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Abstract: 

Diagnosis of diabetic peripheral neuropathy (DPN) is essential to prevent complications, such 

as the diabetic foot syndrome. Diagnosis mostly relys on a time-consuming clinical 

examination by standardized procedures (pinprick test, vibration perception, Tip Therm, 

reflexes, muscle function). Furthermore, investigator-related bias confounds findings.  

To explore the potentials of a video game-based approach to diagnose polyneuropathy, a 

gaming platform (“Gamidiagnostics”) was set up. Participants utilized pressure sensor-

equipped insoles as control units and played four games that were specifically designed to test 

for reaction time, sensation, skillfulness, endurance, balance, and muscle strength. A pilot 

study with 71 healthy volunteers and 112 patients diagnosed with DPN by clinical examination 

(neuropathy deficit score, NDS) evaluated the feasibility of this approach. Unbiased training of 

prediction algorithms with data sets identified 15 independent variables with discriminatory 

functions that indicated DPN. In age-matched cohorts, the support vector machines achieved 

a training accuracy of 87.8% (AUC-ROC 0.91) and an adjusted accuracy of 85.2% on a held-

out testing data set (sensitivity 92.6%, specificity 77.8%). Distinct variables were identified for 

each nerve fiber deficit and allowed correct classification with adjusted accuracies of 88.1%, 

91.9%, and 95.3% for Achilles tendon reflex, Aδ-/C-fiber, and Aβ-fiber impairment, respectively. 

Thus, a video game-based approach with smart footwear sensors was able to diagnose 

advanced peripheral nerve malfunction with high accuracy. This was set up in an examiner-

independent manner and may be established as telemedical device.  

Keywords 

Diabetes; peripheral sensorimotor neuropathy; sensor-equipped insoles; video games; 

artificial intelligence; support vector machine; machine learning; telemedicine



1 

 

Contents 

Abbreviations ........................................................................................................................ 4 

1. Introduction .................................................................................................................... 6 

1.1. Peripheral neuropathy ............................................................................................. 6 

1.1.1. Causes and prevalence .................................................................................... 6 

1.1.2. Symptoms and clinical presentations of peripheral neuropathy ........................ 7 

1.1.3. Diabetic peripheral neuropathy (DPN) .............................................................. 7 

1.2. Diagnostic strategies and challenges of PN ............................................................ 8 

1.3. Innovative tools to diagnose PN .............................................................................. 9 

1.4. Current concepts on game-based tools to diagnose PN .........................................10 

1.5. Advances in machine learning algorithms development .........................................11 

1.6. Aims of the work .....................................................................................................12 

2. Materials and Methods ..................................................................................................14 

2.1. Sensor-equipped insoles ........................................................................................14 

2.2. Game developing architecture ................................................................................17 

2.3. Design of video games and setup of “Gamidiagnostics” application .......................18 

2.4. Feature extraction methodologies ..........................................................................22 

2.5. Hypothesis-driven key capabilities ..........................................................................28 

2.6. Study design ..........................................................................................................29 

2.6.1. Inclusion and exclusion criteria ........................................................................29 

2.6.2. Participants .....................................................................................................30 

2.6.3. Cohorts ...........................................................................................................30 

2.6.4. Standardization of the test procedure ..............................................................31 

2.7. Data protection and management ..........................................................................32 

2.8. Statistical analysis and AI modeling .......................................................................33 

2.8.1. Statistical tests ................................................................................................33 

2.8.2. Support Vector Machine (SVM) .......................................................................34 

2.8.3. Performance evaluation metrics ......................................................................35 



2 

 

2.8.4. Class definition and model training ..................................................................38 

3. Results ..........................................................................................................................40 

3.1. Study participants ...................................................................................................40 

3.2. Hypothesis-driven game assessment .....................................................................42 

3.3. Game feature analysis ...........................................................................................43 

3.3.1. Game feature analysis in Cohort 1 ..................................................................44 

3.3.2. Game feature analysis in Cohort 2 ..................................................................46 

3.4. Predictive models of DPN .......................................................................................48 

3.4.1. DPN classification model .................................................................................48 

3.4.2. Aδ-/C-fiber polyneuropathy classification model ..............................................50 

3.4.3. Aβ-fiber polyneuropathy classification model ...................................................51 

3.4.4. Achilles tendon reflex classification model .......................................................52 

4. Discussion .....................................................................................................................54 

4.1. Performance of the neuropathy “Gamidiagnostics” App in comparison to other studies

 55 

4.2. Limitations of the pilot study ...................................................................................59 

4.3. Conclusion and outlook ..........................................................................................60 

5. Summary .......................................................................................................................61 

6. References ....................................................................................................................62 

7. Acknowledgements .......................................................................................................72 

8. Erklärung .......................................................................................................................73 

9. Curriculum Vitae ............................................................................................................74 

10. Publications ...............................................................................................................75 

11. Supplementary Appendix ...........................................................................................76 

11.1. Approval of the Ethics Committee .......................................................................76 

11.2. Patient information and consent forms ................................................................79 

11.3. Gamification study questionaire ..........................................................................88 

11.4. Supplementary figures ........................................................................................97 



3 

 

11.5. Supplementary tables ....................................................................................... 103 

11.6. Introduction video and screenshots of the “Gamidiagnostics” application ......... 117 

 

 



4 

 

Abbreviations 

AC Apple-Catch  

ACC Accuracy 

AI Artificial intelligence 

ANN Artificial neural network 

AUC-ROC Area under curve receiver operating characteristics 

BF Balloon-Flying  

BMI Body mass index 

CCM Corneal confocal microscopy  

CF Candidate feature 

CON Control 

CP Cross-Pressure 

DM Diabetes mellitus 

DNS Diabetic neuropathy symptom score  

DPN Diabetic peripheral neuropathy 

DT Decision trees 

ECU Electronic control unit  

EEG Electroencephalography 

FN False negative 

FP False positive 

FPR False positive rate 

GB Gigabyte 

HD High dynamic  

HDL-c High-density lipoprotein cholesterol 

IDF International diabetes federation  

III three 

IJ Island-Jump  

IMU Inertial measuring unit  

IV four 

JSON Java script object notation 

KIN Microsoft-Kinect®  

LR Logistic regression  

ML Machine learning 

MLP Multi-layer perceptron 

MMSE Mini-mental state examination  

MNSI-q Michigan neuropathy screening instrument-questionnaire 

MTK Metatarsal  

MVC Model-View-Controller  

NCT Nerve conduction testing  

NCV Nerve conduction velocity  

NDS Neuropathy disability score  

NSS Neuropathy symptom score 

NYHA New York Heart Association 

OAO One against one 



5 

 

PCA Principal components analysis  

PNP Polyneuropathy 

POCD Point-of-care device 

RBF Radial basis function 

SD Standard deviation 

SEN Sensitivity 

SMT Step-mat-training  

SPE Specificity 

SVM Support vector machine  

SVM-Linear Support vector machine with a linear basis Kernel function 

SVM-Poly Support vector machine with a polynomial basis Kernel function 

SVM-Radial Support vector machine with a radial basis Kernel function 

TC Task combination  

TN True negative 

TP True positive  

TPR True positive rate  

UI User interface 

 

  



6 

 

1. Introduction 

1.1. Peripheral neuropathy 

Peripheral nerves refer to 43 pairs of motor and sensory nerves that branch out from the central 

nervous system (CNS) and connect the rest of the body (1). The nerves are responsible for 

maintaining body homeostasis, mediating sensation, movement and coordination (2). 

Peripheral neuropathy (PN) is a medical term to describe damage to nerves within the 

peripheral nervous system, which includes nerve cells, fibers (axons), and coverings (myelin 

sheath) (3). PN varies in its distribution pattern and several classification schemes exist. The 

most common classification categorizes into distal symmetric polyneuropathy (DSPN), 

mononeuropathy, and mononeuropathy multiplex, according to the location of affected nerves. 

1.1.1. Causes and prevalence 

The most common distribution pattern of the DSPN is a diffuse, length-dependent process with 

diverse underlying causes, such as diabetes, excessive and chronic alcohol use, vitamin B12 

deficiency, chemotherapy, chronic kidney disease, paraproteinemia or thyroid disease (4). 

Register studies and surveys reported an approximate prevalence rate of 2.4% that increases 

with age to around 7% (5). For 49% of patients the polyneuropathy is asymptomatic and 

undiagnosed (6). Table 1 provides an overview on reported prevalence rates of peripheral 

polyneuropathy and its subtypes from epidemiological studies.  

Table 1. Prevalence of peripheral neuropathy and its subtypes. T1DM: Type 1 diabetes mellitus; T2DM: Type 
2 diabetes mellitus; DSPN: Distal symmetric polyneuropathy; DPN: Diabetic peripheral neuropathy. *Incidence rate. 

Study Country Population (n) Prevalence 

Peripheral neuropathy (PN) 

(7) Italy 14,540 2.7% (7% by age ≥ 55 years) 

(8) India 14,010  2.4% 

(9) USA 2,514 (age ≥ 40 years) 9% 

Distal symmetric polyneuropathy (DSPN, polyneuropathy) 

(10)  Netherlands age ≥ 18 years 77.0/100,000 person-years* 

(6) Netherlands 
1,310 participants  
(mean age 70 years, 55% female) 

5.5%, 6.7% (male), 4.5% (female), 
31% (DPN among DSPN) 

(11) Germany 983 (age ≥ 50 years) 
53.8% (No Diabetes), 43.8% 
(T1DM), and 55.6% (T2DM) 

 UK 19,897 controls 0.12% 

Diabetic peripheral neuropathy (DPN) 

(12) Germany 1004 patients with diabetes 
40.3%, 29.1% (T1DM), and 42.2% 
(T2DM) 

(13) 

USA 

Total population 

3.9% (12,522,483 cases) 

Germany 4.7% (3,904,730 cases) 

Italy 2.7% (1,636,426 cases) 

Japan 0.002% (2,332 cases) 

(14) 
Germany 45,633 newly diagnosed T2DM patients 5.7% (5.5-5.9%) 

UK 14,205 newly diagnosed T2DM patients 2.4% (1.9-2.9%) 
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1.1.2. Symptoms and clinical presentations of peripheral neuropathy 

Regarding the clinical appearance of peripheral polyneuropathy lack of sensation may prevail, 

resulting in absence of information (numbness, loss of sensation, balance impairment). On the 

other hand patients may complain about an excess of sensation with discomfort feelings (such 

as prickling, tingling, burning, pain). These absent or plus symptoms relate to sensory nerve 

malfunctions that most often occur in a symmetric pattern. In addition motor weakness (muscle 

weakness and atrophy) may develop. These symptoms typically begin in the toes and later on 

ascend insidiously up the legs in a stocking distribution. Symptoms may spread throughout the 

body, reaching hands and knees (15). Over time, the ankle and Achilles reflexes may be 

impacted with aggravation of disease (16). Autonomic symptoms may include sweating, 

circulatory abnormalities and postural hypotension (17). Disturbed proprioception and 

abnormal sensorimotor function result in impaired balance coordination and mobility with 

increased risk of falls and fractures (18).  

1.1.3. Diabetic peripheral neuropathy (DPN) 

DPN is defined as a subtype of PN with no other identifiable cause than diabetes (19). 

According to the International Diabetes Federation (IDF), more than 435 million people 

worldwide are diagnosed with diabetes, and this number is expected to rise to 693 million in 

2045 (20). Correspondingly, the burden of diabetes-associated comorbidities and sequela of 

hyperglycemia will increase, e.g., every second afflicted individual (both diabetes type 1 and 

2) will eventually develop polyneuropathy (21).  

DPN has a significant impact on the mobility of patients. As a consequence a disturbed gait 

and movement coordination ensues, the likelihood of falls increases, the share of patients with 

diabetic foot syndrome rises, and a frail mental health is often seen (22). Besides impaired or 

lack of sensation, DPN may also cause plus symptoms, such as discomfort and pain. 

Complications such as tissue damage, infections, and ultimately minor and major foot 

ulcerations are seen in 19 – 34% of individuals with diabetes during their lifetime, especially 

with delayed diagnosis of DPN and/or inadequate implementation of preventive measures (23). 

Notably, every fifth moderate-to-severe diabetes-related infection will prompt lower extremity 

amputation (23, 24). On the other hand, four out of five amputations may be prevented by 

adequate podiatry care (25). All these aspects urge for a timely DPN diagnosis, interventions 

for primary and secondary prevention of foot damage, and possibly interventions to combat 

nerve damage itself. Due to the nature of the disease, timely diagnosis and repeated 

monitoring of individuals at risk are mandatory, given the insidious onset of DPN with diverse 

presentations. Up to 50% of affected individuals remain asymptomatic (26), while the 

remainder develop numbness, tingling, pain, or weakness (27). Symptoms commonly originate 
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distally (i.e., the tips of the toes) and spread proximally with a symmetric distribution. Peripheral 

nerves encompass Aδ- and C-fibers (small, spinothalamic; temperature sensation, nociception; 

assessed by pinprick), as well as Aβ-fibers (large, back nervous system; assessed by vibration 

and monofilament) (28, 29). In addition, the reflex status may be altered, most commonly an 

impaired Achilles tendon reflex status is observed (30). 

1.2. Diagnostic strategies and challenges of PN 

Early detection of peripheral neuropathy is a key measure to open the window for preventive 

action, e.g. to maintain tissue integrity of the feet with walking aids, protection by specialized 

shoes for sustained physical health and mental quality of life (31). Effective handling of 

diabetes mellitus and normalization of blood glucose levels may prevent or retard further 

damage to the nerves (32). Because only 10% to 15% of diabetic polyneuropathy (DPN) 

patients are symptomatic, a large proportion of patients are unaware of their disease and do 

not seek aid, although they are at highest risk for foot ulcer formation (31). Consequently, there 

is consensus that detection of earliest signs should be performed, which mostly occur at the 

distal limbs, particularly the feet, to improve patient care (16). 

The diagnosis of PN should consider multiple symptoms and clinical signs. Initially, paying 

attention to family and personal medical history and inquiring about toxin exposure and 

medications should be proceeded to exclude causes other than diabetes, such as neurotoxins 

and heavy metal poisoning, alcohol abuse, vitamin B12 deficiency, renal disease, chronic 

inflammatory demyelinating polyradiculoneuropathy, inherited neuropathies, and vasculitis 

(17). Dyck et al. pointed out that up to 10% of PN in patients with diabetes was not due to 

diabetes (33). The physical examination includes performing sensory tests (different modalities 

like light touch, vibration, temperature, pain sensation, and proprioception), evaluating the 

patients’ mental status, reflexes, cranial nerves, and motor system (i.e. gait). Researchers 

have developed composite scoring systems (using symptoms, clinical signs, or both) to 

quantify general neuropathic deficits better and enhance diagnostic accuracy (Table 2).   

Table 2. Clinical scoring systems for PN screening. NSS, neuropathy symptom score; MNSI, Michigan 

Neuropathy Screening Instrument; NDS, neuropathy disability score 

Scoring System Items Thresholds 

NSS 
(33) 

Muscle weakness (8 points) 
Presence of a symptom  
if  ≥ 1 point 

Sensory disturbances (5 points) 

Autonomic symptoms (4 points) 

MNSI 
(34) 

A 15-item self-administered questionnaire: pain, temperature 
sensation, tingling, numbness, sensory symptoms, cramps and 
muscle weakness, foot ulcers or cracks, and amputation 

Abnormal, if ≥ 3/15 response 

NDS 
(35) 

Vibration sensation (128-Hz tuning fork) 

Abnormal, if ≥ 6/10 points 
Temperature sensation 

Pin-prick 

Ankle reflex 
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A sensorineural impairment assessment (Quantitative Sensory Testing: QST) is based on 

clinical sensory nerve tests. Clinical sensory nerve tests generate specific physical vibratory, 

pressure, noxious, or thermal stimuli using specialized equipment, such as 128-Hz tuning fork, 

10-g Semmes-Weinstein monofilament, Pin-prick, or Tip Therm (AXON GmbH, Düsseldorf, 

Germany). QST was developed to detect the thresholds of thermal perception (cold or warm), 

vibration perception, pressure pain, and sudomotor function (36). 

The nerve conduction testing (NCT) and nerve biopsy are considered gold standards for PN 

diagnosis (37). The NCT is a reliable and rather objective diagnostic tool that relies on an 

evoked stimulus, which is independent from the subjective response, to calculate the nerve 

conduction velocity in excitated nerves. Impaired NCT are encountered with segmentally 

demyelinated axons (38, 39). A nerve biopsy is a valid method to evaluate abnormalities in 

small nerve fiber density and integrity, however is rarely applied in clinical practice or routine 

screening programs due to its invasiveness (40).  

In summary, multiple approaches are available to detect polyneuropathy. However, physicians 

are still facing distinct clinical challenges. First of all, the above-mentioned bedside 

assessments and QST are subjective, examiner dependent, time-consuming, easily influenced 

by patients' cooperation and confounding factors, and primarily utilized to detect advanced 

neuropathy (41). The late stage diagnosis of neuropathy by these crude tests usually goes 

along with irreversible nerve damage (22, 42). Secondly, NCT and skin biopsy are broadly 

considered as gold standards in clinical research (37). However, they are not applicable in 

clinical practice because they are invasive, time-consuming, require well-trained examiners 

and expensive devices as well as specialists for result interpretation (43, 44). Thirdly, most 

patients are unaware of their disease and severe symptoms have not developed, making the 

diagnosis difficult. This highlights the urgent demand for an approach to screen PN in 

asymptomatic patients that is efficient, practical, objective with quantitation of the extent of 

nerve damage. Such an approach may overcome the limitations of the current state of the art. 

1.3. Innovative tools to diagnose PN 

Recently, noninvasive point-of-care devices (POCD) have been developed to diagnose DPN 

(22, 45), which includes the DPN-Check (46, 47), NeuroQuick (48), NeuroPAD (49), Corneal 

Confocal Microscopy (CCM) (50, 51) and Sudoscan (52, 53). The DPN-Check is a brief version 

of the nerve conduction testing that may be completed within three minutes (47). It achieves 

95% sensitivity and 71% specificity when compared to the findings of the nerve conduction 

testing (46, 47). Similar to NCT, it only assesses large nerve fiber function and provides no 

information on small nerve fiber functions. Therefore, other POCDs have been developed to 

identify small fiber impairments (abnormal pain perception, autonomic and sudomotor 
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dysfunction), such as the assessment tools NeuroQuick, NeuroPad, Corneal confocal 

microscopy, and Sudoscan.  

NeuroQuick is a simple tool to quantify thermal sensation thresholds that are mediated by thinly 

myelinated Aδ and unmyelinated C-fibers. A study reported that the NeuroQuick is more 

sensitive in detecting small fiber dysfunction than bedside tests using a tuning fork in a diabetes 

cohort (48). However, as a psychophysical test, the test results might be affected by patients’ 

attention and cognition. Moreover, its validity and reproducibility still need to be evaluated in 

larger cohorts.  

The NeuroPad is a 10 minute test that evaluates sweat production of the feet. Validation 

studies have reported high sensitivity of this test for small fiber neuropathy and high 

reproducibility (45, 54). However, the sensitivities of NeuroPad for large fiber neuropathy is low 

and has been reported to range between 50 and 64% in these studies.  

Corneal confocal microscopy is a noninvasive technique to identify corneal nerve impairment 

that is associated with peripheral nerve function (55). However, the devices are expensive and 

only specialists may perform the examination (16).  

The Sudoscan quantifies sudomotor function within three minutes. Sudomotor dysfunction has 

been proposed as an indicator of small fiber neuropathy. Its sensitivity and specificity to classify 

DPN are reported to reach 87.5% and 76.2%, respectively (52, 53, 56). Nevertheless, it only 

assesses the autonomic nerve function and no motor- and sensory nerve status. 

Advanced neuroimaging techniques, such as magnetic resonance neurography, diffusion 

tensor imaging, and nerve ultrasonography may provide additional insights into 

neuropathology of large and small myelinated fibers (57). However, these examinations need 

expensive devices and well-trained examiners. Thus, they are not appropriate for routine 

screening, but rather for experimental setups and study cohorts. 

In summary, noninvasive POCDs have acceptable sensitivity rates for detection of fiber 

damage, however these should be combined to assess both large and small-fiber function. 

The cost-effectiveness and performance of each device still need to be evaluated in further 

studies (22).  

1.4. Current concepts on game-based tools to diagnose PN 

Digital game-based approaches have been developed for disease prevention and promotion 

of health and are known as “Gamification”, “Exergames” and “Serious Games”. “Gamification” 

encompasses typical game elements (leader boards, ranking, points, rewards, team activities, 

and profile design) to enhance motivation and performance. The terms “Exergames” or 

“Exergaming” refer to video games that interact with users by tracking body movement or 
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reaction while performance of exercise. The term “Serious Games” refers to games that are 

designed to deliver serious content, e.g. to address health problems (58).  

“Gamification” has been rapidly grown as a hot topic in industry and academia since 2010. The 

Gamification market was estimated to reach 2.8 billion US dollars in 2016 (59). Most 

Gamification applications target behaviors associated with physical activity and weight loss. 

Most commonly used game elements include goal setting, social influences, and challenges 

(60). In a randomized clinical trial that assessed 602 overweight and obese adults, gamification 

interventions with incentives significantly increased physical activity in participants, especially 

when a competition was set up (adjusted difference, p<0.001) (61). “Exergames” typical 

applications are balance challenging exercises, such as step-mat-training (SMT) and 

Microsoft-Kinect® (KIN) Exergames. Clinical studies have confirmed the positive impact of 

these unsupervised exercise programs on reducing fall risk, improving  proprioception and 

reaction time, enhancing executive functions, and preventing depression in seniors diagnosed 

with diabetes (62, 63). Computerized games for serious purposes are denoted “serious games” 

and commonly combine Gamification and virtual reality to enhance mental health interventions. 

Serious games are widely applied to assess and improve attention and memory function in 

seniors at risk for cognitive impairment (64, 65). 

According to a recent literature review, there are no video game-based applications that have 

been specifically designed for peripheral neuropathy screening. However, studies have shown 

that “Gamification”- and “Exergames”-based programs have great potential to promote 

proprioception and shorten reaction times, improve balance and postural stability, reduce the 

risk of falls and improve mental quality of life. 

1.5. Advances in machine learning algorithms development  

Machine learning (ML) has been defined by Arthur Samuel in 1959 as a “field of study that 

gives computers the ability to learn without being explicitly programmed” (66–68). The primary 

precondition for ML is to “introduce algorithms that ingest input data, apply computer analysis 

to predict output values within an acceptable range of accuracy, identify patterns and trends 

within the data and finally learn from previous experience” (69). Advanced computational 

technologies and the extensive amount of data generated in the medical system have 

promoted broad applications of ML algorithms within the medical field. ML algorithms have 

shown many potential benefits in handling electronic laboratory data, medical records and 

imaging (70).  

A research hotspot is the use of machine learning algorithms to develop models that may 

identify gait features that predict balance disorders, deficits following strokes, or diagnose 

neurodegenerative diseases. Artificial neural network (ANN) and support vector machine (SVM) 
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are reported to yield high accuracies in clinical studies (71, 72). Another hot research topic is 

dedicated to image analyses, e.g., to classify biopsy findings in pathology or magnetic 

resonance imaging (MRI) with deep learning algorithms to detect carcinomas (73). These 

applications have revolutionized the way both researchers and physicians address clinical 

concerns (70). Regarding peripheral neuropathy diagnosis, intelligent classification models 

have been developed using clinical data (such as glycated hemoglobin, physical activity level, 

surgery trauma history, diabetes mellitus duration) as predictive features. Logistic regression 

(LR), decision tree (DT), multi-layer perceptron (MLP), and artificial neural networks (ANNs) 

have performed acceptable accuracies on large study cohorts (74, 75). Overall, these studies 

highlight the potential strength of machine learning in medicine, particularly for the topic of this 

thesis. 

1.6. Aims of the work 

Detection of peripheral neuropathy in patients with diabetes (DPN) is a clinical challenge with 

high relevance for prevention of the diabetic foot syndrome. Accurate POCDs that are rapid, 

noninvasive, with investigator-independent evaluations of small and large fiber neuropathy are 

highly needed, preferentially for usage in the outpatient setting. Game-based applications 

combined with sensor-equipped insoles may circumvent drawbacks of traditional clinical 

examinations, however have to be standardized and meet highest standards. Supervised 

learning algorithms may aid data interpretation and offer an online prediction tool.  

In this thesis I wish to establish a playful nerve function assessment device by combining 

sensor-equipped insoles with video games and machine learning algorithms. I set up the main 

hypothesis that “a video game-based “Gamidiagnostics” application is able to provide a 

meaningful assessment of small and large fiber function in a self-administered, examiner-

independent manner and may be suited as a telemedicine application”. The following 

hypotheses will be tested: 

(1) A “Gamidiagnostics” application with video-based playful elements combining sensor-

equipped insoles and machine learning algorithms is feasible to screen for peripheral 

neuropathy in patients with diabetes. 

(2) In such an application, critical skills may be tested and quantified, i.e. reaction time, quality 

of sensation, muscle strength, balance, and endurance.  

(3) Furthermore, feature extraction methodology may be applied to determine representative 

game features and calculate key capabilities that correlate to the clinical ground truth (e.g. 

for NDS). 

(4) Trained classification models may identify relevant game parameters, make predictions on 

DPN and possibly achieve phenotyping of impaired nerve fibers. 
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Specifically, the following subgoals will be addressed: 

(1) Design and development of a “Gamidiagnostics” application that consists of video games 

controlled by sensor-equipped insoles, with real-time data acquisition, and automatic 

transmission to a remote server (denoted IQ-Trial). 

(2) Validation of the “Gamidiagnostics” application in a pilot exploratory study by testing and 

quantifying critical skills of enrolled healthy individuals and patients diagnosed with 

diabetes and peripheral neuropathy. 

(3) Performance of correlative analyses to determine differences between healthy volunteers 

and patients diagnosed with peripheral diabetic neuropathy according to clinical scores 

(NDS) and predefined key capabilities (reaction time, sensation, skillfulness, endurance, 

balance, muscle strength). 

(4) Training and optimization of AI models for classification of patients with DPN versus 

healthy controls. Assessment and prediction of the severity of dysfunction for fiber 

subtypes Aβ-, Aδ-/C and Achilles tendon reflexes. 
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2. Materials and Methods 

2.1. Sensor-equipped insoles 

The study was designed to determine the performance of participants with video games that 

are coordinated by pressure sensor-equipped insoles as steering tools. Such insoles were not 

commercially available and were thus designed in cooperation with two firms that are 

knowledgeable in sensor manufacturing, Thorsis Technologies GmbH, Magdeburg, Germany 

and IEE S.A., Bissen, Luxembourg. Three prototypes were delivered for testing as control units 

for video games. Their technical features are summarized in Figure 1.  

 

Figure 1. Overview on technical features of sensor-equipped insoles tested in the study. 

The Gaming Insole 1 is an all-in-one plantar pressure-measuring insole system (InterSOLE®, 

Thorsis Technologies GmbH, Magdeburg, Germany) that embeds an electronic control unit 

(ECU) and nine circular pressure sensors with diameters of 1cm each, which are integrated 

into a flat onlay of soft tissue that fits into pantolettes. The sensors are located at the metatarsal 

1─5 and calcaneus. According to the manufacturer, the threshold of the pressure sensors is 

100 mbar, the measuring frequency equals 30 Hz. The ECU is integrated into the insole 

together with a temperature sensor and a three-axis accelerometer (LIS3DH). The insole 

transfers the sensor data to connected devices via Bluetooth (Version 4.1) in real-time. A 
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rechargeable battery enables the insole to perform continuous recordings without interruptions 

for about one hour. The insoles were fabricated at standard sizes ranging from EU shoe sizes 

37 to 46 (ten sizes).  

Gaming Insole 2 is an upgraded version of the aforementioned InterSOLE® (Thorsis 

Technologies, Magdeburg, Germany), which has a separate ECU (including accelerometer), 

higher measuring frequency (100 Hz), additional storage capacity (8GB), optimized power 

consumption and power supply strategy (with ≥ 2 hours streaming duration). The ECU is 

separate from the insole and connected via a flexible connection. The setup requires the user 

to strap the ECU to the lower limb or ankle. All other properties of the insole are identical to 

the first InterSOLE version. 

 

Figure 2. Characteristics of the Gaming Insole 3 (ActiSense System®, IEE S.A., Bissen, Luxembourg). a) The 
eight pressure sensors are integrated into a flat laminated flexible foil at distinct locations that correspond to the 
calcaneus (2 sensors), lateral arch, metatarsal 1, 3, and 5, digitus 1 and 5 of the feet. The sensor areas cover about 

5.6 cm2 each and are seen as dark areas implemented in the foil. b) Printed circuit board of the electronic control 

unit with a nine-axis inertial measuring unit marked with a yellow circle. c) Gaming sensor placement on top of the 
more resistant insole beneath a textile cover sheet. 

The Gaming Insole 3 (ActiSense System®, IEE S.A., Bissen, Luxembourg) encompasses an 

Electronic Control Unit (ECU) and eight pressure sensors (5.6 cm2 high dynamic HD002 force 

sensing resistors) that are integrated into flexible foil at locations corresponding to the 

calcaneus, lateral arch, metatarsal 1, 3, and 5, digitus 1 and 5 of the feet (Figure 2a). The 

sensors allow for pressure detection with an accuracy of 3.4 mbar in the range of 250 mbar to 

7 bar. The ECU consists of a nine degrees of freedom inertial measuring unit (IMU, embedding 

a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer), with a sampling rate 

of up to 500Hz, data synchronization (between insoles and smart devices), automatic detection 

of foot side, internal storage of 16 GB and energy supply of up to 10 h (Figure 2b). The sensors 

are embedded in foil and do not protrude. The foil is placed on top of the ethylene-vinylacetat-

30 insole beneath a protective layer of textile covering (Figure 2c). In the “Gamidiagnostics” 

sessions, sensor data were recorded at 200Hz and transferred in real-time to the App via 

Bluetooth (5.0) for smooth steering of games. 
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The aforementioned Gaming Insoles were initially evaluated as steering units for the video 

games. Six test scenarios were defined to judge insole performances in various use cases, 

which consist of (1) balanced sitting, maximum pressure on the (2) forefoot or (3) heel while 

sitting, (4) balance standing, (5) standing only on one foot, and (6) normal walking. The 

pressure-time profiles of study participants are depicted for the three insoles in Figure 3. All 

absolute pressure values were normalized to the range of 0 to 1 following the calibration steps 

that recorded the maximum pressure values achieved for each sensor. No significant 

differences were observed during the balanced sitting phase with all three types of insoles. 

However, in the other scenarios, Gaming Insole 1 was outperformed by the other two insoles, 

given that most of the sensors of Gaming Insole 1 did not respond to applied pressure changes 

(e.g., only sensor of MTK4 detected pressure variations when the participant applied maximum 

pressure on the forefoot while seated). Moreover, the pressure profiles recorded with the left 

and right insole differed markedly while normal walking.  

 

Figure 3. Performance comparison of the three Gaming Insoles with findings during a standardized test 
protocol. The pressure-time profiles of a study participants were recorded with different insoles and are visualized 
for all six tasks, including balanced sitting, maximum pressure on the forefeet while seated, maximum pressure on 

the heels while seated, balanced standing, standing only on one foot, and walking. 

Gaming Insole 2 revealed noticeable improvement in detecting pressure changes, most of the 

sensors provided adequate pressure values in the different scenarios, especially when the 

participant applied maximum pressure on the forefoot or heel while seated. However, with this 

insole there were still marked differences in the pressure values recorded by the left and right 
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insole during walking and in the seated position, when the maximum pressure was applied to 

the heels and forefeet.  

In contrast, the Gaming Insole 3 yielded a smoother pressure profile, likely due to the higher 

transmission frequency of the pressure values. Furthermore, more sensors were activated 

when maximum pressure was applied to the left and right forefoot in the seated position (test 

scenario 2). Lastly, the stance phase of walking measured by the insole was longer with 

Gaming Insole 3 than with the other two insoles. The stance phase is defined as a gait phase 

that begins when the foot touches the ground and ends when the same foot leaves the ground. 

The likely reason was a lower sensor detection limit and higher detection frequency of the 

Gaming Insole 3.  

Given these findings Gaming Insole 3 was selected as the control unit for the pilot study on 

neuropathy detection with video games. 

2.2. Game developing architecture 

The Android Studio application (the official integrated development environment for Google’s 

Android operating system, Google LLC, U.S.) was chosen to develop an Android-Unity-Plugin. 

Game developing engine Unity (version 2019.1.8f1, Unity Technologies, U.S.) and Visual 

Studio 2017 on the Windows platform were utilized to implement the designed video games. 

Figure 4 summarizes the developing architecture implemented in this work. 

 

Figure 4. Game environment architecture. Absolute pressure values detected and quantified by the sensors of 
the insoles were transferred via Bluetooth to an Android device. The “Gamidiagnostics” App received pressure 
values through a plugin and the Bluetooth API that controls Bluetooth connections to both insoles. The pressure 
manager was programmed to normalize pressure values to a range from 0 to 1 (minimum to maximum values), 
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depending on pressure results acquired from the calibration steps (see below). In different game scenarios a similar 
functional pattern named Model-View-Controller (MVC) was implemented. The Model defined the data structure 
and functions to read, save and transform the data. The View consisted of methods that render the graphics and 
control the UI elements. The controller connected the model and the views, and performed the game mechanism. 

Communications between insoles and Android tablets were established according to the 

predefined data transfer protocol. An Android-Unity-Plugin was programmed to unify and 

manage Bluetooth connections to insoles and forward sensor data to the “Gamidiagnostics” 

App. It normalized absolute pressures to values ranging from 0 to 1 depending on the individual 

pressure thresholds acquired from insole calibration and transformed pressure changes to 

corresponding control signals in variant game scenarios. The Model-View-Controller (MVC) 

Pattern that consisted of three functional parts: Models (Data creating, reading, updating, and 

deleting), Views (Interface/Detection), and Controllers (Decision/Action) was introduced in four 

games. The model represents the data portion such as the moving speed of an element, the 

frequency of collisions between objects, the number of retries in different game levels, and 

overall game score of a player. The view represents the viewing portion which is linked to the 

model. The view has direct access to change the property of the UI elements or listened to the 

events. The controller brings together the model and view by synchronizing state and driving 

interaction between components in the game. 

2.3. Design of video games and setup of “Gamidiagnostics” 

application 

In the following, the usability of the Gaming insoles 3 was tested in video games. The primary 

quest was to define appropriate exergaming challenges and to design appealing video games 

with common game elements, such as tasks of limb coordination, anticipation of movements, 

coordination of bilateral movements, left-right-sidedness. Overall care was taken to simplify 

the video games in as much that a brief tutorial sufficed to formally instruct and introduce the 

player into the challenges (overview of “Gamidiagnostics” application in Figure 5). The 

pressure sensors within the insoles constituted the steering control units. The following 

requirements were defined for the game design and challenges herein: 1. A low complexity 

setup allowed a quick entry into all games and an easy understanding of control functions 

through pressure measuring insoles. 2. Motivational elements encouraged completion of tasks 

and endurance over 15 minutes. 3. Standardized calibration steps and tutorials before each 

game allowed initial steering attempts to familiarize with the games. Tutorials were repeated 

on demand. 4. Standardized data acquisition processed with time stamps link sensor data over 

the course of games, even in the event of failed efforts (maximum allowance of three failed 

efforts per game). Comparison of datasets through time frames was maintained. 5. Definition 

of distinct challenges in each game provided information on movement control of both feet and 

legs with variables affected by muscle strength, sensation, balance, and coordination. These 
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variables were tested for each foot separately and both feet in concert. 6. Immediate feedback 

to the participants on gaming results and overall performance.   

 

Figure 5. Page-wise set-up and components of the “Gamidiagnostics” application. Each participant of the 
Gamidiagnostics sessions performed a parcours of tasks. (a) The “Insole Manager” page was accessed first and a 
Bluetooth connection of the tablet to both insoles was established. (b) On the “Home Menu” page the participant 
entered his name and received an ID for pseudonymization. Furthermore the settings of the “Gamidiagnostics” were 
defined, e.g. with tutorials and middle game length. (c) On the “Calibration” page the participant was asked to 
perform eight calibration steps. The resulting minimum and maximum pressure values were utilized to normalize all 
subsequent pressure values to a range from 0 to 1. (d) On the “Reaction Test” page the participant had to respond 
with an immediate finger movement and touch of the screen when a green colour sign appeared. (e─h) The main 
part of the Gamidiagnostics application constituted a set of four video games. These were labelled as balloon-flying 
(BF), apple-catch (AC), cross-pressure (CP) and island jump (IJ) games. Each individual game was introduced by 
a brief tutorial that explained the challenges and allowed to familiarize the participant with the foot movements that 
are required to steer the devices. (i) Finally, the “Assessment” page summarized the overall achievements of the 
participants and visualized these with a spider chart. The subskills were classified into the following 
subcharacteristics: skillfulness, reaction time, sensation, muscle strength, balance, and endurance. 

The “Gamidiagnostics” application was set up page-wise. The overview on the page 

composition is provided in Figure 5 and Appendix 11.6. On the first page an insole connection 

manager handled the Bluetooth connections to abovementioned Gaming Insoles and 

visualized the sensor positions and values (pressure, temperature, acceleration, and battery 

status) in real-time (Figure 5a and Figure 6).  

On the “Home Menu” page the study personnel logged in to the application and set the game 

preferences, including middle game length, performance with tutorials, and insole calibration 

thresholds. All study participants were registered with new Subject-ID (Figure 5b). 
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Figure 6. Insole connection manager of the “Gamidiagnostics”. (a) Start page that allowed the study participant 
to select the insole. (b-d) Sensor views of Gaming Insoles 1, 2, and 3. The battery status of the insoles, and sensors 
data (pressure, temperature, acceleration, gyroscope, and magnetometer) were visualized. 

To normalize pressure values according to weight and maximum pressure applied by the 

participants, eight calibration steps were defined. These were visualized on the calibration 

page and the participants were instructed to perform these before exercising the games (Figure 

5c, Figure 14). The recorded minimum and maximum pressure values were the basis for data 

normalization, which is to define a range from 0 to 1 for each sensor. The steering unit of the 

insoles was programmed to apply normalized values in the games, which were the transformed 

values between 0 and 1.  

On the next page a “Reaction Test” was set up. Here study participants were instructed to 

position their hands on both sides of the tablet and be prepared to touch the screen as soon 

as a green rectangle appears. There were four attempts with different time intervals between 

signals. All finger reaction times were saved locally on the tablet (Figure 5d).  

On the next pages four different video games were implemented, that were denoted according 

to their key features: Apple-Catch (AC), Balloon-Flying (BF), Cross-Pressure (CP), and Island-

Jump (IJ) games (Figure 5e─h).  

In the Balloon-Flying (BF) game, the player guides a balloon over a skyline (Figure 5e). The 

flying height is adjusted by the applied pressure detected at the forefoot of the right or left 

insole, respectively. The balloon approaches the ground if no pressure is applied. The ideal 

flying route is paved by 12 smileys that also suit as the games’ scoring system. To collect the 

maximum number of smileys, the player must maneuver the balloon through the skyline and 

preclude collisions with obstacles, such as clouds, buildings, and trees. In the case of a 

collision with an obstacle and absent corrective measures in five seconds, a restart is 
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automatically initiated. The Balloon-Flying parcours consists of twelve distinct tasks, indicating 

12 obstacles. 

In the Apple-Catch (AC) game, the player is situated in an autumn harvest scenario and tries 

to catch as many apples as possible with a carriage that is controlled by the plantar pressure 

application in both forefeet (sensors Met1/3/5) (Figure 5f). The apples grow in size and fall 

from the tree one by one at equal time intervals. The target pressure has to be adapted for the 

guidance of the carriage below the apple. Additionally, the player must maintain the appropriate 

pressure until the apple falls into the carriage; otherwise, the carriage moves out of the ideal 

area. Following each task, the carriage is automatically reset to the middle line. Eleven distinct 

parameters per task are defined that are the basis for player performance assessment. The 

length of the AC game is standardized and encompasses a total of 14 tasks (apples). 

In the Cross-Pressure (CP) game, the players are instructed to apply pressure on different foot 

areas (forefoot or heel) with differing target pressure levels (low or high) (Figure 5g). Low 

pressure is indicated by green color, high by yellow color. The actual pressure is visualized by 

black arrows in a pressure bar to the left and right of the virtual feet. To achieve optimal scores, 

the player must readily adjust the applied pressure on the corresponding plantar foot areas 

and maintain the correct pressure level for at least 4.5 seconds. A smiley and checkmark 

confirm accomplishment of the task. If the insole detects no valid action within 25 seconds, the 

game proceeds to the next task. Sixteen tasks corresponding to 16 combinations of foot areas 

and ideal pressure levels are designed in the game.  

In the Island-Jump (IJ) game, the player steers a virtual bird with jump movements from island 

to island in an ocean until a final destiny harboring its home is reached (Figure 5h). The player 

adjusts the jumping distance by modulating the plantar pressure in his forefeet. The jump 

direction, left or right, is adjusted by the relative pressure distribution below the right and left 

forefoot. To achieve the optimal score, the player must adjust according to the predefined 

pressure values and release the pressure at once when this has been reached. If the optimal 

pressure is not maintained within narrow limits, the bird jumps into the water. It initiates a game 

restart, and the player faces the same challenge again. There are a total of 16 islands (tasks) 

with different optimal pressure levels (low, middle, or high) and foot sides (left, right, or both). 

Every game was introduced by a prerecorded tutorial, which provided standardized 

instructions on how to proceed with the games, allowed for some early steps in handling the 

insoles (examples of pressure application, guidance with insoles). Furthermore motivational 

elements (scoring system with smileys) were introduced in the games and the possibility to 

repeat instruction tutorials.  
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All sensor data together with the pseudonymized data from each participant were transferred 

to the remote IQ-Trial server for data calculations and interpretation. Moreover, the IQ-Trial 

server visualized the data and created a result sheet as feedback to the study participants with 

a spider chart on the participant’s game performance, referring to six key capabilities: reaction 

time, sensation, skillfulness, muscle strength, balance, and endurance (Figure 5i). In addition, 

the study participants were classified as “beginner”, “moderate”, “advanced”, or “expert” 

players according to their game performance (i.e. numbers of collected apples in the AC game, 

acquired smileys in the BF and CP game, and attempts in the IJ game). 

2.4. Feature extraction methodologies 

Feature extraction was performed to get parameters that representatively reflect players’ 

performance (denoted “representative parameters/features”) in the “Gamidiagnostics” session. 

Game parameters calculated from each game task were considered as primary features. Apart 

from that, the concept of task combination (TC) was introduced, i.e., a set of game tasks with 

similar specifications or macro-measurements were combined. Feature extraction of distinct 

parameters from defined tasks and task combinations (TCs) for the four games was set up. 

In the AC game, eleven distinct parameters were defined to represent the player’s performance 

in every task (Figure 7a, b). 

1. Reaction time [s]: the time that the player spends to identify the next apple and move 
the car over ten percent of the target distance (horizontal distance between the initial 
position of the car and the next apple). 

2. Anticipation time [s]: the time that the player takes to bring the car into the catching 
area through modifying appropriate pressures on his/her feet. 

3. Time inside catching area [s]: the time that the car stays in the catching area. The 
player achieves this by maintaining the appropriate pressure on the insole. 

4. Time outside catching area [s]: the time that the car leaves the catching area when the 
player fails to keep the appropriate pressure on the insole. 

5. Frequency outside catching area: the frequency that the car leaves the catching area 
after initially entering it.   

6. Final virtual distance: the distance between the car and the target apple at the end of 
each task. 

7. Apple caught (yes/no): a value that indicates whether the apple is collected or not in 
the task. 

8. Normalized pressure: the sum of the normalized pressures of all frames in the task. 

9. Pressure differences between successive frames: the sum of the pressure deviations 
between frames in a task. 

10. Pressure gradients between successive frames: the sum of the pressure gradients 
between frames in a task. 

11. Pressure time integral: the area under the peak pressure-time curve recorded by an 
insole in a task. 
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Figure 7. Setup of the Apple-Catch (AC) game and feature extraction. (a) In order to evaluate the performance 
in apple collection, eleven distinct parameters were defined per task, constituting the basis for data analyses. (b) 
Pressure-time curve of each task and calculations of pressure differences, pressure gradients, and pressure-time 
integration. (c) The Apple-Catch game included fourteen tasks (apples). For feature extraction, tasks and task 
combinations were furthermore defined (TC 1 through 13) to assess the performance (overall result versus left/right 

foot, tasks with different ideal pressures, left/right foot, tasks with different apple heights and foot sides). 

In addition, 13 task combinations (TCs) were included to provide a more comprehensive 

picture of the player’s overall performance (Figure 7c). TC1 encompassed all tasks of this 

game. TC2 covered all tasks that use the left foot for controlling the car movement to catch 

apples. The corresponding TC3 consisted of all tasks that use the right foot. The player’s 

performance in tasks requiring different feet can thus be tracked. Furthermore, TC4─9 were 

divided by varying horizontal positions of the apples, and TC10─13 involved game tasks with 

apples positioned on various heights. The sum, mean, and standard deviation of primary 

features over game tasks of TCs were treated as secondary features. For example, the 

“Reaction time [s]” of TC1 was a secondary feature that was computed from the average 

reaction time of all tasks. Totally, 583 features were extracted from one AC game dataset, 

which consisted of parameters calculated from 14 game tasks and additional parameters 

generated from 13 TCs (Figure 11).  

In the BF game, eleven distinct task parameters were defined as below (Figure 8a, b). 

1. Smiley count (n): the number of smileys that are collected in a task (maximum four) 

2. Collision frequency (n): the frequency that the balloon collides with obstacles due to 
inappropriate pressures detected by the insole in a task. 
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3. Minimal virtual distance smiley 1/2/3/4: the relative distance between the balloon and 
the first/second/third/fourth collected smiley at the moment of collision. If the smiley is 
missed, this variable will be assigned a maximum value. 

4. Virtual deviation of ideal flying route: the virtual deviation of the balloon’s actual flight 
route from the ideal positions in each task. 

5. Normalized pressure: the sum of the normalized pressures of all frames in the task. 

6. Pressure differences between successive frames: the sum of the pressure deviations 
between frames in a task. 

7. Pressure gradients between successive frames: the sum of the pressure gradients 
between frames in a task. 

8. Pressure time integral: the area under the peak pressure-time curve recorded by an 
insole in a task. 

 

Figure 8. Setup of the Balloon-Flying (BF) game and feature extraction. (a) Eleven distinct parameters were 
extracted following comparison with the predefined optimal flying course of the balloon. These are enlisted and 
include the overall number of collected smileys (yellow circles), collision frequency, minimum virtual distances 
balloon to smiley/perfect flight position, and the pressure gradient between consecutive obstacles. (b) The Balloon-
Flying parcours consisted of twelve distinct tasks. (c) Definition of tasks and task combinations (TC) corresponding 

to low, intermediate, and high-pressure applications. 

Additionally, four TCs were introduced in the BF game (Figure 8c). TC1 encompassed all tasks 

of this game. TC2─4 were divided according to low, intermediate, and high-pressure 

applications by flying over obstacles of variant heights. Overall, 528 features were extracted 

from one BF game dataset, which consisted of primary parameters calculated from 12 game 

tasks and additional parameters generated from four TCs (Figure 11).  

In the CP game, eleven distinct parameters per task were defined as below (Figure 9a, b). 
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1. Anticipation time [s]: the time that the player understands a task and modifies his/her 
plantar pressures until the optimal pressure zone is reached. 

2. Time outside optimal pressure zone [s]: the time that the optimal pressure is not 
maintained in a task. 

3. Relaxation time [s]: the time that the player spends to release the pressure when a task 
is accomplished. 

4. Normalized pressure (left foot): the sum of the normalized pressures of all frames 
measured by the left insole in the task. 

5. Pressure differences between successive frames (left foot):  the sum of the pressure 
deviations between frames measured by the left insole in a task. 

6. Pressure gradients between successive frames (left foot):  the sum of the pressure 
gradients between frames measured by the left insole in a task. 

7. Pressure time integral (left foot): the area under the peak pressure-time curve recorded 
by the left insole in a task. 

8. Normalized pressure (right foot): the sum of the normalized pressures of all frames 
measured by the right insole in the task. 

9. Pressure differences between successive frames (right foot):  the sum of the pressure 
deviations between frames measured by the right insole in a task. 

10. Pressure gradients between successive frames (right foot):  the sum of the pressure 
gradients between frames measured by the right insole in a task. 

11. Pressure time integral (right foot): the area under the peak pressure-time curve 
recorded by the right insole in a task. 

 

Figure 9. Setup of the Cross-Pressure (CP) game and feature extraction. (a) Eleven parameters were defined 
to present the game outcomes per task, which considered time durations of key game events and pressure 
gradients. (b) Screenshots of an initialized and accomplished game task. (c) The CP game included sixteen tasks 
corresponding to 16 combinations of foot areas and ideal pressure levels. Nine task combinations were defined for 
extracting features that addressed players’ performance by different pressure levels and foot areas. 
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Additionally, nine TCs were considered in the CP game (Figure 9c). TC1 encompassed all 

tasks of this game. TC2 consisted of tasks with low target pressure. TC3─5 were three 

subgroups of TC2, divided by the sides of the foot involved (left, right, or both sides). TC6 

comprised tasks with high target pressure.TC7─9 represented three subgroups of TC6, 

similarly classified by the sides of the foot involved (left, right, or both sides). Overall, 473 

features were extracted from one CP game dataset, which consisted of primary parameters 

calculated from 16 game tasks and additional parameters generated from nine TCs (Figure 

11).  

In the IJ game, eight distinct parameters per task were defined as below (Figure 10a─c). 

1. Attempt count (n): the number of attempts to jump over a stage. 

2. Deviation from optimal pressure: the absolute deviation between the measured 
pressure and the ideal pressure (for a perfect jump to the middle of the next stage). 

3. Anticipation time [s]: the time that the player spends to modify the proper pressures 
until 25% of the maximal pressure range is exceeded. 

4. Execution time [s]: the duration of the execution period that the player continuously 
modifies appropriate pressures before the bird jumps to the next stage. 

5. Mean pressure of execution phase: the average pressure during the execution period. 

6. Pressure differences between successive frames: the sum of the pressure deviations 
between frames in a task. 

7. Pressure gradients between successive frames: the sum of the pressure gradients 
between frames in a task. 

8. Pressure time integral: the area under the peak pressure-time curve in a task. 

Additionally, seven TCs were introduced in the IJ game (Figure 10d). TC1 encompassed all 

tasks of this game. TC2─4 were divided by the direction that the bird jumped. TC5─7 were 

classified by the different optimal pressures (low, moderate, or high) associated with the 

distance to the next island (low, medium, or far distant. In total, 296 features were extracted 

from one IJ game dataset, which consisted of primary parameters calculated from 16 game 

tasks and additional parameters generated from seven TCs (Figure 11).  
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Figure 10. Setup of the Island-Jump (IJ) game and feature extraction. (a) Eight parameters were defined to 
indicate the game outcomes per task. (b) The IJ game contained sixteen tasks corresponding to 16 islands that the 
bird has to jump through until reaching home. (c) Pressure-related parameters include normalized pressure, 
pressure difference, pressure gradient, and pressure-time integration of the left/right foot. (d) Distribution of task 
combinations corresponding to low, intermediate, and high-pressure applications on the left, right, or both feet. 

In summary, introducing the concept of TC facilitated the analysis of players’ performance in 

the entirety or among similar tasks and the extraction of the corresponding distinctive 

parameters. Overall, 1,880 distinctive parameters reflexing players’ performance were 

extracted per dataset (per subject) (Figure 11). 

 

Figure 11. Feature extraction from the “Gamidiagnostics” session. Distinct parameters defined in each task 
were initially considered as primary features, such as the reaction time of the first task of the AC game. Task 
combinations (TC) were additionally included, i.e., a set of game tasks with similar specifications or macro-
measurements. The sum, mean, and standard deviation of each predefined game parameter over all TCs were 
treated as secondary features for analyses. 583 features were extracted for the AC game by adding 429 
summarized features of thirteen TCs to the primary task parameters (n=154). Overall, 1,880 features were extracted 
from four games per session. 
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2.5. Hypothesis-driven key capabilities 

According to the hypothesis that critical skills are required for successful gaming performance, 

six hypothesis-driven key capabilities were defined: skillfulness (overall achievements in each 

game), reaction time (understanding and immediate response to tasks), sensation (fine-tuning 

of pressure application in subtasks), muscle strength (achievements with high-pressure 

application), balance (pressure distribution left versus right foot) and endurance (steadiness of 

pressure application in tasks) (summarized in Figure 12). The “skillfulness” assesses players’ 

performance comprehensively. It is associated with collected apples (n) in the AC game, 

acquired smileys (n) in the BF and CP games, and jumping attempts (n) in the IJ game. The 

“reaction time” is correlated only to the initial phase of each game, i.e., the reaction time [s] 

and the anticipation time [s] in the AC and CP games. It evaluates the speed that a player 

recognizes the task requirement and action to modify the proper pressure on his/her feet. The 

“sensation” addresses perception and execution of low pressures and modulation that are 

represented as “Final virtual distance” (AC game), “Minimal virtual distance smiley 4” (BF 

game), “Time outside optimal pressure zone” (CP game), and “Deviation from optimal pressure” 

(IJ game). The “muscle strength” is related to players’ performance in specific game subtasks 

that require high-level pressures, such as tasks 5, 6, 11, 12 in the AC game with apples that 

are located extremely far from the car. This key capability also considers tasks 5 and 11 of the 

BF game (high obstacles), TC 6 of the CP game (tasks requiring high optimal pressure), and 

TC 7 of the IJ game (tasks with far distant islands). The “balance” is calculated from calibration 

steps (Figure 14) that evaluates pressure deviations between the left and right foot while 

balance standing (step 6) and standing only on a single foot (step 7 and 8). The “endurance” 

indicates players’ sustainable capacity by maintaining a consistent pressure in specific game 

scenarios, i.e., waiting for an apple within the catching area in the AC game, an execution 

phase that requires the optimal pressure for 4.5 seconds in the CP game, and consecutive 

jumps in the IJ game. The corresponding indicators are “Frequency outside catching area” (AC 

game), “Time outside optimal pressure zone (sec)” (CP game), and Consecutive jumps without 

interrupts (IJ game). The six key capabilities have the same range from 0 to 1 and are 

calculated automatically at the end of the “Gamidiagnostics” session and displayed with a 

spider chart that delivers feedback on the game performance. 
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Figure 12. Considerations on key capabilities and scoring of video games (hypothesis-driven). Six key 
capabilities for the initial evaluation of the gaming success were defined: skillfulness (overall achievements in each 
game), reaction time (understanding and immediate response to tasks), sensation (fine-tuning of pressure 
application in subtasks), muscle strength (achievements with high-pressure application), balance (pressure 
distribution left versus right foot) and endurance (steadiness of pressure application in tasks). The weighted 
summation of achievements in each of these was transformed into a score expressed as [%] in a spider diagram 
for immediate feedback to the players. 

2.6. Study design 

2.6.1. Inclusion and exclusion criteria 

The pilot study was carried out at the University Clinic for Nephrology and Hypertension, 

Diabetes and Endocrinology in Magdeburg, Germany, following approval by the local ethical 

committee (28/17 on 13.04.2017, see Appendix 11.1), with a subcohort from the 

SmartPreventDiabeticFeet Study (DRKS00013798) (76).  

The inclusion criteria of the DPN group were: 

1. distal symmetrical polyneuropathy (sensorimotor polyneuropathy);  

2. diabetes mellitus type 1 or type 2;  

3. absence of manifest neuropathic foot ulceration;  

4. NDS ≥ 2;  

5. ability to use a mobile phone.  

The inclusion criteria for the control group were:  

1. no diagnosis of diabetes mellitus;  

2. absent signs of the polyneuropathy of any etiology (according to above examination 
results and questionnaire survey);  

3. a good general state of health;  

4. age between 18 and 85 years;  

5. ability to use a mobile phone.  
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The exclusion criteria were:  

1. macroangiopathy of the lower extremities;  

2. physical deformities (amputations, foot and leg deformities requiring orthopedic shoe 
fitting);  

3. manifest foot ulceration;  

4. visual disorders including visual acuity of less than 0.8 (except for corrected myopia 
and hyperopia);  

5. muscular diseases/motor diseases;  

6. myocardial infarction <12 weeks;  

7. heart failure (NYHA III or IV);  

8. age below 18 years;  

9. lack of ability to give consent for any reason.  

2.6.2. Participants 

From 07/2020 to 01/2021 patients diagnosed with diabetes and peripheral neuropathy as well 

as healthy volunteers were recruited and enrolled following written informed consent (see 

Appendix 11.2). All received a detailed explanation of the study protocol, test procedure, and 

data handling policy. A questionnaire about past medical history included diabetes mellitus 

(time of first diagnosis, type, treatment history, sensory disturbances, complaints, movement 

restrictions in daily life), autonomic diabetic neuropathy (dizziness, heart rate arrhythmia, 

urination disorders, sweating function), diabetes-associated comorbidities, daily activities 

(sports, handedness, dominant foot), recent HbA1c and fasting blood sugar values were 

recorded (see Appendix 11.3). A physical examination with bedside neurological and sensory 

nerve testing encompassed pinprick test, vibration perception, Tip Therm, reflexes, muscle 

function. Subsequently, a Montreal Cognitive Assessment (MoCA) test was performed to 

determine and quantify the cognitive capabilities of the participants. 

2.6.3. Cohorts  

Two study cohorts were planned to comprehensively investigate the feasibility of the 

“Gamidiagnostics” application for the assessment of peripheral nerve functions in patients with 

diabetes. Cohort 1 consisted of all study participants eligible for the study according to the 

inclusion and exclusion criteria. Given that diabetic neuropathy predominantly affects the 

elderly population (>50 years) (77), it was anticipated that patients in the DPN group would 

generally be older than the control group. Therefore, the second cohort (Cohort 2) 

encompassed only age-matched elderly participants. The analyses on this cohort minimized 

the impact of age and investigated mainly the possibility of using the “Gamidiagnostics” 

application to detect DPN in the elderly population. 
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2.6.4. Standardization of the test procedure 

The “Gamidiagnostics” session was performed with each study participant receiving a size 

matching pair of shoes harboring Gaming Insole 3 (Figure 13a). The participants were seated 

on a chair without armrests in front of a table on which an Android tablet (Samsung Galaxy 

Tab A T580) was positioned that connected to the insole. Sensor data were recorded and 

transferred in real-time to the study application (“Gamidiagnostics” App) via Bluetooth. The 

participants initially calibrated the insole through eight standardized steps (Figure 14). The 

maximum pressure values determined in the calibration steps were utilized to normalize the 

absolute pressure values within the range of 0 to 1. Subsequently, participants familiarized 

themselves with the setup of the video games through standardized tutorials that were 

repeated on demand (see introduction videos and screenshots in Appendix 11.6). Each 

gaming session consisted of four games: Apple-Catch (AC), Balloon-Flying (BF), Cross-

Pressure (CP), and Island-Jump (IJ), which were played sequentially (Figure 13b). Each 

session lasted about 20 minutes. The acquired insole sensor data and game outcomes were 

transferred in a complete data package to a remote server for data visualization and analyses 

(Figure 13c). A spider chart provided feedback on the game performance to participants after 

the session (key capabilities: reaction time, sensation, skillfulness, muscle strength, balance, 

and endurance). 

 

Figure 13. Overview on game setup, data transferal, assessment and visualization. (a) The sensor-equipped 
gaming insoles 3 provided eight embedded pressure sensors in distinct areas of the plantar pedis. The top center 
image depicts the localization of the sensors corresponding to the calcaneus, lateral arch, metatarsal (Met) 1/3/5, 
digitus 1 and 5 of the forefoot. The complete insole served as a steering unit and was connected to a control unit 
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for real-time data transmission via Bluetooth to the “Gamidiagnostics” application, which was run on a tablet. The 
setup allowed the participants to play games solely by modulating plantar pressure distribution. (b) Each gaming 
session included a tutorial with calibration steps and four games, i.e., Balloon-Flying (BF), Apple-Catch (AC), Cross-
Pressure (CP), and Island-Jump (IJ). (c) Subsequently, the data was uploaded to the IQ-Trial server as a data 
package. The participants received a brief summary of their performance with a spider chart, scores, levels, and 
capabilities (beginner, average, advanced, expert). Further data visualization for the physician and data analysis 
was realized to indicate the performance of participants in the different games in comparison to maximum 
achievement levels. 

 

Figure 14. Overview of calibration steps. Eight calibration steps were performed before games. These allowed 
normalizing pressure values according to weight and maximum pressure applied by the participants. Minimum and 
maximum pressure were recorded for all positions at forefeet and heels. Furthermore, the participants were 
instructed to stand up for five seconds and keep balance on each foot alone for 5 seconds. An algorithm was applied 
to normalize these values that were utilized for the steering unit of the insoles. Minimum-maximum normalization 

transformed all values to the range of 0 to 1. 

2.7. Data protection and management 

An important principle when working with patient data is data protection. At the screening visit, 

each study participant was assigned a unique ID. The questionnaires on past medical history 

and physical examinations were archived with this identifier only but not the personal 

information (name, date of birth and so on).  

The encrypted sensor data, insole identification, game setting, calibration thresholds, and 

game outcomes were also saved with the ID and further transmitted to the study server 

(Supplementary Figure 1), which was denoted IQ-Trial. It was established during the study to 

provide physicians and analysts an overview on the study participants’ game outcomes, as 

well as immediate feedback to study participants on their gaming performance by considering 

six predefined assessments focusing on balance, sensation, muscle strength, reaction time, 

endurance, and coordination (Supplementary Figure 2─7). Only study personnel and caring 

physicians were provided with access to the server IQ-Trial. This server is located in the 

computer centre of the University Hospital of the Otto-von-Guericke University Magdeburg 

(Figure 15).  
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Figure 15. Data management within the “Gamidiagnostics” study. A unique Subject-ID was assigned to each 
participant at the enrolment into the study. The study personnel archived screening questionnaires and clinical 
examination findings according to this identifier only. During the “Gamidiagnostics” session, sensor data and insole 
information received from the insole were saved with the Subject-ID on an Android tablet and was further transmitted 
to the IQ-Trial sever together with the encrypted test data, including game setting, calibration thresholds and game 
results. Only study personnel and caring physicians had access to the study server. Data interpretation was 
achieved by the physician considering subjects’ demographic information as well as medical history and clinical 
findings. 

The pseudonymization step allowed to trace back the personal data, such as names and date 

of birth, which was only possible through a list archived separately with the consent form in the 

Clinic for Nephrology and Hypertension, Diabetes and Endocrinology at the Otto-von-Guericke 

University Magdeburg. Patients were informed about the setup of data protection, data 

processing and confidentiality principles. Corresponding declarations of consent were signed. 

2.8. Statistical analysis and AI modeling 

2.8.1. Statistical tests 

Descriptive statistics are presented in proportions and frequencies for categorical variables, 

while mean values and standard deviations (SD) are provided for continuous variables. A 

correlation greater than 0.75 was considered a "strong" or "very good" correlation between two 

variables, according to recommendations from the literature (78, 79). This threshold was 

utilized for correlation tests that filtered out redundant game parameters with high inter-

correlations. The remaining parameters were compared between healthy controls and patients 

diagnosed with diabetes and peripheral neuropathy. Chi-square tests were performed on 

categorical variables. The Shapiro-Wilk normality test was utilized to determine the normal 
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distribution of continuous variables. For normally distributed variables, the group differences 

were computed with t-tests. Otherwise, Mann-Whitney U tests were performed on variables. 

In addition, the Kruskal-Wallis H test was utilized for comparing more than two independent 

samples. Two-sided P values below 0.05 were considered statistically significant. Pairwise 

tests were performed automatically among multiple groups with the correction of the p values 

using  Holm–Bonferroni method (80). 

2.8.2. Support Vector Machine (SVM) 

As a popular supervised machine learning algorithm, SVM is applicable both in classification 

and regression cases. When facing classification problems, the SVM algorithm initially places 

each observation as a point in n-dimensional space (n=count of features). The position of the 

observation on a dimensional coordinate corresponds to the value of the feature. The aim of 

classification is to determine the hyper-plane, which distinguishes the two classes best. In 

some cases, it is unable to determine a line or hyperplane as desired. The SVM introduces a 

kernel function to project the data into a higher dimensional space to find a hyperplane that 

can better differentiate the classes. Frequently used kernel functions are polynomial (SVM-

Poly), linear (SVM-Linear), nonlinear (SVM-Nonlinear), radial basis functions (SVM-Radial), 

etc. The conversion from original space to a high-dimensional space may result in extreme 

high dimensionality, even endless dimensions, leading to computational complexity and a 

staggering amount of computation. However, in SVM, the kernel function is introduced so that 

the operations are still performed in the lower dimensional space, which avoids the time 

consumption of complex operations in the higher dimensional space (81, 82). 

The metric that explicitly evaluates the hyperplane is called margin, and it quantifies the 

distance between data points of both classes. The classification performance can be improved 

by maximizing the margin distance. The data points near the hyperplane are support vectors 

that affect the hyperplane’s position and orientation. Therefore, maximizing margin distance 

using support vectors is critical for building an SVM. The hinge loss is introduced to help 

maximize the margin, which can be calculated using the loss function (2.1). If the prediction 

and reference have the same sign, the cost is equal to zero. Otherwise, the loss value is 

computed (83). 

𝑐(𝑥, 𝑦, 𝑓(𝑥)) =  {
0, 𝑖𝑓 𝑦 ∗ 𝑓(𝑥) ≥ 1

1 − 𝑦 ∗ 𝑓(𝑥), 𝑒𝑙𝑠𝑒
 2.1 

Another ingenious feature of SVM is the introduction of a slotting variable (also called penalty 

variables) to deal with possible noise in the sample data, which allows the data points to 

deviate from the hyperplane to a certain extent. The addition of the slotting variable allows the 
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SVM to consider the overall distribution of the sample data rather than just pursuing the 

optimization of local outcomes. 

In general, SVM has the following advantages. 

1. Handing small samples. Compared with other classification algorithms for training, SVM 

requires relatively fewer samples for the same problem complexity. Furthermore, SVMs can 

efficiently deal with high-dimensional data by introducing kernel functions. 

2. Minimization of the structural risk. This risk refers to the cumulative error between the 

classifier’s approximation of the real problem model and the real solution to the problem. 

3. Addressing nonlinearity. SVM is excellent at handling linear indistinguishability of sample 

data, mainly through slotting variables (also called penalty variables) and kernel function 

techniques, and this part is precisely the essence of SVM. 

Clinical studies reported that SVM models perform better on medical classification issues with 

limited and imbalanced datasets (84, 85). Therefore, this work selected the SVM algorithm 

with kernel functions (linear, radial, and polynomial) for model training.  

2.8.3. Performance evaluation metrics 

The most intuitive metric for model evaluation is the confusion matrix that presents the 

proportion of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

cases. In this work, we purpose to train models for automatic prediction of DPN that determines 

the DPN group to be the positive class. The control group is considered as the negative class. 

Corresponding TP, TN, FP, and FN can be described below. 

TP: the case in which the model predicted DPN and the actual output was also DPN. 

TN: the case in which the model predicted Control and the actual output was also Control. 

FP: the case in which the model predicted DPN, but the actual output was Control.  

FN: the case in which the model predicted Control, but the actual output was DPN.  

In healthcare use cases, FNs result in delayed diagnosis and treatment of patients, leading to 

severe consequences. FPs cause misdiagnosis, waste of healthcare resources, and the 

potential for doctor-patient disputes. Figure 16a presents a confusion matrix showing the 

performance of a DPN classification model. The test dataset consists of 36 observations. 

Twenty-six of them were diagnosed with diabetic peripheral neuropathy. The other ten cases 

are healthy controls. The model correctly predicts 25 cases with DPN (TP=25) and 4 cases 

that do not have DPN (TN=4). One DPN patient is falsely not detected (FN=1), and six healthy 

controls are predicted to have DPN (FP=6). Following metrics are calculated based on the 

confusion matrix. 
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Figure 16. Evaluation metrics for classification models. DPN: diabetic peripheral neuropathy; AUC: area under 
the curve. 

Accuracy: the proportion of true predicted cases among the total sample. It is a perfect metric 

to evaluate classification models with balanced datasets. The accuracy here can be computed 

to 80.5% with the equation (2.2).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=

25 + 4

36
= 80.5% 2.2 

Sensitivity (Recall): the proportion of true positive cases among all actual positives. The 

sensitivity here can be calculated to 96.2% with the equation (2.3). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

25

25 + 1
= 96.2% 2.3 

Specificity: the proportion of true negative cases among all actual negatives. The specificity 

here can be computed to 40.0% with the formula (2.4). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

4

6 + 4
= 40.0% 2.4 

Precision: the proportion of true positive cases among all predicted positives. The precision 

here can be calculated to 80.6%with the equation (2.5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

25

25 + 6
= 80.6% 2.5 

In the case of an imbalanced dataset with a skewed class distribution, accuracy is no longer a 

reliable metric because the major class has a much greater impact on accuracy than the minor 

class. In the extreme case, the accuracy remains high even through all minor samples are 

misclassified. Therefore, the F1 score, Cohen’s Kappa, and ROC Curves are developed for 

imbalanced classification problems. 
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F1 score: the harmonic mean of sensitivity and precision ranging from 0 to 1. In this case, the 

F1 score can be calculated to 87.7% with the formula (2.6). 

𝐹1 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
2

1
0.962

+
1

0.806

= 87.7% 
2.6 

Cohen’s kappa: the normalized accuracy by considering the exact class distribution in the 

dataset. By this binary classification problem, its Cohen’s Kappa can be calculated to 0.17 with 

formula (2.7). The range of Cohen’s Kappa is from -1 to 1, but values less or equal to zero 

suggests that the classifier has the same or worse performance than a random coin toss. The 

closer the value is to 1, the more superior the performance of the classifier is (86). According 

to the standard interpretation scheme proposed by Landis and Koch (87), a Cohen’s Kappa of 

0.81–1 indicates near-perfect segmentation, 0.61–0.80 as substantial 0.41–0.60 as moderate, 

0.21–0.40 as fair, and 0–0.20 as slight. In this example, the classes are imbalanced, and DPN 

is the major class with 72% propriety in the data. Therefore, the accuracy is still around 80%, 

even though 60% of negative cases are misclassified. Cohen’s Kappa 0.17 is a better metric 

that indicates the classification has reached only a slight agreement.   

𝐶𝑜ℎ𝑒𝑛’𝑠 𝐾𝑎𝑝𝑝𝑎 =
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
= 0.17 2.7 

Alternatively, we could also adjust the accuracy in the case of an unbalanced dataset, which 

is called adjusted accuracy or balanced accuracy. In this case, the adjusted balance of 68.1% 

calculated with equation (2.8) is much more reasonable than the accuracy. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
= 68.1% 2.8 

The metrics mentioned above only evaluate the performance by calculating positive and 

negative cases that are judged by one predefined probability threshold, which is normally set 

as 0.5. However, the percentage of predicted positive and negative samples changes actually 

with the probability threshold. In order to measure the merit of the classifier with different 

discriminate thresholds, the Receiver Operating Characteristic (ROC) curve is involved. It is a 

graph that presents the classification model’s true positive rate (TPR, sensitivity) and false 

positive rate (FPR, 1-specificity) at various probability thresholds on a curve. The nearer the 

ROC curve is to the top left corner, the better the model performs. The area under the curve is 

denoted as AUC, and the larger the AUC, the better the overall discrimination of the model. 

The AUC considers the classifier’s ability to identify both positive and negative samples 
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simultaneously. Thus, it still can be utilized to evaluate the classifier reasonably in the case of 

an unbalanced dataset (88). Figure 16b demonstrates an example of the ROC curve.  

2.8.4. Class definition and model training 

AI models were derived to distinguish healthy controls and patients with diabetes and sensory 

neuropathy in the age-matched cohort (cohort 2) with acquired datasets. The NDS score was 

utilized to generate class labels for supervised learning. NDS≥2 and impaired vibration 

sensation (0-4/8) were considered as existing neuropathy (DPN), and NDS=0 was considered 

as the absence of neuropathy (Control group). Secondly, in the DPN group, more detailed 

phenotyping was achieved by analyzing the dysfunction of different fiber types. Briefly, for 

model 2, severe damage of Aδ-/C-fibers was assumed in patients with reduced/absent pinprick 

(nociception) or temperature sensation. For model 3, the presence of severe Aβ-fiber 

polyneuropathy was assumed with impaired vibration sensation (below 3/8) or an abnormal 

10g monofilament-test result (reduced/absent). The remaining patients in the DPN group were 

classified as moderate Aβ-fiber polyneuropathy (impaired vibration sensation: 3-4/8). For 

model 4, the absence of Achilles tendon reflexes was considered as a positive label in the 

model training. A negative label was assigned to normal or mildly reduced reflexes. 

Regarding to the feature selection, acquired datasets were split into testing and training 

datasets (ratio 3:7), during which the random sampling occurred in each class and preserved 

the overall class distribution of the data. The training dataset was imported to the classifier to 

estimate features’ importance based on model-independent metrics, e.g., area under the 

receiver operating characteristic (AUC-ROC) (89). Figure 17 presents the top ten features for 

DPN classification ranked by the SVM-Radial classifier. Subsequently, models with different 

subsets of top-ranked features (i.e., variances of numbers and/or orders of features) were 

tested. Since the studied dataset was imbalanced, we selected Cohens Kappa (a classification 

accuracy normalized by the imbalance of the classes in the data) as the performance metric 

to compare the models trained with different feature combinations. The models with higher 

Cohens Kappa values were chosen as candidate models. 
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Figure 17. An example of feature ranking using the SVM-Radial model. SVM: support vector machine; IJ: 
Island- Jump; BF: Balloon-Flying; AC: Apple-Catch; R: Right; L: Left; TC: task combination. 

Five-fold cross-validation (three repeats) was applied in feature ranking and training to avoid 

overfitting and to derive a more accurate estimate of the model performance. This statistical 

method repeatedly divided the training dataset into five subsets with approximately equal sizes 

three times. Each subset contained the same proportion of labels as the complete dataset. 

Four out of the five subsets were utilized in the model training, while the remaining subset was 

used for validation. The average accuracy of cross-validation was considered in the grid search 

of parameters combination that improves the model performance the most. Ultimately, the 

obtained candidate models were further applied to the testing dataset to evaluate the models’ 

predictive performance. R programming language (version 4.0.4) and related open-source 

libraries were utilized for statistical computing and machine learning algorithms (90).  
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3. Results 

3.1. Study participants 

Cohort 1 consisted of 71 healthy volunteers and 112 patients with diabetes and peripheral 

neuropathy (Figure 18). The demographic characteristics of the cohorts are outlined in Table 

3. All study participants completed the “Gamidiagnostics” sessions, and data sampled from the 

first attempt were analyzed only. The gender distribution is skewed towards male patients in 

the cohort with neuropathy, and control subjects are younger. Therefore cohort 2 was selected 

from all participants to achieve an age-matching (30 controls and 90 patients with DPN). As 

expected, the average BMI is higher in patients with diabetes compared to healthy controls. 

NDS and neuropathy symptom score (NSS) indicated that most of the patients in the DPN 

group suffered from moderate to severe DPN. In the DPN group, 40% of patients had 

reduced/absent pinprick or temperature sensation, indicating impairment of Aδ-/C-fiber 

function. 81% of DPN patients exhibited impaired vibration sensation (0-2/8) or an abnormal 

10g-monofilament-test result (reduced/absent). The absence of Achilles tendon reflexes was 

observed in nearly 50% of patients with diabetes. About 80% of patients were diagnosed with 

type 2 diabetes mellitus, the remainder with type 1 diabetes except for one. The average time 

since the first diagnosis of diabetes was ~20 years. 

 

Figure 18. Study flow diagram. Cohort 1 comprised of 71 healthy volunteers with absent neuropathy and 112 
individuals diagnosed with diabetes and diabetic peripheral neuropathy. Participants were seated in a quiet room 
on a chair without armrests in front of a table with a standing tablet. Shoes harboring sensor-equipped insoles 
matched the participants’ foot size (four sizes are available: S, M, L, and XL). A standardized tutorial explaining the 
challenges was provided, allowing the participants to familiarize themselves with the video games. The interactive 
tutorials were repeated on demand. The average duration per “Gamidiagnostics” session was 20 min including 
tutorials. To minimize age as a confounding factor, individuals of similar age in both groups were identified and 
combined in cohort 2 for further analyses. Statistical analyses were carried out with cohorts 1 and 2, and AI algorithm 
development was performed with age-matched cohort 2 only. DPN: diabetic peripheral neuropathy 
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Table 3. Demographic characteristics and clinical diagnosis of study cohorts. Data are means ± SD or n (%). 

DPN: diabetic peripheral neuropathy 

Cohort Cohort 1 Cohort 2 

Group Control DPN Control DPN 

N 71 112 30 90 

Age (years) 45.5 ± 18.4 68.5 ± 8.1 64.9 ± 7.0 66.4 ± 5.9 

Sex 
    

Female 48 (67.6%) 33 (29.5%) 18 (60%) 25 (27.8%) 

Male 23 (32.4%) 79 (70.5%) 12 (40%) 65 (72.2%) 

Body-mass index (BMI, kg/m²) 24.3 ± 2.9 29.7 ± 5.1 25.3 ± 2.9 30.3 ± 5.2 

Diabetes type 
    

Type1 0 23 (20.5%) 0 19 (21.1%) 

Type2 0 88 (78.6%) 0 70 (77.8%) 

Type3 0 1 (0.9%) 0 1 (1.1%) 

Diabetes duration (years) 0 20.5 ± 12.2 0 21.2 ± 12.6 

Neuropathy symptoms score (NSS) 
    

Normal (0) 71 (100%) 17 (15.2%) 30 (100%) 15 (16.7%) 

Mild (1─4) 0 6 (5.4%) 0 6 (6.7%) 

Moderate (5-6) 0 22 (19.6%) 0 16 (17.8%) 

Severe (7-10) 0 67 (59.8%) 0 53 (58.9%) 

Neuropathy disability score (NDS)     

Normal (0) 71 (100%) 0 30 (100%) 0 

Mild (2-5) 0 46 (41.1%) 0 37 (41.1%) 

Moderate (6-8) 0 55 (49.1%) 0 45 (50.0%) 

Severe (9-10) 0 11 (9.8%) 0 8 (8.9%) 

Pinprick (left) 
    

Present 71 (100%) 90 (80.4%) 30 (100%) 72 (80.0%) 

Reduced/Absent 0 22 (19.6%) 0 18 (20.0%) 

Pinprick (right) 
    

Present 71 (100%) 88 (78.6%) 30 (100%) 70 (77.8%) 

Reduced/Absent 0 24 (21.4%) 0 20 (22.2%) 

Temperature sensation (Tip Therm, left) 
    

Present 71 (100%) 83 (74.1%) 30 (100%) 67 (74.4%) 

Reduced/Absent 0 29 (25.9%) 0 23 (25.6%) 

Temperature sensation (Tip Therm, right) 
    

Present 71 (100%) 81 (72.3%) 30 (100%) 65 (72.2%) 

Reduced/Absent 0 31 (27.7%) 0 25 (27.8%) 

Vibration perception (128 Hz tuning fork, left)  
    

Normal (6-8) 60 (84.5%) 0 19 (63.3%) 0 

Mild (5) 11 (15.5%) 0 11 (36.7%) 0 

Moderate (3-4) 0 22 (19.6%) 0 19 (21.1%) 

Severe (0-2) 0 90 (80.4%) 0 71 (78.9%) 

Vibration perception (128 Hz tuning fork, right) 
    

Normal (6-8) 66 (93.0%) 0 25 (83.3%) 0 

Mild (5) 5 (7.0%) 0 5 (16.7%) 0 

Moderate (3-4) 0 24 (21.4%) 0 20 (22.2%) 

Severe (0-2) 0 88 (78.6%) 0 70 (77.8%) 

10-g monofilament-test (left) 
    

Present 71 (100%) 92 (82.1%) 30 (100%) 73 (81.1%) 

Reduced/Absent 0 20 (17.9%) 0 17 (18.9%) 

10-g monofilament-test (right) 
    

Present 71 (100%) 90 (80.4%) 30 (100%) 71 (78.9%) 

Reduced/Absent 0 22 (19.6%) 0 19 (21.1%) 

Achilles tendon reflex (left) 
    

Normal 71 (100%) 20 (17.9%) 30 (100%) 15 (16.7%) 

Reduced 0 31 (27.7%) 0 27 (30.0%) 

Absent 0 61 (54.5%) 0 48 (53.3%) 

Present with reinforcement 0 0 0 0 

Achilles tendon reflex (right) 
    

Normal 71 (100%) 22 (19.6%) 30 (100%) 17 (18.9%) 

Reduced 0 28 (25.0%) 0 25 (27.8%) 

Absent 0 61 (54.5%) 0 48 (53.3%) 

Present with reinforcement 0 1 (0.9%) 0 0 
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3.2. Hypothesis-driven game assessment 

The six hypothesis-driven key capabilities from healthy volunteers and patients with diabetes 

and peripheral neuropathy were quantified in both cohorts. Most of these revealed significant 

differences between the DPN and Control group in cohort 1, except for reaction time and 

balance. Age matching of the datasets with cohort 2 markedly changed the results. The 

between-group differentiation of sensation, skillfulness, endurance, and finger reaction time 

remained significant (Figure 19). The decreased “skillfulness” in patients with diabetes and 

peripheral neuropathy was observed from a higher count of failed jumps in the IJ game. Their 

impaired “sensation” resulted in the increased “Minimal virtual distance smiley 4” (BF game) 

and “Deviation from the optimal pressure” (IJ game). The distinction of “endurance” between 

healthy controls and DPN patients was evidenced with different consecutive jumps without 

failures (n) in the IJ game. Finger reaction time presented a light difference between the Control 

and DPN group.  

 

Figure 19. Results of intergroup difference test for hypothesis-driven key capabilities and scoring. Following 
calculation of scores for the predefined key capabilities, significant differences were observed for skillfulness, finger 
reaction time, sensation, muscle strength, and endurance in cohort 1. For age-matched controls and DPN patients 
in cohort 2, differences remained significant for sensation, skillfulness, endurance, and finger reaction time. The 
annotations and extracted games of these key capabilities are provided, as well as the significance levels for 
intergroup differences (below boxplots). DPN: diabetic peripheral neuropathy. Differences between groups were 
calculated using Mann-Whitney U test or t test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** 
(p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). † Finger reaction time of one DPN patient is not available 
and replaced with the group mean value. All outliers were not included in density and boxplots. 

A logistic regression model with hypothesis-driven key capabilities discriminated healthy 

controls from DPN patients with a training accuracy of 71.8% (AUC-ROC: 0.66). The predictors 
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of this model are summarized in Figure 20 (F1─F6). The between-group differences are 

presented by density and box plots (excluding outliers), as well as mean values and SDs. The 

extracted games of each feature are provided in the last two columns.  

 

Figure 20. Features of the hypothesis-driven DPN classification using Logistic Regression (model 1b). Six 
hypothesis-driven key capabilities scores (F1─F6) were treated as features and entered into a logistic regression 
model to differentiate between patients with peripheral neuropathy versus healthy controls. All predefined scores 
showed significant differences between the Control and DPN groups. The differences are presented by density and 
box plots. The extracted games and related task combinations of each feature are provided in the last two columns. 
Data are presented as means (SD). All outliers were excluded in density and boxplots. Differences between groups 
were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns 
(p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). F: feature; DPN: diabetic 
peripheral neuropathy; AC: Apple-Catch; BF: Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; IJ: Island-Jump. 
† Finger reaction time of one DPN patient was not available and replaced with the group mean value. 

3.3. Game feature analysis 

The initial analysis with 183 gaming datasets acquired from the “Gamidiagnostics” sessions 

are summarized in a workflow diagram (Figure 21). For each dataset collected from a study 

participant, data preprocessing filtered out 701 dependent variables with strong correlations 

(correlation coefficients higher than 0.75) from all extracted game features. Subsequently, the 

rest of 1,179 variables were compared between the Control and DPN severity groups (mild, 

moderate, and severe) in Cohort 1 using appropriate statistical tests. The Kruskal-Wallis test 

was performed to identify the age influence on the game performance by comparing game 

features between younger, middle-aged, and elderly healthy controls. In the age-matched 

Cohort 2, the same parameters were compared between the Control and DPN groups as well. 

Separately, a data frame consisting of 120 observations (study participants from Cohort 2) and 

1,179 variables was provided to train automatic DPN classification models. The performance 

of developed AI models is separately described in 3.4. 
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Figure 21. Flow diagram of data analyses. (a) Data preprocessing filtered out parameters with zero variance or 
high inter-correlations from the feature matrix. (b) In cohort 1, three subgroups of participants with DPN were 
assigned according to NDS scores. 1,179 game features of the entire cohort were compared between healthy 
controls and patients with DPN to identify the effect of peripheral nerve damage on the “Gamidiagnostics” 
performance. Subsequently, the influence of age on the outcomes was tested for participants in the control group 
(subgroups: young, middle-aged, seniors). Participants aged 51 to 76 years were exported to cohort 2. Their game 
parameters (n=1,179) and predefined hypothesis-driven key capabilities were included in the comparisons and 
used as candidate features for machine learning algorithms. (c) Within cohort 2, candidate features were ranked by 
classifier-estimated importance. Different subsets of the top-ranked features were utilized for training classification 
models. Candidate models with higher Cohens Kappa values were selected to evaluate the predictive performance 
on the remaining (30%) of the sample. DPN: diabetic peripheral neuropathy; AI: artificial intelligence; SVM-Linear: 
support vector machines with a linear kernel function; SVM-Radial: support vector machines with a radial kernel 
function; SVM-Poly: support vector machines with a polynomial kernel function 

3.3.1. Game feature analysis in Cohort 1 

In cohort 1, overall 1,179 independent game features were compared between healthy controls 

and DPN subgroups classified as mild, moderate, or severe neuropathy (according to NDS 

score). Amongst these, 314 features revealed significant differences. Representative 

examples of these game features are compared and visualized for each game (Figure 22a). 

In the AC game, the “Final virtual distance” (Feature 1) of task 8 was significantly lower in 

healthy controls compared to DPN patients (p<0.0001). It suggested that healthy subjects 

could more precisely modify their pressure on the foot and position the car precisely beneath 

the falling apple. However, another parameter named “Pressure gradients between successive 

frames” (Feature 2) of task 13 exhibited the opposite trend, that was a significantly reduced 

pressure gradient in DPN patients (p<0.01). It might be explained by the inability of DPN 

patients to dynamically adopt plantar pressure in real-time according to the distance between 

carriage and apple as healthy people due to lack of precise pressure sensation. In the CP 



45 

 

game, the “Normalized pressure” (Feature 3) of task 4 and “Time outside the optimal pressure 

zone [s]” (Feature 4) of TC 4 increased significantly in the DPN group. It indicated that DPN 

patients have more difficulties adjusting their foot pressure to reach the optimal pressure range. 

In the IJ game, the “Pressure differences between successive frames” (Feature 5) of TC 4 

(tasks in which the bird jumps to the left) and “Anticipation time [s]” (Feature 6) of TC 3 (tasks 

in which the bird jumps to the right) were smaller in the Control group. It demonstrated that 

healthy controls react quicker and more precisely by switching from using both feet to one 

single foot (left or right) as the controlling unit. In the BF game, the standard deviation of 

maximal “Normalized pressure” (Feature 7) of TC 4 was lower in healthy controls compared to 

patients with peripheral neuropathy. The TC 4 consisted of tasks requiring high pressures. A 

lower standard deviation indicated better modification of pressures by healthy volunteers to 

control the balloon fly through the two highest obstacles in tasks 5 and 11. In task 6 that 

demanded the release of foot pressures, DPN patients had higher “Pressure-time integrals” 

(Feature 8) compared to healthy players. It indicated that DPN patients do not reduce plantar 

pressure as quickly and accurately as healthy participants due to their lack of reaction or 

pressure perception. A complete summary on 314 of these features and intergroup test results 

are provided in Supplementary Table 1. 

Secondly, three age-related control subgroups were tested separately, 19 younger, 22 middle-

aged, and 30 elderly adults. The same 314 features were tested among these three age groups, 

and 84 variables showed distinctions that associated with age (two examples are depicted in 

Figure 22b, other variables are presented in Supplementary Table 1, highlighted with a grey 

background). The first parameter, named “Virtual deviation of ideal flying route” (Feature 9, BF 

game, TC 3), calculated the deviation between the balloon’s real and ideal flying route while 

flying through middle-height obstacles using intermediate pressures. This variable was 

strongly correlated to the age of study participants. The “Anticipation time [s]” (Feature 10, CP 

game, TC 2) of healthy volunteers increased by the age in the control group. Therefore, age 

matching was quite necessary before modeling.  
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Figure 22. Results of intergroup difference tests of game features within cohort 1. (a) According to the NDS 
score, 112 participants were assigned into mild, moderate, and severe DPN groups. After excluding highly inter-
correlated parameters through preprocessing, the extracted game features from the entire DPN and its three 
subgroups (DPN1, DPN2, and DPN3) were compared with the game parameters from the Control group (CON). 
Ten examples of 314 significantly different features are presented here. (b) In the Control group, three subgroups 
were created by age to identify the influence of age on game performance. 84 of the 314 features observed from 
the horizontal comparison between the Control and DPN groups revealed apparent distinctions among the three 
age groups. Two representative parameters were “virtual deviation of the ideal flying route” in the BF game and 
“anticipation time [s]” in the CP game. CON: controls (N=71); CON1: controls aged 18-30 (N=19);  CON2: controls 
aged 31─50 (N=22); CON3: controls aged 51─80 (N=30); DPN: diabetic peripheral neuropathy (N=112); DPN1: 
mild (NDS: 1─5, N=48); DPN2: moderate (NDS: 6-8, N=55); DPN3: severe (NDS: 9-10, N=11) Differences between 
groups were calculated using Mann-Whitney U test, t-test or chi-square test as appropriate. Significance levels: ns 
(p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). 

3.3.2. Game feature analysis in Cohort 2 

Further analyses were carried out with 120 datasets collected from age-matched participants 

in cohort 2. Intergroup difference tests for the 1,179 game features between 30 healthy controls 

and 90 patients with DPN extracted 58 representative features with significant differences. 

Four examples are presented in Figure 23 modeling scheme 1, and all variables are 

summarized in Supplementary Table 2).  As presented with boxplots and density curves, the 

“Anticipation time [s]” (Feature 1a, AC game, TC 2) was lower in the Control group compared 

to the DPN group. It measured the time that the player needed to bring the car into the catching 

area by modifying appropriate pressures on his/her feet. Similar trends were observed with the 

other three representative parameters. The intergroup difference of “Pressure differences 

between successive frames” (Feature 1b, BF game, Task 11) indicated that healthy subjects 

could modify their foot pressure more smoothly and precisely while controlling the balloon to 

fly through the highest obstacle (the cathedral in Task 11 of the BF game). The average “Time 

outside ideal pressure zone [s]” (Feature 1c, CP game, TC 6) in patients with DPN lasted about 
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0.8 seconds, twice as long as the value with healthy subjects. A number of DPN patients had 

even longer “Time outside ideal pressure zone [s]” than 1/4 of the entire execution phase (i.e., 

the phase required to maintain optimal pressure for 4.5 seconds). Thus, absence of pressure 

perception and difficulty maintaining constant pressure in patients with DPN existed. Moreover, 

the higher mean “Anticipation time [s]” (Feature 1d, IJ game, task 14) in DPN patients 

demonstrated that a majority of them needed longer time to identify the task target and to 

adjust foot pressure until reaching the optimal value that triggered a perfect jump of the virtual 

bird. From this perspective, the extracted game features were able to pinpoint peripheral nerve 

dysfunctions in patients with DPN.  

 

Figure 23. Classification modeling schemes and representative features extracted within cohort 2. Model 1 
was established to distinguish healthy controls and patients with diabetes and sensory neuropathy. Models 2-4 
were developed to determine specific fiber subtype impairments (Aδ-, Aβ-/C-fibers). For each model, four 
representative features extracted from four different games were compared between groups. Data are n (%). 
Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. 
Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). DPN: 
diabetic peripheral neuropathy; PNP: polyneuropathy 

In the DPN group, 70 game features were identified that predicted impaired pinprick or 

temperature sensation (Aδ-/C-fiber dysfunction). Four representative features are presented 

in Figure 23 modeling scheme 2, and all variables are summarized in Supplementary Table 3). 

The most significant parameter referred to “Pressure-time integrals” (Feature 2b) was 

calculated from task 3 of the BF game. Patients without small fiber impairments had smaller 

“Pressure-time integrals” than those with reduced or absent Aδ/C-fiber functions. The “Time 

inside catching area [s]” (Feature 2a, AC game, Task 8), the “Normalized pressure (L)” 
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(Feature 2c, CP game, Task 15), and the “Anticipation time [s]” (Feature 2d, IJ game, Task 3) 

were also lower in patients with diabetes and without small fiber neuropathy. 

In addition, 72 game features indicating moderate or severe Aβ-fiber neuropathy are 

summarized in Supplementary Table 4. Four examples are presented in Figure 23 modeling 

scheme 3. The standard deviation of “Time outside catching area [s]” (Feature 3a, AC game, 

TC 12) was obviously higher in patients with diabetes and moderate compared to severe Aβ-

fiber dysfunctions. A similar pattern was visible in “Pressure differences between successive 

frames” (Feature 3b, BF game, Task 7) and the “Time outside ideal pressure zone [s]” (Feature 

3c, CP game, Task 2). However, patients with diabetes and severe Aβ-fiber impairment 

revealed increased “Pressure differences between successive frames” (Feature 3d, IJ game, 

Task 1).  

Lastly, 50 game features correlated with absent Achilles tendon reflexes as shown in 

Supplementary Table 5, and four examples are shown in Figure 23 modeling scheme 4. The 

standard deviation “Time inside catching area [s]” (Feature 4a, AC game, TC3) in patients with 

diabetes and absent Achilles reflex was distinctly lower in those with normal or reduced 

reflexes. However, the standard deviation of “Normalized pressure” (Feature 4b, BF game, 

TC3), the “Pressure differences between successive frames (L)” (Feature 4c, CP game, Task 

14), and the “Deviation from ideal pressure” (Feature 4d, IJ game, Task 9) in patients with 

diabetes and absent Achilles reflexes were relatively higher than those with normal or only 

decreased reflexes.  

Overall, the intergroup difference tests confirmed that some extracted game features are 

associated with peripheral nerve damages caused by diabetes. Distinct features also indicated 

Aβ-fiber, Aδ-/C-fiber, and Achilles tendon reflex deficits in patients with diabetes. More details 

of these features are presented in chapter 2.4. 

3.4. Predictive models of DPN 

3.4.1. DPN classification model 

Predictive models of DPN were trained with the original datasets from 120 participants in cohort 

2 (Figure 21c). 70% of datasets (n=84) were utilized for model training, the remaining 30% 

(n=36) for testing. Five-fold three repeats cross-validation was applied in feature ranking using 

SVM-Linear, SVM-Radial, and SVM-Poly classifiers. Classification models using variant 

subsets of top-ranked features (n=25) were trained to search for the best predictor 

combinations. The final model was selected according to Cohen’s Kappa metric and evaluated 

using the heldout testing dataset. 
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The best prediction was observed with the SVM-Poly model (degree: 1, scale: 0.1, C: 0.5) 

utilizing 15 predictors (model 1a, Figure 24), reaching an adjusted accuracy of 85.2% (AUC-

ROC 0.91, Kappa 0.70, sensitivity 92.6%, specificity 77.8%) on the heldout testing dataset. 

With this model, only four out of 36 participants were misclassified (two false positive and two 

false negative classifications). The performance of the unbiased predictive model exceeded 

by far the hypothesis-driven discrimination model (model 1b, Figure 24).  

 

Figure 24. Performance of DPN classification models. (a) Overview of models and setup parameters (class 
labels, sample sizes, classifiers, predictors, parameters, cross-validation). (b) Training performance of models with 
the comparison of subgroups and clinical findings summarizing calculated accuracies, Kappa, and AUC-ROC 
values of models. (c) Visualization of AUC-ROC curves for diagnosis of DPN and fiber damage.  (d) Predictive 
performance of models on heldout testing dataset (adjusted testing accuracies ranged from 85.2 to 95.3 %). (e) 
Confusion matrix with absolute numbers of true positive/negative and false positive/negative classifications. DPN: 
diabetic peripheral neuropathy; PNP: Polyneuropathy; SVM: support vector machine; LR: logistic regression; ACC: 
accuracy; AUC-ROC: area under the receiver operating characteristic; SEN: sensitivity; SPE: specificity; TP: true 

positive; TN: true negative; FP: false positive; FN: false negative   

The predictors determined by the DPN classification models 1a are summarized in Figure 25 

(F1─F15). The boxplots and density curves on the left presents between-group differences 

and distributions after excluding outliers. Data are presented as the means with standard 

deviations. The predictors were extracted from the games and TCs and are provided in the 

last two columns. Feature 11, named “Normalized pressure” (F11, AC game, TC 9), was the 

best predictor because it revealed significantly different distributions between the control and 

DPN groups. 
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Figure 25. Features for DPN classification using SVM-Poly (model 1a). Fifteen game features (F1─F15) 
obtained by the SVM-Poly model for distinguishing patients with diabetes and peripheral neuropathy versus healthy 
controls are visualized with density and box plots. Most of the game features selected by the model showed 
significant differences between the Control and DPN groups. The differences are presented by density and box 
plots, as well as mean values and SDs. The extracted games and related task combinations of each feature are 
provided in the last two columns. Data are presented as means with standard deviation. All outliers were excluded 
in density and boxplots. Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-
square test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** 
(p=0.0001─0.001), **** (p<0.0001). F: feature; DPN: diabetic peripheral neuropathy; AC: Apple-Catch; BF: Balloon-

Flying; L: Left; R: Right; CP: Cross-Pressure; IJ: Island-Jump; TC: task combination 

3.4.2. Aδ-/C-fiber polyneuropathy classification model 

Classification models to differentiate severity of dysfunction within the fiber types were built 

with datasets from 90 patients with diabetes within cohort 2. Overall, 36 out of 90 (40%) 

patients with diabetes had reduced/absent temperature sensation or pinprick (nociception), 

which is caused by Aδ-/C-fiber polyneuropathy (positive class). The obtained SVM-Radial 

model (sigma: 0.0252727957626335, C: 1) using 25 game predictors reached an adjusted 

accuracy of 91.9% for the classification of Aδ-/C-fiber polyneuropathy on a held out-testing 

dataset (model 2, Figure 24). The model misclassified two out of 26 cases (one false positive 

and one false negative classification). The final predictors of the model are presented in Figure 

26 (F1─F25). Their distributions and between-group differences are visualized with boxplots 

and density curves on the left. The mean and standard deviation of these predictors were 

separately calculated between groups. The “Pressure-time integrals of the execution phase 

(R)” (F1, CP game, Task 4), the “Normalized pressure (R)” (F4, CP game, Task6), and the 

“Pressure differences between successive frames” (F18, BF game, Task 7) were optimal 

predictors that revealed distinct distributional differences between patients without and those 

with Aδ-/C-fiber dysfunctions. In addition, 21 out of all 25 predictors were significantly different 

in concordance with the results of the previous between-group difference tests. 
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Figure 26. Features for Aδ-/C-fiber polyneuropathy classification using SVM-Radial (model 2). Twenty-five 
game features (F1─F25) were obtained by SVM-Radial models that identified Aδ-/C-fiber polyneuropathy (absent 
pinprick or temperature sensation) in patients with diabetes. These are visualized by density and box plots. Most of 
the game features selected by the model showed significant differences between the “normal” and “absent” groups. 
The differences are presented by density and box plots, as well as mean values and standard deviations (SD). The 
extracted games and related task combinations of each feature are provided in the last two columns. Data are 
presented as means (SD). All outliers were excluded in density and boxplots. Differences between groups were 
calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), 
* (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). F: feature; AC: Apple-Catch; BF: 
Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; IJ: Island-Jump; TC: task combination 

3.4.3. Aβ-fiber polyneuropathy classification model 

In cohort 2, 73 out of 90 (81%) patients with diabetes had impaired vibration sensation (below 

3/8) or an abnormal 10g monofilament-test result (reduced/absent), which was linked to Aβ-

fiber polyneuropathy (positive class). The obtained SVM-Poly model (degree: 1, scale: 0.01, 

C: 0.5) using nine game predictors reached an adjusted accuracy of 95.3% for the classification 

of Aβ-fiber polyneuropathy on a held out-testing dataset (model 3, Figure 24). The model 

misclassified two out of 26 cases (two false negative cases). The final predictors of the model 

are presented in Figure 27 (F1─F9). Their distributions and between-group differences are 

visualized with boxplots and density curves on the left. The mean and standard deviation of 

these predictors were separately calculated between groups. Almost all predictors were 

significantly different in concordance with the results of the previous between-group difference 

test. The “Normalized pressure” (F9, BF game, TC3) was an optimal predictor that revealed 

significant distributional differences between patients without and those with Aβ-fiber 

dysfunctions. 
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Figure 27. Features for the Aβ-fiber polyneuropathy classification using SVM-Poly (model 3). The SVM-Poly 
model extracted nine game features (F1─F9) to classify the severity of Aβ-fiber polyneuropathy (moderate or severe, 
defined by vibration sensation testing and 10g monofilament-test results). Most of the game features selected by 
the model showed significant differences between the two severity groups. The differences are presented by density 
and box plots, as well as mean values (SD). The extracted games and related task combinations of each feature 
are provided in the last two columns. Data are presented as means (SD). All outliers were excluded in density and 
boxplots. Differences between groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as 
appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** 
(p<0.0001). F: feature; AC: Apple-Catch; BF: Balloon-Flying; L: Left; R: Right; CP: Cross-Pressure; IJ: Island-Jump; 

TC: task combination 

3.4.4. Achilles tendon reflex classification model 

In cohort 2, 49 out of 90 (54%) patients with diabetes exhibited absent Achilles tendon reflexes, 

which were considered as positive cases for AI models. The obtained SVM-Radial model 

(sigma: 0.0520043134564958, C: 1) using 13 game predictors reached an adjusted accuracy 

of 88.1% for the classification of Achilles tendon reflexes on a held out-testing dataset (model 

4, Figure 24). The model misclassified three out of 26 cases (one false negative and two false 

positive cases). The final predictors identified in the model are presented in Figure 28 

(F1─F13). Their distributions and between-group differences are visualized with boxplots and 

density curves on the left. The mean and standard deviation of these predictors were 

separately calculated between groups. Almost all predictors were significantly different in 

agreement with the results of the previous between-group difference test. The “Anticipation 

time [s]” (F6, AC game, TC10) and the “Pressure gradients between successive frames” (F11, 

AC game, TC 12) were optimal predictors that revealed significant distributional differences 

between diabetes with normal and absent Achilles tendon reflex status.  
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Figure 28. Features for the Achilles tendon reflex classification using SVM-Radial (Model 4). The SVM-Radial 
model selected 13 game features (F1─F13) to classify for absence or presence of Achilles tendon reflexes in 
diabetes patients. Most of the game features selected by the model showed significant differences between both 
classifications. The differences are presented by density and box plots, as well as mean values (SD). The extracted 
games and related task combinations of each feature are provided in the last two columns. Data are presented as 
means (SD). All outliers were excluded in density and boxplots. Differences between groups were calculated using 
the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), 
** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). F: feature; AC: Apple-Catch; BF: Balloon-Flying; L: Left; 
R: Right; CP: Cross-Pressure; IJ: Island-Jump; TC: task combination 
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4. Discussion 

The primary hypothesis of this thesis is that “a Gamidiagnostics application with video-based 

playful elements combining sensor-equipped insoles and machine learning algorithms is 

feasible to screen for peripheral neuropathy in patients with diabetes”. Following the outlined 

methodological developments and standardization of the test the “Gamidiagnostics” 

application indeed allowed to perform a highly predictive screening for peripheral neuropathy. 

This was assessed in a selected cohort of patients with clinically diagnosed severe neuropathy 

and healthy volunteers as comparator cohort. The system was designed for peripheral nerve 

function assessment with a low complexity setup allowing for a quick introduction into all games 

and an easy understanding of control functions of the sensor equipped insoles. Standardized 

calibration steps and interactive tutorials before each game allowed the participants to perform 

initial steering attempts to familiarize with the games. Motivational elements were combined to 

encourage completion of tasks and endurance over 15 minutes. Standardized data acquisition 

processes with time stamps linked sensor data throughout games, even with failed efforts 

(preset maximum allowance of three failed efforts per game). Challenges in the games 

provided information on movement control of both feet to determine muscle strength, sensation, 

balance, and coordination. “Immediate feedback to the participants on gaming results and 

overall performance was offered after the game was completed. Furthermore, the datasets 

were introduced into machine learning algorithms to predict peripheral neuropathy and 

phenotype affected nerve fiber subtypes.  

Similarly, the second hypothesis was confirmed by the findings, that is “predefined hypothesis-

driven parameters (reaction time, sensation, skillfulness, endurance, balance, muscle strength) 

correlate with the clinical status, e.g., the nerve disability score (NDS)”. In the age-matched 

cohort, the between-group differentiation of sensation, skillfulness, endurance, and finger 

reaction time remained significant. However, the logistic regression model using the 

hypothesis-driven indicators was less predictive of DPN than machine learning algorithms.  

Notably, hypothesis three (“feature extraction methodology may be applied to determine 

representative game features and calculate key capabilities correlating with NDS”) and four 

(“the AI models may identify relevant game parameters, make predictions on DPN and possibly 

achieve phenotyping of impaired nerve fibers”) were confirmed. Feature extraction 

methodologies were able to identify representative game features and to calculate key 

capabilities that correlated to clinical ground truth (NDS). Game features were extracted from 

different game tasks and task combinations, which was possible due to the aforementioned 

standardization of the games, predefined game scenarios and time stamps. An unexpected 

key finding of this work was that the trained classification models were able to identify game 
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features that allowed to phenotype impaired nerve fibers. The feature ranking techniques 

classified Aδ/C- and Aβ-fiber polyneuropathy and Achilles tendon reflex impairment. The 

classification models were obtained with training data sets from 120 patients. On the heldout 

testing dataset, an adjusted testing accuracy of 85.2% with a sensitivity of 92.6% and 

specificity of 77.8% (Cohen’s Kappa 0.70) in classifying peripheral small and large nerve 

functions was achieved. Furthermore, the SVM models allowed to differentiate between small 

(Aδ-/C-fibers) as well as large Aβ-fiber damage with high accuracy (adjusted accuracies of 

91.9% and 95.3%, respectively). 

To this end, all subgoals of the study were achieved, that have been defined in the aims section: 

design and development of a “Gamidiagnostics” application with real-time data acquisition 

using sensor-equipped insoles, automatic data transmission to a remote server, 

implementation of an online platform for visualizations and database exchange, validation of 

the “Gamidiagnostics” application in a pilot exploratory study with healthy volunteers and 

patients diagnosed with peripheral neuropathy, determination of representative game features 

and predefined key capabilities correlating to clinical ground truth, training and optimization of 

AI models to assess severity of dysfunction for fiber subtypes Aβ-, Aδ-/C and Achilles tendon 

reflexes. 

4.1. Performance of the neuropathy “Gamidiagnostics” App in 

comparison to other studies 

A literature search reveals that only few research groups have chosen similar approaches. 

Learning models calculating risk for peripheral nerve function on the basis of clinical data and 

past medical history impairment was reported by Kazemi et al., who enrolled 600 subjects (175 

healthy volunteers and 425 patients with different severities of DPN). On the basis of the NDS 

score as the ground truth the best-performance was achieved with the SVM-OAO-RBF kernel 

model yielding an accuracy of 76% in predicting the DPN severity (none, mild, moderate, 

severe). The 13 features included age, type of diabetes, education level, BMI, history of 

elevated blood pressure, actual systolic blood pressure, history of foot ulcer, medication, 

weight, history of laser photocoagulation, duration of diabetes, average blood glucose level 

and height (75). Dubey et al. established a Neural Network to predict the diabetic neuropathy 

risk level using the following seven features: duration of diabetes mellitus, age, height, weight, 

urinary albumin-to-creatinine ratio, glycated hemoglobin (HbA1c) and cholesterol. They 

selected vibration perception thresholds to identify different severity groups. The accuracy was 

70.1% with simulated patient data (4,158 cases) using mean and covariance of patients´ data 

obtained from a clinical database (n=5,088)  (91). Corpin et al. introduced plantar pressure 

data as predictors to distinguish healthy subjects, patients with only T2DM, and patients with 
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T2DM and DPN. The authors performed a rather small study with 36 patients that performed 

repeated measurements (sample size: 288). Michigan Neuropathy Screening Instrument-

questionnaire (MNSI-q) and Nerve Conduction Velocity (NCV) measurements were performed 

to stratify patients into subgroups. 29 features were extracted from 13 plantar pressure 

parameters on 16 different foot regions. The SVM algorithm exhibited the highest accuracy 

with 91.9%, the MLP model yielded an accuracy of 89.8% (92). 

However, a study with dynamic data acquisition from patients and multiple challenges that 

does not rely on clinical parameters at forehand was not identified in the literature.  

The plethora of data obtained by the “Gamidiagnostics” App offered numerous advantages: 

1. Data acquisition for AI model development. The “Gamidiagnostics” application provided 

features with high quantity and quality for AI models. The obtained models in this work were 

trained with predefined game indicators and sensor data. These included amongst others 

reaction time, anticipation time, time inside the catching area, frequency outside of the catching 

area, virtual distance. Similar to Corpin et al. (2019), we extracted multiple pressure 

parameters by calculating maximum, minimum, mean, standard deviation, pressure 

differences and gradients between successive frames, and pressure time integration. The 

pressure parameters were subdivided into specific game scenarios and task combinations that 

reached far beyond the simple integration of the measurement process. Thus, more than 1,800 

distinctive parameters were extracted as potential predictors according to the proposed feature 

extraction methodology from each dataset. Moreover, intergroup difference tests and feature 

ranking methods both identified many features that significantly correlated with clinical findings, 

confirming that game features were associated with underlying sensory and motor 

dysfunctions resulting from peripheral neuropathy.  

2. Widely used neuropathy disability score as comparator. The chosen comparator neuropathy 

disability score (NDS) (93, 94) is widely used as a tool in clinical practice with scores ranging 

from 0 to 10. Mild (score 3–5), moderate (score 6–8), and severe neuropathy (score 9–10) 

may subclassified, the latter posing the highest risk of developing foot ulcerations (95). DPN is 

often diagnosed at a very late, pre-ulcerative stage due to a lack of systematic screening. 

Monofilament-testing identified advanced neuropathy only. Similarly, the NSS cannot reliably 

identify DPN (93, 96). The enrolled diabetes cohort included patients with mild (41.1%), 

moderate (49.1%), and severe (9.8%) peripheral neuropathy according to the NDS (see Table 

3). Severe damage of Aδ-/C-fibers was assumed in patients with reduced/absent pinprick 

(nociception) or temperature sensation. The presence of severe Aβ-fiber polyneuropathy was 

assumed with impaired vibration sensation (below 3/8) or an abnormal 10g monofilament-test 

result (reduced/absent). The remaining patients in the DPN group were classified as moderate 
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Aβ-fiber polyneuropathy (impaired vibration sensation: 3-4/8). The absence of Achilles tendon 

reflexes was considered as a positive label in the model training. A negative label was assigned 

to normal or mildly impaired reflexes.  

3. Age as bias for neuropathy. We only entered datasets from age-matched participants to AI 

models because the comparison of game features among young, middle-aged, and elderly 

control groups confirmed that age has a significant effect on game performance of study 

participants.  

In the study of Kazemi et al. (2016), age itself was included as a predictor for DPN classification. 

Such a choice may misguide machine learning models to make determinations that are very 

close to objective facts only based on age since the age distribution of their samples correlated 

significantly with DPN severity (normal: 43.98±15.20 years, mild: 54.7±12.02 years, moderate: 

61.91±11.20 years, severe: 62.67±10.27 years). In the study of Corpin et al. (2019) the age of 

healthy subjects differed from those who had diabetes mellitus and/or peripheral neuropathy 

(49.5±8.07 versus 57.6±4.39 and 49.5±8.07 versus 56.8±10.90, respectively).   

4. Model predictors were improved by feature ranking and selection. The work flow of the game 

feature extraction excluded those with high intercorrelations. This ensured that only 

independent variables were utilized for modeling. Thereafter, the dataset was split into a 

training and a testing set with a ratio of 7:3. The testing dataset was held out only for final 

model evaluation. Machine learning algorithms estimated the feature importance with the 

training dataset only. The applied feature ranking approach was proposed by Kuhn et al. within 

the caret R package (89). It maintains the exact meaning of features and ranks them according 

to their calculated association with the class distribution. The feature ranking is an effective 

solution to select features from datasets that often consist of fewer observations than variables 

(small sample size but high dimensionality) (97). It is different from the Principal Components 

Analysis (PCA) that was performed by Corpin et al. (2019) on their pressure dataset that 

combines multiple variables to principles with a maximum variance but no specific meaning or 

definition, which brings difficulties for the model explanation. 

5. Cross-validation in the model training avoided overfitting. Specifically, five-fold three repeats 

cross-validation were utilized in the model training, avoiding overfitting and deriving a more 

accurate model performance estimate. Similar statistical methods were also used for model 

validation in the above-mentioned studies (10-fold cross-validation) (75, 91).  

6. Subanalyses on specific fiber damage. Impressive accuracy was achieved in classifying 

peripheral small and large nerve functions in patients diagnosed with moderate to advanced 

sensorimotor neuropathy and diabetes. The classification model to distinguish healthy controls 

and patients with diabetes and peripheral neuropathy achieved an adjusted testing accuracy 
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of 85.2% (sensitivity 92.6%, specificity 77.8%, and Cohen’s Kappa 0.70) on a heldout testing 

dataset. This dataset was split only for final evaluation that enhanced the reliability of the 

obtained classification mode. Compared to the above-mentioned studies, only Dubey et al. 

(2020) created a testing dataset (15%) for model evaluation. Kazemi et al. (2016) and Corpin 

et al. (2019) reported their model training performance only with 10-fold cross-validation. The 

training accuracy represents a certain degree of model performance, but it is not comparable 

to the testing accuracy. Moreover, we also performed phenotyping of nerve dysfunctions in 

model training. The obtained models were able to differentiate Aδ-/C-fiber versus Aβ-fiber 

polyneuropathy, and the absence of Achilles tendon reflexes in diabetes with adjusted 

accuracies of 91.9%, 95.3%, and 88.1%, respectively. None of the aforementioned studies 

considered detailed phenotyping of small or large fiber dysfunctions. Thus, the presented 

polyneuropathy “Gamidiagnostics” set allowed to apply AI models in subclassifying neuropathy. 

7. Considerations on video game design for polyneuropathy diagnosis. The study cohort of 

patients with diabetes mostly represented elderly people with a duration of diabetes mostly 

exceeding 15 years. These participants have specific demands when they perform games, 

which were addressed as follows: 

- The pantolettes were easy to use, with open design, nice fit and relaxed foot wear. 

- Participants were seated in comfortable chairs with arm rests and at a table of normal 

height. 

- Tablets were positioned at comfortable distance to the participants with good vision. 

- Speakers were tuned high volume to allow easy listening. 

- Special large fonts were chosen to enable better reading. 

- Eye-catching background colors and larger sizes for navigation buttons were 

configured to simplify on-screen navigation. 

Such standardization and addressing specific demands are prerequirements for game-based 

diagnostic approaches and comparability (98, 99). 

All study participants judged the “Gamidiagnostics” App as simple to carry out. The barrier to 

completion of this study was low, even for those with little or no experience in games. The 

immediate response of the study participants upon completion of the games was 

overwhelmingly positive. More than 90% wished to repeat the sessions, however, the second-

course results were not included in this study to exclude learning effects.  

8. Future developments and autonomous usage. The “Gamidiagnostics” application in 

combination with the database platform IQ-Trial incorporates the opportunity for regular 

screening of peripheral neuropathy in a home-based environment of high-risk populations such 

as patients with diabetes. Care providers would be able to receive the data sets remotely within 
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a telemedicine framework. Trained classification models may be implemented as online 

diagnostic platforms (online prediction). The models itself could be iteratively improved by 

labeled datasets (online learning) (100, 101). Ultimately, a game-based assessment in the 

outpatient setting would open the window for screening of a broader population. It could be 

combined with other applications, such as gait analysis (102), real-time fall detection (103, 

104), and diabetic foot ulcer prevention (105). 

4.2. Limitations of the pilot study 

Noteworthy, our study did not address the diagnosis of minor polyneuropathy. It remains 

unclear whether game-based diagnostics (i.e., incorporation of game-playing elements into the 

diagnosis of neuropathy) will be similarly sensitive in detecting isolated Aδ-/C-fiber neuropathy. 

Given that small-fiber deficits are believed to be precursors of large fiber impairment in DPN 

(21, 44), testing of nerve function impairment by electroneurography should be performed, 

even in patients with prediabetes (51). These findings may be correlated with game-based 

diagnostics patterns in follow-up studies. Notably, with early diagnosis, preventive measures 

may be taken. Small fibers are believed to degenerate first and are most likely to be repaired. 

Interventions may comprise body weight control or normalization of hyperglycemia (106, 107). 

Foreseeable, preventive measures may also include supplementation with vitamin B12, e.g., 

in patients that commonly take metformin (108). Drugs with a potential protective action on 

nerve integrity may also be included (109). 

In addition, there are only a few studies that performed a comparable approach. The majority 

of studies established classification models for DPN using clinical biomarkers (e.g. age, 

duration of diabetes, BMI, HbA1c, etc.) without considering any wearable sensor data or video 

game parameters. Corpin et al. (2019) involved plantar pressure values in classification 

algorithms, but only 36 healthy volunteers and patients with diabetes were included. The 

reliability of our work will likely be improved in large cohorts that utilize wearable sensors and 

video games for DPN detection in the future (110, 111). 

Furthermore, the cohorts may not be entirely representative for the general population. The 

diabetes group were relatively elder than other study cohorts with long duration of diabetes 

and high BMI values (75, 111–113). Specifically, there was a strong bias towards male 

participants in the diabetes group, which may translate into differing gaming skills. In addition, 

no diabetes without peripheral neuropathy was included in the study, as well as patients with 

other types of peripheral neuropathy (e.g. alcoholic polyneuropathy). Analyses on hidden 

alcohol-toxicity and other causes of neuropathy were not performed. 

The between-group comparison of game features in the entire cohort showed that age had an 

impact on the game performance. Cognitive impairment in addition to the normal aging process 
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may also influence on the execution of the games. Therefore, a systematic analyses of aging 

and cognitive impairment on game performance have been initiated. 

Moreover, the established models require further evaluation with larger and balanced datasets. 

The effect of limited sample size is evidenced by the deviation between the predictive 

performance and the training metrics even though three repeats five-fold cross-validation was 

applied in model training. For example, the accuracy of model 1a decreased from 87.8% 

(maximal 100% in cross-validation) in the training dataset to 85.2% with the testing dataset. 

With a larger dataset, classifier-based feature importance estimation would target the optimal 

features more precisely. In addition, the imbalance in the number of healthy individuals and 

DPN patients in the dataset (ratio 1:3) lead to a significant gap between the sensitivity and 

specificity of the classification models. A larger control sample will improve AI modeling to 

identify differences in game performance of healthy individuals compared to DPN patients (114, 

115). 

4.3. Conclusion and outlook 

The game-based polyneuropathy diagnosis App (“Gamidiagnostics”) combining smart 

footwear sensors is able to diagnose advanced peripheral nerve malfunction with high 

accuracy in a time-saving, examiner-independent, self-administered enjoyable manner, which 

has the potential to be established as a telemedical device.  

This approach bears the potential to be implemented as telemedical App within an online 

diagnostic platform for automatic prediction of DPN and dynamic learning with more labeled 

datasets. Participants may receive immediate feedback on their gaming performance, 

capabilities and peripheral nerve status. Care providers would receive similar information 

enriched with details on fiber type impairment. 

The findings of our study are encouraging. Nevertheless further trials are required to enrich 

the sample size and also to include more objective clinical examinations, such as nerve 

conduction measurements and corneal confocal microscopy. A cohort with early-stage 

peripheral neuropathy (i.e., only absent temperature sensation or nociception) should be 

recruited to evaluate the feasibility of the “Gamidiagnostics” application to detect small fiber 

polyneuropathy. Patients diagnosed with diabetes and without peripheral neuropathy should 

be enrolled as another reference group for comparison with the DPN group. Patients with mild 

cognitive impairment, subjective cognitive impairment, or Alzheimer´s disease may also be 

tested to investigate the feasibility of game-based assessment of cognitive impairment.  

Furthermore, gaming sessions may be offered as exergaming sessions to improve balance, 

postural stability and physical capabilities. The scope of such developments is unlimited.  
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5. Summary 

Given an overall prevalence rate of 40% for diabetes-associated polyneuropathy in patients 

and elevated risk for complications, such as diabetic foot syndrome, the disease management 

program diabetes has adopted a surveillance strategy for neuropathy. Diagnosis of peripheral 

neuropathy (DPN) is routinely achieved through clinical examination, that are standardized 

procedures (pinprick test, vibration perception, Tip Therm, reflexes, muscle function). However, 

the performance is time-consuming and an investigator-related bias may confound findings.  

The goal of this thesis is to explore the potentials of a video game-based approach to assess 

polyneuropathy (“Gamidiagnostics”). The hypothesis is tested that the proposed 

“Gamidiagnostics” application is able to provide a meaningful assessment of small and large 

fiber function in a self-administered, examiner-independent manner and therefore may be 

suited as as telemedical application. To this end a gaming platform was set up. A pilot study 

with 71 healthy volunteers and 112 patients diagnosed with diabetes and peripheral 

neuropathy by clinical examination (neuropathy disability score, NDS, for phenotyping of Aδ-, 

Aβ- and C-fiber function as well as the Achilles tendon reflex) evaluated the feasibility of this 

approach. Participants utilized pressure sensor-equipped insoles as control units and played 

four games specifically designed to test for reaction time, sensation, skillfulness, endurance, 

balance, and muscle strength.  

Unbiased training of prediction algorithms with datasets identified 15 independent variables 

with discriminatory functions that indicated polyneuropathy (training with five-fold three repeats 

cross-validation). In age-matched cohorts, the support vector machines achieved a training 

accuracy of 87.8% (AUC-ROC 0.91) and an adjusted accuracy of 85.2% on a heldout testing 

dataset (sensitivity 92.6%, specificity 77.8%). Distinct variables were identified for each nerve 

fiber deficit and allowed correct classification with adjusted accuracies of 88.1%, 91.9%, and 

95.3% for Achilles tendon reflex, Aδ-/C-fiber, and Aβ-fiber impairment, respectively. In contrast, 

biased hypothesis-driven discrimination only resulted in the accurate classification of 

polyneuropathy in 71.8% (AUC-ROC 0.66) of participants. 

Thus, the established game-based diagnostics approach combining video games and smart 

footwear sensors was able to diagnose advanced peripheral nerve malfunction with high 

accuracy in an examiner-independent manner, which has the potential to be established as a 

telemedical device. 
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11.2. Patient information and consent forms 

UNIVERSITÄTSKLINIKUM MAGDEBURG   A.ö.R. 

Zentrum Innere Medizin 

Universitätsklinik für Nieren- und Hochdruckkrankheiten 

Diabetologie und Endokrinologie 

 

Direktor: Univ.-Prof. Dr. med. Peter R. Mertens 

 

 

Adresse: Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 

39120 Magdeburg, Tel 0391-6713236 

 

Name des Prüfarztes……………………................. 

Tel. Nr. ………………………………. 

       

Patienteninformation und Einwilligungserklärung zur Teilnahme an der klinischen 

Studie: „Gamification bei Patienten mit und ohne sensomotorische Neuropathie: 

Diagnostik mittels einer Einlegesohle mit Sensoren für Druck und Temperatur in 

Verbindung mit einer mobilen App“ 

Sehr geehrte Patientin, sehr geehrter Patient,  

 

Wir laden Sie ein, an der oben genannten klinischen Studie teilzunehmen. Die Aufklärung 

darüber erfolgt in einem ausführlichen ärztlichen Gespräch. Ihre Teilnahme an dieser 

klinischen Studie erfolgt freiwillig. Sie können jederzeit ohne Angabe von Gründen Ihre 

Teilnahme an der Studie beenden. Die Ablehnung der Teilnahme oder ein vorzeitiges 

Ausscheiden aus dieser Studie hat keine nachteiligen Folgen für Ihre medizinische Betreuung. 

Diese klinische Prüfung soll an gesunden Probanden, Diabetikern mit Nervenschäden oder 

ohne Nervenschäden und an Probanden mit einem sogenannten Metabolischen Syndrom 

durchgeführt werden. 

Klinische Prüfungen sind notwendig, um verlässliche neue medizinische 

Forschungsergebnisse zu gewinnen. Unverzichtbare Voraussetzung für die Durchführung 

http://www.med.uni-magdeburg.de/ 

Klinikdirektor: 

Univ.-Prof. Dr. med. Peter R. Mertens 

Tel.: 0391/67-13236 

nephrologie@med.ovgu.de 

Sekretariat:   

Claudia Kluge  

Tel.: 0391/67-13236 

Fax: 0391/67-15440 

Claudia.kluge@med.ovgu.de 
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einer klinischen Prüfung ist jedoch, dass Sie Ihr Einverständnis zur Teilnahme an dieser 

klinischen Prüfung schriftlich erklären. Bitte lesen Sie den nachfolgenden Text sorgfältig durch. 

Ihr Studienarzt wird mit Ihnen auch direkt über diese klinische Prüfung sprechen. Bitte fragen 

Sie Ihren Prüfarzt, wenn Sie etwas nicht verstehen oder wenn Sie zusätzlich etwas wissen 

möchten. 

 

Bitte unterschreiben Sie die Einwilligungserklärung nur 

- wenn Sie Art und Ablauf der klinischen Prüfung vollständig verstanden haben, 

- wenn Sie bereit sind der Teilnahme zuzustimmen und 

- wenn Sie sich über Ihre Rechte als Teilnehmer an dieser klinischen Prüfung im  

Klaren sind. 

Zu dieser klinischen Prüfung sowie zur Patienteninformation und Einwilligungserklärung wurde 

von der zuständigen Ethikkommission eine befürwortende Stellungnahme abgegeben.  

1. Was ist der Zweck der klinischen Prüfung? 

In dem geplanten Projekt soll eine neue Untersuchungsmethode für die Nervenfunktion in den 

Füßen bei Probanden (vor allem Diabetiker) mit und ohne Nervenschäden erprobt werden.  

Hierbei wird der Ansatz der Gamification (deutsch: Spielifizierung) verwendet, um spielerisch 

Daten zu sammeln. 

Dabei wird die „intelligente Einlegesohle“ verwendet, welche über Druck und 

Temperatursensoren verfügt und via Bluetooth mit einem Android-Tablet verbunden ist. Auf 

diese Weise werden Sie vier Spiele absolvieren, die mit den Füßen gesteuert werden. 

Ergänzend zur bestehenden Untersuchungen können durch die Ergebnisse der in dieser 

Studie durchgeführten Tests die Leistungsfähigkeit des Fußes und die Nervenfunktion 

möglicherweise genauer differenziert werden.  

Es werden Messungen erfolgen, die sowohl Auskünfte über die Reaktionsgeschwindigkeit und 

die Druckausübung als auch über die Links-Rechts-Koordination der Füße, die Feinmotorik 

und das Lernvermögen liefern sollen. Außerdem werden unterschiedliche Fußbereiche 

(Vorfuß und Ferse) bei den Tests beansprucht. Dadurch kann eine genauere Untersuchung 

und Analyse der Füße erfolgen. Weiterhin wollen wir ihre Merkfähigkeit und kognitive 

Leistungsfähigkeit mit einem Fragebogen und kurzen Aufgaben erfassen. Dieses Testsystem 

ist an einer großen Zahl von Probanden getestet worden und soll einen Anhalt über die 

Merkfähigkeit und Gedächtnisfunktionen geben (Montreal Cognitive Assessment Test, MoCA).  
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Durch eine begleitende Untersuchung von ihrem Blut und Urin wollen wir erfassen, ob es 

Änderungen in der Immunzellzusammensetzung und Aktivierung gibt. Desweiteren wollen wir 

herausfinden, ob in Ihrem Blut eine veränderte Zusammensetzung besteht, die auf eine 

Einschränkung der kognitiven Leistungsfähigkeit hinweist.  

Die aus dem Projekt gewonnenen Daten werden pseudonymisiert ausgewertet, um neue 

Erkenntnisse hinsichtlich krankheitsspezifischer Unterschiede zu erhalten. Hierzu werden wir 

eine Reihe von gesunden Probanden ebenso rekrutieren, um eine Vergleichbarkeit 

herzustellen. Die Ergebnisse der Gamification-Anwendung werden ihnen unmittelbar nach der 

Teilnahme übermittelt. Die weiteren Ergebnisse werden durch uns derart ermittelt, dass eine 

Zuordnung zu einzelnen Probanden nicht mehr möglich ist. Daher werden wir Ihnen diese 

Ergebnisse nicht übermitteln können. 

2. Welche anderen Diagnosemöglichkeiten für Nervenschäden an den Füßen gibt 

es? 

Im klinischen Alltag wird die umfassende Untersuchung des Fußes wie folgt durchgeführt:  

Zuerst wird eine Anamnese erhoben. Dabei werden Informationen zu Diabetes mellitus, 

Nebenerkrankungen (wie z.B. periphere arterielle Verschlusskrankheiten), Schlaganfällen, 

Gefühlsstörungen sowie Risikofaktoren gesammelt.  

Symptome wie Taubheitsgefühle, sensible Reizerscheinungen, Schmerzen und Krämpfe 

werden erfasst. Zusätzlich erfolgt eine neurologische Untersuchung durch den Arzt, die den 

Status der Reflexe, des Vibrationsempfindens (Stimmgabel), des Berührungs- und 

Druckempfindens erhebt.  

3. Wie läuft die klinische Prüfung ab? 

Es wird ein Fragebogen erhoben, bei dem die persönlichen Informationen (Name, 

Geburtsdatum, aktueller Beruf etc.), die medizinischen Hintergrundinformationen zu 

Vorerkrankungen und vor allem einer bestehenden Zuckerkrankheit (Diabetes mellitus; falls 

eine Diagnose vorliegt: Typ, Therapie, Begleitschäden etc., die diabetischen Nervenschäden 

(Gefühlsstörungen, Beschwerden, Bewegungseinschränkung im täglichen Leben), autonome 

diabetische Neuropathie (Herzrhythmusstörungen, gastrointestinale Beschwerden) und 

bedeutsame Nebenerkrankungen (Schlaganfall, M. Parkinson, Operationen an der 

Wirbelsäule etc.), Metabolisches Syndrom (Bluthochdruck, Gicht), App-Erfahrung, Aktivität 

(Sportarten, Händigkeit, Füßigkeit), Erfragung von historischen HbA1c- sowie 

Nüchternblutzuckerwerten erfragt.  

Desweiteren folgt eine körperliche Untersuchung mit Messung des Taillenumfangs. Zudem 

wird die Untersuchung der unteren Extremität erfolgen. Diese Untersuchung beinhaltet: Die 
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Testung des Achillessehnen-Reflex, die Fußpulse, Empfindung von Vibration einer 

Stimmgabel, die Empfindung von einem dünnen Faden sowie Temperaturunterschieden (kalt, 

warm). 

Eine Blutdruckmessung an den Unterschenkeln und Armen erfolgt. Im Anschluss werden Sie 

gebeten auf der Stelle einige Schritte zu gehen, zu Beginn mit offenen Augen und im 

Anschluss mit geschlossenen Augen. Ihre Sehfähigkeit wird mit einem Sehtest untersucht. 

Eine Blutentnahme von 10 ml EDTA-Blut für eine FACS Analyse (zur Aktivitätsbestimmung 

von Immunzellen, insbesondere Monozyten und Granulozyten, die bei der Entstehung einer 

Polyneuropathie von Bedeutung sein kann). Zudem soll 5 ml Blut für die Bestimmung des 

aktuellen  HbA1c-Wertes, von Kreatinin und Harnstoff zur Bestimmung der Nierenwerte, und 

die Elektrolyte (Kalium und Natrium) erfolgen. Die Probanden sollen zudem eine Urin-Probe 

zur Ermittlung der Proteinurie abgeben. Aus der gewonnenen Blutprobe sollen 

Entzündungsbotenstoffe des Körpers bestimmt werden und eine Untersuchung auf 

demenzielle Erkrankungen erfolgen. 

Vorstellung der Gamification Spiele 

Vier „Spiele“ wurden für die Studie konzipiert, welche auf einem Android-Tablet installiert sind: 

Ein „Belastungsspiel“, ein „Apfelfangspiel“, ein „Ballonfahrtspiel“ und ein „Sprungspiel“. 

Diese Spiele können durch die Verbindung mit der „intelligenten Einlegesohle“ mit den Füßen 

gespielt werden.    

In dem Belastungsspiel werden die Füße in jeweils 2 Quadranten (Vorfuß und Ferse) 

unterschieden. Es gibt zwei Druckbereiche (leicht und mittel), welche durch zwei Farben visuell 

kodiert sind. Ein leichter Druckbereich entspricht der Farbe Grün und ein mittlerer Druck der 

gelben Farbe. Sie sollen mit Ihren Füßen den Druckbereich einstellen, welcher auf dem 

Bildschirm erscheint und einige Sekunden halten. Ziel des Spiels ist es, so schnell wie möglich 

den richtigen Quadranten im angezeigten Druckbereich einzustellen. 

In dem Apfelfangspiel geht es darum, vom Baum fallende Äpfel mit einem rollenden Wagen 

zu sammeln. Die Äpfel fallen nacheinander nach einer definierten Zeit auf den Boden. Ein 

Wagen wird mit den Füßen, welche die Sohle bedienen, gesteuert und kann unter die fallenden 

Äpfel gelenkt werden. Eine Druckausübung des linken Fußes auf die Sohle bewirkt, dass der 

Wagen sich nach links bewegt, eine Druckausübung auf die rechte Sohle steuert den Wagen 

nach rechts. Um die Äpfel zu sammeln muss der angezeigte Druck gehalten werden, damit 

der Wagen am gewünschten Ort stehen bleibt. Wird kein Druck ausgeübt, fährt der Apfelwagen 

automatisch in die Mitte des Bildschirms zurück. Ziel ist es, so viele Äpfel wie möglich 

einzusammeln. 
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Belastungsspiel Apfelfangspiel 

  

Ballonfahrtspiel Sprungspiel 

Abbildung 1. Muster alle vier Spiele in Rahmen der Gamification Studie 

In dem Ballonfahrtspiel steuern Sie einen Heißluftballon, welcher über verschiedene 

Stadtlandschaften fliegt. Der Ballon fliegt automatisch mit einer konstanten Geschwindigkeit 

vorwärts. Auf der Flugbahn tauchen diverse Hindernisse, wie zum Beispiel Gebäude oder 

Wolken auf, denen Sie ausweichen müssen, um ins Ziel zu gelangen. Während des Fluges 

tauchen Smileys auf, die Sie einsammeln sollten, um einen hohen Score zu erreichen. Der 

Test kann wahlweise mit dem rechten oder mit dem linken Vorfuß  durchgeführt werden. Bei 

Druckausübung des gewählten Vorfußes wird der Ballon aufsteigen. Wird kein oder wenig 

Druck ausgeübt, verliert der Ballon an Höhe und sinkt ab. Gelingt es Ihnen für einen 

bestimmten Zeitraum fehlerfrei zu fliegen, so wird der Schwierigkeitsgrad automatisch um eine 

Stufe erhöht. Insgesamt gibt es drei Stufen, welche durch eine erhöhte Fluggeschwindigkeit 

des Ballons definiert sind. Sollten Sie mit einem Hindernis kollidieren, wird die Geschwindigkeit 

wieder zum Ausgangswert herabgesetzt. Kommt es zu einer Kollision mit einem Hindernis, 

haben Sie 5 Sekunden Zeit, um den Fehler zu korrigieren. Sofern dies nicht gelingt, wird der 

Parkour neu gestartet und Sie starten von vorne. Insgesamt sind drei Kollisionen erlaubt, bevor 

der Parkour neu gestartet wird. Des Weiteren wird die optimale Flugroute bzw. Ideallinie durch 

Smileys angedeutet, die Sie einsammeln sollen, um eine hohe Punktzahl zu erreichen. 

Im Sprungspiel steuert der Spieler einen Hahn namens "Gockel" (eine 3D-Spielfigur), um 

nacheinander durch mehrere Inseln zu springen, bis er seine Heimat erreicht. Die Sprungweite 

hängt von der Zeitdauer ab, die der Spieler den erforderlichen Druck (über 20% des gesamten 

Druckbereichs) auf seinen linken Vorderfuß (Sprung nach links), rechten Vorderfuß (Sprung 
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nach rechts) oder auf beide (Sprung nach vorne) einstellt. Wendet der Spieler den Druck zu 

lange oder zu kurz an, fällt der "Gockel" ins Wasser. Dann wird das Spiel wiederholt von der 

letzten Insel. 

4. Was ist die Gaming-Einlegesohle? 

In der Studie wurden drei Arten von Gaming-Einlegesohlen in Pantoletten zur Erfassung der 

Druck-, Temperatur-, Beschleunigung, Gyroskope- (Objektrotationen), und Kompass-Daten 

(Objektrichtungen) verwendet. Sie liefern qualitativ hochwertige RAW-Daten in Echtzeit 

und/oder zur Nachbearbeitung über Bluetooth. 

 

Abbildung 2. Ein Paar Gaming-Einlegesohlen 

5. Worin liegt der Nutzen einer Teilnahme an der Klinischen Prüfung? 

Es ist nicht zu erwarten, dass Sie aus Ihrer Teilnahme an dieser klinischen Prüfung 

gesundheitlichen Nutzen ziehen werden. 

Die in dieser Studie gesammelten Daten könnten aufschlussreich in Bezug auf die Diagnostik 

von Nervenschäden in den Füßen sein und in Zukunft zu einer Verbesserung der 

Untersuchung für den klinischen Alltag beitragen.  

6. Gibt es Risiken, Beschwerden und Begleiterscheinungen? 

Die Anwendung der intelligenten sensorbestückten Einlegesohle in Verbindung mit den App-

Tests ist prinzipiell gefahrlos. Die Entstehung von scharfen Kanten wird durch die Herstellung 

über den Schuhmacher ausgeschlossen.  

7. Wer wird für die klinische Prüfung gesucht? 

• gesunde Probanden 

• Probanden mit Übergewicht, Fettstoffwechselstörungen, Bluthochdruck oder Vorstufen 

einer Zuckerkrankheit 

• Diabetiker ohne Nervenschäden 

• Diabetiker mit Nervenschäden 

• Patienten mit Schwindelsymptomatik  



85 

 

8. Wann wird die klinische Prüfung vorzeitig beendet? 

Sie können jederzeit auch ohne Angabe von Gründen Ihre Teilnahmebereitschaft widerrufen 

und aus der klinischen Prüfung ausscheiden, ohne dass Ihnen dadurch irgendwelche 

Nachteile für Ihre weitere medizinische Betreuung entstehen. 

9. In welcher Weise werden die im Rahmen dieser klinischen Prüfung gesammelten 

Daten verwendet? 

Nachdem Sie die Einwilligungserklärung unterzeichnet haben, wird Ihnen ein Pseudoynym 

(dient zur Verschleierung Ihrer Identität) zugewiesen. Sobald Sie ein Pseudonym haben, 

können Sie die Spiele starten. Die Daten werden zunächst auf dem Tablet gespeichert. Das 

Spielergebnis umfasst neben dem eigentlichen Spielerfolg unter anderem auch Sensordaten, 

Reaktionszeiten und Schwierigkeitsgrade. Die entstandene Datei, welche nur 

pseudonymisierte Daten enthält, wird auf einem Rechner der Uniklinik importiert und in eine 

Datenbank, in welcher alle Spiele pseudonymisierter Probanden gesammelt werden, 

geschrieben. Weiterhin gibt es eine separate Datenbank, welche Ihre persönlichen Daten 

sowie die Pseudonymzuordnung enthält. Zu dieser Datenbank hat ausschließlich das 

betreuende Studienpersonal Zugriff, welches zur Verschwiegenheit verpflichtet ist. Es gibt 

sowohl von den Pseudonymen als auch den Spieledaten ein Backup-System 

(Datensicherungs-System), sodass ein großer technischer Schaden nicht zum Verlust der 

Daten führen kann. Die Backup-Systeme sind ebenfalls zugriffsgeschützt. Die Datenbanken 

sind gegen externe Angriffe geschützt.  

Sie können jederzeit Auskunft über Ihre gespeicherten Daten verlangen. Sie haben das Recht, 

fehlerhafte Daten berichtigen zu lassen. Sie haben das Recht zu jeder Zeit die Einwilligung zur 

Verarbeitung Ihrer personenbezogenen Daten zu widerrufen oder Daten löschen zu lassen, 

soweit nicht gesetzliche Bestimmungen dem entgegenstehen. 

10. Entstehen für die Teilnehmer Kosten? Gibt es einen Kostenersatz oder eine 

Vergütung? 

Durch Ihre Teilnahme an dieser klinischen Prüfung entstehen für Sie keine zusätzlichen 

Kosten. Eine Vergütung für die Teilnahme an der Studie ist nicht vorgesehen. 

11. Möglichkeit zur Diskussion weiterer Fragen 

Für weitere Fragen im Zusammenhang mit dieser klinischen Testung stehen Ihnen Ihr Prüfarzt 

und seine Mitarbeiter gern zur Verfügung. Auch Fragen, die Ihre Rechte als Patient und 

Teilnehmer an dieser klinischen Testung betreffen, werden Ihnen gerne beantwortet. 

Adressen und Telefonnummern Ihrer Ansprechpartner: 
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Ahmad Alhajjar    (Studienarzt) 

Saskia Häberer   (Studienärztin)  

Claudia Piehler    (Studienassistentin) 

Antao Ming    (Wissenschaftlicher Mitarbeiter) 

Prof. Dr. med. Peter R. Mertens  (Studienleiter) 

 

Klinik für Nieren- und Hochdruckkrankheiten, Diabetologie und Endokrinologie 

Telefon 0391-6721745 

Telefax 0391-6715440 

Prüfung erfolgt freiwillig und kann jederzeit widerrufen werden. 

Bitte lesen Sie die gesamte Patienteninformation sorgfältig durch! 

12. Einwilligungserklärung 

Ich wurde durch ……………………………. ausführlich über die klinische Prüfung mit dem Titel 

„Gamification bei Patienten mit und ohne sensomotorische Neuropathie: Diagnostik 

mittels einer Einlegesohle mit Sensoren für Druck und Temperatur in Verbindung mit 

einer mobilen App“ aufgeklärt. Ich hatte die Gelegenheit und ausreichend Zeit, Fragen zu 

stellen. Diese wurden zufriedenstellend beantwortet. Zusätzlich zu der schriftlichen Information 

wurden folgende Punkte besprochen: 

Ich wurde darauf hingewiesen, dass meine Teilnahme an der klinischen Prüfung freiwillig ist 

und dass ich das Recht habe, diese jederzeit ohne Angabe von Gründen zu beenden, ohne 

dass dadurch Nachteile für mich entstehen. 

Ich wurde ausführlich – mündlich und schriftlich – über das Ziel und den Verlauf der klinischen 

Prüfung, sowie über die Freiwilligkeit der Teilnahme aufgeklärt und mir wurde zugesichert, 

dass diese Aufklärung vollständig war. 

Ich habe die schriftliche Patienteninformation zur o. g. klinischen Prüfung erhalten, und ich 

werde nach meiner Unterschrift eine Kopie meiner unterschriebenen Einwilligungserklärung 

zur Teilnahme erhalten. Mit meiner Unterschrift bestätige ich dann auch, dass ich beide 

Dokumente gelesen und verstanden habe. 

Ich erkläre hiermit meine freiwillige Teilnahme an der o. g. klinischen Prüfung.  

_________________________,______________ 

(Ort, Datum - von Patient/in einzutragen)                                    
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(Unterschrift Patient/in) 

___________________________________________ 

____________________________________________ 

Vor- und Nachname - Patient/in in Druckbuchstaben 

Die Patientin/der Patient wurde von mir über Ziel, Dauer, Ablauf, Nutzen, der klinischen 

Prüfung mündlich und schriftlich aufgeklärt. 

Aufgetretene Fragen wurden von mir verständlich und ausreichend beantwortet. 

Die Patientin/der Patient hat ohne Zwang seine Einwilligung erteilt. 

Eine schriftliche Patienteninformation und eine Kopie dieser Patienteneinwilligung habe ich 

der Patientin/dem Patienten ausgehändigt. 

__________________________________ 

(Ort, Datum - vom Prüfer/in einzutragen)                                     

____________________________________ 

Vor und Nachname - Prüfer/in in Druckbuchstaben  
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11.3. Gamification study questionaire 

„Fragebogen Gamification“ 

Persönliche Informationen 

Name        

Vorname   

Geburtsdatum  

Geschlecht   ☐ männlich  

☐ weiblich  

Anschrift  

 

 

E-Mail-Adresse  

 

Telefonnummer  

 

Größe:                                                 cm  

Gewicht:                                            Kg  

Schuhgröße                                       EU- Norm 

 

Diabetes mellitus: Erfassungsfragen 

Diabetiker  ☐ Ja 

☐ Nein                                         ☐ unbekannt 

Erstdiagnose des Diabetes 

mellitus?  

Jahr: _________________          ☐ unbekannt. 

Typ des Diabetes mellitus 

 

☐ Typ 1                       ☐ Typ 2 (Alterszucker)  

☐ Zuckerkrankheit nach       

     Bauchspeicheldrüsen-entzündung/   

     Zuckerkrankheit nach Operation an der  

     Bauchspeicheldrüse  
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☐ Schwangerschaftsdiabetes 

☐ Vordiabetes/Zuckertoleranzstörung  

☐ nicht insulinabhängiger Diabetes im    

    Jugendalter (MODY)  

☐ anderer Typ  

☐ unbekannt 

 

Metabolisches Syndrom: Erfassungsfragen 

Bluthochdruck ☐ Ja                           ☐ Nein 

Gicht ☐ Ja                           ☐ Nein 

 

Relevante Nebenerkrankungen: Erfassungsfragen 

Liegen bei Ihnen Krankheiten des 

Nervensystems vor? (Schlaganfall, 

M. Parkinson, Multiple Sklerose, 

Polyneuropathie) 

☐ Ja                           ☐ Nein (nicht bekannt) 

Wenn ja, welche?  

Seit wann?  

Therapie? (z.B. bei PNP 

Schmerzmittel, Antidepressiva) 
 

Liegen bei Ihnen Erkrankungen der 

Muskeln vor? 

(angeborene Defizite, 

Entzündungen, Verletzungen) 

☐ Ja                           ☐ Nein (nicht bekannt) 

Wenn ja, welche?  

Seit wann?  

Therapie?  

Liegen bei Ihnen Krankheiten der 

Wirbelsäule oder Beine vor? 

(Bandscheibenvorfälle, Einengung 

des Spinalkanals, Arthrose, 

☐ Ja                           ☐ Nein (nicht bekannt) 
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Entzündungen, Verletzungen, 

Ulzerationen)  

Wenn ja, welche?  

Seit wann?  

Therapie?  

Hatten Sie Fußgeschwüre? ☐ Ja                           ☐ Nein (nicht bekannt) 

 

Gamificationfragen 

Wie ist Ihre Händigkeit? 

 

☐  Rechtshänder  

☐  Linkshänder  

☐  Beidhändig 

Wie ist Ihre Füßigkeit (dominanter 

Fuß beim Sport)? 

☐  Rechtsfuß  

☐  Linksfuß  

☐  beidfüßig 

Haben Sie einen Führerschein 

(Fahren Sie Auto), 

 wenn ja km/Jahr ? 

☐  Nein 

☐  Ja, _________________ km/Jahr   

Liegen bei Ihnen Bewegungs-

einschränkungen vor (im täglichen 

Leben)? 

  

bspw. beim Glas halten? 

 

oder Schneiden der Fußnägel? 

☐ Ja                           ☐ Nein  

____________________________________ 

 

____________________________________ 

Treiben Sie Sport? ☐  Nein, 

☐  unregelmäßig,  

☐  regelmäßig 

Welche Sportarten ☐  Fahrrad fahren / _____________ km/Jahr 

☐  Andere: 
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Haben Sie App – Erfahrung?    

(Spielerfahrung ) 

☐  Nein 

☐  Ja, und zwar: 

- ☐ soziale Medien, Nachrichten etc. 

- ☐ Spiele sehr selten  

     (wenige h im Monat) 

- ☐ Spiele ab und zu (wöchentlich) 

- ☐ Spiele häufig  

     (mehrmals die Woche/ tgl. etc.) 

- ☐ Andere _________________ 

 

 

Nervenschädigung: Erfassungsfragen 

Gibt es in Ihren Beinen 

Gefühlsstörungen? 

(Mehrfachnennung mögl..) 

☐Nein 

☐ Ja und zwar: (Auswahl) 

- ☐ Brennen (2 Punkte)  

- ☐ Taubheit (fehlendes Gefühl) (2) 

- ☐ Missempfindungen/Ameisenlaufen/    

          Kribbeln (2 Punkte) 

- ☐ Schmerzen (1Punkt) 

- ☐ Krämpfe (1Punkt) 

- ☐ Schwächegefühl, Schwäche im Bein (1) 

☐  Weiß nicht 

Wenn ja, wo sind Ihre Beschwerden 

lokalisiert? 

☐  Füße (2 Punkte),   

☐  distaler Unterschenkel (1 Punkt), 

☐  proximaler Unterschenkel (1 Punkt), 

☐  Oberschenkel,  

☐  Hände,  

☐  Unterarme,  

☐  andere Beschwerden______________  

Wann treten die Beschwerden auf? ☐  Nachts (2 Punkte),  

☐  Tag und Nacht (1 Punkt),  
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☐  nur am Tag (keine Punkte),  

☐  Patient wacht nachts wegen seinen  

      Beschwerden auf,  

☐  keine Angabe  

Wann bessern sich Ihre 

Beschwerden? 

☐  Gehen (2 Punkte),  

☐  Stehen (1 Punkt),  

☐  Sitzen oder Hinlegen (keinen Punkt),  

 

☐  sonstiges ________________________ 

Score                  /10 

 

Metabolisches Syndrom/ Diabetes mellitus: Untersuchung  

Nahvisus c.c.   

Taillenumfang 
_________cm 

(> 94cm bei Männern, > 80 cm bei Frauen) 

letzter HBA1c- Wert         _________________Prozent oder in 

__________________mmol/mol, 

☐  unbekannt 

HDL               ☐  ≤ 40mg/dl (≤ 1,05 mmol/l),  

☐  40-50mg/dl (1,06-1,24 mmol/l),  

☐  > 50mg/dl (> 1,25 mmol/l),  

☐  nicht durchgeführt 

Triglyzeride    ☐  <150mg/dl (<1,7 mmol/l),  

☐  >150mg/dl (>1,7 mmol/l),  

☐  unbekannt 

letzter Nüchternblutzucker? ☐  <100mg/dl (<5,6mmol/l),  

☐  100-109mg/dl (5,6-6,0 mmol/l), 

☐  ≥110mg/dl (≥6,1mmol/l) 
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☐  unbekannt 

 

Motorik / Koordination Untersuchung  

Motorik grob 

Bein-Halteversuch ☐  normal 

☐  rechts pathologisch 

☐  links pathologisch 

Koordination/Zielmotorik  

Knie-Hacke-Versuch ☐  normal 

☐  rechts pathologisch 

☐  links pathologisch 

 

Koordination/Ataxie  

Romberg Stand ☐  normal 

☐  Fallneigung  

 

Unterberger Tretversuch ☐  normal 

☐  Abweichung nach rechts  

☐  Abweichung nach links  

 

 

 

Nervenschädigung: Untersuchung  

Puls A. dorsales pedis  
 

Pulsqualität rechts links 

Kräftig ☐ ☐ 

Schwach ☐ ☐ 

fehlend ☐ ☐ 

ABI-Messung A. dorsalis pedis 

rechts 

☐  ≥1,3(Mönkeberg), 

☐  >0,9 (gesund), 
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RR Brachial:_______/_______ 

 

RR Ankle:   _____________ 

 

☐ Angaben für A. tibialis post. 

☐  ≤0,9-0,75 (leichte pAVK),  

☐  <0,75-0,5 (mittelschwere pAVK) 

☐  ≤0,5 (kritische Ischämie) 

☐  nicht messbar 

ABI-Messung A. dorsalis pedis links 

 

RR Brachial:_______/_______ 

 

RR Ankle:   ____________ 

 

☐ Angaben für A. tibialis post. 

☐  ≥1,3(Mönkeberg), 

☐  >0,9 (gesund), 

☐  ≤0,9-0,75 (leichte pAVK),  

☐  <0,75-0,5 (mittelschwere pAVK) 

☐  ≤0,5 (kritische Ischämie) 

☐  nicht messbar 

Achillessehnenreflex 
 

Qualität rechts links 

Normal/lebhaft ☐ ☐ 

Vermindert ☐(1) ☐(1) 

Fehlend ☐(2) ☐(2) 

gesteigert ☐ ☐ 

Vibrationsempfindung (Messung 

am Großzehengrundgelenk) 

 

Rechts______ / ___8___ 

 

Links ______ / ___8___ 

 

 

 

 

 

 

 

 

 

Qualität rechts links 

≥6/8 ☐ ☐ 

5/8 ☐ ☐ 

≤4/8 ☐(1) ☐(1) 

≤2/8 ☐(1) ☐(1) 

Schmerzempfinden 
 

Qualität rechts links 

Normal/lebhaft ☐(1) ☐(1) 

Vermindert/ 

Fehlend  

☐(1) ☐(1) 

Temperaturempfinden Qualität rechts links 

Normal/lebhaft ☐(0) ☐(0) 
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Vermindert/ 

Fehlend  

☐(1) ☐(1) 

Sensibilitätsprüfung (mit 10g 

Monofilament)  

 

Qualität rechts links 

Normal/lebhaft ☐ ☐ 

Vermindert ☐ ☐ 

Fehlend ☐ ☐ 

Punkte gesamt                                        /10 

 

Fußstatus / Beinstatus 

Muskeln   

 

 

 

 

Qualität rechts links 

Normal ☐ ☐ 

Atrophie  ☐ ☐ 

Hypertrophie  ☐ ☐ 

Deformitäten 
 

Qualität rechts links 

nein ☐ ☐ 

ja ☐ ☐ 

Kommentar:             

 

Höhere Kognitive Funktionen: Untersuchung  

Aktueller Beruf   

 

Reaktionszeit (aus App)  

 

Status Autonome Nervenfunktion  

Kommt es zu Schwindelgefühlen 

beim Lagewechsel  

(z. B. beim Aufstehen) 

 

  

☐ Ja                           ☐ Nein (nicht bekannt) 

 

 

 

 

 



96 

 

Sind Herzrhythmus-Störungen 

bekannt?  (Herzrasen, Herzstolpern, 

Herzklopfen) 

 

Welche Diagnose besteht?   

 

☐ Ja                           ☐ Nein (nicht bekannt) 

Haben Sie regelmäßig Stuhlgang 

ohne Abführmittel? 

☐ Ja                           ☐ Nein (nicht bekannt) 

Leiden Sie an 

Blasenentleerungsstörungen? 

☐ Ja                           ☐ Nein (nicht bekannt) 

Schwitzen sie verstärkt? ☐ Ja                           ☐ Nein (nicht bekannt) 
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11.4. Supplementary figures 

 

Supplementary Figure 1. Organization of exported data sets from the “Gamidiagnostics” session as CSV files and 
JSON objects. For each gamidiagnostic session, 16 tables were generated as data sets, all of which were 

automatically exported to local CSV files. The test identifier, the timestamp when the game session started, the 

study participant ID, the study personel supervising the test session, the software and hardware versions were 
documented in the first table for tracking game sessions on the remote server. The following files saved calibration 
thresholds, finger reaction time, game settings (version, tutorial, pressure thresholds, tasks parameters, etc.), task 
summaries (scores and points achieved in every task), and sensor data (recorded from each sample). A last file 
sumarized the results on the six hypothesis-driven key capabilities and provided feedback to study participants on 
their overall performance. 
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Supplementary Figure 2. IQ-Trial dashboard. On the dashboard of the IQ-Trial webpage the test identifier (“Test-
ID”, e.g., P367D221021T132601), timestamp (“Zeitstempel”, e.g., 22.10.2021 13:26), study participant ID 
(“Patienten-ID”, e.g., P367), insole identifier (“Sohlen”, e.g., GS_4344_1_R and GS_4344_1_L), group (“Gruppe”, 
e.g., Control or DPN), and game version (“Version”, e.g., middle version)  were presented. Users could filter, sort, 
and export datasets on demand. The exported dataset had a structure resembling the one on the gaming tablet. 

 

Supplementary Figure 3. Profiles on individual participants. Two game session datasets collected from a healthy 
volunteer are visualized, including time stamp, game version, achieved scores in different games, and calculated 
key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance). According to the 

spider chart, P001 performed better in his second session. 
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Supplementary Figure 4. Standardized assessment page of the Apple-Catch game. The top spider chart shows six 
hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance). 
The table below summarizes the study participant’s performance in every task, including collected apples (n), 
pressure level, reaction time [s], anticipation time [s], time inside catching area [s], time outside catching area [s], 
frequency outside catching area, and pressure gradients between successive frames of the left and right foot. The 
vertical line chart visualizes the position changes of the car (red line) and apples (green boxes), as well as pressure-

time curves measured by insoles (black line charts on both sides). 
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Supplementary Figure 5. Standardized assessment page of the Balloon-Flying game. The top spider chart shows 
six hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and 
balance). The table below summarizes the study participant’s performance in every task, including collected smileys 
(n), restarts (n), collisions (n), virtual deviation of the ideal flying route, and pressure-time integrals. Three graphics 
visualize obstacles, smileys, skyline, deviation of the real and the optimal flying route, and pressure-time curves. 
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Supplementary Figure 6. Standardized assessment page of the Cross-Pressure game. The top spider chart shows 
six hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and 
balance). The table below shows the total count of collected smileys and the study participant’s performance in 
every task, including anticipation time [s], execution time [s], time outside optimal pressure range [s], time for 
releasing pressure [s],   smileys (n), restarts (n), collisions (n), virtual deviation of the ideal flying route, and pressure 
gradients between successive frames of different foot areas. In each task, the line charts present pressure-time 

profiles of different plantar regions (left forefoot, left heel, right forefoot, and right heel). 
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Supplementary Figure 7. Standardized assessment page of the Island-Jump game. The top spider chart shows six 
hypothesis-driven key capabilities (skillfulness, reaction time, sensation, endurance, muscle strength, and balance). 
The table below shows the total count of jump attempts and the study participant’s performance in every task, 
including deviation from optimal pressure, anticipation time [s], pressure gradients between successive frames, and 
pressure time integrals. The bar plots below present the deviation from optimal pressure, and the line plots 
demonstrate pressure-time curves of the left and right insole in each task. 
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11.5. Supplementary tables 

Supplementary Table 1. Results of intergroup difference tests of game features within cohort 1. Differences between 
groups were calculated using Kruskal test, Mann-Whitney U test, t-test or chi-square test as appropriate. 
Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). CF: 
candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-Pressure; IJ: Island-Jump; TC: task 
combination; CON: controls (N=71); CON1: controls aged 18-30 (N=19); CON2: controls aged 31─50 (N=22); 
CON3: controls aged 51─80 (N=30); DPN: diabetic peripheral neuropathy (N=112); DPN1: mild (NDS: 1─5, N=48); 
DPN2: moderate (NDS: 6-8, N=55); DPN3: severe (NDS: 9-10, N=11); 

ID Game Task/TC  Feature Name 

P 
CON 
vs. 
DPN 

P  
CON 
vs. 
DPN1 

P  
CON 
vs. 
DPN2 

P 
CON 
vs. 
DPN3 

 P  
CON1, 
CON2, 
vs. 
CON3 

CF1 AC Task 8 Final virtual distance **** **** * * ns 

CF2 AC Task 12 Reaction time [s] *** * *** ns ns 

CF3 AC Task 12 Apple caught (yes/no) ** *** * ns ns 

CF4 AC TC 12 Time outside catching area [s] ** *** ns ns ns 

CF5 AC Task 13 
Pressure gradients between successive 
frames 

** ** *** * ns 

CF6 AC TC 1 Anticipation time [s] ** ** ** ns ns 

CF7 AC Task 5 Apple caught (yes/no) ** ** * ns ns 

CF8 AC TC 11 Time outside catching area [s] ** ** * ns ns 

CF9 AC TC 12 Final virtual distance ** ** * ns ns 

CF10 AC Task 5 Time inside catching area [s] ** ** * ns ns 

CF11 AC Task 6 
Pressure gradients between successive 
frames 

** ** * ns ns 

CF12 AC TC 2 Final virtual distance ** ** ns * ns 

CF13 AC TC 3 Time outside catching area [s] ** * * ns ns 

CF14 AC Task 7 Time outside catching area [s] ** * * ns ns 

CF15 AC Task 11 
Pressure gradients between successive 
frames 

** * * ns ns 

CF16 AC Task 13 Normalized pressure ** ns *** ns ns 

CF17 AC TC 11 Normalized pressure ** ns ** ns ns 

CF18 AC TC 12 Time inside catching area [s] ** ns ** ns ns 

CF19 AC Task 8 Time inside catching area [s] ** ns ** ns ns 

CF20 AC TC 11 
Pressure differences between 
successive frames 

** ns * ns ns 

CF21 AC Task 3 Time outside catching area [s] ** ns * ns ns 

CF22 AC Task 8 Normalized pressure * *** ns ns ns 

CF23 AC TC 4 Normalized pressure * ** ns ns ns 

CF24 AC TC 9 Anticipation time [s] * ** ns ns ns 

CF25 AC Task 2 Normalized pressure * ** ns ns ns 

CF26 AC Task 3 Apple caught (yes/no) * ** ns ns ns 

CF27 AC Task 8 Anticipation time [s] * ** ns ns ns 

CF28 AC TC 8 Reaction time [s] * * * ns ns 

CF29 AC Task 2 Normalized pressure * * * ns ns 

CF30 AC Task 3 Time inside catching area [s] * * * ns ns 

CF31 AC Task 6 Reaction time [s] * * * ns ns 

CF32 AC Task 9 Time outside catching area [s] * * * ns ns 

CF33 AC TC 7 Final virtual distance * * ns ns ns 

CF34 AC TC 5 Normalized pressure * * ns ns ns 

CF35 AC TC 9 Time inside catching area [s] * * ns ns ns 

CF36 AC Task 3 Final virtual distance * * ns ns ns 

CF37 AC Task 8 Apple caught (yes/no) * * ns ns ns 

CF38 AC Task 12 
Pressure gradients between successive 
frames 

* * ns ns ns 

CF39 AC TC 5 Normalized pressure * ns ** ns ns 

CF40 AC TC 5 
Pressure differences between 
successive frames 

* ns ** ns ns 

CF41 AC Task 6 Time inside catching area [s] * ns ** ns ns 

CF42 AC Task 12 Time inside catching area [s] * ns ** ns ns 

CF43 AC Task 12 Final virtual distance * ns ** ns ns 

CF44 AC Task 13 Reaction time [s] * ns ** ns ns 

CF45 AC TC 2 Anticipation time [s] * ns * ns ns 

CF46 AC TC 7 Normalized pressure * ns * ns ns 
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CF47 AC TC 10 
Pressure differences between 
successive frames 

* ns * ns ns 

CF48 AC Task 9 Normalized pressure * ns * ns ns 

CF49 AC Task 9 
Pressure gradients between successive 
frames 

* ns * ns ns 

CF50 AC Task 13 
Pressure gradients between successive 
frames 

* ns * ns ns 

CF51 AC TC 3 Normalized pressure * ns ns ns ns 

CF52 AC TC 4 Time outside catching area [s] * ns ns ns ns 

CF53 AC Task 5 Normalized pressure * ns ns ns ns 

CF54 BF (L) TC 1 Minimal virtual distance smiley 4 **** **** **** ns *** 

CF55 BF (L) Task 7 Virtual deviation of ideal flying route **** *** **** * *** 

CF56 BF (R) TC 1 Minimal virtual distance smiley 4 **** *** *** ns * 

CF57 BF (R) TC 2 Virtual deviation of ideal flying route **** *** *** ns ns 

CF58 BF (L) Task 5 Normalized pressure **** *** ** ns ** 

CF59 BF (L) Task 7 Virtual deviation of ideal flying route **** ** **** * ** 

CF60 BF (R) TC 1 Minimal virtual distance smiley 2 **** ** **** ns ** 

CF61 BF (R) TC 3 Virtual deviation of ideal flying route **** ** **** ns **** 

CF62 BF (R) Task 3 Virtual deviation of ideal flying route **** ** ** * ns 

CF63 BF (L) Task 4 Virtual deviation of ideal flying route *** ** **** ns ns 

CF64 BF (R) TC 3 Minimal virtual distance smiley 2 *** ** *** * ns 

CF65 BF (L) Task 11 Virtual deviation of ideal flying route *** ** *** ns ** 

CF66 BF (R) TC 1 Minimal virtual distance smiley 1 *** ** *** ns **** 

CF67 BF (L) Task 8 Virtual deviation of ideal flying route *** ** *** ns * 

CF68 BF (L) TC 2 Minimal virtual distance smiley 4 *** ** *** ns ns 

CF69 BF (L) Task 6 Virtual deviation of ideal flying route *** ** *** ns ns 

CF70 BF (L) TC 1 Minimal virtual distance smiley 3 *** ** ** ns * 

CF71 BF (L) Task 9 Virtual deviation of ideal flying route *** ** ** ns * 

CF72 BF (R) Task 8 Virtual deviation of ideal flying route *** ** ** ns * 

CF73 BF (L) TC 3 Virtual deviation of ideal flying route *** ** ** ns ns 

CF74 BF (L) TC 3 Minimal virtual distance smiley 2 *** * *** ns * 

CF75 BF (R) Task 10 Virtual deviation of ideal flying route *** * ** ** *** 

CF76 BF (L) TC 3 Minimal virtual distance smiley 1 ** **** ns ns ns 

CF77 BF (L) Task 5 Collision frequency (n) ** *** ** ns * 

CF78 BF (L) TC 3 Collision frequency (n) ** ** ** * ** 

CF79 BF (L) TC 2 Collision frequency (n) ** ** ** * * 

CF80 BF (L) Task 9 Virtual deviation of ideal flying route ** ** ** ns ** 

CF81 BF (L) Task 12 Virtual deviation of ideal flying route ** ** ** ns ns 

CF82 BF (R) TC 2 Collision frequency (n) ** ** * * * 

CF83 BF (R) TC 2 Minimal virtual distance smiley 4 ** ** * ns * 

CF84 BF (L) TC 4 Collision frequency (n) ** ** * ns ns 

CF85 BF (R) Task 2 Virtual deviation of ideal flying route ** ** * ns ns 

CF86 BF (L) Task 5 Virtual deviation of ideal flying route ** ** * ns ns 

CF87 BF (L) Task 5 Normalized pressure ** ** * ns ns 

CF88 BF (L) Task 3 Minimal virtual distance smiley 1 ** ** ns * ns 

CF89 BF (R) Task 11 Virtual deviation of ideal flying route ** * *** ns * 

CF90 BF (L) TC 2 Virtual deviation of ideal flying route ** * *** ns * 

CF91 BF (L) Task 5 Virtual deviation of ideal flying route ** * *** ns * 

CF92 BF (L) Task 6 Normalized pressure ** * ** ** ns 

CF93 BF (R) TC 1 Normalized pressure ** * ** ns * 

CF94 BF (R) TC 4 Collision frequency (n) ** * ** ns * 

CF95 BF (R) Task 1 Virtual deviation of ideal flying route ** * ** ns ns 

CF96 BF (R) Task 3 Virtual deviation of ideal flying route ** * ** ns ** 

CF97 BF (L) Task 3 Minimal virtual distance smiley 2 ** * ** ns ns 

CF98 BF (R) Task 8 Minimal virtual distance smiley 2 ** * ** ns ns 

CF99 BF (R) TC 4 Minimal virtual distance smiley 3 ** * * ns ** 

CF100 BF (L) Task 5 Minimal virtual distance smiley 4 ** * * ns * 

CF101 BF (R) TC 2 Minimal virtual distance smiley 2 ** * * ns ** 

CF102 BF (L) Task 3 Virtual deviation of ideal flying route ** * * ns ** 

CF103 BF (L) Task 10 Virtual deviation of ideal flying route ** * * ns ns 

CF104 BF (R) TC 3 Minimal virtual distance smiley 2 ** * ns ** ns 

CF105 BF (L) TC 4 Normalized pressure ** ns *** * ns 

CF106 BF (R) TC 1 Minimal virtual distance smiley 3 ** ns *** ns *** 

CF107 BF (R) Task 7 Virtual deviation of ideal flying route ** ns *** ns *** 

CF108 BF (L) Task 10 Virtual deviation of ideal flying route ** ns *** ns ns 

CF109 BF (L) TC 3 Minimal virtual distance smiley 3 ** ns ** * * 

CF110 BF (L) TC 4 Virtual deviation of ideal flying route ** ns ** * ns 

CF111 BF (L) Task 1 Minimal virtual distance smiley 3 ** ns ** ** ns 

CF112 BF (R) TC 3 Virtual deviation of ideal flying route ** ns ** ns **** 

CF113 BF (L) TC 2 Minimal virtual distance smiley 1 ** ns ** ns ** 

CF114 BF (R) TC 3 Collision frequency (n) ** ns ** ns *** 

CF115 BF (L) Task 4 Minimal virtual distance smiley 4 ** ns ** ns * 
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CF116 BF (R) Task 5 Virtual deviation of ideal flying route ** ns ** ns * 

CF117 BF (R) Task 3 Minimal virtual distance smiley 2 ** ns ** ns ns 

CF118 BF (R) Task 5 Collision frequency (n) ** ns * ns ** 

CF119 BF (L) TC 3 Minimal virtual distance smiley 4 ** ns * ns * 

CF120 BF (R) TC 2 Minimal virtual distance smiley 3 ** ns * ns ns 

CF121 BF (L) Task 3 Normalized pressure * ** ns ns ** 

CF122 BF (L) Task 6 Pressure-time integrals * ** ns ns ns 

CF123 BF (L) Task 3 Normalized pressure * * * ns ** 

CF124 BF (L) TC 2 
Pressure gradients between successive 
frames 

* * * ns ns 

CF125 BF (R) TC 4 Minimal virtual distance smiley 1 * * * ns ns 

CF126 BF (R) Task 7 Minimal virtual distance smiley 2 * * * ns ns 

CF127 BF (L) Task 11 Minimal virtual distance smiley 4 * * ns ns ** 

CF128 BF (L) TC 2 Minimal virtual distance smiley 3 * * ns ns ns 

CF129 BF (L) TC 2 
Pressure differences between 
successive frames 

* * ns ns ns 

CF130 BF (L) Task 1 Virtual deviation of ideal flying route * * ns ns ns 

CF131 BF (L) Task 4 
Pressure differences between 
successive frames 

* * ns ns ns 

CF132 BF (L) Task 6 Minimal virtual distance smiley 1 * * ns ns ns 

CF133 BF (L) Task 11 Minimal virtual distance smiley 3 * * ns ns ns 

CF134 BF (L) Task 11 Virtual deviation of ideal flying route * * ns ns ns 

CF135 BF (R) Task 8 Minimal virtual distance smiley 1 * * ns ns ns 

CF136 BF (R) Task 9 Virtual deviation of ideal flying route * ns *** ns ** 

CF137 BF (L) Task 7 Minimal virtual distance smiley 2 * ns ** ns * 

CF138 BF (L) Task 10 Virtual deviation of ideal flying route * ns ** ns ns 

CF139 BF (R) Task 2 Virtual deviation of ideal flying route * ns ** ns ns 

CF140 BF (L) Task 7 Minimal virtual distance smiley 3 * ns * * ns 

CF141 BF (R) Task 12 Virtual deviation of ideal flying route * ns * * ns 

CF142 BF (L) Task 11 Normalized pressure * ns * ** ns 

CF143 BF (R) Task 4 Virtual deviation of ideal flying route * ns * ns **** 

CF144 BF (R) TC 2 Virtual deviation of ideal flying route * ns * ns ** 

CF145 BF (R) Task 4 Minimal virtual distance smiley 4 * ns * ns ns 

CF146 BF (L) Task 1 Virtual deviation of ideal flying route * ns * ns * 

CF147 BF (L) Task 4 Minimal virtual distance smiley 3 * ns * ns ns 

CF148 BF (R) Task 11 Collision frequency (n) * ns * ns ns 

CF149 BF (R) Task 9 Virtual deviation of ideal flying route * ns * ns * 

CF150 BF (L) TC 1 Normalized pressure * ns * ns ns 

CF151 BF (L) Task 2 Virtual deviation of ideal flying route * ns * ns ns 

CF152 BF (L) Task 6 
Pressure differences between 
successive frames 

* ns * ns ns 

CF153 BF (L) Task 7 Normalized pressure * ns * ns ns 

CF154 BF (R) TC 2 
Pressure differences between 
successive frames 

* ns * ns ns 

CF155 BF (R) Task 5 Minimal virtual distance smiley 1 * ns * ns ns 

CF156 BF (R) Task 5 Minimal virtual distance smiley 4 * ns * ns ns 

CF157 BF (R) Task 5 Normalized pressure * ns * ns ns 

CF158 BF (R) Task 5 
Pressure differences between 
successive frames 

* ns * ns ns 

CF159 BF (R) Task 6 Virtual deviation of ideal flying route * ns * ns ns 

CF160 BF (L) Task 4 Virtual deviation of ideal flying route * ns ns * ns 

CF161 BF (R) Task 10 Minimal virtual distance smiley 3 * ns ns *** * 

CF162 BF (R) TC 3 Virtual deviation of ideal flying route * ns ns ns **** 

CF163 BF (R) Task 1 Normalized pressure * ns ns ns ns 

CF164 BF (R) Task 2 Normalized pressure * ns ns ns * 

CF165 BF (R) Task 11 Minimal virtual distance smiley 3 * ns ns ns ** 

CF166 BF (L) Task 5 
Pressure differences between 
successive frames 

* ns ns ns ns 

CF167 BF (L) Task 12 Minimal virtual distance smiley 3 * ns ns ns ns 

CF168 BF (R) TC 1 Normalized pressure * ns ns ns ns 

CF169 BF (R) TC 4 Normalized pressure * ns ns ns ns 

CF170 BF (R) Task 5 Minimal virtual distance smiley 3 * ns ns ns ns 

CF171 BF (L) Task 11 Normalized pressure ns ns * ns ns 

CF172 BF (L) Task 11 Normalized pressure ns ns * ns ns 

CF173 CP TC 6 Time outside ideal pressure zone [s] **** **** **** * * 

CF174 CP Task 1 Reaction time [s] **** **** *** ns ns 

CF175 CP Task 2 Reaction time [s] **** *** **** ns ns 

CF176 CP Task 8 Time outside ideal pressure zone [s] **** *** **** ns ns 

CF177 CP Task 9 Normalized pressure (L) **** *** *** ns *** 

CF178 CP Task 4 Normalized pressure (R) **** *** *** ns ns 

CF179 CP Task 6 Time outside ideal pressure zone [s] **** *** ** * ns 

CF180 CP TC 6 Anticipation time [s] **** *** ** ns * 
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CF181 CP TC 5 Reaction time [s] **** ** *** * ** 

CF182 CP Task 7 Reaction time [s] **** ** *** * ns 

CF183 CP Task 4 
Pressure differences between 
successive frames (R) 

*** **** ** ns ns 

CF184 CP Task 9 Reaction time [s] *** **** * ns ns 

CF185 CP TC 4 Time outside ideal pressure zone [s] *** ** *** ns ns 

CF186 CP TC 6 Normalized pressure (L) *** ** *** ns ns 

CF187 CP Task 6 Reaction time [s] *** ** *** ns ns 

CF188 CP TC 1 Normalized pressure (L) *** ** ** * ns 

CF189 CP TC 6 Normalized pressure (L) *** ** ** ns ns 

CF190 CP TC 4 Reaction time [s] *** ** ** ns * 

CF191 CP TC 6 
Pressure differences between 
successive frames (L) 

*** ** ** ns ns 

CF192 CP Task 4 Reaction time [s] *** ** ** ns ns 

CF193 CP Task 8 Normalized pressure (L) *** ** ** ns ns 

CF194 CP TC 2 Normalized pressure (R) *** ** * * ns 

CF195 CP Task 13 Normalized pressure (L) ** *** ns ns ns 

CF196 CP Task 7 Anticipation time [s] ** ** ** ns *** 

CF197 CP TC 2 Anticipation time [s] ** ** * ns **** 

CF198 CP TC 6 Normalized pressure (L) ** ** * ns ns 

CF199 CP Task 1 Time outside ideal pressure zone [s] ** ** * ns ns 

CF200 CP TC 5 
Pressure gradients between successive 
frames (R) 

** ** ns * ** 

CF201 CP Task 12 Reaction time [s] ** ** ns * ns 

CF202 CP Task 10 Reaction time [s] ** ** ns ns ns 

CF203 CP Task 12 Normalized pressure (R) ** ** ns ns ns 

CF204 CP TC 5 Time outside ideal pressure zone [s] ** * ** * ns 

CF205 CP TC 6 
Pressure differences between 
successive frames (L) 

** * ** * ns 

CF206 CP Task 8 Normalized pressure (R) ** * ** ns ns 

CF207 CP TC 6 Normalized pressure (R) ** * ** ns ns 

CF208 CP Task 4 Time outside ideal pressure zone [s] ** * ** ns ns 

CF209 CP Task 7 Time outside ideal pressure zone [s] ** * ** ns ns 

CF210 CP Task 8 Reaction time [s] ** * * * ns 

CF211 CP Task 14 Reaction time [s] ** * * * ns 

CF212 CP Task 5 Reaction time [s] ** * * ns ** 

CF213 CP TC 6 Normalized pressure (R) ** * * ns ns 

CF214 CP Task 7 
Pressure differences between 
successive frames (L) 

** * * ns ns 

CF215 CP TC 5 
Pressure differences between 
successive frames (R) 

** * ns * ** 

CF216 CP TC 7 
Pressure differences between 
successive frames (L) 

** * ns * ns 

CF217 CP Task 5 
Pressure-time integrals of the reaction 
phase (R) 

** * ns * ns 

CF218 CP Task 12 
Pressure-time integrals of the reaction 
phase (R) 

** ns *** * ns 

CF219 CP TC 7 
Pressure differences between 
successive frames (L) 

** ns ** ns ns 

CF220 CP TC 6 Reaction time [s] ** ns ** ns * 

CF221 CP TC 6 Normalized pressure (R) ** ns ** ns ns 

CF222 CP TC 7 Normalized pressure (L) ** ns * ** ns 

CF223 CP TC 6 
Pressure differences between 
successive frames (R) 

** ns * ns ns 

CF224 CP Task 7 
Pressure-time integrals of the reaction 
phase (R) 

** ns * ns ns 

CF225 CP Task 8 
Pressure differences between 
successive frames (L) 

* ** ns * ns 

CF226 CP TC 6 
Pressure differences between 
successive frames (R) 

* * * ns ns 

CF227 CP TC 6 
Pressure-time integrals of the execution 
phase (R) 

* * * ns ns 

CF228 CP Task 4 
Pressure-time integrals of the execution 
phase (R) 

* * * ns ns 

CF229 CP Task 15 Normalized pressure (L) * * ns * ns 

CF230 CP TC 9 Normalized pressure (L) * * ns * ns 

CF231 CP TC 9 Reaction time [s] * * ns * ns 

CF232 CP TC 5 Normalized pressure (R) * * ns ns ns 

CF233 CP Task 5 Anticipation time [s] * * ns ns ** 

CF234 CP Task 8 Anticipation time [s] * * ns ns ** 

CF235 CP TC 5 Anticipation time [s] * * ns ns ns 

CF236 CP TC 5 Normalized pressure (R) * * ns ns ns 
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CF237 CP Task 5 Time outside ideal pressure zone [s] * * ns ns ns 

CF238 CP Task 6 Normalized pressure (R) * * ns ns ns 

CF239 CP Task 7 
Pressure differences between 
successive frames (R) 

* * ns ns ns 

CF240 CP TC 4 Normalized pressure (L) * ns ** ns * 

CF241 CP Task 15 Normalized pressure (L) * ns * * ** 

CF242 CP Task 10 
Pressure-time integrals of the reaction 
phase (L) 

* ns * * ns 

CF243 CP Task 5 Normalized pressure (L) * ns * ns ns 

CF244 CP Task 2 Time outside ideal pressure zone [s] * ns * ns ** 

CF245 CP Task 2 Normalized pressure (L) * ns * ns ns 

CF246 CP Task 9 Time outside ideal pressure zone [s] * ns * ns ns 

CF247 CP Task 16 
Pressure-time integrals of the reaction 
phase (L) 

* ns * ns ** 

CF248 CP Task 5 Normalized pressure (R) * ns * ns ns 

CF249 CP Task 13 
Pressure-time integrals of the reaction 
phase (R) 

* ns * ns ns 

CF250 CP Task 9 
Pressure-time integrals of the reaction 
phase (L) 

* ns ns * ** 

CF251 CP TC 9 Time outside ideal pressure zone [s] * ns ns * ns 

CF252 CP Task 15 Reaction time [s] * ns ns * ns 

CF253 CP Task 3 Time outside ideal pressure zone [s] * ns ns ** ns 

CF254 CP Task 3 
Pressure-time integrals of the execution 
phase (R) 

* ns ns ** ns 

CF255 CP TC 7 Reaction time [s] * ns ns ns * 

CF256 CP Task 15 
Pressure-time integrals of the reaction 
phase (L) 

* ns ns ns * 

CF257 CP Task 1 Normalized pressure (L) * ns ns ns ns 

CF258 CP Task 6 Normalized pressure (L) * ns ns ns ns 

CF259 CP Task 11 
Pressure differences between 
successive frames (R) 

* ns ns ns ns 

CF260 IJ TC 6 Deviation from ideal pressure **** **** **** ns ns 

CF261 IJ TC 4 Deviation from ideal pressure **** *** **** ns ns 

CF262 IJ TC 4 
Pressure differences between 
successive frames 

**** *** **** ns ns 

CF263 IJ TC 7 Deviation from ideal pressure **** *** *** ns ns 

CF264 IJ TC 6 Deviation from ideal pressure *** *** ** ns ns 

CF265 IJ Task 2 Deviation from ideal pressure *** *** ** ns ns 

CF266 IJ Task 2 Deviation from ideal pressure *** *** * ns ns 

CF267 IJ TC 5 Mean pressure of execution phase *** ** * ns ns 

CF268 IJ TC 7 Deviation from ideal pressure *** * *** ns * 

CF269 IJ TC 6 Anticipation time [s] *** * *** ns ns 

CF270 IJ Task 10 Attempt count (n) ** *** * ns ns 

CF271 IJ Task 9 Pressure-time integrals ** *** ns * * 

CF272 IJ TC 4 Execution time [s] ** ** ** ns ** 

CF273 IJ TC 3 Anticipation time [s] ** ** ** ns ns 

CF274 IJ Task 4 Attempt count (n) ** ** ** ns ns 

CF275 IJ Task 4 Execution time [s] ** ** * ns ns 

CF276 IJ Task 11 Execution time [s] ** ** * ns ns 

CF277 IJ Task 9 Mean pressure of execution phase ** ** ns * ns 

CF278 IJ TC 6 
Pressure differences between 
successive frames 

** * *** ns ns 

CF279 IJ Task 1 Deviation from ideal pressure ** * ** ns ns 

CF280 IJ Task 10 Pressure-time integrals ** * ** ns ns 

CF281 IJ Task 13 Deviation from ideal pressure ** * ** ns ns 

CF282 IJ Task 11 Attempt count (n) ** * * * * 

CF283 IJ Task 5 Pressure-time integrals ** * * ns * 

CF284 IJ TC 3 Deviation from ideal pressure ** * * ns ns 

CF285 IJ Task 11 Pressure-time integrals ** * * ns ns 

CF286 IJ Task 11 
Pressure differences between 
successive frames 

** * * ns ns 

CF287 IJ Task 6 Execution time [s] ** * ns ** ns 

CF288 IJ Task 1 Pressure-time integrals ** * ns ns ns 

CF289 IJ TC 2 
Pressure differences between 
successive frames 

** ns ** ns ns 

CF290 IJ Task 1 Pressure-time integrals ** ns * * ns 

CF291 IJ Task 16 Execution time [s] * ** ns ns * 

CF292 IJ Task 10 Mean pressure of execution phase * ** ns ns ns 

CF293 IJ TC 7 Deviation from ideal pressure * * * ns * 

CF294 IJ Task 6 Pressure-time integrals * * * ns ns 

CF295 IJ Task 16 Pressure-time integrals * * * ns ns 

CF296 IJ Task 12 Anticipation time [s] * * ns ns ns 
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CF297 IJ Task 10 Deviation from ideal pressure * ns ** ns * 

CF298 IJ Task 6 Deviation from ideal pressure * ns ** ns ns 

CF299 IJ Task 14 Deviation from ideal pressure * ns ** ns ns 

CF300 IJ Task 15 Anticipation time [s] * ns ** ns ns 

CF301 IJ TC 3 Execution time [s] * ns * * ns 

CF302 IJ Task 16 Deviation from ideal pressure * ns * ns * 

CF303 IJ Task 6 
Pressure differences between 
successive frames 

* ns * ns ns 

CF304 IJ TC 2 Mean pressure of execution phase * ns * ns ns 

CF305 IJ Task 1 
Pressure differences between 
successive frames 

* ns * ns ns 

CF306 IJ Task 2 Pressure-time integrals * ns * ns ns 

CF307 IJ Task 5 
Pressure differences between 
successive frames 

* ns * ns ns 

CF308 IJ Task 14 Anticipation time [s] * ns * ns ns 

CF309 IJ Task 15 Deviation from ideal pressure * ns * ns ns 

CF310 IJ TC 7 Execution time [s] * ns ns * * 

CF311 IJ TC 6 
Pressure differences between 
successive frames 

* ns ns ns ns 

CF312 IJ Task 9 Deviation from ideal pressure * ns ns ns ns 

CF313 IJ Task 10 Execution time [s] * ns ns ns ns 

CF314 IJ Task 11 Anticipation time [s] * ns ns ns ns 
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Supplementary Table 2. Results of intergroup difference tests of game features within cohort 2. Differences between 
groups were calculated using the Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: 
ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). CF: candidate features; 
AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-Pressure; IJ: Island-Jump; TC: task combination 

ID Game Task/TC Feature Name Signif P Value Statistic Method Normality 

1 AC Task 12 Reaction time [s] *** 0,00069 1896 
Wilcoxon 
test 

FALSE 

2 AC TC 8 Normalized pressure ** 0,00232 847 
Wilcoxon 
test 

FALSE 

3 AC Task 13 Normalized pressure ** 0,00656 918,5 
Wilcoxon 
test 

FALSE 

4 AC TC 10 
Frequency outside catching area 
(n) 

* 0,0138 980 
Wilcoxon 
test 

FALSE 

5 AC TC 9 Normalized pressure * 0,01496 1752 
Wilcoxon 
test 

FALSE 

6 AC Task 13 
Pressure gradients between 
successive frames 

* 0,02454 1721,5 
Wilcoxon 
test 

FALSE 

7 AC Task 6 
Pressure gradients between 
successive frames 

* 0,02553 1719 
Wilcoxon 
test 

FALSE 

8 AC TC 4 Normalized pressure * 0,02717 985 
Wilcoxon 
test 

FALSE 

9 AC TC 2 Anticipation time [s] * 0,02838 -2,26 T-test TRUE 

10 AC Task 8 Final virtual distance * 0,03003 991,5 
Wilcoxon 
test 

FALSE 

11 AC Task 11 Anticipation time [s] * 0,03766 1008,5 
Wilcoxon 
test 

FALSE 

12 AC TC 8 Reaction time [s] * 0,03806 1689,5 
Wilcoxon 
test 

FALSE 

13 AC Task 4 
Frequency outside catching area 
(n) 

* 0,04291 1121 
Wilcoxon 
test 

FALSE 

14 AC Task 8 
Pressure gradients between 
successive frames 

* 0,04517 1681 
Wilcoxon 
test 

FALSE 

15 AC Task 13 
Pressure gradients between 
successive frames 

* 0,04577 2,06 T-test TRUE 

16 AC Task 10 Normalized pressure * 0,04725 1676 
Wilcoxon 
test 

FALSE 

17 BF (L) Task 7 Normalized pressure * 0,03113 1706 
Wilcoxon 
test 

FALSE 

18 BF (L) Task 7 Normalized pressure * 0,03178 1050 
Wilcoxon 
test 

FALSE 

19 BF (L) Task 6 
Pressure differences between 
successive frames 

* 0,03671 -2,15 T-test TRUE 

20 BF (L) TC 4 Normalized pressure * 0,03749 1020,5 
Wilcoxon 
test 

FALSE 

21 BF (L) TC 4 Minimal virtual distance smiley 3 * 0,04223 1016,5 
Wilcoxon 
test 

FALSE 

22 BF (L) TC 4 
Virtual deviation of ideal flying 
route 

* 0,04749 1022,5 
Wilcoxon 
test 

FALSE 

23 BF (L) Task 3 Minimal virtual distance smiley 2 * 0,04999 1673,5 
Wilcoxon 
test 

FALSE 

24 BF (R) Task 11 
Pressure differences between 
successive frames 

** 0,00407 875,5 
Wilcoxon 
test 

FALSE 

25 BF (R) Task 3 
Virtual deviation of ideal flying 
route 

* 0,02631 1717 
Wilcoxon 
test 

FALSE 

26 BF (R) TC 4 
Pressure gradients between 
successive frames 

* 0,04452 1682 
Wilcoxon 
test 

FALSE 

27 BF (R) Task 9 
Pressure differences between 
successive frames 

* 0,04677 1678,5 
Wilcoxon 
test 

FALSE 

28 CP TC 8 
Pressure gradients between 
successive frames (R) 

* 0,01139 932 
Wilcoxon 
test 

FALSE 

29 CP Task 4 Normalized pressure (R) * 0,01169 933,5 
Wilcoxon 
test 

FALSE 

30 CP Task 10 
Pressure-time integrals of the 
reaction phase (L) 

* 0,01484 947,5 
Wilcoxon 
test 

FALSE 

31 CP Task 6 
Time outside ideal pressure 
zone [s] 

* 0,02079 1004,5 
Wilcoxon 
test 

FALSE 

32 CP Task 4 Anticipation time [s] * 0,02118 1730,5 
Wilcoxon 
test 

FALSE 

33 CP Task 11 
Time outside ideal pressure 
zone [s] 

* 0,02297 1578 
Wilcoxon 
test 

FALSE 

34 CP TC 6 
Time outside ideal pressure 
zone [s] 

* 0,02369 977 
Wilcoxon 
test 

FALSE 
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35 CP Task 6 Reaction time [s] * 0,02415 977,5 
Wilcoxon 
test 

FALSE 

36 CP Task 7 Reaction time [s] * 0,02592 982 
Wilcoxon 
test 

FALSE 

37 CP Task 4 
Pressure-time integrals of the 
execution phase (R) 

* 0,04319 -2,07 T-test TRUE 

38 CP Task 11 
Pressure gradients between 
successive frames (R) 

* 0,04356 1683,5 
Wilcoxon 
test 

FALSE 

39 CP Task 9 Reaction time [s] * 0,04546 1019,5 
Wilcoxon 
test 

FALSE 

40 CP Task 5 Normalized pressure (L) * 0,04853 1024 
Wilcoxon 
test 

FALSE 

41 CP Task 8 
Time outside ideal pressure 
zone [s] 

* 0,04915 1054,5 
Wilcoxon 
test 

FALSE 

42 IJ Task 16 Deviation from ideal pressure ** 0,00548 899,5 
Wilcoxon 
test 

FALSE 

43 IJ TC 3 Execution time [s] ** 0,0065 900,5 
Wilcoxon 
test 

FALSE 

44 IJ TC 3 Anticipation time [s] * 0,01421 945,5 
Wilcoxon 
test 

FALSE 

45 IJ Task 9 Execution time [s] * 0,01434 1754,5 
Wilcoxon 
test 

FALSE 

46 IJ Task 9 Anticipation time [s] * 0,01524 970 
Wilcoxon 
test 

FALSE 

47 IJ Task 3 
Pressure differences between 
successive frames 

* 0,01682 1695,5 
Wilcoxon 
test 

FALSE 

48 IJ Task 12 Anticipation time [s] * 0,01898 962,5 
Wilcoxon 
test 

FALSE 

49 IJ TC 6 Deviation from ideal pressure * 0,02128 969,5 
Wilcoxon 
test 

FALSE 

50 IJ Task 14 Anticipation time [s] * 0,02323 992,5 
Wilcoxon 
test 

FALSE 

51 IJ Task 5 
Pressure differences between 
successive frames 

* 0,02507 1029,5 
Wilcoxon 
test 

FALSE 

52 IJ TC 4 
Pressure differences between 
successive frames 

* 0,02513 980 
Wilcoxon 
test 

FALSE 

53 IJ Task 2 Deviation from ideal pressure * 0,02812 990,5 
Wilcoxon 
test 

FALSE 

54 IJ TC 6 Anticipation time [s] * 0,03168 995 
Wilcoxon 
test 

FALSE 

55 IJ Task 2 Deviation from ideal pressure * 0,03187 998 
Wilcoxon 
test 

FALSE 

56 IJ Task 6 
Pressure differences between 
successive frames 

* 0,03546 1002,5 
Wilcoxon 
test 

FALSE 

57 IJ Task 13 Deviation from ideal pressure * 0,03997 1013 
Wilcoxon 
test 

FALSE 

58 IJ TC 5 
Mean pressure of execution 
phase 

* 0,04141 1013 
Wilcoxon 
test 

FALSE 
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Supplementary Table 3. Results of intergroup difference tests of game features between normal and 
reduced/absent Aδ/C-fiber function groups in diabetes. Differences between groups were calculated using the 
Mann-Whitney U test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** 
(p=0.001─0.01), *** (p=0.0001─0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-
Flying; CP: Cross-Pressure; IJ: Island-Jump; TC: task combination 

ID Game Task/TC Feature Name Signif P.Value Statistic Method Normality 

1 AC Task 13 
Pressure gradients between 
successive frames 

** 0,00381 2,99 T-test TRUE 

2 AC TC 8 Final virtual distance * 0,01287 669,5 
Wilcoxon 
test 

FALSE 

3 AC Task 12 Apple caught (yes/no) * 0,01308 6,16 
Chi-
square 
test 

FALSE 

4 AC TC 9 
Pressure differences between 
successive frames 

* 0,01829 1259 
Wilcoxon 
test 

FALSE 

5 AC Task 8 Time inside catching area [s] * 0,02506 699,5 
Wilcoxon 
test 

FALSE 

6 AC TC 5 Normalized pressure * 0,02817 705 
Wilcoxon 
test 

FALSE 

7 AC Task 12 Anticipation time [s] * 0,03097 1233 
Wilcoxon 
test 

FALSE 

8 AC TC 12 
Pressure differences between 
successive frames 

* 0,03658 -2,12 T-test TRUE 

9 AC TC 11 
Frequency outside catching area 
(n) 

* 0,04041 1188 
Wilcoxon 
test 

FALSE 

10 AC TC 10 
Pressure differences between 
successive frames 

* 0,04447 1216,5 
Wilcoxon 
test 

FALSE 

11 AC TC 2 Time inside catching area [s] * 0,04698 -2,02 T-test TRUE 

12 BF (L) Task 4 
Virtual deviation of ideal flying 
route 

* 0,01066 1282,5 
Wilcoxon 
test 

FALSE 

13 BF (L) Task 8 
Pressure gradients between 
successive frames 

* 0,01132 664 
Wilcoxon 
test 

FALSE 

14 BF (L) Task 6 Pressure-time integrals * 0,01272 669 
Wilcoxon 
test 

FALSE 

15 BF (L) Task 11 Normalized pressure * 0,01292 698,5 
Wilcoxon 
test 

FALSE 

16 BF (L) Task 6 Normalized pressure * 0,01424 -2,51 T-test TRUE 

17 BF (L) TC 1 
Pressure gradients between 
successive frames 

* 0,01494 676 
Wilcoxon 
test 

FALSE 

18 BF (L) TC 4 Minimal virtual distance smiley 2 * 0,01559 678 
Wilcoxon 
test 

FALSE 

19 BF (L) Task 12 Minimal virtual distance smiley 4 * 0,0156 1260 
Wilcoxon 
test 

FALSE 

20 BF (L) Task 12 
Virtual deviation of ideal flying 
route 

* 0,02064 690,5 
Wilcoxon 
test 

FALSE 

21 BF (L) Task 9 
Pressure gradients between 
successive frames 

* 0,0218 693 
Wilcoxon 
test 

FALSE 

22 BF (L) Task 9 Minimal virtual distance smiley 3 * 0,02411 700 
Wilcoxon 
test 

FALSE 

23 BF (L) Task 3 
Virtual deviation of ideal flying 
route 

* 0,02638 1242 
Wilcoxon 
test 

FALSE 

24 BF (L) Task 11 
Pressure gradients between 
successive frames 

* 0,03191 711 
Wilcoxon 
test 

FALSE 

25 BF (L) TC 2 Minimal virtual distance smiley 4 * 0,03325 713 
Wilcoxon 
test 

FALSE 

26 BF (L) Task 6 
Pressure gradients between 
successive frames 

* 0,04069 723 
Wilcoxon 
test 

FALSE 

27 BF (L) Task 5 Normalized pressure * 0,04419 -2,05 T-test TRUE 

28 BF (L) Task 5 Minimal virtual distance smiley 4 * 0,0452 772 
Wilcoxon 
test 

FALSE 

29 BF (L) Task 9 
Virtual deviation of ideal flying 
route 

* 0,04577 1215 
Wilcoxon 
test 

FALSE 

30 BF (L) Task 7 Minimal virtual distance smiley 4 * 0,04622 730 
Wilcoxon 
test 

FALSE 

31 BF (R) Task 3 Pressure-time integrals *** 0,00042 543 
Wilcoxon 
test 

FALSE 

32 BF (R) TC 2 Normalized pressure *** 0,00077 1381 
Wilcoxon 
test 

FALSE 

33 BF (R) Task 4 Normalized pressure *** 0,00095 1373,5 
Wilcoxon 
test 

FALSE 

34 BF (R) Task 3 Normalized pressure ** 0,00318 -3,05 T-test TRUE 
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35 BF (R) TC 2 
Pressure differences between 
successive frames 

** 0,00682 1301 
Wilcoxon 
test 

FALSE 

36 BF (R) TC 2 
Pressure gradients between 
successive frames 

** 0,00936 1288 
Wilcoxon 
test 

FALSE 

37 BF (R) Task 7 
Pressure differences between 
successive frames 

* 0,01186 666 
Wilcoxon 
test 

FALSE 

38 BF (R) TC 1 
Pressure gradients between 
successive frames 

* 0,01215 1277 
Wilcoxon 
test 

FALSE 

39 BF (R) Task 10 Normalized pressure * 0,02231 -2,33 T-test TRUE 

40 BF (R) TC 3 Pressure-time integrals * 0,02277 1249 
Wilcoxon 
test 

FALSE 

41 BF (R) TC 4 Normalized pressure * 0,02301 1248,5 
Wilcoxon 
test 

FALSE 

42 BF (R) TC 1 Normalized pressure * 0,02748 2,26 T-test TRUE 

43 BF (R) Task 9 
Pressure differences between 
successive frames 

* 0,03712 718,5 
Wilcoxon 
test 

FALSE 

44 BF (R) Task 9 
Pressure differences between 
successive frames 

* 0,03718 718,5 
Wilcoxon 
test 

FALSE 

45 BF (R) TC 3 
Pressure differences between 
successive frames 

* 0,04234 1219 
Wilcoxon 
test 

FALSE 

46 BF (R) Task 10 
Pressure differences between 
successive frames 

* 0,0494 2,01 T-test TRUE 

47 CP TC 9 
Pressure differences between 
successive frames (L) 

** 0,00275 608 
Wilcoxon 
test 

FALSE 

48 CP Task 6 Normalized pressure (R) ** 0,00468 -2,91 T-test TRUE 

49 CP TC 1 
Pressure differences between 
successive frames (L) 

** 0,00641 640,5 
Wilcoxon 
test 

FALSE 

50 CP Task 6 Normalized pressure (R) * 0,0108 662 
Wilcoxon 
test 

FALSE 

51 CP TC 6 
Pressure-time integrals of the 
execution phase (R) 

* 0,01342 -2,54 T-test TRUE 

52 CP TC 6 
Pressure differences between 
successive frames (R) 

* 0,01363 672 
Wilcoxon 
test 

FALSE 

53 CP Task 7 Normalized pressure (R) * 0,01435 -2,53 T-test TRUE 

54 CP Task 2 
Pressure-time integrals of the 
reaction phase (L) 

* 0,01851 689 
Wilcoxon 
test 

FALSE 

55 CP Task 7 
Pressure differences between 
successive frames (R) 

* 0,02156 692,5 
Wilcoxon 
test 

FALSE 

56 CP Task 6 
Pressure-time integrals of the 
execution phase (L) 

* 0,02495 -2,29 T-test TRUE 

57 CP Task 12 
Pressure-time integrals of the 
reaction phase (R) 

* 0,02507 1244,5 
Wilcoxon 
test 

FALSE 

58 CP Task 6 Normalized pressure (R) * 0,02534 700 
Wilcoxon 
test 

FALSE 

59 CP Task 2 Anticipation time [s] * 0,02647 702,5 
Wilcoxon 
test 

FALSE 

60 CP Task 10 
Pressure-time integrals of the 
reaction phase (L) 

* 0,02758 1240 
Wilcoxon 
test 

FALSE 

61 CP TC 6 
Pressure-time integrals of the 
execution phase (L) 

* 0,02769 -2,25 T-test TRUE 

62 CP Task 15 Normalized pressure (L) * 0,03671 718 
Wilcoxon 
test 

FALSE 

63 IJ Task 16 Anticipation time [s] ** 0,00542 1283,5 
Wilcoxon 
test 

FALSE 

64 IJ Task 5 
Pressure differences between 
successive frames 

** 0,00568 1273 
Wilcoxon 
test 

FALSE 

65 IJ TC 6 
Pressure differences between 
successive frames 

* 0,01159 665 
Wilcoxon 
test 

FALSE 

66 IJ Task 12 
Pressure differences between 
successive frames 

* 0,02143 746,5 
Wilcoxon 
test 

FALSE 

67 IJ Task 8 Deviation from ideal pressure * 0,03132 1231 
Wilcoxon 
test 

FALSE 

68 IJ Task 14 
Pressure differences between 
successive frames 

* 0,04149 724 
Wilcoxon 
test 

FALSE 

69 IJ Task 3 Anticipation time [s] * 0,04613 742 
Wilcoxon 
test 

FALSE 

70 IJ Task 4 Pressure-time integrals * 0,04808 1212,5 
Wilcoxon 
test 

FALSE 
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Supplementary Table 4. Results of intergroup difference tests of game features between moderate and severe Aβ-
fiber polyneuropathy groups in diabetes. Differences between groups were calculated using the Mann-Whitney U 
test, t-test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), 
*** (p=0.0001─0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-
Pressure; IJ: Island-Jump; TC: task combination 

ID Game Task/TC Feature Name Signif P.Value Statistic Method Normality 

1 AC TC 12 Time outside catching area [s] *** 0,00022 966,5 
Wilcoxon 
test 

FALSE 

2 AC Task 2 Normalized pressure *** 0,00039 965 
Wilcoxon 
test 

FALSE 

3 AC TC 4 Final virtual distance *** 0,00081 946 
Wilcoxon 
test 

FALSE 

4 AC Task 8 Normalized pressure ** 0,0013 933 
Wilcoxon 
test 

FALSE 

5 AC TC 12 
Frequency outside catching area 
(n) 

** 0,00158 898,5 
Wilcoxon 
test 

FALSE 

6 AC TC 4 Anticipation time [s] ** 0,00288 331 
Wilcoxon 
test 

FALSE 

7 AC Task 7 Anticipation time [s] ** 0,00504 348,5 
Wilcoxon 
test 

FALSE 

8 AC Task 14 Normalized pressure ** 0,00654 2,96 T-test TRUE 

9 AC Task 8 Reaction time [s] ** 0,00805 366 
Wilcoxon 
test 

FALSE 

10 AC Task 8 Anticipation time [s] ** 0,00828 364,5 
Wilcoxon 
test 

FALSE 

11 AC Task 2 Anticipation time [s] * 0,01215 377 
Wilcoxon 
test 

FALSE 

12 AC Task 10 Normalized pressure * 0,01242 2,68 T-test TRUE 

13 AC TC 12 Normalized pressure * 0,01392 381,5 
Wilcoxon 
test 

FALSE 

14 AC TC 9 Anticipation time [s] * 0,01592 -2,6 T-test TRUE 

15 AC TC 5 Anticipation time [s] * 0,02298 -2,41 T-test TRUE 

16 AC Task 6 Reaction time [s] * 0,02752 410 
Wilcoxon 
test 

FALSE 

17 AC Task 10 Time outside catching area [s] * 0,03225 748 
Wilcoxon 
test 

FALSE 

18 AC TC 4 
Pressure differences between 
successive frames 

* 0,03243 828,5 
Wilcoxon 
test 

FALSE 

19 AC TC 4 
Pressure gradients between 
successive frames 

* 0,03328 827,5 
Wilcoxon 
test 

FALSE 

20 AC Task 13 
Pressure gradients between 
successive frames 

* 0,03371 414 
Wilcoxon 
test 

FALSE 

21 AC TC 5 
Pressure differences between 
successive frames 

* 0,03639 417 
Wilcoxon 
test 

FALSE 

22 AC TC 6 Normalized pressure * 0,03648 -2,21 T-test TRUE 

23 AC Task 13 Normalized pressure * 0,03914 421 
Wilcoxon 
test 

FALSE 

24 AC TC 8 
Pressure differences between 
successive frames 

* 0,03959 420,5 
Wilcoxon 
test 

FALSE 

25 AC TC 1 Time inside catching area [s] * 0,03981 2,16 T-test TRUE 

26 AC Task 6 
Pressure gradients between 
successive frames 

* 0,04125 422 
Wilcoxon 
test 

FALSE 

27 AC TC 3 
Frequency outside catching area 
(n) 

* 0,0425 443 
Wilcoxon 
test 

FALSE 

28 AC TC 10 Anticipation time [s] * 0,04665 427 
Wilcoxon 
test 

FALSE 

29 AC TC 6 Anticipation time [s] * 0,04788 -2,09 T-test TRUE 

30 BF (L) TC 1 
Pressure gradients between 
successive frames 

** 0,00484 -2,96 T-test TRUE 

31 BF (L) TC 4 
Pressure differences between 
successive frames 

** 0,00884 366 
Wilcoxon 
test 

FALSE 

32 BF (L) Task 4 Normalized pressure * 0,01793 797 
Wilcoxon 
test 

FALSE 

33 BF (L) Task 10 Minimal virtual distance smiley 3 * 0,04103 422 
Wilcoxon 
test 

FALSE 

34 BF (L) Task 6 Normalized pressure * 0,04136 765 
Wilcoxon 
test 

FALSE 

35 BF (L) TC 3 Minimal virtual distance smiley 4 * 0,04334 817 
Wilcoxon 
test 

FALSE 

36 BF (R) Task 7 
Pressure differences between 
successive frames 

** 0,00261 913 
Wilcoxon 
test 

FALSE 
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37 BF (R) Task 1 Normalized pressure ** 0,00828 2,83 T-test TRUE 

38 BF (R) Task 1 Normalized pressure ** 0,00875 860 
Wilcoxon 
test 

FALSE 

39 BF (R) Task 7 Normalized pressure ** 0,00904 367 
Wilcoxon 
test 

FALSE 

40 BF (R) TC 3 Normalized pressure ** 0,00939 368 
Wilcoxon 
test 

FALSE 

41 BF (R) TC 4 
Pressure differences between 
successive frames 

* 0,01875 392 
Wilcoxon 
test 

FALSE 

42 BF (R) Task 8 
Pressure differences between 
successive frames 

* 0,02908 -2,31 T-test TRUE 

43 BF (R) TC 3 
Virtual deviation of ideal flying 
route 

* 0,03371 827 
Wilcoxon 
test 

FALSE 

44 BF (R) Task 1 
Virtual deviation of ideal flying 
route 

* 0,03638 417 
Wilcoxon 
test 

FALSE 

45 BF (R) TC 3 Pressure-time integrals * 0,03639 417 
Wilcoxon 
test 

FALSE 

46 BF (R) Task 11 Minimal virtual distance smiley 1 * 0,04358 816,5 
Wilcoxon 
test 

FALSE 

47 BF (R) TC 1 
Pressure differences between 
successive frames 

* 0,04779 813 
Wilcoxon 
test 

FALSE 

48 CP Task 6 Normalized pressure (L) ** 0,0033 906 
Wilcoxon 
test 

FALSE 

49 CP TC 8 
Pressure differences between 
successive frames (R) 

** 0,00532 887 
Wilcoxon 
test 

FALSE 

50 CP Task 4 
Time outside ideal pressure zone 
[s] 

* 0,01137 844,5 
Wilcoxon 
test 

FALSE 

51 CP Task 4 
Pressure differences between 
successive frames (R) 

* 0,01205 376,5 
Wilcoxon 
test 

FALSE 

52 CP Task 6 
Time outside ideal pressure zone 
[s] 

* 0,01378 844,5 
Wilcoxon 
test 

FALSE 

53 CP TC 5 Normalized pressure (R) * 0,02122 844,5 
Wilcoxon 
test 

FALSE 

54 CP Task 1 
Pressure differences between 
successive frames (L) 

* 0,02269 842 
Wilcoxon 
test 

FALSE 

55 CP Task 2 
Time outside ideal pressure zone 
[s] 

* 0,02596 830 
Wilcoxon 
test 

FALSE 

56 CP Task 7 
Pressure-time integrals of the 
execution phase (L) 

* 0,02702 405,5 
Wilcoxon 
test 

FALSE 

57 CP TC 4 
Pressure-time integrals of the 
reaction phase (L) 

* 0,03099 830 
Wilcoxon 
test 

FALSE 

58 CP Task 1 Normalized pressure (L) * 0,04054 -2,16 T-test TRUE 

59 CP Task 1 
Pressure differences between 
successive frames (L) 

* 0,04495 425,5 
Wilcoxon 
test 

FALSE 

60 IJ Task 4 
Pressure differences between 
successive frames 

** 0,00781 362 
Wilcoxon 
test 

FALSE 

61 IJ TC 6 Deviation from ideal pressure * 0,0201 394,5 
Wilcoxon 
test 

FALSE 

62 IJ Task 4 Pressure-time integrals * 0,02094 396 
Wilcoxon 
test 

FALSE 

63 IJ TC 2 
Pressure gradients between 
successive frames 

* 0,03371 414 
Wilcoxon 
test 

FALSE 

64 IJ Task 9 Deviation from ideal pressure * 0,03423 415,5 
Wilcoxon 
test 

FALSE 

65 IJ Task 1 
Pressure differences between 
successive frames 

* 0,03593 416,5 
Wilcoxon 
test 

FALSE 

66 IJ Task 13 Deviation from ideal pressure * 0,04244 425 
Wilcoxon 
test 

FALSE 

67 IJ TC 4 
Pressure differences between 
successive frames 

* 0,04334 424 
Wilcoxon 
test 

FALSE 

68 IJ TC 6 
Pressure differences between 
successive frames 

* 0,04442 425 
Wilcoxon 
test 

FALSE 

69 IJ Task 15 Anticipation time [s] * 0,0472 427,5 
Wilcoxon 
test 

FALSE 

70 IJ Task 11 
Mean pressure of execution 
phase 

* 0,04869 439,5 
Wilcoxon 
test 

FALSE 

71 IJ Task 11 Execution time [s] * 0,04896 812 
Wilcoxon 
test 

FALSE 

72 IJ TC 6 Deviation from ideal pressure * 0,04956 429,5 
Wilcoxon 
test 

FALSE 
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Supplementary Table 5. Results of intergroup difference tests of game features between normal and absent Achilles 
tendon reflex groups in diabetes. Differences between groups were calculated using the Mann-Whitney U test, t-
test, or chi-square test as appropriate. Significance levels: ns (p>0.05), * (p=0.01─0.05), ** (p=0.001─0.01), *** 
(p=0.0001─0.001), **** (p<0.0001). CF: candidate features; AC: Apple-Catch; BF: Balloon-Flying; CP: Cross-
Pressure; IJ: Island-Jump; TC: task combination 

ID Game Task/TC Feature Name Signif P.Value Statistic Method Normality 

1 AC Task 8 Normalized pressure **** 0,00001 471 
Wilcoxon 
test 

FALSE 

2 AC Task 10 Normalized pressure *** 0,00057 -3,58 T-test TRUE 

3 AC TC 3 Time inside catching area [s] ** 0,00408 649,5 
Wilcoxon 
test 

FALSE 

4 AC TC 12 Time outside catching area [s] ** 0,00551 673,5 
Wilcoxon 
test 

FALSE 

5 AC Task 6 Time inside catching area [s] ** 0,00557 673 
Wilcoxon 
test 

FALSE 

6 AC Task 14 Normalized pressure ** 0,00673 -2,78 T-test TRUE 

7 AC Task 6 Normalized pressure ** 0,00845 -2,69 T-test TRUE 

8 AC TC 4 Normalized pressure ** 0,00941 683,5 
Wilcoxon 
test 

FALSE 

9 AC TC 1 
Frequency outside catching area 
(n) 

** 0,00998 1319 
Wilcoxon 
test 

FALSE 

10 AC TC 12 Pressure-time integrals * 0,01174 2,57 T-test TRUE 

11 AC TC 6 Normalized pressure * 0,01735 713,5 
Wilcoxon 
test 

FALSE 

12 AC TC 8 Normalized pressure * 0,0174 1298,5 
Wilcoxon 
test 

FALSE 

13 AC Task 10 Anticipation time [s] * 0,01759 1298 
Wilcoxon 
test 

FALSE 

14 AC Task 10 Reaction time [s] * 0,01921 1290,5 
Wilcoxon 
test 

FALSE 

15 AC TC 10 Anticipation time [s] * 0,01998 1291 
Wilcoxon 
test 

FALSE 

16 AC TC 12 Final virtual distance * 0,01998 718 
Wilcoxon 
test 

FALSE 

17 AC TC 9 Final virtual distance * 0,02088 720 
Wilcoxon 
test 

FALSE 

18 AC Task 4 Normalized pressure * 0,02509 -2,28 T-test TRUE 

19 AC TC 8 
Pressure gradients between 
successive frames 

* 0,02812 733 
Wilcoxon 
test 

FALSE 

20 AC TC 12 Normalized pressure * 0,03078 1271,5 
Wilcoxon 
test 

FALSE 

21 AC Task 14 Reaction time [s] * 0,03275 1260,5 
Wilcoxon 
test 

FALSE 

22 AC Task 7 Anticipation time [s] * 0,04079 1257 
Wilcoxon 
test 

FALSE 

23 AC TC 10 Normalized pressure * 0,0469 -2,02 T-test TRUE 

24 AC Task 8 Anticipation time [s] * 0,04936 1247 
Wilcoxon 
test 

FALSE 

25 BF (L) TC 3 Normalized pressure * 0,01323 2,53 T-test TRUE 

26 BF (L) Task 1 Minimal virtual distance smiley 3 * 0,01689 709,5 
Wilcoxon 
test 

FALSE 

27 BF (L) TC 3 Normalized pressure * 0,01793 1296 
Wilcoxon 
test 

FALSE 

28 BF (L) Task 1 Minimal virtual distance smiley 4 * 0,03572 1264 
Wilcoxon 
test 

FALSE 

29 BF (L) Task 8 Normalized pressure * 0,04913 1185 
Wilcoxon 
test 

FALSE 

30 BF (R) Task 9 Minimal virtual distance smiley 4 ** 0,00606 1338 
Wilcoxon 
test 

FALSE 

31 BF (R) TC 4 
Pressure differences between 
successive frames 

* 0,01287 1312 
Wilcoxon 
test 

FALSE 

32 BF (R) Task 4 Minimal virtual distance smiley 1 * 0,01414 1307 
Wilcoxon 
test 

FALSE 

33 BF (R) Task 1 Normalized pressure * 0,03504 759,5 
Wilcoxon 
test 

FALSE 

34 BF (R) Task 10 
Pressure differences between 
successive frames 

* 0,04658 2,02 T-test TRUE 

35 CP TC 5 
Pressure differences between 
successive frames (R) 

** 0,00382 1361 
Wilcoxon 
test 

FALSE 

36 CP Task 15 Normalized pressure (R) * 0,01209 1313 
Wilcoxon 
test 

FALSE 
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37 CP Task 14 
Pressure differences between 
successive frames (L) 

* 0,01941 2,39 T-test TRUE 

38 CP TC 6 
Pressure differences between 
successive frames (L) 

* 0,02663 1278,5 
Wilcoxon 
test 

FALSE 

39 CP TC 6 
Pressure differences between 
successive frames (R) 

* 0,02923 1274 
Wilcoxon 
test 

FALSE 

40 CP Task 8 
Pressure differences between 
successive frames (L) 

* 0,03622 745,5 
Wilcoxon 
test 

FALSE 

41 CP Task 10 Reaction time [s] * 0,04034 751 
Wilcoxon 
test 

FALSE 

42 IJ Task 9 Pressure-time integrals ** 0,0061 665,5 
Wilcoxon 
test 

FALSE 

43 IJ Task 9 Deviation from ideal pressure * 0,01221 1312,5 
Wilcoxon 
test 

FALSE 

44 IJ Task 13 
Pressure gradients between 
successive frames 

* 0,01911 1293 
Wilcoxon 
test 

FALSE 

45 IJ Task 10 
Mean pressure of execution 
phase 

* 0,02143 722,5 
Wilcoxon 
test 

FALSE 

46 IJ Task 4 Anticipation time [s] * 0,02885 1274 
Wilcoxon 
test 

FALSE 

47 IJ TC 5 
Mean pressure of execution 
phase 

* 0,03542 745 
Wilcoxon 
test 

FALSE 

48 IJ TC 6 Anticipation time [s] * 0,03918 1259 
Wilcoxon 
test 

FALSE 

49 IJ Task 3 Pressure-time integrals * 0,03918 750 
Wilcoxon 
test 

FALSE 

50 IJ TC 6 Anticipation time [s] * 0,04852 1248,5 
Wilcoxon 
test 

FALSE 
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11.6. Introduction video and screenshots of the “Gamidiagnostics” 

application 

The introduction video is available online:  

https://1drv.ms/v/s!ApoW6w5vttZEgRsUqM92Hvgfc_oa?e=nI6ah9 

The screenshots of the “Gamidiagnostics” App are presented here: 

1. Insole Manager 2. Login page for study personal 

  

3. Insole calibration (step 1 ─ 8) 

  

  

https://1drv.ms/v/s!ApoW6w5vttZEgRsUqM92Hvgfc_oa?e=nI6ah9
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4. Apple-Catch game (task 1 ─ 14)  
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5. Balloon-Flying game (take off, task 1 ─ 12, and landing) 
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6. Cross-Pressure game (task 1 ─ 16) 
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7. Island-Jump game (task 1 ─ 16) 
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8. Assessment and feedback  
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