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Abstract:

Diagnosis of diabetic peripheral neuropathy (DPN) is essential to prevent complications, such
as the diabetic foot syndrome. Diagnosis mostly relys on a time-consuming clinical
examination by standardized procedures (pinprick test, vibration perception, Tip Therm,

reflexes, muscle function). Furthermore, investigator-related bias confounds findings.

To explore the potentials of a video game-based approach to diagnose polyneuropathy, a
gaming platform (“Gamidiagnostics”) was set up. Participants utilized pressure sensor-
equipped insoles as control units and played four games that were specifically designed to test
for reaction time, sensation, skillfulness, endurance, balance, and muscle strength. A pilot
study with 71 healthy volunteers and 112 patients diagnosed with DPN by clinical examination
(neuropathy deficit score, NDS) evaluated the feasibility of this approach. Unbiased training of
prediction algorithms with data sets identified 15 independent variables with discriminatory
functions that indicated DPN. In age-matched cohorts, the support vector machines achieved
a training accuracy of 87.8% (AUC-ROC 0.91) and an adjusted accuracy of 85.2% on a held-
out testing data set (sensitivity 92.6%, specificity 77.8%). Distinct variables were identified for
each nerve fiber deficit and allowed correct classification with adjusted accuracies of 88.1%,

91.9%, and 95.3% for Achilles tendon reflex, Ad-/C-fiber, and AB-fiber impairment, respectively.

Thus, a video game-based approach with smart footwear sensors was able to diagnose
advanced peripheral nerve malfunction with high accuracy. This was set up in an examiner-

independent manner and may be established as telemedical device.
Keywords

Diabetes; peripheral sensorimotor neuropathy; sensor-equipped insoles; video games;

artificial intelligence; support vector machine; machine learning; telemedicine
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1.Introduction

1.1. Peripheral neuropathy

Peripheral nerves refer to 43 pairs of motor and sensory nerves that branch out from the central
nervous system (CNS) and connect the rest of the body (1). The nerves are responsible for
maintaining body homeostasis, mediating sensation, movement and coordination (2).
Peripheral neuropathy (PN) is a medical term to describe damage to nerves within the
peripheral nervous system, which includes nerve cells, fibers (axons), and coverings (myelin
sheath) (3). PN varies in its distribution pattern and several classification schemes exist. The
most common classification categorizes into distal symmetric polyneuropathy (DSPN),

mononeuropathy, and mononeuropathy multiplex, according to the location of affected nerves.
1.1.1. Causes and prevalence

The most common distribution pattern of the DSPN is a diffuse, length-dependent process with
diverse underlying causes, such as diabetes, excessive and chronic alcohol use, vitamin B12
deficiency, chemotherapy, chronic kidney disease, paraproteinemia or thyroid disease (4).
Register studies and surveys reported an approximate prevalence rate of 2.4% that increases
with age to around 7% (5). For 49% of patients the polyneuropathy is asymptomatic and
undiagnosed (6). Table 1 provides an overview on reported prevalence rates of peripheral

polyneuropathy and its subtypes from epidemiological studies.

Table 1. Prevalence of peripheral neuropathy and its subtypes. TIDM: Type 1 diabetes mellitus; T2DM: Type
2 diabetes mellitus; DSPN: Distal symmetric polyneuropathy; DPN: Diabetic peripheral neuropathy. “Incidence rate.

Study Country Population (n) Prevalence

Peripheral neuropathy (PN)

©) Italy 14,540 2.7% (7% by age = 55 years)

(8) India 14,010 2.4%

9) USA 2,514 (age = 40 years) 9%

Distal symmetric polyneuropathy (DSPN, polyneuropathy)

(20) Netherlands  age = 18 years 77.0/100,000 person-years”

iCi 0, 0, 0,

(6) Netherlands %rfégnp:é’gc%a;é;s, 55% female) g.ls"/f)’(lglzl\f)a%ngrllz)';S‘ifl)(female)‘

(11) Germany 983 (age = 50 years) ??i%)ﬁ)(,’\l;ng'gg%&s )(TAé?I’Df/‘I)f)
UK 19,897 controls 0.12%

Diabetic peripheral neuropathy (DPN)

40.3%, 29.1% (T1DM), and 42.2%

12) Germany 1004 patients with diabetes (T2DM)
USA 3.9% (12,522,483 cases)
German . 4.7% (3,904,730 cases
(13) Italy ’ Total population 2.7% 21,636,426 cases;
Japan 0.002% (2,332 cases)
(14) Germany 45,633 newly diagnosed T2DM patients 5.7% (5.5-5.9%)
UK 14,205 newly diagnosed T2DM patients 2.4% (1.9-2.9%)




1.1.2. Symptoms and clinical presentations of peripheral neuropathy

Regarding the clinical appearance of peripheral polyneuropathy lack of sensation may prevail,
resulting in absence of information (numbness, loss of sensation, balance impairment). On the
other hand patients may complain about an excess of sensation with discomfort feelings (such
as prickling, tingling, burning, pain). These absent or plus symptoms relate to sensory nerve
malfunctions that most often occur in a symmetric pattern. In addition motor weakness (muscle
weakness and atrophy) may develop. These symptoms typically begin in the toes and later on
ascend insidiously up the legs in a stocking distribution. Symptoms may spread throughout the
body, reaching hands and knees (15). Over time, the ankle and Achilles reflexes may be
impacted with aggravation of disease (16). Autonomic symptoms may include sweating,
circulatory abnormalities and postural hypotension (17). Disturbed proprioception and
abnormal sensorimotor function result in impaired balance coordination and mobility with

increased risk of falls and fractures (18).
1.1.3. Diabetic peripheral neuropathy (DPN)

DPN is defined as a subtype of PN with no other identifiable cause than diabetes (19).
According to the International Diabetes Federation (IDF), more than 435 million people
worldwide are diagnosed with diabetes, and this number is expected to rise to 693 million in
2045 (20). Correspondingly, the burden of diabetes-associated comorbidities and sequela of
hyperglycemia will increase, e.g., every second afflicted individual (both diabetes type 1 and

2) will eventually develop polyneuropathy (21).

DPN has a significant impact on the mobility of patients. As a consequence a disturbed gait
and movement coordination ensues, the likelihood of falls increases, the share of patients with
diabetic foot syndrome rises, and a frail mental health is often seen (22). Besides impaired or
lack of sensation, DPN may also cause plus symptoms, such as discomfort and pain.
Complications such as tissue damage, infections, and ultimately minor and major foot
ulcerations are seen in 19 — 34% of individuals with diabetes during their lifetime, especially
with delayed diagnosis of DPN and/or inadequate implementation of preventive measures (23).
Notably, every fifth moderate-to-severe diabetes-related infection will prompt lower extremity
amputation (23, 24). On the other hand, four out of five amputations may be prevented by
adequate podiatry care (25). All these aspects urge for a timely DPN diagnosis, interventions
for primary and secondary prevention of foot damage, and possibly interventions to combat
nerve damage itself. Due to the nature of the disease, timely diagnosis and repeated
monitoring of individuals at risk are mandatory, given the insidious onset of DPN with diverse
presentations. Up to 50% of affected individuals remain asymptomatic (26), while the

remainder develop numbness, tingling, pain, or weakness (27). Symptoms commonly originate



distally (i.e., the tips of the toes) and spread proximally with a symmetric distribution. Peripheral
nerves encompass Ad- and C-fibers (small, spinothalamic; temperature sensation, nociception;
assessed by pinprick), as well as Ap-fibers (large, back nervous system; assessed by vibration
and monofilament) (28, 29). In addition, the reflex status may be altered, most commonly an

impaired Achilles tendon reflex status is observed (30).
1.2. Diagnostic strategies and challenges of PN

Early detection of peripheral neuropathy is a key measure to open the window for preventive
action, e.g. to maintain tissue integrity of the feet with walking aids, protection by specialized
shoes for sustained physical health and mental quality of life (31). Effective handling of
diabetes mellitus and normalization of blood glucose levels may prevent or retard further
damage to the nerves (32). Because only 10% to 15% of diabetic polyneuropathy (DPN)
patients are symptomatic, a large proportion of patients are unaware of their disease and do
not seek aid, although they are at highest risk for foot ulcer formation (31). Consequently, there
is consensus that detection of earliest signs should be performed, which mostly occur at the

distal limbs, particularly the feet, to improve patient care (16).

The diagnosis of PN should consider multiple symptoms and clinical signs. Initially, paying
attention to family and personal medical history and inquiring about toxin exposure and
medications should be proceeded to exclude causes other than diabetes, such as neurotoxins
and heavy metal poisoning, alcohol abuse, vitamin B12 deficiency, renal disease, chronic
inflammatory demyelinating polyradiculoneuropathy, inherited neuropathies, and vasculitis
(17). Dyck et al. pointed out that up to 10% of PN in patients with diabetes was not due to
diabetes (33). The physical examination includes performing sensory tests (different modalities
like light touch, vibration, temperature, pain sensation, and proprioception), evaluating the
patients’ mental status, reflexes, cranial nerves, and motor system (i.e. gait). Researchers
have developed composite scoring systems (using symptoms, clinical signs, or both) to

guantify general neuropathic deficits better and enhance diagnostic accuracy (Table 2).

Table 2. Clinical scoring systems for PN screening. NSS, neuropathy symptom score; MNSI, Michigan
Neuropathy Screening Instrument; NDS, neuropathy disability score

Scoring System ltems Thresholds
Muscle weakness (8 points)

?'32)8 Sensory disturbances (5 points) :? ";516 ';Z?n?f & symptom
Autonomic symptoms (4 points)

MNSI A 15—it§m sglf—e_xdministered questionnaire: pain, temperature _

(34) sensation, tingling, numbness, sensory symptoms, cramps and Abnormal, if = 3/15 response
muscle weakness, foot ulcers or cracks, and amputation
Vibration sensation (128-Hz tuning fork)

NDS Tgmpgrature sensation Abnormal, if 2 6/10 points

(35) Pin-prick

Ankle reflex




A sensorineural impairment assessment (Quantitative Sensory Testing: QST) is based on
clinical sensory nerve tests. Clinical sensory nerve tests generate specific physical vibratory,
pressure, hoxious, or thermal stimuli using specialized equipment, such as 128-Hz tuning fork,
10-g Semmes-Weinstein monofilament, Pin-prick, or Tip Therm (AXON GmbH, Dusseldorf,
Germany). QST was developed to detect the thresholds of thermal perception (cold or warm),

vibration perception, pressure pain, and sudomotor function (36).

The nerve conduction testing (NCT) and nerve biopsy are considered gold standards for PN
diagnosis (37). The NCT is a reliable and rather objective diagnostic tool that relies on an
evoked stimulus, which is independent from the subjective response, to calculate the nerve
conduction velocity in excitated nerves. Impaired NCT are encountered with segmentally
demyelinated axons (38, 39). A nerve biopsy is a valid method to evaluate abnormalities in
small nerve fiber density and integrity, however is rarely applied in clinical practice or routine
screening programs due to its invasiveness (40).

In summary, multiple approaches are available to detect polyneuropathy. However, physicians
are still facing distinct clinical challenges. First of all, the above-mentioned bedside
assessments and QST are subjective, examiner dependent, time-consuming, easily influenced
by patients' cooperation and confounding factors, and primarily utilized to detect advanced
neuropathy (41). The late stage diagnosis of neuropathy by these crude tests usually goes
along with irreversible nerve damage (22, 42). Secondly, NCT and skin biopsy are broadly
considered as gold standards in clinical research (37). However, they are not applicable in
clinical practice because they are invasive, time-consuming, require well-trained examiners
and expensive devices as well as specialists for result interpretation (43, 44). Thirdly, most
patients are unaware of their disease and severe symptoms have not developed, making the
diagnosis difficult. This highlights the urgent demand for an approach to screen PN in
asymptomatic patients that is efficient, practical, objective with quantitation of the extent of

nerve damage. Such an approach may overcome the limitations of the current state of the art.
1.3. Innovative tools to diagnose PN

Recently, noninvasive point-of-care devices (POCD) have been developed to diagnose DPN
(22, 45), which includes the DPN-Check (46, 47), NeuroQuick (48), NeuroPAD (49), Corneal
Confocal Microscopy (CCM) (50, 51) and Sudoscan (52, 53). The DPN-Check is a brief version
of the nerve conduction testing that may be completed within three minutes (47). It achieves
95% sensitivity and 71% specificity when compared to the findings of the nerve conduction
testing (46, 47). Similar to NCT, it only assesses large nerve fiber function and provides no
information on small nerve fiber functions. Therefore, other POCDs have been developed to

identify small fiber impairments (abnormal pain perception, autonomic and sudomotor
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dysfunction), such as the assessment tools NeuroQuick, NeuroPad, Corneal confocal

microscopy, and Sudoscan.

NeuroQuick is a simple tool to quantify thermal sensation thresholds that are mediated by thinly
myelinated A® and unmyelinated C-fibers. A study reported that the NeuroQuick is more
sensitive in detecting small fiber dysfunction than bedside tests using a tuning fork in a diabetes
cohort (48). However, as a psychophysical test, the test results might be affected by patients’
attention and cognition. Moreover, its validity and reproducibility still need to be evaluated in

larger cohorts.

The NeuroPad is a 10 minute test that evaluates sweat production of the feet. Validation
studies have reported high sensitivity of this test for small fiber neuropathy and high
reproducibility (45, 54). However, the sensitivities of NeuroPad for large fiber neuropathy is low
and has been reported to range between 50 and 64% in these studies.

Corneal confocal microscopy is a noninvasive technique to identify corneal nerve impairment
that is associated with peripheral nerve function (55). However, the devices are expensive and
only specialists may perform the examination (16).

The Sudoscan quantifies sudomotor function within three minutes. Sudomotor dysfunction has
been proposed as an indicator of small fiber neuropathy. Its sensitivity and specificity to classify
DPN are reported to reach 87.5% and 76.2%, respectively (52, 53, 56). Nevertheless, it only

assesses the autonomic nerve function and no motor- and sensory nerve status.

Advanced neuroimaging techniques, such as magnetic resonance neurography, diffusion
tensor imaging, and nerve ultrasonography may provide additional insights into
neuropathology of large and small myelinated fibers (57). However, these examinations need
expensive devices and well-trained examiners. Thus, they are not appropriate for routine

screening, but rather for experimental setups and study cohorts.

In summary, noninvasive POCDs have acceptable sensitivity rates for detection of fiber
damage, however these should be combined to assess both large and small-fiber function.
The cost-effectiveness and performance of each device still need to be evaluated in further
studies (22).

1.4. Current concepts on game-based tools to diagnose PN

Digital game-based approaches have been developed for disease prevention and promotion

” [

of health and are known as “Gamification”, “Exergames” and “Serious Games”. “Gamification”
encompasses typical game elements (leader boards, ranking, points, rewards, team activities,
and profile design) to enhance motivation and performance. The terms “Exergames” or

“Exergaming” refer to video games that interact with users by tracking body movement or
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reaction while performance of exercise. The term “Serious Games” refers to games that are

designed to deliver serious content, e.g. to address health problems (58).

“Gamification” has been rapidly grown as a hot topic in industry and academia since 2010. The
Gamification market was estimated to reach 2.8 billion US dollars in 2016 (59). Most
Gamification applications target behaviors associated with physical activity and weight loss.
Most commonly used game elements include goal setting, social influences, and challenges
(60). In arandomized clinical trial that assessed 602 overweight and obese adults, gamification
interventions with incentives significantly increased physical activity in participants, especially
when a competition was set up (adjusted difference, p<0.001) (61). “Exergames” typical
applications are balance challenging exercises, such as step-mat-training (SMT) and
Microsoft-Kinect® (KIN) Exergames. Clinical studies have confirmed the positive impact of
these unsupervised exercise programs on reducing fall risk, improving proprioception and
reaction time, enhancing executive functions, and preventing depression in seniors diagnosed
with diabetes (62, 63). Computerized games for serious purposes are denoted “serious games”
and commonly combine Gamification and virtual reality to enhance mental health interventions.
Serious games are widely applied to assess and improve attention and memory function in

seniors at risk for cognitive impairment (64, 65).

According to a recent literature review, there are no video game-based applications that have
been specifically designed for peripheral neuropathy screening. However, studies have shown
that “Gamification”™ and “Exergames”-based programs have great potential to promote
proprioception and shorten reaction times, improve balance and postural stability, reduce the

risk of falls and improve mental quality of life.
1.5. Advances in machine learning algorithms development

Machine learning (ML) has been defined by Arthur Samuel in 1959 as a “field of study that
gives computers the ability to learn without being explicitly programmed” (66—68). The primary
precondition for ML is to “introduce algorithms that ingest input data, apply computer analysis
to predict output values within an acceptable range of accuracy, identify patterns and trends
within the data and finally learn from previous experience” (69). Advanced computational
technologies and the extensive amount of data generated in the medical system have
promoted broad applications of ML algorithms within the medical field. ML algorithms have
shown many potential benefits in handling electronic laboratory data, medical records and

imaging (70).

A research hotspot is the use of machine learning algorithms to develop models that may
identify gait features that predict balance disorders, deficits following strokes, or diagnose

neurodegenerative diseases. Artificial neural network (ANN) and support vector machine (SVM)

11



are reported to yield high accuracies in clinical studies (71, 72). Another hot research topic is
dedicated to image analyses, e.g., to classify biopsy findings in pathology or magnetic
resonance imaging (MRI) with deep learning algorithms to detect carcinomas (73). These
applications have revolutionized the way both researchers and physicians address clinical
concerns (70). Regarding peripheral neuropathy diagnosis, intelligent classification models
have been developed using clinical data (such as glycated hemoglobin, physical activity level,
surgery trauma history, diabetes mellitus duration) as predictive features. Logistic regression
(LR), decision tree (DT), multi-layer perceptron (MLP), and artificial neural networks (ANNS)
have performed acceptable accuracies on large study cohorts (74, 75). Overall, these studies
highlight the potential strength of machine learning in medicine, particularly for the topic of this

thesis.
1.6. Aims of the work

Detection of peripheral neuropathy in patients with diabetes (DPN) is a clinical challenge with
high relevance for prevention of the diabetic foot syndrome. Accurate POCDs that are rapid,
noninvasive, with investigator-independent evaluations of small and large fiber neuropathy are
highly needed, preferentially for usage in the outpatient setting. Game-based applications
combined with sensor-equipped insoles may circumvent drawbacks of traditional clinical
examinations, however have to be standardized and meet highest standards. Supervised

learning algorithms may aid data interpretation and offer an online prediction tool.

In this thesis | wish to establish a playful nerve function assessment device by combining
sensor-equipped insoles with video games and machine learning algorithms. | set up the main
hypothesis that “a video game-based “Gamidiagnostics” application is able to provide a
meaningful assessment of small and large fiber function in a self-administered, examiner-
independent manner and may be suited as a telemedicine application”. The following

hypotheses will be tested:

(1) A “Gamidiagnostics” application with video-based playful elements combining sensor-
equipped insoles and machine learning algorithms is feasible to screen for peripheral
neuropathy in patients with diabetes.

(2) In such an application, critical skills may be tested and quantified, i.e. reaction time, quality
of sensation, muscle strength, balance, and endurance.

(3) Furthermore, feature extraction methodology may be applied to determine representative
game features and calculate key capabilities that correlate to the clinical ground truth (e.g.
for NDS).

(4) Trained classification models may identify relevant game parameters, make predictions on

DPN and possibly achieve phenotyping of impaired nerve fibers.
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Specifically, the following subgoals will be addressed:

(1) Design and development of a “Gamidiagnostics” application that consists of video games
controlled by sensor-equipped insoles, with real-time data acquisition, and automatic
transmission to a remote server (denoted 1Q-Trial).

(2) Validation of the “Gamidiagnostics” application in a pilot exploratory study by testing and
guantifying critical skills of enrolled healthy individuals and patients diagnosed with
diabetes and peripheral neuropathy.

(3) Performance of correlative analyses to determine differences between healthy volunteers
and patients diagnosed with peripheral diabetic neuropathy according to clinical scores
(NDS) and predefined key capabilities (reaction time, sensation, skillfulness, endurance,
balance, muscle strength).

(4) Training and optimization of Al models for classification of patients with DPN versus
healthy controls. Assessment and prediction of the severity of dysfunction for fiber
subtypes AB-, Ad-/C and Achilles tendon reflexes.

13



2. Materials and Methods

2.1. Sensor-equipped insoles

The study was designed to determine the performance of participants with video games that
are coordinated by pressure sensor-equipped insoles as steering tools. Such insoles were not
commercially available and were thus designed in cooperation with two firms that are
knowledgeable in sensor manufacturing, Thorsis Technologies GmbH, Magdeburg, Germany
and IEE S.A., Bissen, Luxembourg. Three prototypes were delivered for testing as control units

for video games. Their technical features are summarized in Figure 1.

Gaming Insole 1 Gaming Insole 2 Gaming Insole 3

Insole sensor mapping
® @
Pressure 9997 ® 109@s /,,:/@5‘/4 ®
Temperature 0% ®g'7 RN
8 R 4
O Inertial measurement unit 0O 4 1 R 5 1 4/~% /bf&,@t‘?&
S oy
5 @2 2 Yo" o 4
® | . 5 <%
.3 | 3 =) Al

Pressure sensors Type/Manufacturer

Number of cells

Interlink Electronics FSR™ 402
9

Interlink Electronics FSR™ 402
10

IEE high dynamic HD002 FSR
8

Size Circular with diameter 1cm Rectangle with area 5.57 cm?
Measuring range 0 ~ 15bar 250mbar ~ 7bar
Accuracy 100mbar 3.4mbar
Temperature sensor One on the insole and one One intergrated in MCU One intergrated in MCU
intergrated in MCU
Inertial measurement Type/Manufacturer  LIS3DH with 3-axis accelerometer LIS3DH with 3-axis accelerometer ICM-20948 with 9-axis gyroscope,
unit (IMU) accelerometer, compass
Measuring range +2G +2G +2G ~ +16G
Data sampling 30Hz 100Hz 25 ~ 500Hz
Communication Bluetooth 4.1 Bluetooth 4.1 BLE 5.0+

300mAh, 12h streaming
USB-C charging

Battery 45mAh, 1h streaming 45mAh, 2h streaming

Charging method Manually replace the battery Micro-USB-B charging

Internal storage 8MB 8GB Standard 8GB
Electronic Control Unit (ECU) Integrated Discrete Discrete

Data Synchronization (between left & right foot No No Yes

and device)

Automatic detection of L/R foot No No Yes

Offline recording No No Yes, up to 10h
Covered shoe size 37 ~46 EU 37 ~46 EU 28~47EU

FSR: Force Sensing Resistor
Figure 1. Overview on technical features of sensor-equipped insoles tested in the study.

The Gaming Insole 1 is an all-in-one plantar pressure-measuring insole system (InterSOLE®,
Thorsis Technologies GmbH, Magdeburg, Germany) that embeds an electronic control unit
(ECU) and nine circular pressure sensors with diameters of 1cm each, which are integrated
into a flat onlay of soft tissue that fits into pantolettes. The sensors are located at the metatarsal
1—5 and calcaneus. According to the manufacturer, the threshold of the pressure sensors is
100 mbar, the measuring frequency equals 30 Hz. The ECU is integrated into the insole
together with a temperature sensor and a three-axis accelerometer (LIS3DH). The insole

transfers the sensor data to connected devices via Bluetooth (Version 4.1) in real-time. A
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rechargeable battery enables the insole to perform continuous recordings without interruptions
for about one hour. The insoles were fabricated at standard sizes ranging from EU shoe sizes
37 to 46 (ten sizes).

Gaming Insole 2 is an upgraded version of the aforementioned InterSOLE® (Thorsis
Technologies, Magdeburg, Germany), which has a separate ECU (including accelerometer),
higher measuring frequency (100 Hz), additional storage capacity (8GB), optimized power
consumption and power supply strategy (with = 2 hours streaming duration). The ECU is
separate from the insole and connected via a flexible connection. The setup requires the user
to strap the ECU to the lower limb or ankle. All other properties of the insole are identical to

the first InterSOLE version.

a)

Figure 2. Characteristics of the Gaming Insole 3 (ActiSense System®, IEE S.A., Bissen, Luxembourg). a) The
eight pressure sensors are integrated into a flat laminated flexible foil at distinct locations that correspond to the
calcaneus (2 sensors), lateral arch, metatarsal 1, 3, and 5, digitus 1 and 5 of the feet. The sensor areas cover about
5.6 cm? each and are seen as dark areas implemented in the foil. b) Printed circuit board of the electronic control

unit with a nine-axis inertial measuring unit marked with a yellow circle. ¢c) Gaming sensor placement on top of the
more resistant insole beneath a textile cover sheet.

The Gaming Insole 3 (ActiSense System®, IEE S.A., Bissen, Luxembourg) encompasses an
Electronic Control Unit (ECU) and eight pressure sensors (5.6 cm? high dynamic HD0O02 force
sensing resistors) that are integrated into flexible foil at locations corresponding to the
calcaneus, lateral arch, metatarsal 1, 3, and 5, digitus 1 and 5 of the feet (Figure 2a). The
sensors allow for pressure detection with an accuracy of 3.4 mbar in the range of 250 mbar to
7 bar. The ECU consists of a nine degrees of freedom inertial measuring unit (IMU, embedding
a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer), with a sampling rate
of up to 500Hz, data synchronization (between insoles and smart devices), automatic detection
of foot side, internal storage of 16 GB and energy supply of up to 10 h (Figure 2b). The sensors
are embedded in foil and do not protrude. The foil is placed on top of the ethylene-vinylacetat-
30 insole beneath a protective layer of textile covering (Figure 2c). In the “Gamidiagnostics”
sessions, sensor data were recorded at 200Hz and transferred in real-time to the App via

Bluetooth (5.0) for smooth steering of games.
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The aforementioned Gaming Insoles were initially evaluated as steering units for the video
games. Six test scenarios were defined to judge insole performances in various use cases,
which consist of (1) balanced sitting, maximum pressure on the (2) forefoot or (3) heel while
sitting, (4) balance standing, (5) standing only on one foot, and (6) normal walking. The
pressure-time profiles of study participants are depicted for the three insoles in Figure 3. All
absolute pressure values were normalized to the range of 0 to 1 following the calibration steps
that recorded the maximum pressure values achieved for each sensor. No significant
differences were observed during the balanced sitting phase with all three types of insoles.
However, in the other scenarios, Gaming Insole 1 was outperformed by the other two insoles,
given that most of the sensors of Gaming Insole 1 did not respond to applied pressure changes
(e.g., only sensor of MTK4 detected pressure variations when the participant applied maximum
pressure on the forefoot while seated). Moreover, the pressure profiles recorded with the left
and right insole differed markedly while normal walking.

Gaming Insole 1
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Figure 3. Performance comparison of the three Gaming Insoles with findings during a standardized test
protocol. The pressure-time profiles of a study participants were recorded with different insoles and are visualized
for all six tasks, including balanced sitting, maximum pressure on the forefeet while seated, maximum pressure on
the heels while seated, balanced standing, standing only on one foot, and walking.

Gaming Insole 2 revealed noticeable improvement in detecting pressure changes, most of the
sensors provided adequate pressure values in the different scenarios, especially when the
participant applied maximum pressure on the forefoot or heel while seated. However, with this

insole there were still marked differences in the pressure values recorded by the left and right
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insole during walking and in the seated position, when the maximum pressure was applied to

the heels and forefeet.

In contrast, the Gaming Insole 3 yielded a smoother pressure profile, likely due to the higher
transmission frequency of the pressure values. Furthermore, more sensors were activated
when maximum pressure was applied to the left and right forefoot in the seated position (test
scenario 2). Lastly, the stance phase of walking measured by the insole was longer with
Gaming Insole 3 than with the other two insoles. The stance phase is defined as a gait phase
that begins when the foot touches the ground and ends when the same foot leaves the ground.
The likely reason was a lower sensor detection limit and higher detection frequency of the

Gaming Insole 3.

Given these findings Gaming Insole 3 was selected as the control unit for the pilot study on

neuropathy detection with video games.
2.2. Game developing architecture

The Android Studio application (the official integrated development environment for Google’s
Android operating system, Google LLC, U.S.) was chosen to develop an Android-Unity-Plugin.
Game developing engine Unity (version 2019.1.8f1, Unity Technologies, U.S.) and Visual
Studio 2017 on the Windows platform were utilized to implement the designed video games.

Figure 4 summarizes the developing architecture implemented in this work.

Individual Insole Calibration Game Scenarios
o Pressure ) Ul rendering,
2 thresholds Normalized game logics ...
W pressures
o
= 5 Pressures Manager _
= o
o c Controller
& g
o 5 Start/Stop
.'g £ Data Receiver
1]
S U] Model View
=
<
Android Unity Plugin (.aar) Model-View-Controller Pattern

€) Biuetooth API
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1
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Absolute pressure |
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Gaming Insole

Figure 4. Game environment architecture. Absolute pressure values detected and quantified by the sensors of
the insoles were transferred via Bluetooth to an Android device. The “Gamidiagnostics” App received pressure
values through a plugin and the Bluetooth API that controls Bluetooth connections to both insoles. The pressure
manager was programmed to normalize pressure values to a range from 0 to 1 (minimum to maximum values),
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depending on pressure results acquired from the calibration steps (see below). In different game scenarios a similar
functional pattern named Model-View-Controller (MVC) was implemented. The Model defined the data structure
and functions to read, save and transform the data. The View consisted of methods that render the graphics and
control the Ul elements. The controller connected the model and the views, and performed the game mechanism.

Communications between insoles and Android tablets were established according to the
predefined data transfer protocol. An Android-Unity-Plugin was programmed to unify and
manage Bluetooth connections to insoles and forward sensor data to the “Gamidiagnostics”
App. It normalized absolute pressures to values ranging from 0 to 1 depending on the individual
pressure thresholds acquired from insole calibration and transformed pressure changes to
corresponding control signals in variant game scenarios. The Model-View-Controller (MVC)
Pattern that consisted of three functional parts: Models (Data creating, reading, updating, and
deleting), Views (Interface/Detection), and Controllers (Decision/Action) was introduced in four
games. The model represents the data portion such as the moving speed of an element, the
frequency of collisions between objects, the number of retries in different game levels, and
overall game score of a player. The view represents the viewing portion which is linked to the
model. The view has direct access to change the property of the Ul elements or listened to the
events. The controller brings together the model and view by synchronizing state and driving

interaction between components in the game.

2.3. Design of video games and setup of “Gamidiagnostics”

application

In the following, the usability of the Gaming insoles 3 was tested in video games. The primary
guest was to define appropriate exergaming challenges and to design appealing video games
with common game elements, such as tasks of limb coordination, anticipation of movements,
coordination of bilateral movements, left-right-sidedness. Overall care was taken to simplify
the video games in as much that a brief tutorial sufficed to formally instruct and introduce the
player into the challenges (overview of “Gamidiagnostics” application in Figure 5). The
pressure sensors within the insoles constituted the steering control units. The following
requirements were defined for the game design and challenges herein: 1. A low complexity
setup allowed a quick entry into all games and an easy understanding of control functions
through pressure measuring insoles. 2. Motivational elements encouraged completion of tasks
and endurance over 15 minutes. 3. Standardized calibration steps and tutorials before each
game allowed initial steering attempts to familiarize with the games. Tutorials were repeated
on demand. 4. Standardized data acquisition processed with time stamps link sensor data over
the course of games, even in the event of failed efforts (maximum allowance of three failed
efforts per game). Comparison of datasets through time frames was maintained. 5. Definition
of distinct challenges in each game provided information on movement control of both feet and

legs with variables affected by muscle strength, sensation, balance, and coordination. These

18



variables were tested for each foot separately and both feet in concert. 6. Immediate feedback

to the participants on gaming results and overall performance.

Verbindungsmanager Gamification Test Kalibrierung 2
. . . Rncher Vot ’
v einehmer der Geben i st D anund
) ke S e créa
&
e probandento Bl o GRi v
Vormame: Name: g I
- Untersucher: Studie: S
Sohle 1 () Sobie2 (@)  soties ke Vesion mochen S seer? - |
rechts
\ Sie die Einlegesohle aus und drcken . hized hew

%MMI ke Belasten Sie bitte den rechten Vorderfulk nach dem Piepton sehr stark fur 5.

Bitte driicken Sie “Weiter', um das Spiel 2u starten. ‘Weiter Sek
a) Insole Manager b) Home Menu c) Calibration

Reaktionsspiel

Bitte entspannen Sie sich,
Legen Sie bitte beide Hande auf den Tisch mit dem Tablet dazwischen.
Der Reaktionsspiel startet in Kirze.

f) Apple:

-Catch Game

d) Reaction Test

Belastungsspiel 16/16 Ergebnis Ergebris hochladen

Die Auswertung der Daten sieht so aus:

(= —(%)
yy \9
Schnelligkeit ( 100 %—q (1 ) Balancegefuh
-y /-

/ Sensibiat ( = )——( 10 ) Kraflentalung
Linker Fu Rechter Ful ”
Gesamtbewertung:
2 TS TR @ Experte @ Experte 1V expere B Experte
g) Cross-Pressure Game h) Island-Jump Game i) Assessment

Figure 5. Page-wise set-up and components of the “Gamidiagnostics” application. Each participant of the
Gamidiagnostics sessions performed a parcours of tasks. (a) The “Insole Manager” page was accessed first and a
Bluetooth connection of the tablet to both insoles was established. (b) On the “Home Menu” page the participant
entered his name and received an ID for pseudonymization. Furthermore the settings of the “Gamidiagnostics” were
defined, e.g. with tutorials and middle game length. (c) On the “Calibration” page the participant was asked to
perform eight calibration steps. The resulting minimum and maximum pressure values were utilized to normalize all
subsequent pressure values to a range from 0 to 1. (d) On the “Reaction Test” page the participant had to respond
with an immediate finger movement and touch of the screen when a green colour sign appeared. (e—h) The main
part of the Gamidiagnostics application constituted a set of four video games. These were labelled as balloon-flying
(BF), apple-catch (AC), cross-pressure (CP) and island jump (1J) games. Each individual game was introduced by
a brief tutorial that explained the challenges and allowed to familiarize the participant with the foot movements that
are required to steer the devices. (i) Finally, the “Assessment” page summarized the overall achievements of the
participants and visualized these with a spider chart. The subskills were classified into the following
subcharacteristics: skillfulness, reaction time, sensation, muscle strength, balance, and endurance.

The “Gamidiagnostics” application was set up page-wise. The overview on the page
composition is provided in Figure 5 and Appendix 11.6. On the first page an insole connection
manager handled the Bluetooth connections to abovementioned Gaming Insoles and
visualized the sensor positions and values (pressure, temperature, acceleration, and battery

status) in real-time (Figure 5a and Figure 6).

On the “Home Menu” page the study personnel logged in to the application and set the game
preferences, including middle game length, performance with tutorials, and insole calibration
thresholds. All study participants were registered with new Subject-I1D (Figure 5b).
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Figure 6. Insole connection manager of the “Gamidiagnostics”. (a) Start page that allowed the study participant
to select the insole. (b-d) Sensor views of Gaming Insoles 1, 2, and 3. The battery status of the insoles, and sensors
data (pressure, temperature, acceleration, gyroscope, and magnetometer) were visualized.

To normalize pressure values according to weight and maximum pressure applied by the
participants, eight calibration steps were defined. These were visualized on the calibration
page and the participants were instructed to perform these before exercising the games (Figure
5¢, Figure 14). The recorded minimum and maximum pressure values were the basis for data
normalization, which is to define a range from 0 to 1 for each sensor. The steering unit of the
insoles was programmed to apply normalized values in the games, which were the transformed

values between 0 and 1.

On the next page a “Reaction Test” was set up. Here study participants were instructed to
position their hands on both sides of the tablet and be prepared to touch the screen as soon
as a green rectangle appears. There were four attempts with different time intervals between

signals. All finger reaction times were saved locally on the tablet (Figure 5d).

On the next pages four different video games were implemented, that were denoted according
to their key features: Apple-Catch (AC), Balloon-Flying (BF), Cross-Pressure (CP), and Island-
Jump (1J) games (Figure 5e—h).

In the Balloon-Flying (BF) game, the player guides a balloon over a skyline (Figure 5e). The
flying height is adjusted by the applied pressure detected at the forefoot of the right or left
insole, respectively. The balloon approaches the ground if no pressure is applied. The ideal
flying route is paved by 12 smileys that also suit as the games’ scoring system. To collect the
maximum number of smileys, the player must maneuver the balloon through the skyline and
preclude collisions with obstacles, such as clouds, buildings, and trees. In the case of a

collision with an obstacle and absent corrective measures in five seconds, a restart is
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automatically initiated. The Balloon-Flying parcours consists of twelve distinct tasks, indicating

12 obstacles.

In the Apple-Catch (AC) game, the player is situated in an autumn harvest scenario and tries
to catch as many apples as possible with a carriage that is controlled by the plantar pressure
application in both forefeet (sensors Metl/3/5) (Figure 5f). The apples grow in size and fall
from the tree one by one at equal time intervals. The target pressure has to be adapted for the
guidance of the carriage below the apple. Additionally, the player must maintain the appropriate
pressure until the apple falls into the carriage; otherwise, the carriage moves out of the ideal
area. Following each task, the carriage is automatically reset to the middle line. Eleven distinct
parameters per task are defined that are the basis for player performance assessment. The

length of the AC game is standardized and encompasses a total of 14 tasks (apples).

In the Cross-Pressure (CP) game, the players are instructed to apply pressure on different foot
areas (forefoot or heel) with differing target pressure levels (low or high) (Figure 5g). Low
pressure is indicated by green color, high by yellow color. The actual pressure is visualized by
black arrows in a pressure bar to the left and right of the virtual feet. To achieve optimal scores,
the player must readily adjust the applied pressure on the corresponding plantar foot areas
and maintain the correct pressure level for at least 4.5 seconds. A smiley and checkmark
confirm accomplishment of the task. If the insole detects no valid action within 25 seconds, the
game proceeds to the next task. Sixteen tasks corresponding to 16 combinations of foot areas

and ideal pressure levels are designed in the game.

In the Island-Jump (1J) game, the player steers a virtual bird with jump movements from island
to island in an ocean until a final destiny harboring its home is reached (Figure 5h). The player
adjusts the jumping distance by modulating the plantar pressure in his forefeet. The jump
direction, left or right, is adjusted by the relative pressure distribution below the right and left
forefoot. To achieve the optimal score, the player must adjust according to the predefined
pressure values and release the pressure at once when this has been reached. If the optimal
pressure is not maintained within narrow limits, the bird jumps into the water. It initiates a game
restart, and the player faces the same challenge again. There are a total of 16 islands (tasks)

with different optimal pressure levels (low, middle, or high) and foot sides (left, right, or both).

Every game was introduced by a prerecorded tutorial, which provided standardized
instructions on how to proceed with the games, allowed for some early steps in handling the
insoles (examples of pressure application, guidance with insoles). Furthermore motivational
elements (scoring system with smileys) were introduced in the games and the possibility to

repeat instruction tutorials.
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All sensor data together with the pseudonymized data from each participant were transferred
to the remote 1Q-Trial server for data calculations and interpretation. Moreover, the 1Q-Trial
server visualized the data and created a result sheet as feedback to the study participants with
a spider chart on the participant’s game performance, referring to six key capabilities: reaction
time, sensation, skillfulness, muscle strength, balance, and endurance (Figure 5i). In addition,
the study participants were classified as “beginner”, “moderate”, “advanced”, or “expert”
players according to their game performance (i.e. numbers of collected apples in the AC game,

acquired smileys in the BF and CP game, and attempts in the 1J game).
2.4. Feature extraction methodologies

Feature extraction was performed to get parameters that representatively reflect players’
performance (denoted “representative parameters/features”) in the “Gamidiagnostics” session.
Game parameters calculated from each game task were considered as primary features. Apart
from that, the concept of task combination (TC) was introduced, i.e., a set of game tasks with
similar specifications or macro-measurements were combined. Feature extraction of distinct

parameters from defined tasks and task combinations (TCs) for the four games was set up.

Inthe AC game, eleven distinct parameters were defined to represent the player’s performance
in every task (Figure 7a, b).
1. Reaction time [s]: the time that the player spends to identify the next apple and move

the car over ten percent of the target distance (horizontal distance between the initial
position of the car and the next apple).

2. Anticipation time [s]: the time that the player takes to bring the car into the catching
area through modifying appropriate pressures on his/her feet.

3. Time inside catching area [s]: the time that the car stays in the catching area. The
player achieves this by maintaining the appropriate pressure on the insole.

4. Time outside catching area [s]: the time that the car leaves the catching area when the
player fails to keep the appropriate pressure on the insole.

5. Frequency outside catching area: the frequency that the car leaves the catching area
after initially entering it.

6. Final virtual distance: the distance between the car and the target apple at the end of
each task.

7. Apple caught (yes/no): a value that indicates whether the apple is collected or not in
the task.

Normalized pressure: the sum of the normalized pressures of all frames in the task.

Pressure differences between successive frames: the sum of the pressure deviations
between frames in a task.

10. Pressure gradients between successive frames: the sum of the pressure gradients
between frames in a task.

11. Pressure time integral: the area under the peak pressure-time curve recorded by an
insole in a task.

22



a) Parameters per task

pra—

Catching )

Distinct parameters

Middle line Reaction time [s]

area Anticipation time [s]

i
Target distance (d) i Time inside catching area [s]

7 Apple caught (yes/no)

8 Normalized pressure
Pressure differences between

* 9 :
® o T ouidecacningareal) RSSOl
6 of targe Bl F R 10 ;
l distance /' el requency outsiae caicning area successive frames

o g W N -

Final virtual distance 11 Pressure time integrals

c) Tasks and task combinations (TCs): 1 - 13

TC 10-13: tasks with different apple ‘s heights and foot sides

: m o ‘ I m ; :

ot Voo

e S

b) Pressure time curve per task

max Normalized pressure min > TC 10 TC 11 & '
<= Og tr =z wn® u ‘
— P r=2 TC8 TC6 TC4 TC5 He 7 TC9
Ja—_ At v VR v VoOoOmEE v v
) TQ .4.-9_:tasks with different optimal pressures and fcﬁ-s!des
g1 = Ef:z At -
TC 2 (left foot) TC 3 (right foot)
................ e "
optimal puiy=f 7 PO A @ tfs] TC 1: all tasks
pressure N;: frame count of task 1 v

Figure 7. Setup of the Apple-Catch (AC) game and feature extraction. (a) In order to evaluate the performance
in apple collection, eleven distinct parameters were defined per task, constituting the basis for data analyses. (b)
Pressure-time curve of each task and calculations of pressure differences, pressure gradients, and pressure-time
integration. (c) The Apple-Catch game included fourteen tasks (apples). For feature extraction, tasks and task
combinations were furthermore defined (TC 1 through 13) to assess the performance (overall result versus left/right
foot, tasks with different ideal pressures, left/right foot, tasks with different apple heights and foot sides).

In addition, 13 task combinations (TCs) were included to provide a more comprehensive
picture of the player’s overall performance (Figure 7c). TC1 encompassed all tasks of this
game. TC2 covered all tasks that use the left foot for controlling the car movement to catch
apples. The corresponding TC3 consisted of all tasks that use the right foot. The player's
performance in tasks requiring different feet can thus be tracked. Furthermore, TC4—9 were
divided by varying horizontal positions of the apples, and TC10—13 involved game tasks with
apples positioned on various heights. The sum, mean, and standard deviation of primary
features over game tasks of TCs were treated as secondary features. For example, the
“Reaction time [s]” of TC1 was a secondary feature that was computed from the average
reaction time of all tasks. Totally, 583 features were extracted from one AC game dataset,
which consisted of parameters calculated from 14 game tasks and additional parameters

generated from 13 TCs (Figure 11).
In the BF game, eleven distinct task parameters were defined as below (Figure 8a, b).

1. Smiley count (n): the number of smileys that are collected in a task (maximum four)

2. Caollision frequency (n): the frequency that the balloon collides with obstacles due to
inappropriate pressures detected by the insole in a task.
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3. Minimal virtual distance smiley 1/2/3/4: the relative distance between the balloon and
the first/second/third/fourth collected smiley at the moment of collision. If the smiley is
missed, this variable will be assigned a maximum value.

4. Virtual deviation of ideal flying route: the virtual deviation of the balloon’s actual flight
route from the ideal positions in each task.

Normalized pressure: the sum of the normalized pressures of all frames in the task.

Pressure differences between successive frames: the sum of the pressure deviations
between frames in a task.

7. Pressure gradients between successive frames: the sum of the pressure gradients
between frames in a task.

8. Pressure time integral: the area under the peak pressure-time curve recorded by an
insole in a task.
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Figure 8. Setup of the Balloon-Flying (BF) game and feature extraction. (a) Eleven distinct parameters were
extracted following comparison with the predefined optimal flying course of the balloon. These are enlisted and
include the overall number of collected smileys (yellow circles), collision frequency, minimum virtual distances
balloon to smiley/perfect flight position, and the pressure gradient between consecutive obstacles. (b) The Balloon-
Flying parcours consisted of twelve distinct tasks. (c) Definition of tasks and task combinations (TC) corresponding
to low, intermediate, and high-pressure applications.
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Additionally, four TCs were introduced in the BF game (Figure 8c). TC1 encompassed all tasks
of this game. TC2—4 were divided according to low, intermediate, and high-pressure
applications by flying over obstacles of variant heights. Overall, 528 features were extracted
from one BF game dataset, which consisted of primary parameters calculated from 12 game
tasks and additional parameters generated from four TCs (Figure 11).

In the CP game, eleven distinct parameters per task were defined as below (Figure 9a, b).
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1. Anticipation time [s]: the time that the player understands a task and modifies his/her
plantar pressures until the optimal pressure zone is reached.
2. Time outside optimal pressure zone [s]: the time that the optimal pressure is not
maintained in a task.
3. Relaxation time [s]: the time that the player spends to release the pressure when a task
is accomplished.
4. Normalized pressure (left foot): the sum of the normalized pressures of all frames
measured by the left insole in the task.
5. Pressure differences between successive frames (left foot): the sum of the pressure
deviations between frames measured by the left insole in a task.
6. Pressure gradients between successive frames (left foot): the sum of the pressure
gradients between frames measured by the left insole in a task.
7. Pressure time integral (left foot): the area under the peak pressure-time curve recorded
by the left insole in a task.
8. Normalized pressure (right foot): the sum of the normalized pressures of all frames
measured by the right insole in the task.
9. Pressure differences between successive frames (right foot): the sum of the pressure
deviations between frames measured by the right insole in a task.
10. Pressure gradients between successive frames (right foot): the sum of the pressure
gradients between frames measured by the right insole in a task.
11. Pressure time integral (right foot): the area under the peak pressure-time curve
recorded by the right insole in a task.
a) Pressure time curve and parameters per task Parameters
g Anticioation Execution ) 1 Anticipation time [s]
§ m i (4.5 Eec) EReIaxatlonE Pressure time curve 2 Time outside optimal pressure zone [s]
& hi @ur of the left forefoot 3 Relaxation time [s]
E i : : ) 4 Normalized pressure (left foot)
s Optimal pressure zone Pressure differences between
£ 5 -
= ‘ : i ; successive frames (left foot)
g HEPEN PP SR PR . — S A A S * 6 Pressure gradients between
tfs] successive frames (left foot)
@ Ape — 3TN 4 @ s, Ap() L SN @ 7 Pressure time integrals (left foot)
P P1=2pe' 82() 91=2r2 "a pti = [ioy P () AL 8-11 Pressure-related parameters (right foot)
b) Game scenery c) Tasks and Task combinations (TCs): 1 -9

Task 5 initialized TC 2: tasks with the low target pressure

b
® ® 1 2 3 4 5 6 8
TC 3: left foot TC 4: right foot TC 5: both feet low target pressure

Task 5 accomplished

4 Ul ey SISO OU we e el
e . ‘@ 11 12 14 16
TC 7: left foot TCVS: right foot TC 9: both feet high target pressure

TC1: all tasks

~

AN - ~

-

K Pl

bl

(e ()

I 13 14 15 16

Figure 9. Setup of the Cross-Pressure (CP) game and feature extraction. (a) Eleven parameters were defined
to present the game outcomes per task, which considered time durations of key game events and pressure
gradients. (b) Screenshots of an initialized and accomplished game task. (c) The CP game included sixteen tasks
corresponding to 16 combinations of foot areas and ideal pressure levels. Nine task combinations were defined for
extracting features that addressed players’ performance by different pressure levels and foot areas.
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Additionally, nine TCs were considered in the CP game (Figure 9¢c). TC1 encompassed all
tasks of this game. TC2 consisted of tasks with low target pressure. TC3—5 were three

subgroups of TC2, divided by the sides of the foot involved (left, right, or both sides). TC6

comprised tasks with high target pressure. TC7—9 represented three subgroups of TCS6,
similarly classified by the sides of the foot involved (left, right, or both sides). Overall, 473
features were extracted from one CP game dataset, which consisted of primary parameters
calculated from 16 game tasks and additional parameters generated from nine TCs (Figure
11).

In the IJ game, eight distinct parameters per task were defined as below (Figure 10a—c).

Attempt count (n): the number of attempts to jump over a stage.

2. Deviation from optimal pressure: the absolute deviation between the measured
pressure and the ideal pressure (for a perfect jump to the middle of the next stage).

3. Anticipation time [s]: the time that the player spends to modify the proper pressures
until 25% of the maximal pressure range is exceeded.

4. Execution time [s]: the duration of the execution period that the player continuously
modifies appropriate pressures before the bird jumps to the next stage.

5. Mean pressure of execution phase: the average pressure during the execution period.

6. Pressure differences between successive frames: the sum of the pressure deviations
between frames in a task.

7. Pressure gradients between successive frames: the sum of the pressure gradients
between frames in a task.

8. Pressure time integral: the area under the peak pressure-time curve in a task.
Additionally, seven TCs were introduced in the 1J game (Figure 10d). TC1 encompassed all
tasks of this game. TC2—4 were divided by the direction that the bird jumped. TC5—7 were
classified by the different optimal pressures (low, moderate, or high) associated with the
distance to the next island (low, medium, or far distant. In total, 296 features were extracted
from one IJ game dataset, which consisted of primary parameters calculated from 16 game

tasks and additional parameters generated from seven TCs (Figure 11).

26



a) Parameters per task Parameters b) Tasks: 1 -16

1 Attempt count (n) End
Deviation from optimal
pressure @
Anticipation time [s]

2
3
4 Execution time [s]
5
6

Island 1 Island 2 Mean pressure of execution phase|
! B Pressure differences between @
Attempt 1 successive frames
L 7 Pressure gradients between
Attempt 2 T J+— aP (:) successive frames
@ optimal pressure [%] 8 Pressuretimeintegrals

c) Pressure time curve per task

50
max?t @
sp, = 2 ap() (8)
R

o
=
7 e ——— T
] e f=N; Ap(f)
o 9 =X @
= s Average pressure of
{ the execution phase
S 25f----mmm--- L T .
E ptiy = [ " p(f)- At e (%)
S min >
5 &) 0 sl
>/ N4
Anticipation Execution p:normalized pressure  Nj:frame count of task 1 "@'@
d) Task combinations (TCs): 1-7
TC 1: alltasks  TC 2: bird jumps forward TC 3: bird jumps to the right TC 4: bird jumps to the left @
TC 5: low distant island: low pressure required TC 6: medium distant island: moderate pressure required Start
a
TC 7: far distant island: high pressure required

Figure 10. Setup of the Island-Jump (IJ) game and feature extraction. (a) Eight parameters were defined to
indicate the game outcomes per task. (b) The 1J game contained sixteen tasks corresponding to 16 islands that the
bird has to jump through until reaching home. (c) Pressure-related parameters include normalized pressure,
pressure difference, pressure gradient, and pressure-time integration of the left/right foot. (d) Distribution of task
combinations corresponding to low, intermediate, and high-pressure applications on the left, right, or both feet.

In summary, introducing the concept of TC facilitated the analysis of players’ performance in
the entirety or among similar tasks and the extraction of the corresponding distinctive
parameters. Overall, 1,880 distinctive parameters reflexing players’ performance were

extracted per dataset (per subject) (Figure 11).

Feature extraction from the Apple-Catch game

é Tasks |_,| Parameters per task Parameters
N=14 N=11 N=154 Features
— - N=583
Task combinations (TCs) Ll Parameters per task Lyl 3 calculations per parameter N Parameters
N=13 N=11 (sum, mean, standard error) N=429

Apple-Catch (AC) Balloon-Flying (BF) Cross-Pressure (CP) Island-Jump (IJ)
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| Overall number of features per Gamidiagnostics session: N=1,880 |

Figure 11. Feature extraction from the “Gamidiagnostics” session. Distinct parameters defined in each task
were initially considered as primary features, such as the reaction time of the first task of the AC game. Task
combinations (TC) were additionally included, i.e., a set of game tasks with similar specifications or macro-
measurements. The sum, mean, and standard deviation of each predefined game parameter over all TCs were
treated as secondary features for analyses. 583 features were extracted for the AC game by adding 429
summarized features of thirteen TCs to the primary task parameters (n=154). Overall, 1,880 features were extracted
from four games per session.
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2.5. Hypothesis-driven key capabilities

According to the hypothesis that critical skills are required for successful gaming performance,
six hypothesis-driven key capabilities were defined: skillfulness (overall achievements in each
game), reaction time (understanding and immediate response to tasks), sensation (fine-tuning
of pressure application in subtasks), muscle strength (achievements with high-pressure
application), balance (pressure distribution left versus right foot) and endurance (steadiness of
pressure application in tasks) (summarized in Figure 12). The “skillfulness” assesses players’
performance comprehensively. It is associated with collected apples (n) in the AC game,
acquired smileys (n) in the BF and CP games, and jumping attempts (n) in the IJ game. The
“reaction time” is correlated only to the initial phase of each game, i.e., the reaction time [s]
and the anticipation time [s] in the AC and CP games. It evaluates the speed that a player
recognizes the task requirement and action to modify the proper pressure on his/her feet. The
“sensation” addresses perception and execution of low pressures and modulation that are
represented as “Final virtual distance” (AC game), “Minimal virtual distance smiley 4” (BF
game), “Time outside optimal pressure zone” (CP game), and “Deviation from optimal pressure”
(IJ game). The “muscle strength” is related to players’ performance in specific game subtasks
that require high-level pressures, such as tasks 5, 6, 11, 12 in the AC game with apples that
are located extremely far from the car. This key capability also considers tasks 5 and 11 of the
BF game (high obstacles), TC 6 of the CP game (tasks requiring high optimal pressure), and
TC 7 of the |IJ game (tasks with far distant islands). The “balance” is calculated from calibration
steps (Figure 14) that evaluates pressure deviations between the left and right foot while
balance standing (step 6) and standing only on a single foot (step 7 and 8). The “endurance”
indicates players’ sustainable capacity by maintaining a consistent pressure in specific game
scenarios, i.e., waiting for an apple within the catching area in the AC game, an execution
phase that requires the optimal pressure for 4.5 seconds in the CP game, and consecutive
jumps in the IJ game. The corresponding indicators are “Frequency outside catching area” (AC
game), “Time outside optimal pressure zone (sec)” (CP game), and Consecutive jumps without
interrupts (IJ game). The six key capabilities have the same range from 0 to 1 and are
calculated automatically at the end of the “Gamidiagnostics” session and displayed with a

spider chart that delivers feedback on the game performance.
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Figure 12. Considerations on key capabilities and scoring of video games (hypothesis-driven). Six key
capabilities for the initial evaluation of the gaming success were defined: skillfulness (overall achievements in each
game), reaction time (understanding and immediate response to tasks), sensation (fine-tuning of pressure
application in subtasks), muscle strength (achievements with high-pressure application), balance (pressure
distribution left versus right foot) and endurance (steadiness of pressure application in tasks). The weighted
summation of achievements in each of these was transformed into a score expressed as [%] in a spider diagram
for immediate feedback to the players.

2.6. Study design

2.6.1. Inclusion and exclusion criteria

The pilot study was carried out at the University Clinic for Nephrology and Hypertension,
Diabetes and Endocrinology in Magdeburg, Germany, following approval by the local ethical
committee (28/17 on 13.04.2017, see Appendix 11.1), with a subcohort from the
SmartPreventDiabeticFeet Study (DRKS00013798) (76).

The inclusion criteria of the DPN group were:
1. distal symmetrical polyneuropathy (sensorimotor polyneuropathy);
diabetes mellitus type 1 or type 2;
absence of manifest neuropathic foot ulceration;
NDS = 2;

ability to use a mobile phone.

a k~ 0D

The inclusion criteria for the control group were:
1. no diagnosis of diabetes mellitus;

2. absent signs of the polyneuropathy of any etiology (according to above examination
results and questionnaire survey);

a good general state of health;
age between 18 and 85 years;
ability to use a mobile phone.
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The exclusion criteria were:
1. macroangiopathy of the lower extremities;

2. physical deformities (amputations, foot and leg deformities requiring orthopedic shoe
fitting);

manifest foot ulceration;

visual disorders including visual acuity of less than 0.8 (except for corrected myopia
and hyperopia);

5. muscular diseases/motor diseases;

6. myocardial infarction <12 weeks;

7. heart failure (NYHA IlI or IV);

8. age below 18 years;

9. lack of ability to give consent for any reason.
2.

2.6.2. Participants

From 07/2020 to 01/2021 patients diagnosed with diabetes and peripheral neuropathy as well
as healthy volunteers were recruited and enrolled following written informed consent (see
Appendix 11.2). All received a detailed explanation of the study protocol, test procedure, and
data handling policy. A questionnaire about past medical history included diabetes mellitus
(time of first diagnosis, type, treatment history, sensory disturbances, complaints, movement
restrictions in daily life), autonomic diabetic neuropathy (dizziness, heart rate arrhythmia,
urination disorders, sweating function), diabetes-associated comorbidities, daily activities
(sports, handedness, dominant foot), recent HbAlc and fasting blood sugar values were
recorded (see Appendix 11.3). A physical examination with bedside neurological and sensory
nerve testing encompassed pinprick test, vibration perception, Tip Therm, reflexes, muscle
function. Subsequently, a Montreal Cognitive Assessment (MoCA) test was performed to

determine and quantify the cognitive capabilities of the participants.
2.6.3. Cohorts

Two study cohorts were planned to comprehensively investigate the feasibility of the
“Gamidiagnostics” application for the assessment of peripheral nerve functions in patients with
diabetes. Cohort 1 consisted of all study participants eligible for the study according to the
inclusion and exclusion criteria. Given that diabetic neuropathy predominantly affects the
elderly population (>50 years) (77), it was anticipated that patients in the DPN group would
generally be older than the control group. Therefore, the second cohort (Cohort 2)
encompassed only age-matched elderly participants. The analyses on this cohort minimized
the impact of age and investigated mainly the possibility of using the “Gamidiagnostics”

application to detect DPN in the elderly population.
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2.6.4. Standardization of the test procedure

The “Gamidiagnostics” session was performed with each study participant receiving a size
matching pair of shoes harboring Gaming Insole 3 (Figure 13a). The participants were seated
on a chair without armrests in front of a table on which an Android tablet (Samsung Galaxy
Tab A T580) was positioned that connected to the insole. Sensor data were recorded and
transferred in real-time to the study application (“Gamidiagnostics” App) via Bluetooth. The
participants initially calibrated the insole through eight standardized steps (Figure 14). The
maximum pressure values determined in the calibration steps were utilized to normalize the
absolute pressure values within the range of 0 to 1. Subsequently, participants familiarized
themselves with the setup of the video games through standardized tutorials that were
repeated on demand (see introduction videos and screenshots in Appendix 11.6). Each
gaming session consisted of four games: Apple-Catch (AC), Balloon-Flying (BF), Cross-
Pressure (CP), and Island-Jump (1J), which were played sequentially (Figure 13b). Each
session lasted about 20 minutes. The acquired insole sensor data and game outcomes were
transferred in a complete data package to a remote server for data visualization and analyses
(Figure 13c). A spider chart provided feedback on the game performance to participants after
the session (key capabilities: reaction time, sensation, skillfulness, muscle strength, balance,

and endurance).
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Figure 13. Overview on game setup, data transferal, assessment and visualization. (a) The sensor-equipped
gaming insoles 3 provided eight embedded pressure sensors in distinct areas of the plantar pedis. The top center
image depicts the localization of the sensors corresponding to the calcaneus, lateral arch, metatarsal (Met) 1/3/5,
digitus 1 and 5 of the forefoot. The complete insole served as a steering unit and was connected to a control unit
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for real-time data transmission via Bluetooth to the “Gamidiagnostics” application, which was run on a tablet. The
setup allowed the participants to play games solely by modulating plantar pressure distribution. (b) Each gaming
session included a tutorial with calibration steps and four games, i.e., Balloon-Flying (BF), Apple-Catch (AC), Cross-
Pressure (CP), and Island-Jump (1J). (c) Subsequently, the data was uploaded to the 1Q-Trial server as a data
package. The participants received a brief summary of their performance with a spider chart, scores, levels, and
capabilities (beginner, average, advanced, expert). Further data visualization for the physician and data analysis
was realized to indicate the performance of participants in the different games in comparison to maximum
achievement levels.

a) 1 2 3 4 5 6 7 8
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b) Calibration step Normalization algorithm

1 Balanced sitting (5 sec) Py = Pa — Pmin

2 Maximum pressure on the right forefoot (5 sec) Pimax = Pmin

3 Maximum pressure on the right heel (5 sec) pn: normalized pressure

4 Maximum pressure on the left forefoot (5 sec) pq:absolute pressure

5 Maximum pressure on the left heel (5 sec) Pmin: minimal pressure threshold
6 Balance standing (5 sec) Pmax: maximal pressure threshold
7 Standing on the right foot (5 sec)

8 Standing on the left foot (5 sec)

Figure 14. Overview of calibration steps. Eight calibration steps were performed before games. These allowed
normalizing pressure values according to weight and maximum pressure applied by the participants. Minimum and
maximum pressure were recorded for all positions at forefeet and heels. Furthermore, the participants were
instructed to stand up for five seconds and keep balance on each foot alone for 5 seconds. An algorithm was applied
to normalize these values that were utilized for the steering unit of the insoles. Minimum-maximum normalization
transformed all values to the range of 0 to 1.

2.7. Data protection and management

An important principle when working with patient data is data protection. At the screening visit,
each study participant was assigned a unique ID. The questionnaires on past medical history
and physical examinations were archived with this identifier only but not the personal

information (name, date of birth and so on).

The encrypted sensor data, insole identification, game setting, calibration thresholds, and
game outcomes were also saved with the ID and further transmitted to the study server
(Supplementary Figure 1), which was denoted 1Q-Trial. It was established during the study to
provide physicians and analysts an overview on the study participants’ game outcomes, as
well as immediate feedback to study participants on their gaming performance by considering
six predefined assessments focusing on balance, sensation, muscle strength, reaction time,
endurance, and coordination (Supplementary Figure 2—7). Only study personnel and caring
physicians were provided with access to the server IQ-Trial. This server is located in the
computer centre of the University Hospital of the Otto-von-Guericke University Magdeburg
(Figure 15).
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Figure 15. Data management within the “Gamidiagnostics” study. A unique Subject-ID was assigned to each
participant at the enrolment into the study. The study personnel archived screening questionnaires and clinical
examination findings according to this identifier only. During the “Gamidiagnostics” session, sensor data and insole
information received from the insole were saved with the Subject-ID on an Android tablet and was further transmitted
to the IQ-Trial sever together with the encrypted test data, including game setting, calibration thresholds and game
results. Only study personnel and caring physicians had access to the study server. Data interpretation was
achieved by the physician considering subjects’ demographic information as well as medical history and clinical
findings.

The pseudonymization step allowed to trace back the personal data, such as names and date
of birth, which was only possible through a list archived separately with the consent form in the
Clinic for Nephrology and Hypertension, Diabetes and Endocrinology at the Otto-von-Guericke
University Magdeburg. Patients were informed about the setup of data protection, data

processing and confidentiality principles. Corresponding declarations of consent were signed.
2.8. Statistical analysis and Al modeling

2.8.1. Statistical tests

Descriptive statistics are presented in proportions and frequencies for categorical variables,
while mean values and standard deviations (SD) are provided for continuous variables. A
correlation greater than 0.75 was considered a "strong" or "very good" correlation between two
variables, according to recommendations from the literature (78, 79). This threshold was
utilized for correlation tests that filtered out redundant game parameters with high inter-
correlations. The remaining parameters were compared between healthy controls and patients
diagnosed with diabetes and peripheral neuropathy. Chi-square tests were performed on

categorical variables. The Shapiro-Wilk normality test was utilized to determine the normal
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distribution of continuous variables. For normally distributed variables, the group differences
were computed with t-tests. Otherwise, Mann-Whitney U tests were performed on variables.
In addition, the Kruskal-Wallis H test was utilized for comparing more than two independent
samples. Two-sided P values below 0.05 were considered statistically significant. Pairwise
tests were performed automatically among multiple groups with the correction of the p values

using Holm—-Bonferroni method (80).
2.8.2. Support Vector Machine (SVM)

As a popular supervised machine learning algorithm, SVM is applicable both in classification
and regression cases. When facing classification problems, the SVM algorithm initially places
each observation as a point in n-dimensional space (n=count of features). The position of the
observation on a dimensional coordinate corresponds to the value of the feature. The aim of
classification is to determine the hyper-plane, which distinguishes the two classes best. In
some cases, it is unable to determine a line or hyperplane as desired. The SVM introduces a
kernel function to project the data into a higher dimensional space to find a hyperplane that
can better differentiate the classes. Frequently used kernel functions are polynomial (SVM-
Poaly), linear (SVM-Linear), nonlinear (SVM-Nonlinear), radial basis functions (SVM-Radial),
etc. The conversion from original space to a high-dimensional space may result in extreme
high dimensionality, even endless dimensions, leading to computational complexity and a
staggering amount of computation. However, in SVM, the kernel function is introduced so that
the operations are still performed in the lower dimensional space, which avoids the time

consumption of complex operations in the higher dimensional space (81, 82).

The metric that explicitly evaluates the hyperplane is called margin, and it quantifies the
distance between data points of both classes. The classification performance can be improved
by maximizing the margin distance. The data points near the hyperplane are support vectors
that affect the hyperplane’s position and orientation. Therefore, maximizing margin distance
using support vectors is critical for building an SVM. The hinge loss is introduced to help
maximize the margin, which can be calculated using the loss function (2.1). If the prediction
and reference have the same sign, the cost is equal to zero. Otherwise, the loss value is

computed (83).

_ 0, ifyxfx) =1
oy f(0) = {1 —y* f(x), else 21

Another ingenious feature of SVM is the introduction of a slotting variable (also called penalty
variables) to deal with possible noise in the sample data, which allows the data points to

deviate from the hyperplane to a certain extent. The addition of the slotting variable allows the
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SVM to consider the overall distribution of the sample data rather than just pursuing the

optimization of local outcomes.
In general, SVM has the following advantages.

1. Handing small samples. Compared with other classification algorithms for training, SVM
requires relatively fewer samples for the same problem complexity. Furthermore, SVMs can

efficiently deal with high-dimensional data by introducing kernel functions.

2. Minimization of the structural risk. This risk refers to the cumulative error between the

classifier's approximation of the real problem model and the real solution to the problem.

3. Addressing nonlinearity. SVM is excellent at handling linear indistinguishability of sample
data, mainly through slotting variables (also called penalty variables) and kernel function

techniques, and this part is precisely the essence of SVM.

Clinical studies reported that SVM models perform better on medical classification issues with
limited and imbalanced datasets (84, 85). Therefore, this work selected the SVM algorithm
with kernel functions (linear, radial, and polynomial) for model training.

2.8.3. Performance evaluation metrics

The most intuitive metric for model evaluation is the confusion matrix that presents the
proportion of true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
cases. In this work, we purpose to train models for automatic prediction of DPN that determines
the DPN group to be the positive class. The control group is considered as the negative class.

Corresponding TP, TN, FP, and FN can be described below.

TP: the case in which the model predicted DPN and the actual output was also DPN.

TN: the case in which the model predicted Control and the actual output was also Control.
FP: the case in which the model predicted DPN, but the actual output was Control.

FN: the case in which the model predicted Control, but the actual output was DPN.

In healthcare use cases, FNs result in delayed diagnosis and treatment of patients, leading to
severe consequences. FPs cause misdiagnosis, waste of healthcare resources, and the
potential for doctor-patient disputes. Figure 16a presents a confusion matrix showing the
performance of a DPN classification model. The test dataset consists of 36 observations.
Twenty-six of them were diagnosed with diabetic peripheral neuropathy. The other ten cases
are healthy controls. The model correctly predicts 25 cases with DPN (TP=25) and 4 cases
that do not have DPN (TN=4). One DPN patient is falsely not detected (FN=1), and six healthy
controls are predicted to have DPN (FP=6). Following metrics are calculated based on the

confusion matrix.
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a) Confusion matrix example b) Receiver operating characteristic curve (ROC) example
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Figure 16. Evaluation metrics for classification models. DPN: diabetic peripheral neuropathy; AUC: area under
the curve.

Accuracy: the proportion of true predicted cases among the total sample. It is a perfect metric
to evaluate classification models with balanced datasets. The accuracy here can be computed
to 80.5% with the equation (2.2).

2 _ TP+TN  25+4
ceuracy = Total Sample 36

= 80.5% 2.2

Sensitivity (Recall): the proportion of true positive cases among all actual positives. The
sensitivity here can be calculated to 96.2% with the equation (2.3).

=96.2% 2.3

Sensitivity (Recall) = TPTFN - 2571

Specificity: the proportion of true negative cases among all actual negatives. The specificity

here can be computed to 40.0% with the formula (2.4).

TN
TN+FP 6+4

Specificity = =40.0% 2.4

Precision: the proportion of true positive cases among all predicted positives. The precision

here can be calculated to 80.6%with the equation (2.5).

TP 25
TP+FP 25+6

Precision = = 80.6% 2.5

In the case of an imbalanced dataset with a skewed class distribution, accuracy is no longer a
reliable metric because the major class has a much greater impact on accuracy than the minor
class. In the extreme case, the accuracy remains high even through all minor samples are
misclassified. Therefore, the F1 score, Cohen’s Kappa, and ROC Curves are developed for

imbalanced classification problems.
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F1 score: the harmonic mean of sensitivity and precision ranging from 0 to 1. In this case, the

F1 score can be calculated to 87.7% with the formula (2.6).

F, = : = : = 87.79
LS| 1 1 1_'/0

Recall T Precision 0962 T 0.806

2.6

Cohen’s kappa: the normalized accuracy by considering the exact class distribution in the
dataset. By this binary classification problem, its Cohen’s Kappa can be calculated to 0.17 with
formula (2.7). The range of Cohen’s Kappa is from -1 to 1, but values less or equal to zero
suggests that the classifier has the same or worse performance than a random coin toss. The
closer the value is to 1, the more superior the performance of the classifier is (86). According
to the standard interpretation scheme proposed by Landis and Koch (87), a Cohen’s Kappa of
0.81-1 indicates near-perfect segmentation, 0.61-0.80 as substantial 0.41-0.60 as moderate,
0.21-0.40 as fair, and 0-0.20 as slight. In this example, the classes are imbalanced, and DPN
is the major class with 72% propriety in the data. Therefore, the accuracy is still around 80%,
even though 60% of negative cases are misclassified. Cohen’s Kappa 0.17 is a better metric
that indicates the classification has reached only a slight agreement.
2% (TP X TN — FN X FP)

Conens Kang — =017 27
Onem s RAPPE = (TP ¥ FP) x (FP + TN) + (TP + FN) X (FN + TN)

Alternatively, we could also adjust the accuracy in the case of an unbalanced dataset, which
is called adjusted accuracy or balanced accuracy. In this case, the adjusted balance of 68.1%
calculated with equation (2.8) is much more reasonable than the accuracy.

Sensitivity + Specificity

Adjusted Accuracy = > =68.1% 2.8

The metrics mentioned above only evaluate the performance by calculating positive and
negative cases that are judged by one predefined probability threshold, which is normally set
as 0.5. However, the percentage of predicted positive and negative samples changes actually
with the probability threshold. In order to measure the merit of the classifier with different
discriminate thresholds, the Receiver Operating Characteristic (ROC) curve is involved. It is a
graph that presents the classification model’s true positive rate (TPR, sensitivity) and false
positive rate (FPR, 1-specificity) at various probability thresholds on a curve. The nearer the
ROC curve is to the top left corner, the better the model performs. The area under the curve is
denoted as AUC, and the larger the AUC, the better the overall discrimination of the model.

The AUC considers the classifier’s ability to identify both positive and negative samples

37



simultaneously. Thus, it still can be utilized to evaluate the classifier reasonably in the case of

an unbalanced dataset (88). Figure 16b demonstrates an example of the ROC curve.
2.8.4. Class definition and model training

Al models were derived to distinguish healthy controls and patients with diabetes and sensory
neuropathy in the age-matched cohort (cohort 2) with acquired datasets. The NDS score was
utilized to generate class labels for supervised learning. NDS =2 and impaired vibration
sensation (0-4/8) were considered as existing neuropathy (DPN), and NDS=0 was considered
as the absence of neuropathy (Control group). Secondly, in the DPN group, more detailed
phenotyping was achieved by analyzing the dysfunction of different fiber types. Briefly, for
model 2, severe damage of Ad-/C-fibers was assumed in patients with reduced/absent pinprick
(nociception) or temperature sensation. For model 3, the presence of severe AB-fiber
polyneuropathy was assumed with impaired vibration sensation (below 3/8) or an abnormal
10g monofilament-test result (reduced/absent). The remaining patients in the DPN group were
classified as moderate AB-fiber polyneuropathy (impaired vibration sensation: 3-4/8). For
model 4, the absence of Achilles tendon reflexes was considered as a positive label in the

model training. A negative label was assigned to normal or mildly reduced reflexes.

Regarding to the feature selection, acquired datasets were split into testing and training
datasets (ratio 3:7), during which the random sampling occurred in each class and preserved
the overall class distribution of the data. The training dataset was imported to the classifier to
estimate features’ importance based on model-independent metrics, e.g., area under the
receiver operating characteristic (AUC-ROC) (89). Figure 17 presents the top ten features for
DPN classification ranked by the SVM-Radial classifier. Subsequently, models with different
subsets of top-ranked features (i.e., variances of humbers and/or orders of features) were
tested. Since the studied dataset was imbalanced, we selected Cohens Kappa (a classification
accuracy normalized by the imbalance of the classes in the data) as the performance metric
to compare the models trained with different feature combinations. The models with higher

Cohens Kappa values were chosen as candidate models.
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SVM-Radial Model

Anticipation time (IJ, TC 7) -
Pressure differences (IJ, TC 1) —
Reaction time (AC, Task 12) —
Minimal virtual distance smiley 2 (BF, L, TC4) —*
Anticipation time (IJ, Task 12) —*
Pressure difference (BF, Task 6) ——*
Normalized pressure (AC, TC4) —*
Anticipation time (IJ, Task 9) —*
Execution time (1J, TC 3) [—*
L Virtual deviation of ideal flying route (BF, R, Task 3) [*

Features

I | I N B
0.680.690.700.710.720.73

Importance

Figure 17. An example of feature ranking using the SVM-Radial model. SVM: support vector machine; 1J:
Island- Jump; BF: Balloon-Flying; AC: Apple-Catch; R: Right; L: Left; TC: task combination.

Five-fold cross-validation (three repeats) was applied in feature ranking and training to avoid
overfitting and to derive a more accurate estimate of the model performance. This statistical
method repeatedly divided the training dataset into five subsets with approximately equal sizes
three times. Each subset contained the same proportion of labels as the complete dataset.
Four out of the five subsets were utilized in the model training, while the remaining subset was
used for validation. The average accuracy of cross-validation was considered in the grid search
of parameters combination that improves the model performance the most. Ultimately, the
obtained candidate models were further applied to the testing dataset to evaluate the models’
predictive performance. R programming language (version 4.0.4) and related open-source

libraries were utilized for statistical computing and machine learning algorithms (90).
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3. Results

3.1. Study participants

Cohort 1 consisted of 71 healthy volunteers and 112 patients with diabetes and peripheral
neuropathy (Figure 18). The demographic characteristics of the cohorts are outlined in Table
3. All study participants completed the “Gamidiagnostics” sessions, and data sampled from the
first attempt were analyzed only. The gender distribution is skewed towards male patients in
the cohort with neuropathy, and control subjects are younger. Therefore cohort 2 was selected
from all participants to achieve an age-matching (30 controls and 90 patients with DPN). As
expected, the average BMI is higher in patients with diabetes compared to healthy controls.
NDS and neuropathy symptom score (NSS) indicated that most of the patients in the DPN
group suffered from moderate to severe DPN. In the DPN group, 40% of patients had
reduced/absent pinprick or temperature sensation, indicating impairment of Ad-/C-fiber
function. 81% of DPN patients exhibited impaired vibration sensation (0-2/8) or an abnormal
10g-monofilament-test result (reduced/absent). The absence of Achilles tendon reflexes was
observed in nearly 50% of patients with diabetes. About 80% of patients were diagnosed with
type 2 diabetes mellitus, the remainder with type 1 diabetes except for one. The average time
since the first diagnosis of diabetes was ~20 years.

-~
-
=
@
o
=
=
=z
<
=X
c
=
=
@®
@
=
w
-
-y
\%]
he]
o
=
[
=
=
w
=
=
=
o
aY
P

Tutorials O on demand

é @’ Gamidiagnostics session

Statistical Analysis

| 71 controls ‘ Cohort 1 112 patients with DPN |

Training of the DPN classification model

1
| 30 controls Cohort 2 90 patients with DPN | .
1

Figure 18. Study flow diagram. Cohort 1 comprised of 71 healthy volunteers with absent neuropathy and 112
individuals diagnosed with diabetes and diabetic peripheral neuropathy. Participants were seated in a quiet room
on a chair without armrests in front of a table with a standing tablet. Shoes harboring sensor-equipped insoles
matched the participants’ foot size (four sizes are available: S, M, L, and XL). A standardized tutorial explaining the
challenges was provided, allowing the participants to familiarize themselves with the video games. The interactive
tutorials were repeated on demand. The average duration per “Gamidiagnostics” session was 20 min including
tutorials. To minimize age as a confounding factor, individuals of similar age in both groups were identified and
combined in cohort 2 for further analyses. Statistical analyses were carried out with cohorts 1 and 2, and Al algorithm
development was performed with age-matched cohort 2 only. DPN: diabetic peripheral neuropathy
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Table 3. Demographic characteristics and clinical diagnosis of study cohorts. Data are means + SD or n (%).
DPN: diabetic peripheral neuropathy

Cohort Cohort 1 Cohort 2

Group Control DPN Control DPN

N 71 112 30 90
Age (years) 455+18.4 68.5+8.1 649+70 66.4 +5.9
Sex

Female 48 (67.6%) 33 (29.5%) 18 (60%) 25 (27.8%)
Male 23 (32.4%) 79 (70.5%) 12 (40%) 65 (72.2%)
Body-mass index (BMI, kg/m?) 243+29 29.7+51 25.3+29 30.3+5.2
Diabetes type

Typel 0 23 (20.5%) 0 19 (21.1%)
Type2 0 88 (78.6%) 0 70 (77.8%)
Type3 0 1 (0.9%) 0 1(1.1%)
Diabetes duration (years) 0 205+12.2 0 21.2+12.6
Neuropathy symptoms score (NSS)

Normal (0) 71 (100%) 17 (15.2%) 30 (100%) 15 (16.7%)
Mild (1—4) 0 6 (5.4%) 0 6 (6.7%)
Moderate (5-6) 0 22 (19.6%) 0 16 (17.8%)
Severe (7-10) 0 67 (59.8%) 0 53 (58.9%)
Neuropathy disability score (NDS)

Normal (0) 71 (100%) 0 30 (100%) 0

Mild (2-5) 0 46 (41.1%) 0 37 (41.1%)
Moderate (6-8) 0 55 (49.1%) 0 45 (50.0%)
Severe (9-10) 0 11 (9.8%) 0 8 (8.9%)
Pinprick (left)

Present 71 (100%) 90 (80.4%) 30 (100%) 72 (80.0%)
Reduced/Absent 0 22 (19.6%) 0 18 (20.0%)
Pinprick (right)

Present 71 (100%) 88 (78.6%) 30 (100%) 70 (77.8%)
Reduced/Absent 0 24 (21.4%) 0 20 (22.2%)
Temperature sensation (Tip Therm, left)

Present 71 (100%) 83 (74.1%) 30 (100%) 67 (74.4%)
Reduced/Absent 0 29 (25.9%) 0 23 (25.6%)
Temperature sensation (Tip Therm, right)

Present 71 (100%) 81 (72.3%) 30 (100%) 65 (72.2%)
Reduced/Absent 0 31 (27.7%) 0 25 (27.8%)
Vibration perception (128 Hz tuning fork, left)

Normal (6-8) 60 (84.5%) 0 19 (63.3%) 0

Mild (5) 11 (15.5%) 0 11 (36.7%) 0
Moderate (3-4) 0 22 (19.6%) 0 19 (21.1%)
Severe (0-2) 0 90 (80.4%) 0 71 (78.9%)
Vibration perception (128 Hz tuning fork, right)

Normal (6-8) 66 (93.0%) 0 25 (83.3%) 0

Mild (5) 5 (7.0%) 0 5 (16.7%) 0
Moderate (3-4) 0 24 (21.4%) 0 20 (22.2%)
Severe (0-2) 0 88 (78.6%) 0 70 (77.8%)
10-g monofilament-test (left)

Present 71 (100%) 92 (82.1%) 30 (100%) 73 (81.1%)
Reduced/Absent 0 20 (17.9%) 0 17 (18.9%)
10-g monofilament-test (right)

Present 71 (100%) 90 (80.4%) 30 (100%) 71 (78.9%)
Reduced/Absent 0 22 (19.6%) 0 19 (21.1%)
Achilles tendon reflex (left)

Normal 71 (100%) 20 (17.9%) 30 (100%) 15 (16.7%)
Reduced 0 31 (27.7%) 0 27 (30.0%)
Absent 0 61 (54.5%) 0 48 (53.3%)
Present with reinforcement 0 0 0 0
Achilles tendon reflex (right)

Normal 71 (100%) 22 (19.6%) 30 (100%) 17 (18.9%)
Reduced 0 28 (25.0%) 0 25 (27.8%)
Absent 0 61 (54.5%) 0 48 (53.3%)
Present with reinforcement 0 1 (0.9%) 0 0
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3.2. Hypothesis-driven game assessment

The six hypothesis-driven key capabilities from healthy volunteers and patients with diabetes
and peripheral neuropathy were quantified in both cohorts. Most of these revealed significant
differences between the DPN and Control group in cohort 1, except for reaction time and
balance. Age matching of the datasets with cohort 2 markedly changed the results. The
between-group differentiation of sensation, skillfulness, endurance, and finger reaction time
remained significant (Figure 19). The decreased “skillfulness” in patients with diabetes and
peripheral neuropathy was observed from a higher count of failed jumps in the IJ game. Their
impaired “sensation” resulted in the increased “Minimal virtual distance smiley 4” (BF game)
and “Deviation from the optimal pressure” (IJ game). The distinction of “endurance” between
healthy controls and DPN patients was evidenced with different consecutive jumps without
failures (n) in the 1J game. Finger reaction time presented a light difference between the Control

and DPN group.
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Figure 19. Results of intergroup difference test for hypothesis-driven key capabilities and scoring. Following
calculation of scores for the predefined key capabilities, significant differences were observed for skillfulness, finger
reaction time, sensation, muscle strength, and endurance in cohort 1. For age-matched controls and DPN patients
in cohort 2, differences remained significant for sensation, skillfulness, endurance, and finger reaction time. The
annotations and extracted games of these key capabilities are provided, as well as the significance levels for
intergroup differences (below boxplots). DPN: diabetic peripheral neuropathy. Differences between groups were
calculated using Mann-Whitney U test or t test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), **
(p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). ¥ Finger reaction time of one DPN patient is not available
and replaced with the group mean value. All outliers were not included in density and boxplots.

A logistic regression model with hypothesis-driven key capabilities discriminated healthy

controls from DPN patients with a training accuracy of 71.8% (AUC-ROC: 0.66). The predictors
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of this model are summarized in Figure 20 (F1—F6). The between-group differences are
presented by density and box plots (excluding outliers), as well as mean values and SDs. The

extracted games of each feature are provided in the last two columns.

ID Feature Control (N=30) B8 DPN (N=90) & p Game
B8 _af F1__ Skillfulness 0.916 (0.085) 0.836 (0.151) ** N
B8 A4 F2  Finger reaction time [s]t 0.850 (0.073) 0.822 (0.061) * Reaction test
7= 48 F3  Sensation 0.626 (0.077) 0.586 (0.093) * Al
== &8 F4 Sensation 0.523 (0.103) 0.469 (0.132) * BF (L)
== A F5 Sensation 0.860 (0.079) 0.815(0.107) * N
B8 #5¢ F6  Endurance 0.708 (0.295) 0.580 (0.271) » N

Figure 20. Features of the hypothesis-driven DPN classification using Logistic Regression (model 1b). Six
hypothesis-driven key capabilities scores (F7—F6) were treated as features and entered into a logistic regression
model to differentiate between patients with peripheral neuropathy versus healthy controls. All predefined scores
showed significant differences between the Control and DPN groups. The differences are presented by density and
box plots. The extracted games and related task combinations of each feature are provided in the last two columns.
Data are presented as means (SD). All outliers were excluded in density and boxplots. Differences between groups
were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns
(p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). F: feature; DPN: diabetic
peripheral neuropathy; AC: Apple-Catch; BF: Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; 1J: Island-Jump.
1 Finger reaction time of one DPN patient was not available and replaced with the group mean value.

3.3. Game feature analysis

The initial analysis with 183 gaming datasets acquired from the “Gamidiagnostics” sessions
are summarized in a workflow diagram (Figure 21). For each dataset collected from a study
participant, data preprocessing filtered out 701 dependent variables with strong correlations
(correlation coefficients higher than 0.75) from all extracted game features. Subsequently, the
rest of 1,179 variables were compared between the Control and DPN severity groups (mild,
moderate, and severe) in Cohort 1 using appropriate statistical tests. The Kruskal-Wallis test
was performed to identify the age influence on the game performance by comparing game
features between younger, middle-aged, and elderly healthy controls. In the age-matched
Cohort 2, the same parameters were compared between the Control and DPN groups as well.
Separately, a data frame consisting of 120 observations (study participants from Cohort 2) and
1,179 variables was provided to train automatic DPN classification models. The performance

of developed Al models is separately described in 3.4.
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Figure 21. Flow diagram of data analyses. (a) Data preprocessing filtered out parameters with zero variance or
high inter-correlations from the feature matrix. (b) In cohort 1, three subgroups of participants with DPN were
assigned according to NDS scores. 1,179 game features of the entire cohort were compared between healthy
controls and patients with DPN to identify the effect of peripheral nerve damage on the “Gamidiagnostics”
performance. Subsequently, the influence of age on the outcomes was tested for participants in the control group
(subgroups: young, middle-aged, seniors). Participants aged 51 to 76 years were exported to cohort 2. Their game
parameters (n=1,179) and predefined hypothesis-driven key capabilities were included in the comparisons and
used as candidate features for machine learning algorithms. (c) Within cohort 2, candidate features were ranked by
classifier-estimated importance. Different subsets of the top-ranked features were utilized for training classification
models. Candidate models with higher Cohens Kappa values were selected to evaluate the predictive performance
on the remaining (30%) of the sample. DPN: diabetic peripheral neuropathy; Al: artificial intelligence; SVM-Linear:
support vector machines with a linear kernel function; SVM-Radial: support vector machines with a radial kernel
function; SVM-Poly: support vector machines with a polynomial kernel function

3.3.1. Game feature analysis in Cohort 1

In cohort 1, overall 1,179 independent game features were compared between healthy controls
and DPN subgroups classified as mild, moderate, or severe neuropathy (according to NDS
score). Amongst these, 314 features revealed significant differences. Representative
examples of these game features are compared and visualized for each game (Figure 22a).
In the AC game, the “Final virtual distance” (Feature 1) of task 8 was significantly lower in
healthy controls compared to DPN patients (p<0.0001). It suggested that healthy subjects
could more precisely modify their pressure on the foot and position the car precisely beneath
the falling apple. However, another parameter named “Pressure gradients between successive
frames” (Feature 2) of task 13 exhibited the opposite trend, that was a significantly reduced
pressure gradient in DPN patients (p<0.01). It might be explained by the inability of DPN
patients to dynamically adopt plantar pressure in real-time according to the distance between

carriage and apple as healthy people due to lack of precise pressure sensation. In the CP
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game, the “Normalized pressure” (Feature 3) of task 4 and “Time outside the optimal pressure
zone [s]” (Feature 4) of TC 4 increased significantly in the DPN group. It indicated that DPN
patients have more difficulties adjusting their foot pressure to reach the optimal pressure range.
In the 1J game, the “Pressure differences between successive frames” (Feature 5) of TC 4
(tasks in which the bird jumps to the left) and “Anticipation time [s]” (Feature 6) of TC 3 (tasks
in which the bird jumps to the right) were smaller in the Control group. It demonstrated that
healthy controls react quicker and more precisely by switching from using both feet to one
single foot (left or right) as the controlling unit. In the BF game, the standard deviation of
maximal “Normalized pressure” (Feature 7) of TC 4 was lower in healthy controls compared to
patients with peripheral neuropathy. The TC 4 consisted of tasks requiring high pressures. A
lower standard deviation indicated better modification of pressures by healthy volunteers to
control the balloon fly through the two highest obstacles in tasks 5 and 11. In task 6 that
demanded the release of foot pressures, DPN patients had higher “Pressure-time integrals”
(Feature 8) compared to healthy players. It indicated that DPN patients do not reduce plantar
pressure as quickly and accurately as healthy participants due to their lack of reaction or
pressure perception. A complete summary on 314 of these features and intergroup test results
are provided in Supplementary Table 1.

Secondly, three age-related control subgroups were tested separately, 19 younger, 22 middle-
aged, and 30 elderly adults. The same 314 features were tested among these three age groups,
and 84 variables showed distinctions that associated with age (two examples are depicted in
Figure 22b, other variables are presented in Supplementary Table 1, highlighted with a grey
background). The first parameter, named “Virtual deviation of ideal flying route” (Feature 9, BF
game, TC 3), calculated the deviation between the balloon’s real and ideal flying route while
flying through middle-height obstacles using intermediate pressures. This variable was
strongly correlated to the age of study participants. The “Anticipation time [s]” (Feature 10, CP
game, TC 2) of healthy volunteers increased by the age in the control group. Therefore, age

matching was quite necessary before modeling.
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Figure 22. Results of intergroup difference tests of game features within cohort 1. (a) According to the NDS
score, 112 participants were assigned into mild, moderate, and severe DPN groups. After excluding highly inter-
correlated parameters through preprocessing, the extracted game features from the entire DPN and its three
subgroups (DPN1, DPN2, and DPN3) were compared with the game parameters from the Control group (CON).
Ten examples of 314 significantly different features are presented here. (b) In the Control group, three subgroups
were created by age to identify the influence of age on game performance. 84 of the 314 features observed from
the horizontal comparison between the Control and DPN groups revealed apparent distinctions among the three
age groups. Two representative parameters were “virtual deviation of the ideal flying route” in the BF game and
“anticipation time [s]” in the CP game. CON: controls (N=71); CON1: controls aged 18-30 (N=19); CON2: controls
aged 37—50 (N=22); CON3: controls aged 57—80 (N=30); DPN: diabetic peripheral neuropathy (N=112); DPN1:
mild (NDS: 7—5, N=48); DPN2: moderate (NDS: 6-8, N=55); DPN3: severe (NDS: 9-10, N=11) Differences between
groups were calculated using Mann-Whitney U test, t-test or chi-square test as appropriate. Significance levels: ns
(p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001).

3.3.2. Game feature analysis in Cohort 2

Further analyses were carried out with 120 datasets collected from age-matched participants
in cohort 2. Intergroup difference tests for the 1,179 game features between 30 healthy controls
and 90 patients with DPN extracted 58 representative features with significant differences.
Four examples are presented in Figure 23 modeling scheme 1, and all variables are
summarized in Supplementary Table 2). As presented with boxplots and density curves, the
“Anticipation time [s]” (Feature 1a, AC game, TC 2) was lower in the Control group compared
to the DPN group. It measured the time that the player needed to bring the car into the catching
area by modifying appropriate pressures on his/her feet. Similar trends were observed with the
other three representative parameters. The intergroup difference of “Pressure differences
between successive frames” (Feature 1b, BF game, Task 11) indicated that healthy subjects
could modify their foot pressure more smoothly and precisely while controlling the balloon to
fly through the highest obstacle (the cathedral in Task 11 of the BF game). The average “Time
outside ideal pressure zone [s]” (Feature 1c, CP game, TC 6) in patients with DPN lasted about
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0.8 seconds, twice as long as the value with healthy subjects. A number of DPN patients had
even longer “Time outside ideal pressure zone [s]” than 1/4 of the entire execution phase (i.e.,
the phase required to maintain optimal pressure for 4.5 seconds). Thus, absence of pressure
perception and difficulty maintaining constant pressure in patients with DPN existed. Moreover,
the higher mean “Anticipation time [s]” (Feature 1d, IJ game, task 14) in DPN patients
demonstrated that a majority of them needed longer time to identify the task target and to
adjust foot pressure until reaching the optimal value that triggered a perfect jump of the virtual
bird. From this perspective, the extracted game features were able to pinpoint peripheral nerve

dysfunctions in patients with DPN.
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Figure 23. Classification modeling schemes and representative features extracted within cohort 2. Model 1
was established to distinguish healthy controls and patients with diabetes and sensory neuropathy. Models 2-4
were developed to determine specific fiber subtype impairments (Ad-, AB-/C-fibers). For each model, four
representative features extracted from four different games were compared between groups. Data are n (%).
Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate.
Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). DPN:
diabetic peripheral neuropathy; PNP: polyneuropathy

In the DPN group, 70 game features were identified that predicted impaired pinprick or
temperature sensation (Ad-/C-fiber dysfunction). Four representative features are presented
in Figure 23 modeling scheme 2, and all variables are summarized in Supplementary Table 3).
The most significant parameter referred to “Pressure-time integrals” (Feature 2b) was
calculated from task 3 of the BF game. Patients without small fiber impairments had smaller
“Pressure-time integrals” than those with reduced or absent Ad/C-fiber functions. The “Time

inside catching area [s]” (Feature 2a, AC game, Task 8), the “Normalized pressure (L)

a7



(Feature 2c, CP game, Task 15), and the “Anticipation time [s]” (Feature 2d, IJ game, Task 3)

were also lower in patients with diabetes and without small fiber neuropathy.

In addition, 72 game features indicating moderate or severe AP-fiber neuropathy are
summarized in Supplementary Table 4. Four examples are presented in Figure 23 modeling
scheme 3. The standard deviation of “Time outside catching area [s]” (Feature 3a, AC game,
TC 12) was obviously higher in patients with diabetes and moderate compared to severe Af3-
fiber dysfunctions. A similar pattern was visible in “Pressure differences between successive
frames” (Feature 3b, BF game, Task 7) and the “Time outside ideal pressure zone [s]” (Feature
3c, CP game, Task 2). However, patients with diabetes and severe AB-fiber impairment
revealed increased “Pressure differences between successive frames” (Feature 3d, 1J game,
Task 1).

Lastly, 50 game features correlated with absent Achilles tendon reflexes as shown in
Supplementary Table 5, and four examples are shown in Figure 23 modeling scheme 4. The
standard deviation “Time inside catching area [s]” (Feature 4a, AC game, TC3) in patients with
diabetes and absent Achilles reflex was distinctly lower in those with normal or reduced
reflexes. However, the standard deviation of “Normalized pressure” (Feature 4b, BF game,
TC3), the “Pressure differences between successive frames (L)” (Feature 4c, CP game, Task
14), and the “Deviation from ideal pressure” (Feature 4d, 1J game, Task 9) in patients with
diabetes and absent Achilles reflexes were relatively higher than those with normal or only

decreased reflexes.

Overall, the intergroup difference tests confirmed that some extracted game features are
associated with peripheral nerve damages caused by diabetes. Distinct features also indicated
AB-fiber, Ad-/C-fiber, and Achilles tendon reflex deficits in patients with diabetes. More details

of these features are presented in chapter 2.4.
3.4. Predictive models of DPN

3.4.1. DPN classification model

Predictive models of DPN were trained with the original datasets from 120 participants in cohort
2 (Figure 21c). 70% of datasets (n=84) were utilized for model training, the remaining 30%
(n=36) for testing. Five-fold three repeats cross-validation was applied in feature ranking using
SVM-Linear, SVM-Radial, and SVM-Poly classifiers. Classification models using variant
subsets of top-ranked features (n=25) were trained to search for the best predictor
combinations. The final model was selected according to Cohen’s Kappa metric and evaluated

using the heldout testing dataset.
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The best prediction was observed with the SVM-Poly model (degree: 1, scale: 0.1, C: 0.5)
utilizing 15 predictors (model 1a, Figure 24), reaching an adjusted accuracy of 85.2% (AUC-
ROC 0.91, Kappa 0.70, sensitivity 92.6%, specificity 77.8%) on the heldout testing dataset.
With this model, only four out of 36 participants were misclassified (two false positive and two
false negative classifications). The performance of the unbiased predictive model exceeded

by far the hypothesis-driven discrimination model (model 1b, Figure 24).

a) Models and setup of parameters

Model N Classifier Features (N) Tuning parameters Validation
1a Control vs. DPN 120  SVM-Poly 15 degree: 1, scale: 0.1, C: 0.5
1b Control vs. DPN hypothesis-driven 120 LR 6 none three repeats
2 Ad/C-fiber PNP 90  SVM-Radial 25 sigma: 0.0252727957626335, C: 1 five-fold cross-
3 Ap-fiber PNP 90 SVM-Poly 9 degree: 1, scale: 0.01, C: 0.5 validation
4  Achilles tendon reflex 90 SVM-Radial 13 sigma: 0.0520043134564958, C: 1
b) Training performance ¢) ROC curve
Model ACC (%, Range) Kappa (Range) AUC-ROC 1 = J
1a Control vs. DPN 87.8 (100—70.6) 063 (1-010)  0.91 l_l"—::"'—
1b SO””"' vs. DPN 71.8(81.2—58.8) 0.10 (0.37 —-0.20) 0.66 — ;_,-lr
ypothesis-driven 0.8- i
2 A3/C-fiber PNP 81.2(100-66.7) 060(1-031) 080 — | &
3 AB-fiber PNP 90.5 (100 —75.0)  0.60 (1 --0.12) 094 — 2
4 Achilles tendon reflex  79.2 (92.3 -61.5) 0.58 (0.85-0.23) 0.85 g
d) Predictive result $ 086
Model Adjusted ACC (%) Kappa SEN(%) SPE(%) &
1aControl vs. DPN 85.2 070 926 77.8 &
@
p Sontrol vs. DPN 463 010 926 00 204
ypothesis-driven =
2 AdIC-fiber PNP 91.9 0.84 90.0 93.8 2
3_AB-fiber PNP 95.3 0.78 90.5 100 P
4 Achilles tendon reflex  88.1 0.77 92.9 83.3 E 0.2
e) Confusion matrix
Model TP(N) TN(N) FP(N) FN(N) I
1a Control vs. DPN 25 7 2 2 ol
1b Contro.l vs. DPN hypothesis-driven 25 0 9 2 0 sz 0f4 0?6 0?8 1
2 _Ad/CAiber PNP 9 15 1 1 False Positive Rate (1-Specificity)
3 _Ap-fiber PNP 19 5 0 2
4 Achilles tendon reflex 13 10 2 1

Figure 24. Performance of DPN classification models. (a) Overview of models and setup parameters (class
labels, sample sizes, classifiers, predictors, parameters, cross-validation). (b) Training performance of models with
the comparison of subgroups and clinical findings summarizing calculated accuracies, Kappa, and AUC-ROC
values of models. (c) Visualization of AUC-ROC curves for diagnosis of DPN and fiber damage. (d) Predictive
performance of models on heldout testing dataset (adjusted testing accuracies ranged from 85.2 to 95.3 %). (e)
Confusion matrix with absolute numbers of true positive/negative and false positive/negative classifications. DPN:
diabetic peripheral neuropathy; PNP: Polyneuropathy; SVM: support vector machine; LR: logistic regression; ACC:
accuracy; AUC-ROC: area under the receiver operating characteristic; SEN: sensitivity; SPE: specificity; TP: true
positive; TN: true negative; FP: false positive; FN: false negative

The predictors determined by the DPN classification models 1a are summarized in Figure 25
(F1—F15). The boxplots and density curves on the left presents between-group differences
and distributions after excluding outliers. Data are presented as the means with standard
deviations. The predictors were extracted from the games and TCs and are provided in the
last two columns. Feature 11, named “Normalized pressure” (F11, AC game, TC 9), was the
best predictor because it revealed significantly different distributions between the control and

DPN groups.
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ID Feature Control (N=30)88 DPN (N=90)B p Game Task/TC
*

s &\ F1  Pressure gradients between successive frames (R) 0.039 (0.042) 0.066 (0.058) CP TC8
g. | F2 Reaction time [s] 1.367 (0.781) 1.053 (0.773) o AC Task 12
i F3 Final virtual distance 0.696 (0.622) 1.126 (1.074) * AC Task 8
amba F4  Anticipation time [s] 0.928 (1.382) 1.789 (1.739) * IJ Task 9
Y- F5 Execution time [s] 0.825 (0.616) 1.775 (2.069) ** IJ TC3
=8 Nﬁ F6 Pressure-time integrals of the reaction phase (L) 0.341 (0.316) 0.671 (1.308) * CP Task 10
Ha Snn F7 _Normalized pressure 0.793 (0.158) 0.721 (0.159) * BF (L) Task 7
e m F8 Pressure differences between successive frames 1.589 (0.806) 2.425 (2.146) * IJ Task 6
nY /\ F9 Pressure differences between successive frames  -0.556 (0.261) -0.397 (0.179) *x BF (R) Task 11
| A"\%{: F10 Anticipation time [s] 0.678 (1.066) 1.130 (1.041) * IJ TC3
s ﬂQ\ F11 Normalized pressure 2.967 (0.972) 2.508 (1.301) * AC TC9
- A F12 Anticipation time [s] 2.066 (0.752) 2.788 (1.515) * 1J Task 12
L 9&\, F13 Deviation from ideal pressure 0.021 (0.023) 0.048 (0.112) *x IJ Task 16
DI W | F14 Minimal virtual distance smiley 1 0.549 (0.396) 0.562 (0.390) ns BF (R) Task 6
my ﬁ\ F15 Reaction time [s] 1.386 (1.182) 1.749 (1.567) ns CP Task 13

Figure 25. Features for DPN classification using SVM-Poly (model la). Fifteen game features (F1—F15)
obtained by the SVM-Poly model for distinguishing patients with diabetes and peripheral neuropathy versus healthy
controls are visualized with density and box plots. Most of the game features selected by the model showed
significant differences between the Control and DPN groups. The differences are presented by density and box
plots, as well as mean values and SDs. The extracted games and related task combinations of each feature are
provided in the last two columns. Data are presented as means with standard deviation. All outliers were excluded
in density and boxplots. Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-
square test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), ***
(p=0.0007—0.001), **** (p<0.0001). F: feature; DPN: diabetic peripheral neuropathy; AC: Apple-Catch; BF: Balloon-
Flying; L: Left; R: Right; CP: Cross-Pressure; 1J: Island-Jump; TC: task combination

3.4.2. Ad-/C-fiber polyneuropathy classification model

Classification models to differentiate severity of dysfunction within the fiber types were built
with datasets from 90 patients with diabetes within cohort 2. Overall, 36 out of 90 (40%)
patients with diabetes had reduced/absent temperature sensation or pinprick (nociception),
which is caused by Ad-/C-fiber polyneuropathy (positive class). The obtained SVM-Radial
model (sigma: 0.0252727957626335, C: 1) using 25 game predictors reached an adjusted
accuracy of 91.9% for the classification of Ad-/C-fiber polyneuropathy on a held out-testing
dataset (model 2, Figure 24). The model misclassified two out of 26 cases (one false positive
and one false negative classification). The final predictors of the model are presented in Figure
26 (F1—F25). Their distributions and between-group differences are visualized with boxplots
and density curves on the left. The mean and standard deviation of these predictors were
separately calculated between groups. The “Pressure-time integrals of the execution phase
(R)” (F1, CP game, Task 4), the “Normalized pressure (R)” (F4, CP game, Task6), and the
“Pressure differences between successive frames” (F18, BF game, Task 7) were optimal
predictors that revealed distinct distributional differences between patients without and those
with Ad-/C-fiber dysfunctions. In addition, 21 out of all 25 predictors were significantly different

in concordance with the results of the previous between-group difference tests.
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ID Feature Normal (N=54)88 Absent(N=36)B8 p  Game Task/TC

i /R\\ F1  Pressure-time integrals of the execution phase (R) 2.104 (0.536) 1.876 (0.535) ns CP Task 4
i £ F2  Pressure gradients between successive frames 0.353 (1.135) 1.104 (1.189) ** AC Task 13
EH f\ F3 Pressure-time integrals 0.991 (0.731) 0.674 (0.505) * BF (L) Task®
s PQ,\ F4 Normalized pressure (R) 0.567 (0.144) 0.508 (0.138) * CP Task 6
Ela.,, f\_\ F5 Pressure-time integrals 1.668 (0.268) 1.471 (0.260) ***  BF(R) Task3
$q ﬁ F6 Minimal virtual distance smiley 2 0.623 (0.201) 0.547 (0.273) ns BF (L) Task4
#e A% F7  Normalized pressure (R) 17.719 (4.053) 15.539 (3.841) * CP Task 6
,{,_ X\%ﬂ_ F8 Pressure-time integrals of the reaction phase (L) 0.105 (0.144) 0.098 (0.295) * CP Task 2
4.# /l\\_ F9 Normalized pressure 0.055 (0.022) 0.078 (0.033) *»**  BF(R) TC2
|171* k F10 Pressure differences between successive frames 0.052 (0.040) 0.037 (0.027) * 1J TC6
Ly - F11 Normalized pressure 0.642 (0.155) 0.755 (0.174) ***  BF(R) Task4
[P N F12 Normalized pressure (R) 0.425 (0.028) 0.417 (0.022) ns CP TC3
D' \\_,} F13 Minimal virtual distance smiley 4 0.399 (0.334) 0.514 (0.301) * BF (L) Task 12
L f\ F14 Pressure differences between successive frames 0.281 (0.170) 0.375 (0.185) * AC TC9
[ kc, F15 Final virtual distance 0.908 (0.964) 0.586 (1.017) * AC TC8
é‘# m F16 Pressure differences between successive frames (L) 0.052 (0.030) 0.035 (0.018) *x CP TC9
L& e F17 Minimal virtual distance smiley 2 0.163 (0.215) 0.078 (0.162) * BF (L) TC4
/2 F18 Pressure difierences between successive frames -0.383 (0.244) -0.478 (0.202) *  BF(R) Task7
f* i F19 Pressure differences between successive frames (R) 0.098 (0.057) 0.074 (0.068) * CP TC6

I E__J F20 Minimal virtual distance smiley 3 0.586 (0.229) 0.377 (0.342) * BF (L) Task9
é* ﬂ\ F21 Normalized pressure (R) 0.475 (0.092) 0.409 (0.137) * CP Task 7
L va F22 Anticipation time [s] 0.980 (1.417) 2.118 (2.035) ** 1J Task 16
e k_ F23 Virtual deviation of ideal flying route 0.057 (0.085) 0.174 (0.287) * BF (L) Task 4
i A_ F24 Pressure gradients between successive frames 3.032 (1.529) 2.319 (1.213) * BF (L) Task 8
éﬁ s F25 Pressure differences between successive frames (L) 0.071 (0.051) 0.053 (0.049) ns CP Task 15

Figure 26. Features for A3-/C-fiber polyneuropathy classification using SVM-Radial (model 2). Twenty-five
game features (F17—F25) were obtained by SVM-Radial models that identified Ad-/C-fiber polyneuropathy (absent
pinprick or temperature sensation) in patients with diabetes. These are visualized by density and box plots. Most of
the game features selected by the model showed significant differences between the “normal” and “absent” groups.
The differences are presented by density and box plots, as well as mean values and standard deviations (SD). The
extracted games and related task combinations of each feature are provided in the last two columns. Data are
presented as means (SD). All outliers were excluded in density and boxplots. Differences between groups were
calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05),
* (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). F: feature; AC: Apple-Catch; BF:
Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; I1J: Island-Jump; TC: task combination

3.4.3. AB-fiber polyneuropathy classification model

In cohort 2, 73 out of 90 (81%) patients with diabetes had impaired vibration sensation (below
3/8) or an abnormal 10g monofilament-test result (reduced/absent), which was linked to AB-
fiber polyneuropathy (positive class). The obtained SVM-Poly model (degree: 1, scale: 0.01,
C: 0.5) using nine game predictors reached an adjusted accuracy of 95.3% for the classification
of AB-fiber polyneuropathy on a held out-testing dataset (model 3, Figure 24). The model
misclassified two out of 26 cases (two false negative cases). The final predictors of the model
are presented in Figure 27 (F1—F9). Their distributions and between-group differences are
visualized with boxplots and density curves on the left. The mean and standard deviation of
these predictors were separately calculated between groups. Almost all predictors were
significantly different in concordance with the results of the previous between-group difference
test. The “Normalized pressure” (F9, BF game, TC3) was an optimal predictor that revealed
significant distributional differences between patients without and those with Ap-fiber

dysfunctions.
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ID Feature Moderate (N=17) 8 Severe (N=73)8 p Game Task/TC

'TL‘+ :/\\ F1 Pressure differences between successive frames -0.274 (0.180) -0.455 (0.230) ** BF(R) Task7
o /A~ F2  Frequency outside catching area (n) 0.779 (0.253) 0.476 (0.382) **AC TC 12
L‘r"* /%iNormalized pressure (L) 0.801 (0.098) 0.841 (0.140) ns CP Task 13
g* /F\ F4 Normalized pressure 0.090 (0.067) 0.130 (0.072) * AC TC6
o ﬂiMinimal virtual distance smiley 3 0.553 (0.264) 0.615 (0.203) * BF(L) Task10
*—lu. %‘ F6 Normalized pressure (L) 0.085 (0.052) 0.048 (0.035) ** CP Task 6
Qﬁ i F7 Pressure differences between successive frames (R) 0.003 (0.002) 0.002 (0.001) ** CP TC 8
L Fs Anticipation time [s] 1.245 (0.593) 1.890 (1.103) ** AC Task 7
oF 2N\ F9  Normalized pressure 1.239 (0.501) 1.635 (0.473) * BFE(R) TC3

Figure 27. Features for the AB-fiber polyneuropathy classification using SVM-Poly (model 3). The SVM-Poly
model extracted nine game features (F 7—F9) to classify the severity of AB-fiber polyneuropathy (moderate or severe,
defined by vibration sensation testing and 10g monofilament-test results). Most of the game features selected by
the model showed significant differences between the two severity groups. The differences are presented by density
and box plots, as well as mean values (SD). The extracted games and related task combinations of each feature
are provided in the last two columns. Data are presented as means (SD). All outliers were excluded in density and
boxplots. Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as
appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), ****
(p<0.0001). F: feature; AC: Apple-Catch; BF: Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; 13: Island-Jump;
TC: task combination

3.4.4. Achilles tendon reflex classification model

In cohort 2, 49 out of 90 (54%) patients with diabetes exhibited absent Achilles tendon reflexes,
which were considered as positive cases for Al models. The obtained SVM-Radial model
(sigma: 0.0520043134564958, C: 1) using 13 game predictors reached an adjusted accuracy
of 88.1% for the classification of Achilles tendon reflexes on a held out-testing dataset (model
4, Figure 24). The model misclassified three out of 26 cases (one false negative and two false
positive cases). The final predictors identified in the model are presented in Figure 28
(F1—F13). Their distributions and between-group differences are visualized with boxplots and
density curves on the left. The mean and standard deviation of these predictors were
separately calculated between groups. Almost all predictors were significantly different in
agreement with the results of the previous between-group difference test. The “Anticipation
time [s]” (F6, AC game, TC10) and the “Pressure gradients between successive frames” (F11,
AC game, TC 12) were optimal predictors that revealed significant distributional differences

between diabetes with normal and absent Achilles tendon reflex status.
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ID Feature Present (N=41)Bd Absent (N=49)B@ p Game TaskiTC

LU f\ F1  Minimal virtual distance smiley 3 0.630 (0.180) 0.561 (0.251) * BF (L) Task 1
im ﬁlg\\ F2  Pressure differences between successive frames 0.093 (0.090) 0.150 (0.115) * BF (R) TC4
D_ J’__7f\il\flinima\ virtual distance smiley 1 0.504 (0.409) 0.629 (0.362) ns BF (L) Task 3
Ba fﬁx F4 Normalized pressure 2.040 (1.520) 1.191 (0.870) ** AC TC4
s \\h F5 Time inside catching area [s] 0.631 (0.597) 0.304 (0.395) *x AC Task 6
L F6 Anticipation time [s] 1.345 (0.721) 1.682 (0.713) * AC TC 10
B /Z';"’\t} F7 Normalized pressure 7.278 (2.631) 5.105 (2.197) R AC Task 8
b @ F8 Final virtual distance 1.088 (0.680) 0.836 (0.745) * AC TC9
Ba iﬂ-\>\,= F9  Pressure-time integrals 8.509 (25.263) 2.166 (2.310) o 1J Task 9
w8 7N F10 Pressure differences between successive frames (R) 0.003 (0.003) 0.005 (0.003) > CP TC5
=] m\_ F11 Pressure gradients between successive frames 0.494 (0.361) 0.600 (0.341) ns AC TC12
L L] //\, F12 Mean pressure of execution phase 0.171 (0.143) 0.117 (0.054) * 1J TC 5
bk /ﬁ\\ F13 Pressure differences between successive frames (L) 0.088 (0.128) 0.148 (0.106) * CP Task 14

Figure 28. Features for the Achilles tendon reflex classification using SVM-Radial (Model 4). The SVM-Radial
model selected 13 game features (F1—F13) to classify for absence or presence of Achilles tendon reflexes in
diabetes patients. Most of the game features selected by the model showed significant differences between both
classifications. The differences are presented by density and box plots, as well as mean values (SD). The extracted
games and related task combinations of each feature are provided in the last two columns. Data are presented as
means (SD). All outliers were excluded in density and boxplots. Differences between groups were calculated using
the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05),
** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). F: feature; AC: Apple-Catch; BF: Balloon-Flying; L: Left;
R: Right; CP: Cross-Pressure; 1J: Island-Jump; TC: task combination
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4.Discussion

The primary hypothesis of this thesis is that “a Gamidiagnostics application with video-based
playful elements combining sensor-equipped insoles and machine learning algorithms is
feasible to screen for peripheral neuropathy in patients with diabetes”. Following the outlined
methodological developments and standardization of the test the “Gamidiagnostics”
application indeed allowed to perform a highly predictive screening for peripheral neuropathy.
This was assessed in a selected cohort of patients with clinically diagnosed severe neuropathy
and healthy volunteers as comparator cohort. The system was designed for peripheral nerve
function assessment with a low complexity setup allowing for a quick introduction into all games
and an easy understanding of control functions of the sensor equipped insoles. Standardized
calibration steps and interactive tutorials before each game allowed the participants to perform
initial steering attempts to familiarize with the games. Motivational elements were combined to
encourage completion of tasks and endurance over 15 minutes. Standardized data acquisition
processes with time stamps linked sensor data throughout games, even with failed efforts
(preset maximum allowance of three failed efforts per game). Challenges in the games
provided information on movement control of both feet to determine muscle strength, sensation,
balance, and coordination. “Immediate feedback to the participants on gaming results and
overall performance was offered after the game was completed. Furthermore, the datasets
were introduced into machine learning algorithms to predict peripheral neuropathy and

phenotype affected nerve fiber subtypes.

Similarly, the second hypothesis was confirmed by the findings, that is “predefined hypothesis-
driven parameters (reaction time, sensation, skillfulness, endurance, balance, muscle strength)
correlate with the clinical status, e.g., the nerve disability score (NDS)”. In the age-matched
cohort, the between-group differentiation of sensation, skillfulness, endurance, and finger
reaction time remained significant. However, the logistic regression model using the

hypothesis-driven indicators was less predictive of DPN than machine learning algorithms.

Notably, hypothesis three (“feature extraction methodology may be applied to determine
representative game features and calculate key capabilities correlating with NDS”) and four
(“the Al models may identify relevant game parameters, make predictions on DPN and possibly
achieve phenotyping of impaired nerve fibers”) were confirmed. Feature extraction
methodologies were able to identify representative game features and to calculate key
capabilities that correlated to clinical ground truth (NDS). Game features were extracted from
different game tasks and task combinations, which was possible due to the aforementioned
standardization of the games, predefined game scenarios and time stamps. An unexpected

key finding of this work was that the trained classification models were able to identify game
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features that allowed to phenotype impaired nerve fibers. The feature ranking techniques
classified Ad/C- and AB-fiber polyneuropathy and Achilles tendon reflex impairment. The
classification models were obtained with training data sets from 120 patients. On the heldout
testing dataset, an adjusted testing accuracy of 85.2% with a sensitivity of 92.6% and
specificity of 77.8% (Cohen’s Kappa 0.70) in classifying peripheral small and large nerve
functions was achieved. Furthermore, the SVM models allowed to differentiate between small
(Ad-/C-fibers) as well as large AB-fiber damage with high accuracy (adjusted accuracies of
91.9% and 95.3%, respectively).

To this end, all subgoals of the study were achieved, that have been defined in the aims section:
design and development of a “Gamidiagnostics” application with real-time data acquisition
using sensor-equipped insoles, automatic data transmission to a remote server,
implementation of an online platform for visualizations and database exchange, validation of
the “Gamidiagnostics” application in a pilot exploratory study with healthy volunteers and
patients diagnosed with peripheral neuropathy, determination of representative game features
and predefined key capabilities correlating to clinical ground truth, training and optimization of
Al models to assess severity of dysfunction for fiber subtypes AB-, Ad-/C and Achilles tendon

reflexes.

4.1. Performance of the neuropathy “Gamidiagnostics” App in

comparison to other studies

A literature search reveals that only few research groups have chosen similar approaches.
Learning models calculating risk for peripheral nerve function on the basis of clinical data and
past medical history impairment was reported by Kazemi et al., who enrolled 600 subjects (175
healthy volunteers and 425 patients with different severities of DPN). On the basis of the NDS
score as the ground truth the best-performance was achieved with the SVM-OAO-RBF kernel
model yielding an accuracy of 76% in predicting the DPN severity (none, mild, moderate,
severe). The 13 features included age, type of diabetes, education level, BMI, history of
elevated blood pressure, actual systolic blood pressure, history of foot ulcer, medication,
weight, history of laser photocoagulation, duration of diabetes, average blood glucose level
and height (75). Dubey et al. established a Neural Network to predict the diabetic neuropathy
risk level using the following seven features: duration of diabetes mellitus, age, height, weight,
urinary albumin-to-creatinine ratio, glycated hemoglobin (HbAlc) and cholesterol. They
selected vibration perception thresholds to identify different severity groups. The accuracy was
70.1% with simulated patient data (4,158 cases) using mean and covariance of patients” data
obtained from a clinical database (n=5,088) (91). Corpin et al. introduced plantar pressure

data as predictors to distinguish healthy subjects, patients with only T2DM, and patients with
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T2DM and DPN. The authors performed a rather small study with 36 patients that performed
repeated measurements (sample size: 288). Michigan Neuropathy Screening Instrument-
guestionnaire (MNSI-q) and Nerve Conduction Velocity (NCV) measurements were performed
to stratify patients into subgroups. 29 features were extracted from 13 plantar pressure
parameters on 16 different foot regions. The SVM algorithm exhibited the highest accuracy
with 91.9%, the MLP model yielded an accuracy of 89.8% (92).

However, a study with dynamic data acquisition from patients and multiple challenges that

does not rely on clinical parameters at forehand was not identified in the literature.
The plethora of data obtained by the “Gamidiagnostics” App offered numerous advantages:

1. Data acquisition for Al model development. The “Gamidiagnostics” application provided
features with high quantity and quality for Al models. The obtained models in this work were
trained with predefined game indicators and sensor data. These included amongst others
reaction time, anticipation time, time inside the catching area, frequency outside of the catching
area, virtual distance. Similar to Corpin et al. (2019), we extracted multiple pressure
parameters by calculating maximum, minimum, mean, standard deviation, pressure
differences and gradients between successive frames, and pressure time integration. The
pressure parameters were subdivided into specific game scenarios and task combinations that
reached far beyond the simple integration of the measurement process. Thus, more than 1,800
distinctive parameters were extracted as potential predictors according to the proposed feature
extraction methodology from each dataset. Moreover, intergroup difference tests and feature
ranking methods both identified many features that significantly correlated with clinical findings,
confirming that game features were associated with underlying sensory and motor

dysfunctions resulting from peripheral neuropathy.

2. Widely used neuropathy disability score as comparator. The chosen comparator neuropathy
disability score (NDS) (93, 94) is widely used as a tool in clinical practice with scores ranging
from 0 to 10. Mild (score 3-5), moderate (score 6-8), and severe neuropathy (score 9-10)
may subclassified, the latter posing the highest risk of developing foot ulcerations (95). DPN is
often diagnosed at a very late, pre-ulcerative stage due to a lack of systematic screening.
Monofilament-testing identified advanced neuropathy only. Similarly, the NSS cannot reliably
identify DPN (93, 96). The enrolled diabetes cohort included patients with mild (41.1%),
moderate (49.1%), and severe (9.8%) peripheral neuropathy according to the NDS (see Table
3). Severe damage of Ad-/C-fibers was assumed in patients with reduced/absent pinprick
(nociception) or temperature sensation. The presence of severe AB-fiber polyneuropathy was
assumed with impaired vibration sensation (below 3/8) or an abnormal 10g monofilament-test

result (reduced/absent). The remaining patients in the DPN group were classified as moderate
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AB-fiber polyneuropathy (impaired vibration sensation: 3-4/8). The absence of Achilles tendon
reflexes was considered as a positive label in the model training. A negative label was assigned

to normal or mildly impaired reflexes.

3. Age as bias for neuropathy. We only entered datasets from age-matched participants to Al
models because the comparison of game features among young, middle-aged, and elderly
control groups confirmed that age has a significant effect on game performance of study

participants.

In the study of Kazemi et al. (2016), age itself was included as a predictor for DPN classification.
Such a choice may misguide machine learning models to make determinations that are very
close to objective facts only based on age since the age distribution of their samples correlated
significantly with DPN severity (normal: 43.98+15.20 years, mild: 54.7+12.02 years, moderate:
61.91+11.20 years, severe: 62.67+10.27 years). In the study of Corpin et al. (2019) the age of
healthy subjects differed from those who had diabetes mellitus and/or peripheral neuropathy
(49.5+8.07 versus 57.6+4.39 and 49.5+8.07 versus 56.8+10.90, respectively).

4. Model predictors were improved by feature ranking and selection. The work flow of the game
feature extraction excluded those with high intercorrelations. This ensured that only
independent variables were utilized for modeling. Thereafter, the dataset was split into a
training and a testing set with a ratio of 7:3. The testing dataset was held out only for final
model evaluation. Machine learning algorithms estimated the feature importance with the
training dataset only. The applied feature ranking approach was proposed by Kuhn et al. within
the caret R package (89). It maintains the exact meaning of features and ranks them according
to their calculated association with the class distribution. The feature ranking is an effective
solution to select features from datasets that often consist of fewer observations than variables
(small sample size but high dimensionality) (97). It is different from the Principal Components
Analysis (PCA) that was performed by Corpin et al. (2019) on their pressure dataset that
combines multiple variables to principles with a maximum variance but no specific meaning or

definition, which brings difficulties for the model explanation.

5. Cross-validation in the model training avoided overfitting. Specifically, five-fold three repeats
cross-validation were utilized in the model training, avoiding overfitting and deriving a more
accurate model performance estimate. Similar statistical methods were also used for model

validation in the above-mentioned studies (10-fold cross-validation) (75, 91).

6. Subanalyses on specific fiber damage. Impressive accuracy was achieved in classifying
peripheral small and large nerve functions in patients diagnosed with moderate to advanced
sensorimotor neuropathy and diabetes. The classification model to distinguish healthy controls

and patients with diabetes and peripheral neuropathy achieved an adjusted testing accuracy
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of 85.2% (sensitivity 92.6%, specificity 77.8%, and Cohen’s Kappa 0.70) on a heldout testing
dataset. This dataset was split only for final evaluation that enhanced the reliability of the
obtained classification mode. Compared to the above-mentioned studies, only Dubey et al.
(2020) created a testing dataset (15%) for model evaluation. Kazemi et al. (2016) and Corpin
et al. (2019) reported their model training performance only with 10-fold cross-validation. The
training accuracy represents a certain degree of model performance, but it is not comparable
to the testing accuracy. Moreover, we also performed phenotyping of nerve dysfunctions in
model training. The obtained models were able to differentiate Ad-/C-fiber versus AB-fiber
polyneuropathy, and the absence of Achilles tendon reflexes in diabetes with adjusted
accuracies of 91.9%, 95.3%, and 88.1%, respectively. None of the aforementioned studies
considered detailed phenotyping of small or large fiber dysfunctions. Thus, the presented
polyneuropathy “Gamidiagnostics” set allowed to apply Al models in subclassifying neuropathy.

7. Considerations on video game design for polyneuropathy diagnosis. The study cohort of
patients with diabetes mostly represented elderly people with a duration of diabetes mostly
exceeding 15 years. These participants have specific demands when they perform games,
which were addressed as follows:

- The pantolettes were easy to use, with open design, nice fit and relaxed foot wear.

- Participants were seated in comfortable chairs with arm rests and at a table of normal
height.

- Tablets were positioned at comfortable distance to the participants with good vision.

- Speakers were tuned high volume to allow easy listening.

- Special large fonts were chosen to enable better reading.

- Eye-catching background colors and larger sizes for navigation buttons were

configured to simplify on-screen navigation.

Such standardization and addressing specific demands are prerequirements for game-based

diagnostic approaches and comparability (98, 99).

All study participants judged the “Gamidiagnostics” App as simple to carry out. The barrier to
completion of this study was low, even for those with little or no experience in games. The
immediate response of the study participants upon completion of the games was
overwhelmingly positive. More than 90% wished to repeat the sessions, however, the second-

course results were not included in this study to exclude learning effects.

8. Future developments and autonomous usage. The “Gamidiagnostics” application in
combination with the database platform [IQ-Trial incorporates the opportunity for regular
screening of peripheral neuropathy in a home-based environment of high-risk populations such

as patients with diabetes. Care providers would be able to receive the data sets remotely within
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a telemedicine framework. Trained classification models may be implemented as online
diagnostic platforms (online prediction). The models itself could be iteratively improved by
labeled datasets (online learning) (100, 101). Ultimately, a game-based assessment in the
outpatient setting would open the window for screening of a broader population. It could be
combined with other applications, such as gait analysis (102), real-time fall detection (103,

104), and diabetic foot ulcer prevention (105).
4.2. Limitations of the pilot study

Noteworthy, our study did not address the diagnosis of minor polyneuropathy. It remains
unclear whether game-based diagnostics (i.e., incorporation of game-playing elements into the
diagnosis of neuropathy) will be similarly sensitive in detecting isolated Ad-/C-fiber neuropathy.
Given that small-fiber deficits are believed to be precursors of large fiber impairment in DPN
(21, 44), testing of nerve function impairment by electroneurography should be performed,
even in patients with prediabetes (51). These findings may be correlated with game-based
diagnostics patterns in follow-up studies. Notably, with early diagnosis, preventive measures
may be taken. Small fibers are believed to degenerate first and are most likely to be repaired.
Interventions may comprise body weight control or normalization of hyperglycemia (106, 107).
Foreseeable, preventive measures may also include supplementation with vitamin B12, e.qg.,
in patients that commonly take metformin (108). Drugs with a potential protective action on

nerve integrity may also be included (109).

In addition, there are only a few studies that performed a comparable approach. The majority
of studies established classification models for DPN using clinical biomarkers (e.g. age,
duration of diabetes, BMI, HbAlc, etc.) without considering any wearable sensor data or video
game parameters. Corpin et al. (2019) involved plantar pressure values in classification
algorithms, but only 36 healthy volunteers and patients with diabetes were included. The
reliability of our work will likely be improved in large cohorts that utilize wearable sensors and
video games for DPN detection in the future (110, 111).

Furthermore, the cohorts may not be entirely representative for the general population. The
diabetes group were relatively elder than other study cohorts with long duration of diabetes
and high BMI values (75, 111-113). Specifically, there was a strong bias towards male
participants in the diabetes group, which may translate into differing gaming skills. In addition,
no diabetes without peripheral neuropathy was included in the study, as well as patients with
other types of peripheral neuropathy (e.g. alcoholic polyneuropathy). Analyses on hidden

alcohol-toxicity and other causes of neuropathy were not performed.

The between-group comparison of game features in the entire cohort showed that age had an

impact on the game performance. Cognitive impairment in addition to the normal aging process
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may also influence on the execution of the games. Therefore, a systematic analyses of aging

and cognitive impairment on game performance have been initiated.

Moreover, the established models require further evaluation with larger and balanced datasets.
The effect of limited sample size is evidenced by the deviation between the predictive
performance and the training metrics even though three repeats five-fold cross-validation was
applied in model training. For example, the accuracy of model 1la decreased from 87.8%
(maximal 100% in cross-validation) in the training dataset to 85.2% with the testing dataset.
With a larger dataset, classifier-based feature importance estimation would target the optimal
features more precisely. In addition, the imbalance in the number of healthy individuals and
DPN patients in the dataset (ratio 1:3) lead to a significant gap between the sensitivity and
specificity of the classification models. A larger control sample will improve Al modeling to
identify differences in game performance of healthy individuals compared to DPN patients (114,
115).

4.3. Conclusion and outlook

The game-based polyneuropathy diagnosis App (“Gamidiagnostics”) combining smart
footwear sensors is able to diagnose advanced peripheral nerve malfunction with high
accuracy in a time-saving, examiner-independent, self-administered enjoyable manner, which

has the potential to be established as a telemedical device.

This approach bears the potential to be implemented as telemedical App within an online
diagnostic platform for automatic prediction of DPN and dynamic learning with more labeled
datasets. Participants may receive immediate feedback on their gaming performance,
capabilities and peripheral nerve status. Care providers would receive similar information

enriched with details on fiber type impairment.

The findings of our study are encouraging. Nevertheless further trials are required to enrich
the sample size and also to include more objective clinical examinations, such as nerve
conduction measurements and corneal confocal microscopy. A cohort with early-stage
peripheral neuropathy (i.e., only absent temperature sensation or nociception) should be
recruited to evaluate the feasibility of the “Gamidiagnostics” application to detect small fiber
polyneuropathy. Patients diagnosed with diabetes and without peripheral neuropathy should
be enrolled as another reference group for comparison with the DPN group. Patients with mild
cognitive impairment, subjective cognitive impairment, or Alzheimer’s disease may also be

tested to investigate the feasibility of game-based assessment of cognitive impairment.

Furthermore, gaming sessions may be offered as exergaming sessions to improve balance,

postural stability and physical capabilities. The scope of such developments is unlimited.
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5. Summary

Given an overall prevalence rate of 40% for diabetes-associated polyneuropathy in patients
and elevated risk for complications, such as diabetic foot syndrome, the disease management
program diabetes has adopted a surveillance strategy for neuropathy. Diagnosis of peripheral
neuropathy (DPN) is routinely achieved through clinical examination, that are standardized
procedures (pinprick test, vibration perception, Tip Therm, reflexes, muscle function). However,

the performance is time-consuming and an investigator-related bias may confound findings.

The goal of this thesis is to explore the potentials of a video game-based approach to assess
polyneuropathy (“Gamidiagnostics”). The hypothesis is tested that the proposed
“Gamidiagnostics” application is able to provide a meaningful assessment of small and large
fiber function in a self-administered, examiner-independent manner and therefore may be
suited as as telemedical application. To this end a gaming platform was set up. A pilot study
with 71 healthy volunteers and 112 patients diagnosed with diabetes and peripheral
neuropathy by clinical examination (neuropathy disability score, NDS, for phenotyping of Ad-,
AB- and C-fiber function as well as the Achilles tendon reflex) evaluated the feasibility of this
approach. Participants utilized pressure sensor-equipped insoles as control units and played
four games specifically designed to test for reaction time, sensation, skillfulness, endurance,

balance, and muscle strength.

Unbiased training of prediction algorithms with datasets identified 15 independent variables
with discriminatory functions that indicated polyneuropathy (training with five-fold three repeats
cross-validation). In age-matched cohorts, the support vector machines achieved a training
accuracy of 87.8% (AUC-ROC 0.91) and an adjusted accuracy of 85.2% on a heldout testing
dataset (sensitivity 92.6%, specificity 77.8%). Distinct variables were identified for each nerve
fiber deficit and allowed correct classification with adjusted accuracies of 88.1%, 91.9%, and
95.3% for Achilles tendon reflex, Ad-/C-fiber, and AB-fiber impairment, respectively. In contrast,
biased hypothesis-driven discrimination only resulted in the accurate classification of
polyneuropathy in 71.8% (AUC-ROC 0.66) of participants.

Thus, the established game-based diagnostics approach combining video games and smart
footwear sensors was able to diagnose advanced peripheral nerve malfunction with high
accuracy in an examiner-independent manner, which has the potential to be established as a

telemedical device.
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11.1. Approval of the Ethics Committee
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Herrn Prof. Dr. med. P. Mertens Vorsitzender
Medizinische Fakultst Dr. med. Norbert Beck
Universitatsklinik fir Nieren- und Hochdruckkrankheiten Geschaftshuhrer
Universitatsklinikum Magdeburg A 6.R.

HEI..LE Eﬂb, Leipziger Str.. 44 Iﬁll:::: 1-:: 33:11 :::::14
39120 Magdeburg ;.u:r F;;: +49 391 5;--1;;135

eMail: ethikkommissionEovgu.de

Datum
13.03.2017

Unser Zeichen: 28M7

Gamification bei Patienten mit und ohne sensomotorische Neuropathie: Diagnostik mittels
einer Einlegesohle mit Sensoren fiir Druck und Temperatur in Verbindung mit einer mobilen

App

Sehr geehrier Herr Prof. Dr. Mertens,
sehr geshrie Kolleginnen und Kollegen,

die Ethik-Kommission der Otto-von-Guericke-Universitit an der Medizinischen Fakultdt und am
Universitétsklinikum Magdeburg hat die lbergebenen Unterlagen zur o. g. Studie Oberprift, in der
letzten Kommissionssitzung eingehend erériert und ist zu der Auffassung gekommen, dass gegen die
Durchfiihrung keine ethischen Bedenken bestehen,

Diese zustimmende Bewertung ergeht unter dem Vorbehalt gleichbleibender Gegebenheiten.

Die Verantwortlichkeit des jeweiligen Priifwissenschaftlers / behandelnden Prifarzies bleibt in vollem
Umfang erhalten und wird durch diese Entscheidung nicht beriihrt. Alle zivil- oder haftungsrechtlichen
Folgen, die sich ergeben kinnten, verbleiben uneingeschrinkt beim Projektleiter und seinen
Mitarbeitarn.

Beim Monitoring sind die Bestimmungen des Bundes- und Landesdatenschutzgesetzes sowie die sich
aus der arztlichen Schweigepflicht ergebenden Einschrdnkungen zu beachten, was eine
Aushéndigung kompletter Patientenakten zum Monitoring ausschiiefit.

Ein Monitoring personen- und studienbezogener Daten wird dadurch nicht beeintrichtigt.

Um die Ubersendung von studienbezogenen Jahresberichten / Abschlussberichten / Publikationen
wird unter Nennung unserer Registraturnummer gebeten,

Mit freundlichen Griiften

iF.ﬂu.Dr.'Imf.hérbluhﬂa, aschafistihrar) o o
[Z1hili- Kommission

Prof. Dr. med. C. Huth - oo an e Megizschen Faoll
Vaorgizender der Ethik-Kemmission i i G- Universlal an ces Madiovlss
ors ar cer 154 am Uversiiiskindam Magosbusg AGR.

Vigrsitzander; Univ.-Prof. Or. med. C. Huth
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Anlage zum Votum der Studie 28/17 vom 13.03.2017

Zum Zeitpunkt der Bewertung der vorstehenden Studie waren folgende Damen und Herren
Mitglied der Ethik-Kommission der Otto-von-Guericke-Universitit an der Medizinischen
Fakultdt und am Universitatsklinikum Magdeburg:

Hemr

Prof. Dr. med. Norbert Bannert Medizinische Fakultét / Universitétsklinikum,
Padiater

Frau

Prof. Dr. phil. Eva Brinkschulte Medizinische Fakultét / Universitétsklinikumn,
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Herr
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Herr

Prof. Dr. med. Christof Huth Medizinische Fakultdt / Universitatsklinikum,
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Frau

Assessorin Ute Klanten Medizinische Fakultit / Universitdtsklinikum,
Stabsstelle Recht

Herr

Prof. Dr. rer. nat. Siegfried Kropf ~ Medizinische Fakultat / Universitétsklinikum,
Mathematiker, Biometriker

Herr

Dr. med. Werner Kuchheuser Medizinische Fakultat / Universitatsklinikum,
Institut fir Rechtsmedizin

Herr

Prof. Dr. med. Frank Peter Meyer Medizinische Fakultét / Universitatsklinikum,
Klinischer Pharmakologe

Herr

Prof. Dr. med. Jens Schreiber Medizinische Fakultat / Universitdtsklinikum,
Universitatsklinik for Pneumologie

Hermr

Prof. Dr.-Ing. Klaus Ténnies Fakultat fir Informatik, Institut fir Simulation und
Graphik, AG Bildverarbeitung/Bildverstehen

Mitglieder der Ethik-Kommission, die in eine Studie eingebunden sind, haben fiir die
Votierung der betreffenden Studie kein Stimmrecht,

Die Ethik-Kommission der Otto-von-Guericke-Universitit an der Medizinischen Fakultdt und am
Universitétsklinikum Magdeburg ist unter Beachtung entsprechender internationaler Richtlinien (ICH,
GCP) und nationaler Richtlinien (AMG, GCP-V, MPG, MPKPV) titig, nach Landesrecht
(Hochschulmedizingesetz des Landes Sachsen-Anhalt § 1 Abs. 4, Verordnung iber Ethik-
Kommissionen zur Bewertung klinischer Prifungen von Arzneimitteln - Ethik-Kom-VO LSA - 1. d. akt.
Fassung) legitimiert. Weiterhin besteht eine Registrierung der Ethik-Kommission beim Bundesamt fiir
Strahlenschutz nach § 28g Rontgenverordnung (EK-043/R) und § 92 Strahlenschutzverordnung (EK-
046/5) 'sowie bejw Office for Human Research Protections, reg, no, IRBO0D0G099, Rockville, MD,

UsA

Dr. med? Norbert Beck
Geschéftsfihrer der Ethik-HKommission
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Ethik-Kommission der
Otto-von-Guericke-
Universitat an der
Medizinischen Fakultat un
am Universitatsklinikum
Magdeburg A.o.R.

Univ.Prof. Dr, med. Christof Huth
Vorsitzender

O, med, Norbert Beck
GCaschaftsfuhrer

Telefon: +49 391 67-14314
lelefax: +49 391 67-14354
clekir Fax; +49 391 67-290185
eMail: ethikkommissionilovgu.de

Gamification bei Patienten mit und ohne sensomotorische Neuropathie: Diagnostik mittels
einer Einlegesohle mit Sensoren fiir Druck und Temperatur in Verbindung mit einer mobilen

App

Sehr geehrter Herr Prof. Mertens,

sehr geehrte Kolleginnen und Kollegen,

zur vorstehend genannte Studie ist bei uns am 31.08.2021 / 08.09.2021 ein Amendment
eingegangen. Nach Umlauf zwischen den Kommissionsmitgliedern und Beantwortung der Fragen

kann dem Amendment zugestimmt werden.

Die zustimmende Bewertung - positives Votum - vom 13.03.2017 bleibt gliltig.

Mit freungdlichem Gruf3

GL/L

f Vgt
Prof. DrJmed. C. Huth

Vorsitzendéer der Ethk-Kommission
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11.2. Patient information and consent forms

UNIVERSITATSKLINIKUM MAGDEBURG A.6.R.
Zentrum Innere Medizin

Universitatsklinik fur Nieren- und Hochdruckkrankheiten

Diabetologie und Endokrinologie

Direktor: Univ.-Prof. Dr. med. Peter R. Mertens

http://www.med.uni-magdeburg.de/

Adresse: Otto-von-Guericke-Universitat Magdeburg, Leipziger Str. 44, Klinikdirektor:
Univ.-Prof. Dr. med. Peter R. Mertens
39120 Magdeburg, Tel 0391-6713236 Tel.: 0391/67-13236
nephrologie@med.ovgu.de
Sekretariat:
Claudia Kluge
Tel.: 0391/67-13236
Name des Prifarztes.............cccooiiiiiii, Fax: 0391/67-15440

Claudia.kluge@med.ovgu.de

Tel. NI i

Patienteninformation und Einwilligungserklarung zur Teilnahme an der klinischen
Studie: ,,Gamification bei Patienten mit und ohne sensomotorische Neuropathie:
Diagnostik mittels einer Einlegesohle mit Sensoren fur Druck und Temperatur in

Verbindung mit einer mobilen App*“

Sehr geehrte Patientin, sehr geehrter Patient,

Wir laden Sie ein, an der oben genannten klinischen Studie teilzunehmen. Die Aufklarung
daruber erfolgt in einem ausfuhrlichen arztlichen Gesprach. lhre Teilnahme an dieser
klinischen Studie erfolgt freiwillig. Sie kdnnen jederzeit ohne Angabe von Griinden lhre
Teilnahme an der Studie beenden. Die Ablehnung der Teilnahme oder ein vorzeitiges

Ausscheiden aus dieser Studie hat keine nachteiligen Folgen fir lhre medizinische Betreuung.

Diese klinische Prifung soll an gesunden Probanden, Diabetikern mit Nervenschaden oder
ohne Nervenschaden und an Probanden mit einem sogenannten Metabolischen Syndrom

durchgefihrt werden.

Klinische Prifungen  sind notwendig, um  verlassliche neue medizinische

Forschungsergebnisse zu gewinnen. Unverzichtbare Voraussetzung fur die Durchfiihrung
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einer klinischen Prifung ist jedoch, dass Sie lhr Einverstandnis zur Teilnahme an dieser
klinischen Prufung schriftlich erklaren. Bitte lesen Sie den nachfolgenden Text sorgfaltig durch.
Ihr Studienarzt wird mit Innen auch direkt tGber diese klinische Prifung sprechen. Bitte fragen
Sie lhren Prifarzt, wenn Sie etwas nicht verstehen oder wenn Sie zusatzlich etwas wissen

mochten.

Bitte unterschreiben Sie die Einwilligungserklarung nur

- wenn Sie Art und Ablauf der klinischen Priufung vollstandig verstanden haben,
- wenn Sie bereit sind der Teilnahme zuzustimmen und

- wenn Sie sich Uber lhre Rechte als Teilnehmer an dieser klinischen Prifung im
Klaren sind.

Zu dieser klinischen Prifung sowie zur Patienteninformation und Einwilligungserklarung wurde

von der zustéandigen Ethikkommission eine beflrwortende Stellungnahme abgegeben.
1. Was ist der Zweck der klinischen Prifung?

In dem geplanten Projekt soll eine neue Untersuchungsmethode fiir die Nervenfunktion in den
FuRen bei Probanden (vor allem Diabetiker) mit und ohne Nervenschaden erprobt werden.

Hierbei wird der Ansatz der Gamification (deutsch: Spielifizierung) verwendet, um spielerisch

Daten zu sammeln.

Dabei wird die ,ntelligente Einlegesohle verwendet, welche dber Druck und
Temperatursensoren verflgt und via Bluetooth mit einem Android-Tablet verbunden ist. Auf

diese Weise werden Sie vier Spiele absolvieren, die mit den Fiil3en gesteuert werden.

Erganzend zur bestehenden Untersuchungen kénnen durch die Ergebnisse der in dieser
Studie durchgefiihrten Tests die Leistungsfahigkeit des FuRes und die Nervenfunktion

maoglicherweise genauer differenziert werden.

Es werden Messungen erfolgen, die sowohl Auskiinfte tiber die Reaktionsgeschwindigkeit und
die Druckausibung als auch Uber die Links-Rechts-Koordination der FiRe, die Feinmotorik
und das Lernvermdgen liefern sollen. Aul3erdem werden unterschiedliche Ful3bereiche
(Vorful® und Ferse) bei den Tests beansprucht. Dadurch kann eine genauere Untersuchung
und Analyse der FuRe erfolgen. Weiterhin wollen wir ihre Merkfahigkeit und kognitive
Leistungsfahigkeit mit einem Fragebogen und kurzen Aufgaben erfassen. Dieses Testsystem
ist an einer grolRen Zahl von Probanden getestet worden und soll einen Anhalt tber die

Merkfahigkeit und Gedachtnisfunktionen geben (Montreal Cognitive Assessment Test, MoCA).
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Durch eine begleitende Untersuchung von ihrem Blut und Urin wollen wir erfassen, ob es
Anderungen in der Immunzellzusammensetzung und Aktivierung gibt. Desweiteren wollen wir
herausfinden, ob in Ihrem Blut eine verdnderte Zusammensetzung besteht, die auf eine

Einschrankung der kognitiven Leistungsfahigkeit hinweist.

Die aus dem Projekt gewonnenen Daten werden pseudonymisiert ausgewertet, um neue
Erkenntnisse hinsichtlich krankheitsspezifischer Unterschiede zu erhalten. Hierzu werden wir
eine Reihe von gesunden Probanden ebenso rekrutieren, um eine Vergleichbarkeit
herzustellen. Die Ergebnisse der Gamification-Anwendung werden ihnen unmittelbar nach der
Teilnahme Ubermittelt. Die weiteren Ergebnisse werden durch uns derart ermittelt, dass eine
Zuordnung zu einzelnen Probanden nicht mehr mdéglich ist. Daher werden wir Ihnen diese

Ergebnisse nicht Gibermitteln kénnen.

2. Welche anderen Diagnosemadglichkeiten fir Nervensch&den an den Fiuf3en gibt

es?
Im Klinischen Alltag wird die umfassende Untersuchung des FulRes wie folgt durchgefihrt:

Zuerst wird eine Anamnese erhoben. Dabei werden Informationen zu Diabetes mellitus,
Nebenerkrankungen (wie z.B. periphere arterielle Verschlusskrankheiten), Schlaganféllen,

Gefluhlsstorungen sowie Risikofaktoren gesammelt.

Symptome wie Taubheitsgefiihle, sensible Reizerscheinungen, Schmerzen und Krampfe
werden erfasst. Zusatzlich erfolgt eine neurologische Untersuchung durch den Arzt, die den
Status der Reflexe, des Vibrationsempfindens (Stimmgabel), des Beriihrungs- und

Druckempfindens erhebt.
3. Wie lauft die klinische Prifung ab?

Es wird ein Fragebogen erhoben, bei dem die persdnlichen Informationen (Name,
Geburtsdatum, aktueller Beruf etc.), die medizinischen Hintergrundinformationen zu
Vorerkrankungen und vor allem einer bestehenden Zuckerkrankheit (Diabetes mellitus; falls
eine Diagnose vorliegt: Typ, Therapie, Begleitschaden etc., die diabetischen Nervenschaden
(Gefuhlsstorungen, Beschwerden, Bewegungseinschréankung im taglichen Leben), autonome
diabetische Neuropathie (Herzrhythmusstérungen, gastrointestinale Beschwerden) und
bedeutsame Nebenerkrankungen (Schlaganfall, M. Parkinson, Operationen an der
Wirbelsaule etc.), Metabolisches Syndrom (Bluthochdruck, Gicht), App-Erfahrung, Aktivitat
(Sportarten, Handigkeit, FuRigkeit), Erfragung von historischen HbAlc- sowie

Nuchternblutzuckerwerten erfragt.

Desweiteren folgt eine korperliche Untersuchung mit Messung des Taillenumfangs. Zudem

wird die Untersuchung der unteren Extremitat erfolgen. Diese Untersuchung beinhaltet: Die
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Testung des Achillessehnen-Reflex, die Ful3pulse, Empfindung von Vibration einer
Stimmgabel, die Empfindung von einem diinnen Faden sowie Temperaturunterschieden (kalt,

warm).

Eine Blutdruckmessung an den Unterschenkeln und Armen erfolgt. Im Anschluss werden Sie
gebeten auf der Stelle einige Schritte zu gehen, zu Beginn mit offenen Augen und im

Anschluss mit geschlossenen Augen. lhre Sehfahigkeit wird mit einem Sehtest untersucht.

Eine Blutentnahme von 10 ml EDTA-BIut fir eine FACS Analyse (zur Aktivitdtsbestimmung
von Immunzellen, insbesondere Monozyten und Granulozyten, die bei der Entstehung einer
Polyneuropathie von Bedeutung sein kann). Zudem soll 5 ml Blut fir die Bestimmung des
aktuellen HbAlc-Wertes, von Kreatinin und Harnstoff zur Bestimmung der Nierenwerte, und
die Elektrolyte (Kalium und Natrium) erfolgen. Die Probanden sollen zudem eine Urin-Probe
zur Ermittlung der Proteinurie abgeben. Aus der gewonnenen Blutprobe sollen
Entzindungsbotenstoffe des Korpers bestimmt werden und eine Untersuchung auf

demenzielle Erkrankungen erfolgen.
Vorstellung der Gamification Spiele

Vier ,Spiele” wurden fir die Studie konzipiert, welche auf einem Android-Tablet installiert sind:

Ein ,Belastungsspiel“, ein ,Apfelfangspiel®, ein ,Ballonfahrtspiel und ein ,Sprungspiel*.

Diese Spiele kdnnen durch die Verbindung mit der ,intelligenten Einlegesohle® mit den FulRen

gespielt werden.

In dem Belastungsspiel werden die FuRe in jeweils 2 Quadranten (Vorfull und Ferse)
unterschieden. Es gibt zwei Druckbereiche (leicht und mittel), welche durch zwei Farben visuell
kodiert sind. Ein leichter Druckbereich entspricht der Farbe Griin und ein mittlerer Druck der
gelben Farbe. Sie sollen mit Ihren FiRBen den Druckbereich einstellen, welcher auf dem
Bildschirm erscheint und einige Sekunden halten. Ziel des Spiels ist es, so schnell wie méglich

den richtigen Quadranten im angezeigten Druckbereich einzustellen.

In dem Apfelfangspiel geht es darum, vom Baum fallende Apfel mit einem rollenden Wagen
zu sammeln. Die Apfel fallen nacheinander nach einer definierten Zeit auf den Boden. Ein
Wagen wird mit den Fiif3en, welche die Sohle bedienen, gesteuert und kann unter die fallenden
Apfel gelenkt werden. Eine Druckausiibung des linken FuRes auf die Sohle bewirkt, dass der
Wagen sich nach links bewegt, eine Druckausiibung auf die rechte Sohle steuert den Wagen
nach rechts. Um die Apfel zu sammeln muss der angezeigte Druck gehalten werden, damit
der Wagen am gewtinschten Ort stehen bleibt. Wird kein Druck ausgeubt, fahrt der Apfelwagen
automatisch in die Mitte des Bildschirms zuriick. Ziel ist es, so viele Apfel wie moglich

einzusammeln.
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Belastungsspiel 5/16 “ ars, Apfelspiel (mittel)
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A Bite helasten Sie die angezeigten FuBbereiche.

Belastungsspiel

Ballonfahrtspiel Sprungspiel

Abbildung 1. Muster alle vier Spiele in Rahmen der Gamification Studie

In dem Ballonfahrtspiel steuern Sie einen HeiR3luftballon, welcher Uber verschiedene
Stadtlandschaften fliegt. Der Ballon fliegt automatisch mit einer konstanten Geschwindigkeit
vorwarts. Auf der Flugbahn tauchen diverse Hindernisse, wie zum Beispiel Geb&ude oder
Wolken auf, denen Sie ausweichen mussen, um ins Ziel zu gelangen. Wéahrend des Fluges
tauchen Smileys auf, die Sie einsammeln sollten, um einen hohen Score zu erreichen. Der
Test kann wahlweise mit dem rechten oder mit dem linken Vorfuf3 durchgefiihrt werden. Bei
Druckausubung des gewahlten VorfuRes wird der Ballon aufsteigen. Wird kein oder wenig
Druck ausgeubt, verliert der Ballon an Hohe und sinkt ab. Gelingt es Ihnen fir einen
bestimmten Zeitraum fehlerfrei zu fliegen, so wird der Schwierigkeitsgrad automatisch um eine
Stufe erhoht. Insgesamt gibt es drei Stufen, welche durch eine erhdhte Fluggeschwindigkeit
des Ballons definiert sind. Sollten Sie mit einem Hindernis kollidieren, wird die Geschwindigkeit
wieder zum Ausgangswert herabgesetzt. Kommt es zu einer Kollision mit einem Hindernis,
haben Sie 5 Sekunden Zeit, um den Fehler zu korrigieren. Sofern dies nicht gelingt, wird der
Parkour neu gestartet und Sie starten von vorne. Insgesamt sind drei Kollisionen erlaubt, bevor
der Parkour neu gestartet wird. Des Weiteren wird die optimale Flugroute bzw. Ideallinie durch
Smileys angedeutet, die Sie einsammeln sollen, um eine hohe Punktzahl zu erreichen.

Im Sprungspiel steuert der Spieler einen Hahn namens "Gockel" (eine 3D-Spielfigur), um
nacheinander durch mehrere Inseln zu springen, bis er seine Heimat erreicht. Die Sprungweite
hangt von der Zeitdauer ab, die der Spieler den erforderlichen Druck (Uber 20% des gesamten
Druckbereichs) auf seinen linken Vorderful3 (Sprung nach links), rechten Vorderful3 (Sprung
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nach rechts) oder auf beide (Sprung nach vorne) einstellt. Wendet der Spieler den Druck zu
lange oder zu kurz an, fallt der "Gockel" ins Wasser. Dann wird das Spiel wiederholt von der

letzten Insel.
4, Was ist die Gaming-Einlegesohle?

In der Studie wurden drei Arten von Gaming-Einlegesohlen in Pantoletten zur Erfassung der
Druck-, Temperatur-, Beschleunigung, Gyroskope- (Objektrotationen), und Kompass-Daten
(Objektrichtungen) verwendet. Sie liefern qualitativ hochwertige RAW-Daten in Echtzeit

und/oder zur Nachbearbeitung tber Bluetooth.

Abbildung 2. Ein Paar Gaming-Einlegesohlen
5. Worin liegt der Nutzen einer Teilnahme an der Klinischen Prifung?

Es ist nicht zu erwarten, dass Sie aus lhrer Teilnahme an dieser klinischen Prifung

gesundheitlichen Nutzen ziehen werden.

Die in dieser Studie gesammelten Daten kdnnten aufschlussreich in Bezug auf die Diagnostik
von Nervenschaden in den FiRen sein und in Zukunft zu einer Verbesserung der

Untersuchung fir den klinischen Alltag beitragen.
6. Gibt es Risiken, Beschwerden und Begleiterscheinungen?

Die Anwendung der intelligenten sensorbestiickten Einlegesohle in Verbindung mit den App-
Tests ist prinzipiell gefahrlos. Die Entstehung von scharfen Kanten wird durch die Herstellung

Uber den Schuhmacher ausgeschlossen.
7. Wer wird fir die klinische Prifung gesucht?

e gesunde Probanden

e Probanden mit Ubergewicht, Fettstoffwechselstérungen, Bluthochdruck oder Vorstufen
einer Zuckerkrankheit

o Diabetiker ohne Nervenschaden

e Diabetiker mit Nervenschéden

e Patienten mit Schwindelsymptomatik
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8. Wann wird die klinische Prifung vorzeitig beendet?

Sie kdnnen jederzeit auch ohne Angabe von Griinden lhre Teilnahmebereitschaft widerrufen
und aus der Kklinischen Prifung ausscheiden, ohne dass lhnen dadurch irgendwelche

Nachteile fur Ihre weitere medizinische Betreuung entstehen.

9. In welcher Weise werden die im Rahmen dieser klinischen Prifung gesammelten

Daten verwendet?

Nachdem Sie die Einwilligungserklarung unterzeichnet haben, wird Ihnen ein Pseudoynym
(dient zur Verschleierung lhrer ldentitat) zugewiesen. Sobald Sie ein Pseudonym haben,
kénnen Sie die Spiele starten. Die Daten werden zunédchst auf dem Tablet gespeichert. Das
Spielergebnis umfasst neben dem eigentlichen Spielerfolg unter anderem auch Sensordaten,
Reaktionszeiten und Schwierigkeitsgrade. Die entstandene Datei, welche nur
pseudonymisierte Daten enthélt, wird auf einem Rechner der Uniklinik importiert und in eine
Datenbank, in welcher alle Spiele pseudonymisierter Probanden gesammelt werden,
geschrieben. Weiterhin gibt es eine separate Datenbank, welche lhre persdnlichen Daten
sowie die Pseudonymzuordnung enthalt. Zu dieser Datenbank hat ausschlie3lich das
betreuende Studienpersonal Zugriff, welches zur Verschwiegenheit verpflichtet ist. Es gibt
sowohl von den Pseudonymen als auch den Spieledaten ein Backup-System
(Datensicherungs-System), sodass ein grof3er technischer Schaden nicht zum Verlust der
Daten fuhren kann. Die Backup-Systeme sind ebenfalls zugriffsgeschutzt. Die Datenbanken

sind gegen externe Angriffe geschitzt.

Sie kdnnen jederzeit Auskunft Gber lhre gespeicherten Daten verlangen. Sie haben das Recht,
fehlerhafte Daten berichtigen zu lassen. Sie haben das Recht zu jeder Zeit die Einwilligung zur
Verarbeitung lhrer personenbezogenen Daten zu widerrufen oder Daten |6schen zu lassen,

soweit nicht gesetzliche Bestimmungen dem entgegenstehen.

10. Entstehen fir die Teilnehmer Kosten? Gibt es einen Kostenersatz oder eine

Vergutung?

Durch lhre Teilnahme an dieser klinischen Prifung entstehen fir Sie keine zusatzlichen

Kosten. Eine Vergutung fur die Teilnahme an der Studie ist nicht vorgesehen.
11. Moglichkeit zur Diskussion weiterer Fragen

Fur weitere Fragen im Zusammenhang mit dieser klinischen Testung stehen lhnen Ihr Prifarzt
und seine Mitarbeiter gern zur Verfigung. Auch Fragen, die lhre Rechte als Patient und

Teilnehmer an dieser klinischen Testung betreffen, werden Ihnen gerne beantwortet.

Adressen und Telefonnummern lhrer Ansprechpartner:
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Ahmad Alhajjar (Studienarzt)

Saskia Haberer (Studienarztin)
Claudia Piehler (Studienassistentin)
Antao Ming (Wissenschaftlicher Mitarbeiter)

Prof. Dr. med. Peter R. Mertens (Studienleiter)

Klinik fur Nieren- und Hochdruckkrankheiten, Diabetologie und Endokrinologie
Telefon 0391-6721745

Telefax 0391-6715440

Prufung erfolgt freiwillig und kann jederzeit widerrufen werden.

Bitte lesen Sie die gesamte Patienteninformation sorgféltig durch!
12. Einwilligungserklarung

Ichwurdedurch.................... ausfuhrlich Gber die klinische Priifung mit dem Titel
,Gamification bei Patienten mit und ohne sensomotorische Neuropathie: Diagnostik
mittels einer Einlegesohle mit Sensoren fur Druck und Temperatur in Verbindung mit
einer mobilen App“ aufgeklart. Ich hatte die Gelegenheit und ausreichend Zeit, Fragen zu
stellen. Diese wurden zufriedenstellend beantwortet. Zusétzlich zu der schriftlichen Information

wurden folgende Punkte besprochen:

Ich wurde darauf hingewiesen, dass meine Teilnahme an der klinischen Priifung freiwillig ist
und dass ich das Recht habe, diese jederzeit ohne Angabe von Griinden zu beenden, ohne

dass dadurch Nachteile fir mich entstehen.

Ich wurde ausfihrlich — mindlich und schriftlich — Gber das Ziel und den Verlauf der klinischen
Prufung, sowie Uber die Freiwilligkeit der Teilnahme aufgeklart und mir wurde zugesichert,

dass diese Aufklarung vollstandig war.

Ich habe die schriftliche Patienteninformation zur o. g. klinischen Prufung erhalten, und ich
werde nach meiner Unterschrift eine Kopie meiner unterschriebenen Einwilligungserklarung
zur Teilnahme erhalten. Mit meiner Unterschrift bestéatige ich dann auch, dass ich beide

Dokumente gelesen und verstanden habe.

Ich erklare hiermit meine freiwillige Teilnahme an der o. g. klinischen Prifung.

(Ort, Datum - von Patient/in einzutragen)
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(Unterschrift Patient/in)

Vor- und Nachname - Patient/in in Druckbuchstaben

Die Patientin/der Patient wurde von mir Uber Ziel, Dauer, Ablauf, Nutzen, der klinischen

Prifung mindlich und schriftlich aufgeklart.
Aufgetretene Fragen wurden von mir verstandlich und ausreichend beantwortet.
Die Patientin/der Patient hat ohne Zwang seine Einwilligung erteilt.

Eine schriftliche Patienteninformation und eine Kopie dieser Patienteneinwilligung habe ich

der Patientin/dem Patienten ausgeh&andigt.

(Ort, Datum - vom Prufer/in einzutragen)

Vor und Nachname - Prifer/in in Druckbuchstaben
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11.3. Gamification study questionaire

»Fragebogen Gamification*

Personliche Informationen

Name

Vorname

Geburtsdatum

Geschlecht

O mannlich

O weiblich

Anschrift

E-Mail-Adresse

Telefonnummer

Groflle:

cm

Gewicht:

Kg

SchuhgroiRe

EU- Norm

Diabetes mellitus: Erfassungsfragen

Diabetiker

O Ja

O Nein O unbekannt

Erstdiagnose des Diabetes

mellitus?

Jahr: O unbekannt.

Typ des Diabetes mellitus

OTyp1 O Typ 2 (Alterszucker)

O Zuckerkrankheit nach
Bauchspeicheldriisen-entziindung/
Zuckerkrankheit nach Operation an der

Bauchspeicheldriise
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O Schwangerschaftsdiabetes

O Vordiabetes/Zuckertoleranzstérung

O nicht insulinabhéangiger Diabetes im
Jugendalter (MODY)

O anderer Typ

O unbekannt

Metabolisches Syndrom: Erfassungsfragen

Bluthochdruck

O Ja O Nein

Gicht

O Ja O Nein

Relevante Nebenerkrankungen: Erfassungsfragen

Liegen bei Ihnen Krankheiten des
Nervensystems vor? (Schlaganfall,
M. Parkinson, Multiple Sklerose,
Polyneuropathie)

O Ja 0 Nein (nicht bekannt)

Wenn ja, welche?

Seit wann?

Therapie? (z.B. bei PNP

Schmerzmittel, Antidepressiva)

Liegen bei Ihnen Erkrankungen der
Muskeln vor?
(angeborene Defizite,

Entziindungen, Verletzungen)

O Ja 1 Nein (nicht bekannt)

Wenn ja, welche?

Seit wann?

Therapie?

Liegen bei Ihnen Krankheiten der
Wirbelséaule oder Beine vor?
(Bandscheibenvorfalle, Einengung

des Spinalkanals, Arthrose,

O Ja O Nein (nicht bekannt)
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Entziindungen, Verletzungen,

Ulzerationen)

Wenn ja, welche?

Seit wann?

Therapie?

Hatten Sie Ful3geschwire?

O Ja

O Nein (nicht bekannt)

Gamificationfragen

Wie ist lhre Handigkeit?

O Rechtshander

O Linkshander
O Beidhandig
Wie ist lhre FURigkeit (dominanter O Rechtsful
F [ ? .
ufd beim Sport) O Linksful
O beidfulig
Haben Sie einen Fiuhrerschein 0 Nein
(Fahren Sie Auto),
) O Ja, km/Jahr
wenn ja km/Jahr ?
Liegen bei Ihnen Bewegungs- 0 Ja 0 Nein
einschrankungen vor (im taglichen
Leben)?
bspw. beim Glas halten?
oder Schneiden der Fu3nagel?
Treiben Sie Sport? 0 Nein
OO0 unregelmanig,
O regelmalig
Welche Sportarten O Fahrrad fahren / km/Jahr

O Andere:
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Haben Sie App — Erfahrung? O

(Spielerfahrung ) .

Nein
Ja, und zwar:

- [ soziale Medien, Nachrichten etc.

- [0 Spiele sehr selten
(wenige h im Monat)

- O Spiele ab und zu (wéchentlich)
- O Spiele haufig
(mehrmals die Woche/ tgl. etc.)

- O Andere

Nervenschadigung: Erfassungsfragen

Gibt es in lhren Beinen
Geflhlsstérungen?

(Mehrfachnennung mogl..)

CNein

O Ja und zwar: (Auswahl)

O Brennen (2 Punkte)
O Taubheit (fehlendes Geflhl) (2)

O Missempfindungen/Ameisenlaufen/
Kribbeln (2 Punkte)

O Schmerzen (1Punkt)

O Krampfe (1Punkt)

O Schwachegefuhl, Schwache im Bein (1)
Weil3 nicht

FuRe (2 Punkte),

distaler Unterschenkel (1 Punkt),
proximaler Unterschenkel (1 Punkt),
Oberschenkel,

Hande,

Unterarme,

andere Beschwerden

O
Wenn ja, wo sind lhre Beschwerden 0
lokalisiert?
U
O
O
O
O
O
Wann treten die Beschwerden auf? | 5
Il

Nachts (2 Punkte),

Tag und Nacht (1 Punkt),
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O nur am Tag (keine Punkte),

O Patient wacht nachts wegen seinen

Beschwerden auf,

O keine Angabe

Wann bessern sich lhre

0 Gehen (2 Punkte),

Beschwerden?
O Stehen (1 Punkt),
O Sitzen oder Hinlegen (keinen Punkt),
OO0 sonstiges

Score /10

Metabolisches Syndrom/ Diabetes mellitus: Untersuchung

Nahvisus c.c.

Taillenumfang

cm

(> 94cm bei Mannern, > 80 cm bei Frauen)

letzter HBAlc- Wert

Prozent oder in

mmol/mol,

O

unbekannt

HDL

< 40mg/dl (= 1,05 mmol/l),
40-50mg/dl (1,06-1,24 mmol/l),

> 50mg/dl (> 1,25 mmol/l),

O 0O O O

nicht durchgefuhrt

Triglyzeride

O <150mg/dl (<1,7 mmol/l),
O >150mg/dl (>1,7 mmol/l),

O unbekannt

letzter NuUchternblutzucker?

O <100mg/dl (<5,6mmol/l),
OO0 100-109mg/dl (5,6-6,0 mmol/l),

O =2110mg/dl (=6,1mmol/l)
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O unbekannt

Motorik / Koordination Untersuchung

Motorik grob

Bein-Halteversuch

O normal

O rechts pathologisch

O links pathologisch

Koordination/Zielmotorik

Knie-Hacke-Versuch

O normal

O rechts pathologisch

O links pathologisch

Koordination/Ataxie

Romberg Stand O normal
O Fallneigung
Unterberger Tretversuch O normal

O Abweichung nach rechts

O Abweichung nach links

Nervenschadigung: Untersuchung

Puls A. dorsales pedis

Pulsqualitat rechts links
Kréftig O O
Schwach O 0
fehlend O O

ABI-Messung A. dorsalis pedis

rechts

O =>1,3(Moénkeberg),

O >0,9 (gesund),
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RR Brachial; /

RR Ankle:

O Angaben fir A. tibialis post.

<0,9-0,75 (leichte pAVK),
<0,75-0,5 (mittelschwere pAVK)

<0,5 (kritische Ischamie)

o o 0O O

nicht messbar

ABI-Messung A. dorsalis pedis links

RR Brachial; /

RR Ankle:

0 Angaben flr A. tibialis post.

21,3(Ménkeberg),
>0,9 (gesund),

<0,9-0,75 (leichte pAVK),

o O 0O O

<0,75-0,5 (mittelschwere pAVK)
O <0,5 (kritische Ischamie)

O nicht messbar

Achillessehnenreflex Qualitat rechts | links
Normal/lebhaft O O
Vermindert 0(1) d(1)
Fehlend 0(2) 0(2)
gesteigert O O
Vibrationsempfindung (Messung Qualitat rechts links
am GrofRzehengrundgelenk) >6/8 O O
5/8 O O
Rechts / 8 <478 a0 a0
Links /8 =2/8 0w | 8O
Schmerzempfinden Qualitat rechts links
Normal/lebhaft (1) a()
Vermindert/ (1) 0(1)
Fehlend
Temperaturempfinden Qualitat rechts | links
Normal/lebhaft J(0) (0)
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Vermindert/ O(1) d(1)
Fehlend
Sensibilitatsprifung (mit 10g Qualitat rechts links
Monofilament) Normal/lebhaft O O
Vermindert O O
Fehlend O O
Punkte gesamt /10
FuB3status / Beinstatus
Muskeln Qualitat rechts | links
Normal O O
Atrophie O O
Hypertrophie O 0
Deformitaten Qualitat rechts links
nein O O
ja O O
Kommentar:

Hohere Kognitive Funktionen: Untersuchung

Aktueller Beruf

Reaktionszeit (aus App)

Status Autonome Nervenfunktion

Kommt es zu Schwindelgefihlen
beim Lagewechsel O Ja O Nein (nicht bekannt)

(z. B. beim Aufstehen)
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Sind Herzrhythmus-Stérungen
bekannt? (Herzrasen, Herzstolpern,

Herzklopfen)

Welche Diagnose besteht?

O Ja

O Nein (nicht bekannt)

Haben Sie regelm&Rig Stuhlgang
ohne Abfuhrmittel?

O Ja

O Nein (nicht bekannt)

Leiden Sie an

Blasenentleerungsstérungen?

O Ja

O Nein (nicht bekannt)

Schwitzen sie verstarkt?

O Ja

O Nein (nicht bekannt)

96




11.4. Supplementary figures

Gamidiagnostics session data
transmitted in JSON format

Gamidiagnostics session data saved in CSV files
16.04.2019 version » 2016-03-18 11-53-38-539-1Q-Game-Test v 0 Searc

[0 Name Date modified

£ TesterData.csv
CalibrationData.csv
ReactionData.csv
BFS-Ad.csv
BFS-Sd.csv
BFS-Zf.csv
AFS-Ad.csv
AFS-Sd.csv
AFS-Zf.csv
FBS-Ad.csv
FBS-Sd.csv
FBS-Zf.csv
JUMP-Ad.csv
JUMP-Sd.csv
JUMP-Zf.csv

Ergebnisurkunde.csv

2KB
1KB

¢ >< T >< T > S > S > I >< S >< S > TS > S >< T > S >< ST > S > TR >}

Supplementary Figure 1. Organization of exported data sets from the “Gamidiagnostics” session as CSV files and
JSON objects. For each gamidiagnostic session, 16 tables were generated as data sets, all of which were
automatically exported to local CSV files. The test identifier, the timestamp when the game session started, the
study participant ID, the study personel supervising the test session, the software and hardware versions were
documented in the first table for tracking game sessions on the remote server. The following files saved calibration
thresholds, finger reaction time, game settings (version, tutorial, pressure thresholds, tasks parameters, etc.), task
summaries (scores and points achieved in every task), and sensor data (recorded from each sample). A last file
sumarized the results on the six hypothesis-driven key capabilities and provided feedback to study participants on
their overall performance.
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Supplementary Figure 2. |Q-Trial dashboard. On the dashboard of the |Q-Trial webpage the test identifier (“Test-
ID”, e.g., P367D221021T132601), timestamp (“Zeitstempel”, e.g., 22.10.2021 13:26), study participant ID
(“Patienten-ID”, e.g., P367), insole identifier (“Sohlen”, e.q., GS_4344 1 _R and GS_4344_1_L), group (“Gruppe”,
e.g., Control or DPN), and game version (“Version”, e.g., middle version) were presented. Users could filter, sort,
and export datasets on demand. The exported dataset had a structure resembling the one on the gaming tablet.
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Supplementary Figure 3. Profiles on individual participants. Two game session datasets collected from a healthy
volunteer are visualized, including time stamp, game version, achieved scores in different games, and calculated
key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance). According to the
spider chart, PO01 performed better in his second session.
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Supplementary Figure 4. Standardized assessment page of the Apple-Catch game. The top spider chart shows six
hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance).
The table below summarizes the study participant’s performance in every task, including collected apples (n),
pressure level, reaction time [s], anticipation time [s], time inside catching area [s], time outside catching area [s],
frequency outside catching area, and pressure gradients between successive frames of the left and right foot. The
vertical line chart visualizes the position changes of the car (red line) and apples (green boxes), as well as pressure-
time curves measured by insoles (black line charts on both sides).
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Supplementary Figure 5. Standardized assessment page of the Balloon-Flying game. The top spider chart shows
six hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and
balance). The table below summarizes the study participant’s performance in every task, including collected smileys
(n), restarts (n), collisions (n), virtual deviation of the ideal flying route, and pressure-time integrals. Three graphics
visualize obstacles, smileys, skyline, deviation of the real and the optimal flying route, and pressure-time curves.
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Supplementary Figure 6. Standardized assessment page of the Cross-Pressure game. The top spider chart shows
six hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and
balance). The table below shows the total count of collected smileys and the study participant’s performance in
every task, including anticipation time [s], execution time [s], time outside optimal pressure range [s], time for
releasing pressure [s], smileys (n), restarts (n), collisions (n), virtual deviation of the ideal flying route, and pressure
gradients between successive frames of different foot areas. In each task, the line charts present pressure-time
profiles of different plantar regions (left forefoot, left heel, right forefoot, and right heel).
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Supplementary Figure 7. Standardized assessment page of the Island-Jump game. The top spider chart shows six
hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance).
The table below shows the total count of jump attempts and the study participant’s performance in every task,
including deviation from optimal pressure, anticipation time [s], pressure gradients between successive frames, and
pressure time integrals. The bar plots below present the deviation from optimal pressure, and the line plots
demonstrate pressure-time curves of the left and right insole in each task.
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11.5. Supplementary tables

Supplementary Table 1. Results of intergroup difference tests of game features within cohort 1. Differences between
groups were calculated using Kruskal test, Mann-Whitney U test, t-test or chi-square test as appropriate.
Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). CF:
candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-Pressure; 1J: Island-Jump; TC: task
combination; CON: controls (N=71); CONL1: controls aged 18-30 (N=19); CON2: controls aged 37—50 (N=22);
CONB3: controls aged 57—80 (N=30); DPN: diabetic peripheral neuropathy (N=112); DPN1: mild (NDS: 7—5, N=48);
DPN2: moderate (NDS: 6-8, N=55); DPN3: severe (NDS: 9-10, N=11);

P
CoN  CoN  con  con  CONL
ID Game  Task/TC Feature Name CONZ2,
vs. VS. VS. vs. vs.
DPN DPN1 DPN2 DPN3 CON3
CF1 AC Task 8 Final virtual distance ok il * * ns
CF2 AC Task 12 Reaction time [s] i * ol ns ns
CF3 AC Task 12 Apple caught (yes/no) ** ol * ns ns
CF4 AC TC 12 Time outside catching area [s] ** rkk ns ns ns
CE5 AC Task 13 Pressure gradients between successive o - - . ns
frames
CF6 AC TC1 Anticipation time [s] ** i i ns ns
CF7 AC Task 5 Apple caught (yes/no) ** i * ns ns
CF8 AC TC11 Time outside catching area [s] ** ** * ns ns
CF9 AC TC 12 Final virtual distance x* ** * ns ns
CF10 AC Task 5 Time inside catching area [s] ** ** * ns ns
CE11 AC Task 6 Pressure gradients between successive . - . ns ns
frames
CF12 AC TC2 Final virtual distance ** ** ns * ns
CF13 AC TC3 Time outside catching area [s] ** * * ns ns
CF14 AC Task 7 Time outside catching area [s] ** * * ns ns
CE15 AC Task 11 Pressure gradients between successive o . . ns ns
frames
CF16 AC Task 13 Normalized pressure ** ns i ns ns
CF17 AC TC 11 Normalized pressure ** ns i ns ns
CF18 AC TC 12 Time inside catching area [s] ** ns ** ns ns
CF19 AC Task 8 Time inside catching area [s] ** ns i ns ns
Pressure differences between
CF20 AC TC11 successive frames *k ns * ns ns
CF21 AC Task 3 Time outside catching area [s] ** ns * ns ns
CF22 AC Task 8 Normalized pressure * rork ns ns ns
CF23 AC TC4 Normalized pressure * i ns ns ns
CF24 AC TC9 Anticipation time [s] * i ns ns ns
CF25 AC Task 2 Normalized pressure * *x ns ns ns
CF26 AC Task 3 Apple caught (yes/no) * i ns ns ns
CF27 AC Task 8 Anticipation time [s] * *x ns ns ns
CF28 AC TC8 Reaction time [s] * * * ns ns
CF29 AC Task 2 Normalized pressure * * * ns ns
CF30 AC Task 3 Time inside catching area [s] * * * ns ns
CF31 AC Task 6 Reaction time [s] * * * ns ns
CF32 AC Task 9 Time outside catching area [s] * * * ns ns
CF33 AC TC7 Final virtual distance * * ns ns ns
CF34 AC TC5 Normalized pressure * * ns ns ns
CF35 AC TC9 Time inside catching area [s] * * ns ns ns
CF36 AC Task 3 Final virtual distance * * ns ns ns
CF37 AC Task 8 Apple caught (yes/no) * * ns ns ns
CF38 AC Task 12 E;(—:s::re gradients between successive . . ns ns ns
CF39 AC TC5 Normalized pressure * ns ** ns ns
Pressure differences between
CFa0 AC TCS successive frames i ns - ns ns
CF41 AC Task 6 Time inside catching area [s] * ns ** ns ns
CF42 AC Task 12 Time inside catching area [s] * ns ** ns ns
CF43 AC Task 12 Final virtual distance * ns ** ns ns
CF44 AC Task 13 Reaction time [s] * ns ** ns ns
CF45 AC TC?2 Anticipation time [s] * ns * ns ns
CF46 AC TC7 Normalized pressure * ns * ns ns
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Pressure differences between

CF47 AC TC 10 - * ns * ns ns
successive frames
CF48 AC Task 9 Normalized pressure * ns * ns ns
CF49 AC Task 9 Pressure gradients between successive . ns " ns ns
frames
CE50 AC Task 13 Pressure gradients between successive . ns . ns ns
frames
CF51 AC TC3 Normalized pressure * ns ns ns ns
CF52 AC TC4 Time outside catching area [s] * ns ns ns ns
CF53 AC Task 5 Normalized pressure * ns ns ns ns
CF54 BF(L) TC1 Minimal virtual distance smiley 4 i il il ns i
CF55 BF (L) Task7 Virtual deviation of ideal flying route Fkkk rkk Fkkk * rkk
CF56 BF(R) TC1 Minimal virtual distance smiley 4 i il il ns *
CF57 BF(R) TC2 Virtual deviation of ideal flying route i il il ns ns
CF58 BF (L) Task5 Normalized pressure Fkkk rkk ** ns **
CF59 BF (L) Task7 Virtual deviation of ideal flying route i ** i * **
CF60 BF(R) TC1 Minimal virtual distance smiley 2 Fkkk ** Fkkk ns **
CF61 BF(R) TC3 Virtual deviation of ideal flying route i ** i ns Fkkk
CF62 BF (R) Task 3 Virtual deviation of ideal flying route Fkkk ** ** * ns
CF63 BF (L) Task4 Virtual deviation of ideal flying route il ** il ns ns
CF64 BF(R) TC3 Minimal virtual distance smiley 2 i i ol * ns
CF65 BF (L) Task 11  Virtual deviation of ideal flying route il ** el ns **
CF66 BF(R) TC1 Minimal virtual distance smiley 1 i i ol ns i
CF67 BF (L) Task8 Virtual deviation of ideal flying route i ** rkk ns *
CF68 BF(L) TC2 Minimal virtual distance smiley 4 i i ol ns ns
CF69 BF (L) Task6 Virtual deviation of ideal flying route i i ol ns ns
CF70 BF (L) TC1 Minimal virtual distance smiley 3 il ** ** ns *
CF71 BF (L) Task9 Virtual deviation of ideal flying route i i i ns *
CF72 BF (R) Task8 Virtual deviation of ideal flying route ok ** ** ns *
CF73 BF(L) TC3 Virtual deviation of ideal flying route i i i ns ns
CF74 BF(L) TC3 Minimal virtual distance smiley 2 il * il ns *
CF75 BF (R) Task 10  Virtual deviation of ideal flying route i * ** ** rkk
CF76 BF(L) TC3 Minimal virtual distance smiley 1 ** i ns ns ns
CF77 BF (L) Task5 Collision frequency (n) ** il ** ns *
CF78 BF(L) TC3 Callision frequency (n) x* ** ** * **
CF79 BF (L) TC2 Collision frequency (n) ** ** ** * *
CF80 BF (L) Task9 Virtual deviation of ideal flying route ** i i ns **
CF81 BF (L) Task 12  Virtual deviation of ideal flying route ** i i ns ns
CF82 BF(R) TC2 Collision frequency (n) ** ** * * *
CF83 BF(R) TC2 Minimal virtual distance smiley 4 ** i * ns *
CF84 BF(L) TC4 Collision frequency (n) ** *x * ns ns
CF85 BF (R) Task2 Virtual deviation of ideal flying route ** i * ns ns
CF86 BF (L) Task5 Virtual deviation of ideal flying route ** i * ns ns
CF87 BF (L) Task5 Normalized pressure ** *x * ns ns
CF88 BF (L) Task3 Minimal virtual distance smiley 1 ** i ns * ns
CF89 BF (R) Task 11  Virtual deviation of ideal flying route ** * roak ns *
CF90 BF(L) TC2 Virtual deviation of ideal flying route ** * el ns *
CF91 BF (L) Task5 Virtual deviation of ideal flying route ** * i ns *
CF92 BF (L) Task6 Normalized pressure ** * *x *x ns
CF93 BF(R) TC1 Normalized pressure ** * i ns *
CF94 BF(R) TC4 Collision frequency (n) ** * *x ns *
CF95 BF (R) Task1l Virtual deviation of ideal flying route ** * ** ns ns
CF96 BF (R) Task3 Virtual deviation of ideal flying route ** * ** ns **
CF97 BF (L) Task3 Minimal virtual distance smiley 2 ** * ** ns ns
CF98 BF (R) Task8 Minimal virtual distance smiley 2 ** * ** ns ns
CF99 BF(R) TC4 Minimal virtual distance smiley 3 ** * * ns *x
CF100 BF (L) Task5 Minimal virtual distance smiley 4 ** * * ns *
CF101 BF(R) TC2 Minimal virtual distance smiley 2 ** * * ns **
CF102 BF (L) Task3 Virtual deviation of ideal flying route ** * * ns **
CF103 BF (L) Task10 Virtual deviation of ideal flying route ** * * ns ns
CF104 BF(R) TC3 Minimal virtual distance smiley 2 ** * ns *x ns
CF105 BF(L) TC4 Normalized pressure ** ns il * ns
CF106 BF(R) TC1 Minimal virtual distance smiley 3 ** ns il ns il
CF107 BF(R) Task7 Virtual deviation of ideal flying route ** ns il ns il
CF108 BF (L) Task 10 Virtual deviation of ideal flying route ** ns rohk ns ns
CF109 BF(L) TC3 Minimal virtual distance smiley 3 ** ns ** * *
CF110 BF(L) TC4 Virtual deviation of ideal flying route ** ns ** * ns
CF111 BF (L) Task1 Minimal virtual distance smiley 3 ** ns ** *x ns
CF112 BF(R) TC3 Virtual deviation of ideal flying route ** ns ** ns Fkkk
CF113 BF(L) TC2 Minimal virtual distance smiley 1 ** ns ** ns **
CF114 BF(R) TC3 Collision frequency (n) ** ns ** ns il
CF115 BF (L) Task4 Minimal virtual distance smiley 4 ** ns ** ns *
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CF116 BF(R) Task5 Virtual deviation of ideal flying route ** ns ** ns *
CF117 BF(R) Task3 Minimal virtual distance smiley 2 ** ns ** ns ns
CF118 BF(R) Task5 Collision frequency (n) ** ns * ns **
CF119 BF(L) TC3 Minimal virtual distance smiley 4 ** ns * ns *
CF120 BF(R) TC2 Minimal virtual distance smiley 3 ** ns * ns ns
CF121 BF(L) Task3 Normalized pressure * ** ns ns **
CF122 BF (L) Task6 Pressure-time integrals * ** ns ns ns
CF123 BF(L) Task3 Normalized pressure * * * ns **
CF124 BF() TC2 fPr;er‘:(segre gradients between successive . . " ns ns
CF125 BF(R) TC4 Minimal virtual distance smiley 1 * * * ns ns
CF126 BF(R) Task7 Minimal virtual distance smiley 2 * * * ns ns
CF127 BF(L) Task11l Minimal virtual distance smiley 4 * * ns ns **
CF128 BF(L) TC2 Minimal virtual distance smiley 3 * * ns ns ns
CF129 BF(L) TC2 Pressure differences between . . ns ns ns
successive frames
CF130 BF (L) Task1 Virtual deviation of ideal flying route * * ns ns ns
CF131 BF(L) Task4 Pressur(_e differences between . . ns ns ns
successive frames
CF132 BF (L) Task6 Minimal virtual distance smiley 1 * * ns ns ns
CF133 BF(L) Task11l Minimal virtual distance smiley 3 * * ns ns ns
CF134 BF (L) Task11l  Virtual deviation of ideal flying route * * ns ns ns
CF135 BF(R) Task8 Minimal virtual distance smiley 1 * * ns ns ns
CF136 BF(R) Task9 Virtual deviation of ideal flying route * ns rkk ns **
CF137 BF(L) Task?7 Minimal virtual distance smiley 2 * ns i ns *
CF138 BF (L) Task10 Virtual deviation of ideal flying route * ns i ns ns
CF139 BF(R) Task?2 Virtual deviation of ideal flying route * ns *x ns ns
CF140 BF(L) Task?7 Minimal virtual distance smiley 3 * ns * * ns
CF141 BF (R) Task 12  Virtual deviation of ideal flying route * ns * * ns
CF142 BF(L) Task11l Normalized pressure * ns * ** ns
CF143 BF(R) Task4 Virtual deviation of ideal flying route * ns * ns rohkk
CF144 BF(R) TC2 Virtual deviation of ideal flying route * ns * ns **
CF145 BF(R) Task4 Minimal virtual distance smiley 4 * ns * ns ns
CF146 BF (L) Task1 Virtual deviation of ideal flying route * ns * ns *
CF147 BF (L) Task4 Minimal virtual distance smiley 3 * ns * ns ns
CF148 BF(R) Task11 Collision frequency (n) * ns * ns ns
CF149 BF(R) Task9 Virtual deviation of ideal flying route * ns * ns *
CF150 BF (L) TC1 Normalized pressure * ns * ns ns
CF151 BF (L) Task?2 Virtual deviation of ideal flying route * ns * ns ns
CF152 BF(L) Task6 Pressure differences between . ns . ns ns
successive frames
CF153 BF (L) Task7 Normalized pressure * ns * ns ns
Pressure differences between
CF154 BF(R) TC2 successive frames * ns * ns ns
CF155 BF(R) Task5 Minimal virtual distance smiley 1 * ns * ns ns
CF156 BF(R) Task5 Minimal virtual distance smiley 4 * ns * ns ns
CF157 BF(R) Task5 Normalized pressure * ns * ns ns
Pressure differences between
CF158 BF(R) Task5 successive frames * ns * ns ns
CF159 BF(R) Task6 Virtual deviation of ideal flying route * ns * ns ns
CF160 BF(L) Task4 Virtual deviation of ideal flying route * ns ns * ns
CF161 BF(R) Task 10 Minimal virtual distance smiley 3 * ns ns i *
CF162 BF(R) TC3 Virtual deviation of ideal flying route * ns ns ns Fkkk
CF163 BF(R) Task1 Normalized pressure * ns ns ns ns
CF164 BF(R) Task2 Normalized pressure * ns ns ns *
CF165 BF(R) Task11l Minimal virtual distance smiley 3 * ns ns ns **
CF166 BF (L) Task5 Pressur(_e differences between . ns ns ns ns
successive frames
CF167 BF (L) Task12 Minimal virtual distance smiley 3 * ns ns ns ns
CF168 BF(R) TC1 Normalized pressure * ns ns ns ns
CF169 BF(R) TC4 Normalized pressure * ns ns ns ns
CF170 BF(R) Task5 Minimal virtual distance smiley 3 * ns ns ns ns
CF171 BF (L) Task11l Normalized pressure ns ns * ns ns
CF172 BF (L) Task11 Normalized pressure ns ns * ns ns
CF173 CP TC6 Time outside ideal pressure zone [s] Fkkk Fkkk Fkkk * *
CF174 CP Task 1 Reaction time [s] Fhkk rokkk rohk ns ns
CF175 CP Task 2 Reaction time [s] Fkkk il Fkkk ns ns
CF176 CP Task 8 Time outside ideal pressure zone [s] Fkkk il Fkkk ns ns
CF177 CP Task 9 Normalized pressure (L) il il il ns i
CF178 CP Task 4 Normalized pressure (R) Frkk rkk rkk ns ns
CF179 CP Task 6 Time outside ideal pressure zone [s] il il ** * ns
CF180 CP TC6 Anticipation time [s] Frkk rkk ** ns *
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CF181 CP TC5 Reaction time [s] ek ** i * **
CF182 CP Task 7 Reaction time [s] Fkkk ** rkk * ns
CF183 CP Task 4 Pressur(_e differences between xw . - ns ns
successive frames (R)
CF184 CP Task 9 Reaction time [s] *kk Fkkk * ns ns
CF185 CP TC4 Time outside ideal pressure zone [s] i ** il ns ns
CF186 CP TC6 Normalized pressure (L) *kk ** rkk ns ns
CF187 CP Task 6 Reaction time [s] i ** il ns ns
CF188 CP TC1 Normalized pressure (L) *kk ** ** * ns
CF189 CP TC6 Normalized pressure (L) i ** ** ns ns
CF190 CP TC4 Reaction time [s] i ** ** ns *
CF191 CP Tce Pressure differences between xw - - ns ns
successive frames (L)
CF192 CP Task 4 Reaction time [s] *kk ** ** ns ns
CF193 CP Task 8 Normalized pressure (L) i ** ** ns ns
CF194 CP TC?2 Normalized pressure (R) i ** * * ns
CF195 CP Task 13 Normalized pressure (L) ** rkk ns ns ns
CF196 CP Task 7 Anticipation time [s] ** ** ** ns i
CF197 CP TC?2 Anticipation time [s] ** ** * ns il
CF198 CP TC6 Normalized pressure (L) ** i * ns ns
CF199 CP Task 1 Time outside ideal pressure zone [s] ** i * ns ns
CE200 CP TCcs Pressure gradients between successive . - ns . o
frames (R)
CF201 CP Task 12 Reaction time [s] ** ** ns * ns
CF202 CP Task 10 Reaction time [s] ** i ns ns ns
CF203 CP Task 12 Normalized pressure (R) ** i ns ns ns
CF204 CP TC5 Time outside ideal pressure zone [s] ** * ** * ns
CE205 CP Tce Pressure differences between o . - . ns
successive frames (L)
CF206 CP Task 8 Normalized pressure (R) ** * i ns ns
CF207 CP TC6 Normalized pressure (R) ** * i ns ns
CF208 CP Task 4 Time outside ideal pressure zone [s] ** * ** ns ns
CF209 CP Task 7 Time outside ideal pressure zone [s] ** * i ns ns
CF210 CP Task 8 Reaction time [s] ** * * * ns
CF211 CP Task 14  Reaction time [s] ** * * * ns
CF212 CP Task 5 Reaction time [s] ** * * ns **
CF213 CP TC6 Normalized pressure (R) ** * * ns ns
Pressure differences between
CF214  CP Task 7 successive frames (L) " ) ) ns ns
CE215 CP TCcs Pressure differences between o . ns . -
successive frames (R)
CE216 CP Tc7 Pressure differences between . . ns . ns
successive frames (L)
Pressure-time integrals of the reaction
CF217 CP Task5 R 9 *x * ns * ns
CE218 CP Task 12 Pressure-time integrals of the reaction o ns - . ns
phase (R)
CE219 CP Tc7 Pressure differences between o ns - ns ns
successive frames (L)
CF220 CP TC6 Reaction time [s] ** ns ** ns *
CF221 CP TC6 Normalized pressure (R) ** ns i ns ns
CF222 CP TC7 Normalized pressure (L) ** ns * *x ns
CFE223  CP TC6 Pressur(_e differences between o ns . ns ns
successive frames (R)
CE224 CP Task 7 Pressure-time integrals of the reaction - ns . ns ns
phase (R)
Pressure differences between
CF225  CP Task 8 successive frames (L) i ” ns i ns
CE226 CP C6 Pressur(_e differences between . . . ns ns
successive frames (R)
CE227 CP TC6 Pressure-time integrals of the execution . . . ns ns
phase (R)
CE228 CP Task 4 Pressure-time integrals of the execution . . . ns ns
phase (R)
CF229 CP Task 15 Normalized pressure (L) * * ns * ns
CF230 CP TC9 Normalized pressure (L) * * ns * ns
CF231 CP TC9 Reaction time [s] * * ns * ns
CF232 CP TC5 Normalized pressure (R) * * ns ns ns
CF233 CP Task 5 Anticipation time [s] * * ns ns **
CF234 CP Task 8 Anticipation time [s] * * ns ns **
CF235 CP TC5 Anticipation time [s] * * ns ns ns
CF236 CP TC5 Normalized pressure (R) * * ns ns ns
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CF237 CP Task 5 Time outside ideal pressure zone [s] ns ns ns
CF238 CP Task 6 Normalized pressure (R) * * ns ns ns
CE239 CP Task 7 Pressur(_e differences between . . ns ns ns
successive frames (R)
CF240 CP TC4 Normalized pressure (L) * ns ** ns *
CF241 CP Task 15 Normalized pressure (L) * ns * * **
CE242 CP Task 10 Pressure-time integrals of the reaction . ns . . ns
phase (L)
CF243 CP Task 5 Normalized pressure (L) * ns * ns ns
CF244 CP Task 2 Time outside ideal pressure zone [s] * ns * ns **
CF245 CP Task 2 Normalized pressure (L) * ns * ns ns
CF246 CP Task 9 Time outside ideal pressure zone [s] * ns * ns ns
CE247 CP Task 16 Pressure-time integrals of the reaction . ns . ns -
phase (L)
CF248 CP Task 5 Normalized pressure (R) * ns * ns ns
CE249 CP Task 13 Pressure-time integrals of the reaction . ns . ns ns
phase (R)
CE250 CP Task 9 Pressure-time integrals of the reaction . ns ns . o
phase (L)
CF251 CP TC9 Time outside ideal pressure zone [s] * ns ns * ns
CF252 CP Task 15 Reaction time [s] * ns ns * ns
CF253 CP Task 3 Time outside ideal pressure zone [s] * ns ns ** ns
CE254 CP Task 3 Pressure-time integrals of the execution . ns ns - ns
phase (R)
CF255 CP TC7 Reaction time [s] * ns ns ns *
CE256 CP Task 15 Pressure-time integrals of the reaction . ns ns ns .
phase (L)
CF257 CP Task 1 Normalized pressure (L) * ns ns ns ns
CF258 CP Task 6 Normalized pressure (L) * ns ns ns ns
CE259 CP Task 11 Pressure differences between . ns ns ns ns
successive frames (R)
CF260 IJ TC6 Deviation from ideal pressure Fkkk dkkk dkkk ns ns
CF261 1J TC4 Deviation from ideal pressure ool il il ns ns
Pressure differences between
Cr2ez Tc4 successive frames o - - ns ns
CF263 13 TC7 Deviation from ideal pressure el el el ns ns
CF264 1J TC6 Deviation from ideal pressure i i ** ns ns
CF265 IJ Task 2 Deviation from ideal pressure i i ** ns ns
CF266 13 Task 2 Deviation from ideal pressure ok el * ns ns
CF267 1J TC5 Mean pressure of execution phase i ** * ns ns
CF268 13 TC7 Deviation from ideal pressure ok * el ns *
CF269 1IJ TC6 Anticipation time [s] i * i ns ns
CF270 1J Task 10 Attempt count (n) ** i * ns ns
CF271 1 Task 9 Pressure-time integrals ** rik ns * *
CF272 1 TC4 Execution time [s] ** ** ** ns **
CF273 13 TC3 Anticipation time [s] ** i i ns ns
CF274 1 Task 4 Attempt count (n) ** ** ** ns ns
CF275 1 Task 4 Execution time [s] ** i * ns ns
CF276 1 Task 11 Execution time [s] ** i * ns ns
CF277 1 Task 9 Mean pressure of execution phase ** ** ns * ns
CE278 13 TCce Pressure differences between o . - ns ns
successive frames
CF279 1 Task 1 Deviation from ideal pressure ** * ** ns ns
CF280 1J Task 10 Pressure-time integrals ** * ** ns ns
CF281 1J Task 13 Deviation from ideal pressure ** * ** ns ns
CF282 1J Task 11 Attempt count (n) ** * * * *
CF283 1J Task 5 Pressure-time integrals ** * * ns *
CF284 1J TC3 Deviation from ideal pressure ** * * ns ns
CF285 1J Task 11  Pressure-time integrals ** * * ns ns
CE286 1J Task 11 Pressurc_a differences between o . . ns ns
successive frames
CF287 1J Task 6 Execution time [s] ** * ns ** ns
CF288 1J Task 1 Pressure-time integrals ** * ns ns ns
Pressure differences between
CF289 1J TC2 successive frames ** ns ** ns ns
CF290 1J Task 1 Pressure-time integrals ** ns * * ns
CF291 1J Task 16 Execution time [s] * ** ns ns *
CF292 1J Task 10 Mean pressure of execution phase * ** ns ns ns
CF293 1J TC7 Deviation from ideal pressure * * * ns *
CF294 1J Task 6 Pressure-time integrals * * * ns ns
CF295 IJ Task 16 Pressure-time integrals * * * ns ns
CF296 1J Task 12 Anticipation time [s] * * ns ns ns
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CF297 1J Task 10 Deviation from ideal pressure * ns ns

CF298 1IJ Task 6 Deviation from ideal pressure * ns ** ns ns

CF299 1J Task 14  Deviation from ideal pressure * ns ** ns ns

CF300 1J Task 15 Anticipation time [s] * ns ** ns ns

CF301 1J TC3 Execution time [s] * ns * * ns

CF302 1J Task 16 Deviation from ideal pressure * ns * ns *

CF303 1J Task 6 Pressure differences between . ns . ns ns
successive frames

CF304 1J TC?2 Mean pressure of execution phase * ns * ns ns

CF305 13 Task 1 Pressure differences between . ns . ns ns
successive frames

CF306  1J Task 2 Pressure-time integrals * ns * ns ns

CF307 13 Task 5 Pressure differences between . ns . ns ns
successive frames

CF308 1J Task 14 Anticipation time [s] * ns * ns ns

CF309 1J Task 15 Deviation from ideal pressure * ns * ns ns

CF310 1J TC7 Execution time [s] * ns ns * *

CE311 13 Tce Pressure differences between . ns ns ns ns
successive frames

CF312 1J Task 9 Deviation from ideal pressure * ns ns ns ns

CF313 1J Task 10 Execution time [s] * ns ns ns ns

CF314 1J Task 11 Anticipation time [s] * ns ns ns ns
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Supplementary Table 2. Results of intergroup difference tests of game features within cohort 2. Differences between
groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels:
ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). CF: candidate features;
AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-Pressure; 1J: Island-Jump; TC: task combination

ID Game Task/TC Feature Name Signif P Value Statistic Method Normality
1 AC Task 12 Reaction time [s] Hx 0,00069 1896 :g’é'foxon FALSE
2 AC TC8 Normalized pressure wx 000232 847 :g’é'foxon FALSE
3 AC Task 13 Normalized pressure *x 0,00656  918,5 :’;’é'tcoxon FALSE
4 AC TC 10 Frequency outside catching area 0,0138 930 Wilcoxon FALSE
(n) test
5 AC TC9 Normalized pressure * 0,01496 1752 :g’é'foxon FALSE
6 AC Task 13 Pressure gradients between . 002454 17215 Wilcoxon FALSE
successive frames test
7 AC Task 6 Pressure gradients between . 002553 1719 Wilcoxon FALSE
successive frames test
AC TC 4 Normalized pressure * 0,02717 985 :’;’;COXO” FALSE
AC TC2 Anticipation time [s] * 0,02838 -2,26 T-test TRUE
10 AC Task8  Final virtual distance * 0,03003 9915 :’ggfoxon FALSE
1 AC Task 11  Anticipation time [s] * 0,03766  1008,5 :I;/!tc:oxon FALSE
12 AC TC8 Reaction time [s] * 003806 1689,5 :’g’gtcoxon FALSE
13 AC Task 4 I(:r:)equency outside catching area 004201 1121 :/;/élfoxon FALSE
Pressure gradients between . Wilcoxon
14 AC Task 8 successive frames 0,04517 1681 test FALSE
Pressure gradients between .
15 AC Task 13 successive frames 0,04577 2,06 T-test TRUE
16 AC Task 10  Normalized pressure * 0,04725 1676 :lg/éltcoxon FALSE
17 BF (L) Task7?7 Normalized pressure * 0,03113 1706 :/g/élfoxon FALSE
18  BF(L) Task7  Normalized pressure * 0,03178 1050 :’;’é'foxon FALSE
19 BF() Taske  ressurediferencesbetween 003671 -2,15 T-test TRUE
successive frames
20 BF(L) TC4 Normalized pressure * 0,03749  1020,5 :lg/éltcoxon FALSE
21  BF(L) TC4 Minimal virtual distance smiley 3 * 0,04223 10165 :’:;'foxon FALSE
Virtual deviation of ideal flying * Wilcoxon
22 BF(L) TC4 route 0,04749 1022,5 test FALSE
23 BF (L) Task3 Minimal virtual distance smiley 2 * 0,04999 16735 :l;/éltcoxon FALSE
2 BF(R) Task1l Pressure differences between o 000407 8755 Wilcoxon FALSE
successive frames test
o5 BE(R) Task3 Virtual deviation of ideal flying . 002631 1717 Wilcoxon FALSE
route test
Pressure gradients between . Wilcoxon
26 BF(R) TC4 successive frames 0,04452 1682 test FALSE
27 BF (R) Task9 Pressur(_e differences between . 004677 16785 Wilcoxon FALSE
successive frames test
28 cp 1Ccs Pressur(_e gradients between . 001139 932 Wilcoxon FALSE
successive frames (R) test
i Wilcoxon
29 CP Task 4 Normalized pressure (R) * 0,01169  933,5 test FALSE
Pressure-time integrals of the . Wilcoxon
30 CP Task 10 reaction phase (L) 0,01484 947,5 test FALSE
31 cp Task 6 Time outside ideal pressure . 002079 10045 Wilcoxon FALSE
zone [s] test
32 cCP Task4  Anticipation time [s] * 0,02118  1730,5 :’;’;'tcox"” FALSE
33 cp Task 11 Time outside ideal pressure . 002297 1578 Wilcoxon FALSE
zone [s] test
Time outside ideal pressure . Wilcoxon
34 CP TC6 zone [s] 0,02369 977 test FALSE
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Wilcoxon

35 CP Task 6 Reaction time [s] * 0,02415 977,5 test FALSE
36 CP Task7  Reaction time [s] * 0,02592 982 :g’é'foxon FALSE
37 CP  Taskq lessuretimeintegralsofthe 0,04319 -2,07 Ttest  TRUE
execution phase (R)
38 cp Task 11 Pressure gradients between . 004356 16835 Wilcoxon FALSE
successive frames (R) test
39 CP Task9  Reaction time [s] * 0,04546  1019,5 Ygé'foxon FALSE
40 CP Task5  Normalized pressure (L) * 0,04853 1024 :g’é'foxon FALSE
a1 cp Task 8 Time outside ideal pressure . 004915 10545 Wilcoxon FALSE
zone [s] test
42 1 Task 16  Deviation from ideal pressure *x 0,00548  899,5 :’:é'tcoxon FALSE
43 0 TC3 Execution time [s] wx 0,0065  900,5 :g’é'foxon FALSE
44 1 TC3 Anticipation time [s] * 0,01421 9455 :’g’gtcoxon FALSE
45 1 Task9  Execution time [s] * 001434 17545 :’;’é'fox"” FALSE
4 1 Task9  Anticipation time [s] * 0,01524 970 :’:gfoxon FALSE
a7 1J Task 3 Pressure differences between . 001682 16955 Wilcoxon FALSE
successive frames test
48 1 Task 12 Anticipation time [s] * 0,01898  962,5 :’;’é‘fOXO” FALSE
49 1 TC6 Deviation from ideal pressure * 002128  969,5 :’;’é'foxon FALSE
50 13 Task 14  Anticipation time [s] * 0,02323 9925 :’:gfoxon FALSE
51 1J Task 5 Pressure differences between . 002507 10295 Wilcoxon FALSE
successive frames test
52 1J TCa4 Pressure differences between . 002513 980 Wilcoxon FALSE
successive frames test
o . Wilcoxon
53 1J Task 2 Deviation from ideal pressure * 0,02812  990,5 test FALSE
54 1 TC6 Anticipation time [s] * 0,03168 995 :’;’é'foxon FALSE
55 1J Task 2 Deviation from ideal pressure * 0,03187 998 :l;/éltcoxon FALSE
56 1J Task 6 Pressure differences between . 003546 10025 Wilcoxon FALSE
successive frames test
o . Wilcoxon
57 1J Task 13 Deviation from ideal pressure * 0,03997 1013 test FALSE
Mean pressure of execution . Wilcoxon
58 1J TC5 phase 0,04141 1013 test FALSE
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Supplementary Table 3. Results of intergroup difference tests of game features between normal and
reduced/absent Ad/C-fiber function groups in diabetes. Differences between groups were calculated using the
Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), **
(p=0.007—0.01), *** (p=0.0007—0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-
Flying; CP: Cross-Pressure; 1J: Island-Jump; TC: task combination

ID Game Task/TC Feature Name Signif  P.Value  Statistic Method Normality
1 AC Task13 ~ -ressure gradients between * 0,00381 2,99 T-test TRUE
successive frames
2 AC TC8 Final virtual distance * 001287 6695 l’g;'foxon FALSE
Chi-
3 AC Task 12 Apple caught (yes/no) * 0,01308 6,16 square FALSE
test
4 AC TCo Pressure differences between . 001829 1259 Wilcoxon FALSE
successive frames test
5 AC Task8  Time inside catching area [s] * 0,02506  699,5 Yg;'foxon FALSE
6 AC TC5 Normalized pressure * 0,02817 705 Yt\elgtc oxon FALSE
7 AC Task 12  Anticipation time [s] * 0,03097 1233 l/é/;ltcoxon FALSE
8 AC Tc1p  Pressuredifferences between 003658  -2,12 T-test TRUE
successive frames
9 AC Tc11 I(:r:)equency outside catching area 0,04041 1188 l/e\zléltcoxon FALSE
Pressure differences between . Wilcoxon
10 AC TC 10 successive frames 0,04447 1216,5 test FALSE
11 AC TC?2 Time inside catching area [s] * 0,04698 -2,02 T-test TRUE
12 BF(L) Task4 Virtual deviation of ideal flying * 001066 12825 Wilcoxon FALSE
route test
13 BF (L) Task8 Pressure gradients between . 001132 664 Wilcoxon FALSE
successive frames test
14 BF (L) Task®6 Pressure-time integrals * 0,01272 669 Yggf oxon FALSE
15  BF(L) Task1l Normalized pressure * 0,01292  698,5 Y:;'foxon FALSE
16 BF (L) Task®6 Normalized pressure * 0,01424  -2,51 T-test TRUE
17 BE(L) TC1 Pressure gradients between . 001494 676 Wilcoxon FALSE
successive frames test
- . . . Wilcoxon
18 BF(L) TC4 Minimal virtual distance smiley 2 * 0,01559 678 test FALSE
19  BF(L) Task12 Minimal virtual distance smiley 4  * 0,0156 1260 l’g;'foxon FALSE
20 BF (L) Task12 Virtual deviation of ideal flying . 002064 6905 Wilcoxon FALSE
route test
21 BF (L) Task9 Pressure gradients between . 0,0218 693 Wilcoxon FALSE
successive frames test
- . . . Wilcoxon
22 BF (L) Task9 Minimal virtual distance smiley 3~ * 0,02411 700 test FALSE
Virtual deviation of ideal flying . Wilcoxon
23 BF (L) Task3 route 0,02638 1242 test FALSE
2 BF (L) Task1l Pressur(_e gradients between . 003191 711 Wilcoxon FALSE
successive frames test
- . . . Wilcoxon
25 BF (L) TC2 Minimal virtual distance smiley 4  * 0,03325 713 test FALSE
Pressure gradients between . Wilcoxon
26 BF (L) Task®6 successive frames 0,04069 723 test FALSE
27 BF (L) Task5 Normalized pressure * 0,04419 -2,05 T-test TRUE
28  BF(L) Task5  Minimal virtual distance smiley 4  * 0,0452 772 l’:;'f"xon FALSE
Virtual deviation of ideal flying . Wilcoxon
29 BF (L) Task9 route 0,04577 1215 test FALSE
30 BF(L) Task7  Minimal virtual distance smiley 4  * 0,04622 730 :l(\e/;ltcoxon FALSE
31 BF (R) Task3 Pressure-time integrals Fkk 0,00042 543 Y:;Itc oxon FALSE
32 BF(R) TC2 Normalized pressure wox 0,00077 1381 l’:;'f"xon FALSE
33  BF(R) Task4  Normalized pressure ok 0,00095  1373,5 :’g;'foxon FALSE
34 BF (R) Task3 Normalized pressure ** 0,00318 -3,05 T-test TRUE
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35 BE(R) TC2 Pressure differences between - 000682 1301 Wilcoxon FALSE
successive frames ' test

36 BF(R) TC2 Pressure gradients between o 000936 1288 Wilcoxon FALSE
successive frames ' test

37 BF (R) Task7 Pressure differences between . 001186 666 Wilcoxon FALSE
successive frames test

38 BE(R) TC1 Pressure gradients between . 001215 1277 Wilcoxon FALSE
successive frames test

39 BF (R) Task 10 Normalized pressure * 0,02231  -2,33 T-test TRUE

40 BF(R) TC3 Pressure-time integrals * 0,02277 1249 Ygé'tcoxon FALSE

41  BF(R) TC4 Normalized pressure * 0,02301  1248,5 l’ggtcoxon FALSE

42 BF(R) TC1 Normalized pressure * 0,02748 2,26 T-test TRUE

43 BF (R) Task9 Pressure differences between . 003712 7185 Wilcoxon FALSE
successive frames test

24 BF(R) Task9 Pressure differences between . 003718 7185 Wilcoxon FALSE
successive frames test

45 BE(R) TC3 Pressure differences between . 004234 1219 Wilcoxon FALSE
successive frames test

46  BF(R) Task10 Ediizg;?vg'?gn‘ig‘;es between * 0,0494 2,01 T-test TRUE
Pressure differences between - Wilcoxon

4 cp Tco successive frames (L) 0,00275 608 test FALSE

48 CP Task 6 Normalized pressure (R) ** 0,00468 -2,91 T-test TRUE

49 cp TC1 Pressure differences between - 000641 6405 Wilcoxon FALSE
successive frames (L) ' ’ test

50 CP Task 6 Normalized pressure (R) * 0,0108 662 Yt\elgtc oxon FALSE

51 CP  TC6 Ziiiﬁi’.?ntgﬂis'gt?% alsofthe 001342 -2,54 T-test TRUE

52 cp Tce Pressure differences between . 001363 672 Wilcoxon FALSE
successive frames (R) ' test

53 CP Task 7 Normalized pressure (R) * 0,01435 -2,53 T-test TRUE

54 cp Task 2 Press_ure-time integrals of the . 001851 689 Wilcoxon FALSE
reaction phase (L) ' test

55 cp Task 7 Pressure differences between . 002156 6925 Wilcoxon FALSE
successive frames (R) ' ’ test

56 CP  Task6 z;giilt’iger%”ﬁzs'gt?ga's ofthe 0,02495  -2,29 T-test TRUE
Pressure-time integrals of the . Wilcoxon

57 CP Task 12 reaction phase (R) 0,02507 12445 test FALSE

58 CP Task 6 Normalized pressure (R) * 0,02534 700 Ye\zlgtc oxon FALSE

59 CP Task2  Anticipation time [s] * 0,02647  702,5 Yé’;’f"m” FALSE
Pressure-time integrals of the . Wilcoxon

60 CP Task 10 reaction phase (L) 0,02758 1240 test FALSE

61 CP  TCG6 E;Zii‘igerfgﬂzs'gt?ga's ofthe 002769 -225  T-est TRUE

62 CP Task 15  Normalized pressure (L) * 0,03671 718 l/e\lléltcoxon FALSE

63 I Task 16  Anticipation time [s] *x 0,00542 12835 l’:;'tcoxon FALSE
Pressure differences between o Wilcoxon

64 1J Task 5 successive frames 0,00568 1273 test FALSE
Pressure differences between . Wilcoxon

65 1J TC6 successive frames 0,01159 665 test FALSE

66 1J Task 12 Pressur(_e differences between . 002143 7465 Wilcoxon FALSE
successive frames test

67 13 Task 8 Deviation from ideal pressure * 0,03132 1231 llél;ltcoxon FALSE
Pressure differences between . Wilcoxon

68 13 Task 14 successive frames 0,04149 724 test FALSE

69 1 Task3  Anticipation time [s] * 0,04613 742 :l(\e/;ltcoxon FALSE

70 13 Task 4 Pressure-time integrals * 0,04808 12125 llé/éltcoxon FALSE
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Supplementary Table 4. Results of intergroup difference tests of game features between moderate and severe AB-
fiber polyneuropathy groups in diabetes. Differences between groups were calculated using the Mann-Whitney U
test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01),
*** (p=0.0007—0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-
Pressure; 1J: Island-Jump; TC: task combination

ID Game Task/TC Feature Name Signif  P.Value Statistic Method Normality
1 AC TC12 Time outside catching area [s] ok 0,00022  966,5 l’ggfoxon FALSE
2 AC Task 2 Normalized pressure wox 0,00039 965 l’g;'foxon FALSE
3 AC TC4 Final virtual distance wrk 0,00081 946 Yg;'tcoxon FALSE
4 AC Task 8 Normalized pressure *x 0,0013 933 l’ggtcoxon FALSE
5 AC TC12 I(:r:')equency outside catching area o 000158 8985 l/(\a/éltcoxon FALSE
6 AC  TC4 Anticipation time [s] e 0,00288 331 icoxon paLsE
7 AC Task 7 Anticipation time [s] *x 0,00504 3485 :’;’;’foxon FALSE
AC Task 14 Normalized pressure ** 0,00654 2,96 T-test TRUE
AC Task8  Reaction time [s] - 0,00805 366 icoxon paLsE
10 AC Task 8 Anticipation time [s] *x 0,00828  364,5 Yg;'foxon FALSE
11 AC Task 2 Anticipation time [s] * 0,01215 377 :’g;'tcoxon FALSE
12 AC Task 10 Normalized pressure * 0,01242 2,68 T-test TRUE
13 AC TC12 Normalized pressure * 0,01392 3815 :’g;'foxon FALSE
14 AC TC9 Anticipation time [s] * 0,01592 -2,6 T-test TRUE
15 AC TC5 Anticipation time [s] * 0,02298 -2,41 T-test TRUE
16 AC Task 6 Reaction time [s] * 002752 410 :’g;'foxon FALSE
17 AC Task 10 Time outside catching area [s] * 0,03225 748 Y:;Ifoxon FALSE
18 AC TC4 Pressure differences between . 003243 8285 Wilcoxon FALSE
successive frames test
Pressure gradients between . Wilcoxon
19 AC TC4 successive frames 0,03328 827,5 test FALSE
20 AC Task 13 Pressure gradients between . 003371 414 Wilcoxon FALSE
successive frames test
21 AC TCs Pressure differences between . 003639 417 Wilcoxon FALSE
successive frames test
22  AC TC 6 Normalized pressure * 0,03648 -2,21 T-test TRUE
23 AC Task 13 Normalized pressure * 0,03914 421 Ye\zlgtc oxon FALSE
24 AC TC8 Pressurg differences between . 003959 4205 Wilcoxon FALSE
successive frames test
25 AC TC1 Time inside catching area [s] * 0,03981 2,16 T-test TRUE
26 AC Task 6 Pressurg gradients between . 004125 422 Wilcoxon FALSE
successive frames test
27 AC TC3 I(:nr)equency outside catching area . 0,0425 443 :/é/;ltcoxon FALSE
28 AC TC 10 Anticipation time [s] * 0,04665 427 :l(\e/;ltcoxon FALSE
29 AC TC 6 Anticipation time [s] * 0,04788  -2,09 T-test TRUE
Pressure gradients between o B g
30 BF(L) TC1 successive frames 0,00484 2,96 T-test TRUE
Pressure differences between o Wilcoxon
31 BF(L) TC4 successive frames 0,00884 366 test FALSE
32 BF(L) Task4 Normalized pressure * 0,01793 797 llé/éltcoxon FALSE
33 BF(L) Task10  Minimal virtual distance smiley 3 * 0,04103 422 l’:;'f"xon FALSE
34 BF(L) Task6 Normalized pressure * 004136 765 :’ggf"xon FALSE
35 BF(L) TC3 Minimal virtual distance smiley 4~ * 0,04334 817 :’g;'tcoxon FALSE
Pressure differences between Wilcoxon

36 BF(R) Task7 : * 0,00261 913 FALSE
successive frames test
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37 BF(R) Task1l Normalized pressure ** 0,00828 2,83 T-test TRUE

38 BF(R) Taskl Normalized pressure *x 0,00875 860 Ygé'tcoxon FALSE

39 BF(R) Task7 Normalized pressure *x 0,00904 367 l’ggtcoxon FALSE

40 BF(R) TC3 Normalized pressure *x 0,00939 368 l’ggfoxon FALSE

41 BF(R) TC4 Pressure differences between . 001875 392 Wilcoxon FALSE
successive frames test

42 BF(R) Tasks8 Pressure differences between * 0,02008 -2,31 T-test TRUE
successive frames

43 BF(R) TC3 Virtual deviation of ideal flying . 003371 827 Wilcoxon EALSE
route test

44 BF(R) Task1 Virtual deviation of ideal flying . 003638 417 Wilcoxon FALSE
route test

45 BF(R) TC3 Pressure-time integrals * 0,03639 417 Yg;'tcoxon FALSE

46 BF(R) Task1l  Minimal virtual distance smiley 1 * 0,04358  816,5 Yg;'foxon FALSE
Pressure differences between . Wilcoxon

47 BF(R) TC1 successive frames 0,04779 813 test FALSE

48 CP Task 6 Normalized pressure (L) x* 0,0033 906 Yggtc oxon FALSE

49 CP TC8 Pressure differences between o 000532 887 Wilcoxon FALSE
successive frames (R) test

50 CP Task 4 E]me outside ideal pressure zone 001137 8445 l/e\zléltcoxon FALSE
Pressure differences between . Wilcoxon

51 CP Task 4 successive frames (R) 0,01205 376,5 test FALSE

50 Cp Task 6 E]me outside ideal pressure zone 001378 8445 l/é/;ltcoxon FALSE

53 CP TC5 Normalized pressure (R) * 0,02122 8445 lle\zléltcoxon FALSE

54 CP Task 1 Pressure differences between . 002269 842 Wilcoxon FALSE
successive frames (L) test

55 Cp Task 2 E]me outside ideal pressure zone 002596 830 l/(\aléltcoxon FALSE

56 CP Task 7 Pressure-time integrals of the . 002702 4055 Wilcoxon FALSE
execution phase (L) test

57 Cp TC4 Pressure-time integrals of the . 003099 830 Wilcoxon FALSE
reaction phase (L) test

58 CP Task 1 Normalized pressure (L) * 0,04054 -2,16 T-test TRUE

59 CP Task 1 Pressure differences between . 004495 4255 Wilcoxon FALSE
successive frames (L) test

60 1 Task 4 Pressure differences between - 000781 362 Wilcoxon FALSE
successive frames test

61 1J TC 6 Deviation from ideal pressure * 0,0201 394,5 Yggf oxon FALSE

62 1J Task 4 Pressure-time integrals * 0,02094 396 Yz\a/gtc oxon FALSE

63 13 TC2 Pressure gradients between . 003371 414 Wilcoxon FALSE
successive frames test

. . Wilcoxon

64 1J Task 9 Deviation from ideal pressure * 0,03423 415,5 test FALSE
Pressure differences between . Wilcoxon

65 1J Task 1 successive frames 0,03593  416,5 test FALSE

- . Wilcoxon

66 IJ Task 13 Deviation from ideal pressure * 0,04244 425 test FALSE

67  IJ TC4 Pressurc-? differences between . 004334 424 Wilcoxon FALSE
successive frames test

68 1 TCe Pressurg differences between . 004442 425 Wilcoxon FALSE
successive frames test

69 I Task 15  Anticipation time [s] * 0,0472 4275 :’ggf"xon FALSE

70 1J Task 11 Mean pressure of execution . 004869 4395 Wilcoxon FALSE
phase test

711 Task11  Execution time [s] * 0,04896 812 l’:;'f"xon FALSE

72 1 TC6 Deviation from ideal pressure * 0,04956  429,5 l/él;ltc oxon FALSE
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Supplementary Table 5. Results of intergroup difference tests of game features between normal and absent Achilles
tendon reflex groups in diabetes. Differences between groups were calculated using the Mann-Whitney U test, t-
test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.07—0.05), ** (p=0.007—0.01), ***
(p=0.0007—0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-
Pressure; 1J: Island-Jump; TC: task combination

ID Game Task/TC Feature Name Signif  P.Value  Statistic Method Normality
AC Task8  Normalized pressure Kok 0,00001 471 l’ggfoxon FALSE
AC Task 10 Normalized pressure i 0,00057  -3,58 T-test TRUE
3 AC TC3 Time inside catching area [s] *x 0,00408 6495 l’ggtcoxon FALSE
4 AC TC 12 Time outside catching area [s] *x 0,00551  673,5 l’:gfoxon FALSE
5 AC Task6  Time inside catching area [s] *x 0,00557 673 :’;’;’foxon FALSE
6 AC Task 14  Normalized pressure * 0,00673  -2,78 T-test TRUE
7 AC Task 6 Normalized pressure ** 0,00845 -2,69 T-test TRUE
8 AC TC4 Normalized pressure *x 0,00041  683,5 :’g;'foxon FALSE
9 AC TCc1 I(:nr)equency outside catching area 0,00998 1319 l/é/;ltcoxon FALSE
10 AC TC12 Pressure-time integrals * 0,01174 2,57 T-test TRUE
11 AC TC6 Normalized pressure * 0,01735 7135 :’g;'foxon FALSE
12 AC TC8 Normalized pressure * 0,0174 1298,5 l/é/;ltcoxon FALSE
13 AC Task 10  Anticipation time [s] * 0,01759 1298 :’;’;’foxon FALSE
14  AC Task 10  Reaction time [s] * 001921 12905 :’ggfoxon FALSE
15 AC TC 10 Anticipation time [s] * 0,01998 1291 :’g;'tcoxon FALSE
16 AC TC12  Final virtual distance * 001998 718 :’é’;’foxw FALSE
17 AC  TCo Final virtual distance * 0,02088 720 iicoxon pal sg
18 AC Task 4 Normalized pressure * 0,02509 -2,28 T-test TRUE
19 AC TCs Pressure gradients between . 002812 733 Wilcoxon FALSE
successive frames test
20 AC TC 12 Normalized pressure * 0,03078 12715 Y:;Ifoxon FALSE
21 AC Task 14  Reaction time [s] * 0,03275  1260,5 :’g;'foxon FALSE
22 AC Task7  Anticipation time [s] * 0,04079 1257 :’g;'tcoxon FALSE
23 AC TC 10 Normalized pressure * 0,0469 -2,02 T-test TRUE
24 AC Task8  Anticipation time [s] * 0,04936 1247 :’g;'foxon FALSE
25 BF(L) TC3 Normalized pressure * 0,01323 2,53 T-test TRUE
26  BF(L) Taskl  Minimal virtual distance smiley 3  * 0,01689  709,5 Yg;'foxon FALSE
27 BF(L) TC3 Normalized pressure * 0,01793 1296 :/ggtcoxon FALSE
28  BF(L) Taskl  Minimal virtual distance smiley 4  * 0,03572 1264 Y:;'foxon FALSE
29 BF (L) Task8 Normalized pressure * 0,04913 1185 l/:;ltcoxon FALSE
30 BF(R) Task9  Minimal virtual distance smiley 4  ** 0,00606 1338 :’ggf"xon FALSE
Pressure differences between . Wilcoxon
31 BF(R) TC4 successive frames 0,01287 1312 test FALSE
- . . . Wilcoxon
32 BF (R) Task4 Minimal virtual distance smiley 1 * 0,01414 1307 test FALSE
33 BF(R) Task1l Normalized pressure * 0,03504  759,5 l/:;ltcoxon FALSE
Pressure differences between «
34 BF (R) Task 10 successive frames 0,04658 2,02 T-test TRUE
Pressure differences between o Wilcoxon
35 CP TC5 successive frames (R) 0,00382 1361 test FALSE
. Wilcoxon
36 CP Task 15 Normalized pressure (R) * 0,01209 1313 test FALSE
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Pressure differences between

37 CP Task 14 ; * 0,01941 2,39 T-test TRUE
successive frames (L)

38 cp TCce Pressure differences between . 002663 12785 Wilcoxon FALSE
successive frames (L) test

39 cp 1C6 Pressure differences between . 002023 1274 Wilcoxon EALSE
successive frames (R) test

40 cp Task 8 Pressure differences between . 003622 7455 Wilcoxon EALSE
successive frames (L) test

41 CcP Task 10  Reaction time [s] * 0,04034 751 l’ggfoxon FALSE

2 0 Task9  Pressure-time integrals *x 0,0061 6655 l’g;'foxon FALSE

43 1 Task9  Deviation from ideal pressure * 0,01221 13125 Ygé'tcoxon FALSE

24 1J Task 13 Pressure gradients between . 001011 1293 Wilcoxon FALSE
successive frames test

5 1J Task 10 Mean pressure of execution . 002143 7225 Wilcoxon FALSE
phase test

46 1 Task4  Anticipation time [s] * 0,02885 1274 :’;’;’foxon FALSE

47 1J TC5 Mean pressure of execution * 003542 745 Wilcoxon FALSE
phase test

48 1 TC6 Anticipation time [s] * 0,03918 1259 :’g;'tcoxon FALSE

49 1J Task 3 Pressure-time integrals * 0,03918 750 Yggtc OXON  EaLSE

50 1 TC6 Anticipation time [s] * 0,04852 12485 :’;’;’foxon FALSE
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11.6. Introduction video and screenshots of the “Gamidiagnostics”

application

The introduction video is available online:
https://1drv.ms/v/s!ApoWew5vitZEgRsUgM92Hvagfc oa?e=nl6ah9

The screenshots of the “Gamidiagnostics” App are presented here:

1. Insole Manager 2. Login page for study personal

Verbindungsmanager Willkemmen zum Gamification Test

Bitte geben Sie Ihre Zugangsdaten an.

Benutzername
oder Email
Passwort:
| ) sohle1 () sohle2 @ sohle3 einioggen
Bitte wahlen Sie die Einlegesohle aus und driicken
Sie dann auf das "Weiter"-Symbol. Melter
3. Insole calibration (step 1 — 8)
Kalibrierung 1 Kalibrierung 2

Rechter VorfuB

v

< o

links rechts rechts
Bitte ziehen Sie die Pantolette an, setzen Sie sich auf den Stuhl und bleiben Sie Belasten Sie bitte den rechten VorderfuRR nach dem Piepton sehr stark fiir 5
5 Sek. entspannt. Sek.
Kalibrierung 3 Kalibrierung 4
Rechte Ferse Linker Vorfufs
rechts links
Belasten Sie bitte die rechte Ferse nach dem Piepton sehr stark fiir 5 Sek. Belasten Sie bitte den linken Vorderfull nach dem Piepton sehr stark fiir 5 Sek.
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80

Kalibrierung 5

(’ ;,‘
L A
@) 5

links

Linke Ferse

Belasten Sie bitte die linke Ferse nach dem Piepton sehr stark fiir 5 Sek.

Q0 Kalibrierung 6

:\,\ Ve \
/ ‘ [ :
) /=
{ / \ /
\‘.\‘ / \‘\ :‘/,
\‘ \ | /= "’
e 5 (@

links rechts

Stehen Sie bitte auf und
fiir 5 Sek.

Sie Ihr Gewicht gleichmaRig auf beide Beine

0

Kalibrierung 7

heben den linken Fuly

S

nur auf dem rechten FuR zu stehen.

Bitte heben Sie den linken Full nach dem Piepton und versuchen Sie fir 5 Sek.

o0

Kalibrierung 8

heben den rechten Fuf

9

Bitte heben Sie den rechten FuR nach dem Piepton und versuchen Sie fiir 5
Sek. nur auf dem linken FuR zu stehen.

4. Apple-Catch game (task 1 — 14)
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6. Cross-Pressure game (task 1 — 16)

wLu”KWHN%EH

{ k&ﬁ*‘\‘u\*\ “\*\‘\

Belastungsspiel 1/16

Linker FuB
£

Rechter Ful

0

Belastungsspiel 2/16

Linker FuB Rechter Fu3

£

Belastungsspiel 3/16

Linker FuB

£

Belastungsspiel 5/16

Linker Fu
£

Rechter Ful

L Linker Fu Rechter FuR ﬁ
£

Linker FuB Rechter Ful

£
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(=1]

Belastungsspiel 7/16

..QO
Linker FuB Rechter Ful

ea Belastungsspiel 8/16
g ?
Linker FuB Rechter Fufy

(=1]

Belastungsspiel 9/16

Wik

Linker FuB Rechter Ful

ea Belastungsspiel 10/16
g ,
Linker FuB Rechter FuRy

(=1]

Belastungsspiel 11/16

®o,,
Linker FuB Rechter Fu3

(=1]

Belastungsspiel 12/16

@0,
Linker FuB Rechter Ful

(=1]

Belastungsspiel 13/16

Wi

Linker FuB Rechter FuR3

(=1]

Belastungsspiel 14/16

g4l

Linker FuB Rechter FuR3
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e o Belastungsspiel 15/16 e o Belastungsspiel 16/16
Y )
o2
o =
Linker FuB Rechter Ful k Linker FuB Rechter Ful
£ £

7. Island-Jump game (task 1 — 16)

Sprung-Spiel Sprung-Spiel

e

Sprung-Spiel Sprung-Spiel

:.. 23

Serung-Spiel

Serung-Spiel

3 5
b a

)

e )
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Sprung=Spiel

Serung-Spiel

.
b |

~
i

Serung-Spiel

Sprung-Spiel

=

a
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Sprung-Spiel

T

Serung-Spiel

.
b |

"

Serung-Spiel

a,h
-

Sprung-Spiel

= N
8

;’ >




Sprung-8piel E Sprung=Spiel
N i
e
e

Gesamtbewertung:
@ Experte @ Experte | Fortgeschrittener
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