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Abstract

Computed tomography (CT) is a non-invasive imaging method for anatomical structures.
Due to its fast acquisition time, it is also suitable for surgery in near real-time using
interventional C-arm devices. However, the biggest downside of CT is the harmful X-
radiation that this imaging method is based on and that the patient as well as the
surgeons are exposed to. The dose can be reduced by acquiring fewer X-ray projections
or by reducing the current of the X-ray tube, which leads to streaking artifacts or noisy
reconstructions, respectively.

Deep learning has become one of the major machine learning methods in the past
decade and also found its way into medical imaging. Compared to traditional approaches,
deep learning and convolutional neural networks (CNNs) are usually very fast and supe-
rior in accuracy. For this reason, the aim of this thesis is to investigate how CNNs can
be applied to interventional CT to reduce the amount of radiation while maintaining the
image quality of the reconstructions.

Several studies have shown that, despite training plain CNNs already improves the
image quality, providing more specific, task-related information is beneficial for guiding
neural networks to solutions that resemble the sought outcomes closer. In this thesis, the
influence of this prior knowledge for the task of optimizing sparse view CT reconstruc-
tions is investigated systematically by categorizing it into the three classes Algebraic,
Machine Learning and Temporal and Model Prior Knowledge. Examples of each cat-
egory are explained and investigated, it is discussed if and how the categories can be
combined to accumulate and concentrate the information, how the models perform with
respect to different numbers of acquired projections, and which evaluation metrics are
suited best for assessing the quality of the optimized CT images.

Moreover, failed attempts are presented and possible reasons and explanations for
why the initial hypotheses had to be rejected are explored.

These studies are going to give a deeper insight into what information is essential
and beneficial for interventional CT reconstructions using deep learning architectures.
Further analyses will show to what extent the developed models can be applied in clinical
practice and which limitations have to be dealt with.
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Zusammenfassung

Die Computertomographie (CT) ist ein nicht-invasives Bildgebungsverfahren für anato-
mische Strukturen. Aufgrund ihrer schnellen Aufnahmezeit eignet sie sich auch für chir-
urgische Eingriffe in nahezu Echtzeit mit interventionellen C-Bogen-Geräten. Der größte
Nachteil der CT ist jedoch die schädliche Röntgenstrahlung, auf der diese Bildgebungs-
methode beruht und der sowohl der Patient als auch die Chirurgen ausgesetzt sind. Die
Dosis kann reduziert werden, indem weniger Röntgenprojektionen aufgenommen werden
oder die Stromstärke der Röntgenröhre reduziert wird, was zu Streifenartefakten bzw.
verrauschten Rekonstruktionen führt.

Deep Learning hat sich im letzten Jahrzehnt zu einer der wichtigsten Methoden des
maschinellen Lernens entwickelt und auch in der medizinischen Bildgebung Einzug ge-
halten. Im Vergleich zu traditionellen Ansätzen sind Deep Learning und Convolutional
Neural Networks (CNNs) in der Regel sehr schnell und in ihrer Genauigkeit überlegen.
Aus diesem Grund soll in dieser Arbeit untersucht werden, wie CNNs in der interven-
tionellen CT eingesetzt werden können, um die Strahlenbelastung zu reduzieren und
gleichzeitig die Bildqualität der Rekonstruktionen zu erhalten.

Studien haben gezeigt, dass, obwohl das Training einfacher CNNs bereits die Bildqua-
lität verbessert, die Bereitstellung spezifischerer, aufgabenbezogener Informationen von
Vorteil ist, um neuronale Netze zu Lösungen zu führen, die den angestrebten Ergebnis-
sen näher kommen. In dieser Arbeit wird der Einfluss dieses Vorwissens für die Aufgabe
der Optimierung von CT-Rekonstruktionen aus wenigen Projektionen systematisch un-
tersucht, indem es in die drei Klassen Algebraisches, Machine Learning und Temporales
und Modellvorwissen eingeteilt wird. Beispiele für jede Kategorie werden erläutert und
untersucht, es wird diskutiert, ob und wie die Kategorien kombiniert werden können, um
die Informationen zu akkumulieren und zu konzentrieren, wie die Qualität der Modelle
mit der Anzahl der erfassten Projektionen korreliert und welche Bewertungsmetriken sich
am besten für die Beurteilung der Qualität der optimierten CT-Bilder eignen. Darüber
hinaus werden gescheiterte Versuche vorgestellt und mögliche Gründe und Erklärungen
dafür erforscht, warum die ursprünglichen Hypothesen verworfen werden mussten.

Diese Studien geben einen tieferen Einblick, welche Informationen für interventionelle
CT-Rekonstruktionen unter Verwendung von Deep-Learning-Architekturen wesentlich
und nützlich sind. Weitere Analysen zeigen, inwieweit die entwickelten Modelle in der
klinischen Praxis angewendet werden können und welche Einschränkungen zu beachten
sind.
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Chapter 1

Introduction

This chapter motivates the general topic of the thesis, provides a definition for (the types
of) prior knowledge, and points out the research questions. Finally, the significance and
the limitations of the research are described.

1.1 Motivation

Cancer is one of the most prevalent diseases of the human body. It is characterized by
abnormal cell growth leading to malignant tumors which destroy surrounding tissue and
may form metastases, i.e. spread to different sites inside the body. According to the
Council of the European Union, one out of three people in Europe develop some kind
of cancer in their life [CK08]. In 2020, almost twenty million new cases were diagnosed
globally, which corresponds to more than 50,000 diagnoses per day. Not only is cancer
very prevalent but also associated with a high mortality: almost ten million deaths due
to cancer were registered globally in 2020 [SFS+21].

The incidences for the different types of cancer are not equal for males and females.
Lung and prostate cancer are the most common kinds of cancer for men (14.3% and
14.1%), while breast cancer is the most commonly diagnosed type for women (24.5%).

Luckily, there are many possible treatments specific to the different cancer types,
especially if diagnosed in an early stage of tumor growth and when no metastases have
formed yet. To this end, cancer screening is an essential part of the diagnosis. For the
previously mentioned most common cancer types, this includes mammography for breast
cancer, low dose Computed Tomography (CT) or chest radiographs for lung cancer, and
digital rectal examination or performing prostate-specific antigen measurements in the
blood for prostate cancer.

Once there is an initial suspicion, the definite diagnosis is usually made with a biopsy
and subsequent clinical analysis of the suspicious tissue. Depending on the site, the
biopsy is guided by interventional fluoroscopy or ultrasound imaging with a preceded CT
or Magnetic Resonance Imaging (MRI) scan. The malignant tumors and their possible
metastases can then be treated with chemotherapy, surgery or radiation therapy, for
example.
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Another increasingly prevalent medical condition is an abnormal rhythm of the heart,
called arrhythmia. In the United Kingdom, for example, it is estimated to affect 2.35%
of the population [KCW+18]. It can usually be corrected with cardiac ablation, where
a catheter is inserted through a blood vessel into the patient’s heart and small scars are
created using heat, i.e. radiofrequency energy, or extreme cold, i.e. cryoablation, which
hinder some of the electrical signals which cause the irregular rhythm of the heart. For
the correct positioning of the catheter, the surgery is usually guided with interventional
X-ray imaging [May22].

There is one thing that all the aforementioned treatments have in common: some X-
ray technique is, at some point, always used for non-invasive imaging, be it for screening,
diagnosis or surgery.

However, two problems arise immediately: (1) X-rays are harmful for both the patient
and the surgeon and might lead to more severe health issues and (2) X-ray images (e.g.
for fluoroscopy) are merely projections and lack the third dimension, which is creating
difficulties especially when navigating interventional instruments like needles or catheters
inside the body.

The second problem can be solved with Computed Tomography (CT), which uses
multiple X-ray projections to compute cross-sectional images which include the missing
third dimension. However, this inherently reinforces the first problem. There are several
ways to reduce the dose, e.g. by reducing the current of the X-ray tube or by reducing the
number of projections that are used for the calculation of the CT images. Both of these
dose limiting ways introduce artifacts, however, in the form of noise (predominantly
with low X-ray currents) or streaking artifacts (predominantly with a low number of
projections). These artifacts exist because data essential for the CT calculations are
missing. Therefore, it is necessary to re-introduce data that is needed for an appropriate
CT reconstruction without exposing the patients and surgeons to further X-radiation.
This is done with the help of prior knowledge.

In recent years, machine learning – as one type of artificial intelligence – has found
its way into medical imaging. Two related subtypes, Convolutional Neural Networks
(CNNs) and deep learning, are especially suitable for image processing and reconstruction
problems since they are built after the human vision and are trainable, i.e. given enough
pairs of input and output data, the algorithms attempt to “learn” the most essential
features and can eventually be used to “predict”, i.e. extrapolate or interpolate, outputs
from unseen input data.

1.2 Prior Knowledge

Before giving a definition for prior knowledge, it is necessary to understand what knowl-
edge is. Depending on in which area the term is used, it is defined and interpreted slightly
differently. One of the more general definitions is given by the Cambridge Dictionary
[Cam]:

Definition (Knowledge). Understanding of or information about a subject that you get
by experience or study, either known by one person or by people generally.

2
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Figure 1.1: Model of prior knowledge described by Hailikari et al. [HNL07].

In the scope of this thesis, the term is closely related to the scientific method, which
provides a systematic way of how to acquire knowledge scientifically: Based on a collec-
tion of data through observation, hypotheses can be formed and validated by experiments
and analyses, which ultimately result in new knowledge [CS90].

Moving on to prior knowledge, it can now be defined as:

Definition (Prior Knowledge). Knowledge which is available before (i.e. prior to) and
potentially supportive in or necessary for solving a new problem using the scientific
method.

A model of general prior knowledge and its components was described by Hailikari
et al. [HNL07] and is shown in Fig. 1.1. More specifically, for the scope of this thesis,
prior knowledge denotes every available useful information which can be used to optimize
the reconstruction quality of artifact-bearing (interventional) CT images due to missing
data, to reduce the exposure of patients and surgeons to X-radiation.

Since the term ‘useful information’ is rather fuzzy and is possibly interpreted differ-
ently and subjectively, the prior knowledge specific to this thesis will be divided into
different categories:

• Algebraic Prior Knowledge: Knowledge about traditional, i.e. without ma-
chine learning, mathematical algorithms and methods for CT reconstruction, e.g.
FBP, DBP, FDK or other iterative reconstruction algorithms.
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• Machine Learning Prior Knowledge: Knowledge about data distributions
that were learned/extracted from training artificial neural networks on specific
data sets, but also about hyperparameters for defining the network architecture
and to set appropriate optimization techniques.

• Temporal and Model Prior Knowledge: Knowledge about temporal changes
and invariances in the image data, e.g. from planning scans before surgery or
projections acquired moments before the current scan, or textures and shapes of
specific tissues or materials.

It has to be noted that use of prior knowledge in the domain of scientific reasoning
seems contrary to its purpose in this thesis: Much research has been put into if using
prior knowledge should be minimized or even disregarded when reasoning scientifically.
This may make sense for this purpose because prior knowledge limits the hypothesis
and/or experiment space considerably, in a way that new hypotheses can only emerge
from memory retrieval (and merely result in an incremental gain of knowledge), as
opposed to building hypotheses solely based on observations (which might result in
gaining disruptive knowledge) [KD88].

However, disregarding prior knowledge implies reasoning context-free. Though this
might work for some research, it is not applicable for every domain. Therefore, creating
hypotheses should be based on a good balance between prior knowledge and empirical
observations [Zim00].

1.3 Objective and Research Questions

As the title of this thesis already suggests, the ultimate objective is the reduction of
X-radiation exposure during CT-guided interventions for patients and surgeons while
creating reconstructions with a quality similar to as if full dose was used.

As described in Sec. 1.1, there are two main types how to reduce X-radiation: (1)
Low dose CT, where the energy of the X-ray beam is decreased such that fewer photons
are emitted from the tube while the number of projection images is kept high. This way,
estimation of the expected (attenuation coefficient) value of each detector pixel is under-
sampled, i.e., simply put, an increased noise level in the projections and consequently
in the reconstructions. This type of undersampling is usually solved with statistical
denoising methods. The focus of this thesis, however, is (2) sparse view CT, where
the X-radiation is decreased by reducing the number of projections while keeping the
radiation of each projection high. This way, the projections are close to noise-free, but
they are undersampled themselves, resulting in locally non-invariant streaking artifacts
in reconstructions. Though these artifacts are more difficult to suppress (due to the
non-locality), algorithms designed for this type are not restricted to statistical denoising
methods, leaving more space for creativity.

Having specified how the radiation is reduced, the question remains how the recon-
structions can be enhanced to have a quality similar to full-dose scans. The previous
sections have already given hints: Convolutional Neural Network (CNN) are going to be
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used throughout the thesis, since they have state-of-the-art performance in many medical
imaging-related tasks, and different kinds of prior knowledge will be incorporated into
the methods to both limit the search space and guide the algorithms towards the correct
solutions. To this end, the following research questions are attempted to be answered in
the subsequent chapters:

Research Question 1 How do the three different types of prior knowledge – Algebraic,
Deep Learning and Temporal/Model Prior Knowledge – influence the quality of the final
reconstructions?
For each type, two methods will be presented in the scope of this thesis which primarily
make use of the respective prior knowledge. Despite their fundamental differences in
the computation of the final reconstructed images or volumes and their use cases, the
setup of the data, i.e. the simulated acquisition setup, is bound to differ slightly, be it in
the number of projections, the resolution of the detector, or the data set being used for
the simulations, for instance. Nevertheless, it was attempted to keep these differences
as small as possible to allow for a meaningful comparison in the end to appropriately
answer this research question. As stated before, note that only the three mentioned
types of prior knowledge are going to be investigated, which excludes other potentially
helpful information from different prior knowledge types.

Research Question 2 How well do different similarity metrics assess the quality of
reconstructed images/volumes wrt. a specific task, and which metrics are most suitable
for evaluating CT reconstruction quality?
When it comes to assessing the quality of reconstructions, similarity metrics are the
preferred way to quantify the performance. As it will turn out, some metrics are de-
rived from others, and therefore merely change the scale, while other metrics are entirely
different, mathematically. Showing a greater similarity using one metric does not neces-
sarily imply the same correlation with another metric. For this reason, every presented
method in the following chapters will not only rely on one metric, but the evaluation will
always be carried out with several ones, such that it can be investigated which metric is
suited best for a certain use case or CT image reconstruction in general.

Research Question 3 How does the reduced X-ray exposure (by reducing the num-
ber of projections) in combination with the incorporated prior knowledge correlate with
reconstruction quality and computation time, and what does this mean for medical ap-
plications?
A major goal of this thesis is not only to explore which type of prior knowledge is
most supportive for the reconstruction task, but also finding methods that could in
fact be used in medical interventions. The best reconstruction algorithm is useless if it
cannot be applied to data acquired during surgery because of a too high computation
time or memory requirements that are only met with hardware dedicated for research
or academia. Therefore, algorithms for supporting medical interventions should be a
sufficiently good compromise between reconstruction quality, dose reduction and acqui-
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sition/computation time, which is going to be investigated by this research question for
the methods proposed in the following chapters.

1.4 Significance and Limitations

Though there are numerous methods and algorithms in the literature that make use of
prior knowledge for the reconstruction of artifact-bearing CT images or volumes, none of
them have given a definition of prior knowledge nor have they attempted to compare how
the previously described types influence the quality of the reconstructions. In this thesis,
a comparison of these types will be provided and discussed for the first time according
to the best of the author’s knowledge. This is hopefully going to make future research
aware of why and how to classify the prior knowledge incorporated by novel methods.
Despite being limited to CT in this thesis, the general concept of prior knowledge is
well-known in every research area and can therefore be adapted or specialized differently
to fit the demands of other scientific fields.

Ultimately, the main goal of this thesis application-wise is to reduce the X-ray dose
that surgeons and patients are exposed to for imaging during operations or follow-up
scans. This is very important in order to reduce the risk of getting acute or chronic
radiation burns, or in the worst case developing cancer.

However, several assumptions are made in the scope of this thesis in order to con-
centrate mainly on the methodological part as compared to the practical applicability,
i.e. for clinical daily routine, of the presented methods. Especially for the training of
the neural networks, much data is necessary to cover most of the variance in the im-
ages. Though many conventional CT data sets are publicly available, interventional
Cone Beam CT (CBCT) data sets are mostly absent. For this reason, the interventional
scans that are used in this thesis are, unless stated otherwise, usually simulated based
on scans from conventional systems. This means that errors and artifacts caused by
real-world physics cannot be considered in many cases, e.g. beam hardening, motion
artifacts, systematic positioning errors of the X-ray tube or detector due to the limited
accuracy of the gantry or comparatively slow read-out time of the detector when the
system is rotating.

When planning scans are incorporated as prior knowledge, they are assumed to be
perfectly, or at least closely, registered to the interventional data. The inter-modal
registration that would be necessary here can become – especially due to the presence
of artifacts in the interventional scans – a very challenging task and is therefore not a
focus of this thesis which essentially concentrates on the reconstruction process.

All methods that are described in this thesis make use of CNNs. Despite them
already having millions of trainable parameters, several methods have been developed
over the past years to visualize and attempt to understand how they work internally,
making them more credible and explainable for future implementation and application on
medical hardware, and thus less acting like a black box. Of course, other types of neural
networks have existed before, like multilayer perceptrons, and new types, like generative
adversarial networks or (vision) transformers, have been developed since. However, these
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would need to have even more parameters trained (and thus need even larger amounts of
data), e.g. hundreds of millions for just a single-layer perceptron or (vision) transformer
for a 128x128 image, or have not yet been explored in the same detail as CNNs and
are therefore less credible at this time, e.g. generative adversarial networks or (vision)
transformers.

Although aiming for interventional CBCT reconstruction, some methods in the fol-
lowing chapters will be described for and evaluated on (conventional) parallel or fan
beam CT. This will show that the general concepts of these methods can also be ap-
plied to different data. In most cases, these methods can also be modified to process cone
beam projections, but this results – in some cases – in very high memory consumption
and/or a slowdown of the reconstruction process, making the training of the respective
Convolutional Neural Network (CNN) impossible, currently.

1.5 Thesis Structure

Chapter 1 has introduced and motivated the topic of this thesis. A definition for prior
knowledge and its types has been provided and the research questions were stated. More-
over, the significance and limitations of this research were described and the structure
of the thesis was summarized.

Chapter 2 will give an overview over the historical developments of both CT and
deep learning to be able to understand which technologies are used for which use cases.

After the descriptions in Chapter 2, Chapter 3 is going to give more detailed expla-
nations of the concepts of CT image formation and reconstruction mathematically and
will define the most commonly used metrics and loss functions that will be used in the
subsequent chapters.

In Chapter 4, related works and literature will be presented to put the thesis into
scientific context. Furthermore, it will be pointed out which scientific gaps exist and
which of these this thesis is trying to fill.

Based on the different types of prior knowledge defined above, Chapter 5 will provide
at least one example for each type.

A rather unconventional chapter is going to follow afterwards. Chapter 6 will briefly
present methods that failed or did not work out as expected. Not only will the unsatis-
factory results be shown but it will also be attempted to give explanations and reasons
for the failures.

Finally in Chapter 7, the previously described methods will be summarized in terms
of their quality for real-world applications, and it will be discussed which benefits and
downsides there are in the methods, and which kinds of prior knowledge should most
likely be combined to achieve the best reconstruction results. The research questions
will be answered explicitly, pointing out which scientific gaps have been filled, and a
brief overview over what still needs to be explored will be given.
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Chapter 2

Historical Developments

To get a better insight into why certain types of CT and artificial neural networks
(or deep learning in general) are predominantly used for specific scopes of application,
it is necessary to understand how they developed historically and what the original
developments aimed for. Therefore, this chapter provides a brief summary of the most
substantial developments and attempts to justify why only some of them will be mainly
focused on in the remainder of this thesis.

2.1 Computed Tomography

Computed Tomography (CT) is an imaging technique based on X-ray measurements
from different positions around the subject or object to be scanned. Compared to tra-
ditional X-ray images, CT allows producing cross-sectional images, called slices. Using
appropriate techniques, not only two-dimensional images, but three-dimensional volumes
can be computed from the acquisitions. The benefit of CT is that, unlike X-ray images,
the resulting images are free of superimpositions [KS88, Chapter 1]. This has a wide
range of applications in a medical context. It can, e.g., be used to detect infarction,
tumors or calcification in the head, tumors or other changes in the lung, to detect coro-
nary artery disease and investigate abdominal pain, to image complex fractures and to
visualize vessels [LFM+15].

CT systems usually consist of three different types of components:

X-ray source In the scope of CT, the X-ray source is usually an X-ray tube which
transforms electrical energy into X-rays. A high voltage is connected to the cathode and
anode inside the vacuum tube, creating an electrical field where electrons are emitted
from the cathode and collected by the anode. Due to the high energy of the electrons,
they are able to convert the (loss of) kinetic energy to X-ray photons during the decel-
eration when being deflected by another charged particle in the anode, which is called
bremsstrahlung [Cer16]. However, this only happens for about one percent of the elec-
trons. The remaining energy is converted to heat. For this reason, rotating anode tubes

9



Prior Knowledge for DL-Based Interventional CBCT Reconstruction
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Figure 2.1: Schematic illustration of a conventional CT scanner. Arrows indicate the
simultaneous rotation of the X-ray tube and detector.

were designed to distribute the heat on a larger area to reduce possible damage [Beh15,
Sec. 1.3.6].

X-ray detector The X-ray detector is the component of the CT system that receives
the photons emitted by the tube. Originally, sensitized glass photographic plates were
used for this purpose, but they were quickly replaced by X-ray film containing crystal
grains of light-sensitive (and therefore not only sensitive to X-rays) silver compounds.
During exposure, the X-ray photons produce electrons in the film, which are trapped
at defects of the crystals, eventually creating clusters of invisible atomic silver. The
film is then developed with a chemical reaction which makes the clusters visible to the
human eye [Mar06, Sec. 15.3.2]. When computers became powerful enough to store and
process images, digital solid state X-ray detectors were developed and used for “live
views” in angiography procedures or where many projections were needed in a short
time, like CT. These digital detectors are able to directly convert X-ray photons to
electrical charge, which can be read out and removed, i.e. reset, within a very short
time [CDR99]. However, the image quality differs between digital and film radiographs.
For this reason, film detectors have not yet been completely replaced by digital detectors.
Moreover, there are other types of X-ray detectors, like dosimeters or Geiger counters,
that are used for dose measurement, which is why they do not have an application for
the imaging in CT systems and are not described any further here.
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Gantry The gantry is the element that combines the other components of the system
and holds them in place. For conventional CT scanners (see Fig. 2.1), it is usually shaped
like a ring or doughnut. The X-ray tube and detector are mounted on opposite sides, i.e.
fixed 180° apart, and the gantry allows them to rotate rapidly along the ring. The patient
to be scanned is lying on a table through the hole of the gantry. For positioning purposes
or acquiring three-dimensional scans, either the table can be moved through the gantry,
or the gantry itself can move along the patient table. The gantries of interventional
scanners are different: to provide more flexibility and space for the surgeons, the X-ray
components are usually mounted on an arm that is shaped like the letter ‘C’, hence
the name C-arm CT. This allows for more dimensions of freedom – the C-arm can be
rotated about and translated along all three spatial dimensions to a certain degree – but
on the other hand also limits the acquisition speed. More recent interventional systems
comprise two C-arms that can move independently or together. These so-called biplane
scanners do not only allow for faster acquisitions or two X-ray images at the same time
but also make it possible to apply algorithms that make use of different tube energies
for being able to discriminate tissues in the reconstructions more reliably. Gantries of
systems used for radiotherapy are very similar to interventional C-arm CT scanners but
replace the X-ray tube with a linear accelerator to create high-energy X-rays, and do
not need a detector.

Moreover, additional components like collimators and filters are often used to form
the beam and avoid certain types of artifacts [BB11].

Five different generations of CT devices have evolved historically, though only one
of them is mainly used nowadays [Buz11]:

Beginning in 1968, the prototype of the first generation of CT scanners used a
translation-rotation approach with parallel beams: an X-ray tube and a (single-pixel)
detector, kept at a fixed distance with the subject to be scanned in between, were both
translated at the same time to sample one line of projections. Afterwards, the tube and
detector were rotated about the center and the next projection could be sampled. This
process was very slow (up to 9 hours for a complete acquisition of a brain, not including
the reconstruction) and inaccurate due to the need of mechanically translating and ro-
tating the device during the acquisition. In 1971, Godfrey N. Hounsfield developed the
first commercially available head CT scanner using the principles of this first generation,
‘EMI Mark I’, which reduced the acquisition time per axial slice down to only 5 minutes
[Hou73].

The second generation was similar to the first one, but now, multiple beams were
emitted from the X-ray tube at multiple detectors, i.e. a detector consisting of multiple
detector pixels in a row. Due to the shape of the beams, this type of projections is
called fan beam projections. This allowed for larger rotational steps between projections
for further reducing the acquisition time per projection while increasing the number of
detector pixels for a higher resolution of the final reconstruction. Again, G. Hounsfield
developed a head CT scanner of this generation in 1974, ‘EMI 5000’, which now took 18
seconds to acquire the projections of a slice [RPI77].

11



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

Still, the X-ray tube and detector had to be rotated/translated and stopped to acquire
a projection, which limits both the speed of a complete acquisition, due to the time that
is needed for accelerating and decelerating the tube and detector for the rotation between
the projections, as well as the accuracy of the angle that a projection is acquired at. This
changed with the third generation, where the devices performed a continuous rotation
during the acquisition. The CT systems of this generation, available since 1975, were the
first ones to acquire scans of not only head but also chest and abdomen areas, because
of an increased number of detector pixels (and thus larger fan angles of up to 60°) and
a fast acquisition time per slice of about 20 seconds. This generation is the one that is
mainly used for conventional CT systems to date, however with several improvements
[Buz11].

For the sake of completeness, the remaining two generations will also be described
here briefly, although they did not prevail against the third generation.

The CT scanners of the fourth generation were developed in 1977. The detector
pixels were arranged in a full 360° circle around the subject, such that only the X-ray
tube had to be rotated. The acquisition time per slice could be reduced to 1 to 5
seconds. However, this static arrangement of detector pixels corresponds to a multitude
of rotating detectors that were used in the third generation, which quickly made this
fourth generation obsolete.

The final, fifth generation used a completely static arrangement of both the tube
and the detector. Like in the previous generation, the detector consisted of a full circle
of detector pixels around the subject. The tube was larger as well: circular segments
of tungsten anodes were placed next to the detector ring and X-radiation at different
positions along these segments were created by deflection of electron beams of cathode-
ray tubes. For this reason, the scanners of this generation are also called electron beam
CT systems. Since the deflection can be changed very fast, the acquisition time could
be reduced to 30ms, which facilitated real-time imaging of the heart. Not only due to
high costs and the technically more challenging construction of these systems did this
generation become obsolete, but also because modern scanners of the third generation
are able to produce reconstructions of similar time and spatial resolution at a much lower
cost [MR06].

A further advancement in CT development was helical CT, which is based on the
third generation but additionally moves the patient table during the acquisition resulting
in a trajectory of a helical shape. This facilitates an even faster generation of truly three-
dimensional reconstructions with isotropic voxels, compared to stacked axial slices, which
were originally reconstructed with third generation systems [KSK+90].

Moreover, X-ray detectors were expanded to have multiple rows of pixels to further re-
duce the acquisition time and the slice thickness. Again, for this, now three-dimensional
shape of beams, systems using this kind of detectors are named cone beam CTs and
were introduced in 1998 [MPT+98]. Dual-source CTs were introduced, which consist of
two X-ray tubes that are 90° apart and thus reduce the acquisition time by half and can
also be run at different voltages to allow for a better separation of tissues and contrast
agents in the reconstructions [FMB+06].
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Figure 2.2: Schematic illustration of an interventional C-arm CT scanner. Arrows indi-
cate the degrees of freedom to move the C-arm.

The main focus of this thesis, however, is not conventional (stationary), but in-
terventional (C-arm) CT (iCT). Compared to conventional systems, CTs used during
interventions usually do not have a closed tubular shape but consist of rather open arms,
shaped like the letter ‘C’, with an X-ray tube mounted on one side and a flat panel detec-
tor, i.e. a flat multi-row detector, on the opposite side (see Fig. 2.2). This configuration
can be rotated, translated and tilted around the patient table. Currently, these inter-
ventional systems are mainly used for fluoroscopy, i.e. real-time X-ray imaging, as a
guidance tool for surgeons to track medical instruments. Truly three-dimensional Com-
puted Tomography is still rather uncommon because of the relatively low rotation speed
of the C-arms (compared to a third generation conventional CT system) as well as a
higher amount of artifacts and inconsistent reconstruction of attenuation values with
respect to conventional CT reconstructions [OWK09].

Mathematical explanations of the aforementioned CT generations and possible algo-
rithms for reconstruction will be described in Chapter 3.

Comparing CT to other imaging modalities like MRI, CT has fewer restrictions for
the scan, e.g. objects containing metal, like pacemakers, are allowed in CT, a certain
intensity in the reconstruction should theoretically have a similar meaning, and the scan
itself is performed very quickly. The biggest downside of CT is its use of X-radiation
which can be harmful for human beings if a high dose is applied and especially increases
the risk of developing cancer. For this reason, it is necessary to keep the exposure during
a scan as low as possible.

There are two possibilities to achieve a low radiation dose. First, the X-ray tube
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Figure 2.3: Simplified illustration of a multi-layer perceptron with two inputs x1 and
x2, two hidden layers and one output y. Inference from left to right. Gradient descent
based on partial derivatives calculated from right to left.

current exposure time product per acquisition can be reduced, which results in noisier
projections and therefore noisier reconstructions. Second, the number of views, i.e. the
number of projections from different positions, can be reduced while maintaining a high
current time product, which mainly introduces streak artifacts due to the undersampling.

On the other hand, in the context of iCT, where it is mainly necessary to track
the position of instruments over time, it is usually not feasible to perform a full scan
and only few projections are acquired, which leads to a very poor reconstruction quality
using the standard techniques, even if the scene may have changed only very little.

2.2 Artificial Neural Networks and Deep Learning

In the last years, machine learning and especially artificial neural networks and deep
learning techniques have evolved drastically and also found their way to medical imaging
and image reconstruction [ZD20]. For this reason, a brief summary of the developments,
which are essential for the scope this thesis, is given in this section.

The first theoretical foundations for artificial neural networks were described by
Warren McCulloch and Walter Pitts in 1943 [MP43], who derived a simple mathematical
model as an abstraction of biological neural networks comprised of connected neurons
to form a graph.

15 years later, in 1958, the perceptron was invented by Frank Rosenblatt [Ros57],
which describes a neuron mathematically as a linear binary classifier, i.e. given a real-
valued vector as input and an equally-sized vector of so-called weights, the perceptron
outputs one out of two classes by applying a threshold as activation function to the
scalar product between the input and weights. Although the number of components in
these vectors is unlimited, Marvin Minsky and Seymour Papert showed in 1969 that
it is not possible for a single perceptron to solve every problem, in particular linearly
nonseparable functions like the Boolean XOR [MP69, Chapter 12].

However, multiple (parallelly, but especially sequentially) connected perceptrons
(calledmulti-layer perceptrons, see Fig. 2.3) were assumed (and later shown) to be able to
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Figure 2.4: Simplified illustration of a Convolutional Neural Network for a two-
dimensional image x with n convolutional layers outputting a single value y. The kernel
of the first convolutional layer k1 has a size of 3 × 3 and therefore 9 trainable weights.
Since no padding is performed, the image shrinks by two pixel in each dimension after
each convolution.

approximate any continuous function when replacing the thresholding by some non-affine
activation function (Universal Approximation Theorem) [HSW89]. Using this property,
Paul John Werbos was the first one to practically train multi-layer perceptrons in 1982
[Wer82] with the efficient error backpropagation algorithm, which was first described by
Seppo Linnainmaa in 1970 [Lin70], i.e. iteratively (locally) optimizing weight vectors
given corresponding input and output data, the so-called supervised learning, by dis-
tributing errors through the network while exploiting the differentiable properties of the
single perceptrons, which became the de facto standard optimization technique to date.

Originally implemented for classification tasks, artificial neural networks were soon
adapted to solve other types of problems, like natural language processing, medical image
analysis and image restoration, due to progressively faster and more efficient hardware
and algorithms, which allowed for networks with numerous neurons and layers, so-called
deep neural networks. Moreover, semi-supervised and unsupervised algorithms have
been proposed, as well as different kinds of architectures. The term deep learning was
introduced to combine all of these approaches [LBH15].

One type of deep neural networks, which is especially important for medical imaging
problems, is CNNs: Kunihiko Fukushima proposed the Neocognitron in 1980 [Fuk80], a
multi-layer perceptron for pattern recognition tasks, which exploited the fact that most
neurons only depend on a local neighborhood of pixels (the receptive field) in the input
image, i.e. they have nonzero weights only for this neighborhood. These few weights
are usually spatially invariant and, consequently, can be shared between all pixels, see
Fig. 2.4. Mathematically, this is the concept of discrete convolution, hence the name
Convolutional Neural Network (CNN). This way, the number of trainable weights can be
reduced drastically (to the number of pixels in the local neighborhood, called the kernel)
while retaining most of the capabilities of ordinary multi-layer perceptrons (in case of
image-based problems). Since discrete convolutions can also be expressed in terms of
weighted summations such like layers of perceptrons (as cyclic convolution matrices),
CNNs are usually optimized using backpropagation, as well [LBD+89].

15



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

Connecting neural networks with CT, both the process of projecting image data and
reconstructing image data from projections can be interpreted as an artificial neural net-
work, at least in the discrete case using the CT system matrix (see Chapter 3). Because
of this, it seems likely that neural networks can be used not only for reconstruction, e.g.
one of the most widely used and direct algorithm called Filtered Backprojection (FBP)
for reconstructions of single planes, i.e. slices, or the slightly modified Feldkamp-Davis-
Kress (FDK) algorithm for three-dimensional reconstructions, i.e. volumes, but also for
improving the image quality, since neural networks can be trained on data with optimal
quality, which can be seen as a kind of prior knowledge for the reconstruction task.

However, in practice, this is not easily implementable due to different reasons: The
number of trainable parameters for only the network that learns a full FBP is (approxi-
mately and without further assumptions) the product of pixels in the projection and in
the reconstruction. Even for small images, this can lead to several million parameters
and entails the need for a vast number of training samples as well as a long training
time. Luckily, since the projection and FBP are mathematically well understood, most
parameters can be set to a fixed/pre-computed value [WHC+18]. Still, there remain
many trainable parameters that are responsible for reducing/removing artifacts caused
by physical phenomena or undersampling. Simply training these using fully-sampled
data can give pleasant visual results but lacks explainability, since the network artifi-
cially creates new data which may not necessarily be close to the true data. For this
reason, there are still a lot of open questions in the field of deep-learning-based recon-
struction of CT data that need to be investigated. Once solved, surgeons will benefit from
high quality reconstructions and precise localizations of interventional instruments in a
short time during an operation while patients are exposed to less X-radiation, which not
only reduces the risk of developing cancer but also allows CT-guided follow-up surgery
without much higher risks, if necessary.
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Chapter 3

CT Image Formation and
Mathematical Foundations

This chapter gives a brief mathematical introduction to the formation of X-ray projec-
tions, how the projected values can be reconstructed, i.e. how the process of projecting
values can be inverted, and which problems arise in real-world applications, where the
measurements are only available as discrete values.

3.1 X-Ray Measurements and Projections

O

O

{

Figure 3.1: X-ray transform vs. Radon transform. Left: 2d, where the X-ray transform
coincides with the Radon transform. Right: 3d, where the X-ray transform is the integral
along the ray starting at x⃗0 in the direction of θ⃗X and the Radon transform is the integral
over the plane described by the distance sR and the two angles θR, ϕR.

The physical process of measuring X-ray projections can be described in a very
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simplified manner like this: The X-ray tube emits photons with a certain energy. In an
idealized setting, these photons move along a ray from the tube towards the detector,
which counts the number of incoming photons. Traveling to the detector, the photons
pass through the object or subject that is located in between the tube and the detector.
Due to its physical properties, the object or subject attenuates the (energy of the) photon
which, in turn, reduces the probability of the photon to reach the detector.

Mathematically, this is described using the Radon transform or the X-ray transform,
both of which coincide for the two-dimensional case, see Fig. 3.1.

3.1.1 Radon Transform

Consider a function of attenuation coefficients at every point in the plane f : R2 → R≥0.
If for f(x, y), it holds:

1. f(x, y) is continuous,

2. the double integral ∫
R

∫
R

|f(x, y)|√
x2 + y2

dx dy

converges,

3. for any point in the plane (x, y) ∈ R2:

lim
r→∞

∫ 2π

0
f(x+ r cos θ, y + r sin θ) dθ = 0 ∀r ∈ R≥0,

then the (two-dimensional) Radon transform of the attenuation function Rf : R2 → R≥0

is defined as

Rf(s, θ) :=

∫
R
f(s cos θ − t sin θ, s sin θ + t cos θ) dt

for any line in the plane defined by its (signed) distance to the origin s and its angle θ
[Rad17].

In higher dimensions, the (generalized) Radon transform integrates over hyperplanes,
which is not necessarily directly related to X-ray projections anymore. For this reason
and for the sake of brevity, a formal definition is not shown here.

3.1.2 X-Ray Transform

Similar to the Radon transform, the X-ray transform calculates integrals of an attenua-
tion function f : Rn → R≥0, n ∈ N, which is required to be continuous and with compact
support. The difference to the Radon transform is that the X-ray transform calculates
integrals of lines (instead of hyperplanes) in every dimensionality.

These lines are parameterized with a point x0 ∈ Rn on the line and a directional
vector θ ∈ Sn−1 in the (n− 1)-sphere, such that the X-ray transform Xf : Rn×Sn−1 →
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R≥0 is defined as [Joh38]:

Xf(x0, θ) :=

∫
R
f(x0 + tθ) dt.

This notation is much more suitable to describe the X-ray projections of the various
beam types, from parallel over fan beams in the two-dimensional case to cone beam
for projections of three-dimensional objects. For this reason, the X-ray transform will
mainly used in the course of this thesis.

3.2 Backprojections and Direct Reconstructions

Image Space Projection Space Fourier Space

Figure 3.2: Steps of Filtered Backprojection for a parallel beam sinogram (top center).
Filtering with a ramp filter is performed in Fourier space.

Some main goals of CT imaging are identifying or locating pathologies non-invasively
or to trace instruments during surgical interventions without perspective distortions and
superimpositions that exist in simple X-ray imaging, like fluoroscopy.

The previous section described how the projections of a function of attenuation
coefficients is defined mathematically. To achieve the aforementioned goals, however,
the inverse problem must be solved, i.e. instead of providing a mathematical definition
for creating projections from a function of attenuation coefficients in space, algorithms for
finding the attenuation function from already measured projections have to be derived.
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The simplest idea is to “smear” back the values of the projections along the lines that
they were defined for. This is called backprojection and is, mathematically, the adjoint
Radon transform:

R∗g(x, y) =
1

2π

∫ 2π

θ=0
g(x cos θ − y sin θ, θ) dθ

for the Radon transform g := Rf of a function f satisfying the requirements in Sec. 3.1.1.
In other words, the backprojection at a certain point is the integral of the projection
values of all the lines that coincide with that point.

However, the backprojection g is not the original object function f (see Fig. 3.2 top
left). It can be shown that the projections need to be convolved with a ramp filter (or
modified versions of it) before backprojection to get back the original object function.
This is called Filtered Backprojection (FBP):

f(x, y) =
1

2π

∫ 2π

θ=0
(g(·, θ) ∗ h)(x cos θ − y sin θ) dθ

with the one-dimensional filtering function h satisfying ĥ(k) = |k| (the hat denoting the
Fourier transform) as shown in Fig. 3.2.

As described in Sec. 3.1.2, the Radon transform is mainly used to describe parallel
beam geometries, since this is what a regular sampling of its arguments results in. Fol-
lowing from this, the FBP algorithm was derived for two-dimensional parallel beams,
as well. More commonly used geometries, like fan beam and cone beam (see Sec. 2.1),
cannot be treated equivalently and need to incorporate modifications to the original
FBP. The most straightforward method is to preprocess the measured projections by
rebinning them to parallel beams and then applying the standard FBP. This rebinning
step, however, is rather inaccurate and usually needs some kind of interpolation.

The FBP itself can be modified to avoid the additional rebinning: In case of fan
beam geometries, the projections are multiplied with a cosine weighting (and possibly a
redundancy weighting function to accommodate for redundantly acquired rays) before
they are filtered and backprojected including a distance weighting [KS88, Ch. 3, Eq. 118-
120].

Very similarly, the FBP was modified to handle cone beam geometries. Its three
steps consist of multiplying the projection data with a weighting function, convolving
them with a filtering function and backprojecting them onto the reconstruction grid
[FDK84]. This algorithm is usually referred to as the FDK algorithm.

3.3 Differentiated Backprojection

Another possibility to reconstruct the function of attenuation coefficients for the specific
case of cone beam projections from a circular trajectory was described by Dennerlein
et al. [DNS+08]. The measured cone beam projections are treated as X-ray transforms
Xf(x0, θ) from source locations x0 along a circular trajectory of radius R

x0(λ) = R · (cosλ, sinλ, 0)T , λ ∈ R ∧R ∈ R+, (3.1)
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Projection Derivative Hilbert Plane Reconstructed Plane

Figure 3.3: Top left: Acquisition setup. Top right: Stack of coronal planes of interest to
be reconstructed. Bottom: Input (projections), intermediate steps (partial derivative,
Hilbert plane) and output of DBP reconstruction algorithm.

along lines of direction θ ∈ S2 ⊂ R3 towards the detector, such that

Xf(x0(λ), θ) =

∫
R
f(x0(λ) + tθ) dt. (3.2)

Applying the partial derivative along the source trajectory and backprojecting between
the source locations x0(λ), λ ∈ [λ−, λ+] results in the DBP

g(x) =

∫ λ+

λ−

1

∥x− x0(λ)∥
∂

∂µ
Xf(x0(µ), θ)

∣∣∣∣
µ=λ

dλ, (3.3)

which is related to the object function f(x) by the Hilbert transform (see [DNS+08,
Eq. 8]):

f(t, z) = π

∫
R
hH(t− τ)

(
f̂(τ, z1(τ)) + f̂(τ, z2(τ))

)
dτ. (3.4)

This can, e.g., be solved by deconvolution and results in reconstructed planes perpen-
dicular to the source trajectory. A visual representation of the steps of the algorithm is
depicted in Fig. 3.3.
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(i)FFT

2D

Rearrange

Figure 3.4: Illustration of Fourier slice theorem between sinogram/projections (top left)
and reconstructed slice (bottom right).

3.4 Fourier Slice Theorem and Fourier Reconstructions

The Fourier slice theorem tells that the one-dimensional Fourier transform (F1) of
a parallel-beam projection for a certain angle (pθ) is the same as extracting a one-
dimensional central slice with the same angle (Sθ) from the two-dimensional Fourier
transform (F2) of the image function (f):

F1[pθ](u) = (Sθ ◦ F2[f ])(u) (3.5)

This means that every parallel-beam CT projection fills up the 2D Fourier space by one
spoke, see Fig. 3.4. Though not directly applicable to the more commonly used fan-
and cone-beam projections, the Fourier slice theorem has been used in reconstruction
algorithms for these beam types with slight modifications [ZH95a; ZH95b].

3.5 Discretization

A major problem that has to be faced for real data is the discretization of the previously
described equations for both projecting and reconstructing.

Assuming projections to be X-ray transforms Xf : Rn × Sn−1 → R≥0, the data
is only known for discrete subsets of both dimensions. This is due to the physical
properties of the detector, which comprises a countable finite number of pixels, and the
gantry, which is usually limited to circular or helical trajectories, as well as the read-out
of the detector, which can only be carried out at a countable finite number of gantry
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configurations. Moreover, since the detector pixels only count the number of incoming
photons, the image of Xf is a discrete subset of R≥0 as well.

On the other hand, reconstructing images is usually performed on a compact regular
Cartesian grid, i.e. the actual function of attenuation coefficients f : Rn → R≥0 is
sampled at a countable finite number of coordinates.

However, due to the discrete nature of both the measured projections and the re-
constructed images, it is possible to express the process of projecting the attenuation
function in terms of a simple matrix-vector product:

Af = p

with the so-called CT system matrix A ∈ Rm×n, the vector of attenuation coefficients
f ∈ Rn and the vector of projection values p ∈ Rm. With this notation, it is directly
apparent that the reconstruction is an ill-posed problem: in general, the system matrix
is not invertible, i.e. ker(A) ̸= {0}.

From another point of view, the Fourier slice theorem tells that each parallel projec-
tion fills up the Fourier space by one line, which means that the number of projections
for an exact reconstruction must be very high to accommodate for the larger gaps at the
outer regions, i.e. high frequencies, of the sampled Fourier space.

Reducing the number of projections (which is one of the main goals of this thesis)
has further mathematical implications. The fewer projections are available, the more
elements exist in the nullspace ker(A), meaning the number of possible attenuation
vectors, which created the projections, increases. Therefore, to reconstruct a credible
image from few projections, the reconstruction algorithm has to regularize the set of
attenuation vectors, which is mainly achieved by CNNs in this thesis.

3.6 Iterative Reconstruction

The direct reconstruction algorithms described in Sec. 3.2 and 3.3, or those based on
the Fourier Slice theorem (Sec. 3.4) are most useful in deep-learning-based methods due
to their fast computation time. However, they usually suffer from pronounced artifacts
when the data is not fully sampled and, moreover, it is often not simple to incorporate
further prior knowledge into these algorithms, e.g. about physical properties or shape
information, i.e. Temporal and Model Prior Knowledge.

Based on the discrete representation of the Radon or X-ray transform, i.e. a linear
equation system Af = p, several iterative reconstruction algorithms have been applied
to or derived for CT data. Due to their inherent capability of incorporating Temporal
and Model Prior Knowledge – and thus limiting the nullspace – the quality of the final
reconstructions is often superior to direct methods at the expense of computation time
and model complexity, rendering them hard to incorporate in deep learning methods.
For this reason, they are only briefly described in this section, as the main focus in the
next chapters will be on direct reconstruction algorithms.

Iterative reconstruction methods can be divided into two categories:
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Algebraic reconstruction methods Based on algebraic properties of the linear
equation system, this type attempts to solve for the reconstruction space variable with
algorithms similar to (stochastic) gradient descent, Newton’s method or quasi-Newton’s
methods. Examples include ART [GBH70], SIRT [Gil72] and SART [AK84].

Statistical reconstruction methods This type assumes the variables of the equation
system to be samples of a random distribution, estimating the expected value of each
pixel/voxel in the reconstruction, i.e. expectation maximization or maximum likelihood
algorithms. This includes denoising methods in projection space, e.g. [LBV06], ordered-
subsets algorithms, e.g. [EF99], and regularized methods, e.g. [KM75].

3.7 Physical Units

The two physical units that are most commonly associated with CT measurements are
(mass) attenuation coefficients and Hounsfield units.

The linear attenuation coefficients describe how much the energy of an X-ray photon
is attenuated at a specific point on the ray between the X-ray source and the detector.
It is usually denoted with µ and is measured in cm−1. It is defined as:

µ =
∆N

N∆x

where N describes the total number of photons along an X-ray, ∆N the number of
photons removed and ∆x the length of the section of the X-ray where the attenuation
happens [McK98].

However, the linear attenuation coefficient does not solely depend on material prop-
erties, like the density and the atomic numbers, but also on the photon energy. To make
it at least independent of the density, the mass attenuation coefficient is more commonly
used, which is measured in cm2 g−1 and is defined as:

µM =
µ

ρ

where ρ denotes the density [McK98].

Since the values of the attenuation coefficients are rather small for tissues of the
human body (e.g. 0.4 cm−1 for rather highly absorbing cortical bone tissue at an energy
level of 100 keV) and because they still depend on the photon energy, Godfrey Hounsfield
proposed a scale that is derived from the linear attenuation coefficient and describes how
it changes relatively to water and air of similar X-ray properties [DCM+14, Sec. 11.2.2]:

HUmaterial =
µmaterial − µwater

µwater
· 1000

This, by definition, makes water have 0HU and air (with an attenuation coefficient of
0 cm−1) have −1000HU. It is important to note that the Hounsfield units in CBCT
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scans do not exactly correlate to conventional CT scans and therefore should not be
used to, e.g. estimate bone density/quality [MD07].

For evaluation and validation purposes of the methods presented in the following
chapters, the Hounsfield scale is usually going to be used. For the optimization and
training of the CNNs however, the data will usually be kept in attenuation coefficients
to avoid negative values which might have unpleasant mathematical implications in the
algorithms.

3.8 Metrics and Loss Functions

For the evaluation of the methods that are presented in the following chapters, it is
necessary to define several error and similarity metrics. This allows for a quantitative
comparison between not only the methods presented in this thesis, but also among those
published in other articles. Although the metrics described in this section are widely
used in the literature for regression problems, like image restoration and reconstruction,
and give insights into how different methods compare, they can only show tendencies
for the quality of rather abstract features: some metrics calculate a statistical value
from pixel-wise differences or differences in a small neighborhood, others transform the
image to a frequency domain before and another type computes the differences between
features extracted from a CNN. None of these widely used metrics include information
for task-specific evaluation, which is the reason why they should not be trusted blindly
and a human expert study should always be conducted before the method is used in
clinical practice. A tool for medical evaluation was developed in the course of this thesis
and is described in Apx. C.

Some of the metrics that are described in this section, and sometimes combinations
of them, are also commonly used as loss functions for the training of CNNs or neural
networks in general. However, choosing a specific metric MA as the loss function does
not imply optimality wrt. itself during validation. As will be shown in the next chapters,
optimal validation values forMA might only be achieved when choosing a different metric
MB as the loss function. For this reason, relying on evaluating with only one metric
can be misleading, which is why all the experiments in the following chapters will be
evaluated using several metrics. This will also give a better general impression of the
quality of the reconstructions (in accordance with the previous paragraph). Further
information about loss functions in general can be found in Sec. 4.3. In fact, the loss
functions described in this section are merely the data mismatch term Φ.

The images that the following metrics are defined on are defined as F,G ∈ RM×N ,
unless stated otherwise.

3.8.1 Mean Squared Error

Due to its pleasant differential properties, the Mean Squared Error (MSE) (also called
L2 Error) is often the first choice as an objective function for regression problems. The
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MSE is defined as:

MSE(F,G) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2

Squaring the errors results in a very high importance for outliers. On the other hand, it
is not easily recognizable what absolute pixel differences an MSE value stands for. For
this reason, the Root Mean Squared Error (RMSE) was defined as:

RMSE(F,G) =
√

MSE(F,G),

to get an estimate of the absolute pixel differences, and the Normalized Mean Squared
Error (NMSE), defined as [HSY20]:

NMSE(F,G) =
MSE(F,G)

MSE(F, 0)
, 0 ∈ RM×N

scales the value to the unit interval wrt. the target image F and therefore facilitates
comparisons of results from differently scaled data (e.g. different data sets or imaging
modalities). There are, however, slight differences in the definition of NMSE in the
literature, which are derived from the differing definitions of the Normalizaed Root
Mean Squared Error (NRMSE):

NRMSE1(F,G) =
RMSE(F,G)

Fmax − Fmin

NRMSE2(F,G) =
RMSE(F,G)

F̄

NRMSE3(F,G) =
RMSE(F,G)

Q3 −Q1
,

Fmax and Fmin denoting the maximum and minimum value of F , F̄ is the mean value
of F [Zam89], and Q1 and Q3 denote the first and third quartile of the values in F .

3.8.2 Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) is closely related to the MSE but evaluates the
errors on a logarithmic scale, which is especially helpful for data with a high dynamic
range. It is defined as:

PSNR(F,G) = 20 · log10

(
Imax√

MSE(F,G)

)
, Imax ∈ R

with Imax being the maximum possible pixel value of the image.
This metric is not necessarily correlated to image quality as perceived by humans and

should therefore always be evaluated in conjunction with other metrics [HG08]. Other
problems of this metric include: the PSNR is undefined for F = G; Imax is not always
sensibly defined (e.g. X-ray attenuation coefficients are unbounded), in which case some
value must be set heuristically, which might render this metric incomparable to its use
in other articles. The influence of this normalization factor on the metric is derived in
Appendix B.2 and discussed in Sec. 7.1 as part of the answer for Research Question 2.
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3.8.3 Mean Absolute Error

The Mean Absolute Error (MAE) (also called L1 Error) is favorable compared to the
MSE when outliers should have a similar importance compared to expected values. The
MAE is defined as:

MAE(F,G) =
1

MN

M∑
i=1

N∑
j=1

|fij − gij |

3.8.4 Structural Similarity Index Measure

The Structural Similarity Image Measure (SSIM) is one of the perception-based metrics.
Compared to the previously described metrics, the SSIM is not calculated from a per-
pixel measure but from local neighborhoods. It is based on a weighted product of the
luminance l(F,G), contrast c(F,G) and structure s(F,G) [WBS+04]:

SSIM(F,G) = l(F,G)α · c(F,G)β · s(F,G)γ , α, β, γ ∈ R>0

The luminance l(F,G) compares the average intensity between the two images. The
contrast c(F,G) compares the standard deviation of the pixel intensities between the
images. The structure s(F,G) measures the joint variability of the pixels of the images,
which, in case of medical images, provides information about the anatomical difference
between the two images.

When used as a loss function for network optimization, it is usually modified to be

LSSIM(F,G) = 1− SSIM(F,G)

to make the maximization of the SSIM a minimization problem.

Similar to PSNR, the functions l(F,G), c(F,G) and s(F,G) include a normalization
factor, setting the dynamic range of intensity values, to make the metric output sensible
values (in fact, to stabilize divisions with weak denominators in these functions). Again,
X-ray attenuation coefficients are unbounded, such that a sensible value for this factor
needs to be set heuristically. The influence of this normalization factor on the metric
is derived in Appendix B.3 and discussed in Sec. 7.1 as part of the answer for Research
Question 2.

3.8.5 VGG Loss

The VGG Loss is a perception-based loss function that was introduced for the purpose
of quantifying the similarity of the structural contents of images [LTH+17], as compared
to pixel-wise losses/metrics. It is based on a trained VGG19 network [SZ15], which was
originally presented for image classification. The VGG architecture consists of a number
of convolutional layers for feature extraction and additional fully-connected layers, i.e. a
multilayer perceptron, for the final classification, which makes 19 layers in total. For the
VGG Loss, the weights from the network trained on ImageNet are used, the classification

27



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

layers are removed and the MSE between the feature maps, i.e. the output after the
convolutional layers, of two images is calculated:

LVGG(F,G) = MSE(ϕ(F ), ϕ(G))

where ϕ : Rm×n → Ro×p describes the feature maps that are computed by feeding an
image to the trained VGG network. Since the original network was trained to predict the
classes of images, the feature maps are expected to contain all the information necessary
for classification in the form of high-level features.

However, despite its likely useful properties, this loss function will not be used in
this thesis and merely serves as an example for a loss function that is very close to
the human perception: It was designed for natural images and photographs instead of
medical images, so it does not necessarily work as well and might need to be retrained
on medical data sets. Moreover, the VGG19 network consumes additional memory on
the GPU which, in turn, reduces the amount of memory that can be used for the actual
training. It also slows down the training process because it needs to perform many
convolutions, especially when larger images are used.

3.8.6 Dice Loss

The Dice loss is derived from the Dice similarity coefficient:

Dice(P,Q) =
2|P ∩Q|
|P |+ |Q|

for two sets P and Q. Although no assumptions are made regarding the elements of
the two sets, the Dice similarity coefficient is usually used to measure the accuracy of
segmentation problems, where one set contains the pixels/voxels of the segmentation
output of an algorithm and the other set contains the pixels/voxels of the ground truth
segmentation.

Segmentations of images are often given as implicit representations, i.e. matrices
F,G ∈ {0, 1}M×N , instead of sets of pixels. For these types of segmentations, the Dice
similarity coefficient can equivalently be expressed as

Diceimp(F,G) =
ϵ+ 2

∑M
i=1

∑N
j=1 fijgij

ϵ+
∑M

i=1

∑N
j=1 f

2
ij + g2ij

,

ϵ > 0 ∈ R being a smoothing parameter pulling the value towards 1 and also avoiding
division by zero in case of empty segmentations.

Since network optimization is usually performed on continuous variables both for the
parameters and outputs (as opposed to the NP-hard integer programming), the segmen-
tations are assumed to be real values as well, i.e. F,G ∈ RM×N like defined at the begin-
ning, which calls for a fuzzy representation of the Dice similarity coefficient. Fortunately,
the previously defined Dice on implicit segmentations can already be interpreted as a
fuzzy version when relaxing the domains from {0, 1}M×N to {x ∈ R : 0 ≤ x ≤ 1}M×N ,
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as it already utilizes operations on real values and coincides with the Dice coefficient for
binary values:

Dicefuzzy := Diceimp.

Assuming segmentations F , G of the relaxed domain, Dicefuzzy outputs values in
this same domain, as well. The closer the value gets towards 1, the more similar the
two segmentations are. Since target functions used for network optimization are usually
designed to be minimized, the Dice loss function is defined as

LDice(F,G) = 1−Dicefuzzy(F,G),

which effectively inverts the fuzzy Dice coefficient.
An advantage of the Dice loss compared to other segmentation losses (e.g. binary

or categorical cross-correlation) is that it inherently handles the size of the segmented
areas/volumes by definition. For this reason, no extra weighting parameter needs to be
set to balance the sizes of classes (e.g. foreground vs. background) which is necessary
for an unbiased training of the networks.

The attentive reader might wonder why a segmentation loss is included in this section,
whereas the topic of the thesis is image reconstruction. Semantic image segmentation
is one of the most researched areas in medical image processing, which is why highly
optimized algorithms and network architectures have been developed that are even able
to achieve superhuman accuracy [LZL+17]. Exploiting this knowledge, one of the meth-
ods presented in Chapter 5 combines the reconstruction with an additional auxiliary
segmentation task which ultimately helps the network to extract which information is
beneficial for the actual reconstruction.
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Chapter 4

State of the Art

In this chapter, several previously published methods and algorithms wrt. CT image
reconstruction, deep learning and interventional CBCT will be described briefly, which
can be considered the state of the art for their specific areas of application.

Since there is only a very limited number of publications specifically regarding deep
learning-based interventional CBCT reconstruction, this chapter will not exclusively
contain descriptions for methods of this specific problem but also more general areas of
research.

For the purpose of a more systematic review of the methods, the following sections
will be separated by the type of prior knowledge (see Sec. 1.2) that they are based on.
It should also be noted that a strict classification of the methods into the types of prior
knowledge is – in many cases – not possible. However, the type that is predominant is
usually easily identifiable and will therefore be used for the classification here.

4.1 Algebraic Prior Knowledge

In the scope of this thesis, Algebraic Prior Knowledge describes algorithms not based on
machine learning which are used for CT reconstruction. More generally, this includes all
algorithms that can be used to solve inverse problems of different kinds. CT reconstruc-
tion, in general, is an ill-posed inverse problem, mathematically, and therefore can be
solved more accurately if the reconstruction algorithm allows incorporating information
on how to regularize the space of suitable solutions (see Sec. 3.5).

Despite their rather low reconstruction quality, especially for undersampled data, the
FBP and, its three-dimensional counterpart, the FDK are still widely used in academic
research as well as practically implemented on actual hardware used for clinical routine
scans. The advantages of these direct reconstruction methods excel the usually better
quality of the reconstruction methods that will be described in the following paragraph:
high speed and low memory requirements (which is also particularly vital when training
neural networks). It is possible that doctors prefer the lower quality of these algorithms
because they are used to seeing the artifacts that are introduced by them, such that
they build an intuition of what the data would probably look like without the artifacts.
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The counterpart to these direct reconstruction methods are iterative ones (Sec. 3.6).
These usually result in higher quality reconstructions but need considerably more time
which makes them insufficient for interventional use. As previously discussed in Ch. 3,
the two main types of iterative reconstruction algorithms can be categorized as algebraic
and statistical reconstruction methods. Depending on the type and sparsity of the
available data, one of the two types of algorithms is preferred over the other: Algebraic
methods are often used when sufficient but artifact-bearing data (e.g. metal artifacts) is
available, whereas statistical methods are often preferred when the sampling of the data
is very low but can be represented well as a set of samples from a certain probability
distribution.

For examples of the respective types of iterative reconstruction algorithms, the reader
is referred to the descriptions in Sec. 3.6 to avoid redundant explanations here.

4.2 Machine Learning Prior Knowledge

Since this thesis investigates how CNNs can be used for (interventional) CT reconstruc-
tion, the methods described in this section will mainly focus on the domain of supervised
deep learning. Nevertheless, there are other categories of machine learning, i.e. unsu-
pervised or reinforcement learning, as well as other models, e.g. decision trees, support-
vector machines or Bayesian networks. Only few of these other types have been applied
to CT reconstruction problems, probably due to their inherent (or originally proposed)
purpose for solving other problems, e.g. ‘white box’ decision trees for comprehensible and
explainable classification (but relatively low accuracy and robustness), support-vector
machines for linear or non-linear separation problems (and therefore merely binary clas-
sification), or Bayesian networks for probabilistic predictions of which inputs cause the
presence of a certain output (but exact inference is NP-hard [Coo90], such that real-world
problems can only be solved with broken-down or oversimplified versions like näıve Bayes
networks [Zha04] or by introducing additional constraints on the probabilities).

The deep learning architecture that has gained the most attention for image process-
ing tasks in general, and which is now also widely accepted to be used in algorithms in
medical contexts including image reconstruction, is the UNet [RFB15b]. When it was
originally presented in 2015, it was used for the segmentation of neuronal structures in
electron microscopic stacks, achieving results that surpassed other segmentation meth-
ods by a large margin, not only in quality but also processing time. The UNet quickly
found its way to all kinds of segmentation and eventually reconstruction and restoration
problems in both medical/biological contexts and natural image processing. The success
of this architecture lies in the skip-connections: Prior to the UNet, encoder-decoder ar-
chitectures had been used for segmentation, already, but lacked the ability to reconstruct
fine structures from the encoded features [LSD15]. Ronneberger et al. proposed to con-
catenate the feature maps of every encoding stage to the features of the corresponding
decoding stages. This way, the high-resolution information is passed over to the decoder
and, in turn, can be used more effectively for the segmentation task.

Milletari et al. [MNA16] replaced the two-dimensional convolutions with their three-
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Figure 4.1: FBPConvNet [JMF+17] based on UNet [RFB15b] for sparse view CT recon-
struction © 2017 IEEE.

dimensional counterparts and used residual blocks in every layer to enhance the gradient
flow, which they called ‘V-Net’, in order to apply the network on volumes directly instead
of stacks of images. More importantly, they proposed the Dice loss, a fuzzy version of the
Dice coefficient, which can be used as an objective function for the network optimization
directly. Compared to the previously usually used (weighted) crossentropy or logistic
loss, the Dice loss is not prone to unbalanced classes (e.g. foreground vs. background)
and can be applied to the segmentation of both large and small structures without any
modification.

Both the UNet and the Dice loss are presently the go-to methods when it comes to
choosing a CNN architecture and loss function for segmentation problems, just like the
UNet with mean squared error loss for many kinds of regression problems (including
image restoration and reconstruction).

In the scope of CT reconstruction, one main problem of merely applying a CNN
like a UNet on the sinograms/projections (e.g. UDNN [BBP+19] or Sinogram Syn-
thesis [LLK+19]) or reconstructions (e.g. FBPConvNet [JMF+17], see Fig. 4.1) is the
absent data consistency wrt. the original raw data (e.g. not retaining properties of the
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Figure 4.2: Precision learning for CBCT: implementing the backprojection as a neural
network layer (AT

cb) [WHC+18] © 2018 IEEE

Radon transform when applied on projections or getting different projection values when
reprojecting “optimized” reconstructions). However, as previously described in Sec. 3.5,
the Radon transform, and therefore the forward and (filtered) backprojection, can be
approximated and expressed as matrix multiplications. This makes these transforma-
tions implementable as neural network layers, as proposed by Würfl et al. [WGC+16;
WHC+18], which enables switching between projection and reconstruction space directly
inside the network, see Fig. 4.2. Since these layers do not have optimizable parameters,
they have an increased robustness and a decreased amount of data needed for training
compared to fully trainable transformations like AUTOMAP [ZLC+18] (see Sec. 6.1).

Since iterative reconstruction algorithms usually result in a higher quality recon-
structions compared to FBP, several works have focused on imitating these using neu-
ral networks. For this purpose, the iterations were ‘unrolled’ and each iteration com-
prised the necessary steps of the original algebraic algorithm, possibly including for-
ward/backprojection layers, enhanced by trainable convolutional or other neural network
layers.

One notable method is the LEARN network [CZC+18] for removing noise from low-
dose CT acquisitions where in each iteration, the current estimation of the reconstruction
is optimized with blocks of convolutional layers and data consistency wrt. the projections
is encouraged by a weighted algebraic term corresponding to one step of gradient descent
like in Algebraic Reconstruction Technique (ART).

Another method of this unrolled-iteration type reconstruction methods, which can
be considered state-of-the-art as per Leuschner et al. [LSG+21], is the Primal-Dual
Network [AÖ18].

It attempts to imitate the non-linear primal dual hybrid gradient (PDHG) algo-
rithm [CP11], which is able to solve inverse problems of potentially non-smooth objec-
tive functionals iteratively by replacing the exact gradient calculation needed for the
optimization with proximal operators that are differentiable and directly calculate one
step of the optimization. Additionally, the optimization is carried out in both the primal
space, i.e. which the variable to be optimized is an element of, as well as in the dual
space, i.e. the range of the operator which is to be inverted, alternatingly.

Instead of hand-crafting the proximal operators, they are defined as trainable layers
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Figure 4.3: Primal-Dual Network: an unrolled iterative reconstruction method with
CNNs [AÖ18] © 2018 IEEE.

of a neural network which can be optimized in a supervised manner depending on the
data that the algorithm should be applied on afterwards.

Moreover, the presented Learned Primal-Dual algorithm generalizes the learned
PDHG algorithm by modifying some steps (keeping track of the data in between the
iterations, making the update in the dual space trainable instead of a constant weighted
summation, letting the network learn the over-relaxation for the primal updates instead
of a constant factor and allowing to learn different proximal operators in each iteration).

The Primal-Dual Network which they proposed (see Fig. 4.3) consists of residual
convolutional blocks in both primal and dual space. The unrolled iteration count was
set to 10 and the primal variables at the beginning were zero-initialized, since other
initializations, e.g. FBP reconstructions, did not give better final results on their data.

Though outperforming other reconstruction algorithms (both algebraic and trainable
ones), the architecture does not scale well: each additional unrolled iteration increases
not only the processing time (especially when the operators for switching between the
primal and dual space are not highly optimized, e.g. Radon transform and FBP) but also
the memory consumption (especially when applied to problems in a higher dimension,
e.g. three-dimensional CT volume reconstruction), because the intermediate variables
need to be stored for each iteration.

4.3 Temporal and Model Prior Knowledge

As described in Sec. 3.6, iterative reconstruction methods are the type of algorithms that
can incorporate this type of prior knowledge most easily. Therefore, most of this prior
knowledge, expressed as (additional) terms in a cost function for optimization, are found
in publications presenting algebraic or statistical reconstruction algorithms. Moreover,
since the training of deep learning models is a type of (stochastic) gradient descent, and
therefore iterative, several loss functions for neural networks include these additional
terms, as well.
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One of the most fundamental Model Prior Knowledge about reconstruction tasks is
the representation of the data. As described in Sec. 3.5, projection data from a real
CT scanner is a finite set of measurements (due to the discrete nature of the detector
pixels). However, this does not specify how the reconstructed data is represented, i.e.
how the actual continuous function of attenuation coefficients is discretized. The most
obvious, and probably mostly used, representation is pixels/voxels. However, assuming
the discretization of the continuous object function to be a weighted sum of basis func-
tions, other representations become possible, too. Next to pixels/voxels, Kaiser-Bessel
functions as basis functions are conceivable, which represent blobs, and are chosen for
their favorable mathematical properties (rotational symmetry and relatively low compu-
tational cost compared to basis functions other than pixels/voxels) [NWV+15][ZNG08].

Especially traditional (non-deep learning) reconstruction algorithms and deep learn-
ing networks incorporating projection/reconstruction layers need to define how the de-
tector data should be interpreted: as an integral (from the source to the detector pixel)
over a line [Sid85], a strip (effectively a rectangle or cube), or trapezoids/truncated pyra-
mids [LFB10] (sorted by increasing degree of reality and decreasing computation speed).
While trapezoid integrals can be considered state-of-the-art for CT reconstruction in
general, projection/reconstruction layers in deep learning networks still mostly rely on
line integrals for their computation speed.

Another choice about the physical representation, for statistical reconstruction in
particular, is how to model the type of the probability distribution of the detector
pixel values and the corresponding noise. In fact, the noise is a combination of Poisson
and Gaussian distributions [TBS+06] but due to mathematical properties, this is often
reduced to only Poisson [HL89] or only Gaussian noise [BS93]. Very often, though,
noise is not considered at all if the publication’s goal is to show how a certain aspect of
an algorithm behaves under simplified/idealized conditions. The presented methods in
Ch. 5 will not consider photon noise, either, as the main focus of the thesis is reduction
of streaking artifacts caused by sparse views.

Although the previously mentioned choices are important for modeling and repre-
senting the physical data, the definition of Model Prior Knowledge is more general in
mathematical optimization and the terminology depends on the field of application, e.g.
optimizing an objective function in mathematics, an energy function in physics or a loss
or cost function in machine learning. Since this thesis focuses on CNN based algorithms,
being a part of machine learning, the term loss function will be used. The loss function
is generally defined by two sub-terms [Bis06, Sec. 3.1.4]:

GeneralLoss(F,G) = Φ(F,G) + λΨ(F ), λ ∈ R>0

where Φ is a data mismatch function (a.k.a. data term, Sec. 3.8) and Ψ is a regularization
function (a.k.a. model term) attempting to reduce the nullspace and therefore generating
both more unique and credible solutions. Compared to the data term, the model term
only depends on the output of the reconstruction algorithm (and not additionally on the
ground truth), which means it can only measure inherent errors in the reconstructions.

Common choices for model terms include Huber [ZZH+13], total variation [SP08],
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Figure 4.4: Global dictionary learning [XYM+12] for low dose CT reconstruction. (a)
Slice used to extract the patches. (b) Learned dictionary consisting of 256 patches ©
2012 IEEE.

and pseudo L0 norm [HXL+11] regularization. Moreover, model terms can also ex-
press Temporal Prior Knowledge, i.e. knowledge about the scanned subject from, e.g.,
high quality planning scans, projections that were acquired earlier during surgery or
information about locations of interventional instruments which are tracked over time.
Examples include predicted Markov random field coefficients [ZHL+16], global dictio-
nary learning [XYM+12] (see Fig. 4.4) or non-local means regularization [ZHM+14]. For
a more complete review of regularization functions, the reader is referred to Zhang et
al. [ZWZ+18].

It is not possible to determine a single state-of-the-art method in the scope of Tem-
poral and Model Prior Knowledge because the presented model terms are specific to
certain tasks to be solved. As an example, a highly weighted total variation term effec-
tively reduces or even eliminates artifacts like noise or streaks, such that a subsequent
segmentation is greatly simplified. However, using the very same weighted term for just
an enhanced reconstruction using less X-radiation likely simplifies textures of tissues (i.e.
reduces local contrasts) excessively such that a distinction of tissues with similar average
attenuation coefficients but different contrasts might become very challenging.

4.4 Discussion

Summarizing the previous sections, it can be concluded that there is not one particular
method that can be considered state of the art in terms of CT reconstruction. While
many of the rather general algorithms, e.g. FBP or FBPConvNet, work reasonably well
for all kinds of reconstructions, the more specialized ones, e.g. Primal-Dual Network,
may solve certain reconstruction problems best but have not been evaluated on other
less specialized problems or reconstruction tasks of different domains.

Moreover, one main problem of the methods and architectures explained in the sec-
tion about Machine Learning Prior Knowledge is their scalability. On one hand, this is
often less of a problem in case of sparse view CT when the methods process the projec-
tion images. However, the projections as well as reconstruction images/volumes were in
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all cases described to be of low resolution, i.e. lower than the actual pixel count of a real
detector or lower than the actual pixel/voxel count of a reconstruction generated from a
real CT system. The limiting factors are two-fold: not only does the memory consump-
tion of high-resolution reconstruction still quickly exceed current graphics cards’ RAM
limitations, but the processing time also is usually proportional to the data size, which
might not be a big problem during inference but easily increases the training time to
impractical amounts. Therefore, the applicability of the machine-learning-based recon-
structions is limited to use cases that do not rely on highly accurate images of especially
very small structures.

Another very important brick missing in the wall of CT reconstruction methods
aided by machine learning is algorithms for (interventional) cone beam CT reconstruc-
tion. Despite a large amount of CT reconstruction networks, most of them were designed
for parallel beam CT, which is nearly unused for medical imaging nowadays, or for con-
ventional CT, including fan beam geometries or rather thin cone beam projections from
multi-row detectors. Technically, the methods developed for these geometries could also
be applied to CBCT acquisitions from flat panel detectors, but would result in discarding
many detector rows that are not close to the central row and therefore invalidate the as-
sumption of projections perpendicular to the transverse axis, which many reconstruction
methods make. True CBCT methods should make use of all detector rows, including
those with a high cone angle. This, however, usually results in a much higher memory
consumption unsuitable for deep learning. For this reason, additional processing of the
cone beam projections or modifications to the reconstruction algorithms, i.e. Algebraic
Prior Knowledge, are necessary.

Lastly, there is no evaluation in the literature about which types of prior knowledge
aid the reconstruction to what extent. Similarly, it has not yet been assessed if combi-
nations of different types of prior knowledge may reinforce each other or if one type is
already sufficient for certain use cases.

38



Chapter 5

Methods

In this chapter, the methods that were developed and evaluated are described and ex-
plained in detail. Each section will start with an introducing paragraph which supplies
further information about how the method fits in this thesis and which publication it is
based on. Moreover, the main types of prior knowledge used for the respective methods
will be stated in this introductory paragraph as well. This way, the reader is immediately
aware of where to place the methods in the scope of this thesis.

Before describing the actual methods, though, the first section of this chapter will
introduce the data sets that were used to train and evaluate the methods. This is to
get a first visual impression of how the data looks like and to provide some further
information about the imaging parameters and statistics about the scanned population.
In the description of the methods, the data sets merely need to be referenced and possible
selections of subsets need to be justified.

5.1 Data Sets

For neural networks, the data sets that are used for training are an essential part to
achieving good quality as well as good generalization. The task of CT image recon-
struction is not limited to certain anatomical sites of the human body nor to medical
imaging in general. However, since this thesis focuses on medical CT reconstruction,
the data sets will be selected to cover certain areas of the human body that are often
scanned in clinical routine or therapies, or that have certain properties (like untruncated
projections) such that some types of artifacts or other problems do not distort the capa-
bilities of the presented methods and to limit the space of solutions. However, this does
not mean that the data sets were cherry-picked and the algorithms only work on a very
limited subset of the available data, but it should be kept in mind that modifications to
the methods might be necessary when being applied to new data.
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Figure 5.1: Three exemplary axial slices of the CT Lymph Nodes data set from three
different subjects. (a) Pelvis. (b) Midabdomen. (c) Mediastinum.

5.1.1 CT Lymph Nodes

The CT Lymph Nodes collection [RLS+15] is a publicly available data set of The Can-
cer Imaging Archive [CVS+13] which comprises 176 CT scans of different patients of
the mediastinal and abdominal region (see Fig. 5.1). It has been originally designed
for developing and assessing automated detection algorithms of lymph nodes, which is
a challenging task due to the high variance in shape and size and low contrast of sur-
rounding tissues. The provided data is the reconstructed CT volumes in Hounsfield
units. The axial in-plane resolution of the scans is 512 px× 512 px with varying pixel
spacings (between 0.664mm× 0.664mm and 0.977mm× 0.977mm, the median being
0.803mm× 0.803mm) and varying numbers of slices (between 485 and 746 with a me-
dian of 674 slices). The spacing between slices is usually 1mm and occasionally 1.25mm.
Unfortunately, there is no information about the X-ray tube, detector or gantry param-
eters.

Since the scans were acquired using a conventional CT system and the main focus
of this thesis is on interventional CBCT, it is not problematic that the projections are
not included in this data set.

The data set also includes labels, i.e. positions of the centroids as well as size mea-
surements and segmentations, for 388 mediastinal and 595 abdominal lymph nodes.
However, these are not going to be used in the scope of this thesis.

This data set was selected because it comprises a great variety of subjects wrt.
age (between 18 and 73 years) while being stratified wrt. male/female. Moreover, the
volumes comprise a wide range of pixel spacings and spacings between slices. This makes
them ideal as training data for CNNs in order to generalize well and be applicable to
new data.

5.1.2 NeuWave Medical Needle

This data set comprises several scans of a NeuWave Medical ablation needle (see Fig. 5.2).
The needle was inserted into an abdominal CT phantom at different positions and

various angles. These combinations of needle and phantom were then subsequently
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Figure 5.2: Three exemplary scans of the NeuWave Medical Needle data set. (a) Axial
slices. (b) Coronal slices, included here to visualize the extents of the needle.

scanned in the in-house KIDS-CT at STIMULATE, a conventional CT scanner with a
cylindrical detector and a tubular gantry, with an axial acquisition protocol. The tube’s
peak voltage was set to 100 kV with an exposure of 42mAs for each X-ray projection.

Due to the axial acquisition protocol and the rather small (in terms of rows) detector,
the field of view was rather narrow with about 60mm along the transverse axis. There-
fore, the reconstructions were created with an axial in-plane resolution of 512 px× 512 px
with a pixel spacing of 0.75mm× 0.75mm for a number of 128 slices with a slice thick-
ness of 0.5mm each.

This data set was only used to extract interventional needles which could then be
inserted virtually into the scans of the other described data sets. To this end, the
reconstructions were segmented using a simple thresholding of 2500HU which perfectly
separated the needle from the phantom values (disregarding small artifacts very close
to the needle). These volumes containing only the needles were then reprojected to
simulate interventional CBCT projections that could be combined with simulated CBCT
projections of the other data sets.

The lack of large data sets of interventional CBCT scans including needles makes
this simulation a necessary step.

It should be noted that the extraction of the needle always needs the indirection of a
reconstruction, even if scanned in a CBCT system, unless the needle is held in position
without any aid (like the phantom, in this case). This is because the projections are ray
sums and therefore, extracting the needle directly on the projections does not suppress
the attenuation values of the surrounding materials on the corresponding rays.

This data set was selected because it is one of the few available data sets depicting
interventional instruments. As discussed earlier, scans acquired during medical interven-
tions are rarely saved for later reference due to their low quality compared to conventional
CT scans and their therefore rather limited number of use cases after surgery.
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Figure 5.3: Three exemplary axial head scan slices of the May Clinic data set from three
different subjects.

5.1.3 Mayo Clinic Data Set

The Mayo Clinic Data Set [MCH+20] is a publicly available data set, originally designed
for the Low Dose CT Grand Challenge, the objectives of which being the qualitative
assessment of the diagnostic performance of denoising and iterative reconstruction al-
gorithms. It comprises 299 scans of the head, chest and abdomen, half of them from a
Siemens SOMATOM Definition Flash scanner, the rest from a GE Lightspeed VCT CT
scanner (see Fig. 5.3).

It does not only include the reconstructed volumes of anonymized clinical routine
dose acquisitions as well as simulated low dose reconstructions but also the raw X-ray
projection data, which is especially helpful for developing reconstruction algorithms that
do not solely rely on post-processing the reconstructions but directly incorporating the
projections without the need to simulate this raw data. This way, new algorithms can
be developed for and tested on actual real data.

Additionally, the data set also contains an Excel sheet with clinical data identifying
all pathology, as well as annotations of lesions.

Like the CT Lymph Nodes collection, the Maya Clinic Data Set has been available
on The Cancer Imaging Archive since 2020, i.e. four years after the challenge took place,
in a restricted area and needs a free registration before being able to access. However,
the data is now also available on the challenge website without needing to register.

Only fifty of the available 99 head scans were used in this thesis for memory reasons.

Again, the projections provided in this data set could not be used for the purpose
of this thesis since they were acquired from conventional CT systems and not from
interventional CBCT.

This data set was used because of the favorable extents of the scanned anatomic
site: the head. Since the flat panel detectors of interventional C-arm scanners are
approximately the size of a human head, the projections are merely truncated caudally
whereas the projections of the sites of the previously described data sets are truncated in
both cranial and caudal directions, and possibly laterally as well. This lack of truncation
of the head scans results in reconstructions which bear fewer artifacts such that the

42



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

150 HU

-1000 HU

(a) (b) (c)

Figure 5.4: Three exemplary axial head scan slices of the LungCT-Diagnosis data set
from three different subjects.

trained networks can focus on optimizing the artifacts caused by sparse views and highly
absorbing materials like ablation needles.

However, the application of networks trained for sparse view interventional head
scans for, e.g., tumor ablation is rather limited because brain tumors are usually more
fatal than a higher dose of X-radiation such that, in this case, surgeons would rather
increase the X-ray exposure to be able to remove the tumor more accurately with higher
quality reconstructions in the first place.

Nevertheless, one can expect methods that work well on this data set to work well
for different anatomical sites, too: the dynamic range of attenuation coefficients in the
cranial region is among the highest in the entire human body. It comprises highly
absorbing tissues like the skull as well as soft tissues like the brain, which makes the
reconstruction of cranial acquisitions a challenging task.

5.1.4 LungCT-Diagnosis

The LungCT-Diagnosis data set [GBS+15] is another publicly available data set on The
Cancer Imaging Archive [CVS+13]. It comprises 61 retrospectively, routinely acquired
diagnostic helical CT scans with enhanced contrast (see Fig. 5.4). Its original purpose
was to develop methods for quantitatively describing lung adenocarcinomas from CT
acquisitions.

Out of the 61 scans, 54, 5, and 2 were acquired with a Siemens, GE Medical Systems
and Toshiba scanner, respectively. The axial in-plane resolution is 512 px× 512 px with
varying pixel spacings (between 0.586mm× 0.586mm and 0.953mm× 0.953mm with a
median of 0.725mm× 0.725mm) and varying numbers of slices (between 24 and 150,
the median being 70 slices). The slice thickness ranges from 3mm to 6mm. The peak
voltage of the X-ray tube is 120 kV in 57 cases, 130 kV in 1 case, and 140 kV in 3
cases. The average exposure per slice ranges from 66mAs to 313mAs with a median of
110mAs. All image data is represented as Hounsfield units. Further information about
the scanning geometry can be found in the headers of the image files.

Along with the image data, there is an additional document summarizing the statis-
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tics of the scanned patients and the imaging parameters, as well as clinical parameters
for each patient of the cohort.

There is no raw/projection data in this data set. However, like for the other publicly
available data sets, the scans were acquired using conventional CT scanners, so the lack
of projections is not problematic for the methods that are designed for CBCT.

This data set was selected because of the large number of use cases of high quality
despite low dose reconstructions of this anatomical site. Radiofrequency ablations of lung
tumors are a minimally invasive alternative to open surgery [JFS+13] usually guided by
CBCTs imaging, and chest CT scans in general have become more frequent during the
past years [WMM+20; HHL+16], the coronavirus disease 2019 having a significant impact
on hospitals’ imaging department’s routine activity [BBF20]. Developing methods that
improve the quality of the reconstructions in this anatomical site is therefore much
appreciated.

5.2 Deep Learning Prior Knowledge: Primal-Dual UNet
for Sinogram Upsampling

This section is in large parts based on the publication “Sinogram upsampling using
Primal-Dual UNet for undersampled CT and radial MRI reconstruction” [ECR+21] in
collaboration with Soumick Chatterjee. Here, it will be described for sparse view fan
beam CT data but it has also been shown to work well for undersampled radial MRI
acquisitions and is in many cases even better than using the traditional reconstruction
algorithms of MRI. These additional results can be found in the appendix.

The prior knowledge used in this method is primarily categorized as Deep Learning
Prior Knowledge and secondarily as Analytical Prior Knowledge.

5.2.1 Architecture: Primal-Dual UNet

The network architecture proposed in this paper is based on the Primal-Dual Net-
work [AÖ18], which achieves superior reconstruction quality compared to other deep
learning based reconstruction algorithms [LSG+21], and is combined with UNet [RFB15b],
which is well-known and often used in medical image processing.

The Primal-Dual Network can be interpreted as an unrolled iterative reconstruction
algorithm that optimizes in both the sinogram and image space using blocks of fully
convolutional layers. In each iteration, the processed sinograms are reconstructed using
FBP, combined with the processed images, and reprojected to be combined with the
previous sinograms. This does not only improve the quality of the final reconstructions,
but also ensures data consistency with the original sinogram. As with many iterative
algorithms, the quality of the reconstructions of the Primal-Dual Network depends on
the number of iterations, i.e. for a fixed number of parameters in an iteration, an optimal
(usually minimal) number of iterations has to be found for the network to converge. If
the number of parameters in the convolutional blocks is low, more iterations are needed
for convergence. This, however, increases the processing time, with the reconstruction

44



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

and projection operators being the bottleneck. On the other hand, if the number of
parameters in the convolutional blocks increases, much fewer iterations are needed for
convergence. The processing time is not much different though, since the convolutions
are the bottleneck in this case.

The idea of the network architecture proposed in this paper tackles this trade-off by

1. keeping the number of iterations low, i.e. the reconstruction and projection oper-
ators are not a bottleneck, and

2. replacing the convolutional blocks in the image space with a UNet, to get a high
number of parameters while keeping the processing time low.

This architecture will be referred to as Primal-Dual UNet, or short PD-UNet.

5.2.2 Baselines

The performance of the proposed model was compared against three deep learning based
methods. First, a UNet [RFB15b] was applied on reconstructed undersampled CT im-
ages [JMF+17] and MRIs [HKL+18], referred to hereafter as Reconstruction UNet. The
CT images were reconstructed using FBP, and the undersampled MRIs were recon-
structed using adjoint NUFFT [Lin18]. The undersampled images were supplied as
input to the Reconstruction UNet model, and the outputs of the model were compared
against the ground-truth fully-sampled images to calculate the loss while training.

The second baseline was the Sinogram UNet [LLK+19]. For this method, the sparsely
sampled sinograms were upsampled using bilinear interpolation before supplying them
to the UNet model as input, and the loss was computed by comparing the outputs of
the model against the corresponding fully-sampled sinograms.

The final deep learning baseline was the Primal-Dual Network [AÖ18], where the
sparsely sampled sinograms and zero-initialized reconstructions were supplied as input
to the model, and the outputs from the model were compared against the ground-truth
fully-sampled images to calculate the loss.

Lastly, the performance of the models was compared with FBP reconstructions after
upsampling the sparse-sampled sinograms using bilinear interpolation.

5.2.3 Data Normalization

Data in the image space was normalized by dividing each slice by the 99th percentile
of the intensity values present in the total training and validation sets. The sinograms
were normalized using the Z-score normalization method – by applying the following
equation on each sinogram:

SN =
S − µs

σs
(5.1)

where SN is the normalized sinogram, S is the original sinogram, and µs and σs are the
mean and standard deviation of the values present in the sinogram.
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Figure 5.5: Primal-Dual UNet (PD-UNet): Architecture of the proposed network. The
orange and the green boxes signify the primal and dual iterates, respectively. The
proposed primal block uses a UNet model instead of a fully-convolutional network. In
contrast, the dual block is the same fully-convolutional network as the original primal-
dual network. It is to be noted that the second orange and green blocks have the same
architecture as the first one. The initial dual block receives the image reconstructed by
applying FBP on the sparse sinogram as f0 (unlike the original primal-dual network,
which receives all zeros), all-zeros as the initial-state h0, and the sparse sinogram g. The
output of this block, along with the same f0 is given as input to the first primal block.
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For the Reconstruction UNet and Sinogram UNet, the input was normalized using
the image space normalization and sinogram normalization methods, respectively. The
output given by those models were “de-normalized” to obtain the final output – for
image space, multiplying with the 99th percentile of the intensity values; for sinogram
space, by applying the following equation:

S = (SN × σs) + µs (5.2)

For the Primal-Dual Network and the proposed PD-UNet, several normalization and
de-normalization steps were performed. Initially, µs and σs were calculated from the
sparsely sampled input sinogram, and all the sinogram (de-)normalizations were per-
formed using these values. Each time before a sinogram or an image was given as input
to any block, they were normalized using sinogram and image normalization methods as
discussed earlier, and after receiving output from that block, they were de-normalized.
This was performed to preserve the relationship between image and sinogram values
while using two different types of normalization techniques for two different data spaces.
Before providing the final output of these models, the values were also de-normalized
using the image space technique.

5.2.4 Implementation and Training

The models (the proposed model and the baseline models) were trained for 151 epochs
with an effective batch size of 32, the best epoch was chosen based on the validation loss
and was used for inference on the test set. The memory requirements of the proposed
model and the different baseline models are not the same, making it impossible to have
the same batch size for the different models. To achieve a constant effective batch size
for all the models, instead of the conventional “forward-pass then backward-pass” tech-
nique for each training step, multiple forward passes were performed, the gradients were
summed up, and finally, an accumulated backward-pass was performed. The number
of forward passes to be performed before an accumulated backward pass was calculated
as: (32 ÷ actual batch size of the model). To train the models, the loss was calcu-
lated using mean absolute error (L1-Loss), and it was minimized using Adam optimizer
(learning rate = 1× 10−3, β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8). The models were im-
plemented using PyTorch [PGM+19], with the help of PyTorch Lightning [Fal+19]; and
were trained with mixed precision [MNA+17] using Nvidia RTX 2080Ti and Nvidia RTX
A6000 GPUs. The code of this project is available on GitHub1.

5.2.5 Data Set

In this study, the data of 28 subjects of the CT Lymph Nodes [RLS+15] collection from
The Cancer Imaging Archive [CVS+13] was used, consisting of reconstructed volumes
of the abdomen that serve as ground truth. 16, 4 and 8 subjects were used for training,
validation and test set, respectively. Since the number of axial slices and the voxel sizes

1https://github.com/phernst/pd-unet
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differed per subject, the central 200 slices of each subject were extracted and interpolated
using sinc interpolation to have an in-plane matrix size of 256x256.

The sinograms were simulated using torch radon [Ron20] as the data sets only contain
reconstructions. Each fan-beam projection consists of 511 detector pixels with a spacing
of 1 px, a source-to-isocenter distance of 400 px and a detector-to-isocenter distance of
150 px to cover the full axial slice. The sinograms contain 360 equiangular projections
with an angular distance of 1° between consecutive projections. The reason for choos-
ing fan-beam over parallel-beam projections here is its applicability to real-world data.
However, results for parallel-beam projections can be found in Appendix A.4.

5.2.6 Undersampling

To simulate the undersampled data sets, the sinograms were made sparse by retaining
only every nth projection, where n denotes the level of sparsity. For CT, three different
sparsity levels were experimented with: 4, 8 and 16 (referred herewith as Sparse 4, Sparse
8 and Sparse 16, respectively).

5.2.7 Evaluation criteria

The performance of the models was evaluated and compared quantitatively with the help
of RMSE and SSIM [WBS+04]. Moreover, the statistical significance of the improve-
ments observed was evaluated by the Mann–Whitney U test [MW47]. Finally, they were
also compared qualitatively for selective slices with the help of difference images and
SSIM maps. Slices that resulted in SSIM values identical to the median value in up
to three decimal points for Primal-Dual UNet (the proposed method) and Primal-Dual
Network (main baseline) were chosen for qualitative portrayal for each experiment - to be
able to choose slices which are representative of the results for each of the experiments.

5.2.8 Results

The performance of the proposed Primal-Dual UNet was compared (see Sec. 5.2.2)
both quantitatively and qualitatively against three other deep learning models: Recon-
struction UNet [JMF+17], Sinogram UNet [LLK+19], and Learned Primal-Dual Net-
work [AÖ18], and also against reconstructions with the standard FBP applied on the
sinograms up-sampled using bilinear interpolation, referred to here as Sinogram Bilin-
ear. The fan-beam geometry being more in more real-world use than the parallel-beam
geometry, the focus of this research was on the fan-beam geometry - hence these results
are shown in this section. Additional experiments were also performed with the parallel-
beam geometry, and the results have been reported in Appendix A.4. Experiments were
performed for three different levels of sparsity: 4, 8 and 16 (referred to as: Sparse 4, 8
and 16, respectively).

Quantitative evaluations were performed using RMSE, calculated in the Hounsfield
scale, and SSIM, calculated on the normalized intensity values, as shown in Tab. 5.1.
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Table 5.1: Resultant metrics for CT fan-beam geometry (mean±std)

Method
SSIM

Sparse 4 Sparse 8 Sparse 16

Bilinear Sinogram 0.928±0.011 0.824±0.021 0.716±0.033
Sinogram UNet 0.977±0.005 0.948±0.016 0.874±0.032
Reconstruction UNet 0.983±0.003 0.953±0.012 0.903±0.026
Primal-Dual Network 0.983±0.003 0.973±0.005 0.919±0.016
Primal-Dual UNet 0.985±0.002 0.966±0.008 0.932±0.021

Method
RMSE (Hounsfield units, HU)

Sparse 4 Sparse 8 Sparse 16

Bilinear Sinogram 33.135±4.557 59.588±7.645 90.148±12.033
Sinogram UNet 14.482±2.324 26.811±13.810 47.574±11.621
Reconstruction UNet 11.860±1.891 25.575±5.384 47.689±12.170
Primal-Dual Network 21.693±3.216 23.868±3.806 35.386±6.212
Primal-Dual UNet 15.835±2.143 22.343±4.367 34.383±8.788

The range of the resultant SSIM values is portrayed with the help of box plots in Fig. 5.6
for the three different levels of sparsity.

In terms of SSIM, the proposed method achieved improvements over all the baseline
methods with statistical significance for Sparse 4 and 16 - including improvements of
0.2% and 1.39% respectively over the baseline Primal-Dual Network. However, Primal-
Dual Network scored 0.72% better average SSIM than the proposed method with a
statistical significance for Sparse 8. On the other hand, the proposed method scored
better RMSEs (27%, 6.39%, 2.83% for Sparse 4, 8, 16) than the baseline Primal-Dual
Network with statistical significance for all three levels of sparsities. For Sparse 8 and
16, the proposed method achieved better RMSEs than all the baselines. However, for
Sparse 4, both Sinogram UNet and Reconstruction UNet achieved better RMSEs than
the baseline Primal-Dual Network, as well as the proposed method.

Fig. 5.7 shows qualitative comparisons of the reconstructions for Sparse 8 and 16,
respectively. Comparisons are performed with the help of difference images (in the
Hounsfield scale) and SSIM maps (calculated on the normalized intensity values). By
looking at the qualitative results, it can be said that they do corroborate with the
quantitative results.

Simulated needle insertion

As a further test on the practical use of the proposed method, the insertion of an
interventional needle into the abdominal scans is simulated and evaluated visually and
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Figure 5.6: Box-plots of the resultant SSIM values for CT (fan-beam geometry) Sparse
4 (top left), Sparse 8 (top right) and Sparse 16 (bottom)
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Figure 5.7: Qualitative comparisons of the reconstructions for fan-beam geometry (left:
Sparse 8, right: Sparse 16)
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Table 5.2: Resultant metrics for CT fan-beam geometry with inserted needle for Sparse
16 (mean±std)

Method SSIM RMSE (HU)

Sparse Sinogram 0.817±0.015 355±8
Bilinear Sinogram 0.871±0.006 523±2
Sinogram UNet 0.915±0.008 430±9
Reconstruction UNet 0.919±0.011 403±3
Primal-Dual Network 0.913±0.005 458±6
Primal-Dual UNet 0.940±0.004 367±8

quantitatively. For this purpose, a NeuWave Medical2 ablation needle was inserted
into an abdominal phantom and was scanned with a KIDS-CT scanner. The needle
was segmented out of the resulting volume by a simple thresholding. The needle was
combined with the available test volumes by summing the attenuation coefficients, which
represents a good estimation of actual needle insertion since the values of human tissues
and needle materials are significantly different. However, this simulation is missing
some artifacts caused by, e.g., photon starvation. These combined volumes served as
the ground truth for this experiment. Sparse fan-beam sinograms and reconstructions
were again simulated using pytorch radon, and the same pre-processing was performed as
before. Qualitative and quantitative results of an exemplary slice for Sparse 16 are shown
in Fig. 5.8. Despite not being trained on data sets with needles, the networks seem to
be capable of reconstructing these highly absorbing materials instead of assuming them
to be artifacts to be removed or replaced by soft tissue attenuation coefficients. Similar
to the results obtained in the previous experiments without the needle, all networks
improve the FBP reconstruction of the sparse sinogram by at least 25 percentage points
SSIM. Sinogram UNet still performs worst, followed by Reconstruction UNet, Primal-
Dual Network, and the best performing Primal-Dual UNet with 0.979, 0.981, 0.985, and
0.987, respectively.

It is of special interest to evaluate the reconstruction in the region around the needle.
For this reason, a 32x32 patch around the needle was extracted from every prediction
of all test volumes, and the errors were calculated on this region of interest only. These
results can be found in Tab. 5.2.

The trend continues as described previously: a simple upsampling of the sinogram
results in a small increase of 5 percentage points SSIM wrt. the FBP of the sparse
sinogram. Interestingly, Reconstruction UNet performs slightly better in terms of the
average SSIM than Primal-Dual Network, though both still perform reasonably well with
more than 0.91 SSIM. The proposed Primal-Dual UNet increases the SSIM of Recon-
struction UNet by a large margin, to an average SSIM of 0.940 - an improvement of
more than 2 percentage points. This shows that the presented model is not only capa-
ble of reconstructing images with higher quality compared to competing reconstruction

2Ablation needle: http://www.neuwavemedical.com
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Figure 5.8: Qualitative comparisons of the reconstructions fan-beam geometry Sparse
16 with needle for an exemplary slice.
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Figure 5.9: Comparison of inference times for Primal-Dual Network (PD Network) and
Primal-Dual UNet (PD-UNet). Number of projections on horizontal axis. Average
inference time for one batch (batch size: 4) in seconds on vertical axis.

networks trained on the same data set but is also likely to have a higher degree of gener-
alization regarding different kinds of CT data sets and learns better how to reconstruct
artifact-bearing CT data in general.

5.2.9 Comparison of Execution Speeds

Sparse sampling can reduce the speed of acquisition, which is an essential factor when
it comes to MR imaging. However, the time required for reconstruction can be an
additional overhead - increasing the total time for imaging. For this reason, the execution
speed of the proposed Primal-Dual UNet was compared against the main baseline model
- Primal-Dual Network. Fig. 5.9 shows the required amount of time to reconstruct one
slice for these two methods and how much they change with a change in the number
of projections. It can be observed that the proposed method is faster than the baseline
Primal-Dual Network. Moreover, it can be observed that with the increase in the number
of projections, the required reconstruction time increases for both models, but also the
difference between the models increases constantly.

5.2.10 Discussion

The results revealed that all four deep learning based models performed better than
applying FBP on the bilinearly upsampled sinograms. Sinogram UNet, which aims to
refine those interpolated sinograms before applying FBP, performed the worst among
the deep learning models. For the lowest level of sparsity (Sparse 4), Reconstruction
UNet resulted in the same average SSIM as the main baseline of this paper - Primal-
Dual Network - but resulted in a better average RMSE. However, the superiority of
the Primal-Dual Network can be seen for the higher levels of sparsity. For Sparse 4
and 16, the proposed Primal-Dual UNet performed better than the baseline Primal-
Dual Network. However, interestingly, the results of Sparse 8 are conflicting for average
SSIM and RMSE. According to the average RMSE, Primal-Dual UNet outperformed
the Primal-Dual Network - in accordance with the other sparsity levels, but resulted in
a lower average SSIM than the baseline. However, as the Primal-Dual UNet performed
better in five out of six scenarios, it can be concluded as the overall better-performing
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model.

The needle insertion experiments showed that the networks not only learn to recon-
struct images with tissues that they were trained on but also remove the artifacts from
materials with significantly different (in this case: higher) attenuation coefficients with-
out further training. As briefly described above, the volumes with the inserted needles
were merely simulated and therefore lack other types of artifacts, e.g. caused by photon
starvation (due to the high attenuation coefficients of the needles) or motion (due to the
breathing of the subjects). Moreover, the patch size of 32x32 for the ROI evaluation
around the needle was chosen empirically for this experiment to include the needle and
some of the soft tissue which was affected most by the needle artifacts. Though this gives
a good insight to how the different networks behave on unknown data, the quantitative
values are susceptible to changes in the patch size and the shape of the depicted needle.
Here, the shape was dot-like for the reconstructed axial planes, but it may as well be
similar to a straight or bent line if inserted differently, which would invalidate the cho-
sen patch size. In addition, conventional CT scanners nowadays usually use multirow
detectors and helical acquisition trajectories, which was not taken care of in this study
and might further increase the quality of the reconstructions.

5.3 Deep Learning Prior Knowledge: Primal-Dual UNet
for Cone Beam CT Volume Reconstruction

This section in mainly based on the publication “Primal-Dual UNet for Sparse Cone
Beam CT Volume Reconstruction” [ECR+22a] and serves as an extension to the method
presented in the previous section.

The prior knowledge that is mainly used here is Deep Learning Prior Knowledge.

The main contributions of this work are:

1. modifying the Primal-Dual UNet (see Sec. 5.2) to process cone beam projections
and

2. reconstructing entire volumes instead of axial slices.

5.3.1 Methods

The network architecture used in this work is a modified Primal-Dual UNet [ECR+22b].
The two-dimensional convolutions of the dual space blocks were replaced with their three-
dimensional counterparts. The two-dimensional UNet in the primal space was replaced
with a three-dimensional UNet by replacing convolutions, batch normalizations, average
poolings and linear upsamplings with their three-dimensional counterparts. Instead of
the parallel or fan beam projection layer, a cone beam geometry (detector: 310× 240px,
1.232mm pixel size; SID=160mm; SDD=400mm) on a circular trajectory was used. The
FBP reconstruction layer was replaced with its FDK counterpart.
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Table 5.3: Mean and standard deviation over all axial test slices for Sparse 16.

Model/Method SSIM [%] PSNR [dB] RMSE [HU]

FDK 43.54±8.27 17.92±2.64 388.57±108.15
FDKConvNet 67.37±8.99 24.72±1.93 177.30±60.94
Primal-Dual Network 69.87±7.66 25.19±2.08 169.22±64.35
Primal-Dual UNet 78.76±7.50 27.93±2.33 128.89±57.78

Figure 5.10: Exemplary axial slice from different models/methods.

For comparability, the data normalization, the L1 loss function, the Adam optimizer
(lr=1e-3, β1=0.9, β2=0.999) and the number of epochs (151) were kept the same. The ef-
fective batch size was set to 16. Training data was simulated by downsampling LungCT-
Diagnosis [GBS+15] volumes (42/9/10 for training/validation/test) to cubes with side
lengths of 128px = 128mm due to memory limitations. Random flips, rotations and
scalings of the volumes were used as augmentation during training. Sparse views were
simulated by retaining every 8th or 16th of 360 equiangular projections (called Sparse 8
or Sparse 16, respectively).

5.3.2 Results

Tab. 5.3.2 shows the results of the different models evaluated on the test set. All models
outperform the direct sparse view FDK reconstruction by a large margin, while the
Primal-Dual models further increase the quality compared to FDKConvNet [JMF+17].
The proposed Primal-Dual UNet results in the lowest errors. Wilcoxon signed-rank
tests reveal that the proposed model significantly outperforms any other model/method
pair-wise (p-value < 0.5%).

Fig. 5.3.2 shows an exemplary axial slice from the different models for Sparse 8
(top row) and Sparse 16 (bottom row). FDKConvNet does not seem to have learned
anatomical structures and merely attempts to suppress streaking artifacts. Primal-Dual
Network produces results that look blurrier and noisier than FDKConvNet’s outputs but
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anatomical structures, e.g. costal cartilage, are preserved better. The reconstructions of
Primal-Dual UNet are superior compared to Primal-Dual Network. Tissues with high
attenuation coefficients are clearly distinguishable from soft tissues and edges are well
preserved, e.g. vertebrae, even for the higher sparsity factor Sparse 16.

5.3.3 Discussion and Conclusion

The proposed Primal-Dual UNet for cone beam reconstruction not only outperforms
other methods – Primal-Dual Network in particular – in quality but also in memory
requirements and is more than twice as fast during both training and inference while
retaining data consistency wrt. the cone beam projections, as opposed to FDKCon-
vNet. Moreover, the training of the proposed network is much more stable compared to
Primal-Dual Network. However, the main limitation is still the memory consumption:
with enabled mixed precision, the inference takes ∼9GB of GPU RAM for even these
unrealistically low resolution volumes and projections and a batch size of 1. Training
consumes even more space: a Sparse 4 version of Primal-Dual Network did not even fit
into the 48GB of an Nvidia RTX A6000.

Since usually, not the entire volume needs to be reconstructed during an intervention,
future work will focus on reducing the memory requirements by only reconstructing
volumes of interest. Moreover, this preliminary work is based on simulations and has to
be evaluated for real cone beam CT data. The Pytorch implementation is available on
Github3.

5.4 Algebraic Prior Knowledge: Cone Beam Projection
Interpolation for Circular Trajectories

This section is mainly based on the publication “Trajectory Upsampling for Sparse Conebeam
Projections using Convolutional Neural Networks” [ERH+21].

The prior knowledge that is primarily used for this method is Algebraic Prior Knowl-
edge and secondarily Deep Learning Prior Knowledge.

5.4.1 Analytical Projection Interpolation

As described in [NHD+07], cone beam projections can be approximately interpolated by
using (Eq. 24 in [NHD+07])

g(λ+ ϵ∆λ, α) ≃ (1− ϵ)g(λ, b(λ+ ϵ∆λ, α)− a(λ))

+ ϵg(λ+ ϵ∆λ, b(λ+ ϵ∆λ, α)− a(λ+∆λ))
(5.3)

for projections g(λ, α) from source positions a(λ) in directions α and points of interest
b(λ, α) that are closest to the rotation axis on the line through a(λ) with direction
α. Unlike [NHD+07], the directions α here are chosen to coincide with the projection

3https://github.com/phernst/pd-unet-conebeam
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lines of the projection to be interpolated. This only requires interpolating on the given
projections.

5.4.2 CNN Approach

Assuming an equiangular sampling of cone beam projections along a circular trajectory,
the presented approach upsamples along the trajectory by subsequently interpolating
projections angularly centered between neighboring projections. Simple algorithms like
linear interpolation are not applicable because of the sinusoidal structure and perspec-
tive distortions caused by the cone beam. A U-Net [RFB15a] is used to approximate this
highly complex interpolation because of its large receptive field that is able to capture
and trace larger translations in the projections compared to flat CNN architectures. (1)
Networks are trained to predict the projection angularly centered between two projec-
tions from only its direct neighbors for 2°, 4° and 8° of angular distance (referred to as
nn2). (2) The number of neighboring input projections is increased from 2 to 4 and 8
neighbors to provide more angular information (referred to as nn4, nn8). (3) Instead of
increasing the number of neighboring projections, the analytical interpolation described
in Sec. 5.4.1 with ϵ = 0.5 is used as an additional input which is supposed to guide the
network closer to the true interpolation (referred to as nn2+ana).

5.4.3 Data Sets and Training

The data of 22 subjects from the CT Lymph Nodes collection [RLS+15] of The Cancer
Imaging Archive [CVS+13] is used, consisting of reconstructed volumes of the abdomen
with different in-plane spacings that serve as ground truth. Cone beam projections were
generated using the CTL toolkit [PFB+19] equiangularly along a circular trajectory with
a source to detector distance (SDD) of 1000mm and a source to isocenter distance (SID)
of 750mm. The flat panel detector consists of 256× 256 elements with a pixel size of
4mm2 (cone angle of 54.2°). The values were chosen such that most projections were
not truncated and to enable a faster training.

The U-Net [RFB15a] has a depth of 5 and is slightly modified. The encoder doubles
the number of layers after each average pooling, whereas the decoder halves the number
of layers after each nearest neighbor upsampling. The optimizer is SGD with a weight
decay of 1× 10−4 and a learning rate of 6× 10−3 that gradually drops to 1× 10−6

by a factor of 0.8 after every 10 epochs of no improvement in validation loss. Every
network was trained for 300 epochs using mean squared error (MSE) and another 300
epochs using equally weighted l1 and MS-SSIM loss similar to [ZGF+17] to focus more on
general structures and edges. 16, 4 and 2 data sets were used for training, validation and
testing, respectively. For faster convergence, the projections were normalized between 0
and approximately 1 by dividing by the 99th percentile of all projections of all data sets.
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Up Method NMSE PSNR SSIM
(×10−5) [dB] [%]

x2 ana 10.88±9.10 49.13±2.85 99.68±0.24
x2 nn2 17.17±14.21 46.87±2.23 99.40±0.23
x2 nn4 21.55±10.99 45.58±1.94 99.16±0.26
x2 nn8 17.33±8.62 46.45±2.08 99.35±0.25
x2 nn2+ana 10.92±6.92 48.64±2.43 99.61±0.18

x4 ana 32.60±26.17 44.34±3.06 99.03±0.67
x4 nn2 24.02±11.27 45.07±1.96 99.12±0.25
x4 nn4 26.06±10.42 44.61±1.80 98.98±0.27
x4 nn8 23.19±9.27 45.10±1.93 99.13±0.26
x4 nn2+ana 18.25±9.34 46.33±2.32 99.32±0.27

x8 ana 93.52±69.93 39.96±3.67 97.34±1.71
x8 nn2 41.49±22.49 42.88±2.48 98.55±0.59
x8 nn4 43.00±22.86 42.67±2.39 98.43±0.60
x8 nn8 40.75±22.43 42.93±2.52 98.57±0.60
x8 nn2+ana 32.46±20.36 44.07±2.80 98.85±0.57

Table 5.4: Projection errors for different upsampling methods (only calculated on inter-
polated projections, i.e. excluding the available ground truth projections) ± standard
deviation. Bold values indicate the lowest errors for the respective upsampling factor.
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GT ana nn4nn2 nn2+anann8

Figure 5.11: Top: Interpolated projections (central part) of x8 upsampling of different
interpolation methods compared to ground truth projection (GT). Bottom: Zoomed
patches around a hip implant.

5.4.4 Projections

The different interpolation methods are evaluated on the projections first. Except for
the analytical upsampling described in Sec. 5.4.1, all methods interpolate the projec-
tion angularly centered between the input projections, which is repeated for x4 and x8
upsampling using the corresponding trained networks. For the analytical upsampling,
the parameter ϵ is chosen to directly resemble the positions of the projections to be
interpolated. Tab. 5.4 shows the results for the error metrics NMSE, PSNR and SSIM
averaged over all projections. The calculation of the metrics obviously excludes the non-
interpolated projections. Interestingly, the results are quite different for the different
upsampling stages.

For the single interpolation (x2, angular difference of 2°), nn2 gives the best results
for NMSE and PSNR. The analytical interpolation however results in the highest SSIM.

Interpolating twice (x4, angular difference of 4°) is done best by nn2, this time for
all metrics.

Finally, the optimal method for carrying out the interpolation three times (x8, an-
gular difference of 8°) is using nn2+ana.

A patch of an exemplary x8 interpolation created with the different methods is shown
in Fig. 5.11. Compared to the ground truth patch, the other patches are more blurry.
The patch created with the analytical interpolation looks like the superimposition of two
projections. The nn4 and nn8 patches seem to have more high frequencies than nn2 and
consequently look less blurry. nn2+ana is visually closest to the ground truth and the
least blurred.

5.4.5 Reconstructions

Evaluating in projection space only does not fully show the benefits of the proposed
method. It is also necessary to compare the reconstructions. We decided for the com-
monly used FDK [FDK84] algorithm as well as ART [GBH70] without interpolated
projections initialized with the FDK reconstruction using all interpolated projections.
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Method NMSE PSNR SSIM
[%] [dB] [%]

full 4.25±7.65 24.75±4.70 72.64±7.56
sparse 11.13±6.70 17.53±1.77 37.64±6.22

ana 6.70±7.80 20.63±3.02 59.74±5.67
nn2 5.55±7.81 22.24±3.64 64.68±6.49
nn4 5.54±7.81 22.27±3.65 64.38±6.39
nn8 6.43±7.69 20.87±3.10 57.62±5.12
nn2+ana 5.32±7.80 22.60±3.78 66.50±6.80

Table 5.5: Reconstruction errors of FDK reconstructions for different upsampling meth-
ods from 45 available projections ± standard deviation.

All reconstructions are created with the CTL toolkit [PFB+19]. The ART recon-
structions run for 5 iterations with enabled positivity constraint.

Since the number of projections is still relatively small and the resolution of the de-
tector is quite low, the reconstructions will also be compared to the FDK reconstruction
using all 360 projections to find lower or upper bounds for the error metrics.

As described previously, though not depending on any reconstruction algorithm, the
interpolated projections are supposed to increase the quality of the reconstructions by
providing a more appropriate sampling of projections.

This hypothesis is evaluated using the FDK reconstruction algorithm, first. For
brevity, only the reconstructions of the highest upsampling (x8, 45 available projections)
are investigated. Tab. 5.5 shows the error metrics for the different methods averaged
over all axial slices. For reference, the first two rows serve as lower/upper bounds: values
for the full FDK describe the errors between the ground truth volume and the volume
reconstructed from 360 projections, whereas values for the sparse FDK describe the
errors between ground truth and reconstruction from 45 projections. All interpolation
methods optimize the sparse FDK reconstruction and are quantitatively closer to the
full FDK. nn2+ana works best, followed by nn2, nn4, nn8 and using only the analytical
interpolation. This closely resembles the errors on the projections described in the
previous section.

The left column of Fig. 5.12 shows exemplary FDK reconstructions using the differ-
ent methods. Compared to the direct FDK reconstruction from 45 projections (sparse),
every method reduces the streak artifacts. The analytical upsampling (ana), however,
basically results in a radially blurred reconstruction. None of the CNN-based recon-
structions suffers from streak artifacts or radial blur, but they appear slightly more
blurred than the sparse FDK reconstruction. As expected from the quantitative anal-
ysis, nn2+ana also creates the best visual result.

ART provides another simple reconstruction algorithm. Due to its iterative nature, it
is inherently slower than FDK but enables simply adding additional constraints resulting
in reconstructions of higher quality. For a better convergence, ART is initialized with
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sparse

ana

nn4

nn2

nn2+ana

nn8

Figure 5.12: Reconstructions for different upsampling methods. Left column: FDK.
Right column: ART initialized with FDK.

Init. NMSE PSNR SSIM
[%] [dB] [%]

zero 2.74±0.97 23.40±0.76 67.21±3.02
sparse 2.31±0.83 24.06±0.76 67.24±2.96

ana 2.19±0.82 24.32±0.80 69.60±3.17
nn2 1.76±0.80 25.48±1.00 72.89±3.32
nn4 1.75±0.80 25.51±1.01 72.93±3.30
nn8 2.12±0.85 24.51±0.85 69.66±3.10
nn2+ana 1.64±0.78 25.79±1.03 74.28±3.33

Table 5.6: Reconstruction errors of ART reconstructions for different upsampling meth-
ods from 45 available projections ± standard deviation.
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another reconstruction. In our experiments, we use the FDK reconstructions of the
different interpolation methods and run ART with only the 45 available projections,
which results in the best compromise between reconstruction time and quality. Tab. 5.6
shows the error metrics. Zero-initialized ART and sparse-FDK-initialized ART are shown
for reference. In all cases, ART outperforms FDK. Again, nn2+ana works best, followed
by the other methods in the same order as in the FDK reconstructions.

The right column of Fig. 5.12 shows exemplary ART reconstructions using the dif-
ferent methods. They are not only quantitatively closer to the ground truth but also
qualitatively outperform their FDK counterparts. There are only slight visual differ-
ences of the ART initialized with the different FDK reconstructions. For the sparse

case, edges are preserved well but tissues of the same absorption coefficient appear noisy.
nn2+ana has the best visual quality with the least noise and the best edge preservation
compared to the other methods.

Note: The error values reported in the previous tables are different from those reported
in the original publication [ERH+21] where especially the SSIM values were much closer
to 100%. This was due to a different dynamic range variable in the calculation of the
SSIM, set to 1. Here, however, it was set to 0.0269 for reconstructions, resembling the
99th percentile of the attenuation coefficients, and 7.1230 for projections, resembling
the 99th percentile of projection values in the data sets. Not only does this scale the
range of SSIM such that differences can be distinguished better during evaluation, it also
resembles the meaning, and therefore intended use, of this dynamic range variable closer,
excluding a large interval of attenuation values without information (that is, [0.0269, 1]).
Since the SSIM was also used in the loss function for the trainings with this differently set
parameter, the networks were retrained resulting in slightly different values for NMSE
and PSNR, as well.

5.4.6 Discussion

Increasing the number of neighboring projections does not increase the quality of the in-
terpolated projections. Since the additional projections are only provided to the CNN as
input channels and the convolutions are carried out per channel, it is possible that (with-
out any special weight initialization) the information from more distant neighbors is not
local enough to be considered as helpful knowledge during backpropagation. Moreover,
increasing the number of input projections even impairs the prediction quality. Fur-
ther tests need to investigate why different interpolation methods work best for certain
upsampling stages.

The simulated projections do not contain noise, are almost not truncated, have a low
resolution and a rather large pixel spacing. Further experiments need to focus on more
realistic detector and gantry parameters and the method needs to be tested on real data,
especially including interventional instruments and other artifact creating influences.

The used error metrics only give a rough impression of the quality. Due to the
blurring of edges caused by the interpolation, future work needs to focus on how exactly
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mappings of edges are changed as well as how the reconstructions compare to other
state-of-the-art methods.

Using the neighboring projections as input channels of the U-Net is a rather straight-
forward way. As with other deep learning methods, it is conceivable that another net-
work architecture can extract more information from the input data and thus improve
the quality even further, which will be part of future experiments. The code is available
on Github4.

5.5 Algebraic Prior Knowledge: Sparse View Deep Differ-
entiated Backprojection

This section is mainly based on the publication “Sparse View Deep Differentiated Back-
projection for Circular Trajectories in CBCT” [ERN21].

The prior knowledge that is primarily used in this method is Algebraic Prior Knowl-
edge and secondarily Deep Learning Prior Knowledge.

5.5.1 Approach

The errors caused by discretization occur at different stages in the reconstruction algo-
rithm. For this reason, it is necessary to dedicate different networks to these stages and
evaluate if combined networks can approximate the Hilbert inversion with errors from
different stages more accurately than others.

In total, six networks are trained. (1) For comparison, a post-processing network is
trained that enhances the FDK reconstruction of 36 projections for sagittal or coronal
slices. (2) A network that enhances the DBP (Eq. 3.3) of 36 projections to approximate
the DBP of fully sampled projections. (3) A Hilbert inversion network that inverts
fully sampled DBP planes. (4) Like (3) but with an additional FDK reconstructed (360
projections) plane as input. (5) A Hilbert inversion network that inverts DBP planes
from 36 projections and enhances them to approximate reconstructions of fully sampled
projections. (6) Like (5) but with an additional FDK reconstructed (36 projections)
plane as input.

All networks share the same U-Net-like architecture except for the number of in-
put/output channels and are trained on both coronal and sagittal planes-of-interest.

For the final reconstructions, the following combinations of networks are investigated:
Network (1) for comparison (fdkconv). Network (2) + Network (3) (s2f inv). Network
(2) + Network (4) (s2f inv3). Network (5) (inv sp). Network (6) (inv sp3).

5.5.2 Spectral Blending

As described in [HSY20], the reconstructed planes of the different Hilbert directions can
be combined using spectral blending in order to minimize the missing frequency infor-
mation. A bow-tie mask is multiplied with the Fourier transforms of the reconstructed

4https://github.com/phernst/conebeam_interpolation
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Method NMSE PSNR SSIM
[%] [dB] [%]

fdkconv 1.63±0.52 23.53±0.91 65.86±3.13
s2f inv 3.18±2.70 21.86±2.45 66.35±4.87
s2f inv3 7.65±2.56 16.74±1.00 31.60±3.12
inv sp 3.17±3.34 21.96±2.31 65.41±4.90
inv sp3 1.24±0.46 25.08±0.97 72.05±3.93

Table 5.7: Errors w.r.t. ground truth of reconstructions from coronal planes-of-interest
averaged over axial planes ± standard deviation.

planes and added. The masks are chosen such that the frequency information from both
planes complement each other. By angular blurring of the mask, frequency information
that is contained in both planes can be combined, as well.

5.5.3 Data Sets and Training

The data of eleven subjects from the CT Lymph Nodes collection [RLS+15] of The
Cancer Imaging Archive [CVS+13] is used, consisting of reconstructed volumes of the
abdomen that serve as ground truth. Cone beam projections were generated using the
CTL toolkit [PFB+19] equiangularly along a circular trajectory with a source to detector
distance (SDD) of 1000mm and a source to isocenter distance (SID) of 750mm. The flat
panel detector consists of 1024× 1024 elements with a pixel size of 1mm2 (cone angle
of 54.2°).

A slightly modified U-Net [RFB15b] with a depth of 5 is used. The encoder doubles
the number of layers after each average pooling, whereas the decoder halves the number
of layers after each bilinear upsampling. SGD is used as the optimizer with a weight
decay of 1× 10−4 and a learning rate of 5× 10−2 that gradually drops to 1× 10−2 by a
factor of 0.8 after every 10 epochs of no improvement in validation loss. Every network
was trained for 300 epochs using MSE. Eight subjects were used for training, two for
validation and the remaining one for testing. For faster convergence, the reconstructed
planes are normalized between 0 and roughly 1 by dividing by the 99th percentile of the
attenuation coefficients of all axial planes of all data sets. Similarly, the Hilbert planes
are normalized by dividing by the standard deviation of all Hilbert planes of all data
sets. Random horizontal flips were used as augmentation during training.

5.5.4 Results

Tab. 5.7 shows the mean errors of axial slices using coronal planes-of-interest for the
different combinations of networks as described in Sec. 5.5.1, which include NMSE,
PSNR and SSIM. The lowest errors are achieved using inv sp3, followed by the simple
post-processing network fdkconv. All other combinations result in worse errors, the
worst being s2f inv3 with an NMSE which is almost seven times higher than the best
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fdkconv

s2f_inv

s2f_inv3

inv_sp

inv_sp3

Figure 5.13: Exemplary reconstruction of different methods. Left: using coronal planes-
of-interest. Right: after spectral blending.
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Method NMSE PSNR SSIM
[%] [dB] [%]

fdkconv 1.98±0.72 22.69±1.28 65.23±4.29
s2f inv 3.53±2.06 20.86±1.40 64.75±3.72
s2f inv3 8.12±2.55 16.44±0.86 30.14±3.04
inv sp 4.22±3.14 20.13±1.80 62.84±4.17
inv sp3 1.34±0.49 24.67±1.07 71.82±3.44

Table 5.8: Errors w.r.t. ground truth of reconstructions from sagittal planes-of-interest
averaged over axial planes ± standard deviation.

inv sp3. An important thing to note here is that the additional FDK plane of Network
(4) was reconstructed using 360 projections while training, whereas during the inference
for the combination with Network (2), only 36 projections were available for the FDK
reconstruction and necessarily introduced streaking artifacts. The other combinations
s2f inv and inv sp have only slightly worse errors than fdkconv. Despite already show-
ing large differences in the error metrics between fdkconv and inv sp3, the Wilcoxon
signed rank test was performed between the distributions of the two methods which
resulted in statistically significant improvements of inv sp3 (p-value < 0.01).

The left column of Fig. 5.13 shows an axial slice reconstructed from coronal planes
using the different methods. Except for s2f inv3, all combinations result in less discon-
tinuous reconstructions than fdkconv. s2f inv seems to smooth out highly absorbing
tissues. The best visual appearance for this slice is achieved using inv sp with the
least discontinuities and the highest edge preservation. As described earlier, s2f inv3

necessarily performs worse because of the way it was trained. However, since the streak-
ing artifacts are very prominent, it can be assumed that Network (4) mainly focuses
on the FDK input rather than the DBP plane. Again, the Wilcoxon signed rank test
was performed between fdkconv and inv sp3, again resulting in statistically significant
improvements of inv sp3 (p-value < 0.01).

The same behavior as in Tab. 5.7 can be seen in Tab. 5.8, but here for sagittal planes-
of-interest. Interestingly, all errors are slightly worse than their counterpart on coronal
planes-of-interest except for fdkconv. For brevity, the qualitative results are not shown.

5.5.5 Spectral Blending

The blurring radius of the bow-tie mask for the spectral blending of reconstructions
from coronal and sagittal planes-of-interest seems to be an essential parameter for the
quality of the final reconstructions, as prior tests have shown. The influence of different
blurring radii is shown in Fig. 5.14 for inv sp3. There seems to be an almost linear
dependency between the radius and the different error metrics: the higher the radius,
the closer the reconstruction to the ground truth. This is reasonable because more and
more frequencies from both planes are accounted for when increasing the radius. For
this reason, the blurring radius is set to 90°.
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Figure 5.14: Top: Masks without (left), 45° (center) and 90° blurring (right). Bottom:
Error metrics for inv sp3 reconstructions after spectral blending depending on blurring
radius of masks.

Method NMSE PSNR SSIM
[%] [dB] [%]

fdkconv 1.45±0.44 24.12±0.87 67.69±3.91
s2f inv 2.07±1.11 23.23±1.40 54.59±7.54
s2f inv3 7.92±2.54 16.57±0.91 30.32±3.10
inv sp 2.35±1.85 22.81±1.78 60.30±5.40
inv sp3 1.05±0.37 25.91±0.88 73.01±3.27

Table 5.9: Errors after spectral blending ± standard deviation. sparse fdk shows the
errors of an FDK reconstruction from 36 projections for reference.
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Tab. 5.9 shows the errors of the different methods after spectral blending. Compared
to the reconstructions without spectral blending, the errors are even lower. For the
best method inv sp3, the SSIM is increased by 0.96% and 1.19% compared to coronal
and sagittal plane-of-interest reconstructions. A final Wilcoxon signed rank test was
performed for these spectrally blended results which again showed statistically significant
improvements (p-value < 0.01) and therefore the superiority of the method inv sp3 wrt.
fdkconv.

The right column of Fig. 5.13 shows the reconstructions after spectral blurring. Al-
most all methods benefit from the additional sagittal information. Visual differences
cannot be observed for s2f inv3 because of the focus of Network (4) on the FDK input
which does not incorporate different information for sagittal or coronal planes. The re-
construction using inv sp introduces some additional discontinuities, probably caused
by the worse quality of the network on sagittal planes.

Note: As in the previously described method, the values of the error metrics in above
tables differ from those in the original work [ERN21]. Again, the dynamic range pa-
rameter of SSIM was set differently, which would make the comparison of the different
methods less meaningful. Therefore, the SSIM values were recalculated with the range
parameter set to 0.0269, resembling the 99th percentile of the attenuation coefficients of
all data sets. Furthermore, an error in the calculation of the PSNR was detected (miss-
ing a square root for the normalization factor in the calculation of the RMSE, resulting
in a wrongly scaled RMSE). The results of Sec. B.2 were used to fix these errors by
subtracting a constant value from the wrong PSNR values. This implies that differences
between PSNR values of different methods remain unchanged.

5.5.6 Discussion

In general, only one of the proposed combinations in fact improves the simple post-
processing baseline fdkconv, which is inv sp3. A possible explanation for this is that,
compared to the other combinations, inv sp3 can directly learn to extract the most
useful information from both the sparse view FDK (which already contains correct fre-
quency information) and DBP (which is able to incorporate information of truncated
projections as well as different information from sparse views compared to FDK). The
other combinations do not include the FDK reconstruction (inv sp and s2f inv) or are
not trained end-to-end (s2f inv and s2f inv3), which does not allow the gradients to
flow back completely.

As described earlier, the additional input of Network (4) was the FDK reconstruction
of 360 projections while training and of 36 projections while testing s2f inv3. For
further tests, the output of fdkconv could be used as this additional input to be closer
to what the network was trained on.

Moreover, there is a significant difference in accuracy of all networks between coro-
nal and sagittal planes, which might be caused by less variance in the sagittal planes.
Additional data or different augmentation techniques could resolve this.
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The spectral blending results in even lower errors but depends on the masks that
are used. The almost linear dependency of the blurring radius of the mask on the final
error metrics (Fig. 5.14) suggests increasing the radius even further or using masks of
non-bow-tie shape.

We discovered that all networks including some kind of Hilbert inversion need high
learning rates ≥ 10−2. Setting them lower resulted in both higher loss values and less
robust trainings, which seems rather counter-intuitive. Trainings with learning rates
between 10−4 and 10−5 (cf. [HSY20]) did not converge at all, which might be related to
the data set or normalization of the data.

To further increase the reconstruction quality, it is conceivable to additionally input
neighboring planes-of-interest to the networks to gain more spatial information. In
addition, the effect of choosing different values for ϵ for creating the partial derivatives
was not investigated and needs further tests. The code is available on Github5.

5.6 Temporal and Model Prior Knowledge: Interventional
Instrument Enhancement in C-arm Reconstructions
from Few Projections using Prior Scans

This section is mainly based on the publication “Towards Patient Specific Reconstruction
Using Perception-Aware CNN and Planning CT as Prior” [GER+22] © 2022 IEEE.

The prior knowledge that is primarily used in this method is Temporal and Model
Prior Knowledge and secondarily Deep Learning Prior Knowledge.

In this work, we propose a CNN-based method that utilizes both a planning CT and an
interventional CT of the same subject to produce artifact-reduced and data-consistent
(wrt. CBCT intensities) reconstructions. The deep learning models designed for the
reconstruction task typically use the pixelwise MSE to measure the reconstruction error.
However, MSE is considered an unreliable metric in image quality assessment studies, as
it does not capture the structural relationship in a pixel neighborhood like humans do
[WB09]. Therefore, we propose a perception-aware loss function, which helps the model
capture beyond pixelwise differences.

5.6.1 Architecture: Dual Branch Prior-Net

The proposed CNN architecture is portrayed in Fig. 5.15.

Two inputs are provided to the network. One of them is the high-quality planning
CT of the subject, acquired prior to the surgery. The other one is the sparsely sampled
interventional CT of the same subject. Only the interventional image contains the
surgical instrument. The network is logically divided into two components, Extraction
and Fusion.

5https://github.com/phernst/sparse_dbp
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Figure 5.15: The proposed architecture. LQ: sparse-sampled FDK reconstructed inter-
ventional CBCT. Prior: planning CT (conventional CT scanner). HQ: ground truth
(fully-sampled FDK-reconstructed interventional CBCT). Filter numbers of Conv2D
shown inside the boxes. © 2022 IEEE

In the Extraction, both inputs are downsampled to increase the receptive field of the
network. Although the planning and interventional images have different intensities for
the same pixel of the same subject, we hypothesize that the representations captured
from the same subject’s structural details in the Extraction facilitate the network to
produce data-consistent (wrt. CBCT intensities) interventional reconstructions. Each
convolutional block in the Extraction consists of 2 convolutions, each followed by Leaky
ReLU [MHN+13] activation to overcome the ‘dead-neuron problem’ of ReLU. The last
convolution of the block uses strides of 2 in order to downsample the image, instead of
a pooling operation [SMB10], such that the network remains sensitive to the location of
a structure in the image.

In the Fusion, high resolution information from the prior CT and interventional
CBCT are combined and passed to the same level of the Fusion through skip-connections.
In this component, a convolution is followed by a transposed convolution with 3× 3
kernels and strides of 2 for upsampling. The last layer is a 1× 1 convolution followed
by Leaky ReLU, which produces the final reconstruction.

5.6.2 Loss Function

SSIM has been used in image and video quality assessment tasks over the years, as it
resembles how humans perceive differences between two images [WT97]. It is calcu-
lated as a weighted product of the three measures: luminance (L), contrast (C) and
structure (S) (see Sec. 3.8.4). However, SSIM does not penalize enough when a small
disconnected structure like a needle is not reconstructed. Therefore, multi-scale SSIM
(MSSIM) [WSB03] is more appropriate for our task, which considers the structural de-
tails at various resolutions. In MSSIM, the image is downsampled by a factor of two
iteratively. The contrast and structure comparison is done at all scale levels, as shown
in Eq. 5.4, where x and y are two images, α, βs and γs are the weights for luminance,
contrast and structure at scale s, respectively. The luminance is calculated only for the
highest scale N , as the human eye is more perceptive to changes in texture or edges
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than smooth regions. Eq. 5.5 portrays the proposed perception-aware loss, considering
(1−MSSIM) as the structural dissimilarity.

MSSIM(x,y) = [L(x,y)]α ·
N∏
s=1

[Cs(x,y)]
βs [Ss(x,y)]

γs (5.4)

LossMSSIM (x,y) = (1−MSSIM(x,y)) +MSE(x,y) (5.5)

5.6.3 Data Set and Preprocessing

Fifty head CT volumes from the publicly available Mayo Clinic data set [MCH+20]
were used for the task. They were acquired helically and served as the planning CT.
The needle data set comprises three scans of an ablation needle by NeuWave Medical
inserted into an abdominal phantom in different positions, scanned in a KIDS-CT sys-
tem. The interventional scans had to be simulated, as the head and needle scans were
available separately. To this end, cone-beam projections of each data set were created
using torch-radon [Ron20] with a C-arm span of 1200mm, 620× 480 detector pixels with
spacing of 0.616mm and a circular trajectory with 360 equi-angular projections. Prior
to projecting the needle volumes, the surrounding phantom was removed by thresh-
olding. Assuming the cone-beam projections to be ray integrals, the needle and head
projections were combined by summation. This provided the cone-beam projections to
reconstruct the interventional scans. The sparsely sampled interventional volumes (LQ)
were reconstructed from 13 simulated projections as in [GKR+21] and the ground truth
(HQ) from all the projections using FDK. Reconstructing these simulated projections
(subsampling them angularly to simulate sparse views) results in volumes similar to
interventional scans including the described artifacts.

5.6.4 Training Details

The models were trained on the axial slices of the CT volumes. Each slice was cropped to
384× 384, to retain only the useful information. To speed up convergence of the network,
the intensities were normalized to roughly the unit interval by converting Hounsfield units
to mass attenuation coefficients and dividing by the 99th percentile of all training data’s
mass attenuation coefficients. The data set was split into training (17180), validation
(11631) and test (10296) slices. We applied augmentation during training in terms
of axial rotations of the needle, by rolling the list of needle projections by a random
amount before reconstruction. Also, rotation, scaling and left-right flips were applied
to the reconstructed slices. Additional in-plane rotation in the range [−10°, 10°] was
applied to the planning CT, to misalign it wrt. the interventional CBCT. The models
were trained using ADAM optimizer (learning rate=1× 10−4). Each experiment was
run with early-stopping (after 20 epochs of no improvement) on the validation set. The
model with the highest validation PSNR was selected and used for the evaluation on
test data.

72



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

14.90dB, 25.94%
LQ HQ

31.01dB, 94.92%
M M SE

30.83dB, 97.59%
M SSI M

37.83dB, 97.84%
M M SSI M

32.10dB, 96.79%
M L oG

32.42dB, 96.52%
M D C T

25.79dB, 86.40%
M no prior

23.90dB, 83.37%
SIRT

16.10dB, 44.39% 23.39dB, 93.35% 22.79dB, 95.64% 28.54dB, 96.93% 23.85dB, 94.46% 25.59dB, 94.74% 22.17dB, 82.64% 20.84dB, 79.06%

(a)

(b)

(c)

(d)

-1000 HU

1720 HU

3 HU

65 HU

-320 HU

360 HU

1040 HU

18 HU

34 HU

49 HU

Figure 5.16: Reconstructions of one test subject. Rows (a), (b): axial and coronal slice
with [−1000, 1720]HU to compare the needle’s reconstruction quality. Rows (c), (d):
same slices with [3, 65]HU to compare the quality of reconstructed soft-tissue. LQ:
sparse-sampled input. HQ: corresponding ground truth. Remaining columns: predic-
tions/reconstructions of different methods. PSNR and SSIM in yellow. © 2022 IEEE

Two baselines were considered for the proposed deep learning network. For the first
one, Mno prior, the sparse-sampled input was again passed instead of the planning CT
and uses pixelwise MSE loss. The other one, SIRT, implemented in ASTRA toolbox
[vAPC+16], used the planning scan as initialization. We trained four models using
planning CT and different losses. The model MMSE used pixelwise MSE as the loss.
The modelMMSSIM used the proposed perception-aware loss LMSSIM , andMSSIM used
SSIM instead of MSSIM. The last two models were trained with perception-aware losses
proposed in [GKR+21], where MLoG represents the model trained using loss calculated
in Laplacian of Gaussian space and MDCT denotes the model using loss calculated in
discrete cosine transform (DCT) space. These two models served as baselines for the
proposed perception-aware loss.

5.6.5 Quantitative Results

We evaluate the performance of the models using the following metrics: MSE, PSNR
and SSIM. Tab. 5.10 portrays that MMSSIM performed the best with respect to all
metrics. The non-deep-learning baseline SIRT improved the FDK reconstructions, but
performed worse and showed higher standard deviation compared to the deep learning
models. We also observed that the deep learning baseline model not equipped with
planning CT (Mno prior) performed significantly worse than MMSE (p-value of 1× 10−5

in a one-sided paired t-test). This supports our hypothesis that the representations from
the planning CT helped the network to produce better reconstructions. The planning
CT model using the proposed loss (MMSSIM ) improved the reconstruction quality over
the one using MSE loss (MMSE) significantly (p-value of 1.2× 10−4 in a one-sided paired
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Table 5.10: Quantitative evaluation of reconstruction quality of deep learning models,
SIRT and FDK. Mean and standard deviation over all axial 2D slices of the test set.
Best results marked bold. © 2022 IEEE

Model SSIM [%] PSNR [dB] MSE
(
×10−4

)
FDK 31.4± 13.1 17.64± 5.05 241.00± 56.00
SIRT 61.1± 14.0 21.02± 8.98 190.00± 40.00
Mno prior 80.5± 7.4 27.46± 5.05 27.50± 2.00
MMSE 92.2± 3.5 32.89± 5.32 8.65± 2.60
MMSSIM 95.6 ± 2.7 36.14 ± 6.05 4.99 ± 2.20
MSSIM 95.2± 2.4 33.42± 5.42 7.89± 3.40
MLoG 94.4± 2.7 34.10± 5.18 6.47± 2.40
MDCT 94.3± 2.8 34.14± 5.57 6.70± 1.90

t-test). We also observe that all the planning CT models using surrogate losses produced
lower MSE than the one trained with only MSE loss.

5.6.6 Qualitative Results

Fig. 5.16 provides qualitative comparison of the reconstructions produced by deep learn-
ing models and the non-deep-learning baseline SIRT. We chose to display the results
using two different windowings, as one of them helps in comparing the needle’s re-
construction quality, and the other in comparing the reconstruction of detailed brain
structures and soft-tissue. For most of the cases, the model MMSSIM reconstructs the
needle precisely compared to the others, as seen in Fig. 5.16 (a-b) and 5.17. However,
the two perception-aware models MDCT and MLoG performed similarly to MMSSIM in
many cases. For some cases, the needle produced by MDCT and MLoG were broader or
wider in diameter, as seen in Fig. 5.16 (a). Further, we see that all the models could
reconstruct the needle except MSSIM . This supports our hypothesis of using multi-scale
SSIM instead of SSIM in the loss function, as SSIM could not help the model capture
the small disconnected structures. Interestingly, only MMSSIM seems to be able to cor-
rectly reconstruct the mean intensity of the brain tissue and additionally preserve high
frequency content. In other models, either some edge information gets lost or the brain
tissue is hyper- or hypointense on average. Fig. 5.16 (c) shows that MMSE and SIRT
could not remove the streaking artifacts completely. Also, the model without planning
CT Mno prior and SIRT produced reconstructions having poor soft-tissue contrast, as
seen in Fig. 5.16(c-d). We can also see that the sparse-sampled interventional scan had
minimal information about the soft-tissue or other structural details of the head. This
indicates that the incorporation of the same subject’s planning CT helped the network
to reconstruct the high intensity structures (bone and teeth) and the soft-tissue better.
The code is publicly available on Github6.

6https://github.com/suhitaghosh10/interventional-CT
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Figure 5.17: Region of interest around the needle produced by the models for the LQ
shown in Fig. 5.16 (b). © 2022 IEEE

5.7 Temporal and Model Prior Knowledge: Segmentation
as Auxiliary Task to Guide Sparse View CBCT Recon-
struction Incorporating Prior Scans

This section is mainly based on the publication “Dual Branch Prior-SegNet: CNN for
Interventional CBCT using Planning Scan and Auxiliary Segmentation Loss” [EGR+22].

The prior knowledge that is mainly used in this method is Temporal and Model Prior
Knowledge.

The main contributions of this work are:

1. evaluating the performance of the Dual Branch Prior-Net with an additional seg-
mentation head guiding the reconstruction task and

2. determining the limits for the misalignment of the prior scan for in-plane rotations.

5.7.1 Architecture: Dual Branch Prior-SegNet

The deep learning architecture in this work is based on the network in Sec. 5.6 [GER+22],
which is a multi-scale dual branch CNN extracting features from both a sparse view inter-
ventional CBCT scan and a high resolution planning scan (used as the prior) separately.
These are combined via UNet-like skip connections in the decoding path. After the
last upsampling, we add another convolutional block parallel to the reconstruction block
of the original network which is supposed to segment interventional instruments. The
hypothesis is that giving the network the additional task of segmentation increases the
quality of the reconstruction since it is forced to learn what causes the most prominent
streaking artifacts.
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Table 5.11: Parameters of the simulated C-arm CT geometry.

Parameter Value

Detector binning 4 x 4 pixels
Detector columns x rows 2480 x 1920
Effective detector pixel size 616 µm
Source-to-detector distance 1200mm
Source-to-isocenter distance 800mm
Protocol Axial scan

5.7.2 Loss Function

The loss function used for training is a linear combination of the reconstruction loss and
a segmentation loss:

L(p, g) = λ1 · LMSE(pr, gr) + λ2 · LDice(ps, gs)

for the prediction p and the ground truth g, the subscripts r and s denoting the recon-
struction and segmentation, LDice being the Dice loss and λ1, λ2 scaling factor which
have to be set empirically (here: λ1 = 1, λ2 = 1e−3).

Note that the original Dual Branch Prior-Net [GER+22] was not robust regarding the
loss function: except for a combination of MSE loss and Multiscale SSIM loss, all models
trained with different loss functions resulted in hyper- or hypointense reconstructions
wrt. attenuation coefficients, were not able to remove the streaking artifacts or did not
reconstruct the interventional instruments at all.

In this setting, however, no big differences in performance could be found. For this
reason, the simple MSE loss was chosen as reconstruction loss.

5.7.3 Data Set and Preprocessing

The training data was created from the LungCT-Diagnosis data set (see Sec. 5.1.4),
as opposed to the Mayo Clinic heads data set (see Sec. 5.1.3) used by [GER+22], and
in-house needle scans from the NeuWave Medical Needles data set (see Sec. 5.1.2). The
interventional data was simulated using torch-radon [Ron20] by superimposing and then
reconstructing the projections of the lungs and needles. The parameters of the CT
acquisition geometry are shown in Tab. 5.7.3.

Due to the rather limited field of view of the simulated C-arm geometry, many
projections were truncated which resulted in even more pronounced artifacts in the
reconstructions. This poses an additional challenge to the network training. However,
dose reduction for interventional CBCT scans of lungs is more important than for cranial
scans. Due to the severity of diseases that are treated with ablations inside the head,
e.g. brain tumors, the relatively high amount of X-radiation during full dose scans is
still not as fatal as the diseases themselves, which is why dose reduction usually plays a
minor role for head scans.
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Table 5.12: Mean and standard deviation over all axial 2D slices of the test set without
misalignment. (no mis) indicates models trained without misalignment of the prior
which are excluded for the reasons stated in the description.

Model/Method SSIM [%] PSNR [dB] RMSE [HU]

FDK 17.47±7.35 10.33±1.48 1473.60±349.98
FDKConvNet 64.16±11.18 21.78±2.38 234.40±67.38
Dual Branch Prior-Net (no mis) 97.90±1.41 38.81±2.40 34.84±14.74
Dual Branch Prior-SegNet (no mis) 97.04±2.04 38.91±3.80 40.92±34.13
Dual Branch Prior-Net 96.71±3.31 41.09±3.50 28.70±15.09
Dual Branch Prior-SegNet 97.15±3.47 43.97±4.95 23.21±18.11

Opposing to this, reducing dose for lung scans is usually desirable. This is because ab-
normal tissues treated with ablations inside the lungs are usually less fatal than diseases
that X-radiation of a (or potentially several) full dose scan(s) could induce. Moreover,
treatments in the lung do not have to be as precise as in the brain and are performed
much more frequently than brain ablations.

The segmentations were created by thresholding the needle scans at 900HU. All
axial slices were normalized by converting to attenuation coefficients and dividing by
the 99th percentile of all values of the data set.

5.7.4 Training Details

The networks were trained for 150 epochs using Adam (lr=1e-3) with a batch size of 32
and mixed precision. Online augmentations were performed including random rotations,
scalings and flips and for some trainings up to ±5deg in-plane misalignment of the prior
scan.

5.7.5 Results

Tab. 5.7.5 shows the results of the different models/methods evaluated on the test set
(no misalignment). All models outperform the direct sparse view FDK reconstruction
by a large margin, while the Dual Branch models further increase the quality notice-
ably compared to the post-processing FDKConvNet (FBPConvNet [JMF+17] trained
on axial slices of FDK reconstructions). The models trained with augmentations and
misalignments do not clearly increase the SSIM (or, in case of Prior-Net, even decrease
the SSIM) but have a positive influence on both the PSNR and RMSE values.

Since the (no mis) models are strongly dependent on an exact registration of in-
terventional and planning scan, as will be shown in the following paragraphs and in
Fig. 5.7.5 b and c, they are less suitable for an application in medical intervention and,
therefore, will be excluded from the following tests.

The proposed model, Dual Branch Prior-SegNet, results in the lowest errors. Wilcoxon
signed-rank tests (excluding the (no mis) models) reveal that the proposed model sig-
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Figure 5.18: a) Exemplary ROI around needle of different models/methods. b, c) Re-
construction errors (RMSE) using misaligned (rotated) prior (interquartile range: semi-
transparent, median: solid line).

nificantly outperforms every other model pair-wise (p-value < 0.5%).

Fig. 5.7.5a shows a region of interest centered around the needle in the axial slice
with the highest errors of the first test subject with a misalignment of the prior scan by
2deg. FDKConvNet cannot recover fine structures and even inserts ghosting artifacts of
the needle. The differences of Prior-Net and Prior-SegNet wrt. the ground truth are less
pronounced. Prior-Net slightly blurs a small region around the needle whereas Prior-
SegNet seems to insert a slight halo. Both are able to compensate for the misalignment
of the prior.

Fig. 5.7.5b and c show the reconstruction errors of different models wrt. rotated prior
scans. Prior-SegNet (no mis) performs significantly worse for |α| ≤ 5.5deg compared to
the other models (see Fig. 5.7.5 c). Prior-SegNet performs best for |α| ≤ 2.5deg (see
Fig. 5.7.5b) as well as |α| > 5.5deg (see Fig. 5.7.5c), and Prior-Net for 2.5deg ≤ |α| ≤
5.5deg (see Fig. 5.7.5b). Fig. 5.7.5 shows the reconstruction errors of the proposed
network when choosing different values for λ2 while keeping λ1 = 1 fixed. The graph
of RMSE median values and interquartile range in Fig. 5.7.5a clearly shows a minimum
at λ2 = 10−3 which coincides with the empirically chosen value used in the previous
experiments. This same minimum (or maximum in terms of SSIM and PSNR) can also
be found in Fig. 5.7.5b showing the mean and standard deviation.

Comparing the median/interquartile range and mean/standard deviation for RMSE
values gives further insights into the underlying distributions. Note that the median is
always lower than the mean value, which indicates a skewed distribution towards lower
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(a)

(b)

log10 λ2 SSIM [%] PSNR [dB] RMSE [HU]

-∞ 95.71±3.31 41.09±3.50 28.70±15.09
-5 96.47±3.71 41.56±3.85 29.79±16.04
-4 95.11±7.39 40.95±6.67 39.44±48.51
-3 97.15±3.47 43.97±4.95 23.21±18.11
-2 96.31±4.48 41.97±4.66 29.73±21.88
-1 90.68±8.42 36.92±5.85 55.62±48.71

Figure 5.19: Reconstruction errors of Dual Branch Prior-SegNet wrt. segmentation loss
scaler λ2 (λ1 = 1) on the test set (without misalignment). (a) RMSE vs. λ (median
with interquartile range as error bars). (b) Mean and standard deviation of the different
metrics.
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values. The quartiles suggests the same: Q1 is always closer to the median than Q3.
Also note that the standard deviation is always very high and in one case, i.e. λ2 = 10−2,
even exceeds the mean value.

5.7.6 Discussion

Incorporating a patient-specific prior planning scan for interventional CBCT reconstruc-
tion from sparse projections – and therefore a drastically reduced amount of radiation
that the patients and surgeons are exposed to – is a simple way to increase the qual-
ity of the reconstructions. FDKConvNet has no further information about the volume
and can only correctly reconstruct (low frequencies of) tissues that are not significantly
affected by streaking artifacts. Training with misaligned priors is essential to keep the
quality at a high level. Though not trained with rotations |α| > 5deg, Prior-Net and
Prior-SegNet are able to compensate for up to 5.5deg. Confirming the initial hypothesis,
the additional segmentation head of Prior-SegNet facilitates the reconstruction task for
small angles of misalignment rotation and seems to generalize better for high angles.

Curiously, the outputs of the segmentation head for the chosen λ2 = 1e−3 do not
resemble actual segmentations of the interventional instruments at all and, consequently,
cannot be used afterwards. This means that, although the segmentation loss has a
positive influence on the quality of the reconstructions, the main focus of the optimization
procedure is still on the reconstruction path. The additional trainings for finding an
optimal λ2 when keeping λ1 = 1 fixed (see Fig. 5.7.5) revealed that the segmentation
task is gradually taking over the reconstruction task for λ2 ≥ 1e−2. This can be seen
in the loss values LMSE and LDice: For λ2 < 1e−2, LDice does not fall much below 1
and even slightly increases back towards 1 after the first 15 epochs. This relates to a
Dice coefficient close to zero which, for obvious reasons, cannot result in a meaningful
segmentation output. However, if λ2 ≥ 1e − 2, the segmentation loss gains enough
importance in the network optimization such that LDice drops to 0.8 after 15 epochs and
even 0.01 after 85 epochs. On one hand, this makes the output of the segmentation head
sensible segmentations of the interventional instruments. On the other hand, this gained
ability of the network simultaneously results in a degradation of the actual reconstruction
output (see Fig. 5.7.5). Future use cases should therefore define whether the focus should
be on reconstruction or segmentation task and set λ2 accordingly. Since the aim of this
work was to improve the reconstruction quality, λ2 = 1e−3 is the optimal choice of the
tested values for this data.

The observations of the lambda sweep in Fig. 5.7.5 show that the underlying dis-
tribution is probably not a normal distribution. For this reason, statistical tests that
assume a normal distribution cannot be applied on this data. Therefore, Wilcoxon’s
signed-rank test was chosen in the previous significance tests instead of Student’s t-test.
The Mann-Whitney U test is another statistical test which does not assume a normal
distribution but instead assuming independent observations from both groups. However,
the ith sample of a group is generated by applying one of the methods to the ith input
slice, which makes the sets of every ith sample dependent of each other. For this reason,
the Mann-Whitney U test could not be used either.
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Another important fact to note is that the values reported in the above tables and
figures are the statistics of the entire test data set. This has two implications: (1) One
cannot assume that the metrics are equal wrt. different subjects. In fact, it was found
that the errors of few test subjects are considerably higher than the large part of all other
subjects. These can be declared as outliers, but further tests have to show what causes
them to be performing worse. (2) One cannot assume that the metrics are independent
of the location of the (axial) slice. Reconstructions of cone beam projections from a
circular trajectory suffer from decreasing quality with distance from the central slice.
This is because Tuy’s condition [Tuy83] is invalidated for circular trajectories, which
results in unstable reconstructions. However, much information about the interventional
scan can be taken from the prior acquisition. In fact, the errors do not increase in the
outer axial regions but instead at the center. This can be explained by the position of the
simulated needle which was inserted rather centrally and therefore makes it more difficult
for the network to reconstruct these slices since it cannot simply take the data from the
prior scan there. Moreover, the misalignment being an in-plane rotation simplifies the
reconstruction task for the network in a way that it only needs to rotate the prior scan
even if merely a small amount of information about the interventional scan is available
which ultimately results in high quality reconstructions even in the outer axial regions.

In this work, the only type of prior scan misalignment was in-plane rotations. For
application on clinical data, however, other types have to be considered and evaluated
as well, e.g. translation, elastic distortions and breathing motion. Moreover, the inter-
ventional data in this work was simulated and without noise, which may have further
effects when applying on real data.

The code is obtainable from Github7.

7https://github.com/phernst/prior-segnet
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Chapter 6

Failed Attempts and Error
Analysis

In only a few cases, scientific research is based on random findings that solve a yet
unknown problem or improve upon state-of-the-art results. In most cases, however, it
is (supposed to be) based upon hypotheses built on prior knowledge as an attempt to
solve a specific problem. These hypotheses must be evaluated scientifically and result in
one out of two possible outcomes: acceptance or rejection.

In general, the main hypothesis of a novel method somehow corresponds to asking
whether it is suitable to solve the problem to a certain degree (e.g. ‘Does the method
outperform the state of the art?’ or ‘Does the accuracy of the method exceed a certain
threshold?’). If this main hypothesis has to be rejected, it is very unlikely for the
method to be published since citations are biased towards publications of positive or
statistically significant results which, in turn, biases the publications in journals and
conferences [DUS+17; RB08].

Nevertheless, negative or statistically non-significant results advance research in a
way that future research and resources do not need to be wasted in order to obtain the
same (unpublished and therefore unknown to other researchers) results. Moreover, if
novel methods had been developed, which these negative results were obtained from,
they might be an interesting starting point or might contribute in brainstorming for the
design of new methods in perhaps very different areas of research.

In this rather unconventional chapter, several methods that were developed in the
course of this thesis and produced negative results are described briefly in the following
sections for the aforementioned reasons. In addition, there is going to be an error analysis
of each method attempting to identify possible reasons why the methods did not work
as intended and the initial hypotheses had to be rejected.
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6.1 Direct CT Reconstruction using CNN

6.1.1 Problem Statement and Hypothesis

The first idea that may come to mind when thinking about CT reconstruction with
deep learning (in particular with CNNs) is feeding the network with the raw projection
data directly from the scanner and predicting the reconstructed volume or image of
attenuation values.

In fact, this has been tried successfully for MRI reconstruction using the AUTOMAP
network [ZLC+18], which is a multilayer perceptron, essentially. In the scope of MRI
reconstruction, the raw data is not projection values (like in CT reconstruction) but
Fourier coefficients in the so-called k-space. Reconstructing the image data is usually
performed by applying an inverse Fourier transform. Due to natural fluctuations and
sampling patterns of the Fourier coefficients, different kinds of artifacts are contained in
the reconstructed images if the inverse Fourier transform is applied directly. AUTOMAP
attempts to learn a kind of improved inverse Fourier transform which automatically
reduces/removes these artifacts from the images. Since it is a multilayer perceptron, the
number of trainable parameters is in O(M · N) (M and N being the number of input
and output nodes) – this is O(n4) for an n×n image (!). Although AUTOMAP achieves
high quality reconstructions, it is obvious that it can only be applied on small image
sizes (up to around 128 px× 128 px already having >∼260 million parameters).

As explained previously in Sec. 3.4, CT projections can be transformed to Fourier
coefficients corresponding to a k-space from a radial MRI acquisition (in case of parallel
beam CT). However, the scaling problem of AUTOMAP still remains, which makes it
especially unusable for reconstructing relatively small objects, e.g. lymph node metas-
tases or cancerous pulmonary nodules. CNNs, on the other hand, scale very well with
increasing image sizes and have been used for state-of-the-art medical imaging methods
before, as well. Therefore, it seems reasonable to use them for CT reconstruction.

6.1.2 Methods and First Technical Problems

However, trying to implement a CNN for this purpose already poses a first problem,
even for the simplest case of two-dimensional image reconstruction from parallel beams:
mismatching shapes between input, i.e. the sinogram, and output, i.e. the reconstructed
image. Being based on discrete convolutions, CNNs are typically designed for equal input
and output shapes (or up/downsampled versions by powers of 2). With an appropriate
padding before or after applying the convolutions, it is possible to design a CNN which
directly transforms sinogram data into image data, nevertheless (based on only the
shapes of the data).

6.1.3 Results

Actually performing a training with such an architecture results in network predictions
like the one depicted in Fig. 6.1. One can imagine this to be a good average of the
reconstructions used for training. In fact, looking at the network predictions of different
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(a) (b) (c)

Figure 6.1: Direct CNN reconstruction. (a) Examplary outputs of the trained network.
(b) Convolution matrix with a 9x9 kernel (top: full, bottom: zoomed). (c) System
matrix of a parallel beam setup (top: full, bottom: zoomed).

sinograms, there is no significant visual difference between them, which means that the
output is independent of the input.

6.1.4 Error Analysis

The reason for this failure is found in the mathematical nature of the convolutions.
Originally designed to mimic the human vision, convolutional layers perform very local
operations expressed by the kernel size. Therefore, the so-called receptive field is very
limited. However, for CT reconstruction, a pixel in the reconstructed image depends not
only on a local neighborhood of pixels in the sinogram but on pixels along a sinusoidal
curve from all (ramp-filtered) projections.

This can also be observed when comparing the transposed CT system matrix (see
Sec. 3.5), which corresponds to the backprojection matrix, and the convolution matrix,
which is a doubly block circulant (Toeplitz) matrix. To make the backprojection (and
therefore reconstruction) possible with a convolutional network, the elements of the
convolution matrix need to cover at least the non-zero elements of the transposed CT
system matrix: ∑

i

∑
j

H(|ajicij |) =
∑
i

∑
j

H(|aij |) (6.1)

using the Heaviside function H : R → {0, 1}, the CT system matrix A ∈ RM×N and
the convolution matrix C ∈ RN×M . To make Eq. 6.1 hold, the kernel sizes of the
convolutions must be increased. However, since the per-pixel information is global wrt.
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the sinogram, the necessary increase makes the CNN equal to a multilayer perceptron
and the AUTOMAP architecture with the same scaling problems. This proves that
CNNs cannot be (efficiently) used for direct CT reconstruction.

6.2 Primal-Dual Network and UNet with Fourier Trans-
form Layers

6.2.1 Problem Statement and Hypotheses

The Primal-Dual Network and the architecture Primal-Dual UNet, explained in Sec. 5.2,
were originally described for the image/reconstruction space as the primal space and the
sinogram/projection space as the dual space using the Radon transform and the FBP
as operations for switching between the spaces.

However, the primal-dual algorithm is not limited to these transformations, in gen-
eral. Inspired by the Fourier slice theorem (see Sec. 3.4) and MRI reconstruction
from frequencies in the k-space (see Sec. 6.1), the hypothesis is that using the im-
age/reconstruction space as the primal space and the Fourier space as the dual space
using the Fourier and inverse Fourier transform as operations for switching between the
spaces works as well as or better than using Radon and FBP.

The idea is that (1) the (inverse) Fourier transform is commonly used in other imaging
and wave processing contexts, and is therefore highly optimized in the form of (inverse)
Fast Fourier Transform ((i)FFT) algorithms with minimal errors compared to the Radon
transform and the FBP.

Additionally (2), CT reconstructions from undersampled projections (sparse views,
low-resolution detectors due to detector binning, ...) usually lack frequency information
(radial lines in case of sparse views or high frequencies in case of low-resolution detectors).
For this reason, optimizing directly in Fourier space is supposed to have benefits for the
reconstruction.

Finally (3), the shape of the reconstructed image (in the primal space) is equal
to the shape in Fourier space (that is, the dual space) in contrast to using the sino-
gram/projection space as the dual space. This even suggests replacing the convolutional
layers in the dual space with a UNet similar to the k-space learning network [HSY20].

6.2.2 Methods

Since the values in the Fourier space are complex (the frequencies consist of an amplitude
and a phase encoded in the real and imaginary part of the complex number), there are
different ways how to handle this in the CNN: (a) separating the real and imaginary part
into two channels, followed by standard convolutional operations, then re-composing the
complex number from the two channels (like in the k-space learning network [HSY20]),
or (b) using the complex-valued counterparts of the convolutional operations (like in
deep complex networks [TBZ+18]).
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Figure 6.2: Four exemplary predictions of Primal-Dual UNet with Fourier dual space
from 45 fan beam projections. Top: ground truth. Bottom: network prediction.

Moreover, one has to decide how the input to the network should be computed, i.e.
how to transform the CT projections to the primal or dual (Fourier) space. As mentioned
above, the Fourier slice theorem can help for this purpose. If parallel beam projections
are available, a non-uniform Fourier transform algorithm (NUFFT) can be used to di-
rectly obtain the initial undersampled dual space. However, this kind of projections is
very uncommon. Instead, fan (or cone) beam projections are typically acquired on CT
scanners. The Fourier space of this type can be obtained from Fourier reconstruction
methods [ZH95a]. Conversely, a primal space initialization can be computed using FBP
or other common CT reconstruction algorithms which, however, seems counterintuitive
when trying to model a reconstruction method based on only the Fourier space.

6.2.3 Results

Exemplary results of the Primal-Dual UNet with the Fourier dual space can be seen in
Fig. 6.2. Interestingly, the network does not perform similar to the Radon-based Primal-
Dual UNet, let alone outperforms it. Apart from the rather bad reconstruction quality
in general, it even inserts a non-existing hole in the reconstruction in the third example.
One reason might of course be the choice of hyperparameters of the network trainings
but the following explanations are more likely.

6.2.4 Error Analysis

Starting with the Fourier initialization obtained from a Fourier reconstruction method,
the explanation for failing is probably already found in the initialization. As pointed
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out by the authors [ZH95a], the number of projections needs to exceed a certain limit
dependent of the fan angle and the target resolution. Otherwise, ring artifacts are
introduced in the Fourier space, getting higher in frequency the lower the number of
projections. For the setup used in this experiment, the optimal number of projections
to satisfy this condition is 925. However, only 22 projections were used (that is, less
than 3% of the necessary amount), which does not just fill the Fourier space with ring
artifacts but likely does not even insert any useful information for the Primal-Dual UNet
which gets this data as input. Therefore, using an FBP reconstruction as initialization
in the primal space seems to be more sensible.

However, the suboptimal results of the networks initialized with the FBP reconstruc-
tions indicate that there is another problem which is in the network architecture.

Due to the radial structure of the projections in the Fourier space, the values are
much more densely distributed around the zero-frequency and get sparser at higher
frequencies, i.e. the Euclidean distance between projections in Fourier space increases
with the frequency. Additionally, the amplitude of the frequencies decreases rapidly for
most non-artificial images. These two properties invalidate the assumption of the locality
of convolutions: the receptive field might not capture any value in the higher frequency
areas, and the large differences in amplitudes depending on their position cannot be
mapped in the convolution kernels.

Finally, a convolution in Fourier space equals a multiplication in image space and
vice versa (convolution theorem [Bra86, pp. 108–112]). Since convolutional kernels
are typically chosen to be very small, e.g. 3 × 3, a convolution in Fourier space with
these kernels corresponds to a multiplication in image space with very low frequencies
(that is, the inverse Fourier transform of the kernels). This does not seem to serve
the purpose of optimizing the final reconstruction. However, it was shown in several
publications [PRC+22; HSY20] that CNNs applied on Fourier space data are in fact
able to reduce artifacts and improve the quality of MRI data, which might invalidate
this concern.

The Pytorch implementation of the method can be downloaded from Github1.

6.3 Cartesian Sinogram Upsampling using Delaunay Tri-
angulation

6.3.1 Problem Statement and Hypothesis

The main problem of sparse view CT is the number of missing projections, usually
invalidating the Nyquist theorem (as opposed to low-dose CT where the number of
photons per detector pixel is too low to estimate the expected extinction value). For
this reason, it is necessary to fill up this empty space with sensible values to reduce the
dimensionality of the nullspace and therefore the ambiguity of the reconstructed images
or volumes (see Sec. 3.5).

1https://github.com/phernst/deep-fourier-fanbeam
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For helical – and in particular circular/axial – trajectories, the dimensions of the
projection space can be separated into (fully sampled) detector dimensions and a (un-
dersampled) trajectory parameter dimension, i.e. an angular dimension for circular/axial
trajectories. Mathematically, the values of the detector pixels can be interpreted as a
function of the angular dimension. Furthermore, if the domain of this function is in-
terpreted as (a subset of) the real numbers where the actual projections are a discrete
subset of this domain, then it is possible to construct new data points by finding and
evaluating an interpolant function. Evaluation is a trivial task but finding the inter-
polant function is very challenging in this case of projection data. First choices usually
include nearest-neighbor interpolation, linear interpolation, cubic spline interpolation or
sinc interpolation (or their higher-dimensional counterparts). However, visual inspection
of sinogram data already hints that these simple interpolants might not be the optimal
choice:

1. Shapes in a sinogram can be described as sinusoidal (hence their name). However,
these sinusoidal shapes are not the previously described functions but a kind of
graph of them. This means that trying to express the functions as a single (shifted
or scaled one-dimensional) sine function is not possible in general. Moreover, the
simple interpolants are not able to preserve the sinusoidal shapes in the sinogram
which already makes them bad interpolants for this reason.

2. Interpolating along the angular axis is one-dimensional, which is why only the
one-dimensional variants of the simple interpolants can be used. However, since
the projections are ray integrals over the attenuation coefficients, the values of
other detector pixels, which are not necessarily in the local neighborhood, include
information about the projection values to be interpolated.

From another point of view, the coordinates of values in the sinogram can be interpreted
as polar coordinates: each value can be assigned an angle, i.e. the position along the
angular dimension, and a distance from the origin, i.e. the position along one of the
detector axes. This results in one more reason why there might be better choices than
the simple interpolants:

3. Interpreting the positions of the sampled projections as polar coordinates results
in similar properties pointed out in the explanation of the Fourier slice theorem for
sparse views (see Sec. 3.4). Particularly, since each projection fills up the space by
one radial line, the values around the origin are sampled much more densely than
in the outer regions. This means that the quality of the interpolation decreases
with distance from the origin if no further information about the values in this
space is available. Optimally, the interpolant would also depend on the distance
to the origin. This is obviously not taken care of by the simple interpolants.

Converting the (interpreted) polar representation of a sinogram to its Cartesian rep-
resentation results in data similar to an (unfiltered) backprojection but without the
“backsmearing”, such that each point in this Cartesian form still represents exactly one

89



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

point of the polar form (as opposed to the backprojection where all points on a line
contribute to one value in the sinogram).

These two properties – one-to-one point correspondences and backprojection-like
images – build the hypothesis that interpolating missing sinogram values in the Cartesian
representation is the optimal choice for sinogram interpolation.

6.3.2 Methods

The Cartesian representation makes it possible to use the two-dimensional (or multidi-
mensional, in general) counterparts of the simple interpolants and therefore including
more neighboring values for the interpolation of a point.

As experimentally determined by [rhtt], interpolating values on polar grids by using
their Cartesian representation is most accurately done by using barycentric interpola-
tion. For this purpose, a triangulation of the know data points, converted to Cartesian
coordinates, is performed. In this case, the Delaunay triangulation algorithm [Del34] is
used. To compute the interpolated value for a new data point P , the triangle containing
P , represented by three points T1, T2 and T3 of the triangulation, is identified first. For
the purpose of this interpolation, the x- and y-coordinate of the points coincide with
their respective Cartesian coordinates, whereas the z-coordinate is set to the data value.
The new data point P is assumed to be in the plane of the three triangle points, i.e.
P , T1, T2 and T3 must be linearly dependent. Therefore, the following equation must
hold [Lan86]: ∣∣∣∣∣∣∣∣

Px Py Pz 1
T1x T1y T1z 1
T2x T2y T2z 1
T3x T3y T3z 1

∣∣∣∣∣∣∣∣ = 0

The only unknown variable is Pz, which corresponds to the interpolated value of the
new data point. Solving for Pz results in the barycentric interpolation:

Pz =

∣∣∣∣∣∣
T1x T1y T1z

T2x T2y T2z

T3x T3y T3z

∣∣∣∣∣∣− Px ·

∣∣∣∣∣∣
T1y T1z 1
T2y T2z 1
T3y T3z 1

∣∣∣∣∣∣+ Py ·

∣∣∣∣∣∣
T1x T1z 1
T2x T2z 1
T3x T3z 1

∣∣∣∣∣∣∣∣∣∣∣∣
T1x T1y 1
T2x T2y 1
T3x T3y 1

∣∣∣∣∣∣
.

It is possible to optimize the interpolation further by replacing the Delaunay triangu-
lation: Every new data point of the interpolation is surrounded by four known data
points, spanning a trapezoid. The vertices of this trapezoid form four different triangles,
and the new data point lies in at least two of them. This means that the values from
different triangle interpolations can be combined and therefore result in possibly more
accurate interpolations. However, this was not done for the following experiments.

Due to the radial nature of the polar coordinates in Cartesian space, further problems
emerge that need to be handled properly:
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• Interpolation of intermediate projections likely includes points outside the convex
hull of the available sampled coordinates in the boundary region. These points
are not inside any triangle of the Delaunay triangulation such that identifying
T1, T2 and T3 fails. To make these points part of the convex hull with as least
additional computation as possible, the sparse sinogram is zero-padded along the
detector axis such that the convex hull barely includes all points of the projections
to be interpolated. In particular, the padding applied to both sides of the detector
dimension can be determined as

P =

⌈(
1

cos
(
∆θ
2

) − 1

)
· D
2

⌉
,

where P is the padding on one side, D the original detector size and ∆θ the angular
difference between two consecutive projections.

• One main difference between a function of polar coordinates and a sinogram is
their domains: by definition, the radius of a polar coordinate must be non-negative
and the angular coordinate must be an element of an interval spanning 2π to be
uniquely represented. These assumptions are not made for sinogram coordinates.
Here, the detector axis is assumed to be centered about the origin (i.e. the rotation
axis). Sinogram points with negative detector coordinates are converted to polar
coordinates by using the symmetry property of the Radon transform: Rf(s, θ) =
Rf(−s, θ ± π).

• For a unique representation of the points in a polar coordinate system, the pole is
uniquely defined as well. This means that |{(0, θ) : θ ∈ [0, 2π)}| = 1 which implies
f(0, θ1) = f(0, θ2) ∀θ1, θ2 for a function f of polar coordinates. However, for a
sinogram, it generally holds Rf(0, θ1) ̸= Rf(0, θ2) ∀θ1 ̸= θ2. To make all values
of the sinogram available in its polar representation, the detector coordinates are
shifted by half a detector pixel. This way, the pole is avoided for all sinogram
points as well as the interpolated projections.

6.3.3 Results

Fig. 6.3 (left) shows the errors of the sinograms after upsampling using the different
interpolation functions. The proposed Cartesian upsampling outperforms every other
interpolation function in terms of RMSE if at least 6 projections are used. Linear upsam-
pling is the second-best option in this case and is almost indistinguishable from Cartesian
upsampling if more than 100 projections are used. Sinc interpolation results in slightly
worse errors compared to linear interpolation. Finally, nearest neighbor upsampling is
the least accurate method, which is expected because projections are continuous along
the angular dimensions whereas nearest neighbor interpolation assumes step functions.

Rather surprisingly, the errors of the FBP reconstructions (with Hann window filter-
ing) after upsampling are very different from the errors in sinogram/projection domain
(see Fig. 6.3 (right)). Cartesian interpolation only slightly outperforms sinc interpolation
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Figure 6.3: Errors of different fan beam sinogram interpolation functions in projection
space (left) and after FBP reconstruction (right).

for up to 27 projections where sinc interpolation surpasses Cartesian interpolation and
results in the lowest overall errors until the highest tested number of projections. Linear
interpolation starts with errors similar to nearest neighbor interpolation but again ap-
proaches and becomes almost indistinguishable from Cartesian upsampling if more than
100 projections are used. Nearest neighbor interpolation still performs worst but is very
similar to linear upsampling for up to 50 projections.

6.3.4 Error Analysis

Despite producing the lowest errors in sinogram domain, the FBP reconstructions of
sinograms upsampled with the proposed Cartesian interpolation cannot outperform the
reconstructions of sinc-interpolated sinograms. Since the reconstructions were created
only using the FBP algorithm, it is not proven that other reconstruction methods perform
the same using the interpolations of the Cartesian upsampling.

One should also note that the Cartesian sinogram interpolation was only described
for parallel beam geometries. It is possible, however, to modify the algorithm to output
sensible interpolations for fan beam geometries as well. This merely includes the conver-
sion of the coordinates from the fan beam sinogram to a parallel beam sinogram [KS88,
Sec. 3.4] before interpolation. Moreover, the interpolation of the negative and non-
negative half-planes of the fan angle dimension should be carried out separately. This
way, the Delaunay triangulation is more regular, comprising similar sizes of triangles
(Fig. 6.4 (a) and (b)) as compared to computing the triangulation for the entire set of
sampled fan beam sinogram points (Fig. 6.4 (c)), and thus results in more credible in-
terpolations (compare Fig. 6.4 (e) and Fig. 6.4 (f)). However, the proposed upsampling
method could not outperform the simple interpolants, in particular sinc-interpolation,
for fan beam sinograms in neither projection nor reconstruction space.

Since the entire interpolation algorithm is algebraic, no rebinning or intermediate
resampling is required. Nevertheless, care must be taken for the redundant values in the
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Cartesian sinogram interpolation for fan beam sinograms. Top row: sampled
points after conversion to Cartesian space for 10 → 20 projections upsampling (green:
sparse input sinogram (padded), blue: Delaunay triangulation, red: upsampled target
sinogram). (a) Sampling of non-negative fan angle half-plane. (b) Sampling of negative
fan angle half-plane. (c) Sampling of all fan angle coordinates. Bottom row: exemplary
fan beam sinograms. (d) Ground truth. (e) 12x upsampling using separate half-planes.
(f) 12x upsampling using full sampling plane.
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fan beam sinogram if short scan trajectories are used, such that the interpolation stays
stable.

The implementation of the Cartesian sinogram interpolation along with the evalu-
ation wrt. the simple interpolants can be found on Github2. The repository includes
interpolation methods for both parallel beam and fan beam samplings.

6.4 Cone Beam Projection Based Affine Registration

6.4.1 Problem Statement

Incorporating temporal or model prior knowledge for the reconstruction of interventional
CT data usually requires some (at least coarse, see Sec. 5.6 and Sec. 5.7) kind of align-
ment between the interventional and the prior data: if planning scans are incorporated,
they need to be registered to the interventional scan, if shape information about inter-
ventional instruments is incorporated, its parameters need to be estimated to resemble
the correct location and alignment in the interventional scan, and so on.

There are many non-deep learning as well as deep learning based registration algo-
rithms. The first kind usually relies on iterative optimization schemes to maximize the
similarity between the fixed and the moving image/volume, given a parameterized trans-
formation (e.g. rigid, affine or elastic). Despite being highly accurate in many cases,
the main drawback of these registration algorithms is their runtime which, depending on
the algorithm, data resolution and transformation type, can easily take several minutes
up to hours. This makes them practically unusable during medical interventions and
hinders their use as a pre-processing step for trainings of neural networks, especially if
used in an online augmentation scenario.

On the other hand, several deep learning based methods have also been published.
These have some immediately recognizable advantages over the traditional algorithms.
Since many of them are based on CNNs, their processing time is much lower (often
less than a second up to a few minutes), even if they imitate the traditional iterative
algorithms by unrolling a few iterations. However, there are some disadvantages of this
type of registration algorithms, too. Since they need to be trained on certain data, it
cannot be assumed that they generalize properly which entails the necessity to evaluate
these methods (with trained weights) on new data sets and possibly having to fine-
tune. Contrarily, the traditional algorithms are not data-driven in that sense and can be
expected to generate accurate alignments on all sorts of input data. Another downside
of the deep learning methods is their accuracy, which is often only close to or worse than
the traditional methods. This can be explained by the drastically reduced number of
iterations and possibly the design choices of the network architectures.

However, the main requirement of a registration algorithm in an interventional setting
is the processing time, since a slightly non-accurate alignment can be made up for by the
subsequent reconstruction algorithm (see Sec. 5.6 and 5.7). For this reason, CNNs seem

2https://github.com/phernst/cartesian-sinogram
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to be a good choice for this task and use case. They also enable end-to-end trainings,
which result in lower loss values in many cases.

6.4.2 Methods and Hypothesis

There are several parameters that have to be chosen for a registration algorithm, depend-
ing on its use case. These do not only include the type of transformation or similarity
metric but, especially in case of CT, what data to use for the optimization: the re-
constructed volumes or the projections (or a combination). Many of the more general
deep learning based registration algorithms perform the alignment based on the recon-
structions. This seems sensible since the transformations are also performed in the
reconstruction space.

In case of interventional CT, however, this becomes very challenging: due to the
minimal dose that the subjects should be exposed to, the reconstructions contain se-
vere artifacts, be it a very low signal-to-noise ratio from low-dose CT or very pro-
nounced streaking artifacts from sparse view CT. Moreover, the attenuation values
reconstructed from the interventional CBCT are not distributed like the values from
the pre-interventional planning scan from a conventional CT, which poses an additional
challenge for the choice of the similarity metric which therefore has to be able to handle
multi-modal data properly.

What seems more promising in this case is a projection-based registration algorithm,
i.e. the spatial transformations should be estimated from the projections, directly. This
seems especially sensible for sparse view CT, since the projections themselves have a high
quality and barely contain artifacts. The original projections of the pre-interventional
scan, however, cannot directly be used (since their scanning geometry was different) and
must be simulated. Furthermore, the projections lack one dimension which might make
the registration task more difficult for the CNN to learn.

Depending on the network architecture, the neural network can contain a projec-
tion or backprojection layer, both of which are differentiable and are therefore able to
correctly backpropagate the gradients during training.

The chosen architecture should meet the following requirements: one input contains
the interventional projections (considered as fixed images), another input is the (recon-
structed) pre-interventional planning scan (considered as moving volume). The output
should be some parameterization of the spatial transformation. As the title of this sec-
tion already suggests, the transformation to be considered is affine (in fact, rigid) but
should be changeable to an elastic deformation field transformation without much effort.

These requirements make the following architectures conceivable:

1. Feature extraction in projection space: the interventional projections are treated as
channels and are concatenated (along the channel dimension) with the simulated
projections of the pre-interventional volume. This tensor of stacked projections
is the input to a 2D CNN for feature extraction, followed by (a) a backprojec-
tion/reconstruction layer and a 3D CNN which regresses a displacement field, or
(b) a regression CNN to regress the six parameters of an affine transformation.
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2. Feature extraction in reconstruction space: the interventional projections are sent
through a reconstruction layer and the resulting volume is concatenated (along the
channel dimension) with the pre-interventional volume. This is the input to a 3D
CNN for feature extraction, followed by (a) a displacement field or (b) a regression
CNN to regress the six parameters of an affine transformation.

One should note that one implementation of the second approach with a displace-
ment field as output (excluding the reconstruction layer at the beginning) is Voxel-
Morph [BZS+19], which performs as well as traditional registration methods for MRI
brain registration, while being faster and more memory efficient, and can be consid-
ered a state-of-the-art model for medical image registration based on deep learning. Its
implementation will be used as ‘backend’ for the proposed architectures.

Judging on the success of VoxelMorph, the hypothesis in this section is that one
of the previous architectures is able to predict the parameters of the affine transform
between a prior CT scan and interventional CBCT projections of the same subject to a
degree that only a fine elastic registration would be necessary for an exact alignment, or
in a range that a method like Dual Branch Prior-SegNet (Sec. 5.7) can handle.

6.4.3 Loss Functions

A very important part of the registration task is the choice of the loss function. Inde-
pendent of the output of the network, a very simple choice is the similarity – or rather
dissimilarity – (in terms of intensity values) between the fixed and the transformed
moving image/volume.

In case of a displacement field as output, i.e. an implicit parameterization of the affine
transform, this can be combined with a regularization of the displacement field, e.g. to fa-
vor or enforce smooth neighboring displacement vectors. The following experiments will
use a weighted sum of MSE and gradient penalty loss, similar to VoxelMorph [BZS+19]:

La(f,m, ϕ) =
1

|Ω|
∑
p∈Ω

[f(p)− [m ◦ ϕ](p)]2︸ ︷︷ ︸
Lsim(f,m◦ϕ)=MSE(f,m◦ϕ)

+0.02︸︷︷︸
λ

∑
p∈Ω

∥∇u(p)∥2︸ ︷︷ ︸
Lsmooth(ϕ)

,

with Ω ⊂ R3 being the set of voxel positions, f being the fixed volume (here: the
interventional reconstruction), m being the moving volume (here: the planning scan), u
being the predicted displacement and ϕ = Id+u like in [BZS+19]. This generally results
in a type of unsupervised optimization since the transformation parameters can directly
be inferred from the similarity between the fixed and the transformed moving volume.
However, quantifying the registration errors in terms of the affine parameters is not
straightforward when the only output is a displacement field. The following experiments
will therefore employ a least squares approximation incorporating the singular value
decomposition of the affine matrix from the (overdetermined system of equations of
the) displacement field [AHB87] to be directly comparable to the models predicting the
explicit parameterization.
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In case of an explicit parameterization of the affine transform, the chosen loss function
depends on the type of the parameterization: an affine matrix, Euler rotation angles +
translation or quaternion + translation, to name a few possible choices. For the following
experiments, the combination of quaternion + translation was chosen because it does
not need any regularization and is smooth by definition [MAV17]. In contrast, Euler
angles do not encode the rotation injectively and suffer from gimbal lock, and directly
regressing the 3x4 matrix elements of an affine transformation does not result in a well-
defined affine matrix, in general. This type of parameterization generally results in a type
of supervised optimization since the similarity between the predicted and ground truth
transformation parameters can directly be calculated. In this case, the loss function in
the following experiments is going to be the MSE between the prior scan warped with
the predicted and the ground truth affine transformation:

Lb(q, t, q̂, t̂) =
1

|Ω|
∑
p∈Ω

[m(qpq−1 + t)−m(q̂pq̂−1 + t̂)]2,

with q and t being the predicted quaternion and translation, and q̂ and t̂ being the
respective ground truth variables. Note that the moving volume warped with the ground
truth transformation could also be replaced by the fixed volume, but this introduces
unwanted errors (e.g. if the intensity distributions are different or the fixed volume
contains artifacts). The loss function does not directly calculate dissimilarity between
the parameters of the affine transform but instead indirectly from the volumes warped
with these parameters. This way, the optimization is only based on image data and
the networks learn by themselves how to set the quaternions and translation vectors
properly.

6.4.4 Data Sets and Preprocessing

For the experiments, the Mayo Clinic data set was used because it produces the least
amount of truncation artifacts and seems to be a good choice for affine alignment, since
the skull is usually not deformed elastically (as opposed to the abdominal area in the
CT Lymph Nodes or LungCT-Diagnosis data sets). To save memory, the volumes were
downscaled to 128× 128× 128 voxels with a voxel size of 1.5mm and 13 equi-angular
X-ray projections were simulated for each volume along a circular trajectory with a
detector size of 512 px× 512 px with detector elements of 0.616mm× 0.616mm. During
training, random flips of the sagittal axis were performed as augmentation. Each network
was trained with misalignments of up to ±10° and ±38.4mm and combinations thereof
for each axis. Adam was chosen as the optimizer with a cosine annealing learning rate
scheduler starting at 1× 10−4 decaying to 0 after 1000 epochs with an effective batch
size of 16. Early stopping on the validation loss was performed to choose the optimal
model.
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Figure 6.5: Affine registration errors. Top row: translation errors. Bottom row: rotation
errors as geodesic distances.

6.4.5 Results

The registration errors for all four described combinations can be found in Fig. 6.5.
Generally, none of the methods is able to compensate rotation sufficiently. While the
methods outputting a displacement field slightly decrease the respective geodesic dis-
tances or do not change them, the methods outputting the affine parameters increase
these distances in most cases and do not even result in a zero distance when no rotation
is applied to the prior scan at all. The translation is handled better. The methods
outputting a displacement field are able to reduce the translation error slightly better
than the geodesic distances for rotations. Architecture 1(b) extracting the features in
projection space and outputting the affine parameters compensates well for translations
along the cranial-caudal axis (3.87mm on average) but worse for the other axes. The
method that compensates best for translation errors is Architecture 2(b) extracting the
features in reconstruction space and outputting the affine parameters: the translation
errors for every axis are all below 11.27mm, and 5.23mm on average. This renders
Architecture 2(b) the optimal choice for this data under these training circumstances,
at least wrt. translation.

Since none of the methods is able to compensate for rotation errors sufficiently, the
initial hypothesis gets invalidated. Despite Architecture 2(b) being able to compensate
for translation errors well, it introduces rotation errors of at least 1° in every case.
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6.4.6 Error Analysis

Unfortunately, a direct comparison of these errors with the original VoxelMorph is not
possible because the authors decided to assess the errors by comparing segmentation
masks after registration in terms of the Dice coefficient. Those kinds of masks, however,
were not available for the proposed CT registration. Due to the large errors in Fig. 6.5,
one can assume the errors of the proposed architectures to be much worse than those
that could be achieved in VoxelMorph. There are several possible explanations for this
failure.

The first obvious difference is the data set. Where VoxelMorph acts on MRI scans
of brains, the proposed architectures are trained on CT data of entire heads. For this
reason, the intensity distributions are fundamentally different (between CT and MRI)
and the networks need to be able to align tissues with very high attenuation values,
like cranial bones, as well as tissues with rather low attenuation, like gray and white
matter. The architectures outputting displacement fields failed this distinction by mainly
considering highly absorbing tissues (see Fig. 6.6), such that the estimation of the affine
parameters inevitably failed, too. Another difference in the data set, which might have
a significant impact on the registration quality, is its size. Where VoxelMorph uses
3231, 250 and 250 different scans for training, validation and test set, the proposed
architectures only use 35, 8 and 7 subjects, respectively (though including augmentation
in contrast to VoxelMorph).

A further difference is the type of the registration transformation. VoxelMorph is
trained to perform deformable registration (assuming an already performed affine align-
ment in advance), whereas the proposed methods are trained for affine registration. One
could hypothesize that CNNs are able to handle (local) deformations better than (global)
affine transformations due to the receptive field of the convolutional layers. Moreover,
expressing the transformation in terms of a displacement field might be suboptimal
when attempting to predict affine transforms: rotations modify the displacement vec-
tors depending on their position, requiring global knowledge of the volume, in contrast
to translations which are equally distributed to all displacement vectors. This might
also explain why the rotation errors are high for every tested architecture.

Finally, major errors are likely to be introduced by the sparse views of the interven-
tional CT. When extracting the features in projection space, both sets of interventional
and simulated prior scan projections contain the same low number of views such that
corresponding projections can be matched and processed by the convolutional layers.
However, this implies that much information of the prior scan remains unused, i.e. the
projection data that could have been simulated from positions in between the avail-
able interventional projections. On the other hand, when extracting the features in re-
construction space, the sparse interventional projections need to be reconstructed first,
which necessarily introduces severe streaking artifacts, such that it becomes significantly
more difficult for the network to extract the correct information.

These explanations show that the registration of sparse view interventional CT scans
with CNNs is not a straightforward nor a trivial task. Despite building upon the state-
of-the-art VoxelMorph architecture, the results of the proposed methods are less than
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Figure 6.6: Two exemplary results for the methods using displacement fields for regis-
tration.
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satisfactory. However, the field of deep learning based image registration is large and
still growing, iterative approaches have not been evaluated in this thesis and traditional
algorithms might also suffice as a preprocessing step. Since the focus of this thesis is
on reconstruction, a thorough investigation of sparse view CT registration algorithms is
waived here.
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Chapter 7

Conclusion

This final chapter concludes the thesis. To this end, the first chapters will be summarized
briefly before the methods presented in Ch. 5 will be compared among each other and
discussed wrt. the goals of the thesis. Moreover, the research questions stated in Ch. 1
will be answered explicitly in the following section. Finally, the current limitations of
the presented methods will be described and a short overview of ongoing and future
work will be given.

7.1 Summary and Discussion

The main objective of this thesis is to reduce the X-ray exposure of surgeons and patients
during CT-guided interventions by means of acquiring fewer projections while retaining
a high quality of the reconstructions with the help of prior knowledge and deep learning,
CNNs in particular. After introducing and motivating this task in the first chapter, the
historical developments of X-ray tomography and CT imaging as well as deep learn-
ing and CNNs were described to get an impression of the technical and device-specific
capabilities and limitations for this task. The mathematical background of CT image
reconstruction and related concepts was given in the subsequent chapter to gain a deep
understanding of how the algorithms work, followed by the state-of-the-art methods sep-
arated by the different types of prior knowledge. Each of the methods presented in Ch.5
is an example for incorporating prior knowledge of (mainly) a certain type for the task
of sparse view CT reconstruction using CNNs. In that chapter, however, the individual
methods are merely compared to and discussed wrt. other state-of-the-art algorithms
and not among each other or in the scope of prior knowledge. Nevertheless, this is
necessary to answer the first research question. Recall (and see Sec. 1.3 for detailed
descriptions and explanations):

Research Question 1 How do the three different types of prior knowledge – Algebraic,
Deep Learning and Temporal/Model Prior Knowledge – influence the quality of the final
reconstructions?
The direct comparison of the presented methods is not straightforward. This is, among
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(a) (b)

ART

Figure 7.1: PSNR and SSIM values of different methods/models. (a) Increase wrt.
FBP/FDK reconstructions. (b) Absolute values. Colors encode the primal type of prior
knowledge: Algebraic (yellow), Deep Learning (blue) and Temporal and Model Prior
Knowledge (red).

other reasons, due to the type of prior knowledge which is incorporated, e.g. methods
incorporating planning scans were evaluated on interventional scans including needles
whereas other methods were tested without any additional instruments, the dimensions
of the processed data, i.e. stacks of 1D or 2D projections, and reconstructed 2D slices or
3D volumes, and the sparsity of the projections, i.e. some methods only allow subsam-
pling by powers of 2 while others can be sampled arbitrarily. Despite these differences,
it was attempted to keep these parameters as similar as possible for the sake of com-
parability. For this reason, one can get at least a rough impression of the effects of the
types of prior knowledge on CT image reconstruction. Visual inspection of the resulting
exemplary reconstructions of the individual methods in Ch. 5 already hints that Tem-
poral/Model Prior Knowledge seems to be the winner among the investigated types.
To support this assumption quantitatively, the SSIM and PSNR values of the different
methods are shown in Fig. 7.1, where larger values indicate higher similarity. For the
reasons described above, it is not meaningful to report specific values here but rather to
describe trends.

In Fig. 7.1(a), where the increase of the metrics wrt. to their corresponding FBP/FDK
reconstructions is plotted, one can easily identify Temporal/Model Prior Knowledge in
the top right corner, Deep Learning Prior Knowledge situated rather centrally and Alge-
braic Prior Knowledge in the lower left corner. This reflects the results of the previously
described visual inspection: Temporal/Model Prior Knowledge in fact results in the
highest quality gain while Algebraic Prior Knowledge improves the reconstructions the
least (among the three assessed types with the described methods, not considering other
potential types). Note, however, that none of plotted points has negative values, which
indicates that all methods do improve the FBP/FDK reconstruction, which serves as
the common ground for comparison here.
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Fig. 7.1(b) shows the absolute PSNR and SSIM values of the methods and also in-
cludes the post-processing CNN FDKConvNet as well as the algebraic iterative algorithm
ART, both of which having a comparatively similar quality to the cone beam projection
interpolation network presented in Sec. 5.4. Still, these methods are at the lower end of
quality improvement compared to the other proposed methods in this thesis.

One might also note that the order of the methods in Fig. 7.1(b) is slightly different
to the order in Fig. 7.1(a). This is because the values in Fig. 7.1(a) were calculated
wrt. the FBP/FDK results of the individual methods (which, again, differ due to the
previously described parameters as well as the data sets they were applied on) whereas
Fig. 7.1(b) simply reports the absolute values, which underlines that only general trends
should be considered instead of actual values.

Research Question 2 How well do different similarity metrics assess the quality of
reconstructed images/volumes wrt. a specific task, and which metrics are most suitable
for evaluating CT reconstruction quality?
Sec. 3.8 introduced and defined the most commonly used error and similarity metrics
for CT image reconstruction, most notably MSE, PSNR, SSIM and VGG. One common
problem of these metrics is their ranges. Despite CT images having defined physically
interpretable scales, i.e. Hounsfield units or (mass) attenuation coefficients which relate
image values to physical properties and in the best case directly identify a certain type of
tissue, none of these metrics reports errors in one of these scales: MSE squares the values,
PSNR’s scale is in decibels (wrt. a target image), SSIM is usually between zero and one,
and VGG’s output is non-negative without a specific (or directly interpretable) range.
Only MAE retains the scale of the images and therefore enables drawing conclusions
about errors directly, however it is reported less frequently in publications than e.g.
MSE.

Modifying the MSE slightly, though, to become the RMSE “resets” the resulting
scale back to the original one, and is therefore favored over the simple MSE (due to
the gained interpretability). Another way to make the MSE somewhat interpretable
is normalization, resulting in NMSE or NRMSE. These metrics are usually specified
in percents and can be interpreted as a kind of average percentual error of an image
wrt. a target image. The main disadvantage of all of these MSE-related metrics is their
proneness to outliers: since the mean value is calculated from all squared errors, one
single outlier can drastically influence the final value (especially due to being squared).
Depending on the use case, this can be wanted or unwanted behavior: For interventional
scans including a needle, the MSE would be high if the reconstruction method removes
the needle from the image, which is wanted behavior. If, on the other hand, the recon-
struction of a conventional CT scan contains Poisson noise such that some pixel values
are significantly hyper- or hypointense, the MSE would be high as well, although most
areas are depicted sufficiently close to the ground truth image, which is unwanted be-
havior. An example is shown in Fig. 7.2. Further information about how scaling image
values influences the MSE can be found in Apx. B.1.

The PSNR is derived from and therefore closely related to the MSE/RMSE. This
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240 HU

-160 HU

(a) (b) (c)

Figure 7.2: Example for effects of interventional needles and Poisson noise on MSE. (a)
Conventional CT scan. (b) Like (a) but including an interventional needle (indicated by
the arrow). (c) Like (a) but with Poisson noise. The RMSE between (a) and (b) is the
same as the RMSE between (a) and (c), i.e. 80HU.

makes it inherit the same disadvantages of MSE and adds the disadvantage of the scale
being in decibels. Moreover, the calculation of PSNR includes defining a maximum peak
intensity value. In case of CT images, such a value is not uniquely defined and therefore
needs to be set sensibly. This, however, hinders comparability of different publications
due to likely differently set values. It can be shown (see Apx. B.2), though, that this value
merely biases the PSNR additively such that a PSNR based on a different maximum
peak intensity value can easily be corrected in retrospect. Furthermore, ordering and
differences unchanged.

SSIM has the advantage of incorporating luminance, contrast and structure in its
calculation and is therefore a metric evaluating images more similar to human percep-
tion. In many cases, this results in quantitative ratings correlated to subjective human
raters [LB09]. This makes it especially suitable for evaluating the quality of a recon-
structed image. However, one downside the range between zero and one, which is not
directly traceable back to the intensity values of the reconstructions. Moreover, it is nec-
essary to set a dynamic range value. Setting it too large pushes the values towards one
while setting it too low might result in unstable calculations or even zero division. As for
PSNR, finding a sensible value for this parameter is not straightforward for CT images
and hinders comparison with other published methods, as well. Even worse, there is no
simple mathematical relation between SSIMs calculated with differing dynamic range
values and a retrospective correction is not possible due to the SSIM not being injective
wrt. this parameter (shown in Apx. B.3).

Though only briefly described and not further used in the thesis, VGG is likely to
be metric most closely related to human perception since it is calculated from features
that are able to classify images. The quantitative values, however, do not have a sensible
meaning and also cannot directly be traced back to the image intensities. Since it uses
weights of a VGG network trained on natural images, it is also questionable how well
the values translate to CT images.

Finally, having humans evaluate the reconstructions is – scientifically – the best way
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(a) (b)

Figure 7.3: Metrics of different methods/models depending on view count. (a) PSNR.
(b) SSIM. Colors encode the primal type of prior knowledge: Algebraic (yellow), Deep
Learning (blue) and Temporal and Model Prior Knowledge (red).

to assess the quality. Not only does this produce the most meaningful values, but it
can also be tailored to a specific task. The obvious downsides, however, are the scarce
availability of doctors for this very time-consuming task (especially for large data sets),
the necessity to clearly define the evaluation process to avoid large inter-rater variability
making the results less or unusable, and the design of the tool that is used for the
evaluation which must avoid ambiguities.

Research Question 3 How does the reduced X-ray exposure (by reducing the num-
ber of projections) in combination with the incorporated prior knowledge correlate with
reconstruction quality and computation time, and what does this mean for medical ap-
plications?
Fixing a certain reconstruction algorithm while varying the number of available projec-
tions naturally results in lower quality for fewer projections and higher quality for more
projections, which is an obvious observation since fewer projections means less available
information (and therefore a higher-dimensional nullspace). In Fig. 7.3, this is directly
apparent for the different upsampling factors of PD UNet and Cone Interp: the lower
the upsampling factor, i.e. the more projections were available, the higher the PSNR
and the SSIM.

On the other hand, fixing a certain number of projections while varying the different
reconstruction algorithms shows no correlation wrt. the similarity metrics. With the
values plotted in Fig. 7.3, one might even assume an inverse correlation: DB Prior-
SegNet has the highest PSNR value with only 13 projections, while Cone Interp x2 has
one of the lowest PSNR values with 180 projections. This, however, is a false assumption
because some presented methods have not been evaluated with a higher projection count
(as this would simply increase the quality, as described in the previous paragraph) and
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Table 7.1: Composition of the different methods. Arrows describe computation time:
(↓↓) very low, (↓) low, (↑) high, (↑↑) very high. Colors encode the primal type of prior
knowledge: Algebraic (yellow), Deep Learning (blue) and Temporal and Model Prior
Knowledge (red).

Method Composition Time

• Sparse FDK/FBP Sparse FDK/FBP (↓↓) (↓↓)
• Full FDK/FBP Full FDK/FBP (↓) (↓)
• ART (Backprojection, Update, Projection)⟲ (↑/↑↑)

• Cone Interp (x8) 3x CNN (↓), Full FDK (↓) (↓)
• Deep DBP Hilbert (↑↑), Sparse FDK (↓↓), CNN (↓), Blend (↓) (↑↑)
• PD UNet 4x CNN (↓), 3x Sparse FBP (↓↓), Projection (↓↓) (↓)
• PD Cone 4x 3D CNN (↑), 3x Sparse FDK (↓↓), Projection (↓↓) (↑)
• DB Prior-Net Sparse FDK (↓↓), CNN (↓) (↓)
• DB Prior-SegNet Sparse FDK (↓↓), CNN (↓) (↓)

are therefore not plotted in Fig. 7.3.

The last parameter, which is especially important for interventional applications, is
the total computation time for the final reconstruction. Due to the different imaging
parameters of the presented methods and varying use of reconstruction libraries, this,
again, is not directly comparable. However, analyzing the composition of the algorithms,
seen in Tab. 7.1, already reveals the ranking in terms of reconstruction time. Since the
computation time is very low for Sparse FBP/FDK and low for (2D) CNNs and Full
FBPFDK, the methods that only use these components are the fastest. These are Cone
Interp, PD UNet, DB Prior-Net and DB Prior-SegNet. 3D CNNs are slower due to the
additional dimension that they have to process. Therefore, PD Cone is slower than the
previously mentioned methods. Finally, Deep DBP is very slow, where the computation
of the Hilbert planes is the bottleneck. For comparison, ART was also included. Due to
its iterative nature, it is usually slow or very slow, depending on the number of iterations
and the update step.

Combining the three parameters image quality, projection count and reconstruction
time, the type of prior knowledge that leads all of them is Temporal and Model Prior
Knowledge: with only 13 projections and a low computation time, DB Prior-SegNet is
able to achieve the best average PSNR of 43.97 dB and SSIM of 97.15% on the LungCT-
Diagnosis data set, which renders this type of prior knowledge most suitable for an actual
application in a medical interventional setting. This does not imply that the other types
are not well suited. Future methods that include all three of the described types of prior
knowledge to an equal amount might mutually benefit from the additional information
and, if well-designed, optimize the reconstructions in terms of the three parameters
that were discussed here. This, combined with further optimizations like allowing more
flexibility and variability of the data that the methods process, is bound to improve the
work flow during medical interventions.
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7.2 Current Limitations

The methods presented in this thesis are merely a few further steps in the direction of
achieving CT-guided surgery with a minimum amount of X-ray exposure for both the
patients and the surgeons. As already pointed out in Sec. 1.4, the main focus of the the-
sis is methodological developments for incorporating different types of prior knowledge
into CT reconstruction algorithms, where clinical practical application is subordinate.
Moreover, limiting the types of prior knowledge to Algebraic, Deep Learning and Tem-
poral/Model Prior Knowledge only evaluates a subset of all possible types. This is even
reinforced by a lack of systematic reviews of these types in the scientific literature for this
field (e.g. defining all types and/or hierarchical relations between them, as done for the
components in Fig. 1.1). Furthermore, the presented methods for the investigated prior
knowledge types are by far not exhaustive. It is, e.g., conceivable that incorporating
different Algebraic Prior Knowledge might improve the reconstructions significantly or
incorporating different Temporal/Model Prior Knowledge might result in a quality drop
compared to what is currently achieved.

In addition to the limitations pointed out in Ch. 1, which set the frame for the thesis
as a whole, the individual methods defined further limitations for the time being. Due to
a lack of large CBCT data sets (let alone interventional scans), all cone beam projections,
which were used for training the networks, have been simulated. This, of course, does
not take into account many types of artifacts. On the one hand, this makes the trained
networks not directly applicable to real data without fine-tuning. On the other hand,
these idealized settings allow for a more sensible evaluation of the actual modifications
in the methods compared to the baselines since they are not influenced by artifacts in
the data. Examples for these idealized settings include untruncated projections (as in
Sec. 5.4 where, unrealistically, the entire abdomen is depicted on the detector), noiseless
projections (i.e. values of the detector pixels are the expected values instead of samples
of random variables depending on the energy of the photons from the X-ray tube), or
perfectly aligned planning and interventional scans (which is impossible in real scenarios
because of, e.g., breathing motion).

Nevertheless, some types of artifacts were introduced which might be less pronounced
or absent in real data, to make the network training less time- and/or memory-consuming
or because of requirements of the algebraic reconstruction algorithms. These include a
low resolution of the detector (in most cases subsampled by a factor of at least 2) or the
circular scan trajectory (providing insufficient data to the FDK algorithm and therefore
resulting in cone beam artifacts).

7.3 Future Work

Summarizing the previous section, it becomes evident what future work has to focus
on. Many of the limitations can be loosened without much effort by simulating the
projections more realistically, e.g. including photon noise and increasing the detector
resolution to match the size of real detectors, however significantly increasing time and
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memory requirements, or by increased availability of (interventional) CBCT data sets
(possibly including the raw projections) for training and therefore waiving simulations
entirely (or merely using them as a means of data augmentation).

Furthermore, despite rejecting the respective initial hypotheses, the methods de-
scribed in Ch. 6 can be reference points for future algorithms and show which errors
might be avoided when designing them.

Since the ultimate goal of this research is clinical application, it is not only necessary
to make the algorithms work on real data but also have them evaluated quantitatively by
doctors and clinicians to investigate how beneficial the improvements of the methods in
fact are during surgery. Moreover, it must be evaluated how the methods are supposed
to be included in the workflow of the surgeons, which likely depends on the type of
surgery that is done and therefore might need to be adjusted for certain use cases.

From a broader perspective, improving CT-guided interventions is not bound to in-
corporating data from CT only, despite being one of the quickest yet highest quality
imaging modalities. In fact, surgeons mainly need to be able to navigate their instru-
ments to the correct places inside the body while being able to distinguish between
different types of tissues and materials. Although CT is a very good choice for this
purpose (not considering the harmful radiation), other modalities can be supportive for
this task as well, e.g. sonography or MRI. Acquisitions from these different imaging
modalities could be combined to not only reduce the X-ray dose but also to gain addi-
tional information that would otherwise be unavailable when only relying on CT data,
like information about blood flow from Doppler sonography without additional contrast
agents or enhanced contrast of certain tissues with specific sequences of MRI. Software
for robot-assisted surgery might also benefit from the combined imaging information to
automate minimally invasive procedures more reliably and therefore reducing the risk
of human errors. Moreover, recent advances in ultrasound imaging include Ultrasound
CT (USCT) as a risk-free alternative to X-ray CT with high soft tissue contrast but
different limitations. Due to their mathematical similarity, the methods proposed in
this thesis might also be used for USCT reconstruction, eventually, entering an entirely
new world of applications.
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Sächsische Akademie der Wissenschaften, 69:262–277, 1917.

119



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

[RB08] Justus Randolph and Roman Bednarik. Publication bias in the computer
science education research literature. J. UCS, 14:575–589, January 2008.

[RFB15a] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: convolu-
tional networks for biomedical image segmentation. In Med Imag Comput
Comput Assis Interv, 2015.

[RFB15b] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim
Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham. Springer International Publishing, 2015.

[rhtt] rahnema1 (https://stackoverflow.com/users/6579744/rahnema1). How to
interpolate using in polar coordinate. Stack Overflow. eprint: https://
stackoverflow.com/questions/40858534. url: https://stackoverflow.
com/questions/40858534. version: 2016-11-29.

[RLS+15] Holger R Roth, Le Lu, Ari Seff, Kevin M Cherry, Joanne Hoffman, Shijun
Wang, Jiamin Liu, Evrim Turkbey, and Ronald M Summers. A new 2.5 d
representation for lymph node detection in ct. the cancer imaging archive,
2015. doi: 10.7937/K9/TCIA.2015.AQIIDCNM.

[Ron20] Matteo Ronchetti. Torchradon: fast differentiable routines for computed
tomography. arXiv preprint arXiv:2009.14788, 2020. eprint: arXiv:2009.
14788.

[Ros57] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton.
Technical report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New
York, January 1957.

[RPI77] RA Rutherford, BR Pullan, and I Isherwood. The physical performance
of a prototype ct5000 emi body scanner. In The First European Seminar
on Computerised Axial Tomography in Clinical Practice, pages 301–311.
Springer, 1977.

[SFS+21] Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Is-
abelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer
statistics 2020: globocan estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians,
71(3):209–249, 2021. doi: https://doi.org/10.3322/caac.21660.

[Sid85] Robert L. Siddon. Fast calculation of the exact radiological path for a
three-dimensional ct array. Medical Physics, 12(2):252–255, 1985. doi: 10.
1118/1.595715. url: https://aapm.onlinelibrary.wiley.com/doi/
abs/10.1118/1.595715.

120



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

[SMB10] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling
operations in convolutional architectures for object recognition. In Kon-
stantinos Diamantaras, Wlodek Duch, and Lazaros S. Iliadis, editors, Ar-
tificial Neural Networks – ICANN 2010, pages 92–101, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2010. isbn: 978-3-642-15825-4.

[SP08] Emil Y Sidky and Xiaochuan Pan. Image reconstruction in circular cone-
beam computed tomography by constrained, total-variation minimization.
Physics in Medicine and Biology, 53(17):4777–4807, August 2008. doi:
10.1088/0031-9155/53/17/021.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, ed-
itors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. url: http://arxiv.org/abs/1409.1556.

[TBS+06] Jean-Baptiste Thibault, Charles A. Bouman, Ken D. Sauer, and Jiang
Hsieh. A recursive filter for noise reduction in statistical iterative tomo-
graphic imaging. In Charles A. Bouman, Eric L. Miller, and Ilya Pollak,
editors, Computational Imaging IV, volume 6065, pages 264–273. Interna-
tional Society for Optics and Photonics, SPIE, 2006. doi: 10.1117/12.
660281.

[TBZ+18] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep
Subramanian, Joao Felipe Santos, Soroush Mehri, Negar Rostamzadeh,
Yoshua Bengio, and Christopher J Pal. Deep complex networks. In In-
ternational Conference on Learning Representations, 2018. url: https:
//openreview.net/forum?id=H1T2hmZAb.

[Tuy83] Heang K. Tuy. An inversion formula for cone-beam reconstruction. SIAM
Journal on Applied Mathematics, 43(3):546–552, 1983. doi: 10 . 1137 /
0143035.

[vAPC+16] Wim van Aarle, Willem Jan Palenstijn, Jeroen Cant, Eline Janssens, Folk-
ert Bleichrodt, Andrei Dabravolski, Jan De Beenhouwer, K. Joost Baten-
burg, and Jan Sijbers. Fast and flexible x-ray tomography using the astra
toolbox. Opt. Express, 24(22):25129–25147, October 2016. doi: 10.1364/
OE.24.025129. url: http://opg.optica.org/oe/abstract.cfm?URI=
oe-24-22-25129.

[WB09] Zhou Wang and Alan C Bovik. Mean squared error: love it or leave it?
a new look at signal fidelity measures. IEEE signal processing magazine,
26(1):98–117, 2009.

[WBS+04] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transac-
tions on Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.
819861.

121



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

[Wer82] Paul J. Werbos. Applications of advances in nonlinear sensitivity analysis.
In R. F. Drenick and F. Kozin, editors, System Modeling and Optimization,
pages 762–770, Berlin, Heidelberg. Springer Berlin Heidelberg, 1982.

[WGC+16] Tobias Würfl, Florin C. Ghesu, Vincent Christlein, and Andreas Maier.
Deep learning computed tomography. In Sebastien Ourselin, Leo Joskow-
icz, Mert R. Sabuncu, Gozde Unal, and William Wells, editors, Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2016,
pages 432–440, Cham. Springer International Publishing, 2016.

[WHC+18] Tobias Würfl, Mathis Hoffmann, Vincent Christlein, Katharina Breininger,
Yixin Huang, Mathias Unberath, and Andreas K. Maier. Deep learning
computed tomography: learning projection-domain weights from image do-
main in limited angle problems. IEEE Transactions on Medical Imaging,
37(6):1454–1463, 2018. doi: 10.1109/TMI.2018.2833499.

[WMM+20] Ralph C. Wang, Diana L. Miglioretti, Emily C. Marlow, Marilyn L. Kwan,
May K. Theis, Erin J. A. Bowles, Robert T. Greenlee, Alanna K. Rahm,
Natasha K. Stout, Sheila Weinmann, and Rebecca Smith-Bindman. Trends
in imaging for suspected pulmonary embolism across us health care sys-
tems, 2004 to 2016. JAMA Network Open, 3(11):e2026930–e2026930, Novem-
ber 2020. issn: 2574-3805. doi: 10.1001/jamanetworkopen.2020.26930.

[WSB03] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference
on Signals, Systems Computers, 2003, volume 2, 1398–1402 Vol.2, 2003.
doi: 10.1109/ACSSC.2003.1292216.

[WT97] Brian Wandell and Stephen Thomas. Foundations of vision. Psyccritiques,
42(7), 1997.

[XYM+12] Qiong Xu, Hengyong Yu, Xuanqin Mou, Lei Zhang, Jiang Hsieh, and Ge
Wang. Low-dose x-ray ct reconstruction via dictionary learning. IEEE
Transactions on Medical Imaging, 31(9):1682–1697, 2012. doi: 10.1109/
TMI.2012.2195669.

[Zam89] L. Zambresky. A verification study of the global wam model december
1987 - november 1988. (63):86, May 1989. url: https://www.ecmwf.int/
node/13201.

[ZD20] Hai-Miao Zhang and Bin Dong. A review on deep learning in medical image
reconstruction. Journal of the Operations Research Society of China:1–30,
2020.

[ZGF+17] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restora-
tion with neural networks. IEEE Transactions on Computational Imaging,
3(1):47–57, 2017. doi: 10.1109/TCI.2016.2644865.

122



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

[ZH95a] S.-R. Zhao and H. Halling. A new fourier method for fan beam recon-
struction. In 1995 IEEE Nuclear Science Symposium and Medical Imag-
ing Conference Record, volume 2, 1287–1291 vol.2, 1995. doi: 10.1109/
NSSMIC.1995.510494.

[ZH95b] Shuang-Ren Zhao and Horst Halling. Reconstruction of cone beam projec-
tions with free source path by a generalized fourier method. In Proceedings
of the 1995 International Meeting on Fully Three-Dimensional Image Re-
construction in Radiology and Nuclear Medicine, pages 323–327, 1995.

[Zha04] Harry Zhang. The optimality of naive bayes. In Valerie Barr and Zdravko
Markov, editors, Proceedings of the Seventeenth International Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS 2004) (Miami
Beach, Florida, USA). AAAI Press, 2004.

[ZHL+16] Hao Zhang, Hao Han, Zhengrong Liang, Yifan Hu, Yan Liu, William
Moore, Jianhua Ma, and Hongbing Lu. Extracting information from pre-
vious full-dose ct scan for knowledge-based bayesian reconstruction of cur-
rent low-dose ct images. IEEE Transactions on Medical Imaging, 35(3):860–
870, 2016. doi: 10.1109/TMI.2015.2498148.

[ZHM+14] Hua Zhang, Jing Huang, Jianhua Ma, Zhaoying Bian, Qianjin Feng, Hong-
bing Lu, Zhengrong Liang, and Wufan Chen. Iterative reconstruction for
x-ray computed tomography using prior-image induced nonlocal regular-
ization. IEEE Transactions on Biomedical Engineering, 61(9):2367–2378,
2014. doi: 10.1109/TBME.2013.2287244.

[Zim00] Corinne Zimmerman. The development of scientific reasoning skills. De-
velopmental Review, 20(1):99–149, 2000. issn: 0273-2297. doi: https://
doi.org/10.1006/drev.1999.0497.

[ZLC+18] Bo Zhu, Jeremiah Z. Liu, Stephen F. Cauley, Bruce R. Rosen, and Matthew
S. Rosen. Image reconstruction by domain-transform manifold learning.
Nature, 555(7697):487–492, March 2018. issn: 1476-4687. doi: 10.1038/
nature25988.

[ZNG08] Andy Ziegler, Tim Nielsen, and Michael Grass. Iterative reconstruction of a
region of interest for transmission tomography.Medical Physics, 35(4):1317–
1327, 2008. doi: 10.1118/1.2870219. url: https://aapm.onlinelibrary.
wiley.com/doi/abs/10.1118/1.2870219.

[ZWZ+18] Hao Zhang, Jing Wang, Dong Zeng, Xi Tao, and Jianhua Ma. Regulariza-
tion strategies in statistical image reconstruction of low-dose x-ray ct: a
review. Medical Physics, 45(10):e886–e907, 2018. doi: 10.1002/mp.13123.
eprint: https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/
mp.13123. url: https://aapm.onlinelibrary.wiley.com/doi/abs/
10.1002/mp.13123.

123



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

[ZZH+13] Hua Zhang, Shanli Zhang, Debin Hu, Dong Zeng, Zhaoying Bian, Lijun
Lu, Jianhua Ma, and Jing Huang. Threshold choices of huber regulariza-
tion using global- and local-edge-detecting operators for x-ray computed
tomographic reconstruction. In 2013 35th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 2352–2355, 2013. doi: 10.1109/EMBC.2013.6610010.

124



Author’s Contributions

[DED+21] Max Dünnwald, Philipp Ernst, Emrah Düzel, Klaus Tönnies, Matthew J.
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Appendix A

Primal-Dual UNet for
Undersampled Radial MRI

As described in Sec. 5.2, the results that are shown in this chapter only focus on MRI
data. They are included here to show that the methods that were developed in this thesis
have not only been designed for a very specific use case, but are even applicable for rather
different imaging modalities when converted to data that is mathematically similar to CT
projections.

A.1 Dataset

Two different publicly available benchmark data sets of two different organs were used
in this research: IXI data set1 for brain and CHAOS challenge data set [KGB+21]
for abdomen. The IXI data set contains nearly 600 brain MRIs of normal healthy
subjects, acquired using different MRI protocols (T1w, T2w, PDw, MRA, and DWI),
collected from three different hospitals at two different field strengths (1.5T and 3T).
30 central slices from 100, 35 and 50 T1w volumes acquired at 3T were used in this
study as the training, validation and test set, respectively. The CHAOS challenge data
set contains abdominal MRIs of 40 healthy subjects, acquired using two different MR
sequences: T1-Dual (In-phase and Opposed-phase) and T2-SPIR. All the slices from 24,
6 and 10 subjects (three volumes each: T1-in, T1-opposed, and T2) were used in the
training, validation, and test set, respectively. All the images were interpolated with
sinc interpolation to have an in-plane matrix size of 256x256.

The data sets do not contain any raw MRI data, only the magnitude images, which
were treated as the fully-sampled groundtruth. The corresponding single-coil radial
k-spaces of those magnitude images were generated using NUFFT (implemented in
PyNUFFT [Lin18]). The fully-sampled raw data was considered to have the number
of spokes (radial acquisitions) as twice the base resolution, which was 512 for this data
set. The sampling was performed following the equidistant radial sampling scheme,

1IXI Dataset: https://brain-development.org/ixi-dataset/.
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where the angle between the spokes, calculated as ∆ϕ = π ÷ nSp for nSp ∈ N spokes,
was ∆ϕ = 0.351 562 5°. A NUFFT was performed on each slice of the MRI volumes,
following ∆ϕ, to obtain the equivalent fully-sampled radial k-space.

Pre-Processing The fully-sampled sinograms of the respective radial k-spaces were
obtained by applying the one-dimensional inverse Fourier transform on each spoke of the
k-space. To keep the setup similar to the one described in Sec. 5.2.5, the spokes were
shifted by half a detector pixel using sinc interpolation and were cropped to the central
363 detector pixels. This step was necessary because each spoke extracted by NUFFT
contained 512 frequency components, which corresponds to a detector pixel number of
512, as well. In contrast to the simulated CT projections in Sec. 5.2.5, the MR sinograms
correspond to parallel-beam projections according to the Fourier slice theorem.

Undersampling To simulate the undersampled data sets, the sinograms were made
sparse by retaining only every nth projection (spoke), where n denotes the level of
sparsity. Two levels were used: Sparse 8 and Sparse 16.

A.2 Results

The proposed Primal-Dual UNet was compared (see Sec. 5.2.2) against the undersam-
pled radial k-space reconstruction using PyNUFFT [Lin18] (referred to as Undersampled
(NUFFT)) by applying FBP on the corresponding sinograms (obtained by applying 1D-
iFFT on each spoke, explained in Sec. A.1), referred to here as Sinogram Bilinear, and
finally, against three deep learning baseline models: Reconstruction UNet [HKL+18],
Sinogram UNet [LLK+19], and Learned Primal-Dual Network [AÖ18] - for two different
publicly available benchmark data sets for two different organs: IXI for T1w brain MRIs
and CHAOS for T1-Dual and T2w abdominal MRIs. Experiments were performed for
two different levels of undersamplings: with an acceleration factor of 8 and 16 - which,
in terms of the sparsity of the corresponding sinograms for equidistant radial samplings
(see Sec. A.1 and A.1), are referred to here as Sparse 8 and 16 - to have the same
terminology for both CT and MRI.

A.2.1 IXI Dataset

Qualitative results of SSIM and RMSE are shown in Tab. A.1, whereas the range of the
resultant SSIM values with the help of box plots is shown in Fig. A.1 for Sparse 8 and 16,
respectively. It can be observed that the proposed model outperformed all the baseline
methods in terms of both SSIM and RMSE, and the statistical tests revealed that these
improvements were significant. In terms of average SSIM values, the Primal-Dual UNet
achieved improvements of 1.9% and 4.15% over the main baseline Primal-Dual Network
for Sparse 8 and 16, respectively. Qualitative comparisons of the results using difference
images and SSIM maps are shown in Fig. A.2 for Sparse 8 for Sparse 16.
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Table A.1: Resultant metrics for MRI for the IXI data set (mean±std)

Method
SSIM

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.595±0.027 0.410±0.021
Bilinear Sinogram 0.819±0.026 0.682±0.035
Sinogram UNet 0.860±0.044 0.782±0.032
Reconstruction UNet 0.948±0.011 0.877±0.025
Primal-Dual Network 0.947±0.012 0.867±0.025
Primal-Dual UNet 0.965±0.008 0.903±0.019

Method
RMSE

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.046±0.009 0.085±0.016
Bilinear Sinogram 0.058±0.017 0.067±0.016
Sinogram UNet 0.058±0.021 0.073±0.023
Reconstruction UNet 0.021±0.006 0.037±0.012
Primal-Dual Network 0.021±0.006 0.041±0.015
Primal-Dual UNet 0.017±0.005 0.034±0.011
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Figure A.1: Box-plots of the resultant SSIM values for MRI Sparse 8 (left) and Sparse
16 (right) for the IXI data set
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Figure A.2: Qualitative comparisons of the reconstructions of MRI Sparse 8 (left) and
Sparse 16 (right) for the IXI data set
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Table A.2: Resultant metrics for MRI for the CHAOS data set (mean±std)

Method
SSIM RMSE

Sparse 8 Sparse 16 Sparse 8 Sparse 16

Undersampled (NUFFT) 0.528±0.092 0.359±0.060 0.034±0.015 0.068±0.027
Bilinear Sinogram 0.915±0.033 0.843±0.060 0.035±0.013 0.044±0.016
Sinogram UNet 0.926±0.026 0.897±0.038 0.032±0.011 0.036±0.014
Reconstruction UNet 0.981±0.013 0.943±0.029 0.011±0.007 0.022±0.014
Primal-Dual Network 0.982±0.012 0.949±0.025 0.010±0.005 0.021±0.010
Primal-Dual UNet 0.986±0.011 0.957±0.023 0.009±0.006 0.018±0.011

Table A.3: Resultant SSIM metrics for different types of MR acquisitions from the
CHAOS data set (mean±std)

Method
Sparse 8

T2-SPIR T1-Dual T1 In-phase T1 Opposed-phase

Undersampled (NUFFT) 0.599±0.060 0.493±0.084 0.430±0.058 0.557±0.053
Bilinear Sinogram 0.944±0.017 0.901±0.029 0.887±0.029 0.916±0.021
Sinogram UNet 0.950±0.014 0.915±0.023 0.904±0.023 0.925±0.017
Reconstruction UNet 0.983±0.009 0.980±0.015 0.975±0.014 0.985±0.013
Primal-Dual Network 0.983±0.008 0.981±0.013 0.976±0.013 0.986±0.011
Primal-Dual UNet 0.987±0.007 0.985±0.012 0.981±0.011 0.989±0.011

Method
Sparse 16

T2-SPIR T1-Dual T1 In-phase T1 Opposed-phase

Undersampled (NUFFT) 0.394±0.051 0.342±0.057 0.306±0.043 0.378±0.045
Bilinear Sinogram 0.896±0.035 0.817±0.052 0.796±0.051 0.838±0.044
Sinogram UNet 0.927±0.021 0.882±0.036 0.867±0.036 0.898±0.027
Reconstruction UNet 0.950±0.019 0.939±0.033 0.926±0.031 0.952±0.029
Primal-Dual Network 0.955±0.017 0.945±0.028 0.934±0.028 0.957±0.022
Primal-Dual UNet 0.961±0.015 0.955±0.026 0.945±0.026 0.964±0.023

A.2.2 CHAOS Dataset

The final set of experiments was performed on the CHAOS MRI data set. Quantita-
tively, the proposed method outperformed all the baselines for both acceleration factors
with statistical significance when being compared using SSIM and RMSE, reported in
Tab. A.2. Fig. A.3 portrays the range of resultant SSIM values for Sparse 8 and 16,
respectively. The proposed method improved the average SSIM values by 0.41% and
0.84% over the baseline Primal-Dual Network, respectively, for Sparse 8 and 16.

The CHAOS data set includes three different types of MRIs: T1 in-phase, T1
opposed-phase, and T2, acquired using two different sequences for two different con-
trasts: T1-Dual and T2-SPIR (explained in A.1) and all three were combined during
training. The metrics that have been shown so far also included all these three types
of MRIs together. However, in addition, they were also evaluated separately. Tab. A.3
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Figure A.3: Box-plots of the resultant SSIM values for MRI Sparse 8 (left) and Sparse
16 (right) for the CHAOS data set

shows the resultant SSIM values for each of the three types of MRIs separately, as well
as for both types of acquisition sequences T1-Dual (all the results of T1 in-phase and
opposed-phase) and T2-SPIR. The proposed method achieved statistically significant
improvements over all the baselines in every scenario. Among the different types of
MRIs, T1 opposed-phase achieved the best score, while T1 in-phase achieved the worst.
When only the contrasts/sequences are taken into account, then T2-SPIR performed
better than T1-Dual. These observations hold true for both levels of sparsity. However,
in terms of the percentage of improvement of average SSIM values achieved by the pro-
posed method against the primary baseline model (Primal-Dual Network), the amounts
are different for the different levels of sparsity. Both T2-SPIR and T1-Dual improved
0.41% for Sparse 8, and for Sparse 16 obtained improvements of 0.63% and 1.06%, re-
spectively. Considering the three types of MRIs separately, it is noteworthy that even
though the T1 in-phase was the worst-performing, it managed to get the most amount
of improvement 0.51% and 1.18% for Sparse 8 and 16. In contrast, the best-performing
type of MRI secured the least amount of improvements: 0.30% and 0.73% for Sparse 8
and 16.

Finally, the reconstructions were compared qualitatively with the help of difference
images and SSIM maps for Sparse 16 are shown in Fig. A.4 for T1 in-phase and T2-SPIR,
respectively.

Evaluation for regions of interest (ROI)

Further evaluations were performed to compare the performance of the proposed model
against the other methods for different regions of interest. For this purpose, the images
were segmented into three different regions: liver, kidneys (both left and right), and
spleen, with the help of the available segmentation labels from the CHAOS data set
with the images. Then the images were cropped to have only the region of interest.
Those segmented-cropped images obtained from the results of different methods were
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Figure A.4: Qualitative comparisons of the reconstructions of CHAOS Sparse 16 T1w
In-phase (left) and T2w (right) (mean±std)
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Table A.4: Resultant metrics for liver from CHAOS data set (mean±std)

Method
SSIM

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.831±0.083 0.656±0.102
Bilinear Sinogram 0.883±0.046 0.788±0.076
Sinogram UNet 0.893±0.042 0.826±0.063
Reconstruction UNet 0.951±0.029 0.864±0.061
Primal-Dual Network 0.951±0.030 0.866±0.059
Primal-Dual UNet 0.963±0.026 0.888±0.054

Method
RMSE

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.028±0.014 0.065±0.026
Bilinear Sinogram 0.037±0.016 0.048±0.021
Sinogram UNet 0.032±0.014 0.038±0.016
Reconstruction UNet 0.013±0.007 0.026±0.014
Primal-Dual Network 0.012±0.005 0.025±0.011
Primal-Dual UNet 0.011±0.006 0.021±0.010

then compared against the segmented-cropped version of the ground-truth images. Ta-
bles A.5, A.5, A.6 show the quantitative results for liver, kidneys, and spleen. Statistical
tests revealed that the proposed model archived statistically significant improvements
over all the other methods. Fig. A.5 shows a qualitative comparison of the reconstruction
quality for liver, for Sparse 8.

A.3 Discussion

An interesting fact to be noted is that the first-ever 2D MRI was also produced using
a back-projection algorithm [LAU73; Gev06]. The only difference between the sparse
CT reconstruction and undersampled radial MRI reconstruction using the proposed
model (as well as the CT-inspired baselines) is the 1D inverse Fourier transform as pre-
processing. The experiments performed as a part of this research show the possibility of
using sinogram upsampling techniques combined with FBP to reconstruct undersampled
radial MRI.

It was observed that converting the undersampled radial k-space into the correspond-
ing sinogram, then applying bilinear interpolation before finally performing FBP already
results in scores better than the undersampled radial MRIs which were reconstructed
with the conventional NUFFT. Sinogram UNet, which aims to improve the quality of
the bilinearly upsampled sinograms, improves the results even further in terms of SSIM.
Even though these two methods perform better than the traditional reconstruction of the
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Table A.5: Resultant metrics for both left and right kidneys from CHAOS data set
(mean±std)

Method
SSIM

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.877±0.180 0.695±0.168
Bilinear Sinogram 0.866±0.083 0.759±0.112
Sinogram UNet 0.881±0.079 0.809±0.095
Reconstruction UNet 0.962±0.054 0.862±0.086
Primal-Dual Network 0.963±0.057 0.866±0.077
Primal-Dual UNet 0.971±0.049 0.892±0.073

Method
RMSE

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.027±0.014 0.070±0.028
Bilinear Sinogram 0.051±0.023 0.065±0.031
Sinogram UNet 0.045±0.020 0.054±0.025
Reconstruction UNet 0.016±0.008 0.035±0.018
Primal-Dual Network 0.016±0.008 0.039±0.023
Primal-Dual UNet 0.013±0.007 0.030±0.014

Table A.6: Resultant metrics for spleen from CHAOS data set (mean±std)

Method
SSIM

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.848±0.149 0.699±0.155
Bilinear Sinogram 0.878±0.114 0.817±0.130
Sinogram UNet 0.885±0.121 0.840±0.127
Reconstruction UNet 0.953±0.104 0.895±0.117
Primal-Dual Network 0.950±0.106 0.894±0.116
Primal-Dual UNet 0.957±0.118 0.907±0.128

Method
RMSE

Sparse 8 Sparse 16

Undersampled (NUFFT) 0.024±0.010 0.059±0.021
Bilinear Sinogram 0.045±0.018 0.055±0.022
Sinogram UNet 0.039±0.017 0.045±0.019
Reconstruction UNet 0.011±0.005 0.023±0.010
Primal-Dual Network 0.012±0.006 0.025±0.013
Primal-Dual UNet 0.009±0.004 0.019±0.009
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Figure A.5: Qualitative comparisons of the reconstructions of CHAOS T2w Sparse 8:
Liver ROI
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undersampled radial MRIs using NUFFT, the quantitative and qualitative evaluations
yield that they are much inferior to the other three models. It is to be Reconstruction
UNet - a well-established model for deep learning based undersampled MRI reconstruc-
tion, which is the only model out of the four models which is not CT-inspired and
works directly with the reconstructed images, performed very similar to the main base-
line model of this paper: Primal-Dual Network. Reconstruction UNet performed better
for the brain MRI reconstruction task, whereas the Primal-Dual Network performed
better while reconstructing abdominal MRIs. As noted earlier, the proposed method
Primal-Dual UNet performed better than all the other methods for all the tasks.

A.4 Primal-Dual UNet for Parallel Beam CT

This section presents the results for the sparse CT reconstruction for the parallel-beam
geometry. Each projection consists of 363 detector pixels with a pixel spacing of 1 px
from parallel-beams to cover the full axial slice. The sinograms contain 180 equiangular
projections with an angular distance of 1° between consecutive projections. Tab. A.7
shows the quantitative comparison of the methods in terms of SSIM (calculated on the
normalised intensity values) and RMSE (in the Hounsfield scale), and Fig. A.6, and A.7
portray the range of the resultant SSIM values for the three levels of sparsity: 4, 8, and
16, respectively. In terms of SSIM, the baseline Primal-Dual Network performed better
than the proposed method for Sparse 4 and 8. However, the proposed method outper-
formed the baseline Primal-Dual Network for the highest level of sparsity experimented
here: 16. Regarding RMSE, the baseline Primal-Dual Network performed better than
the proposed method. However, the proposed method performed better than the other
baseline methods - in terms of both, SSIM and RMSE. Finally, qualitative comparisons
of the reconstructions with the help of difference images and SSIM maps are shown in
Fig. A.8 and A.9, for Sparse 4, 8 and 16, respectively.
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Figure A.6: Box-plots of the resultant SSIM values for CT (parallel-beam geometry)
Sparse 4 (left) and Sparse 8 (right)
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Figure A.7: Box-plots of the resultant SSIM values for CT (parallel-beam geometry)
Sparse 16

Table A.7: Resultant metrics for the CT parallel-beam geometry

Method
SSIM

Sparse 4 Sparse 8 Sparse 16

Bilinear Sinogram 0.880±0.015 0.764±0.028 0.654±0.038
Sinogram UNet 0.903±0.011 0.875±0.019 0.793±0.037
Reconstruction UNet 0.968±0.006 0.925±0.022 0.863±0.037
Primal-Dual Network 0.980±0.003 0.952±0.010 0.895±0.026
Primal-Dual UNet 0.976±0.005 0.944±0.014 0.899±0.032

Method
RMSE (HU)

Sparse 4 Sparse 8 Sparse 16

Bilinear Sinogram 42.504±5.337 72.237±9.285 109.353±13.098
Sinogram UNet 50.024±3.921 53.618±5.887 70.777±11.304
Reconstruction UNet 17.806±2.964 35.180±10.355 62.507±19.468
Primal-Dual Network 11.913±1.660 21.456±4.212 43.926±13.337
Primal-Dual UNet 14.579±2.276 26.545±6.151 46.044±13.362
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Figure A.8: Qualitative comparisons of the reconstructions of CT (parallel-beam geom-
etry) Sparse 4 (left) and Sparse 8 (right)
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Figure A.9: Qualitative comparisons of the reconstructions of CT (parallel-beam geom-
etry) Sparse 16
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Appendix B

Influence of Data Range
Parameters in Similarity Metrics

Many related works report errors or similarity using one or several of the metrics de-
scribed in Sec. 3.8. Some of these widely used metrics need to have set a parameter
which describes the range of the values that they operate on. Natural images are usu-
ally saved as three-channel 8 bit unsigned integer data, which already sets the range to
[0, 255]. In some cases, the data might also be available as 32 bit floating point values
on the unit interval, such that the range parameter is set to [0, 1].

Unfortunately, pixel values in CT images, despite being directly related to the
scanned materials or tissues, merely have a lower bound, i.e. corresponding to no X-ray
attenuation. Therefore, there is no consistent value range such that different works likely
use different values for these parameters, which negatively affects the comparability. For
this reason, the influence of these data range parameters on the error and similarity
metrics is shown in the following sections.

B.1 Intensity Scaling in MSE

A useful property of the MSE is about multiplicative scaling of the intensity values.
Recall the definition of MSE:

MSE(F,G) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2. (B.1)
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Assume that the intensity values are scaled by a positive scalar s ∈ R>0. Then

MSE(sF, sG) =
1

MN

M∑
i=1

N∑
j=1

(s · fij − s · gij)2

=
1

MN

M∑
i=1

N∑
j=1

(s · (fij − gij))
2

=
1

MN

M∑
i=1

N∑
j=1

s2 · (fij − gij)
2

= s2 · 1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2

= s2 ·MSE(F,G).

(B.2)

B.2 Normalization in PSNR

Recall the definition of PSNR:

PSNR(F,G) = 20 log10

(
Imax

MSE(F,G)

)
, (B.3)

where Imax is the maximum intensity value, i.e. the normalization value. Let us assume
that it was set to an incorrect value Iic ∈ R>0, resulting in the incorrect PSNR function

PSNRic(F,G) = 20 log10

(
Iic

MSE(F,G)

)
. (B.4)

The goal is now to relate PSNR and PSNRic. Since the normalization values are scalars,
it is possible to find a value α ∈ R>0 such that Imax = αIic. Putting this into Eq. B.3
results in

PSNR(F,G) = 20 log10

(
Imax

MSE(F,G)

)
= 20 log10

(
αIic

MSE(F,G)

)
= 20

(
log10(α) + log10

(
Iic

MSE(F,G)

))
= 20 log10(α)︸ ︷︷ ︸

=:α̃

+20 log10

(
Iic

MSE(F,G)

)
︸ ︷︷ ︸

PSNRic(F,G)

= PSNRic(F,G) + α̃.

(B.5)
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Thus, the correct PSNR value can be calculated by simply adding a constant to the
incorrect PSNR value. This shows that the normalization factor has merely an addi-
tive influence on the PSNR calculation. Consequently, relations between two PSNR
values remain unchanged independent of the normalization factor and, moreover, even
differences between two PSNR values are not influenced by this factor.

Not only do these properties hold for the normalization factor Imax but also for
multiplicative scalings of the actual intensity values of F and G. Using the property of
the previous section, MSE(sF, sG) = s2 ·MSE(F,G) (Eq. B.1), it follows

PSNR(sF, sG) = 20 log10

(
Imax

MSE(sF, sG)

)
= 20 log10

(
Imax

s2MSE(F,G)

)

= 20 log10


=:αIic︷ ︸︸ ︷

s−2Imax

MSE(F,G)


(Eq. B.5)

= PSNR(F,G) + α̃.

(B.6)

B.3 Dynamic Range in SSIM

Recall the definition of SSIM [WBS+04]:

SSIM(x, y) =
(

=:a1︷ ︸︸ ︷
2µxµy +k21L

2)(

=:a2︷︸︸︷
2σxy +k22L

2)

(µ2
x + µ2

y︸ ︷︷ ︸
=:a3

+k21L
2)(σ2

x + σ2
y︸ ︷︷ ︸

=:a4

+k22L
2)

=
(a1 + k21L

2)(a2 + k22L
2)

(a3 + k21L
2)(a4 + k22L

2)

=
(a1
k21

+ L2)(a2
k22

+ L2)

(a3
k21

+ L2)(a4
k22

+ L2)

=
(b1 + L2)(b2 + L2)

(b3 + L2)(b4 + L2)

b1 :=
a1
k21

, b2 :=
a2
k22

, b3 :=
a3
k21

, b4 :=
a4
k22

(B.7)

143



Prior Knowledge for DL-Based Interventional CBCT Reconstruction

As in the previous section, assume that the dynamic range variable was chosen incor-
rectly, such that L = αLic.

SSIM(x, y) =
(b1 + α2L2

ic)(b2 + α2L2
ic)

(b3 + α2L2
ic)(b4 + α2L2

ic)

=
(b1 + c)(b2 + c)

(b3 + c)(b4 + c)
, c := α2L2

ic

=
c2 + (b1 + b2)c+ b1b2
c2 + (b3 + b4)c+ b3b4

(B.8)

This is a quotient of two quadratic functions (wrt. the variable c) which can be converted
to the form [Gre55]:

y =
λ(px+ q)2 + µ(rx+ s)2

λ′(px+ q)2 + µ′(rx+ s)2

=
λ(p2x2 + 2pqx+ q2) + µ(r2x2 + 2rsx+ s2)

λ′(p2x2 + 2pqx+ q2) + µ′(r2x2 + 2rsx+ s2)

=
(λp2 + µr2)x2 + 2(λpq + µrs)x+ (λq2 + µs2)

(λ′p2 + µ′r2)x2 + 2(λ′pq + µ′rs)x+ (λ′q2 + µ′s2)

(B.9)

Depending on the values of the variables p, q, r, s, λ, λ′, µ and µ′, the graph can

• lie entirely on one side of an asymptote,

• have exactly one turning point,

• have exactly two turning points.

Since the derivation of the sought variables in Eq. B.9 from the fraction in Eq. B.8 is
not straightforward, other properties of the variables in the equation can be exploited
to facilitate the evaluation. b1 through b4 are derived from the mean values and the
standard deviations, scaled by the positive constants k1 or k2. Assuming images with
non-negative values, both mean values and standard deviations are non-negative, as well.
Therefore, b1 through b4 are non-negative. Moreover, the SSIM is symmetric in b1 and
b2 as well as in b3 and b4. The definition of c := α2L2

ic implies c ≥ 0 (in fact, c > 0 since
both α and L are positive to be semantically correct).

Because of these properties, it holds limc→∞ SSIM = 1, ∀c : SSIM ≥ 0, and it is
simple to find the cases where, in fact, SSIM ≤ 1:

c2 + (b1 + b2)c+ b1b2
c2 + (b3 + b4)c+ b3b4

≤ 1

c2 + (b1 + b2)c+ b1b2 ≤ c2 + (b3 + b4)c+ b3b4

(b1 + b2 − b3 − b4)︸ ︷︷ ︸
=:S

c ≤ − (b1b2 − b3b4)︸ ︷︷ ︸
=:P

⇔

{
c ≤ −P

S , if S > 0

c ≥ −P
S , otherwise

(B.10)
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(a) P < 0, S < 0 (b) P > 0, S < 0

(c) P < 0, S > 0 (d) P > 0, S > 0

Figure B.1: Graphs of exemplary SSIM functions dependent on the dynamic range
variable c for the four different cases derived in the text (SSIM value on ordinate, c on
abscissa).

One can now evaluate the four different cases where SSIM ≤ 1 (exemplary graphs in
Fig. B.1):

P ≤ 0 P > 0

S < 0 ∀c : c ≥ −P
S ∃c : c ≥ −P

S

S > 0 ∃c : c ≤ −P
S ̸ ∃c : c ≤ −P

S

Setting the partial derivative of SSIM wrt. c to zero results in the solutions

cE = −
2P ±

√
4P 2 − 4S(b1b2b3 + b1b2b4 − b1b3b4 − b2b3b4)

2S

= −
2P ±

√
4P 2 − 4S(b1b2(b3 + b4)− b3b4(b1 + b2))

2S

(B.11)

providing possible candidates for extreme points.

Case 1: P ≤ 0 ∧ S < 0. There is either no non-negative extreme point or exactly one
at c+E . If there is none, SSIM is increasing wrt. c. Otherwise, it is decreasing in [0, c+E)
and increasing in [c+E ,∞), and limc→∞ SSIM = 1−.

Case 2: P > 0 ∧ S < 0. Assuming a lower bound c∗ was found s.t. SSIM < 1,
there is exactly one non-negative extreme point c+E s.t. SSIM is decreasing in [0, c+E) and
increasing in [c+E ,∞), and limc→∞ SSIM = 1−.
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Case 3: P ≤ 0∧ S > 0. Assuming an upper bound c∗ was found s.t. SSIM < 1, there
is exactly one non-negative extreme point at c+E s.t. SSIM is increasing in [0, c+E) and
decreasing in [c+E ,∞). Since c∗ is an upper bound not to invalidate SSIM ≤ 1, it holds
c∗ < c+E and therefore, SSIM is increasing in [0, c∗], and limc→∞ SSIM = 1+.

Case 4: P > 0 ∧ S > 0. No c fulfills the requirement SSIM ≤ 1.

Unfortunately, there is no simple calculation to rectify SSIM values when an incorrect
dynamic range was used. Attempting to modify the dynamic range variable incorporates
knowledge about statistics of the images that are compared, which might not be available
anymore. Aggravatingly, SSIM is not injective wrt. the dynamic range variable in some
cases, in particular for P > 0 ∧ S < 0, such that different values of the dynamic range
can result in the same SSIM values.

A rather interesting insight into the SSIM is Case 4: If both P and S are positive,
the SSIM is always larger than one, independently of the choice of the dynamic range
variable. As an example, take b1 = 1, b2 = 4, b3 = 1.5, and b4 = 2. Tracing these values
back to the variables in the original Eq. B.7 (assuming k1 = 0.01 and k2 = 0.03 as the
original paper, and, without loss of generality, α = 1) leads to

µxµy = 5 · 10−5, σxy = 0.0018
µ2
x + µ2

y = 15 · 10−5, σ2
x + σ2

y = 0.0018

which might seem unrealistically small for natural images with values in [0, 255], but it
can easily result from images made up of X-ray attenuation coefficients with non-negative
values with the 99th percentile being ≈ 0.03.
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Appendix C

Medical Evaluation Tool

This final chapter focuses on the evaluation of the image quality of reconstruction algo-
rithms for actual medical use by doctors.

As previously stated in Sec. 3.8, the metrics for assessing the quality of reconstructed
images or volumes do not necessarily resemble the quality that is desired by doctors to
guide them visually in certain use cases. For this task-based assessment, a simple medical
evaluation tool was developed in the course of this thesis.

C.1 Requirements and Work Flow

The tool needs to meet some requirements to make the evaluation process as simple and
least time-consuming for the user, i.e. doctors, while providing as much information
about single samples as well as unbiased statistical properties of the entire data set as
possible. Consequently, the following work flow had to be established:

• Setting a folder for saving the results of the processed samples (Fig. C.1 (a)).

• Ability to continue the assessment with the remaining unprocessed samples after
closing the tool.

• The data set should be processed randomly to avoid biases in the evaluation pro-
cess.

• A progress bar shows how many samples have been processed already.

• For each sample, the predictions of multiple models are visualized clearly next to
the ground truth in a first screen (Fig. C.1 (b)):

– The user needs to rank each prediction.

– Hovering over a sample creates a cross-hair in all shown samples at the same
location. Right-clicking on the sample shows the Hounsfield Units of the
sample at the position of the cross-hair for all shown samples.
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(a)

(b)

Figure C.1: First stages of the evaluation tool. (a) Landing page with the possibility
to select a folder where the annotations are saved to. (b) Stage 1 for an exemplary
slice. Each output of randomized models is given a rank. Right-clicking at an arbitrary
position inside one of the images reveals the Hounsfield Units for all images at the same
position below the images.
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(a)

(b)

Figure C.2: Second stage of the evaluation tool. (a) Answering the questions on the left
while comparing the best ranked image to the ground truth. (b) Marking well (green)
and poorly reconstructed (green) regions, as well as important (yellow) regions.
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Figure C.3: Exemplary fully completed second stage of one slice. If necessary, the user
can reset the annotations of the current slice and restart from Stage 1.

• After ranking the predictions of the models, the user continues to a second screen
for a more detailed assessment of the model prediction with the chosen highest
rank (Fig. C.2 (a)):

– The user determines how similar the prediction with the chosen highest rank
resembles the ground truth.

– The user needs to mark well and poorly reconstructed as well as important
regions in the prediction (Fig. C.2 (b)).

– For each selection, the user is asked how confident his decision was.

– The user is given the possibility to add additional remarks as free text.

– The user can reset the assessment of the current sample.

When the user has finished annotating a sample, the screen looks similar to Fig. C.3
before continuing to Stage 1 of the next sample.
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C.2 Implementation Details

The tool is intended to run platform-independently. For this reason, Python 3.9.7 is used
in conjunction with PySimpleGUI 4.56, and to enable quick prototyping with the ability
to refine certain aspects by having access to the low-level backend functions (in this case:
Tk via the Python interface Tkinter). The graphical user interface is event-driven and
the program is designed in an object-oriented way:

• class UserStudy: The entry point of the program. It is responsible for setting
up the application with its UI elements and event handlers.

• class SliceAnnotation: Defines methods for setting up a window for annotating
slices with well or poorly reconstructed or important regions.

• class Ui UserStudy and class Ui SliceAnnotation: Factory classes to gener-
ate the UI layouts of class UserStudy and class SliceAnnotation.

• class PatientLoader: This class is responsible for loading the samples (both
model predictions and ground truth) and keeping track of the index to enable
processing all samples in the data set. Moreover, the samples are loaded asyn-
chronously to avoid freezing of the application while loading.

• class UserInput: A data class containing the selections and choices of the user
for one sample.

Though platform-independent by using Python, users should not be expected to be able
to create a Python virtual environment including all the necessary packages and start
the program from a command-line interface. For this reason, PyInstaller 4.7 was used to
pack all necessary dependencies of the program and compile an executable file. All these
files are compressed into a zip archive, which makes the distribution of the program very
simple, as it can also already contain the data set to be assessed.

The tool can be downloaded from Github1.

1https://github.com/suhitaghosh10/medical-evaluation-tool
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