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Some details of cardiovascular and cardio-respiratory regulation and their

changes during different sleep stages remain still unknown. In this paper we

compared the fluctuations of heart rate, pulse rate, respiration frequency, and

pulse transit times as well as EEG alpha-band power on time scales from 6 to

200 s during different sleep stages in order to better understand regulatory

pathways. The five considered time series were derived from ECG,

photoplethysmogram, nasal air flow, and central electrode EEG

measurements from full-night polysomnography recordings of 246 subjects

with suspected sleep disorders. We applied detrended fluctuation analysis,

distinguishing between short-term (6–16 s) and long-term (50–200 s)

correlations, i.e., scaling behavior characterized by the fluctuation exponents

α1 and α2 related with parasympathetic and sympathetic control, respectively.

While heart rate (and pulse rate) are characterized by sex and age-dependent

short-term correlations, their long-term correlations exhibit the well-known

sleep stage dependence: weak long-term correlations during non-REM sleep

and pronounced long-term correlations during REM sleep and wakefulness. In

contrast, pulse transit times, which are believed to be mainly affected by blood

pressure and arterial stiffness, do not show differences between short-term and

long-term exponents. This is in constrast to previous results for blood pressure

time series, where α1 was much larger than α2, and therefore questions a very

close relation between pulse transit times and blood pressure values.

Nevertheless, very similar sleep-stage dependent differences are observed

for the long-term fluctuation exponent α2 in all considered signals including

EEG alpha-band power. In conclusion, we found that the observed fluctuation

exponents are very robust and hardly modified by body mass index, alcohol

consumption, smoking, or sleep disorders. The long-term fluctuations of all

observed systems seem to be modulated by patterns following sleep stages

generated in the brain and thus regulated in a similar manner, while short-term

regulations differ between the organ systems. Deviations from the reported

dependence in any of the signals should be indicative of problems in the

function of the particular organ system or its control mechanisms.
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1 Introduction

The regulation of quasi-periodic processes in the human body

is characterized by high degree of complexity. Therefore,

fluctuations in physiological signals often show nonlinear

dynamics and correlation behavior with (fractal) scaling

relations (Bassingthwaighte and Raymond, 1994; West, 2014).

For example, a scaling behavior of the power spectra similar to

1/f β (“coloured”) noise has been observed in series of time intervals

between successive heartbeats, breaths, and steps (Kobayashi and

Musha, 1982; Peng et al., 1993b; Hausdorff et al., 1995; Peng et al.,

2002; Ivanov et al., 2009). Their dynamics aremodified by different

physiological states (e.g., sleep/wake, sleep stages) and activities,

aging, and under pathological conditions (Ivanov et al., 1999b;

Bunde et al., 2000; Hausdorff et al., 2001; Karasik et al., 2002;

Goldberger et al., 2002; Kantelhardt et al., 2003; Bartsch et al.,

2007). Coloured noise is equivalent to long-term correlations as

described by a slowly decaying autocorrelation function

(“persistence”) (Bunde et al., 2000; Kantelhardt, 2011). Short-

term correlations, on the other hand, are equivalent to

exponentially (i.e., rather quickly) decaying autocorrelations and

characterized by white noise fluctuations at low frequencies.

By comparing the correlation behavior of many

physiological signals across different states in many

subjects, hypotheses regarding the control mechanisms for

the underlying physiological systems can be derived. Here, we

studied, for the first time, the dynamics of pulse-transit times,

from heart to finger, in a similar way as previously done for

inter-heartbeat intervals (Peng et al., 1993a; Bunde et al., 2000;

Schumann et al., 2010), respiratory intervals (Kantelhardt

et al., 2003; Schumann et al., 2010) and brain-wave

amplitudes (Kantelhardt et al., 2015). In particular, the

dynamics of the control of the pulse-wave

propagation—e.g., blood pressure, arterial stiffness,

etc.—can potentially be studied (Guo et al., 2022). Changes

of the scaling behavior in some subjects can also be used as

early indicators or diagnostic tools for pathologies that affect

one or many of the studied organ systems (Ivanov et al., 1999a;

Goldberger et al., 2002).

Specifically, in this paper based on polysomnography (PSG)

recordings from a clinical sleep laboratory, we studied the short-

and long-term correlations (“persistence”) in five time series

characterizing different organ systems.

• RRI (R-R intervals; heart): The time intervals between

successive R peaks in the electrocardiogram (ECG) as an

expression of autonomic cardiac control.

• PPI (pulse to pulse intervals; cardiovascular system):

The time intervals between successive pulse wave peaks

derived from a photoplethysmogram (PPG) as an

expression of autonomic cardiac control but slightly

influenced by pulse wave velocity regulation

mechanisms.

• PTT (pulse transit times, cardiovascular system): The time

intervals between each R peak (in the ECG) and the

corresponding pulse wave peak (in the PPG), believed to

be an expression of blood pressure (Allen and Kyriacou,

2022) and arterial stiffness.

• BBI (breath to breath intervals; respiratory system): The

time intervals between successive respiration maxima

during the sleep phase as an expression of autonomic

respiratory control.

• EEG (brain): The alpha-band amplitudes of a centrally

recorded electroencephalogram (EEG, electrodes C3 or

C4) as an expression of brain dynamics.

Based on previous work in the field, we address the

following hypotheses for short-term (α1) and long-term

(α2) fluctuation exponents, calculated for these five time

series and probably related to parasympathetic and

sympathetic control, respectively. Our implied medical

hypotheses are that deviations from normal dependence

should be indicative of problems in the function or control

mechanisms of the particular organ system.

1) Short-term correlations (α1) for RRI do slightly depend on

sleep stages and have a maximum for intermediate age groups

(Schumann et al., 2010).

2) Long-term correlations (α2) for RRI are weaker than

short-term correlations and nearly absent during non-

REM sleep (N2 and N3), but pronounced during

wakefulness and REM sleep (Bunde et al., 2000;

Schumann et al., 2010).

3) The scaling behavior of RRI and PPI is very similar. This is

expected because the two time series are closely linked

(Schäfer and Vagedes, 2013).

4) The α2 scaling behavior of BBI is similar to RRI, but the BBI

correlations are generally weaker, particularly during

wakefulness and REM sleep (Kantelhardt et al., 2003;

Schumann et al., 2010). Different trends of α2 with aging

occur for RRI and BBI in REM sleep and wakefulness

(Schumann et al., 2010).

5) There is no relevant influence of respiratory disorders—in

particular, sleep apnea as indicated by the apnea-hypopnea

index (AHI)—on the long-term scaling behavior of RRI and

BBI (Penzel et al., 2003).

6) Average PTTs decrease with aging due to increasing arterial

stiffness (Nichols, 2005).
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In addition, studying the fluctuation scaling behavior in

PTTs for the first time, we address the following novel

hypotheses:

7) Long-term correlations (α2) for PTT are similar to BBI.

8) Short-term correlations (α1) for PTT are weaker than for any

of the other considered time series, there is hardly any

crossover (i.e., α1 = α2), and α1 is only weakly changing

with age. This hypothesis implies that there is no close

relationship between PTT and blood pressure at short time

scales, since very strong (even non-stationary, α1 > 1) short-

term correlations have previously been reported for blood

pressure time series (Galhardo et al., 2009; Fuchs et al., 2010;

Castiglioni et al., 2020).

9) An increased body mass index (BMI) is associated with

increased PTT short-term correlations (α1) during

N2 sleep. Increased alcohol consumption is associated

with decreased PTT short-term correlations (α1) during

nocturnal wakefulness but not during sleep.

2 Methods

2.1 Data recordings

We analyzed single night PSG data from 246 subjects

with suspected sleep disorders recorded in clinical sleep

laboratories at the Charité-Universitätsmedizin Berlin,

Germany, between April 2017 and March 2019. The study

was approved by the ethics committee of the Charité-

Universitätsmedizin Berlin and registered at the German

Clinical Trial Register (DRKS) with ID DRKS00016908.

All enrolled subjects gave written informed consent prior

to the study. Full PSG including EEG, electrooculogram

(EOG), electromyogram (EMG), ECG, PPG, oxygen

saturation, and respiratory effort was recorded using

either an Embla® (Natus, Pleasanton, United States) or a

SOMNOscreen™ PSG system (SOMNOmedics,

Randersacker, Germany). The final used data set consisted

of single-night recordings of 130 female and 116 male

participants with body mass index 28.3 ± 6.2 (17.0, 51.9)

kg/m2, age 51.2 ± 14.2 (18, 79.6) years, and time in bed 7.5 ±

0.8 (2.3,7.9) hours [mean ± standard deviation (minimum,

maximum)].

All recordings were part of diagnostic examination and were

classified by the current rules of the International Classification

of Sleep Disorders (ICSD-3); multiple diagnoses are possible. The

dataset includes 12 subjects without sleep disorders, 132 subjects

with sleep-related breathing disorders, 70 subjects with insomnia,

32 subjects with central disorders of hypersomnolence,

37 subjects with sleep-related movement disorder, 8 subjects

with parasomnias and 8 subjects with circadian rhythm sleep-

wake disorders.

2.2 Data preprocessing

Each measurement was cropped to only contain data

between the ‘lights off’ and ‘lights on’ time stamps, indicating

beginning and end of the sleep opportunity period, respectively.

Sleep stages based on 30-second epochs have been determined

from the PSG data by trained experts following standard

guidelines of the American Academy of Sleep Medicine

(AASM) (Berry et al., 2018) to distinguish light sleep (stages

N1 and N2), deep sleep (stage N3), and rapid eye movement

(REM) sleep. We disregarded the N1 sleep episodes, since they

were too short for the time series analysis in most subjects, hence

distinguishing nocturnal wakefulness, N2, N3, and REM sleep.

Heartbeats were detected as R peaks in the ECGs using the

Biosppy algorithm (Carreiras et al., 2015). Intervals between

successive R peaks (RRIs) were regarded as normal if 1)

RRIi > 330 ms, 2) RRIi < 2000 ms, and 3) 0.7 RRIi−1 < RRIi <
1.6 RRIi−1. Non-normal RRIs were discarded and the remaining

data segments stitched together. Chen et al. (2002) and Ma et al.

(2010) have shown that cutting out and stitching together data

segments obtained from discontinuous experimental recordings

does not affect the outcome of the Detrended Fluctuation

Analysis (DFA, see Section 2.3). From the normal RRIs, we

calculated the average heartbeat interval, the standard deviation

of normal-to-normal intervals (SDNN), and the standard

deviations of the RRI increments (i.e., the root mean sum of

squared distance, RMSSD) applying standard heart rate

variability (HRV) analysis (Malik, 1996).

Pulse wave peaks were extracted from the PPGs using the

intersecting tangents method (Hemon and Phillips, 2016). This

approach determines the intersection between the tangent of the

PPG slopes maximum and the (horizontal) tangent of its

minimum, yielding the point of pulse arrival at the finger

tip. We have also considered other definitions of pulse wave

peaks, such as maxima or minima of the PPG signal, but—as in

Hemon and Phillips, (2016)—the intersecting tangents method

showed the best correspondence with R peaks. The reason behind

this observation lies in the changes of pulse wave shape with

aging, since the systolic peak of the pulse wave gets broader with

increasing age, and therefore more inaccurate in comparison to

heart beats (Kelly et al., 1989). We have also applied an offset

correction (subtracting a moving average over 3 s) and a low pass

filter [moving average over 0.1 s (Hemon and Phillips, 2016)] to

the raw PPG signal. In order to calculate the tangent at the point

of maximal slope, we used the first derivative of the PPG signal,

which was high pass filtered again (moving average over 0.1 s), to

reduce noise. Intervals between successive pulse wave peaks

(PPIs) were regarded as normal within the same limits as for

RRIs. Again, non-normal PPIs were discarded and the remaining

data segments stitched together, and averages as well as statistics

corresponding to SDNN and RMSSD were calculated.

Pulse transit times (PTTs) were defined as time differences

between a detected R peak and the corresponding pulse wave
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peak at the finger. Specifically, the pulse wave peak had to occur

between 0.1 and 0.8 s after the R peak. Due to missing pulse wave

peaks (temporarily low quality PPG signal, etc.) not every R peak

could be matched with a corresponding pulse wave peak. All

successfully derived segments of PTT series (0.1 s < PTTi < 0.8 s)

were stitched together, and averages as well as standard

deviations and standard deviations of the increments were

calculated.

Respiratory cycles were detected in the respiratory flow signal

by identification of the maxima. The signal was preprocessed by

subtracting a 10 s moving average and applying a high pass filter

(1 s moving average); see Leube et al. (2020) for details. We have

also considered other methods to derive respiratory intervals,

but—as we focused on respiration cycles rather than the true

respiration onset—the maxima methods turned out to be the

most robust approach. Intervals between successive respiration

peaks (BBIs) were regarded as normal if 1) BBIi > 2 s, 2) BBI i <
8 s, and 3) 0.7 BBIi−1 < BBIi < 1.6 BBIi−1. Non-normal BBIs were

discarded and the remaining data segments stitched together.

Brain-wave amplitudes for the alpha-band were derived from

the C4 (or C3) electrode EEG recordings by 1) employing the

Fourier filtering technique (Theiler et al., 1992) to extract the

alpha-band oscillations in the range from 7 to 12 Hz, 2) applying

a Hilbert transform to determine the instantaneous amplitudes

for each sampling point of the recording, and 3) re-sampling to

one amplitude value per second (rate 1 Hz). For a detailed

description of the procedure, we refer to Kantelhardt et al. (2015).

2.3 Detrended fluctuation analysis to
characterize correlation behavior

In the final step of our analysis procedure, for each subject,

we split all time series according to sleep stages (wakefulness, N2,

N3, REM sleep), applied DFA with second order polynomial

detrending (DFA2), and averaged the fluctuation functions for

each stage with statistical weights corresponding to the duration

of each episode. The DFA method first introduced by Peng et al.

(1994) for studying DNA sequences has been intensely applied to

study persistence (auto-correlations) in noisy, non-stationary

time series and later been improved for higher-order

detrending (Bunde et al., 2000). The method quantifies

fluctuations on different time scales s, see Kantelhardt et al.

(2001) for details. In brief, for each s the integrated (cumulated)

signal of length N is split into non-overlapping pieces (segments)

of length s. Within each segment an n-th order polynomial fit is

subtracted, and the remaining mean-square fluctuations are

averaged. Repeating the procedure for many scales s yields the

square of the DFA function F(s), which corresponds to a

detrended standard derivation on many time scales s.

In case of long-term (power-law) correlated data without

trends, the scaling behavior of the fluctuation function, F(s) ~ sα

with scaling exponent α > 0.5, is equivalent to a scaling of the

signal’s power spectrum, P(f) ~ f −β with frequency f and β = 2α −

1 (Bartsch et al., 2005). If the data is stationary, i.e., α < 1 and β <
1, this is also equivalent to a scaling of the autocorrelation

function C(s) ~ s−γ with γ = 2(1 − α) = 1 − β (Bashan et al.,

2008). The advantage of using DFA and studying F(s) instead of

P(f) or C(s) lies mainly in the detrending capability, that allows

analyzing nonstationary data. For data with only short-term

correlations, the scaling exponents approach α = 0.5 and β =

0 for asymptotically large s and small f, respectively. By

determining the effective scaling exponents α1 and α2 for

small and large scales, respectively, we can distinguish the

scaling behavior of short- and long-term fluctuations.

Figure 1 shows such DFA functions on a double-logarithmic

plot for an exemplary subject, the four different nocturnal sleep

stages, and all five time series as described in the Introduction. In

addition, we shaded in gray the areas for determining short-term

scaling exponents α1 (from 6 to 16 s) and for long-term scaling

exponents α2 (from 50 to 200 s). A scaling exponent α is, by

definition, the linear slope of the fluctuation function in the

double-logarithmic plot. In Figure 1 the corresponding linear fits

for α1 and α2 are plotted as black lines.

Short-term and long-term scaling exponents were calculated

for each subject, each signal, and each stage. However, to ensure

the data quality, in further analysis only scaling exponents with

coefficient of determination r2 > 0.9 were included. Since the total

durations of the sleep stages differ, we report the results for each

stage separately and did not calculate weighted averages over the

entire sleep period.

3 Results

The following results are averages of each considered

quantity for the whole group of subjects, often divided into

10-year age groups1; see the bottom right histogram in

Figure 2 for the age distribution in our sample. In all cases,

the four nocturnal states, wakefulness, N2, N3, and REM sleep

have been studied separately.

3.1 Age dependencies of averages and
variabilities

First, we studied the average values, the standard deviations

(corresponding to the HRV parameter SDNN for heartbeat

intervals) and standard deviations of the increments

(corresponding to the HRV parameter RMSSD for heartbeat

intervals) for all five time series, RRI, PPI, PTT, BBI and EEG (see

Introduction) to check if they follow the physiological

1 The age group 29 years contains two subjects below 20 years; both are
18 years old.
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FIGURE 1
The DFA2 fluctuation functions F(s) are shown on double-logarithmic plot for one exemplary subject and different nocturnal states (A)
wakefulness, (B) N2 (light) sleep, (C) N3 (deep) sleep, and (D) REM sleep. Time intervals between successive R peaks in the ECG (orange, triangles),
between successive pulse waves peaks (blue, circles), for pulse wave transition times (green, squares), for respiratory intervals (violet, rhombuses),
and for alpha-band amplitudes in the EEG (red, stars) have been analyzed. The scale on the horizontal axis has been rescaled by a factor of four
for the respiratory data. The dashed lines with slope α = 0.5 (randomwhite noise) and the dash-dotted lines with slope 1.0 (1/f-type correlated noise)
are shown for comparison. The two fitting regimes for the effective short-term fluctuation exponent α1 (6–16 heartbeat intervals or seconds) and the
effective long-term fluctuation exponent α2 (50–200 heartbeat intervals or seconds; 12 to 50 breaths) are marked by the gray shading. The
fluctuation functions have been shifted vertically for better visualization.

FIGURE 2
Average values (first column), standard deviations (second column), and standard deviations of the increments (third column) are shown versus
age group for RRI (top row), PPI (second row), PTT (third row), BBI (forth row), and EEG (bottom row) during different nocturnal states (see legend on
the right hand side). The histogram in the bottom right corner presents the numbers of subjects for each age group. Error bars indicate the standard
error.
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expectations. Figure 2 shows these three standard parameters

versus the age groups. As Schmitt et al. (2009) have already

shown for RRI and two age groups, there is an age dependence as

well as differences between the sleep stages. As expected, average

RRIs were shortest during wake, while at the same time, SDNN

and RMSSD showed the largest values. The parameters during

N2 and REM were always very similar. For N3 (deep sleep),

however, slightly lower values of SDNN were observed. For all

three statistical parameters, minimum values occurred around

the 50–59 years old group in all stages. As also expected (see

Hypothesis 3 in the Introduction), exactly the same behavior of

the statistical parameters was observed for PPI, since RRI and PPI

are closely related during rest and sleep as already reported by

Schäfer and Vagedes, (2013).

The study of PTTs in the third row of Figure 2 yielded the

expected behavior that generally average PTTs decrease with age

(see Hypothesis 6). This occurred for all nocturnal stages,

although slight deviations for the first and last age group

cannot be excluded within the error bars (standard error).

Standard deviations of PTT and standard deviation of PTT

increments showed similarly small values during all three

sleep stages, but much larger values (by a factor of

FIGURE 3
The age-dependence of short-term (α1, orange) and long-term (α2, blue) scaling exponents is shown for the series of time intervals between
successive R peaks in the ECG (RRI, first row), time intervals between successive pulse wave peaks at the finger tip (PPI, second row), pulse transit
times (PTT, third row), respiratory intervals (BBI, fourth row), and EEG amplitudes in the alpha-band (EEG, bottom row). For the evaluation, nocturnal
wake states (left column), N2 sleep (second column), N3 sleep (third column) and REM sleep (right column) were separated. All subjects were
binned to 10-year age groups; the standard error of each point for each group is indicated by the vertical error bars.
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approximately three) during nocturnal wakefulness. The

generally increasing but somewhat non-monotonous trend

with increasing age was identical for both standard deviation

parameters and all nocturnal states.

The breathing intervals exhibited the most pronounced

differences between N2, N3 and REM sleep. While average

BBI were shortest during REM sleep and of similar length for

N2 and N3 sleep, the two standard deviation parameters were

smallest during N3, followed by N2 and REM as expected.

Wakefulness yielded the largest BBI standard deviations. Each

standard deviation parameter showed the same age dependence

for all sleep stages. However, for the average respiration period,

BBI, a slightly different age dependence was observed during

wakefulness.

EEG alpha-band brain wave amplitudes, also showed the

expected behavior with clearly much larger values during

wakefulness as compared to sleep. These differences seem to

become slightly weaker with increasing age.

3.2 Age dependences of short- and long-
term correlations

Figure 3 summarizes the results of the DFA2 fluctuation

scaling analysis for the five considered time series during

different sleep stages. The results for short-term correlations

of RRI (α1) in the first row confirmed our Hypothesis 1, although

the maximum for intermediate age groups was a bit broader than

in Schumann et al. (2010) and reached the largest values at lower

ages (≈ 35 instead of ≈ 55 years). The long-term correlations of

RRI (α2) in the first row together with the results for brain-wave

amplitudes in the bottom row clearly confirmed our Hypothesis

2. Since the results for PPI (second row) were—within the error

bars—identical with those for RRI (first row), our Hypothesis

3 was also confirmed.

The results regarding BBI were also in agreement with

Schumann et al. (2010). Since we observed decreasing

(increasing) α2 exponents with aging for RRI and PPI during

wakefulness (REM sleep), but slightly decreasing α2 exponents

with aging for BBI during REM sleep, Hypothesis 4 was also

confirmed. Note however, that the observed age dependence of

BBI during wakefulness was not the same as in Schumann et al.

(2010).

Our main findings for PTT confirmed hypotheses (7), long-

term correlations (α2) for PTT were similar to BBI and (8), short-

term correlations (α1) were weaker than for any of the other

considered time series. It is important to note that for PTT

particularly during non-REM sleep (N2 and N3) short and long-

term correlations became identical (α1 = α2), so that the crossover

disappeared. Furthermore, there was no change of PTT α1 with

aging. Such behavior was not observed for any of the other

signals. PTT and EEG data did not seem to have a relevant age

dependence, except for a possible slight decay of PTT short-term

correlations (α1) with age above 40 years during wakefulness and

REM sleep.

3.3 Influences of sex, BMI, smoking,
alcohol consumption, and sleep apnea

Figure 4 shows how the short- and long-term scaling

exponents for RRI and PTT depend on sex, BMI, smoking

status and alcohol consumption. Interestingly, we found a

strong (highly significant, p < 0.001) sex dependence of the

short-term (α1) correlations in RRI (as well as those in PPI),

which were consistently higher in males than in females across all

sleep stages. In contrast, the long-term (α2) correlations in RRI

were not sex depended. For short- and long-term correlation in

PTT only marginal differences between males and females were

seen, with some significance reached for α1 during N2, N3, and

REM sleep (p = 0.020, 0.008, 0.032, respectively).

An increasing BMI led to slightly increasing short-term

correlations (α1) in PTT but not in RRI or any of the other

considered signals. Multivariable regression analysis2, adjusted

for age (in categories of 10 years as shown before) and sex,

showed a significant increase of α1 for PTT with BMI during

N2 sleep (p = 0.010). The same trend was observed for breathing

intervals (BBI, not shown). Body size was associated with short-

term correlations (α1) of the heart (also not shown). However,

this effect was mainly due to the increase of male population with

increasing body size and therefore not relevant.

Smoking led to a slightly higher heart rate (not shown), but

hardly affected SDNN and RMSSD over all sleep stages. In the

multivariable regression analysis, short-term correlations (α1)

were significantly decreased for smokers during wakefulness

regarding RRI (p = 0.038) and during REM sleep regarding

PTT (p = 0.012), while long-term correlations (α2) for PTT were

significantly increased for smokers during wakefulness (p =

0.007) and N3 (p = 0.021) sleep (see also Figure 4).

While the mean values of RRI and PPI increased (slower

heartbeat) with habitual alcohol consumption, PTT, BBI and

EEG amplitudes stayed rather constant. We also saw a decline of

PTT and EEG averages and possibly an increase in the average

BBI associated with a large increase of BBI standard deviations.

Regarding the short- and long-term correlations, only a slight

decline of α1 (short-term correlations) for RRI during N3 sleep

(p = 0.048) and for PTT with increasing alcohol consumption

was significant during wakefulness (p = 0.029).

Among the many possible disorders, our sample is most

suitable for addressing the effects of sleep apnea. This sleep-

related breathing disorder can be classified by the apnea

hypopnea index (AHI), which is defined as the average

2 Multivariable regression analysis was done in python using the package
statsmodels from Seabold and Perktold, (2010).
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number of apneas and hypopneas per hour of sleep. We

distinguished healthy subjects (AHI < 5/h), mild apnea

(5–15/h), moderate apnea (15–30/h), and severe apnea (> 30/

h). While the mean values of RRI, PPI, and PTT clearly decreased

with increasing AHI during all four considered states, their

standard deviations were clearly decreasing only during

wakefulness. For BBI, we observed an increase of the standard

deviation with AHI as expected, since the apneas represent a

stopping of respiration. Mean respiratory intervals seemed to

peak for the moderate apnea group. Regarding the short- and

long-term correlations, however, we did not observe any relevant

changes with increasing AHI. This finding is consistent with

Penzel et al. (2003) and confirmed our Hypothesis 5. A detailed

analysis of five-minute epochs before apneas, after apneas, and

far from apneas did not reveal any significant differences in the

short- and long-term fluctuation exponents, even if we studied

central apneas, obstructive apneas, mixed apneas and hypopneas

separately.

Furthermore, we did not see any significant effect of the

ICSD-3 classifications on the scaling behavior of RRI, PPI, PTT,

BBI, and EEG. This could be due to the small numbers of patients

in some of the subgroups. In particular, we had only 12 subjects

without sleep related disease in our control group. As sleep

disorders (sleep-related breathing disorders and insomnia) can

have several causes and show very large variability, a systematic

manifestation in the examined signals (heart rate, pulse transit

time, respiration and EEG) is not visible in our method of

analysis.

4 Discussion

Our results in Figure 2 showed that the average values,

standard deviations and standard deviations of increments for

RRI, PPI, PTT, and BBI depend on sleep stages, while some of

them change non-linearly with aging. Regarding RRI, i.e., for

HRV parameters, similar changes have previously been reported

by Schmitt et al. (2009) for young and elderly subjects. For 24 h

averages, Umetani et al. (1998) reported that the HRV

parameters SDNN and RMSSD decreased till the age of

50–60 years and then stabilized. This is consistent with our

observations. Other studies reported decreases of heart rate

FIGURE 4
Influences of sex (male—blue, female—orange), BMI, smoking, and alcohol consumption on short- and long-term fluctuation exponents α1 and
α2 of RRI and PTT, indicated by the boxplots. The light part of each box represents the values between the lower quartile and themedian, and the dark
part represents the values between the median and the upper quartile. The ends of the whiskers mark the 2.5% quantile and the 97.5% quantile,
respectively. The total average values appear as black crosses in the box plot (see scale on the left axis for the boxplots). Additionally, numbers of
subjects available for each analysis are shown in the hatched bars on the bottom of each plot (scale on the right axis). In particular, we compared
normal weight (BMI <25 kg/m2) versus overweight (BMI 25–30 kg/m2) and obese (BMI >30 kg/m2), non-/ex-smokers versus smokers, and subjects
with low alcohol consumption ( ≤ once per month) versus subjects with high alcohol consumption (> once per month).
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and HRV parameters with aging (Voss et al., 2012; Xhyheri et al.,

2012; Jensen-Urstad et al., 1997). Since a decreasing heart rate

corresponds to increasing average RRI values, these observations

are not really coinciding with ours, see Figure 2 top left panel. A

reason could be that we focused on subjects with sleep related

disorders instead of healthy subjects. Hence, a study with better

statistics and a focus on healthy subjects as well as sleep stage

distinction is needed for a full clarification.

Furthermore, we found a close similarity between HRV

parameters (from RRI, top row in Figure 2) and pulse rate

variability parameters (from PPI, second row in Figure 2),

confirming our Hypothesis 3 from the Introduction. Chen

et al. (2015) and Khandoker et al. (2011) have reported

differences between these two kinds of parameters during

apnea events, but no differences during normal breathing.

Compared with our work, they studied shorter episodes

(2–3 min) of apnea or non-apnea data, while we averaged

over all identical sleep stages for the whole night, so that the

influence of apneas is probably averaged out in our results. We

note that Constant et al. (1999) have shown that pulse rate

variability can solely be induced by respiratory modulations as in

their study on children with a fixed cardiac pace maker rhythm,

possible effects of heart rate variability on PPI have been

excluded.

To our knowledge, this is the first paper that analyzes long

nocturnal series of PTT values, defined by the time intervals

between R peaks and corresponding pulse wave peaks at the

finger. We confirmed Hypothesis 6 based on Nichols, (2005) that

average PTT decreases with aging, likely due to increasing arterial

stiffness. There was hardly any sleep-stage dependence of the

average PTT values. However, like HRV (i.e., SDNN and

RMSSD), the two PTT variability parameters clearly decreased

during sleep as compared to wakefulness (see Figure 2 center and

right panels). Hardly any further decay in the PTT variabilities

occurred from REM to N2 to N3 sleep, although respiratory

variability clearly followed this decaying order. No clear age

dependence could be observed for PTT or BBI variabilities. More

statistics and a focus on healthy subjects is needed for a full

clarification of these dependencies.

The results for the correlation behavior on short and long

time scales, i.e., the exponents α1 and α2 of RRI, PPI, PTT, BBI,

and EEG alpha-band amplitude data were presented in Figure 3.

Our results regarding RRI and BBI are fully consistent with those

reported in previous work (Bunde et al., 2000; Kantelhardt et al.,

2003; Schumann et al., 2008; Schumann et al., 2010). In

particular, short-term correlations (α1) for RRI did only

weakly depend on sleep stages and had a maximum for

intermediate age groups, confirming our Hypothesis 1. This

suggests that the short-term autonomic control system of the

heart is not strongly affected by sleep-stage related brain activity

and that it ages in a non-monotonous way. Further research is

needed to clarify the reasons behind this unusual age

dependence.

Long-term correlations (α2) for RRI were weaker than short-

term correlations and nearly absent during non-REM sleep

(N2 and N3), but pronounced during wakefulness and REM

sleep, confirming our Hypothesis 2. This pattern, reflecting the

scaling behavior of EEG alpha-band amplitudes, indicates that

the long-term autonomic control system of the heart is

significantly affected by cerebral activity via sympathetic

control, or, alternatively, both are driven by the same

regulatory process (Günther et al., 2022). Since the type of

long-term correlations strongly differs between non-REM

sleep on the one hand and REM sleep or wakefulness on the

other hand, this dependence strongly indicates that an influence

from the brain is involved, because sleep stages originate in the

brain. In our opinion, it is not plausible that an organ or organ

system would independently from the brain create correlations

that simultaneously change with those in brain dynamics

following exactly the same sleep-stage stratification pattern.

Again, we observed a very similar behavior for PPIs (cp. first

and second row in Figure 3), also confirming our Hypothesis

3 from the Introduction (Schäfer and Vagedes, 2013).

Nevertheless, a comparison of the results for males and

females in Figure 4 revealed significant differences, which had

not been observed in previous studies of healthy subjects

(Schumann et al., 2008; Schumann et al., 2010). In particular,

α1 values were higher in men than in women, while α2 values

were similar. This finding may be related with differences in

parasympathetic control in men and women. However, since

most of our subjects had some kind of sleep-related disorder (see

end of Section 2.1), we cannot exclude an effect of these disorders

on our results, and suggest that a scaling analysis of data from a

larger group of healthy subjects is needed for a clarification.

Possibly, HRV parameters reported to be higher in men than in

women (Umetani et al., 1998) may be related with this

observation.

Our medical hypothesis is that organ-specific alternations in

the long-term fluctuation pattern (which seems to originate in

the brain) or short-term fluctuation pattern (with a more local

origin) can indicate medical problems related with this organ.

For example, if short-term fluctuations of RRI are described by a

lower exponent α1 than expected for the age of the subject, this

could be a hint towards premature aging of the cardiovascular

system. Or if long-term RRI fluctuations follow a nearly random

behavior (low α2) not only during non-REM sleep, but also

during REM sleep and/or wakefulness, this could indicate a

diminished sympathetic input. On the other hand, a high α2
also during non-REM sleep could indicate insufficiency of the

cardiovascular system to relax, which in turn may negatively

affect sleep quality. However, since we do not have data from

subjects with specific cardiac problems or diagnoses, such

hypotheses cannot be tested in this study.

Comparing the long-term (α2) scaling behaviors of RRI and

BBI, we confirmed previous reports of a very similar sleep-stage

dependence, but somewhat weaker correlations in BBI,

Frontiers in Network Physiology frontiersin.org09

Zschocke et al. 10.3389/fnetp.2022.937130

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.937130


particularly during wakefulness and REM sleep (Kantelhardt

et al., 2003; Schumann et al., 2010) (Figure 3), indicating that

cerebral activity also influences respiration during

sleep. Different trends of α2 with aging occurred for RRI and

BBI in wakefulness and REM sleep, confirming our Hypothesis 4.

This suggests that aging affects autonomic cardiac and

respiratory control in somewhat different ways. While our

results regarding RRI were fully in agreement with Schumann

et al. (2010), the trends for aging were less clear for BBI, so that a

study with more data and of healthy subjects would be needed for

a clarification of this detail.

Our results for the nonlinear dynamics of PTT series on short

and long time scales, i.e., their exponents α1 and α2, are novel and

thus cannot be directly compared with previously published

results. Surprisingly, we found that there were no differences

between the short- and long-term fluctuation scaling behavior

(i.e., α1 = α2) during non-REM (N2 and N3) sleep, so that no

crossover occurs, see Figure 3. This might indicate that only one

control process is relevant for PTT during non-REM sleep, and

no additional short-term correlations are introduced into PTT.

An alternative interpretation is that the parasympathetic and

sympathetic control of PTT are well and identically balanced

during the different sleep and wake stages so that practically no

crossover occurrs. During wakefulness and REM sleep, slight

differences between α1 and α2 were observed, but—contrary to

the behavior of RRI, PPI and EEG amplitude data—α1 was

smaller than α2 for all age groups.

According to a standard textbook (Allen and Kyriacou, 2022)

PTT intervals aremainly affected by blood pressure, although varying

levels of arterial stiffness and body and limb positions do also play a

certain role. Since body and limbpositions do not often change during

the sleep phase, their influence does probably not yield a relevant

contribution to the observed PTT fluctuations. Moreover, the stroke

volume mainly affects the pulse wave amplitude (which we do not

study here), but not the timing. Regarding arterial stiffness, we are not

aware of specific studies that address their short- and long-term

fluctuation behavior, so that currently no conclusions regarding its

(sleep-stage or age-dependent) influence on PTT seems possible.

Blood pressure, on the other hand, is known to be strongly correlated

on short time scales with α1 values of 1.4 for mice (Galhardo et al.,

2009) and 1.2 for humans (Fuchs et al., 2010) during wakefulness,

increasing to 1.3–1.4 during the night (Castiglioni et al., 2020).We are

not aware of published data regarding differences between the sleep

stages. Hence, if the fluctuations of PTT intervals wouldmainly reflect

blood pressure changes, a similarly large α1 value would have to occur

for PTT, which is not the case. Therefore, our result seems to indicate

that PTT is only reflecting long-term fluctuations of blood pressure,

while short-term correlations of PTT must be dominated by faster

and much closer to random fluctuations of arterial stiffness. It thus

suggests that the parasympathetic control of short-term variations in

arterial stiffness has no short-term memory (variations close to

random) and is not directly linked to autonomic cardiac and

respiratory control.

The sleep stage dependence of α2 for PTT is very similar to

BBI. This suggests that long-term PTT fluctuations are similarly

controlled via the sympathetic nervous system as long-term

respiratory fluctuations and also linked to cerebral activity.

We did not observe pronounced changes of PTT scaling

behavior with aging and only a marginally significant sex

dependence, see Figure 3 (third row) and Figure 4 (third and

fourth row).

An increased body mass index (BMI) was associated with

slightly increased PTT short-term correlations (α1) during

N2 sleep. Increased alcohol consumption was associated with

decreased PTT short-term correlations (α1) during nocturnal

wakefulness but not during sleep. For smokers, short-term

correlations (α1) in RRI decreased during wakefulness, while

those in PTT decreased during REM sleep; long-term

correlations (α2) in PTT increased during wakefulness and

N3 sleep. We think that a study with more subjects is needed to

confirm these apparently not very systematic effects, before a

medical interpretation can be provided. Nevertheless, the

observation of changes for PTT but (in most cases) not for the

other considered signals suggests that PTTs yield independent

information, probably related with changes in arterial stiffness

control and should be included in subsequent work.

Consistent with previous reports [see, e.g., Penzel et al.

(2003)] we did not observe any relevant changes of the scaling

behaviors of either RRI, PPI, PTT, BBI, or EEG alpha-band

amplitudes with increasing disease severity of apnea (i. e., AHI)

nor with other sleep disorders. This suggests that the observed

scaling behaviors of these signals and their long-term autonomic

control are very robust. However, studies with a larger samples

are needed for clarification.

Limitations of our study include our sample size of just

246 subjects, mainly with sleep related disorders, while most

previous studies regarding temporal correlations in biosignals

and HRV focused on healthy subjects.

5 Summary and conclusion

We confirmed the sleep-stage and age dependence of basic

statistical parameters characterizing cardiovascular, respiratory, and

brain dynamics, including mean RRI and its deviations (SDNN,

RMSSD), mean PPI and its deviations, mean PTT and its deviations,

mean BBI and its deviations and mean EEG alpha-band amplitude

and its deviation during different sleep stages. Additionally, we

investigated systematically aspects of nonlinear dynamics and the

correlation behavior of these time series by calculating the DFA

exponents α1 and α2. While the long-term correlations (α2) of all

analyzed physiological systems follow the same sleep-stage

stratification pattern, indicating a common regulatory

mechanism, short-term correlations do hardly vary across sleep

stages and may be governed by organ-specific physiological

processes. Surprisingly, PTT is an exception from this rule, since
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we have observed a complete absence of additional short-term

fluctuations, i.e., α1 ≈ α2 across all age groups and sleep stages.

This result indicates that short-term PTT fluctuations do not reflect

short-term blood pressure fluctuations, which are rather

characterized by very different exponents α1 > 1.
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