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Abstract: West African savannas are severely threatened with intensified land use and increasing
degradation. Bees are important for terrestrial biodiversity as they provide native plant species with
pollination services. However, little information is available regarding their mutualistic interactions
with woody plant species. In the first network study from sub-Saharan West Africa, we investigated
the effects of land-use intensity and climatic seasonality on plant–bee communities and their interac-
tion networks. In total, we recorded 5686 interactions between 53 flowering woody plant species
and 100 bee species. Bee-species richness and the number of interactions were higher in the low
compared to medium and high land-use intensity sites. Bee- and plant-species richness and the
number of interactions were higher in the dry compared to the rainy season. Plant–bee visitation
networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong
effect on network architecture. Null-model corrected connectance and nestedness were higher in
the dry compared to the rainy season. In addition, network specialization and null-model corrected
modularity were lower in the dry compared to the rainy season. Our results suggest that in our
study region, seasonal effects on mutualistic network architecture are more pronounced compared
to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of
plant–bee interactions with an increase in land-use intensity highlights the importance of savanna
conservation for maintaining bee diversity and the concomitant provision of ecosystem services.

Keywords: bees; community composition; connectance; land-use intensity; modularity; mutualism;
number of interactions; seasonality; woody plant richness

1. Introduction

Insect pollination is a key ecosystem service as the reproduction of many wild flow-
ering plants depends on pollinating insects, especially bees [1,2]. Due to current environ-
mental challenges (i.e., habitat loss and degradation, agriculture intensification, non-native
species, diseases, and climate change), pollinators and consequently pollination are con-
sidered to be under threat [3–5]. In the past decades, numerous studies have focused on
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the effects of global-change pressures and especially land use on pollinators and their host
flowering plants [6,7]. However, the effects of land-use intensity on flowering-plant and
insect-pollinator communities may also influence their interaction patterns, and thus the
architecture of their mutualistic networks [8,9]. In addition to land-use change, climate sea-
sonality in tropical regions may affect plant and bee diversity and further influence their
mutualistic network architecture [10]. The structure of mutualistic networks is considered
to be important for community stability and functioning [11]. Network thinking has been
integrated into conservation, restoration, and management [12,13]. This integration offers
promising tools to cope with the urgent challenge to understand and mitigate the effects
of environmental change and species loss on crucial ecological processes such as pollina-
tion [14–17]. Furthermore, a review by Vizentin-Bugoni et al. [18] highlights an uneven
global distribution of plant–pollinator network studies biased towards nontropical areas.
Moreover, within the tropics, there is a bias towards the neotropical region where partial
networks represent 70.1% of the published studies. Only 11 network studies have been
carried out in tropical Africa (e.g., Seychelles and Cameroon) vs. 137 neotropical network
studies; out of these only one study by Trøjelsgaard et al. [19] investigated plant–pollinator
networks on the Canary Islands comprising one location on the African mainland in
Western Sahara (26.1610◦ N, 14.4222◦ W).

Savannas are a major component of the world’s vegetation, covering one-sixth of
the land surface and accounting for ca. 30% of the primary production of all terrestrial
ecosystems. Africa contains by far the largest area of savanna, covering as much as about
50% of the African territory [20]. Savanna habitats provide fundamental resources that
allow for continued ecosystem functioning. Regulating ecosystem services (ESS) concern
sequestration of considerable amounts of carbon [21], soil retention, and purification of
water and air, as well as pollination, seed dispersal, and natural pest control. Central ESS
providers in agro-ecological savanna systems are the savanna trees along with associated
animal species, which are socio-economically and ecologically important, such as wild bees
and natural pest predators [22].

The Sudanian and Guinean savannas of West Africa comprise a vast mosaic of wood-
land, near natural and utilized savanna, and cultivated areas, the latter replacing original
ecosystems rich in woody species and fauna [23–26]. The population in these rural areas
with widespread poverty heavily depends on local ecosystem services for their liveli-
hood [27,28]. As in the developing world, human populations spread and agriculture
intensifies with uncontrolled usage of pesticides; 120 million hectares of natural habitats
are expected to be converted to farmland by 2050 [29,30]. West African savannas have
been progressively converted into cultivation areas for decades, leading to widespread
and rapid disappearance of native species being large-scale providers of provisioning,
regulating, and cultural ESS that local populations traditionally and essentially rely on.
Furthermore, habitat destruction and degradation comprise serious threats to bee diversity
in these regions, which is important for both agriculture and maintaining indigenous
ecosystems [31–33]. This will most likely increase pollination deficits, particularly in areas
of high and increasing pollination demand [34,35]. Lack of plant regeneration and polli-
nation services will soon have severe consequences on ESS provision, resulting in loss of
income, food security, and weakened livelihood of rural populations, being detrimental to
societies and economies [36].

Our plant–pollinator network study is the first of its kind from sub-Saharan West
Africa. By addressing this knowledge gap and in the framework of potential conservation
measures, we aimed to investigate the effects of climate seasonality and land-use intensity
on (i) bee and flowering-plant community structure, and (ii) the plant–bee visitation
network architecture.

We found that climate seasonality affected plant- and bee-species richness and their
mutualistic network architecture. Bee- and plant-species richness, the number of interac-
tions, and network connectance were higher during the dry season. Land-use intensity
did not affect network architecture per se; however, we documented a decrease in bee-
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species richness and the number of plant–bee interactions with increasing land-use intensity.
Our study highlights the importance of savanna conservation to maintain wild-bee diver-
sity and concomitantly the provision of ecosystem services.

2. Materials and Methods
2.1. Study Areas and Study Design

This study was carried out in the Sudanian zone of Burkina Faso, West Africa.
This zone is characterized by two pronounced seasons per year: a rainy season from
June to October and a dry season from November to May, with October being a transition
month [37]. Mean annual rainfall varies between 800 and 1000 mm, while mean annual
temperature ranges from 27 to 28 ◦C [38]. Phytogeographically, the study areas belong to
the Sudanian Regional Centre of Endemism [39]. The vegetation is dominated by a mosaic
of various savanna types, including shrub and tree savannas. Our sampling took place
in three areas: the Dano basin (11◦08’56.566”N, 003◦03’36.446”W), the Wildlife Reserve of
Bontioli (10◦48’26.393”N, 003◦04’39.564”W) and the Nazinga Game Ranch (11◦06’34.998”N,
001◦29’07.181”W) (Figure 1). The elevations range between 271 and 448 m a.s.l. Sampling
areas were chosen along a gradient of land-use intensity and were classified as areas
with low, medium and high land-use intensity based on land-use/land-cover data via
multitemporal Landsat images [26,40].Diversity 2020, 12, x FOR PEER REVIEW 4 of 16 
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Detarium microcarpum Guill. & Perr., and Prosopis africana (Guill. & Perr.) Taub. At the beginning of 
the dry season there are regular, managed fires, and only small settlements with agricultural fields 
are to be found at the margin of the reserve. The forest cover (grass, shrub, and tree savannas 
included) amounts to 88.2%, crop land (farm and fallows) to 0.8% [40]. We considered land-use 
intensity in this area as “low”. The Bontioli Wildlife Reserve is a protected “Nature Reserve” 
according to Burkina Faso’s legislation (IUCN categories I and IV as both partial and total faunal 
reserve). The area of the Bontioli Nature Reserve amounts to 25,000 ha and is dominated by woody 
species such as Terminalia laxiflora Engl. & Diels and Vitellaria paradoxa C.F. Gaertn. The reserve is 
surrounded by several villages and a wide agricultural landscape. Human activities include crop 
production, livestock grazing, fire, traditional mining, uncontrolled logging, and timber extraction; 
some of these activities were registered even inside the reserve. Forest cover amounts to 77.85%, crop 
land to 12.59% [26]. Land-use intensity in this area was considered as “medium”. The study area of 

Figure 1. Map with land-use and land-cover (LULC) data of 2014 of the three study areas: Nazinga
(low land-use intensity), Bontioli (medium land-use intensity), and Dano (high land-use intensity)
and their location within Burkina Faso, West Africa.
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The Nazinga Game Ranch is a “Wildlife Reserve” and belongs to category VI of
the world database of protected areas of the IUCN. Its area amounts to 97,536 ha [38]
and is characterized by woody species typical of pristine tree and shrub savanna, such as
Terminalia macroptera Guill. & Perr., Detarium microcarpum Guill. & Perr., and Prosopis africana
(Guill. & Perr.) Taub. At the beginning of the dry season there are regular, managed fires,
and only small settlements with agricultural fields are to be found at the margin of the
reserve. The forest cover (grass, shrub, and tree savannas included) amounts to 88.2%, crop
land (farm and fallows) to 0.8% [40]. We considered land-use intensity in this area as “low”.
The Bontioli Wildlife Reserve is a protected “Nature Reserve” according to Burkina Faso’s
legislation (IUCN categories I and IV as both partial and total faunal reserve). The area
of the Bontioli Nature Reserve amounts to 25,000 ha and is dominated by woody species
such as Terminalia laxiflora Engl. & Diels and Vitellaria paradoxa C.F. Gaertn. The reserve
is surrounded by several villages and a wide agricultural landscape. Human activities
include crop production, livestock grazing, fire, traditional mining, uncontrolled logging,
and timber extraction; some of these activities were registered even inside the reserve.
Forest cover amounts to 77.85%, crop land to 12.59% [26]. Land-use intensity in this area
was considered as “medium”. The study area of Dano consists of a small city of about
50,000 inhabitants with a fast-growing population, where mostly farmers spread their
settlements more and more to the surrounding savanna. As a result, only a few very
limited “near-natural” savanna ecosystems exist, and only commercially important tree
species such as Karité (Vitellaria paradoxa) and Neré (Parkia biglobosa (Jacq.) R.Br. ex G.Don)
have been left, forming the so-called parkland landscape. The land of the Dano savanna is
used intensively for agricultural production and is characterized by degraded soils and
intensive grazing, regular fire events, and deforestation. Forest cover amounts to 52.9%,
crop land to 37.2% (Dimobe, unpublished data). We therefore considered the land-use
intensity in the Dano region as “high”.

2.2. Sampling Flowering Plants, Bees and Their Interactions

In each study area, four plots measuring 1 ha were established randomly. Within each
plot, four subplots of 500 m2 (20 m × 25 m) were laid out in the four corners, giving a total
of 48 subplots (3 areas × 4 plots in each area ×4 subplots in each plot). Inventories of woody
plant species were carried out on the 48 subplots during the rainy season. Melliferous trees
and shrubs were identified through regular observation of bees’ presence and foraging
on the inflorescences from January to December 2015. Once bees were observed visiting
the flowers, the respective plant species were classified as “melliferous”. Plant species
flowered at different times of a year and were grouped according to the seasons: dry season
(November to May) and rainy season (June to October) [41]. Each flowering plant species
(i.e., a plant species that was in flower) within the subplots was monitored for 10 days
during alternating hours (6 a.m. to 12 p.m., or 12 p.m. to 6 p.m.) to assess the number of
bee visitors, resulting in a total of 3180 hours of observation. When leaving a flower, the bee
visitor was caught, etherized and stored in 70% ethanol. Each bee specimen was numbered
according to the identity of the visited flower, and then pinned and identified to genus
or species level (voucher specimens are held at the Université Félix Houphouët-Boigny,
Abidjan and at the Université Peleforo Gon Coulibaly, Korhogo, Côte d’Ivoire).

2.3. Flower Visitation Networks

Pooled flower-visitation data from all of our 48 subplots and across the 10 days
of sampling per plant species in both seasons were combined and used for flowering
plant–bee network analysis. A quantitative network for each study area (Nazinga = low
land-use intensity; Bontioli = medium land-use intensity; Dano = high land-use intensity)
and season (dry season and rainy season) was represented as a matrix in which each cell
contained the number of interactions between flowering plant species in n rows and bee
species in m columns. In addition to the traditional biodiversity measures, indices that
describe the architecture of mutualistic plant–pollinator networks are further important
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metrics to improve our understanding about the ability of these communities to cope
with increasing pressure on land use and habitat fragmentation [42,43]. The degree of
nestedness, modularity, and connectance of ecological interactions—the way the interac-
tions among species are organized—is expected to play a key role in the robustness of
ecological assemblages [44–46]. To examine flowering plant–bee mutualistic network archi-
tecture, we generated network metrics using the R package bipartite v.2.15 [47]. For each
plant-flower visitor network, we estimated five commonly used network metrics that
are potentially relevant for biodiversity conservation [18,48–50]: connectance, nestedness
(NODF), modularity, complementary specialization (H2’), and bee specialization (d’). Con-
nectance is calculated as the sum of links divided by the number of cells in the matrix
and describes the proportion of realized interactions in a network. Nestedness (NODF)
evaluates whether species with fewer partners (specialized species) tend to interact with
subsets of species that more-connected species (generalist species) interact with [51]. To cal-
culate modularity we used the QuanBiMo algorithm [52]. QuanBiMo detects modules
in quantitative networks based on a hierarchical random graph [53]. Species within a
module are more linked with each other than they are with species in other modules.
Complementary specialization (H2’) reflects the degree of niche divergence among species
and ranges between 0 (highly generalized) to 1 (highly specialized). Bee specialization
(d’) reflects how specialized a bee species is with respect to the available flowering plant
resources, and it ranges from 0 (little specialization) to 1 (high specialization) [54]. Overall
bee specialization (d’) was estimated by averaging the d’ value for each bee species per
network.

Due to the dependence of network metrics, i.e., connectance, nestedness, and modu-
larity, on network size [47], we used Patefield’s algorithm [55] and simulated 1000 random
interaction networks for each site and season and then ∆-transformed all of our network
metrics [49,56,57]. The ∆-transformed metrics were calculated as N-Nr where N is the
observed value of a network metric and Nr is the mean value for the 1000 randomized
networks and reflects the degree to which a network metric deviates from a random
expectation. Raw network metrics are shown in Table S1.

2.4. Statistical Analyses

To test for differences in flowering-plant richness, bee richness, and number of interac-
tions between low, medium and high land-use intensity sites, we used generalized linear
mixed models (GLMMs) with negative binomial error structure with site and season as
random effect factors. We used GLMMs with negative binomial error structure and site as a
random effect, to test for differences in flowering-plant richness, bee richness, and number
of interactions between seasons (dry vs. rainy). Number of interactions was used as a
covariate for all the GLMMs of flowering plant and bee richness.

We used an adonis analysis to test for differences in bee- and plant-community com-
position among low, medium and high land-use intensity sites. For this analysis, we used
the Bray-Curtis distance matrix of bee-species composition and, due to presence/absence
data, the Jaccard distance matrix of plant-species composition as response variables and
land use as a predictor. The strata argument was set to “season”. In order to determine the
effect of climatic seasonality on bee- and plant-community composition, we performed an
adonis analysis and specified strata = site such that randomizations only occurred within
each sampling site and not across all sampling sites. The adonis analysis was run with 1000
randomizations and implemented using the R package vegan.

We calculated ∆-transformed network indices that reflect the degree to which a metric
deviates from random expectation. To test for differences in the null-model corrected
∆-transformed network metrics between low, medium and high land-use intensity areas,
we used linear mixed models (LMMs) with site and season as random effects. We used
LMMs and site as a random effect to test for differences in the null-model ∆-transformed
network metrics between seasons (dry vs. rainy).
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All mixed model analyses were performed using the R package lme4 [58]. Further
Tukey HSD posthoc tests were performed using the R package multcomp [59].

3. Results
3.1. Plant and Bee Richness in Relation to Land-Use Intensity and Climatic Seasonality

The low land-use intensity area supported higher bee-species richness (57.5 ± 33.2 SD)
compared to medium (18 ± 12.7 SD) and high (9 ± 5.7 SD) land-use intensity areas (GLMM;
low vs. medium, Z = 4.654, p < 0.001; low vs. high, Z = 4.038, p < 0.001; Figure 2a). Bee-species
richness did not differ significantly between medium (18.0 ± 12.7 SD) and high (9 ± 5.7 SD)
land-use intensity areas (GLMM; medium vs. high, Z = 0.819, p = 0.413; Figure 2a). Flowering-
plant species richness did not differ among low (23.5 ± 13.4 SD), medium (16.5± 10.6 SD), and
high (14.5 ± 10.6 SD) land-use intensity areas (GLMM; low vs. medium, Z = 0.193, p = 0.847;
low vs. high, Z = 1.003, p = 0.316; medium vs. high, Z = 1.234, p = 0.217; Figure 2b). Community
composition of bees and flowering plants did not differ between land-use intensity sites
(adonis; F = 0.520, p > 0.05; F = 0.412, p > 0.05, respectively).Diversity 2020, 12, x FOR PEER REVIEW 7 of 16 
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(GLMM; Z = 4.66, p < 0.001; Figure 3b). Community composition of bees and flowering
plants did not differ between seasons (adonis; F = 4.852, p > 0.05, F = 5.635, p > 0.05,
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3.2. Plant-Bee Network Architecture in Relation to Land-Use Intensity and Climatic Seasonality

Overall, we observed a total of 5686 interactions between bees and flowering plants.
Low land-use intensity areas had higher numbers of interactions (1388 ± 888.1 SD) compared
to medium (971 ± 968.7 SD) and high (484 ± 509.1 SD) land-use intensity areas (GLMM;
low vs. medium, Z = 2.119, p = 0.034; low vs. high, Z = 3.766, p < 0.001; medium vs. high,
Z = 1.647, p = 0.099; Figures 4 and 5a). Our network metrics (∆-transformed connectance,
network-level specialization (H2

’), ∆-transformed nestedness (NODF), ∆-transformed mod-
ularity, ∆-transformed bee-species specialization) did not differ among low vs. medium
vs. high land-use intensity areas (LMM; p > 0.05; Figure 6 and Figure S1, Table S2). Honey
bees (Apis mellifera Linnaeus) and the stingless bee Hypotrigona gribodoi Magretti were the
most abundant flower visitors, and Combretum glutinosum Perr. ex DC. (Combretaceae) the
most visited plant species at all locations and seasons.

Figure 4. A bipartite graph of flowering-plant and bee interactions in the areas of (a) low, (b) medium, and (c) high land-use
intensity, constructed using the R package ‘bipartite’v.2.15 [47]. Bee–flower visitors are displayed as rectangles at the top,
and the plants are shown as rectangles at the bottom of each bipartite graph. The width of the rectangles represents the
relative frequency of interactions of each species. The number added to each rectangle refers to the flower visitor and plants’
identity. The top 20 most frequent flower visitors and visited flowering plants are listed on the right. In the area of high
land-use intensity (c) only 14 bee species were observed.



Diversity 2021, 13, 1 8 of 14

Diversity 2020, 12, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. Mean number of interactions in (a) low, medium and high land-use intensity areas and (b) 
in the dry and rainy season; means ± SE are shown; ns not significant, *** p < 0.001. 

 
Figure 6. Mean network metrics and land-use intensity (low, medium, high); (a) Δ-transformed 
connectance, (b) network-level specialization (H2’), (c) Δ-transformed nestedness (NODF), and (d) Δ-
transformed modularity; means ± SE are shown; ns not significant. 

Figure 5. Mean number of interactions in (a) low, medium and high land-use intensity areas and (b) in the dry and rainy
season; means ± SE are shown; ns not significant, *** p < 0.001.

Diversity 2020, 12, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. Mean number of interactions in (a) low, medium and high land-use intensity areas and (b) 
in the dry and rainy season; means ± SE are shown; ns not significant, *** p < 0.001. 

 
Figure 6. Mean network metrics and land-use intensity (low, medium, high); (a) Δ-transformed 
connectance, (b) network-level specialization (H2’), (c) Δ-transformed nestedness (NODF), and (d) Δ-
transformed modularity; means ± SE are shown; ns not significant. 

Figure 6. Mean network metrics and land-use intensity (low, medium, high); (a) ∆-transformed connectance, (b) network-
level specialization (H2

’), (c) ∆-transformed nestedness (NODF), and (d) ∆-transformed modularity; means ± SE are shown;
ns not significant.

The number of interactions was higher in the dry (1505.3 ± 600.4 SD) compared to the
rainy (390 ± 330.5 SD) season (GLMM; Z = 6.354, p < 0.001; Figure 5b). The ∆-transformed
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connectance was higher in the dry season compared to the rainy season (LMM; Z = 6.545,
p < 0.001; Figure 7a). Network specialization (H2’) was higher in the rainy season compared
to the dry season (LMM; Z = 3.569, p < 0.001; Figure 7b). The ∆-transformed nestedness
(NODF) was higher in the dry season compared to the rainy season (LMM; Z = 11.320,
p < 0.001; Figure 7c). The ∆-transformed network modularity was lower in the dry season
compared to the rainy season (LMM; Z = 2.369, p = 0.017; Figure 7d). Relative bee-species
specialization (d’) did not differ between seasons (Figure S2).

Diversity 2020, 12, x FOR PEER REVIEW 10 of 16 

 

 
Figure 7. Mean network metrics in the dry and rainy season; (a) Δ-transformed connectance, (b) 
network-level specialization (H2’), (c) Δ-transformed nestedness (NODF), and (d) Δ-transformed 
modularity; means ± SE are shown; ns not significant, * p < 0.05, *** p < 0.001. 

4. Discussion 

4.1. Bee and Flowering Plant Richness, Land-use Intensity and Climatic Seasonality 

In contrast to flowering-plant richness not showing any differences among land-use intensities 
(LUI), bee-species richness significantly decreased with increasing LUI. A meta-analysis of 54 
published studies documenting bee abundance and/or species richness as a function of destructive 
human-related activities explicitly found that habitat loss contributed to a significant decline in 
unmanaged bee-species richness [6]. Similar results were reported from a study in Burkina Faso 
based on pan-trap records revealing that with increasing disturbance, bee diversity decreased and 
bee communities became more and more differentiated [32]. In the region of high LUI, much of the 
savanna areas have been converted into agricultural land, leaving only small fragments of near-
natural savanna. Another reason for the decrease of bee-species richness in our study might be a loss 
of specialized species with particular traits and nesting requirements or specialized diets [60] that 
could not be provided any longer by the disturbed and fragmented savannas of medium and high 
LUI. In general, specialist species with narrower niches are predicted to be more sensitive to land-
use than generalists [61,62]. However, a study in forested ecosystems in New Jersey (USA) did not 
provide evidence for a strong negative effect of land-use intensity on specialist bee species [63]. 

The honey bee (Apis mellifera) and the stingless bee Hypotrigona gribodoi were the most abundant 
flower visitors in all locations and seasons. Hypotrigona gribodoi is a generalist in terms of food and 
nesting resources. It seems to benefit from agriculture-bound landscapes with a heterogeneous small-
scale matrix of arable fields, savanna patches, and home gardens in the vicinity of villages, which 
also offer abundant and diverse floral resources [63]. The resources available at the more disturbed 

Figure 7. Mean network metrics in the dry and rainy season; (a) ∆-transformed connectance, (b) network-level specialization
(H2

’), (c) ∆-transformed nestedness (NODF), and (d) ∆-transformed modularity; means ± SE are shown; ns not significant,
* p < 0.05, *** p < 0.001.

4. Discussion
4.1. Bee and Flowering Plant Richness, Land-Use Intensity and Climatic Seasonality

In contrast to flowering-plant richness not showing any differences among land-use
intensities (LUI), bee-species richness significantly decreased with increasing LUI. A meta-
analysis of 54 published studies documenting bee abundance and/or species richness
as a function of destructive human-related activities explicitly found that habitat loss
contributed to a significant decline in unmanaged bee-species richness [6]. Similar results
were reported from a study in Burkina Faso based on pan-trap records revealing that with
increasing disturbance, bee diversity decreased and bee communities became more and
more differentiated [32]. In the region of high LUI, much of the savanna areas have been
converted into agricultural land, leaving only small fragments of near-natural savanna.
Another reason for the decrease of bee-species richness in our study might be a loss of
specialized species with particular traits and nesting requirements or specialized diets [60]
that could not be provided any longer by the disturbed and fragmented savannas of
medium and high LUI. In general, specialist species with narrower niches are predicted
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to be more sensitive to land-use than generalists [61,62]. However, a study in forested
ecosystems in New Jersey (USA) did not provide evidence for a strong negative effect of
land-use intensity on specialist bee species [63].

The honey bee (Apis mellifera) and the stingless bee Hypotrigona gribodoi were the most
abundant flower visitors in all locations and seasons. Hypotrigona gribodoi is a generalist in
terms of food and nesting resources. It seems to benefit from agriculture-bound landscapes
with a heterogeneous small-scale matrix of arable fields, savanna patches, and home gar-
dens in the vicinity of villages, which also offer abundant and diverse floral resources [63].
The resources available at the more disturbed sites appear to be sufficient for bee nutrition
and not to limit certain bee populations. No effects of varying LUI could be observed
in Apis mellifera. This is likely due to its diverse diet, broader ranges of foraging relative
to other solitary bees, and its ability to find and use discrete patches of resources in the
wider landscape, as it efficiently uses scouting [64,65]. Our study revealed that Combre-
tum glutinosum (Combretaceae) was the most visited plant species in all locations and
seasons. This is in line with a study from the same area in Burkina Faso where species of
the Combretaceae family were the most visited by bees in comparison to all other observed
woody plants. According to the authors, the choice of Combretaceae species by many bees
could also be due to the long flowering time of these species. In addition to being one of the
most dominant families in the areas, Combretaceae may offer a more significant amount of
nectar and pollen compared to the other families [41].

Our study did not reveal significant differences of flowering-plant richness as a
function of LUI. In terms of plant family diversity, the predominance of legumes, Rubiaceae
and especially Combretaceae is a main characteristic of natural plant formations in Sudano–
Guinean and Sudanian areas [66]. The savanna areas in our study host similar numbers of
flowering plant species belonging to these dominant plant families.

In terms of seasonality, both bee-species richness and flowering-plant richness were
higher in the dry compared to the rainy season. The majority of the melittophilous savanna
plants in Burkina Faso are in flower during the dry season or at the very beginning of
the rainy season [41,66]. Hence, savanna systems appear to provide bees with sufficient
resources in the dry season when fields lay fallow, whereas crop fields and home gardens
offer pollen and nectar during the rainy season. The observed higher bee-species richness
in the savanna areas during the dry season is in line with a study from Burkina Faso that
revealed an across-habitat spillover of bees (mostly abundant social bee species) from
savanna into crop fields during the rainy season when crops are mass-flowering, whereas
most savanna plants are not in bloom [32].

4.2. Plant-Bee Network Architecture, Land-Use Intensity and Climatic Seasonality

The number of interactions between bee and plant species decreased significantly
with increasing LUI. When visualizing the interaction network of flower visitors and
visited plants (bipartite graph, Figure 4) it is obvious that most interactions were detected
in the area of low LUI. In the area of high LUI, only 14 bee species were observed in
total. The three most frequent flower visitors in all areas were Apis mellifera, Hypotrigona
gribodoi and Pseudapis interstitinervis Strand. As for the first two species, P. interstitinervis is
polylectic. It visits the flowers of plants—for example ofseveral Acacia species and Cassia
siberiana [67]—that are among the top 20 most frequently visited plant species in our study.
All three bee species extend their frequency range with increasing LUI (larger width of
the rectangles) and almost dominate the network in the area of high LUI. Other frequent
flower visitors were carpenter bees (Ceratina sp.). Some of these mostly polylectic bees are
partially oligolectic and visit flowers of certain plant families such as Fabaceae, Malvaceae,
Rubiaceae, and Asteraceae [68]. While we recorded three Ceratina species in the areas of
low and medium LUI, only one species was observed in the area of high LUI. The latter area
might comprise fewer species of these plant families and thus offer fewer food resources.

All of our ∆-transformed network metrics were consistently different from zero,
relative connectance and nestedness were lower than zero, and relative modularity were
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larger than zero, revealing the existence of isolated groups of interacting bee and flower-
plant species. We documented that climatic seasonality was a stronger determinant of
change in the flower–bee network architecture compared to land-use intensity. The number
of flowering savanna plants differed significantly between both seasons, having a peak
during the dry season and leading to a three times more frequent interaction between plants
and pollinators (Figure 5). As the larger number of interactions was obviously distributed
over an equal number of plants and with it the overlap in identity of the mutualistic partners
of pollinators increased [69], the networks’ connectance was significantly higher and
network specialization was lower in the dry season than in the rainy season. If connectance
increases, the size of the core of links between generalized species also increases, which in
our case reduced the level of modularity and increased the level of nestedness [9,70,71].
Greater connectance and nestedness could increase network stability and robustness via
reducing interspecific competition [70]. Modularity implies some subsets (modules) of
species being more linked to each other than to species on other modules [72], and as such
are expected to be an essential ingredient of network complexity and thus of the robustness
of communities [42–44,73]. A flower-visitation study considering season and land-use
intensity carried out in the highlands of Guatemala [49] also revealed that seasonality
did not only affect species diversity, but also the way species were interacting in the
community and, similar to our study, reported higher nestedness and lower modularity in
the dry season.

Although we could not detect a statistically significant effect of LUI on the architec-
ture of plant–pollinator networks, our data revealed that networks’ modular structure
decreases with increasing land-use intensity. Here, changes in modularity may already
reflect reduced habitat heterogeneity of savannas underlying high land-use intensity that
in turn has already led to a significant decrease in bee-species richness (Figure 2). As both
modularity [44] and nestedness [70] capture different aspects of network architecture [43]
and are thought to provide strong benefits for ecological communities’ robustness to
perturbation [69,74], our results highlight the importance of savanna conservation and
surrounding habitat in maintaining wild-bee diversity. The small sample size of only three
land-use intensity areas might explain the low statistical power when testing the effect of
LUI. Alternatively, the lack of an effect of LUI on network architecture might reflect the
stability of network properties to habitat degradation [75]. Further studies should consider
more sample areas per disturbance class to enhance statistical model power.

5. Conclusions

In this paper, we have extended studies of biodiversity from merely looking at species
numbers to also including their mutualistic interactions. We have investigated detailed
network structures by focusing on the number of species interactions and network special-
ization level, connectance, and modularity considering a land-use intensity gradient and
seasonality.

There is a complex interplay of patterns and processes related to the variation and
influence of spatial, temporal, and biotic drivers in an ecological network, still limiting
our current knowledge about the effects of environmental change (i.e., land use, climate)
on such systems [42]. This work is a step toward a better understanding of the impact of
land-use change and climatic seasonality on bees, flowering plants, and their mutualistic
network architecture in West African savannas.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-281
8/13/1/1/s1, Figure S1: Relative bee species specialization (d’) in low, medium, and high land-use
intensity areas, Figure S2: Relative bee species specialization (d’) in dry and rainy season, Table S1:
Raw network metrics of all three areas (Dano, Bontioli, Nazinga, Burkina Faso) in the dry and
rainy season, Table S2: ∆-transformed network metrics of all three areas (Dano, Bontioli, Nazinga,
Burkina Faso) in the dry and rainy season.
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