. their algebraic specifications) have to be explicitly

included in the composition specification, using for instance, either the usual primitive such as

including or more expressively the keyword participants, to explicitly highlight them as services

participating in this choreographical knowledge-based composition.

A further crucial enrichment with respect to the usual CSrv-Nets structural specification con-

cerns what we may refer to as the ”gathering” or integration of several requested / provided message

types into a single new (composite and flexible) message type. To motivate and then define this

notion of unified message, let us consider again the the Travel-Agency case with in mind the chore-

ography general form we depicted in Figure 4.2. We clearly observe that typical agency activities

such as ”Request-Trip”, ”Trip confrim” and/or ”Trip-Select” all consist in accordingly (i.e. in

conformance with corresponding business rules) dispatching or sending requesting messages to cor-

responding participants (e.g. airlines, accommodations, attractions, car-renting, etc.) or collecting

/ receiving certified provided messages. More precisely, participating requested messages such as

request4flight, request4hotel, request4car, etc, are intrinsically and semantically meaningful

only together in that they all concern the ”Request4Trip” activity. Similarly, unified messages

apply to Select4Trip, etc.

In terms of algebraic concepts, we propose to declare such unified message types as super-sorts

of respective detailed service-related message. So for instance, the unified message type for

request4Trip will be a super-sort for all message types concerning service requests such as:

request4flight, request4hotel, request4car, etc. The benefit is that we are promoting by

further adaptability and flexibility at the choreography composition level. This high flexibility

comes from the fact that, for instance, Request4Trip or Trip2Confirm unified composite message

depends now directly on the customer wishes. For a customer requesting just flight, the composite

message Request4Trip will include only the request4flight message. We are thus dynamically

reshaping the composite message depending on the participant services. At this syntactical struc-

tural level, we use the symbolic notation≪ instead of the usual subset symbol < to distinguish this

notion of composite message. At the behavioral Petri Nets composition level, there are manyfold

benefits of this notion of unified messages as we detail later.

The Agency Structural aspects in CCSrv-Nets

Following the above clarifications and the detailed cross-service business rules for the composite

Agency service, we present below the corresponding CCSrv-Nets structural specification. In

this algebraic specification for composite services to enhance more the understandability we are

introducing new primitives (keywords) such as: Participants instead of including and super-sort≪
instead of the usual subsort <. Besides that, instead of the starting keyword ”obj”, we are using the

new expressive keyword ”Composite-Service”. Important to mention here is that we assume as

4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreography 87

already specified all required Data, we gather in a data-level datatype we refer to ”AGENCY-Data”.

Composite-Service Agency-Service is

extending Service-state

protecting AGENCY-Data.

participants Customer, Airline, Acommodation, Bank < Service .

supersort Trip ToFind ≫ Flg Requst Room Request .

supersort Trip Found ≫ Flg Reservd Room Rservd .

supersort Trip ToBook ≫ Flg2Book Room2Book .

supersort Trip Booked ≫ Flg Bookd Room Bookd .

supersort Trip Cancel ≫ Flg2Cancel Room2Cancel.

subsort TRP CHOS TRP CFRM TRP BOK TRP PAID TRP PENALTY TRIP START

(* Agency State Properties *)

op 〈 | AgcNm : , P rvTrip : , P rvFLG : , P rvACOM : , RsvList : , CmfList : , CanclList : 〉 :

AgcID string LIST-PrvTrip LIST-PrvFLG LIST-PrvACOM RsvLIST CfmLIST CancelLIST

/* messages */

op Trip Choose : AgcId CustRef FlgRef → TRIP CHOS .

op Trip Confrm : AgcId CustRef FlgRef → TRIP CFRM .

op Trip Book : AgcId CustRef FlgRef → TRIP BOK .

op Trip Pay : AgcId CustRef FlgRef Cost → TRIP PAID .

(* These variables will be used in the behavioural part of the service net specification *)

vars Tpv : PrvTRP; Fgv : PrvFLG ; CsI : CustID .

fgi : FlgRef ; hti : HotRef ;

Dt, DepDt, Now : Date

MxC, Cxt, CsTT : Money

Composite-Service.

4.3.2 Behaviorally composing services with CCSrv-Nets

With CSrv-Nets capabilities in capturing stateful service interfaces, we present in the following

how choreographical ECA-driven behavioral rules enhance these potentials towards more adaptivity

in complex services. Following the same intuitive guidelines for constructing CSrv-Nets service

interfaces behavior from informal service applications, the modelling steps for integrating such

choreographical architectural behavior on top of involved CSrv-Nets service interfaces could be

sketched in the following. First, we have to derive from a given ECA-based architectural connector

description, a more precise corresponding service component specification by algebraically specify-

ing different properties (states, messages, events, etc.). Secondly, by gathering different composite

service attributes and participants into states, we then associate it a type and a corresponding

place. Similarly, for each (non-unified) declared message in the composite service, we associate a

corresponding message place. For the so-called unified messages (i.e. those followed by the super-

sort symbol ≫ as described above) we associate a fusion place (as defined in Coloured Petri Nets

for instance [Jen92]). A Fusion place is a place that contains more than other places. The enclosed

places are those corresponding to the sub-sort message names (from other services).

88 4 Collaborative Services—Choreography meets Orchestration

Service−Net 1

M
sg

i
E

vn
1

. . .
msi1(...)

. . .
evni1(...)

. . .
mso1(,..)

S
tS

rv
1

M
sg

o

. .
 .

.
Service−Net N

Tgnr

M
sg

N
o

M
sg

N
i

E
vn

N
1

. .
 .

.

S
tS

rv
N

. . .
mso1(,..)

. . .
msi1(...)

. . .
evni1(...)

. . .

〈
S

i
d
1
|p

r
1

:
v
1

,
..

.〉

〈
S

i
d

n
|p

r
n
1

:
v

n
1

,
..

.〉

n
⊕

p=1
〈Sidp|prsp〉

m
⊕

q=1
〈Sidq |prsq〉

L
⊕

i=1
〈Sid′i|prs′i〉

N
⊕

j=1
〈Sid′j |prs′j〉

⊕
i=1

Msi ⊕
n=1

Msn

⊕
i1=1

Evni1
⊕

n=1
Evnn

⊕
m=1

Ms′m

⊕
n=1

Ms′n

TC :conditions on states &

message params.

Figure 4.4: The transition pattern for collaborating services within CCSrv-Nets

Before illustrating this intuitive translation towards CCSrv-Nets, let us present a more rigor-

ous definition of this CCSrv-Nets formalism. For that purpose, we present how to syntactically

define the concept of composite service from participating CCSrv-Nets behavioral service inter-

faces.

Definition 4.3.1 (CCSrv-Nets behavioral choreography) Assuming that k CSrv-Nets

(basic) service interface specifications are participating in a composite service, we then define

(≺ SDi ∪ {SSi} ∪ SMsli
∪ SMsoi

, {Op}SSi
∪ Msli ∪ Msoi ≻, CSrv-Netsi), i ∈ {1, .., k}.

We define a template community as a pair of the form:

(≺ ⋃
i=1,..,k SDi ∪

⋃
i=1,..,k Bs(SSi) ∪

⋃
i=1,..,k SMsoi

,
⋃

i=1,..,k Bs(OpSSi
) ∪ ⋃

i=1,..,k Msoi) ≻,

CSrv-Nets, where:

• ⋃
i=1,..,k SDi is a union of all sets of data sorts.

⋃
i=1,..,k SMsoi

are the (message) sorts corre-

sponding to imported / exported messages;

• the ’choreography’ service net, CCSrv-Nets, reflects the behavioral composition of different

CSrv-Nets services, those transitions should respect the general pattern given in Figure 4.4.

Please not that the forwarded rewrite theory for CSrv-Nets, we detailed in the previous chapter

remains fully applicable to this extended CCSrv-Nets variant. All what we further require is to

accept all rewriting rules associated with the transition’s general pattern depicted in Figure 4.4,

for collaborating different existing CSrv-Nets-based services.

4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreography 89

. . .
FindTrv(...)

. . .

RomFnd(...)

.

Agency_St

. . .

. . .
HtlRq(fl1,..)

. . .

. . .

. . .
FlgRq(fl1,..)

. . .

Hotel_Requst

Flight−Requst

Flight_Book

Hotel_Book

. . .

TripRqtd(...)

. . .

TripRqtd(...)

. . .

FlgFnd(...)

The Agency Composite Service Behavioural Specification

FlgBook(...)

FlgCancl(...)

TrpPaid(...)

TrpStrt(..)

Rom2Bk(..)

C
er

tif
ifi

ed
 r

ec
ei

ve
d

m
es

sa
ge

s
fr

om
 p

ar
tic

ip
at

in
g

se
rv

ic
es

(t
o−

be
 c

er
tfi

ed
)

in
vo

ke
d

m
es

sa
ge

s
to

 p
ar

tic
ip

at
in

g
se

rv
ic

es

Trp2Cmfr(...)

Flg2Bk(..)

. . .
PayTrv(..)

PayPnl(..)
. . .

TrvRqErr(Cs,...)

TrvBkErr(Cs,...)

. . .

TravelStart

Trip_Cancld

Trip_Paid

AgcOP_Err

T
rip_A

gc

Flg_Rsved

Room_Rsved

Trip_Reqstd

Trip_Choose

Trips_Found

Trip_Booked

Penalty_ToPay

Trip_ToPay

Trip_ToBook

Trip_ToConfirm

Trip_ToFind

Flg_Bookd

Flg_Cancld

Room_Cancld

. . .

Rsv(...)
. . .

. . .

. . .

RmBok(...)
. . .

Room_Bookd

Ttrp_cmf

Ttrv_Rsvd

Ttrp_pay

Ttrp_Rqd

Ttrp_paid

Ttrp_cancl

Trip_Accpt(..)
. . .

Trip_Comfrmd

〈Agc1|P rvT P : [algar, 138.2wk, July], ..〉

〈Agcn|AgcNm : Tour, P rvF LG : [Dubai, ..], ..〉

Cust.Trip Reqstd(CsI, TrInf, MxC)

T rip T oF ind(AgI)

〈AG|PrvTR : Tpv, PrvF LG : F gv〉

(T rInf.T yp =′ T R′)∧(MxC ≤ Cst)∧(T rInf.Dt ∈ T il)

(T rInf ∈ Tpv)∧(T rInf.Dt − Now ≥ 30)

(T rInf.T yp =′ F LG′)∧(MxC ≤ Cst)∧(T rInf.Dt ∈ T il)

(T rInf.Dt − Now ≥ 14)∧(T rInf ∈ T pv)

E
l
s

e

F lg.F lg Requst(CsI, F lgInf, 3/4 ∗ Prc1 ∗ CsTT)∧

Acom.Hotel Requst(CsI, HtInfo,1/4 ∗ Prc1 ∗ CsTT)

F lg.F lg Requst(CsI, F lgInf, .9 ∗ Cst)

{F lg.F lg Rsvd(CsI, F gRsI)} ∧ {Acom.Hotl Rsvd(CsI, HtRsI)}

C
u

s
t
.T

r
i
p

C
h

o
o

s
(
C

s
I

,
f

g
i
,

h
t
j
)

〈AG|RsvLs : Rsv〉

〈AG|RsvLs : Rsv.[CsI.fgi.htj]〉

(fgi = Min{FgRsI.F ar})∧(htj = Min{HtRsI.P rc}Else

Cust.Trip2Cfrm(CsI, F gRsI(fgi), HtRsI(Htj))

Cust.T rip Cnfrm(CsI, fgi, htj)

〈AG|RsvLst : Rsv.[CsI.fgi.htj], CmfLst : Cfm〉

〈AG|RsvLst : Rsv, CmfLst : Cfm.[CsI.fgi.htj]〉

(fgi ∈ F gv)∧(htj ∈ Acv)

F lg.F lg2Bk(CsI, fgi)∧Acom.Hotel2Bk(CsI, htj)

Cust.T rip Bookd(CsI, fgi, htj)

〈AG|CmfLst : Cfm.[CsI.fgi.htj], BkdLst : Bkd〉

〈AG|CmfLst : Cfm, BkdLst : Bkd.[CsI.fgi.htj]〉

(fgi ∈ F gv)∧(htj ∈ Acv)Else

Else

Cust.Trip2Pay(CsI, fgi, htj , Cxt)

Cust.T rip Canclkd(CsI, fgi, htj)

〈AG|BkdLst : Bkd.[CsI.fgi.htj], CslLst : CsL〉

〈AG|BkdLst : Bkd, CslLst : CsL.[CsI.fgi.htj]〉

(fgi.Dt ≤ DepDt)Else

Cust.Penalty2Pay(.1 ∗ Cxt)

Penalty Err()

Cust.T rip P aid(CsI, fgi, htj , Cxt)

〈AG|BkdLst : Bkd.[CsI.fgi.htj], ArchvLst : AchvL〉

〈AG|BkdLst : Bkd, ArchvLst : AchvL.[CsI.fgi.htj]〉

T rue

Cust.Start2Travel()

Trip Requst − Err()

Trip Choose − Err()

Trip Confirm − Err()

Trip Booking − Err()

Figure 4.5: Behavioral Choreographical Specification of Travel Agency Service

90 4 Collaborative Services—Choreography meets Orchestration

4.4 CCSrv-Nets-based Formalization of the composite Travel-

Agency

Following the above informal guidelines on how to construct any choreographical CCSrv-Nets as

well as the detailed cross-service business rules governing the travel agency, we bring here further

explanations on the resulting CCSrv-Nets travel-agency conceptual model as depicted in Figure

4.5.

First for each message we are associating a place. In this sense, for instance, for the message

type TripRqtd we are associating the place Trip Reqstd. Moreover, as we defined in the structural

part some places are considered as unified (i.e. Trips Found), gathering more than one message

place (i.e. the flight and room request message places). For each business rule, a corresponding

transition governing a business activity is conceived. For instance, with the business Trip Find,

we are deriving the transition Ttrp Rqd. The condition of this transition reflects exactly different

conditions from that business rule. The input arc-inscriptions select all the required messages

and service state parts from the place Agency St. For the transition Ttrp Rqd, the first alternative

concerns the request for just a flight (i.e. (TrInf.Typ ="TR"). In this case, as stated in the business

rule, if the date is valid, the flight belongs the privileged ones and its fare is less than the customer

budget, a request for the flight is made with a discount of 10 percent. The second alternative

concerns a complete trip, in which case both flight and hotel are requested. In the same spirit all

the other transitions are constructed.

We should note again that each time messages are sent the other services such as the Airlines,

Hotels, Banks and so on, the corresponding intra-service business rules at the level of such services

are to be applied. In this way all received messages such as Ttrp Found, Ttrp Confrmd are assumed

being certified, to respective intra-service business rules.

4.5 Chapter Summary

Besides service-focussed orchestration service composition, the service paradigm provides a com-

plementary higher-level system-focussed composition. Despite the promising potentials of such

system-focussed composition, in mastering more complex and adaptive scaled service-oriented ap-

plications, it remains still much work to do. We particularly contributed to the complementarity of

this orchestration-choreography service composition, from a behavioral rule-centric point of view.

Indeed, most of existing explorations have been addressing such complementarity only from an

exchange of messages vision. We further presented how cross-service business rules should be con-

ceived, in conformance with respective intra-service rules. The chapter illustrated these concepts

through the travel-agency case-study.

91

Chapter 5

From Design- to Runtime adaptive

services—Foundation and Deployment

Most of today’s software-intensive applications are required to exhibit high-level of agility and

adaptability, as they are operating in so volatile and competitive (‘socio-techno-economical’) ever-

growing environment. Moreover, due to the fact that most of modern software are being dependable

and mission-critical, such adaptability has to be inherently dynamic and without stopping or de-

creasing the capabilities of the running system. These urgent requirements towards runtime adapt-

ability become more acute when it comes to distributed enterprize information systems, as main

trigger for emerging the service technology. Indeed, as such systems are aimed at (semi-)automating

target (cross-)organizational realities, they have to inherently mirroring most organization’s pecu-

liarities. In particular, due to market volatility and globalization, organizations are forced to

offer just-in-time solutions, tailored to the needs of very demanding users and customers. More-

over, market pressure and advances in computation and wireless communication, have been urging

organizations to shift from centralized standing-alone companies towards more loosely-coupled net-

worked agile cross-organizational alliances, where dynamic evolving business interactions are the

steering forces.

Abstracting from dynamic adaptability, we should again re-emphasize that the service tech-

nology and its standards represent nowadays the best emerging technological innovations, towards

faithfully (semi-)automating such agile opportunistic inter-organizational alliances. Indeed, this

technology treats distribution, interaction, loose-coupling and heterogeneity as main driving princi-

ples. Web-services (WS), as main enabling of the service-oriented architecture (SOA), are platform-

independent self-contained software entities, with explicit interfaces. Web-Services are adequately

tailored to be universally described, published, discovered and more importantly composed over the

Web. Specifically, service composition allows building large-scale evolvable business processes, and

stands thereby at the heart of the service paradigm. More specifically, Web-Services are manipu-

lated (e.g. described, published, discovered and composed) using adequate XML-based standards,

92 5 From Design- to Runtime adaptive services—Foundation and Deployment

including WSDL, UDDI, SOAP [Pap07], WS-BPEL [CGK+04] and WS-CDL [KOMC04].

Concerning the adaptability, with these unique features the service paradigm is clearly entrusted

with all capabilities to inherently promote flexibility and dynamic adaptability, while developing

complex cross-organizational applications. Indeed, compared to previous paradigms (e.g. object-

[Weg90, OMG05] and component-orientation [OMG01, SG96, MT00]), the service paradigm is en-

dowed with ”non-conventional” development techniques steered by the ”publish-discover-interact-

compose” chain. This flexible advanced development-chain provides all means for resulting in agile

and evolving service-oriented applications. First, while publishing services, the provider has the

ability to explicitly separate stable service functionalities from other evolving service features such

as quality, security or context policies and rules. Furthermore, the discovery process offers the

requestors different alternatives to empower it by dynamic selection criteria and different quali-

ties. Third, with the composition as main driving development force, the level of adaptability can

be negotiated between the collaborating partners (e.g. providers and requestors). Indeed, while

composing (basic) services to built complex business processes and applications, the partners can

transparently reason about the qualities of such composition and customize it on-the-fly.

Ph−.NET

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

In
fo

rm
al

 b
us

in
es

s
go

al
s,

 b
ro

ad
 p

ro
ce

ss
es

an
d

in
te

ns
io

na
l b

us
in

es
s

ru
le

s

ServComp1 ServCompN. . .

 ECA−interaction ECA−interaction

Invariants−1
Messages−1
 events1

ServIntf1−SI1

Invariants−1
Messages−1
 events1

ServIntf1−SI1
Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

Invariants−N
Messages−N
 eventsN

ServIntfN−SIN

. .

events ...
participants ...
conditions ...
actions ...

events ...

participants ...

conditions ...

actions ...

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .

Co−SrvNets

R1: (Ms1, ev1)... => (Msi, mi)... if cd1
.

In
vo

kd
 S

er
vi

ce
s

. . .

. . .

ru
l1 ru

lk
R

ul
es

−
st

at
e

DelR

AddR

UpdR

R
ul

2A
dd

R
ul

2D
el

R
ul

2C
ha

ng

Act1

constraint−act1

ms11

msj1

S
rv

−
st

at
e ms11

Ms1

Msi

Msj

msip1

msi1msil

ms11ms12

. . .

. . .
C

o−
S

rv
N

et
s

ac
tiv

ity
.N

E
T

−
W

S
er

vi
ce

s
E

C
A

−
ba

se
d

.N
E

T
−

A
sp

ec
ts

(u
n−

)

w
ea

vi
ng

ServCompNServComp1ServComp1 ServCompN

Ph−Uml&Rule

ea
ch

A
sp

ec
tu

al
−

S
rv

N
et

s

Adaptiviy−Level

(un−)weaving

.

<<CompositeService>>

. . .

<<Service1>>

events
messages, properties

<<ServiceN>>

− messages1
− events1
− properties1

− messages−s1
− events−s1
− properties−s1

− messagesN
− eventsN
− propertiesN

<<SubServN>>

− messages−sN
− events−sN
− properties−sN

<<AggreServ1>>

Ph−CoServ−Nets Ph−AspServ−Nets

Figure 5.1: Dynamic Adaptability and its Deployment as fourth phase in the forwarded approach

Nevertheless, as we reported in the state-of-art all these potentials, towards resulting in highly

adaptive composite realistic services, remain still far from being fully exploited. That is, though

both rule-based and aspect-oriented directions are very promising towards promoting adaptability,

current proposals remain very akin to the technological and deployment-level. In fact, as we

reported in the second chapter, forwarded proposals based on business rules and aspect-orientation

focus exclusively on BPEL standard. Furthermore, these approaches support only design-time

adaptability. More importantly, both directions do not scale up to the rigorous conceptual-level,

5.1 CSrv-Nets Design-time service Adaptability: Potentials and Flaws 93

as only means for formally validating and reasoning about the aimed adaptability. Last but not

least, the intuitive business-level is not supported by such proposals, which make them very hard

for non-expert users.

The purpose of this chapter aims thus at contributing to the dynamic adaptability in a dis-

ciplined manner, by pushing forwards the so-far achieved results from the previous chapters. As

depicted in Figure 5.1, this chapter focusses on the dynamic adaptability (right-hand side) phase

in the forwarded stepwise approach (we discussed in the third chapter). We aim particularly at

benefiting from the potentials of aspect-oriented mechanisms in separating conceptual modelling

concerns from their dynamic adaptability. More precisely, this chapter addresses runtime adaptabil-

ity in service-oriented applications, at the conceptual-level by leveraging the CSrv-Nets framework

and its rewriting-logic based semantics with rule-driven aspect-oriented concepts. Furthermore, at

the service technology-level, we develop a compliant .NET environment that faithfully and effi-

ciently implements this envisioned extension of CSrv-Nets towards run-time adaptability. Before

delving into different conceptual peculiarities of leveraging the CSrv-Nets framework with an

adaptability-level based on aspect-oriented mechanisms, the next section sheds more light on the

achieved (design-time) adaptability in CSrv-Nets framework as well as the potential benefits we

expect from the envisioned extension.

5.1 CSrv-Nets Design-time service Adaptability: Potentials and

Flaws

In the two previous chapters, we proposed a stepwise formal approach for developing knowledge-

intensive adaptive composite services. The proposed approach harmoniously brings together both

orchestration and chorography, and it captures knowledge-intensiveness through event-driven busi-

ness rules both at the intra- and cross-service levels. The forwarded service-oriented Petri nets

formalism and its choreographical extension CCSrv-Nets, allows for intrinsically and soundly

integrating these intra- and cross-services governing business rules.

We should further recall that this service formalization is adaptive by construction, since (event-

driven ECA) business rules are by nature adaptive and evolving as they reflect business policies

and strategies governing any opportunistic cross-organizational alliance of services. In the so-far

forwarded approach’s steps, we have thus been supporting adaptability through business rules,

which we soundly integrate while conceiving CCSrv-Nets. More precisely, in order to adapt or

evolve any business rule with respect to an already specified CCSrv-Nets, we must redesign the

corresponding transition capturing such business rule. This redesign implies that in order to change

any transition, we have to explicitly replace some or all its input / output inscriptions as well as

its conditions, with associated ECA (events-conditions-actions) elements of the newly emerging

business rule. In other words, the so far addressed rule-centric adaptivity is exclusively achieved at

design-time.

94 5 From Design- to Runtime adaptive services—Foundation and Deployment

Before delving into the details about how to leverage such design-time rule-centric adaptability

towards dynamic and thus runtime adaptability, we judge essential to recall some of the benefits

of such design-time evolution, through the so-far forwarded CCSrv-Nets framework. Firstly,

as we reported from the state-of-art, no existing approach has tackled business rules in service-

oriented applications at the rigorous conceptual-level (and the semi-formal). Secondly, we have

been coping with both intra- and cross-service business rules in a harmonious complementarity.

Thirdly, due to the CCSrv-Nets true-concurrent rewriting-logic based semantics, business rules

governing different activities / transitions behavior can be simultaneously checked and executed.

Fourthly, while changing a given business rule governing a transition behavior, all other activities /

transitions may be kept running through their rewriting rules. Furthermore, even for a transition

under design-time change, we can always perform it with respect to the current business rule (i.e.

before confirming the emerging one).

The purpose of the chapter aims above all at keeping all these benefits, while leveraging the

adaptability of any business rules from design-time to a fully dynamic runtime evolution. In other

words, instead of blocking any transition(s) for explicitly updating their governing business rule,

we will demonstrate how to achieve such adaptability on-the-fly, and with respect to any number

of transitions. That is, while keeping the whole conceived CCSrv-Nets service components still

running, we perform the change in a dynamic and non-intrusive manner, so that even the concerned

customer / user becomes unaware. Before presenting the main ideas of this runtime adaptability

and its smooth yet sound conceptualization, we present some of its basic principles, potentials and

advantages.

Explicit separation of adaptability concerns : Achieving automatic runtime adaptivity in a

non-intrusive and unanticipated manner requires, on the one hand, an explicit separation

between the running CCSrv-Nets conceptual-level under current business rules and the

adaptive-level or aspectual-level1, where the rules have to be independently managed. More-

over, at the explicit aspectual-level, all kind of rules (i.e. current, planned and even unan-

ticipated) have to be adequately and dynamically manipulated (e.g. removed, updated or

added). On the other hand, runtime adaptability implies the ability to dynamically weave /

unweave any business rule on the running CCSrv-Nets conceptual model. Subsequently, we

adopt interchangeably adaptive- and aspectual-level terminology, since we are capitalizing on

aspect-oriented concepts for the purpose of dynamic adaptability.

Explicit focus on rules and their evolution : With the clean separation of business rules

at the aspectual-level from the running CCSrv-Nets base-level service conceptualization,

(cross-)organization stake-holders can exclusively and independently focus on managing

adaptability and thereby enhancing competitiveness. That is, business people become ex-

1In the literature different terms for such explicit separation, including meta-, reflection-level [CGS02] or more

recently aspectual-level [Kea97, EFB01]

5.1 CSrv-Nets Design-time service Adaptability: Potentials and Flaws 95

clusively responsible for coping with adaptability policies and strategies, whereas software

designers focus on how to formalize, implement and dynamically integrate such emerging

rules.

Competitiveness though agility : As we just emphasized, by empowering the conceptual-level

with an extra aspectual-level for handling business rules, we are promoting services to respond

to any market changes, such as new emerging competitive policies, and / or new (rule-driven)

attractive composition or opportunistic alliance with other services.

Rules personalization to specific customers and context : Besides adapting rules due to

emerging policies and market changes, dynamic adaptability also directly facilitates the per-

sonalization to specific instances of customers / providers and of times and locations. More

precisely, since CSrv-Nets promote both type- and instance-level modelling, a variety of

business rules can be dynamically associated to a given transition. Each business rule can

further be tailored to the specificities of requestor / provider instances. The rules can be

depending on time such as specific days (week-days and week-end) or months (summer /

winter sales and discounts), or specific hours (nights, mornings). Last but not least, cus-

tomer and provider (moving) locations can play crucial adaptability factor through specific

location-dependent rules [AFO06].

Aspect-oriented Maude for runtime adaptability : For formally validating and reasoning

about the dynamic shifting up and down of ECA-driven rules between the aspectual-level and

the conceptual-level, we propose to endow Maude service components with aspect-oriented

mechanisms reflecting the semantics of the envisioned CSrv-Nets aspectual-level. We par-

ticularly recapitulate on rewriting logic reflection capabilities, for dynamically intercepting

events and dynamically performing and weaving invoked rules from the aspectual-level.

Compliant .NET Environment : Towards further enhancing the practicability of the disci-

plined approach we are proposing for dynamic adaptability, we present its faithful translation

at the service technology-level. More precisely, benefiting from the advanced capabilities of

the Web-Services .Net environment and its ability to integrate aspect-oriented concepts, we

developed a compliant environment that reflects the envisioned conceptual-level.

The remaining sections of this chapter are organized as follows. In the next section, we in-

formally motivate and present the main ideas and principles of the aimed dynamic adaptability

in CSrv-Nets. In the third section, we put forward the formal setting for this aspect-oriented

leveraging of CSrv-Nets towards dynamic adaptability. In the fourth section we illustrate these

conceptualization ideas on the already Flight service CSrv-Nets specification, by smoothly lever-

aging it towards aspect-oriented rule-centric dynamical adaptability. In the fifth section, we develop

on the Maude tailoring for governing the proposed aspect-oriented adaptive CSrv-Nets formal-

96 5 From Design- to Runtime adaptive services—Foundation and Deployment

ism. In the sixth section, we report on the developed compliant .NET environment for efficiently

and dynamically adapting Web-Services.

5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts

First it is important to point out that using CSrv-Nets structural and behavioral features, it

is quite straightforward to add at any time new messages and new properties with associated

business rules and construct their respective transitions, and this without any need to stop the

running CSrv-Nets model. Moreover, we can update any business rule ingredients (i.e. events

/ messages / conditions) by updating the arc-inscriptions and the condition of the corresponding

transition. However, what goes beyond the hitherto CSrv-Nets conceptualization is the ability of

dynamically manipulating any existing business rule governing a given transition. Beyond CSrv-

Nets capabilities belong further the inability of dynamically endowing a given transition with more

than one business rule, each acting for example on specific service instances. In the following, we

progressively present main ideas and principles to smoothly leverage CSrv-Nets, so that it can

address such dynamic adapting of transition behaviors.

5.2.1 CSrv-Nets-transitions: Towards an ”aspect”-representation

Recalling again that any ECA-driven (architectural) rule governing a service-oriented business ac-

tivity is modelled in CSrv-Nets as transition’s behavior. Consequently, the first step towards

transparently and dynamically manipulating such ECA-driven rules consists in externalizing cor-

responding CSrv-Nets transitions behavior in a form similar to aspect-oriented advices. Towards

achieving such externalization and conceptualizing thereby ECA-driven rules as cross-cutting con-

cerns, we should therefore bring a satisfactory answer to the following inherent question:

”Is it possible to come up with an appropriate ”aspect-oriented” representation that permits

externalizing any individual CSrv-Nets transition behavior”

Towards proposing an adequate transition’s representation and thereby answering that ques-

tion, we should first understand what are the ingredients composing any CSrv-Nets transition’s

behavior. As systematic response, we know that any general CSrv-Nets transition’s behavior is

definitely composed of: (1) a transition identifier or name; (2) input arc-inscriptions with their

corresponding input places; (3) output arc-inscriptions with their corresponding output places; and

finally (4) the transition condition. Consequently, a straightforward candidate to explicitly repre-

sent any CSrv-Nets transition’s behavior may consist in gathering these four elements into a single

tuple. Besides that, since we are aiming at changing such behavior with the possibility of several

”versions”, we judge beneficial to anticipate enriching such tuples with a fifth element, as a natural

counter reflecting the version identity of any particular behavior (for the considered transition).

5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts 97

More precisely, we suggest a straightforward ”user-sugar” transition’s behavior representation (as

aspect-oriented advice) consisting of a five-element tuple of the form:

〈 Transition identifier : current version | Input inscriptions,

output inscriptions, conditions〉

Recalling again that the Input (resp. Output) inscriptions consist of all pairs ”input (resp. output)

places with associated arc-inscriptions” entering (resp. leaving) that associated transition.

To bring this ”abstract” representation one step closer to the specificities of the CSrv-Nets

framework, let us first re-call the generic pattern for CSrv-Nets transitions. As discussed in the

third chapter, we again re-depict in Figure 5.2 that most general form of CSrv-Nets transitions.

They allow bringing into contact different imported messages and events, denoted by ⊗
k=1

Evnk

and ⊗
i=1

Msi to targeted service instance states
k
⊕
i=1
〈Sidi|prsi〉. Under specific conditions involving

message parameters and service state properties, the general effect of such contact corresponds to

the consumption of imported messages, the emerging of some new exported messages (denoted by

⊗
m

Ms′m) and the change of some properties of involved service states.

. . .

msi1(...)

. . .

mso1(,..)
. . .

. . .

msi1(...)

M
sg

ok
M

sg
ik

. . .

. . .

msi1(...)

mso1(,..)
. . .

M
sg

ol
M

sg
il

. . .

In
vo

ke
d

S
er

vi
ce

In
vo

ke
d

S
er

vi
ceService−Nets orchestration transition pattern

Tgnr

. . .

St_Srv

. . .

. . .

msi1(...)

mso1(,..)
. . .

E
vn

1
M

sg
o

M
sg

i

〈Sid1|pr1 : v1, ...〉

k
⊕

i=1
〈Sidi|prsi〉

l
⊕

j=1
〈Sid′j |prs′j〉

⊕
i=1

Msi

⊕
j=1

Msj

⊕
k=1

Evnk

⊕
m=1

Ms′m

⊕
n=1

Ms′n

TC :conditions on states & param.

Figure 5.2: The generic CSrv-Nets-transitions behavior

The projection of the above general transition’s representation as independent aspect-oriented

advice, composed of the five-element tuple, on this specific CSrv-Nets-tailored generic transition,

results in the following more concrete five-element tuple.

〈Tgnr : v | ⊗
e
(Enve, Eve)

n
⊗

p=1
(Msgp,Msip) ⊗ (StSrv,

k
⊕
i=1
〈Sidi|prsi〉) ,

(StSrv,
l
⊕

j=1
〈Sid′j |prs′j〉)

m
⊗

q=1
(Msgq,Msoq) , TC(Tgnr)〉

where:

98 5 From Design- to Runtime adaptive services—Foundation and Deployment

• Tgnr represents a transition label or identifer. As we are aiming at updating such transition

as tuple, the corresponding name or label should of course be any specific label from existing

CSrv-Nets transitions.

• v as we motivated should refer to a given specific version of such transition. By convention, we

associate the counter zero (0) to the first behavior. Any other adaptation will be referenced

by incrementing v by one (1). We are thus using the version numbers to keep track of different

transition’s changes, so that we can monitor the evolution.

• The third element of the tuple
n
⊗

p=1
(Msgp,Msip) ⊗ (StSrv,

k
⊕
i=1
〈Sidi|prsi〉) defines different

input messages and state places with their corresponding (multiset of terms) input-arc in-

scriptions, as given in the generic transition in Figure 5.2. Important to notice here is that

such elements may contain variables, exactly like arc-inscriptions associated with usual tran-

sitions. That is, they are not like usual (base-level) tokens which must be ground terms (e.g.

without any variables).

• The fourth element ⊗
j=1

(StSrv,
k
⊕

j=1
〈Sidj |prsj〉)

m
⊗

q=1
((Msgq,Msoq) captures different output

message and state places with their associated arc-inscriptions.

• Finally, the fifth element TC(Tgnr) represents the (Transition) Condition, we may associate

with a given transition.

◮ Example 5.2.1 Let us reconsider part of the Flight CSrv-Nets specification from chapter three

as depicted in Figure 5.3. Let us further focus, for instance, on the transition Flight Book. Follow-

ing the above generic transition’s representation and its CSrv-Nets instantiation, the five-element

tuple governing the transition Flight Book in this reduced Flight CSrv-Nets specification, could

be represented as follows:

〈Tflg bk : 0 | (Flight Requst, F lgBk(Cs,R,Dy, Py)) ⊗ (Flight St, 〈FG|FgInf :

[R.Fr.To.Dt.Tm.Cx], Rsv.Rs,Cmf : Fm〉) ,

(Flight Bookd, F lgBkd(Cs,R.Fr.To.Dt.Tm,Py)) ⊗ (Flight Pay, F lgPay(Cs,R, Py) ∧
FlgPnl(Cs,R, Pn)) , (Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (Py = Cx) ∧ (Pn = 0) ∧ (Cmf.[Cs.R]) ∧ ((Dc ≥
Dy) ∧ (Pn := Py ∗ 0.1))〉

That is, first since this transition behavior is a default one we assign it the version zero (0). For

both input (resp. output) arc-inscriptions, we associated to them their corresponding input (resp.

output) places. For instance, we are coupling the input place Flight Book with its corresponding

arc-inscription, that is, FlgBk(Cs,R,Dy, Py). The same process is applied to all other (input

and output) places. Finally, the fifth element in the tuple is the condition, where we have simply

skipped the Else part.

5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts 99

. . .

. . .

. . .

FlgRq(Ann,...)

FlgBk(...)

Flight_Book

Flight_Requst

Tflight_rq

ChkSeat

. . .

Flight_St

. . .
ChSt(...)

. . .

. . .

Flight_Bookd

. . .

Flight−Rsrvd

Flight_Pay

FlgPay(Cs,...)

PlgPnt(Cs,...)Tflight_bk

FlgRsv(fl1,..)

Flgbkd(Cs,..)

Im
po

rt
ed

 m
es

sa
ge

s
A

N
D

/O
R

 (
tr

ig
ge

rin
g)

 e
ve

nt
s

E
xp

or
te

d
(in

vo
ke

d)
 m

es
sa

ge
s

Part of the Flight Service Behavioural Specification

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx)

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉

RsSt(Cs, F g)

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08)))

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy)

F lgBk(Cs, R, Dy, Py)

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1))

F lgBkd(Cs, R.F r.To.Dt.Tm, Py)

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn)

Figure 5.3: Part of the Flight Service CSrv-Nets behavioral Specification.

5.2.2 CSrv-Nets-based aspectual -Level: Informal presentation

After demonstrating how to capture any CSrv-Nets transition-behavior as advice (i.e. five-element

tuple), the next decisive step concerns the independent and dynamic management (e.g. updating,

adding and removing) of such advices. Nevertheless, to stay compatible with the CSrv-Nets

framework, such manipulation should be geared by (high-level) Petri nets; otherwise it would

impossible to dynamically connect the CSrv-Nets conceptual-level with such envisioned aspectual-

level. More precisely, the Petri nets-based proposal we are looking for to realize such management,

could be summarized in the following steps:

Aspectual-place for gathering the advices-as-rules : At first we propose to gather such

ECA-driven rules and transition-behaviors into an associated ”aspectual” state-rule place.

Such aspectual rule-place reflects thus the first construct of the envisioned Petri nets-driven

aspect-oriented adaptability, namely ECA-driven rules-as-tokens. That is, this aspectual

rule-place allows keeping all existing and emerging ECA-driven driven rules (i.e. advices-as-

tuples).

Given such advices within that aspectual rule-place, we require then further aspectual-places and

-transitions for effectively manipulating them.

Places for triggering changes : Since we are looking for updating / modifying, adding

100 5 From Design- to Runtime adaptive services—Foundation and Deployment

and/or removing any tuple, we propose three corresponding (aspectual-operation) places,

we denote by Rl2Del, Rl2Add and Rl2Chg. These (aspectual-)places permit thus for

storing any corresponding (aspectual-)messages for changing, adding or removing any

tuple. As will be detailed later, we may denote such aspectual-messages with respectively

Chg Rl(Rule-as-tuple), Add Rl(Rule-as-tuple) and Del Rl(Rule-as-tuple).

”Aspectual” Transitions for manipulating the rules-as-tuple : Given the above

”aspect-oriented” places with their tokens, the last step for effectively enabling any

dynamic manipulation of ECA-driven rules consists in conceiving three associated

aspectual-transitions. We denote such aspectual transitions as RL2DL, RL2AD and RL2CHG.

They relate the places Chg Rl, Ad Rl and Dl Rl to the aspect-oriented state-rule place

denoted RsP. Such transitions permit thus selecting any specific ECA-driven rule-as-tuple

and allow dynamically manipulating it (e.g. change / add / deletion) as-tuple.

. . . .

. . . .
. . . .

. . . .

Del−rl(T,..)

Chg−rl(T,..)

Add−rl(T,..)

R
L2

C
H

G

Rl2Chg

RLn2AD RL2AD

 A
sp

ec
tu

al
 N

et
 f

or
 E

C
A

−
riv

en
 R

ul
es

Rl2Del

Rl2Add
RL2DL

The CSrv−Nets Aspectual−Level for Runtime Adaptivity of ECA−driven Rules (i.e. as Aspect−Transitions)
RuleState.Place(RsP)

True

True True

True
Add Rl(T, ⊗

i
(Pi, ICi),⊗

j
(Qj , CTj), TC)

〈Trk : v1|(StSrv,⊕
s
〈Sid1|prsis〉) ⊗

r
(Msgir , msir),(StSv,⊕

h
〈Sid′

1|prs′ih
〉) ⊗

l
(Msghl

, mshl
),TC1〉

〈T r : v|−, −, −〉

∼〈T r : v|−, −, −〉

〈T r : v + 1|
i
(Pi, ICi),

j
(Qj , CTj),T Cj〉

〈T r : 1| ⊗
i

(Pi, ICi), ⊗
j
(Qj , CTj), T Cj〉

Del Rl(T, i) 〈Tr : v| , , 〉

Chg Rl(T r, v, ⊗
j
(P ′

j , IC′
j), ⊗

h
(Q′

h
, CT ′

h
), T C′)

〈Tr : v| ⊗
i

(Pi, ICi), ⊗
r
(Qr, CTr), T C〉

〈T r : v| ⊗
j

(P ′
j , IC′

j) , ⊗
h

(Q′
h

, CT ′
h
) , T C′〉

Figure 5.4: The CSrv-Nets-based Aspectual Net for ECA-driven Rules dynamism

This CSrv-Nets-aspectual-level is graphically made more clear as clarified in Figure 5.4. That

is, the three main proposed aspect-oriented principles are reflected, as milestones towards dynamic

adaptability of ECA-driven rules captured as transition’s behavior using tuples. More precisely, this

proposed general aspectual adaptability-level is again a specific variant of high-level Petri nets, but

with tokens including variables, as they capture non-instantiated ECA-driven rules. We further

note that for adding any ECA-driven rule as (transition-)behaviors, we have to distinguish two

complementary cases. The first case concerns the situation where the to-be transition-behavior

corresponds to a completely new ECA-driven rule; that is such transition does not already exist

5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts 101

in the aspectual state-rule place. For that purpose, we resort to the symbol ∼ to check this non-

existence i.e. as inhibitor-arc. In this case, the version number is set to the initial number one (1).

The second case concerns the adding of the new version behavior to an existing transition, where

we have to increment the version counter by one.

5.2.3 CSrv-Nets-based aspectual -Level: Formal setting

After this informal presentation, we bring in the following this CSrv-Nets-based aspectual-level

into a more rigorous stand. For that and in the same spirit as CSrv-Nets, we first require some

preliminaries notations and concepts. More precisely, we first introduce and define the notion

of (CSrv-Nets-based) aspectual-template signature, that formalizes the algebraic structures for

the rules-as-tuple and the aspectual operations for their dynamic manipulation. We then fix the

notations for different algebraic terms, governed by such aspectual template signature. Last but

least, the notion of CSrv-Nets aspectual-level is formally defined.

Definition 5.2.2 (Aspectual-template signature) We assume given a CSrv-Nets specifica-

tion as given in definition 3.4.2, namely a structure (SvP, SvT, SvPre, SvPost, s, SvTC) mod-

eling a service component sci. The aspectual-template signature is then defined as a pair

{AStrl, ADrl,MDrl, ADrl}, {AStop, Ad rl,Md rl,Dl rl}) with:

• AStrl (i.e. Aspectual-State) represents the sort for capturing the rules-as-tuple. The sorts

ADrl,MDrl, ADrl are similarly introduced for capturing the aspectual-level operations for

adding, modifying and deleting such rules-as-tuples respectively;

• AStop is the aspectual-state constructor operation, reflecting the five-element tuple. That is,

this operation is indexed by T × N × SvPre × SvPost × SvTC × AStop. As we discussed

above, we denote this operation as equivalent five-element tuple indexed by the mix-fix notation:

〈 : | , , 〉 : SvT × N× SvPre× SvPost× SvTC → AStop

• The (message) operation Ad rl for adding ECA-driven rules as-tuple, is indexed by SvT ×
SvPre × SvPost × SvTC × ADrl. To update such behavior as-tuple, we adopt the message

operation Md rl, is indexed by SvT × N × SvPre × SvPost × SvTC × MDrl. Finally, to

remove any ECA-driven rule as-tuple, we adopt the message operation Dl rl. It is indexed by

SvT × N×DLrl.

Please note that for sake of simplicity, while defining different operations we are adopting

SvPre, SvPost and SvTC, instead of their effective target sorts. That is in the above definition

SvPre and SvPost should be understood as the multiset sort [MT (X)]⊗ induced by [SvP ×
[TSv(X)]⊕∪[TMs(X)]⊕]⊗. Whereas SvTC should stand for the boolean sort, ranging over (TSv(X)∪
TMs(X))bool. Given such CSrv-Nets-based aspectual-template signature, we can define over it any

derived algebraic terms as follows.

102 5 From Design- to Runtime adaptive services—Foundation and Deployment

Definition 5.2.3 (Terms generated by the Aspectual-template signature) Given a (CSrv-

Nets-based) aspectual-template signature as defined above, we then introduce and define the

following generated algebraic terms.

(1) We define and denote by TAStrl
(X), the set of terms of sorts in AStrl, ADrl,MDrl and ADrl

over a set of (aspectual-)variables, which is denoted by X . In this sense, a term of this sort

allows capturing any specific ECA-driven as-tuple, any addition, modification or deletion

specific message for such tuples. We further assume that this variables set can be split

into the following sub-sets: X i
IC ,X i

CT and X i
TC with respective sorts Pre, Post and TC.

To precisely capture some details, instead of using these global variables, we will often use

derived variables, we denote by SvP v
i , ICv

i , CT v
i , CT v

i to respectively refer to the sorts SvP

(i.e. base-level CSrv-Nets-places), [TSvO
(X)]⊕∪ [TMsg(X)]⊕ and the boolean. In this sense,

for instance, X i
IC will be an abbreviation to be instantiated by ⊗

i
(SvP v

i , ICv
i).

(2) We will denote by BT (X) the multiset over TAStrl
(X) induced by the internal associative

commutative multiset operation we denote by ⊖. Equivalence classes induced by this multiset

will be denoted by [T (X)]⊖.

(3) To capture different arc inscriptions and meta-net states, another multiset denoted MT (X)

over SvPrl × [TAStrl
(X)]⊖ is introduced. We denote by ⊘ the union operation over this

multiset, and its elements will be abstracted by [MT AStrl
(X)]⊘. SvPrl represents places of

the meta-net precisely defined in what follows.

With these preliminary notations and definitions, in the following we formalize the concept of

marked aspectual-net related to given CSrv-Nets specification.

Definition 5.2.4 (CSrv-Nets-based Aspectual-Net) We assume given an aspectual-template

signature as above defined. An (CSrv-Nets-based) Aspectual-Net is a marked Petri net structure

composed of (AsPrl, AsTrl, AsPrerl, AsPostrl, asrl, AsTCrl,A∫Mrl) with:

• AsPrl a set of places composed of four (aspectual-)places. A possible notation for these places

is: AsPrl = {AsPsci , ad rlsci ,md rlsci, dl rlsci}.
• asrl : AsPrl −→ {AStrl, ADrl,MDrl, ADrl} is a bijection associating with each place its related

sort. More precisely asrl(AsPsci) = AStrl, asrl(ad rlsci) = ADrl, asrl(md rlsci) = MDrl and

asrl(dl rlsci) = DLrl.

• AsTrl = {AsTAd1 , AsTAd2 , AsTMd, AsTDl} is a set of transitions for respectively adding, modi-

fying or deleting any ECA-driven rule as-tuple.

• AsPrerl : AsTrl −→ [MT (X)]⊘, with:

- AsPrerl(TAd1) ∈ (ad rlsci , [TAdh
(X)]⊖)⊘ (AsPsci , [TMh

(X)]⊖);

- Prerl(TAd2) ∈ (ad rlsci , [TAdh
(X)]⊖)⊘ (AsPci , [TMh

(X)∼]⊖);

- Prerl(TMd) ∈ (md rlsci, [TMdrl
(X)]⊖)⊘ (AsPsci , [TAsMrl

(X)]⊖);

5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and pointcuts at concerns 103

- AsPrerl(TDl) ∈ (dl rlsci, [TDlrl
(X)]⊖)⊘ (AsPsci , [TAsMrl

(X)]⊖);

• AsPostrl : AsTrl −→ [MT (X)]⊘, with: ∀t ∈ AsTrl, AsPostrl(t) ∈ (AsPsci , [TMrl
(X)]⊖)

• AsTCrl : Trl → T (X)bool is a boolean expression associated with each transition in Tm.

• A∫Mrl : AsPrl → [TAStrl
(∅)]⊖ is a marking function such that, ∀ p ∈ AsPrl we haveA∫Mrl(p) ∈

[A∫T s(p)(∅)]⊖.

5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and point-

cuts at concerns

So far we motivated and presented how to conceive any (CSrv-Nets-based) aspectual-level net, for

dynamically adapting any ECA-driven rule, with respect to any supposedly existing CSrv-Nets.

The next crucial step concerns thus the concrete connection of this aspectual-level net to a really

existing and running base-level CSrv-Nets model. Indeed, only after a satisfactory conceptual-

ization of such linking between the CSrv-Nets base-level and its corresponding aspectual-level,

we can speak about the dynamic weaving / unweaving (i.e. shifting-down / shifting-up) of any

emerging ECA-driven rule on running CSrv-Nets services.

Recalling that in terms of aspect-oriented concepts [Kea01, EFB01], the synergic linking be-

tween a running base-level and its aspectual-level corresponds to the precise conceptualization and

mechanization of different pointcuts and joinpoints. That is, whereas the joinpoints define precisely

where to inject or weave any aspectual advice, the pointcuts permit composing and reasoning about

different advices and how to facilitate their (un)weaving at different joinpoints. We should also re-

mind that our advices are different ECA-driven rules represented as five-element tuples, supposedly

referring to specific CSrv-Nets base-level transition’s behaviors.

5.3.1 CSrv-Nets and its smooth Endowing with Jointpoints

Towards preparing any CSrv-Nets service component to become adaptive, that is, able to dy-

namically receive any aspectual advices, we have to endow it with ”extra” conceptual primitives

as joinpoints. Nevertheless, towards coming up with judicious both fine- and coarse-grained yet

non-intrusive jointpoints, several requirements should be fulfilled while conceiving them. First, the

proposed joinpoints should be so seamless and light that the original CSrv-Nets service compo-

nent remain practically unchanged and keeping running. In other words, the enriched CSrv-Nets

with jointpoints should look and behave as if nothing has been added up. Second, the proposed

jointpoints should facilitate both a fine- as well as coarse-grained. More precisely, since the aspec-

tual advices consist of ECA-driven rules, the joinpoints should besides adapting any rule as a unit

also allow separately adapting any composing ECA-rule elements, such as the triggering events

and /or the related constraints and / or the applied actions. Third, the joinpoints should promote

any adopted pointcut-based composite strategy, such as advice disjunctions, conjunctions, choice,

104 5 From Design- to Runtime adaptive services—Foundation and Deployment

sequence, concurrency, etc.

In the following, we informally bring through the main ideas and the mechanisms underlying

such envisioned CSrv-Nets-based joinpoints. Recall again that any ECA-driven rule is reflected

at the CSrv-Nets base-level as a transition’s behavior with all its ingredients. In other words,

our joinpoints should be conceived exclusively around CSrv-Nets transitions, that is, CSrv-Nets

places remain completely unchanged. More precisely, the proposed joinpoints are expressed in terms

of the following conceptual constructions, that should enrich any selected base-level CSrv-Nets

transition towards endowing it with adaptability.

. . .

msi1(...)

. . .

mso1(,..)
. . .

. . .

msi1(...)

M
sg

ok
M

sg
ik

. . .

. . .

msi1(...)

mso1(,..)
. . .

M
sg

ol
M

sg
il

. . .

In
vo

ke
d

S
er

vi
ce

In
vo

ke
d

S
er

vi
ceService−Nets orchestration transition pattern

Tgnr

. . .

St_Srv

. . .

. . .

msi1(...)

mso1(,..)
. . .

E
vn

1
M

sg
o

M
sg

i

〈Sid1|pr1 : v1, ...〉

k
⊕

i=1
〈Sii|prsi〉 ⊲⊳ ICst

i

l
⊕

j=1
〈Sid′j |prs′j〉 ⊲⊳ CT st

j

⊕
i=1

Msi ⊲⊳ ICms
i

⊕
j=1

Msj ⊲⊳ ICms
is

⊕
k=1

Evnk ⊲⊳ ICev
i

⊕
r=1

Ms′r ⊲⊳ CT mo
r

⊕
n=1

Ms′n ⊲⊳ CT mo
n

TCc ⊲⊳ TCcd
c

Figure 5.5: Leveraging (generic) CSrv-Nets-transitions with aspectual-variables as Joinpoints

Extra (aspectual-)variables for Joinpoints : To prepare runtime (un)weaving of any ECA-

driven rule as transition’s advice, we propose to smoothly leveraging any concerned and thus

to-be adaptive CSrv-Nets-transition as follows. We introduce specific (aspectual-)variables

ranging their sorts over different input / output arc-inscriptions and / or condition of such

transition. As we already discussed in definition 5.2.3, we denote such aspectual-level variables

as ICv
i , CT v

i , TCv
i —to respectively referring input and output created tokens and condition

parts.

Joinpoints as ”Aspectual” CSrv-Nets-transitions : The next step in defining joinpoints

consists in consistently composing such conceived aspectual-variables with existing transi-

tion’s input / output arc-inscriptions and conditions. We denote the corresponding compo-

sition operator by ⊲⊳. Intuitively speaking as we detail later, this new composition operator

will be semantically playing different meanings such conjunction (∧) and / or disjunction

(∨) of the to-be woven behavior with existing running one at that transition. Subsequently,

we refer to such slightly enriched CSrv-Nets-transitions simply as aspectual (CSrv-Nets)

transitions.

5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and pointcuts at concerns 105

Joinpoints applied on generic CSrv-Nets-transitions : As illustrated through Figure 5.5,

the application of these conceptual constructions results in a slightly leveraging the generic

pattern of CSrv-Nets-transitions towards such aspectual transitions. That is, different trig-

gering events and input messages (i.e. Evni and msi) are to-be enriched with respective

coherent aspectual-variables (i.e. ICev
i1

and ICms
i1

). They are thus enriched through the com-

position operator ⊲⊳, leading to ”updatable” input arc-inscriptions, namely Evni1 ⊲⊳ ICev
i1

and

Msj1 ⊲⊳ ICms
j1

. The same reasoning applies to the other transition inscriptions, such as the

output and condition parts, as detailed in the Figure.

◮ Remark 5.3.1 It is important to emphasize that this smooth shifting from a usual rigid CSrv-

Nets-transition towards a corresponding to-be-adaptable aspectual transition is highly flexible on

several aspects. First, the shifting could be applied to any transition and at any running time, both

forth and back; that is, an already leveraged to an aspectual transition could become rigid (resp.

partially adaptable) by removing all (resp. specific) added aspectual variables. More particularly,

depending on the specificities of the application-at-hand and current circumstances of the specified

CSrv-Nets specification and the surrounding environment, the designer can leverage any rigid

transition to an aspectual one and vice-versa. As we mentioned, we can further decide for a

”partial” aspectual transition, that is, we decide enriching only specific input and / or output and

/ or condition judged to be volatile and adaptive.

5.3.2 Pointcuts for Connecting CSrv-Nets-Joinpoints to the Aspectual Net

By adopting a Petri nets-based aspect-oriented conceptualization, the connection between the en-

riched CSrv-Nets-transitions and the aspectual net should be graphically supported. In such

manner, the weaving of advices from the aspectual net to the CSrv-Nets base-level become ex-

plicit and graphically animated. We should here point out that in usual (textual) aspect-oriented

programming languages, the weaving of advices is implicit and internally implemented in the re-

spective compiler. This hidden (aspectual- and base-levels) connection presents several limitations

including: (1) The inability to adapt and reason about it in transparent manner; (2) The difficulty

of understanding the weaving process by non-experts to such languages; and the impossibility to

graphically animate and validate such weaving explicitly.

More precisely, as depicted in Figure 5.6, we are proposing read-arcs as basic pointcuts2. Such

read-arcs allow thus relating any enriched aspectual CSrv-Nets-transition (with joinpoints) to

the aspectual-level rule-place, where tokens represent emerging ECA-driven rules as tuples. This

explicit graphical syntactical connection facilitates the shifting up and down of (different elements

of) ECA-driven rules from the aspectual-level net to any running base-level enriched CSrv-Nets

transition.

2More complex composite pointcuts can be formulated while (un-)weaving advices, as we address next.

106 5 From Design- to Runtime adaptive services—Foundation and Deployment

. . . .

. . . .

. . . .
. . . .

. . .

. . .

. . .

. . .

msi1(...)

mso1(,..)
. . .

mso1(,..)
. . .

. . .

msi1(...)

In
vo

ke
d

S
er

vi
ce

In
vo

ke
d

S
er

vi
ce

. . .

St_Srv M
sg

ol
M

sg
ok

M
sg

il
M

sg
ikTgnr(v). . .

. . .

msi1(...)

mso1(,..)
. . .

E
vn

1
M

sg
o

M
sg

i

 C
oS

rv
−

N
et

s
B

as
e−

le
ve

l

 Enriched Aspectual Transitions

. . .

msi1(...)

Rl2Chg(T,...)

 A
sp

ec
tu

al
 N

et
 f

or
 E

C
A

−
riv

en
 R

ul
es

. . . .

. . . .

. . . .

RLn2AD RL2AD

Rl2Del

Rl2Add
RL2DL

R
L2

C
H

G

The CSrv−Nets Aspectual−Level for Runtime Adaptivity of ECA−driven Rules (i.e. as Aspect−Transitions)
RuleState.Place(RsP)

Rl2Chg

Rl2Del(T,..)

Rl2Add(T,..) True

True True

True
Ad Rl(T, ⊗

i
(P v

i , ICv
i),⊗

j
(Qv

j , CTv
j), TCv)

〈Trk : v1|(StSv,⊕
s
〈Si1|prsis 〉) ⊗

r
(Msgir , msir),(StSv,⊕

h
〈Si′1|prs′ih

〉) ⊗
l

(Msghl
, mshl

),TC1〉

〈T r : v|−, −, −〉

∼〈T r : v|−, −, −〉

〈Tr : v + 1|
i
(P v

i , ICv
i),

j
(Qv

j , CT v
j),T Cv

j 〉

〈T r : 1| ⊗
i

(P v
i , ICv

i), ⊗
j
(Qv

j , CT v
j), T Cv

j 〉

Dl Rl(T, i) 〈T r : v| , , 〉

Chg Rl(T r, v, ⊗
j
(P ′v

j , IC′v
j), ⊗

h
(Q′v

h
, CT ′v

h
), T C′v)

〈Tr : v| ⊗
i

(P v
i , ICv

i), ⊗
r
(Qv

r , CT v
r), T Cv〉

〈T r : v| ⊗
j

(P ′v
j , IC′v

j) , ⊗
h

(Q′v
h

, CT ′v
h

) , T C′〉

〈Tr : v | (StSv, ICv
s)

ip
⊗

i=i1

(Msv
i , ICv

mii
) , (StSv, CT v

st)
hr
⊗

j=h1

(Ms′vj , CT v
moj

) , T Cv(T r)〉

〈Sid1|pr1 : v1, ...〉

(StSv,
k
⊕

i=1
〈Sii|prsi〉 ⊲⊳ ICv

sti

(StSv,
l
⊕

j=1
〈Sid′j |prs′j〉 ⊲⊳ CT v

stj

⊕
i=1

Msi ⊲⊳ ICv
mii

⊕
j=1

Msj ⊲⊳ ICv
misj

⊕
k=1

Evnk ⊲⊳ ICv
evi

⊕
r=1

Ms′r ⊲⊳ CT v
mor (Ms ⊕

n=1
Ms′n ⊲⊳ CTmon

TC(t) ⊲⊳ TCv
cd(t)

Figure 5.6: Generic transitions for the two-level Aspectual AOCSrv-Nets formalism

5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and pointcuts at concerns 107

What concerns the inscriptions to attach to these read-arcs relating transitions to the aspectual

rule-place, we should respect two important requirements. First, the arc-inscriptions must be

compliant with the five-element ECA-driven rules as-advices. That is, the terms attached to such

read-arc inscriptions must belong to [TAStrl
(X)]⊖ (as given in definition 5.2.3). Second, towards a

coherent and meaningful propagation of any advice, we have to use in these read-arc inscriptions

the same aspectual-variables adopted for leveraging the base-level transitions. More precisely, as

depicted at the middle of Figure 5.5, the resulting read-arc inscription, relating the aspectual-level

state rule-place to the enriched generic CSrv-Nets transition, takes the following form:

〈Tgnr : v | (P v
s , ICv

s)
ip
⊗

i=i1
(Msv

i , ICv
moi

) , (Qv
s , CT v

s)
hr⊗

j=h1

(Ms′vj , CT v
moj

) , TCv(Tgnr(v))〉

That is, besides the transition label Tgnr and the variable for keeping track of the version v, all

input (resp. output) places are paired with their respective aspectual-variables from corresponding

enriched base-level arc-inscriptions. Please not that P v
s and Qv

s refer to service-state place variables.

They can be replaced by any service-state place, which stands in the orchestration-case to just one

place we have been denoted by StSrv in Figure 5.5. Nevertheless, we should point out in the general

choreographical composition case. That is, when several service states come into play, the above

pair place-inscription, i.e. (P v
s , ICv

s), should be generalized to ⊗
s
(P v

s , ICv
s). The same applies to

the associated output inscription. On the other side, input (resp. output message place) variables

are denoted by Msv
− (resp. Ms′v−). They can thus be substituted by any message or event place at

the base-level.

5.3.3 AOCSrv-Nets: Aspect-oriented CSrv-Nets-extension Formalization

Recalling that in aspect-oriented programming, any AOP language is defined as an indivisible

semantical entity, and not as two explicit separated levels as we have been so-far doing. Capitalizing

on the previous conceptualization, we therefore present in this subsection a unified integrated

formal definition of this aspect-oriented extension of CSrv-Nets, that we refer to as AOCSrv-

Nets. That is, instead of the explicit separated definitions CSrv-Nets and its aspectual net, we

come up with a single formalism that serves both the base- and aspectual-levels as well as the

shifting up-down of ECA-rules as advices between them. Recalling before that, we can at any time

decide which CSrv-Nets-transitions are to be adaptable and thereby dynamically receiving rules

(abbreviated as rl) and which should remain rigid or fixed (abbreviated as fx). This corresponds

simply to dynamically add (resp. remove) the extra-joinpoints to any to-be adaptable (resp. rigid)

transition. To formally capture this transition’s flexibility, we assume that the set of base-level

CSrv-Nets-transitions is composed of two subsets, we denote respectively by SvTrl and SvTfx.

We further note that the subset for to-be adaptive transitions, should be parameterized to keep

track of the versions, that is, SvTrl should become instead as SvTrl().

108 5 From Design- to Runtime adaptive services—Foundation and Deployment

Definition 5.3.2 (AOCSrv-Nets) We assume given a CSrv-Nets specification as de-

fined in Definition 3.4.2, namely a structure (SvP, SvT, SvPre, SvPost, s, SvTC) model-

ing a service component sci. We further assume as given an associated aspectual-

net (AsPrl, AsTrl, AsPrerl, AsPostrl, asrl, AsTCm) as formalized in definition 5.2.4. We

then define an aspect-oriented AOCSrv-Nets from this specification as a structure,

(PAS , TAS , P reAS , PostAS , sAS , TCAS) with:

• PAS = SvP ∪AsPrl.

• sAS(p) = s(p) for p ∈ SvP and sAP(p) = asrl(p) for p ∈ AsPrl.

• TAS = SvTfx∪SvTrl(N)∪AsTrl, with SvT = {SvTfx, SvTrl}. To capture the notion of version,

each identifier transition in SvTrl is now parametrized by natural, that is, SvTrl(N).

• PreAS = {SvPrefx, SvPrerl, AsPrerl} and PostAS = {SvPostfx, SvPostrl, AsPostrl} with

for t ∈ SvTfx : PreAS(t) = SvPre(t) and PostAS(t) = SvPost(t). That is, arc-inscriptions for

selected-as-rigid CSrv-Nets transitions remain unchanged.

for t ∈ AsTrl : PreAS(t) = AsPrerl(t) and PostAS(t) = AsPostrl(t). That is, arc-inscriptions

of the aspectual net as preserved as already defined.

for t() ∈ SvTrl :

- SvPrerl(t()) = (R∫P , 〈t : | ⊗
i

(pv
i , ICv

i),⊗
j
(pv

j , CT v
j), TCv〉) ‖r ⊗

i
(pi,mti ⊲⊳ ICv

i).

That is, corresponding original CSrv-Nets transitions are now enriched with read-arc

inscriptions and aspectual variables.

- Postrl(t()) = ⊗
j
(qj ,mtj ⊲⊳ CT v

i). Likewise output-inscriptions for aspectual to-be

adaptable CSrv-Nets transitions are enriched with aspectual variables.

• TCAS = {SvTCrl, SvTCfx, AsTC}. That is TCAS(t) = SvTC(t) for all t ∈ SvTfx, TCAS(t) =

AsTCrl(t) for all t ∈ AsTrl, and SvTCrl(t()) = SvTC(t) ⊲⊳ TCv for all t ∈ SvTrl

5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principles

and Formalization

The last phase in this CSrv-Nets-based aspect-oriented conceptualization towards (ECA-driven)

runtime adaptability, consists in defining how aspectual transitions will be dynamically instantiated

and executed. In other words, we should detail how to dynamically weave and / or unweave any

(elements of) ECA-driven rules from the aspectual-level state-rule places RsP, using the linked

base-level aspectual transitions.

In the following we thus first informally explain this process, and afterwards define it in a more

disciplined manner. Let us detailing the meaning of the crucial operator ⊲⊳, composing existing

CSrv-Nets-transition inscriptions with aspectual-variables as joinpoints. More specifically, with

the aim to cover a maximum of compositional cases, we propose to assign to this ⊲⊳ operator,

al-least four semantical interpretations:

5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principles and Formalization109

⊲⊳ asp-var with asp-var as nil : Towards promoting flexibility, even after enriching a transition

with a joinpoints as aspectual-variables (i.e. asp-var), we keep working with the default ini-

tial behavior. That is, we may decide to propagate no emerging behavior from the aspectual-

level. Indeed, in real-word service-oriented applications, there are always some business ac-

tivities (modelled here as transitions) required to be fixed. For that reasons, we are allowing

in the proposed interpretation to interpret, in such case, all extra inscriptions ”⊲⊳ asp-var”

as if they do not exist, i.e. as nil.

⊲⊳ asp-var as an or (∨) operator : Interpreting the operator ⊲⊳ as a choice, that is as ∨ operator,

means that for firing the concerned transition, we should dynamically bring down a new

behavior from the aspectual state-place. In other words, the old existing initial behavior is

to be skipped and dynamically replaced by any new ECA-driven behavior. In this case, the

default transition’s behavior is completely swaped with the new propagated one. Nevertheless,

we argue that its presence at the arc-inscriptions permit to remind the designer of that initial

behavior as reference for changes.

⊲⊳ asp-var as a conjunction (∧) operator : The next possibility we propose to offer while dy-

namically bringing down any behavior as-tuple, consists in dynamically softening / tightening

/ enriching any already existing behavior with more knowledge. That is, we propose to inter-

pret the operator ⊲⊳ as a conjunction (∧). This implies integrating the newly woven behavior

with the existing one. For instance, we may add a new constraint to the condition, and

thereby tightening it further. We may also add new input / output messages while involving

an existing transition and bring thereby more flexibility.

⊲⊳ as mixed composite operator : Although we will not detail it further, from the above in-

terpretations it is quite straightforward to consider within a same transition all the three

discussed possibilities. For instance, we may skip adapting some input messages, while dy-

namically tightening others via ⊲⊳ as a conjunction (∧) and softening some other output mes-

sages by interpreting the operator as a disjunction (∨). By convention, we propose to adopt

the minus symbol ”-” at the corresponding position(s) in the read-arc, when the associated

arc-inscription element(s) should remain unchanged. For instance, the following aspectual

read-arc 〈Tg1 : 1 | −, −, TCt〉 implies that all input and output inscriptions must remain

unchanged. Thus only the condition is subject to dynamic changes from the aspectual-level.

Recalling that the aspect-oriented AOCSrv-Nets is still behaviorally governed by two-level

rewrite theory. That is, we are still able to concurrently running any base-level CSrv-Nets ”de-

fault” specification using its associated rewrite theory, we developed in the previous chapters.

That is, when ignoring read-arcs relating base-level to its aspectual one as well as added aspectual-

variables, the governing rules remain unchanged as previously defined. Similarly, at the aspectual-

level, we can concurrently adding, modifying or deleting any ECA-driven transition’s behaviour

as-tuple, using slightly adapted rewrite theory to the specificities of that aspectual-level.

110 5 From Design- to Runtime adaptive services—Foundation and Deployment

Nevertheless, by taking into account read-arcs and associated aspectual-variables attached to

aspect-oriented transitions, neither the base- nor the aspectual-level rewrite theory could be directly

and effectively applied. Indeed, these aspect-oriented transitions though defined at the base-level

they are semantically bounded to the aspectual-level. To become operational and get fired, aspect-

oriented transitions deserve a specific inherent (rewriting-logic based) semantics that judiciously

brings into play both base- and aspectual-level rewrite theories.

Towards coming up with such tailored two-level rewrite theory, and its respective inference rules,

we proceed progressively as follows. First, we propose to govern the behavior of any aspectual-

oriented transition as a rewrite rule using its general pattern as explained and depicted in Figure 5.6.

As we just emphasized such transitions rules cannot be directly applied neither at the base- nor at

the aspectual-level. For that reason, we will refer to as ”non-woven” (aspect-oriented) transition

rules. We then come up with mechanisms and tailored inference rules, so such non-woven transition

rules become executable, while capturing the dynamic (un)weaving of (elements of) ECA-driven

rules from the aspectual-level.

5.4.1 ”Non-woven” Rewriting rules governing aspect-oriented transitions

As we just emphasized, as first step towards dynamically weaving and running (elements of) ECA-

driven rules via respective aspect-oriented transitions, we propose to directly reflect the behavior of

such transitions as rewrite rules, using their input-, output-inscriptions and associated condition.

More precisely, we do so with respect to the generic transition depicted in Figure 5.6, as its formal

inscriptions (i.e. AsPre(), AsPre(), TC() are given in AOCSrv-Nets definition 5.3.2.

More precisely, with respect to the formal definition in definition 5.3.2 of non-instantiated

transition, their direct translation into a rewrite rule takes the following form.

Definition 5.4.1 (Non-woven rewriting rules for Aspectual Transitions) Given an aspect-

oriented AOCSrv-Nets as defined in definition 5.3.2, the corresponding ”non-woven” (shortly

nwv)rewrite rules of aspect-oriented transitions SvT () can be directly expressed as follows:

tnwv() : (P , 〈t : | ⊗
i

(P v
i , ICv

i),⊗
j
(Qv

j , CT v
j), TCv〉) ‖r ⊗

i
(pi, mti ∨ ICv

i)

⇒ ⊗
j
(pj , mtj ∨ CT v

j) if TC(Tgnr) ∨ TCv.

With respect to the generic aspect-oriented transition Tgnr() depicted in Figure 5.6, we result

in the corresponding specific non-woven rewrite rule:

Tgnrnwv : (R∫P , 〈Tgnr : | ⊗
i

(P v
i , ICv

i),⊗
j
(Qv

j , CT v
j), TCv〉) ‖r (StSv,⊕

s
〈Sii|prss〉 ⊲⊳ ICv

sts
) ⊗

i=1

(Msgivi , Msv
i ⊲⊳ ICv

mij
)

⇒ (StSv,⊕
s′
〈Si′i|prs′s′ 〉 ⊲⊳ CT v

sts′
) ⊗

o=1
(Msgov

o , Ms′vo ⊲⊳ CT v
moo

) if TC(Tgnr) ⊲⊳ TCv(Tgnr).

Recalling that Msgiv and Msgov stand for message identifier variables, which can be substi-

tuted by any message or event place name at the base-level during the weaving process. Similarly,

5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principles and Formalization111

we are using message and event (multi-)term variables Msv
−, instead of the instantiated specific

default (event and message) multi-terms. Thereby, we are boosting the flexibility, by allowing

dynamic selection of specific parts from the default behavior. More specifically, instead of a sys-

tematic consideration of default initial behavior as indivisible, through such variables we provide

the designer with the ability to dynamically select any part of that default behavior and combine

it with the to-be woven behavior from the aspectual-level (see below).

5.4.2 Dynamic-Weaving by Inferring ”Non-woven” Rules

We assume thus that any aspect-oriented transition has been behaviorally governed by its corre-

sponding non-woven rewriting rule, through the application of the above definition. Since these

non-woven rules still interfere between the aspectual- and the base-level, we require a transforma-

tion process to resolve this conflict and result in sort of ”woven” transition rules, which can be

directly applicable at the base-level using the inherent rewrite theory. Such envisioned transfor-

mation process of non-woven rules towards a usual yet emerging base-level rules, should have as

objectives: (1) The dynamic selection of any (elements of) ECA-driven rule as-advice from the

aspectual-level; (2) The runtime weaving of such selected advices at the base-level, as an emerging

yet as standard base-level rewriting rule.

For that purpose, we are introducing a tailored inference rule, that captures the semantics of

such aimed transformation of non-woven rules towards woven ones. More precisely, first, we present

how to instantiate the read-arc by substituting its aspectual-variables, so that it coincides with a

(ECA-driven) token (as-advice) from the aspectual state-rule place. This step is formally captured

through the following definition.

Definition 5.4.2 (ECA-driven rules selection via read-arcs) We say that the read-arc part

of an aspect-oriented transition rule is instantiated by an ECA-driven rule—governing a version

k of a transition t(k)—from the aspectual-level (i.e. from the rule-state place), if and only if the

following conditions are fulfilled.

∃σi : ICv
i 7→ [Ts(pi)(X)]⊕, ∃σj : CT v

j 7→ [Ts(qj)(X)]⊕,

∃σc : TCv 7→ (TStSv(X) ∪ TMs(X))bool ∃σp : P v() 7→ SvP,

With pi and qj ∈ SvP and such that:

〈t : k| ⊗
i

(σp(P
v
i), σi(ICv

i)),⊗
j
(σp(Q

v
j), σj(CT v

j)), σc(TCv)〉 ∈ M(R∫P) (5.1)

This definition ensures that for dynamically selecting an ECA-driven rule from the aspectual-

level, we should undertake the followings. With respect to a selected aspect-oriented transition t,

we have to find substitutions for input, output and condition parts and associated places, so that

the instantiated read-arc matches a concrete governing ECA-driven rule existing at the aspectual-

level. More precisely, after applying these substitutions on the read-arc inscriptions, they result in

112 5 From Design- to Runtime adaptive services—Foundation and Deployment

a token in the marking of the aspectual rule-state place RsP . We further note, the substitutions

σp for the places are to ignored when the respective (message, event and state) places are already

instantiated at the concerned read-arc inscription. That is to say, there will be no σp, when instead

of the place variables P v
i and Qv

i we are directly using place identifiers such as pi and qj belonging

the (base-level) places set SvP .

After demonstrating how to dynamically select any ECA-driven rule from the aspectual-level

via read-arcs, we are now ready to present the ultimate step of inferring from the respective instan-

tiated read-arc the right ”woven” transition rewriting rule, which can be directly and concurrently

applied at he base-level with the other transition rules. The main ideas for such dynamic weaving,

consist in propagating the selected (elements of) ECA-driven rule on the different joinpoints, that

is, instantiating the aspectual-variables endowing the associated input / output inscriptions and

condition of that aspectual transition.

Nevertheless, there are different alternatives for such propagation, depending among others, on

the interpretation of the composition operator ⊲⊳. That is, as we already discussed this operator can

be regarded as conjunction (i.e. ∧), disjunction (i.e. ∨) or nil. Besides these variant interpretations

of ⊲⊳, as we emphasized above, we have decide which elements of the selected ECA-driven rule

should be woven. These include the input inscriptions and / or output inscriptions and / or the

condition. Furthermore, we have to decide, which specific parts of the default initial transition’s

behavior have to be dynamically composed with such woven behavior. In the following, we detailed

the inference rule capturing such dynamic weaving, corresponding to the case where the composition

operator ⊲⊳ is interpreted as a disjunction ∨ and all the rule elements are woven.

Definition 5.4.3 (Weaving selected ECA by inferring as rewriting rule) Let us assume

given a simplified ”non-woven” as already discussed of the form:

Tgnrnwv() : (R∫P , 〈Tgnr : |(StSv, ICv
s)⊗

i
(Msii, CT v

mi
),

(StSv, CT v
s)⊗

j
(Msoj , CT v

mj
), TCv〉) ‖r (StSv,⊕

s
〈Sii|prss〉 ⊲⊳ ICv

s)⊗
i

(Msii, msi ⊲⊳ ICv
mi

)

⇒ (StSv,⊕
s′
〈Si′i|prs′s′〉 ⊲⊳ CT v

s′)⊗
j

(Msoj , ms′j ⊲⊳ CT v
mj

) if TC(Tgnr) ⊲⊳ TCv(Tgnr).

We further assume being able to propagate any specific ECA-driven rule from the aspectual-

level for this non-woven generic transition rule. That is, the substitutions stated in definition 5.4.2

are fulfilled. More precisely, we have:

∃σs : ICv
s 7→ [TStSv(X)]⊕, ∃σmi : CT v

mi
7→ [Tmsi

(X)]⊕,

∃σmo : CT v
mo
7→ [Tmso

(X)]⊕, ∃σc : TCv 7→ (TStSv(X) ∪ TMs(X))bool,

(5.2)

5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principles and Formalization113

Such that:

〈Tgnr : k|(StSv, σs(ICv
s))⊗

i
(Msii, σi(ICv

mi
)), (StSv, σs(CT v

s))⊗
j

(Msoj , σo(CT v
mj

)), σc(TCv)〉 ∈ M(RsP)

(5.3)

By interpreting the composition operator ⊲⊳ as a disjunction (i.e. ∧), the following inference rule ap-

plies and transforms such ”non-woven” aspectual rule into woven standard base-level rewriting rule.

(R∫P , 〈Tgnr : k|(StSv, σs(ICv
s))⊗

i
(Msii, σi(ICv

mi
)), (StSv, σs(CT v

s)) ⊗
j

(Msoj , σo(CT v
mj

)), σc(TCv)〉)‖r . . .

T gnr(k) : (StSv, σs(ICv
s))⊗

i
(Msii, σi(ICv

mi
))⇒ (StSv, σs(CT v

s))⊗
j

(Msoj , σo(CT v
mj

)) if σc(TCv)

(5.4)

Please note that because we are interpreting the composition operator ⊲⊳ as a disjunction (i.e.

∧), the default initial behavior of the transition does not come into play. For that reason, in the

inference we are simply ignoring all what come after the read-operator ‖r by abbreviating all the

remaining part of the ”non-woven” rule with

At this stage, we can keep the default rule and the new emerging one of that transition, or

suppress that default one depending on the application at-hand. For instance, we can involve the

service state instances in the condition of such rules, and apply both rules but on very specific state

instances.

◮ Remark 5.4.4 Besides allowing the introduction of completely a new behavior, other variants

of that inference rule can be applied to adapt a specific part of an existing behaviour. This may

concern just the condition by tightening or softening it. We ay also choose some specific input (resp.

output) arc-inscriptions and enrich them with other knowledge as conjunction or disjunction.

More specifically as illustration, if we decide to dynamically tight an existing condition with

a shifted-down condition, then the corresponding tailored inference rule will concern just the

condition. That is, just the variable TCv is to be propagated from the aspectual rule-state place.

By ignoring all other components from the read-arc, as we pointed out we are using the symbol ‘ ’.

This tailored inference rule takes the following form, where the composition symbol ⊲⊳ is interpreted

as conjunction ∧):

∃ σ TCv 7→ (TStSv(X) ∪ TMs(X))bool

(R∫P , 〈t : k| , , σc(TCv(t))〉) ‖r (StSv,⊕
s
〈Sii|prss〉 ⊲⊳ ICv

s)⊗
i

(Msii,msi ⊲⊳ ICv
mi

)
⇒ (StSv,⊕

s′
〈Si′i|prs′s′〉 ⊲⊳ CT v

s′)⊗
j

(Msoj , ms′j ⊲⊳ CT v
mj

) if TC(t) ⊲⊳ σc(TCv(t))

t(k) : (StSv,⊕
s
〈Sii|prss〉)⊗

i
(Msii, msi) ⇒ (StSv,⊕

s′
〈Si′i|prs′s′ 〉)⊗

j
(Msoj , ms′j) if TC(t) ⊲⊳ σc(TCv(t))

(5.5)

114 5 From Design- to Runtime adaptive services—Foundation and Deployment

5.5 Aspectual Leveraging for Adapting the CSrv-Nets Flight Ser-

vice

The purpose of this section concerns the application of the above conceptualization to dynamically

adapting the above CSrv-Nets Flight specification. To illustrate this dynamic adaptability, we

require to progressively put into play all the above aspect-oriented concepts and mechanisms.

More precisely, first we have to endow any transition of this Flight CSrv-Nets specification, with

appropriate aspectual-variables, so that they become adaptive-aware. As a second step, we have to

built the aspectual-level, through it any ECA-driven business rule can be dynamically manipulated.

Finally, we show how any of these dynamically manipulated business rules can be (dis-)activated

by (un)weaving it on the running slightly upgraded Flight CSrv-Nets specification.

5.5.1 Leveraging the CSrv-Nets Flight towards adaptability

As we pointed out, the first step towards endowing any CSrv-Nets service specification consists

in preparing that service specification to become adaptable-aware. More precisely, for each of the

CSrv-Nets Flight transitions, we have to slightly enrich their (input/output) arc-inscription as

well as the condition part with aspectual-variables using the operator ⊲⊳.

The resulting of applying this enrichment is depicted in the low-level of Figure 5.7. First note

that to ease the manipulation, instead of long names for places (and transitions) we are shortening

them. For instance, instead of the place name Flight Book, we are using just FlBk. Second,

because we want that all business activities of the flight service become adaptable, we are enriching

all the three transitions. Again here for sake of simplicity, we are dropping the Else part (i.e. the

exception cases) in all these transitions.

5.5.2 Building and dynamically adapting the flight AOCSrv-Nets

The aim of this step consists in effectively bringing this runtime knowledge-centric adaptability

conceptual machinery on such slightly upgraded CSrv-Nets specification. Towards that, we are

considering for illustration three emerging business rules scenarios. That is, we are bringing two

new rules for the booking request business activity (i.e. the transition Tflg rq) and one rule dealing

the canceling activity (ie. the transition Tflg cl). The ultimate goal is to demonstrate that we are

able to manipulate any business rule and dynamically shift it down and up on running transitions.

These three business rules could informally described as follows:

Flight to a specific destination (R1) : This rule says, for instance, that any person traveling

to Cairo or Istanbul between June and August gets a discount of 50 percent of the normal

fare.

Flight to a specific destination for group (R2) : Any two persons traveling for instance to

Paris during the month of December will automatically get 30 percent discount.

5.5 Aspectual Leveraging for Adapting the CSrv-Nets Flight Service 115

Seasontial Flight-cancel (R3) : This rule stipulates that during the winter (Christmas time)

season, a refund will correspond to the VAT, whereas during the summer the refund concerns

only the half of the paid price.

The next step after this informal description, of any emerging or existing ECA-driven busi-

ness rule to be dynamically integrated in the running Flight CSrv-Nets specification, consists in

formally expressing it as a five-element advice with respect to the transition governing the asso-

ciated business activity. In the following, we translate these three informal rules to their precise

five-element tuples description.

The business rule R1 as advice. The first rule R1 concerns the flight request business ac-

tivity, that is to say, it concerns the transition Tflg rq in the upgraded CSrv-Nets Flight

CSrv-Nets specification. As it is the first rule to be introduced, besides the default ini-

tial rule, the counter for the version is to be set to one (1). Moreover, when analyzing this

business rule, we see that it mainly brings new constraints or conditions. In other words,

both the input and output places with their corresponding arc-inscriptions remain unchanged,

as it is given by the default behavior (initial business rule). As we afore-suggested, in this

case the second and third elements in the advice-as-tuple have to be set to ”-”. Finally,

using the aspectual variables from the (default) input messages and the input service state

the described conditions are straightforwardly expressed into the following formal expression:

(Fr = "Cairo" ∨ "Instanbul”) ∧ ("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)

To summarize, the five-element tuple associated with the new business rule R1 for flight request

takes the following form:

〈Tflight rq : 1 |− ,− ,(AvSt(FG) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧
(Fr = "Cairo" ∨ "Instanbul”) ∧ ("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)〉

The business rule R2 as advice. This rule also concerns the flight request and thus the tran-

sition Tflg rq. This systematically means that it is the second version or alternative besides the

default behavior, and thus the counter for the version is to be set to two (2). In contrast to the

first rule, this rule is to be triggered by the simultaneous occurrence of two requests (i.e. from two

persons). This implies that from the input place FlRq (flight-request) we require two messages, one

for instance from Cs1 and the second from Cs2 with similar parameters (i.e. origin, destination,

date, cost). The third element in the tuple, that is, the output places and their corresponding

inscriptions remain unchanged as in the default; so we abbreviate them using the symbol ”-”. The

last element in the tuple concerns the condition, to be formulated as for the above rule. We should

just note that since two persons are at stake, the available seats should greater than 2 and both

the two customers Ids (i.e. Cs1 and Cs2) have to be added to the reservation list Rs. The flight

116 5 From Design- to Runtime adaptive services—Foundation and Deployment

. . . .

. . .
FlgRq(Ann,..)

F
lR

q

FlgBk(...)

F
lB

k

. . .

 A
sp

ec
tu

al
−

le
ve

l f
or

 th
e

F
lig

ht
 E

C
A

−
ru

le
s

The Adaptability−level for Business Rules for Airlines Runtime Manipulation

BRs.AirLine−Place

. . . .

F
lP

ay
F

lR
fd

F
lc

ld

T
he

 E
nr

ic
he

d
(b

as
e−

le
ve

l)
F

lig
ht

 S
er

vi
ce

 S
pe

ci
fic

at
io

n
E

xp
or

te
d

m
es

sa
ge

s

. . .

ChkSeat

. . .

. . .
ChSt(...)

. . .

. . .

. . .

. . .

FlSt

FlgRsv(fl1,..)

. . .

Flgbkd(Cs,..)

PlgPnt(Cs,...)

FlgPay(Cs,...)

FlgRfnd(Cs,..)

FlgCl(Cs,...)

Tflg_bk

Tflg_cl

Im
po

rt
ed

 m
es

sa
ge

s

Tflg_rq

. . .

FlgCl(anni,...)

F
lC

l

F
lR

s
F

lB
kd

R∫

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx) ⊲⊳ ICr
2

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉 ⊲⊳ ICr
3

RsSt(Cs, F g) ⊲⊳ ICr
1

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08))) ⊲⊳ T Cr

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy) ⊲⊳ CTr

F lgBk(Cs, R, Dy, Py) ⊲⊳ ICb
1

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉 ⊲⊳ ICb
2

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := Py ∗ 0.1)) ⊲⊳ T Cb

F lgBkd(Cs, R.F r.To.Dt.Tm, Py) ⊲⊳ CTb
1

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) ⊲⊳ CTb
2

F lgCl(Cs, R, Py, Dt) ⊲⊳ ICc
1

〈F g|F gInf : [R.Dt], Rsv : Rs, Cmf : F m〉 ⊲⊳ ICc
2

((Cs ∈ Rs) ∧ (Rfnd := P y)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = Py ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = P y ∗ 0.45)) ⊲⊳ T Cb

F lgRfnd(Cs, R, Rfnd) ⊲⊳ CTc
1

〈Tflg rq : vr | (F lRq, ICr
3) (ChkS, ICr

1) (F lSt, ICr
3) , (F lRs, CT r

1) , TCr〉

〈Tflg bk : vb | (F lBk, ICb
1) (F lSt, ICb

2) , (F lBkd, CT r
1) (F lPay, CT r

2) , TCb〉

〈Tflg cl : vc | (F lCl, ICc
1) (F lSt, ICc

2) , (F lRfd, CT r
1) (F lcld, CT r

2) , TCc〉

F lgCld(Cs, R) ⊲⊳ CTc
2

〈Tflight rq : 1 |− ,− ,

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (F r = "Cairo" ∨ "Instanbul”)

∧("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)〉

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, F r.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, F r.To.Dt.Tm.Mx))

(F lSt, 〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉) ,− ,

(AvSt(F G) ≥ 2) ∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (F r = "Paris") ∧ ("Dec." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)

〈Tflg cl : 1 |− ,− ,(Cx ∈ F m)∧

("15 Dec." ≤ Dt ≤ "30 Dec.") ∧ (Rfnd := V at(Py)) ∨ ("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5))

Figure 5.7: The Runtime Adaptable AOCSrv-Nets flight service before rules weaving

5.5 Aspectual Leveraging for Adapting the CSrv-Nets Flight Service 117

cost should of course be less than the max budget of any of the two customers. All in all this tuple

takes the following form:

〈Tflg rq : 2 |(FlRq, F lgRq(Cs1.Ag, Fr.To.Dt.Tm.Mx) ⊕ FlgRq(Cs2.Ag, Fr.To.Dt.Tm.Mx))

(FlSt, 〈Fg|FgInf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs,DlRs :

Dy〉) ,− , (AvSt(FG) ≥ 2)∧
Rs.[Cs1.Cs2.R] ∧ (Cx ≤Mx) ∧ (Fr = "Paris") ∧ ("Dec." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)〉

The business rule R3 as advice. This new business rule concerns the cancel activity and thus

the transition Tflg cl as first version besides the default one. As for the first introduced rule, this

rule mainly focusses on the condition part, and henceforth the two input and output second and

three elements of the tuple are abbreviated to ”-”. The condition itself is composed of a disjunction

of two expressions: One concerning the Christmas period (i.e. between 25 and 30th of December),

where the sum to be refunded is to set the VAT, and the summer period where just the half is

refunded. All in all the resulted tuple is to be expressed as follows:

〈Tflg cl : 1 |− ,− ,(Cx ∈ Fm) ∧ ("25 Dec." ≤ Dt ≤ "30 Dec.") ∧ (Rfnd := V at(Py))

∨("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5))〉

5.5.3 Emerging the rules-as-advices at the aspectual-level

As depicted in Figure 5.7, for simplicity we have skipped all the places and associated transitions

for manipulating the rules-as-tuples. In other words, we just assume that the three above tuples

have been introduced using the aspectual-level transition AD2RL (for the second rule RLn2AD as it

is the second version). That means that the place Ad2Rl should have been containing three tokens

of the form:

- Add Bh(Tflg rq, , , (Fr = "Cairo"∨ "Instanbul”) ∧ ("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50))

- Add Bh(Tflg rq, (FlRq, F lgRq(Cs1.Ag, Fr.T o.Dt.Tm.Mx) FlgRq(Cs2.Ag, Fr.T o.Dt.Tm.Mx))(FlSt, 〈Fg|FgInf :

[R.Fr.T o.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, DlRs : Dy〉) ,− , (AvSt(FG) ≥ 2)∧
Rs.[Cs1.Cs2.R] ∧ (Cx ≤Mx) ∧ (Fr = "Paris") ∧ ("Dec." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70))

- Add Bh(Tflg cl,− ,− ,(Cx ∈ Fm) ∧ ("15 Dec." ≤ Dt ≤ "30 Dec.") ∧ (Rfnd := V at(Py))

∨("May" ≤ Dt ≤ "Aug."∧ (Rfnd := Py ∗ .5)))

The firing of the aspectual-level transition AD2RL three times successively results in the emerging

of the three tuples in the rule-place Brs.Airline-Place as depicted in the upper-layer of Figure

5.7. That is to say, three new rules have been dynamically emerged at that adaptability-level. To

keep the Figure manageable we have indeed skipped this self-explained firing. Giving these rules,

it is important to emphasize that we can in the same spirit change and / or delete them through

the two other aspectual-level transitions and their places.

118 5 From Design- to Runtime adaptive services—Foundation and Deployment

5.5.4 Runtime shifting down / up of rules-as-advices on the Flight CSrv-Nets

service

After demonstrating how any business rule can be manipulated at runtime at the adaptability-level,

we are ready to (un)weave any of these emerging rules, through the proposed inference rules. That

is, two-step based firing for read-arcs is necessary. Furthermore, we can decide for any strategy for

weaving such rules, that is, unweave the old running rules and / or combine the new behavior with

that default one, and so on. In the following, we illustrate this runtime adaptability on default

behaviors for both the flight request and cancel transitions. More precisely, let us bring down the

rule (R1) as default behavior for the transition Tflg rq and the rule (R3) as default behavior for

the transition Tflg cl. This also means that the default behaviors of these two transitions have to

be shifted-up to the adaptability-level, while shifting-down those corresponding to (R1) and (R3).

Formally the shifting-down consists in introducing the two emerging behaviors, through the

weaving inference rule we explained. We are skipping detailing that straightforward application

of these inference rules, and assuming directly that the request-transition default behavior has

been shifted-up and these new emerging rules have to be shifted-down. The ultimate resulting is

depicted in Figure 5.8. That is, first the default behavior for both transitions Tflg rq and Tflg cl

is shifted-up at the adaptability-level. Secondly, the behavior associated with the rules (R1) and

(R3) is dispatched as it should be, on the corresponding input/output inscriptions and conditions.

In other words, with this judicious combination of design- and runtime-adaptability, we are in

position to dynamically evolve any CSrv-Nets specification and monitor the evolution.

For instance, by instantiating the weaving inference rule on the first emerging rule for the

request R1, we result in the corresponding new rewriting rule:

Tflg rq(2) :(FlRq, F lgRq(Cs1.Ag, Fr.T o.Dt.Tm.Mx) ⊕ FlgRq(Cs2.Ag, Fr.T o.Dt.Tm.Mx)) ⊗
(FlgSt, 〈Fg|FgInf : [R.Fr.T o.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, DlRs : Dy〉)

⇒ (FLGRQD, F lgRqd(Cs, Fg, [R.Fr.T o.Dt.Tm], Py, Dy))

if (Rs.[Cs1.Cs2.R] ∧ (Cx ≤Mx) ∧ (Fr = "Paris") ∧ ("Dec." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70))

At the same time, by adopting a disjunction semantics for the operator ⊲⊳, we are disabling

the default request transition behavior. To reflect that, we need to unwove or shift up to the

aspectual-level this default behavior. To achieve this shifting up, we have just the apply the weaving

inference rule is the reversible sense. In other words, the premise becomes the rule conclusion and

the conclusion corresponds to the adding of that default rule as tuple to the aspectual rule-place.

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets

In the previous chapter, we demonstrated how to leverage the Maude language, so that it can

concurrently validate and reason about CSrv-Nets specifications. In particular, we introduced

the concept of Maude-based service component. More specifically, capitalizing on CSrv-Nets fea-

tures, we accordingly tailored Maude (object-)configuration towards component-configuration. We

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 119

. . . .

. . .
FlgRq(Ann,..)

F
lR

q

FlgBk(...)

F
lB

k

. . .

 A
sp

ec
tu

al
−

le
ve

l f
or

 th
e

F
lig

ht
 E

C
A

−
ru

le
s

The Adaptability−level for Business Rules for Airlines Runtime Manipulation

BRs.AirLine−Place

. . . .

F
lP

ay
F

lR
fd

F
lc

ld

T
he

 E
nr

ic
he

d
(b

as
e−

le
ve

l)
F

lig
ht

 S
er

vi
ce

 S
pe

ci
fic

at
io

n
E

xp
or

te
d

m
es

sa
ge

s

. . .

ChkSeat

. . .

. . .
ChSt(...)

. . .

. . .

. . .

. . .

FlSt

FlgRsv(fl1,..)

. . .

Flgbkd(Cs,..)

PlgPnt(Cs,...)

FlgPay(Cs,...)

FlgRfnd(Cs,..)

FlgCl(Cs,...)

Tflg_bk

Tflg_cl

Im
po

rt
ed

 m
es

sa
ge

s

Tflg_rq

. . .

FlgCl(anni,...)

F
lC

l

F
lR

s
F

lB
kd

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx) ⊲⊳ ICr
2

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉 ⊲⊳ ICr
3

RsSt(Cs, F g) ⊲⊳ ICr
1

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx) ∧ (F r = "Cairo"∨)

"Instanbul” ∧ ("June" ≤ Dt ≤ "August") ∧ (P y := Cx ∗ .50) ⊲⊳ T Cr

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy) ⊲⊳ CTr

F lgBk(Cs, R, Dy, Py) ⊲⊳ ICb
1

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉 ⊲⊳ ICb
2

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := Py ∗ 0.1)) ⊲⊳ T Cb

F lgBkd(Cs, R.F r.To.Dt.Tm, Py) ⊲⊳ CTb
1

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) ⊲⊳ CTb
2

F lgCl(Cs, R, Py, Dt) ⊲⊳ ICc
1

〈F g|F gInf : [R.Dt], Rsv : Rs, Cmf : F m〉 ⊲⊳ ICc
2

((Cs ∈ F m) ∧ ("15 Dec." ≤ Dt ≤ "30 Dec.")∧

(Rfnd := V at(P y)) ∨ ("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5)) ⊲⊳ T Cb

F lgRfnd(Cs, R, Rfnd) ⊲⊳ CTc
1

〈Tflg rq : vr | (F lRq, ICr
3) (ChkS, ICr

1) (F lSt, ICr
3) , (F lRs, CT r

1) , TCr〉

〈Tflg bk : vb | (F lBk, ICb
1) (F lSt, ICb

2) , (F lBkd, CT r
1) (F lPay, CT r

2) , TCb〉

〈Tflg cl : vc | (F lCl, ICc
1) (F lSt, ICc

2) , (F lRfd, CT r
1) (F lcld, CT r

2) , TCc〉

F lgCld(Cs, R) ⊲⊳ CTc
2

〈Tflight rq : 1 |−,− ,

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (Py := Cx)

wedge((Ag ≤ 18) ∧ (Py := Cx ∗ 08))〉

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, F r.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, F r.To.Dt.Tm.Mx))

(F lSt, 〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉) ,− ,

(AvSt(F G) ≥ 2) ∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (F r = "Las Vigas") ∧ ("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)

〈Tflg cl : 1 |− ,− ,((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt))∧

(Rfnd = Py ∗ 0.85) ∨ ((Cs ∈ F m) ∧ (Rfnd = Py ∗ 0.45))〉

Figure 5.8: The Runtime Adaptable AOCSrv-Nets flight service after rules weaving

120 5 From Design- to Runtime adaptive services—Foundation and Deployment

then applied this Maude-based service componentization on the CSrv-Nets Flight specification.

Furthermore, in the previous sections of this chapter, we presented an aspect-oriented leveraging

of this formalism, we referred to as AOCSrv-Nets, to handle runtime adaptability.

The purpose of this section consists thus in pushing the proposed Maude extension one step

further, so that it allows semantically governing and reasoning about AOCSrv-Nets—instead

of just CSrv-Nets specification and graphical animation. More specifically, recapitulating on

AOCSrv-Nets aspect-orientation, we have to empower Maude service components with aspect-

oriented features, so they become dynamically adaptable.

A straightforward and naive alternative to semantically interpret AOCSrv-Nets in rewriting

logic and Maude consists of the following steps. First, we have to translate the (aspectual-level)

rewrite theory of the aspectual Net into Maude. Then, with respect to any specific aspectual

Net, we interpret its transitions as rewriting rules. Secondly, for dynamically (un-)weaving any

ECA-driven rule, we have to express the associated inference rules, as deduction rules in Maude.

Finally, we should upgrade any base-level rewriting rules, with aspectual-variables as joinpoints.

Nevertheless, such direct Maude-based operational semantics for AOCSrv-Nets may suffer

from several severe limitations. First, since the rewrite theory of the aspectual-level is little-

bit complex (with aspectual variables and non-instantiated states), the translation as well as the

reasoning require deep expertise in Maude. The same difficulties applied on the interpretation and

working on the inference rules regulating the shifting up and down. Third, with such straightforward

interpretation, we are not exploiting all the capabilities of Maude, and more particularly the

reflection-level and its advanced computational and shifting up / down primitives [CM96, CDE+07].

]

[Invariants−N

Messages−N

Events−N

 InterfaceN

In
te

r
c

e
p

t

e
v

e
n

ts

e
a

v
e

r
u

l
e

s
W

]

[
Invariants−N
Messages−N

Events−N

 InterfaceN

]
[

Events−1

Invariants−1
Messages−1

 Interface1

 ECA−interaction (un−)weaving

R1: m1 => m2 if cd1

Rj:mi => mj if cdj
.....

Maude Components. . .ServComp1 ServCompN . . .ServComp1 ServCompN

 ECA−interaction

Propagate

interfa
ces

Collect
ECA−Results Ri1 : rl1 => lr1 if c1

Ri1 : rl1 => lr1 if c1
. . . .

In
te

rf
ac

e

In
te

rf
ac

eus
e

Maude
ECA−aspects

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

��

Aspectual ECA−Rules AO−Maude

 L
ev

el
A

sp
ec

tu
al

ECA−rules

]

[

Events−1

Invariants−1
Messages−1

 Interface1
. .

. .

ea
ch

ac
tiv

ity

B
as

e−
le

ve
l

Figure 5.9: From ECA-driven service interactions into a Compliant Aspect-oriented Maude exten-

sion for AOCSrv-Nets

More precisely, towards overcoming all shortcomings of such direct interpretation, we propose

a more lightweight semantics by exploiting all the Maude capabilities. More precisely, as depicted

in Figure 5.9, the main ideas consists in abstracting from the AOCSrv-Nets tedious concepts.

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 121

That is, instead of directly handling AOCSrv-Nets base- and aspectual-levels, we aim focussing

exclusively on the governing architectural ECA-driven rules as main driving for dynamic adapt-

ability. More precisely, inspired by the AOCSrv-Nets aspectual-level, we propose how to endow

any architectural ECA-driven rules with aspectual-oriented mechanisms, so that it becomes dy-

namically adaptable [ABS09c]. Then, capitalizing on Maude reflection capabilities, we faithfully

capture this aspect-oriented architectural ECA-driven rules by accordingly leveraging Maude ser-

vice components.

Generally speaking, the envisioned aspect-oriented leveraging of architectural ECA-driven rules

and its compliant Maude-based foundation, could be summarized through the following steps.

First, we should be able to intercept any triggering events targeting service components. Second,

such interception should lead to extraction of all required features, via respective service interfaces

to be propagated to the aspectual-level. Third, at this aspectual-level, the right ECA-driven rule(s)

has to be selected and performed on (and only on) the invoked participant instances. Fourth, the

resulting outputs of the performed rule(s) should dynamically woven on running service components,

via their interfaces.

Following these motivations, the rest of this section is organized as follows. First, we present

how to ”abstractly” and gradually endow any architectural ECA-driven rule with aspect-oriented

mechanisms. Second, we present how besides Maude-based service components, service interfaces

with extra-weaving capabilities are to be specified. Third, we present how to capture ECA-driven

rules by extending Maude. Finally, we present how the dynamic weaving is captured with the

Maude extensions and its reflection capabilities.

For the rest of this section, instead of the non-trivial flight service, we adopt a more simplified

illustration based on a banking withdrawal process. Indeed, to stay competitive, banking systems

are offering different incitive packages for their customers. These packages range from basic agreed-

on contracts (e.g. different formulas for withdrawal / transfer moneys) to sophisticated complex

offers (i.e. staged housing loans, mortgages, etc.) depending on customers profiles (e.g. assets,

trust, experiences, etc). So, even for a basic withdrawal it is not acceptable to hide its logic inside

entities such as customer or account. A withdrawal must instead be regarded as an agreement

between the customer and his/her account(s). This directly leads to more transparent and flexible

tailored withdrawal.

As illustration, we propose two exogenous withdrawal agreements. The first basic withdrawal

consists simply in externalizing the withdrawal constraint (i.e. balance > amount) from the account.

In this manner, it can be adapted as the customer wishes. We may speak then of withdrawal with

credits (i.e. Crd-withd.), where a specific credit is given to the customer.

ECA-Interaction Crd-Withdraw

participants Acnt: Account;

Cust: Customer

attribute credit : Money

invariants Cust.own(Acnt) = True

122 5 From Design- to Runtime adaptive services—Foundation and Deployment

interaction rule : VIP

at-trigger Cust.withdraw(M)

under Acnt.bal() + credit ≥ M)

acting Acnt.Debit(M)

end Crd-Withdraw

We should note that due to their simplicity all required interfaces from the customers and

accounts are skipped here. For instance, for the standard withdrawal (resp. credit one), the

customer should provide the withdraw event (and the credit amount), whereas the account should

provide the balance (shortened as bal) and the Debit method.

5.6.1 Aspect-orientation of architectural ECA-driven rules for Dynamic Adapt-

ability

As depicted in the left-hand side of Figure 5.9, we assume given an architectural ECA-driven

service interaction, putting several service partners into cooperation. At the instance level, this

cooperation brings into contract specific partner instances (through their service interfaces). For

instance, we may have customer such as Cs1 under standard withdrawal with his / her account

Ac1 , whereas customer Cs2 under CRD-withdrawal interaction with the account Ac2. For such

interaction instances and only for them3, we propose to intercept their triggering events as well

as any required properties. The running interaction glues are then executed at that interaction-

level. Finally, the resulting emerging actions and states are to be dynamically woven on respective

service components. With the aim to facilitate any subsequent operational foundation, we have

thus abstracted these ideas as given in middle of Figure 5.9. These five steps can be highlighted as

follows.

1. Events interception and properties extraction : The first step we propose towards

aspect-orientation consists in intercepting any triggering events / messages from directly

going to the service component. On the basis of the triggered instances, the required prop-

erties for the ECA-driven interaction are extracted from participating services to build the

interfaces.

2. Features propagation to the aspectual-level : The next step aims at shifting up these

required interface instances to the ECA-driven aspectual-level, where the respective rules are

residing.

3. Execution of right interaction rules: In terms of aspect-oriented mechanisms, the corre-

sponding ECA-driven rule(s) are to be performed as cross-cutting (agreed-on) advices.

3We avoid intercepting every event but just those relevant in the current interactions state.

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 123

4. Propagation of resulting behavior : This step consists in dispatching the output of the

performed ECA-driven rule on respective interfaces.

5. Dynamic weaving on running components: This final step concerns the weaving and ex-

ecution of the corresponding actions on respective service components. This weaving should

be non-intrusive on the running service components, that is, without such service components

being aware of it (i.e. as if no-interception has been applied).

5.6.2 Towards an ECA-Compliant aspect-orientation of Maude

Towards formally validating the above conceptual aspect-orientation of ECA-driven rules for service

runtime interaction and dynamic adaptability, we propose to leverage the already extended Maude

with service components towards a compliant aspect-orientation. Towards that purpose, we first

present how service interfaces can be conceived from associated Maude-based service components.

Second, we develop on how to express any ECA-driven rules as a Maude-based advice. Finally,

capitalizing on Maude reflection capabilities, we present how to dynamically (un)weave such ECA-

driven rules on running service components.

Service interfaces in the extended Maude

In contract to Maude service components, associated service interfaces should deal only with

observed features (i.e. observed properties, events and messages). Furthermore, to keep track of

different instantiation of a given service interface we require unique identification. Last but not

least, since such service interfaces are aimed to propagate information to the aspectual-level as well

as receiving results, they have to be endowed with extra mechanisms for that purpose.

Taking these observations into account, first, we propose as service interface structure the

following: [IntfIdentif|Interface-conf.]. That is, any service interface (state) is composed

of unique identification and a current configuration composed of observed events, messages and

properties needed for the aspectual-level. Furthermore, we are anticipating how we should intercept

events and properties and propagate (resp. receive) them to the aspectual-level. The aim is to

capture the first step from the five-steps, we previously detailed. As detailed below, the interception

rule intercepts and extracts from the service component configuration any part that interests the

ECA-driven interaction. These can be events and properties. Through the rule Subsume in line 24,

the supposedly intercepted events and/or properties are mapped to the specific structure of service

interfaces. The weaving rule weaveCfIntf instead permits enriching respective service component,

with the resulting actions (after the interaction being executed).

1. mod INTF GNR is

2. inc CMP GNR · · ·

11. op [|] : Intf NM ConfINTF → EX ConfIntf .

13. op subsume(,) : ConfINTF Intf NM → E ConfIntf .

124 5 From Design- to Runtime adaptive services—Foundation and Deployment

14. op belong(,) : Iid IidL → Bool .

15. op weaveCfIntf(,) : EX ConfIntf ConfCMP → ConfCMP .

16. op intercept(,):ConfINTF ConfCMP → ConfCMP · · ·

24. rl [Subsume]:subsum(Cfintf, INM)⇒[INM | Cfintf] .

25. rl [weaveCfIntf]:weaveCfIntf([INM|Cfintf],Cfcmp)

⇒Cfintf Cfcmp .

26. rl [intercept]:intercept(Cfintf,Cfintf Cfcmp) ⇒Cfcmp .

◮ Example 5.6.1 To illustrate such Maude service components and interfaces, we re-consider

the account withdrawal case. That is, for the account service component, we assume that the

balance bal is observed, whereas the limit limt is local. Similarly, we propose that the credit and

debit be observed messages, whereas the change-of-limit be a local one (lines 12-15). Please note

that, the debit rule now contains no conditions. We are thus externalizing any business logic at

the interaction aspectual-level. So, the conditions will be later evolved and woven as aspects on

the (basic) service component rules.

1. mod ACNT CMP is · · ·

10.op bal: : Rat → obs Prop .

11.op limt: : Rat → loc Prop .

12.op Crd(,) : AcntId Rat → CRDT .

13.op Db(,) : AcntId Rat → DBT .

14.op ChgL(,) : AcntId Rat → CHGL · · ·

22.rl [credit] : Crd(A,M) < A|bal : B >⇒< A|bal : B + M > .

23.rl [debit] : Db(A, M) < A|bal : B >⇒< A|bal : B − M > .

24.rl [chgl] : ChgL(A,L1) < A|limt : L >⇒< A|limt : L1 > .

The account service interface to be involved in the withdrawal ECA-driven rule is depicted

below. We thus require the debit and the balance properties. Moreover, we have to intercept the

balance (rules getCfIntfbal and getCfIntfbalf).

1. mod ACNT INTF4WDR GNR is

8. op ACNT : → Intf NM .

9. op Db(,) : AcntId Rat → DB .

10. op bal: : Rat → obs Prop [ctor gather (&)] .

18. rl [getCfIntfbal] : getCfIntfbal(<AC|bal:B > Cfcp,AcntsL)

19. ⇒ (if belong(AC, AcntsL)

20. then < AC|bal:B > getCfIntfbal(Cfcp, AcntsL)

21. else getCfIntfbal(Cfcp, AcntsL) fi) .

22. rl [getCfIntfbalf] : getCfIntfbalf(Cfcpf

23. getCfIntfbal(Cfcp, AcntsL)) ⇒ Cfcpf .

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 125

ECA-driven rules as Maude-based advices

So far we leveraged Maude configuration to intrinsically support service components and interfaces.

We also anticipate how intercepting and weaving required properties and messages / events. Based

on that, we now present a Maude formalization and execution of the ECA-driven interactions as

aspect-oriented advices. First, we define a Maude-based algebraic structure to capture all elements,

from any ECA-driven interaction. These elements are composed of: (1) an ECA-driven interaction

name (e.g. WdrStd or WdrViP); (2) identifiers for participating interfaces (e.g. ACNT and CUST); (3)

any specific information, such as properties and operations, we may require besides those from the

interfaces (e.g. the credit attribute). We accordingly propose the structure for any ECA-driven

rule as a tuple:

[CoorName || (partner ids($partner ids)∗)@coord infos] (&[Partneri|partner infos])+

The Maude-based formalization of this ECA-driven aspectual interactions is given as follows.

To exhibit a maximum of concurrency, we allow different parts of that term to be split and re-

combined. This split / recombine capabilities are captured using two respective rules as given in

that specification, namely (Split CfIntf and Recombin CfIntf). Furthermore, to prepare super-

position of the resulting interaction on different components, we permit the extraction of any part

using the rule extractCFIntf (line 27).

1. mod ASP COORD is

2. inc INTF GNR · · ·

15. op $: PartnerIds PartnerIds → PartnerIds [ac] .

16. op ; : Attributes Attributes → Attributes [ac] .

17. op . : CoorOpers CoorOpers → CoorOpers [ac] .

18. op @ : PartnerIds Attributes → PartnerAttrs .

19. op [||] : Coord NM PartnerAttrs → ObjCoord .

20. op extractCfIntf(,):ConfCoord Intf NM→EX ConfIntf.

21. op & : ConfCord ConfCord → ConfCord [ac] · · ·

25. rl [Split CfIntf] : [Inm | CfI1 CfI2]

26. ⇒ [Inm | CfI1] & [Inm | CfI2] .

27. rl [Recombin CfIntf] : [Inm | CfI1] & [Inm | CfI2]

28. ⇒ [Inm | CfI1 CfI2] .

29. rl [extractCfIntf] : extractCfIntf([Inm | CfI1]

30. & CfCt, Inm) ⇒ [Inm | CfI1] .

◮ Example 5.6.2 We report on the Credit-withdrawal interaction rule (WrdVip). We first define

the specific attribute Credit (shortly as crd). We have chosen CS for the customer and AC for the

account as identifiers. The Credit-withdrawal rule says that when a withdrawal event is sent from

a customer partner CS, it is intercepted via the customer service interface CUST. It then enters in

contact with the balance from an agreed-on account partner AC, provided via the service interface

ACNT. The right-hand side says that under a specific credit crd and condition on the balance, this

126 5 From Design- to Runtime adaptive services—Foundation and Deployment

interaction results in: (1) the withdrawal event being consumed (i.e. [CUST |nil]); and (2) sending

of a debit message to the account (i.e. [ACNT | < AC|bal : B > Db(AC,M)]).

1. mod COORD WdrVip is · · ·

6. op WdrVip : → Coord NM .

7. op crd: : Int → Attribute [ctor gather (&)] · · ·

11. crl [WdrVip] : [WdrVip || (CS $ AC) @ crd: C]

12. & [CUST | Wdr(CS, M)] & [ACNT |< AC|bal:B >]

13. ⇒ [WdrVip || (CS $ AC) @ crd: C]

14. & [ACNT | < AC | bal: B > Db(AC, M)]

15. & [CUST | nul] if (B + C) ≥ M .

5.6.3 Dynamic (un)weaving of aspectual Maude service-interactions

So-far we presented how to specify Maude-based service components, interfaces and ECA-driven in-

teractions as-advices. The last step towards the strived non-intrusive dynamic adaptability consists

in judiciously composing them. More precisely, towards non-intrusively intercepting events, execut-

ing the rules and then weaving respective ECA-driven aspectual interactions, the generic guidelines

for any strategy should respect the following steps. First, we propose to split any involved service

component configuration and prepare it for intercepting any events and required properties. Sec-

ond, we propose to intercept only those instances in agreements at the interaction aspectual-level.

Third, we have to propagate these intercepted service interface states to the aspectual-level. Fourth,

we perform the interaction rules as-advices on these service interface states. Finally, we have to

extract all resulting interface states and weave them on respective running service components.

As we already emphasized, in terms of aspect-oriented mechanisms, the ECA-driven interaction

behaviors are playing the role of (cross-cutting) advices. The reflection strategy itself represents

the pointcuts, that is, how to (intercept and) weave the advices. Finally the jointpoints represent

the rules at the service component-level, which are non-intrusively enriched with such ECA-driven

behaviors. For instance, the debit method is externally enriched in our case with the balance

sufficiency (plus the credit).

◮ Example 5.6.3 The Credit-withdrawal strategy below concretely reflects the above steps. First
the SplitAT rule is applied to the Account and Customer service component configurations. Then,
using the belong rule, we extract the state parts in agreements. Thirdly, through the rules
getCfIntfwdr and getCfIntfwdrf, we intercept all withdraw events from the customer in Credit-
withdrawal agreement. These service interface states are adapted to the interaction structure using
Subsume. The Credit-withdrawal interaction rule is then performed using (WdrVip). The rules
extractCfIntf and weaveCfIntf permit finally to weave the results on the account service com-
ponent.

1. mod ASP WDR Str is · · ·

11.op Compute : Term Nat → Term .

12.ceq Compute(T, N)

5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets 127

13.= if(N == 1) then

14.(if(SplitAT? :: Result4Tuple)

15.then Compute(getTerm(SplitAT?), N)

17.then Compute(getTerm(belong?),N)

21.then Compute(getTerm(getCfIntfwdr?),N)

25.then Compute(getTerm(getCfIntfbal?),N)

27.then Compute(getTerm(intercept?),N)

31.then Compute(getTerm(Split CfIntf?),N)

33.then Compute(getTerm(WdrVip?), N)

36.then Compute(getTerm(Recombin CfIntf?),0)

38.then Compute(getTerm(extractCfIntf?), 0)

40.then Compute(getTerm(debit?)

Figure 5.10 depicts the application of the above strategy on concrete account and customer service

component configurations. Note that both standard and Credit-withdrawal rules come into play,

as specific customers and accounts are in agreements with respect to both. That is, for instance

here Manru is in Std with the account and ManruAC, whereas Nas is as Credit contract with the

account NasAC (with 500 as credit).

Figure 5.10: Dynamic weaving of Std- and Crd-withdraw interaction rules

128 5 From Design- to Runtime adaptive services—Foundation and Deployment

5.7 Towards a compliant .NET environment WS-deploying of

AOCSrv-Nets

As we already emphasized, current Web-Services standards such as WSDL and BPEL are purely

process-centric and manual. Consequently, directly adopting them for implementing the proposed

approach simply means loosing all the strengths we were striving for, namely dynamic adaptability,

rule-centricity and separation of concerns.

Figure 5.11: The IDE Environment and its main functionalities

We are thus instead proposing the .Net [AW02] environment and its recent extensions with

aspect techniques [WFF]. The .NET framework supports syntax for multiple programming lan-

guages including C#, VB.NET, J# and C++ all generating Common Intermediate Language (CIL)

on compilation. The .NET platform provides excellent support for software extensibility, adapt-

ability, maintainability and customizability through various techniques including reflection, proxy,

intermediate language and on-fly code generation.

By fully exploiting these .NET capabilities we are proposing a compliant service-oriented im-

plementation of the approach. More precisely, the main IDE of the .NET supporting tool we

implemented inherently reflects the forwarded founded stepwise approach to runtime adaptive and

rule-centric service-oriented business processes development. In this main IDE exposing the im-

plemented environment in Figure 5.11, first under the icon ”business process”, business process

reference / name can be introduced, deleted or updated. The second icon ”business activity”

allows for manipulating the business activities composing a given business process. As we motivated

5.7 Towards a compliant .NET environment WS-deploying of AOCSrv-Nets 129

above, the partial-ordering of such activities within a given business process are postponed to late

stages. For instance, depending on the business rules in place, governing a given business process,

which are taken in charge thorough the third, fourth and fifth icons, different semantically-driven

profiled ordering can be put into place. More precisely, the third icon ”Add/remove CS rule” allows

for editing, creating or deleting any ECA-driven rule with respect to given business activity within

a specific business process.

Any of the implemented rules can be instantiated as first-class independent entities using the

fourth icon ”CS Rule Instantiation”. As we are striving for dynamically changing any existing

business rule, we implemented a main functionality for doing so through the icon ”Adapt CS rule”.

Finally, the last functionality allows for defining a concrete workflow (from the general business

process) and executing any case.

5.7.1 Mapping and manipulation of Conceptual ECA in .NET

To facilitate a smooth yet conservative mapping of the conceptual ECA-driven aspectual-level to

the .NET service-based implementation, we have been benefiting from the extensive capabilities of

the using Microsoft Work Flow Foundation (WFF) [AW02, WFF]. Indeed, WFF supports, among

others, the manipulation of (event-driven) business rule using a suitable XML-based templates. It

further allows for defining, managing and executing stateful workflow. WFF consists thus of an

activity model, workflow designer and XML-based rules engine. Rule-Definitions tag is composed

of multiple RuleSets. Each RuleSet is associated to a given business activity. A RuleSet is a

collection of rules, where each RuleSet is composed of Rule. Rule contains the ECA specification

as Then-Actions and Rule.

Figures 5.12 and 5.13 recapitulate the main translating steps of the ECA-driven conceptual

level towards the developed .NET environment. Firstly, as it should be expected different partic-

ipating business entities are internally implemented as Web-Services. The exposed functionalities,

we require to achieve any given interaction are of course captured as Web-Service interfaces (de-

scribed using WSDL). The second and main translation concerns the mapping of the ECA-driven

rules themselves. First, we capture the rule itself as a (composite) Web-Service, which can be

mostly owned by any of the involved providers; though we also consider the case of third-party

ownership. For instance, in our application the rules are normally owned by the bank; but they can

be outsourced to a third-party for more optimal, universal and intelligent management. Second,

the ECA-rule for a given business activity are conceived as a workflow. In this ECA-driven intra-

activity workflow, instantiations of the rules can be performed. Since, each rule is implemented as

an aspect, the three elements (event-condition-action) composing a rule can be woven on the basis

of the instantiated rules.

It is worth mentioning at the end that, in [RLA+09, URAS09] we experienced the environ-

ment with both case-studies. We further developed an advanced database-driven mechanisms for

enhancing the persistency and conversational-level of different intra- and inter-ECA-driven interac-

130 5 From Design- to Runtime adaptive services—Foundation and Deployment

Figure 5.12: The principles of mapping ECA-centric rules to the Aspectual .Net Env.

tion rules. The automatic interconnection between the forwarded aspect-oriented Maude and the

environment is ongoing, by exploiting the moment project, which allows running Maude directly

under JAVA environment.

5.8 Chapter Summary

Along this chapter, we tackled the crucial and challenging problem of developing dynamically

adaptable service-oriented applications in a stepwise and disciplined manner. We first focussed on

the stepwise leveraging of CSrv-Nets service specifications towards an aspect-oriented two-level

Aspectual ECA-Conceptual Level AOP .NET mechanisms

Business entities Service components

Entities interfaces WSDL-based interfaces

ECA-rules WFF-based Rulesworkflow

ECA-rule dynamic selection WFF-based workflow with AOP advices

Figure 5.13: Translating steps from ECA-conceptual to the compliant .NET env.

5.8 Chapter Summary 131

based formalism. At the aspectual-level, we proposed how ECA-driven rules can be dynamically

manipulated as advices. At the conceptual-level, we smoothly enriched CSrv-Nets service compo-

nents with joinpoints, we associate to any to-be adaptable transition. Through read-arcs, we then

related the two-levels. Finally, using tailored inference rules as pointcuts, we demonstrated how to

dynamically weave and unweave any (specific elements of) emerging ECA-driven rule. We further

illustrated this incremental approach to runtime adaptable services using the already conceived

Flight service. For formal validation and reasoning, the chapter further proposed a tailored aspect-

oriented version to the Maude language, that is compliant with the forwarded aspect-oriented

AOCSrv-Nets conceptualization. Finally, we also addressed the efficient Web-Services-based im-

plementation of this approach, by developing a preserving aspect-oriented .NET environment. This

forwarded conceptualization to composite services with dynamic adaptability integrates thus most

advanced software-engineering methods to evolving software, namely business rules, aspect-oriented

concepts, architectural mechanisms and reflection techniques. Indeed, most existing proposals to

software evolution including software as service, capitalize mostly on the integration of two mech-

anisms.

132 6 Conclusions and Future Work

Chapter 6

Conclusions and Future Work

The main objective we have been focussing during this work concerned the disciplined modeling and

dynamic adaptability, while developing knowledge-intensive service-oriented applications. We put

forwards an integrated and progressive approach based on advanced software-engineering concepts

including: Event-driven business rules and stereotyped UML constructs, aspect-oriented mecha-

nisms, High-level Petri nets, architectural techniques and algebraic and rewriting techniques and

logic. In this closing chapter, we first summarize the main achieved contributions. Secondly, we

present some of possible further explorations towards a more complete approach and methodology.

6.1 Main achieved contribution

As the service-oriented paradigm with its Web-services technology are getting increasingly ma-

turing, more and more (world-wide) cross-organizations and governmental institutions are shifting

towards this technology at fast paces. This growing embracing of the service technology have been

pressing for more disciplined engineering of complex and evolving composite service applications.

First, most of potentials service applications such as E-Commerce, E-health and E-Government are

by essence knowledge-intensive, mainly governed by multi-concern and agile event-driven business

rules. Second, developed service-oriented applications are mostly mission critical, which implies

precise and high degree of formality are to be ensured. Third, to cope with harsh competition and

market volatility, modern service-oriented applications are imperatively dynamic and adaptive.

In this work, we have thus been addressing these three crucial challenging features, while devel-

oping today’s complex service-oriented applications, that is, business rule-centricity, formal foun-

dation and runtime adaptability. More precisely, we put forwards an integrated and progressive

approach for specifying and validating service-oriented rule-centric and adaptive business applica-

tions. The approach is based on an innovative variant of high-level Petri nets, we referred to as

adaptive CSrv-Nets. This framework can be distinguished at least with the following character-

istics.

6.1 Main achieved contribution 133

The fact that CSrv-Nets intrinsically permit coping with both the type (e.g. as algebraic

service specification) and the service instances (i.e. service states and message instances), we

demonstrated how they are able to deal with persistency. Conversation is dealt with using any

partial-ordering of transitions (as business-activities), that is, parallelism, sequence, choices and so

on.

CSrv-Nets transitions are incrementally built to directly reflect corresponding event-driven

ECA-driven business rules. In particular, any conditions what complex soever are straightforwardly

constructed using first-order expressions on involved message parameters and service states.

As we demonstrated any CSrv-Nets web services specification can be concurrently validated,

using their inherent semantics in terms of rewriting logic and tailored extension of the Maude

language.

The forwarded approach promotes a two-level methodology for specifying and validated rule-

centric service-oriented applications. That is, first, usual service orchestration is achieved by fo-

cussing on a specific service, while communicating with others. The second system-level allows

specifying collaborating services as a choreography.

The most significant challenging contribution of this work concerns the dynamic adaptability.

We thus put forward on top of each CSrv-Nets specification an extra aspectual-level and linked

it to the base-level, in way that business rules can be dynamically shifted up and down.

In a summary the most significant contributions of this work with respect to the formal engineer-

ing of adaptive and knowledge-intensive service-oriented applications could be again highlighted in

the following points:

Incremental formalization and validation service-oriented applications : The formalism

is progressively constructed by first semi-formally modelling the concerned service-driven

applications using stereo-typed UML class-diagrams and ECA-driven business rules. The

CSrv-Nets formalism, as we just emphasized permits to intrinsically integrate such business

rules in the modeled service-oriented business process. Furthermore, CSrv-Nets deal with

both orchestration and choreography in a harmonious complementary manner.

Inherent design-time rule-centric adaptability : By inherently integrating event-driven

business rules, the resulting CSrv-Nets specification is by construction very flexible and

adaptable. Moreover, at design-time any modelled business rules-as-transition can be up-

dated when requested. More precisely, we can change the conditions and /or any input /

output arc-inscriptions of the chosen transition.

Emerging runtime behavioral adaptability : As we emphasized this is the most challenging,

since no so far proposals have been able to cope with runtime service adaptability. Capital-

izing on aspect-oriented mechanisms, we presented how rigorously and consistently weaving

/ unweaving any business rule at runtime.

134 6 Conclusions and Future Work

Compliant .NET Environment : Besides the formal specification, validation and adaptability,

we further experimented the deployment phase. For that purpose, we developed a compliant

.NET environment that capitalize of aspect-oriented programming mechanisms to achieve the

conceptualized dynamic adaptability.

6.2 Envisioned further investigations

After having put forwards this crucial step towards rigorously modelling and validating adaptive

and rule-centric service applications, we are aware that more milestones are required towards an

integrated, practical and methodologically supported approach. More specifically, we are aware

that much work remains ahead at least on the four research and practical directions.

More case studies. Along all main chapters, we have demonstrated the practicability of the

proposed approach using a medium-size variant of the travel agency. Nevertheless, we are con-

scious that, for further enhancing the practicability and discovering domain-based patterns and

specificities for the approach, more case studies covering different domains such E-health and E-

government are necessary in any future step. The undertaking of others case-studies further allow

for consolidating the approach and a general-purpose framework and discover any peculiarities that

should require more perfection.

Deployment using advanced Web standards. In this work we have been concentrating on the

foundational-level, though we developed a compliant .NET environment. Since this ultimate phase

require several different experimentations, we are aware that further investigations are needed, by

particularly using advanced web services technology and its standards. In this sense, we project

that such deployment must addressed in more detail in any next extension of the proposed ap-

proach. In particular, one a specification is corrected, validated and adapted it should be mapped

to corresponding tailored web standards such as and BPEL and WS-CDL. Nevertheless, since such

standards are static and purely process-centric, to achieve a preserving and compliant mapping

we require a more advanced enhancement of such standards. The integration of business rules

within BPEL as achieved in [RD05] could a promising starting point. Another interesting direction

towards that aim is the adoption of aspect-oriented techniques as recently suggested in [CKM07].

Supporting tools for the approach. As next promising towards enhancing the practicability

of this approach belongs the development of supporting software tools. These tools should include

at least an editor-simulator for CSrv-Nets specification, that is, this tool should allow the designer

to describe his specification, correct it and validate it using graphical simulation as we highlighted

in the work. The second complementing tool should cope with the runtime adaptability, that is, it

should permits the manipulation of business rules as tuples, dynamically bringing them down to the

6.2 Envisioned further investigations 135

base-level and animating them as we gave in the previous chapter. The respective formal Maude

aspect-orientation require to be integrated with such envisioned CSrv-Nets tools, so that the

formal validation and reasoning could directly automated. Last but not least, we aim investigating

the tailored of service standards using the development .Net environment.

Extensions towards formal verification. It would be promising direction to extend this work

towards verification, instead of just modelling and validation. More specification, we argue that

the research we initiated in [AS08b] in leveraging Lamport’s TLA logic [Lam94], could further

investigated towards composing and verifying behavioral Web-services.Indeed, we claim that it is

quite possible since CSrv-Nets transitions are governed by rewriting rules, we could refine as TLA

formulas in that recent work.

Multi-dimensional rule-based service development. We already hinted that the adopted

ECA-driven rules could be specialized for different concerns such as: Context-awareness, man-

agement and qualities and / or security and privacy. Nevertheless, we did not developed further

on such rule-centric separation of concerns. For instance, in [ABS09a, Aou09] we detail at the

descriptive-level, how context-awareness concerns as tailored ECA-driven rules, can be explicitly

separated from usual functionality concerns. A promising direction we are thus intensively explor-

ing consists in leveraging such descriptive results at the foundation and adaptive levels, following

the forwarded approach. In such manner, every concerns become adaptive on its own-level and

during the integration of concerns.

136 BIBLIOGRAPHY

Bibliography

[Aa02a] A. Ankolekar and et al. DAML-S:Web Service Description for the Semantic Web. In Proc.
of International Semantic Web Conference (ISWC), pages 348–363. IEEE CS, 2002.

[AA02b] G. Antoniou and M. Arief. Executable declarative business rules and their use in electronic
commerce. In Proceedings of the 2002 ACM symposium on Applied computing (SAC ’02),
pages 6–10. ACM Press, 2002.

[Aal03] W.M.P. Aalst. Don’t go with the flow: Web services composition standards exposed. IEEE
Intelligent Systems, 18:72–76, 2003.

[AB04] S. Askary and B. Bloch. Web service business process execution language version 2.0. Tech-
nical report, OASIS, http://www.oasis-open.org/apps/org/workgroup/wsbpel/, December
2004.

[ABFL07] J. Abreu, L. Bocchi, J.L. Fiadeiro, and A. Lopes. Specifying and Composing Interaction
Protocols for Service-Oriented System Modelling. In Formal Techniques for Networked and
Distributed Systems - FORTE 2007, volume 4574 of Lecture Notes in Computer Science,
pages 358–373. Springer, 2007.

[ABS00] N. Aoumeur, K. Barkaoui, and G. Saake. On the Benefits of Rewrite Logic as a Semantics
for Algebraic Petri Nets in Computing Siphons and Traps. In Proc. of the 10th International
Conference on Computing and Information (ICCI ’2000), Kuweit, 2000. to appear in LNCS,
Springer.

[ABS09a] N. Aoumeur, K. Barkaoui, and G. Saake. A Multi-Dimensional Architectural Approach to
Behavior-Intensive Adaptive Pervasive Applications. In Proc. of 4th International Sympo-
sium on Wireless Pervasive Computing (ISWPC’09), pages 1–8. IEEE CS Press, 2009.

[ABS09b] N. Aoumeur, K. Barkaoui, and G. Saake. Rapid-prototyping of Adaptive Component-based
Systems using Runtime Aspectual Interactions. In Proc. of 20th IEEE/IFIP International
Symposium on Rapid System Prototyping (RSP’09), pages 18–25. IEEE CS Press, 2009.

[ABS09c] N. Aoumeur, K. Barkaoui, and G. Saake. Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes. In Proc. of 4th IEEE International Conference on
Internet and Web Applications and Services (ICIW’09), pages 474–480. IEEE CS Press,
2009.

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer-Verlag, 2004.

[AFO06] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Distribution Concerns in Service-Oriented Mod-
elling. International Journal of Internet Protocol Technology (IJPT), 1(3):144–158, 2006.

[Aou02] N. Aoumeur. Specifying and Validating Consistent and Dynamically Evolving Concurrent
Information Systems: An Object Petri-net Based Approach . Shaker-Verlag, 2002. ISBN
3-8265-9971-3.

[Aou09] N. Aoumeur. Architectural Specification of Context-aware Service Applications in Rewriting
logic. Technical Report, ITI, FIN, Universitaet Magdeburg, 2009. Submitted for Publication.

[Ars04] A. Arsanjani. Service-Oriented Modeling and Architecture (SOMA). Report,
http://www.ibm.com/developerworks/webservices/library/ws-soa-design, IBM Developer-
Works, 2004.

BIBLIOGRAPHY 137

[AS02] N. Aoumeur and G. Saake. A Component-Based Petri Net Model for Specifying and Vali-
dating Cooperative Information Systems. Data and Knowledge Engineering, 42(2):143–187,
August 2002.

[AS04] N. Aoumeur and G. Saake. Dynamically Evolving Concurrent Information Systems: A
Component-Based Petri Net Proposal. Data and Knowledge Engineering, 50(2):117–173,
2004.

[AS08] N. Aoumeur and G. Saake. Modelling and Certifying Concurrent Systems: a Maude-
TLA Driven Architectural Approach. In In Proc. of of 5th International Conference on
Information Technology : New Generations (ITNG’08). IEEE CS, 2008.

[ASB07] N. Aoumeur, G. Saake, and K. Barkaoui. Incremental Specification Validation and Runtime
Adaptivity of Distributed Component Information systems. In 11th European Conference
on Software Maintenance and Reengineering (CSMR’07), pages 123–136. IEEE Computer
Society, 2007.

[AW02] T. Archer and A. Whitechapel. Inside Microsoft C#. Microsoft Press, 2002.

[BB91] M. Baldassari and G. Bruno. PROTOB : an Object Oriented Methodology for Developing
Discrete Event Dynamic Systems. Computing Languages, 16:39–63, January 1991.

[BBBea05] M. Beisiegel, H. Blohm, D. Booz, and et al. Service Component Architec-
ture. Building Systems using a Service Oriented Architecture. Technical report,
ibm.com/ibmdl/pub/software/dw/specs/ws-sca/SCA-White-Paper1-09.pdf, 2005.

[BBG97] O. Biberstein, D. Buchs, and N. Guelfi. CO-OPN/2: A Concurrent Object-Oriented Formal-
ism. In Proc. of Second IFIP Conf. on Formal Methods for Open Object-Based Distributed
Systems(FMOODS), pages 57–72. Chapman and Hall, March 1997.

[BCG+06] T. Batista, C. Chavez, A. Garcia, A. Sant’Anna, U. Kulesza, A. Rashid, and F. Filho.
Reflections on Architectural Connection: Seven Issues on Aspects and ADLs. In Proc. of
Workshop on Early Aspects at ICSE’06, 2006.

[BDO05] A. Barros, M. Dumas, and P. Oaks. Standards for Web Service Choreography and Orches-
tration: Status and Perspectives. In Proc. of Business Process Management (BPM 2005),
pages 61–74. LNCS, Vol. 3812, 2005.

[BGCM94] E. Battiston, V. Grespi, F. D. Cindio, and G. Mauri. Semantics Frameworks for a Class of
Modular Algebraic Nets. In M. Nivat, C. Rattray, T. Russ, G. Scollo, editor, Proc. of 3th.
International AMAST Conference, 1994.

[BGG+05] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and Orchestra-
tion: a synergic approach for system design. In Proc. of 3rd International Conference on
Service Oriented Computing (ICSOC’05), pages 228–240. LNCS vol. 3826. Springer, 2005.

[BJR98] G. Booch, I. Jacobson, and J. Rumbaugh, editors. Unified Modeling Language, Notation
Guide, Version 1.0. Addison-Wesley, 1998.

[BK05] M. Bajec and M. Krisper. A Methodology and Tool Support for Managing Business Rules
in Organisations. Information Systems, 30(6):423–443, 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

[BMSB93] M. Bettaz, M. Maouche, M. Soualmi, and S. Boukebeche. Protocol Specification using
ECATNets. Reséaux et Informatique Répartie, 3(1):7–35, 1993.

[Boo04a] D. Booth. Web Services Architecture. W3C Working Group Note,
http://www.w3.org/TR/ws-arch/, 2004.

[Boo04b] David Booth. Web Services Architecture W3C Working Group Note, February 2004.
http://www.w3.org/TR/ws-arch/.

[Bru02] Robert Brunner. Web services and Flows (WSFL). Sams Publishing,
www.developer.om/java/web/article.php/1462301, September 2002.

138 BIBLIOGRAPHY

[CCL00] W. Cazzola, S. Chiba, and T. Ledoux. Reflection and meta-level architectures: State of the
art, and future trends. In J. Malenfant, S. Moisan, and A. Moreira, editors, ECOOP’2000
Workshop Reader, volume 1964 of lncs, pages 1–15. Springer, 2000.

[CDE+07] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C.L: Talcott.
All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic. Lecture Notes in Computer Science (springer), 4350,
2007.

[CF05] C. Courbis and A. Finkelstein. Towards aspect weaving applications. In Proceedings of the
27th international conference on Software engineering (ICSE ’05), pages 69–77. ACM Press,
2005.

[CG01] S. Cheng and D. Garlan. Mapping Architectural Concepts to UML-RT. In Proc. of the In-
ternational Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2001), 2001.

[CGK+04] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana.
Business Process Execution Languagefor Web Services (BPEL4WS 1.1). http://www-
106.ibm.com/webservices/ws-bpel, IBM report, 2004.

[CGS01] F. Casati, D. Georgakopoulos, and M.C. Shan. Technologies for E-Services. In Proc. of
2nd International Workshop on Technologies for E-Services, pages 16–29. LNCS, Vol. 2193,
2001.

[CGS02] W. Cazzola, A. Ghoneim, and G. Saake. Reflective Analysis and Design for Adapting
Object Run-time Behavior. In Zohra Bellahsène, Dilip Patel, and Colette Rolland, editors,
Proceedings of the 8th International Conference on Object-Oriented Information Systems
(OOIS’02), Lecture Notes in Computer Science 2425, pages 242–254. Springer-Verlag, on
2nd-5th of September 2002. ISBN: 3-540-44087-9.

[CKM07] A. Charfi, R. Khalaf, and N. Mukhi. QoS-Aware Web Service Compositions Using Non-
intrusive Policy Attachment to BPEL. In In Proc. of International Conference on Service
Oriented Computing (ICSOC’07), volume 4749 of Lecture Notes in Computer Science, page
582593. Springer, 2007.

[CM96] M. Clavel and J. Meseguer. Reflection and Strategies in rewriting logic. In G. Kiczales,
editor, Proc. of Reflection’96, pages 263–288. Xerox PARC, 1996.

[CM04] A. Charfi and M. Mezini. Hybrid web service composition: Business processes meet busi-
ness rules. In Proceedings 2nd International Conference on Service Oriented Computing
(ICSOC04). ACM Press, 2004.

[CM07] A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL. World Wide
Web Journal: Recent Advances on Web Services (special issue), 10:309–344, 2007.

[DD04] R. Dijkman and M. Dumas. Service-Oriented Design: A Multi-Viewpoint Approach. Inter-
national Journal of Cooperative Information Systems, 13(4):337–368, 2004.

[DFS04] R. Douence, P. Fradet, and M. Sudholt. Composition, reuse and interaction analysis of
stateful aspects. In In Proc. In 4th Int. Conf. on Aspect-oriented Software Development
(AOSD’04), pages 141–150. ACM Press, 2004.

[DGS04] Skogan D., R. Grønmo, and I. Solheim. Web Service Composition in UML. In 8th Inter-
national Enterprise Distributed Object Computing Conference (EDOC 2004), pages 47–57.
IEEE Computer Society, 2004.

[DKL+08] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and Weske. M. Modeling Service Choreogra-
phies Using BPMN and BPEL4Chor. In Proc. of Advanced Information Systems Engineer-
ing, 20th International Conference (CAiSE’08), pages 79–93. LNCS, Vol. 5074, Springer,
2008.

[DW07] Kopp O. Leymann F. Decker, G. and M. Weske. BPEL4Chor: Extending BPEL for modeling
choreographies. In Proc. International Conference on Web Services, pages 296–303. IEEE,
2007.

BIBLIOGRAPHY 139

[EFB01] T. Elrad, R. Filmanand, and A. Bader. (guest editors). Communications of the ACM
(Special Issue on Aspect Oriented Programming), 44(10), 2001.

[EM85] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications 1 : Equations and initial
semantics. EATCS Monographs on Theoretical Computer Science, 21, 1985.

[EM06] A. Erradi and V. Maheshwari, P. Tosic. Policy-Driven Middleware for Self-adaptation of Web
Services Compositions. In ACM/IFIP/USENIX 7th International Middleware Conference,
volume 4290 of Lecture Notes in Computer Science, pages 62–80. Springer, 2006.

[ETM07] A. Erradi, V. Tosic, and P. Maheshwari. MASC -.NET-Based Middleware for Adaptive
Composite Web Services. In IEEE International Conference on Web Services (ICWS’07),
pages 727–734. IEEE Computer Society, 2007.

[FECA04] R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Development.
Reading, MA: Addison Wesley, 2004.

[FGV04] R. Farahbod, U. Glaesser, and M. Vajihollahi. Specification and Validation of the Business
Process Execution Language for Web Services. In W. Zimmermann and B. Thalheim,
editors, Proc. of ASM’2004, volume 3052 of Lecture Notes in Computer Science, pages
78–94. Springer, 2004.

[FS07] L. Fuentes and P. Sánchez. Towards executable aspect-oriented UML models. In Proceedings
of the 10th international workshop on Aspect-oriented modeling (AOM’07), pages 28–34.
ACM Press, 2007.

[GCB+06] A. Garcia, C. Chavez, V. Batista, C. SantAnna, U. Kulesza, R. Awais, and C. Pereira de
Lucena. On the Modular Representation of Architectural Aspects. In Third European Work-
shop On Software Architecture, EWSA 2006, volume 4344 of Lecture Notes in Computer
Science, pages 82–97. Springer, 2006.

[GLC99] B.M. Grosof, Y. Labrou, and H.Y. Chan. A declarative approach to business rules in
contracts: courteous logic programs in XML. In Proceedings of the 1st ACM conference on
Electronic commerce(EC’99), pages 68–77. ACM Press, 1999.

[Gri98] F. Griffel. Componentware : Konzepte und Techniken eines Softwareparadigmas. Dpunkt-
Verlag, Heidelberg, 1998.

[GS03] G.Meredith and S.Bjorg. Contracts and Types. In M.Papazoglou and D.Georgakopoulos
(guest editors), editors, Special Issue on Service-Oriented Computing, Communications of
the ACM, volume 46(10), pages 41–47. 2003.

[HB03] R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Composition. In
K. Schewe and X. Zhou, editors, Proceedings of the 14th Australasian Database Conference,
volume 17 of CRPIT, pages 191–200. Australian Computer Society, 2003.

[HBM08] R. Hamadi, B. Benatallah, and B. Medjahed. Self-adapting recovery nets for policy-driven
exception handling in business processes. Distributed Parallel Databases, 23:1–44, 2008.

[HHJT98] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about Classes in Object-
Oriented Languages: Logical Models and Tools. In Ch. Hankin, editor, European Sympo-
sium on Programming, volume 1381 of Lecture Notes in Computer Science, pages 105–121.
Springer, 1998.

[HHL05] J.H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of web service
descriptions: Enabling a precise matching concept. International Journal of Web Services
Research, 2(2):67–84, 2005.

[HJL+07] J. Han, Y. Jin, Z. Li, T. Phan, and J. Yu. Guiding the Service Composition Process with
Temporal Business Rules. In Proc. of International Conference on Web Services (ICWS’07),
pages 735–742. IEEE CS Press, 2007.

[Hun04] D Hunter. Beginning XML. Wiley Publishing, 2004.

[Jen92] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and practical Use -
Volume 1 : Basic Concepts. EATCS Monographs in Computer Science, 26, 1992.

140 BIBLIOGRAPHY

[JFT07] I.J. Jureta, S. Faulkner, and P. Thiran. Dynamic Requirements Specification for Adaptable
and Open Service-Oriented Systems. In In Proc. of 5nd International Conference on Service
Oriented Computing (ICSOC’07), volume 4749 of Lecture Notes in Computer Science, pages
270–282. Springer, 2007.

[JPHL07] J.Y. Jung, J. Park, S. Han, and L. Lee. An ECA-based framework for decentralized coordi-
nation of ubiquitous web services. Information Software Technology, 49(11-12):1141–1161,
2007.

[JR91] K. Jensen and G. Rozenberg. High-level Petri Nets. Springer, 1991.

[Kea97] G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP). LNCS, 1997.

[Kea01] G. Kiczales et al. An Overview of AspectJ. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’01), pages 327–353. LNCS 2072, 2001.

[KEP00] G. Knolmayer, R. Endl, and M. Pfahner. Modeling Processes and Workflows by Business
Rules. In W. van der Aalast et al., editor, Business Process Management, volume 1806 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2000.

[KL04] P. Kardasis and P. Loucopoulos. Expressing and Organising Business Rules. Information
and Software Technology, 2004.

[KOMC04] N. Kavantzas, G. Olsson, J. Mischkinsky, and M. Chapman. Web Services Choreography
Description Language (WS-CDL) 1.0. http://www.w3.org/tr/ws-cdl-10, w3.org, 2004.

[Kre01] Heather Kreger. Web services conceptual architecture (wsca
1.0). Technical report, IBM Software Group, http://www-
306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, May 2001.

[Lak96] C. Lakos. The consistent use of names and polymorphism in the definition of objects Petri
nets. In Proc. of 17th Application and Theory of Petri Nets, volume 1091 of Lecture Notes
in Computer Science, pages 380–399. Springer, 1996.

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

[LLGL08] H. Liu, Q. Li, N. Gu, and A. Liu. Exploiting Semantics for Analyzing and Verifying Business
Rules in Web Services Composition and Contracting. In Proc. of International Conference
on Web Services (ICWS’08), pages 112–119. IEEE CS Press, 2008.

[LMSW08] N. Lohmann, P Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting WS-BPEL
processes using flexible model generation. Data & Knowledge Engineering, 64, 2008.

[LOS97] P. Lang, W. Obermair, and M. Schrefl. Modeling Business Rules with Situation / Activation
Diagrams. In Proc. of the 13th International Conference on Data Engineering (ICDE), pages
455–464. IEEE Computer Society Press, 1997.

[Mar03] A. Martens. On Usability of Web Services. In Calero and Diaz and Piattini, editor, Proc.
of 1st Web Services Quality Workshop (WQW 2003), 2003.

[Mar06] D. Martin. Putting Web Services in Context. Electronic Notes in Theoretical Computer
Science, 146:3–16, 2006.

[MBM+07] H. Motahari, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-Austomated
Adaptation of Service Interactions. In The 16th International World Wide Web Conference
(WWW2007), 2007.

[MDM09] S. McIlvenna, M. Dumas, and Wynn. M.T. Synthesis of Orchestrators from Service Chore-
ographies. In Conceptual Modelling 2009, Sixth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2009), pages 129–138. Australian Computer Society, Vol. 96, CRPIT,
2009.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model for concurrency. Theoretical
Computer Science, 96:73–155, 1992.

BIBLIOGRAPHY 141

[MOM96] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In
J. Meseguer, editor, Proc. of First International Workshop on Rewriting Logic, volume 4 of
Electronic Notes in Theoretical Computer Science, pages 189–224, 1996.

[MOO04] D. Moldt, S. Offermann, and J. Ortmann. A Proposal for Petri Net Based Web Service
Application Modeling. In In Proceedings of ICWE 2004, volume 4140 of Lecture Notes in
Computer Science, pages 93–97. Springer, 2004.

[MOPF+05] N. Marti-Oliet, I. Pita, J.L Fiadeiro, J. Meseguer, and T.S.E. Maibaum. A Verification
Logic for Rewriting Logic. J. Log. Comput., 15(3):317–352, 2005.

[MPP02] M. Mecella, F.P. Presicce, and B. Pernici. Modeling E-service Orchestration through Petri
Nets. In A. Buchmann et al., editor, TES 2002, volume 2444, pages 38–47, 2002.

[MRS05] P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to the SOA.
Annals of Mathematics, Computing & Teleinformatics, 1(3):35–43, 2005.

[MS04] K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of Service
Based Systems. In M. Aioello, M. Aoyama, F. Curbera, and M. Papazoglou, editors, 2nd
International Conference on Service Oriented Computing (ICSOC’04). ACM Press, 2004.

[MSK08] P. Mayer, A. Schroeder, and N. Koch. A Model-Driven Approach to Service Orchestration.
In Proceedings of the IEEE International Conference on Services Computing (SCC’08).
IEEE Computer Society, 2008.

[MT00] N. Medvidovic and R.N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering, 26(1):70–
93, 2000.

[New02] Eric Newcomer. understanding web services. Addision-Wesleyu, September 2002.

[NM03] S. Narayanan and S. McIlraith. Analysis and Simulation of Web Services. Computer Net-
works, 42:675–693, 2003.

[NRD06] C. Nagl, F. Rosenberg, and S. Dustdar. ViDRE - A Distributed Service-Oriented Business
Rule Engine based on RuleML. In 10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’06). IEEE Computer Society, 2006.

[OH06] G. Ortiz and J. Hernendez. Toward UML Profiles for Web Services and their Extra-
Functional Properties. In IEEE International Conference on Web Services (ICWS’06),
pages 889–892. IEEE Computer Society, 2006.

[OMG01] OMG. The Common Object Request Broker : Architecture. Object Management Group, 2.4
Edition, Nov.2000, http://www.omg.org/technology/documents/formal/corbaiiop.htm, 2001.

[OMG05] OMG. UML 2.0: Superstructure Specification. Version 2.0, formal/05-07-04. Technical
report, omg.org, 2005.

[OVvdA+07a] C. Ouyang, E. Verbeek, V.M.P van der Aalst, S. Breutel, M. Dumas, and A.H. ter Hof-
stede. Formal semantics and analysis of control flow in WS-BPEL. Sciences of Computer
Programming, 67(2-3):162–198, 2007.

[OVvdA+07b] C. Ouyanga, E. Verbeekb, V.M.P. van der Aalst, F. Breutela, M. Dumas, and A.H.M.
Hofstedea. Formal semantics and analysis of control flow in WS-BPEL. Science of Computer
Programming), 67:162–198, 2007.

[owl04] Bringing Semantics to Web Services: The OWL-S Approach, volume 3387 of LNCS.
Springer, 2004.

[OYP03] B. Orriëns, J. Yang, and M.P. Papazoglou. A Framework for Business Rule Driven Web
Service Composition. In Proc. of Conceptual Modeling for Novel Application Domains,
volume 2814 of Lecture Notes in Computer Science, pages 52–64. Springer, 2003.

[Pap07] M.P. Papazoglou. Web Service: Principles and Technology. Prentice-Hall, Englewood Cliffs,
2007.

142 BIBLIOGRAPHY

[PD99] N.W. Paton and O. Dyaz. Active Database Systems. ACM Computing Surveys, 31(1):63–
103, 1999.

[Pel03] C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–52,
2003.

[PPSGS04] V. Poladian, J. Pedro Sousa, D. Garlan, and M. Shaw. Dynamic Configuration of Resource-
Aware Services. In Proceedings of the 26th International Conference on Software Engineering
(ICSE). ACM Press, 2004.

[PTDL07] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. Computer, 40(11):38–45, 2007.

[PTDL08] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
a Research Roadmap. Int. J. Cooperative Inf. Syst., 17(2):223–255, 2008.

[RD05] F. Rosenberg and S Dustdar. Towards a Distributed Service-Oriented Business Rules Sys-
tem. In Proc. of the of EEE European Conference on Web services (ECOWS). IEEE Com-
puter Society Press, 2005.

[Rei85] W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science, 4, 1985.

[Rei91] W. Reisig. Petri Nets and Abstract Data Types. Theoretical Computer Science, 80:1–30,
1991.

[RIM08] I. Rauf, M.Z.Z. Iqbal, and Z.I. Malik. UML Based Modeling of Web Service Composition
- A Survey. In Proc. of Software Engineering Research, Management and Applications
(SERA’08), pages 301–307. IEEE Computer Society, 2008.

[RLA+09] S. Rahman, A. Lodhi, N. Aoumeur, C. Rautenstrauch, and G. Saake. Intra-Service Adapt-
ability for ECA-Centric Web Services using Contract and Aspect. In Proc. of IADIS Inter-
national Conference Information Systems 2009 (IS’09), pages 135–142. IADIS Press, 2009.

[Rul05] RuleML. The Rule Markup Initiative. www.ruleml.org, 2005.

[RW02] D. Rosca and C. Wild. Towards a Flexible Deployment of Business Rules. Expert Systems
with Applications, 23:385–394, 2002.

[SB94] C. Sibertin-Blanc. Communicative and cooperative nets. In E. Astesiano, R. Reggio, and
A. Tarlecki, editors, Proc. of the 15th International Confernce on the application and Theory
of Petri Nets, volume 815 of Lecture Notes in Computer Science. Springer, 1994.

[SB05] Q.Z. Sheng and B. Benatallah. ContextUML: A UML-Based Modeling Language for Model-
Driven Development of Context-Aware Web Services Development. In International Con-
ference on Mobile Business (ICMB’05), pages 206–212. IEEE CS Press, 2005.

[SCZ04] M. Solanki, A. Cau, and H. Zedan. Introducing Compositionality in Web Service Descrip-
tions. In Proceedings of the International Conference on World Wide Web. IEEE Computer
Society Press, 2004.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[SGS04] D. Skogan, R. Groenmo, and R. Solheim. Web service composition in uml. IEEE interna-
tional, pages 47–57, Sept 2004.

[SS99] J.G. Schmolzea and W. Snyder. Detecting redundancy among production rules using term
rewrite semantics. Knowledge-Based Systems, 12(1-2):3–11, 1999.

[ST01] Andrew. S. and M.V.S Tanenbaum. Distributed Systems:Principles and Paradigms. Prentice
Hall PTR, 2001.

[Ste98] M.-O. Stehr. A Rewriting Semantics for Algebraic Petri Nets. Manuscript, SRI International,
March 1998.

[TBL01] Ora Lassila T. Berners-Lee, J.Hendler. The Semantic Web. Scientific Amrican, May 2001.

BIBLIOGRAPHY 143

[Tec04] Technical. Uddi technical white paper. Technical report, OSSIS, http://uddi.org/pubs/uddi-
tech-wp.pdf, October 2004.

[Tha01] S. Thatte. Xlang web services for business process design, 2001.

[TWB03] S. Tabet, G. Wagner, and H. Boley. MOF-RuleUML: The Abstract Syntax of RuleML as a
MOF Model. In N. Lenehan, editor, Integrate 2003, 2003.

[URAS09] S. Ur Rahman, N. Aoumeur, and G. Saake. An Adaptive ECA-Centric Architecture for
Agile Service-Based Business Processes with Compliant Aspectual .NET Environment. In
Proc. of ACM The 10th International Conference on Information Integration and Web-based
Applications & Services (iiWAS2008), pages 240–247. ACM Press, 2009.

[Val01] Ruediger Valk. Concurrency in communicating object petri nets. In G. Agha, F. de Cindio,
and G. Rozenberg, editors, Concurrent Object Oriented Petri Nets, volume 2001 of Lecture
Notes in Computer Science, pages 164–165. Springer, 2001.

[VCJ03] B. Verheecke, M.A. Cibran, and V. Jonckers. AOP for Dynamic Configuration and Man-
agement of Web Services. In In Proc. of International Conference on Web-Services (ICWS-
Europe’03), pages 137–151. LNCS, Volume 2853, 2003.

[VdABHK00] W.M.P. Van der Aslst, A. Barros, H.M. Hofstede, and B. Kiepuszewski. Advanced workflow
patterns. In Proc. of COOPIS’2000, pages 18–29, 2000.

[vdAWMO+06] van der Aalst. W., Dumas. M., C. Ouyang, A. Rozinat, and H.M.W. Verbeek. Choreography
Conformance Checking: An Approach based on BPEL and Petri Nets. In The Role of
Business Processes in Service Oriented Architectures. Dagstuhl Seminar Proceedings, 2006.

[Ved01] A.S. Vedamuthu. Web Services Description Language (1.1). W3C Recommendation,
http://www.w3.org/TR/wsdl, March 2001.

[W3C04] W3C. Web Services Choreography Description Language Version 1.0. IEEE Computer,
http://www.w3.org/TR/2004/WD-wscdl-10-20041217, 2004.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and DF Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WSReliable
Messaging, and More. Prentice-Hall, Englewood cliffs, 2005.

[Web08] Web. Web-Services Architect, Part 2: Models for dynamic-business. Web, http://www-
106.ibm.com/developerworks/webservices/library/ws-arc2.html, 2008.

[Weg90] P. Wegner. Concepts and paradigms of Object-Oriented Programming. OOPS Messenger,
1:7–87, 1990.

[WFF] WFF:. Windows Workflow Foundation. Technical report,
http://netfx3.com/content/WFHome.aspx.

[WKL03] W.M.N. Wan-Kadir and P. Loucopoulos. Relating Evolving Business Rules to Software
Design. Journal of Systems Architecture, 2003.

[WSHG06] Y. Wang, S. Singh, J. Hosking, and J. Grundy. An aspect-oriented UML tool for software
development with early aspects. In Proceedings of the 2006 international workshop on Early
aspects at ICSE, pages 51–58. ACM Press, 2006.

[YK04] X. Yi and K.J. Kochut. A CP-nets-based Design and Verification Framework for Web
Services Composition. In In Proceedings of 2004 IEEE International Conference on Web
Services, pages 756–760. IEEE Computer Society, 2004.

[YK05] X. Yi and K.J. Kochut. A CPNets-based Framework for Design and Analysis for Service
Oriented Distributed Systems. ACM Transaction on Internet Technology, ??, 2005.

[YM01] A. Yonezawa and S. Matsuoka, editors. Metalevel Architectures and Separation of Crosscut-
ting Concerns. Springer, Volume 2192, Proc. REFLECTION 2001, 2001.

[YTX05] Y. Yang, Q. Tan, and Y. Xiao. Verifying Web Services Composition Based on Hierarchical
Colored Petri Nets. In Proceedings of IHIS05, pages 47–53. ACM Press, 2005.

144
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

Appendix A

Algebraic Specifications, (High-level)
Petri Nets, Rewriting logic and
Maude: Overview

As sketched in the previous chapter the approach we are proposing in this thesis is to leverage

rewriting techniques to aspectual architectural level. Besides that, this approach is mainly conceived

for specifying and validating advanced information system. In this chapter we will first recall some

concepts from algebraic abstract data type and rewriting techniques, and then rewriting logic is

introduced. In the rewriting logic, concurrent computation by rewriting coincides with logical

deduction.

A.1 Algebraic specification: an overview

Abstract data type are ubiquitous in different programming and specification paradigms. They

allow describing a class of data domains. It is therefore desirable to find a way of characterizing

their semantics. The most widely accepted methods of describing abstract data types use many-

(order-)sorted algebras. This section introduces some standard definitions and results of many-

order-sorted algebras and algebraic specifications. Most of these definitions are borrowed from

[EM85, ?].

Definition A.1.1 (Order-Sorted Signature): An order-sorted signature Sig = (S, ≤, F) con-
sists of a set S of sort names, a partial order ≤ on S, and a set F of declarations of function symbols
with arity in S∗ × S. The elements of S∗ are often denoted by ~s . If there are several declarations
(f : s1× ...× sn → s0) ∈ F for the same symbol f and different arities (s1× ...× sn → s0) then f is
called overloaded in Sig. If ≤ is the flat ordering (i.e. for no s1, s2 ∈ S, s1 6= s2, we have s1 ≤ s2),
then Sig is called many-sorted.

◮ Example A.1.2 The following algebraic signature Nat defines the syntax of natural numbers.

obj NAT is
sorts Nat .
op 0 : → Nat .
op succ : Nat → NzNat .

A.1 Algebraic specification: an overview 145

op + : Nat × Nat → Nat .
endo

Definition A.1.3 (Order-Sorted Algebras) Let (S, ≤, F) be an order-sorted signature. Then
a universe order-sorted algebra consists of a carrier A together with an indexed set {As|s ∈ S} of
subsets of A such that A =

⋃
s∈S A, with an interpretation of each operator (f : s1× ...×sn, s) ∈ F

as a partial function fA : As1 × ...×Asn → As such that:

- As ∈ As
′ for s ≤ s

′
, and

- if (f : ~s1 → s0) ∈ F and (f : ~s
′

1 → s
′

0) ∈ F and ~s1 ≤ ~s
′

1 then fA : ~A
s
′
1
→ A

s
′
0

- the class of all Sig-algebras is denoted by Alg(Sig).

We assume an infinite set X of variables. A metavariable over X is denoted by x. All variables

are typed when used. The type of a variable is made known by a declaration of the form: x : s the

sort of x is denoted sort(x). �

Definition A.1.4 (Terms and Term-Algebra): Let Sig = (S,≤, F) be a signature.

(1) A term of sort s ∈ S is either a variable x with sort(x) ≤ s or it has the form f(t1, ..., tn),
where (f : s1 × ...× sn → s0) ∈ F and ti is as term of sort si and s0 ≤ s. A term over Sig is
a term of sort s ∈ S.

(2) A term is called closed (or ground) if it contains no variables, otherwise it is open (or simple
a term).

(3) The set of all open terms over Sig with variables from a variable set X is denoted TSig(X).

The set of open terms over Sig of sort s with variables from X is denoted T S
Sig(X). The set

TSig(φ) of all colsed terms is denoted TSig, and the closed terms of sort s are T S
Sig.

(4) TSig is a Sig-algebra that takes: (TSig)s := T S
Sig, f

TSig(t1, ..., tn) := f(t1, ..., tn). TSig is called
the term algebra of Sig.

◮ Example A.1.5 the term algebras of the natural number Nat for example:
TNat = {0 ; succ(0) ; succ(succ(0)) ;; +(succ(succ(0)),0) ;
succ(+(succ(0),succ(succ(succ(0)))))... .}
Term algebras seem trivial but are fundamental because they reduce the universe to things that
are nameable by the closed terms of the signature.

Definition A.1.6 (Assignment and Substitution): Let A be a Sig-algebra and X be a set of
variables.

(1) An assignment ass : X → A is a function with ass(x) ∈ Asort(x).

(2) Let t be a Sig-term containing only variables from X. The denotation ass(t)A is defined by
induction on the structure of t :

(a) ass(x)A = ass(x),

(b) ass(f(t1, ..., tn))A = fA(ass(t1)
A, ..., ass(tn)A). if t is a ground term we write tA instead

of ass(x)A.

146
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

(c) A substitution is an assignment θ : X → TSig(Y) for a set Y of variables.

Definition A.1.7 (Equations): Let Sig = (S,≤, F) be a signature. An equation over Sig has
the form (D, C, e), where:
D = {x1 : s1, ..., xn : sn} for si ∈ S is a set of typed variables declarations,
e is a pair of terms tl and tr, written : tl = tr, and
C is a set of pairs of terms of the same form as e called conditions. �

All variables occurring in C and e must be declared in D. if C is empty, the equation is called
unconditional, otherwise it is called conditional. e and each of the element of C are called open
equations. If the set of variables declared in D is X, then we also write D(X) instead of D.

Definition A.1.8 (Order-Sorted Specification): An order-sorted specification Spec = (S, ≤,
F, E) consists of a signature (S,≤, F) and a set E of equations over this signature. By TSpec(X)
we refer to the term algebra over the signature of Spec.

◮ Example A.1.9 The Nat signature can be extended to a Nat specification adding suitable
equations.

obj NAT is
sorts Nat .
op 0 : → Nat .
op succ : Nat → NzNat .
op + : Nat × Nat → Nat .
var n : Nat .
var m : Nat .
eq +(n, 0) = n .
eq +(succ(n), m) = succ(+(n, m)) .

endo

The terms of sort Nat are generated by the constant 0 and the function succ, using data items.
0 and succ are called generator or constructor functions. + is a projection or defined function.

A.2 (High-level) Petri-Nets: Main Concepts

In 1962, Petri Nets was first introduced by Carl Adam Petri in his Phd work ”Kommunikation

mit automaten”[?]. Here are many reasons that make Petri nets one of the leading framework

for describing and analysing behavioral aspects in different kinds of concurrent and distributed

systems. Indeed, Petri nets have been used to model and analyze complex applications in a wider

variety of domains such as distributed software systems, business processes, telecommunication for

designing and analysing protocols, information systems.

• They sharply distinguish between states and activities (the latter defined as state changes),

through the distinction between places (local states) and transitions (local activities).

• depending of the chosen interpretation different semantics can be assignment to the behavior

of a Petri net ranging from sequential, interleaving, pomset to true concurrent ones.

A.2 (High-level) Petri-Nets: Main Concepts 147

• while being formal, Petri nets also come with graphical representation (i.e. states can be mod-

eled as circles, operations as boxes, and flow relations as an arcs) which is easy to comprehend

and has therefore some wide appeal for practionners.

• By their representation as directed, connected, and bipartite graphs, Petri nets have useful

links both to graph theory and to linear algebra which can be exploited for the verification

of systems(e.g. reachability, deadlock, and liveness).

A.2.1 Place/Transitions Petri nets

Place/Transitions nets is a Petri net comprising a net graph with positive number associated with

arcs and an intial marking function which associate a nutural number of simple tokens’black dot’

with places. The definition of(Place / transition-Petri nets) can be represented by a tuple

N = (P, T, F,M,W) where :

(i) P and T are nonempty, finite, disjoints sets (the places and transitions of N , respectively),

(ii) F ⊆ (P × T) ∪ (T × P) is a set of directed arcs (flow relation),

(iii) W : F → N/0, attaches a weight to each arc of the net,

(iv) M : S → N , is the initial marking.

Places, transitions, and arcs will graphically be modeled by circles, boxes and arrows, respec-

tively. We also mention that for some practical cases, capacities may be attached places. Each

capacity represent a natural number as a maximum number of tokens to be hold in such place.

◮ Example A.2.1 (the dining philosophers) The left hand-side of Figure A.1 shows the well-
known example of the five dining philosophers. In this net each philosopher Pi (with i ∈ {1, .., 5})
may be in one of the two states, either eating or thinking, corresponding respectively to (presence
of a token in) the places Pi E and Pi T . Each fork is modeled by a corresponding place, where
the presence of a token indicates the availability of the fork. For each philosopher there are two
actions (i.e. transitions): ‘thinking or eating’. When philosopher’s state changes from thinking to
eating (resp. eating to thinking), the two forks on its left and right become no more available (resp.
available again). Initially, all philosophers are thinking and thus all forks are available. �

Definition A.2.2 (Transition enabling and next marking)

(i) Given a transition t, its input places are represented by •t while its output places are repre-
sented by t•. They are formally defined by:

•t = {p | (p, t) ∈ F}
t• = {p | (t, p) ∈ F}

(ii) A transition t is M -enabled (i.e. it can be fired under the marking M) iff
∀s ∈ •t : M(p) ≥W (p, t).

148
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

E
at

5

Fork1

P5_E

P5_T

Fork4
P4_E

P4_T

Fork3

P3_E

P3_T

Release1

R
el

ea
se

5

R
el

ea
se

3

E
at

3

Eat4

Release4

Fork2

P1_E P1_T

Eat2

P2_E

P2_T

Release2

Eat1

Fork5

Fork1

P5_E

P5_T

Fork4
P4_E

P4_T

Fork3

P3_E

P3_T

Release1
R

el
ea

se
5

R
el

ea
se

3

E
at

3

Release4

Fork2

P1_E P1_T

Eat2

P2_E

P2_T

Release2

Eat1

Fork5

Eat4

Figure A.1: The dining philosopher problem as a P / T-net.

(iii) An M -enabled transition t ∈ T may yield after its firing a follower or next marking M ′ of M
which is such that for each p ∈ P ,

M ′(p) =





M(p)−W (p, t) iff p ∈ •t/t•

M(p) + W (t, p) iff p ∈ t•/ •t
M(p)−W (p, t) + W (t, p) iff p ∈ •t ∩ t•

M(p) otherwise





◮ Example A.2.3 By applying these firing rules to the initial marking of the dining philosopher
net in the left-hand side of Figure A.1, we may for instance result in the marking depicted in the
right hand-side. This net is resulting from firing the transition Eat1 and Eat3, that is, the first
and the third philosophers enter the eating state while their left and right forks (i.e. f1, f2, f3, f4)
become no more available. �

A.2.2 High-level Petri nets (HLPN): An overview:

Basically, one of the main drawback of using petri-nets is the explosion of the number of the

elements of their graphical form when they describe complex systems.Therefore, High-level Petri

nets were developed to overcome this problem by introducing higher-level concepts, such as the use

of complex structured data as a tokens with information attached to them (algebraic expression).

Algebraic Petri nets High-level Petri nets [JR91] and algebraic Petri nets [Rei91] in particular

have been mainly introduced to significantlly reduce the size explosion of Place / Transition nets

when dealing with real complex systems. Algebraic Petri nets thus support the construction of

consice, but nevertheless comprehensible and transparent models of real-world systems. The main

ideas consist in gathering different places referring to a same kind (or sort) of entities, where instead

of black dots tokens we result rather in algebraically structured ground terms. Given a Place /

Transition net this operation returns to factor out all common similar subnets also called a folding

operation. With such structured tokens also arc inscriptions have to be adapted in consequence;

A.2 (High-level) Petri-Nets: Main Concepts 149

they are in general multiset of terms with a same sort corresponding to their input /output places.

Transitions’ firing involves different notions of term substitutions.

The purpose of this subsection is to recall the main concepts of algebraic Petri nets as introduced

in [Rei91]. First, the notion of multiset of terms which represents the key element in algebraic Petri

nets is introduced. Then, we recall the formal definitions of algebraic Petri nets.
Given a specification SPEC = (S,OP,E)1 , we denote the specification m SPEC by

(Ŝ, ÔP , Ê), respectively. Following the OBJ notation, m SPEC can be described as follows:

obj m SPEC is
extending SPEC .
sort ms .
op ϑs : → ms .
op MAKEs : s → ms.
op +s : ms ms → ms.
op -s : ms → ms.
var t1, t2, t3 : ms

eq t1 + sϑs = t1
eq t1 + st2 = t2 + st1 /* the commutativity of +s */
eq (t1 + s(t2 + st3)) = ((t1 + st2) + st3) /* the associativity of +s */
eq t1 + s(−st2)) = ϑs

endo.

For sake of simplicity, in the following with multiset terms we will drop the sort indices s of op-

erations symbols, and write ϑ instead of ϑs. As an example, with constant symbols a and b of some

sort s, a−b for instance will stand for the multiset terms MAKEs(a)+s (−MAKEs(b)). Nonnega-

tive multisets can be specified using (besides the operation symbols of the underlying specification)

only the operation symbols ϑs, MAKEs and +s. This motivates the following concepts.

Definition A.2.4 (Algebraic Petri nets) Let N = (P, T, F) be a net, let SPEC = (S,OP,E)
be an algebraic specification, and let X be a family of Sig-variables—with Sig = (S,OP).

(i) A mapping s : P → S is called a sort assignment of N. Assuming s, for places p ∈ P let
∼
p

denote the multiset sort ms(p).

(ii) A mapping M0 : P → TOP+ with M0(p) ∈ T
OP+,

∼
p

for each p ∈ P is called a s-respecting

initial marking of N.

(iii) A mapping λ : F → TOP+(X) with λ(f) ∈ T
OP+,

∼
p
(X) for each f = (t, p) or f = (p, t) is

called a s-respecting arc inscription of N .

(iv) A triple ins = (s,M0, λ) of a sort assignment s of N , a s-respecting initial marking M0 of N ,
and a s-sorted arc inscription λ of N , is called a SPEC-inscription of N, and (N, ins,E) is
SPEC-inscribed net. As a shorthand, N is said to be inscribed assuming that ins and E can
be understood from the context.

◮ Example A.2.5 (The dining philosophers as an algebraic net) A simple look at the dining
philosophers modelling in Figure A.1 using P / T-nets shows that this net is composed of five similar
subnets that could not be reduced in a one subset due to the indistinguishability of the tokens as
black dots. The corresponding algebraic net of this problem as shown in Figure A.2 achieves such a

1We are using (S, OP, E) instead of (S, F, E) as previous due to the use of F as arc relation.

150
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

folding, where all (available) forks are gathered into a single place while philosophers may be either
in a ‘thinking’ place or in a ‘eating’ place.

To result in a such compact and very comprehensive net depicted in the left-hand side of Figure
A.2 , an associated algebraic specification has to describe the existence of five philosophers denoted
by pi, i = 1..5 and five forks denoted by fi, i = 1..5 with phils and forks as sorts respectively. It
defines also two unary operators Lf and Rt representing respectively the left- and the right-hand
side forks of a given philosopher; this correspondence is made explicit using two equations. Finally,
we note that the sort assignment s to each place is given by s(P eating)= s(P thinking) = phils,
and s(Forks) = forks. M0 and λ are directly depicted in Figure A.2.

obj Phil is
sort phils forks .
op f1, f2, f3, f4, f5 : → forks .
op p1, p2, p3, p4, p5 : → phils.
op Lf : phils → forks.
op Rt : phils → forks.
var pi, x : phils, fi : forks
eq Rt(pi) = fi, for i ∈ {1, .., 5}
eq Lf(pi) = fi−1, for i ∈ {1, .., 5} with f0 = f5

endo.

Forks
Eat

Release

P_Eating

P_Thinking

True
Lf(p) + Rt(p)

p

True

p

Lf(p) + Rt(p) p

f1 +

f4 + f5

p1 + p2p

Forks
Eat

Release

P_Eating

P_Thinking

True
Lf(p) + Rt(p) p

p

True

p4 + p5

p

Lf(p) + Rt(p) p

p1 + p3

f4f2 + f3 + +p3 + p4
+p5

 p2+

Figure A.2: The dining philosopher problem as an algebraic Petri net

�

◮ Example A.2.6 In the right-hand side of Figure A.2 we depicted a next state of the philoso-
phers, where the philosophers p1 and p3 enter the eating state; which implies their left and hand-side
forks are no more available. To result in this marking, the transition Eat has to be fired twice.
This first (resp. the second) firing is achieved by substituting the variable p inscribing the input
arc relating the place P Thinking to the transition Eat by the closed constant term p1 (resp. p3).
By doing so, the input arc relating the place Forks to this transition, namely Lf(p) + Rt(r) is
systematically substituted to Lf(p1)+ Rt(p1) (resp. Lf(p1)+ Rt(p1)), which using the equation in
the specification it corresponds to the forks f5 + f1 (resp. f2 + f3). �

A.2.3 Object-oriented Petri Nets: An overview

Important to point out at this level is that with the emerging of the object-oriented(OO) paradigm,

several variants of high-level (OO) Petri nets have been proposed. Among these OO Petri Nets

A.3 Rewriting techniques 151

formalisms, which allow to integrate different OO mechanisms (e.g. classification, inheritance,

object-composition, etc), we may mention the following.

Cooperative Objects (CO) [SB94] is a formalism that aims at modeling an information system

as a collection of objects that cooperate concurrently. Each cooperative object belong to a class. A

cooperative object posses a type (the one of the class it belongs), an identity, and a state composed

of values of built-in data types and/or references on the cooperative objects. Object Petri Nets

(OPN)] [Lak96] are presented as an extension of Coloured Petri Nets (CPN) [Jen92] which integrate

object-oriented structuring concepts. The components of a net, whether tokens, places, transitions,

or event subnets, now become objects. Each Petri net can be defined as a class which can be, as

usual, instantiated. In addition to places and transitions, a class contains data fields and functions.

Co-OPNet(concurrent Object-Oriented Petri Nets)[BBG97] is a specification language designed

for the specification and the modeling of large concurrent systems.

Capitalizing on the strengths of such proposals, we put forwards in [AS02, AS04] a new form

of component-based Petri nets for developing evolving concurrent information systems. The two

underlying formalisms of Co-nets are (order-sorted) algebraic specifications and Petri nets, while

promoting intra- and inter-component interactions. The formalism is semantically governed by a

rewriting logic-based theory.

A.3 Rewriting techniques

Rewriting is an outgrowth of equational reasoning where instead of substituting equals by equals we

substitute expressions by simpler expressions. Term rewriting systems have been widely proposed

as computational substitutes for equational logic. Their main use has been in prototyping algebraic

specifications of abstract data types.

We devote this subsection to a survey of some standard definitions and results about rewriting

that are useful for the subsequent work. Our survey is more inspired by [?]. In the following

definitions we assume that S is a set of sorts and Sig is an S -sorted signature.

Definition A.3.1 (Sig-rewrite rule): A Sig-rewrite rule (or simply rewrite rule if the signature
is understood from the context) is a triplet (X, l, r) where X is a set of variables, and l and r are
terms of some sort s with variables from X (i.e. l, r ∈ T S

Sig(X)). Generally, it is also required that

var(r) ⊆ var(l) and no left-hand side can be a single variable. A term rewriting system, or TRS is
a set of rewrite rules.

We usually write the rule (X, l, r) as (∀X)l ⇒ r. The main difference between rewrite rules

and equations is that the rewrite rules are directional. We will see below how this is reflected in

the difference between the way rules and equations are used.

◮ Example A.3.2 The following two rewrite rules allow reducing any natural number containing
addition operator ‘+’ to a corresponding term with just the successor operator s, as natural
numbers constructor.

152
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

obj NAT is
sort Nat .
op 0 : → Nat [ctor] .
op s : Nat → NzNat .
op + : Nat Nat → Nat [assoc comm].
var N : Nat .
var M : Nat .
rl N + 0 ⇒ N .
rl s(N) + M ⇒ s(N + M) .

endo

For the introduction of the (rewrite) relation induced by a rewriting system, we need the defi-

nition of term positions and replacement at a given position.

Definition A.3.3 (Term-Position): Given a term t, the set of position in t, denoted by Dom(t),
is the set of sequences of natural numbers defined as:

• If t is a constant or a variable, then Dom(t) = {φ}.

• If t is of the form f(t1, ..., tn), then Dom(t) = {φ}⋃{i.p|i ∈ {1, ..., n}∧
p ∈ Dom(ti)}. �

Term positions associated with a term are usually depicted as a tree, there each node represents

a position.

◮ Example A.3.4 With respect to the above example, let t be the term t = ss0 + (0 + s0); the
corresponding tree is desplayed in Figure ?? with

• Dom(t) = {φ, 1, 2, 1.1, 2.1, 2.2, 1.1.1, 2.2.1}

This example shows that each p ∈ Dom(t) corresponds, in the associated tree, to a ”path” from

the root to some node.

Definition A.3.5 (Subterms) Given a term t, and a position p ∈ Dom(t), we define the subterm
of t rooted at p, denoted by t|p, as:

• If p = φ then t|p = t

• If p = i.p
′

(and therefore t is of the form f(t1, ..., ti−1, ti, ti+1, ..., tn) for some n ≥ i) then
t(t1, ..., tn)|i.p′ = ti|p′ .

• A term t
′
is said to be a subterm of t iff there exists p ∈ Dom(t) such that t

′
= t|p.

◮ Example A.3.6 From the term t = ss0 + (0 + s0) in the above example, we have for instance:
t|1 = ss0, and t|2.2 = s0.

Definition A.3.7 (Term replacement): Given a term t ∈ TSig,s, a position p ∈ Dom(t) such

that t|p ∈ TSig,s
′ , and a term t|′ ∈ TSig,s

′ we define t[p← t
′
] as

• If p = φ then t[p← t
′
] = t

′

A.4 Rewriting logic 153

• If p = i.p
′

(and therefore t is of the form f(t1, ..., ti−1, ti, ti+1, ..., tn) for some n ≥ i), then

f(t1, ..., ti−1, ti, ti+1, ..., tn)[i.p← t
′
] =

f(t1, ..., ti−1, ti[p← t
′
], ti+1, ..., tn).

◮ Example A.3.8 From the term t = ss0 + (0 + s0) in example 2.2.2, we have for instance:
t[1← 0] = 0 + s0

Definition A.3.9 (Rewriting a term): Given a TRS R, we define a rewrite relation over

TSig(Y), denoted by ⇒R, as t⇒R t
′
if and only if there exist

• a rule (∀X) l⇒ r in R, where t and r are of some sort s,

• a substitution σ : X → TSig(Y),

• a position p in t such that t|p is of sort s, such that: t|p = σ(l) and t
′
= t[p← σ(r)].

In this case we say that t rewrites (in one step) into t
′
at position p. We speak about concurrent

rewriting when this rewriting process is applied in parallel to several (independent) positions.

◮ Example A.3.10 Let t be the term t = (ss0 + s0) + s(0 + s0). In this term the subterm at
position 1, that is t1 = ss0+s0 can be matched with the left-hand term of the second rewrite rule in
example 2.2.2 (i.e. s(m)+n⇒ s(m+n)). The corresponding substitution os σ = {m→ s0, n→ s0}.
The term t can be rewritten to the more simplified form t

′
= s(s0 + s0) + s(0 + s0). Note that

this term can be simultaneously rewritten at positions 1 and 2. In this case the term t becomes
t
′
= s(s0 + s0) + ss0. More applications of both rules result in the simplified term t = sssss0 (also

called in a ”normal form”).

To result in a decision procedure based on rewriting techniques for the equational logic, two

properties are required for a given rewriting system: the termination and confluence. While the

termination should ensure that any rewriting process terminates, the confluence property ensures

that all non-deterministic rewritings of a given term result in the same (simplified) term called

normal form.

A.4 Rewriting logic

Rewriting logic, as a new paradigm for concurrent systems, has been introduced by J. Meseguer

in [Mes92] by observing, first, that concurrent rewriting is a natural process in term rewriting and

second the inadequacy of interpreting rewrite rules as (oriented) equations when dealing with non

Platonic (i.e. reactive) systems. While rewrite rules have the usual form, they are rather interpreted

in rewriting logic as a change in concurrent systems. In this sense rewriting logic has been proved

as an elegant and expressive semantic framework for the specification of languages and systems,

and it is a good candidate as a logical framework in which many other logics can be represented

[MOM96].

154
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

A.4.1 Rewriting Logic and its Theory

A signature in rewriting logic is a pair (Σ, E) with Σ a ranked alphabet of function symbols and

E a set of Σ-equations. Rewriting will operate on equivalence classes of terms modulo the set of

equations E. In this way, we free rewriting from the syntactic constraints of a term representation

and gain a much greater flexibility in deciding what counts as a data structure; for example,

string rewriting is obtained by imposing an associativity axiom, and multiset rewriting by imposing

associativity and commutativity. Of course, standard term rewriting is obtained as the particular

case in which the set E of equations is empty. To be more precise we present some definitions

borrowed from [?]:

Definition A.4.1 (Rewrite Theory): A (labelled) rewrite theory R is a 4-tuple R = (Σ, E, L,R)
where Σ is a ranked alphabet of functions symbols, E is a set of Σ-equations, L is a set called the
set of labels and R is a set of pairs R ⊆ L × (TΣ,E(X)2)+ whose first component is a label, and
whose second component is a nonempty sequence of pairs of E -equivalence classed of terms, with
X = x1, ..., xn a countably infinite set of variables. Elements of R are called rewrite rules. A rewrite
rule (r, [t], [t

′
])([u1], [v1])...([uk], [vk]) is denoted as

r : [t]⇒ [t
′
] if [u1]⇒ [v1]

∧
...

∧
[uk]⇒ [vk]. �

Definition A.4.2 (Rewriting entailment inference rules) Given a rewrite theory R, we say

that R entails a sequent r : [t] ⇒ [t
′
] and write R ⊢ [t] ⇒ [t

′
] iff [t] ⇒ [t

′
] can be obtained

by finite application of the following rules of deduction:

(1) Reflexivity : For each [t] ∈ TΣ,E(X),

[t]⇒ [t]

(2) Congruence : For each f ∈ Σn, n ∈ N

[t1]⇒ [t
′

1]...[tn]⇒ [t
′

n]

[f(t1, ..., tn)]⇒ [f(t
′

1, ..., t
′

n)]

(3) Replacement : For each rule r : [t(x1, ..., xn)]⇒ [t
′
(x1, ..., xn)] in R,

[w1]⇒ [w
′

1]...[wn]⇒ [w
′

n]

[t(~w/~x)]⇒ [t(~w′/~x)]

(4) Transitivity :
[t1]⇒ [t2][t2]⇒ [t3]

[t1]⇒ [t3]

Definition A.4.3 (Concurrent rewriting): Given a rewrite theory R = (Σ, E, L,R), a (Σ,

E)-sequent [t]⇒ [t
′
] is called:

• a 0-step concurrent R-rewrite iff it can be derived from (R by finite application of the rules

(1) and (2) of rewriting deduction (in which case [t] and [t]
′
necessarily coincide);

A.5 Maude and its Reflection : Overview 155

• a one-step concurrent R-rewrite iff it can be derived from (R by finite application of the rules
(1)-(3), with at least one application of rule (3); if rule (3) was applied exactly once, we then
say that the sequent is a one-step sequential R-rewrite.

• a concurrent R-rewrite(or just a rewrite) iff it can be derived from R by finite application of
the rules (1)-(4).

We call the rewrite theory R sequential if all one-step R-rewrites are necessarily sequential. A
sequential rewrite theory R is in addition called deterministic if for each [t] there is at most one

one-step (necessary sequential) rewrite [t] ⇒ [t
′
]. �

We also point out that the practicability of this logic is enhanced by the development of an

adequate language called Maude [CDE+07]. In Maude besides usual functional specifications (i.e.

algebraic modules), the so-called system or object-oriented modules can specified and semantically

interpreted as theories in rewrite logic. In the next chapter we will discuss about the capabilities

of this language.

A.4.2 The meaning of Rewriting Logic

In rewriting logic a sequent [t] ⇒ [t
′
] should not be read as ”[t] equals [t

′
]”, but as ”[t] becomes

[t
′
]”. Clearly, rewriting logic is a logic of becoming or change, not a logic of equality in a static

Platonic sense. The apparently innocent step of adding the symmetry rule is in fact a very strong

restriction, namely assuming that all changes is reversible,thus bringing us into a timeless platonic

realm in which ”before” and ”after” have been identified.

A related observation is that [t] should not be understood as a term in the usual first-order

logic sense, but as a proposition—built up using the propositional connectives in Σ—that asserts

being in a certain state having a certain structure. However, unlike most other logics, the logical

connectives Σ and their structural properties E are entirely user-definable. This provides great

flexibility for considering many different state structures and makes rewriting logic very general in

its capacity to deal with many different types of concurrent systems.

A.5 Maude and its Reflection : Overview

To make this thesis self-contained, we introduce main principles around this langauge. That is,

first we recall the main features of the Maude language. Then, since all component datatypes are

described in Maude as functional modules, we review this functional-level. For specifying object-

oriented applications, we then introduce all the ingredients underlying Maude system and object

modules. Finally, we present how to control the rewriting rules using reflection in general. More

specifically, we present how internal strategies can be specified in the Maude language.

156
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

A.6 Maude main Features

Maude is a high-level language and high-performance system supporting both functional and

object-oriented specifications and programming for a wide range of applications. Maude has

been influenced in important ways by the functional OBJ3 language [?]. The main features and

characteristics of the Maude language, could be summarized as follows:

Maude is rewriting logic-based Rewriting logic [Mes92] is a logic of concurrent changes that

can deal with state and with highly nondeterministic concurrent computations. This makes it

particularly well suited to express in a declarative way concurrent and state-changing aspects

of systems. Maude programs are theories, and rewriting logic deduction exactly corresponds

to concurrent computation.

Wide-spectrum based-logic. Rewriting logic is a flexible and general semantic framework for a

wide range of languages. At the logical level, Maude allows [?, ?] executable specifications,

rapid prototyping, and efficient parallel and distributed executions.

Maude is Reflective Rewriting logic and Maude are reflective [CM96]. That is, they are able

to express their own metalevel at the object level. The design of Maude capitalizes on

this fact to support a novel style of metaprogramming, which includes both user-definable

module operations and declarative strategies to guide the deduction process. It offers thus

very powerful module-combining and module-transforming operations that surpass those of

traditional parameterized programming. This can greatly advance software reusability and

adaptability. The Maude strategies for controlling the rewriting process are defined by

rewrite rules at the metalevel and can be reasoned about inside the logic. Therefore, instead

of having a ”Logic + Control” introduction of extra-logical features, in Maude ”Control ⊆
Logic”.

Maude modules are rewriting theories, while computation with such modules corresponds to

efficient deduction by rewriting. There are three types of modules in Maude: Functional module

(fmod), the system module (mod), and the object-oriented module (omod).

Maude’s functional modules are theories in membership equational logic, which extends order-

sorted equational logic and supports sorts, subsort relations, operator overloading, definition of

partial functions with equationally defined domains, and error specification. They are assumed to

be Church-Rosser and termination. Membership equational logic is a sublogic of rewriting logic [?].

Maude’s system modules are rewrite theories, in which the local transition rules in a concurrent

system, or the inference rules in a logical system, instead of equations as the rewrite rules. In rewrite

logic, the rewrite rules need not be terminating and Church-Rosser.

In addition, Maude supports rewriting modulo equational theories such as associativity, com-

mutativity, and identity. Therefore, we can not only have infinite chains of rewriting, we may but

also have highly divergent rewriting paths, which could never cross each other by further rewriting.

A.6 Maude main Features 157

Hence, we need to have good ways of controlling the rewriting inference process. Using reflection,

the rewriting inference process can be controlled with great flexibility in Maude by means of in-

ternal strategies. This chapter explains and illustrates with examples the main concepts of such

Maude’s language concepts.

A.6.1 Maude Functional Modules

Functional modules define data types and operations on them by means of equational theories.

Computation in a functional module is accomplished by using the equations as rewrite rules. That

is, each step of rewriting is a step of replacement of equals by equals, until a canonical form is found.

For this reason, the equations in the functional module must satisfy the additional requirements of

being Church-Rosser, terminating, and sort decreasing.

The equational logic on which Maude functional modules are based is an extension of order-

sorted equational logic called membership equational logic [?]. In addition to supporting sorts,

subsort relations, and overloading of function symbols, functional modules also support membership

axioms, a generalization of sort constraints in which a term is asserted to have a certain sort if a

condition consisting of a conjunction of equations and unconditional membership tests is satisfied.

Such membership axioms can be used to define partial functions, that become defined when their

arguments satisfy certain equational and membership conditions.

We can illustrate these ideas, as well as Maude’s support for mixfix user-definable syntax, with

the following Maude functional module NAT :

1.fmod NAT is
2.sorts NzNat Nat .
3.subsort NzNat < Nat .
4.op 0 : → Nat [ctor] .
5.op s : Nat → NzNat .
6.op + : Nat Nat → Nat [assoc comm].

7.var N : Nat .
8.var M : Nat .
9.cmb N / M : NzNat if (N 6= 0) .
10.eq N + 0 = N .
11.eq s(N) + M = s(N + M) .
12.endfm

The modules are introduced with the functional module syntax fmod ... endfm and have names,

NAT. The statement protecting imports module. The sorts and subsort relations of this module are

introduced by a sort and a subsort declarations by the keyword sort(s) and subsort(s). Sorts

are used to classify data. A subsort relation between two sorts is interpreted as a set-theoretic

inclusion, that is, it means that the data of the subsort is included in that of the supersort.

Membership simply refers to how certain terms are ”members” of sorts. When we declare a

variable, we declare it as a member of a sort using the colon, which one can think of a symbol for

”is a member of”. Thus, the declaration var N : Nat is the same as saying ”the variable N is

a member of the sort Nat”.

A.6.2 System and object-oriented Modules

The passage from functional modules to system modules involves a fundamental change in per-

spective, so that basic notations that previously had a very familiar interpretation in functional

158
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

terms have now to be reinterpreted. As mentioned already, in this new interpretation, a term t

is no longer understood as a functional expression, but as a structured state of a system, where

the structure of the state is given by the operators that happen to appear in the term and by

structural axioms that they enjoy. The algebraic structure of the state—as a multiset, binary

tree or whatever—is precisely what makes the state distributed, i.e., coincides with its distributed

structure, and makes concurrency possible. In the same way, a rewrite rule t→ t
′
is no longer seen

as functional evaluation by equational deduction, but as a local state transition, stating that if a

portion of a system’s state exhibits the pattern described by t, then that portion of the system can

change to the corresponding instance of t
′
.

Maude System Modules. We can represent a rewrite theory as a 4-tuple R = (Ω, E, L,R)

where (Ω, E) is a theory in membership equational logic, that specifies states of the system as

an abstract data type, L is a set of labels, to label the rules, and R is a set of labeled rewrite

rules axiomatizing the local state transitions of the system with either of the unconditional form

rl : [t]→ [t
′
], or of the conditional form crl : [t]→ [t

′
] if C, C means the conditions connecting with∧

which is associative.

The most general Maude modules are system modules. They specify the initial module of

a rewrite theory (Ω, E, L,R), in which the signature Ω is given by the sorts, subsort relations,

and operator declarations, a set E of equations, that is assumed to be decomposed as a union

E = A ∪ E
′
, with A a set of axioms to rewrite module among those supported by Maude, and E

′

a set of Church-Rosser and termination equations module A.

Maude: Object-oriented module. To present a logical theory of concurrent objects based on

rewriting logic deduction modulo ACI (associativity, commutativity and identity), the key idea is to

conceptualize the distributed state of a concurrent object-oriented system—called a configuration.

It is as a multiset made up of objects states and messages instances flowing together that evolved by

concurrent rewriting modulo associativity, commutativity and identity, where the rules describes

the effects of events between objects and messages. Therefore, we can view concurrent object-

oriented computation as deduction in rewriting logic. In Maude, object states are conceived as

tuples of the form

〈Id : C|at1 : v1, ..., atk : vk〉

where Id stands for the object identity, C for its class while atr1, ..., atrk denote attribute identifiers

with respective current values val1, ..., valk . Messages can be concurrently sent / receive to such

object states, and both object and message instances flow together in the so-called configuration,

which introduces the basic concepts of concurrent object systems, as multiset governed by the union

operator denoted by ’ ’ . The precise definition of this configuration in Maude itself takes the

form.

A.6 Maude main Features 159

mod Configuration is
protecting ID **** provides OId, CId and AId .
sorts Configuration Object Msg .
subsorts OId < Value .
subsorts Attribute < Attributes .
subsorts Object Msg < Configuration .
op : : AId Value → Attribute .
op , : Attribute Attributes → Attributes [assoc. comm. Id:nil]
op 〈 : | 〉 : OId CId Attributes → Object.
op : Configuration Configuration → Configuration [assoc comm id:null].

endm

In Maude, concurrent object-oriented system can be defined by means of object-oriented

modules—introduced by the keyword (omod · · · endom)—using a syntax more convenient than

that of system modules. This is because it assumes acquaintance with basic entities, such as objects,

messages and configurations, and supports linguistic distinctions appropriate for the object-oriented

case. In particular, all object-oriented modules implicitly include the above CONFIGURATION

module and assume its syntax. Further, they are internally transformed into system modules for

execution purposes (that is introduced in the next subsection).

As example, the following ACCNT object-oriented module specifies the usual concurrent be-

havior of banking accounts.

(omod ACCNT is
protecting REAL
class Accnt | bal : NNReal .
msgs credit debit: OId NNReal → Msg .
msg transfer from to : NNReal OId OId → Msg .
vars A B : OId .
Vars M N N’: NNReal .

********* The Account behaviour.
rl debit(A,M) 〈A : Accnt|Bal : N〉 ⇒ 〈A : Accnt|Bal : N − M〉 if N ≥ M .
rl credit(A,M) 〈A : Accnt|Bal : N〉 ⇒ 〈A : Accnt|Bal : N + M〉 .
rl transfer M from A to B 〈A : Accnt|Bal : N〉 〈B : Accnt|Bal : N ′〉 ⇒

〈A : Accnt|Bal : N − M〉〈B : Accnt|Bal : N ′ + M〉 if N ≥ M .
endom)

Classes are defined with the keyword class, followed by the name of the class C, and by a list

of attribute declarations separated by commas. Each attribute declaration has the form a: S,

where a is an attribute identifier and S is the sort in which the values of the attribute range; that

is, class declarations have the form class C|a1 : S1, · · · , an : Sn . In this example, the account class

(Accnt) has only one attribute bal, which is declared to be a value of type NNReal (non-negative

real number).

The syntax for message declarations is similar to the syntax for the declaration of operators,

using keywords msg and msgs, and having as result sort Msg or a subsort of it. In the above account

example, the three kinds of messages— credit, debit, and transfer—are introduced by the keyword

msg and their resulting sorts are Msg. The debit rule, for instance, says that when an account state

receives a debit message, debit(A,M), the next state results in decreasing the balance with the

corresponding amount of money, and this under the condition that the current balance suffices.

160
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

The rewrite rules specify in a declarative way the behavior associated with the credit, debit, and

transfer messages. The multiset structure of the configuration provides the top-level distributed

structure of the system and allows concurrent application of the rules. To illustrate the above

account module ACCNT, we propose the following simple account configuration ACNT-CONF,

which consists of three accounts, two debit, two credit and one transfer. The rewrite rule executions

are controlled by default strategies.

(omod ACNT-CONF is
ex ACCNT
ops A1 A2 A3 → Oid .
op AcCfCp → Configuration .
eq AcCfCp = < A1 : Accnt|Bal : 500 > debit(A1, 200) < A2 : Accnt|Bal : 100 > credit(A2, 50)

credit(A1, 300)debit(A2, 300) < A3 : Accnt|Bal : 300 > (transfer200fromA1toA3) .
endom)

Below we show the rewrite of the instances and the results. Figure A.3 provides the snapshots

in the evolution by concurrent rewriting on this example.

Maude> rew in ACNT-CONF : AcCfCp .
ResultObject :< A1 : Accnt|Bal : 400 >< A2 : Accnt|Bal : 150 >< A3 : Accnt|Bal : 500 > debit(A2, 300)

Figure A.3: Concurrent rewriting of bank accounts.

A.6.3 Maude Reflection and internal Strategies

Informally, a reflective logic is a logic in which important aspects of its metatheory can be rep-

resented at the object level in a consistent way, so that the object-level representation correctly

A.6 Maude main Features 161

simulates the relevant metatheoretic aspects. In other words, a reflective logic is a logic which can

be faithfully represented in itself.

Rewriting logic is reflective [MOM96] by essence. That is, any rewrite theory can be (meta-

)represented at a higher level and be reasoned on like data manipulation. This reflection property

has been nicely defined using the following abstraction, where universal U represents the (meta-

)theory at the higher level in which any rewrite system and / or terms can be manipulated as

(meta-)data.

(†) R ⊢ t −→ t′ ⇐⇒ U ⊢ 〈R, t〉 −→ 〈R, t′〉

META-LEVEL has sorts Term and Module, so that the representations of a term t and of a

module R are , respecticely, a term t of sort Term and a term R of sort Module.

The module META-LEVAL also provides key functions for rewriting and evaluating terms at the

meta-level, namely, upModule, upTerm, downTerm, metaReduce, metaRewrite, metaApply,

metaXapply, etc.

Moving between reflection levels: upModule, upTerm and downTerm. The operation

upModule takes as arguments the metarepresentation of the name of R and a Boolean value b,

and returns, respectively, the metarepresentation of the modules R. The polymorphic functions

upTerm and downTerm can move terms between the reflection levels. upTerm transfers a term into its

metarepresentation. To display the output in a more readable form we can use downTerm function,

which in a sense inverse to upTerm, since it gives us back the term from its metarepresentation.

op upTerm : Universal → Term [poly special (· · ·)] .
op downTerm : Term Universal → Universal [poly special (· · ·)] .

Simplifying: metaReduce and metaRewrite. The function metaReduce takes as arguments the

metarepresentation of a module R and the metarepresentation of a term t in that module, and

returns the metarepresentation of the fully reduced form of the term t using the equations in R,

together with its corresponding sort or kind:

op metaReduce : Module Term ∼> ResultPair [special (· · ·)] .
op { , } : Term Type → ResultPair [ctor] .

The (partial) operation metaRewrite is entirely analogous to metaReduce, but uses both the

equations and the rules to rewrite the term. The function metaRewrite takes as arguments the

metarepresentation of a module R, the metarepresentation of a term t, and a value b of the sort

Bound, i.e., either a natural number or the constant unbounded.

Applying rules: metaApply and metaXapply. The metaApply basically takes a term and a

rewrite law in a given module, and then rewrites the term once by applying the specified law. The

operation metyApply has syntax:

162
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

op metaApply : Module Term Qid Substitution Nat ∼> ResultTriple?
[special (· · ·)] .

op { , , } : Term Type Substitution → ResultTriple [ctor] .

The first argument Module is the meta-representation of the module that defines the terms and

laws in question, the Term is the given term to be rewritten, that must match the left-hand side of

the rewrite rule applied, and match it exactly (modulo associativity, commutativity, etc.) and the

Qid is the name of the rewrite law to be applied.

The operation metaXapply applies a rule on a term in any possible position. The first four

arguments are the metarepresentation of a module R, the metarepresentation of a term t in R, a

label l of some rules in R, and a set of assignments (possibly empty) defining a partial substitution

σ for the variables in those rules.

op metaXapply : Module Term Qid Substitution Nat Bound Nat ∼>
Result4Tuple? [special (· · ·)] .

op { , , , } : Term Type Substitution Context → Result4Tuple
[ctor] .

metaXapply returns a tuple of sort Result4Tuple consisting of a term, with the corresponding

sort or kind, a substitution, and the context inside the given term where the rewriting has taken

place.

A.6.4 Internal Strategies

As mentioned already, system modules in Maude are rewrite theories that do not need to be

Church-Rosser and terminating. Therefore, we need to have good ways of controlling the rewriting

inference process by means of adequate strategies. Using reflection the rewriting inference process

can be controlled with great flexibility in Maude by means of internal strategies that can be defined

using statements in a normal module in Maude, and can be reasoned about as with statements in

any other module. In fact, there is great freedom for defining many different types of strategies,

or even many different strategy languages inside Maude. This can be done in a completely user-

definable way, so that users are not limited by a fixed and closed particular strategy language.

In general, strategies for controlling the application of the rules are defined in extensions of the

META-LEVEL module by using metaReduce, metaApply, metaXapply etc., as building blocks,

which are then combined to obtain more complex strategies.

To illustrate the possibilities by implementing the following strategies for controlling the exe-

cution of the rules in the account specification ACCNT that is defined in the section 3.3.2 : first

all deposits that appear in instance are performed, then withdrawals and finally all transfers, we

propose a very basic strategy module ACCNT-STR below, which imports the META-LEVEL module.

mod ACCNT-STR is
inc ACNT-CONF .
protecting META-LEVEL .
vars debit? credit? transfer? : [Result4Tuple] .
var T : Term .
op Compute : Term → Term .
ceq Compute(T)

A.6 Maude main Features 163

= (if(debit? :: Result4Tuple)
then getTerm(debit?)
else if(transfer? :: Result4Tuple)
then getTerm(transfer?)
else if(credit? :: Result4Tuple)
then getTerm(credit?)
else T fi fi fi)

if debit? = metaXapply(upModule(’ACCNT, false), T,
’debit, none, 0, unbounded, 0)∧

credit? = metaXapply(upModule(’ACCNT, false), T,
’credit, none, 0, unbounded, 0)∧

transfer? = metaXapply(upModule(’ACCNT, false), T,
’transfer, none, 0, unbounded, 0) .

endm

We still use the instances that we have introduced. Below we show the rewrite of the instances in

the META-LEVEL and the results, and Figure A.4 provides the snapshots of explicitly controlling

of the executions of different rules in the instance by our strategies.

Maude> reduce in ACNT-STR : downTerm(Compute(upTerm(AcCfCp)),
’error) .

ResultObject :< A1 : Accnt|Bal : 400 >< A2 : Accnt|Bal : 150 >
< A3 : Accnt|Bal : 500 > debit(A2, 300) .

Figure A.4: Strategies control the rules execution.

A.6.5 Maude-Workstation : presentation

Maude Workstation is a programming environment for Maude. It’s written in Java what makes

it executable in different platforms. In this paper the Maude modules are implemented in this

Maude-Workstation environment, whose general view is depicted in Figure A.5.

164
A Algebraic Specifications, (High-level) Petri Nets, Rewriting logic and Maude:

Overview

Figure A.5: General view of Maude Workstation.

The environment has two main parts: the edition facilities and the Maude emulation area.

The first part is located in the upper area, and the second one in the lower one. In the edition

area, the different opened files are accessible through a split pane system.

There are also two tool bars (the trace one on the left and the depuration one on the right)

with show up whenever the user needs. They are located in vertical position on both sides of our

environment. As a result, we can also manipulate very easily tracing and depuration facilities.

Maude Workstation also has a sequence of tool bars that shows full information on the speci-

fications of Core and Full Maude. This tool is the window Show information. With this window

we can recover the information from the modules stored in the local database without having to

communicate with the Maude process.

A.6 Maude main Features 165

Figure A.6: The result split panel of Maude Workstation.

166

Appendix B

N.Aoumeur Publications Related to
this Thesis

[ABS09k] N. Aoumeur, K. Barkaoui, and G. Saake. Stepwise Engineering and Deployment of

Dynamically Adaptive Service-oriented Business Processes. In Proc. of IEEE Inter-

nationale Conference on Service-Oriented Computing and Applications (SOCA’09), to

appear, Dec. 14-15. IEEE CS Press, 2009.

[ABS09a] N. Aoumeur, K. Barkaoui, and G. Saake. A Multi-Dimensional Architectural Approach

to Behavior-Intensive Adaptive Pervasive Applications. In Proc. of 4th International

Symposium on Wireless Pervasive Computing (ISWPC’09), pages 1–8. IEEE CS Press,

2009.

[ABS09b] N. Aoumeur, K. Barkaoui, and G. Saake. On Agile Service-oriented Business Pro-

cesses: Activity-centric ECA-Architectural Foundation with Aspectual .NET Environ-

ment. In Proc. of 4th I1st Workshop sur les Services Web dans les Systmes D’Information

(WWS’09), pages 1–13. IEEE CS Press, 2009.

[ABS09c] N. Aoumeur, K. Barkaoui, and G. Saake. Rapid-prototyping of Adaptive Component-

based Systems using Runtime Aspectual Interactions. In Proc. of 20th IEEE/IFIP In-

ternational Symposium on Rapid System Prototyping (RSP’09), pages 18–25. IEEE CS

Press, 2009.

[ABS09d] N. Aoumeur, K. Barkaoui, and G. Saake. Towards a Disciplined Engineering of Adaptive

Service-oriented Business Processes. In Proc. of 4th IEEE International Conference on

Internet and Web Applications and Services (ICIW’09), pages 474–480. IEEE CS Press,

2009.

[ABS09e] N. Aoumeur, K. Barkaoui, and G. Saake. Validating, Composing and Dynamically

Adapting Features in Concurrent Product-Lines Applications. In Proc. of 16th An-

nual IEEE International Conference on the Engineering of Computer Based Systems

(ECBS’09). IEEE CS Press, 2009. To appear.

167

[AFO04a] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Distribution Concerns in Service-Oriented

Modelling. In 2nd International Conference on Service Oriented Computing (ICSOC’04),

pages 26–35. ACM Press, 2004.

[AFO04b] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Towards an Architectural Approach for

Location-aware Business Processes. In Proc. of the 13th IEEE International Workshops

on Enabling, Technologies : Infrastructure for Collaborative Enterprises, June 14-16,

pages 147–152. IEEE Computer Society, 2004.

[AFO06] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Distribution Concerns in Service-Oriented

Modelling. International Journal of Internet Protocol Technology (IJPT), 1(3):144–158,

2006.

[AGR08] N. Aoumeur, G. Saake, and C. Rautenstrauch. On Adaptive and Behavioral Service-

Driven Applications: A Rule-Centric Petri Nets Framework. In Proc. of the 4th Inter-

national Conference on Signal-Image Technology & Internet-based Systems (SITIS’08),

pages 195–202. IEEE CS Press, 2008.

[RLA+09] S. Rahman, A. Lodhi, N. Aoumeur, C. Rautenstrauch, and G. Saake. Intra-Service

Adaptability for ECA-Centric Web Services using Contract and Aspect. In Proc.

of IADIS International Conference Information Systems 2009 (IS’09), pages 135–142.

IADIS Press, 2009.

[URAS09] S. Ur Rahman, N. Aoumeur, and G. Saake. An Adaptive ECA-Centric Architecture for

Agile Service-Based Business Processes with Compliant Aspectual .NET Environment.

In Proc. of ACM The 10th International Conference on Information Integration and

Web-based Applications & Services (iiWAS2008), pages 240–247. ACM Press, 2009.

168

169

Appendix C

N. Aoumeur Further Postdoctoral
Publications

[ABS05] N. Aoumeur, K. Barkaoui, and G. Saake. Coordination and Co-Nets for Specifying and

Reconfiguring Agile information systems. In A. Van Aalst, editor, 2nd International Work-

shop on Applications of Petri nets to Coordination and Business Process Management,

Join with Petri Nets Conference, pages 1–16, 2005.

[AFS03] N. Aoumeur, J. Fiadeiro, and G. Saake. Coordination Contracts Conceptualization and

Validation Using Component-based Petri Nets. In Proc. of the FM’03 Worshop on Formal

Aspects of Components Systems (FACS’03), Pisa, Italy, 2003.

[Aou08] N. Aoumeur. Stepwise Rigorous Development of Distributed Agile Information Systems:

From UML-Diagrams to Component-Based Petri Nets. Enterprise Information Systems

(Tailor and Francis Group), 2(2):121–156, 2008.

[AS03] N. Aoumeur and G. Saake. Stepwise and Rigorous Development of Evolving Concurrent

Information Systems : From Semi-formal Objects to Sound Evolving Components. In In

Proc. of the OOIS’03, volume 2817 of Lecture Notes in Computer Science, pages 60–70,

2003.

[AS07a] N. Aoumeur and G. Saake. Dynamic Interaction of Information Systems: Weaving Con-

nectors on Component Petri Nets. In J. Cardoso and J.Cordeiro and J. Filipe, editor, 9th

International Conference on Enterprise Information Systems (ICEIS’07), pages 152–158.

INSTICC, 2007.

[AS07b] N. Aoumeur and G. Saake. Features Interaction in Adaptive Service-driven Environments:

A Reflective Petri Nets-Based Approach. In C. Rolland, O. Pastor, and J. Cavarero,

editors, Proc. of the First International Conference on Research Challenges in Information

Science (RCIS 2007), pages 297–308. IEEE CS, 2007.

170

[AS07c] N. Aoumeur and G. Saake. UML-driven Information Systems and their Formal Integra-

tion Validation and Distribution. In J.C. Augusto and J.Barjis and U. Nitsche, editor,

The 5th International Workshop on Modelling, Simulation, Verification and Validation of

Enterprise Information Systems (MSVVEIS-2007—Workshop@ICEIS’07), pages 63–73.

INSTICC, 2007.

[AS08a] N. Aoumeur and G. Saake. A UML-Rewriting driven Architectural Proposal for Develop-

ing Adaptive Concurrent Information Systems. In In Proc. of 7th International Conference

on Information Systems Technology and its Applications (ISTA’08 @UNISCON), pages

393–404. LNBIP, Volume 5, 2008.

[AS08b] N. Aoumeur and G. Saake. Modelling and Certifying Concurrent Systems: a Maude-

TLA Driven Architectural Approach. In In Proc. of of 5th International Conference on

Information Technology : New Generations (ITNG’08). IEEE CS, 2008.

[ASB07] N. Aoumeur, G. Saake, and K. Barkaoui. Incremental Specification Validation and Run-

time Adaptivity of Distributed Component Information systems. In 11th European Con-

ference on Software Maintenance and Reengineering (CSMR’07), pages 123–136. IEEE

Computer Society, 2007.

	On the Stepwise and Disciplined Engineering ofAdaptive Service-Oriented Applications
	Acknowledgment
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Motivation and work scope
	1.2 Main envisioned work’s results
	1.3 Work Outline

	Chapter 2: Web-Services Foundation and Adaptability: Survey and Criteria
	2.1 SOA and Web-Services: Overview and main Ingredients
	2.1.1 The Underlying Technologies for SOA
	2.1.2 Services-Oriented Architecture (SOA)
	2.1.3 Web services Specification and Composition Standards

	2.2 (High-Level) Petri nets-Based Foundation for WS: Survey
	2.2.1 P/T Nets-based Foundations for Web services
	2.2.2 Modelling Web services with High-level Petri Nets

	2.3 Service Adaptability: Rules- and Aspect-based proposals
	2.3.1 Business Rule-driven Proposals to Web-Service Adaptability
	2.3.2 AOP and Adaptive Service-oriented Applications

	2.4 Web-Services Modelling and Adaptability: Criteria and Assessment
	2.4.1 Criteria for Web-Services Modelling and Adaptability
	2.4.2 Service composition criteria
	2.4.3 Service Criteria applied on the state-of-art

	2.5 Chapter Summary

	Chapter 3: Rule-centric Stepwise Development for Service Systems
	3.1 Rational for the forwarded Conceptual framework
	3.1.1 HLPN as service foundation: Potentials and limitations
	3.1.2 Necessity for Stepwise supporting Methodology

	3.2 The UML-ECA-based semi-formal services description
	3.2.1 Profiled UML class-diagrams: Application to the Travel Agency
	3.2.2 Stepwise ECA-driven Description for Service Behaviors

	3.3 CSrv-Nets: Structural Features Modelling
	3.4 CSrv-Nets: Behavioral Modelling of Services
	3.4.1 CSrv-Nets behavior from ECA-driven architectural rules

	3.5 CSrv-Nets: A Rewriting-logic based behavioral semantics
	3.5.1 An intuitive CSrv-Nets behavioral semantics
	3.5.2 CSrv-Nets Rewriting-logic based semantics

	3.6 CSrv-Nets behavioral validation: A tailored Maude extension
	3.7 Chapter Summary

	Chapter 4: Collaborative Services—Choreography meets Orchestration
	4.1 Choreographical Services Composition with CSrv-Nets: FurtherMotivations
	4.1.1 Choreographical composition within the Travel-agency

	4.2 Business-Rules pattern for Behavioral Choreography
	4.2.1 Cross-service business rules for the Agency application

	4.3 Leveraging CSrv-Nets to ECA-driven Behavioral Choreography
	4.3.1 Structural features in CCSrv-Nets
	4.3.2 Behaviorally composing services with CCSrv-Nets

	4.4 CCSrv-Nets-based Formalization of the composite Travel-Agency
	4.5 Chapter Summary

	Chapter 5: From Design- to Runtime adaptive services—Foundation and Deployment
	5.3 CSrv-Nets meets its Aspectual Net: Jointpoints and pointcutsat concerns
	5.3.1 CSrv-Nets and its smooth Endowing with Jointpoints
	5.3.2 Pointcuts for Connecting CSrv-Nets-Joinpoints to the Aspectual Net
	5.3.3 AOCSrv-Nets: Aspect-oriented CSrv-Nets-extension Formalization

	5.1 CSrv-Nets Design-time service Adaptability: Potentials andFlaws
	5.2 CSrv-Nets-based Aspectual-level: Main Ideas and Concepts
	5.2.1 CSrv-Nets-transitions: Towards an ”aspect”-representation
	5.2.2 CSrv-Nets-based aspectual -Level: Informal presentation
	5.2.3 CSrv-Nets-based aspectual -Level: Formal setting

	5.4 Runtime (un)weaving of advices in AOCSrv-Nets: Principlesand Formalization
	5.4.1 ”Non-woven” Rewriting rules governing aspect-oriented transitions
	5.4.2 Dynamic-Weaving by Inferring ”Non-woven” Rules

	5.5 Aspectual Leveraging for Adapting the CSrv-Nets Flight Service
	5.5.1 Leveraging the CSrv-Nets Flight towards adaptability
	5.5.2 Building and dynamically adapting the flight AOCSrv-Nets
	5.5.4 Runtime shifting down / up of rules-as-advices on the Flight CSrv-Netsservice

	5.6 An Aspect-oriented Maude for Validating AOCSrv-Nets
	5.6.1 Aspect-orientation of architectural ECA-driven rules for Dynamic Adaptability
	5.6.2 Towards an ECA-Compliant aspect-orientation of Maude
	5.6.3 Dynamic (un)weaving of aspectual Maude service-interactions

	5.7 Towards a compliant .NET environment WS-deploying ofAOCSrv-Nets
	5.7.1 Mapping and manipulation of Conceptual ECA in .NET
	5.8 Chapter Summary

	Chapter 6: Conclusions and Future Work
	6.1 Main achieved contribution
	6.2 Envisioned further investigations

	Bibliography
	Appendix
	Appendix A: Algebraic Specifications, (High-level)Petri Nets, Rewriting logic andMaude: Overview
	A.1 Algebraic specification: an overview
	A.2 (High-level) Petri-Nets: Main Concepts
	A.2.1 Place/Transitions Petri nets
	A.2.2 High-level Petri nets (HLPN): An overview
	A.2.3 Object-oriented Petri Nets: An overview

	A.3 Rewriting techniques
	A.4 Rewriting logic
	A.4.1 Rewriting Logic and its Theory
	A.4.2 The meaning of Rewriting Logic

	A.5 Maude and its Reflection : Overview
	A.6 Maude main Features
	A.6.1 Maude Functional Modules
	A.6.2 System and object-oriented Modules
	A.6.3 Maude Reflection and internal Strategies
	A.6.4 Internal Strategies
	A.6.5 Maude-Workstation : presentation

	Appendix B: N.Aoumeur Publications Related tothis Thesis
	Appendix C: N. Aoumeur Further PostdoctoralPublications

