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Abstract: Paclitaxel is a chemotherapeutic agent used to treat a wide range of malignant tumors.
Although it has anti-tumoral properties, paclitaxel also shows significant adverse effects on the
peripheral nervous system, causing peripheral neuropathy. Paclitaxel has previously been shown to
exert direct neurotoxic effects on primary DRG neurons. However, little is known about paclitaxel’s
effects on non-neuronal DRG cells. They provide mechanical and metabolic support and influence
neuronal signaling. In the present study, paclitaxel effects on primary DRG non-neuronal cells
were analyzed and their concentration or/and time dependence investigated. DRGs of Wister rats
(6–8 weeks old) were isolated, and non-neuronal cell populations were separated by the density
gradient centrifugation method. Different concentrations of Paclitaxel (0.01 µM–10 µM) were tested
on cell viability by MTT assay, cell death by lactate dehydrogenase (LDH) assay, and propidium iodide
(PI) assay, as well as cell proliferation by Bromodeoxyuridine (BrdU) assay at 24 h, 48 h, and 72 h post-
treatment. Furthermore, phenotypic effects have been investigated by using immunofluorescence
techniques. Paclitaxel exhibited several toxicological effects on non-neuronal cells, including a
reduction in cell viability, an increase in cell death, and an inhibition of cell proliferation. These effects
were concentration- and time-dependent. Cellular and nuclear changes such as shrinkage, swelling
of cell bodies, nuclear condensation, chromatin fragmentation, retraction, and a loss in processes
were observed. Paclitaxel showed adverse effects on primary DRG non-neuronal cells, which might
have adverse functional consequences on sensory neurons of the DRG, asking for consideration in
the management of peripheral neuropathy.

Keywords: peripheral neuropathy; DRG non-neuronal cells; paclitaxel; MTT assay; LDH assay;
BrdU assay

1. Introduction

Many chemotherapeutic agents may trigger chemotherapy-induced peripheral neu-
ropathy (CIPN), which manifests as tingling, numbness, and burning pain in both hands
and feet [1]. The high incidence of CIPN [2] frequently results in dose reduction or the dis-
continuation of chemotherapy regimens [2–4]. Additionally, CIPN symptoms can continue
for a very long time after chemotherapy, significantly lowering patients’ quality of life [5].

Sensory neurons are more vulnerable to the toxic effects of anticancer drugs, and
patients with CIPN typically experience more sensory symptoms than those in the motor
or autonomic systems [6,7]. Chemotherapeutic drugs cause toxicity in myelin sheaths
(myelopathy), sensory cell bodies (neuronopathy), and axonal compartments (axonopa-
thy) in the DRG by affecting ion channels, microtubules, mitochondria, and associated
capillaries [7,8]. DRG explants have thus been demonstrated to be a good, simple, and well-
accepted model for studying peripheral neuropathy caused by antineoplastic agents [9–11].
Peripheral sensory (somatic) neurons can easily be reached by chemotherapy drugs as they
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are located outside the central nervous system without a brain–blood barrier and show
strong vascularization due to fenestrated capillaries [12]. Additionally, chemotherapeutic
drugs accumulate more in the sensory ganglia than in the peripheral nerves [13,14]. DRG ex-
plants’ ability to outgrow neurites in vitro, as well as their response to toxic substances with
neurite shortening, make them a reliable model in drug neurotoxicity assessment [9,15–17].

Primary DRG cultures consist of a diverse population of cells, including differenti-
ated sensory post-mitotic neuronal cells (neurons) and proliferative non-neuronal cells
(Satellite glial cells (SGCs), Schwann cells (SCs), and other glial cells) [18–21]. In parallel
to the valuable impact of neurons, DRG non-neuronal cells are increasingly recognized
as important in the development and maintenance of neuropathic pain [22,23]. SGCs, for
instance, provide mechanical and metabolic support for neurons by forming an envelope
surrounding their cell bodies [14,24]. Therefore, they closely monitor neuronal functions
and interact with neurons using both diffusible (e.g., the paracrine release of glial modula-
tors) and non-diffusive mechanisms (e.g., gap junctions) [25–28]. After nerve injury, SGCs
become activated and contribute to the development of neuropathic pain [22,29]. SCs aid
in myelinating axons, eliminate cellular debris [30], and play an important role in the out-
growth and guidance of re-growing peripheral axons [31]. SCs not only physically support
the long axons, but they also have several growth factors that nourish and myelinate the
large associated axons [32–34].

Paclitaxel is one of a wide range of commonly used chemotherapeutic agents. Al-
though it has anti-tumoral properties, it also has significant adverse effects on the peripheral
nervous system, causing peripheral neuropathy [2,17,35,36]. Paclitaxel shows neurotoxic
effects on DRG neurons, including a significant reduction in neurite length and an increase
in neuronal cell bodies at different investigated time points, as reported earlier [17,37].
The effects of paclitaxel on neuronal survival and neurite length in the DRG are shown
to be dose- and time-dependent [17,37,38]. However, little is known about the effects of
paclitaxel on primary DRG non-neuronal cells. The question is still open as to whether
similar paclitaxel toxicity in primary DRG non-neuronal cells exists.

Previous research measured the process areas of non-neuronal cells of the DRG inside
the mixed culture of neuronal and non-neuronal cells after 24 h of exposure to paclitaxel and
found a decrease in the process areas of the non-neuronal cells [39]. In addition, paclitaxel
has been shown to reduce cell viability and change the phenotype of SCs isolated from the
sciatic nerve at 24 h and 48 h [31]. A recent study also investigated the impact of paclitaxel
on the viability and proliferation of SGCs and found no effect on viability but a decrease
in cell proliferation [14]. However, more research is needed to fully understand paclitaxel
toxicity in the entire culture of non-neuronal cells (SCs, SGCs, and other glial cells). These
outcomes may shed more light on the potential functional consequences of paclitaxel on
primary DRG sensory neurons and the therapeutic interventions for peripheral neuropathy.

Therefore, the aim of this study was to investigate the effects of paclitaxel on pri-
mary DRG non-neuronal cells and determine the time course of those changes. DRG
non-neuronal cells were isolated and treated with different concentrations of paclitaxel at
different time points. Effects on viability, morphology, and proliferation were analyzed.
We applied approaches such as the MTT assay to study cell viability [40], the lactate dehy-
drogenase (LDH) assay [41], and the propidium iodide (PI) assay to study cell death [42],
as well as Bromodeoxyuridine (BrdU), to study cell proliferation [43]. These approaches
are frequently employed in related studies [14,44–46]. We hypothesized that paclitaxel
exposure would have severe toxic effects on DRG non-neuronal cells, which might be dose-
or/and time-dependent.
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2. Materials and Methods
2.1. Ethics Statement

All research involving animal material was carried out in accordance with the ethics pol-
icy and the policy on animal use in neuroscience research as outlined in Directive 2010/63/EU
of the European Parliament and of the Council of the European Union on the protection of
animals used for scientific purposes and was approved by local authorities for laboratory
animal care and use (State of Saxony-Anhalt, Germany, permission number: I11M27).

2.2. Materials

Paclitaxel was used and administered into culture media in accordance with the
treatment protocol (Taxol equivalent, Invitrogen, cat No. P3456-5 mg, Schwerte, Germany).
Dimethyl sulfoxide (DMSO, Sigma–Aldrich, cat. No. D4540-500 mL, Lyon, France) was
used to dissolve paclitaxel to obtain stock solutions of 1 mM and stored at −20 ◦C.

2.3. Isolation and Preparation of Primary DRG Co-Culture

DRG tissues were isolated from Wister rats aged 6–8 weeks. Rats were deeply anes-
thetized before scarification by isoflurane (Florene, 100% (v/v), 250 mL, Abcam, cat No. B506,
France). Under aseptic conditions, the vertebral column was isolated, and all surrounding
muscle, fat, and soft tissue were carefully removed. The spinal cord was exposed, and after
that, DRGs were located, removed, and collected from intervertebral foramina on both
sides in a sterile dish containing 3 mL of Hanks balanced salt solutions without Mg2+/Ca2+

(HBSS, Invitrogen, REF. 24020-091, Schwerte, Germany) (Figure S1). The culture of non-
neuronal cells was conducted in accordance with a previously published protocol [47],
with some modifications. In brief, isolated DRGs were enzymatically digested in the first
enzymatic solution containing 60 U/mL papain (Sigma–Aldrich, cat No. P4762-100 mg,
St. Louis, MO, USA), 3 µL of 80 mg/mL saturated sodium hydrogen carbonate solution
(NaHCO3, Merck, cat No. k22399729, Darmstadt, Germany), and 0.6 mg/mL L-Cysteine
(L-Cys, Sigma–Aldrich, Cat No. C7352-25 g, St. Louis, MO, USA) dissolved in 1.5 mL of
HBSS without Mg2+/Ca2+. DRGs were then incubated for 15 min in a 37 ◦C water bath
before being incubated in the second solution containing 4 mg/mL collagenase type II
solution (CLS2, Sigma–Aldrich, Cat No. C6885-1 gm, St. Louis, MO, USA) and 4.6 mg/mL
dispase type II (Dispase II, Sigma–Aldrich, Cat No. D4693-1 gm, St. Louis, MO, USA)
solution in 3 mL HBSS without Mg2+/Ca2+. The DRGs were gently mixed with collagenase
solution and incubated for an additional 15 min at 37 ◦C.

The resulting cell suspension underwent a one-minute centrifugation at 200 g. Af-
ter carefully aspirating the collagenase solution, the DRGs were triturated 10–15 times
with 1 mL of F12 medium (1X, Invitrogen, REF.11765-054, Schwerte, Germany) supple-
mented with 10 % of heat-inactivated Fetal Bovine Serum (FBS, Invitrogen, REF. 10270-106,
Schwerte, Germany) and 1 % of 0.1 mg/mL streptomycin/penicillin (Sigma–Aldrich, cat
No. P4333/100 mL, Darmstadt, Germany) by using 1000 µL pipette tips till the cell suspen-
sion became cloudy.

2.4. Seeding and Growth of Primary DRG Co-Culture

Circular coverslips were pre-coated for at least 1 h or overnight at 4 ◦C with 2 mg/mL
Poly-D-lysine (PDL, Sigma–Aldrich, cat No. P6407, St. Louis, MO, USA) and 0.2 mg/mL
laminin (Sigma–Aldrich, cat No. L2020-1 mg, St. Louis, MO, USA), then washed once
with dist. H2O and added directly before seeding cells in the culture medium. DRGs
(50,000 cells) co-cultured in 50 µL culture medium were then pre-seeded on the coated
coverslips for 2 h in an incubator at 37 ◦C and with 5% CO2. One mL of warm culture
medium adjusted to pH 7.4 was gently added to cells per well and maintained at 37 ◦C
with 5% CO2. Growth and morphology of co-cultivation of neurons and non-neurons were
observed after 24 h, 72 h, 7 days, and 10 days (Figure 1a).
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Figure 1. Morphological features and treatment protocol of primary DRG co-culture. (a) Repre-
sentative images show the morphology and growth of DRG co-culture at different time points, blue 
arrows indicate neuronal populations, while red arrows indicate different subpopulations of DRG 
non-neuronal cells, Scale bar = 50 µm. (b) Treatment protocol for studying the effects of paclitaxel 
on DRG co-culture viability by using MTT assays at 24 h, 48 h, and 72 h post-treatment. 
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39,48–51]. Cell viability (%) was measured at 24 h, 48 h, and 72 h post-treatment using 
MTT assay. Four hours prior to the end of the experiments at various time points, 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution (MTT, Invitrogen, 
cat. No M6494, 5 mg/mL, Eugene, OR, USA) was added. After an additional 4 h of incu-
bation, the MTT solution was removed from the cells, and formazan crystals were dis-
solved in 100 µL of DMSO. Absorbance values were determined at two wavelengths (540 
nm and 720 nm) by a microplate reader (SynergyTMMx, BioTek Instruments, Winooski, 
VT, USA) after another 20 min. Co-cultures maintained in standard media without 
paclitaxel were used as the control group. To rule out any effects of the solvent on cell 
viability, controls had DMSO at the same highest concentration (0.1%) as those used in 
other groups. For each treatment, three technical replicas were used in three biologically 
independent experiments. 
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Figure 1. Morphological features and treatment protocol of primary DRG co-culture. (a) Repre-
sentative images show the morphology and growth of DRG co-culture at different time points,
blue arrows indicate neuronal populations, while red arrows indicate different subpopulations
of DRG non-neuronal cells, Scale bar = 50 µm. (b) Treatment protocol for studying the effects of
paclitaxel on DRG co-culture viability by using MTT assays at 24 h, 48 h, and 72 h post-treatment.

2.5. Effects on Cell Viability of Primary DRG Co-Culture (MTT Assay)

DRG co-cultured cells (5× 104 cells/well) were treated 8 days after seeding with different
concentrations of paclitaxel (0.01–10 µM) at 24 h, 48 h, and 72 h post-treatment in 96 well
plates to study the effects on cell viability (Figure 1b). Four concentrations were then chosen
that were as close to clinically applied doses as possible. Furthermore, the selected paclitaxel
concentrations are in line with earlier reports from the literature [37–39,48–51]. Cell viability
(%) was measured at 24 h, 48 h, and 72 h post-treatment using MTT assay. Four hours
prior to the end of the experiments at various time points, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide solution (MTT, Invitrogen, cat. No M6494, 5 mg/mL, Eugene,
OR, USA) was added. After an additional 4 h of incubation, the MTT solution was removed
from the cells, and formazan crystals were dissolved in 100 µL of DMSO. Absorbance
values were determined at two wavelengths (540 nm and 720 nm) by a microplate reader
(SynergyTMMx, BioTek Instruments, Winooski, VT, USA) after another 20 min. Co-cultures
maintained in standard media without paclitaxel were used as the control group. To rule
out any effects of the solvent on cell viability, controls had DMSO at the same highest
concentration (0.1%) as those used in other groups. For each treatment, three technical
replicas were used in three biologically independent experiments.

2.6. Separation of Primary DRG Non-Neuronal Cells

To separate non-neuronal cells, density gradient centrifugation was applied by using
bovine serum albumin (BSA, Sigma Aldrich, cat No.A7906-10 G, St. Louis, MO, USA) (15%
(w/v) BSA solution) for purification [52]. The DRGs were triturated 10–15 times in 1 mL
of high-glucose Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen; Ref. 41965-039;
Schwerte, Germany) supplemented with 10 % FBS. Non-neuronal cells were separated from
the DRG mixed culture by centrifuging single-cell suspensions through a 15% (w/v) BSA
solution in DMEM. One milliliter of cell suspension was added to three milliliters of 15%
BSA solution in a 15 mL conical tube and centrifuged at 300 g for 8 min at room temperature
(RT) (Figure S1b). Thereafter, the layer of non-neuronal cells was carefully transferred to
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a 15 mL conical tube by using 1000 µL pipette tips. Then, 1 mL of warmed F12 medium
supplemented with 10% FBS and 1% of 0.1 mg/mL streptomycin/penicillin was added, and
the DRG non-neurons were suspended. A 40 µm cell strainer (SARSTEDT, cat. no. D-51588,
Schwerte, Germany) was then used to filter the cell suspension to remove cell debris and
undigested tissue fragments.

2.7. Seeding and Growth of Primary DRG Non-Neuronal Cells

Sterilized 12 mm circular coverslips were used, and they were washed and dried once
with dist. H2O. 50,000 cells resuspended in 50 µL culture medium were then pre-seeded
on the sterilized coverslips for 2 h in an incubator at 37 ◦C and with 5% CO2. One mL of
warm culture medium adjusted to pH 7.4 was gently added to the cells, which were then
preserved at 37 ◦C with 5% CO2. Growth and morphology of DRG non-neuronal cells were
observed after 24 h, 48 h, 72 h, 96 h, and 7, 10 days.

2.8. Effects of Paclitaxel on DRG Non-Neuronal Cells
2.8.1. Cell Viability (MTT Assay)

In 96 well plates, non-neuronal cells (15 × 103 cells/well) were seeded for 7 days,
followed by treatment with four different concentrations of paclitaxel (0.01 µM, 0.1 µM,
1 µM, and 10 µM) at three different time points: 24 h, 48 h, and 72 h post treatment
(Figure 2a). The effects of paclitaxel on the cell viability of non-neuronal cells were measured
by MTT assay, as described above in Section 2.5.

2.8.2. Determination of Cytotoxicity (LDH Assay)

In 24 well plates, DRG non-neuronal cells (7 × 103 cells/well) were seeded in
DMEM/F12 free phenol red medium (1X, Gibco, REF.21041-025, Schwerte, Germany)
supplemented with 10 % inactivated FBS and 1% of 0.1 mg/mL streptomycin/penicillin
for 7 days, followed by treatment with four different concentrations of paclitaxel (0.01 µM,
0.1 µM, 1 µM, and 10 µM) prepared in culture media supplemented with 1% FBS at different
time points: 24 h, 48 h, and 72 h post treatment (Figure 2b). Additional wells were filled
without cells for culture media control (blank). For determination of maximum LDH release
(positive LDH control, 100 % cell death), 1:10 of the LDH lysis kit (LDH, Sigma Aldrich,
cat. No. TOX7, St. Louis, MO, USA) was added to some wells and incubated for 45 min.
According to the manufacturer’s instructions, culture media samples from cells or controls
at certain time points were transferred to 1.5 mL tubes and then centrifuged at 250× g for
4 min to pellet cells. Afterward, 40 µL of the supernatant of different samples was added in
5 replicates to a clean flat-bottom 96-well plate and proceeded with enzymatic analysis. The
LDH assay mixture was prepared at the time of use by adding 20 µL per well. The plates
were covered with aluminum foil for light protection and incubated at room temperature
for 30 min. The reaction was then stopped by adding 6 µL of 1 N Hydrochloric acid (HCl,
Sigma Aldrich, cat. No. H9892, St. Louis, MO, USA) to each well. Absorbance values
of samples were measured at a wavelength of 490 nm and the background absorbance
of multi-well plates at 690 nm. Background absorbance values were subtracted from the
primary wavelength measurements (490 nm). Finally, all controls, samples, and maximal
measurements were normalized with blank measurements. Then the percent of cytotoxicity
was calculated according to the below equation [53].

% Cell death =
(sample absorbance value−mean control value)
(mean complete kill result−mean control value)

× 100
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Figure 2. Various treatment protocols investigate the effects of different paclitaxel concentrations on
primary DRG non-neuronal cells after 24 h, 48 h, and 72 h of the application. (a) The MTT assay was
used for cell viability determination; (b) the LDH assay for cytotoxicity measurements; (c) the BrdU
assay was used to detect cell proliferation; (d) treatment protocol for studying the effects of paclitaxel
on cellular morphology through immunofluorescence staining; (e) detection of cell death by using
the PI assay.
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2.8.3. Detection of Cell Proliferation by BrdU Assay

To investigate the effects of paclitaxel on cell proliferation, DRG non-neuronal cells
(7 × 103 cells/well) were seeded on 12 mm sterile coverslips in a 24 well plate, cultured
for 7 days, and treated with various concentrations of paclitaxel at different time windows.
Four µL of 0.01 mM 5-bromo-2′-deoxyuridine (BrdU, Sigma Aldrich, cat No. B5002-1G,
St. Louis, MO, USA) was added to each well 16 h before fixation (Figure 2c). Cells
were either immediately subjected to immunofluorescence or stored in 0.02 M PBS at
4 ◦C pending further use after fixation with 4% paraformaldehyde (PFA, AppliChem, cat
No. 141451.1211, Darmstadt, Germany) for 15 min at room temperature. For labeling,
non-specific bindings were blocked with normal goat serum (NGS, Sigma–Aldrich, cat.
No. G9023-10 mL, Taufkirchen, Germany, 1:20) in 0.02 M PBS/0.3% (v/v) plus triton
X-100 for 30 min. Thereafter, cells were washed three times with 0.02 M PBS for ten
minutes each and incubated with a monoclonal mouse anti-BrdU antibody (Dako, cat.
No. M0744-1 mL, Glostrup, Denmark, 1:200) overnight. Coverslips were then incubated
with the goat anti-mouse Alexa Fluor® 488 conjugated secondary antibody (Life Tech-
nologies, cat. no. 2066710, Darmstadt, Germany, 1:200) for 1 h washed three times with
PBS/triton for ten minutes. By using DAPI (4′,6-Diamin-2-phenylindol, Sigma–Aldrich,
Munich, Germany, cat No. D9542), nuclei were visualized, and coverslips were mounted
with DAKO fluorescence mounting medium (DAKO, Agilent Technologies, Inc., Santa
Clara, CA 95051, USA). A confocal laser scanning microscope (Leica DMi8, Wetzlar, Ger-
many) was used to take photomicrographs from five to eight randomly chosen areas.
BrdU-positive cells were manually counted with Image J’s multipoint tool (version 1.46r,
National Institutes of Health, Laboratory for Optical and Computational Instrumentation,
University of Wisconsin, Madison, WI, USA), and the percentage of proliferating cells was
determined by dividing the number of BrdU+ cells by the total number of DAPI-stained
nuclei. To obtain the data, three independent experiments were conducted.

2.8.4. Determination of Paclitaxel Effects on Cellular Morphology

To study the effects of paclitaxel on the morphology of DRG non-neuronal cells, cells
(7 × 103 cells/well) were seeded on 12 mm sterile coverslips in a 24 well plate, cultured for
7 days to allow nearly all cells to proliferate, and then treated with various concentrations
of paclitaxel at different time windows (Figure 2d). After fixation, the immunofluorescence
staining procedure was followed as described in Section 2.8.3. Chicken anti-vimentin
polyclonal primary antibody (Abcam, cat No. ab24525, Cambridge, UK, 1:1000) combined
with goat anti-chicken IgY Alexa Fluor® 488 conjugated (Invitrogen, REF. A11039-0.5 mL,
Eugene, OR, USA, 1:200) as secondary antibody was used for labeling the cytoskele-
ton of non-neuronal cells. Then the procedure is completed as previously described in
Section 2.8.3. Images were taken with a Leica confocal laser scanning microscope (Leica
DMi8, Wetzlar, Germany), and five to eight areas were randomly captured per coverslip in
three independent experiments.

2.8.5. Analysis of Apoptosis by Assessment of Nuclear Morphology

DRG non-neuronal cells were stained with the DNA dye DAPI to visualize nuclear
morphology. The percentage of apoptosis (early and late apoptosis) was quantitated by
scoring the percentage of apoptotic cells in the adherent cell population. Stained nuclei
with a uniform and regular morphology were scored manually as healthy and viable cells.
Cells with condensed, fragmented, or blubber nuclei were scored as apoptotic cells. The
total number of nuclei in non-neuronal cells was counted automatically using Fiji software
(https://imagej.net/Fiji/Downloads). After converting DAPI images into 8-bit gray scale
images, the threshold of nuclei was adjusted manually, and the separation of attached
nuclei was performed by applying a binary watershed. Finally, the analyzing particles
option was applied, and the total number of nuclei was determined per image (Figure S2).
Photomicrographs were captured using a Leica (DMi8, Wetzlar, Germany) confocal laser

https://imagej.net/Fiji/Downloads
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scanning microscope, and five to eight areas were recorded per each coverslip randomly in
three independent experiments.

2.8.6. Detection of Cell Death by Propidium Iodide Staining

For detection of degenerating non-neuronal nuclei of dead cells by late apoptosis or
necrosis, cells (7× 103 cells/well) were seeded on 12 mm sterile coverslips in a 24 well plate,
cultured for 7 days, and then treated with various concentrations of paclitaxel at 24 h, 48 h,
and 72 h after treatment. Then, 5 µg/mL propidium iodide (PI, Merk, cat No. 537059-50 mg,
Darmstadt, Germany) was added 2 h before fixation. Afterwards, cells were washed three
times with PBS and then fixed with 4% PFA for 15 min (Figure 2e). Coverslips were washed
three times with PBS/triton and incubated with DAPI. All stained slides were washed with
aqua distilled water before being covered with a DAKO fluorescence mounting medium.
Images were captured using a Leica (DMi8, Wetzlar, Germany) confocal laser scanning
microscope, and five to eight areas were recorded per each coverslip randomly in three
independent experiments. For the detection of PI-labeled dead cells, monochromatic light
at 543 nm and an emission bandpass filter of 585–615 nm was used. PI-positive cells were
counted manually using the multipoint tool of Image J software version v1.46r.

2.9. Statistical Analysis

GraphPad Prism 8.0.1 for Windows (GraphPad Software, La Jolla, CA, USA,
www.graphpad.com, accessed on 22 May 2023) was used for data analysis and visual-
ization. All the data were checked for normality using the Kolmogorov–Smirnov test.
Statistics were performed using a one-way ANOVA (analysis of variance) followed by a
Bonferroni post-test, with significance set at p < 0.05. All tests had an alpha level of 0.05.

3. Results
3.1. Characterization of Primary DRG Co-Culture

The growth of DRG co-culture was checked at different timelines (1, 3, 7, and 10 days)
by a light microscope. DRG co-culture is a heterogeneous population of neuronal and
non-neuronal cells. DRG neurons were characterized by refractile and bright cell bodies,
and three different subpopulations were observed according to the size of their somata
(small, ≤599 µm2; medium, 600–1199 µm2 and large, 1200–1300 µm2), which represented
67%, 31%, and 2% of neurons in culture, respectively [37]. Additionally, three different
subpopulations of DRG non-neuronal cells were observed in the culture (SCs, SGCs, and
fibroblasts) (Figure 1a).

3.2. Effects of Paclitaxel on Viability of Primary DRG Co-Culture by MTT Assay

DRG co-cultures (neurons and non-neuronal cells) were treated with different concen-
trations of paclitaxel for 24 h, 48 h, and 72 h post-treatment. At 24 h post-treatment, the
four different concentrations of paclitaxel showed no significant effects on the viability of
DRG co-culture in comparison with the control group (p > 0.05) (Figure 3a). However, all
paclitaxel concentrations demonstrated a significant suppression in the viability of cells in
DRG co-culture compared to the control group at 48 h and 72 h post-treatment (p < 0.0001)
(Figure 3b,c).

3.3. Characterization of Primary DRG Non-Neuronal Cells

DRG non-neuronal cells were examined under a light microscope at different time
points (1, 2, 3, 4, 7, and 10 days) to analyze their growth and morphology. DRG non-
neuronal cells are divided into three different subpopulations. The first population are SCs,
which represent the majority of DRG non-neuronal cells [20,21]. They are distinguished
by a single, small, spindle-shaped nucleus. These cells have a thin layer of cytoplasm
surrounding the nucleus and bipolar cell bodies with long, thin projections or processes
extending from each side. These long processes can either form a dense bundle of fibers
or travel in a single thread of fibers away from the cell body (Figure 4). The population of
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SGCs shows small, round, and flat cell bodies with wide cytoplasmic projections (Figure 4).
These cells play a crucial role in the formation of an enveloping layer around DRG neurons
for protection and metabolism. Lastly, fibroblasts are found under SCs with a large flat cell
body and are pyramidal in shape with multipolar wide projections that are not associated
with any other fibers. These cells are secretory active and form the connective tissue that
supports cells in the culture (Figure 4).
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Figure 3. Effects of different paclitaxel concentrations on viability (%) of DRG co-culture at 24 h, 48 h,
and 72 h post-treatment by MTT assay. (a) No significant effect on viability was found in co-cultures
compared to controls at 24 h post-treatment (p > 0.05). (b) 48 h, and (c) 72 h post-treatment, paclitaxel
displayed a significant reduction in the viability of cells compared to the control (**** p < 0.0001).
The asterisks depict statistically significant results regarding the respective measurement indicated
with the bar. Values are served as the mean ± SEM of three independent experiments performed in
triplicate. ns, non-significant.
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3.4. Effects of Paclitaxel on Primary DRG Non-Neuronal Cells
3.4.1. Cell Viability (MTT Assay)

DRG non-neuronal cells were exposed to various concentrations of paclitaxel for 24 h,
48 h, and 72 h post-treatment. Only 10 µM of paclitaxel showed a significant reduction
in the viability of cells compared to the control group at 24 h post-treatment (p < 0.05)
(Figure 5a). While, at 48 h and 72 h post-treatment, different paclitaxel concentrations
showed a significant reduction in the viability of non-neuronal cells compared to the
untreated control group (p < 0.05) (Figure 5b,c). At 72 h post-treatment, the effects of
paclitaxel on the viability of non-neuronal cells were clearly concentration-dependent
(Figure S3a). Notably, the effects of 10 µM paclitaxel on the viability of non-neuronal cells
were only time- but not concentration-dependent (Figure S3b).
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Figure 6. Effects of different concentrations of paclitaxel on cytotoxicity of DRG non-neuronal 
cultures using lactate dehydrogenase (LDH) assay. Levels of released LDH were quantified at (a) 24 
h, (b) 48 h, and (c) 72 h post-treatment and showed a significant increase in LDH release that was 

Figure 5. Effects of different concentrations of paclitaxel on the viability (%) of DRG non-neuronal
cultures at 24 h, 48 h, and 72 h post-treatment by using MTT assay. (a) 10 µM of paclitaxel was
the only concentration that showed a significant effect on the viability of DRG non-neuronal cells
compared to control at 24 h post-treatment (* p < 0.05). (b,c), Different concentrations of paclitaxel
elucidated a significant reduction in the viability of cells compared to the control at 48 h and 72 h
post-treatment (*** p < 0.001, **** p < 0.0001). The asterisk denotes significant results regarding
the respective measurement indicated with the bar. Values are served as mean ± SEM of three
independent experiments performed in triplicate, ns: non-significant.

3.4.2. Determination of Cytotoxicity (LDH Assay)

The treatment of DRG non-neuronal cells with different paclitaxel concentrations
(0.01 µM, 0.1 µM, 1 µM, and 10 µM) resulted in a significant increase in the number of
damaged or dead cells that was proportional to the amount of LDH released in the cell
culture media compared to non-treated cells (p < 0.0001) at 24 h after treatment (Figure 6a).
After 48 h of treatment, the cytotoxicity of the four concentrations of paclitaxel increased
remarkably compared to the control (p < 0.0001) (Figure 6b). The increase in the number
of dead cells in response to the exposure of non-neuronal cells to paclitaxel continued in
comparison to the control group (p < 0.0001) at 72 h post-treatment (Figure 6c). It was
obvious that the effects of different paclitaxel concentrations on cytotoxicity were dose-
dependent at only 72 h post-treatment (Figure S4a). Furthermore, a considerable difference
was observed between different investigated time points for all applied concentrations,
indicating time-dependent effects (Figure S4b).
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Figure 6. Effects of different concentrations of paclitaxel on cytotoxicity of DRG non-neuronal 
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Figure 6. Effects of different concentrations of paclitaxel on cytotoxicity of DRG non-neuronal
cultures using lactate dehydrogenase (LDH) assay. Levels of released LDH were quantified at (a) 24 h,
(b) 48 h, and (c) 72 h post-treatment and showed a significant increase in LDH release that was
proportional to the number of dead or damaged cells compared to the control group (**** p < 0.0001).
+ve Control represents the maximum release of LDH after 100% cell death. The asterisks denote
significant results regarding the respective measurement indicated with the bar. Values are given as
the mean ± SEM of three independent experiments conducted in 15 replicates.

3.4.3. Cell Proliferation by BrdU Assay

The percentage of BrdU immunoreactive cells was determined in non-neuronal cells
after exposure to various concentrations of paclitaxel at 24 h, 48 h, and 72 h post-treatment.
At all investigated time points, a significantly lower number of BrdU-positive cells was
found in treated cultures with different paclitaxel concentrations compared to the vehicle
control group (p < 0.0001) (Figure 7a–d). As no significant difference was detected be-
tween different paclitaxel concentrations, no concentration-dependent effect was assumed
(Figure S5a). In contrast, a significant difference between different timelines for all applied
concentrations of paclitaxel was found, revealing a time-dependency of anti-proliferative
effects (Figure S5b).

Toxics 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

proportional to the number of dead or damaged cells compared to the control group (**** p < 
0.0001). +ve Control represents the maximum release of LDH after 100% cell death. The asterisks 
denote significant results regarding the respective measurement indicated with the bar. Values are 
given as the mean ± SEM of three independent experiments conducted in 15 replicates. 

3.4.3. Cell Proliferation by BrdU Assay 
The percentage of BrdU immunoreactive cells was determined in non-neuronal cells 

after exposure to various concentrations of paclitaxel at 24 h, 48 h, and 72 h 
post-treatment. At all investigated time points, a significantly lower number of 
BrdU-positive cells was found in treated cultures with different paclitaxel concentrations 
compared to the vehicle control group (p < 0.0001) (Figure 7a–d). As no significant 
difference was detected between different paclitaxel concentrations, no concentra-
tion-dependent effect was assumed (Figure S5a). In contrast, a significant difference be-
tween different timelines for all applied concentrations of paclitaxel was found, revealing 
a time-dependency of anti-proliferative effects (Figure S5b). 

 
Figure 7. Effects of different concentrations of paclitaxel on cell proliferation of DRG non-neuronal 
cells using BrdU assay. (a) Representative immunofluorescence images of different non-neuronal 
cells treated with 0.01 µM, 0.1 µM, 1 µM, and 10 µM paclitaxel at 24 h, 48 h, and 72 h post-treatment 
show proliferating cells labeled with BrdU antibody (green) and all nuclei stained with DAPI 
(blue). 5–8 areas were recorded randomly per each coverslip; Scale bar = 75 µm. Bar charts 
demonstrated a significant decrease in the rate of cell proliferation after treatment compared to the 
control group (**** p < 0.0001) at (b) 24 h, (c) 48 h, and (d) 72 h post-treatment. The asterisks denote 

Figure 7. Cont.



Toxics 2023, 11, 581 12 of 20

Toxics 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

proportional to the number of dead or damaged cells compared to the control group (**** p < 
0.0001). +ve Control represents the maximum release of LDH after 100% cell death. The asterisks 
denote significant results regarding the respective measurement indicated with the bar. Values are 
given as the mean ± SEM of three independent experiments conducted in 15 replicates. 

3.4.3. Cell Proliferation by BrdU Assay 
The percentage of BrdU immunoreactive cells was determined in non-neuronal cells 

after exposure to various concentrations of paclitaxel at 24 h, 48 h, and 72 h 
post-treatment. At all investigated time points, a significantly lower number of 
BrdU-positive cells was found in treated cultures with different paclitaxel concentrations 
compared to the vehicle control group (p < 0.0001) (Figure 7a–d). As no significant 
difference was detected between different paclitaxel concentrations, no concentra-
tion-dependent effect was assumed (Figure S5a). In contrast, a significant difference be-
tween different timelines for all applied concentrations of paclitaxel was found, revealing 
a time-dependency of anti-proliferative effects (Figure S5b). 

 
Figure 7. Effects of different concentrations of paclitaxel on cell proliferation of DRG non-neuronal 
cells using BrdU assay. (a) Representative immunofluorescence images of different non-neuronal 
cells treated with 0.01 µM, 0.1 µM, 1 µM, and 10 µM paclitaxel at 24 h, 48 h, and 72 h post-treatment 
show proliferating cells labeled with BrdU antibody (green) and all nuclei stained with DAPI 
(blue). 5–8 areas were recorded randomly per each coverslip; Scale bar = 75 µm. Bar charts 
demonstrated a significant decrease in the rate of cell proliferation after treatment compared to the 
control group (**** p < 0.0001) at (b) 24 h, (c) 48 h, and (d) 72 h post-treatment. The asterisks denote 

Figure 7. Effects of different concentrations of paclitaxel on cell proliferation of DRG non-neuronal
cells using BrdU assay. (a) Representative immunofluorescence images of different non-neuronal
cells treated with 0.01 µM, 0.1 µM, 1 µM, and 10 µM paclitaxel at 24 h, 48 h, and 72 h post-treatment
show proliferating cells labeled with BrdU antibody (green) and all nuclei stained with DAPI (blue).
5–8 areas were recorded randomly per each coverslip; Scale bar = 75 µm. Bar charts demonstrated
a significant decrease in the rate of cell proliferation after treatment compared to the control group
(**** p < 0.0001) at (b) 24 h, (c) 48 h, and (d) 72 h post-treatment. The asterisks denote signifi-
cant results regarding the respective measurement indicated with the bar. Values served as the
mean ± SEM of three independent experiments performed in 15 replicates.

3.4.4. Cellular Morphological Changes

Except for 0.01 µM, all applied paclitaxel concentrations showed hallmarks of cell
death and a variety of toxic alterations to the morphology of non-neuronal cells, including
cell shrinkage, swollen cell bodies, or reductions in the length of processes. Additionally,
other morphologic changes were observed in nuclei, such as nuclear fragmentation and
chromatin condensation (Figure 8). The number of viable DRG non-neuronal cells was
significantly reduced (p < 0.05) compared to the control group at all time windows (Figure 8).
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0.05) at all investigated time points (Figure 9b–d). There was a significant difference be-
tween paclitaxel concentrations, indicating concentration dependence at the various time 
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Figure 8. Effects of various paclitaxel concentrations on cellular morphology at different investigated
time points using immunofluorescence staining. Representative microphotographs demonstrate cells
stained with vimentin antibody (green) and nuclei counterstained with DAPI (blue). Paclitaxel (0.1 µM,
1 µM, and 10 µM) strongly affected the cell morphology of non-neuronal cells including shrinkage of
cells’ bodies (red arrows) and retraction of processes (white arrows). In addition, some cells treated
with 10 µM paclitaxel were swelling (yellow arrows). Additionally, nuclear changes were observed,
such as nuclear fragmentation (indicated by an asterisk in the inlet) and condensation. Five to eight
regions were recorded randomly per coverslip by fluorescence microscopy. Scale bar = 75 µm.



Toxics 2023, 11, 581 13 of 20

3.4.5. Analysis of Changes in Nuclear Morphology

The effects of paclitaxel on nuclear morphology were investigated 24 h, 48 h, and
72 h after treatment. Paclitaxel induces nuclear fragmentation and condensation, which
are hallmarks of apoptosis (Figure 9a). Different paclitaxel concentrations revealed a
substantially increased number of apoptotic cells when compared to the control group
(p < 0.05) at all investigated time points (Figure 9b–d). There was a significant difference
between paclitaxel concentrations, indicating concentration dependence at the various time
points studied (Figure S6a). Moreover, there was a significant difference between different
investigated time windows, particularly between 24 h and 48 h for all paclitaxel concen-
trations, indicating a time dependence for the effects of different paclitaxel concentrations
(Figure S6b).
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with homogenously distributed chromatin and regular morphology (Figure 10a). Except 
for 0.01 µM at 48 h post-treatment, all treated groups at all time points showed an ap-
parent increase in the ratio of positive PI cells when compared to their corresponding 
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Figure 9. Effects of different concentrations of paclitaxel on nuclear morphology of DRG non-neuronal
cells were analyzed by DAPI staining to detect % of apoptosis. (a) Representative images show DAPI-
stained nuclei of non-neuronal cells of the control group (left) or 1 µM paclitaxel group (right) at
48 h post-treatment, Scale bar = 75 µm. White arrows indicate healthy and uniformly stained nuclei,
whereas red arrows identify apoptotic nuclei. (b–d) A significant increase in % of apoptotic cells with
fragmented or condensed nuclei was observed in different cultures treated with various paclitaxel
concentrations (0.01 µM, 0.1 µM, 1 µM, and 10 µM) in comparison with the control group (** p < 0.01,
*** p < 0.001, **** p < 0.0001). Data represented as mean ± SEM. The experiments were performed at
least three independent times with n = 15 replicas. The asterisk denotes significant results regarding
the respective measurement indicated with the bar graphs.
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3.4.6. Detection of Cell Death by Propidium Iodide Staining

To detect degenerating non-neuronal cells with late apoptosis and necrosis, combined
staining with PI and DAPI was performed. Dead cells showed pycnotic highly condensed or
fragmented nuclei in bright pink, while live cells showed normal nuclei with homogenously
distributed chromatin and regular morphology (Figure 10a). Except for 0.01 µM at 48 h
post-treatment, all treated groups at all time points showed an apparent increase in the
ratio of positive PI cells when compared to their corresponding untreated control group
(p < 0.05) (Figure 10b–d). The presence of dead cells also increased with increasing paclitaxel
concentrations when compared to the control, confirming a concentration dependency at
different investigated time points (Figure S7a). Furthermore, a time-dependent increase in
the ratio of cell death to DRG non-neuronal cells was observed except for 0.01 µM paclitaxel
at 48 h (Figure S7a).
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by using PI assay. (a) Representative immunofluorescent fields show the amount of damaged non-
neuronal cells (PI-positive) in treated groups compared to control fields. The white arrows represent
degenerating cells (bright pink nuclei), Scale bar = 75 µm. At 24 h (b), 48 h (c), and 72 h (d) post-
treatment, all concentrations of paclitaxel led to a massive increase in the number of dead cells
compared to the control group (* p < 0.05, *** p < 0.001, **** p < 0.0001), except for 0.01 µM paclitaxel
concentration at 48 h (p > 0.05). Values served as mean ± SEM, and the experiments were carried out
three times independently with n = 15 replicas. The asterisk denotes significant results regarding the
respective measurement indicated with the bar graphs, ns: non-significant.
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4. Discussion

Primary DRG non-neuronal cells play a crucial role in supporting DRG neurons [22,31].
Previous studies investigated the toxic effects of paclitaxel on Primary DRG neurons, but
little is known about the toxicity of paclitaxel on non-neuronal cells. Furthermore, the time
course and concentration-dependency of paclitaxel’s toxic effects on non-neuronal cells
attracted little attention. To address these aspects, a more comprehensive approach using
a variety of techniques, time points, and concentrations was chosen to demonstrate the
effects of paclitaxel on DRG non-neuronal cell culture in vitro.

Paclitaxel exhibited several toxicological effects on primary DRG non-neuronal cells,
including a decrease in cell viability, an increase in cell death, inhibition of cell proliferation,
and cellular and nuclear changes, all of which were concentration- and time-dependent.
Our findings on DRG SCs are consistent with previous research that studied paclitaxel
effects on viability in a model of isolated SCs from the sciatic nerve [31]. These effects
were attributed to paclitaxel’s fast and strong mechanism of action on primary DRG
non-neuronal cells, as these cells are non-transformed and proliferating cells. Therefore,
paclitaxel selectively induces the death of transformed cells, possibly by arresting the cell
cycle at G1 as well as G2/M phases [54–58].

Our results also revealed that paclitaxel significantly reduced the proliferation rate
of DRG non-neuronal cells at various investigated timelines regardless of the applied
concentration, but this suppression increased in a time-dependent manner. These findings
expand the data of previous research, which reported a decrease in cell proliferation of
SGCs of DRG after 24 h of treatment with 1 µM and 5 µM paclitaxel [14]. The authors
postulated a paclitaxel stabilizing effect on microtubules by binding to beta-tubulin units,
which disrupts microtubule dynamics [58]. As a result, mitosis was arrested between
metaphase and anaphase (G2/M phase), suggesting a mitotic block and proliferation
inhibition [57–59].

The majority of anticancer drugs have been shown to induce apoptosis in vulnerable
cells [60–62]. Cellular and nuclear changes induced by anticancer drugs are very common
and involve shrinkage of cell bodies, nuclear condensation, and chromatin fragmenta-
tion [54–56]. As shown here, the response to paclitaxel seems similar in primary DRG
non-neuronal cells and affects all cellular subtypes.

Interestingly, we found that the percentage of apoptotic cells in DRG non-neuronal
cell culture detected by DAPI staining at different investigated time points was higher
when compared to the proportion of dead cells determined by the PI assay. This seeming
discrepancy can be explained as DAPI staining detects cells in the early and late stages of
apoptosis based on their nuclear morphology [63], but PI labels late apoptotic and dead
cells with damaged cell membranes [64].

Furthermore, retraction and loss or shortening of processes increased strongly with
the duration of treatment. These results add to the time- and concentration-dependency
of paclitaxel effects and support previous research that reported a loss or shortening
of processes in non-neuronal cells, however, in primary DRG co-culture after 24 h of
exposure to paclitaxel [31,39]. These effects are comparable to those found in sensory
neurons [17,37,65], implying the strong toxicity of paclitaxel on DRG non-neuronal cells,
which might have adverse functional consequences for DRG sensory neurons.

Dose- and time-dependent pharmacokinetics have been reported more frequently for
anticancer drugs than for other medications [66–70]. Our findings revealed that the effects of
paclitaxel on Primary DRG non-neuronal cell culture are concentration- and time-dependent.
Previous studies also reported similar findings on primary DRG neuronal and non-neuronal
cells [14,17,39]. Low concentrations of paclitaxel (0.01–0.1 µM) were reported to suppress
microtubule dynamics and inhibit mitotic spindle formation, resulting in a cell cycle arrest
at the G2/M phase [55]. Considerably, low concentrations of paclitaxel showed no effect
on the overall architecture of the microtubule cytoskeleton (Jordan et al., 1993), as noticed
with 0.01 µM paclitaxel in the current study. In contrast, higher doses of paclitaxel were
found to cause massive microtubule damage [59,71,72] and activate kinase pathways such
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as JNK/SAPK and p34 (cdc2) pathways [73–76], all of which are associated with paclitaxel-
induced apoptosis [57]. It is important to note that apoptosis induced by these pathways is
not dependent on mitotic arrest at higher concentrations, suggesting that it may occur in
cells at any phase of the cell cycle [55]. This interpretation is consistent with our data that
0.01 µM paclitaxel did not exhibit a significant toxic effect on the morphology of primary
DRG non-neuronal cells, whereas the higher concentrations (1 and 10 µM) did.

In the current study, the effect of paclitaxel on the cell viability of primary DRG co-
culture by MTT assay was time-dependent and modulated by the presence of neuronal and
non-neuronal cells in primary DRG culture. For example, the toxic effects of paclitaxel on
the viability of non-neuronal cells alone were apparent earlier, at 24 h post-treatment, while
a significant reduction appeared at 72 h after treatment in DRG neuronal cells [17]. However,
in primary DRG co-cultures containing neuronal and non-neuronal cells, the effect was
present 48 h post-treatment. A possible explanation might be that non-neuronal cells are
more susceptible and sensitive to paclitaxel treatment when compared to neurons. As a
result, paclitaxel’s effects on non-neuronal cells become more apparent because they are
actively growing, whereas post mitotic neurons need longer to respond to cell death [77,78].
Importantly, the effects of paclitaxel on the viability of primary DRG co-culture appeared at
48 h, not 24 h post-treatment, implying that there are cell-cell interactions between neurons
and non-neuronal cells and modulating signaling pathways that impact the paclitaxel
toxicity in the co-culture. Furthermore, the fate of cells after paclitaxel treatment might be
affected by both paclitaxel concentrations and exposure time [51,59].

Neuronal function studies showed that neurons are not the only cell type that con-
tributes to neuronal signaling. In the CNS, non-neuronal cells such as astrocytes, oligo-
dendrocytes, and microglia all play important roles in influencing neuronal activity via
interactions between neuronal cells and both glial cells and SGCs [79–82]. Non-neuronal
glial cells and macrophages were shown to play critical roles in neuronal excitability mod-
ulation as well as in nutrition, structural, and maintenance functions [83,84]. In addition,
they become activated following peripheral nerve injury or chronic inflammation and are
involved in controlling neuronal excitability [85]. An interesting structural feature of the
sensory ganglia is that the somata of sensory neurons do not form synaptic contacts with
one another [86]. Additionally, neuronal cell bodies are enwrapped by SGCs inside the
ganglia to form a structural and functional unit [27]. This specific structural arrangement
stands for the communication between neurons and SGCs and is a determinant of somatic
activity, as recently reported [82]. Changes in communication after injury are critical for
understanding the development of abnormal ectopic discharges in somata that influence
afferent signaling [28]. As a result, interactions between DRG neurons and glia and the
activation of signaling pathways are believed to play an important role in the management
of peripheral neuropathy [82].

5. Conclusions

Paclitaxel showed a set of toxicological effects on primary DRG non-neuronal cells that
included a reduction in cell viability, an increase in cell death, inhibition of cell proliferation,
and morphological changes. The effects of paclitaxel on primary DRG non-neuronal cells
are concentration- and time- dependent. Given the crucial role of primary DRG non-
neuronal cells in supporting DRG neurons and in the development and maintenance
of neuropathic pain, the described adverse effects of paclitaxel on DRG non-neuronal
cells might have functional consequences for sensory neurons in the DRG and should be
considered in the management of peripheral neuropathy. Future research should investigate
the potential negative effects of paclitaxel on signaling pathways and interactions between
DRG neuronal and non-neuronal cells.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics11070581/s1, Figure S1: (a) DRG isolation from
6–8 weeks old Wister rats, and (b) extraction and purification of DRG non-neuronal cells by using the
density gradient centrifugation method; Figure S2: Representative example of automatic counting of
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nuclei of non-neuronal cells by the FIJI program for the control group; Figure S3: Effects of different
concentrations of paclitaxel on the viability of DRG non-neuronal cells at different investigated time
points using the MTT assay; Figure S4: Effects of different concentrations of paclitaxel on the percent-
age of cytotoxicity of DRG non-neuronal cells at different investigated time windows using the LDH
assay; Figure S5: Effects of different concentrations of paclitaxel on the rate of cell proliferation of
DRG non-neuronal cells at 24 h, 48 h, and 72 h post-treatment using BrdU assay; Figure S6: Effects of
different concentrations of paclitaxel on nuclear morphology (% apoptosis) of DRG non-neuronal cells
at 24 h, 48 h, and 72 h post-treatment by DAPI staining; Figure S7: Effects of different concentrations
of paclitaxel on the ratio of PI+ of DRG non-neuronal cells at 24 h, 48 h, and 72 h post-treatment by
propidium iodide assay.
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