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A. Methods

Sample Preparation. Designed nanostructured waveguides were fabricated using standard

CMOS-compatible techniques. A silicon on sapphire substrate with a 600 nm device layer

was purchased from Universitywafers. The substrate was cleaned in an acetone ultrasonic

bath followed by isopropanol rinse, 5 min O2 plasma descum, and 10 min hot plate degassing

at 180◦C. 230 nm HSQ mask was spin-coated on the surface (60 s at 5000 rpm) and baked on

a hot plate for 2 minutes at 85◦C. Resist was patterned using JEOL 100 KeV electron-beam

lithography system with 1 nA current. To minimize the charging effect of the insulating

substrate, a 10 nm conductive polymer layer (Electra 92 from Allresist) was deposited on

the surface before the lithography. After the exposure, the conductive polymer was removed

using DI water, followed by a 2 min post-exposure bake at 195◦C. Resist was developed in

TMAH (25%) for 70 s followed by 60 s DI water- and 20 s isopropanol-rinsing. The pattern

was transferred to the Si slab using the ICP RIE (Oxford PlasmaPro System 100 Cobra) in

HBr(20 sccm)/Ar(10 sccm) gas mixture for 2 min 30 s (ICP 1500 W, RF 40 W, pressure 8

mTorr). A subsequent buffered HF dip removed the residuals of the mask.

Third-harmonic spectroscopy. To image the propagation of the modes of the struc-

tured waveguide array, we excite the sample from the substrate side with a 10x Mitutoyo

objective focusing the laser radiation on one of the grating couplers at a small incidence angle.

Femtosecond laser pulses are provided by the optical parametric amplifier (Light Conversion

Orpheus) pumped by 250 fs Yb laser (LightConversion Pharos) at a repetition rate of 1 MHz.

The automated parametric ampification system allows us to tune the excitation wavelength

within a broad spectral range. The area of the sample containing the directional coupler

and the waveguide array was imaged on a CCD camera (PyLoN 400BR eXcelon) with a
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50x Mitutoyo objective. The residual scattered light at the fundamental laser frequency is

blocked with a shortpass filter.

B. Tight binding description and topological properties
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Figure S1: (a) Schematic of a one-dimensional array of periodic waveguides supporting
two degenerate modes. (b) Equivalent representation of the waveguide array as a ladder
with the doubled number of the sites (blue circles); arrows depict the coupling between the
neighboring sites.

The physics of the designed one-dimensional array of multimode waveguides can be un-

derstood within the framework of the tight-binding model, assuming the evanescent coupling

between the nearest-neighbor waveguides. We denote the amplitudes of the two degenerate

modes in nth individual waveguide as u
(n)
1 and u

(n)
2 , and vector k includes Bloch wave number

kx characterizing phase advance between the neighboring waveguides and the propagation

constant kz along the waveguide axis. Then the coupling matrices between the modes of the

adjacent waveguides with the numbers n and n+ 1 can be written as:

κ̂n,n±1 =

 κ ±∆

∓∆ −γ

 , (S1)

where diagonal entries characterize the coupling between the modes of the same type, off-

diagonal entries describe the coupling between the different types of modes, and the equality
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of the non-diagonal components κ(12)
n,n±1 = κ(21)

n,n±1 is ensured by the appropriate relative

normalization of u
(n)
1 and u

(n)
2 . Note that there is a degree of freedom related to the relative

phase between the modes u1 and u2. For greater clarity and to avoid complex coupling

constants, we define the phases of u1 and u2 differently compared to the original theoretical

work Ref.1, which does not affect our conclusions.

Denoting the propagation constants of a collective mode in the waveguide array and

the mode in an individual waveguide as kz0 and kz, respectively, we obtain the eigenvalue

equation defining the spectrum kz(kx) of the waveguide array as1:

Ĥ(k)

u1
u2

 = (kz − kz0)

u1
u2

 , (S2)

where Bloch Hamiltonian Ĥ(kx) obtained from the coupling matrices Eq. (S1) and Bloch

theorem reads

Ĥ(kx) =

 2κ cos kx 2i∆ sin kx

−2i∆ sin kx −2γ cos kx

 . (S3)

The spectrum of the Hamiltonian Eq. (S3) takes the form

k(±)
z = kz0 + (κ − γ) cos kx ±

√
(κ + γ)2 cos2 kx + 4∆2 sin2 kx , (S4)

where kx ranges from −π to π. For κ and γ of different signs, a complete bandgap does not

exist. However, it opens once κ and γ have the same sign. In such case, diagonalizing Bloch

Hamiltonian, we retrieve the eigenvalues k
(±)
z (kx) and associated eigenfunctions |ψ⟩(±) =

(u1(kx), u2(kx))
T . Focusing on the band below the bandgap, we evaluate the Zak phase

defined as

γZ = i

∫ π

−π

⟨ψ |∂k ψ⟩ dk .

Straightforward calculation shows that the Zak phase equals π modulo 2π.

In the experimentally studied array of silicon waveguides the degeneracy of the modes
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is not perfect, i.e. there is a detuning δk between the propagation constants. In terms of

coupled-mode theory, this can be taken into account by modifying the eigenvalue equation

as follows:

Ĥ(k)

u1
u2

 =

kz − kz0 − δk/2 0

0 kz − kz0 + δk/2


u1
u2

 , (S5)

where kz is the propagation constant of the collective mode and kz0±δk/2 are the propagation

constants for the two non-degenerate modes in the individual waveguide. Similarly to the

analysis above, we derive the spectrum of the propagation constants as a function of the Bloch

momentum kx. Inspecting the gap in this spectrum, we recover1 that the critical value of

detuning is equal to δk = 2(κ+γ). When the detuning exceeds this threshold, the gap in the

spectrum propagation constants reopens becoming topologically trivial. This implies that

there is a limited spectral range, in which the system retains its topological properties and

supports hybrid edge states. As it is discussed in the main text, for the realistic structures

under study the operational wavelength range is approximately 50− 100 nm.

According to the bulk-boundary correspondence, nontrivial topological properties of the

bands enable topological edge states. The mechanism of formation of the edge modes can

be understood by considering two coupled waveguides. In this case the eigenvalues read:

δk2z =
κ2 + γ2

2
+ ∆2 ± (κ+ γ)

√
(κ− γ)2

4
+ ∆2, (S6)

which in the limiting case ∆ = κ = γ simplifies to

δkz =

[
0

±2κ
. (S7)
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The two degenerate eigenvectors corresponding to the zero eigenvalues are:

(u
(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2 )T =

[
(1, 1, 0, 0)T/

√
2

(0, 0, 1,−1)T/
√
2
. (S8)

This means that a specific combination of the two modes u1 and u2 excited in the edge

waveguide is completely uncoupled from the neighbor waveguide.

A similar mechanism leads to the formation of the two edge modes with δkz = 0 in the

finite array with an arbitrary number of the waveguides. In the case of perfectly degenerate

modes of the individual waveguide, the properties of the edge modes in a semi-infinite array

can be found analytically for arbitrary coupling constants. The amplitudes of the modes in

even waveguides turn out to be zero, while in the odd ones the dependence on the number

is given by1:

u
(2n+1)
1

u
(2n−1)
1

=
u
(2n+1)
2

u
(2n−1)
2

=
1− α

1 + α
, u

(2n)
1 = u

(2n)
2 = 0, (S9)

where α =

√κγ
∆

, n = 1, 2, . . . The ratio between the amplitudes of the two modes in a given

waveguide is determined by the ratio of the coupling constants:

u
(2n−1)
1

u
(2n−1)
2

=

√
γ

κ
, (S10)

which is close to one in the experimental design.

C. Dispersion engineering of a multimode waveguide

In order to achieve the topological phase of the waveguide array, one needs to ensure that

the modes of the neighboring waveguides interact with each other according to the coupling

matrix Eq. (S1) with the same sign of the coupling constants κ and γ. This can be achieved

if two quasi-degenerate modes of a waveguide possess different symmetry with respect to

the vertical plane of symmetry. In our work, we have designed a silicon waveguide with the
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Figure S2: (a) Schematic of a rectangular homogeneous and periodic silicon waveguides.
Parameters used in the calculations: wx = 605 nm, h = 600 nm, dz = 300 nm, εSi = 12.25.
(b) Eigenfrequency of two modes of a silicon waveguide as a function of the normalized Bloch
wavenumber kdz/π and the size of the gap normalized by the period, g/dz. Red line indicates
intersection of the two surfaces. (c) Electric field (tangential Et and normal Ez components)
distributions in the Oxy plane for the modes marked with red (mode 1) and magenta (mode
2) circles in (b).

desired dispersion by introducing a modulation of the permittivity with a subwavelength

period to an initially homogeneous rectangular waveguide. To illustrate this, we consider a

rectangular silicon waveguide in vacuum, as schematically shown in Fig. S2(a). The sym-

metry requirements imply that quasi-degenerate modes should possess the same symmetry

with respect to the plane y = 0 and different symmetry with respect to the plane x = 0.
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The lowest frequency modes that satisfy such conditions are the first hybrid quasi-HE11

mode with dominant x (y) component of magnetic (electric) field and the first quasi-TE01

mode with dominant z (ϕ) component of magnetic (electric) field where ϕ is the azimuthal

angle. In the homogeneous waveguide, these modes are well separated in frequency as shown

in Fig. S2(b) for g = 0, where g is the gap width. The distribution of tangential and normal

components of electric field for the first [red circle in Fig. S2(b)] and second [magenta circle

in Fig. S2(b)] modes is shown in Fig. S2(c).

After introducing small gaps in the waveguide with a constant period, the frequencies of

both modes start to grow in accordance with the perturbation theory2. However, the rates

of frequency growth are different due to the different field distributions of these modes: the

first mode of HE type possesses a non-zero z component of electric field, while for the second

quasi-TE mode Ez is negligible. As a result, the dispersions of these mode intersect for the

certain value of the gap. By tuning the size of the gap, it is possible to shift the intersection

point almost to any value of the Bloch wavenumber, as shown in Fig. S2(b) by the red curve.

Introduction of the low-index substrate slightly modifies the dispersion but does not change

the outlined picture qualitatively.

According to the predictions of the theoretical model, the array of the designed waveg-

uides possesses two edge states. The field distributions of 6 (out of 12) bulk states and one of

the two edge states in the array of 7 waveguides are shown in Fig. S3(a,b), respectively. The

field profile of the edge state illustrates two main points: strong localization of the field at

the edge waveguides and strong asymmetry of the field distribution in the edge waveguides.

Such asymmetry indicates hybrid nature of these modes. Indeed, the field profile of the

edge mode represents a superposition of the modes of the individual waveguide with 0 or

π phase difference as illustrated in Fig. S3(c). Here the phase of the individual modes was

chosen based on the phase of the (dominant) y-component of the electric field on the line

y = z = 0 passing through the center of the waveguide cross section. In this case, the ratio of

the complex amplitudes of the modes in a single waveguide (S10) is real and either positive
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(zero phase difference) or negative (π phase difference), which correspond to the edge state

localized at the left or right edges of the array. The field distributions of the bulk modes

in each of the waveguides are also asymmetric. However, the asymmetry is opposite to that

of the edge modes, making field distributions of the bulk and edge modes quasi-orthogonal.

Consequently, feeding the waveguide array by a proper superposition of the modes in the

extended edge waveguide allows for selective switching between the excitation of the bulk

and edge modes, as discussed in the next section.

Figure S3: (a,b) Distribution of the squared amplitude of the y component of electric field
|Ey|2 for (a) 6 bulk modes and (b) one of the edge modes propagating in positive direction
of z in the array of 7 waveguides; one unit cell along z axis is shown. The propagation
constant of the modes corresponds to the intersection point of the two modes in the individual
waveguide. (c) Field profiles of two modes of the individual waveguide |Ey1|2, |Ey2|2 and
their superpositions.
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Figure S4: (a) Dispersion of symmetric (black curve), antisymmetric (blue curve) modes
of the periodic waveguide and the mode of a single-mode waveguide (red dashed curve).
(b,c) Electric field intensity distribution in a directional coupler in the plane parallel to the
substrate under excitation through upper (b) and lower (c) single-mode waveguide.

D. Excitation of the edge modes of the waveguide array

Strong localization and asymmetry of the edge mode near field allow for its efficient selective

excitation through the extended edge waveguide. For that purpose, one has to ensure the

proper phase difference between two excited modes in the extended periodic waveguide. We

have attained this by coupling the periodic waveguide to one of the homogeneous single-

mode bus waveguides (SMWG), as shown in Fig. 4b of the main text. The width of the

SMWG was adjusted in such a way that the dispersion of its fundamental mode crosses the

intersection point of the two modes of the structured waveguide, see Fig. S4(a).

At the intersection frequency, the superposition of the modes of the periodic waveguide

|Ey1±Ey2|2 has vanishing field on the right/left side [Fig. S3(b)]. Consequently, |Ey1±Ey2|2

wave couples only to the mode of the SMWG that is placed on the left/right side (with respect

to the propagation direction) from the periodic one. The simulations of the directional

coupler, Fig. S4(b,c), have shown that indeed depending on the position of the SMWG the

power is transferred to the periodic waveguide with almost 100% efficiency in the form of

either E1 + E2 or E1 − E2 wave. If such extended periodic waveguide is positioned on the
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left side of the waveguide array, the E1 + E2 field corresponds to the edge mode, while the

E1 − E2 field corresponds to the bulk modes. Thus, switching between two input SMWGs

allows to switch between the excitation of the edge and bulk modes of the array.

In the experiments incident light was coupled into the SMWGs from the far-field by

using a combination of a taper and a grating. Linear taper had the minimal width equal to

the SMWG width, maximal width equal to 10 µm and apex angle equal to 6◦. The grating

parameters, bar width w = 460 nm and period a = 570 nm, were optimized for the excitation

from the substrate at ≈ 9◦ angle. The part of the SMWGs between the directional coupler

and the taper was bent at 15◦ to ensure enough space between the tapers.

E. Details on experimental data analysis

The field distributions depicted in Fig. 4 of the main text exhibit a noticeable decrease of

the signal intensity with the z coordinate along the waveguides. Interpreting this data, one

should keep in mind that the intensity of the third harmonic is proportional to the cube of

intensity at the fundamental frequency. Therefore, if the measured third harmonic signal has

an attenuation length of l, the fundamental wave decays at the distance equal to 3l. Hence,

the respective field profile at the fundamental frequency is much more homogeneous.

Since the absorption in silicon in the studied wavelength range is negligible, the observed

decay of the edge modes should be attributed to the scattering of the signal on the defects

in the waveguide structure. To determine the propagation length of the modes, we integrate

the third harmonic signal over the edge of the waveguide structure and plot the dependence

of this quantity on the propagation distance (Fig. S5). Here, the starting point (0 µm)

corresponds to the distance 5 µm away from the edge of the waveguide array, which was

chosen as a starting point for fitting to avoid the contribution of parasitic scattering at the

entry point of the array. For the sake of comparison, both signals are normalized to their

respective values at 0 µm. The obtained quantity is then fitted by the exponential formula.
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Figure S5: a) Integral third harmonic signal along the edge of the array of the structure
presented in the main manuscrpit plotted in logarithmic scale for an excitation wavelength
of 1560 µm. The area of integration is shown by a dashed line in panels b) and c) which show
the THG images for excitation through coupler 1 and coupler 2, respectively. The integrated
third harmonic signals were normalized to their respective values at 0 µm.
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If the structure is excited through the coupler 1, light propagates via the edge mode

with a typical attenuation length of the third harmonic signal equal to 9 µm (Fig. S5a, red

color), which means that the propagation length of the fundamental mode is equal to 27 µm,

which is comparable to the length of the structure (25 µm). Characteristic oscillations at

the respective curve suggest the interference of the incident and reflected signals. Note that

the topological properties of our setup are characterized by the one-dimensional invariant

(Zak phase) and hence there is no topological protection against backscattering along the z

axis.

If the structure is excited through the coupler 2, light diffracts into the bulk of the

structure. Therefore, the decrease of the intensity at the edge is due to the combination of the

two factors: (i) backreflection; (ii) diffraction of light in the bulk of the lattice. Accordingly,

attenuation length of the third harmonic signal is less and is roughly 3.1 µm (Fig. S5a, blue

curve), which yields the propagation length 9.3 µm at the fundamental frequency.

To better illustrate the switching between the excitation of bulk and edge modes, we

provide Figure S6 which refers to the same experimental structure, but includes seven rep-

resentative wavelengths that cover the entire wavelength range of interest. Here, in contrast

with the Fig. 4 in the main manuscript, we disregard the actual spectral dependence of the

total coupling efficiency by optimizing the color scale independently for each image. Ex-

amining the obtained field maps, we observe that the panels in the upper row (excitation

through coupler 1) show the field distribution mostly pinned to the edge of the structures.

At the same time, the panels in the lower row (excitation through coupler 2) depict the field

distribution which clearly diffracts in the bulk of the array. Note also that the field distri-

butions obtained at extreme wavelengths of 1500 and 1620 nm are much less clear which

should be attributed to the drop in the efficiency of the couplers.

Furthermore, in Figure S7 we provide additional data to illustrate the transition to the

trivial regime upon reaching the threshold value of the wavelength, when the detuning be-

tween the propagation constants of the two waveguide modes closes the bandgap. For that
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Figure S6: Propagation of topological edge modes and bulk modes in the waveguide array
from the main manuscript (Fig. 4) for the different excitation wavelengths visualized via
third harmonic spectroscopy. Third harmonic signal in each map is normalized to the signal
at the point where the single-mode waveguide is coupled to the structured waveguide (shown
by the dashed square in the panel corresponding to the 1500 nm, coupler 2). (Upper row)
Excitation through coupler 1 (edge mode regime). (Lower row) Excitation through coupler
2 (bulk mode regime). Red dashed lines show the contours of the structure. The color scale
is optimized independently for each image.

purpose, we use a different device compared to the one discussed in the manuscript main

text and above. In this particular structure, the sizes of the elements are chosen such that

the band of the directional coupler intersects the spectral region where the topological gap

of the structured waveguide array is closed. In this case, when the wavelength is detuned

far from the gap center, bulk modes are excited both for the excitation via coupler 2 and
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Figure S7: Propagation of topological edge modes and bulk modes in another experimental
sample visualized via third harmonic signal for different excitation wavelengths. (Upper
row) Excitation through coupler 1 (edge mode regime). (Lower row) Excitation through
coupler 2 (bulk mode regime). Red dashed lines show the contours of the structure. Third
harmonic signal in each map is normalized to the signal at the point where the single-mode
waveguide is coupled to the structured waveguide (shown by the blue dashed square in
panel corresponding to the wavelength 1510 nm coupler 2). The color scale is optimized
independently for each image. Note, that the wavelength of the excitation is different from
previous figures (on previous figures we consider the excitation wavelength from 1500 to 1620
nm).

coupler 1. Figure S7 shows the maps of the third harmonic signal obtained for this structure

for both excitation configurations and different wavelengths. Here, at 1590 nm the structure

demonstrates similar behaviour to the device discussed in the main text, with a pronounced

edge mode for coupler 1 excitation and bulk mode for coupler 2 configuration. However, as
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the wavelength decreases towards 1500 nm, both configurations demonstrate delocalization

of the third harmonic signal in the array in agreement with the theoretical and numerical

predictions.
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