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Abstract: Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases
including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors
and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based
inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective
non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this
study, we analyzed different ligand-based and structure-based drug design techniques to predict
the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors.
Alkylhydrazides have recently attracted more attention as they have shown promising effects in
various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure–
activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied
compounds was determined using molecular docking as well as molecular dynamics simulations and
compared with known crystal structures. Calculated free energies of binding were also considered to
generate QSAR models. The created models show a good explanation of in vitro data and were used
to develop novel HDAC3 inhibitors.

Keywords: docking; binding free energy; pharmacophore; atom-based QSAR; alkylhydrazide; histone
deacetylases (HDAC)

1. Introduction

Epigenetics refers to reversible alterations in the gene expressions that do not modify
the DNA sequence [1]. Post-translational modifications such as methylation, acetylation,
and others introduce changes on the N-terminal tails of histones [2]. Histone acetylation
and deacetylation are controlled by different classes of enzymes, namely histone acetyl-
transferases (HAT) and histone deacetylases (HDAC) [3,4]. Thus, chemical modification is
reversible [5,6].

To date, 18 human HDACs have been characterized. HDACs are separated into two
groups and four classes depending on their sequence similarity to yeast HDAC [7]. Zinc-
dependent HDACs are class I, class II, and class IV HDACs, while nicotinamide adenine
dinucleotide (NAD+)-dependent enzymes are class III HDACs which are also known as
sirtuins [8–10]. Class I HDACs (HDAC1, 2, 3, and 8) are located in the nucleus [11]. HDAC1
and HDAC2 interact with the nucleosome remodeling and deacetylase complex (NuRD), tran-
scriptional regulatory protein sin3A, corepressor of REST (CoREST), and mitotic deacetylase
complex (MIDAC) [12–16], while HDAC3 forms a complex only with the silencing mediator
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for retinoid and thyroid receptors (SMRT) and nuclear receptor corepressor (NCoR) [17,18].
HDAC8 does not need to form a complex and works alone [19,20].

HDACs are involved in signal transduction, cell growth, and cell death [21]. So
far, several inhibitors including SAHA, FK228, belinostat, and panobinostat have been
approved by the FDA against T-cell lymphoma [22–25]. However, due to reported side
effects and unfavorable pharmacokinetics, much effort has been made to develop novel
selective and better bioavailable HDAC inhibitors against several diseases such as cancer,
parasitic diseases, inflammation, and others [26–29].

The majority of HDAC inhibitors consist of three pharmacophore features: a zinc-binding
group (ZBG), which chelates the zinc ion at the bottom of the catalytic pocket, a linker group,
which is located at the lysine binding tunnel, and a cap group, which is solvent-exposed at the
rim of the pocket [7,30]. Some HDACs can be selectively inhibited by compounds addressing
available subpockets of HDACs such as the side-pockets, lower pocket, and foot pocket
(FP) [31–39]. For example, class I HDACs show an additional foot pocket [40]. Targeting
this foot pocket resulted in class I HDAC-selective inhibitors [31,34,35,41–44]. However, the
development of selective inhibitors for the class I members of HDACs, particularly HDAC1-3,
remains a critical challenge to overcome. The zinc-binding group is an integral part of most
HDAC inhibitors. Until now, hydroxamic acid, 2-aminobenzamide, 2-substituted benzamide,
alkyl/arylketone, and thiol groups have often been used as warheads in the inhibitors of class
I HDACs [35,37,38,41–45].

Recently, Wang et al. discovered a lead compound containing a benzoylhydrazide moi-
ety that selectively inhibits HDAC1, HDAC2, and HDAC3 [46]. These compounds showed
a fast-on/slow off binding mechanism [46]. Consequently, the alkylhydrazide scaffold
attracted attention for the development of HDAC3 inhibitors, and some alkylhydrazide
derivatives were found to show high potency, increased selectivity, and good bioavail-
ability [46–52]. Therefore, the alkylhydrazide zinc-binding group represents a promising
alternative to classical hydroxamic acids. The general structures of thealkylhydrazides are
shown in Figure 1.

Interestingly, increasing the length of the N-alkyl group (from n-propyl to n-hexyl)
resulted in a shift of the selectivity towards HDAC8 and provided substrate-competitive
and highly potent inhibitors [53].

HDAC3 deacetylates various histone and non-histone proteins [54]. The catalytic
activity of HDAC3 is dependent on the formation of a complex with silencing of mediator
co-repressor 1 (NCoR1) and retinoic acid and thyroid hormone receptor (SMRT3) [55]. As a
class I HDAC member, HDAC3 deletes the acetyl mark from histone tails, resulting in a
tightly packed and transcriptionally inactive chromatin structure [56]. HDAC3 has hence
been implicated in several pathophysiological processes and disorders including different
cancer types, inflammatory conditions such as rheumatoid arthritis, neurodegenerative
disorders like Huntington’s and Alzheimer’s disease, diabetes, kidney diseases, as well as
cardiovascular diseases [54,56–63]. The exact role of HDAC3 in the various pathological
conditions remains poorly understood, as potent and selective HDAC3 inhibitors have
been scarce. Often, the described HDAC3 inhibitors in cells are also able to inhibit the
structurally very similar HDAC1 and HDAC2 [41–46]. Therefore, it is a promising task to
develop effective and selective HDAC3 inhibitors.

In the current study, we performed docking and molecular dynamics studies of alkyl-
hydrazides as HDAC3 inhibitors. In order to understand the structure–activity relationship
of this class of inhibitors, available data were compiled to apply ligand-based and structure-
based methods. Various quantitative structure–activity relationship (QSAR) methods were
evaluated for this purpose, including pharmacophore models, atom-based 3D QSAR mod-
els, and binding-free-energy-based QSAR models. In addition, we tested the models on
novel designed alkylhydrazides. The workflow followed in this study is shown in Figure 2.
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2. Results and Discussion
2.1. Diversity Analysis of the Datasets

A dataset containing 63 compounds with an N-monosubstituted hydrazide scaffold
was collected from the literature [47,49,51]. The 2D structures and IC50 values of all
alkylhydrazides are shown in Table S1 (Supplement). The selected compounds cover a
reasonable biological activity range (Table 1). All compounds were measured in vitro
using recombinant human HDAC3 and the peptidic substrate (Boc-Lys(acetyl)-AMC). The
fluorescence intensity was measured at excitation and emission wavelengths of 360 and
460 nm, respectively [47,49,51].

Table 1. Distribution of inhibitors in the training and test sets according to their HDAC3 IC50 values.

HDAC3 Dataset Number of
Compounds

7 < pIC50
Highly Active

5.3 < pIC50 < 7
Moderately Active

pIC50 < 5.3
Inactive

Training 39 30 9 -
Test 17 11 6 -

Inactive 7 - - 7
Total 63 41 15 7

We first grouped the compounds into three activity classes according to their HDAC3
inhibitory data (Table 1, Table S1 Supplement):

1. Highly active inhibitors showing pIC50 > 7
2. Moderately active inhibitors showing pIC50 between 5.30 and 7
3. Inactive inhibitors showing pIC50 < 5.30

The compounds were randomly divided into a training set (70%; 39 compounds)
and a test set (30%; 17 compounds) using the “RAND” function in the MOE program
(MOE–Molecular database calculator–RAND) [64]. The compounds either having no
exact IC50 values or showing an IC50 value higher than 5 µM were classified as inactive
(Table 1). The same training and test sets were used for the ligand- and structure-based
model development studies. The training set was used to generate the models, while the
independent test set was utilized to evaluate the predictive accuracy of the selected best
models. The inactive set was only utilized for the validation of the pharmacophore models
by calculating the inactive-survival score (detail in Section 2.2).

The applicability domains of the training and external test sets were analyzed by
plotting the three most important principal components (PCA1, PCA2, and PCA3) [60,65]
of the calculated descriptors (PEOE_VSA_HYD, GCUT_SLOGP_0, TPSA, b_single, lip_acc,
lip_don, and vsa_hyd—explained in Table 2). The most important PCA of the molecular
descriptors can explain about 100% of the original space. The PCA analysis showed that
the training set and external test set were homogeneously distributed in the chemical
space (Figure 3).

Table 2. List of selected molecular descriptors for the PCA analysis.

Abbreviations Molecular Descriptors

PEOE_VSA_HYD The partial equalization of orbital electronegativity (PEOE). Total hydrophobic van der
Waals surface area

GCUT_SLOGP_0 The GCUT descriptors using atomic contribution to logP
TPSA Polar surface area

b_single Number of single bonds (including implicit hydrogens). Aromatic bonds are not considered
to be single bonds

lip_acc The number of O and N atoms
lip_don The number of OH and NH atoms
vsa_hyd Approximation of the sum of VDW surface areas of hydrophobic atoms.
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Figure 3. (A) Field histogram to visualize the variation of the three most important principal
components for the training set. (B) Field histogram to visualize the variation of the three most
important principal components for the test set. (C) Three-dimensional plot of the first three PCAs.
The training set is colored black; the test set is colored orange.

2.2. Analysis of the Pharmacophore Model

An important step in establishing a 3D-QSAR model is the development of the correct
alignment, usually based on a generated pharmacophore model. In the current work, the
pharmacophore model was generated using the Phase module implemented in Schrödinger
considering 30 active compounds (pIC50 > 7) [66]. Then, seven inactive compounds were
used to analyze the ability of the generated models to discriminate between the active and
inactive compounds.

The pharmacophore model shows the 3D (three-dimensional) structural features
which might be essential for the biological activity [67,68]. Hence, the pharmacophore
features that are common to the 30 active compounds showing a pIC50 more than 7 were
investigated. In total, 38 pharmacophore hypotheses were generated and scored according
to the survival score. The survival score was generated by evaluating how well the selected
pharmacophore hypothesis fits to the most active inhibitors. Additionally, the Phase module
penalizes the generated pharmacophore hypothesis that cannot discriminate the actives
from inactives. Thus, the developed hypotheses were mapped onto the inactive compounds
and scored to yield the inactive-survival score. Pharmacophore hypotheses which showed a
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better inactive score than survival score was discarded since it cannot discriminate between
active and inactive compounds. For the selected pharmacophore hypothesis, all inactive
compounds should show low fitness to the pharmacophore hypothesis.

After scoring the generated pharmacophore hypotheses, the best-scored pharma-
cophore model consisting of seven pharmacophore features (ADDDHRR–Figure 4A) was
selected. The survival score (6.923) and the inactive score (1.688) of the hypothesis are
shown in Table 3. The pharmacophore features were specified as the hydrogen-bond ac-
ceptor (A), the hydrogen bond donor (D), the hydrophobic (H), the negative ionic (N), the
positive ionic (P), and the aromatic ring (R). It is worth noting that the less feature-based
pharmacophores show weak discrimination between actives and inactives. Most inactive
compounds showed a high fitness to the established pharmacophore features which led to
an increase in the inactive score as shown for the DDDHRR and DDHR hypotheses (Table 3).
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hydrogen bond donor—cyan color, hydrophobic—green color, and ring—orange color).

Table 3. Calculated scores of the best performing pharmacophore hypotheses.

HYPO ID Survival Score Inactive Score

ADDDHRR 6.923 1.688

DDDHRR 6.464 1.711

DDHR 5.405 2.069

The generated pharmacophore model (ADDDHRR) was mapped onto the most active
compound 1. This pharmacophore model shows the importance of the hydrogen bond
donor and acceptor functions of the hydrazide moiety (Figure 4B). The carbonyl oxygen
of the hydrazide serves as a hydrogen bond acceptor, while the two nitrogen atoms serve
as hydrogen bond donor groups. The alkyl chain shows hydrophobic features while the
two aromatic ring systems are assigned as aromatic features. The amide moiety between
the linker acts as a hydrogen bond donor via the amide-NH (details shown in the docking
part). Accordingly, the selected ADDDHRR pharmacophore model shows the important
structural features which can interact with the HDAC3 pocket.

In conclusion, the common pharmacophore features were determined using the active
compounds in this step. The established pharmacophore model shows the required features
for the binding to HDAC3. Since there is no reported X-ray structure of HDAC3 with an
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alkylhydrazide, the pharmacophore model gives an insight into the possible binding mode
of alkylhydrazide derivatives.

2.3. Analysis of the Atom-Based 3D-QSAR Model

The atom-based 3D-QSAR model was built in Schrödinger19 using the 39 compounds
in the training set [66–68]. Atom-based QSAR treats molecules as a set of overlapping van
der Waals spheres. The spheres are divided into six categories: hydrogen bond donors;
hydrophobic/non-polar; negative ionic; positive ionic; electron withdrawing; and miscella-
neous [67,68]. The 3D-QSAR model enables us to consider all relevant structural features
such as steric clashes as well as pharmacophores which play a role in the HDAC3 activity
of the compounds. In this step, the previously selected seven-featured pharmacophore
model (ADDDHRR) was used as an alignment rule for the generation of an atom-based
QSAR model. First, 39 compounds were aligned to the pharmacophore model and then
the atom-based 3D-QSAR models were generated and cross-validated. The best atom-
based 3D-QSAR model was obtained with a good correlation coefficient (R2: 0.95) and
cross-validated correlation coefficient (Q2: 0.88) (Table 4).

Table 4. The best performing atom-based 3D_QSAR model.

HDAC3 Model N SD R2 RMSE Q2

1 39 0.27 0.95 0.39 0.88

Abbreviations: SD (standard deviation of the regression), R2 (correlation coefficient of the regression), RMSE (root
mean square error of test set prediction), and Q2

LOO (leave one-out cross-validation for the prediction values).

The atom-based 3D-QSAR techniques visualize the compounds as 3D (three-dimensional)
based on the non-covalent protein–ligand interactions such as the hydrogen bond acceptor
and donor, hydrophobic, and positive and negative ionic interactions. The model marks
the favorable structural features with green cubes and unfavorable structural features with
red cubes. To understand the most favorable and less favorable interactions, we analyzed
all compounds from the training set. As examples, three compounds with low activity
(compounds 35, 36, and 38) and three compounds with good activity (compounds 1, 2, and
3) from the training set were chosen to analyze the atom-based QSAR model (Figure S1,
Supplement). According to the atom-based QSAR model, compound 35 exhibited poor
activity due to its heptyl alkyl chain (Figure S1A, Supplement). As shown in Figure S1B
(Supplement), the meta-substituent on the phenyl linker, as exemplified with compound
36, showed an unfavorable effect on the HDAC3 activity. In the case of compound 38,
the thiophene ring showed unfavorable structural features, decreasing the HDAC3 activity
(Figure S1C, Supplement). On the other hand, the propyl alkyl chain attached to the hydrazide
group is favored for three active compounds (Figure S1D–F, Supplement). In addition to
that, para-substituted cap groups are also favored and covered by green cubes. According
to the model visualization, the least active compounds (Figure S1A–C, Supplement) are
mainly covered by red cubes, while the more active compounds, especially the cap groups
(Figure S1D–F, Supplement), are mostly covered by green cubes.

The external validation was performed using a test set which was not used for model
generation, with the aim of evaluating the predictive accuracy and reliability of the gen-
erated atom-based QSAR model. The scatter plot of the training and test set is shown in
Figure 5. The prediction results of the training, test, and inactive databases are shown
in Table S2.

Analysis of the test set revealed that the atom-based QSAR model predicts the active
inhibitors well, with differences less than 1 log unit. However, several of the moderately
active inhibitors (compounds 51, 53, 55, and 56) in the external test set as well as the seven
inactive compounds were predicted, with differences of more than 1 log unit (Table 5,
Table S2 Supplement). The atom-based QSAR model classified most of the moderately
active and inactive inhibitors into the active class. Due to the limited accuracy of the atom-
based models in correctly predicting the inactives/weakly actives, we tried to overcome
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this by generating structure-based prediction models. For this, we applied the docking and
binding free energy calculation techniques discussed in the next section.
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Table 5. Prediction results of the test set compounds (atom-based QSAR model).

Compound
Number

pIC50
HDAC3

Prediction by
Atom-Based

QSAR

Difference
(Experimental—Predicted

Activity) Atom-Based
References

40 9.29 8.69 0.60 [47]
41 9.24 8.87 0.37 [47]
42 9.21 9.14 0.07 [47]
43 7.90 8.43 0.53 [49]
44 7.78 7.13 0.64 [49]
45 7.46 7.17 0.29 [49]
46 7.31 7.65 0.34 [49]
47 7.17 6.92 0.24 [51]
48 7.16 7.54 0.38 [51]
49 7.11 7.96 0.85 [49]
50 7.07 7.81 0.74 [51]
51 6.73 7.88 1.16 [51]
52 6.51 7.32 0.81 [51]
53 5.96 7.85 1.89 [51]
54 5.87 6.19 0.33 [51]
55 5.81 8.08 2.26 [51]
56 5.72 6.74 1.01 [51]

2.4. Analyzing the Binding Mode of Alkylhydrazides in HDAC3

We started with docking all inhibitors to HDAC3 (PDB ID: 4A69 [69]) (Figure S2,
Supplement). We used a docking set-up in Glide which we previously validated for
HDAC inhibitors from different chemical series [31,34,53]. To date, there is no crystal
structure of an HDAC in complex with an alkylhydrazide, but we have recently shown that
alkylhydrazides similar to inhibitors 1 and 47 (Table S1, Supplement) [47,51] are reversible
and substrate competitive inhibitors of HDACs [53]. Thus, we docked the alkylhydrazides
into the catalytic pocket of HDAC3 and analyzed whether they are able to chelate the
catalytic zinc ion. The analysis of the docking results of the active inhibitors, as exemplified
by compounds 1 and 2 from the training set (Figure 6), showed that the hydrazide moiety
chelates the zinc ion in a bidentate manner through its nitrogen and carbonyl oxygen and
exhibits conserved hydrogen bond interactions with H134, H135, and Y298 at the bottom



Pharmaceuticals 2023, 16, 968 9 of 24

of the catalytic pocket. The aromatic linker group was placed into the hydrophobic tunnel
consisting of F144, H172, F200, and L266, where it undergoes aromatic pi–pi interactions
with F144 and F200. The cap group interacts with residues at the surface by forming
hydrogen bond interactions with D93 as well hydrophobic interactions with H22 and P23 in
HDAC3. A structural difference which influences the potency and selectivity on HDAC3 is
observed in the foot pocket region. According to the docking results, the propyl and butyl
chains of the alkylhydrazides fit well into the foot pocket of HDAC3. However, replacing
the propyl or butyl chains by pentyl or longer side chains resulted in a dramatic decrease in
HDAC3 activity due to the steric hindrance observed in HDAC3. The Y107 residue pushes
L133, resulting in a narrower foot pocket region [31,34]. Hence, the pentyl and longer alkyl
chains in the foot pocket region show steric clashing with M24 and L133, causing a decrease
in or loss of HDAC3 activity.
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Figure 6. Docking poses of 1 ((A), green-colored sticks), 2 ((B), orange-colored sticks) in HDAC3
(PDB ID: 4A69). The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed
lines), and metal coordination (red dashed lines) between the inhibitors and the protein are shown.
Relevant residues are shown in stick representation with salmon carbon atoms in HDAC3. The zinc
ion is shown as a cyan-colored sphere. The conserved water molecule is shown as a red sphere.

Although the docking poses show reasonable binding modes in the HDAC3 active
site, the correlation between the docking scores and pIC50 values was poor (R2 = 0.28 for
HDAC3). Thus, we rescored the docking poses by calculating the binding free energies.

In addition to the docking results, we checked the stability of the predicted interac-
tions of the potent inhibitors 1 and 2 with the binding site using 100 ns MD simulation
(Figures 7, 8, S3 and S4, Supplement). MD simulation analysis of compounds 1 and 2 re-
vealed that the n-propyl chain attached to the hydrazide fit into the foot pocket consisting
of M24 and L133. Notably, M24 and L133 play a key role as a gate keeper in the foot pocket
region of HDAC3. M24 and L133 closed the foot pocket and made the volume narrower
where only a propyl or butyl side chain favorably fit. This conformational change of M24
and L133 might explain the decrease in or loss of HDAC3 activity of the compounds with
longer alkyl chains than butyl and propyl. The zinc-binding group which is the common
part of compounds 1 and 2 preserves its bidentate coordination and undergoes hydrogen
bond interactions with H134, H135, and Y298 throughout the MD simulation. Furthermore,
the linker groups of compounds 1 and 2 remain sandwiched between F144 and F200. Be-
sides these similar protein–ligand interactions of compounds 1 and 2, the MD simulation
analysis displayed some differences in the cap region of compounds 1 and 2.
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According to the MD simulation of compound 1, the selected docking pose was stable
during the 100 ns MD simulation (Figures 7 and S3, Supplement). Throughout the MD
simulation, the ligand maintained the predicted binding conformation, albeit two of the
predicted interactions were lost, namely the hydrogen bond interaction between the amide
group and D93 as well as the interaction between the hydrazide-carbonyl-O and Y298,
due to the flexibility of the latter residue (Figure 7). The hydrogen bond distances of
the HDAC3-inhibitor 1 complex throughout the 100 ns MD simulations were analyzed
and plotted in Figure S4 (Supplement). No significant fluctuation was observed for the
benzofuran cap group of compound 1, which remains embedded in a hydrophobic pocket
and undergoes aromatic interaction with H22 at the surface of the protein.

In the case of compound 2 (Figure 8), the flexible 2-methylindole cap group showed
conformational changes. Hence, the ligand RMSD of compound 2 showed higher fluc-
tuations (Figure S5, Supplement). During the MD simulation, the 2-methylindole group
showed two different orientations: between 40–60 ns of the MD simulation, the cap group
adopts an orientation where it undergoes edge-to-face interaction with F144. For the rest of
the simulation time, the cap group showed the initially observed position and interacted
with H22. In contrast to compound 1, Y298 showed less fluctuation and maintained its
interaction with compound 2. Throughout the 100 ns MD simulation, compound 2 showed
stable binding and maintained its bidentate chelation with the zinc ion. The hydrogen bond
distances of the HDAC3-inhibitor 2 complex throughout the 100 ns MD simulations were
analyzed and plotted in Figure S6 (Supplement).
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In conclusion, since so far no X-ray structure has been released of an HDAC with an
alkylhydrazide inhibitor complex, we docked the compounds to HDAC3 to examine the
putative binding mode and to rationalize the observed SAR. Additionally, the observed
proteinligand interactions were analyzed by MD simulations. The interaction at the catalytic
pocket was found to be highly stable whereas some fluctuation was observed for the
flexible capping groups that are located at the solvent-exposed part of the binding pocket.
To provide further support for the predicted binding poses of the alkyl hydrazides, we
previously examined the substrate competition of two alkyl hydrazides for the related
class I member HDAC8 and confirmed that they reversibly inhibit and exhibit competitive
substrate binding. However, cocrystal structures of HDACs with alkylhydrazide-based
inhibitors have to be obtained to confirm the modeling results.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 25 
 

 

Figure 7. MD frames of the HDAC3-1 complex. (A) The frame at 1 ns MD simulation, (B) the frame 
at 50 ns MD simulation, (C) the frame at 75 ns MD simulation, and (D) the frame at 100 ns MD 
simulation. The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed 
lines), and metal coordination (red dashed lines) between the inhibitors and the protein are shown. 
Relevant residues are shown in stick representation with salmon carbon atoms in HDAC3. The 
ligand is shown in stick representation with green carbon atoms. The zinc ion is shown as a cyan-
colored sphere. 

In the case of compound 2 (Figure 8), the flexible 2-methylindole cap group showed 
conformational changes. Hence, the ligand RMSD of compound 2 showed higher 
fluctuations (Figure S5, Supplement). During the MD simulation, the 2-methylindole 
group showed two different orientations: between 40–60 ns of the MD simulation, the cap 
group adopts an orientation where it undergoes edge-to-face interaction with F144. For 
the rest of the simulation time, the cap group showed the initially observed position and 
interacted with H22. In contrast to compound 1, Y298 showed less fluctuation and 
maintained its interaction with compound 2. Throughout the 100 ns MD simulation, 
compound 2 showed stable binding and maintained its bidentate chelation with the zinc 
ion. The hydrogen bond distances of the HDAC3-inhibitor 2 complex throughout the 100 
ns MD simulations were analyzed and plotted in Figure S6 (Supplement). 

 
Figure 8. MD frames of the HDAC3-2 complex. (A) The frame at 1 ns MD simulation, (B) the frame 
at 50 ns MD simulation, (C) the frame at 75 ns MD simulation, and (D) the frame at 100 ns MD 
simulation. The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed 
lines), and metal coordination (red dashed lines) between the inhibitors and the protein are shown. 
Relevant residues are shown in stick representation with salmon carbon atoms in HDAC3. The 
ligand is shown in stick representation with green carbon atoms. The zinc ion is shown as a cyan-
colored sphere. 

In conclusion, since so far no X-ray structure has been released of an HDAC with an 
alkylhydrazide inhibitor complex, we docked the compounds to HDAC3 to examine the 
putative binding mode and to rationalize the observed SAR. Additionally, the observed 
proteinligand interactions were analyzed by MD simulations. The interaction at the 
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coordination (red dashed lines) between the inhibitors and the protein are shown. Relevant residues
are shown in stick representation with salmon carbon atoms in HDAC3. The ligand is shown in stick
representation with green carbon atoms. The zinc ion is shown as a cyan-colored sphere.

2.5. Binding Free Energy Calculation

Due to the low correlation between the docking scores and pIC50 values, rescoring of
the selected docking poses was performed using the MM/GBSA method in AMBER16 [70].
The total energies of HDAC3–inhibitor complexes were calculated using four different
parameter settings (solvation models) and six different frame settings (see the Methods
part for details). The same training set including the 39 compounds that was used for the
atom-based 3D-QSAR model was also used for model generation based on the calculated
binding free energies of the compounds. In total, 24 models were generated. The models
were assessed based on the correlation coefficients (R2) between the biological data and
the calculated energy values, taking into account Tropsha’s criteria for reliable QSAR mod-
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els [71] (Figure 9). The prediction results of the training, test set, and inactive compounds
are shown in Table S3 (Supplement).
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According to the Tropsha criteria [71], a good QSAR model should abide by the
following rules; R2 > 0.6 and Q2 > 0.5. Based on the mentioned rule, models showing
a calculated R2 value > 0.6 were considered for further statistical analysis (MODEL1, 7,
13, and 19). Interestingly, the four selected models are all based on the protein–ligand
complex obtained with one minimization step (Emin1, Table 6). Further internal validation
of the selected models was analyzed using the leave-one-out (LOO) method, 3-fold-cross-
validation (cv), and 10-fold cv.

Table 6. Best performing BFE models.

LOO CV 3-Fold CV 10-Fold CV

Model
Number N Method Frame 2D

Descriptor R2 RMSE Q2 QMSE Q2 QMSE Q2 QMSE

MODEL1 39 GB1 Emin1 - 0.63 0.69 0.58 0.73 0.60 0.74 0.60 0.73
MODEL7 39 GB2 Emin1 - 0.66 0.65 0.63 0.69 0.64 0.69 0.64 0.69

MODEL13 39 GB5 Emin1 - 0.67 0.65 0.64 0.68 0.65 0.69 0.65 0.68
MODEL19 39 GB8 Emin1 - 0.81 0.49 0.78 0.52 0.78 0.54 0.77 0.53

MODEL19_1 39 GB8 Emin1 PEOE_VSA_HYD 0.87 0.40 0.84 0.44 0.85 0.45 0.83 0.45

Abbreviations: R2 (correlation coefficient), RMSE (root mean square error), Q2
LOO (leave one-out cross-validation),

QMSE (crossed-root mean square error), and Emin1 (single frame after the first energy minimization step).

The four selected models showed R2 > 0.6 and Q2 > 0.5. Among the selected four
models, the GB8 (GBNeck) implicit solvation model outperformed the other methods
(GBHCT refers to GB1, and GBOBC refers to GB2-5 in the article). The reason might be that
the GBNeck model (referred to GB8) was generated to correct the van der Waals surface that
is inaccessible to water [72]. This improvement in GB8 might help to obtain better results
for the compounds used in this article. Model 19 based on the GB8 implicit solvation model
showed the highest R2 and Q2 values (LOO-method) with 0.81 and 0.78, respectively, and
the lowest RMSE and QMSE values with 0.49 and 0.52, respectively (Figure 10 and Table 6).
In addition, we tested whether the inclusion of a 2D descriptor for the shape/electronic
properties of the inhibitors could improve the models. Two-dimensional descriptors were
computed for all compounds in MOE [64]. All available 2D descriptors were then assessed
for their ability to improve the model. The total hydrophobic van der Waals surface area
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(PEOE_VSA_HYD) gave the best improvement. The combination of this 2D descriptor
and energy term improved the R2 from 0.81 to 0.87 and the Q2 (LOO) from 0.78 to 0.84. In
addition, this model (MODEL19_1) exhibited lower RMSE and QMSE values compared to
MODEL19 (Table 6).
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The test set was used to evaluate the accuracy of the best generated model (Model19_1).
In the test set (Table 7), all compounds were predicted with less than 1 log unit difference.
Additionally, the prediction of the inactive compounds was more satisfying compared to
the previously described atom-based QSAR models, with a difference of less than 1 log
unit except for compound 61 (Table S3, Supplement). For compound 61, the docking poses
could not explain the incorrect prediction. The scatter plot and prediction results are shown
in Figure 10 and Tables 7 and S3 (Supplement), respectively.

Table 7. Prediction results of the test set compounds using the BFE model (MODEL19_1).

Compound
Number

pIC50
HDAC3

Prediction of
BFE

Difference
(Experimental—Predicted

Activity)
References

40 9.29 8.60 0.70 [47]
41 9.24 9.75 0.51 [47]
42 9.21 9.37 0.17 [47]
43 7.90 8.53 0.63 [49]
44 7.78 8.10 0.33 [49]
45 7.46 7.42 0.03 [49]
46 7.31 8.06 0.75 [49]
47 7.17 7.85 0.68 [51]
48 7.16 8.12 0.96 [51]
49 7.11 6.30 0.81 [49]
50 7.07 7.32 0.25 [51]
51 6.73 7.56 0.83 [51]
52 6.51 6.89 0.38 [51]
53 5.96 6.19 0.22 [51]
54 5.87 6.41 0.55 [51]
55 5.81 6.27 0.46 [51]
56 5.72 6.42 0.69 [51]

2.6. Evaluation of the Generated Models on Newly Designed Compounds

The created models, the atom-based 3D QSAR model and Model 19_1, and the generated
docking poses were then used to predict alkyl hydrazides with other linkers and capping
groups that were synthesized (chemistry and in vitro testing were published elsewhere [53]).
These compounds were designed starting from compound 47 (Table S1, Supplement), where
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several structural modifications were introduced to extend the SAR on this series of HDAC3
inhibitors. In the first series of compounds, the effect of a different length for the alkyl side
chain was evaluated. In the second series of compounds, different substitutions on position 3
or 4 of the phenyl ring were introduced. In the next series of compounds, the aminopyrimidine
linker group with different N-arylmethyl, N-arylethyl, or N-ethylpiperazinyl moieties were
tested, while in the last series of compounds, piperazinyl-piperidine linker groups were
attached to the phenylalkylhydrazide core of the compounds. The general structures of
the new inhibitors are summarized in Figure 11. The experimentally determined HDAC3
IC50 values and the prediction results are shown in Tables 8, S5 and S6 (Supplement, all 2D
structures are summarized in Table S4, Supplement).
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First, the ligand-based models; i.e., the pharmacophore models and 3D_atom-based
QSAR models, were tested. The developed pharmacophore model was used to align the
26 new compounds to apply the atom-based QSAR model.

Analyzing the atom-based prediction results of the 26 new compounds revealed
interesting results (Table 8). Based on the atom-based QSAR model prediction results,
the absolute difference between the experimental and predicted pIC50 of the nine com-
pounds, which are moderately active or inactive, was more than >1 log unit, i.e., these
compounds were predicted to be more active than experimentally determined. The atom-
based QSAR model makes predictions based on the effect of electron-withdrawing groups,
electron-donating groups, and hydrophobic groups of compounds considering the created
pharmacophore hypothesis. However, in the case of HDAC3, the shape of the foot pocket
plays an important role in the inhibitor activity. Due to the smaller volume of the HDAC3
foot pocket, compounds with alkyl groups longer than butyl are moderately active or inac-
tive as determined by the in vitro results. Atom-based QSAR models do not take the pocket
volume into account, hence resulting in the observed weak prediction of these derivatives.
In conclusion, the atom-based QSAR model showed a weak discriminatory power.
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Table 8. Experimental and predicted activities of the BFE-based and atom-based models.

Compound
Number

pIC50
HDAC3

Prediction by
Atom-Based

QSAR

Difference
(Experimental—

Predicted Activity)
Atom-Based

Prediction by
BFE Model

Difference
(Experimental—Predicted

Activity) BFE

64 7.04 7.03 0.01 7.16 −0.12
65 6.46 6.59 −0.13 6.89 −0.43
66 5.82 6.57 −0.75 6.36 −0.54
67 <5.00 6.43 <−1.43 5.41 -
68 5.80 7.25 −1.46 6.69 −0.89
69 <5.00 7.05 <−2.05 5.07 -
70 <5.00 6.98 <−1.98 3.92 -
71 9%@1 µM 6.82 - 0.24 -
72 7.37 7.85 −0.49 7.60 −0.23
73 6.70 7.29 −0.59 6.68 0.02
74 41%@1 µM 7.39 - 7.29 -
75 7.09 7.82 −0.73 8.06 −0.97
76 7.22 7.12 0.10 6.86 0.36
77 7.43 7.96 −0.53 7.06 0.38
78 7.24 7.03 0.20 7.98 −0.75
79 6.92 6.80 0.12 6.32 0.60
80 6.96 8.10 −1.14 7.42 −0.46
81 <5.00 6.54 <−1.54 1.65 -
82 <5.00 6.86 <1.86 1.61 -
83 5.52 7.25 −1.73 3.26 2.26
84 <5.00 7.61 <−1.67 2.69 -
85 7.52 7.63 −0.10 7.64 −0.11
86 7.00 7.18 −0.18 7.29 −0.29
87 6.52 6.52 0.00 6.86 −0.33
88 6.00 7.40 −1.40 6.13 −0.13
89 5.85 7.13 −1.28 6.11 −0.26

Then we evaluated the binding-free-energy-based prediction results (Table 8). Initially,
all 26 compounds were docked to HDAC3 using the same protocol as for the training set.
Similar docking poses in HDAC3 were obtained for all 26 new compounds as obtained
for compounds 1 and 2 (exemplified in Figure 12). The docking studies showed that the
hydrazide moiety as well as the aromatic linker groups of all 26 compounds exhibited
similar interactions as observed for compounds 1 and 2. A bidentate chelation between the
zinc ion and hydrazide moiety was observed for all compounds. In addition, the hydrazide
moiety showed hydrogen bonds with H134, H135, and Y298 in the zinc-binding region
of the HDAC3 catalytic pocket. The aromatic linker groups were accommodated into
the hydrophobic tunnel and interacted with F144 and F200, showing pi–pi interactions.
Meanwhile, the cap groups and foot-pocket-targeting groups showed significant differences
which has an impact on the HDAC3 activity.

In the first series, exemplified by compound 64 (Figure 12), the acetoamidomethyl cap
group was placed at the entrance of the pocket and showed hydrogen bond interactions
with D93. The different length of the hydrazide alkyl side chain resulted in a significant
difference in HDAC3 activity. Compound 64 possessing a propyl side chain was predicted
to be more active than 65, 66, and 67, which is in line with the experimentally determined
data. The difference between the experimental and predicted values is indeed less than
<1 log unit for this series. Moreover, compound 67 with a hexyl side chain was predicted to
be inactive. This result confirms that the BFE model is sensible to the side chain effects on
this dataset.
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the inhibitors and the protein are shown. Relevant residues are shown in stick representation with
salmon carbon atoms in HDAC3. The ligand is shown in stick representation with green carbon
atoms. The zinc ion is shown as a cyan-colored sphere.

In the second series, only compound 68 (Figure 12) bearing the acetamidomethyl cap
group and propyl side chain in the foot-pocket-targeting region showed moderate activity
on HDAC3. The other compounds 69, 70, and 71 with a hexyl side chain, did not show
significant activity on HDAC3. Similar to the experimentally determined activity, the BFE
model also predicted compound 68 as a moderate inhibitor, while 69, 70, and 71 were
predicted as inactive compounds.

In the third series of compounds bearing an aminopyrimidine moiety as a linker
group, different N-arylmethyl, N-arylethyl, or N-methylpiperaziniyl moieties as capping
groups were tested. This series is exemplified by compound 72 (Figure 12). All compounds
bearing a propyl side chain except compound 74 were predicted with less than <1 log unit
compared to the experimentally determined activities. Interestingly, compound 74 bearing
an N-arylethyl cap group did not show significant inhibitory activity (41%@1µM) on
HDAC3; however, it was predicted by the model as an active inhibitor. The flexible cap
group could be the reason for the reduced activity on HDAC3. Finally, compounds 81–84
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possessing a hexyl side chain were predicted as inactive inhibitors which is in line with the
experimental findings.

The last series of compounds bearing indole or N-methylindole groups attached via
a methyl or ethyl linker to the piperazinyl–pyrimidine scaffold were predicted close to the
experimental activities. The difference between the experimental and predicted values is less
than <1 log unit. The docking poses of this series are exemplified by compound 85 (Figure 12).

In conclusion we applied the validated BFE models to the further development of
the alkylhydrazide-based class I HDAC inhibitors. The best inhibitors from this series
were also tested for their immunmodulatory effects in Jurkat cells and showed promising
cellular effects [53]. As we have recently demonstrated a potent T cell memory response by
combined class I HDAC inhibition and immune-checkpoint blockade in hepatocellular car-
cinoma (HCC) therapy, the new alkylhydrazides represent an interesting class of inhibitors
to explore their potential for cancer therapy.

3. Materials and Methods
3.1. Ligand Database Preparation

A ligand dataset of 63 compounds with hydrazide as the zinc-binding group (ZBG) was
collected from the literature [47,49,51]. Only compounds having an N-monosubstituted
hydrazide scaffold were considered. The IC50 values of the selected compounds were
retrieved from three publications and they all were determined against HDAC3 using the
same fluorogenic substrate (Boc-Lys(acetyl)-AMC (amino methyl coumarin)). The same
human recombinant HDAC3 enzyme was used for the in vitro studies [47,49,51]. The
compounds were prepared in ligprep tool using the OPLS3e forcefield in Schrödinger
suite [73]. Subsequently, the output of the ligprep step was submitted the Confgen to
generate 64 conformers per ligand while minimizing the output conformers using the
OPLS3e forcefield [73,74]. The compounds were automatically divided into a training
(70%) and external test set (30%) using the “RAND” function in the MOE program (MOE–
Molecular database calculator–RAND) [64]. The same training set and external test set were
used for the model development studies. The compounds with no exact IC50 values were
considered as inactive. The QSAR models were built using the most active and moderate
inhibitors for which exact IC50 values were available.

The diversity analysis of the compounds was performed by analyzing the three most
important principal components using the principal component analysis (PCA) imple-
mented in MOE [60,64,65]. The 2D descriptors were computed in MOE [64]. Several 2D
descriptors were selected using the Contingency tool in MOE. The three most important
principal components (PCA1, PCA2, and PCA3) were calculated using the selected 2D de-
scriptors. These principal components were used to check the diversity of the compounds.

The 26 compounds were collected from the article published by our group to evaluate
the established models and check their reliability in different datasets [53]. The ligands
were prepared using the same protocol as used for the validation set.

3.2. Pharmacophore Model

The pharmacophore model was established using 30 inhibitors with IC50 values lower
than 100 nM in the training set and the 7 inactive compounds in the Phase module of
Schrödinger [66]. The compounds were prepared in ligprep using the OPLS3e forcefield in
the previous step [73,74]. The conformational search was performed in the Phase module
by adjusting 64 conformers per compound and minimizing the output conformers using
the “Develop Pharmacophore model” module in Schrödinger [66]. The common pharma-
cophore hypotheses were developed, scored, and ranked. The selected pharmacophore
model was used as an alignment rule for the atom-based 3D-QSAR model.

3.3. Atom-Based 3D-QSAR Model

The ligand-based 3D-QSAR model was generated using the training dataset in the
Phase module of Schrödinger [66]. The 39 compounds in the training database were aligned
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using the selected pharmacophore hypothesis from the previous step. The QSAR models
were built with four latent factors and 1.0 Å grid spacing as well as the leave-one-out-
cross-validation approach. The generated models were evaluated by means of standard
deviation of the regression (SD), R2 (correlation coefficient of regression), RMSE (root mean
square error of test set prediction), and Q2 (cross-training of test set prediction).

3.4. Docking Study

The hydroxamic acid scaffold and hydrazide scaffold are structurally similar groups.
Therefore, the X-ray crystal structures of HDAC2 (PDB ID: 4LXZ [35]) and HDAC3 (PDB
ID: 4A69 [69]) were retrieved from the Protein Data Bank (PDB, rcsb.org [(accessed on
20 May 2022) [75]) and analyzed in MOE [64]. SAHA with a hydroxamic acid scaffold in
complex with the HDAC2 protein (PDB ID: 4LXZ) was defined as a pan-HDAC inhibitor
and showed activity on HDAC3 [35]. First, HDAC2 (PDB ID: 4LXZ) and HDAC3 (PDB
ID: 4A69) were superposed in MOE [64]. Then, SAHA was transferred from the HDAC2
protein (PDB ID: 4LXZ) to HDAC3 to mimic the induced fit effect of the zinc-binding group.

The HDAC3–SAHA complex was prepared in the protein preparation wizard of
Schrödinger’s suite by adding hydrogen bonds and missing side chains and assigning the
bond orders [73]. The water molecules (except W2083) and ions (except Zn+2 ions) were
deleted. The protonation states and tautomers were optimized at pH 7.4 using the PROPKA
tool. The optimized complex was minimized using the OPLS3e force field to remove the
steric clashes [74].

Molecular docking studies were carried out by applying the standard precision (SP)
mode in Glide implemented in Schrödinger Suite [73]. The grid box including the informa-
tion on the active site coordinates of the proteins was defined with a 10 Å radius around
the ligand. Ten docking poses were employed for further post-docking minimization. The
other settings were kept as the default. The docking results were visually analyzed in the
MOE program [64].

3.5. Molecular Dynamics Simulation

The selected docking poses of compounds 1 and 2 in complex with HDAC3 (PDB
ID: 4A69) were subjected to a 100 ns MD simulation in AMBER16 [70]. The Antechamber
package was used to prepare the topologies, force field parameters, atom types, and
bond types by applying the semi-empirical Austin Model1 with bond charge correction
(AM1-BCC) [76,77]. Then, the tLEaP module was employed to prepare the protein–ligand
complexes. General amber force field (GAFF), the Duan force field (ff03.r1), and 12-6-
4LJ ionic model were used for the ligand, protein, and zinc, respectively [78–81]. The
system was solvated by the TIP3P water model and a margin of 10 Å. Two minimization
steps including the two sub-steps in each minimization were carried out. In the first step,
4000 iterations (2000 cycles of steepest descent and then 2000 of the conjugate gradient)
were performed, while the protein residues, ligand, and zinc ion were restrained to their
initial geometries (force constant of 10 kcal*mol−1* Å−2) to relieve the bad contacts. In the
second step, 4000 iterations (2000 cycles of steepest descent and then 2000 of the conjugate
gradient) were performed to remove the steric clashes in the entire complex. The restraint
on the protein, ligand, and zinc were removed during the second minimization. Then,
the system was heated at 300 K through 100 ps of MD. The protein–ligand complex was
restrained to prevent large structural deviations (force constant of 10 kcal*mol−1* Å−2).
The SHAKE algorithm was activated to constrain bonds involving hydrogens [82]. Finally,
the system was equilibrated within a period of 200 ps. Langevin dynamics was applied
to keep the temperature at 300 K with a collision frequency of 2 ps [83]. The pressure was
kept at 1 bar using isotropic position scaling with a relaxation time of 2 ps. Afterwards,
a 100 ns MD simulation was run with a time step of 2 fs using the same conditions as in
the equilibration step. A non-bonded cut-off distance of 10 Å was used. The electrostatic
interactions were calculated by applying the particle mesh Ewald (PME) method. After the
MD simulation, CPPTRAJ module of AMBER was used to analyze the MD snapshots.

rcsb.org
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3.6. Binding Free Energy Calculation

The binding free energies (BFE) of the prepared protein–ligand complexes were cal-
culated using the AMBER16 program [70]. The MMPBSA.py script was utilized for the
calculations [84]. Different implicit solvent models (GB HCT (igb = 1), GB OBC (igb = 2),
GB OBC2 (igb = 5), and GBn (igb = 8)) were tested [85–87]. Molecular mechanics (MM)
and solvent models were combined for the MMGBSA calculations [88–90]. Short 2 ns MD
simulation was performed for all BFE calculations. The results of BFE were analyzed using
the following six different methods: (1) a single frame at the first minimization step (Emin1),
(2) a single frame at the second minimization step (Emin2), (3) a single frame at the third
minimization after MD (Emin3), (4) 1–50 frames during MD (MD-1) with an interval of 5,
(5) 51–100 frames during MD (MD-2) with an interval of 5, and (6) 101–500 frames during
MD (MD-3) with an interval of 5. The correlation between biological activity and the energy
results was measured by using the QSAR tool in the MOE program [64].

4. Conclusions

In the current study, we have evaluated several QSAR models including ligand-
based and structure-based techniques to understand the structure–activity relationship of
alkylhydrazides developed as HDAC3 inhibitors. Additionally, the binding modes of the
two most potent HDAC3 inhibitors (compounds 1 and 2) were verified through 100 ns MD
simulation since there is no X-ray structure crystallized with an alkylhydrazide derivative.
With the aid of ligand-based and structure-based approaches, in-house computational
models have been developed for the prediction of the HDAC3 inhibitory activity of the
alkylhydrazide scaffold.

The ligand-based models enabled us to obtain a general overview of the binding of the
compounds in the HDAC3 protein. The established pharmacophore model and atom-based
3D-QSAR model can be used to filter the big databases. Since the shape of the foot pocket
of HDAC3 has a crucial impact on the HDAC3 inhibitory activity, the predictive power of
the ligand-based models was not satisfactory. These models predicted moderate inhibitors
and inactive compounds as active compounds, although they predicted the actives as
actives. Thus, these methods should be used to reduce the number of compounds in the
big database.

The weakness of the ligand-based methods directed us to generate the structure-
based methods. The binding mode of the alkylhydrazide was predicted by docking. The
selected binding modes from the validation set (compounds 1 and 2) were verified by the
100 ns MD simulation. The analysis of the MD simulation revealed that M24 and L133 are
gatekeepers in the foot pocket of HDAC3. Additionally, the alkylhydrazides kept their
bidentate chelation to the zinc ion during the 100 ns MD simulation. The compounds were
rescored by means of BFE calculations. The binding free energies were correlated with the
experimentally derived inhibitory activities. The established binding-free-energy-based
QSAR model predicted all of the compounds in the test set with less than 1 log difference.
Additionally, we tested the established model on a new dataset containing 26 molecules
which were designed, synthesized, and tested taking knowledge of the developed BFE
models [53]. The structure-based model was able to predict these novel compounds
with less than 1 log unit error and showed its value for chemical optimization. For the
different test sets, the structure-based model showed better accuracy than the ligand-based
models. The combination of structure-based and ligand-based models resulted in predictive
QSAR models in the current study. These provide useful tools for the further design and
optimization of alkylhydrazide derivatives as HDAC inhibitors.



Pharmaceuticals 2023, 16, 968 20 of 24

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph16070968/s1. Figure S1: Visualization of the atom-based 3D-QSAR model
in the training set; Figure S2: Docking poses of the training set, the external test set, and the inactive set;
Figure S3: 100 ns MD results for the HDAC3-1 complex; Figure S4: 100 ns MD results for the HDAC3-2
complex; Figure S5: MD analysis results of HDAC3-1 complex. Figure S6: MD analysis results of HDAC3-
2 complex. Table S1: Two-dimensional chemical structures and biological data of compounds in the
training set, external test set, and inactive set; Table S2: Prediction values of the best atom-based QSAR
model generated for the training set, test set, and inactive set in HDAC3; Table S3: Prediction values of
the best BFE model generated for the training set, test set, and inactive set in HDAC3; Table S4: Two-
dimensional chemical structures and biological data of the test set; Table S5: Prediction values of the best
atom-based QSAR model generated for the test set in HDAC3; Table S6: Prediction values of the best
BFE model generated for the test set in HDAC3.

Author Contributions: E.F.B. and D.R. carried out the computational studies and wrote the manuscript.
J.M. and D.R. supervised the MD simulations and revised the manuscript. P.S., F.M. and M.Z. carried
out the data correction and statistical tests and wrote part of the manuscript. M.S. and W.S. supervised
the experiments and revised the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG) SI868/22-1 project
number 46995445 (to W.S.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect. 2006, 114, A160–A167. [CrossRef] [PubMed]
2. Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [CrossRef] [PubMed]
3. Fraczek, J.; van Grunsven, L.A.; Vinken, M.; Snykers, S.; Deleu, S.; Vanderkerken, K.; Vanhaecke, T.; Rogiers, V. Histone

deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology. J. Cell. Mol. Med. 2009,
13, 2990–3005. [CrossRef]

4. Chen, P.J.; Huang, C.; Meng, X.M.; Li, J. Epigenetic modifications by histone deacetylases: Biological implications and therapeutic
potential in liver fibrosis. Biochimie 2015, 116, 61–69. [CrossRef]

5. Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: Implica-
tions for disease and therapy. Nat. Rev. Genet. 2009, 10, 32–42. [CrossRef]

6. Seto, E.; Yoshida, M. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6.
[CrossRef]

7. Melesina, J.; Simoben, C.V.; Praetorius, L.; Bulbul, E.F.; Robaa, D.; Sippl, W. Strategies To Design Selective Histone Deacetylase
Inhibitors. Chemmedchem 2021, 16, 1336–1359. [CrossRef]

8. Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006,
5, 769–784. [CrossRef]

9. Gregoretti, I.V.; Lee, Y.M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: Functional implications of
phylogenetic analysis. J. Mol. Biol. 2004, 338, 17–31. [CrossRef]

10. Hildmann, C.; Riester, D.; Schwienhorst, A. Histone deacetylases--an important class of cellular regulators with a variety of
functions. Appl. Microbiol. Biotechnol. 2007, 75, 487–497. [CrossRef]

11. Barneda-Zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol. 2012, 6, 579–589. [CrossRef]
12. Denslow, S.A.; Wade, P.A. The human Mi-2/NuRD complex and gene regulation. Oncogene 2007, 26, 5433–5438. [CrossRef]
13. Grozinger, C.M.; Schreiber, S.L. Deacetylase enzymes: Biological functions and the use of small-molecule inhibitors. Chem. Biol.

2002, 9, 3–16. [CrossRef] [PubMed]
14. Laherty, C.D.; Yang, W.M.; Sun, J.M.; Davie, J.R.; Seto, E.; Eisenman, R.N. Histone deacetylases associated with the mSin3

corepressor mediate Mad transcriptional repression. Cell 1997, 89, 349–356. [CrossRef] [PubMed]
15. Turnbull, R.E.; Fairall, L.; Saleh, A.; Kelsall, E.; Morris, K.L.; Ragan, T.J.; Savva, C.G.; Chandru, A.; Millard, C.J.;

Makarova, O.V.; et al. The MiDAC histone deacetylase complex is essential for embryonic development and has a unique
multivalent structure. Nat. Commun. 2020, 11, 3252. [CrossRef]

16. Xue, Y.T.; Wong, J.M.; Moreno, G.T.; Young, M.K.; Cote, J.; Wang, W.D. NURD, a novel complex with both ATP-dependent
chromatin-remodeling and histone deacetylase activities. Mol. Cell 1998, 2, 851–861. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ph16070968/s1
https://www.mdpi.com/article/10.3390/ph16070968/s1
https://doi.org/10.1289/ehp.114-a160
https://www.ncbi.nlm.nih.gov/pubmed/16507447
https://doi.org/10.1016/j.cell.2007.02.005
https://www.ncbi.nlm.nih.gov/pubmed/17320507
https://doi.org/10.1111/j.1582-4934.2009.00831.x
https://doi.org/10.1016/j.biochi.2015.06.016
https://doi.org/10.1038/nrg2485
https://doi.org/10.1101/cshperspect.a018713
https://doi.org/10.1002/cmdc.202000934
https://doi.org/10.1038/nrd2133
https://doi.org/10.1016/j.jmb.2004.02.006
https://doi.org/10.1007/s00253-007-0911-2
https://doi.org/10.1016/j.molonc.2012.07.003
https://doi.org/10.1038/sj.onc.1210611
https://doi.org/10.1016/S1074-5521(02)00092-3
https://www.ncbi.nlm.nih.gov/pubmed/11841934
https://doi.org/10.1016/S0092-8674(00)80215-9
https://www.ncbi.nlm.nih.gov/pubmed/9150134
https://doi.org/10.1038/s41467-020-17078-8
https://doi.org/10.1016/S1097-2765(00)80299-3
https://www.ncbi.nlm.nih.gov/pubmed/9885572


Pharmaceuticals 2023, 16, 968 21 of 24

17. Li, J.W.; Wang, J.; Wang, J.X.; Nawaz, Z.; Liu, J.M.; Qin, J.; Wong, J.M. Both corepressor proteins SMRT and N-CoR exist in large
protein complexes containing HDAC3. EMBO J. 2000, 19, 4342–4350. [CrossRef]

18. Oberoi, J.; Fairall, L.; Watson, P.J.; Yang, J.C.; Czimmerer, Z.; Kampmann, T.; Goult, B.T.; Greenwood, J.A.; Gooch, J.T.;
Kallenberger, B.C.; et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery.
Nat. Struct. Mol. Biol. 2011, 18, 177–184. [CrossRef]

19. Hu, E.; Chen, Z.X.; Fredrickson, T.; Zhu, Y.; Kirkpatrick, R.; Zhang, G.F.; Johanson, K.; Sung, C.M.; Liu, R.G.; Winkler, J. Cloning
and characterization of a novel human. Class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem. 2000,
275, 15254–15264. [CrossRef]

20. Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 2020,
52, 204–212. [CrossRef]

21. Vahid, F.; Zand, H.; Nosrat-Mirshekarlou, E.; Najafi, R.; Hekmatdoost, A. The role dietary of bioactive compounds on the
regulation of histone acetylases and deacetylases: A review. Gene 2015, 562, 8–15. [CrossRef]

22. Chien, W.W.; Lee, D.H.; Zheng, Y.; Wuensche, P.; Alvarez, R.; Wen, D.L.; Aribi, A.M.; Thean, S.M.; Doan, N.B.; Said, J.W.; et al.
Growth Inhibition of Pancreatic Cancer Cells by Histone Deacetylase Inhibitor Belinostat Through Suppression of Multiple
Pathways Including HIF, NFkB, and mTOR Signaling In Vitro and In Vivo. Mol. Carcinogen. 2014, 53, 722–735. [CrossRef]
[PubMed]

23. Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.H.; Nishiyama, N.; Nakajima, I.; Tanaka, A.; Komatsu, Y.; Nishino, N.;
Yoshida, M.; et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002,
62, 4916–4921. [PubMed]

24. Mann, B.S.; Johnson, J.R.; He, K.; Sridhara, R.; Abraham, S.; Booth, B.P.; Verbois, L.; Morse, D.E.; Jee, J.M.; Pope, S.; et al. Vorinostat
for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin. Cancer Res. 2007, 13, 2318–2322.
[CrossRef]

25. Sivaraj, D.; Green, M.M.; Gasparetto, C. Panobinostat for the management of multiple myeloma. Future Oncol. 2017, 13, 477–488.
[CrossRef]

26. Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.;
Petrie, K.; et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.
Nat. Genet. 2005, 37, 391–400. [CrossRef] [PubMed]

27. Gryder, B.E. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem. 2012,
4, 505–524. [CrossRef]

28. Hailu, G.S.; Robaa, D.; Forgione, M.; Sippl, W.; Rotili, D.; Mai, A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and
Future Perspectives. J. Med. Chem. 2017, 60, 4780–4804. [CrossRef]

29. Pant, K.; Peixoto, E.; Richard, S.; Gradilone, S.A. Role of Histone Deacetylases in Carcinogenesis: Potential Role in Cholangiocarci-
noma. Cells 2020, 9, 780. [CrossRef]

30. Jung, M.; Brosch, G.; Kolle, D.; Scherf, H.; Gerhauser, C.; Loidl, P. Amide analogues of trichostatin A as inhibitors of histone
deacetylase and inducers of terminal cell differentiation. J. Med. Chem. 1999, 42, 4669–4679. [CrossRef]

31. Bulbul, E.F.; Melesina, J.; Ibrahim, H.S.; Abdelsalam, M.; Vecchio, A.; Robaa, D.; Zessin, M.; Schutkowski, M.; Sippl, W. Docking,
Binding Free Energy Calculations and In Vitro Characterization of Pyrazine Linked 2-Aminobenzamides as Novel Class I Histone
Deacetylase (HDAC) Inhibitors. Molecules 2022, 27, 2526. [CrossRef]

32. Burli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; et al.
Design, Synthesis, and Biological Evaluation of Potent and Selective Class IIa Histone Deacetylase (HDAC) Inhibitors as a
Potential Therapy for Huntington’s Disease. J. Med. Chem. 2013, 56, 9934–9954. [CrossRef] [PubMed]

33. Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Marek, M.; Melesina, J.; Hauser, A.T.; Shaik, T.B.; Duclaud, S.; Robaa, D.; Erd-
mann, F.; et al. Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from Schistosoma mansoni for the
Treatment of Schistosomiasis. J. Med. Chem. 2016, 59, 2423–2435. [CrossRef]

34. Ibrahim, H.S.; Abdelsalam, M.; Zeyn, Y.; Zessin, M.; Mustafa, A.M.; Fischer, M.A.; Zeyen, P.; Sun, P.; Bulbul, E.F.; Vecchio, A.; et al.
Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective
Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. Int. J. Mol. Sci. 2022, 23, 369. [CrossRef]

35. Lauffer, B.E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; et al.
Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and
cell viability. J. Biol. Chem. 2013, 288, 26926–26943. [CrossRef]

36. Luckhurst, C.A.; Breccia, P.; Stott, A.J.; Aziz, O.; Birch, H.L.; Burli, R.W.; Hughes, S.J.; Jarvis, R.E.; Lamers, M.; Leonard, P.M.; et al.
Potent, Selective, and CNS-Penetrant Tetrasubstituted Cyclopropane Class Ila Histone Deacetylase (HDAC) Inhibitors. ACS Med.
Chem. Lett. 2016, 7, 34–39. [CrossRef]

37. Marek, M.; Ramos-Morales, E.; Picchi-Constante, G.F.A.; Bayer, T.; Norstrom, C.; Herp, D.; Sales, P.A.; Guerra-Slompo, E.P.;
Hausmann, K.; Chakrabarti, A.; et al. Species-selective targeting of pathogens revealed by the atypical structure and active site of
Trypanosoma cruzi histone deacetylase DAC2. Cell Rep. 2021, 37, 110129. [CrossRef] [PubMed]

38. Marek, M.; Shaik, T.B.; Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Ramos-Morales, E.; Da Veiga, C.; Kalinin, D.; Melesina, J.;
Robaa, D.; et al. Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural
and Functional Determinants. J. Med. Chem. 2018, 61, 10000–10016. [CrossRef] [PubMed]

https://doi.org/10.1093/emboj/19.16.4342
https://doi.org/10.1038/nsmb.1983
https://doi.org/10.1074/jbc.M908988199
https://doi.org/10.1038/s12276-020-0382-4
https://doi.org/10.1016/j.gene.2015.02.045
https://doi.org/10.1002/mc.22024
https://www.ncbi.nlm.nih.gov/pubmed/23475695
https://www.ncbi.nlm.nih.gov/pubmed/12208741
https://doi.org/10.1158/1078-0432.CCR-06-2672
https://doi.org/10.2217/fon-2016-0329
https://doi.org/10.1038/ng1531
https://www.ncbi.nlm.nih.gov/pubmed/15765097
https://doi.org/10.4155/fmc.12.3
https://doi.org/10.1021/acs.jmedchem.6b01595
https://doi.org/10.3390/cells9030780
https://doi.org/10.1021/jm991091h
https://doi.org/10.3390/molecules27082526
https://doi.org/10.1021/jm4011884
https://www.ncbi.nlm.nih.gov/pubmed/24261862
https://doi.org/10.1021/acs.jmedchem.5b01478
https://doi.org/10.3390/ijms23010369
https://doi.org/10.1074/jbc.M113.490706
https://doi.org/10.1021/acsmedchemlett.5b00302
https://doi.org/10.1016/j.celrep.2021.110129
https://www.ncbi.nlm.nih.gov/pubmed/34936867
https://doi.org/10.1021/acs.jmedchem.8b01087
https://www.ncbi.nlm.nih.gov/pubmed/30347148


Pharmaceuticals 2023, 16, 968 22 of 24

39. Simoben, C.V.; Robaa, D.; Chakrabarti, A.; Schmidtkunz, K.; Marek, M.; Lancelot, J.; Kannan, S.; Melesina, J.; Shaik, T.B.;
Pierce, R.J.; et al. A Novel Class of Schistosoma mansoni Histone Deacetylase 8 (HDAC8) Inhibitors Identified by Structure-Based
Virtual Screening and In Vitro Testing. Molecules 2018, 23, 566. [CrossRef] [PubMed]

40. Wang, D.F.; Wiest, O.; Helquist, P.; Lan-Hargest, H.Y.; Wiech, N.L. On the function of the 14 angstrom long internal cavity of
histone deacetylase-like protein: Implications for the design of histone deacetylase inhibitors. J. Med. Chem. 2004, 47, 3409–3417.
[CrossRef]

41. Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.Q.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R.
Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett.
2010, 20, 3142–3145. [CrossRef]

42. Liu, J.; Kelly, J.; Yu, W.S.; Clausen, D.; Yu, Y.N.; Kim, H.; Duffy, J.L.; Chung, C.C.; Myers, R.W.; Carroll, S.; et al. Selective
Class I HDAC Inhibitors Based on Aryl Ketone Zinc Binding Induce HIV-1 Protein for Clearance. ACS Med. Chem. Lett. 2020,
11, 1476–1483. [CrossRef] [PubMed]

43. Wagner, F.F.; Weiwer, M.; Steinbacher, S.; Schomburg, A.; Reinemer, P.; Gale, J.P.; Campbell, A.J.; Fisher, S.L.; Zhao, W.N.;
Reis, S.A.; et al. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorgan.
Med. Chem. 2016, 24, 4008–4015. [CrossRef]

44. Yu, W.S.; Liu, J.; Yu, Y.N.; Zhang, V.; Clausen, D.; Kelly, J.; Wolkenberg, S.; Beshore, D.; Duffy, J.L.; Chung, C.C.; et al. Discovery of
ethyl ketone-based HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorg. Med. Chem. Lett. 2020, 30, 127197.
[CrossRef]

45. Liu, J.; Yu, Y.N.; Kelly, J.; Sha, D.Y.; Alhassan, A.B.; Yu, W.S.; Maletic, M.M.; Duffy, J.L.; Klein, D.J.; Holloway, M.K.; et al. Discovery
of Highly Selective and Potent HDAC3 Inhibitors Based on a 2-Substituted Benzamide Zinc Binding Group. ACS Med. Chem. Lett.
2020, 11, 2476–2483. [CrossRef]

46. Wang, Y.F.; Stowe, R.L.; Pinello, C.E.; Tian, G.M.; Madoux, F.; Li, D.W.; Zhao, L.S.Y.; Li, J.L.; Wang, Y.R.; Wang, Y.; et al. Identifica-
tion of Histone Deacetylase Inhibitors with Benzoylhydrazide Scaffold that Selectively Inhibit Class I Histone Deacetylases. Chem.
Biol. 2015, 22, 273–284. [CrossRef]

47. Jiang, Y.Q.; Xu, J.; Yue, K.R.; Huang, C.; Qin, M.T.; Chi, D.Y.; Yu, Q.X.; Zhu, Y.; Hou, X.H.; Xu, T.Q.; et al. Potent Hydrazide-Based
HDAC Inhibitors with a Superior Pharmacokinetic Profile for Efficient Treatment of Acute Myeloid Leukemia In Vivo. J. Med.
Chem. 2022, 65, 285–302. [CrossRef]

48. Kozlov, M.V.; Konduktorov, K.A.; Shcherbakova, A.S.; Kochetkov, S.N. Synthesis of N′-propylhydrazide analogs of hydroxamic
inhibitors of histone deacetylases (HDACs) and evaluation of their impact on activities of HDACs and replication of hepatitis C
virus (HCV). Bioorg. Med. Chem. Lett. 2019, 29, 2369–2374. [CrossRef] [PubMed]

49. Li, X.Y.; Jiang, Y.Q.; Peterson, Y.K.; Xu, T.Q.; Himes, R.A.; Luo, X.; Yin, G.L.; Inks, E.S.; Dolloff, N.; Halene, S.; et al. Design of
Hydrazide-Bearing HDACIs Based on Panobinostat and Their p53 and FLT3-ITD Dependency in Antileukemia Activity. J. Med.
Chem. 2020, 63, 5501–5525. [CrossRef] [PubMed]

50. Li, X.Y.; Peterson, Y.K.; Inks, E.S.; Himes, R.A.; Li, J.Y.; Zhang, Y.J.; Kong, X.J.; Chou, C.J. Class I HDAC Inhibitors Display
Different Antitumor Mechanism in Leukemia and Prostatic Cancer Cells Depending on Their p53 Status. J. Med. Chem. 2018,
61, 2589–2603. [CrossRef] [PubMed]

51. McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.Y.; Chou, C.J. Development of Allosteric Hydrazide-Containing Class I
Histone Deacetylase Inhibitors for Use in Acute Myeloid Leukemia. J. Med. Chem. 2016, 59, 9942–9959. [CrossRef]

52. Xiao, Y.F.; Wang, J.; Zhao, L.S.Y.; Chen, X.Y.; Zheng, G.R.; Zhang, X.; Liao, D.Q. Discovery of histone deacetylase 3 (HDAC3)-
specific PROTACs. Chem. Commun. 2020, 56, 9866–9869. [CrossRef]

53. Sun, P.; Wang, J.; Khan, K.S.; Yang, W.; Ng, B.W.-L.; Ilment, N.; Zessin, M.; Bülbül, E.F.; Robaa, D.; Erdmann, F.; et al. Development
of alkylated hydrazides as highly potent and selective class I HDAC inhibitors with T cell modulatory properties. J. Med. Chem.
2022, 65, 16313–16337. [CrossRef] [PubMed]

54. Adhikari, N.; Jha, T.; Ghosh, B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a
Promising Therapeutic Strategy. J. Med. Chem. 2021, 64, 8827–8869. [CrossRef]

55. You, S.H.; Lim, H.W.; Sun, Z.; Broache, M.; Won, K.J.; Lazar, M.A. Nuclear receptor co-repressors are required for the histone-
deacetylase activity of HDAC3 in vivo. Nat. Struct. Mol. Biol. 2013, 20, 182–187. [CrossRef] [PubMed]

56. Sarkar, R.; Banerjee, S.; Amin, S.A.; Adhikari, N.; Jha, T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review.
Eur. J. Med. Chem. 2020, 192, 112171. [CrossRef]

57. Janczura, K.J.; Volmar, C.H.; Sartor, G.C.; Rao, S.J.; Ricciardi, N.R.; Lambert, G.; Brothers, S.P.; Wahlestedt, C. Inhibition of HDAC3
reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc. Natl. Acad. Sci. USA 2018,
115, E11148–E11157. [CrossRef] [PubMed]

58. Jiang, L.P.; Yu, X.H.; Chen, J.Z.; Hu, M.; Zhang, Y.K.; Lin, H.L.; Tang, W.Y.; He, P.P.; Ouyang, X.P. Histone Deacetylase 3: A
Potential Therapeutic Target for Atherosclerosis. Aging Dis. 2022, 13, 773–786. [CrossRef]

59. Zhang, L.; Cao, W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. J. Mol. Med. 2022,
100, 43–51. [CrossRef]

60. Carey, R.N.; Wold, S.; Westgard, J.O. Principal component analysis: An alternative to “referee” methods in method comparison
studies. Anal. Chem. 1975, 47, 1824–1829. [CrossRef]

https://doi.org/10.3390/molecules23030566
https://www.ncbi.nlm.nih.gov/pubmed/29498707
https://doi.org/10.1021/jm0498497
https://doi.org/10.1016/j.bmcl.2010.03.091
https://doi.org/10.1021/acsmedchemlett.0c00302
https://www.ncbi.nlm.nih.gov/pubmed/32676157
https://doi.org/10.1016/j.bmc.2016.06.040
https://doi.org/10.1016/j.bmcl.2020.127197
https://doi.org/10.1021/acsmedchemlett.0c00462
https://doi.org/10.1016/j.chembiol.2014.12.015
https://doi.org/10.1021/acs.jmedchem.1c01472
https://doi.org/10.1016/j.bmcl.2019.06.006
https://www.ncbi.nlm.nih.gov/pubmed/31201063
https://doi.org/10.1021/acs.jmedchem.0c00442
https://www.ncbi.nlm.nih.gov/pubmed/32321249
https://doi.org/10.1021/acs.jmedchem.8b00136
https://www.ncbi.nlm.nih.gov/pubmed/29499113
https://doi.org/10.1021/acs.jmedchem.6b01385
https://doi.org/10.1039/D0CC03243C
https://doi.org/10.1021/acs.jmedchem.2c01132
https://www.ncbi.nlm.nih.gov/pubmed/36449385
https://doi.org/10.1021/acs.jmedchem.0c01676
https://doi.org/10.1038/nsmb.2476
https://www.ncbi.nlm.nih.gov/pubmed/23292142
https://doi.org/10.1016/j.ejmech.2020.112171
https://doi.org/10.1073/pnas.1805436115
https://www.ncbi.nlm.nih.gov/pubmed/30397132
https://doi.org/10.14336/AD.2021.1116
https://doi.org/10.1007/s00109-021-02141-8
https://doi.org/10.1021/ac60361a037


Pharmaceuticals 2023, 16, 968 23 of 24

61. Eichner, L.J.; Curtis, S.D.; Brun, S.N.; McGuire, C.K.; Gushterova, I.; Baumgart, J.T.; Trefts, E.; Ross, D.S.; Rymoff, T.J.; Shaw, R.J.
HDAC3 is critical in tumor development and therapeutic resistance in Kras-mutant non-small cell lung cancer. Sci. Adv. 2023,
9, eadd3243. [CrossRef]

62. Jia, H.; Wang, Y.; Morris, C.D.; Jacques, V.; Gottesfeld, J.M.; Rusche, J.R.; Thomas, E.A. The Effects of Pharmacological Inhibition
of Histone Deacetylase 3 (HDAC3) in Huntington’s Disease Mice. PLoS ONE 2016, 11, e0152498. [CrossRef] [PubMed]

63. Montgomery, R.L.; Potthoff, M.J.; Haberland, M.; Qi, X.; Matsuzaki, S.; Humphries, K.M.; Richardson, J.A.; Bassel-Duby, R.;
Olson, E.N. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Investig. 2008, 118, 3588–3597.
[CrossRef]

64. Chemical Computing Group (CCG). Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group (CCG):
Montreal, QC, Canada, 2019.

65. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016,
374, 20150202. [CrossRef]

66. Schrödinger LLC. Release 2019-1: Phase; Schrödinger LLC: New York, NY, USA, 2019.
67. Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore

perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput.-Aid.
Mol. Des. 2006, 20, 647–671. [CrossRef] [PubMed]

68. Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching.
Chem. Biol. Drug Des. 2006, 67, 370–372. [CrossRef]

69. Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W.R. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate.
Nature 2012, 481, 335–340. [CrossRef]

70. Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.
The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [CrossRef]

71. Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [CrossRef]
[PubMed]

72. Roe, D.R.; Okur, A.; Wickstrom, L.; Hornak, V.; Simmerling, C. Secondary structure bias in generalized Born solvent models:
Comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation. J. Phys.
Chem. B 2007, 111, 1846–1857. [CrossRef]

73. Schrödinger LLC. Release 2019-1: Maestro, Protein Preparation Wizard, Prime, Epik, Ligprep, Confgen, Glide; Schrödinger LLC: New
York, NY, USA, 2019.

74. Harder, E.; Damm, W.; Maple, J.; Wu, C.J.; Reboul, M.; Xiang, J.Y.; Wang, L.L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al.
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016,
12, 281–296. [CrossRef]

75. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]

76. Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization
and validation. J. Comput. Chem. 2002, 23, 1623–1641. [CrossRef]

77. Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I.
Method. J. Comput. Chem. 2000, 21, 132–146. [CrossRef]

78. Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field.
J. Comput. Chem. 2004, 25, 1157–1174. [CrossRef] [PubMed]

79. Li, P.F.; Song, L.F.; Merz, K.M. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in
Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. [CrossRef] [PubMed]

80. Lee, M.C.; Duan, Y. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular
dynamics simulations, and the generalized born solvent model. Proteins-Struct. Funct. Bioinform. 2004, 55, 620–634. [CrossRef]
[PubMed]

81. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.M.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A point-
charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
J. Comput. Chem. 2003, 24, 1999–2012. [CrossRef]

82. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesan equations of motion of a system with
constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [CrossRef]

83. Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys.
1988, 65, 1409–1419. [CrossRef]

84. Miller, B.R., 3rd; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for
End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef]

85. Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified
generalized born model. Proteins-Struct. Funct. Bioinform. 2004, 55, 383–394. [CrossRef]

86. Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Parametrized models of aqueous free energies of solvation based on pairwise
descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996, 100, 19824–19839. [CrossRef]

https://doi.org/10.1126/sciadv.add3243
https://doi.org/10.1371/journal.pone.0152498
https://www.ncbi.nlm.nih.gov/pubmed/27031333
https://doi.org/10.1172/JCI35847
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1007/s10822-006-9087-6
https://www.ncbi.nlm.nih.gov/pubmed/17124629
https://doi.org/10.1111/j.1747-0285.2006.00384.x
https://doi.org/10.1038/nature10728
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/minf.201000061
https://www.ncbi.nlm.nih.gov/pubmed/27463326
https://doi.org/10.1021/jp066831u
https://doi.org/10.1021/acs.jctc.5b00864
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/jcc.10128
https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2&lt;132::AID-JCC5&gt;3.0.CO;2-P
https://doi.org/10.1002/jcc.20035
https://www.ncbi.nlm.nih.gov/pubmed/15116359
https://doi.org/10.1021/jp505875v
https://www.ncbi.nlm.nih.gov/pubmed/25145273
https://doi.org/10.1002/prot.10470
https://www.ncbi.nlm.nih.gov/pubmed/15103626
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1080/00268978800101881
https://doi.org/10.1021/ct300418h
https://doi.org/10.1002/prot.20033
https://doi.org/10.1021/jp961710n


Pharmaceuticals 2023, 16, 968 24 of 24

87. Feig, M.; Onufriev, A.; Lee, M.S.; Im, W.; Case, D.A.; Brooks, C.L. Performance comparison of generalized born and Poisson
methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 2004, 25, 265–284. [CrossRef]
[PubMed]

88. Karaman, B.; Sippl, W. Docking and binding free energy calculations of sirtuin inhibitors. Eur. J. Med. Chem. 2015, 93, 584–598.
[CrossRef]

89. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Dis.
2015, 10, 449–461. [CrossRef] [PubMed]

90. Cournia, Z.; Allen, B.; Sherman, W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical
Considerations. J. Chem. Inf. Model. 2017, 57, 2911–2937. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/jcc.10378
https://www.ncbi.nlm.nih.gov/pubmed/14648625
https://doi.org/10.1016/j.ejmech.2015.02.045
https://doi.org/10.1517/17460441.2015.1032936
https://www.ncbi.nlm.nih.gov/pubmed/25835573
https://doi.org/10.1021/acs.jcim.7b00564
https://www.ncbi.nlm.nih.gov/pubmed/29243483

	Introduction 
	Results and Discussion 
	Diversity Analysis of the Datasets 
	Analysis of the Pharmacophore Model 
	Analysis of the Atom-Based 3D-QSAR Model 
	Analyzing the Binding Mode of Alkylhydrazides in HDAC3 
	Binding Free Energy Calculation 
	Evaluation of the Generated Models on Newly Designed Compounds 

	Materials and Methods 
	Ligand Database Preparation 
	Pharmacophore Model 
	Atom-Based 3D-QSAR Model 
	Docking Study 
	Molecular Dynamics Simulation 
	Binding Free Energy Calculation 

	Conclusions 
	References

