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Abstract

Pain is an unpleasant feeling associated with tissue damage or psychological factors
(non-physical). It is a reliable indicator of health issues. Pain assessment needs to
be done for vulnerable patients who cannot self-report their pain, such as intensive
care patients, people with dementia, or adults with cognitive impairment. So far,
the current methods in the clinical application are subjected to biases and errors;
moreover, such methods do not facilitate continuous pain monitoring. Therefore,
recent studies have proposed and developed automatic pain assessment method-
ologies due to their possibility to objectively and robustly measure and monitor
pain.

Regarding medical evidence, facial expressions, vocalizations, and physiological
signals are valid indicators of pain. Hence, this thesis presents an automatic system
for continuous monitoring of pain intensity based on analyzing data from five
sensor modalities (frontal RGB video [frontal faces], audio, Electrocardiogram
[ECG], Electromyogram [EMG], and Electrodermal Activity [EDA]) in the X-ITE
Pain Database. Further, due to the promising multi-modality fusion, two and all
modalities are fused using a model and a late fusion to produce more reliable
information with less uncertainty.

In recent years, other authors have proposed automated methods for pain recog-
nition by using features that were extracted independently per time series of a given
sequence. However, the obtained results were poor due to the lack of representation
of movement dynamics. Therefore, in this work, three distinct real-time methods
are proposed to solve this problem for more reliable monitoring of continuous pain
intensity. These methods are based on classifying descriptors of facial expressions
from frontal faces, audio, and physiological time series and using a sliding-window
strategy to obtain 10s-length input samples. The first proposed method is a Random
Forest [RF] baseline method (Random Forest classifier [RFc] and Random Forest
regression [RFr]), the second is Long-Short Term Memory Network (LSTM), and
the third is LSTM using a sample weighting method (called LSTM-SW). The sample
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weighting method is used to reduce the weight of misclassified samples with less
facial response in the training set to improve the performance.

In regard to classification and regression, several experiments using the three
proposed methods (RF, LSTM, and LSTM-SW) are conducted in order to gain
insights into monitoring continuous pain intensity using data from single, two,
and all modalities from the X-ITE Pain Database. Before data is fed into models, it
is pre-processed; 11 datasets were obtained to simplify the imbalanced database
problem, improve the results, and generalize the capability of the proposed system.
This system recognizes pain intensity (low, moderate, and severe) for two pain
stimulus types (phasic and tonic) and two qualities (heat and electrical stimuli).

The results: (1) report that regression performs better than classification in
imbalanced datasets, (2) show that LSTM and LSTM-SW methods outperform
significantly guessing (majority of votes = no pain) and RF, (3) emphasize that EDA
is the best single modality, (4) confirm that model fusion using multiple modalities
([facial expressions and EDA] or [EMG and EDA] or [facial expressions, audio, ECG,
EMG, and EDA]) overcomes the limitations of single modalities, the performance
improves significantly in 10 out of 11 datasets, (5) present that the models using
all modalities (facial expressions, audio, ECG, EMG, and EDA) outperform those
models using two modalities ([facial expressions and EDA] or [EMG and EDA])
with imbalanced tonic datasets, and (6) show that most model fusion models using
EMG and EDA modalities are the best when using phasic imbalanced datasets
and Heat Tonic Dataset [HTD] (almost balanced dataset). These findings are the
baseline results for future research related to real-time pain intensity monitoring
systems using single or multiple sensor modalities in the X-ITE Pain Database.

Index Terms—Continuous pain intensity monitoring; Electrocardiogram; Electroder-

mal Activity; Electromyogram; facial expressions; late fusion;Long-Short Term Memory

Network; model fusion; modalities; Random Forest; sample weighting.

—————— � ——————–
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Zusammenfassung

Schmerz ist ein unangenehmes Gefühl, welches mit Gewebeschäden oder psycholo-
gischen (nicht-körperlichen) Faktoren verbunden ist. Zudem ist es ein zuverlässiger
Indikator für Gesundheitsprobleme. Eine Schmerzbewertung muss für gefährdete
Patienten durchgeführt werden, die ihre Schmerzen nicht selbst angeben können,
wie z. B. Intensivpatienten, Menschen mit Demenz oder Erwachsene mit kogni-
tiven Beeinträchtigungen. Bisher sind die aktuellen Methoden in der klinischen
Anwendung mit Verzerrungen und Fehlern behaftet; darüber hinaus ermöglichen
solche Verfahren keine kontinuierliche Schmerzüberwachung. Daher haben neuere
Studien aufgrund ihrer Möglichkeit einer objektiven und robusten Messung so-
wie Überwachung von Schmerzen automatische Schmerzbewertungsmethoden
vorgeschlagen und entwickelt.

Aus medizinischer Sicht sind Gesichtsausdrücke, Lautäußerungen und physio-
logische Signale gültige Schmerzindikatoren. Daher präsentiert diese Arbeit ein
automatisches System zur kontinuierlichen Überwachung der Schmerzintensität
basierend auf der Analyse von Daten von fünf Sensormodalitäten (frontales RGB-
Video [Frontalgesichter], Audio, Elektrokardiogramm [EKG], Elektromyogramm
[EMG] und Elektrodermale Aktivität [EDA] ) in der X-ITE-Schmerzdatenbank.
Darüber hinaus werden aufgrund der vielversprechenden Fusion mehrerer Moda-
litäten zwei und alle Modalitäten unter Verwendung von Modell- und Entschei-
dungsfusion fusioniert, um zuverlässigere Informationen mit weniger Unsicherheit
zu erzeugen.

In den letzten Jahren haben andere Autoren automatisierte Verfahren zur Schmer-
zerkennung unter Verwendung von Merkmalen vorgeschlagen, die unabhängig
pro Zeitreihe aus einer bestimmten Sequenz extrahiert wurden. Die erzielten Ergeb-
nisse waren jedoch aufgrund der fehlenden Darstellung der Bewegungsdynamik
unzuverlässig. Daher werden in dieser Arbeit drei unterschiedliche Echtzeitme-
thoden vorgeschlagen, um dieses Problem für eine zuverlässigere Überwachung
der kontinuierlichen Schmerzintensität zu lösen. Diese Methoden basieren auf der
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Klassifizierung von Deskriptoren von Gesichtsausdrücken aus frontalen Gesich-
tern, Audio- und physiologischen Zeitreihen und der Verwendung einer Sliding-
Window-Strategie, um Eingabeproben mit einer Länge von 10 Sekunden zu erhal-
ten. Die erste vorgeschlagene Methode ist eine Random Forest [RF]-Basismethode
(Random Forest Classifier [RFc] und Random Forest Regression [RFr]), die zweite
ist ein Long-Short Term Memory Network (LSTM) und die dritte ist ein LSTM
mit Stichprobengewichtung (genannt LSTM-SW). Die Probengewichtungsmetho-
de wird verwendet, um das Gewicht falsch klassifizierter Proben mit geringerer
Gesichtsreaktion im Trainingssatz zu reduzieren und dadurch die Leistung zu
verbessern.

In Bezug auf Klassifizierung und Regression wurden mehrere Experimente
mit den drei vorgeschlagenen Methoden (RF, LSTM und LSTM-SW) durchgeführt,
um Einblicke in die Überwachung der kontinuierlichen Schmerzintensität unter
Verwendung von Daten von einzelnen, zwei und allen Modalitäten aus der X-
ITE-Schmerzdatenbank zu gewinnen. Bevor Daten in Modelle eingespeist werden,
werden sie vorverarbeitet; es wurden 11 Datensätze erhalten, um das Problem der
unausgeglichenen Datenbank zu vereinfachen, die Ergebnisse zu verbessern und
die Leistungsfähigkeit des vorgeschlagenen Systems zu verallgemeinern. Dieses
System erkennt die Schmerzintensität (niedrig, mittel und stark) für zwei Arten
von Schmerzreizen (phasisch und tonisch) und für zwei Qualitäten (Wärme und
elektrische Reize).

Die Ergebnisse zeigen (1), dass die Regression in unausgewogenen Datensätzen
besser abschneidet als die Klassifizierung; (2), dass LSTM- und LSTM-SW-Methoden
das Schätzen und RF deutlich übertreffen; (3), dass EDA die beste Einzelmoda-
lität ist, (4), dass Modellfusion mit mehreren Modalitäten ([Gesichtsausdruck und
EDA] oder [EMG und EDA] oder [Gesichtsausdruck, Audio, EKG, EMG und EDA])
die Einschränkungen einzelner Modalitäten überwindet (es verbessert sich die
Leistung in 10 von 11 Datensätzen signifikant); (5), dass die Modelle, die alle
Modalitäten (Gesichtsausdruck, Audio, EKG, EMG und EDA) verwenden, die
Modelle mit zwei Modalitäten ([Gesichtsausdruck und EDA] oder [EMG und
EDA]) mit unausgewogenen tonischen Datensätzen übertreffen und (6), dass die
meisten Modellfusionsmodelle, die EMG- und EDA-Modalitäten verwenden, die
besten sind, wenn phasisch unausgeglichene Datensätze und Heat Tonic Dataset
[HTD] (fast ausgeglichener Datensatz) verwendet werden. Diese Ergebnisse sind
die Basisergebnisse für die zukünftige Forschung im Zusammenhang mit Echtzeit-
Schmerzintensitätsüberwachungssystemen unter Verwendung von Einzel- oder
Multisensormodalitäten in der X-ITE-Schmerzdatenbank.
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CHAPTER 1

Introduction

THE International Association for the Study of Pain (IASP) defines pain as an
unpleasant sensory and emotional experience associated with, or resem-
bling that is associated with, actual or potential tissue damage [1]. Pain

is a complex phenomenon and not well understood yet. It includes several com-
ponents [2]: an affective component (emotions or feelings associated with pain),
a cognitive component (all thought processes or intellectual activity related to
pain) [3], a social component, and a sensory component (pain intensity, quality, lo-
cation, and duration) [4]. Due to the subjective nature of pain, all those components
influence how individuals experience pain in their lives. Further, pain is considered
as a warning mechanism that gives a solid and reliable message about body health
condition; it is an indicator of something within the body that needs to be cured.
Therefore, it is necessary to indicate people to pay serious medical attention and
respond quickly.

Pain is classified into many categories, depending on different characteristics. It
is commonly classified based on duration into acute or chronic: acute pain comes
on suddenly for a short period (less than three months), and chronic pain comes on
quickly or slowly, continuously or intermittently, and sometimes it is intense for a
long period (longer than three months) [5]. It is also classified regarding intensity
or severity as mild, moderate, or severe. In addition, pain is classified as either:
nociceptive (pain caused by body tissue injury), neuropathic (pain caused by nerve
injury), or psychogenic (pain that is influenced by psychological factors such as
mental, emotional, and behavioral disorders).

Reliable and robust pain measurement and monitoring contribute significantly
to diagnose and treat pain at the right time and monitoring the success of the
ongoing treatment. Pain is either expressed physically through visual cues (facial
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expressions and body movements), vocalization cues (verbally and non-verbally),
and physiological cues (bio-signals and brain activity); these cues play an important
role in assessing pain with individuals [6].

Facial expressions aid in predicting human behaviors [7,8], and emotions [9,10].
It is one of the main indicators of how a human expresses pain [9, 11], and it is ex-
pressed similarly across different nationalities, genders, cultures, ages, and genders.
Facial expressions are important signals that are widely used in nonverbal commu-
nication [12]. There are distinct facial expressions associated with pain experiences;
moreover, rising intensities of noxious stimulation increase the intensity of facial
expressions [13, 14]. Ekman and Friesen [15] decompose facial expressions into
individual facial Action Units (AUs) with the Facial Action Coding System (FACS).
Fig. 1.1 shows an example of facial response during pain described by involved
AUs.

 
 
 
 

 
Brow Lowererd 

(AU 4) 
 
 
 
 

Eye Closure 
(AU 43) 

 
 
 
 

NoseWrinkled 
(AU 9) 

Cheeks Raised 
(AU 6) 

 
 
 
 
 
Upper Lip Raised 
(AU 10) 

 
 
 
 
Lips Parted 
(AU 25) 

FIG. 1.1. An example of facial expressions of pain and associated AUs.

Further, body movement is considered an indicator for pain assessment. Indi-
viduals often display many body movements as behavioral responses to pain, such
as protective reflexes, rubbing, and writhing. Additionally, some individuals ex-
press pain verbally by mentioning pain or using offensive words, and some express
their pain non-verbally by moaning, crying, groaning, and sighing (vocalization
cues) [16, 17].

In clinical practice, observation and patient self-report are used to measure
pain intensity, location, and duration. However, it is impossible to monitor the
pain intensity of patients constantly with those standard measurements of pain
assessment. Hence, it is beneficial to introduce reliable automated pain recognition
systems based on these behavioral (visual and para-linguistic) and physiological
pain responses to complement current methods for better pain management. In this
regard, several artificial intelligence (AI) methods have been developed over the
last years to automatically detect pain and estimate its intensity based on analysis
of behavioral or physiological pain indicators or a combination of these indicators.
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In order to develop and evaluate automatic pain intensity assessment meth-
ods, the objective data (pain-relevant and pain-irrelevant information) are usually
recorded using non-invasive sensor technology, which captures data on the body
responses of the individual in pain. This is achieved with cameras that capture
facial expressions, gestures, or posture, while microphones record para-linguistic
features (vocalizations). Physiological information such as heart rate and muscle
tone are collected via biopotential sensors (electrodes) [18]. Then, machine learning
methods build a model based on the collected data to identify semantic patterns for
accurate and objective pain assessment.

1.1 Problem Statement

Pain compromises patients’ quality of life when not well managed [19]; they might
suffer from anxiety, sleep disturbance, and inability to concentrate on the activity
of daily living [20, 21]. Further, patients face difficulties during hospitalization as
care is influenced by a lack of knowledge about pain. Therefore, a reliable and
trustworthy pain assessment is necessary for adequate pain management, changing
analgesic dose, and additional interventions if required. Additionally, good care
requires more than one pain intensity measure (self-report, external observations,
or physiological tests [22]).

The self-report (numeric pain scale or interview) is efficient for patients who are
able to communicate. However, the behavioral observation by medical staff is the
preferred method for pain assessment compared to the self-report [23], especially
with patients with limited communication abilities (e.g., intensive care patients, peo-
ple with moderate to severe cognitive impairment/dementia, paralyzed patients,
patients on oxygen, or normal patients who suddenly lose the ability to express
their pain due to a weakness or discomfort). Nevertheless, medical staff could not
measure pain intensity every minute or second to notice such emergencies and act
immediately; they are often busy, especially in crowded hospitals and healthcare
centers. Further, the human observer may be influenced by personal factors, such
as the relationship to the sufferer [24] and the patient’s attractiveness [25]. Thus,
those problems confirm the need for objective and robust automatic systems for
effective pain management.

1.2 Motivations and Application

This work is motivated by two main problems in hospitals and healthcare centers:
the great challenge for pain intensity recognition through non-verbal communi-
cation and the need for more medical staff to look after patients, as mentioned
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previously (see Section 1.1 above). Since pain is usually followed by visual, vocal-
ization, and physiological cues, automatic systems rely on them to continuously
monitor pain intensity. Facial expressions are very informative for pain detec-
tion [26, 27]. Further, in critical emergencies with patients, such as apneas, the
facial expressions are generally very expressive. Additionally, vocalizations that
are extracted from audio signal are used for pain assessment by analyzing moan,
cry, or groan [16]; moreover, physiological signals are effective indicators of pain
assessment [28]. That is why the combination of facial expressions, vocalizations,
and physiological signals can be a great addition to pain assessment means. Hence,
the availability of automatic systems, that use this combination to provide an objec-
tive and robust pain intensity measurement and monitoring, would be a helpful
solution for the problems mentioned above.

This work is also motivated by potential future directions presented by Werner
et al. [29]. They used the X-ITE Pain Database, which comprised reactions to
pain stimulus intensities in four different qualities: phasic (short) and tonic (long)
variants of each heat and electrical stimuli. As the database plays an important role
in refining, improving, and evaluating automated recognition systems, the X-ITE
Pain Database has been introduced for an objective pain assessment. Werner et
al. [29] and Walter et al. [30] reported a promising finding to automatically recognize
pain intensity when using multiple sensors: frontal RGB camera and audio (for
external observation); and ECG, EMG, and EDA (for physiological tests). In their
experiments, they used parts of complete data. Each part was cut out from the
continuous recording of data for 7 seconds. In line with their studies, data from the
same sensors was used in this work, but with advancement (most of the data was
used from the continuous recording of the main stimulus phase). Using the same
data (balanced dataset) as in [29, 30] was not suitable for continuous monitoring
of pain intensity; dealing with most of the data (imbalanced dataset) obtained
better results for such task. Further, as long as automated systems at low-cost are
preferred, this study shows possibilities for good continuous monitoring of pain
intensity when not all sensors are used.

Due to the problem of how individuals differ in showing facial expressions [31]
and pain response threshold [32], it is found plenty of labels (which represent the
pain stimulus) that do not match the pain stimulation intensity. Fig. 1.2 shows some
confusing samples. Some subjects show a lack of facial responses to pain: some
have low pain sensitivity resulting in a high tolerance threshold requiring a temper-
ature cutoff to avoid burns; others show a low tolerance threshold intentionally or
unintentionally during stimulus calibration, possibly because they do not want to
feel severe pain. Such inconsistencies between the label and the video may be con-
sidered outliers or label noise. Data cleaning by removing such outlier samples may
be used to improve the facial expression-based recognition performance. However,
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Due to the problem of how individuals differ in showing facial expressions~\cite{Mar-
tinez:31}[31] and pain response threshold~\cite{Prkachin:32}[32], it is found plenty of 
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facial responses to pain: some have low pain sensitivity resulting in a high tolerance 
threshold requiring a temperature cutoff to avoid burns; others show low tolerance thresh-

old intentionally or unintentionally during stimulus calibration, possibly because they do 
not want to feel severe pain. Such inconsistencies between the label and the video may 

Modalities no pain Phasic Heat Pain Phasic  Electrical Pain 

Ground truth BL PH1 PH2 PH3 PE1 PE2 PE3 

Samples  

       

FIG. 1.2. Some examples of difficult samples to recognise phasic pain intensity. Pain
intensity on a scale of 1 to 3, 1 = low, 2= moderate, and 3 = severe.

this may remove some samples, which are useful for improving multimodal pain
recognition because there may be pain responses in other modalities like EMG or
EDA, although no facial responses show up. This is enough motivation to propose
a method (sample weighting method) that is useful for improving the performance
of the single and fused modalities models for pain assessment by downweighting
noisy samples rather than eliminating them as in the cleaning up strategy.

The X-ITE Pain Database is extremely imbalanced; the samples without pain
stimulus are the vast majority. This problem is hard to solve when using one
balanced dataset for training due to many reasons: (1) the models would fail to
recognize more no pain samples in an imbalanced testing set, and their performance
would be poor; (2) the sample size of four different pain qualities (phasic [short]
and tonic [long] variants of each, heat and electrical stimuli) in three intensities (low,
moderate, and severe) is also imbalanced, and solving this problem by balancing
the database would bring some risks such as duplication of the outlier samples
when increasing the sample size of the minority class; moreover, eliminating some
samples from majorities classes to balance the database would decrease the perfor-
mance of models because these removed samples would be informative and useful
for improving pain recognition models. Further, the pain recognition model using
all samples without a balancing database would be biased towards the majority
and fail to recognize pain intensity in samples of minority classes. The size of the
tonic samples is very small compared to that of the phasic samples, and the size
of the heat samples size is less than the size of electrical samples for both pain
qualities (phasic and tonic). Hence, this is the motivation to propose 11 datasets
from the X-ITE Pain Database to reduce the impact of the imbalanced problem and
generalize the capability of machine learning methods when using pain stimulus
intensities in different qualities. The proposed datasets refer to use phasic data, heat
phasic data, electrical phasic data, tonic data, heat tonic data, electrical tonic data,
and reduced datasets after using a reduction strategy on the previously mentioned
imbalanced datasets.

Deep learning methods provide a lot of promise for time series, such as Long
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Short-Term Memory (LSTM). It is used to significantly improve the performance
of the continuous pain intensity monitoring task. Further, LSTM units are well-
trained in big data. Nevertheless, machine learning methods such as Random Forest
(RF) generally work well with high-dimensional data. Thus, another motivation
is introduced in this work, which is a comparison between LSTM and RF for
monitoring continuous pain intensity in the X-ITE Pain Database.

Due to the COVID-19 pandemic, there is an unmanageable number of patients
every day in hospitals; the medical staff can become very busy and fail to monitor
all patients effectively, especially those who need more attention and care. Addi-
tionally, the physical distance between patients and others is necessary to avoid
contamination. Therefore, many countries such as China [33] found the perfect
opportunity to switch to automated systems, which can help effectively to manage
patients with COVID-19. Thus, these issues have motivated the creation of auto-
matic continuous monitoring of pain intensity system based on facial expressions,
vocalizations, and physiological signals. The automated pain monitoring system
in hospitals and healthcare centers is proposed to (1) provide an alert when a pain
event is detected; (2) allow faster response; (3) make the correct diagnoses at the
right time; (4) reduce monitoring time; (5) reduces the risk of the patient; (6) reduce
stress on the workers; (7) give peace of mind to the families; and (8) avoid hiring
more medical staff.

1.3 Goal and Contributions

This work aims to create an objective and reliable automatic system for continuous
monitoring of pain intensity by analyzing facial expressions, vocalization, and
physiological cues. Several experiments were carried out to achieve this aim,
including three automatic methods: (1) Random Forest (RF) baseline methods
[Random Forest classifier (RFc) and Random Forest regression (RFr)], (2) a Long-
Short Term Memory (LSTM) method, and (3) a LSTM using sample weighting
method (LSTM-SW). These methods were applied on 11 datasets, which were
suggested to reduce the impact of huge imbalanced datasets. The proposed system
is the first to monitor continuous pain intensity based on analyzing data from
five sensor modalities (frontal RGB video [frontal faces], audio, and physiological
signals [ECG, EMG, and EDA]) in the X-ITE Pain Database. This work goes beyond
the Werner et al. [29] and Walter et al. [30] studies: most of the data was used from
the continuous recording of the main stimulation phase in the X-ITE Pain Database;
whereas they used phasic (short) and tonic (long) samples, which have been cut out
from the continuous recording of the main stimulation phase and were temporally
aligned with the stimuli.

Many contributions were made to achieve the aim, including (1) an investigation
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of the most efficient loss function with the LSTM method by comparing the results
achieved when using frontal RGB video sensor modality; the selective functions
were Mean Squared Error (MSE) and Binary Cross-Entropy (BCE), (2) a comparison
between classification and regression methods when using RF, LSTM, and LSTM-
SW, (3) a performance comparison of the proposed methods when using data
from single sensors (modalities) to those when using data from two or more fused
modalities, (4) an emphasis that the proposed 11 datasets from the X-ITE Pain
Database help to simplify the imbalanced database problem and improve the
results, and (5) a confirmation that deep learning methods (LSTM and LSTM-SW)
are the best for time series tasks when using big data.

1.4 Methodology

Fig. 1.3 shows the methodology of the proposed automatic system for continuous
monitoring of pain intensity. First, the input data from the five modalities (facial
expressions, audio, ECG, EMG, and EDA) were described and pre-processed to
extract useful features; for more details, see Section 4.1 and 4.2, respectively. Second,
temporal integration features were calculated from each time series data coming
from the five sensors (see Section 4.3). Third, the experimental data was prepared
by further processing the obtained data from the temporal integration process; such
processing was suggested to overcome imbalanced database and outliers problems,
see Section 4.4. Fourth, three methods were used to analyze the experimental
data for continuous monitoring pain intensity, which were Random Forest (RF) as
baseline methods (Random Forest classifier [RFc] and Random Forest regression
[RFr]), Long-Short Term Memory (LSTM), and LSTM using sample weighting
method (LSTM-SW); see Sections 5.1, 5.2, and 5.3, respectively. In regard to
classification and regression, three types of experiments were introduced using the
proposed methods: (1) Uni-modality (data from single sensors) experiments, (2)
Bi-modality (fusing data from two modalities) experiments, and (3) Multi-modality
(fusing data from five modalities) experiments. The reason for suggesting those
experiments is to introduce the best automatic system for continuous monitoring of
pain intensity after analyzing facial expressions that extracted from frontal faces,
audio, and physiological signals [ECG, EMG, and EDA]. For more details about the
conducted experiments, see Section 5.4. Finally, for each type of experiment, the
experiments were run on 11 datasets from the experimental data for performance
evaluation; for more details about evaluation results, see Chapter 6.
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FIG. 1.3. The general pipeline of the proposed automatic system for continuous monitoring of pain intensity.
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1.5 Thesis Outline

The thesis is organized into seven major chapters, including this introductory chap-
ter. Chapter 2 delivers an overview of pain recognition methods based on data from
frontal RGB video, audio, and physiological signals, then describes their relevance
to this thesis. Chapter 3 describes the necessary fundamentals of the employed
tools and methods. Chapter 4 summarizes the X-ITE Pain Database and feature
extraction preprocessing; it also presents the temporal integration process and
experimental data. Chapter 5 introduces the proposed methods for continuous
monitoring of pain intensity followed by the experimental setup regarding clas-
sification and regression. Chapter 6 presents the evaluation of the experiments’
results. Finally, Chapter 7 discusses the results; it also concludes the contributions,
investigations, and experiments that are discussed in the thesis, as well as directions
for future research on automatic continuous pain intensity monitoring. Appendix A
details the results of the proposed methods (RF, LSTM, and LSTM-SW) using all
Uni-modality models regarding classification and regression. B details the results
of RF, LSTM, and LSTM-SW using Bi-modality models regarding classification. C
details the results of RF, LSTM, and LSTM-SW using Multi-modality regarding
classification and regression.





CHAPTER 2

State-of-the-Art

THIS chapter overviews the important topics related to automatic pain recog-
nition, which has been studied extensively in the last years. First, the
existing methods that detect pain and recognize pain intensity in terms

of the subject of pain from behavioral, physiological, and fusion perspectives are
presented in Section 2.1. This knowledge is required in later chapters for the de-
velopment and validation of automated methods for pain assessment. Then, the
available pain databases for research use are displayed in Section 2.2. Finally, the
general training techniques for data recognition tasks are described in Section 2.3,
followed by a conclusion in Section 2.4.

2.1 Automatic Pain Assessment

Many studies have focused on various possible objective indicators for pain. The be-
havioral and physiological pain indicators are commonly used for pain assessment.
Facial expressions, verbal and non-verbal vocalizations, and body movements
are considered behavioral pain indicators; heart rate variability, muscle activity,
electrodermal activity, brain activity, blood pressure, and respiration rate are con-
sidered physiological pain indicators. A rich variety of automatic pain recognition
methods have been proposed based on analysis behavior and physiological data
in the last years. To date, machine learning and deep learning are preferable due
to their good predictive power. This section reviews the pain recognition methods
using: behavior pain indicators (see Section 2.1.1), physiological pain indicators
(see Section 2.1.2), fusion of behavioral and physiological indicators (Section 2.4).

12
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2.1.1 Behavior Pain Indicators

The focus of this section is on introducing state-of-the-art automated methods for
pain assessment when using behavioral responses to pain. Such methods were
used to extract and analyze pain-relevant features from behavioral pain indicators
such as facial expressions (see Section 2.1.1.1), vocalizations (see Section 2.1.1.2),
and body movements (see Section 2.1.1.3).

2.1.1.1 Facial Expressions

Facial expressions are the most reliable indicator of pain [25, 27, 34–36]. Ekman
and Friesen [25] decomposed facial expressions into individual facial Action Units
[AUs] with the Facial Action Coding System [FACS]. Examples of facial changes
associated with pain are brow lower, cheek raise, lids tight, nose wrinkle, nasolabial
deepen, upper lip raise, lip corner pull, lip stretch, lips apart, jaw drop, lids droop,
eyes closed, blink [13, 27, 37–40]. Fig. 2.1 shows a list of the AUs that occur in a
painful experience; only a combination of them expresses pain, but not all. Such
combination of AUs is often combined with head pose towards head movements
and postures as pain behaviors [41].

Prkachin and Solomon Pain Intensity [PSPI] [14] is a metric that measures pain
as a linear combination of the intensities (1-15) of facial action units associated with
pain. PSPI scores are assigned to images on a frame-by-frame basis using the metric
in Equation 2.1. A couple of studies have attempted pain recognition mainly on the
frame level and at the sequence level based on this metric. AU4 and AU43 must be
present in pain, one of AU6 and AU7 and one of AU9 and AU10 must be present
too (the highest intensity is selected if both are present).

PSPI = AU4 + max(A ∪ 6 or AU7) + max(A ∪ 9 or AU10) + AU43 (2.1)

The automatic pain recognition from facial expressions consists of three main
steps: (1) face detection and registration, (2) feature extraction, and (3) pain expres-
sion recognition. Several automatic systems analyzed AUs and their combinations
for recognizing frame-level and sequence(video)-level pain intensity. Feature re-
duction based methods are the most common type of frame-level methods. In a
simple feature reduction based method, the static images are manually rotated, and
then the face is cropped out with an elliptical bounding box. Colour information is
discarded in the extracted face; the resulting grey-scale image is row concatenated
to form a single feature vector of H×W dimensions, where H and W represent the
image’s height and width, respectively. Then, to reduce the vector’s dimensionality,
feature reduction methods are applied, such as Principal Component Analysis
[PCA] [42] and Sequential Floating Forward Selection (SFFS) [43].
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Inner Brow Raiser (1) Outer Brow Raiser (2) Brow Lowerer (4) Upper Lid Raiser (5) 

    
Cheek Raiser (6) Lid Tightener (7) Nose Wrinkler (9) Upper Lip Raiser (10) 

    
Nasolabial Deepener (11) Lip Corner Puller (12) Cheek Puffer (13) Dimpler (14) 

    
Lip Corner Depressor (15) Lower Lip Depressor (16) Chin Raiser (17) Lip Puckerer (18) 

    
Lip stretcher (20) Lip Funneler (22) Lip Tightener (23) Lip Pressor (24) 

    
Lips Part (25) Jaw Drop (26) Mouth Stretch (27) Lip Suck (28) 

    
Lid Droop (41) Slit (42) Eyes Closed (43) Squint (44) 

    
Eyes Turn Left (61) Eyes Turn Right (62) Eyes Up (63) Eyes Down (64) 

 FIG. 2.1. Description of AUs that associated with pain. A combination of some of these
AUs expresses pain, but not all. The number in practices indicates the AU’s number [40].
Images are modified and taken from [44] after getting permission.

Brahnam et al. [45, 46] presented one of the first research in automatic pain
recognition; they proposed and applied feature reduction based method on the
Classification of Pain Expressions [COPE] dataset [46] followed by the application
of distance-based methods (PCA [42] and Discriminant Analysis [LDA] [47]) and
Support Vector Machine [SVM] [48]. The results showed that SVM was significantly
outperformed distance-based methods in classifying pain versus no pain (accuracy
= 88.00%). This work was extended in [49], the results showed Network Simulta-
neous Optimization Algorithm [NSOA] achieved the highest accuracy of 92.20%
compared to SVM (82.35%), PCA (80.39%), and LDA (76.9%). Gholami, et al. [50]
presented binary and multi-class classification. To estimate the intensity level of
the detected pain expression, they introduced Relevance Vector Machine [RVM],
which was a Bayesian version of SVM that provides the posterior probabilities for
the class memberships.
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Nanni et al. [51] introduced a method to detect pain expressions using some
common texture descriptor based methods (second most common type of frame-
level methods), which were Local Binary Pattern [LBP] [52] algorithm or other
variants of LBP such as Local Ternary Pattern [LTP] [53], Elongated Binary Pattern
[ELBP] [54], and Elongated Ternary Pattern [ELTP] [55]. Then, they selected the
most discriminant features using SFFS on the training set, and an ensemble of
Radial Bias SVMs was used for binary classification (no pain/pain). Celona et
al. [56] applied the Histogram of Oriented Gradients (HOG) descriptor [57] on the
COPE database, then SVM was used for classification (obtained accuracy = 81.75%).
Recently, Convolutional Neural Networks [CNNs] extracted deep features showed
good performance in several classification tasks [56, 58, 59].

Frame-level methods ignore temporal information and are thus limited in de-
scribing relevant dynamic information that is beneficial for pain intensity recogni-
tion. Further, occlusion, such as self-occlusion, oxygen mask, and pacifier, is another
limitation of using such methods. Thus, many recent works focus on video-level
pain recognition because it is more effective in describing such information [60–62].
It often uses temporal integration of frame-level features. For example, the video
content can be condensed to high-level features by using a time series statistics
descriptor that consists of several statistical measures of each individual frame.

Several facial feature descriptors have been proposed to analyze the spatio-
temporal texture of facial videos, such as Local Phase Quantization (LPQ) [63] and
Binarized Statistical Image Features (BSIF) [64]. LBP-TOP [65][64], LPQTOP [66],
BSIF-TOP [67], HOG-TOP [68], and LGBP-TOP [69] were extended descriptors that
used the Three Orthogonal Planes (TOP). Further, Werner et al. [60] and Kächele
et al. [61] proposed the spatio-temporal descriptors based on appearance- and
geometry-based facial features and head pose; the pain levels were classified using
Random Forest (RF) [70] with those descriptors.

Other methods that have been used for pain recognition to detect pain expres-
sion from videos, such as a motion based method [71] (directly estimating the
pixel’s velocity over consecutive frames), a model based method [72, 73] (search for
the optimal parameters of a learning model that best match the model and the input
data such as Active Appearance Model [AAM]), a FACS based method [74] (extract
useful features from the videos using any Toolbox such as Computer Expression
Recognition Toolbox [CERT], then apply classifier).

According to the ability of Random Forest (RF) for pain detection using facial
expression [29, 61, 75–77], Othman et al. [76] introduced RFc as a baseline method
and compared its performance to the proposed deep learning methods that analyze
a RGB image encoding temporal information. RFc was used with time series
statistics descriptor that was calculated from 16 statistical measures with their
first and second derivatives per time series. RFc with Facial Activity Descriptor
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(FAD) performed well compared to reduced MobileNetV2 (using transfer learning
with the first five inverted residual blocks) and performed similarly to simple
Convolutional Neural Network (CNN).

In [75], the performance of CNN with frontal RGB images was improved com-
pared to RFc with FAD by about 1% when using the sample weighting method.
Downweighting misclassified samples during training improves the performance;
these samples often contain low or no facial responses to pain (see [78] for details
of this phenomenon). Some training samples with more facial responses based
on the classification score (score above 0.3) were duplicated. The performance
improvement of the CNN model was not very high to classify seven classes (no
pain and three phasic pain intensities for heat and electrical modalities). Never-
theless, the performance of deep models, to a large extent, depends on their size
and the amount of training data. Different sorts of network architectures have been
developed to increase the capacity of deep models.

In [59, 79, 80], the authors used various neural networks for pain recognition,
including Convolutional Neural Networks (CNNs) [81] and Long-Short Term
Memory (LSTM) [82]. Zhou et al. [83] introduced a Recurrent Convolutional Neural
Network (RCNN) for predicting pain intensity in video sequences. A sliding-
window strategy was used to extract features for obtaining fixed-length input
samples for the recurrent network. However, the structural information of the
face was missing due to the spatial conversion. Rodriguez et al. [59] considered a
temporal relationship between video frames by integrating the extracted features
from CNN to address this issue. Then they fed these features to a Long-Short Term
Memory (LSTM) to exploit the temporal information.

Further, several hybrid deep learning methods have been proposed for pain
recognition by combining CNN with LSTM [59, 84, 85] or CNN with Bidirectional
LSTM [86, 87]. Tavakolian [40] presented a cross-architecture transfer learning to
leverage the knowledge of pre-trained models to train other methods’ architectures.
They formulated pain intensity estimation as a self-supervised learning problem
for the first time to exploit the abundant information of unlabeled data; they also
introduced a video distillation method to encode the appearance and dynamic of
the facial video into one RBG image map.

2.1.1.2 Vocalisations

Vocalizations are another indicators of pain, including verbal, non-verbal, and
breathing behaviors. Vocalizations during pain experience are defined as the utter-
ance of sounds, noises, and words using the vocal apparatus. Verbal vocalizations
include protests and complaints by mentioning pain or using offensive words [88].
Behavioral pain indicators also include non-verbal vocalizations such as moaning,
crying, groaning, and gasps [16]. The changes in breathing patterns have also been
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considered as vocalizations in regard to Waters et al. [89] study, such as sighing.
The automatic recognition of pain using vocalizations consists of three main stages:
(1) preprocessing, (2) feature extraction, and (3) pain recognition. In [90–96], very
encouraging results were obtained showing that this indicator should get attention,
which also plays an important role in related applications of affective comput-
ing [97]. The background noises are a major challenge in the analysis of audio
data; the sounds of interest separation is required for better pain assessment by
identifying the background noises and then removing them, which may originate
from medical devices, other people, or events.

2.1.1.3 Body movements

Body movements such as bracing (holding onto an object, the fist, or the affected
area during movement), knee bending, shoulder to front movements, rubbing
(massaging the affected area), and restlessness (i.e., constant shifting in position)
are behavioral responses to pain [88, 98]. Pain can also be expressed by moving the
head towards the pain location with different speeds and ranges compared to other
conditions [40]. The automatic pain recognition from body movement consists
of three main steps: (1) preprocessing and body tracking, (2) feature extraction,
and (3) pain recognition. In [91, 99–102], several body movements’ methods were
introduced for pain assessment. During pain experience, Zamzmi et al. [90, 103]
measured body movement of neonates, whereas Werner et al. [41] analyzed head
movements and postures [HMP] of adults in three pain datasets (BioVid, UNBC,
and BP4D). HMP tends to be oriented downwards or towards the pain site and
differs in the movement speed and range compared to other conditions.

2.1.2 Physiological Signals

Clinical studies [28, 104–107] have provided strong empirical evidence for the
correlation between individual physiological signals and pain. The physiological
signals are capable of indicating the state of the autonomic nervous system, and
pain is one function of such systems. The pain process starts from the sensory
receptors (also called nociceptors) by noxious thermal, chemical, or mechanical
stimuli, which can be activated to the body from an external or internal source. The
information regarding detecting harmful stimuli and converting these into electrical
signals is transduced via nociceptors and transmitted through the spinal cord to the
brain. Then, specific parts of the brain are responsible for responding to pain signals,
which are the prosencephalon, mesencephalon, and cortex [108–111]. In this process,
pain indicators cause alterations in tissues and organs (e.g., skin, heart, muscles’
electrical properties). Physiological signals such as electrocardiogram [ECG], facial
electromyography [EMG], and Electrodermal Activity [EDA] are most widely used
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in pain assessment [112, 113]. However, the changes in the physiological signals are
also indicative of other pathological conditions unrelated to pain [114]. Thus, the
combination of multiple behavioral and physiological pain indicators is potentially
good for developing objective pain assessment in regard to Odhner et al. [115] and
Hinduja et al. [116] study.

ECG captures the changes in the electrical activity of the heartbeats (low-
frequency / high-frequency ratio) and the heart rate interval. The Heart Rate
Variability [HRV] is calculated on ECG data; the changes of HRV in the low-
frequency power increase during painful stimulation [117, 118]. EMG measures the
changes in electrical properties of the muscle; EMG activity is often measured at
the zygomaticus (mouth corner raiser), trapezius (back of the neck), and corrugator
superscillii (brow lowerer) muscles. EMG has been used as an indicator for pain
assessment [22]. EDA records the changes in the electrical activity of the skin
when using two electrodes connected to the index and ring fingers. In response
to a pain stimulus, EDA is a good measure because of intense body activity after
experiencing pain; when a painful stimulus is applied, the sympathetic nervous
system [SNS] activates the finger’s sweat glands to produce more sweat, and this,
in turn, increases skin conductance [119–121].

During the last years, researchers have shown great interest in investigating
physiological signals and machine learning models for objective pain intensity
assessment. Treister et al. [122] used a linear combination of multiple physiological
sensors, including ECG, photoplethysmogram [PPG], and EDA to successfully dif-
ferentiate between four categories of pain (no pain and three pain intensity induced
by heat stimulator P < 0.01). Chu et al. [123] applied linear discriminant analysis
[LDA] on blood volume pulse [BVP], ECG, and EDA signals to classify pain into no
pain pre stimulate (calm), four different pain intensities induced by an electrical
stimulator, and post-stimulate (post). They extended their study in [124], LDA,
k-nearest neighbors (KNN), and support vector machines (SVMs) were applied to
the same dataset with about 84.28%, 83.94%, and 96.47%, respectively. Walter et
al. [125] presented the BioVid database to facilitate advances in robust recognition
of pain and its intensity based on multiple physiological signals, including ECG,
EMG, electroencephalography [EEG], and EDA signals. One hundred thirty-five
features were extracted to train SVM to classify each of the four levels of pain
intensity against no pain. Those features capture (1) amplitude, (2) frequency, (3)
stationary, (4) entropy, (5) linearity, and (6) variability.

Gruss et al. [126] extended this work by extracting 159 features from the EDA,
ECG, and EMG signals from the same BioVid dataset with the respective person-
specific mean baseline signal to recognize induced head pain. They trained SVM to
classify no pain and pain tolerance threshold (about 90.94%) or no pain and pain
threshold (about 79.29%). Kächele et al. [127] also used the same physiological
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signals (EDA, ECG, and EMG) from the same database (BioVid), together with meta-
information and similarity. A random forest classifier was trained to classify no
pain and a specific pain level. Several recent studies focus on deep learning due to
its success in various domains; researchers have recently investigated its application
in pain recognition. Lopez-Martinez et al. [128] implemented a multi-task learning
method based on neural networks that accounted for individual differences in
pain responses and achieved a classification accuracy of 82.75% for baseline vs.
pain tolerance threshold and 54.22% for baseline vs. pain threshold using Skin
Conductance Level [SCL] and ECG features. Kächele et al. [129] advanced pain
assessment task, their work focused on continuous pain estimation by training
adaptive Random Forest; they treated pain intensity as a continuous variable
instead of as an ordinal variable with fixed categories.

Recent studies have drawn attention to the EDA signal due to its significant
correlation with pain intensity ratings. It quite consistently performs best in terms of
the automatic system compared to other single physiological signals [22, 29, 30, 113,
124, 129–132]; moreover, it is easy to use. Lopez-Martinez et al. [133] also presented
a recurrent neural network method to continuously estimate pain intensity with
EDA signal from the BioVid dataset. Thiam et al. [134] improved the binary pain
classification when using 1D convolutional neural networks on raw EDA signals
from the BioVid dataset with minimum preprocessing. Posada et al. [135] presented
classification and regression machine learning models to estimate pain sensation in
healthy subjects using EDA. They computed the extracted features of EDA based
on time-domain decomposition, spectral analysis, and differential features. The
maximum macro averaged geometric mean scores of models were 69.7% and 69.2%,
respectively. Kong et al. [136] analyzed the spectral of EDA to obtain reliable
performance because it is more sensitive and reproducible for the assessment of
sympathetic arousal than traditional indices (tonic and phasic signals). Bhatkar
et al. [137] reported a successful novel method to discriminate the reduction of
pain with clinically effective analgesics by combining self-report with continuous
physiological data in a structured and specific-to-pain protocol.

2.1.3 Fusion

There is a growing number of researches investigating the fusion of the data. Werner
et al. [22] and Walter et al. [138] combined (early and late fusion) visual features
(facial expression) with physiological signals (Galvanic Skin Response [GSR, also
called SCL], EMG, and ECG) from the BioVid dataset, and Random Forest classifier
(RFc) was used to increase the accuracy of distinguishing baseline vs. pain tolerance
threshold and baseline vs. pain threshold. Other studies [29, 30] also proposed a
multi-modal information fusion approach based on RFc using video, audio, and
physiological features from X-ITE Pain Database. The late fusion (decision fusion)
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improves results further. Zamzmi et al. [90, 139] proposed KNN, SVM, and RF to
assess pain in infants based on analysis of facial expression, body movement, cry
sound, and vital signs (HR: heart rate, SpO2: blood oxygenation, BP: blood pres-
sure). Three pain levels (no pain, moderate pain, and severe pain) were recognized
using single and combined indicators. The multi-modal results outperformed the
single model significantly.

Thiam et al. [77] proposed several fusion architectures to develop a multi-
modal pain intensity classification. The estimation is based on the SenseEmotion
Database, and the accuracy improved in 2-class, 3-class, and 4-class pain intensity
classification tasks. Thiam et al. [6] advanced the binary pain classification task by
proposing a new multi-modal information fusion method based on deep denoising
convolutional autoencoders on EDA, EMG, and ECG signals from the BioVid
dataset. They extended their work in [140] by introducing multi-modal methods (
supervised deep learning method and self-supervised method) for recognizing pain
intensity based on physiological signals. The self-supervised method automatically
generated physiological data and simultaneously performed a fine-tuning of the
deep learning model, which had been previously trained on a significantly smaller
amount of data. Thus, they were able to significantly improve the data efficiency.

Yu et al. [141] proposed a diverse frequency band-based ConvNets for tonic
cold pain states classification using EEG signal from their database, which provides
higher accuracy than state-of-the-art techniques. First various feature represen-
tations were extracted from different frequency bands. Then these features were
concatenated and fed into a fully connected network that classified pain states
with no pain and two tonic pain levels (moderate and severe). Wang et al. [142]
introduced a bidirectional Long Short-Term Memory network (biLSTM) to learn
the temporal dynamics from physiological signals in the BioVid dataset. The RNN-
generated features with a set of hand-crafted features were fused for binary pain
classification tasks.

Subramaniam et al. [132] proposed a multi-modal hybrid Deep Learning net-
work (CNN-LSTM) using physiological signals (ECG and EDA) from BioVid dataset
for binary pain classification. The obtained results outperformed the unimodal re-
sults. Hinduja et al. [116] introduced a multi-modal method for pain recognition by
fusing facial expressions and physiological signals (HR, respiration, BP, and EDA)
from BP4D+ database. The fusion improved accuracy when evaluation included all
subjects or same gender compared to using only one modality (facial expressions or
physiological signals). Pouromran et al. [113] focused on pain intensity estimation
using the BioVid dataset; they built different machine learning models for continu-
ous pain estimation: Linear Regression, Support Vector Regression (SVR), Neural
Networks, KNN, Random Forest, and XGBoost. They used the extracted features
from a single sensor and the combination features from multiple sensors. The EDA
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single model outperforms multi-modal results for pain intensity recognition, and
SVR gave the best predictive performance across different sensors.

2.2 Pain Databases

Several databases are designed and released for automatic pain recognition methods
in computer vision and machine learning domains, which are from oldest to newest:
COPE Database [46], UNBC-McMaster Shoulder Pain Data-base [143], BioVid Heat
Pain Database [112], BP4D-Spontaneous Database [144], YouTube Database [145],
BP4D+ Database [146], IIIT-S ICSD [147], SenseEmotion Database [148], Multimodal
EmoPain Database [91], Mint PAIN Database [79], X-ITE Pain Database [149],
and Multi-modal Neonatal Pain Assessment Dataset [USF-MNPAD-I] [150]. Most
approaches of pain recognition use a single sensor modality: [60, 69] use video, [93,
151] use audio signal, and [124, 125, 133] use physiological signals, but recent
approaches use multiple sensor modalities [29, 130, 134] that can improve the
performance and flexibility of pain recognition. Fig. 2.2 shows more details about
those databases.

2.3 Training Techniques

When training machine learning models, the input data must be split regarding
image level or subject level separation into training, validation, and testing sets.
The training set is used for training the model; the validation set is used for tuning
the hyper-parameters and selecting models, whereas the testing set is used for per-
formance evaluation. Each split cannot contain any of the same samples; otherwise,
the samples in multiple splits will always almost classified correctly, giving falsely
high performance. Most recent databases have moved towards larger training sets,
e.g., 80% of the data set would be in the training set, 10% in the validation, and
10% in the testing. Image level separation means all splits often contain images that
belong to the same subject. In the real scenario, the pain recognition systems should
work well with subjects that have never been seen before; therefore, image level
separation is generally not preferred due to bias with known subjects. Thus, subject
level separation is suitable for pain recognition because the validation and testing
subjects are completely ignored in the training set and never seen by the system
before validation and testing. This method is used in this thesis as it provides a per-
formance to unknown subjects, which is expected in field trials. Cross-validation is
also another helpful technique for assessing the effectiveness of models to mitigate
overfitting. There are several types of cross-validation techniques, and all of them
have similar steps. First, the dataset is divided into training and test parts (sets).
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repetitions x 2 parts x 90 

participants); emotion elicitation, 

posed expression 

video of face, EDA, ECG, sEMG 

(trapezius muscle; corrugator 

and zygomaticus for part B) 

stimulus (calibrated per person) 

 

25 adult shoulder pain patients 

200 range of motion tests with 

affected and unaffected limbs 

video of face (low resolution, 

includes social interaction / talking) 

self-report (VAS, sensory & 

affective verbal scales), 

observerassessed pain intensity 

(OPI), affected/unaffected limb, 

FACS coding 

 

MIntPAIN: 

X-ITE pain*: 

EmoPain*: 

COPE: 

YouTube: 

IIIT-S ICSD: 

SenseEmotion*: 

USF-MNPAD-I*: 

33 infants (age 3-24 months) 

immunizations (injection) and other 

pain causes; non-painful cry causes 

693 audio cry samples 

category annotated by doctors and 

parents (pain, discomfort, 

hunger/thirst, and three others) 

 

142 infants(age 0-12 months) 

immunizations (injection) 

204 photographs of face 

FLACC observer pain assessment 

 

26 neonates (age 18-36 hours) 

60 heel lancing for blood collection; 

non-painful stimuli 

142 videos with audio 

category (pain, rest, cry, air puff, or 
friction) 

 

20 healthy adults (age 22-42) 

2k electrical pain (40 stimuli in 4 

intensities x 2 trials x 20 

participants) 

video of face (color, depth, thermal) 

stimulus (calibrated per person), self 

-report (VAS) 

 

58 neonates (27-41 gestational age) 

procedural and postoperative stimuli 

video & audio (GoPro Hero); beat- 

by-beat HR, SpO2, and BP (Phillips 

MP-70); near-infrared spectroscopy 

(INVOS 5100C); contextual and 

medical pain types, demographics, 

and medication pattern 

scored by expert nurses using two 

validated pain scales to obtain the 

ground truth labels: NIPS and N- 

PASS. 

 

22 chronic lower back pain patients (age 

= 50) + 28 healthy controls (age= 37) 

physical exercises (therapy 

scenarios) 

video, audio, motion capture, sEMG 

(trapezius, lumbar paraspinal 

muscles) 

self report, pain intensity assessed by 

naive observers from face,presence 

of pain behaviors assessed by 

experts from body movement 

 

134 healthy adults (age 18-50) 

24k phasic pain, 804 tonic pain (both 

by heat and electical stimulation, 

each with 3 intensities) 

video of face (color, thermal), video 

of body (color, depth), audio, 

EDA, ECG, sEMG (trapezius, 

corrugator, zygomaticus) 

pain stimulus (calibrated per person) 

 

45 healthy adults (age = 26) 

8k heat pain (3 intensities x 30 

repetitions x 2 stimulus sites x 45 

participants); emotion elicitation 

video of face, audio, EDA, ECG, 
sEMG (trapezius muscle), RSP 

pain and emotion stimulus (pain 

calibrated per person) 

 

FIG. 2.2. Characteristics of publicly available benchmark datasets for automatic pain assessment. ECG: electrocardiogram, EDA: electrodermal
activity, sEMG: surface electromyography, FACS: Facial Action Coding System, RSP: Respiration, HR: heart rate, SpO2: blood oxygenation, and BP:
blood pressure. In USF-MNPAD-I: procedural and postoperative stimuli such as immunizations and after surgical procedure, respectively; the two
validated pain scale are NIPS [152] (procedural) and N-PASS [153] (postoperative). The different background color indicates the characteristics of
the databases: yellow for subjects, orange for stimuli, and blue for data modalities, and grey for annotation.* multimodal database. Modified, with
permission, from [26].
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Second, the model is trained on the training set. Third, the model is validated
on the test set. Those steps are repeated a couple of times; this number depends on
the selective cross-validation technique. K-Fold cross-validation is commonly used.
The data set is broken into K sets; each time, a different set forms the test set, and
the training set is the rest sets. The final performance is the average performance of
models obtained from K sets. Further, leave-one-subject-out validation is a subset
of cross-validation, which avoids subject overlap between the training and the
test sets and approximates generalization performance with unseen subjects. The
cross-validation process is then applied N times, with each subject being used
exactly once as the test set. In total, N subjects provide N training sets and N test
sets. Finally, the results of test sets are averaged to form the final performance. To
train N models, the total number of sets increases, and that is expensive. Hence,
this technique was not used in this work.

2.4 Conclusion

This chapter summarizes the important background for the state of automated
methods for pain assessment, which have not yielded estimation accuracies ac-
ceptable in clinical settings due to several limitations. These limitations can be
summarized as follows:

• Half of the available pain databases for research purposes contain response
data from a single modality (e.g., facial expressions); a large number of the
current methods assess pain using a single modality. However, studies have
shown that it is better to use a combination of behavioral and physiological
signals to obtain a reliable system for pain assessment.

• The multimodal pain databases have a significant impact on the performance
of automatic pain assessment systems, many databases have been used in
recent researches. To the common belief that the quality and duration of pain
provide additional valuable information for more advanced discriminating
pain or pain intensities versus no pain, the X-ITE Pain Database has been
made to complement existing databases and the analysis of pain regarding
quality and length.

• There are some studies to assess pain based on using more than three modali-
ties. The results from those studies are promising; they show that it is possible
to obtain a reliable pain assessment system by analyzing pain and detecting
valid pain patterns from multiple modalities, including both behavioral and
physiological signals.
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• Few of the current pain assessment methods focus on continuous monitoring,
which is more necessary for pain assessment for prompt pain detection and
immediate intervention.

This thesis addresses the above-mentioned limitations and proposes an auto-
matic and multimodal system for continuous monitoring of pain intensity using
five sensor modalities (frontal RGB camera, audio, ECG, EMG, EDA) from the
X-ITE Pain Database. A combination of behavioral and physiological signals was
used with appropriate machine learning methods. RF was utilized with a single or
multiple fused modalities [facial expression, audio, ECG, EMG, EDA, (facial expres-
sion and EDA), (EMG and EDA), or all modalities] as a baseline method to predict
continuous phasic or tonic pain intensity versus no pain. Further, the previously
mentioned modalities were used with the proposed LSTM and LSTM-SW for better
handling time series prediction as an advanced continuous recognition method. So
this thesis advanced over [75] by investigating a more complex problem (classify
phasic and tonic pain in sequence level) with a single modality and multiple fused
modalities. In addition, a comparison between classification and regression was
presented of monitoring continuous pain intensity.





CHAPTER 3

Fundamentals

THIS chapter describes the necessary tools, fundamentals of algorithms, and
methods exploited throughout this thesis for monitoring continuous pain
intensity. The chapter is divided into three sections. The first section

presents a detailed description of the tools and algorithms used to analyze five
modalities’ signals; see Section 3.1. In the second section, the time series statistics
descriptor is described since it is employed with all proposed machine learning
methods, see Section 3.2. The third section provides a brief overview of two machine
learning methods, which are exploited for the classification and regression purposes
within the thesis (see Section 3.3). Finally, the activation and loss functions, which
were used, were described in Section 3.4 and Section 3.5, respectively.

3.1 Sensor Signal Processing

The tools and algorithms for sensor signal processing are:

3.1.1 OpenFace

Fig. 3.1 shows the OpenFace facial behavior analysis pipeline. Baltrušaitis et al. [154]
introduced an easy and first open source toolbox that use to analyze facial behavior.
OpenFace tool extracts facial landmark motion, head pose (orientation and motion),
facial expressions, and eye gaze as important models to understand human behavior.
It comprises several technologies, including facial landmark detection and tracking,
head pose and eye gaze estimation, and action unit detection.

26
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FIG. 3.1. The pipeline of the OpenFace facial behavior analysis, with permission from [154].
This system includes facial landmark detection, head pose & eye gaze estimation, and facial
action unit recognition. The outputs (indicated by red) are saved to send over a network.

3.1.1.1 Facial Landmark Detection and Tracking

The face is detected in an image and tracked in the video. The landmarks are de-
tected with individual models using Conditional Local Neural Fields (CLNF) [155]
by training separate sets of point distribution and patch expert models for nose, jaw,
eyes, lips, and eyebrows. The CLNF patch experts are trained on three training sets:
Multi-PIE [156], LFPW [157], and Helen [158]. Each separate set of patch experts is
trained for seven views and four scales, which (1) allows for accurate detection of
landmarks on a low- and high-resolution face image and (2) tracks faces with out of
plane motion and to model self-occlusion caused by head rotation. These detected
landmarks fit to a joint Point Distribution Model (PDM) [159], which provides 40
shape parameters. For training, the PDM, LFPW, and Helen training sets are used.

To initialize the CLNF model, the dlib face detector in [160, 161] is used to
draw a simple linear mapping from the bounding box surrounding the detected 68
facial landmarks. Further, to track the landmarks in the video, the CLNF model
is initialized based on landmark detections in the previous frame. In order to
deal with tracking drift, a simple three-layer convolutional neural network (CNN),
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which gives a face aligned using a piecewise affine warp, is trained with correct
and randomly offset landmark locations to predict the expected landmark detection
error. In case of landmark detection fails to track according to the validation module
reports from CNN, the model needs to be reinitialized. For more details about
landmark detection and tracking algorithm, see Baltrušaitis et al. [154, 155].

3.1.1.2 Head Pose and Eye Gaze Estimation

The CLNF internally is applied for head pose estimation, including 3D represen-
tation of facial landmarks. These landmarks are projected to the image using
orthographic camera projection. Once the landmarks are detected, the head pose
(translation and orientation) is estimated. Further, CLNF is used for eye-region
landmark detection, including registration of eyelids, iris, and the pupil. The eye
gaze vector, which is calculated individually for each eye, is computed once the
location of the eye, and the pupil are detected using the CLNF model. The gaze
vector is provided from the center of the 3D eyeball to the pupil in the image
plane. The PDM and CLNF patch experts are trained on the SynthesEyes training
dataset [162]. Both methods are fast and accurate for a person independent of head
pose and gaze estimation in webcam images. In this work, three head pose features
were used, which were yaw, pitch, and roll. For more details about head pose and
gaze estimation algorithm, see Baltrušaitis et al. [154].

3.1.1.3 Action Unit Recognition

The Action Units (AUs) are extracted from webcam images based on geometry
features (shape parameters and landmark locations) and appearance (Histograms
of Oriented Gradients), including 33 facial features referring to the occurrence
(presence) and the intensity of AUs (see Table 3.1). To analyze the texture of the
face, the similarity transformation is used in representing frontal landmarks from a
neutral expression (a projection of mean shape from a 3D PDM). Then, appearance
features are extracted using Histograms of Oriented Gradients (HOGs) [163] from
the obtained results (112 ×112 pixel image of the frontal face with 45 pixels inter-
pupillary distance). The dlib [160] implementation of HOGs is used with blocks
of 2 ×2 cells of 8 ×8 pixels, leading to 12×12 blocks of 31 dimensional histograms
(4464 dimensional vector describing the face). The Principal Component Analy-
sis (PCA) is used to reduce the feature dimensionality keeping 95% of explained
variability on a number of facial expression datasets (CK+ [164], DIS-FA [165],
AVEC 2011 [166], FERA 2011 [167], and FERA 2015 [168]). This led to a reduced
basis of 1391 dimensions, which allows for a generic basis, model train, and no
need to recompute the PCA to unseen datasets. Further, the geometry features are
extracted using the non-rigid shape parameters and landmark locations in object
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space inferred during CLNF model tracking, which led to a 227 dimensional vector.
In regards to classification and regression using OpenFace, the linear kernel SVM
and linear kernel SVR [169] are used to predict AU presence and AU intensity in
this sequence, respectively. Table 3.1 shows the list of OpenFace recognizing the
AU (I- intensity, P-presence).

Table 3.1. List of extracted facial features in OpenFace (I-intensity, P-presence).

 

1 

 

Table 3.1. List of extracted facial features in OpenFace (I-intensity, P-presence). 

AU AU Full Name Prediction AU AU Full Name Prediction 

AU1 Inner brow raiser I P AU14 Dimpler I P 

AU2 Outer brow raiser I P AU15 Lip corner depresser I P 

AU4 Brow lowerer I P AU17 Chin raiser I P 

AU5 Upper lid raiser I P AU20 Lip stretched I P 

AU6 Cheek raiser I P AU23 Lip tightener I P 

AU7 Lid tightener I P AU26 Jaw frop I P 

AU9 Nose wrinkler I P AU28 Lip suck - P 

AU10 Upper lip raiser I P AU45 Blink I P 

AU12 Lip corner puller I P     
 

 

Both the dimensionality reduced HOGs, and the facial shape features (from
CLNF) are combined and used as the feature vector of the appearance of the
face. For estimating a neutral expression, the median value of the features in a
video sequence of a person is computed, then extracted value subtracted from the
estimates in the current frame leading to a normalized feature. This cheap and
effective method to increase model performance is presented in [170].

3.1.2 OpenSMILE

Eyben et al. [171] introduced a novel open-source feature extractor toolkit (OpenS-
MILE) for audio signal processing. OpenSMILE can be used to extract acoustic
features from speech, music, and general sound events. There are three main com-
ponents involved in OpenSMILE architecture: data memory for reading the data
from external sources, data processors for reading and modifying data from the
data memory, and data sinks for reading the data from data memory and writing it
to external files or perform classification, see Fig. 3.2.

 

 

 

 

 

 

 

 

 

 

Data Memory 

Data Processor 

(e.g Mel Filterbank filters, functions, Delta Coefficients,...) 

Audio 
Data Sink 

(e.g LibSVM classifier, MAT- 

files, CSV file export,...) 

FIG. 3.2. Overview of openSMILE’s architecture.
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The audio signal processing is presented in three levels, which are wave (sam-
pled at 16–44.1 kHz), frames (overlapping frames of 50 ms length at 20 ms frame
rate [50 fps]), and pitch (extracting pitch features from the frames). The compo-
nents process the framed audio vectors after converting them of size 16 kHz ×
50 ms = 800. Various filters, functionals, and transformations are applied to the
obtained low-level features. Fig. 3.3 shows the group of features that use for ro-
bust speech emotion recognition. The Mel-frequency features, Mel-Spectrum and
Mel-Frequency Cepstral Coefficients (MFCC), as well as the Perceptual Linear Pre-
dictive Coefficients (PLP) are common features computed in full accordance with
the popular Hidden-Markov Toolkit (HTK) [172].

 

 

Feature Group 

Cepstral 

Semitone spectr. Pitch 

ACF, Cepstrum Voice Quality 

Mel/Bark spectr. LPC &Auditory 

FFT spectrum Formants 

Loudness Spectral 

Signal energy Tonal 
Waveform 

FIG. 3.3. The openSMILE’s low-Level descriptors.

An overview of the 65 low-level descriptors (LLD), those provided in the COM-
PARE acoustic feature set, is given in Table 3.2; see [171, 173, 174] for full details.
Delta regression coefficients are computed from LLD, and a moving average filter
is applied to smooth LLD contours. Next, the functionals, which belong to the
ComParE (Computational Paralinguistics Evaluation) set, are used for the LLD
contours, including mean, standard deviation, percentiles and quartiles, linear
regression functionals, and local minima/maxima related functionals. ComParE
comprises high dimensional brute-force acoustic feature sets (6373 features) of LLD
contours.

3.1.3 QRS-detection algorithm, R-to-R intervals, and Linear Inter-
polation

Pan et al. [175] and Hamilton et al. [176] developed the QRS detection algorithm
using the optimized decision rules. The QRS detector is divided into preprocessor
and decision rule sections, see Fig. 3.4.

The preprocessor section involves three stages: filtration, peak detection, and
fiducial mark location. In the filtration stage, the ECG signal is processed using a
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Table 3.2. The prosodic, spectral, cepstral, and voice quality LLD’s provided in the ComParE
acoustic feature set. See [173].

 

 

 

 

 

 

 
4 energy related LLD  Group 

Sum of auditory spectrum (loudness) prosodic 

Sum of RASTA-filtered auditory spectrum prosodic 

RMS Energy, Zero-Crossing Rate prosodic 

55 spectral LLD Group 

RASTA-filt. aud. spect. bds. 1–26 (0-8 k Hz) spectral 

MFCC 1–14 cepstral cepstral 

Spectral energy 250–650 Hz, 1 k–4 k Hz spectral 

Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9 spectral 

Spectral Flux, Centroid, Entropy, Slope spectral 

Psychoacoustic Sharpness, Harmonicity spectral 

Spectral Variance, Skewness, Kurtosis spectral 

6 voicing related LLD Group 

F0 (SHS & Viterbi smoothing) prosodic 

Prob. of voicing voice quality 

log. HNR, Jitter (local & DDP), Shimmer (local) voice quality 
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FIG. 3.4. Block diagram of QRS-detector algorithm.

band-pass filter to reduce the influence of muscle noise, 60 Hz interference, baseline
wander, and T-wave interference; the desired passband is 5-15 Hz. The band-pass
filter is obtained with a low-pass filter and a high-pass filter to reduce ripples and
multiple peaks before peak detection. After filtering, the signal is differentiated to
provide the QRS-complex slope information. Afterward, the nonlinear squaring is
implemented on the processed signal. Finally, time averaging is done by calculating
the mean of 32 most recent values from the squaring function. A separate derivative
of the original ECG signal is used for the sampling period wave discrimination.

In peak detection, the peaks with time occurrence are detected using a detection
algorithm on the final output from time averaging. The peak detection algorithm is
developed to eliminate multiple ripples on large waves and also very small noise
peaks: (1) the maximal levels in the processed signal since the last detected peak are
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stored, (2) the new peak is determined if the height of its level is less than half of
the maximum level. The peak detection may be delayed relative to the wavelength
duration. The valid peaks occur until the middle of the falling slope when the level
drop below half the distance from the maximal value to the base point. To avoid
this delay, in the fiducial mark location stage, the time of occurrence of the wave’s
peak is located with a fixed delay back in time from the point of peak detection.
The reason is the time between the middle of the rising slope and the middle of the
falling slope in the wave was equal to the duration of the averaging time.

Further, the peak detection occurs with a wave in the band-passed signal in
intervals 225 to 125 ms preceding a peak detection in the time average signal. The
valid fiducial mark is identified from the location of the largest peaks; the three-
point scheme is used to detect the peaks in this signal for a more consistent location.
For the late detection, the fiducial mark is set from the long wave in the band-passed
signal in intervals 250 to 150 ms preceding a peak detection. After preprocessing
the signal, the decision rule section operates different rules to discriminate the QRS
events from the noise events. A two-dimensional event vector is determined and
saved for each detected peak, including the peak signal level of the preprocessed
waveform and the elapsed time from the last fiducial mark. Further, the status of
the resulting event vector, whether from noise or QRS complex, is saved in a flag.
In the decision rule section, three peak-level estimators are applied to the peaks
derived from the time-averaged signal: mean a specified number of past peaks,
median peak level, and iterative peak level.

The mean square prediction errors are calculated from these different estimators
to evaluate the performance of the three predictors applied to QRS peaks. Next,
the best method for estimating peak levels (median) is determined to set the detec-
tion threshold between the noise level estimate and the QRS peak level estimate.
This method is tested for calculating detection thresholds with median peak level
estimators.

After detecting QRS with median peak level estimation and a threshold between
the noise and peak estimate, 200 ms refractory blanking is used to eliminate false de-
tections on the sample period of wave and multiple detections of the QRS complex.
Afterward, the reverse search and the optimization of the relative reverse search
and normal thresholds are applied. The mean, median, and iterative predictions of
the RR interval are tested, and the median method with eight-point performs the
best. For more details about the QRS-detector algorithm, see [175, 176].

In this work, after detecting the R-peaks in the processed ECG signal using the
QRS-detector algorithm, the heart rate is calculated from the R-to-R intervals, see
Fig. 3.5 and see Eq. 3.1. Then, the linear interpolation is applied to replace missing
data in the heart rate signal, Fig. 3.6 and see Eq. 3.2.
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HeartRate(HR) =
60000

R-to-R interval (ms)
(3.1)
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FIG. 3.5. R-to-R intervals.

LinearInterpolation =
(x− x1)(y2 − y1)

(x2 − x1)
+ y1 (3.2)
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FIG. 3.6. Linear interpolation.

3.1.4 Zero-phase 3rd-order Butterworth Band-pass Filter

This section describes Zero-phase 3rd order butterworth band-pass filter, which is
used to remove unwanted frequencies and reduce background noise from surface
electromyography (EMG) signal. This filter passes all frequency signals in a specific
cut-off range and rejects signals in other frequency ranges. The pass-band and zero
rolled off response in the stop-band have maximally flat (no ripples) frequency
responses. All frequencies until the cut-off range of high pass frequency from the
inputted signal were allowed to pass, and then these frequencies are rolled off
based on the rate of the 3rd order filter. Further, all frequencies lower than the
cut-off range of low pass frequencies are removed (see Fig. 3.7). For more details,
see [177].
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FIG. 3.7. The frequency characteristics of Zero-phase 3rd-order Butterworth Band-pass
Filter.

3.2 Time series Descriptors

The temporal information is well determined in the time window of the extracted
feature from signals by using a time series statistics descriptor. In [60], the feature
signals in descriptors are obtained by gathering the frame-level features per time
series. In this thesis, only four statistical measures in Table 3.3 were used: min, max,
mean, and SD. Then, the feature signal is smoothed using a first order Butterworth
filter with a cutoff of 1 Hz.

Table 3.3. Signal descriptor methods.

 

 

 

 

 

 

 

 

 

 

 
Variable  Description Domain 

mean mean value of signal  value 

median median value of signal 

min  minimum value of signal 

max maximum value of signal 

range  range of signal Value variability  

SD standard deviation  

IQR inter-quartile range of signal  

IDR inter-decile range of signal 

MAD median absolute deviation of signal  

tmax instant of time when signal is its maximum  time  

TGM duration the signal is greater than mean duration 

TGA duration the signal is greater than average of mean and min  

SGM number of segments where the signal is greater than mean  count 

SGA number of segments where the signal is greater than mean and min 

area Area between signal and its minimum  Value × duration  

areaR Quotient of area and area between max and min 
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Next, several statistical measures are calculated from the smoothed signal with
their first and second derivatives for a given time period. These methods are used to
extract many features from each signal, such as the state, speed, variability, duration,
and acceleration signal. 3 × 16 (number of measures) is the descriptor dimension per
time series. Afterward, the mean and SD for each subject (participant) is calculated
from the feature signal due to the different pain sensitivity between subjects. The
feature signal is subtracted from the mean and divided by SD, which are computed
from the same subject. This process is called a person-specific standardization of
the feature signal, see [60]. Finally, after concatenating the signal descriptors, the
obtained feature vector was fed into some classification or regression methods in
machine learning. Fig. 3.8 shows the overview of the signal descriptors. For more
details, see [60].

Sensor

Signal Preprocessing  

Frame-Level Processing 

Time Window Processing

Time

Feature Vectors  

Signal Descriptors

Feature Signals

min

Signal                                   4.32        4.25        2.12       1.95                       . . .

Second Derivative              -0.01        0.02       1.32       0.56                       . . .

First Derivative                  -0.12        0.21       1.32       0.99                       . . .

FIG. 3.8. Overview of the signal descriptors.

3.3 Machine Learning

Machine learning methods such as supervised learning methods are used for clas-
sification and regression problems. They are capable of performing the learning
and testing to discover patterns in labeled datasets. These methods are used to
learn the mapping function from the input to the output of datasets and then use
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them to predict the output for unlabeled datasets. Throughout this work, two
types of supervised machine learning methods were used: classification and regres-
sion. The classification methods categorize the data by predicting discrete labels
without using information about the order of classes. In contrast, the regression
methods distinguish data into continuous real values instead of using classes or
discrete values. Such methods predict continuous labels and exploit their ordinal
relationship. For more details about the methods that were used in this study, see
the Random Forest (RF) in Section 3.3.1 and Long-Short Term Memory Network
(LSTM) in Section 3.3.2.

3.3.1 Random Forest

Random forest (RF) is constructed from decision trees that are introduced in [178].
A decision tree consists of three components: a first node (root), internal nodes,
and end nodes (leaves). The training dataset is used to build a tree structure that
recursively divides the space into regions with similar labels. The decision tree
grows, including the decision on which features to choose, where each node except
the leaves splits into two or more branches outputs (subspaces). The last branches
are located on the leaves when it is no longer possible to break further. Three
common stopping criteria of the decision tree growth are the maximum depth,
minimum number of samples in a node, and a purity node. The pure node includes
the data from a single class only. Such splitting minimizes the node impurity I(N).
To decide the best feature split, entropy, gini, and misclassification impurity are the
most common methods regarding classification for measuring node impurity using
decision trees, the gini impurity is the default for both RF and decision tree, see
Eq. 3.3. C is the total classes and P (i) of picking a datapoint with class i.

I(N) =

(C)∑
i=1

P (i) ∗ (1− P (i)) (3.3)

For regression, RF and decision tree calculate varience reduction using Mean
Square Error (MSE), Eq. 3.4 shows the regression impurity. yi is the node value, ti is
the target value corresponding to the sample i.

I(N) =
N∑
i=1

(yj − ti)2 (3.4)

Decision trees are built from the root to the leaves and used for both classification
and regression: decision tree classifier and decision tree regression. Leaves in the
decision tree classifier are where the classes are assigned by the majority vote, and
leaves in decision tree regression are where the average (mean) predictions are set
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as the final value for the target. Breiman et al. [70] invented Random Forest (RF) as
an ensemble version of the decision trees. Increasing the number of trees improved
the accuracy significantly. The bagging or bootstrap aggregation used by RF is
shown in Fig. 3.9.

Prediction 1 

...

Original Data

Tree 1

Prediction 2 

Tree 2

Prediction n 

Tree n

Majority voting for classification or averaging predictions for regression 

Prediction class 

Boostrapping

Aggregation

RF classifier (prediction is class) or regression (prediction is floating point number)

FIG. 3.9. Overview on the Random Forest (RF).

The bootstrap sample is taken from the original training dataset with a replace-
ment for each decision tree. The decision tree grows using the bootstrap sample,
where each node split is built upon randomly selected features (random sampling).
Random sampling is used to strengthen the independence among the trees. The
decision tree models are trained independently and evaluated using out-of-bag
(OOB) data to generalize the capability of the RF. The final output is obtained by
taking the majority vote of the generated results from decision tree models when
using the Random Forest classifier (RFc) and mean predictions when using Random
Forest regression (RFr); this step is called aggregation. RFc and RFr are defined in
Eq. 3.5 and Eq. 3.6, respectively. Ti(x) the output of the i tree, and j is the class.

fRFc(x) = argmax j=1,2,...,c

Nt∑
i=1

(Ti(x) = j) (3.5)

fRFr(x) =
1

Nt

Nt∑
i=1

Ti(x) (3.6)
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3.3.2 Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM) is a type of Recurrent Neural Networks (RNN) [179,
180] that uses their feedback connection to store and maintain information in ‘mem-
ory’ over extended time intervals. Both LSTM and RNN are powerful networks
designed to recognize patterns in sequences of data. RNN produces output and
then copies and loops it back into the network. Thus, all the inputs are dependent
on each other by taking the output of the previous input; each output obtains when
the input is fed into a hidden layer with sigmoid or tanh activations. The hidden
neurons are a kind of “memory” of the previous inputs because their outputs are
passed through the delay block, and the output feeds it back to them as an input,
see Fig. 3.10. RNN adjusts the weights for both the current and also to the previous
input through gradient descent [181] (see Eq. 3.7) or backpropagation [182] (see
Eq. 3.8) through time.

Wxt+1 = Wxt − lr ∗
d

dWxt

loss (3.7)

Where Wxt+1 is the new weight of input x, Wxt is the current weight,loss is the
cost function (for more details see section 3.5), and lr is learning rate.

∗Wxt = Wxt − lr ∗
d

dWxt

f (Wxt) (3.8)

Where ∗Wxt is the update weight of input x, Wxt is the old weight of input x,
f(Wxt) is the output based on Wxt , and lr is learning rate. 
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FIG. 3.10. The structure of series prediction RNN.

The problem with standard RNN: the backpropagated error signal (gradient)
tends to be unstable or explode or vanish (called the vanishing gradient problem).
Dealing with learning long-term temporal dependencies in RNN is a difficult task.
Thus, LSTM [82] is designed based on extending the memory of RNN; this helps to
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store more information for an even longer time. It is an effective network for better
handling time series prediction. Fig. 3.11 shows the LSTM structure.
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FIG. 3.11. (a) the structure of series prediction LSTM and (b) basic structure of LSTM unit
[175].

Each LSTM cell (mid row) for a given time t consists of: (1) three inputs ht−1,
Ct−1, and Xt, and (2) two outputs which are the hidden state ht and the cell state or
memory Ct. The output is usually in the range [0,1] where ‘0’ means ‘reject all’ and
‘1’ means ‘include all’.

LSTM units include three kinds of gates and one cell state, which are activated
using different activation functions, section 3.4 shows the description of these func-
tions. The input gate decides which new information in the cell state to be stored by
passing the input and the previous cell state (Ct) through sigmoid activation, this is
shown in Eq. 3.9. The forget gate chooses when the existing information needs to
be thrown away in the cell state (Ct); if the output value is closer to 0 means forget,
and the closer to 1 means to keep. The intermediate cell state (Ĉt) is calculated by
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passing the input and the previous state through tanh activation, which is the cell
state in Eq. 3.10. Next, the element wise multiplication is performed, the forget
gate is calculated and multiply it with old state Ct−1, this is shown in Eq. 3.11 and
Eq. 3.12. The output gate determined the final output by passing the input and the
previous cell state (Ct) through sigmoid activation and multiplying it with cell state
passed through the tanh activation, these are shown in Eq. 3.13 and Eq. 3.14.

• Input gate:
it = σ (wi [ht−1, xt] + bi) (3.9)

• Intermediate cell state:

Ĉt = tanh (wc − [ht−1, xt]) + bc (3.10)

• Cell state:
Ct = (ft ∗ Ct−1) +

(
it ∗ Ĉt

)
(3.11)

• Forget gate:
ft = σ (wf [ht−1, xt]) + bf (3.12)

• Output gate:
ot = σ (wt [ht−1, xt]) + bt (3.13)

• New state:
ht = ot ∗ tanh (Ct) (3.14)

Where t is the timestep, it is input gate at t, ft is forget gate at t, outt is output
gate at t, x(t) is the current input, ht−1is previous hidden state, wi is weight matrix
of sigmoid operator between input gate and output gate, wc is weight matrix of
tanh operator between input gate and output gate, wf is weight matrix of sigmoid
operator between forget gate and input gate, wo is weight matrix of output gate. bi
bais vector at t, bc bais vector at t and wc, bf connection bias at t, bt connection bias
at wc. Ct is cell state information, (Ĉt) is value generated by tanh, Ct−1 is previous
timestep, and ht is LSTM output.
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3.4 Activation Functions

Activation functions, also known as threshold functions or transfer functions, help
in learning and facilitating non-linear and complicated mappings between the
inputs and desired outputs. In neural networks: (1) the sum of inputs and their
corresponding weights is calculated, (2) the activation function activates the neuron
to transform the output of that particular layer via nodes in the next layer of the
network. The choice of activation function in the hidden layer influences how
perfectly the network model learns the training dataset. In output layers, the
activation function is determined based on the type of prediction. For more details,
see [183].

Some common activation functions for deep learning throughout this work are
described below:

x indicates input feature, xi indicates element in input vector (one-hot encoded
matrix), k indicates the total number of classes in multiclasses.

• Linear Function:
g(x) = x (3.15)

This activation function is also known as Identity Function where the activa-
tion is the input.

• Sigmoid:

g(x) =
1

1 + e−x
(3.16)

This activation function transforms the values in the range 0 to 1; these values
can be treated as probabilities for binary and multi-label classification tasks.

• Tanh:

g(x) =
ex − e−x

ex + e−x
(3.17)

This activation function transforms the values in the range -1 to 1. It has
gradients that are not restricted to vary in a certain direction.

• ReLU:
g(x) = max(0, x) (3.18)

This activation function is most widely used in Conventional Neural Net-
works (CNNs); all the negative values are converted into zero. ReLU ranges
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from 0 to infinity, and the deactivated neuron is produced when the output of
linear transformation is zero.

• Softmax:
g (xi) =

exi∑k
j=0 e

xj

for i = 0, .., k − 1 (3.19)

This activation function is a combination of multiple sigmoid functions. It
gives the probability of each class, and the sum of these probabilities is even-
tually one. The target class will have a high probability. They can be used for
multiclass classification tasks.

These activation functions except ReLU are continuous and differentiable so that
gradient descent and backpropagation can be used to optimize the loss function.
ReLU is differentiable at all the points except 0.

3.5 Loss Functions

Loss functions help to determine the model performance by calculating the distance
between the predicted output with the expected output of the machine learning
networks. The model weights are updated using those functions during training
until getting the best result. The model’s performance is maximized by minimizing
the loss.

The loss functions used in deep learning throughout this work are described
below:

• Binary Cross Entropy:

BCE = − 1

N

N∑
i=0

[yi log (ŷi) + (1− yi) log (1− ŷi)] (3.20)

This can be used for binary single- or multiple-label classification with sigmoid
activation in the last layer. It compares each of the predicted probabilities
to the expected class output, which can be between 0 and 1. It is used for
predicting only two classes (classification tasks) or continuous values between
0 and 1 (regression tasks).

• Categorical Cross Entropy:

CCE = −
N∑
i=0

yi log (ŷi) (3.21)
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This can be used for multiclass classification with softmax activation in the
last layer. It is designed to quantify the difference between two probability
distributions. It uses where a sample can only belong to one out of many
possible categories, and the model must decide which one. It is used for
predicting multiple labels in multi-class classification tasks.

• Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi) (3.22)

This can be used for regression with linear activation in the last layer. This
loss function is responsible for computing the average squared difference
between the predicted probabilities and expected class output. It is used for
predicting continuous output in regression tasks.





CHAPTER 4

Data Preparation

THIS chapter describes the X-ITE Pain Database. It also presents the database
pre-processing and temporal integration processes in the proposed auto-
matic system for continuous monitoring of pain intensity using the X-ITE

Pain Database; Fig. 4.1 shows the data preparation steps in the pipeline of the sug-
gested system. The first step was selecting pain response data (from participants)
during applied pain stimulation from the five modalities: frontal RGB camera,
audio, electrocardiogram [ECG], facial electromyography [EMG], electrodermal
activity [EDA]. This data have been collected by Gruss et al. [149]. Section 4.1 de-
scribes the data collection and selection process using the X-ITE Pain Database. The
second step was (1) processing the frontal facial RGB video using OpenFace [154]
for detecting the face from each frame for each participant (subject) and for ex-
tracting Facial Features (FF) & head pose, (2) processing the audio signal using
openSMILE [171], (3) applying the QRS-detection algorithm by Hamilton et al. [176]
with the ECG signals, and (4) processing the three EMG channels with a zero-phase
3rd-order Butterworth band-pass filter. More details about sensor modalities and
signal processing were described in Section 4.2. The third step was representing
the time window which includes temporal integration of frame-level features by
a time series statistics descriptor on the processed data from each modality indi-
vidually. Five descriptors were provided: Facial Activity Descriptor [FAD], Audio
Descriptor [Audio-D], ECG Descriptor [ECG-D], EMG Descriptor [EMG-D], and
EDA Descriptor [EDA-D]. The labels three seconds were moved forward and then
used a sliding window with a time length of ten seconds ago. See Section 4.3for
more details about the temporal integration process. Finally, the data were further
processed in order to ensure and improve the performance of automatic methods
for monitoring continuous pain intensity, see experimental data in section 4.4.
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FIG. 4.1. The data preparation pipeline in continuous pain intensity monitoring system. The input consists of response data collected from five
modalities (frontal video, audio, ECG, EMG, and EDA) when participants were exposed to pain stimuli. The data is processed using different
methods and filters, and extracted features were used to determine temporal integration by using a time series statistics descriptor.
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4.1 X-ITE Pain Database

In this thesis, a multimodal Experimentally Induced Thermal and Electrical (X-ITE)
Pain Database [149] was used to validate the performance of different automatic
methods for continuous intensity pain monitoring. This database was selected
because it is made to complement existing databases, including behavioral and
physiological data that was recorded when healthy participants (subjects) were
exposed to different qualities (heat/electric) and duration (5 s /1 min) of pain
stimuli. This diversity in the database provides additional valuable information to
advance the discrimination between pain or intensity of pain versus no pain.

In this database, a total of 134 human healthy participants aged between 18 and
50 years were subjected to two types of pain modalities (heat and electricity) in three
intensities (low, medium, and high) and two different stimuli durations (phasic
and tonic). The heat pain stimulus was stimulated at participants’ forearm using a
thermal stimulator (Medoc PATHWAY Model ATS). The electrical pain stimulus
was stimulated at participants when electrodes were attached to participants’ index
and middle fingers using an electrical stimulator (Digitimer DS7A). Fig. 4.2 shows
the pain response data derived from multiple sensor modalities.

The intensities of both pain stimuli (heat and electricity) were selected individu-
ally based on participants’ personal pain sensitivity (tolerances). For this purpose,
there was a person-calibration procedure before the main stimulation phase, in
which the participant self-reported the pain experienced during several stimuli
using the numeric rating scale.

Six phasic (short) and six tonic (long) stimulus types were applied to each
participant based on their pain thresholds and tolerances. For each phasic stimulus,
the three pain intensities (times two pain modalities) were repeated 30 times for
five seconds duration, applied in randomized order with pauses of 8-12 seconds.
The one-minute tonic stimuli were applied once per intensity, followed by a pause
of five minutes. There were three phases of how tonic heat and electrical pain
intensity stimuli were applied: the two lower intensities were applied randomly
during the phasic stimulus period, and the highest intensity was applied at the end
of the experiment. The entire experiment (preparation and actual experiment) took
about 3 hours per participant. For more details see Gruss et al. [149].

The facial expression, head pose, body gestures, and facial skin temperature
were analyzed from video; para-linguistic responses (vocalizations) were ana-
lyzed from the recorded audio signal; heart rate and its variability were analyzed
from the measured electrocardiogram (ECG); surface electromyography (EMG) has
been recorded for measuring the activity of trapezius (neck/shoulder), corruga-
tor supercilii (close to eyebrows), and zygomaticus major (at the cheeks) muscles;
electrodermal activity (EDA) has been recorded for measuring sweating.
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FIG. 4.2. The pain response data from the X-ITE Pain Database. The representative screenshots of the video
signals (top) show the reactions when one of an intense pain stimuli was applied. The figure depicts plots of the
recorded signals (middle part) before, during, and after the application of a pain stimulus (bottom plot). (EMG =
Electromyography, EDA = Electrodermal Activity, ECG = Electrocardiogram).
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In line with [29] and Othman et al. [75], the same 127 participants (subjects)

subset was selected, including samples only, for which data were available from

five sensors (frontal RGB camera, audio, ECG, EMG, EDA). Approximately one

and a half hours was the duration of the actual experiment for each participant,

which was used in this work. Five sensor modalities were analyzed in this work to

objectively monitor the phasic and tonic pain intensity during the application of

the thermal and electrical pain stimuli and no pain.

4.2 Pre-processing

This section explains the steps in pre-processing on X-ITE Pain Database when using

the pain response data from five sensor modalities. Participants were subjected

to painful stimuli that differ in intensity, duration, and modality; for more details

about the database, see Section 4.1. The following is a description of the types of

sensors used as well as the sensor-specific signal processing.

4.2.1 Frontal Video

Fig. 4.3 shows the processing pipeline for RGB frontal video. For more details about

the OpenFace tool, see Section 3.1.1.

OpenFace

Facial Features (FF): 

Head Pose + Action Units

(21 dimensional)

Frontal Video

FIG. 4.3. The pipeline for processing RGB fronal video.

The RGB frontal face from videos were used for analyzing facial expressions

and head pose information using OpenFace [154]. For each frame of each video,

the OpenFace tool extracted Facial Features (FF) through the following steps: (1)

it detects the face and facial landmarks, (2) it extracts Action Units(AUs), and (3)

it estimates head pose. As frame-level expression features, the FF that are used

includes 21 features: 3 head poses (Yaw, Pitch, and Roll), AU1 (binary occurrence
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output), and 17 AU intensity outputs of OpenFace, which are AU1, AU2, AU4, AU5,

AU6, AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, and

AU45. The 21-dimensional facial expression time series were recorded at a frame

rate of 25 frames per second (fps).

4.2.2 Audio

The audio signal was used for analyzing para-linguistic responses using openS-

MILE [171]. For each frame, a 24-dimensional low-level descriptor [LLD] was

extracted, comprising four energy features (Sum of auditory spectrum [loudness],

Sum of RASTA-filtered auditory spectrum, Root-Mean Square [RMS] Energy, and

Zero-Crossing Rate), 6 voicing features (F0 (Subharmonic-Summation [SHS] &

Viterbi smoothing), probability of voicing, logarithmic Harmonics to Noise Ra-

tio [HNR], Jitter (local delivered duty paid [DDP]), Shimmer [local]), and 14

spectral features [Mel Frequency Cepstral Coefficients (MFCCs)]. Further, the 24-

dimensional LLD audio time series were extracted at the same time series sampling

rate as the FF time series frame rate (1/25 seconds). Fig. 4.4 shows the processing

pipeline for Audio. For more details about the openSMILE tool, see Section 3.1.2.

OpenSMILE
Low-level Descriptors (LLDs)

(24 dimensional)

Audio

Time in Milliseconds

FIG. 4.4. The pipeline for processing audio signal.

4.2.3 ECG

The electrocardiogram (ECG) was used to analyze heart rate and its variability. The

QRS-detection algorithm by Hamilton et al. [176] was applied in order to find the

R-peaks in the ECG signal. Then, R-to-R intervals were used to determine heart rate.

Afterward, we interpolated the heart rate signal linearly to match the sampling of

the EMG and EDA (1000 Hz). Finally, only the ECG data (1-dimensional) was used

at the same time series sampling rate as the FF time series frame rate (1/25 seconds).
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Fig. 4.5shows the processing pipeline for the ECG signal. For more details about

QRS-detection algorithm and methods, see Section 3.1.3.

QRS-detection
Heart rate

(1 dimensional)
R-to-R intervals Linear interpolation

ECG

Time in Milliseconds

FIG. 4.5. The pipeline for processing ECG signal.

4.2.4 EMG

Fig. 4.6 shows the processing pipeline for the EMG channel signals.

Bandpass filtering

Filtered EMGs

(3 dimensional)

EMG

Time in Milliseconds

Time in Milliseconds

Time in Miliiseconds

Bandpass filtering

FIG. 4.6. The pipeline for processing EMG channel signal. COR: corrugator supercilii, ZYG:
zygomaticus major, TRAP: trapezius.

The surface electromyography (EMG) was used to measure the activity of

three muscles, corrugator supercilii (close to eyebrows), zygomaticus major (at the

cheeks), and the trapezius (neck/shoulder). A zero-phase 3rd-order Butterworth

band-pass filter with cut-off frequencies of 20 and 250 Hz was used to process the

three channel EMG signals. Further, 3-dimensional EMG time series was used at
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the same time series sampling rate as the FF time series frame rate (1/25 seconds).

For more details about this filter, see Section 3.1.4.

4.2.5 EDA

Electrodermal activity (EDA) was used to measure sweating. The 1-dimensional

EDA time series was used a frame rate of 25 frames per second (fps) same as FF

frames. Fig. 4.7 shows the EDA signal without filtering.

EDA

Time in Milliseconds

FIG. 4.7. The pipeline for processing EDA signal.

4.3 Temporal Integration

Temporal integration of frame-level features (also called time series) were calculated

from the 21-dimensional facial expression time series, 24-dimensional audio time

series, 1-dimensional ECG time series, 3-dimensional EMG time series, and 1-

dimensional EDA time series, see Fig. 4.8. For more details about signal processing,

see Section 4.2. The temporal integration for each sensor modality was represented

by a time series statistics descriptor [7,60] to describe the changes of features, which

are called Facial Activity Descriptor [FAD], Audio Descriptor [Audio-D], ECG

Descriptor [ECG-D], EMG Descriptor [EMG-D], and EDA Descriptor [EDA]. Each

second in each descriptor was summarized by four statistics of the time series

itself and its first and second derivative, including minimum, maximum, mean,

and standard deviation, yielding a 12×21-dimensional, 12×24-dimensional, 12×1-

dimensional, 12×3-dimensional, and 12×1-dimensional descriptor for facial, audio,

ECG, EMG, and EDA features, respectively. A person-specific standardization of

the features [60] was applied with all descriptors in order to focus on the within-

subject response variation rather than the differences between subjects. For each

subject, the mean and standard deviation were calculated, then each feature value

was subtracted by the mean and divided by the standard deviation that belonged

to the same subject.
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FIG. 4.8. Temporal Integration pipeline for processed data from all sensor modalities. Time Window Processing were explained in Fig. 3.8.
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The labels of each subject were moved three seconds after because the facial

pain responses typically are delayed by 2-3 seconds compared to stimulus. Further,

a sliding window was applied by combining the FAD, Audio-D, ECG-D, EMG-D,

or EDA-D ten seconds ago once per second to predict the next time step of the pain

intensity label. The data for the first ten seconds are removed because there are no

prior observations to use.

4.4 Experimental Data

The average length of each sequence in X-ITE Pain Database was about one and a

half hours. The imbalanced data distribution of the pain intensity was shown in

Fig. 4.9.

FIG. 4.9. Sample distribution based on labels.

The notations in the conducted experiments were summarized in Table 4.1. In

the X-ITE Pain Database, 0 indicates the samples in which subjects experience no

pain. Phasic and tonic pain levels were represented by positive and negative labels

1 to 3 and 4 to 6, respectively. Samples with labels 3 & -3 (phasic pain stimulus) and

6 & -6 (tonic pain stimulus) indicate severe heat and electrical stimuli, respectively;

samples with labels 2 & -2 (phasic pain stimuli) and 5 & -5 (tonic pain stimulus)

indicate moderate heat and electrical stimulus, respectively; samples with labels

1 & -1 (phasic pain stimuli) and 4 & -4 (tonic pain stimuli) indicate low heat and

electrical stimulus, respectively. -10 indicates samples with problems such as false

start and restart of the stimuli, overlapping between heat or electrical stimulation,

unbalanced phasic estimation, short pause, short tonic electrical stimulus, single
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heat stimulus in front, or additional stimulus. -11 indicates the samples when the

subject speaks or interacts during the experiment (the beginning and after the first

& second tonic stimuli of the experiment.

Table 4.1. List of abbreviations of pain stimuli type, modalities, intensities, and numerical
class labels with the percentage samples distribution.

Sensors 2022, 22, x FOR PEER REVIEW  7 of 22 
 

 

expressions  for most  samples when  expressing  pain  intensity,  then we  assigned  all  285 

subjects  into  four  categories based on how  they  expressed pain  intensity. Second, we  286 

suggested splitting the database into three splits: training set, validation, and testing set.  287 

A randomly subjects for each split from each category were selected based on 80% of data  288 

for  training  (100  subjects  =  572696  samples),  10%  for  validation  (13  subjects  =  75537  289 

samples), and 10% for testing (14 subjects = 79485 samples). Each split contained subjects  290 

from all intensity categories. Third, the obtained splits from the database were processed:  291 

(a) all sequences of samples with labels ‐10, ‐11, and no pain samples sequence before and  292 

after  these  samples were  excluded  to  simplify  the problem  and  reduce  the  impact of  293 

imbalance in the database; (b) the obtained dataset was split into 6 subsets to evaluate the  294 

proposed methods (see the Subsets which are the  first six datasets in Table 2); (c) each  295 

obtained dataset was reduced by removing some no pain samples prior to pain intensity  296 

samples in a time series for each subject to evaluate the proposed methods, these datasets  297 

are called Reduced Subsets; see the Reduced Subsets which were the last six datasets in  298 

Table 2.  299 

Table 1. List abbreviations of pain stimuli type, modalities, intensities, and numerical class label‐ 300 

with the percentage samples distribution. 301 

  302 

Table 2. List of datasets with samples’ disribution based on labels.   303 

Type  Modality 
Intensities 

severe  moderate  low  no pain (77%) 

Phasic 
H  PH3 = 3 (2%)  PH2 = 2 (2.1%)  PH1 = 1 (2.1%) 

BL= 0 
E  PE3 = ‐3 (2.6%)  PE2 = ‐2 (2.6%)  PE1 = ‐1 (2.6%) 

Tonic 
H  TH3 = 6 (1%)  TH2 = 5 (1%)  TH1 = 4 (1%) 

BL= 0 
E  TE3 = ‐6 (1%)  TE2 = ‐5 (1%)  TE1 = ‐4 (1%) 

E: Electrical pain stimulus,   H: Heat pain stimulus 

‐10 & ‐11 Labels not used in the experiments: ‐10 (0.5%) and ‐11(2.5%)   

Subsets 
no 

pain 

Pain           

intensities 

PD Phasic Dataset 
Exclude tonic samples and no pain samples before these 

samples and also after samples with ‐10, ‐11 labeled. 
77.7%  22.23% 

HPD Heat Phasic Dataset 
Exclude electrical samples from PD and no‐pain samples 

before these frames. 
87.5%  21.5% 

EPD Electrical Phasic Dataset 
Exclude heat samples from PD and no pain frames be‐

fore these frames. 
86.1%  13.9% 

TD Tonic Dataset 

Exclude  phasic  samples  and  no  pain  samples  before 

these  samples  and  also  after  samples with  ‐10,  ‐11  la‐

beled. 

70.3%  29.7% 

HTD Heat Tonic Dataset 
Exclude electrical samples from TD and no pain frames 

before these frames. 
20.0%  80.0% 

ETD Electrical Tonic Dataset 
Exclude heat samples fromTD and no pain frames before 

these frames. 
82.0%  18.0% 

Reduced Subsets 
no 

pain 

Pain         

intensities 

RPD Reduced Phasic Dataset  Reduce the no pain frames in PD to about 50%.  50.0%  50.0% 

RHPD Reduced Heat Phasic Dataset  Reduce the no pain frames in HPD to about 50%.  50.1%  49.9% 

REPD Reduced Electrical Phasic Dataset  Reduce the no pain frames in EPD to about 50%.  50.0%  50.0% 

RTD Reduced Tonic Dataset  Reduce the no pain frames in TD to about 38%.  38.1%  61.9% 

RETD Reduced Electrical Tonic Dataset  Reduce the no pain frames in ETD to about 49%.  49.0%  51.0% 

Several pre-processing steps were proposed on the X-ITE Pain Database to

reduce the impact of the extremely imbalanced database problem:

First, the intensities of facial expressions for most samples when expressing pain

intensity were investigated, then all subjects into four categories were assigned

based on how they expressed pain intensity.

Second, Splitting the database into three splits was suggested: training set,

validation, and testing set. A randomly subjects for each split from each category

were selected based on 80% of data for training (100 subjects = 572696 samples),

10% for validation (13 subjects = 75537 samples), and 10% for testing (14 subjects

= 79485 samples). Each split contained subjects from all intensity categories, see

Fig. 4.10.

Third, the obtained splits from the database were processed: (a) all sequences of

samples with labels -10, -11, and no pain samples sequence before and after these

samples were excluded to simplify the problem and reduce the impact of imbalance

in the database; (b) the obtained dataset was split into 6 subsets to evaluate the

proposed methods (see the Subsets which are the first six datasets in Table 4.2); (c)

each obtained dataset was reduced by removing some no pain samples prior to

pain intensity samples in a time series for each subject to evaluate the proposed

methods, these datasets are called Reduced Subsets; see the Reduced Subsets which

were the last six datasets in Table 4.2.
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Intensity: 1 
 

Training Subjects: 
S002, S010, S019, S020, S022, S033, S042, S065, S082, S093, 
S048, S050, S051 

 

Validation Subject: 

S113 
 

Testing Subjects: 

S079, S107 
 

Intensity: 2 
 

Training Subjects: 

S011, S016, S026, S027, S028, S037, S041, S044, S074, S077, 
S080, S089, S091, S092, S095, S102, S103, S118, S120, 
S122, S123, S124, S130, S132 

 

Validation Subjects: 
S046, S100, S128 

 

Testing Subjects: 

S007, S047, S056, S081 

Intensity: 3 
 

Training Subjects: 

S003, S004, S005, S006, S008, S0l2, S0l5, S0l7, S029, S032, 

S034, S035, S036, S038, S039, S040, S045, S052, S053, S054, 

S055, S057, S058, S06l, S063, S064, S066, S067, S068, S069, 

S070, S072, S073, S075, S076, S078, S083, S084, S085, S086, 

S087, S090, S096, S098, S099, Sl0l, Sl05, Sl06, Sl09, Sll0, 

Slll, Sll2, Sll4, Sll6, Sll7, Sll9, Sl25, Sl29, Sl33 
 

Validation Subjects: 

S009, S0l3, S0l8, S043, S088, S094, S097, Sl26 
 

Testing Subjects: 

S03l, S049, S058, S062, S07l, Sl27, Sl3l 
 

Intensity: 4 
 

Training Subjects: S060, Sl08, Sll5, Sl34 

Validation Subject: Sl04 

Testing Subject: S02l 

FIG. 4.10. Assignment of subjects to categories of facial response intensities [184]. Intensity
1= lack of facial responses to pain, Intensity 2, 3 = moderate intensity of facial responses to
pain, and intensity 4 = intensive facial responses to pain.

Table 4.2. No. of samples in each dataset for each splits to evaluate proposed methods
before & after applying sample weighting method.

 

Datasets  Description 
Training 

set 

Validation 

set 

Test 

set 

Applying sample 

weighting  

Training 

set 
Increased  

S
u
b
se

ts
 

PD Phasic Dataset 352,133 46,476 50,362 405,060 52,927 (20%) 

HPD Heat Phasic Dataset 159,998 21,441 23,019 190,178 30,180 (20%) 

EPD Electrical Phasic Dataset 316,939 41,794 45,325 353,560 36,621 (10%) 

TD Tonic Dataset 117,646 14,885 16,689 142,667 25,021 (20%) 

HTD Heat Tonic Dataset 21,198 2,755 3,103 37,087 15,889 (70%) 

ETD Electrical Tonic Dataset 95,458 12,000 13,446 109,644 14,186 (10%) 

R
ed

u
ce

d
 S

u
b

se
ts

 RPD Reduced Phasic Dataset 158,472 20,897 22,501 237,735 79,263 (50%) 

RHPD Reduced Heat Phasic Dataset 69,390 9,233 9,933 119,780 50,390 (70%) 

REPD Reduced Electrical phasic Dataset 88,148 11,548 12,438 150,937 62,789 (70%) 

RTD Reduced Tonic Dataset 55,804 7,041 7,983 99,455 43,651 (80%) 

RETD Reduced Electrical Tonic Dataset  33,826 4,156 4,740 62,799 28,973 (90%) 
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Table 4.3. The percentage samples distribution of pain stimuli type, modalities, intensities
for each dataset after database preprocessing. P = phasic and T = tonic indicate the two
types of pain stimuli, H = heat and E = electrical indicate the modalities, 1 = low, 2 =
moderate, and 3 = severe indicate the three intensity.
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Table 4.3 shows the distribution of samples in each proposed dataset. The

applied Subsets were (1) Phasic Dataset [PD]: Excluded tonic samples (labeled 4,

5, 6, -4, -5, -6, -10, -11) and no-pain samples before these samples and also after

samples with -10, -11 labeled, (2) Heat Phasic Dataset [HPD]: Excluded electrical

samples (labeled -1, -2, -3) from PD and no-pain samples before these frames, (3)

Electrical Phasic Dataset [EPD]: Excluded heat samples (labeled 1, 2, 3) from PD

and no pain frames before these frames, (4) Tonic Dataset [TD]: Excluded phasic

samples (labeled 1, 2, 3, -1, -2, -3, -10, -11) and no pain samples before these samples

and also after samples with -10, -11 labeled, (5) Heat Tonic Dataset [HTD]: Excluded

electrical samples (labeled -1, -2, -3) from TD and no pain frames before these

frames, and (6) Electrical Tonic Dataset [ETD]: Excluded heat samples (labeled 1, 2,

3) from TD and no pain frames before these frames. The Reduced Subsets were (7)

Reduced Phasic Dataset [RPD]: Reduced the no pain frames in PD to about 50%,

(8) Reduced Heat Phasic Dataset [RHPD]: Reduced the no pain frames in HPD

to about 50%, (9) Reduced Electrical Phasic Dataset [REPD]: Reduced the no pain
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frames in EPD to about 50%, (10) Reduced Tonic Dataset [RTD]: Reduce the no pain

frames in TD to about 38%, (11) Reduced Electrical Tonic Dataset [RETD]: Reduced

the no pain frames in ETD to about 49%.

7-Class pain recognition was considered for two types of pain stimuli (P =

phasic and T = tonic) variants of each modality (Heat = H and Electrical = E) in

three intensity (1 = low, 2 = moderate, and 3 = severe): (1) BL, PH1, PH2, PH3,

PE1, PE2, and PE3 for the phasic recognition task, and (2) BL, TH1, TH2, TH3, TE1,

TE2, and TE3 for the tonic recognition task. Further, 4-Class pain recognition was

considered for one type of pain stimulus (P / T) variants of one modality (H / E) in

three intensities: (1) BL, PH1, PH2, and PH3 for the phasic heat recognition task, (2)

BL, PE1, PE2, and PE3 for the phasic electrical recognition task, (3) BL, TH1, TH2,

and TH3 for tonic heat recognition task, (4) BL, TE1, TE2, and TE3 for the tonic

electrical recognition task.

Fig. 4.11 shows the suggested reduction strategy, which focuses on reducing

some no pain samples prior to each pain intensity sequence by preserving differ-

ent numbers of no pain samples that are directly adjacent to each pain intensity

sequence. This number was assigned based on the number of samples in each pain

intensity sequence, e.g., for a sequence of phasic electrical moderate pain intensity

that contains five samples; the previous five no pain samples were kept, and the

rest before were deleted. Thus, five additional datasets (Reduced Subsets) were

obtained, and the Heat Tonic Dataset (HTD) was not reduced because it is nearly

balanced.

The proposed automatic models, which were introduced in Chapter 5, were

trained on all 11 datasets. The models that were trained on the database before

the splitting performed poorly due to the huge imbalanced class distribution. The

pain intensity labels were conditioned into the right format by: (1) converting the

negative labels (-1, -2, -3) to positive (4, 5, 6) in Phasic Dataset [PD], the obtained

labels are 1, 2, 3, 4, 5, 6, (2) converting the labels 4 , 5 , 6, -4, -5, -6 to 1, 2, 3, 4, 5, 6

in Tonic Dataset [TD], (3) converting the negative labels (-1, -2, -3) to positive (1, 2,

3) in Electrical Phasic Dataset [EPD], (4) converting labels 4, 5, 6 to 1, 2, 3 in Heat

Tonic Dataset [HTD], and (5) converting the labels -4, -5, -6 to 1, 2, 3 in Electrical

Tonic Dataset [ETD]. With regression models, no pain and pain intensity labels

were normalized to bring them in the range of [0,1].
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 Sample sub-sequence  

Delete these samples Keep these samples Count moderate pain 
intensity samples in 
this sub-sequence: 

Here 5 samples 

3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 0 0 0 0 

 

 

 

 

Sample sequence after 
apply reduction 

strategy 
 

 

 

 
 

3 3 3 3 3 0 0 0 0 0 -2 -2 -2 -2 -2 0 0 0 0 

 

FIG. 4.11. Overview of reduction strategy on sample sequences.





CHAPTER 5

Continuous Pain Intensity Monitoring

THIS chapter introduces three automatic methods suggested to predict con-
tinuous pain intensity using the time series data, which are (1) Random
Forest (RF) as baseline methods [Random Forest classifier (RFc) and Ran-

dom Forest regression (RFr)], (2) Long-Short Term Memory (LSTM), and (3) LSTM
using sample weighting method (called LSTM-SW); see Section 5.1, Section 5.2, and
Section 5.3, respectively. After data preparation (see Chapter 4), the obtained time
series data (experimental data), including FAD, Audio-D, ECG-D, EMG-D, and
EDA-D, was used to train the proposed methods, see Fig. 5.1. The reason for using
different methods with the experimental data was to explore the generalizability
of continuous pain intensity monitoring models. The experimental data included
several datasets for each modality that were used individually and combined in
terms of modalities. All obtained models were examined to provide the most
reliable model (system) that fits with the continuous pain data type.

In Section 5.4, an overview of the conducted experiments was provided to
recognize continuous pain intensity regarding classification and regression. First,
automatic models were trained using the features from each modality individually
(Uni-modality experiments); see Section 5.4.1. Second, Decision Fusion [DF] method
using fusion mapping, in which individual RF, LSTM, and LSTM-SW, was trained
with two modalities (Bi-modality using DF experiments) and all modalities (Multi-
modality using DF experiments); the two modalities were FAD/EMG-D and EDA-
D, see Section 5.4.2. Third, two LSTM/LSTM-SW were combined by concatenating
the last layer (Model Fusion [MF]); these experiments were called Bi-modality
using MF. Each LSTM/LSTM-SW was used to handle data from a single modality,
FAD/EMG-D for training and testing one model and EDA-D for training and
testing the other model (see Section 5.4.4).
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Long-Short Term Memory (LSTM) LSTM using Sample Weighting (LSTM-SW)

Class Scores or 

Probabilities 

(Uni-modality 1.. n )

Predictions of using MF 

(Bi-modality X and Y)

Predictions of using MF

(Multi-modality = All Modalities)

Random Forest (RF)

Predictions  

(Uni-modality X)

Predictions of using DF 

(Multi-modality X and Y)

Fusion Mapping (mean)

Predictions of using DF 

(Bi-modality = All Modalities)

RFc RFr

Uni-modality 

(Single Modality)

Bi-modality 

(Two Modalities)

Multi-modality 

(All Modalities)

Experimental Data

FIG. 5.1. The monitoring pipeline in a continuous pain intensity monitoring system. Three automatic methods were used to train and test the
Uni-modality model, Bi-modality model using DF or MF, and Multi-modality model using DF or MF. X is FAD/EMG, Y is EDA. RFc: Random
Forest classifier, RFr: Random Forest regression, DF: Decision Fusion, MF: Model Fusion.
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In line with Bi-modality using MF experiment, similar LSTM/LSTM-SW were
used, but five instead of two LSTM/LSTM-SW were individually trained and tested
with FAD, Audio-D, ECG-D, EMG-D, and EDA-D. These experiments were called
Multi-modality using Model Fusion (MF); see Section 5.4.5.

5.1 Random Forest Baseline Method

Random Forest [RF] was used because it is an applicable method regarding clas-
sification and regression tasks. RF is parallelizable method, which means that
the process can be split into multiple machines to run and this leads to a faster
computation time (faster to train and predict). In contrast, the Boosting is a sequen-
tial ensemble method, which takes longer to compute. Further, RF is good with
high dimensionality data, robust to outliers and non-linear data, good to handle
imbalanced data, it has also low bias and moderate variance. Alongside Werner et
al. [29] and Othman et al. [75], Random Forest classifier (RFc) and Random Forest
regression (RFr) were trained with 100 trees and a maximum depth of 10 nodes for
classification and regression tasks. RFc method showed good results in predicting
pain intensity and no pain from the time windows [29] of samples that were cut
out from the continuous recording of the main stimulation phase [29, 75]. In this
thesis, both RFc and RFr are the baseline methods to compare them with other deep
learning methods (LSTM and LSTM-SW). For more details about the comparison
results, see Section 6.2.1.2, 6.3.1.2, and 6.4.1.2.

5.2 Long-Short Term Memory

Long-Short Term Memory [LSTM] is an effective method for better handling time
series prediction compared to other time series methods because it has a memory
cell that can maintain information in memory for long periods of time. It is more
accurate on datasets using large sequences. Table 5.1 shows the six Long-Short
Term Memory (LSTM) architectures used for classification and regression. The
learning rate [lr] is the most important hyperparameter; it is tuned to control how
quickly the model is adapted to the problem and how much to change the model in
response to the estimated error. The lr range is often between 0.0 and 1.0. Multiple
lr were tested to avoid too large or too small lr problems. The experimental data
(time series data = samples) from each modality provided after applying the data
preparation process were inserted into LSTMs one by one in sequence.

The architectures A(c), B(c), C(c), and D(c) for classification and A(r), B(r) for
regression all have input size of 10 × 252/288/36/12, the number of features was
variant according to the used modality. 10 indicates timesteps (25 Hz time series
were reduced to one Hz after applying tempral integration process), 252 indicates
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facial features [FAD], 288 indicates audio features [Audio-D], 12 indicates ECG
features [ECG-D] or EDA features [EDA-D], and 36 indicates EMG features [EMD-
D]. A(c) and C(c) classification architectures comprised a single LSTM layer with 4
units activated by ReLU followed by a flatten layer, and then one dense layer with
128 neurons activated by ReLU. The final output layer had 7 neurons in A(c) and 4
neurons in C(c). B(c) and D(c) classification architectures comprised a single LSTM
layer with 8 units activated by ReLU and followed by flatten layer, and then one
dense layer with 64 neurons activated by ReLU. The final dense output layer had
7 neurons in B(c) and 4 neurons in D(c). The Softmax was used as the activation
function in the output layer, and the Categorical Cross-Entropy [CCE] was the used
as the loss function. The configurations of A(r) regression architecture were similar
to A(c) and C(c), and the configurations of B(r) regression architecture were similar
to B(c) and D(c), except the final output layer with 1 neuron was activated using
a sigmoid function. The used loss function was the Binary Cross-Entropy [BCE].
Linear activation function and MSE loss function were also used with the FAD
single modality experiment. The obtained models were trained for 2000 epochs with
different lr when setting up the batch size equal to 512 and using adam optimizer.
chapter 6 presents the lr which results best results for each dataset, which were
10−4 or 10−5 or 10−6.

Table 5.1. A summary of the LSTM architectures’ configurations using data from FAD
single modality (FAD Uni-Modality).

Layer type Attribute 
Classification  Regression 

A(c)  B(c)  C(c)  D(c)  A(r)  B(r) 

Input 

Size: 

Timestep: 

Features: 

10 × 252 

10 

252 

10 × 252 

10 

252 

10 × 252 

10 

252 

10 × 252 

10 

252 

10 × 252 

10 

252 

10 × 252 

10 

252 

LSTM 
Activation:  ReLU  ReLU  ReLU  ReLU  ReLU  ReLU 

No. of units:  4  8  4  8  4  8 

Dropout  with p:  0.5  0.5  0.5  0.5  0.5  0.5 

Flatten  Output:  80  40  80  40  80  40 

Dense1 
Activation:  ReLU  ReLU  ReLU  ReLU  ReLU  ReLU 

No. of units:  128  64  128  64  128  64 

Dense2 
Activation:  Softmax  Softmax  Softmax  Softmax  Linear/Sigmoid 

No. of units:  7  7  4  4  1  1 

Output 

Continuous          ‐  ‐  ‐  ‐  √  √ 

Discrete 
√ √ √ √ 

‐  ‐ 
7 levels  7 levels  4 levels  4 levels 

The LSTM predicted one output with time period by using several adjacent
periods, which kept the estimation line stable, smooth, and closed to the ground-
truth labels. Section 3.4 and Section 3.5 describe the activation (Softmax, Linear,
and Sigmoid) and loss functions (MSE, BCE, and CCE) that have been used in
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LSTM architectures. This work focuses on LSTM/LSTM-SW using BCE regarding
regression task due to its better performance compared to those using MSE based
on using FAD single modality results, see Table 6.6.

By combining these hyper-parameters, a total of 528 models were trained in a
PC “ Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz, NVIDIA GeForce RTX 2080 Ti
32 GB RAM”. The software libraries and frameworks used were: Python 3.6.10,
Tensorflow-GPU 1.14.0, Numpy 1.19.0, and OpenCV-python 4.3.0.36.

5.3 Long-Short Term Memory using Sample Weighting

After observing the highly imbalanced database (see Fig. 4.9), Long-Short Term
Memory (LSTM) again was used after increasing the weight of the training samples
with more facial responses, called LSTM using Sample Weighting (LSTM-SW). The
sample weighting method was based on duplicating some samples with high scores.
Fig. 5.2 shows an overview of the methodology sample weighting method with
LSTM.

Random Forest classifier (RFc) 

Class Scores

Selecting samples with  score above  0.3

FAD features

(FF modality)

Duplicating the selected samples once

Long-Short Term Memory (LSTM)

LSTM using Sample Weighting (LSTM-SW)

FIG. 5.2. Overview of LSTM using Sample Weighting method (LSTM-SW).

The samples with prediction scores higher than 0.3 in training data when using
the RFc with FAD modality (see RF in Section 5.1) were determined, and then these
samples were replicated once. The duplicates are desirable, as some single images
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could appear multiple times per epoch because the LSTM model puts more weight
on getting these samples (with observable pain reaction) correct and less focuses on
samples without an observable pain reaction. The samples after increasing were
trained on the suggested LSTM (see Section 5.2) for classification and regression. To
ensure comparability of test results, samples were never duplicated in the test data.

5.4 Experiments

Here several experiments are described to gain insights into automatic continuous
pain intensity monitoring and compare the performance of deep learning models
(LSTM and LSTM-SW) to the performance of a baseline model (RF) regarding classi-
fication and regression tasks. All LSTM classification models were optimized using
the loss function Categorical Cross-Entropy [CCE], and LSTMs regression models
were optimized using the loss function Binary Cross-Entropy [BCE]. LSTMs regres-
sion models with FAD were also optimized using the loss function Mean Squared
Error [MSE]. For reference, a Trivial classifier and regressor were calculated, which
always votes for the majority class of the dataset (no pain in our experiments). This
section presents three categories of experiments for monitoring continuous pain
intensity in the X-ITE Pain Database: Uni-modality experiments using data from
single modalities (see Section 5.4.1), Bi-modality experiments using data from two
modalities, and Multi-modality experiments using data from multiple modalities.
Section 5.4.2 shows the experiments of Bi-modality and Multi-modality using De-
cision Fusion [DF], and Section 5.4.3 presents the experiments of Bi-modality and
Multi-modality when using Model Fusion [MF]. Each model in experiments was
trained regarding classification and regression; the discrete predictions indicate
classification task, and continuous predictions indicate regression task.

5.4.1 Uni-modality Experiments

Fig. 5.3 shows the Uni-modality experiments when using RF, LSTM, and LSTM-SW.
In order to be able to know which modality is best for monitoring continuous
pain intensity, the suggested automatic methods were trained with the time series
data from each single modality. In these experiments, each time series data (FAD,
Audio-D, ECG-D, EMG-D, and EDA-D) was used individually to predict pain
intensity using RF, LSTM, and LSTM-SW for classification (discrete predictions)
and regression (continuous predictions). In regard to classification and regression,
section 6.2 presents the Uni-modality experiments’ results for continuous pain
intensity monitoring with the X-ITE Pain Database.
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LSTM Layer (4/8 units)

Activation: ReLU

Dropout (p = 0.5)

Flatten Layer

Dense Layer1 (128/64 units)

Activation: ReLU

Dense Layer2 (4 units)

Activation: Softmax

Discrete Predictions

Predictions 

(FF Modality)

Predictions

(Audio Modality)

Predictions 

(ECG Modality)

Predictions 

(EMG Modality)

Predictions 

(EDA Modality)

Regression Task

RFc RFr

Dense Layer2 (7 units)

Activation: Softmax

Dense Layer2 (1 units)

Activation: Linear/Sigmoid

Uni-modality Experiments

Classification Task

/

Continuous Predictions

/

Long-Short Term Memory (LSTM) LSTM using Sample Weighting (LSTM-SW)

FAD Audio-D ECG-D EMG-D EDA-D
Experimental Data

Random Forest (RF)

/

FIG. 5.3. Overview of Uni-modality Experiments. RFc: Random Forest classifier, RFr:
Random Forest regression, /: OR.

5.4.2 Decision Fusion Experiments

After observing the performance of individually trained models when using RF,
LSTM, and LSTM-SW with Uni-modality experiments, Decision Fusion (DF) was
used on obtained predictions; the predictions of two modalities (FAD/EMG-D and
EDA-D) or all modalities (FAD, Audio-D, ECG-D, EMG-D, and EDA-D) were used,
see Fig. 5.4. In Bi-modality experiments regarding classification and regression:
EDA-D (the best performing single modality) was fused once with FAD and once
with EMG-D. FAD and EMG-D were the second and the third best performing single
modalities; thus, they were used in Bi-modality experiments. The classification
models (RFc, LSTM, and LSTM-SW) yield a score for each possible class, and
the regression models (RFr, LSTM, and LSTM-SW) predict a continuous value.
The classifier scores and regression outputs were aggregated individually into a
final decision using a fixed mapping approach. Regarding classification, DF was
implemented by calculating the mean of output scores per class of both models
using (FAD and EDA-D) or (EMG-D and EDA-D) and selecting the class with the
highest score. Regarding regression, all RFr, LSTM, and LSTM-SW predictions were
averaged individually in terms of calculating DF. The results of Bi-modality and
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Multi-modality models using DF for continuous pain intensity monitoring with the
X-ITE Pain Database are presented in Section 6.3 and Section 6.4.

Long-Short Term Memory (LSTM) LSTM using Sample Weighting (LSTM-SW)

Discrete/Continuous Predictions Discrete/Continuous Predictions

Predictions 

(FF & EDA Modalities)

Predictions 

(EMG & ECG Modalities)

Predictions 

(All Modalities)

DF Experiments

FAD Audio-D ECG-D EMG-D EDA-D

Experimental Data

Random Forest (RF)

Predictions

(FF Modality)

Predictions

(Audio Modality)

Predictions

(ECG Modality)

Predictions

(EMG Modality)

Predictions

(EDA Modality)

Fusion mapping (mean): 

Bi-modality ([FAD & EDA] / [EMG & EDA] ) 

Fusion mapping (mean): 

Multi-modality (All Modalities) 

/

/

FIG. 5.4. Overview of Bi-modality and Multi-modality using Decision Fusion (DF) experi-
ments. Discrete is the output from the classification task and continuous is the output from
the regression task. /: OR.

5.4.3 Model Fusion Experiments

Several experiments were conducted using LSTM and LSTM-SW with time series
data in order to increase the performance of continuous pain intensity monitoring.
This section describes Bi- and Multi-modality using Model Fusion [MF] experi-
ments, including the combination of two or five LSTM/LSTM-SW models. Along-
side DF experiments, two types of experiments were applied: Bi-modality and
Multi-modality using MF experiments.

5.4.4 Bi-modality Experiments

Two Uni-modality architectures (FAD/EMG-D and EDA-D) were combined using
LSTM/LSTM-SW by merging their final dense layers using a concatenate layer (see
Table 5.2 and Fig. 5.5.
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Table 5.2. A summary of the LSTM architectures’ configurations using data from two
modalities (FAD/EMG-D and EDA-D Bi-modality). A(c), B(c), C(c), D(c), A(r), and B(r) are
LSTM architectures using Uni-modality (see Table 5.1).

in order to increase the performance of continuous pain intensity monitoring. This section 

Layer type Attribute 

Architectures Configurations (Bi-modality) 

Classification  Regression 

A‐Bi(c)  B‐Bi(c)  C‐Bi(c)  D‐Bi(c)  A‐Bi(r)  B‐Bi(r) 

Concatenate 

(after dense1) 

Modality X 

+ 

Modality Y 

A(c) 

+ 

A(c) 

B(c) 

+ 

B(c) 

C(c) 

+ 

C(c) 

D(c) 

+ 

D(c) 

A(r) 

+ 

A(r) 

B(r) 

+ 

B(r) 

Dense2 
Activation:   Softmax  Softmax  Softmax  Softmax  Sigmoid  Sigmoid 

No. of units:  7  7  4  4  1  1 

Output 

Continuous       ‐  ‐  ‐  ‐  √  √ 

Discrete 
√  √  √  √ 

‐  ‐ 
7 levels  7 levels  4 levels  4 levels 

Long-Short Term Memory (LSTM) LSTM using Sample Weighting (LSTM-SW)

LSTM Layer (4/8 units)

Activation: ReLU

Dropout (p = 0.5)

Flatten Layer

Dense Layer2 (4 units)

Activation: Softmax

Discrete Predictions Continuous Predictions

Dense Layer2 (1 units)

Activation: Sigmoid

Dense Layer2 (7 units)

Activation: Softmax

Predictions 

(FF & EDA Modalities)

Predictions 

(EMG & EDA Modalities)

FAD EMG-D EDA-D

Experimental Data

LSTM Layer (4/8 units)

Activation: ReLU

Bi-modality Experiments

Dense Layer1 (128/64 units)

Activation: ReLU

Dropout (p = 0.5)

Flatten Layer

Dense Layer1 (128/64 units)

Activation: ReLU+

EDA-D

/

Classification Task Regression Task

++

/

/

FIG. 5.5. Overview of Bi-modality using Model Fusion (MF) experiments with LSTMs
(LSTM and LSTM-SW). MF: Model Fusion, /: OR, +: Concatenate layer.
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A-Bi(c) and C-Bi(c) classification architectures of (FAD and EDA-D) Bi-modality
or (EMG-D and EDA-D) Bi-modality, including A(c) and C(c), comprised a single
LSTM layer with 4 units activated by ReLU and followed by a flatten layer, and then
one dense layer with 128 neurons activated by ReLU. The output of dense layer
(dense1) from X (EDA-D) modality architecture was concatenated with the output
of dense layer (dense1) from Y (FAD/EMG-D) modality. The final layer (dense2)
had 7 neurons in A-Bi(c) and 4 neurons in C-Bi(c). B-Bi(c) and D-Bi(c) classification
architectures, including B(c) and D(c), comprised a single LSTM layer with 8 units
activated by ReLU and followed by flatten layer, and then one dense layer with 64
neurons activated by ReLU. The output of dense layer (dense1) from X (EDA-D)
modality architecture was concatenated with the output of dense layer (dense1)
from Y (FAD/EMG-D) modality. The final layer (dense2) had 7 neurons in B-Bi(c)
and 4 neurons in D-Bi(c). The configurations of A-Bi(r) regression architecture
were similar to A-Bi(c) and C-Bi(c), and the configurations of B-Bi(r) regression
architecture were similar to B-Bi(c) and D-Bi(c) except the final output layer with 1
neuron.

5.4.5 Multi-modality Experiments

Table 5.3 and Fig. 5.6 show the overview of Multi-modality experiments using MF.
All single modalities’ architectures using LSTMs were combined by concatenating
the outputs from the dense1 layers using concatenate layer.

Table 5.3. A summary of the LSTM architectures’ configurations using all modalities. A(c),
B(c), C(c), D(c), A(r), and B(r) are LSTM architectures using Uni-modality (see Table 5.1).
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Activation:  Softmax Softmax Softmax Softmax Sigmoid Sigmoid 

No. of units: 7 7 4 4 1 1 

Output   

Continuous            - - - - √ √ 

Discrete 
√ √ √ √ 

- - 
7 levels 7 levels 4 levels 4 levels 
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The Multi-modality experiments were similar to Bi-modality experiments when
using MF, except the input were the time series data from all modalities (FAD,
Audio-D, ECG-D, EMG-D, and EDA-D). A-Mu(c) and C-Mu(c) classification ar-
chitectures of Multi-modality, including A(c) and C(c), comprised a single LSTM
layer with 4 units activated by ReLU and followed by a flatten layer, and then one
dense layer with 128 neurons activated by ReLU. The dense2 layer had 7 neurons
in A-Mu(c) and 4 neurons in C-Mu(c). B-Mu(c) and D-Mu(c) classification architec-
tures, including B(c) and D(c), comprised a single LSTM layer with 8 units activated
by ReLU and followed by flatten layer, and then one dense layer with 64 neurons
activated by ReLU. The dense2 layer has 7 neurons in B-Mu(c) and 4 neurons in
D-Mu(c). The configurations of A-Mu(r) regression architecture were similar to
A-Mu(c) and C-Mu(c), and the configurations of B-Mu(r) regression architecture
were similar to B-Mu(c) and D-Mu(c) except the final dense out-put layer with
1 neuron. The results of both classification (discrete predictions) and regression
(continuous predictions) are presented in Section 6.3 and Section 6.4.
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FIG. 5.6. Overview of Mutli-modality using Model Fusion (MF) experiments with LSTMs (LSTM and LSTM-SW). MF: Model Fusion, /: OR, +:
Concatenate layer.





CHAPTER 6

Evaluation

THIS chapter provides a detailed description of experimental results regard-
ing classification and regression. Many experiments were conducted to
evaluate the three proposed methods (RF, LSTM, and LSTM-SW) for contin-

uous monitoring of pain intensity with 11 proposed datasets (7-Class and 4-Class
datasets) from the X-ITE Pain Database (experimental data, see Section 4.4); for
more details about these experiments, see Section 5.4. This section describes steps
to evaluate those methods in all experiments. Mean Squared Error [MSE] and
the Intraclass Correlation Coefficient [ICC] were used on the test set to measure
the performance of classification models versus regression models; the best perfor-
mances were determined when MSE got the smallest values and ICC got the highest
values. Further, the best classification models that outperformed the regression
models were further evaluated regarding classification using different classification
measures on the test set. For more details about the measures, see Section 6.1.
Additionally, paired t-test was used to calculate the p-value for evaluating if the
performances of the LSTM and LSTM-SW classification models were significantly
better than the baseline models (Random Forest classifier [RFc]). The findings from
the Uni-modality (single modality) models were presented in Section 6.2, followed
by the findings from the Bi-modality (two fused modalities) models that were
shown in Section 6.3. Finally, in Section 6.4, the findings from the Multi-modality
(all fused modalities) models were summarized.

6.1 Evaluation Measures

Mean Squared Error [MSE] and the intraclass correlation coefficient [ICC] [185]
were calculated on the test set to compare the performances of classification versus

74
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regression models after normalizing the output between 0 and 1. Further, the
classification models were also evaluated using Micro average precision (Micro avg.
precision), Micro average recall (Micro avg. recall), and Micro average F1-score
(Micro avg. F1-score), which are useful when datasets vary in size (aggregate the
contributions of all classes to compute the average metric). Additionally, accuracy
was calculated, but the previously mentioned measures were better when the class
sizes were unbalanced. Both classification and regression measures that use in the
applied experiments are shown below.

• Classification:

Accuracy =
True Postive (TP) + True Negative (TN)

n
(6.1)

Percentage of correctly classified samples.

Micro avg. precision =

Sum the TP of all classes
Sum the TP of all classes + Sum the FP of all classes

(6.2)

An average per-class agreement of the data class labels with those of a classi-
fier.

Micro avg. recall =

Sum the TP of all classes
Sum the TP of all classes + Sum the FN of all classes

(6.3)

An average per-class effectiveness of a classifier to identify class labels.

Micro avg. F1-score =

2 ∗ Micro avg Precision ∗Micro avg recall
Micro avg Precision + Micro avg Recall

(6.4)

Relations between data’s positive labels and those given by a classifier based
on a per-class average.
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• Regression:

MSE =
1

n

n∑
i=1

(yi − ŷi) (3.22)

The average squared difference between the predicted values yi − ŷ and the
actual value yi. n is the total number of samples.

ICC =
BMS − EMS

BMS + (k − 1)EMS
(6.5)

Intraclass correlation coefficent. ICC (3,1) [185] used to assess measure reliabil-
ity based on average of k measurements (conditions, raters). BMS: Between-
targets means square, EMS: Within-targets means square.

6.2 Uni-modality Results

This section shows the comparison between the Trivial (majority of vote = no pain)
and proposed methods (RF, LSTM, and LSTM-SW) with individual modalities from
the experimental data, including the best three single modalities (see Section 6.2.1).
Further evaluation measures were applied to the classification models that outper-
formed the regression models when conducting Uni-modality experiments (see
Section 6.2.2). For more details about the results of all Uni-modality models, see
Appendix A. Finally, the discussion of the results from Uni-modality models is
summarized in Section 6.2.3.

6.2.1 Classification vs Regression

The results of applying the single modalities models (Uni-modality models) when
applying RF, LSTM, and LSTM-SW with a single modality from experimental data
were provided in Section 6.2.1.1. The comparison between the best classification
and regression models were shown in Section 6.2.1.2.

6.2.1.1 Modeling Methods

Table 6.1 shows that all EDA-D Uni-modality baseline models (Random Forest
classifier [RFc] and Random Forest regression [RFr]) are superior to those with
FAD except with Tonic Dataset [TD]. FAD Uni-modality model with TD when
applying RFr performed the best; it got the MSE of 0.10 and the ICC of 0.10. EMG-D
Uni-modality models got the highest ICC values and smallest recognition error
when applying RFc and RFr with Heat Phasic Dataset [HPD] and Reduced Heat
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Phasic Dataset [RHPD]; RFc models got the MSE of 0.11, 0.21 and the ICC of 0.18,
0.26; RFr models with HPD and RHPD got the MSE of 0.09, 0.13 and the ICC of
0.20, 0.28, respectively.

Table 6.1. Comparison of the best Uni-modality models when applying RF (RFc and RFr)
regarding classification and regression tasks with MSE and ICC measures. Triv.: Trivial,
Red. Subsets: Reduced Subsets. The cells with a light grey background indicate the best
results regarding classification and regression tasks. The bold font indicates the best results.
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PD 7 0.10 0.10 0.10 0.09 0.09 0.08 0.07 

HPD 4 0.11 0.11 0.11 0.11 0.09 0.09 0.09 

EPD 4 0.07 0.07 0.07 0.06 0.06 0.06 0.05 

TD 7 0.12 0.12 0.16 0.16 0.10 0.7 0.13 

HTD 4 0.41 0.25 0.19 0.18 0.13 0.14 0.13 

ETD 4 0.09 0.09 0.17 0.11 0.09 0.14 0.09 

R
ed

. 
S

u
b
se

ts
 RPD 7 0.23 0.20 0.19 0.14 0.12 0.11 0.09 

RHPD 4 0.26 0.23 0.21 0.22 0.13 0.13 0.13 

REPD 4 0.26 0.21 0.18 0.12 0.12 0.12 0.08 

RTD 7 0.25 0.23 0.21 0.18 0.14 0.13 0.13 

RETD 4 0.25 0.24 0.21 0.18 0.15 0.13 0.12 

IC
C

 

S
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se

ts
 

PD 7 0 0.10 0.17 0.33 0.13 0.19 0.41 

HPD 4 0 0.16 0.18 0.11 0.19 0.20 0.20 

EPD 4 0 0.16 0.23 0.37 0.18 0.24 0.47 

TD 7 0 0.08 0.09 0.10 0.10 0.04 0.09 

HTD 4 0 0.11 0.29 0.30 0.17 0.22 0.31 

ETD 4 0 0.07 0.06 0.14 0.09 0.07 0.17 

R
ed

. 
S

u
b
se

ts
 RPD 7 0 0.19 0.28 0.44 0.23 0.30 0.45 

RHPD 4 0 0.21 0.26 0.23 0.26 0.28 0.24 

REPD 4 0 0.27 0.38 0.58 0.32 0.38 0.63 

RTD 7 0 0.09 0.17 0.21 0.05 0.14 0.18 

RETD 4 0 0.12 0.26 0.37 0.15 0.28 0.34 

Fig. 6.1 shows the best results from RFc and RFr models. Most regression
models (RFr) got the highest ICC values and smallest recognition error. EDA-D Uni-
modality models got the highest ICC values when applying RFc with only Reduced
Tonic Dataset [RTD] and Reduced Electrical Tonic Dataset [RETD]. They got the ICC
of 0.21, 0.37 and the MSE of 0.18, 0.18, when those EDA-D Uni-modality models
using RFr got the ICC of 0.18, 0.34 and smallest recognition error, the MSE of 0.13,
0.12, respectively. Regarding classification and regression, the EDA-D Uni-modality
models, when applying LSTM, performed the best except with those models with
TD and Electrical Tonic Dataset [ETD], EMG-D Uni-modality models performed
better.
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FIG. 6.1. Comparison of the best Uni-modality models when applying RFc and RFr
regarding classification and regression tasks with MSE and ICC measures. The bold font
indicates the best results.
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Table 6.2 shows that EMG-D Uni-modality regression models with TD and ETD
got the MSE of 0.08, 0.07, and the ICC of 0.15, 0.17, respectively. Further, EDA-D
Uni-modality models obtained similar results to FAD Uni-modality models with
HPD regarding regression, TD, and ETD regarding classification.

Table 6.2. Comparison of the best Uni-modality models when applying LSTM regarding
classification and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets:
Reduced Subsets. The cells with a light grey background indicate the best results regarding
classification and regression tasks. The bold font indicates the best results.
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0.07, and the ICC of 0.15, 0.17, respectively. Further, EDA-D Uni-modality models ob-
tain similar results to FAD Uni-modality models with HPD regarding regression, TD, and 
ETD regarding classification.  

Table 6.2: Comparison of the best Uni-modality models when applying LSTM regarding classi-
fication and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets: Reduced 
Subsets. The cells with a light grey background indicate the best results regarding classification 

and regression tasks. The bold font indicates the best LSTM models’ results. 

 

Figure~\ref{fig:Fig6.2} shows that the EDA-D Uni-modality classification models 
have the highest ICC values when applying LSTM with HPD, Heat Tonic Dataset [HTD], 
Reduced Phasic Datasets [RPD], and RTD. The ICC values of HPD, HTD, RPD and RTD 
are 0.30, 0.33, 0.83 and 0.25, respectively. However, the EDA-D Uni-modality regression 
models, when applying LSTM, have the smallest recognition error on the same 4 datasets. 
Further, the Uni-modality regression models have the highest ICC values and smallest 
recognition error on the rest 7 datasets.  
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HPD 4 0.11 0.10 0.10 0.10 0.08 0.08 0.08 0.08 C(c) C(r) 
EPD 4 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 C(c) C(r) 
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REPD 4 0.26 0.13 0.16 0.05 0.11 0.10 0.09 0.04 C(c) C(r) 

RTD 7 0.25 0.25 0.21 0.21 0.13 0.13 0.12 0.11 B(c) B(r) 
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HPD 4 0 0.26 0.21 0.30 0.27 0.28 0.24 0.28 C(c) C(r) 
EPD 4 0 0.25 0.27 0.36 0.24 0.27 0.32 0.49 C(c) C(r) 
TD 7 0 0.07 0.06 0.07 0.14 0.11 0.15 0.12 A(c) A(r) 

10
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6  
HTD 4 0 0.19 0.29 0.33 0.13 0.15 0.18 0.28 C(c) C(r) 
ETD 4 0 0.09 0.02 0.09 0.13 0.09 0.17 0.09 C(c) C(r) 
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 RPD 7 0 0.57 0.44 0.83 0.49 0.56 0.45 0.81 A(c) A(r) 
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4  

RHPD 4 0 0.56 0.48 0.75 0.58 0.62 0.5 0.81 C(c) C(r) 
REPD 4 0 0.55 0.49 0.84 0.50 0.52 0.56 0.86 C(c) C(r) 

RTD 7 0 0.05 0.21 0.25 0.08 0.04 0.16 0.23 B(c) B(r) 
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6  

RETD 4 0 0.15 0.33 0.47 0.14 0.09 0.28 0.49 D(c) D(r) 

Fig. 6.2 shows that the EDA-D Uni-modality classification models got the highest
ICC values when applying LSTM with HPD, Heat Tonic Dataset [HTD], Reduced
Phasic Datasets [RPD], and RTD. The ICC values of HPD, HTD, RPD and RTD are
0.30, 0.33, 0.83 and 0.25, respectively. However, the EDA-D Uni-modality regression
models, when applying LSTM, got the smallest recognition error on the same 4
datasets. Further, the Uni-modality regression models got the highest ICC values
and smallest recognition error on the rest 7 datasets.
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FIG. 6.2. Comparison of the best Uni-modality models when applying LSTM regarding
classification and regression tasks with MSE and ICC measures. The bold font indicates the
best results.
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Most Uni-modality classification and regression models, when applying LSTM-
SW with EDA-D, performed the best, see Table 6.3. EMG-D Uni-modality models
with TD were better than FAD Uni-modality and EDA-D Uni-modality models;
they got the MSE of 0.11, 0.09, and the ICC of 0.15, 0.17 regarding classification and
regression, respectively. Further, the EMG-D Uni-modality classification model with
HTD yielded the highest ICC (0.33) and the MSE of 0.15; the EDA-D Uni-modality
regression model got the ICC of 0.30 and the MSE of 0.11.

Table 6.3. Comparison of the best Uni-modality models when applying LSTM-SW regarding
classification and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets:
Reduced Subsets. The cells with a light grey background indicate the best results regarding
classification and regression tasks. The bold font indicates the best results.
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Most Uni-modality classification and regression models, when applying LSTM-SW 
with EDA-D, perform the best, see Table~\ref{Tab6.3}. EMG-D Uni-modality models 
with TD are better than FAD Uni-modality and EDA-D Uni-modality models; they get 
the MSE of 0.11, 0.09, and the ICC of 0.15, 0.17 regarding classification and regression, 
respectively. Further, the EMG-D Uni-modality classification model with HTD yields the 
highest ICC (0.33) and the MSE of 0.15; the EDA-D Uni-modality regression model gets 
the ICC of 0.30 and the MSE of 0.11.  

Table 6.3: Comparison of the best Uni-modality models when applying LSTM-SW regarding 
classification and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets: Re-
duced Subsets. The cells with a light grey background indicate the best results regarding classifi-
cation and regression tasks. The bold font indicates the best LSTM-SW models’ results. 

Figure~\ref{fig:Fig6.3} shows that Uni-modality classification models, when apply-
ing LSTM-SW, have the highest ICC values with 4 datasets: Phasic Dataset [PD], HTD, 
RTD, and Reduced Electrical Tonic Dataset [RETD]. The ICC values are 0.40, 0.33, 0.31 
and 0.46, respectively. However, the Uni-modality regression models, when applying 
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REPD 4 0.26 0.14 0.15 0.05 0.11 0.10 0.03 C(c) C(r) 

RTD 7 0.25 0.24 0.22 0.19 0.13 0.12 0.11 B(c) B(r) 

10
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RETD 4 0.25 0.26 0.19 0.16 0.13 0.12 0.10 D(c) D(r) 
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TD 7 0 0.08 0.15 0.11 0.12 0.17 0.11 A(c) A(r) 

10
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HTD 4 0 0.2 0.33 0.31 0.15 0.27 0.30 C(c) C(r) 
ETD 4 0 0.11 0.06 0.09 0.11 0.19 0.21 C(c) C(r) 

R
ed

. S
ub

se
ts

 RPD 7 0 0.49 0.44 0.83 0.54 0.45 0.84 A(c) A(r) 

10
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4  

RHPD 4 0 0.55 0.45 0.76 0.62 0.53 0.81 C(c) C(r) 
REPD 4 0 0.52 0.52 0.84 0.51 0.53 0.88 C(c) C(r) 

RTD 7 0 0.08 0.18 0.31 0.07 0.17 0.24 B(c) B(r) 

10
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6  

RETD 4 0 0.10 0.30 0.46 0.20 0.28 0.44 D(c) D(r) 

Fig. 6.3 shows that Uni-modality classification models, when applying LSTM-
SW, got the highest ICC values with 4 datasets: Phasic Dataset [PD], HTD, RTD, and
Reduced Electrical Tonic Dataset [RETD]. The ICC values were 0.40, 0.33, 0.31 and
0.46, respectively. However, the Uni-modality regression models, when applying
LSTM-SW, got the smallest recognition error on the same 4 datasets and the highest
ICC values and smallest recognition error on the rest 7 datasets.
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FIG. 6.3. Comparison of the best Uni-modality models when applying LSTM-SW regarding
classification and regression tasks with MSE and ICC measures. The bold font indicates the
best results.
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6.2.1.2 Comparison of Modeling Methods

This section provides the comparison between the Uni-modality models when
applying baseline methods (RFc and RFr), LSTM and LSTM-SW with 11 datasets
from the experimental data, see Table 6.4 and Fig. 6.4.

Table 6.4. Comparison of the best Uni-modality models regarding classification and re-
gression tasks with MSE and ICC measures. Meas.: Measure. The cells with numbers only
indicate models with EDA-D results, the bold font indicates the best results.
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6.2.1.2 Comparison of Modeling Methods   
Table 6.4: Comparison of the best Uni-modality models regarding classification and regression 
tasks with MSE and ICC measures. The cells with a light grey background indicate the best results 
regarding classification and regression tasks. The bold font indicates the best models’ results. 
Cells with numbers only indicate models with EDA-D. Meas.: Measure. 
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(EMG-D) 

HPD 
0.18 

(EMG-D) 
0.30 0.29 

0.20 
(EMG-D) 
(EDA-D) 

0.28 
(FAD) 

(EDA-D) 
0.32 
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Most EDA-D Uni-modality models are better than those with FAD Uni-modality
and EMG Uni-modality models; see cells with numbers only in Table 6.4. The bold
font indicates the best LSTM results.
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FIG. 6.4. Comparison of the best Uni-modality models regarding classification and regression tasks with MSE and ICC measures. The bold and
font and colored background indicates the best results.
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The cells with a light grey background in Table 6.4 indicate the best results
regarding classification and regression tasks. Both LSTMs (LSTM and LSTM-SW)
obtained similar results with HTD, RPD, and RETD regarding classification. EMG-
D Uni-modality and EDA-D Uni-modality models, when applying RFr with HPD,
obtained similar results. FAD Uni-modality and EDA-D Uni-modality models,
when applying LSTM, obtained similar results when using TD regarding classi-
fication and HPD regarding regression. Most regression models outperformed
classification models. The best results for each dataset were summarized in Fig. 6.4.
The regression models outperformed classification models except with HTD and
RTD. The highest ICC with HTD was 0.33 when using EDA-D Uni-modality and
EMG-D Uni-modality classification models when applying LSTM and LSTM-SW.
The highest ICC with RTD was 0.31 when using the EDA-D Uni-modality classifi-
cation model when applying LSTM-SW. Further, the performance was improved
when using the reduced datasets.

6.2.2 Classification

Table 6.5 and Fig. 6.5 shows how the best Uni-modality classification models, when
applying RFC, LSTM, and LSTM-SW with HTD and RTD, successfully predict
discrete pain intensity levels in sequences compared to Trivial. The best results
were obtained from models when using EDA-D modality except some models when
using EMG-D performed the best when using: LSTM with HTD in terms of Micro
avg. recall (99.6%), RFc with RTD in terms of accuracy (35%), and LSTM with RTD in
terms of Micro avg. recall (10.4%), and Micro avg. F1-score (15.2%). However, these
results were not the best; LSTM and LSTM-SW models Uni-modality classification
EDA-D modality performed the best (outperform RFc) with HTD. RFc when using
EDA-D modality achieved the best Micro avg. recall and Micro avg. F1-Score results
when using RTD (about 38% and 25%), whereas LSTM and LSTM-SW model results
were the best in terms of accuracy and Micro avg. precision with the same dataset
(RTD).
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Table 6.5. Comparison of the best Uni-modality models with HTD and RTD regarding
classification task and in terms of classification measures. The bold font indicates the best
results. Triv.: Trivial. * p < 0.05 when using paired t-test between RFc and LSTMs (LSTM
and LSTM-SW). The architectures of LSTM and LSTM-SW are C(c) and B(c) with 10−6

learning rate for HTD and RTD, respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Measurement Uni-modality Triv. RFc LSTM LSTM-SW 

HTD 

Accuracy % 

FAD 20 29.1 32.81 33.7 

EMG-D 20 35.2 39.3 39.9 

EDA-D 20 41.0 48.4 47.7 

Micro avg. precision 

FAD 0 31.1 33.28 33.7 

EMG-D 0 38.0 39.3 39.9 

EDA-D 0 42.7 48.2 47.7 

Micro avg. recall 

FAD 0 49.4 92.42* 100* 

EMG-D 0 65.5 99.6* 100* 

EDA-D 0 71.0 94.6* 100* 

Micro avg. F1-score 

FAD 0 37.6 46.6 48.2* 

EMG-D 0 46.0 55.6* 56.3 

EDA-D 0 52.9 62.3* 62.5* 

RTD 

Accuracy % 

FAD 38.1 33.9 39.2* 37.4 

EMG-D 38.1 35 41.6* 40.5* 

EDA-D 38.1 30.4 42.2* 42.7* 

Micro avg. precision 

FAD 0 15.8 30.7 37.7* 

EMG-D 0 20.2 35.4* 32.4* 

EDA-D 0 19.10 44.6* 40.8* 

Micro avg. recall 

FAD 0 11.7 5.55 9.48 

EMG-D 0 19.9 10.4 9.70 

EDA-D 0 38.2 8.90 10.5 

Micro avg. F1-score 

FAD 0 12.8 8.26 12.2 

EMG-D 0 19.6 15.2 13.9 

EDA-D 0 25.1 14.3 16.2 
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FIG. 6.5. Comparison of Uni-modality models when applying Trivial, RFc, LSTM, and LSTM-SW) with HTD and RTD regarding classification task.
Triv.: Trivial.
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6.2.3 Discussion

In this section, the obtained results of Uni-modality models were summarized when
applying RFc, LSTM, and LSTM-SW on FAD, EMG-D, and EDA-D modalities;
each model was trained and tested on 11 datasets from the experimental data.
Regarding the regression tasks, FAD Uni-modality models, when applying LSTM,
were evaluated to decide which loss function is better: MSE and BCE; the obtained
results show that the BCE was the best in 7 out of 11 datasets (see Table 6.6 and
Fig. 6.6). Thus, the LSTM and LSTM-SW were used in the rest experiments with
BCE loss. After comparing the performance between Uni-modality models for
continuous monitoring of pain intensity, most regression models perform better
than classification models, see Table 6.4. Further, all results of the EDA-D Uni-
modality models were superior to FAD Uni-modality and EMG-D Uni-modality
models, except with TD, EMG-D Uni-modality models were better. The EMG-D
Uni-modality classification models performed the best with HTD and RTD (see
Table 6.5).

The bold font indicates the best results of LSTM models regarding regression
task. The proposed reduction strategy on Subsets datasets improves the perfor-
mance further; see Reduced Subsets results in Fig. 6.4. Additionally, almost all
LSTM and LSTM-SW models’ results are significantly better than the baseline
models (RFc and RFr). RFc model with RTD outperforms LSTM and LSTM-SW
regarding classification (see Fig. 6.5). Finally, using the sample weighting method
with LSTM improves the performance of several Uni-modality models compared
to LSTM performance.

Table 6.6. Comparison of the best LSTM Uni-modality models with MSE and BCE loss
regarding regression task. Reduced Subsets: Red. Subsets.
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Thus, the LSTM and LSTM-SW were used in the rest experiments with BCE loss. After 
comparing the performance between Uni-modality models for continuous monitoring of 
pain intensity, most regression models perform better than classification models, see Ta-
ble~\ref{Tab6.4}. Further, all results of the EDA-D Uni-modality models are superior to 
FAD Uni-modality and EMG-D Uni-modality models, except with TD, EMG-D Uni-
modality models are better. The EMG-D Uni-modality classification models perform the 
best with HTD and RTD (see Table~\ref{Tab6.5}). The proposed reduction strategy on 
Subsets datasets improves the performance further; see Reduced Subsets results in Fig-
ure~\ref{fig:Fig6.4}. Additionally, almost all LSTM and LSTM-SW models’ results are 
significantly better than the baseline models (RFc and RFr). RFc model with RTD out-
performs LSTM and LSTM-SW regarding classification (see Figure~\ref{fig:Fig6.5}). 
Finally, using the sample weighting method with LSTM improves the performance of 
several Uni-modality models compared to LSTM performance.  

Table 6.6: Comparison of the best LSTM Uni-modality models with MSE and BCE loss regarding 
regression task with MSE and ICC measures. Reduced Subsets: Red. Subsets. The bold font in-
dicates the best models’ results regarding regression task. 

Measure MSE ICC 

Architecture 

L
ea

rn
in

g 
ra

te
 

Model Trivial LSTM Triv. LSTM 

Dataset n-Class - 
FAD 
MSE 

FAD 
BCE 

- 
FAD 
MSE 

FAD 
BCE 

S
ub

se
ts

 

PD 7 0.10 0.08 0.08 0 0.18 0.20 A(r) 

10
−

5  

HPD 4 0.11 0.08 0.08 0 0.27 0.28 C(r) 
EPD 4 0.07 0.05 0.05 0 0.24 0.27 C(r) 
TD 7 0.12 0.09 0.09 0 0.14 0.11 A(r) 

10
−

6  

HTD 4 0.41 0.13 0.12 0 0.13 0.15 C(r) 
ETD 4 0.09 0.08 0.07 0 0.13 0.09 C(r) 

R
ed

. S
ub

se
ts

 RPD 7 0.23 0.10 0.08 0 0.49 0.56 A(r) 

10
−

4  

RHPD 4 0.26 0.10 0.09 0 0.58 0.62 C(r) 
REPD 4 0.26 0.11 0.10 0 0.50 0.52 C(r) 
RTD 7 0.25 0.13 0.13 0 0.08 0.04 B(r) 

10
−

6  

RETD 4 0.25 0.14 0.14 0 0.14 0.09 D(r) 



6.3. Bi-modality Results 89

0
.1

8

0
.2

7

0
.2

4

0
.1

4

0
.1

3

0
.1

3

0
.4

9

0
.5

8

0
.5

0

0
.0

8

0
.1

4

0
.2

0

0
.2

8

0
.2

7

0
.1

1 0
.1

5

0
.0

9

0
.5

6

0
.6

2

0
.5

2

0
.0

4

0
.0

9

FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD

PD HPD EPD TD HTD ETD RPD RHPD REPD RTD RETD

ICC

LSTM using MSE LSTM using BCE

FIG. 6.6. Comparison of the best LSTM Uni-modality models with MSE and BCE loss
regarding regression task with ICC measure.

6.3 Bi-modality Results

This Section shows the comparison between the Trivial and proposed methods (RF,
LSTM, and LSTM-SW) when focusing on fusing two modalities from experimental
data, including the FAD & EDA-D modalities or EMG-D & EDA-D modalities (see
Section 6.3.1). More detailed results of the classification models that outperform
the regression model when using two fused modalities of data were presented
in Section 6.3.2. Finally, the discussion of the model results of two combined
modalities was summarized in Section 6.3.3.

6.3.1 Classification vs Regression

The results of models that use FAD & EDA-D Bi-modality or EMG-D & EDA-D
Bi-modality for continuous monitoring of pain intensity were provided in Sec-
tion 6.3.1.1. The comparison between the best classification and regression models
was shown in Section 6.3.1.2.

6.3.1.1 Modeling Methods

Table 6.7 and Fig. 6.7 show that most EMG-D & EDA-D Bi-modality models are
better than FAD & EDA-D Bi-modality models regarding classification and regres-
sion. In Table 6.7, the cells with a light grey background indicate the best results
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regarding classification and regression tasks. The bold font indicates the best results
of RF (RFc and RFr) models with ICC measure. FAD & EDA-D Bi-modality models
performed the best when using Tonic Dataset [TD]; they got the MSE of 0.12, 0.10
and the ICC of 0.11, 0.10 (both perform almost similarly). Further, FAD & EDA-D
Bi-modality models yielded similar results as EMG-D & EDA-D Bi-modality models
regarding regression (RFr) with Electrical Tonic Dataset [ETD] and RTD.

Table 6.7. Comparison of the best Bi-modality models when applying RF (RFc and RFr)
regarding classification and regression tasks with MSE and ICC measures. Triv.: Trivial,
Red. Sub-sets.: Reduced Subsets. DF: Decision Fusion.
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models yield similar results as EMG-D & EDA-D Bi-modality models regarding regres-
sion (RFr) with Electrical Tonic Dataset [ETD] and RTD.  

Table 6.7: Comparison of the best Bi-modality models when applying RF (RFc and RFr) regard-
ing classification and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets.: 
Reduced Subsets. The cells with a light grey background indicate the best results regarding clas-
sification and regression tasks. The bold font indicates the best results of RF models with ICC 
measure. DF: Decision Fusion. 

 
(a) MSE  

Measure MSE ICC 
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E
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E
A
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-D

 

S
ub
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PD 7 0.10 0.10 0.09 0.07 0.07 0 0.16 0.25 0.30 0.33 

HPD 4 0.11 0.11 0.11 0.08 0.08 0 0.07 0.13 0.21 0.22 

EPD 4 0.07 0.45 0.37 0.05 0.05 0 0.16 0.17 0.37 0.40 

TD 7 0.12 0.12 0.14 0.10 0.12 0 0.11 0.12 0.10 0.08 

HTD 4 0.41 0.18 0.17 0.11 0.11 0 0.30 0.35 0.27 0.30 

ETD 4 0.09 0.09 0.10 0.08 0.10 0 0.12 0.13 0.14 0.13 

R
ed

. S
ub

se
ts

 RPD 7 0.23 0.16 0.15 0.10 0.09 0 0.40 0.46 0.37 0.41 

RHPD 4 0.26 0.20 0.19 0.12 0.12 0 0.31 0.34 0.27 0.28 

REPD 4 0.26 0.13 0.12 0.08 0.08 0 0.56 0.61 0.53 0.55 

RTD 7 0.25 0.20 0.19 0.12 0.12 0 0.20 0.23 0.12 0.12 

RETD 4 0.25 0.19 0.18 0.12 0.11 0 0.32 0.39 0.27 0.34 

Fig. 6.7 shows the best results of the baseline Bi-modality models using Decision
Fusion [DF] regarding classification (RFc) and regression (RFr). The EMG-D &
EDA-D Bi-modality classification models got the highest ICC values on 6 datasets:
Heat Tonic Dataset [HTD], Reduced Phasic Dataset [RPD], Reduced Heat Tonic
Dataset [RHTD], Reduced Electrical Tonic Dataset [RETD], Reduced Tonic Dataset
[RTD] and Reduced Electrical Tonic Dataset [RETD], they got ICC of 0.35, 0.46, 0.34,
0.61, 0.23, 0.39, respectively. However, the EMG-D & EDA-D Bi-modality regression
models got the smallest recognition error on the same three datasets. They have the
highest ICC values and smallest recognition error on phasic subsets: Phasic Dataset
[PD], Heat Phasic Dataset [HPD], and Electrical Phasic Dataset [EPD]; they got an
ICC of 0.33, 0.22, 0.40 and MSE of 0.07, 0.08, 0.05.
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FIG. 6.7. Comparison of the best Bi-modality models when using RF (RFc and RFr)
regarding classification and regression tasks with MSE and ICC measures. DF: Decision
Fusion. The bold font indicates the best results.
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Regarding classification and regression, the Bi-modality models using Model
Fusion [MF] when applying LSTM were superior to those using Decision Fusion
[DF], see Table 6.8 and Fig. 6.8.

Table 6.8. Comparison of the best Bi-modality models when applying LSTM regarding
classification and regression tasks with MSE and ICC measures. Trivial:Triv., Reduced
Subsets: Red. Subsets. DF: Decision Fusion, MF: Model Fusion.
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Table 6.8: Comparison of the best Bi-modality models when applying LSTM regarding classifi-
cation and regression tasks with MSE and ICC measures. Triv.: Trivial, Red. Subsets.: Reduced 
Subsets, DF: Decision Fusion, MF: Model Fusion. The cells with a light grey background indicate 
the best results regarding classification and regression tasks. The bold font indicates the best re-
sults of LSTM models with ICC measure.  
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Architecture of  MF 

M
S
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PD 7 0.1 0.09 0.08 0.09 0.08 0.06 0.06 0.06 0.05 A-Bi(c) A-Bi(r) 

10
−

5  

HPD 4 0.11 0.10 0.10 0.21 0.09 0.07 0.07 0.07 0.07 C-Bi(c) C-Bi(r) 

EPD 4 0.07 0.06 0.05 0.06 0.05 0.04 0.04 0.04 0.04 C-Bi(c) C-Bi(r) 

TD 7 0.12 0.12 0.12 0.12 0.11 0.08 0.08 0.08 0.08 A-Bi(c) A-Bi(r) 

10
−

6  

HTD 4 0.41 0.16 0.17 0.15 0.14 0.11 0.10 0.11 0.13 C-Bi(c) C-Bi(r) 

ETD 4 0.09 0.08 0.08 0.09 0.08 0.07 0.07 0.07 0.06 C-Bi(c) C-Bi(r) 

R
ed

. S
ub

se
ts

 RPD 7 0.23 0.07 0.05 0.08 0.06 0.05 0.04 0.05 0.04 A-Bi(c) A-Bi(r) 

10
−

4  

RHPD 4 0.26 0.09 0.08 0.10 0.07 0.05 0.06 0.06 0.05 C-Bi(c) C-Bi(r) 

REPD 4 0.26 0.06 0.06 0.07 0.05 0.05 0.04 0.04 0.04 C-Bi(c) C-Bi(r) 

RTD 7 0.25 0.23 0.21 0.22 0.20 0.11 0.11 0.11 0.13 B-Bi(c) B-Bi(r) 

10
−

6  

RETD 4 0.25 0.19 0.16 0.17 0.17 0.10 0.09 0.10 0.09 D-Bi(c) D-Bi(r) 

IC
C

 

S
ub
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ts

 

PD 7 0 0.17 0.36 0.20 0.41 0.34 0.47 0.37 0.49 A-Bi(c) A-Bi(r) 

10
−

5  

HPD 4 0 0.25 0.39 0.20 0.37 0.31 0.41 0.28 0.39 C-Bi(c) C-Bi(r) 

EPD 4 0 0.26 0.45 0.27 0.49 0.42 0.56 0.44 0.57 C-Bi(c) C-Bi(r) 

TD 7 0 0.01 0.08 0.03 0.12 0.12 0.15 0.14 0.24 A-Bi(c) A-Bi(r) 

10
−

6  

HTD 4 0 0.35 0.30 0.36 0.38 0.23 0.32 0.24 0.21 C-Bi(c) C-Bi(r) 

ETD 4 0 0.06 0.11 0.03 0.18 0.09 0.20 0.14 0.25 C-Bi(c) C-Bi(r) 

R
ed

. S
ub

se
ts

 RPD 7 0 0.76 0.81 0.72 0.81 0.75 0.82 0.71 0.84 A-Bi(c) A-Bi(r) 

10
−

4  

RHPD 4 0 0.71 0.76 0.69 0.79 0.77 0.79 0.73 0.82 C-Bi(c) C-Bi(r) 

REPD 4 0 0.81 0.81 0.79 0.85 0.79 0.86 0.80 0.86 C-Bi(c) C-Bi(r) 

RTD 7 0 0.16 0.26 0.2 0.28 0.14 0.25 0.20 0.33 B-Bi(c) B-Bi(r) 
10

−
6  

RETD 4 0 0.34 0.47 0.41 0.43 0.33 0.46 0.42 0.52 D-Bi(c) D-Bi(r) 

The architecture of MF in detail was described in Section 5.4.4. The cells with a
light grey background indicate the best results regarding classification and regres-
sion tasks. The bold font indicates the best results of LSTM-SW models according to
ICC measure. Fig. 6.8 shows that EMG-D & EDA-D Bi-modality regression models
got the highest ICC values and smallest recognition error on all datasets except
HPD and HTD. FAD & EDA-D Bi-modality regression model performed the best
with HPD; it got an ICC of 0.41 and MSE of 0.07. EMG-D & EDA-D Bi-modality
classification model got the highest ICC value on HTD (0.38). Most EMG-D & EDA-
D Bi-modality models performed the best based on the highest ICC and smallest
MSE values, see Table 6.8. FAD & EDA-D Bi-modality classification models were
the best when using HPD, RPD, and RETD; they got an ICC of 0.39, 0.81, 0.47, and
MSE of 0.10, 0.05, 0.16.
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FIG. 6.8. Comparison of the best Bi-modality models when using LSTM regarding classifi-
cation and regression tasks with MSE and ICC measures. MF: Model Fusion. The bold font
indicates the best results.
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Further, FAD & EDA-D Bi-modality regression models were the best when using
HPD, HTD, REPD, and RETD, they got the ICC of 0.41, 0.32, 0.86, 0.25 and the MSE
of 0.07, 0.10, 0.04, 0.11.

The Bi-modality models performed better regarding classification than those
using DF; see Table 6.9 and Fig. 6.9. The architecture of MF in detail was described
in Section 5.4.4. The cells with a light grey background indicate the best results
regarding classification and regression tasks. The bold font indicates the best results
of LSTM-SW models.

Table 6.9. Comparison of the best Bi-modality models when applying LSTM-SW regarding
classification and regression tasks with MSE and ICC measures. Trivial:Triv., Reduced
Subsets: Red. Subsets. DF: Decision Fusion, MF: Model Fusion.
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Figure~\ref{fig:Fig6.8} shows that EMG-D & EDA-D Bi-modality regression models 
have the highest ICC values and smallest recognition error on all datasets except HPD 
and HTD. FAD & EDA-D Bi-modality regression model performs the best with HPD; it 
gets the ICC of 0.41 and the MSE of 0.07. EMG-D & EDA-D Bi-modality classification 
model has the highest ICC value on HTD (0.38). Most EMG-D & EDA-D Bi-modality 
models perform the best based on the highest ICC and smallest MSE values, see Ta-
ble~\ref{Tab6.8}. FAD & EDA-D Bi-modality classification models are the best when 
using HPD, RPD, and RETD; they get the ICC of 0.39, 0.81, 0.47, and the MSE of 0.10, 
0.05, 0.16. Further,  FAD & EDA-D Bi-modality regression models are the best when 
using HPD, HTD, REPD, and RETD, they get the ICC of 0.41, 0.32, 0.86, 0.25 and the 
MSE of 0.07, 0.10, 0.04, 0.11.   

Regarding classification and regression, the Bi-modality models regarding classifica-
tion perform better than those using DF, see Table~\ref{Tab6.9} and Fig-
ure~\ref{fig:Fig6.9}. Architecture of MF in details described in Sec-
tion~\ref{Sec5.4.3.1}. 

Table 6.9: Comparison of the best Bi-modality models when applying LSTM-SW regarding clas-
sification and regression tasks with MSE and ICC measures. Trivial:Triv., Reduced Subsets: Red. 
Subsets. DF: Decision Fusion, MF: Model Fusion. The cells with a light grey background indicate 
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PD 7 0.10 0.09 0.08 0.09 0.08 0.06 0.06 0.07 0.06 A-Bi(c) A-Bi(r) 

10
−

5  

HPD 4 0.11 0.10 0.10 0.10 0.09 0.08 0.08 0.08 0.08 C-Bi(c) C-Bi(r) 

EPD 4 0.07 0.06 0.06 0.05 0.06 0.04 0.04 0.04 0.04 C-Bi(c) C-Bi(r) 

TD 7 0.12 0.12 0.11 0.11 0.11 0.09 0.09 0.09 0.10 A-Bi(c) A-Bi(r) 

10
−

6  

HTD 4 0.41 0.16 0.16 0.14 0.13 0.12 0.11 0.10 0.15 C-Bi(c) C-Bi(r) 

ETD 4 0.09 0.10 0.08 0.10 0.08 0.07 0.07 0.07 0.06 C-Bi(c) C-Bi(r) 

R
ed

. S
ub

se
ts

 RPD 7 0.23 0.07 0.05 0.07 0.05 0.04 0.04 0.05 0.04 A-Bi(c) A-Bi(r) 

10
−

4  

RHPD 4 0.26 0.09 0.08 0.09 0.07 0.05 0.06 0.05 0.05 C-Bi(c) C-Bi(r) 

REPD 4 0.26 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 C-Bi(c) C-Bi(r) 

RTD 7 0.25 0.22 0.20 0.21 0.19 0.11 0.11 0.11 0.13 B-Bi(c) B-Bi(r) 

10
−

6  

RETD 4 0.25 0.2 0.17 0.18 0.15 0.10 0.09 0.10 0.09 D-Bi(c) D-Bi(r) 

IC
C

 

S
ub

se
ts

 

PD 7 0 0.24 0.44 0.30 0.45 0.37 0.49 0.25 0.51 A-Bi(c) A-Bi(r) 

10
−

5  

HPD 4 0 0.3 0.41 0.28 0.41 0.33 0.39 0.32 0.40 C-Bi(c) C-Bi(r) 

EPD 4 0 0.33 0.52 0.41 0.53 0.47 0.58 0.49 0.58 C-Bi(c) C-Bi(r) 

TD 7 0 0.07 0.15 0.12 0.18 0.11 0.19 0.14 0.26 A-Bi(c) A-Bi(r) 
10

−
6  

HTD 4 0 0.29 0.32 0.39 0.42 0.24 0.31 0.30 0.23 C-Bi(c) C-Bi(r) 

ETD 4 0 0.01 0.17 0.01 0.22 0.17 0.28 0.21 0.31 C-Bi(c) C-Bi(r) 

R
ed

. S
ub

se
ts

 RPD 7 0 0.76 0.82 0.77 0.83 0.77 0.80 0.75 0.85 A-Bi(c) A-Bi(r) 

10
−

4  

RHPD 4 0 0.71 0.77 0.72 0.78 0.76 0.79 0.74 0.83 C-Bi(c) C-Bi(r) 

REPD 4 0 0.8 0.82 0.83 0.85 0.79 0.84 0.80 0.87 C-Bi(c) C-Bi(r) 

RTD 7 0 0.21 0.24 0.24 0.32 0.16 0.25 0.21 0.32 B-Bi(c) B-Bi(r) 

10
−

6  

RETD 4 0 0.31 0.43 0.41 0.52  0.35 0.50 0.40 0.52 D-Bi(c) D-Bi(r) 

All EMG-D & EDA-D Bi-modality models performed the best regarding re-
gression except with EPD and HTD, see Table 6.9 and Fig. 6.9. FAD & EDA-D
Bi-modality models or EMG-D & EDA-D Bi-modality models performed similarly
with EPD; they got an ICC of 0.58 and MSE of 0.04. Additionally, FAD & EDA-D
Bi-modality models performed similarly to EMG-D & EDA-D Bi-modality models
when applying LSTM-SW using Decision fusion (DF); they got an ICC of 0.31, 0.30,
and MSE of 0.11, 0.10.
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FIG. 6.9. Comparison of the best Bi-modality models when using LSTM-SW regarding
classification and regression tasks with MSE and ICC measures. MF: Model Fusion. The
bold font indicates the best results.
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Figure 6.9 shows that Bi-modality models using MF when applying LSTM-SW
got the highest ICC values with HPD, RTD, and RETD in both tasks. The remaining
EMG-D & EDA-D Bi-modality regression models performed the best except with
HTD; the Bi-modality classification model got the highest ICC (0.42).

6.3.1.2 Comparison of Modeling Methods

This section provides the comparison between the baseline method (RFc and RFr)
and LSTM and LSTM-SW methods when using data from single and two modalities
with all proposed subsets from the experimental data, Bi-modality models using
Model Fusion (MF) outperformed those using Decision Fusion [DF]. Table 6.10
shows that most EMG-D & EDA-D Bi-modality models were better than FAD &
EDA-D Bi-modality models when using MF. Further, most Bi-modality classification
models, when using LSTM-SW, performed the best except RHPD, REPD, and RTD;
they performed similarly to RFc and LSTM models. Further, the Bi-modality
regression models when using LSTM-SW performed the best except with HPD
and RTD; they performed similarly to LSTM. The LSTM and LSTM-SW regression
models performed almost similarly to HPD.

Fig. 6.10 summarizes the best results of both Uni-modality and Bi-modality
models with each dataset. Only one Bi-modality model did not improve the Uni-
modality model with REPD. The regression models outperformed classification
models except with HTD. The highest ICC with HTD was 0.42 when using EMG-D
and EDA-D Bi-modality classification model using MF when applying LSTM-SW.
Additionally, the performance was improved when using the reduced datasets. In
regards to ICC values, the performances of the best Bi-modality models improved:
from 0.51 with PD to 0.85 with RPD, from 0.41 with HPD to 0.83 with RHPD, from
0.58 with EPD to 0.85 with REPD, from 0.26 with TD to 0.33 with RTD, and from
0.31 with ETD to 0.52 with RETD.

6.3.2 Classification

This section introduces more results of comparing Uni-modality and Bi-modality
classification models that use MF when applying RFc, LSTM, and LSTM-SW on the
Heat Tonic Dataset [HTD] due to their superior performance to regression results.
Additional classification measures were Accuracy, Micro avg. precision, Micro avg.
recall, and Micro avg. F1-Score. The architecture of LSTM and LSTM-SW is C-Bi(c)
learning rate of with 10−6. Table 6.11 and Fig. 6.11 shows how the LSTM and LSTM-
SW models with HTD successfully predict discrete pain intensity level in sequences
compared to Trivial and RFc. The EDA-D Uni- and Bi-modality models performed
better than those Uni-modality models with FAD and EMG-D modalities.
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Table 6.10. Comparison of the best Bi-modality models using MF regarding classification
and regression tasks with MSE and ICC measures. Meas.: Measure, MF: Model Fusion. The
cells with numbers only indicate models with EMG & EDA-D results, the cells with a light
grey background indicate the best results regarding classification and regression tasks. The
bold font indicates the best results.

Meas. 
Task Classification Regression 

Dataset RFc LSTM LSTM-SW RFr LSTM LSTM-SW 

M
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PD 0.09 0.08 0.08 0.07 0.05 0.06 

HPD 0.11 

0.09 

FAD 

EDA-D 

0.09 0.08 

0.07 

FAD 

EDA-D 

0.08 

EPD 0.37 0.05 0.06 0.05 0.04 0.04 

TD 

0.12 

FAD 

EDA-D 

0.11 0.11 

0.10 

FAD 

EDA-D 

0.08 0.10 

HTD 0.17 0.14 0.13 0.11 

0.10 

FAD 

EDA-D 

0.11 

FAD 

EDA-D 

ETD 0.10 0.08 0.08 

0.08 

FAD 

EDA-D 

0.06 0.06 

R
ed

. 
S
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RPD 0.15 

0.05 

FAD 

EDA-D 

0.05 0.09 0.04 0.04 

RHPD 0.19 0.07 0.07 0.12 0.05 0.05 

REPD 0.12 0.05 0.05 0.08 0.04 0.04 

RTD 0.19 0.20 0.19 0.12 0.11 0.13 

RETD 0.18 

0.16 

FAD 

EDA-D 

0.15 0.11 0.09 0.09 

IC
C

 

S
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ts
 

PD 0.25 0.41 0.45 0.33 0.49 0.51 

HPD 0.16 

0.39 

FAD 

EDA-D 

0.41 0.22 

0.41 

FAD 

EDA-D 

0.40 

EPD 0.17 0.49 0.53 0.40 0.57 0.58 

TD 

0.11 

FAD 

EDA-D 

0.12 0.18 

0.10 

FAD 

EDA-D 

0.24 0.26 

HTD 0.35 0.38 0.42 0.30 

0.32 

FAD 

EDA-D 

0.31 

FAD 

EDA-D 

ETD 0.13 0.18 0.22 

0.14 

FAD 

EDA-D 

0.25 0.31 

R
ed

.S
u
b
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ts
 

RPD 0.46 0.81 0.83 0.41 0.84 0.85 

RHPD 0.34 0.79 0.78 0.28 0.82 0.83 

REPD 0.61 0.85 0.85 0.55 0.86 0.87 

RTD 0.32 0.28 0.32 0.12 0.33 0.32 

RETD 0.39 

0.47 

FAD 

EDA-D 

0.52 0.34 0.52 0.52 
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FIG. 6.10. Comparison of the best Uni- and Bi-modality models regarding classification and regression tasks with MSE and ICC measures. The
Bi-modality models use MF. MF: Model Fusion. Both LSTMs: LSTM and LSTM-SW. The bold font with colored background indicates the best
results.
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The best results were obtained from EMG-D & EDA-D Bi-modality model when
applying LSTM-SW in terms of Accuracy (49.8%), Micro avg. precision (48.7%)
and Micro avg. recall (63.3%). However, the EDA-D Uni-modality model, when
applying LSTM-SW, achieved the best Micro avg. recall with about 100% when
47.7%, 47.7%, 62.5% were the Accuracy results, Micro avg. Precision and Micro avg.
Recall (not the best), respectively.

Table 6.11. Comparison of the best Uni- and Bi-modality models with HTD regarding
classification task. The Bi-modality models use MF. MF: Model Fusion. Triv.: Trivial. The
bold font indicates the best models’ results. * p < 0.05 when using paired t-test between
RFc and LSTMs (LSTM and LSTM-SW).

 

 

 

 

M
ea

s.
 HTD 

Model Triv. RFc LSTM LSTM-SW Meas. Triv. RFc LSTM LSTM-SW 

A
cc

u
ra

cy
 %

 

FAD & EDA-D  

( Bi-modality) 
20 - 44.6 45.6 

M
ic

ro
 a

v
g
. 

re
ca

ll
 %

 

0 - 87.9 97.4 

EMG-D & EDA-D 

( Bi-modality) 
20 - 47.4 49.8 0 - 92.9 97* 

FAD (Uni-modality) 20 29.1 32.81 33.7 0 49.4 92.42* 100* 

EMG-D (Uni-modality) 20 35.2 39.3 39.9 0 65.5 99.6* 100* 

EDA-D(Uni-modality) 20 41.0 48.4 47.7 0 71.0 94.6* 100* 

M
ic

ro
 a

v
g
. 

p
re

ci
si

o
n
 %

 FAD & EDA-D 

( Bi-modality) 
0 - 44.0 47.2 

M
ic

ro
 a

v
g
. 

F
1

-s
co

re
 %

 

0 - 57.8 60.3 

EMG-D & EDA-D 

( Bi-modality) 
0 - 47.2 48.7 0 - 60.6 63.3 

FAD (Uni-modality) 0 31.1 33.28 33.7 0 37.6 46.63 48.2* 

EMG-D (Uni-modality) 0 38.0 39.3 39.9 0 46.0 55.6* 56.3 

EDA-D (Uni-modality) 0 42.7 48.2 47.7 0 52.9 62.3* 62.5* 

6.3.3 Discussion

This section summarizes the results of comparing Uni-modality models and Bi-
modality models that use MF when applying RFc, LSTM, and LSTM-SW on 11
datasets from the experimental data. In line with results from Uni-modality models
(see Section 6.2): (1) Regression models were superior to classification models
except when using HTD, and the reduction strategy on Subsets datasets, which
were obtained Reduced Subsets, improved the performance (see Table 6.10 and
Fig. 6.10), (2) Uni- and Bi-modality models when applying LSTM and LSTM-SW
were significantly better than the baseline model (RFc and RFr), and (3) LSTM using
sample weighting method (LSTM-SW) improved the performance of several LSTM
models. Further, the most results of EMG-D & EDA-D Bi-modality models using
MF were superior to FAD & EDA-D Bi-modality models and Uni-modality models
with FAD, EMG-D, and EDA-D modalities. However, only one Uni-modality model
performed the best: the LSTM-SW model with the EDA-D modality from REPD.
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FIG. 6.11. Comparison of Uni-modality models when applying Trivial, RFc, LSTM, and LSTM-SW with HTD regarding classification task. Triv.:
Trivial. The Bi-modality models use MF. MF: Model Fusion.
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6.4 Multi-modality Results

This section shows the comparison between the Trivial and proposed methods (RF,
LSTM, and LSTM-SW) when focusing on fusing all modalities from the experimen-
tal data, including the FAD, Audio-D, ECG-D, EMG-D, and EDA-D modalities (see
Section 6.4.1). More detailed results of the classification model that outperform the
regression model when using the five fused modalities data (Multi-modality) were
presented in Section 6.4.2. Finally, the discussion of Multi-modality results was
summarized in Section 6.4.3.

6.4.1 Classification vs Regression

The results of Multi-modality models for continuous monitoring of pain intensity
were provided in Section 6.4.1.1. The comparison between the best classification
and regression models in combined modalities was shown in Section 6.4.1.2.

6.4.1.1 Modeling Methods

Table 6.12 shows that all Multi-modality models using MF were better than those us-
ing decision fusion [DF]. The architecture of MF in detail is described in Section 5.4.5.
Fig. 6.12 shows that the performances of the most Multi-modality regression models
using Model Fusion [MF] when applying LSTM were the best except with Reduced
Heat Phasic Dataset [RHPD] and Reduced Electrical Phasic Dataset [REPD]. Multi-
modality classification models, when applying LSTM and LSTM-SW, performed
the best based on the highest ICC (0.74, 0.81) and the MSE of 0.08, 0.06, respectively.
However, the Multi-modality regression model when applying LSTM with REPD
got an ICC of 0.79 and the smallest MSE (0.05). Further, both classification and
regression models performed similarly with the Reduced Phasic Dataset [RPD];
they got the highest ICC (0.82).

6.4.1.2 Comparison of Modeling Methods

This section provides the comparison between the best Uni-, Bi-, and Multi-modality
models when applying LSTM and LSTM-SW on the 11 proposed datasets from the
experimental data. The best Uni-modality models use the EDA-D modality, and
the best Bi-modality models use both EMG-D and EDA-D modalities. The Bi- and
Multi-modality models use MF. Table 6.13 and 6.14 and Fig. 6.13 show that only
one Uni-modality model performed better than Bi- and Multi-modality models,
which was the EDA-D Uni-modality model when applying LSTM-SW with REPD.
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Table 6.12. Comparison of the best Bi-modality models using MF regarding classification and regression tasks with MSE and ICC measures. Meas.:
Measure, MF: Model Fusion. The cells with a light grey background indicate the best results regarding classification and regression tasks. The bold
font indicates the best results.
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Table 6.12: Comparison of the best Multi-modality models using LSTM-SW regarding classification and regression tasks with MSE and ICC 

measures. Trivial:Triv., Reduced Subsets: Red. Subsets. DF: Decision Fusion, MF: Model Fusion. The cells with a light grey background indicate 

the best results regarding classification and regression tasks. The bold font indicates the best results of LSTM-SW models.   

 

M
ea

s.
 

Task  Classification Regression loss 

L
ea

rn
in

g
 

ra
te

 Model 

n
-C

la
ss

 Triv. RFc LSTM LSTM-SW RFr LSTM LSTM-SW CCE BCE 

Dataset - DF DF MF DF MF DF DF MF DF MF Architecture of MF 

M
S

E
 

S
u
b
se

ts
 

PD 7 0.10 0.10 0.10 0.08 0.10 0.08 0.07 0.07 0.06 0.07 0.06 A-Mu(c) A-Mu(r) 

1
0
−
5
 

HPD 4 0.11 0.11 0.11 0.10 0.10 0.11 0.08 0.08 0.08 0.08 0.09 C-Mu(c) C-Mu(r) 

EPD 4 0.07 0.26 0.07 0.05 0.06 0.05 0.06 0.05 0.04 0.05 0.05 C-Mu(c) C-Mu(r) 

TD 7 0.12 0.12 0.12 0.11 0.12 0.10 0.10 0.08 0.09 0.09 0.08 A-Mu(c) A-Mu(r) 

1
0
−
6
 

HTD 4 0.41 0.20 0.17 0.15 0.17 0.14 0.11 0.11 0.10 0.12 0.11 C-Mu(c) C-Mu(r) 

ETD 4 0.09 0.09 0.09 0.08 0.09 0.08 0.08 0.07 0.06 0.07 0.06 C-Mu(c) C-Mu(r) 

R
ed

. 
S

u
b
se

ts
 RPD 7 0.23 0.19 0.11 0.05 0.09 0.05 0.1 0.06 0.04 0.06 0.06 A-Mu(c) A-Mu(r) 

1
0
−
4
 

RHPD 4 0.26 0.22 0.1 0.08 0.09 0.08 0.12 0.06 0.13 0.06 0.08 C-Mu(c) C-Mu(r) 

REPD 4 0.26 0.16 0.09 0.06 0.08 0.06 0.1 0.06 0.05 0.06 0.06 C-Mu(c) C-Mu(r) 

RTD 7 0.25 0.21 0.23 0.20 0.22 0.19 0.12 0.12 0.04 0.12 0.12 B-Mu(c) B-Mu(r) 

1
0
−
6
 

RETD 4 0.25 0.2 0.2 0.17 0.19 0.16 0.12 0.11 0.09 0.12 0.09 D-Mu(c) D-Mu(r) 

IC
C

 

S
u
b
se

ts
 

PD 7 0 0.05 0.04 0.45 0.12 0.46 0.19 0.23 0.49 0.18 0.48 A-Mu(c) A-Mu(r) 

1
0
−
5
 

HPD 4 0 0.03 0.1 0.39 0.19 0.38 0.16 0.22 0.38 0.25 0.40 C-Mu(c) C-Mu(r) 

EPD 4 0 0.15 0.11 0.49 0.22 0.57 0.24 0.29 0.58 0.33 0.58 C-Mu(c) C-Mu(r) 

TD 7 0 0.05 0 0.20 0.02 0.23 0.08 0.09 0.23 0.10 0.30 A-Mu(c) A-Mu(r) 

1
0
−
6
 

HTD 4 0 0.27 0.31 0.35 0.32 0.33 0.22 0.16 0.38 0.18 0.35 C-Mu(c) C-Mu(r) 

ETD 4 0 0.05 0.01 0.20 0 0.26 0.1 0.09 0.31 0.12 0.33 C-Mu(c) C-Mu(r) 

R
ed

. 
S

u
b
se

ts
 RPD 7 0 0.23 0.61 0.82 0.68 0.81 0.28 0.66 0.82 0.66 0.78 A-Mu(c) A-Mu(r) 

1
0
−
4
 

RHPD 4 0 0.23 0.67 0.74 0.71 0.74 0.23 0.71 0.73 0.69 0.73 C-Mu(c) C-Mu(r) 

REPD 4 0 0.46 0.73 0.81 0.77 0.81 0.38 0.71 0.79 0.71 0.80 C-Mu(c) C-Mu(r) 

RTD 7 0 0.19 0.14 0.27 0.18 0.28 0.08 0.11 0.29 0.12 0.26 B-Mu(c) B-Mu(r) 

1
0
−
6
 

RETD 4 0 0.28 0.27 0.42 0.30 0.44 0.21 0.24 0.50 0.24 0.56 D-Mu(c) D-Mu(r) 
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FIG. 6.12. Comparison of the best Multi-modality models when applying LSTM regarding
classification and regression tasks with MSE and ICC measures. The Multi-modality models
use MF. MF: Model Fusion. The bold font indicates the best results.
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The remaining models, when applying EMG-D & EDA-D Bi-modality model
that uses MF, were the best compared to Multi-modality models that use MF, except
with Tonic Dataset [TD], Electrical Tonic Dataset [ETD], and Reduced Electrical
Tonic Dataset [RETD], Multi-modality models are the best; they got MSE 0.08, 0.06,
0.09 and the ICC of 0.30, 0.33, 0.56, respectively. Further, Bi-and Multi-modality
models that use MF when applying LSTM and LSTM-SW with EPD dataset per-
formed similarly and got a highest ICC (0.58) and smallest MSE (0.04).

Table 6.13. Comparison of the best Uni-, Bi-modality, and Multi-modality models using MF
regarding classification and regression tasks with MSE measure [186]. Meas.: Measure, MF:
Model Fusion. The cells with lightgrey background indicate the models using LSTM and
Cells with pink background indicate the models using LSTM-SW. The bold font indicates
the best results. 
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M
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  Task Classification Regression 

Dataset 
Uni- 

modality 

Bi- 
modality 

(MF) 

Multi- 
Modality 

(MF) 

Uni- 
modality 

Bi- 
Modality 

(MF) 

Multi- 
Modality 

(MF) 

M
S

E
 

S
ub

se
ts

 

PD 
0.09 

EDA-D 

0.08 
EMG-D 
EDA-D 

0.08 
0.06 

EDA-D  

0.06 
EMG-D 
EDA-D 

0.06 

HPD 
0.10 

EDA-D 

0.09 
EMG-D 
EDA-D 

0.10 
0.08 

EDA-D  

0.07 
EMG-D 
EDA-D 

0.09 

EPD 
0.06 

EDA-D 

0.06 
EMG-D 
EDA-D 

0.05 
0.05 

EDA-D 

0.04 
EMG-D 
EDA-D 

0.04 

TD 
0.11 

EDA-D 

0.11 
EMG-D 
EDA-D 

0.11 
0.09 

EDA-D  

0.10 
EMG-D 
EDA-D 

0.08 

HTD 

0.15 
EDA-D 

(LSTM-SW) 
EMG-D 
(LSTM) 

0.13 
EMG-D 
EDA-D  

0.15 
0.11 

EDA-D 

0.10 
EMG-D 
EDA-D  

0.10 

ETD 
0.11 

(RFc) 

0.08 
EMG-D 
EDA-D 

0.08 
0.07 

EDA-D 

0.06 
EMG-D 
EDA-D 

0.06 

R
ed

. S
ub

se
ts

 

RPD 
0.05 

EDA-D 
(both LSTM) 

0.05 
EMG-D 
EDA-D 

0.05 
0.04 

EDA-D 

0.04 
EMG-D 
EDA-D 

0.04 

RHPD 
0.07 

EDA-D 

0.07 
EMG-D 
EDA-D  

 

0.08 
0.05 

EDA-D  
(both LSTM) 

0.05 
EMG-D 
EDA-D 

0.08 

REPD 
0.05 

EDA-D 
(both LSTM) 

0.05 
EMG-D 
EDA-D  

(both LSTM) 

0.05 
(both LSTM) 

0.03 
EDA-D  

0.04 
EMG-D 
EDA-D 

0.06 

RTD 
0.19 

EDA-D 

0.19 
EMG-D 
EDA-D  

0.19 
0.11 

EDA-D 

0.11 
EMG-D 
EDA-D  

0.04 

RETD 
0.16 

EDA-D 

0.15 
EMG-D 
EDA-D 

0.16 
0.10 

EDA-D 

0.09 
EMG-D 
EDA-D  

(both LSTM) 

0.09 
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Table 6.14. Comparison of the best Uni-, Bi-modality, and Multi-modality models using MF
regarding classification and regression tasks with ICC measure [186]. Meas.: Measure, MF:
Model Fusion. The cells with lightgrey background indicate the models using LSTM and
Cells with pink background indicate the models using LSTM-SW. The bold font indicates
the best results.
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Table 6.13(ICC): Comparison of the best Uni-, Bi-, and Multi-modality models using MF regarding 
classification and regression tasks with ICC measure. Meas.: Measure, MF: Model Fusion. The cells with 
lightgrey background indicate the models using LSTM and Cells with pink background indicate the models 
using LSTM-SW. The bold font indicates the best models’ results. 
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Task Classification Regression 

Dataset 
Uni- 

modality 

Bi- 
Modality 

(MF) 

Multi- 
Modality 

(MF) 

Uni- 
modality 

Bi- 
Modality 

(MF) 

Multi- 
Modality 

(MF) 

IC
C

 

S
ub

se
ts

 

PD 
0.40 

EDA-D 

0.45 
EMG-D 
EDA-D  

0.46 
0.43 

EDA-D 

0.51 
EMG-D 
EDA-D  

0.49 

HPD 
0.30 

EDA-D 

0.41 
EMG-D 
EDA-D  

0.39 
0.32 

EDA-D  

0.41 
EMG-D 
EDA-D 

0.40 

EPD 
0.50 

EDA-D 

0.53 
EMG-D 
EDA-D  

0.57 
0.53 

EDA-D  

0.58 
EMG-D 
EDA-D  

0.58 

TD 
0.15 

EDA-D 

0.18 
EMG-D 
EDA-D 

0.23 
0.17 

EDA-D  

0.26 
EMG-D 
EDA-D 

0.30 

HTD 

0.33 
EDA-D 

(LSTM-SW) 
EMG-D 
(LSTM) 

0.42 
EMG-D 
EDA-D 

0.35 
 

0.30 
EDA-D  

0.32 
EMG-D 
EDA-D  

0.38 

ETD 
0.14 

(RFc) 

0.22 
EMG-D 
EDA-D 

0.26 
0.21 

EDA-D  

0.31 
EMG-D 
EDA-D  

0.33 

R
ed

.S
ub

se
ts

 

RPD 
0.83 

EDA-D 
(both LSTM) 

0.83 
EMG-D 
EDA-D 

0.82 
0.84 

EDA-D 

0.85 
EMG-D 
EDA-D 

0.82 

RHPD 
0.76 

EDA-D 

0.79 
EMG-D 
EDA-D  

0.74 
0.81 

EDA-D  
(both LSTM) 

0.83 
EMG-D 
EDA-D  

0.73 

REPD 
0.84 

EDA-D 
(both LSTM) 

0.85 
EMG-D 
EDA-D 

(both LSTM) 

0.81 
(both LSTM) 

0.88 
EDA-D  

0.87 
EMG-D 
EDA-D  

0.80 

RTD 
0.31 

EDA-D 

0.32 
EMG-D 
EDA-D  

0.28 
0.24 

(EDA-D) 

0.33 
EMG-D 
EDA-D  

0.29 

RETD 
0.47 

EDA-D 

0.52 
EMG-D 
EDA-D 

0.44 
0.49 

EDA-D  

0.52 
EMG-D 
EDA-D 

(both LSTM) 

0.56 
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FIG. 6.13. Comparison of the best Uni-, Bi-modality, and Multi-modality models regarding classification and regression tasks with MSE and ICC
measures. The Bi-modality and Multi-modality models use MF. MF: Model Fusion. Both LSTMs: LSTM and LSTM-SW. The bold font indicates the
best results.
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FIG. 6.13. Comparison of the best Uni-, Bi-modality, and Multi-modality models regarding classification and regression tasks with MSE and ICC
measures. The Bi-modality and Multi-modality models use MF. MF: Model Fusion. Both LSTMs: LSTM and LSTM-SW. The bold font indicates the
best results.
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6.4.2 Classification

This section introduces more results by comparing the best Uni-, Bi, and Multi-
modality classification models when applying RFc, LSTM, and LSTM-SW due to
their superior performance than regression models with the Heat Phasic Dataset
[HPD] and Heat Tonic Dataset [HTD], see Table 6.15 and Fig. 6.14.

Table 6.15. Comparison of the best Uni-, Bi-, and Multi-modality models with HPD and
HTD regarding classification task. Triv.: Trivial. The bold font indicates the best models’
results. * p < 0.05 when using paired t-test between RFc and LSTMs (LSTM and LSTM-SW).
The bold font indicates the best models’ results.

 

 

 

Measurement  
Datasets HPD HTD 

Model Triv. RFc LSTM LSTM-SW Triv. RFc LSTM LSTM-SW 

Accuracy % 

EDA-D   

(Uni-modality) 
78.5 78.1 79.8* 79* 20 41.0 48.4 47.7 

FAD & EDA-D  

(Bi-modality) 
78.5 - 80.5* 80.2* 20 - 47.4* 49.8* 

Multi-modality 78.5 - 79.3 77.6 20 - 41.6 42.2 

Micro avg. precision% 

EDA-D 

(Uni-modality) 
0 24.6 36.6* 32.2* 0 42.7 48.2 47.7 

FAD & EDA-D  

(Bi-modality) 
0 - 42.8 40.1* 0 - 47.2 48.7 

Multi-modality 0 - 34.9* 29.2 0 - 41.8 42.0 

Micro avg. recall% 

EDA-D 

(Uni-modality) 
0 3.4 9.9* 10.9* 0 71.0 94.6* 100* 

FAD & EDA-D  

(Bi-modality) 
0 - 16.3* 21.4* 0 - 92.9* 97* 

Multi-modality 0 - 19.8* 22.3* 0 - 90.8* 99.9* 

Micro avg. F1-Score% 

EDA-D 

(Uni-modality) 
0 5.9 15.2* 15.5* 0 52.9 62.3* 62.5* 

FAD & EDA-D  

(Bi-modality) 
0 - 22.3* 26.3* 0 - 60.7* 63.3* 

Multi-modality 0 - 23.6* 24* 0 - 56 57.9* 

The Bi- and Multi-modality models use MF. The architecture of LSTM and LSTM-
SW is C-Mu(c) with a learning rate of 10−6. Bi-modality models, when applying
both LSTM and LSTM-SW with EMG-D and EDA-D modalities, performed the
best with HPD and HTD in terms of the 4 measures. LSTM models with HPD and
HTD successfully predict discrete pain intensity levels in sequences compared to
Trivial and RFc in terms of Accuracy, Micro avg. precision, Micro avg. recall, and
Micro avg. F1-Score. The Bi- and Multi-modality models when applying LSTM-SW
with HPD and HTD were better than those models using LSTM in terms of Micro
avg. recall, and Micro avg. F1-Score. Further, Bi-modality models, when applying
LSTM-SW, outperformed LSTM models with HTD in terms of Accuracy (49.8%)
and Micro avg. precision (48.7%). EDA-D Uni-modality model, when applying
LSTM-SW with HTD, performed the best in terms of Micro avg. recall (100%);
however, the Bi-modality model, when applying LSTM-SW with the same dataset,
performed excellent (97%).
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FIG. 6.14. Comparison of Uni-, Bi, and Multi-modality models when applying Trivial, RFc, LSTM, and LSTM-SW with HPD & HTD regarding
classification task with different measures. The Bi- and Multi-modality models use MF. MF: Model Fusion, Triv.: Trivial.
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Additionally, the Multi-modality model, when applying LSTM-SW with HPD,
performed the best in terms of Micro avg. recall (22.3%). In terms of F1-score,
Bi-modality models, when applying LSTM-SW with HPD and HTD, performed the
best, about 26.3% and 63.3%.

6.4.3 Discussion

In this section, the obtained results of comparing Uni-, Bi, and Multi-modality
models were summarized when applying RFc, LSTM, and LSTM-SW with 11
datasets from the experimental data. For evaluation, the focus in this work was
on true and false positive samples when the models predict pain intensity. As true
positive samples increase, the ICC will increase; as false positive samples decrease,
the ICC will increase. Thus, the best results regarding regression were selected
based on the highest ICC values rather than the lowest MSE values. The best
Uni-modality models use EDA-D modality, and the best Bi-modality models use
both EMG-D and EDA-D modalities. The Multi-modality models with reduced
datasets improved the performance significantly compared to those with huge
imbalanced datasets except with the regression model that uses RTD. The possible
reason is that some useful samples are removed when applying the reduction
strategy. Further, the regression models were superior to classification models with
all datasets except HTD. The EMG-D & EDA-D Bi-modality classification models,
when applying LSTM-SW with HTD, performed the best because this dataset was
almost balanced. Additionally, the Multi-modality models performed the best with
Tonic Dataset [TD], Electrical Tonic Dataset [ETD], and Reduced Electrical Tonic
Dataset [RETD]. The Bi-modality models performed the best with the remaining 7
datasets except the Reduced Electrical Phasic Dataset [REPD]. The Bi- and Muti-
modality models with REPD do not improve the performance, possibly because the
outlier rate is increased when using more than one modality. Finally, both LSTM
and LSTM-SW models outperformed the baseline model (RFc and RFr).

The correctly predicted samples regarding classification were closely investi-
gated when applying RFc, LSTM, and LSTM-SW. The models with HPD performed
the best in recognizing no pain and the highest pain intensity, whereas models with
HTD performed the best in recognizing intermediate pain (low and moderate), see
Table 6.16. The reason is that models may have difficulty in recognizing interme-
diate pain intensity stimulation in large imbalanced datasets (HPD) when HTD
is less imbalanced (no pain [20%], two intermediate pain [27%], and the highest
pain [26%]). Additionally, Bi- and Multi-modality models, when applying both
LSTM and LSTM-SW with the imbalanced HPD, improved the performance of
Uni-modality models. Finally, the EMG-D and EDA-D Bi-modality models using
MF, when applying LSTM-SW with HPD and HTD, performed the best based on
calculating the average of the 4-Class performance, which were 37.5% and 48.2%.
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Table 6.16. Recall% result of 4-Class continuous pain intensity recognition tasks of HPD
and HTD on testing set. Uni-modality refer to EDA-D Uni-modality, Bi-modality refer to
EMG & EDA-D Bi-modality. The bold font indicates the best results.

 

 

 

Model 

Dataset 

HPD  HTD  

BL PH1 PH2 PH3 mean BL TH1 TH2 TH3 mean 

Uni-modality 

 

Trivial 100 0 0 0 25 100 0 0 0 25 

RFc 98.7 1.5 2 6.3 27.1 34.4 27.3 47 54.5 40.8 

LSTM 99.3 5.2 5.4 15.2 31.3 9.4 73 35.1 67.8 46.3 

LSTM-SW 98 3.1 1.7 23.3 31.5 0.30 72 39.8 68 45 

Bi-modality 

 

 

Trivial 100 0 0 0 25 100 0 0 0 25 

RFc - - - - - - - - - - 

LSTM 98.7 6.5 5.2 29.5 35 20.3 45.4 56.1 62.5 46.1 

LSTM-SW 97.4 7.4 7.2 37.9 37.5 18.6 45.8 62.7 65.5 48.2 

Multi-modality 

Trivial 100 0 0 0 25 100 0 0 0 25 

RFc - - - - - - - - - - 

LSTM 96.8 6.2 4.6 36.2 36 11.2 56.3 28.9 63.5 40 

LSTM-SW 94.1 5.9 6.3 39.5 36.5 2.7 40.4 55.2 61.8 40 





CHAPTER 7

Discussion and Conclusion

THE current methods in the clinical application do not always allow for ob-
jective and robust measurement for pain diagnosis; moreover, they do not
facilitate continuous monitoring of pain, especially for vulnerable patients.

Automatic systems can be reliable and economical to solve these issues compared
to human observers. This thesis shows the investigation of five sensor modalities
for automatically monitoring continuous pain intensity on the X-ITE Pain Database,
which are frontal RGB video, audio, electrocardiogram [ECG], surface electromyog-
raphy [EMG], electrodermal activity [EDA]. Three distinct methods were proposed
regarding classification and regression: A Random Forest (RF) baseline method
([Random Forest classifier (RFc) and Random Forest regression (RFr)]), Long-Short
Term Memory (LSTM) method, and LSTM using the sample weighting method
(LSTM-SW). This chapter has two sections, the first explains the findings from
Uni-modality, Bi-modality, and Multi-modality experiments (see Section 7.1), and
the second summarizes the key contributions of this thesis presents some future
directions in research within this area (see Section 7.2).

7.1 Discussion

Implementing a reliable automatic model which relies on an imbalanced database is
a major challenge for continuous monitoring of pain intensity. Another challenge is
that there are a lot of outliers or label noise. The facial expressions and vocalizations
responses, which were obtained from frontal RGB video and audio, were investi-
gated for most samples in the X-ITE Pain Database. It turns out that plenty of labels
do not match the observed facial pain expressions or expected vocalizations of pain

114
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due to individual differences in pain sensitivity and expressiveness. Some partici-
pants (subjects) show a lack of facial responses to pain (see Fig. 1.2 in Section 1.2):
some have low pain sensitivity resulting in a high tolerance threshold requiring a
temperature cutoff to avoid burns; others show a low tolerance threshold intention-
ally or unintentionally during stimulus calibration, possibly because to avoid severe
pain. Further, some subjects talk or make a sound when no pain is experienced
during the experiment. Such inconsistencies between the label and both video &
audio were considered outliers. To address the extremely imbalanced database and
outliers problems, it is preferable to use machine learning models with two types
of dataset categories: (1) Subsets (6 datasets) and (2) Reduced Subsets (5 datasets)
that were obtained after applying the reduction strategy (see Section 4.4); the Heat
Tonic Dataset [HTD] was not reduced because it is nearly balanced [no pain (20%),
two intermediate pain (27%), and the highest pain (26%)].

The reduction strategy, which was based on facial expressions analysis, reduced
the influence of outliers (unimportant samples) by reducing some no pain samples
prior to pain intensity sequences in a time series for each subject. An additional
reason for using these different datasets was to explore the generalization capability
of continuous pain intensity monitoring models. The results of comparing between
Mean Squared Error [MSE] and Binary Cross-Entropy [BCE] loss functions, when
applying LSTM with FAD modality, show that BCE is the best on most of 11 datasets;
see the results of PD, HPD, EPD, HTD, RPD, RHPD, and REPD in Table 6.6 and
Fig. 6.6. The results showed that the performance of pain intensity recognition
in sequences was increased when using reduced datasets, except when using
all modalities (frontal RGB video [frontal faces], audio, ECG, EMG, and EDA)
with Tonic Dataset [TD]. See each dataset in Reduced Subsets compared to their
equivalent datasets in Subsets in Fig. 6.4, 6.10, and 6.13; Section 6.2.3, 6.3.3, and
6.4.3 explain the results in detail. It seems more important to reduce the noise
in imbalanced data than to keep very hard samples. The all modalities (Multi-
modality) model with Reduced Tonic Dataset [RTD] does not outperform that
with TD, probably due to more outliers (responses to heat stimuli) of audio and
ECG modalities and high feature space dimensionality compared to the quite few
training samples.

The regression models were superior to classification models when using huge
imbalanced datasets, whereas classification models were the best with the almost
balanced dataset (Heat Tonic Dataset [HTD]); both perform similarly with Heat
Phasic Dataset [HPD]. For example, see the distribution of datasets in Table 4.3;
HTD has the highest percentage distribution of pain intensity samples (showing
the subjects while experiencing pain) in huge imbalanced datasets (Subsets) based
on the mean value, which is about 26.7%, followed by HPD (7.17%). The results
show that continuous monitoring of pain intensity in huge imbalanced datasets
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before and after reduction is a regression task. Thus, it is better to deal with the
output of pain intensity as continuous values.

Alongside to prior works on the X-ITE Pain Database [29, 30], the BioVid, and
SenseEmotion databases [61, 129, 130], most EDA modality [EDA-D Uni-modality]
models outperformed the other single modalities models. EDA is very sensi-
tive [130] and less person-specific than other modalities [22]. EMG modality models
were the second best single modality [EMG-D Uni-modality] models. With the TD
and HTD, EMG outperformed EDA, in line with Werner et al. [22] and Kächele
et al. [187] when they used the BioVid database. It seems the changes in muscle
activity [EMG] to tonic stimuli tend to be more intense than the changes of the
superficial muscles of the skin of the hand [EDA]. However, EDA-D Uni-modality
models performed better than EMG-D Uni-modality models with reduced tonic
datasets (RTD and RETD); it may be because the reduction strategy is more success-
ful in reducing noise in EDA than in EMG. The facial expressions were the third
best single modality [FAD Uni-modality] models and performed well, but not better
than EDA due to low facial responses to pain with some subjects: some people
have low sensitivity to pain (see [75, 78] for more details about this phenomenon)
or vice versa (some people are extremely expressive of their pain). Fig. 1.2 shows
some difficult samples to recognize pain intensity based on facial features. The
performances of ECG modality [ECG-D Uni-modality] models followed by au-
dio modality [Audio-D Uni-modality] models were the worst single modalities,
probably because of varying levels of noise. The ECG is sensitive to miscellaneous
mixed noises. The audio signal includes many label noises, possibly due to the
vocalizations responses when some subjects are stimulated with different pain
intensities or when some subjects talk or produce other vocal responses during no
pain is experienced.

To find good options for low-cost pain monitoring (using only two sensor
modalities = Bi-modality models), the best three single modalities were chosen
and then fused. The best modality (EDA-D Uni-modality) fused once with FAD
Uni-modality and once with EMG-D Uni-modality. The Bi- and Multi-modality
models help improve the performance of continuous pain intensity monitoring
compared to the Uni-modality models. All Bi- and Multi-modality models using
Model Fusion [MF] with LSTMs (LSTM and LSTM-SW) outperformed those using
Decision Fusion [DF]. Models using MF succeeded in focusing on information from
more reliable modalities while reducing the emphasis on the less reliable modalities.
The Bi- and Multi-modality models using DF by applying mean-score mapping
method performed well only when using HTD (almost balanced dataset); these
results are in line with the results of Werner et al. [29] and Walter et al. [29,30]. Thus,
facial expressions and EMG significantly benefit from the DF method, while it is
found that EDA is a superior candidate for generic pain assessment models that use
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DF. The possible reason for the poor performance of the DF method is the extremely
imbalanced data; moreover, there are a lot of outliers in each single modality. The
impact of such problems may be increased after calculating the average aggregation
of classifier scores or regression probabilities when using two or more modalities,
which tends to decrease the performance compared to the Uni-modality models.

The EMG-D & EDA-D Bi-modality models outperformed Multi-modality mod-
els when using MF with LSTMs on 6 datasets: (1) Phasic Dataset [PD], Heat Re-
duced Dataset [HTD], Reduced Phasic Dataset [RPD], Reduced Heat Phasic Dataset
[RHPD], and RTD Reduced Tonic Dataset [RTD], and (2) [FAD and EDA-D] Bi-
modality model was the best with HPD [Heat Phasic Dataset]. The possible reason
is that the Multi-modality models include conflicts between modalities in these
datasets, especially because of the outliers in worse modalities (Audio and ECG).
Both EMG-D & EDA-D Bi-modality and Multi-modality models performed simi-
larly with Electrical Phasic Database [EPD]. The Multi-modality models performed
the best with three datasets: TD, Electrical Tonic Database [ETD], and Reduced
Electrical Tonic Database [RETD]. Using Multi-modality models improved the per-
formance with only tonic datasets because the responses to tonic stimuli are more
intense than the response to phasic stimuli for each modality. Further, the response
to electrical tonic stimuli tends to start earlier and more rapidly than the response
to heat for each modality. Thus, all modalities could significantly benefit from this
Multi-modality model that uses MF when the responses in all modalities are more
intense. The EDA-D Uni-modality model performed the best with the Reduced
Electrical Phasic Database [REPD]; it got an ICC of 0.88 and MSE of 0.03; both Bi-
and Multi-modality models do not improve the performance; the large noise and
conflict between Bi- and Multi-modality may be the reason.

According to the obtained results from Uni-, Bi-, and Multi-modality models,
LSTMs outperformed Trivial (majority of vote = no pain) and baseline methods (RFc
and RFr) on the 11 proposed datasets regarding the classification and regression
(see Fig. 6.4, 6.10, and 6.13. Fig. 6.4 shows that the result of RFc model using
EDA-D with ETD dataset is the best regarding classification in only Uni-modality
experiments. With too small datasets for automated pain recognition, RFc outper-
formed deep learning methods [75]. However, after comparing LSTMs regression
models to RFc using EDA-D with the same dataset [ETD], LSTM-SW models using
EDA-D provided the best results. Further, several LSTM-SW models were better
than LSTM models due to downweighting noisy samples by applying the sample
weighting method [75]. The training samples with more facial responses were
duplicated; these samples were identified using RFc (samples with classification
scores above 0.3). The validation and test data were kept unmodified to ensure
comparability of validation and test results. This weighting method was beneficial
in several experiments because the dataset contains many pain samples without
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observable facial pain reactions that were impossible to classify correctly based
on the facial features modality. Additionally, regarding best classification models
compared to regression models in terms of micro avg. recall measurement, EMG-D
& EDA-D Bi-modality models using MF with LSTM-SW on HPD and HTD datasets
performed the best based on calculating the average of the 4-Class performance
(see Table 6.15), which are 37.5% and 48.2%, respectively.

7.2 Conclusion

Due to the prior work in automatically recognizing pain intensity, the results
showed that machines were much better than humans at recognizing pain intensity
when analyzing the frontal faces in videos [75]. Thus, this thesis aims to introduce a
promising automatic system for continuous monitoring of pain intensity based on
analyzing facial expressions in frontal faces and other informative signals, which
are audio and physiological signals. Fig. 7.1 shows how the proposed system
monitors continuous pain intensity using two separate types of pain stimuli: phasic
and tonic. It confirms that it is possible to recognize pain intensity using machine
learning models with frontal RGB video, audio, and physiological signals (ECG,
EMG, and EDA).

In this work, several experiments were conducted in order to (1) gain insights
into continuous monitoring of pain intensity using frontal RGB video, audio, and
physiological (ECG, EMG, and EDA) signals from X-ITE Pain Database, (2) to
compare the performance between different proposed automatic methods regarding
classification and regression, (3) to find the best machine learning model when
analyzing time series features from each single modality and from a combination of
two or all modalities; the modalities that were selected with the combination of two
modalities were the first best single modality [EDA] with the second best single
modality [EMG] once and the third best single modality (facial expressions) once,
and (4) to introduce the baseline results for further research related to recognize
continuous pain intensity in the X-ITE Pain Database.

In Chapter 4, the data from each modality was preprocessed to extract features
for continuous monitoring of pain intensity; then the data was split into 80% of
data for training, 10% for validation, and 10% for testing. The proposed machine
learning methods were evaluated on 11 datasets (6 Subsets and 5 Reduced Subsets)
from testing split to reduce the impact of an extremely imbalanced database and
the impact of a lot of outliers or label noise. The Reduced Subsets were obtained
after applying our reduction strategy on all datasets in Subsets except one ( Heat
Tonic Dataset [HTD]), which is almost balanced (only 20% of samples experience
no pain). The reduction strategy focuses on reducing some no pain samples prior to
each pain intensity sequence. Further, the labels of each participant (subject) were
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moved three seconds after (the facial pain responses typically are delayed by 2-3
seconds compared to stimulus), then used a sliding window with a time length of
ten seconds ago. For more details about the proposed datasets, see Section 4.4.

Three machine learning methods (RF, LSTM, LSTM-SW) regarding classification
and regression were introduced to monitor continuous pain intensity, see Chapter 5.
The sample weighting method was suggested to reduce the weight of misclassified
samples during training to improve the pain intensity recognition performance;
these samples often contain low or no facial responses to pain. Further, three
types of experiments were conducted using RF, LSTM, and LSTM-SW, which are:
Uni-modality experiments (models were trained on data from single modality
sensors), Bi-modality experiments (models were trained on fusing data from two
sensors), and Multi-modality (models were trained on fusing data from five sensors)
experiments. The reason for applying these multiple experiments is to provide the
best automatic system for continuous monitoring of pain intensity after analyzing
frontal faces from frontal RGB video, audio, physiological signals (ECG, EMG, and
EDA), and their combination.

The quantitative results of Chapter 6 confirmed that automatically monitor-
ing continuous pain intensity is possible regarding regression or classification. In
general, among all obtained models, LSTMs (LSTM and LSTM-SW) gave the best
predictive performance across different models compared to baseline methods (RFc
and RFr); the Trivial failed to recognize pain intensity, whereas the proposed meth-
ods were significantly better. Further, the performance of LSTM with FAD when
using Binary Cross-Entropy [BCE] loss was better than MSE. Therefore, LSTM using
BCE loss was used with other Uni-modality (audio-D, ECG-D, EMG-D, and EDA-D)
experiments and Bi- and Multi-modality using Model Fusion [MF] experiments.
The RFc performed well with the very small size of data such as Electrical Tonic
Dataset [ETD] when using to train the single modality of facial expressions [FAD
Uni-modality]; however, its result was not superior Uni-, Bi-, and Multi-modality
models that using LSTM regarding regression. In LSTM-SW, downweighting
misclassified samples during training often increased the performance of LSTM.
Further, reducing no pain samples in imbalanced datasets using reduction strategy
on Subsets improved the performance (see Reduced Subsets result in Fig. 6.4), 6.10),
and 6.13). Thus, it was demonstrated that the X-ITE Pain Database contains a lot
of outliers which result lower predictive modeling performance. Additionally, the
results indicated that for both classification and regression, EDA was the best single
modality for monitoring continuous pain intensity, then EMG followed by facial
expressions modality. These results were in line with prior works on the X-ITE Pain
Database [29, 30], the BioVid, and SenseEmotion databases [61, 129, 130]. ECG and
audio were the worst, probably due to a lot of outliers in both modalities.
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FIG. 7.1. A performance example of the proposed automated system for continuous monitoring pain intensity from test set, including results of the
best models with RPD and RTD compared to Ground-Truth. RPD: Reduced Phasic Dataset. RTD: Reduced Tonic Dataset.
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The combinations of two or all modalities were suggested to improve continuous
monitoring of pain intensity compared to the best single modality models [EDA
Uni-modality models]. In this case, it was a good idea to have a fused deep
learning model (LSTMs using MF) to benefit from the advantages of two or all
sensor modalities, see Section 6.3 and 6.4. Only the performance of one single
modality model does not improve, which is EDA when applying LSTM-SW with
Reduced Electrical Phasic Dataset [REPD]. The possible reason is the conflicts
between modalities in this dataset, especially because of the outliers; it seems that
outliers detection methods are required for further improvements when using the
fused modality. The models where all modalities were fused (Multi-modality)
were the best when using most tonic datasets (Tonic Dataset [TD], Electrical Tonic
Dataset [ETD], and Reduced Electrical Tonic Dataset [RETD]). The responses to tonic
stimuli and especially the electrical stimuli tended to be more intense and rapid than
responses to phasic stimuli for each single modality. The Multi-modality models
with MF significantly benefited from all modalities when the responses were more
intense within all modalities. Clearly, the fused models of EMG & EDA Bi-modality
models were the best when using phasic balanced dataset [HTD] compared to
EDA Uni-modality and Multi-modality models; these phasic datasets were Phasic
Dataset [PD], Heat Phasic Dataset [HPD], Electrical Phasic Dataset [EPD], Reduced
Phasic Dataset [RPD], Reduced Heat Phasic Dataset [RHPD], and Reduced Electrical
Phasic Dataset [REPD]. The possible reason for the poor performance of using the
Multi-modality models is the conflicts between modalities because of the outliers,
especially in the worst modalities (Audio and ECG). This result shows that EMG
and EDA are very good options for cost-effective pain monitoring. There is no need
to use all modalities.

Most results of applying Bi- and multi-modality experiments when using De-
cision Fusion (DF) with RF, LSTM, and LSTM-SW were not superior to EDA Uni-
modality. A major drawback of DF is the possibility of impeding the overall system
performance by combining several single classifiers; the impact of the outliers
may be increased after calculating the average aggregation of classifier scores or
regression probabilities. Further, the classification models outperformed regression
models with the almost balanced dataset (HTD) and performed similarly with HPD.
The HTD result is consistent with Werner et al. [29] and Walter et al. [30] findings,
who used a balanced database to classify the pre-segmented time windows. The
results showed that automatically monitoring continuous pain intensity is a re-
gression task when using imbalanced datasets. Regression reduces the effect of
confounding variables by isolating the effect of each variable by allowing the role
of each independent variable to learn without worrying about other variables in the
model; such analysis is done by estimating the effect of changing one independent
variable on the dependent variable while keeping all other independent variables
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constant. Although separating tonic datasets from phasic datasets because of the
huge difference in size [models would be biased towards the majority (phasic
datasets)], the performance was worse compared to use phasic datasets due to
the small size of the data. Additionally, the recognition of electrical pain stimuli
worked better than the recognition of heat pain stimuli in imbalanced datasets
sequences. It may probably be the responses to electrical stimuli tend to be more
intense, start earlier, and more rapidly than responses to heat because the electrical
pain is instantly felt with full intensity. In contrast, the heat pain is building up
slowly. However, this finding can not be generalized because the size of electrical
pain data is larger than heat pain data; see the number of samples for each dataset
in Table 4.2.

The results of this work are promising. However, the following limitations
should be addressed to advance this system. These limitations can be summarized
as follows:

• The X-ITE Pain Database is based on healthy participants. The database does
not contain a vulnerable group; however, this system can help to predict pain
particularly in vulnerable patients, but it has not yet been implemented to
them. Such a system should be applied to those patients before it is ready for
clinical studies.

• The imbalanced database problem. Although applying the proposed reduc-
tion strategy to the imbalanced datasets helps to improve the performance,
there are still plenty of outliers that limit further performance improvement.
The possible solution for this problem: the outliers in each modality should
be handled by (1) identifying them (i.e., those based on distances, density, or
clustering, etc.) based on the calculation of distances and then downweight-
ing them in all modalities, (2) training the deep learning networks with the
minkowski error [188], or (3) using any other methods that reduce the im-
pact of outliers but do not eliminate them. Data cleaning by removing such
outlier samples may be used for improving the individual modality-based
recognition performance. However, this may remove some samples, which
are useful for improving multimodal pain recognition because there may be
pain responses in other modalities.

• The small size of training data. A larger dataset with more pain intensities is
necessary for more reliable automatic monitoring of continuous pain intensity.
An alternative solution is to apply self-supervised techniques, which can be
beneficial to improve the efficiency of the small amount of data.

• The need for extracting informative features. In this work, each time series
(second) is summarized using four statistical measures (minimum, maximum,
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mean, and standard deviation) calculated from the time series itself, its first
and second derivative. The proposed methods for automatically monitoring
continuous pain intensity are based on combining the temporal aspects of
preceding ten-seconds of descriptors for each modality. It is possible that using
more statistical measures of the time series will improve the performance;
using the remaining of the statistical measures in the Werner et al. [189] study
is suggested to improve system performance.

• The need for efficient deep learning methods. The used methods are built
based on the frontal faces [facial expressions] modality; these are not good
enough with audio and ECG modalities. It is highly recommended to research
the best method for each modality individually, then combine them to improve
system performance.





APPENDIX A

Uni-modality Results

This chapter is dedicated to provide the detailed results of performing the proposed
methods [RF and LSTMs (LSTM, and LSTM-SW)] with single modalities, two fused
modalities, and all fused modalities regarding classification and regression for
continuous monitoring pain intensity from the 11 proposed datasets on the X-ITE
Pain Database.

Appendix A shows all results of using all single modalities [Uni-modality]
models (FAD, Audio-D, ECG-D, EMG-D, and EDA-D). Regarding classification and
regression and in terms of MSE and ICC measures, Table A.1 and A.2 present that
all Uni-modality regression models outperform those using classification when the
datasets are imbalanced. Heat Tonic Dataset [HTD] is almost balanced, and the
classification model is the best (ICC = 0.33). Table A.3 and A.4 show the results of
performing Accuracy, Micro avg. precision, Micro avg. recall, and Micro avg. F1-
score measures, which confirmed that EDA is the best single signal for recognizing
continuous pain intensity followed by EMG and then facial expressions, ECG and
audio are the worst. RFc classification models performed the best in terms of F1-
score with imbalanced tonic datasets (Tonic Dataset [TD], Electrical Tonic Dataset
[ETD], Reduced Tonic Dataset [RTD], and Reduced Electrical Tonic Dataset [RETD]),
about 12.2%, 14.1%, 25%, and 36.8%, respectively. However, these results were not
the best due to the comparison between classification and regression models results,
EDA Uni-modality regression models using LSTM and LSTM-SW were the best
except with RTD (ICC = 0.31) (see Table 6.4 in Section 6.2.1.2).
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Table A.1. Comparison of the Uni-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
classification and regression tasks with MSE and ICC measures. Red. Subsets: Reduced Subsets. The grey cells indicate the best results in each
model. The bold font indicate the best results versus regression in Table A.2.

 

 

 

T
as

k
 

M
ea

su
re

 

Model 

n
-C

la
ss

 

T
ri

v
ia

l 

RFc 

A
rc

h
it

ec
tu

re
  

(L
o
ss

 =
C

C
E

) LSTM LSTM-SW 

L
ea

rn
in

g
 r

at
e 

Dataset 

F
A

D
 

A
u
d
io

-D
 

E
C

G
-D

 

E
M

G
-D

 

E
D

A
-D

 

F
A

D
 

A
u
d
io

-D
 

E
C

G
-D

 

E
M

G
-D

 

E
D

A
-D

 

F
A

D
 

A
u
d
io

-D
 

E
C

G
-D

 

E
M

G
-D

 

E
D

A
-D

 

C
la

ss
if

ic
at

io
n
 

M
S

E
 

S
u
b
se

ts
 

PD 7 0.10 0.10 0.11 0.17 0.10 0.09 A(c) 0.09 0.1 0.1 0.09 0.09 0.10 0.1 0.1 0.09 0.09 
10−5 

 
HPD 4 0.11 0.11 0.12 0.11 0.11 0.11 C(c) 0.1 0.12 0.11 0.10 0.1 0.11 0.12 0.11 0.11 0.11 

EPD 4 0.07 0.07 0.07 0.25 0.07 0.06 C(c) 0.07 0.08 0.07 0.06 0.06 0.08 0.08 0.07 0.07 0.06 

TD 7 0.12 0.12 0.12 0.18 0.16 0.16 A(c) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.12 

10−6 HTD 4 0.41 0.25 0.23 0.3 0.19 0.18 C(c) 0.18 0.24 0.16 0.16 0.15 0.16 0.24 0.18 0.15 0.15 

ETD 4 0.09 0.09 0.09 0.11 0.17 0.11 C(c) 0.09 0.09 0.09 0.09 0.08 0.08 0.09 0.09 0.09 0.08 

R
ed

. 
S

u
b
se

ts
 RPD 7 0.23 0.20 0.23 0.22 0.19 0.14 A(c) 0.12 0.21 0.13 0.16 0.05 0.14 0.2 0.12 0.15 0.05 

10−4 RHPD 4 0.26 0.23 0.26 0.25 0.21 0.22 C(c) 0.13 0.21 0.13 0.16 0.08 0.14 0.21 0.12 0.17 0.07 

REPD 4 0.26 0.21 0.25 0.25 0.18 0.12 C(c) 0.13 0.24 0.14 0.16 0.05 0.14 0.23 0.13 0.15 0.05 

RTD 7 0.25 0.23 0.24 0.26 0.21 0.18 B(c) 0.25 0.25 0.25 0.21 0.21 0.24 0.25 0.25 0.22 0.19 
10−6 

RETD 4 0.25 0.24 0.24 0.35 0.21 0.18 D(c) 0.24 0.24 0.26 0.19 0.16 0.26 0.27 0.25 0.19 0.16 

IC
C

 

S
u
b
se

ts
 

PD 7 0 0.1 0.01 0.01 0.17 0.33 A(c) 0.18 0.02 0 0.20 0.30 0.2 0.04 0.02 0.24 0.40 

10−5 HPD 4 0 0.16 0.01 0.02 0.18 0.11 C(c) 0.26 0.06 0.03 0.21 0.30 0.26 0.08 0.06 0.25 0.29 

EPD 4 0 0.16 0.01 0 0.23 0.37 C(c) 0.25 0.06 0.01 0.27 0.36 0.24 0.06 0.05 0.32 0.50 

TD 7 0 0.08 0.02 0.04 0.09 0.10 A(c) 0.07 0.04 0 0.06 0.07 0.08 0.05 0 0.15 0.11 

10−6 HTD 4 0 0.11 0.08 0.01 0.29 0.30 C(c) 0.19 0.12 0.11 0.29 0.33 0.20 0.12 0.10 0.33 0.31 

ETD 4 0 0.07 0.04 0.05 0.06 0.14 C(c) 0.09 0.06 0 0.02 0.09 0.11 0 0.01 0.06 0.09 

R
ed

. 
S

u
b
se

ts
 RPD 7 0 0.19 0.07 0.12 0.28 0.44 A(c) 0.57 0.21 0.51 0.44 0.83 0.49 0.25 0.53 0.44 0.83 

10−4 RHPD 4 0 0.21 0.07 0.1 0.26 0.23 C(c) 0.56 0.3 0.57 0.48 0.75 0.55 0.31 0.62 0.45 0.76 

REPD 4 0 0.27 0.11 0.11 0.38 0.58 C(c) 0.55 0.23 0.52 0.49 0.84 0.52 0.24 0.55 0.52 0.84 

RTD 7 0 0.09 0.06 0.04 0.17 0.21 B(c) 0.05 0.06 0.03 0.21 0.25 0.08 0.1 0.03 0.18 0.31 
10−6 

RETD 4 0 0.12 0.11 0 0.26 0.37 D(c) 0.15 0.17 0.02 0.33 0.47 0.1 0.15 0.01 0.33 0.46 
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Table A.2. Comparison of the Uni-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
regression task with MSE and ICC measures. Red. Subsets: Reduced Subsets. The grey cells indicate the best results in each model. The bold font
indicate the best results versus classification in Table A.1.
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PD 7 0.10 0.09 0.09 0.12 0.08 0.07 A(r) 0.08 0.08 0.08 0.07 0.06 0.08 0.09 0.09 0.07 0.08 
10−5 

 
HPD 4 0.11 0.09 0.10 0.10 0.09 0.09 C(r) 0.08 0.09 0.09 0.08 0.08 0.09 0.10 0.09 0.09 0.08 

EPD 4 0.07 0.06 0.07 0.14 0.06 0.05 C(r) 0.05 0.10 0.06 0.05 0.04 0.06 0.07 0.07 0.06 0.05 

TD 7 0.12 0.10 0.10 0.11 0.70 0.13 A(r) 0.09 0.07 0.09 0.08 0.08 0.09 0.10 0.10 0.09 0.09 

10−6 HTD 4 0.41 0.13 0.14 0.14 0.14 0.13 C(r) 0.12 0.14 0.13 0.11 0.11 0.16 0.14 0.13 0.11 0.11 

ETD 4 0.09 0.09 0.09 0.08 0.14 0.09 C(r) 0.07 0.07 0.08 0.07 0.07 0.08 0.09 0.08 0.07 0.07 

R
ed

. 
S

u
b
se

ts
 RPD 7 0.23 0.12 0.14 0.13 0.11 0.09 A(r) 0.08 0.14 0.07 0.09 0.04 0.09 0.14 0.08 0.09 0.04 

10−4 RHPD 4 0.26 0.13 0.15 0.14 0.13 0.13 C(r) 0.09 0.16 0.07 0.10 0.05 0.09 0.16 0.08 0.10 0.05 

REPD 4 0.26 0.12 0.15 0.15 0.12 0.08 C(r) 0.10 0.17 0.08 0.09 0.04 0.11 0.16 0.08 0.10 0.03 

RTD 7 0.25 0.14 0.13 0.16 0.13 0.13 B(r) 0.13 0.13 0.13 0.12 0.11 0.13 0.13 0.13 0.12 0.11 
10−6 

RETD 4 0.25 0.15 0.14 0.2 0.13 0.12 D(r) 0.14 0.17 0.14 0.12 0.10 0.13 0.15 0.15 0.12 0.10 

IC
C

 

S
u
b
se

ts
 

PD 7 0 0.13 0.04 0.03 0.19 0.41 A(r) 0.20 0.03 0.04 0.26 0.43 0.22 0.06 0.05 0.27 0.20 

10−5 HPD 4 0 0.19 0.04 0.05 0.20 0.20 C(r) 0.28 0.08 0.06 0.24 0.28 0.27 0.08 0.12 0.26 0.32 

EPD 4 0 0.18 0.04 0.03 0.24 0.47 C(r) 0.27 0.06 0.05 0.32 0.49 0.28 0.06 0.06 0.34 0.53 

TD 7 0 0.10 0.05 0.05 0.04 0.09 A(r) 0.11 0.05 0.02 0.15 0.12 0.12 0.05 0.02 0.17 0.11 

10−6 HTD 4 0 0.17 0.09 0.05 0.22 0.31 C(r) 0.15 0.08 0.03 0.18 0.28 0.15 0.08 0.03 0.27 0.30 

ETD 4 0 0.09 0.05 0.06 0.07 0.17 C(r) 0.09 0.06 0 0.17 0.09 0.11 0.04 0.01 0.19 0.21 

R
ed

. 
S

u
b
se

ts
 RPD 7 0 0.23 0.08 0.14 0.3 0.45 A(r) 0.56 0.24 0.62 0.45 0.81 0.54 0.22 0.58 0.45 0.84 

10−4 RHPD 4 0 0.26 0.12 0.12 0.28 0.24 C(r) 0.62 0.3 0.68 0.5 0.81 0.62 0.28 0.63 0.53 0.81 

REPD 4 0 0.32 0.11 0.12 0.38 0.63 C(r) 0.52 0.22 0.62 0.56 0.86 0.51 0.25 0.62 0.53 0.88 

RTD 7 0 0.05 0.06 0.01 0.14 0.18 B(r) 0.04 0.06 0.02 0.16 0.23 0.07 0.06 0.02 0.17 0.24 
10−6 

RETD 4 0 0.15 0.13 0.01 0.28 0.34 D(r) 0.09 0.13 0.01 0.28 0.49 0.2 0.25 0 0.28 0.44 
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Table A.3. Comparison of the Uni-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
classification task with Accuracy and Micro average precision measures. Reduced Subsets: Red. Subsets. The grey cells indicate the best results in
each model. The bold font indicate the best results. * p-value<0.05 when using paired t-test between RFc and LSTMs (LSTM and LSTM-SW).
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PD 7 77.7 76.6 76.8 60.9 75.9 75.8 A(c) 78.2* 77.4* 77.6* 78.5* 78.6* 77.5* 77.2 77.5* 78* 78.4* 
10−5 

 
HPD 4 78.5 77.8 77.7 78.1 76.3 78.1 C(c) 78.9* 0.12 78.5* 79.1* 79.8* 77.9 77.4 78.4 78.7* 79* 

EPD 4 86.1 85.5 85.5 58.2 84.9 86.1 C(c) 86.6* 0.12 86.1* 87.1* 87.1* 85.4 85.5 86* 86.6* 87* 

TD 7 70.3 68.5 69 62.9 63.2 50 A(c) 70.7* 70.3* 70.3 70.7* 70.7* 69.9* 70.2* 70.3 71.3* 70.6* 

10−6 HTD 4 20 29.1 31 27.8 35.2 41 C(c) 32.8 0.08 31.4 39.3 48.4 33.7 33.8 31.6 39.9 47.7 

ETD 4 82 80.7 80.9 78.8 71 74.3 C(c) 81.7 82* 82 82.1* 82.4* 82.4* 81.5 82 81.8* 82.4* 

R
ed

. 
S

u
b

se
ts

 RPD 7 50 47.6 45.7 48.5 48.5 43.2 A(c) 57.4* 47.6* 57.3* 55.1* 67.3* 54.7* 46.9 57* 53.8* 66.9* 

10−4 RHPD 4 50.1 49.0 44.6 48.7 49.4 45.1 C(c) 60.9* 49.4* 61.6* 58.8* 68.6* 58.7* 49.5* 62.1* 56.2* 68.6* 

REPD 4 50 49.3 44.8 37.5 52.2 55.5 C(c) 61.5* 47.8* 61.3* 58.9* 75.8* 58.9* 49.2* 62* 58.9* 75.1* 

RTD 7 38.1 33.9 32.2 24.3 35 30.4 B(c) 39.2* 36* 37.7* 41.6* 42.2* 37.4 34.9 37.9* 40.5* 42.7* 
10−6 

RETD 4 49 43.1 42.3 33.7 43.4 48.7 D(c) 50.1* 49.8* 48.2* 53.7* 57.7* 47.5* 47* 49.1* 53.7* 57.5* 

M
ic

ro
 a

v
g
. 

re
ci

si
o

n
 %

 

S
u

b
se

ts
 

PD 7 0 16.8 11.1 4.9 16.8 24.9 A(c) 27.5* 17.9 8.30 34.5* 53.3* 24.7* 13.7 13.2 35.3* 43.7* 

10−5 HPD 4 0 24.3 10.4 13.9 21.9 24.6 C(c) 32.4* 20.2* 8.10 34.2* 36.6* 26.6 18.9* 21.8 33.5* 32.2* 

EPD 4 0 27.7 11 4.8 24.5 37.5 C(c) 38.7* 24.3 21.2 49.1* 56.3* 29.7 24.3 14.3 41.1* 47.9* 

TD 7 0 14.3 8.4 8.3 11.3 10.2 A(c) 18.5 17.4 0 27.1 23.2* 13.3 12.2 0 36.7* 25.8 

10−6 HTD 4 0 31.1 31.8 29.2 38 42.7 C(c) 33.3 32 31.4 39.3 48.2 33.7 33.8 31.6 39.9 47.7 

ETD 4 0 14.5 19.8 14.3 9.2 15.2 C(c) 12.4 15.3 0 0 28.6 24.4 0.9 5 15.1 35.7 

R
ed

. 
S

u
b

se
ts

 RPD 7 0 20.1 14.1 14 23.1 20.1 A(c) 28.5* 17.7 26* 32.1* 41.8* 26.6* 17.7 25.7* 29.8* 40.5* 

10−4 RHPD 4 0 27.7 21.1 20.7 28.8 24.2 C(c) 36.8* 26.1* 34.9* 38.4* 40.2* 27.8 27.1* 32.5* 34.8* 39.6* 

REPD 4 0 31.5 24.9 21.6 35.3 35.6 C(c) 40.7* 25.6 38.7* 44.9* 55.2* 33.5* 28 35.3* 42* 53.9* 

RTD 7 0 15.8 14.6 16.9 20.2 19.1 B(c) 30.7 17.3* 21 35.4* 44.6* 37.7* 16.3 8.9 32.4* 40.8* 
10−6 

RETD 4 0 20.2 23.8 16 25.2 35.5 D(c) 27.7 28.6 13.2 38.1 61.6* 19.1 22.4 7.1 38.1 61.9* 
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Table A.4. Comparison of the Uni-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
classification task with the Micro average recall and Micro average F1-score measures. Reduced Subsets: Red. Subsets. The grey cells indicate the
best results in each model. The bold font indicate the best results. * p-value < 0.05 when using paired t-test between RFc and LSTMs (LSTM and
LSTM-SW).
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PD 7 0 3.5 0.5 15.4 6.6 10.6 A(c) 7.15* 0.7 0.1 6.6 8 9.42* 1.4 0.5 9.4* 12.9* 
10−5 

 
HPD 4 0 6.48 0.7 0.7 8.8 3.4 C(c) 11.8* 2.2* 0.5 8.8 9.9* 13.5* 3.7* 1.5 11.8 10.9* 

EPD 4 0 6.29 0.6 17 11.6 14.8 C(c) 9.93* 2.8 0.4 10.8 15.6 12.1* 2.8 2 14.9* 27* 

TD 7 0 3.51 0.9 7.2 6.1 16.7 A(c) 2.01 1 0 1.8* 1.6 3.74 1.3 0 4.4 2.9 

10−6 HTD 4 0 49.4 71.7 69.2 65.5 71 C(c) 92.4* 99.5* 100* 99.6* 94.6* 100* 100* 92.9* 100* 100* 

ETD 4 0 2.6 2.3 1.6 7.9* 13.8 C(c) 4.78 2.3 0 0 3.3 4.39 0.4 0.3 2.1 3.1* 

R
ed

. 
S

u
b

se
ts

 RPD 7 0 11.9 5.2 4.9 18.2 37.7 A(c) 44.6* 12.9* 31.2* 23.5* 73.3* 39.3* 17.5* 40.4* 28.9* 78.4* 

10−4 RHPD 4 0 21.6 12.7 7.7 27.7 36.2 C(c) 57.6* 33.5* 57.6* 39.8* 88* 62.4* 37.2* 68.8* 40.2* 93.1* 

REPD 4 0 25.2 16.9 38.4 37.3 59.5 C(c) 53.8* 26.8* 43.9 35.6 92.7* 59.2* 26.3* 53.4 48.2* 96.8* 

RTD 7 0 11.7 9.1 22.2 19.9 38.2 B(c) 5.55 4.8 0.8 10.4 8.9 9.48 7.3 1.4 9.7 10.5 
10−6 

RETD 4 0 15.1 20.1 23.9 26.4 41 D(c) 8.97 10.6 1.6 16.6 20.9 8.09 16.8 0.6 16.6 20.6 

M
ic

ro
 a

v
g
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F
1

-s
co

re
 %

 

S
u
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ts
 

PD 7 0 5.7 1 3.9 8.7 14.2 A(c) 10.2* 1.3 0.2 10 13 12.1* 2.4* 0.9 12.9* 18.4* 

10−5 HPD 4 0 9.9 1.2 1.4 11.9 5.9 C(c) 15.5* 3.9* 1 12.7 15.2* 16.2* 5.8* 2.7 15.8* 15.5* 

EPD 4 0 10 1.1 6.6 14.6 20.5 C(c) 14.7* 4.4* 0.7 15.6 21.3 16.3* 4.4* 3.4 19.8* 31.2* 

TD 7 0 5.5 1.6 3 7.4 12.2 A(c) 3.37 1.8 0 3.2 2.9 5.63 2.3 0 7.4 5.1 

10−6 HTD 4 0 37.6 43.7 40.7 46 52.9 C(c) 46.6 47.9 46.2 55.6* 62.3* 48.2* 49.5* 45.5 56.3 62.5* 

ETD 4 0 4.2 4 2.7 7.5* 14.1 C(c) 6.21 3.6 0 0 5.6 6.13 0.5 0.5 3.2 5.2* 

R
ed

. 
S

u
b

se
ts

 RPD 7 0 14.6 7.4 7.2 20 25.7 A(c) 34.6* 14.2* 26.6* 26.2* 53.2* 31.5* 17.1* 28.8* 28.6* 53.4* 

10−4 RHPD 4 0 23.8 15.7 11 27.6 28.8 C(c) 44.8* 29* 38.5* 38.5* 55* 43.5* 31.1* 41.2* 37* 55.4* 

REPD 4 0 27.8 19.9 25.7 36.1 44.3 C(c) 46.2* 25.9* 37.8* 38.6 69* 45.9* 27* 40.5* 44.5* 69* 

RTD 7 0 12.8 10.8 15.2 19.6 25.1 B(c) 8.26 6.3 1.4 15.2 14.3 12.2 7.4 2.2 13.9 16.2 
10−6 

RETD 4 0 16.8 21.5 19.1 26.4 36.8 D(c) 12.0 14.6 2.7 21.5 30.2 10.7 17.4 1 21.5 29.7 



APPENDIX B

Bi-modality Results

This chapter is dedicated to provide the detailed results of performing the proposed
methods [RF and LSTMs (LSTM, and LSTM-SW)] with single modalities, two fused
modalities, and all fused modalities regarding classification and regression for
continuous monitoring pain intensity from the 11 proposed datasets on the X-ITE
Pain Database.

Two Uni-Modality ([FAD & EDA-D] or [EMG & EDA]) were fused to improve
Uni-modality results, which were called Bi-Modality. Section 6.3 and Section 6.4
introduces all Bi-Modality models’ results when using Model Fusion [MF] and
Decision Fusion [DF] regarding classification and regression. Appendix B presents
more detailed results regarding classification using Accuracy, Micro avg. precision,
Micro avg. recall, and Micro avg. F1-score measures, see Table B.1 and B.2. In
line with the MSE and ICC measures’ results, Bi-modality models using MF with
LSTMs outperformed those using DF except when using TD and RTD, Bi-modality
models using DF with RFc performed the best (F1-score about 10.2% and 25.2%,
respectively). The possible reason is that RFc performs well with a small size of
data. However, this result was not the best due to the comparison of the results
between classification and regression models; EMG & EDA Bi-modality regression
models using MF with LSTMs were the best (see Table 6.10 in Section 6.3.1.2).
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Table B.1. Comparison of the best Bi-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
classification task with Accuracy and Micro average precision measures. Reduced Subsets: Red. Subsets. DF: Decision Fusion, MF: Model Fusion.
The grey cells indicate the best results in each model. The bold font indicate the best results. * p-value<0.05 when using paired t-test between RFc
and LSTMs (LSTM and LSTM-SW).
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 %

 

S
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PD 7 77.7 78.1 78.2 A-Bi(c) 78.5* 78.7* 78.7 79.1* 78.8* 78.9* 77.8 78.3 

10−5 HPD 4 78.5 47.7 55.2 C-Bi(c) 79.9* 78.2 79.7 80.5 79.9* 79.8* 79.5 80.2* 

EPD 4 86.1 78.2 78.9 C-Bi(c) 87.2* 87.4* 87.7 87.8* 87.2* 87.7* 87 87.2 

TD 7 70.3 67.5 64.3 A-Bi(c) 70.4* 70.6* 70.7 71.2 70.9* 71.3* 71.1 71.6 

10−6 HTD 4 20 40.9 40.8 C-Bi(c) 45.5 48.1 44.6 47.4 43.2 47.5 45.6 49.8 

ETD 4 82 81.9 79.2 C-Bi(c) 82.4 82.2* 82 83.2 81 81.1 82.4 83.2 

R
ed

. 
S

u
b
se

ts
 RPD 7 50 51.7 52.1 A-Bi(c) 66.2* 64.6* 66.2 66.7 65.8* 65.7* 66.9* 67.3 

10−4 RHPD 4 50.1 52 52.3 C-Bi(c) 68* 67.3* 68.4 70.5* 67.2* 68.3* 68.4 70.6 

REPD 4 50 58.9 60.2 C-Bi(c) 74.9* 73.2* 73.4 75.3 73.9* 74.8* 73.9 75.2 

RTD 7 38.1 36.7 36.7 B-Bi(c) 41.6* 42.6* 43.9* 44.4 42.2* 42.6* 42.2 45.2 
10−6 

RETD 4 49 50.4 49.7 D-Bi(c) 54.8* 55.9* 55.7 57.2 54.3* 55.8* 55.9 56.6 

M
ic

ro
 a

v
g
. 

P
re

ci
si

o
n
 %

 

S
u
b
se

ts
 

PD 7 0 41 41.5 A-Bi(c) 47.7 68.6* 41 48.1 48.5 54.8* 31.4 38.4 

10−5 HPD 4 0 34.3 34.8 C-Bi(c) 46.4 1.5 35 42.8 38 46.5* 35.2 40.1* 

EPD 4 0 7.3 8.1 C-Bi(c) 62* 69.5* 54.3 58.3 54.8* 64.3* 46.1 49.7 

TD 7 0 17.2 16 A-Bi(c) 25 25.7 27.7 26.6 26.8 30.1 37.6 46.4* 

10−6 HTD 4 0 41.7 41.7 C-Bi(c) 45.2 47.7 44 47.2 43.2 47.5 44.5 48.7 

ETD 4 0 32.3 19 C-Bi(c) 12.3 14.3 35.3 35.7 1.8 1.3 45.8* 38.1* 

R
ed

. 
S

u
b
se

ts
 RPD 7 0 29.6 29.5 A-Bi(c) 43.1* 46.3* 40.1 41.4 42.7* 43.9* 40.8* 41.6 

10−4 RHPD 4 0 31.8 31.4 C-Bi(c) 42.5* 43.7* 39.8 43.3* 40.2* 43.9* 39.8 43.1 

REPD 4 0 42.1 43 C-Bi(c) 58.3* 58.6* 52.4 54.4 55.1* 56.6* 51.7 53.4 

RTD 7 0 23.2 23.4 B-Bi(c) 44.6* 52.8* 52.7 41.9 46.2* 44.1* 38.9 40.3 
10−6 

RETD 4 0 36.8 35 D-Bi(c) 62.1* 55.3* 49.5 66 51.1 54.3 60.9 55.3 
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Table B.2. Comparison of the best Bi-modality models when applying Trivial, RF (RFc and RFr), and LSTMs (LSTM and LSTM-SW) regarding
classification task with Micro average recall and Micro average F1-score measures. Reduced Subsets: Red. Subsets. DF: Decision Fusion. MF: Model
Fusion. The colored cells indicate the best results in each model. MF: Model Fusion. The bold font indicate the best results. * p-value<0.05 when
using paired t-test between RFc and LSTMs (LSTM and LSTM-SW).
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PD 7 0 4.1 6.7 A-Bi(c) 5 5.2 12.4 13* 8.4* 9.1* 16.6 16.9 

10−5 HPD 4 0 2.1 4.1 C-Bi(c) 8.5* 0.1 18.3* 16.3* 11.4* 10.4* 22.8* 21.4* 

EPD 4 0 53.2 45.7 C-Bi(c) 8.9 10.1 22 23.6* 13.1 16.9 29.2 30.9 

TD 7 0 4.9 8 A-Bi(c) 0.2 0.8 1.7 3.4 2.2 3.4 5.4 5.9* 

10−6 HTD 4 0 75.7 78.6 C-Bi(c) 98.1* 99.9* 87.9 92.9 100* 100* 97.4 97* 

ETD 4 0 4.8 7.9 C-Bi(c) 2.7 0.8 4.1 6.7 0.4 0.2 6.5* 8.6* 
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S

u
b

se
ts

 RPD 7 0 21.1 26.5 A-Bi(c) 58.6* 46.3* 71.7 68.5* 60.4* 57.1* 73.3* 74.2 

10−4 RHPD 4 0 28.2 33 C-Bi(c) 68.4* 62.5* 91.5 91.6* 70.3* 69.1* 92.9 95.1 

REPD 4 0 45.7 53.8 C-Bi(c) 78.4* 71.1* 87.6* 92 81.2* 83.8* 92.3* 95.2 

RTD 7 0 23.9 28 B-Bi(c) 6.8 8.9 11.8* 15.3* 9.8 10.2 15.7* 18.7 
10−6 

RETD 4 0 27.7 32.7 D-Bi(c) 13.8 16.9 21.6 20.3 13.4 16.8 20.1 24.3 
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PD 7 0 7.2 10.8 A-Bi(c) 8.2 8.9 16.9 18.6* 12.6* 13.9* 19.9 20.8 

10−5 HPD 4 0 3.8 6.9 C-Bi(c) 13* 0.10 22.5 22.3* 15.7* 15.3* 26* 26.3* 

EPD 4 0 12.7 13.6 C-Bi(c) 14.3 15.8 27.7 30.2* 19.6 24.3 33 32.6 

TD 7 0 7.6 10.2 A-Bi(c) 0.5 1.6 3.1 5.5 4 5.9 9.2 10.1 

10−6 HTD 4 0 53.2 53.5 C-Bi(c) 61.4* 62.8* 57.8 60.7 58.1 62.9* 60.3 63.3 

ETD 4 0 7.9 10.9 C-Bi(c) 3.7 1.4 6.8 10.8 0.7 0.3 10.8* 13.7* 

R
ed
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ts

 RPD 7 0 24.2 27.5 A-Bi(c) 49.5* 45.6* 51.4 51.5 49.7* 49.2* 52.3* 53.2 

10−4 RHPD 4 0 29.5 31.8 C-Bi(c) 52.4* 51.2* 55.2 58.5* 51.1* 53.5* 55.5 58.8 

REPD 4 0 43.5 47.6 C-Bi(c) 66.6* 63.7* 65.3 68.1 65.5* 67.2* 66 68.2 

RTD 7 0 22.9 25.2 B-Bi(c) 11 14.1 18.6* 21.8* 15.3* 15.4 21* 24.8 
10−6 

RETD 4 0 30.4 31.9 D-Bi(c) 20.4 24.2 28.6 28.9 20.7 24.1 28.2 34 



APPENDIX C

Multi-modality Results

This chapter is dedicated to provide the detailed results of performing the proposed
methods [RF and LSTMs (LSTM, and LSTM-SW)] with single modalities, two fused
modalities, and all fused modalities regarding classification and regression for
continuous monitoring pain intensity from the 11 proposed datasets on the X-ITE
Pain Database.

Table C.1 and C.2 in Appendix C shows the comparison between the best models
from Uni-, Bi-, and Multi-modality (models obtained after fusing all modalities).
The results in Table C.1 emphasized that regression models were the best with
imbalanced datasets, except with Heat Phasic Dataset [HPD], classification and
regression models of EMG EDA Bi-modality that using LSTM-SW and regression
model of FAD EDA Bi-modality perform similar (ICC = 0.41) (see Table 6.13 in
Section 6.4.1.2). For more detailed results about classification versus regression,
see Section 6.4.1. Multi-modality using LSTMs performed the best in terms of recall
except with Reduced Heat Phasic Dataset [RHPD] and Reduced Electrical Phasic
Dataset [REPD]; the EMG EDA Bi-modality and EDA Uni-modality models were
the best, respectively. Further, in terms of F1-score, EDA Uni-modality models
using LSTMs were the best when using Reduced Phasic Dataset [RPD] and [REPD],
about 53.4% and 69%; RTD and RETD using RFc got 25.1%, and 36.8%. EMG EDA
Bi-modality model using LSTMs was the best with PD, Heat Phasic Dataset [HPD],
HTD, and RHPD, about 20.8%, 26.8%, 63.3%, and 58.8%. The Multi-modality
models were the best with Electrical Phasic Dataset [EPD], TD, and ETD, about
34.8%, 11.6%, and 16.7%.
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Table C.1. Comparison of the best Uni-, Bi-, and Multi-modality models using MF regarding classification and regression tasks with MSE and ICC
measures, Bi- and Multi-modalities models using Model Fusion (MF). MF: Model Fusion. The grey cells indicate the best results.
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SE

 

0.10 0.07 0.06 0.05 0.06 0.08 0.06 0.06 A(c/r) A-Bi(c/r) A-Mu(c/r) 

10
−5

 

HPD 4 0.11 0.11 0.10 0.09 0.10 0.11 0.09 0.11 0.11 0.09 0.08 0.07 0.08 0.08 0.08 0.09 C(c/r) C-Bi(c/r) C-Mu(c/r) 
EPD 4 0.07 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.05 0.04 0.04 0.04 0.05 0.04 0.05 C(c/r) C-Bi(c/r) C-Mu(c/r) 
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ETD 4 0.09 0.11 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.07 0.06 0.06 0.07 0.06 0.06 C(c/r) C-Bi(c/r) C-Mu(c/r) 
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RHPD 4 0.26 0.22 0.08 0.07 0.08 0.07 0.07 0.08 0.26 0.13 0.05 0.05 0.13 0.05 0.05 0.08 C(c/r) C-Bi(c/r) C-Mu(c/r) 
REPD 4 0.26 0.12 0.05 0.05 0.06 0.05 0.05 0.06 0.26 0.08 0.04 0.04 0.05 0.03 0.04 0.06 C(c/r) C-Bi(c/r) C-Mu(c/r) 
RTD 7 0.25 0.18 0.21 0.20 0.20 0.19 0.19 0.19 0.25 0.13 0.11 0.13 0.04 0.11 0.13 0.12 B(c/r) B-Bi(c/r) B-Mu(c/r) 

10
−6

 

RETD 4 0.25 0.18 0.16 0.17 0.17 0.16 0.15 0.16 0.25 0.12 0.1 0.09 0.09 0.1 0.09 0.09 D(c/r) D-Bi(c/r) D-Mu(c/r) 
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PD 7 0 0.33 0.30 0.41 0.45 0.40 0.45 0.46 
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0 0.41 0.43 0.49 0.49 0.20 0.51 0.48 A(c/r) A-Bi(c/r) A-Mu(c/r) 

10
−5

 

HPD 4 0 0.11 0.30 0.37 0.39 0.29 0.41 0.38 0 0.20 0.28 0.39 0.38 0.32 0.40 0.40 C(c/r) C-Bi(c/r) C-Mu(c/r) 
EPD 4 0 0.37 0.36 0.49 0.49 0.50 0.53 0.57 0 0.47 0.49 0.57 0.58 0.53 0.58 0.58 C(c/r) C-Bi(c/r) C-Mu(c/r) 
TD 7 0 0.10 0.07 0.12 0.2 0.11 0.18 0.23 0 0.09 0.12 0.24 0.23 0.11 0.26 0.30 A(c/r) A-Bi(c/r) A-Mu(c/r) 

10
−6

 

HTD 4 0 0.3 0.33 0.38 0.35 0.31 0.42 0.33 0 0.31 0.28 0.21 0.38 0.30 0.23 0.35 C(c/r) C-Bi(c/r) C-Mu(c/r) 
ETD 4 0 0.14 0.09 0.18 0.2 0.09 0.22 0.26 0 0.17 0.09 0.25 0.31 0.21 0.31 0.33 C(c/r) C-Bi(c/r) C-Mu(c/r) 

R
ed

. S
ub
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ts

 RPD 7 0 0.44 0.83 0.81 0.82 0.83 0.83 0.81 0 0.45 0.81 0.84 0.82 0.84 0.85 0.78 A(c/r) A-Bi(c/r) A-Mu(c/r) 

10
−4

 

RHPD 4 0 0.23 0.75 0.79 0.74 0.76 0.78 0.74 0 0.24 0.81 0.82 0.73 0.81 0.83 0.73 C(c/r) C-Bi(c/r) C-Mu(c/r) 
REPD 4 0 0.58 0.84 0.85 0.81 0.84 0.85 0.81 0 0.63 0.86 0.86 0.79 0.88 0.87 0.80 C(c/r) C-Bi(c/r) C-Mu(c/r) 
RTD 7 0 0.21 0.25 0.28 0.27 0.31 0.32 0.28 0 0.18 0.23 0.33 0.29 0.24 0.32 0.26 B(c/r) B-Bi(c/r) B-Mu(c/r) 

10
−6

 

RETD 4 0 0.37 0.47 0.43 0.42 0.46 0.52 0.44 0 0.34 0.49 0.52 0.5 0.44 0.52 0.56 D(c/r) D-Bi(c/r) D-Mu(c/r) 
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Table C.2. Comparison of the best Uni-, Bi-, and Multi-modality models using MF regarding classification, Bi- and Multi-modalities models using
Model Fusion (MF). The grey cells indicate the best results. * p-value<0.05 when using paired t-test between RFc and LSTMs (LSTM and LSTM-SW).
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0 10.6 8 13* 16.2* 12.9* 16.9 17.8 A(c) A-Bi(c) A-Mu(c) 
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HPD 4 78.5 78.1 79.8* 80.5 79.3 79* 80.2* 77.6 0 3.4 9.9* 16.3* 19.8* 10.9* 21.4* 22.3* C(c) C-Bi(c) C-Mu(c) 
EPD 4 86.1 86.1 87.1* 87.8* 87.5 87* 87.2 87.3 0 14.8 15.6 23.6* 23.4 27* 30.9 32.1 C(c) C-Bi(c) C-Mu(c) 
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HTD 4 20 41 48.4 47.4 41.6 47.7 49.8 42.2 0 71 94.6* 92.9 90.8 100* 97* 99.9 C(c) C-Bi(c) C-Mu(c) 
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 RPD 7 50 43.2 67.3* 66.7 64.9 66.9* 67.3 64.1* 0 37.7 73.3* 68.5* 81* 78.4* 74.2 85.1* A(c) A-Bi(c) A-Mu(c) 

10
−4

 

RHPD 4 50.1 45.1 68.6* 70.5* 67.5 68.6* 70.6 67.4 0 36.2 88* 91.6* 91.5 93.1* 95.1 94.1 C(c) C-Bi(c) C-Mu(c) 
REPD 4 50 55.5 75.8* 75.3 71.4 75.1* 75.2 71.4* 0 59.5 92.7* 92 92.4 96.8* 95.2 92.4* C(c) C-Bi(c) C-Mu(c) 
RTD 7 38.1 30.4 42.2* 44.4 43.3 42.7* 45.2 41.2 0 38.2 8.9 15.3* 15.4* 10.5 18.7 20.8* B(c) B-Bi(c) B-Mu(c) 

10
−6

 

RETD 4 49 48.7 57.7* 57.2 55 57.5* 56.6 54.7 0 41 20.9 20.3 20.6 20.6 24.3 29.4 D(c) D-Bi(c) D-Mu(c) 

M
ic

ro
 a

vg
. p

re
ci

si
on

 %
 

Su
bs

et
s 

PD 7 0 24.9 53.3* 48.1 36* 43.7* 38.4 28.7* 

M
ic

ro
 a

vg
. F

1-
sc

or
e 

%
 

0 14.2 13 18.6* 19.5* 18.4* 20.8 20 A(c) A-Bi(c) A-Mu(c) 

10
−5

 

HPD 4 0 24.6 36.6* 42.8 34.9 32.2* 40.1* 29.2 0 5.9 15.2* 22.3* 23.6* 15.5* 26.3* 24* C(c) C-Bi(c) C-Mu(c) 
EPD 4 0 37.5 56.3* 58.3 48.6 47.9* 49.7 44.5 0 20.5 21.3 30.2* 28.5 31.2* 32.6 34.8 C(c) C-Bi(c) C-Mu(c) 
TD 7 0 10.2 23.2* 26.6 32.7 25.8 46.4* 36.3 0 12.2 2.9 5.5 10.2* 5.1 10.1* 11.6* A(c) A-Bi(c) A-Mu(c) 

10
−6

 

HTD 4 0 42.7 48.2 47.2 41.8 47.7 48.7 42 0 52.9 62.3* 60.7 56 62.5* 63.3 57.9 C(c) C-Bi(c) C-Mu(c) 
ETD 4 0 15.2 28.6 35.7 38.6 35.7 38.1* 41.7* 0 14.1 5.6 10.8 13 5.2* 13.7* 16.7* C(c) C-Bi(c) C-Mu(c) 

R
ed

. S
ub

se
ts

 RPD 7 0 20.1 41.8* 41.4 36.3* 40.5* 41.6 35.4* 0 25.7 53.2* 51.5 50.1 53.4* 53.2 49.9* A(c) A-Bi(c) A-Mu(c) 

10
−4

 

RHPD 4 0 24.2 40.2* 43.3* 38.8 39.6* 43.1 38.2 0 28.8 55* 58.5* 54.3 55.4* 58.8 54.1 C(c) C-Bi(c) C-Mu(c) 
REPD 4 0 35.6 55.2* 54.4 47.1* 53.9* 53.4 47.1* 0 44.3 69* 68.1 62.2* 69* 68.2 62.2* C(c) C-Bi(c) C-Mu(c) 
RTD 7 0 19.1 44.6* 41.9 39.2 40.8* 40.3 28.8 0 25.1 14.3 21.8* 21* 16.2 24.8 23.3* B(c) B-Bi(c) B-Mu(c) 

10
−6

 

RETD 4 0 35.5 61.6* 66 52.7 61.9* 55.3 48.2 0 36.8 30.2 28.9 26.6 29.7 34 33.4 D(c) D-Bi(c) D-Mu(c) 
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[47] S. Mikat, G. Rätsch, J. Weston, B. Scholkopft, and K. Müller, “Fisher discrimi-
nant analysis with kernels,” in Proceedings of the IEEE Signal Processing Society
Workshop (Cat. No.98TH8468), (Madison,WI,USA), p. 41–48, 25-25 August
1999.

[48] C. Cortes and V. Vapnik, “Support-vector networks machine learning,” Ma-
chine learning, vol. 20, no. 3, p. 273–297, 1995.

[49] S. Brahnam, L. Nanni, and R. Sexton, Introduction to Neonatal Facial Pain Detec-
tion using Common and Advanced Face Classication Techniques, vol. 2, pp. 225–253.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[50] B. Gholami, W. M. Haddad, and A. R. Tannenbaum, “Relevance vector ma-
chine learning for neonate pain intensity assessment using digital imaging,”
IEEE Transactions on Biomedical Engineering, vol. 57, no. 6, pp. 1457 – 1466,
2010.

[51] L. Nanni, A. Lumini, and S. Brahnam, “Local binary patterns variants as tex-
ture descriptors for medical image analysis,” Artificial Intelligence in Medicine,
vol. 49, no. 2, pp. 117–125, 2010.

[52] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local bi-
nary patterns: Application to face recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006.



BIBLIOGRAPHY 142

[53] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition
under difficult lighting conditions,” IEEE Transactions on Image Processing,
vol. 19, no. 6, pp. 1635 – 1650, 2010.

[54] S. Liao and A. C. S. Chung, “Face recognition by using elongated local binary
patterns with average maximum distance gradient magnitude,” in Proceedings
of the Asian Conference on Computer Vision (ACCV), (Tokyo, Japan), pp. 672–679,
18-22 November 2007.

[55] L. Nanni, S. Brahnam, and A. Lumini, “A local approach based on a local
binary patterns variant texture descriptor for classifying pain states,” Expert
Systems with Applications, vol. 37, no. 12, pp. 7888–7894, 2010.

[56] L. Celona and L. Manoni, “Neonatal facial pain assessment combining hand-
crafted and deep features,” in Proceedings of the International Conference on
Image Analysis and Processing (ICIAP), (Catania, Italy), pp. 197–204, 11-15
September 2017.

[57] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR0́5), (San Diego, CA, USA), 20-25 June 2005.

[58] D. Liu, F. Peng, A. Shea, O. Rudovic, and R. Picard, “Deepfacelift: Inter-
pretable personalized models for automatic estimation of self-reported pain,”
in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), (Honolulu, HI, USA), 21-26 July 2017.

[59] P. Rodriguez, G. Cucurull, J. Gonzàlez, J. M. Gonfaus, K. Nasrollahi, T. B.
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[108] M. Saccò, M. Meschi, G. Regolisti, S. Detrenis, L. Bianchi, M. Bertorelli, S. Pioli,
A. Magnano, F. Spagnoli, P. G. Giuri, E. Fiaccadori, and A. Caiazza, “The
relationship between blood pressure and pain,” Journal of Clinical Hypertension,
vol. 15, no. 8, p. 600–605, 2013.

[109] G. C. Littlewort, M. S. Bartletta, and K. Lee, “Automatic coding of facial
expressions displayed during posed and genuine pain,” Image and Vision
Computing, vol. 27, no. 12, pp. 1797–1803, 2009.

[110] P. Lucey, J. F. Cohn, K. M. Prkachind, P. E. Solomon, S. Chewf, and I. Matthews,
“Painful monitoring: Automatic pain monitoring using the unbc-mcmaster
shoulder pain expression archive database,” Image and Vision Computing,
vol. 30, no. 3, pp. 197–205, 2012.



BIBLIOGRAPHY 148

[111] D. Borsook, E. A. Moulton, K. F. Schmidt, and L. R. Becerra, “Neuroimaging
revolutionizes therapeutic approaches to chronic pain,” Molecular Pain, vol. 3,
no. 1, p. 25, 2007.

[112] S. Walter, S. Gruss, H. Ehleiter, J. Tan, H. C. Traue, P. Werner, A. Al-Hamadi,
S. Crawcour, A. O. Andrade, and G. M. da Silva, “The biovid heat pain
database: Data for the advancement and systematic validation of an au-
tomated pain recognition system,” in Proceedings of the IEEE International
Conference on Cybernetics (CYBCO), (Lausanne, Switzerland), 13-15 June 2013.

[113] F. Pouromran, S. Radhakrishnan, and S. Kamarthi, “Exploration of physi-
ological sensors, features, and machine learning models for pain intensity
estimation,” PLoS One, vol. 16, no. 7, p. e0254108, 2021.

[114] J. O. Egede, Automatic Pain Assessment from Face Video (Continuous Pain Inten-
sity Estimation in Adults and Newborns). Thesis, 2018.

[115] M. Odhner, D. Wegman, N. Freeland, A. Steinmetz, and G. L. Ingersoll,
“Assessing pain control in nonverbal critically ill adults,” Dimensions of Critical
Care Nursing, vol. 22, no. 6, p. 260–267, 2003.

[116] S. Hinduja, S. Canavan, and G. Kaur, “Multimodal fusion of physiological
signals and facial action units for pain recognition,” in 15th IEEE International
Conference on Automatic Face and Gesture Recognition (FG 2020), (Buenos Aires,
Argentina), 16-20 November 2020.

[117] P. M. Aslaksen, I. N. Myrbakk, R. S. Høifødt, and M. A. Flaten, “The effect of
experimenter gender on autonomic and subjective responses to pain stimuli,”
Pain, vol. 129, no. 3, pp. 260–268, 2006.

[118] J. Koenig, M. N. Jarczok, R. J. Ellis, T. K. Hillecke, and J. F. Thayer, “Heart rate
variability and experimentally induced pain in healthy adults: A systematic
review,” European Journal of Pain, vol. 18, no. 3, pp. 301–314, 2014.

[119] H. Storm, “Changes in skin conductance as a tool to monitor nociceptive stim-
ulation and pain,” Current Opinion in Anaesthesiology, vol. 12, no. 6, pp. 796–
804, 2008.

[120] T. Ledowski, J. Bromilow, M. J. Paech, H. Storm, R. Hacking, and S. A.
Schug, “Monitoring of skin conductance to assess postoperative pain in-
tensity,” British Journal of Anaesthesia, vol. 97, no. 6, pp. 862–865, 2006.

[121] M. L. Loggia, M. Juneau, and C. M. Bushnell, “Autonomic responses to heat
pain: Heart rate, skin conductance, and their relation to verbal ratings and
stimulus intensity,” Pain, vol. 152, no. 3, 2011.



BIBLIOGRAPHY 149

[122] R. Treister, M. Kliger, G. Zuckerman, I. G. Aryeh, and E. Eisenberg, “Dif-
ferentiating between heat pain intensities: The combined effect of multiple
autonomic parameters,” Pain, vol. 153, no. 9, 2012.

[123] Y. Chu, X. Zhao, J. Yao, Y. Zhao, and Z. Wu, “Physiological signals based
quantitative evaluation method of the pain,” IFAC Proceedings Volumes, vol. 47,
no. 3, pp. 2981–2986, 2014.

[124] Y. Chu, X. Zhao, J. Han, and Y. Su, “Physiological signal-based method for
measurement of pain intensity,” Frontiers in Neuroscience, vol. 11, p. 279, 2017.

[125] S. Walter, S. Gruss, K. Limbrecht-Ecklundt, and H. C. Traue, “Automatic pain
quantification using autonomic parameters,” Psychology and Neuroscience,
vol. 7, no. 3, pp. 363–380, 2014.

[126] S. Gruss, R. Treister, P. Werner, H. C. Traue, S. Crawcour, A. Andrade, and
S. Walter, “Pain intensity recognition rates via biopotential feature patterns
with support vector machines,” PLoS ONE, vol. 10, no. 10, p. e0140330, 2015.
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[171] F. Eyben, M. Wöllmer, and B. Schuller, “opensmile - the munich versatile
and fast open-source audio feature extractor,” in Proceedings of the 18th ACM
International Conference on Multimedia (MM 10), (New York,New York, USA),
p. 1459–1462, 25-29 October 2010.

[172] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore,
J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The HTK Book
(for HTK Version 3.4). Cambridge University Press, 2006.

[173] N. Cummins, S. Amiriparian, G. Hagerer, A. Batliner, S. Steidl, and B. W.
Schuller, “An image-based deep spectrum feature representation for the
recognition of emotional speech,” in Proceedings of the ACM international
conference on Multimedia (MM 1́7), (Mountain View, CA USA), p. 478–484,
23–27 October 2017.

[174] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments in
opensmile, the munich open-source multimedia feature extractor,” in Proceed-
ings of the ACM International Conference on Multimedia (MM’13), (Barcelona,
Spain), p. 835–838, 21-25 October 2013.

[175] J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE Trans-
actions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230 – 236, 1985.

[176] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of qrs de-
tection rules using the mit/bih arrhythmia database,” IEEE Transactions on
Biomedical Engineering, vol. BME-33, no. 12, pp. 1157 – 1165, 1986.

[177] T. W. Parks and C. S. Burrus, Frequency Transformations, book section 7.3.3,
pp. 213–217. Topics in Digital Signal Processing, New York, USA: Wiley Sons,
Incorporated, John, 1987.

[178] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Monterey, CA, USA: Chapman and HallCRC, 1st edition ed.,
1984.

[179] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Repre-
sentations by Error Propagation, vol. 1, book section 8, p. 599–604. San Diego,
California: Institute for Cognitive Science, University of California, USA: MIT
Press, 1986.



BIBLIOGRAPHY 155

[180] M. I. Jordan, “Serial order: A parallel distributed processing approach,” Ad-
vances in Psychology, vol. 121, pp. 471–495, 1997.

[181] P. Baldi, “Gradient descent learning algorithm overview: A general dynami-
cal dystems perspective,” IEEE Transactions on Neural Network, vol. 6, no. 1,
pp. 182–195, 1995.

[182] R. Rojas, The Backpropagation Algorithm, book section 7, pp. 149–182. New
York, NY, USA: Springer-Verlag Inc., 1996.

[183] S. Sharma, S. Sharma, and A. Athaiya, “Activition functions in neural net-
works,” International Journal of Engineering Applied Sciences and Technology
(IJEAST), vol. 4, no. 12, pp. 310–316, 2020.

[184] E. Othman, P. Werner, F. Saxen, A. Al-Hamadi, S. Gruss, and S. Walter, “Facial
expression and electrodermal activity analysis for continuous pain intensity
monitoringon the X-ITE pain database,” Life, vol. 13, no. 9, 2023.

[185] P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater
reliability,” Psychological Bulletin, vol. 86, no. 2, p. 420–428, 1979.

[186] E. Othman, P. Werner, F. Saxen, M. Fiedler, and A. Al-Hamadi, “An automatic
system for continuous pain intensity monitoring based on analyzing data
from uni-, bi-, and multi-modality,” Sensors, vol. 22, no. 13, 2022.
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