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Summary 

This dissertation combines four studies which investigate the strategic behavior 

in games. The first two studies are based on experiments and develop theories of 

bounded rationality in order to explain the observed behavior.  This behavior 

violates the minimal conditions of game-theoretic rationality, i.e., that equilibrium 

strategies must be chosen. Instead, real behavior is driven by heuristics like 

fairness standards and rules of thumb. Game-theoretic rationality is too strong or 

it is simply inadequate to explain the behavior. The two other studies are 

concerned with equilibrium selection. For this purpose, game-theoretic 

rationality is too weak to be able to single out a unique equilibrium as the rational 

solution of a game. A theory of unbounded rationality is applied to  determine the 

solutions of specific games. 

The first study (Selten, Mitzkewitz & Uhlich, 1997) is concerned with a finite 

repetition of a Cournot duopoly. Experienced subjects program strategies for this 

game and computer tournaments among these programs were performed. The 

typical structure of these programmed strategies reveals that no expectations are 

formed and nothing is optimized. Instead, fairness criteria are used to determine 

cooperative goals which are supported by a policy of fairness and firmness. 

Measure-for-measure strategies respond to opponent’s movements towards and 

away from the cooperative goal by similar movements. Strategies tend to be more 

successful in the tournaments the more typical they are. 

 In the second study (Mitzkewitz & Nagel, 1993) experiments on two versions of 

ultimatum games with incomplete information are reported and analyzed.  As in 

the study above, subjects must determine complete strategies for the game. Game 

theory predicts very similar outcomes for both versions of the game, but the 

experimental results show significant differences. A theory of boundedly rational 

theory based on expectation fairness is proposed which is well supported by the 

experimental data. 

The third study (Mitzkewitz, 2017) analyzes a class of simple signaling games. 

The Harsanyi-Selten theory of equilibrium selection in games is applied and for 

each generic game of this class a unique equilibrium is singled out as its rational 

solution. The results can be used as building stones for the analysis of much more 

complicated signaling games. The study also contains a brief introduction to the 

Harsanyi-Selten theory.  

The last study (Potters, van Winden & Mitzkewitz, 1991) is an application of 

game theory to political science. A pressure group tries to influence the behavior 

of the government by threatening or carrying out punishments. A two-period 



model shows a multiplicity of equilibria. However, most of them seem to be 

implausible. The Kohlberg-Mertens refinement concept of stable equlibria is used 

to reduce this multiplicity. The Harsanyi-Selten theory of equilibrium selection for 

this model is also calculated. It turns out that for a fairly large set of parameter 

values both solution concepts coincide and show that punishment is executed 

even if the government makes in advance concessions to the pressure group.  
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 DUOPOLY STRATEGIES PROGRAMMED BY

 EXPERIENCED PLAYERS

 BY REINHARD SELTEN, MICHAEL MITZKEWITZ, AND GERALD R. UHLICH

 The strategy method asks experienced subjects to program strategies for a game. This
 paper reports on an application to a 20-period supergame of an asymmetric Cournot

 duopoly. The final strategies after three programming rounds show a typical structure.

 Typically, no expectations are formed and nothing is optimized. Instead of this, fairness

 criteria are used to determine cooperative goals, called "ideal points." The subjects try to
 achieve cooperation by a "measure-for-measure policy," which reciprocates movements
 towards and away from the ideal point by similar movements. A strategy tends to be more

 successful the more typical it is.

 KEYWORDS: Duopoly, strategy method, computer tournament.

 1. INTRODUCTION

 AFTER 150 YEARS SINCE COURNOT (1838) the duopoly problem is still open.
 An empirically well supported duopoly theory has not yet emerged. Field studies
 meet the difficulty that cost functions, demand functions, and prices are often
 insufficiently observable. Game playing experiments permit the control of these

 basic data. However, only plays are observed and strategies remain hidden.

 Usually, any given play of a duopoly supergame can be the result of a great
 multitude of strategy pairs.

 More than 20 years ago, one of the authors described a method of experimen-
 tation which makes strategies observable (Selten (1967)). This procedure, called
 the "strategy method," first exposes a group of subjects to the repeated play of a
 game, and then asks them to design strategies on the basis of their experiences.
 The strategy method was applied to an oligopoly situation with investment and
 price variation (Selten (1967)). In view of the special character of the dynamic
 oligopoly game investigated there, the issue of cooperation which will be
 important in the paper did not arise in this earlier study. Here we are concerned

 with a much more basic duopoly situation, namely a finite supergame of an
 asymmetric Cournot duopoly. Asymmetry is essential for this study, because we
 are interested in whether and how cooperation can evolve in such situations.

 Cournot's quantity variation model is the most popular one in the oligopoly

 literature. Many theories have been developed in this framework. Supergames
 of the Cournot model have also been explored in the newer game - theoretical
 literature (e.g., Friedman (1977), Radner (1980), Abreu (1986), Segerstrom
 (1988)). Therefore, it seems to be interesting to apply the strategy method to a
 supergame of an asymmetric Cournot duopoly.

 Infinite supergames cannot be played in the laboratory. Attempts to approxi-
 mate the strategic situation of an infinite game by the device of a supposedly
 fixed stopping probability are unsatisfactory since a play cannot be continued
 beyond the maximum time available. The stopping probability cannot remain

 517
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 fixed but must become one eventually. Therefore, we decided to base our study

 on a finite supergame. The experimental literature shows that apart from the

 end effect there seems to be no significant behavioral difference between

 infinite and sufficiently long finite supergames (Stoecker (1983), Selten and

 Stoecker (1986)).

 Our subjects were participants of a seminar who first gained experience in

 playing a 20-period supergame in the Bonn laboratory of experimental eco-

 nomics which is equipped with a network of personal computers. After having

 gained experience with the game, the participants had to program strategies.

 These strategies were played against each other in computer tournaments. The

 participants had the opportunity to improve their strategies in the light of their

 experience in such tournaments.

 Our evaluation will mainly concern the strategies programmed for the final

 computer tournament. We shall only shortly report on some interesting phe-
 nomena observed in the initial game playing rounds and the intermediate

 tournaments.

 The first step in the evaluation of the final tournament strategies was a

 classification according to structural properties. These properties, called "char-
 acteristics," were suggested by a close look at the strategies. We found 13

 characteristics, all of which are present in the majority of cases to which they
 can be applied. A typical structure of a strategy emerges from these characteris-

 tics. The programs usually distinguish among an initial phase, a main phase, and
 an end phase. The initial phase consists of the first one to four periods with
 outputs depending only on the number of the period. In the main phase, outputs
 were made dependent on the opponent's previous outputs. By the initial phase
 the strategies try to prepare cooperation with the opponent to be reached in the
 main phase. In an end phase of the last one to four periods cooperation is
 replaced by noncooperative behavior.

 Typically, the participants tried to approach the strategic problem in a way

 which is very different from that suggested by most oligopoly theories. These
 theories almost always involve the maximization of profits on the basis of
 expectations on the opponent's behavior. It is typical that the final tournament
 strategies make no attempt to predict the opponent's reactions and nothing is
 optimized. Instead of this, a cooperative goal is chosen by fairness considera-
 tions and then pursued by an appropriate design of the strategy. Cooperative

 goals take the form of "ideal points." An ideal point is a pair of outputs at which

 a player wants to achieve cooperation with his opponent. Such ideal points guide

 the behavior in the main phase. A move of the opponent towards the player's
 ideal point usually leads to responses which move the player's output in the

 direction of his ideal point. Similarly, a move of the opponent away from the
 ideal point is usually followed by a response which shifts the output away from

 the ideal point. We refer to this kind of behavior as a "measure - for - measure
 policy."

 The fairness criteria underlying the selection of ideal points are different for
 different participants, but in most cases not completely arbitrary. Measure - for -
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 DUOPOLY STRATEGIES 519

 measure policies for the effectuation of ideal points may be quite different in

 detail, but they are all based on the same general idea.

 On the basis of the 13 characteristics which express structural properties

 common to most of the strategies we have constructed a measure of typicity

 which is applied both to characteristics and strategies. The typicity of a strategy

 is proportional to the sum of the typicities of its characteristics and the typicity

 of a characteristic is porportional to the sum of the typicities of the final

 tournament strategies with this characteristic. It was an unexpected result of our
 investigation that there is a highly significant positive correlation between the

 typicity of a final tournament strategy and its success in the final tournament.
 Moreover, it turned out that for each of the 13 characteristics separately those
 strategies which have it are more successful than those which do not have it.

 In order to get a better insight into the implications of the typical structure of

 final tournament strategies, we constructed a family of "simple typical strategies."

 In these strategies the details left open by the 13 characteristics are filled in the

 simplest possible way. The behavior in the main phase is described by a
 piecewise-linear continuous reaction function.

 Two game -theoretical requirements on simple typical strategies are discussed:

 "conjectural equilibrium conditions" and "stability against short-run exploita-

 tion." These requirements impose restrictions on the ideal points. The first
 requirement is rarely satisfied but the second one is fulfilled by the vast majority

 of the ideal points used in final strategies. This condition also turns out to be of
 descriptive value for the profit combinations reached in the last tournament.

 We do not claim that our results are transferable to real duopolies. First of
 all, it is doubtful whether a supergame of the Cournot duopoly is a realistic
 description of duopolistic markets. Nevertheless, the structure of behavior in
 such supergames is of great theoretical interest. Our results throw a new light
 on the duopoly problem posed in this framework. The choice of an ideal point

 by fairness consideration combined with the pursuit of this cooperative goal by a
 measure-for-measure policy constitutes a surprisingly simple approach which
 avoids optimization and the prediction of the opponent's behavior. The connec-
 tion between typicity and success in the final tournament shows that this
 approach is not only simple and practicable but also advisable in the pursuit of
 high profits.

 The participants of our seminar did not develop their strategy programs

 independently of each other. Interaction in the game playing rounds and the
 preliminary tournaments was unavoidable. It cannot be completely excluded

 that our results are due to a cultural evolution which might have a different
 outcome in a different experimental group. One application of the strategy
 method alone is not sufficient to establish a firm basis for far-reaching behav-
 ioral conclusions.

 The tit-for-tat strategy which did so well in Axelrod's tournaments (Axelrod
 (1984)) is the natural consequence of the transfer of the strategic approach
 emerging from this study to the prisoner's dilemma supergame. There one finds
 only one reasonable ideal point, namely the cooperative choice taken by both

This content downloaded from 149.203.227.29 on Wed, 03 May 2017 04:33:18 UTC
All use subject to http://about.jstor.org/terms



 520 R. SELTEN, M. MITZKEWITZ, AND G. UHLICH

 players, and only one measure - for- measure policy fitting this cooperative goal,
 namely tit - for - tat.

 More recently, a paper by Fader and Hauser (1988) reports on programs
 written for two symmetric price triopolies. The players had no opportunity to
 play the games before writing their strategies and submitted a program only
 once for each of both models. Fader and Hauser classified strategies according
 to "features," but it cannot be said that a typical structure emerges from this
 classification. Perhaps the lack of a typical structure is due to the fact that in
 comparison to our students the participants of the tournaments were much less
 experienced with their task. Maybe it is necessary to provide the opportunity to
 gain extensive game - playing experience and to permit repeated program revi-
 sions after preliminary tournaments in order to obtain strategies which show a

 typical structure.
 Nevertheless, this study shows that strategies based on the measure-for-

 measure principle are very successful against the strategies submitted. The
 agreement of our findings with those of Axelrod and of Fader and Hauser
 confirms our impression that the pursuit of ideal points by measure - for- measure
 policies is more than the accidental result of an isolated study.

 The model and the experimental procedure are described in Sections 2 and 3.
 Then the results of the game playing rounds and the results of the tournaments
 are discussed in Sections 4 and 5. The evaluation of the strategies programmed
 for the final tournament begins with Section 6. There the 13 characteristics are
 introduced and explained in detail. The strategic approach underlying typical
 strategies is discussed. Section 7 is devoted to the connection between typicity
 and success. A family of simple typical strategies is introduced in Section 8 as an
 idealization of the general pattern observed in the programmed strategies.
 Theoretical properties of these strategies are discussed and game - theoretic
 stability conditions are compared with the data of the final tournament. Section
 9 looks at the implications of our results for duopoly theory. A summary of our
 findings is given in Section 10.

 2. THE MODEL

 The experiment is based on a fixed nonsymmetric Cournot duopoly with linear
 cost and demand functions. Strategies had to be programmed for the 20-period
 supergame of this Cournot duopoly. The duopolists were fully informed about
 cost and demand functions, the length of the supergame, and the opponent's

 decisions in past periods. The decision variable of duopolist i in period t is the
 quantity xi(t) for i = 1,2 and t = 1,...,20. Quantities must be chosen from
 nonnegative real numbers. The costs C1(t) and C2(t) of duopolists 1 and 2 and
 the price p(t) in period t are given as follows:

 C1(t) = 9820 + 9x1(t), x1(t) ? 0,

 C2(t) = 1260 + 51x2(t), x2(t) > 0,

 p(t) = max (0;300 -x1(t) -x2(t)).
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 TABLE I

 SOME THEORETICAL POINTS IN THE SOURCE GAME

 Player l's Player 2's Player I's Player 2's
 Concept Output Output Price Profit Profit

 Cournot 111.0 69.0 120.0 2501.0 3501.0
 Monopoly of 145.5 0.0 154.5 11350.3 -1260.0
 player 1

 Monopoly of 0.0 124.5 175.5 - 9820.0 14240.3
 player 2

 Stackelberg 166.5 41.3 92.3 4041.1 441.6
 with player

 1 as leader

 Stackelberg 93.8 103.5 102.7 -1030.9 4096.1
 with player
 2 as leader

 Nash product 86.8 49.5 163.7 3615.0 4313.5
 maximum

 Pareto optimum 79.1 56.1 164.8 2503.8 5124.2
 A of Figure 1

 Pareto optimum 94.8 42.7 162.5 4731.8 3501.0
 B of Figure 1

 The supergame payoff of each duopolist is the sum of his profits over all twenty
 periods.

 Table I and Figure 1 show some theoretical features of the Cournot duopoly
 described above. The row "Nash product maximum" presents the output combi-
 nation which maximizes the Nash product with the Cournot solution as fixed
 threat point. Point A in Figure 1 is the Pareto optimum which yields Cournot
 equilibrium profits for player 1. Analogously, B is the Pareto optimum which
 yields Cournot profits for player 2. Figure 1 shows that the model is quite
 asymmetric. Even point A is below the 45-degree line.

 3. EXPERIMENTAL PROCEDURE

 The experiment was performed in a seminar lasting over the whole summer
 semester 1987 at Bonn University, Federal Republic Germany. The subjects
 were 24 students of economics in the third or fourth year with some knowledge
 of micro- and macroeconomics and some experience with computer program-
 ming, but without special training in price theory and game theory. No introduc-
 tion in these fields was given in the seminar and no references to the relevant
 literature was supplied. The seminar was organized in five plenary sessions,
 three rounds of game playing, and three computer tournaments of programmed
 strategies.

 Plenary sessions: In the first plenary session the participants were informed
 about the organization of the seminar and the model presented in Section 2,
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 FIGURE 1.-Graphical representation of theoretical features of the one-period Cournot duopoly.

 but, of course, without the theoretical features. Moreover, an introduction to

 the programming of strategies in PASCAL was given. It was not necessary to

 explain more than an excerpt of PASCAL, since strategies were conceived as
 subroutines in a game program.1

 The participants had the task first to gain experience by three rounds of

 playing the 20-period supergame and then to program strategies for both players

 in the 20-period supergame. They were told that their objective should be to

 attain a sum of profits as high as possible in a final tournament in which the

 strategies of all participants compete against each other. Final strategies had to

 be documented and reasons had to be given for the decisions embodied in the
 strategies.

 The second plenary session took place after two rounds of game playing. The

 results of these games were presented, but in a way which left players anony-
 mous. The participants were asked to comment on their experiences.

 1The Pascal source code of the students' strategies is available on request.
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 DUOPOLY STRATEGIES 523

 Each of the three tournaments was followed by one plenary session. Results

 were presented and students received printouts of the games in which their own

 strategies were involved. Opponents remained unidentified. The participants

 were encouraged to discuss strategic problems.
 In the last of the five plenary sessions, the most successful participant

 explained his strategy. Anonymity was not completely preserved in this final
 plenary session at the end of the seminar.

 Game playing rounds: Twenty-two subjects played three 20-period supergames
 against changing anonymous opponents, two subjects played only two su-

 pergames. The subjects were visually isolated from each other in cubicles

 containing computer terminals. The players interacted only by their decisions via

 the computer network. The decision time for each period was limited to three
 minutes. One week passed between one supergame and the next one. In this
 time the participants had the opportunity to reflect on their experiences. Each
 subject played with each of both cost functions at least once.

 Strategy programming: After the game playing rounds the students had to
 program strategies in PASCAL for the 20-period supergame. Every student had

 to write a pair of strategies, one for each player of the supergame. We shall

 refer to this pair as the student's strategy. PC-owners could program at home,

 but all participants had the opportunity to develop their strategies at the Bonn
 laboratory of experimental economics with our technical assistance. A special

 program called "trainer" could be used by the students to play against their own
 programmed strategies. The "trainer" was a valuable tool for the development
 of strategies. No restrictions were imposed on strategies. Decisions could de-
 pend on the whole previous history of the play.

 Computer tournaments: At three fixed dates the students had to hand in a
 programmed strategy. In the first two tournaments all workable strategies
 submitted at this date competed with each other. In the third tournament the
 last workable strategy of each participant was used. Each of the 24 students

 succeeded in writing at least one workable strategy.

 The tournament program proceeded as follows: Let n be the number of
 workable strategies. Each of the n strategies played against all others in the role
 of both players. Payoff sums for player 1 and player 2 were computed on the
 basis of the n - 1 games played in the concerning role.

 The procedure has the consequence that for each pair of strategies and each
 assignment of player roles, two supergames are simulated even if the payoff
 summation for one strategy makes use only of one of these games. Since
 sometimes random decisions are used in strategy programs, both games may be

 different. Altogether, 2n(n - 1) supergames were simulated in a tournament.
 The success of a strategy can be measured for the roles of both players

 separately by the corresponding payoff sums. The sum of these two measures is
 a measure for the overall success of a strategy in a tournament. This measure of
 overall success was the goal variable in the tournament. Strategies were ranked
 according to the measure of overall success, but also for the success of both
 player roles separately. Each participant received period-by-period printouts of
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 all 2(n - 1) games underlying the computation of his success measure. More-
 over, all participants received lists of success measures, but without identifica-

 tion of the other writers of strategy programs. On the basis of this information
 the students could try to improve their strategy programs from one tournament

 to the next one.

 Motivation: In view of the length of the experiment, it was not possible to
 provide an appropriate financial incentive. Presumably, money payoffs in the
 framework of a student seminar are not legal anyhow. The students were told

 that their grades would strongly depend on their success in the last tournament.
 It was emphasized that the absolute payoff sum rather than the rank was
 important in this respect. We had the impression that for almost all participants
 the task itself provided a high intrinsic motivation.

 4. RESULTS OF THE GAME PLAYING ROUNDS

 In this section we give a brief summary of the results of the game playing
 rounds. The games served the purpose to provide experiences which could be
 used in the development of strategy programs. Of course, it is plausible to
 assume that the subjects were intrinsically motivated by the game payoffs, but it
 is also possible that some of the behavior in these games was exploratory rather

 than directly payoff-oriented. Nevertheless, it is interesting to look at the results

 of the game playing rounds. However, our discussion will not be very detailed
 because our main interest is in the investigation of the final strategy programs.

 First game playing round: Although the participants had been informed one
 week in advance about the structure of the game, their behavior seemed to be
 confused. Figure 2 shows the supergame payoffs of the 11 groups (two partici-

 110000 Pareto
 x

 x efficient

 x x frontier

 x C
 x

 Supergame x

 payoffs

 of player 2
 x x

 x

 -20000

 -80000 Supergame payoffs of player 1 110000

 FIGURE 2.-Supergame payoff pairs in the first game playing round.
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 DUOPOLY STRATEGIES 525

 pants were absent). The repeated Cournot solution (point C in the diagram)

 yields 50020 for player 1 and 70020 for player 2. It never happened that both

 players achieved at least their Cournot payoffs. Furthermore, in all 11 cases the

 sum of both supergame payoffs was below the sum of the Cournot payoffs. In

 seven cases both players earned less than the Cournot payoffs. The role of

 player 1 ( low variable and high fixed costs) was relatively less successful than

 the role of player 2. In the mean, subjects in the role of player 1 earned 79% of

 the Cournot gross profit (gross profit is profit plus fixed costs), whereas the
 corresponding figure for player 2 is 91%. The correlation coefficient between

 the payoffs of the two players within the groups is -.36. This suggests that some

 players succeeded to exploit their opponents. Figure 2 also shows part of the

 Pareto efficient frontier.

 Second game playing round: The results of the second game playing round are

 shown in Figure 3. Here, two groups reached a Pareto improvement over the

 Cournot payoffs. In one group both players supplied the Cournot outputs in

 almost all periods. "It's the best thing you can do," they commented afterwards.

 In the remaining nine groups, both players sustained a loss in comparison with

 the Cournot solution. The mean gross profits of subjects in the role of player 1

 was higher than in the first game playing round (87% of the Cournot gross
 profit), but the mean gross profit of subjects in the role of player 2 was lower
 than in the first game playing round (77% of the Cournot gross profit). The

 mean joint profit of both players was only slightly improved compared with the
 first game playing round.

 110000 Pareto

 efficient
 x frontier

 x

 PC
 x

 Supergame x x

 payoffs x

 of player 2

 x

 x

 -20000

 -80000 Supergame payoffs of player 1 110000

 FIGURE 3.-Supergame payoff pairs in the second game playing round.
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 There is one striking difference to the first game playing round. In the second

 game playing round, the correlation coefficient between both players' payoffs is

 now +.91. This suggests that in the second game playing round the aggressive-

 ness of both players shows a stronger coordination than in the first one. Even if

 most of the subjects did not yet succeed to play the game well, they seemed to
 have learned something about the power relationship in the game.

 Third game playing round: This round shows an enormous improvement in

 mean payoffs (Figure 4). Now, subjects in the role of player 1 achieved 101% of
 the Cournot gross profit and the corresponding figure for those in the role of
 player 2 is 107%. Eight of the twelve groups succeeded to obtain Pareto

 improvements over the Cournot payoffs. One group reached a result almost at

 the Pareto efficient frontier. This group was the only one among those with
 Pareto improvements over the Cournot payoffs which did not show an end

 effect. The end effect consists in the breakdown of cooperation in the last

 periods of the supergame. It is clear that payoffs at the Pareto efficient frontier
 cannot be achieved if an end effect occurs.

 The correlation coefficient between the payoffs of both players is +.72 in the

 third game playing round. In this respect, the third game playing round is similar
 to the second one.

 It is clear that most of the subjects had learned to cooperate in the supergame
 in the third game playing round. The results of the three game playing rounds

 are not dissimilar to those obtained in other experimental studies where finite

 supergames were repeatedly played against changing anonymous opponents
 (Stoecker (1983), Selten and Stoecker (1986)). Subjects tend to learn to cooper-
 ate but they also learn to exhibit end effect behavior.

 110000 Pareto

 efficient
 x x rontier

 x x XX X

 x~ ~ e

 Supergame x

 payoffs

 of player 2

 -20000

 -80000 Supergame payoffs of player 1 110000

 FIGURE 4.-Supergame payoff pairs in the third game playing round.
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 5. RESULTS OF THE TOURNAMENTS

 In the following section we shall discuss the results of the tournaments

 without giving a detailed account of the strategies used. The typical structure of

 the strategies of the final tournament will be examined in the next section.

 First toumament: Two weeks after the third game playing round the partici-

 pants had to hand in a programmed strategy for the supergame. Unfortunately,

 4 of the 24 strategies had to be excluded from the first tournament since
 programming errors like dividing by zero or taking the root of a negative

 number prevented the execution of these programs. The outcome of the first

 tournament is presented in Figure 5. The significance of the points in Figure 5 is

 not the same as in Figures 2, 3, and 4. A point now shows the combination of

 mean payoffs achieved by one participant's strategy in both player roles. More-
 over, a larger scale has been chosen. One of the 20 strategies competing in

 tournament 1 is not shown in Figure 5 since it achieved a very bad result,
 namely (- 6484, + 58178), which is outside the scope of the drawing. We

 omitted this point in order to be able to present the results of all three

 tournaments with the same scale without losing the distinguishability of differ-
 ent points.

 The participant with the omitted bad result programmed a strategy which

 supplied the respective Stackelberg leader output each period regardless of the
 behavior of the other player. Only a few times he succeeded in forcing his

 opponent to the Stackelberg follower position. In most cases his "aggressive"
 behavior was punished by high opponent's outputs.

 90000 Pareto

 efficient

 frontier

 Mean

 supergame

 payoffs in x

 the role of x
 player 2 x x

 X x

 x x X~~~~~  x

 60000

 35000 Mean supergame payoffs 80000
 in the role of player 1

 FIGURE 5.-Mean supergame payoffs for both player roles in the first tournament. Each "X"

 refers to one participant.
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 The mean gross profit over the whole simulation was 98% of the Cournot
 gross profit for the role of player 1 and 99.8% of the Cournot gross profit for the
 role of player 2. The mean performance is inferior to the third game playing
 round. Maybe the subjects did not yet succeed sufficiently well to mold their
 game playing intuition into computer programs.

 Second tournament: Within three weeks after the first tournament the partici-
 pants had the opportunity to improve their strategies. Unfortunately, this time
 only 16 participants presented workable strategies. In the same way as in Fig-
 ure 5, the results are shown in Figure 6. One point, namely (23860, 63691) is
 omitted in Figure 6. Each of the other 15 subjects achieved results higher than
 Cournot payoffs in both player roles. The mean gross profit was now 104% of
 Cournot gross profit for Player 1 and 109% of Cournot gross profit for player 2.
 This is a considerable improvement in comparison with the first tournament. It
 must be admitted, however, that the comparison with the first tournament is
 difficult in view of the smaller number of workable strategies. Moreover, the
 result of the second tournament is also influenced by a "conspiracy" of two
 subjects represented by the two points nearest the right border of Figure 6. In
 the first period both participants used special outputs specified up to many
 decimal places in an unusual way. With the help of this code they recognized
 each other when they played together in the tournament. They then played in
 the remaining periods the output combination that maximizes joint profits. In
 order to prevent this type of behavior in the final tournament, we replaced the
 8th digit behind the decimal point of each output decision by a random number.

 90000 Pareto
 efficient

 frontier

 x x

 Mean

 supergame x X x
 payoffs in

 the role of x

 player 2 x

 60000

 35000 Mean supergame payoffs 80000
 in the role of player 1

 FIGURE 6.-Mean supergame payoffs for both player roles in the second tournament. Each "X"
 refers to one participant.
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 This has a negligible influence on the computation of profits. In the plenary

 session after the second tournament, we announced that similar conspiracies

 will be prevented in the future. We did not observe any attempt to conspire in

 the final tournament.

 Third toumament: After two more weeks the final strategies had to be turned

 in. Again four participants did not succeed to program a workable strategy.

 Fortunately, each of these participants had completed at least one workable

 strategy in the two preceding tournaments. The last workable strategy entered
 the final tournament.

 A superficial examination of the programs revealed that one strategy con-
 sisted of two sequences of fixed outputs for every period, one sequence for each

 player. The numbers varied unsystematically from period to period. The seminar

 paper of this student loosely described a completely different strategy which was

 much more reasonable. Obviously, this student wanted to avoid investing time
 and effort into the programming of the strategy described in his paper. The
 irregularity of the output sequences served the purpose of hiding the discrep-

 ancy between the program and its description in the seminar paper. Obviously,
 the programmed strategy cannot be taken seriously and therefore has been

 excluded from the third tournament for the purposes of this paper.
 The mean gross profit was 105% of the Cournot gross profit for player 1 and

 111% of the Cournot gross profit for player 2. These figures are only slightly
 higher than those of the second tournament. Figure 7 shows the results of the

 third tournament. Computations of standard deviations of mean payoffs confirm
 the visual impression that the points in Figure 7 are more strongly concentrated
 than those in Figure 6.

 In 983 of the 1012 supergames simulated in the third tournament, the payoffs
 of both players were greater than their Cournot payoffs. In this sense, we can
 speak of successful cooperation in 97.1% of all cases. It is also worth mentioning

 that in none of the remaining 29 supergames did both players obtain smaller
 payoffs than their Cournot payoffs.

 In the third game playing round only eight out of twelve supergames resulted
 in payoffs which were greater than the corresponding Cournot payoffs for both

 players. The comparison with the results of the third tournament shows that the

 final programmed strategies tend to be much more cooperative than the behav-

 ior in the third game playing round. This suggests that the learning process

 which began with the three game playing rounds was continued in the three
 tournaments. The results of the third tournament do not seem to be very
 different from that which could be expected as the outcome of spontaneous
 game playing after a comparable amount of experience.

 6. THE STRUCTURE OF PROGRAMMED STRATEGIES

 In this section we shall concentrate our attention on the structure of the final
 strategies. We shall not be concerned with the success of the strategies. For the
 reasons which have been discussed in Section 5 (third tournament), one of
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 FIGURE 7.-Mean supergame payoffs for both player roles in the third tournament. Each "X"

 refers to one participant.

 the programs will not be considered here. The remaining 23 programs and the
 underlying ideas expressed in the seminar papers are the basis of the evaluation
 of structural properties.

 A preliminary examination of the strategies and the seminar papers conveyed
 the impression of a typical structure which is more or less present in almost all
 programs. Most programs deviate from this typical structure in some respects

 but the degree of conformity is remarkable.

 Usually a program distinguishes three phases of the supergame: an initial
 phase, a main phase, and an end phase. The initial phase consists of one to four

 periods and the end phase is formed by the one to four last periods. The main
 phase covers the periods between the initial phase and the end phase. Different

 methods of output determination are used in the three phases. The initial phase
 is characterized by fixed outputs which do not depend on the behavior of the

 opponent. In the main phase the decisions are responsive to previous develop-

 ments with the purpose to establish cooperation. In the end phase decisions are
 guided by the attempt to maximize short-run payoffs.

 Different strategies approach the decision problems of the three phases in

 different ways, but nevertheless a typical structure emerges in this respect, too.
 In order to describe similarities and differences among the 23 strategies, we
 introduce 13 characteristics. A characteristic is a property of a strategy whose
 presence or absence can be objectively determined by the examination of a
 program and its description in the seminar paper. In some cases our characteris-

 tics are indicators of strategic ideas underlying the program; in other cases the
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 characteristics directly refer to the structure of decision rules. We shall distin-

 guish characteristics concerning general principles and the three phases of the

 supergame.

 All characteristics are typical in the sense that they are present in the majority

 of all strategies to which they can be meaningfully applied. Characteristic 7 is

 meaningful only if Characteristic 6 holds, too, and Characteristics 12 and 13

 presuppose that the strategy has an end phase. These three characteristics are

 present only in the majority of all relevant cases. All other characteristics hold

 for the majority of all final strategies.

 6.1. General Principles

 The first three characteristics are indicators of general principles underlying
 the typical approach to the problem of writing a strategy program.

 CHARACTERISTIC 1: No prediction.

 Many oligopoly theories proceed from the assumption that a player has a

 method to predict his opponent's behavior and tries to optimize against his

 predictions. The predictions may involve reactions to own output changes and

 the payoff maximization may be long-term rather than short-term. In the final

 tournament, only 5 of 23 strategies involved any predictions of the opponent's
 behavior.

 In the first two tournaments, predictions were more widespread. Subjects tried

 to obtain a satisfactory payoff against the predicted output of the opponent in

 the next period. Several subjects who initially wrote programs involving predic-

 tions later expressed the opinion that it is useless to try to predict the opponent's

 behavior. It seems to be more important to react in a way which indicates
 willingness to cooperate and resistance to exploitation.

 The fact that the absence of any predictions is a typical feature of final

 strategies seems to be of great significance, precisely because it is in contrast
 with most oligopoly theories.

 CHARACTERISTIC 2: No random decisions.

 At the beginning of the seminiar we observed that several students preferred
 to build random decisions into their strategies. They motivated this by the belief

 that a deterministic strategy could possibly be outguessed and exploited by the

 opponent. In the course of the seminar, most of them learned that in an attempt

 to achieve cooperation, it is important to signal one's intentions. It may be
 preferable to be outguessed by the opponent. Cooperation requires reliability

 and random decisions may be counterproductive in this respect. Twenty-two of
 the 23 final strategies never make a random decision.
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 CHARACTERISTIC 3: Non-integer outputs.

 It is natural that real persons playing at computer terminals use mostly

 integer outputs. This was actually the case in the game playing rounds. Usually,

 a programmed strategy employs functions which make the output dependent on

 previous quantities. In general, the values obtained are not integers. However,

 four of the final strategies did not specify such functions but rather made case

 distinctions; for each case a different integer output or integer output change
 was prescribed. Since only relatively few cases are distinguished, this way of
 programming output decisions is less flexible than the specification of a func-

 tion. In this light, Characteristic 3 is an indicator of smoothness and flexibility of

 the response pattern.

 6.2. The Initial Phase

 Two characteristics describe the typical behavior in the initial phase.

 CHARACTERISTIC 4: Fixed outputs for at least the first two periods.

 If no randomization takes place the first period is always a fixed output.
 Therefore, Characteristic 4 is almost equivalent to a nontrivial initial phase

 where fixed outputs are chosen. Ten strategies make their decision for the

 second period dependent on their opponent's choice in the first period, but 13
 strategies have fixed amounts for more than one period. The length of the initial
 phase with fixed outputs is two periods for seven strategies, three periods for
 four strategies, and four periods for two strategies. Twelve of the 13 strategies
 with nontrivial initial phases play successively reduced outputs. The participants
 explained this behavior as a signal of their willingness to cooperate. If one's own
 output is a response to that of the opponent too early, an unsatisfying decision
 of the opponent in the first period could lead to an aggressive reaction of

 oneself in the second period that again could annoy the opponent and so forth,
 so that no cooperation might evolve over the 20 periods. Some subjects observed
 such unfavorable oscillations in the printouts of the first two tournaments.

 CHARACTERISTIC 5: The last fixed output decision is at least 8% below the

 Coumot quantity of the conceming player.

 The percentage by which the last fixed output in the initial phase is below the

 Cournot output can be regarded as a rough measure of a strategy's initial
 cooperativeness. A Pareto optimum is reached if both players' outputs are about
 24.5% below the Cournot output. The criterion of the 8% limit of Characteristic

 5 goes roughly a third of the way towards this Pareto optimum. Admittedly, it is
 arbitrary to measure cooperativeness by percentages of the Cournot output and
 to fix the limit at exactly 8%. Characteristic 5 is present in 13 of the 23
 strategies. If the limit were increased to 10%, only a minority of 10 strategies
 would meet the criterion.
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 6.3. The Main Phase

 The decision rules for the main phase are the most important part of a
 strategy program. Characteristics 6 to 11 concern the main phase. The rules
 given there do not apply to the initial phase and the end phase. This will not be
 mentioned explicitly in the text of the characteristics.

 Typically participants approached the problem of decision making in the main
 phase by first looking at the question of where cooperation should be achieved.
 They tried to find an output combination which gives higher profits than
 Cournot profits to both players and can be considered as a reasonable compro-
 mise between the interests of both players. An output combination of this kind
 which guides the decisions in the main phase will be called an "ideal point."
 Ideal points are usually not far away from Pareto optimality. They are often
 based on considerations of equity which will be described below. Some partici-
 pants used different ideal points for the roles of both players.

 In Characteristic 6 we shall speak of "decisions guided by ideal points." With
 these words we want to express that the strategy program makes explicit use of
 an ideal point in order to determine the next output as a function of the past
 history. This can be done in many ways. One possible method connects the ideal
 point and the Cournot point by a straight line segment in the quantity or profit
 space. The next output then matches the opponent's last output on the line
 segment as long as the opponent's last output is in the range where this is
 possible.

 CHARACTERISTIC 6: Decisions are guided by one or two ideal points.

 The property expressed by Characteristic 6 holds for 18 of the 23 final
 strategies. Twelve strategies use only one ideal point for both players, whereas 6
 strategies specify different ideal points for the two player roles.

 Table II gives an overview over the equity concepts underlying the construc-
 tion of ideal points as far as such concepts could be identified on the basis of the
 seminar papers. The reasons for the choice of 10 of the 24 ideal points are at
 least partially unclear. To some extent ideal points were adapted to the learning
 experience of the first two tournaments and thereby shifted away from equity
 concepts.

 The participants who based their ideal points on equity considerations often
 did not correctly compute the intended ideal points. They rarely used analytical
 methods but rather relied on mbre or less systematic numerical search. The
 values used instead of the correct ones are given in the footnotes below
 Table II.

 The concept described by the first row of Table II looks at equal profit
 increases in comparison to Cournot profits as a fair compromise. The Pareto
 optimum corresponding to this idea is the intended ideal point. The concept of
 the second row requires profit increases proportional to Cournot profits at a
 Pareto optimal point.
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 TABLE II

 CONCEPTS UNDERLYING IDEAL POINTS

 Quantities Number Ouantlles o
 _ ~~~~of

 Concept Player 1 Player 2 Strategies

 Maximal equal absolute 85.61 50.50 3a
 additional profits compared

 to Cournot profits

 Maximal profits proportional 84.37 51.56 2b
 to Cournot profits

 Profit monotonic quantity 86.53 49.71 2
 reduction along the straight

 line through the intersections

 of both Cournot-isoprofit

 curves

 Profit monotonic quantity 89.73 55.77 ic
 reduction proportionally to

 Cournot quantities

 Maximal equal profits 89.70 47.01 2d
 85.00 50.00 2

 Prominent numbers 90.00 50.00 2
 Unclear - - 10

 aApproximated by (85.50) in all three cases.
 bApproximated by (86.53) and (84.33, 51.55).
 CApproximated by (89.76, 55.80).
 dIn one case approximated by (89.0, 46.5).

 The third and fourth rows of Table II involve a procedure referred to as profit
 monotonic quantity reduction. Along a prespecified positively inclined straight
 line through the Cournot point in the quantity diagram, quantities are gradually
 reduced as long as both profits are increased in this way. The output combina-
 tion reached by the procedure is the ideal point. In the case of row 3 of Table II,
 the prespecified straight line connects the intersections of both Cournot iso-
 profit curves. In the case of row 4 the prespecified straight line connects the

 Cournot point and the origin.
 The concept of row 3 yields a Pareto optimum even if Pareto optimality is not

 a part of the underlying idea. Contrary to this, profit monotonic quantity
 reduction proportional to Cournot quantities yields an ideal point which is not
 even approximately Pareto optimal.

 The concept of maximal equal profits determines the Pareto optimum where
 both profits are equal. Obviously, this ideal point does not only depend on
 variable costs but also on fixed costs. The same is true for maximal profits

 proportional to Cournot profits. Two of the ideal points classified as unclear also
 were based on equal profits but without an attempt towards maximization.

 Some participants chose pairs of prominent quantities as ideal points. Round-
 ness in the sense of divisibility by 5 seems to be the prominence criterion. More
 detailed discussions of prominence in the decimal system can be found in the
 literature (Schelling (1960), Albers and Albers (1983), Selten (1987)).
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 Figure 8 shows the ideal points used by the final strategies. The ideal points
 are given as quantity combinations. In the quantity diagram the Cournot-
 isoprofit curves of the two players enclose a lens-shaped area. The ideal points
 used by final strategies are in a relatively small area in the middle of this lens.
 The mean of all ideal points is located at (87.02, 49.43). This combination is
 almost Pareto optimal.

 Characteristics 7 to 11 are described as rules to be followed by a programmer
 of a strategy.

 CHARACTERISTIC 7: If your opponent has chosen an output below his output
 specified by your ideal point, then choose your ideal point quantity in the next period.

 If a strategy is based on two ideal points then the words "your ideal point"
 refer to the ideal points for the concerning player role. The interpretation of
 Characteristic 7 is simple. If your opponent is even more cooperative than
 required by your ideal point, then there is no reason to deviate from your own
 ideal point quantity. Ten of the 18 final strategies based on ideal points have this
 characteristic. However, some other strategies increase the output in the situa-
 tion of Characteristic 7 in order to test the opponent's willingness to cooperate
 at a point more favorable for oneself.

 The remaining characteristics will be applicable to strategies without ideal
 points, too. Even if a strategy is not based on an ideal point, it may still involve a
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 FIGURE 8.-Ideal points used by final strategies.
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 measure which permits an interpersonal comparison of cooperativeness. Thus a
 strategy may look at the profit difference achieved at the beginning of the main

 phase as a standard reference. Both players are judged to be equally cooperative

 if this profit difference is attained.

 CHARACTERISTIC 8: If your opponent has chosen an output above his Coumot

 quantity, then in the next period choose your Coumot quantity.

 Twelve of the 23 strategies obey this rule. The other strategies do not use
 more rigorous methods of punishment; instead, if they realize that their oppo-
 nent plays permanently above his Cournot quantity, they abandon the idea of

 punishment after some periods and reduce their own output below their
 Cournot quantity to increase their profits. Such strategies run the danger of

 becoming exploitable by attempts to establish Stackelberg leadership. Character-
 istic 8 on the one hand avoids excessive aggressiveness and on the other hand

 provides protection against exploitative opponents.

 CHARACTERISTIC 9: If your opponent has chosen his Coumot quantity, then in
 the next period choose a quantity not higher than your Coumot quantity and 5% at

 most below your Coumot quantity.

 It can be seen with the help of Figure 8 that Characteristic 9 limits the

 response to the opponent's choice of his Cournot quantity to a relatively small
 interval. Sixteen of the 23 final strategies satisfy the requirement of Characteris-
 tic 9. Among these 16 strategies there are 10 which respond to Cournot
 quantities by Cournot quantities. The remaining 6 strategies want to indicate
 their willingness to cooperate by a slightly smaller output. Of course, the
 number of 5% in Characteristic 9 is to some extent arbitrary.

 The following two Characteristics 10 and 11 apply to situations in which the

 following four conditions hold.
 (i) The last period was a period of your main phase.
 (ii) Up to now you always followed your strategy.

 (iii) In the last period your opponent's output was below his Cournot output.
 (iv) If you have an ideal point (for the relevant player role), then your

 opponent's output was above his output in your ideal point.

 CHARACTERISTIC 10: Suppose that conditions (i), (ii), (iii) and (iv) hold. If in
 the last period your opponent has raised his output, then your decision raises your

 output to a quantity below your Coumot output.

 CHARACTERISTIC 11: Suppose that conditions (i), (ii), (iii), and (iv) hold. If in
 the last period your opponent has lowered his output, then your decision lowers your
 output. If you have an ideal point, then your new output remains above your ideal
 point output.
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 To illustrate Characteristics 10 and 11, let us give an example: Consider a

 strategy which in the main phase matches the opponent's last output on a

 straight line between the Cournot point and an ideal point in the quantity space,

 of course, only as long as the opponent's last output was in the relevant range. A

 strategy of this kind satisfies Characteristics 10 and 11. However, it is necessary

 to impose condition (i) since in the first period of the main phase matching on

 the line may require an increase of output even if the opponent has lowered his

 output.

 As long as condition (ii) is satisfied matching on the line in later periods of the
 main phase will move in the right direction. Conditions (iii) and (iv) make sure
 that Characteristics 10 and 11 apply only in the relevant range.

 Both characteristics can be satisfied for strategies not based on a line between

 the Cournot point and an ideal point in any space. They may even be satisfied

 for strategies without ideal points. Thus a strategy's response may be guided by

 the criterion of a profit difference equal to that at the Cournot point without

 any regard to Pareto optimality. Two of the final strategies were of this kind.

 Fourteen final strategies have Characteristic 10. The number of final strate-
 gies with Characteristic 11 is also 14, but only 11 final strategies have both

 characteristics.

 6.4. The End Phase

 A strategy with an end phase has a special method of output determination
 for the last one to four periods. Attempts towards cooperation which are typical
 for the main phase are not continued in the end phase. Instead of this, short-run
 profit goals are pursued.

 Only 2 of the 23 final strategies do not have an end phase. One of these 2

 strategies was typical in many other respects but the other was the most atypical.
 This atypical strategy tries to estimate response functions of the opponent and

 then computes the output decision by an elaborate approximative method for

 the solution of the dynamic program of maximizing expected profits for the
 remainder of the game. Even if something like an end effect is automatically
 produced by the dynamic programming approach, no end phase is present here
 since the method of output determination is always the same.

 CHARACTERISTIC 12: The strategy has an end phase of at least two periods.

 Characteristic 12 is shared by 11 of the 21 final strategies with end phases.
 Ten of these strategies planned an end effect only for the last period.

 CHARACTERISTIC 13: The strategy has an end phase and specifies the Coumot

 output of the relevant player as the output for all periods of the end phase.

 This characteristic is present in 12 final strategies. Other strategies sometimes
 optimized short-run profits against the opponent's last output or approached the
 Cournot output in several fixed steps.
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 6.5. The Strategic Approach Underlying Typical Strategies

 A typical strategy does not try to optimize against expectations on the

 opponent's behavior (Characteristic 1). The strategic problem is not viewed as

 an optimization problem but rather as a bargaining problem. The first question
 to be answered concerns the point where cooperation should be achieved. Of
 course, cooperation should be favorable for oneself but it also must be accept-
 able for the opponent. A failure to reach cooperation is expected to lead to

 Cournot behavior. Therefore, cooperation requires that both players obtain
 more than their Cournot profits. Ideal points are constructed as reasonable

 offers of cooperation within these constraints. Various kinds of fairness consid-

 erations but also prominence (divisibility by five) and prior experience may
 influence the selection of ideal points.

 After the choice of an ideal point the question arises as to how cooperation at

 this point or in its neighborhood can be achieved. It is necessary to indicate
 one's willingness to cooperate there and to show that one is not going to accept
 less favorable terms.

 A decreasing sequence of outputs in the initial phase is a natural signal
 indicating cooperativeness. In the main phase a typical strategy evaluates the

 cooperativeness of the opponent's last output and responds by an output of a

 similar degree of cooperativeness according to some criterion. The response may
 depend on whether the opponent decreased or increased his output. If there is
 such a difference, it is natural to respond more aggressively to the same output
 after an increase.

 One may say that main-phase behavior is guided by a principle of "measure
 for measure." Small changes of the opponent's output lead to small reactions
 and big changes cause big reactions.

 Many oligopoly theories are based on the idea that a player anticipates the

 reaction of his opponent in order to maximize his profits. Contrary to this, a

 strategy based on an ideal point and a response rule guided by the principle
 ''measure for measure" does not involve any anticipation of the opponent's
 reactions. The aim is to exert influence on the opponent rather than to adapt to
 his behavior. In order to achieve this aim one's own behavior has to provide a

 clear indication of one's own intentions. If the implied offer of cooperation is

 reasonable, one can hope that the aim will be reached. A response guided by the

 principle "measure for measure" protects against attempts to exploit one's own
 cooperativeness and rewards cooperative moves of the other player.

 Of course, cooperation breaks down in the end phase. The strategies have
 been written for the 20-period supergame. This game permits only one subgame

 perfect equilibrium path, namely Cournot outputs in every period. The partici-
 pants were aware of the backward induction argument which came up in the
 discussions of the plenary sessions. They accepted the idea that cooperation
 must break down in the last periods but as the strategies show they did not

 accept the full force of the backward induction argument. An explanation of this
 phenomenon is given elsewhere (Selten (1978a)).
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 7. TYPICITY AND SUCCESS

 All characteristics are typical for the final strategies in the sense that they are

 present in the majority of the cases to which they are applicable. Of course, they
 are not all equally typical. Some appear in more of the final strategies than

 others. Moreover, the extent to which a characteristic is typical should not only

 be judged by the number of strategies with this characteristic, but also by the
 extent to which these strategies are typical. In the following, we shall construct a
 measure of typicity applicable to both characteristics and strategies which tries
 to do justice to these considerations.

 The measure of typicity assigns a real number to each characteristic and to
 each strategy. The sum of the typicities of all 13 characteristics is normed to 1.
 The measure of typicity can be thought of as the outcome of an iterative

 procedure. At the beginning, all characteristics have the same typicity 1/13.
 Then, in each step, first a new typicity is computed for each strategy as the sum

 of the typicities of its characteristics. Afterwards, a new typicity for each
 characteristic is computed as proportional to the sum of the typicities of the
 strategies with this characteristic. The sum of the typicities of all characteristics
 is again normed to 1.

 In order to give a more precise mathematical definition of our measure, it is

 necessary to introduce some notation. The typicity of characteristic i is denoted

 by ci and sj stands for the typicity of strategy j. The symbol c is used for the
 column vector with the components c1,.. ., c13 and s denotes the column vector

 with the components s1 S23. Let A be the 13 x 23-matrix with entries aij as
 follows: aij = 1 if strategy j has characteristic i, and aij = 0 otherwise. In our
 case c and s are uniquely determined by the following equations.

 c = aAs,

 s =ATc,
 13

 i=l

 where AT is the transpose of A and 1/a is the greatest eigenvalue of AAT. It is
 a consequence of elementary facts of linear algebra that the iterative process
 described above converges to vectors c and s which can be described as the
 solution of this system of equations.

 Table III shows which strategy has which characteristics. The rows correspond
 to the 13 characteristics and the columns to the 23 final strategies. The
 strategies have been numbered according to the success in the final tournament.
 Strategy 1 is the most successful one, strategy 2 the second most successful one,
 etc. A black mark indicates that the strategy corresponding to the column has
 the characteristic corresponding to the row.

 Obviously, the black marks in Table III describe the matrix A. A black mark
 corresponds to an entry 1 and the absence of a black mark corresponds to an
 entry 0. The typicities of the characteristics are given at the right margin and the
 typicities of the strategies can be found at the bottom of Table III.
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 TABLE III

 TYPICITY OF CHARACTERISTICS AND STRATEGIESa

 Characteristics Strategies Typicity

 1 - .0917

 2 - .1062

 3 _ in - .1005

 4 - ? .0609

 5 ? ? ? ? ? ? ? ? ? .0710

 6 - ? ? ? ? ? ? ? ? .0927

 7 - - .0545

 8 ? ? ? ? ? ? ? ? ? ?.0653

 9? ? ? ? ? ? ? ? .0851

 10 - .0729

 11 - - - - - .0749

 12 - - .0591

 13 - ? ? ? ? ? ? ? ? ? .0652

 Rankingof 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 success

 Rankingof 1 5 2 17 14 8 16 7 4 6 18 12 11 9 15 3 10 19 22 23 13 21 20

 typicity

 o xo- 'o oN ml L Vo V) 0 ~o xo xo It Cl N o 00 on
 o I clO ON IC 00 ~IO 00 lzt N0~ N- IClO 00 Cl N C V) ~ IO 00 ONCl Typicity 8 M M> {? <Vt Mt gI " M <? - t = 00 M ? on ON xc bI ro bI oo 00 ro bI - r- ro ooc 00 r t ,I , t ,t
 . . . . . . . . . . . . . . . . . . . . . .

 a The Spearman rank correlation coefficient between typicity and success of strategies is r, = .619.

 The table also shows the ranking of success in the final tournament and the

 ranking of typicity of the 23 strategies. The Spearman rank correlation coeffi-

 cient between success and typicity is +.619. This value is significant at the 1%
 level (two-tailed test).

 It is an unexpected phenomenon that there is a strongly significant positive

 correlation between the typicity and the success of final strategies. In principle, the
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 opposite relationship would also seem to be possible. It is not inconceivable that

 typical characteristics reflect nothing else than typical mistakes. However, in our

 case the characteristics seem to embody advisable strategic principles. Maybe

 the positive correlation between typicity and success is the result of the learning
 process which produced the final strategies.

 For each characteristic the mean success rank of those strategies which have

 it is smaller than the mean success rank of those which do not have it. This

 shows that each of the characteristics separately is positively connected to the

 success in the final tourmament. In this sense all 13 characteristics are favorable

 structural properties of a strategy.

 Our judgments of the advisability of the characteristics must be understood

 relative to the strategies developed by the participants of our experiment. We

 cannot exclude the possibility that a very atypical strategy can be found which

 turns out to be very good in a tournament against the 23 final strategies. In fact,

 the participant who wrote a strategy with success rank 20 firmly believes that

 this approximative dynamic programming approach based on an estimated

 response function of the opponent can be improved to a degree which will make

 it superior to all final strategies in a tournament against them. We doubt that

 this is the case. The difficulty with the dynamic programming approach is the

 problem of forming a correct estimate of the opponent's behavior. A best

 response to a wrong prediction can have disastrous consequences.

 Admittedly, our experiment does not really justify strong conclusions since the

 final strategies have not been developed independently of each other. Perhaps a

 different picture of a typical strategy would emerge in a repetition of the

 experiment. Nevertheless, the results reported in this section seem to be of
 considerable significance for the further development of oligopoly theory.

 8. A FAMILY OF SIMPLE TYPICAL STRATEGIES

 The 13 characteristics do not completely determine a strategy. Many details

 are left open. In this section we shall construct a family of strategies which are

 typical in the sense that they have all 13 characteristics and the missing details

 are furnished in a particularly simple way. The members of the family differ only

 by the pair of ideal points used for both player roles. The special case of only
 one ideal point is not excluded.

 For our family of simple typical strategies we shall discuss the question of

 what happens if two strategies with different ideal points play against each

 other. This exercise conveys some insight into the strategic properties implied by

 the 13 characteristics. We shall also look at the question of what is a reasonable

 choice of ideal points. For this purpose we have determined that member of the

 family which did best in a tournament against 22 of the final strategies. (The
 only strategy which involved random decisions was eliminated in order to avoid
 time consuming Monte-Carlo simulation.)
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 8.1. Description of the Simple Typical Strategies

 The ideal points are described by output pairs u and v, one for each player

 role:

 Ideal point for the role of player 1: u = (u1, U2).

 Ideal point for the role of player 2: v = (V1, V2).

 The first components of the vectors u and v denote player l's output and the
 second stands for player 2's output. As mentioned above, the special case u = v
 is not excluded. We also introduce the following notation for the output

 combination in the Cournot equilibrium of the underlying duopoly.

 Cournot equilibrium: c = (c1, C2)C

 We now can describe the decision xi(t) specified by the simple typical strategy
 with ideal points u and v. The following conditions (i) and (ii) have been
 imposed on the ideal points:

 (i) The ideal points u and v are Pareto superior to the Cournot equilibrium.
 (ii) u1 < .92c1 and v2 < .92c2.

 Condition (ii) is necessary to make the specification of the initial phase
 compatible with Characteristic 5.

 Initial phase:

 t 3-t
 Xl(t) = 3Ul + 3 cj, 3 3Cl

 t 3-t
 X2(t) = 3V2 + 3 C2 for t= 1,2,3.

 Main phase:

 (ul for x2(t - 1) < U2,

 xl(t) = q cl -ul for x2(t- 1) ? C21
 l + - (x2(t -1) - u2) otherwise;
 C2 U2

 {V2 for x1(t - 1) < v1,

 x2(t) = 2 v for xl(t - 1) 2 cl,
 l2 + I (xl(t - 1) - v1) otherwise.

 End phase:

 xi(t)=cj fori=1,2andt=19,20.
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 The initial phase can be thought of as a sequence of three equal "concessions"

 moving from the Cournot output ci to the ideal point output u1 or V2
 respectively. The first period already makes the first concession. Obviously, the

 initial phase satisfies Characteristic 4 which requires at least two periods.

 Characteristic 5 is satisfied since u1 and v2 are not greater than .92c1 and .92c2,

 respectively.

 Characteristic 6 requires that the strategy make use of ideal points. Obviously,

 this is the case for our family of simple typical strategies.

 We now turn our attention to the equation for the main phase. The upper
 line on the right-hand side secures Characteristic 7. The middle line is in agree-

 ment with Characteristics 8 and 9. Characteristic 9 concerns the special case

 x1(t - 1) = c1 and permits a response xi(t) up to 5% lower than ci. As has been
 pointed out before, the majority of these final strategies which conformed to

 Characteristic 9 specified a response of exactly ci. Therefore, this response can
 be considered as typical.

 The lower line on the right-hand side of the equation for the main phase is a

 very simple version of the principle "measure for measure." The last output of

 the opponent is matched by the corresponding output on the straight line which
 connects the ideal point and the Cournot point in the quantity space. Obviously,

 this has the consequence that Characteristics 10 and 11 are present in the

 strategies of our family.
 The end phase has two periods and, therefore, conforms to Characteristic 12.

 The output in the end phase is always ci, as required by Characteristic 13.
 The strategies of our family also have the Characteristics 1, 2, and 3. In

 accordance with Characteristic 1, no attempt is made to predict the opponent's
 behavior and to optimize against this prediction. As required by Characteristic 2,
 the strategies are completely deterministic. In the main phase the strategies
 permit a continuum of possible responses and therefore have Characteristic 3.

 8.2. Simple Typical Strategies PlayingAgainst Each Other

 Consider a play of the 20-period supergame where each of both players uses a
 member of the family described above as his strategy. Let u and v be the ideal
 points of the strategy of player 1. Similarly, let u* and v* be the ideal points of

 the strategy of player 2. Actually, only u and v * are of interest here since we
 have fixed the player roles.

 The behavior in the main phase can be described by two "reaction functions,"

 r and r*:

 {ul for x2 < u2,

 r(X2) cl for x2 2 c2,
 + = ( cl - ul

 ul + _ (x2 - U2) otheirwise; C2 U2
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 VU2* for xi < vi*1,

 r*(x) forx12c1,
 lV* + C Lx 8 (x1 -1*) otherwise.

 The development of the play in the main phase is given by the following
 equations:

 x1(3) = ul,

 X2(3) = V2

 x1(t) = r(x2(t-1)) for t =4, ... 18,

 x2(t) = r*(xl(t - 1)) for t = 4,..., 18.

 Figure 9 shows four examples for the development of this system of difference
 equations. In Figures 9a and 9b the path of output combinations moves towards

 the Cournot equilibrium. In Figure 9c the path stays at (u1, V2*) for t = 3,..., 18.

 x2 j l r(x2) x2 r(x2)

 c r*(x1) c r*(x1)

 v2 . v2 . . .............. . . . .....

 ul xl ul xl

 (a) (b)

 x2 x2
 r(x2) r(x2)

 c r*(x1) c r*(x1)

 s 'v/ .2*....... . ../ .'*

 v2* ..... ..- - - - - u

 ul xl u1 xl

 (c) (d)

 FIGURE 9.-Simple typical strategies playing against each other. Four examples with different
 ideal point pairs u and v*.
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 In Figure 9d we have

 xl(t) = r(V2*) for t = 4,...,18,
 x2(t) = V2* for t = 4,...,18.

 We shall speak of a conflict case if the output combination path moves
 towards the Cournot equilibrium, and of an agreement case if the output path
 becomes stationary in periods 4 to 18.

 It can be seen without difficulty that a conflict case is obtained whenever the
 Cournot output combination is the only common point of r and r*. All other
 cases are agreement cases. An agreement case is also characterized by the
 condition that player 2's ideal point is not above the straight line through the
 Cournot point and player l's ideal point. This is the case if and only if player l's
 ideal point is not below the straight line through the Cournot point and player

 2's ideal point. From what has been said it follows that an agreement case is
 obtained if and only if the following inequality holds:

 C2-V2 C1-U2

 C1-v1 C1-U1

 Figure 9 will illustrate the consequences of this condition: In the special case
 in which both ideal points are Pareto optimal, an agreement case is reached if
 each player does not ask for more than the other player will grant him. The
 ideal points are like bargaining offers. The less one asks for oneself and the

 more one grants to the other player, the better are the chances for agreement.
 In view of the condition for an agreement case it seems to be quite reasonable

 to specify two different ideal points for the two player roles in such a way that
 player l's ideal point is more favorable for player 2 and vice versa. However,

 those 6 participants who specified two different ideal points did this in a way
 which leads to a conflict case if the strategy plays against itself. In each player
 role these subjects wanted more for themselves than they would grant to the

 other player if he were in this role.
 It can be seen without difficulty that the condition which distinguishes

 agreement cases from conflict cases does not depend crucially on the special way
 in which our simple typical strategies specify the initial phase. As long as at the
 end of the initial phase both outputs are below the respective Cournot outputs,

 the output combination path moves,towards the Cournot point in a conflict case
 and towards stationary cooperation in an agreement case.

 8.3. The Best Ideal-Point Selection Against the Final Strategies

 It is interesting to ask the question of what is the best selection of ideal points
 within the family of simple typical strategies defined above in a tournament
 against the final strategies. Actually, we simulated tournaments only against 22
 of the final strategies since we omitted the only strategy which uses random
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 choices. The best choice of ideal points turned out to be as follows:

 u = (89.4,55.6),

 v = (86.6,50.4).

 Both components of u are greater than the corresponding components of v,

 but if this strategy plays against itself an agreement case is obtained; the

 quantity combination (89.4,52.6) is played in periods 4 to 18.

 The ideal point (86.6,50.4) is nearly Pareto optimal whereas u = (89.4,55.6) is

 relatively far from the Pareto optimal line. However, u = (89.4,55.6) has the

 advantage that it yields agreement cases against all ideal points which have been

 specified for the role of player 2 by those of the 22 participants who used ideal

 points. This is due to the fact that u2 = 55.6 is rather large.

 The ideal point v = (86.6,50.4) does yield conflict cases against some of the

 ideal points specified for the role of player 1 by participants. These ideal points

 for player 1 are too aggressive to make it worthwhile to reach agreement with

 them by a more generous ideal-point choice which, of course, would diminish

 payoffs against other strategies.

 The simple typical strategy with u = (89.4,55.6) and v = (86.6, 50.4) is not only

 the best among its family but is also the winner of the tourrnament against the 22
 final strategies. This seems to indicate that the way in which the simple typical

 strategies fill in the details left open by the 13 characteristics is not an

 unreasonable one. One may say that the structure of these strategies provides

 an appropriate idealized image of typical behavior of experienced strategy
 programmers, at least as far as our experiment is concerned.

 8.4. Game-Theoretic Properties of Simple Typical Strategies

 The 20-period supergame has only one subgame perfect equilibrium point. In

 this equilibrium point both players always choose their Cournot quantities

 regardless of the previous history. If both players use simple typical strategies of

 the family described above the resulting strategy pair is always a disequilibrium,

 simply because it would be advantageous to deviate in the fourth last period.

 Game theoretically there is a fundamental difference between finite and
 infinite supergames. It is known from the experimental literature that this

 difference seems to have little behavioral relevance. In sufficiently long finite

 experimental supergames cooperation is possible until shortly before the end,

 even if the source game has only one equilibrium point (Stoecker (1983), Selten
 and Stoecker (1986)). If one wants to connect finite supergame behavior with
 game-theoretical equilibrium notions, one has to take the point of view that the

 players behave as if they were in an infinite supergame.

 It is shown in another paper of one of the authors that it is possible to

 construct equilibrium points for the infinite supergame of our duopoly model

 based on the main phase of our simple typical strategies (Mitzkewitz (1988)). In
 these equilibrium points both players have the same ideal point. This ideal point
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 is chosen in the first period of the game; later the strategies respond to the
 previous period as specified by the reaction functions r and r*. Under certain

 conditions which have to be imposed on the ideal points, equilibrium points are

 obtained in this way. However, these equilibrium points are not subgame

 perfect. This is a consequence of a result in the literature which shows that

 equilibria where output continuously depends on the opponent's last-period

 output only cannot be subgame perfect unless the Cournot output is specified

 regardless of the previous history (Stanford (1986), Robson (1986)). Mitzkewitz
 (1988) shows that an appropriate modification of the main phase of the simple
 typical strategies yields subgame perfect equilibrium points for a wide range of
 ideal points.

 Among the newer game-theoretical literature on the duopoly problem we
 have only found one paper which shows some similarities with the approach

 taken here (Friedman and Samuelson (1988)).

 8.5. Reasonable Conditions for Ideal Points

 One may ask the question whether it is possible to impose reasonable
 restrictions on the choice of ideal points in our simple typical strategies. A

 strategy programmer who considers an ideal point for one of the player roles
 will probably explore what happens if his opponent uses the same ideal point for

 the opposite player role. Therefore, it is natural to focus on the case in which
 both opponents use the same ideal point u = (u1, u2) for both player roles.

 Suppose player 1 knows that player 2 plays a simple typical strategy as defined
 above with the ideal point u = (u1, u2). Suppose that for some output x1 the

 profit G1(xl, r*(xl)) is greater than G1(ul, u2). Then player 1 has a better
 alternative than to agree to player 2's ideal point (u1, u2). This consideration
 and an analogous one for player 2 lead to the following conditions:

 G1(ul, u2) = max G1(xl, r*(xl)),
 X1

 G2(u1, u2) = max G2(r(x2), x2)
 X2

 We refer to these two equations as "conjectural equilibrium conditions" since
 there is an obvious relationship to conjectural oligopoly theories (see Selten
 (1980)).

 Another reasonable condition on ideal points is connected to the possibility of

 attempts of short-run exploitation. Suppose that a player deviates just once from
 the ideal point and then returns to cooperation at the ideal point. It should not

 be possible to improve profits in this way. This leads to the following conditions:

 2G1(ul, u2) = max [G1(xl, u2) + G1(ul, r*(xl))],
 X1

 2G2(u1, u2) = max [G2(u1, x2) + G2(r(x2), u2)].
 X2
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 We refer to these equations as "stability against short-run exploitation." In our
 numerical case the conjectural equilibrium conditions imply stability against
 short-run exploitation, but this is not the case for all possible parameter values.

 As has been explained in subsection 8.4 it will be shown elsewhere (Mitzke-
 witz (1988)) that subgame perfect equilibrium points for the infinite supergame
 can be constructed on the basis of the reaction functions (but with memory also
 of the own behavior) embodied in the main phase of simple typical strategies if
 certain conditions on the ideal point are satisfied. These conditions are nothing
 else than the conjectural equilibrium conditions and the stability against short-
 run exploitation.

 Perhaps it is also of interest that only one Pareto optimal point satisfies the
 conjectural equilibrium conditions, namely the point described in the third row
 of Table II: profit monotonic quantity reduction along the straight line through
 the intersections of both Cournot-isoprofit curves (see Mitzkewitz (1988)). It is
 tempting to look at this ideal point as distinguished among others by its special
 theoretical properties. In the final strategies it has been employed twice.
 However, as can be seen in Table II, other ideal points based on different
 principles have proved to be at least as attractive to the participants.

 Figure 10 shows the ideal points used in final strategies of the participants and
 the restrictions imposed by the conjectural equilibrium conditions (the smaller
 lens-shaped area) and by stability against short-run exploitation (the greater
 lens-shaped area). The equations for these curves will be discussed elsewhere

 70- Cournot (111, 69)

 Pareto / //

 60- \optima / / // x one observation 60 otm

 xM \ / X / /* two observations

 x S e *0 five observations

 40- , '\ I
 x

 75 85 95 105 115

 xl

 FIGURE 10.-The set of ideal points satisfying the conjectural equilibrium conditions (smaller
 lens), the set of ideal points stable against short-run exploitations (greater lens), and the ideal points
 used in final strategies.
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 (Mitzkewitz (1988)). Only 4 of the 24 ideal points satisfy the conjectural
 equilibrium conditions, but 21 of the ideal points are stable against short-run

 exploitation.

 Obviously, the participants were not concerned about the conjectural equilib-
 rium conditions. Maybe a violation of these conditions is not perceived as a

 serious danger since in the case of an optimization of the other player along
 one's own reaction function, cooperation will still be reached, even if the
 resulting output levels are higher than in the ideal point.

 Some strategies which were not yet the final ones contained attempts at
 short-run exploitation. Most participants seemed to be aware of this possibility
 since the "trainer"-program enables them to play against their own strategy.
 They were able to check short-run exploitability without analytical computa-

 tions. Of course, such numerical checks will sometimes fail to reveal the right
 answer. Maybe it is of interest in this connection that two of the three ideal

 points without stability against short-run exploitation are very near to the
 corresponding area in Figure 10.

 8.6. Stability against Short-Run Exploitation and Outcomes of Plays in the
 Final Toumament

 In the tournament among 23 final strategies (including the strategy with
 random choices) 1012 plays were simulated (two plays for each strategy pair).
 Table IV shows the distribution of the pairs of total profits in the 1012 plays.
 The inner cells of the table correspond to profit intervals of four thousand for
 both players.

 The curve superimposed on this table is connected to stability against short-run
 exploitations. The curve encloses all profit pairs which can be reached by plays
 in which the same ideal point with the property of stability against short-run

 exploitation is played in all 20 periods. We call the region enclosed by this curve
 the "exploitation stability region."

 Consider two simple typical strategies whose ideal points are stable against
 short-run exploitation. Whenever such strategies are played against each other,
 the resulting profit combination of the 20-period supergame must be in the
 exploitation stability region, regardless of whether the ideal points of both
 players are equal or not. However, the set of all profit combinations which can
 be reached in this way is a proper subset of the exploitation stability region. This
 is due to the behavior in the initial'phase and the end phase. The exploitation

 stability region can be obtained by pairs of modified simple typical strategies,
 strategies in which the initial phase and the end phase are of different length,
 but the behavior in the main phase remains the same.

 In the final tournament 983 (97.1%) of the 1012 plays resulted in total profit
 combinations in the exploitation stability region. In those few total profit
 combinations outside the exploitation stability region, one of both profits is

 below the corresponding Cournot profit.
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 TABLE IV

 SUPERGAME PROFIT PAIRS IN THE FINAL TOURNAMENT

 AND THE EXPLOITATION STABILITY REGION.

 >106 _-

 102-106 -

 98-102

 94-98

 90-94 2 _ 1 2 -

 86-90 - L 5 9 86 48

 Total Profits 82-86 - 4 4 11 36 146 93 10 _2_ _
 of Player 2 - - - - - 60 - - -

 (in thousands) 7882 2 - 1 25 61 60 66 35 14-

 74-78 4 - 17 75 37 15 8 9 9 - -

 Coumot Profits 70-74 6 2 33 37 10 8 2 4 . _ _ - _ _

 fo Player 2 66-70 - - 3

 <66 ? _ _ _ _ _-2 ? 4 _ 4

 <46 46-50 50-54 54-58 58-62 62-66 66-70 70-74 74-78 78-82 82-86 8-90 90-94 94-98 >98

 Coumot Profits Total Profits of Player 1

 of Player 1 (in thousands)

 The evidence of Figure 10 and Table IV strongly suggests that stability against
 short-run exploitation has some relevance for the prediction of outcomes of
 plays between strategies written by experienced players.

 9. IMPLICATIONS FOR DUOPOLY THEORY

 The results presented in this paper suggest a new view of the duopoly
 problem. Traditional duopoly theories and game-theoretical approaches rely
 heavily on optimization ideas. Usually, a duopolist is assumed to optimize
 against expectations on his opponent's behavior. Contrary to this, it is typical for
 the strategies programmed by the experienced players in our experiment that no
 expectations are formed and nothing is optimized.

 The approach to the duopoly problem suggested by our results can be
 described as the "active pursuit of a cooperative goal." First, one has to answer
 the question of where one wants to cooperate. The goal of cooperation is made
 precise by the concept of an ideal point. The ideal point should be a reasonable
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 compromise between both players' interests; otherwise, one cannot hope to

 achieve cooperation. Concepts of fairness such as those listed in Table II are the
 basis for judgments on the reasonableness of compromises.

 It is well known in the experimental literature that considerations of fairness

 have a strong influence on observed behavior. Many of the empirical and

 experimental phenomena can be subsumed under an equity principle (Selten
 (1978b)). Further literature can be found there and in a newer paper which
 contains many illustrative examples (Kahneman, Knetsch, and Thaler (1986)).

 Fairness considerations also have been proved to be useful in the explanation of
 behavior in duopoly experiments (Friedmann (1970), Selten and Berg (1970)).

 Once an ideal point has been chosen one has to determine a policy for its
 effectuation. Formally, an effectuation policy may be described by a reaction

 function as in the simple typical strategies of Section 8. However, contrary to

 conjectural oligopoly theory, such reaction functions are not to be interpreted as

 hypotheses on the opponent's behavior. Effectuation policies are more like

 reinforcement schedules which serve the purpose to guide the opponent's
 behavior rather than to optimize against it.

 The typical structure of an effectuation policy is based on the principle of

 measure for measure. This principle requires an interpersonal comparison of

 the degree of cooperativeness of the players' actions. The degree of cooperative-
 ness measures the nearness to the ideal point. The response matches the

 opponent's last action according to this measure.

 A player who plays the dynamic game may try to learn how to do best against
 his opponent's behavior. A player who does this takes a "learning approach." It
 is also possible to take a "teaching approach," which means that one behaves in
 a way which induces the other player to conform to one's own goals.

 It seems to be very difficult to design a reasonable strategy which takes the

 learning approach. One participant tried to do this in a sophisticated way. His
 strategy involved an approximate intertemporal optimization against statistical
 estimates of his opponent's strategy. His success rank was 20. As Table III
 shows, his strategy has only one of the thirteen characteristics, namely the

 absence of random decisions. Obviously, the optimization attempt, of this

 participant failed badly. The reason for this lies in the difficulty of forming an
 accurate estimate of the opponent's behavior on the basis of relatively few
 observations.

 The difficulties connected to the learning approach point in the direction of a

 teaching approach. Of course, sorriebody who takes the teaching approach does
 not necessarily expect that the other player takes a learning approach. The other

 player may very well take a teaching approach, too. This will not lead to

 difficulties if both players pursue compatible cooperative goals. However, if the

 opponent tries to adapt to my strategy, this should not endanger my cooperative
 goal.

 Maybe in a very long supergame of thousands of periods, a good strategy
 would involve both, teaching and learning, but within 20 periods not much can
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 be learned which still can be used within this time. Real duopoly situations

 rarely are analogous to very long supergames. Maybe a relatively short su-

 pergame more adequately captures the decision problem of managers who want

 to be successful within a foreseeable time.

 The new view of the duopoly problem emerging from our results may be

 described by the slogan, "fairness and firmness." One must first choose a fair
 goal of cooperation and then devise an effectuation policy which shows one's
 willingness to cooperate and firmly communicates resistance to unfair behavior.

 As we have seen, the requirement of stability against short-run exploitation

 seems to be a restriction obeyed by the participants' choices of ideal points, even

 if their effectuation policies were not exactly the same as those of the simple

 typical strategies. It is clear that one should not give rise to the possibility of
 being exploited. Moreover, in the case in which the other player selects one's
 own ideal point, he should not be exploitable. This criterion of stability against
 short-run exploitation is in good agreement with our data.

 It is clear that the theory of fairness and firmness can be easily transferred to

 different contexts, e.g. price-variation duopoly supergames. The tit-for-tat strat-

 egy which was the winner of Axelrod's contests (1984) is in harmony with the
 fairness-and-firmness theory. In the prisoner's dilemma the choice of an ideal

 point is not an issue. In view of the symmetry of the situation there is only one
 natural cooperative goal. Since there are only two choices available, measure for
 measure cannot mean anything else than tit-for-tat.

 It must be admitted that no strong conclusions can be drawn from our data

 since the final strategies cannot be regarded as statistically independent observa-
 tions. The participants interacted in game playing rounds and tournaments.
 Moreover, there was some verbal communication, even if the participants
 seemed to be reluctant to reveal the principles underlying their strategies.

 More studies similar to the investigation presented here are necessary to

 establish the empirical relevance of the fairness-and-firmness theory. It should
 also be kept in mind that the final strategies of our participants are the result of
 a long experience with the game situation. It is quite possible that real duopolists
 have much less experience with their strategic situation and therefore do not

 achieve the same extent of cooperation. The experimental literature shows that

 only after a considerable amount of experience, subjects learn to cooperate

 (Stoecker (1980), Friedman and Hogatt (1980), Alger (1984, 1986), Benson and
 Faminow (1988)).

 It would be wrong to assert that there is no difference between a programmed

 strategy and spontaneous behavior. The strategy method cannot completely
 reveal the structure of spontaneous behavior. However, it seems to be plausible

 that somebody who writes a strategy program is guided by the same motivational
 forces which would influence his spontaneous behavior. Of course, a strategy
 program is likely to be more systematic. Obviously this is an advantage from the
 point of view of theory construction.
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 10. SUMMARY OF RESULTS

 1. Mean profits increased from one game playing round to the next.

 2. The correlation between both player profits was negative in the first game
 playing round and became positive in the second and the third game playing
 round. This can be interpreted as a growth of understanding of the strategic
 situation.

 3. Mean profits increased from one computer tournament to the next. In the
 final tournament 97.1% of all plays had profits above Cournot profits for both
 players.

 4. Typically, a strategy program for the final tournament distinguishes among
 an initial phase, a main phase, and an end phase. Outputs independent of the
 opponent's previous behavior are specified for the initial phase of one to four
 periods. In the main phase the strategies aim at a cooperation with the
 opponent. Noncooperative behavior characterizes an end phase of one to four
 periods.

 5. Typical structural features of strategies programmed for the final tourna-
 ment can be described by 13 characteristics. These characteristics imply a
 strategic approach which begins with the selection of a cooperative goal de-
 scribed by an "ideal point." (A different ideal point may be chosen for each
 player role.) Cooperation at the ideal point is then pursued by a "measure-for-
 measure policy." If the opponent moves towards the ideal point or away from it,
 the response of a measure-for-measure policy is of similar force in the same
 direction. In the end phase a typical strategy always chooses Cournot outputs.

 6. Typically, no predictions about the opponent's behavior are made and
 nothing is optimized.

 7. The extent to which a strategy or a characteristic is typical can be
 measured by an index of typicity. There is a highly significant positive rank
 correlation between the index of typicity and the success of a strategy in the
 final tournament.

 8. For each of the 13 characteristics separately those final strategies which
 have this characteristic have a higher average success rank than those which do
 not have it.

 9. Ideal points are often based on various fairness considerations (see
 Table II).

 10. A family of "simple typical strategies" has been introduced as an idealized
 description of the structure implied by the 13 characteristics. The simple typical
 strategy which performed best against the final tournament strategies was
 determined by a computer simulation. This "best" simple typical strategy is also
 the winner in the tournament against the final strategies.

 11. Two game-theoretical requirements for simple typical strategies impose
 restrictions on ideal points. One of these restrictions, the "conjectural equilib-
 rium conditions," is rarely satisfied by the ideal points in the final strategies.
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 However, most of these ideal points satisfy the weaker restriction of "stability
 against short-run exploitation."

 12. An "exploitation stability region" for profit combinations reached in the
 supergame can be derived from the requirement of stability against short-run
 exploitation. The profit combinations of all plays in the final tournament in
 which both players receiyed more than their Cournot profits are in the exploita-
 tion stability region. These are 97.1% of all plays in the final tournament.

 Universitiit Bonn, Wirtschaftstheoretische Abteilung I, Adenauerallee 24-42, D-
 53113 Bonn, Germany.

 Manuscript received October, 1990; final revision received April, 1996.
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Abstract: This paper is about experiments on two versions of ultimatum games with incom- 
plete information, called the offer game and the demand game. We apply the strategy method, 
that is, each subject had to design a complete strategy in advance instead of reacting sponta- 
neously to a situation which occurs in the game. Game theory predicts very similar outcomes 
for the offer and the demand games. Our experiments, however, show significant differences 
in behavior between both games. Using the strategy method, allows us to explore the motiva- 
tions leading to those differences. Since each subject played the same version of the game eight 
rounds against changing anonymous opponents we can also study subjects' learning behavior. 
We propose a theory of boundedly rational behavior, called the "anticipation philosophy", 
which is well supported by the experimental data. 

I Introduction 

This paper  reports experiments on u l t imatum games with incomplete informat ion.  
An  ul t imatum game is a two-person game in which player A proposes a division of  a 
"cake" and player B can then either accept the proposal  or reject it. I f  the proposa l  
is rejected both players get nothing, otherwise the proposed  division is implemented.  
In experimental  studies the cake is usually a sum of  money.  

Following Girth, Schmittberger and Schwarze (1982), a number  of  experimental  
papers have studied such games, or games in which ul t imatum games arise as sub- 
games. For  surveys of  the l i terature see Thaler (1988), Giath and Tietz (1990), and 
Roth (1992). All  subgame perfect equilibria of  an u l t imatum game are characterized 
by an extremely unequal  split o f  the cake: player  B can earn no more  than the smal- 
lest money unit. Giath and Tietz, among other authors,  throw doubt  on the empirical 
relevance of  the game-theoretical  solution and claim that  behavior  is mainly driven 
by considerations of  distributive justice (see, e.g.,  Gtith, Ockenfels and Tietz 
(1990)). On the other hand,  some authors insist that  strategic issues cannot be 
neglected in studying human.behavior  (see, e.g.,  Binmore,  Shaked and Sutton (1985 
and 1988)). The state of  the art  is that  something in between the equal split and the 
equilibrium split occurs. In almost all previous experiments the modal  choice of  
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and comments. Financial support by the Deutsche Forschungsgemeinschaft (DFG) through 
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player A is the fifty-fifty split, whereas the mean of choices gives him a higher pro- 
portion of the cake (between 60070 and 70~ 

In this study we shall deal with ultimatum games with incomplete information, 
in which only player A knows the size of the cake precisely. Player B is only in- 
formed about the probability distribution of possible cake sizes when responding to 
player's A proposal. Two versions of such a game are considered: 

- In an offer game, player A offers a sum of money to player B. Thus, player B 
is only informed of her possible gain and does not know the residual to 
player A. 

- In a demand game, player A demands a sum of money for himself. Thus, 
player B is only informed about player's A payoff, without knowing her own 
payoff, when making her decision. 

Over the last 20 years, games of incomplete information have been of great 
interest for both normative game theorists and economists applying game theory. 
However, only little experimental research on bargaining has been done in this direc- 
tion despite the fact that in real world bargaining private information is the rule and 
not the exception. Experimental studies which are concerned with incomplete infor- 
mation are Rapoport, Kahan and Stein (1973); Hoggatt, Selten, Crockett, Gill and 
Moore (1978); Rapoport, Erev and Zwick (1991) and Forsythe, Kennan and Sopher 
(1991). Subsequent to our experiments Rapoport, Sundali and Potter (1992) also 
investigate the offer game. 

Game theory predicts similar equilibrium outcomes for both offer and demand 
games (see section II). These predictions are also similar to the equilibrium outcomes 
in ultimatum games with complete information. Contrary to game theoretic predic- 
tions, our experimental data reveal significant differences in actual behavior between 
offer and demand games. 

Selten (1967) proposed an experimental technique called the "strategy method". 
According to this method, subjects have to specify complete strategies for a given 
game, after they gained experience with this game by actual play. We follow this 
experimental technique, but without the phase of actual play since our games have 
rather simple structures. The advantage of the strategy method is that it makes stra- 
tegies observable and not only actual choices at those information sets that arise in 
the course of a play. The structure of an observed strategy allows a deeper insight 
into the reasoning behind the particular choices. 

Each participant in our experiments was matched in eight subsequent rounds 
against changing anonymous opponents. In all periods a participant remained in the 
same player role and in the same type of game. In each period, a player could alter 
his strategy in view of his previous results. 

It is the aim of this paper to contribute to a descriptive theory of human behav- 
ior in simple bargaining situations with incomplete information. Perhaps such a the- 
ory is also valuable for the understanding of behavior in ultimatum games with com- 
plete information on the one hand and of behavior in more complex bargaining sit- 
uations with incomplete information on the other hand. For the explanation of our 
data we develop a theory of the individual decision process in which issues of fair- 
ness, strategic reflections and anticipation of opponent's behavior are involved. 
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In section II we define the games under consideration and discuss the game- 
theoretic solution. In section III we present the experimental design. Section IV pres- 
ents the results aggregated over the eight repetitions. Section V studies the dynamics 
of the behavior over time. In section VI we look at the individual learning behavior. 
Section VII concludes. 

II The Games 

The extensive form of an offer game is described below. The variations for a de- 
mand game are indicated in parentheses. 

1. The cake may be one of six amounts: 1, 2, 3, 4, 5 or 6 Taler, a fictitious 
currency. Its size is determined by throwing a die. 1 Taler is equivalent to 
1.20 DM. At the time of the experiments this was worth about $ 0.70. 

2. Player A is informed of the cake size. Player B knows only how the size of 
the cake is determined, but is not informed of the actual throw of the die. 

3. Player A proposes an offer (demand) to player B. The offers (demands) are 
restricted to the set {0, 0.5, 1 . . . . .  5.5, 6} and player A may not offer (de- 
mand) more than the whole cake. The smallest money unit of 0.5 is about 
one cup of coffee in the students' cafeteria. 

4. Player B can accept or reject the offer (demand). 
5. If  player B rejects the proposal, both receive nothing. If she accepts the pro- 

posal then player A gets the whole cake minus his offer (he gets just the 
demand), and B receives the offer (she gets the whole cake minus the de- 
mand). 

Thus, in the offer game player B is informed about her payoff if she accepts the 
offer but not about A's payoff (unless she is offered 5.5 or 6.0, in which case she 
can deduce from the rules of the game that the cake was of size 6). In the demand 
game player B knows what player A will receive if she accepts his demand, but she 
does not know her own payoff (unless she is faced with a demand of 5.5 or 6.0, in 
which case she can deduce that her payoff will be 0.5 or 0.0, respectively). 

The sets of Nash equilibria for both versions are very large. The sequential 
equilibria (Kreps and Wilson, 1982) restrict the equilibrium payoffs of player B to 
0.5 at most. However, in the offer game, we neglect those equilibria where player A 
sometimes offers 0 and player B sometimes accepts 0. These equilibria are weak, 
since B loses nothing when rejecting 0. We concentrate on those sequential equilibria 
that are strict on the equilibrium path. This means that the equilibrium strategies 
induce strict local best replies at all information sets reached in equilibrium. We 
refer to such an equilibrium as a path-strict sequential equilibrium. It turns out that 
in both games the concept of path-strict sequential equilibrium yields a unique solu- 
tion. In both games player B always receives 0.5 at this equilibrium and player A 
receives the residual of the cake. More specifically, in the offer game, player A of- 
fers 0.5, the smallest money unit, regardless of the size of the cake and player B 
accepts every positive offer. In the demand game, player A demands the entire cake 
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minus 0.5 and player B accepts all .5 demands and rejects all integer demands. Note 
that in the demand game, the path-strict sequential equilibrium is not perfect in the 
sense of Selten (1975). Therefore, we also consider the perfect equilibrium at which 
player A demands the entire amount for cakes 1 to 5 and 5.5 for cake 6 and player B 
accepts every demand but 6. In equilibrium n o  disagreements occur in either game, 
unlike in the bargaining game studied by Forsythe, Kennan and Sopher (1991), where 
the uninformed player makes the proposal. The path-strict sequential equilibria of 
both games yield the same payoff division as at the unique subgame perfect, path- 
strict equilibrium of the ultimatum game with complete information. 

III Experimental Design 

We ran 10 experiments; 5 on offer games (called O1-O5) and 5 on demand games 
(D1-D5). Each experiment involved 16 different subjects (making 160 in all) from 
various faculties of the University of Bonn. Each subject participated in only one 
experiment. 

In each experiment 8 subjects were randomly assigned to be players A and the 
remaining 8 were players B. Players A and players B were then placed in two large 
separate classrooms. No communication was possible within a player group. Each 
subject received a set of written instructions (see appendix), the respective decision 
sheet (figure la, b) and an explanation sheet. The instructions were read aloud to the 
subjects. Questions concerning the rules of the games were answered. Each subject 
in a player group played one of the two different ultimatum games eight rounds 
against a new and anonymous opponent of the other player group each time. A sub- 
ject played only one type of game and was always in the same position (A or B). 

Before the toss of the die in a round and before players B were informed of the 
decision of players A, both player groups were required to write complete strategies 
into their decision sheets. Thus, a player A made an offer or demand for each of the 
6 possible cakes. The smallest money unit 0.5 restricted the number of information 
sets of player B to only thirteen. A player B had to decide which of the possible 
offers or demands from 0.0 to 6.0 she would accept or reject. The decision sheets 
were collected and matched according to a prepared plan in such a way that a player 
A played only once against the same player B. The matching plan was not told to the 
subjects. Afterwards, the die was thrown in the room of players A. The given stra- 
tegies in a round determined the course of play. Then each decision sheet was re- 
turned to the respective subject. On their sheets the subjects were informed about 
their own last-period payoff, but not about their last-period opponent's complete 
strategy. After 8 rounds the gains of each player were added, revalued into DM and 
paid out. It was our intention that all information not specifically withheld by the 
rules of the game should be common knowledge among the subjects. 

The strategies fall into four classes since it is necessary to distinguish offer and 
demand games, and A strategies from B strategies. We observed 320 strategies for 
each class (5 experiments x 8 players x 8 rounds). The raw data are available and we 
will be pleased to supply them on request. 
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Decision sheet Player A 

I demand the following anoint 
dependent on the total anount 
for rmyself: 

I t 

1 

2 

3 

4 

5 
6 

7 
8 

total 
5 6 arount 

Player's number: , 
N~ober of experiment:~ 

to be filled in by 
the experimenter 

your player your pay 
A~s denmnd treply off 

Decision sheet Player B 

I accept (a) or reject (r) the 
following demandemade by player A 

Player's number:. 

Number of experiment: - 

to be filled in by 
the experimenter 

mll l l i l l l l l l l l l  
n N N i m i i N i l i l l l  
n l m m n n i n i i n | n m  

n n n l l i l n n n n l l l  

R l i i l i i N i l i i l l  

player 
AVs 
demand 

your 
reply 

! total l~ar ~ay 
I a~ount off 

Fig. 1. Decision sheets for player A and player B in demand games  
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IV Results Pooled Over Eight Periods 

M. Mitzkewitz and R. Nagel 

A. Choices of  Players A 

Tables la  and b present the frequencies of offers and demands, respectively, for the 
six cakes pooled over all 8 rounds. Figure 2 shows the mean required cake propor- 
tions that players A asked for themselves, again aggregated over all 8 rounds, and 
separated for offer and demand games. To compare this with theoretic predictions, 
we also plot the path-strict sequential equilibrium split in ~ to player A and the 
fifty-fifty split for each cake size. 

Table la. Frequencies of offers for the six cakes over all offer games 

offers 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

cake 
1 30 273 17 
2 13 101 176 29 1 
3 2 56 108 133 20 1 0 
4 2 42 65 97 107 3 3 1 0 
5 2 40 41 76 101 51 4 4 0 1 0 
6 1 41 38 51 96 40 46 2 1 3 0 1 0 

Table lb. Frequencies of demands for the six cakes over all demand games 

demands 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

cake 
1 1 106 213 
2 1 5 73 54 187 
3 0 0 0 53 74 
4 0 0 0 4 59 
5 0 0 0 4 23 
6 1 0 0 1 10 

69 124 
81 87 53 36 
80 84 54 31 32 12 
31 103 53 36 32 21 24 8 

In the offer games, the modal choices are (0.5, 1, 1.5, 2, 2, 2) for cakes (1, 2, 3, 
4, 5, 6), as indicated by the underline instead of overline numbers in table la.  Thus, 
the modal offer is an equal split for cakes 1 to 4 and an offer of 2 for cakes 5 and 6. 
The mean proport ion of the cake required by player A increases with cake size, as 
predicted by the path-strict sequential equilibrium. This increase is significant at the 
5~ level for all experiments on offer games (O1-O5), separately, using the Spear- 



Experimental Results on Ultimatum Games with Incomplete Information 177 

path-~trict s~tumti~l equLLibnum 

Fig. 2. Mean required cake proportions of player A for the six cakes, over all offer games and 
demand games. 

man rank correlation coefficient 2. However, the observed cake divisions are far 
away from the equilibrium prediction, except for cake 1 where 0.5 is the only plau- 
sible offer. 

In the demand games, the modal choices are (1, 2, 3, 3, 3, 3) for the respective 
cakes. This means that most players A demand the entire cake for cakes 1 to 3 and 
continue with a demand of 3 for the remaining cakes. The mean observed propor- 
tions of the cake for players A show a reverse trend to the path-strict sequential 
solution, significant at the 1% level for D1-D4 and insignificant for D5, using the 
Spearman rank correlation coefficient. In both offer and demand games, players' A 
average behavior deviates extremely from the fifty-fifty split. 

The behavior for any particular cake size differs markedly between offer and 
demand games. In the demand games for cakes 1 to 4 players' A average request is 
higher than in the offer games, significant at the 1% level for cakes 1 to 3 and at 
2.5% for cake 4, using the Mann-Whitney U-test applied to the comparison of mean 
required proportions at each cake of for the five offer and five demand games. For 
cake 6 the reverse holds, that is, players A ask for more in the offer games (signifi- 
cant at 2%). For cake 5 there are no significant differences. 

In offer games, 4.7% of the choices leave more than half of the cake to player 
B. In demand games the respective number is 4.2%. Note that these generous pro- 
posals are concentrated on the small cakes in offer games and on large cakes in 
demand games. Equal split proposals arise in offer games 41070 and in demand 
games only in 24% of all proposals. The entire cake is required in 0.9% of all pro- 
posals in offer games, but in 30% in demand games. We will explain these differ- 
ences later. 

2 These tests and the following ones are one-tailed tests if not stated otherwise. 
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Fig. 3. Relative frequencies of acceptance in % for the 13 possible offers (demands) from 
players B, over all offer and demand games. 

B. Choices of Players B 

Figure 3 shows the relative frequencies with which players B accepted possible offers 
(demands). From the game theoretic point of view, it is interesting to compare the 
behavior on an offer of 0.5 and on a demand of 5.5, since player B is sure to obtain 
0.5 in both cases. In the offer games, 51~ accept this lowest positive offer, whereas 
only 24~ accept a demand of 5.5. Also a demand of 4.5 is accepted less frequently 
(40~ than the lowest positive offer. The reason might be that, in the offer game, 
0.5 could be an equal split of cake 1, while a demand of 5.5 or 4.5 certainly aims at 
an unequal division. 

In an offer game, player's B strategy can be sufficiently characterized by her 
lowest accepted offer if all higher offers are also accepted. Only 10 out of the 320 
observed strategies deviated from this monotonicity. In the demand games, 82.5~ 
of the strategies can be characterized just by their highest accepted demand. This 
means that these strategies accept also all lower demands. The acceptance rate of 
some integer demands are slightly smaller than that rate of the next higher .5 num- 
ber, see kinks at integer demands 1, 2, 4, and 5 in figure 3. This indicates that some 
players reject integers whereas they accept higher .5 demands as the path-strict se- 
quential equilibrium strategy would recommend. This phenomenon is perhaps due 
to the simple observation that an integer-plus-0.5 demand guarantees a positive 
payoff while an integer demand may give nothing to player B. We observed that 
13.75~ of the actual strategies are of this kind. 

In the offer games, more players B are in accordance with game theoretic pre- 
dictions than in the demand games: 51.3~ accept all offers from 0 or 0.5 in the 
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offer games, whereas 19.7% accept all demands until 5.5 or 6 or use the strategy of  
the path-str ict  sequential equilibrium in the demand games (the difference is signifi- 
cant at the 2% level over the 10 experiments,  using Mann-Whi tney  U-test). 

C. Interaction of Actual Strategies 

In order to calculate the mean expected payoffs  for players A at each cake, we 
match each strategy of  player A of  a given per iod and experiment against the given 
B-population of  the same period and experiment and take the average over all period- 
and experiment-payoffs  of  all players A,  separately for each cake and offer and 
demand games, as shown in tables 2a, b. The payoffs  of  players B are calculated 
similarly. 

Table 2a. Mean expected payoffs of players A and B and mean expected acceptance rate for 
the respective cakes, over all offer games 

cake' 1 2 3 4 5 6 mean 

expected payoff of A 0.22 0.65 1.30 1.99 2.75 3.51 1.74 
expected payoff of B 0.25 0.57 0.91 1.26 1.51 1.73 1.04 
expected acceptance rate 0.47 0.61 0.74 0.81 0.85 0.87 0.76 

Table 2b. Mean expected payoffs of players A and B and mean expected acceptance rate for 
the respective cakes, over all demand games 

cake 1 2 3 4 5 6 mean 

expected payoff of A 0.79 1.45 1.88 1.99 1.91 1.83 1.64 
expected payoff of B 0.17 0.33 0.52 0.88 1.27 1.49 0.76 
expected acceptance rate 0.95 0.89 0.80 0.72 0.64 0.56 0.76 

For  cakes 1 to 3, players '  A earn less in offer games than in demand games; the 
reverse is true for cake 5 and 6. Whereas the expected payoffs  of  players A increase 
monotonical ly  with cake size in offer  games, in demand games the expected payof f  
takes the maximum at cake 4. The expected payoffs  of  players B are for each cake 
larger in the offer games than in the demand games. The average acceptance rate 
within the demand and offer games, respectively, are about  76~ For  a more de- 
tailed discussion on the single experiments see Mitzkewitz and Nagel (1992). 

D. Classification of the Strategies of Players A 

In section IV .A we showed that  the behavior  of  players A is significantly different 
between the offer and demand games. In this section we will describe the pat tern of  
the observed strategies in order  to explain this difference. The number  of  possible 
pure strategies of  player A is 135135 (3 x 5 • 7 • 9 x 11 • 13). This number  reduces to 
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7752 if we consider only monotonic strategies, that is, player A offers (demands) an 
equal or a higher amount with increasing cake size. Out of the 640 observed strategies 
(10 experiments• players A •  periods) only 29 strategies are nonmonotonic. 

We describe below the typical strategies that explain most of the behavior of 
players' A and we compare them with strategies of theoretic and descriptive interest, 
which are already mentioned. There are the path-strict sequential equilibrium strate- 
gies of both games and the perfect equilibrium in the demand game (as explained in 
section II) and the fifty-fifty strategy. Although the equilibrium strategies and the 
fifty-fifty strategy have been observed, other typical patterns of strategies explain 
more of the data. 

First, we consider a version of the fifty-fifty strategy to which we refer as the 
"fifty-fifty-0.5" strategy. It consists of equal-split offers minus 0.5 (equal-split de- 
mands plus 0.5) for each cake, except for cake 1 in offer games, where a zero offer 
will certainly be rejected. That is, player A uses the fifty-fifty strategy as a focal 
point, but he additionally keeps 0.5 for himself for each cake. The simple reasoning 
behind this strategy might be that player A realizes that he is in a stronger position 
and, hence, should earn a little more than the equal split. 

In section IV.A, table 1 presented the observed modal choices for each cake. 
Although these choices and the resulting requirements are quite different in the two 
games, both sets of observations may be explained by the same type of thought 
process of player A. This thought process is based on an own aspiration criterion 
and an anticipated level of  acceptance of player B. Player's A aspiration criterion is 
a rule which determines his minimal acceptable payoff contingent on the cake. The 
anticipated level of acceptance is player's A expectation on the smallest offer (re- 
spectively largest demand) that player B will accept. The thought process consists of 
three steps: 

Step 1: The aspiration criterion and the anticipated level of acceptance are 
formed. 

Step 2: The best reply to the anticipated level of acceptance is intended. 
Step 3: For all cakes where the best reply does not satisfy the aspiration crite- 

rion, the intended strategy is altered such that player A aims at his min- 
imal acceptable payoffs in the case of acceptance. 

Consider two examples: In an offer game player A forms at step 1 the aspira- 
tion criterion "At least half of the cake" and the anticipated level of acceptance "2". 
Thus, he computes at step 2 the best-reply strategy (1, 2, 2, 2, 2, 2). (The choice "1" 
is arbitrary.) Since his aspiration criterion requires always for at least half of the 
cake, at step 3 he alters his strategy to (0.5, 1, 1.5, 2, 2, 2). Compare this strategy 
with the modal choices shown in table la. 

Let us consider that in a demand game player A has the same aspiration crite- 
rion as above and an anticipated level of acceptance "3". At step 2 the strategy (1, 2, 
3, 3, 3, 3) is intended. Since for no cake the aspiration criterion is violated, no alter- 
ations of the intended strategy take place at step 3. Compare this strategy with the 
modal choices in demand games presented in table lb. 

We found that some widely used strategies can be explained by the thought 
process described above and by reasonable specifications of the terms "aspiration 
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criterion" and "ant icipated level of  acceptance".  In the offer game, these are three 
strategies based on the anticipated levels of  acceptance 1, 1.5 and 2 together with the 
aspirat ion criterion "At  least half  of  the cake".  In the demand games five strategies 
are of  importance,  which are best replies to the anticipated levels of  acceptance 2, 
2.5, 3, 3.5 and 4. We will call these eight strategies anticipation strategies, and we 
will speak of  anticipation strategy x (in the offer or demand games) if it is based on 
an anticipated level of  acceptance x. 

Table 3a. Typical strategies of players A in the offer game 

Typical strategies cake 

1 2 3 4 5 6 

a.) strict seq. equil. 0.5 0.5 0.5 0.5 0.5 0.5 
b.) fifty-fifty 0.5 1 1.5 2 2.5 3 
c.) fifty-fifty-0.5 0.5 0.5 1 1.5 2 2.5 
d.) anticipation 1 0.5 1 1 1 1 1 
e.) anticipation 1.5 0.5 1 1.5 1.5 1.5 1.5 
f.) anticipation 2 0.5 1 1.5 2 2 2 

Table 3b: Typical strategies of players A in the demand game 

Typical strategies cake 

1 2 3 4 5 6 

a.) perfect equil. 1 2 3 4 5 5.5 
b.) strict seq. equil. 0.5 1.5 2.5 3.5 4.5 5.5 
c.) fifty-fifty 0.5 1 1.5 2 2.5 3 
d.) fifty-fifty-0.5 1 1.5 2 2.5 3 3.5 
e.) anticipation 4 1 2 3 4 4 4 
f.) anticipation 3.5 1 2 3 3.5 3.5 3.5 
g.) anticipation 3 1 2 3 3 3 3 
h.) anticipation 2.5 1 2 2.5 2.5 2.5 2.5 
i.) anticipation 2 1 2 2 2 2 2 

Tables 3a and b recapitulate the strategies we want to look at. We group them 
into three classes: 

(1) The equilibrium philosophy relies on the conviction of  common knowledge 
of  rat ional i ty (see table 3a, strategy a) for the offer game and table 3b, stra- 
tegies a) and b) for the demand game). 

(2) The fifty-fifty-philosophy is based on a superficial analysis of  the situation, 
resulting in simple rules of  thumb without explicit strategic considerations 
(strategies b) and c) in the offer game of  table 3a and strategies c) and d) in 
the demand game of  table 3b). 

(3) The anticipation philosophy is based on player ' s  A expectation of  an ac- 
ceptance level by player  B and a strategic reply to it, restricted by his own 
aspirations.  
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Table 4a. Relative frequencies for the typical strategies and the classes in offer games with the 
area of the typical strategies in parentheses 

Offer Games Perfect hits Up to one Up to two .5 Up to three 
.5 deviations deviations .5 deviations 

Path-Strict seq. equ. 11.6 (.01) 12.2 (.04) 12.9 (.08) 12.9 (.13) 
Fifty-fifty 12.5 (.01) 14.9 (.17) 17.5 (.88) 18.8 (2.4) 

"~ Fifty-fifty-0.5 3.3 (.01) 8.9 (.14) 13.5 (.74) 18.8 (1.9) 
Anticipation 1 6.6 (.01) 9.9 (.06) 12.2 (.13) 14.5 (.23) 

r~ Anticipation 1.5 5.3 (.01) 8.6 (.09) 16.8 (.26) 31.4 (.48) 
Anticipation 2 8.9 (.01) 16.2 (.12) 20.8 (.40) 34.3 (.89) 

Equilibrium 11.6 (.01) 12.2 (.04) 12.9 (.08) 12.9 (.13) 
Fifty-fifty 15.8 (.03) 23.8 (.31) 31.0 (1.6) 36.3 (4.1) 

t~ 
Anticipation 20.8 (.04) 34.7 (.27) 46.2 (.75) 58.1 (1.5) 

All three classes 48.2 (.08) 70.6 (.62) 86.5 (2.3) 92.1 (5.4) 
Others 51.8 (99.9) 29.4 (99.4) 13.5 (97.7) 7.9 (94.6) 

Table 4b. Relative frequencies for the typical strategies and the classes in demand games with 
the area of the typical strategies in brackets 

Demand Games Perfect hits Up to one Up to two .5 Up to three 
.5 deviations deviations .5 deviations 

8 

Perfect equi. 2.6 (.01) 5.8 (.17) 7.8 (.93) 9.1 (2.9) 
Path-Strict seq. equ. 1.6 (.01) 1.9 (.17) 3.2 (.94) 4.5 (3.0) 
Fifty-fifty 8.1 (.01) 8.8 (.17) 9.4 (.88) 12.0 (2.4) 
Fifty-fifty-0.5 1.0 (.01) 5.8 (.17) 8.1 (.82) 14.2 (2.2) 
Anticipation 4 3.2 (.01) 4.2 (.12) 6.5 (.46) 9.4 (I.1) 
Anticipation 3.5 1.6 (.01) 4.2 (.12) 6.8 (.45) 24.7 (1.0) 
Anticipation 3 13.0 (.01) 15.3 (.09) 17.5 (.28) 19.8 (.58) 
Anticipation 2.5 3.2 (.01) 6.2 (.09) 9.4 (.26) 11.4 (.49) 
Anticipation 2 2.6 (.01) 2.6 (.06) 3.2 (.14) 5.2 (.27) 

Equilibrium 4.2 (.03) 7.8 (.34) 11.0 (1.9) 11.4 (5.4) 
Fifty-fifty 9.1 (.03) 14.6 (.34) 17.5 (1.7) 25.6 (4.5) 
Anticipation 23.7 (.06) 32.5 (.48) 39.9 (1.5) 44.8 (2.9) 

All three classes 37.0 (.12) 54.9 (1.1) 68.5 (5.1) 78.9 (13.0) 
Others 63.0 (99.9) 45.1 (98.9) 31.5 (94.9) 21.1 (87.0) 

We have thus highlighted 6 out of  the 7752 possible monotonic  strategies 
(0.08%) in the offer game and 9 (0.12%) in the demand game. Tables 4a and b 
classify the actual  strategies in offer and demand games, respectively, of  players A 
under the types of  strategies and under the three philosophies.  We exclude the non- 
monotonic  observations here. In the first column of  tables 4a and b, upper part ,  we 
state the relative frequencies of  the actual strategies of  the offer games and demand 
games, respectively, which correspond exactly to the types of  strategies mentioned 
above. In the middle part ,  they are aggregated to the three classes, and in the lower 
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part the relative frequencies of all three classes together are stated. Since it cannot be 
expected that actual strategies always coincide with the idealized strategies, small 
deviations to them are also of interest. In columns 2 to 4 we count additionally those 
actual strategies that are in the "neighborhood" of the described types of strategies or 
of strategies belonging to one of the three classes, by allowing minor deviations: up to 
three choices of the six may differ by + 0.5 from the respective choices of a prescribed 
strategy provided that monotonicity is not destroyed. However, no choice may differ 
by more than + 0.5 from the respective choice of a given strategy. Strategies that can- 
not be classified with our classification scheme are labelled "other strategies". 

In each cell of tables 4a and b we state in parentheses the proportion of strate- 
gies out of the possible 7752 monotonic strategies considered in the specific neigh- 
borhood, in order to show how many possible strategies are captured with our clas- 
sification scheme and its derivations. This means, for example, that allowing up to 
one .5 deviation from the fifty-fifty strategy in the offer game 13 out of 7752 
(0.17~ strategies are considered. We will call these proportions, following Selten 
(1991), the "areas". Using Selten's terminology, "areas" are the ratio between the 
outcomes predicted by a descriptive theory and the set of all possible outcomes. 
"Hits" are the experimental observations in accordance with a descriptive theory. 
The "hitrate" of a descriptive theory is its percentage of hits, given a set of observa- 
tions. Selten (1991) axiomatically proves that the difference between "hitrate" and 
"area" is the appropriate measure for the descriptive success of a proposed theory. 
The three philosophies we are considering always induce negligible areas; thus we 
concentrate only on the hitrates. 

In columns 3 and 4 of tables 4a and b the neighborhoods of the types of strate- 
gies are not mutually exclusive. Thus, if an actual strategy is minimally deviating 
from more than one type of strategy we state it under all neighborhoods which it 
belongs to. Multifold counting is of course avoided when aggregating for a class: 
therefore, e.g., the relative frequencies of actual strategies for the anticipation phi- 
losophy up to three deviations is not simply the sum of the relative frequencies of 
the respective strategies up to three deviations. 

Considering only perfect hits (column 1) we can classify 48~ of the behavior in 
the offer games and 37~ in the demand games, whereas the areas are only 0.08~ 
and 0.12%, respectively. In the demand games, the highest relative frequency (13070) 
of the classified strategies belongs to anticipation strategy 3. In the offer games, the 
fifty-fifty strategy shows the highest relative frequency. However, this is due to the 
first period behavior, where about 40% of the actual strategies are fifty-fifty strate- 
gies (see section V). 

Only 4~ of the observed strategies are exactly the sequential strategies in de- 
mand games, but in the offer games 11.6~ belong to this class. In both offer and 
demand games, no more than 13% of the strategies are chosen in the neighborhood 
of the equilibrium strategies. In both types of games the anticipation class is the 
prevailing one. The frequent use of anticipation strategies also explains the increase 
of players' A required share in offer games, respectively the decrease of players' A 
demanded cake proportions according to increasing cakes, as shown in figure 2, 
since anticipation strategies induce the respective division scheme. 

In the ultimatum game with complete information there is an obvious standard 
of fairness, namely the equal split. Such obvious standards of fairness do not exist in 
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the games with incomplete information because the payoffs of the two players are 
not comparable for player B. So she must construct such fairness standards contin- 
gent on the available information. Player A has to simulate this construction when 
anticipating player's B level of acceptance. 

In the offer games, the highest frequency of observations is in the neighbor- 
hood of anticipation strategies 1.5 and 2. Note that half of the expected cake is 1.75. 
Since in the offer games player B is only informed about her own payoff, it seems to 
be a natural standard of fairness to take half of the expected cake as her acceptance 
level. We will call this concept expectation fairness. The data indicate that many 
players A anticipate that ptayers B will form their acceptance level according to ex- 
pectation fairness. 

The informational situation for player B is completely different in the demand 
game than in the offer game. For all demands (except 5.5 and 6) player B is uncer- 
tain about her own payoff when she accepts. Therefore, she cannot use the concept 
of expectation fairness to form her acceptance level. Instead player B may use a 
concept which we call resistance to visible unfairness: She rejects all demands where 
she is sure to obtain less than half of the cake, i.e. all demands larger than 3. If  
player A expects that player B will be resistant to visible unfairness, he will choose 
anticipation strategy 3. As table 4b shows, anticipation strategy 3 is the mostly used 
strategy up to two deviations. 

Now we want to investigate the performance of the typical strategies against 
players' B actual strategies. For this purpose we calculate the expected payoff of 
each typical strategy given the 64 strategies of players B within each experiment. We 
also state the mean expected payoffs of players' A actual strategies by matching 
these strategies with players' B strategies in the respective period for each experi- 
ment. Also the best-reply payoffs are shown, which are the mean of the expected 
payoffs of the best replies to the population of players' B strategies in each period. 

The underlined numbers in tables 5a and b indicate the highest payoffs among 
the typical strategies, mentioned in table 3a and b. For example, in O1, if player A 
chooses anticipation strategy 1.5 in each period he will receive an expected payoff of 
1.95 per period. Notice that in all experiments the underlined payoffs are obtained 
by choosing an anticipation strategy and these payoffs are exactly the best-reply 
payoffs or close to them. Thus, in the offer games, it is a good policy for player A to 
choose anticipation strategy 1, 1.5 or 2, and in the demand games to choose antici- 
pation strategy 2.5, 3 or 3.5 against the given B-strategies. The equilibrium strategies 
or the fifty-fifty strategy yield on average the lowest payoffs. On the other hand, the 
fifty-fifty-0.5 strategy is not a bad policy. 

As regards the payoffs of player B, the best she can do is accepting every posi- 
tive offer in the offer games. Given the actual strategies of players A, she will then 
receive an expected payoff of 1.25 per period. The actual payoff is 1.04 against the 
given A-population. In the demand games, she would receive 1.08 if she accepted 
every demand and 0.53 if she accepted all .5 numbers and no integers. This is con- 
trary to the game theoretical prediction since she would receive 0.083 at the perfect 
equilibrium mentioned in section 2 and 0.50 at the path-strict equilibrium. The ac- 
tual payoff is 0.76. 
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Table 5a. Expected payoffs of the typical strategies, of the actual strategies, and of the best- 
reply strategies of players A, given the actual distribution of the strategies of players B, sepa- 
rately for each offer game 

Typical strategies expected payoffs in . . .  

O1 O2 03 04  05 mean 

sequent, equilibrium 1.27 1.78 1.36 1.27 2.13 1.56 

fifty-fifty 1.62 1.59 1.53 1.54 1.70 1.60 
fifty-fifty-0.5 1.81 1.83 1.69 1.68 2.02 1.81 

anticipation 1 1.60 1.92 1.37 1.29 2.40 1.72 
anticipation 1.5 1.95 1.80 1.75 1.68 2.15 1.87 
anticipation 2 1.87 1.78 1.74 1.72 1.95 1.81 

actual strategies A 1.72 1.72 1.64 1.60 2.02 1.74 
best-reply strategy 1.95 1.95 1.79 1.76 2.41 1.97 

Table 5b. Expected payoffs of the typical strategies, of the actual strategies, and of the bes- 
treply strategies of players A, given the actual distribution of the strategies of players B, sep- 
arately for each demand game 

Typical strategies expected payoffs in . . .  

DI D2 D3 D4 D5 mean 

perfect equilibrium 1.13 1.59 0.98 1.40 2.13 1.45 
strict equilibrium 1.41 1.55 1.31 1.45 2.02 1.55 

fifty-fifty 1.49 1.43 1.19 1.57 1.63 1.46 
fifty-fifty-0.5 1.78 1.69 1.37 1.81 2.00 1.73 

anticipation 4 1.35 1.58 0.92 1.83 2.18 1.57 
anticipation 3.5 1.88 1.83 1.40 1.82 2.27 1.84 
anticipation 3 1.69 1.83 1.26 2.03 2.19 1.80 
anticipation 2.5 2.06 1.67 1.58 2.01 2.09 1.88 
anticipation 2 1.57 1.60 1.23 1.70 1.72 1.56 

actual strategies A 1.68 1.57 1.23 1.71 1.98 1.63 
best-reply strategy 2.06 1.83 1.58 2.03 2.27 1.95 

V Dynamics of Behavior Over Time 

So far  we have  only cons idered  the  da ta  aggregated  over  all rounds .  W e  now con- 

sider the d is t r ibut ion  o f  the  types o f  strategies by players  A and players  B over  t ime,  

in o rder  to  see whether  there  is some  change  in behav ior .  A t  the  end o f  this sect ion 
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we test whether or not players A tend to require more over time for themselves and 
players B accept lower offers or higher demands. 

Figures 4a-f show the relative frequencies of the three classes and the types of 
strategies over time. We classify an actual strategy 3 in that class of strategy from 
which it has the least (and no more than three) 0.5 choice deviations and no greater 
deviations. Otherwise, a strategy is classified as "other". If an actual strategy has the 
same number of 0.5 deviations (but no more than three) from more than one type of 
strategy, we give equal weight to each type of strategy. In Figure 4a, b we plot the 
distribution of the three classes of strategies of the offer and demand game, respec- 
tively. In all rounds, except round 1 in offer games, the anticipation class predomi- 
nates over time. In the offer games, the frequency of the equilibrium strategy is 
slowly increasing. In demand games the increase of that class is not regular. In both 
games the sequential equilibrium strategies are chosen about 20% of the time in the 
last two rounds and thus are among the most used strategies in these rounds. Notice 
that such an increase of the use of the equilibrium strategy, although still small, has 
never been observed in experiments on the ultimatum game with complete informa- 
tion when playing against real subjects (see e.g., Roth, Prasnikar, Okuno-Fujiwara, 
and Zamir, 1991). Harrison and McCabe (1992) observe that behavior evolves in the 
direction of the perfect equilibrium only when subjects played against automated 
robots playing near equilibrium strategies. 

In figures 4c and d we show the relative frequencies of the different anticipation 
strategies over time and in figures 4e, f we disaggregate the fifty-fifty class. In the 
offer games, anticipation strategy 2 and in the demand games anticipation strategy 3 
prevails over time. The fifty-fifty strategy is one of the most frequently used in the 
first three rounds, but decreases and belongs to the least frequently used strategies in 
the remaining rounds. 

Figures 5a and b show the development over time of the relative frequencies of 
players' B lowest acceptance levels in the offer games and highest acceptance levels 
in the demand games, respectively. In the offer games, the sequential equilibrium 
strategies, i.e. to accept all offers or all positive offers, is the most frequently used 
right from the beginning, and there is a sharp increase in its use in the last period. 
Up to the two last rounds strategies with acceptance level 1.5 and 2 together are used 
by about 30% of players B. It might be that these players are guided by the idea to 
accept half of the expected cake. Indeed, 10 out of 40 players B wrote on their ex- 
planation sheets that they calculated half of the expected cake size. Whereas in the 
demand games, strategies in which demands up to 1.5 or 2 are accepted are of minor 
importance. Accepting demands up to 5.5 or 6 increase slightly over time, but re- 
main below 30%. In all but period 2 and 5, acceptance levels 2.5-3 are predomi- 
nant. 

To analyze the average behavior over time, we introduce a requirement index 
for player A and a rejection index for player B and calculate the average indexes 
over the eight respective strategies for each period within each experiment. For any 
given strategy of player A the requirement index in the offer game is defined as the 
difference of the expected cake size and player's A mean offer over the six cakes: 

3 Again, we consider only those actual strategies that are monotonic. 
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3.5 - ~ .  offers /6 ,  and in the demand game as player ' s  A mean demand over the six 
cakes: ~. demands/6 .  The rejection index for a strategy of  player B in the offer game 
is defined as the number  of  player ' s  B rejections, and in the demand game as the 
sum of  rejected demands (to count only the number  of  rejections is not  sensible 
because of  the presence of  strategies that  are not solely characterized by the highest 
accepted demand,  see section IV.B). Table 6 presents the Spearman rank-corre la t ion 
coefficients between the periods and the players '  average behavior  over t ime in each 
experiment.  In all experiments,  but  D3, the coefficients between periods and players '  
A requirements are positive, that  means they increase their requirements over time. 
Over all ten experiments,  this is significant at the 2% level, using the binomial  test 
(two-tailed). However,  only four of  these ten rank correlat ion coefficients are signif- 
icant at the 1%0 or 5% level. As regards the behavior  of  players B, no coherent t rend 
can be observed in the demand games. In the offer games there is a weak tendency to 
accept more offers over time. 

Table 6. Spearman rank-correlation coefficients between round and indexes of requirement 
and rejections 

Players' A Players' B 
increase of decrease of 
requirement rejections 

O1 + .60 - .12 
02 + .67* + .71" 
03 + .10 + .30 
04 + .05 + .59 
05 + .97** + .23 

D1 + .95** + .87** 
D2 + .20 + .91'* 
D3 - . 1 9  - .31  
D4 + .82* - .19 
D5 + .29 + .55 

* significant on 5% level, 
** significant on 1% level 

VI Individual Learning Behavior 

In this section, we want to propose a simple theory that  tries to explain the direction 
of individual  strategy changes f rom period to period.  We have seen in the last sec- 
t ion that  a strict tendency over the periods towards the game-theoretic predicted be- 
havior cannot  be claimed significantly if  we look at the mean behavior  of  indepen- 
dent player groups.  Here, instead, we consider the effects of  individual  experience. 
Our  proposed  theory is in the t radi t ion of  Bush and Mosteller (1955) and Suppes and 
Atk inson  (1960), which can be labelled "stochastic learning theories" or "Markovian  
learning theories".  In the latter study, only 2 • 2 games in normal  form were ana- 
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lyzed, whereas our games, taken as normal form games, are 135135 x 8192 games. 
So, in our case a learning theory cannot be derived on a level of specifying the prob- 
ability of changing from one particular strategy to another, or on a level of speci- 
fying a probability distribution over all pure strategies, based on history. But our 
notions of requirement index and rejection index will be useful when trying to ex- 
plain the direction of strategy changes. 

First, the notions of "success" and "failure" must be defined in our context. A 
success for a player A in both types of games is interpreted as an agreement being 
achieved (that is player B has accepted player's A proposal). A failure for him al- 
ways means that no agreement has been achieved (that is player B has rejected the 
offer or demand). 

For player B, it is not so clear how to define success or failure. If she accepted 
the last-period proposal and received a positive payoff, we assume that her intention 
has been satisfied and thus she achieved a success. If she rejected a proposal, one 
might say that she succeeded in punishing a greedy player A. But this seems to be an 
artificial interpretation, and we will understand such an event as failure by rejection. 
In the demand game, but not in the offer game it may happen that player B receives 
nothing although he accepted the proposal and expected to receive a positive payoff. 
We will call this failure by accepting. So we will deal with two kinds of failures 
separately in demand games. 

In order to describe the reaction on success or failure by the two player groups 
within the two games, we use the definitions of the indexes of requirements and 
rejections as defined at the end of section V. 

We distinguish only between the direction of change of the respective indexes by 
each subject without being concerned with the magnitude of changes. We obtained 
56 observations from each experiment (8 subjects had 7 opportunities to alter their 
strategies). The number of actual rejections in the previous periods was 67 out of 
280 (5 experiments x 8 players x 7 rounds) over all offer games. Over all demand 
games, the number of rejections was 64 out of 280 observations. 

Tables 7a, b present the relative frequencies of the direction of index changes by 
players A over all offer (demand) games, conditioned on the last period event, sepa- 
rately for all experiments. Figures 6a, b show the mean results. 

The reactions by players A on success or failure are very similar between offer 
and demand games. After a success, only 9~ (15%) of the time, players A decrease 
their requirements in offer games (demand games). They rather require more (37070 
in offer games, 34% in demand games) or keep their previous strategy (about 50070 
in both games). However, after a failure, about 50% of players A require less than 
in the previous period in both games and only 7~ in offer games and 17% in de- 
mand games increase their requirements. Thus, in both games, when player A has 
experienced a disagreement in the previous period and if he wants to change his 
strategy, he is most likely to moderate his requirements, whereas, after a success, the 
reverse is more probable. A theory that predicts a steady increase of requirements 
towards the game theoretic solution would expect small conditional probability of 
decreases of requirements both after successes and failures in either type of game. 

The data for the index changes of players B can be found in tables 8a, b and 
figures 7a, b. It can be seen that the reactions by players B differ in some aspects 
between the two types of games. In the offer games, increases in the number of 
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Table 7a. Relative frequencies of changes of requirement index by players A depending on the 
last round event and total number of observations of an event for each offer game, separately 

exp. 

Player B accepted in the last round 

increase unchange decrease 
requirement index 

Player B rejected in the last round 

O1 0.36 0.58 0.07 
02  0.33 0.58 0.10 
03 0.53 0.33 0.14 
04  0.32 0.57 0.11 
05 0.35 0.58 0.06 

# of 
observ. 

increase unchange decrease 
requirement index 

45 0.00 0.36 0.64 
40 0.19 0.31 0.50 
36 0.00 0.55 0.45 
44 0.17 0.33 0.50 
48 0.00 0.63 0.38 

# of 
obs. 

11 
16 
20 
12 
8 

mean 0.37 0.54 0.09 42.6 0.07 0.43 0.49 13.4 

Table 7b. Relative frequencies of changes of requirement index by players A depending on the 
last round event and total number of observations of an event for each demand game, sepa- 
rately 

exp. 

Player B accepted in the last round 

increase unchange decrease 
requirement index 

Player B rejected in the last round 

D1 0.40 0.23 0.23 
D2 0.39 0.45 0.16 
D3 0.31 0.55 0.14 
D4 0.45 0.47 0.08 
D5 0.20 0.68 0.12 

# of 
observ. 

48 
38 
42 
28 
50 

increase unchange decrease 
requirement index 

0.38 0.25 0.38 
0.17 0.22 0.61 
0.21 0.43 0.36 
0.06 0.33 0.61 
0.17 0.33 0.50 

# of 
obs. 

8 
18 
14 
17 
6 

mean 0.34 0.51 0.15 43.2 0.17 0.31 0.52 12.8 
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Fig. 6a, b. Relative frequencies of changes of requirements by players'A due to the last period 
event. 
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Table 8a. Relative frequencies of changes of rejection index by players B depending on the 
last round event and total number of observations of an event for each offer game, separately 

Player B accepted in the last round 

exp. increase unchange decrease 
rejection index 

O1 0.11 0.84 0.04 
02 0.15 0.75 0.10 
03 0.11 0.81 0.08 
04  0.09 0.80 0.11 
05 0.15 0.79 0.06 

Player B rejected in the last round 

# of increase unchange decrease 
observ, rejection index 

45 0.00 0.82 0.18 
40 0.00 0.31 0.69 
36 0.05 0.60 0.35 
44 0.08 0.50 0.42 
48 0.11 0.44 0.44 

# of 
obs. 

11 
16 
20 
12 
8 

mean 0.12 0.80 0.08 42.6 0.04 0.53 0.43 13.4 

Table 8b. Relative frequencies of changes of rejection index by players B depending on the last 
round event and total number of observations of an event for each demand game, separately 

Player B accepted in the Player B rejected in the Player B accepted in the last 
last round and received last round round and received zero 
positive payoffs payoffs 

Exp incr unch decr # of inc unch decr # of incr unch decr # of 
rejection index obs rejection index obs rejection index obs 

D1 0.27 0.53 0.20 30 0.33 0.17 0.50 8 0.35 0.45 0.20 18 
D2 0.16 0.81 0.03 31 0.11 0.50 0.39 18 0.14 0.71 0.14 7 
D3 0.20 0.60 0.20 20 0.31 0.23 0.46 14 0.48 0.30 0.22 22 
D4 0.21 0.59 0.21 29 0.07 0.71 0.21 17 0.23 0.54 0.23 10 
D5 0.23 0.62 0.15 39 0.17 0.33 0.50 6 0.36 0.27 0.36 11 

mean 0.21 0.63 0.15 29.8 0.18 0.44 0.39 12.6 0.35 0.42 0.23 13.6 
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Fig. 7a, b. Relative frequencies of changes of rejections by players' B due to the last period 
event. 
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rejections are rare phenomena, independent of the previous event. In the demand 
games, player B is much more inclined to increase the rejection index, both after 
success and failure in the previous period. This is especially true after a failure by 
accepting. In both types of games, decreases in the number of rejections mainly hap- 
pen when they failed to reach an agreement. Thus, as with players A, players B play 
less tough than in the previous period when they have experienced a failure by rejec- 
tion. Here, a theory that predicts a decrease of the rejection index, i.e. a tendency 
towards equilibrium behavior, would expect small conditional probabilities of in- 
creases of the rejection indexes independent of the previous experience. This holds 
for the offer games, but not for the demand games after any kind of experience. 

VII Summary 

In this paper we investigated two versions of ultimatum games with one-sided in- 
complete information. Although game theory predicts similar outcomes for both 
versions, our experiments reveal significant differences in behavior: 

- In offer games players' A mean required cake proportions increase with cake 
size, but in demand games the reverse holds. 

- In offer games we observe many fifty-fifty choices (mainly at the small 
cakes), but in demand games such choices are less frequently made. 

- In offer games we observe almost no requests of the entire cake, but in de- 
mand games one third of the choices are of this kind (mainly at small 
cakes). 

- In offer games half of the observed strategies of players B are in accordance 
with game theoretic predictions, but in demand games this proportion is only 
one fifth. 

- In offer games the expected acceptance rate increases with cake size, but in 
demand games it decreases. 

We proposed a theory of boundedly rational behavior, called the anticipation 
philosophy, that tries to explain these differences. An anticipation strategy of player 
A is based on an own aspiration criterion and on an anticipated level of acceptance 
of player B. Since the informational situation of player B is quite different in the 
two games, the acceptance levels have to be constructed in two different ways. In the 
offer game we suggest the concept of expectation fairness, i.e. that player B will 
accept only offers of at least half of the expected cake. In the demand game the 
concept of res&tance to v&ible unfairness is introduced, where each demand larger 
than half of the maximal cake is rejected. Player A intends to respond optimally to 
the anticipated level of acceptance, but he adjusts choices which do not fulfill his 
aspiration criterion, e.g. to obtain at least as much as player B. 

We observe that anticipation strategies, especially those which are based on ex- 
pectation fairness and resistance to visible unfairness, are widely used in all eight 
periods, and are nearly optimal replies to the population of actual strategies of 
players B. 
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The strategy method made it possible to analyze the planned behavior  extensive- 
ly. The strategy method is sometimes criticized to bui ld up an artificial decision sit- 
uat ion and lead to results deviating from spontaneous behavior.  (For a discussion of  
the methodological  aspects see Roth (1992)). The results of  Rapopor t ,  Sundali and 
Pot ter  (1992), who ran experiments of  the offer game in the usual sequential way, 
suggest that for the case at hand no significant differences in behavior are caused by 
the appl icat ion of  the strategy method.  

Appendix 

Offer Games 

(The instructions for the demand game are similar.) 

Instructions for Player A 

You part icipate in a simple decision experiment.  By chance you are chosen to be 
player A during the whole experiment.  In this room you are together only with 
players A. Another  group with players B is sitting in a different room.  

The experiment consists of  8 rounds. In each round you play together with a 
player B, who will be different f rom round to round and not identif iable to you. The 
rules o f  the game are the same for all 8 rounds. Player B knows what  kind of  infor- 
mat ion you get. 
The game is as follows: 

In each round a certain total  amount  is to be divided between player A and B. 
But only you as player A are informed about  this amount .  

Player B knows only that  the amount  can either be 1, 2, 3, 4, 5, 6 with equal 
probabil i ty .  The actual amount  is determined by the throw of  a die in each round in 
this room not visible to players B. The thrown number is the total  amount  in taler 
which has to be divided. 1 taler is equivalent to 1.20 DM. 

It is your task as player A to offer to player B an amount  which he should get. 
Player B has to decide whether to accept (a) or to reject (r) the offer.  I f  he accepts he 
receives the offered amount .  You as player A get the residual of  the total  amount .  
Whereas in case of  rejection bo th  o f  you do not get anything. In both cases player B 
is never informed about  the actual total  amount .  
An  example: 

The die has been 4, so that  4 taler must be divided in that round.  Player  A 
offers 1.5 to player B. Player  B, who does not know that  4 taler is the total  sum, 
accepts the offer of  1.5 taler and thus receives it in that  round. Player  A gets the 
resting 4 - 1 . 5  = 2.5 taler. Yet if  player B had rejected the offer both  players would 
have gained zero. 

For  your offer you have to follow certain rules: 

- the offer may not  be negative 
- the offer may not be greater than the total  amount  
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- the offer must be a whole number or with "point five"; therefore 0; 0.5; 1; 
1.5; 2; 2.5; . . .  until the total amount are possible. I.e. for the total amount 
of  2 the following offers can be made: 0; 0.5; 1; 1.5; or 2. 

Player B can therefore receive one of  the following 13 offers: 0; 1.5; 1; 1.5; . . . ;  
5.5; 6. 

But in our experiment in each round you have to make your decision before the 
die has determined the actual amount. That means that you have to decide in ad-  

vance  on an offer to player B for each possible total amount  of  1 to 6 taler. In each 
round you fill in your offers for the 6 total amouiats on your decision sheet. The 
sheets are collected after each round. Afterwards one of  you will throw a die visible 
for all players A. 

At the same time players B have to make their decisions filling in their decision 
sheets, that means they have to decide which of  the possible offers they will accept 
or reject, before they receive the actual offer. 

At  the end of  each period every decision sheet of  player A is matched with one 
of  player B by chance. The offer of  the actual total amount  made by player A will be 
written on the matched decision sheet of  player B. Player A is told player B's reac- 
tion to this offer and the gains to each player is written in the decision sheet respec- 
tively. Afterwards your decision sheet is returned to you and the next round starts. 

Between the rounds you should shortly explain your decisions on a separate 
explanation sheet (aims, motives etc.). 

After 8 rounds your taler gains of  each round are added, revalued into DM and 
paid to you. (1 taler = 1.20 DM). 

For the first two rounds you will have 10 minutes to fill in your decision sheet, 
for rounds 3-8 about 5 min. each. 

During the experiments you must not talk. If  you have any questions you 
should ask them now. 

Have fun! 

Offer  G a m e s  

Instructions for Player B 

You participate in a simple decision experiment. By chance you are chosen to be a 
player B during the whole experiment. In this room you are together only with 
players B. Another group of  players A is sitting in a different room. 

The experiment consists of  8 rounds of  a game. In each round you play together 
with a player A, who will change from round to round and is not identifiable to you. 
The rules of  the game are the same for all 8 rounds. 
The game is as follows: 

In each round a certain total amount is to be divided between players A and B. 
Only players A are informed about this amount.  The actual amount  in each round is 
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determined by the throw of  a die in the room of  players A and thus not  visible to 
you as player B. The thrown number is the total  amount  in "taler" which has to be 
divided between both players. The actual amount  can either be 1, 2, 3, 4, 5, or 6 
with equal probabi l i ty .  Players A know that  you are never informed about  the actual 
amount  and that  you know the random rule. 

For  both players 1 taler is equivalent to 1.20 DM. 
It is the task of  player A to offer to you an amount  which you will get if you 

accept. You have to decide whether to accept (a) or to reject (r) the offer.  I f  you 
reject both  of  you get nothing. If  you accept you receive the offered amount  and he 
gets the residual of  the total  amount .  

Whether  you reject or accept you are not informed about  the actual total  
amount  thrown. 
An example: 

The die came up 4, so that  4 taler must be divided in this round.  Player A offers 
1.5 taler to player B. Player  B, who does not know that  4 taler is the total  sum, 
accepts the offer of  1.5 taler and thus receives that  amount  in this round.  Player  A 
gets the remaining 4 - 1 . 5  = 2.5 taler. If  player B had rejected the offer,  both  players 
would have gained zero. 

Player  A has to follow certain rules for his offer: 

- the offer may not be negative 
- the offer may not  be greater than the total  amount  
- the offer must be a whole number  or with "point  five"; therefore possible 

offers are 0; 0.5; 1; 1.5; 2; 2.5; . . .  up to the amount  thrown. I.e. for the total  
amount  thrown 2 t h e  following offers can be made:  0; 0.5; 1; 1.5; or 2. 

You as player B can therefore receive one of  the following 13 offers: 0; 1.5; 1; 
1.5; . . . ;  5.5; 6. 

In our experiment in each round you have to make your decision before you 
receive the actual offer f rom player A. This means you have to decide in advance 
which of  the 13 possible offers you will accept (a) or reject (r). In each round you fill 
in your decisions for all 13 possible offers on your decision sheet. The sheets are 
collected after each round.  

At  the same time players A have to make their decisions filling in their decision 
sheets. This means they have to decide in advance on an offer to player B for each 
possible total  amount  of  1 to 6 taler before the die is thrown. 

At  the end of  each per iod every decision sheet of  a player A is matched random- 
ly with one of  a player B. Player  A ' s  offer of  the actual total  amount  will be written 
on the matched decision sheet of  player B. Player  B's reaction to that  offer will be 
written on the sheet of  player A and the gains to each player  is written in his decision 
sheet. Then the decision sheet of  each person is returned to him and the next round 
will start. 

Between the rounds we will ask you to briefly explain your decisions on a sepa- 
rate explanation sheet (aims, motives etc.). 

Af ter  8 rounds your taler gains of  each round are added,  revalued into DM and 
paid  to you. (1 taler = 1.20 DM). 
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For  each of  the first two rounds will have 10 minute to fill in your decision 
sheet, for rounds 3-8 about  5 rain. each. 

During the experiments you must  not  talk.  If  you have any questions you 
should ask them now. 

Have fun! 
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1. Introduction 

A signaling game is a game where one of the players (called the “sender”) can be 

of different types. The actual type is chosen by random and is informed about his 

identity. The type can choose some action (called the “signal”) observable for an 

other player (called the “receiver”). The receiver does not know the actual type 

but the probability distribution of the possible types (or, as a Bayesian, he forms 

prior beliefs about the probabilty distribution). The receiver can use the observed 

signal to update his beliefs about the actual type. Hence the actual type can 

choose the signal strategically to influence the receiver’s updated beliefs about 

his identity. It is easy to imagine situations where a type has a strong incentive 

that his true identity becomes public and other situations where the type is 

interested to feign an honourable character. 

Signaling games have been of great attractiveness in the last decades for both 

economists and game theorists, and the interest seems to increase unbrokenly. 

Starting from the pioneering works of Akerlof (1970) and Spence (1973, 1974) 

economists have realized that many situations of substantial economic 

significance are characterized by incomplete information where privately 

informed agents can strategically choose actions to affect the beliefs of 

uninformed agents about the true state of the world. A series of papers of 

Harsanyi (1967-1968) provided the framework to analyze situations of 

incomplete information with the appropriate game-theoretical tools. Harsanyi 

demonstrated that a game of incomplete information can be sensibly transformed 

into a game of imperfect information. This was a breakthrough because before no 

satisfying solution concept existed for games of incomplete information. Selten 

(1965, 1975) refined the concept of  Nash equlibrium point (Nash (1950, 1951)) 

by eliminating incredible threats and he proposed the concept of subgame perfect 

equilibrium point and (especially for games of imperfect information) the concept 

of perfect equilibrium point. So almost at the same time the insight into the 

necessity to analyze models of incomplete information and the possibility to do 

this in an appropriate way appeared. 

In the subsequent years a large number of articles and books has been published 

that apply signaling games in different economic arenas. Michael Spence, one of 

the pioneers, dedicated his 2001 Nobel prize lecture to “Signaling in Retrospect 

and the Informational Structure of Markets” (Spence (2002)). From the vast 

literature let me list only a small sample of economic or related fields to which 

signaling games of the described structure or similar structures have been 

applied and some of the corresponding arcticles: 
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 Labor market (Spence (1973, 1974, 1976), Nöldeke & van Damme (1990), 

Austen-Smith & Fryer (2005),  Delfgaauw & Dur (2007)) 

 Market entry (Milgrom & Roberts (1982a, 1982b), De Bijl (1997)) 

 Competition in product quality (Gal-Or (1989), Bagwell & Riordan (1991)) 

 Advertising  (Milgrom & Roberts (1986), Bagwell (2001), Anand & Shachar 

(2009)) 

 Insurances (Wilson (1977), Puelz & Snow (1996), Aarbu (2017)) 

 Finance ( (Ross (1977), Allen & Morris (2001), Levine & Hughes (2005)) 

 Economics of Law (Reinganum & Wilde (1986), Schweizer (1989), Friedman 

& Wittman (2007), Dari-Mattiacci & Saraceno (2017)) 

 Money Laundering (Takáts (2011)) 

 Bargaining (Rubinstein (1985a, 1985b), Admati & Perry (1987), Feinberg & 

Skrzypacz (2005)) 

 Political Science (Banks (1991), Potters, van Winden & Mitzkewitz (1991), 

Prat (2002), Gavious & Mizrahi (2003)). 

Of course the articles mentioned above are usually not solely based on “pure” sig-

naling games as described before but on games with more sophisticated signaling 

structures or on games where simple signaling games are embedded. 

Let me mention that (besides the fact that game theory as a whole has an unex-

pected predictive power in evolutionary biology) signaling games provide also a 

useful framework to study animal behavior. Impressive examples are presented 

e. g. by Grafen (1990), Godfray (1991) and Getty (2006). The philosophical 

theories of the evolution of conventions (Lewis (1969)) and of the emergence of 

language (Zollman (2005), Huttegger (2007), Skyrms (2010)) benefit also from 

the analysis of signaling games. 

Signaling games are, however, also under special observation of pure game 

theorists not mainly driven by interests in economic or whatever applications. 

The point is that simple numerical examples for some signaling games reveal the 

weakness of certain equilibrium concepts, especially of the sequential equilibrium 

(Kreps & Wilson (1982)). This means that a nontrivial signaling game can have 

(or usually has) sequential equilibrium points labelled “unreasonable”, 

“nonsensible” or “counterintuitive” by some straightforward criteria. This gave 

rise to doubts on the claim stated above that the appropriate tool to analyze 

games of imperfect (and, à la Harsanyi, incomplete) information is not really 

given by perfect equilibrium or its non-uniovalur twin sequential equilibrium. 

After realizing this in the 1980ies a series of papers was published which 

demonstrated the weakness of existing equilibrium concepts and tried to 
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overcome this weakness by “refining” these concepts. I will call this the 

“refinement programme”. Refinements are usually made in notions of the 

sequential equilibrium concept and are concerned with restrictions on the beliefs 

a player can sensibly form at information sets off the equilibrium path.  The aim 

of the refinement program is to reduce the multiplicity of sequential equilibria by 

putting more and more  requirements to the players’ “rational” choices.   

Contributions to the refinement program are for example Banks & Sobel (1987), 

Cho (1987), Cho & Kreps (1987), Cho & Sobel (1990) and Okunu-Fujiwara, 

Postlewaite, & Suzumura (1990). The most important contribution to the 

refinement program was the introduction of stable equilibria by Kohlberg & 

Mertens (1986). Stable equilibria are based on forward induction. This means that 

a player’s past behavior indicates his future behavior (which is something different 

from that his past behavior indicates his identity). Many of the papers mentioned 

above are concerned among other things with the question of how the set of 

stable equilibria can be characterized for signaling games. Surveys on the 

different refinement concepts and their implications for signaling games are 

presented by van Damme (1987) and Kreps & Sobel (1994).  

Completely different to the refinement program John C. Harsanyi and Reinhard 

Selten claimed that in any case the rational solution for a game must be a unique 

equilibrium point and that this solution cannot be derived by putting more and 

more restrictions on the equilibrium concept. Instead, given a particuliar 

equilibrium concept,  one and only one equilibrium points out of the set of all 

equilibrium points of this kind. Hence, the problem of normative game theory is 

not to create sophisticated refinement procedures but to develop reasonable 

selection criteria. This should be done from the point of view of an “expert” 

outside the game who is asked by the players (or by some of the players and, 

maybe, independent of each other) for a rational strategic recommendation.  A 

professional game theorist must be an expert for “how to play a game”, and, of 

course, he has to recommend each of his clients an equilibrium strategy and, if he 

tries to live on his new job, he has to recommend strategies belonging to the same 

equilibrium point. Therefore, a game theorist should have a theory which 

equilibrium point is the solution of a given game. Of course, such a theory has to 

reflect carefully all the strategic relationships and opportunities the game 

includes. Harsanyi & Selten (1988) present a theory that selects a unique 

equilibrium point for each finite game as its solution. To quote from Robert J. 

Aumann’s foreword of the Harsanyi-Selten book: “The major implication, like that 

of the first heavier-than-air flying machine, is that it can be done.” 
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In this study we will calculate the Harsanyi-Selten solution for a class of simple 

signaling games. This class is characterized as follows: There are just two types of 

the sender possible, each of these two types has just two different choices, and 

only after one of these two choices, called the “inside” choice, the receiver comes 

into play, not knowing, which type has sent the signal.  After being alarmed the 

receiver has two different responses which both terminate the game.  If the active 

type chooses his “outside” choice the game ends immediately. The game tree for 

this class of signaling games is later shown in section 3. Probably this is the 

simplest class of games which can capture the essence of signaling. 

In the following we calculate the Harsanyi-Selten solution for all generic games of 

the class described above. What “generic” means in our context is explained at the 

end of section 4. The author, however, also find the solution for the nongeneric 

games but to write down all the calculations will exceed the limits  of this study. 

The results are available on request.  

As the reader will see, even for the generic games it takes much effort (not only 

for the author) to go through all the case distinctions which appear to be 

necessary. The reader may ask whether the aim of this study is not too modest to 

justify such a fatiguing exertion. I give four answers to this question. 

 First, despite its frugal game-theoretical structure the class of signaling 

games we will consider can be applied to different elementary situations of 

economic relevance. Having computed the solutions for the whole class,  

the solutions for games of special interest are easily available in our 

overview of results.  

 Secondly, more complex and interesting economic and other models may 

have games belonging to our class as subgames. The Harsanyi-Selten 

theory has the property that the solution of a game prescribes for all agents 

in a subgame the same local strategies as if the subgame is solved as a 

game by itself. This subgame-consistency property makes it valuable to have 

complete overviews of the solutions of simple games in order to facilitate 

to solve more complex games where the simple games arise as subgames. 

 Thirdly, it would be interesting to compare the results of the Harsanyi-

Selten theory with the results of certain refinement concepts in the latters’ 

domain, the signaling games. Unfortunately, an overwiew how the sets of, 

e.g., stable equilibria for the whole class of signaling games considered 

here is not available. It is obvious that for a large part of the parameter 

space the refinement concepts fail to contract successfully the set of 

equilibrium points contrary to the ingenious numerical examples 
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presented in the literature. For a special model such a comparison is made 

in Potters, van Winden & Mitzkewitz (1991). 

 Finally, a lot of the concepts introduced by Harsanyi and Selten are 

involved in solving our class of signaling games. The interested reader can 

observe the concepts “at work”.  So this study can also been taken as a 

learning-by-doing introduction to the Harsanyi-Selten theory. 

This paper is organized as follows. After this introdution section 2 presents a 

brief digest of the Harsanyi-Selten theory. Section 3 defines the class of games we 

will consider and presents the solution for special members of this class, called 

the “decomposable and reducible games”. In section 4 we normalize the 

“indecomposable and irreducible games” and in section 5 we compute for generic 

cases, i. e. “for almost all” games,  their solutions. Section 6 presents an overview 

of the results and section 7 summarizes. 
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2. Relevant Elements of  the General 

Theory of Equilibrium Selection 

The theory of equilibrium selection developed by John C. Harsanyi and Reinhard 

Selten (Harsanyi & Selten (1988)) singles out a unique equilibrium point for each 

finite noncooperative game as its solution. In this section we will sketch the 

Harsanyi-Selten theory only briefly. Some important ingredients of this theory 

which will not be involved in the course of our analysis, like “strategic distance”, 

are not mentioned here. Other components are explained only to such a degree of 

complexity which is sufficient to understand the procedures in the following sec-

tions. We omit detailed discussions and justifications of the concepts and refer 

the interested reader to the book of Harsanyi and Selten. Given these limitations, 

this section could be considered as a small user’s guide for the Harsanyi-Selten 

theory. 

In the class of games we will analyze each player has just one information set, so 

there is no distinction between a player and his single agent. Because of this nor-

mal-form structure we can omit the explanation of the “standard form” of a game 

which distinguishes thoroughly between players and their agents. 

 

2.1. Some Notations and Definitions 

NORMAL FORM. A  -player game in normal form               consists of 

  nonempty finite sets         and a payoff function  . The set of pure strate-

gies of player             is represented by   . A pure strategy combination is 

denoted by  : 

                       ( ) 
  
The payoff function   assigns a payoff vector      to each   : 
 

 

                     ( ) 

 

MIXED STRATEGIES. A mixed strategy of player   is a  probability distribution 

over    and is denoted by   . The notation        represents the probability that 

player   will choose his pure strategy   . Given a mixed strategy combination 

           , a particular pure strategy combination             occurs 

with the following probability: 
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                     ( ) 
 
 

Thus the payoff function   can be extended to mixed strategy combinations in the 

following way: 

              

   

 (4) 

 

Here   represents the set of all pure strategy combinations. 

In the class of games we will consider each player has just two pure strategies.  

For this reason we can represent a mixed strategy of player   by a single number 

  , which means the probability to choose the player’s first pure strategy (it will 

always be clear what is meant by “first”). Hence      is the probability to choose 

his second pure strategy. Pure strategy choices can be represented by      and 

    . Therefore we can describe any strategy combination (pure or mixed) by a 

 -tuple of the following kind: 

                                            (5) 

 

 -INCOMPLETE MIXED STRATEGY COMBINATIONS. An i-incomplete mixed 

strategy combination    is a      -tuple of mixed strategies: 

                          (6) 
  
Using this notation a mixed strategy combination    can also be written as fol-

lows: 

          (7) 
  
This means that   contains player  ’s mixed strategy    and the other players’ 

mixed strategies in     as its components. 

BEST REPLIES. A mixed strategy    is called a best reply to the  -incomplete strat-

egy combination     if: 

             
  

          (8) 

  
We say that    is a strong best reply to     if all other strategies yield a lower pay-

off than   . Of course a strong best reply must be a pure strategy. 
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EQUILIBRIUM POINTS. A mixed strategy combination              is called 

an equilibrium point of game   if for each player             his mixed strategy 

   is a best reply to    . If all    are strong best replies to    , than   is called a 

strong equilibrium point. Notice that we use the term “strong equilibrium point” 

different from Aumann  (1959).  

UNIFORM PERTURBATIONS. The Harsanyi-Selten theory is not applied directly 

to the game   under consideration but to uniform perturbations of this game, de-

noted by   . Each pure strategy of a player must be chosen with a minimal proba-

bility  , where   is supposed to be close to zero but positive.   can be interpreted 

as the probabiltity to choose the “wrong” pure strategy by error due to “trembling 

hands”. The term “uniform” refers to the fact that the perturbation parameter   is 

the same for all players and for all pure strategies. This differs from Selten’s gen-

eral definition of perfectness (Selten (1975)). 

In the class of games we will consider each player has just two pure strategies. So 

we can describe each mixed strategy combination which is admissible in the uni-

formly perturbed game as follows: 

       
      

                                   (9) 

  
Of course       is supposed. If player   chooses          or      , we say 

that he plays an  -extreme strategy. He “tries” to play one of his pure strategies 

and the other pure strategy can only appear by mistake. We will indicate by    

the  -extreme strategy combination which corresponds to the pure strategy com-

bination  . 

UNIFORMLY PERFECT EQUILIBRIUM POINTS. The limit equilibrium points of 

the uniformly games    for     are called the uniformly perfect equilibrium 

points of the unperturbed game  . 

The Harsanyi-Selten theory requires that the solution of a game must be one of its 

uniformly perfect equilibrium points. But Harsanyi and Selten do not select di-

rectly among these equilibrium points (if there are more than one).  They first 

solve (i.e., they single out a unique equilibrium of) the perturbations of the game 

and then, by letting    , they obtain the limit solution of the game. 

Hence it must be kept in mind that in the following descriptions of how to solve a 

game we deal with (uniformly) perturbed games. 
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2.2. Decomposition and Reduction 

The first step in solving a game is to check whether this game is decomposable. To 

understand what this means, we need some further definitions. 

CELLS. A proper subset of players forms a cell if for each of these players the stra-

tegic situation only depends on the other members of the cell and is completely 

independent of the strategic choices of the players outside the subset. In other 

words, this subset is closed with respect to the best-reply correspondence. A cell 

is called elementary if it contains no proper subset of players which forms a cell 

by itself. 

DECOMPOSABLE GAMES. A game is called decomposable if it has at least one cell. 

Otherwise it is called indecomposable. Obviously an elementary cell is indecom-

posable. 

FIXING A PLAYER. We say that a player is fixed at a particular strategy if after 

this fixing a game is considered which results from the substitution of this play-

er’s strategy set by this particular strategy and from modification of the payoff 

function in the appropriate way. We emphasize that with such a strategy fixing 

always a new game results from a more complex one. 

INFERIOR CHOICES. A pure strategy    of player   is called inferior if he has a 

pure strategy    which is always a best reply whenever    is a best reply, but also 

in some cases where    is not a best reply. Since in our class of games each player 

just has two pure strategies, the term “inferior” is here equivalent to “weakly 

dominated”. This is obviously not true for more than two pure strategies. Notice 

that the original Harsanyi-Selten definition of inferiority is concerned with choic-

es of an agent and not with pure strategies of a player. We do not need such a dis-

tinction here because in our games each player has only one information set (and, 

therefore, no agents). But in order to match Harsanyi’s and Selten’s terminology, 

we will speak of inferior choices instead of “weakly dominated strategies”. 

ELIMINATION OF INFERIOR CHOICES. If a player has an inferior choice, this 

choice is eliminated from his strategy set. But notice that this elimination takes 

place within the perturbed game. In the class of games we will consider the elimi-

nation of an inferior choice means nothing else but fixing the respective player at 

his  -extreme strategy concentrated on his superior pure strategy. The inferior 

choice is still chosen “erroneously” with probability  . 
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SEMIDUPLICATE CLASSES. If some pure strategies of a player yield always the 

same payoff to him independent of the strategies chosen by the other players, we 

say that these pure strategies are semiduplicates or that they form a semiduplicate 

class. 

CENTROID STRATEGY. The mixed strategy of a player which assigns the same 

probability to each of his pure strategies is called his centroid strategy. Hence, 

    
    is player  ’s centroid strategy if he has two pure strategies. This is not the 

exact definition proposed by Harsanyi and Selten, but sufficient for our purposes 

and more convenient. 

ELIMINATION OF SEMIDUPLICATE CLASSES. If the pure strategies of a player 

form a semiduplicate class, this class is eliminated by fixing this player at his cen-

troid strategy. 

IRREDUCIBLE GAMES. A game is called irreducible if it is indecomposable and 

has neither inferior choices nor semiduplicate classes. Otherwise the game is 

called reducible. 

DECOMPOSITION AND REDUCTION. The procedure of decomposition and reduc-

tion tries to facilitate the task of solving games to the simpler task of solving irre-

ducible games. How to solve an irreducible game is explained in the following 

subsections. The precise procedure of decomposition and reduction is best ex-

plained by the flowchart on page 127 in Harsanyi & Selten (1988) or by the 

flowchart in Güth & Kalkofen (1989) on page 39. For our purposes a much more 

superficial description is sufficient. It will turn out that games of our class are 

only decomposable if they contain inferior choices and/or semiduplicate classes. 

Within our framework we can describe the procedure of decomposition and 

reduction by the following steps: 

 STEP 1: If the game is irreducible, carry on with STEP 4. Otherwise 

carry on with STEP 2. 

 STEP 2: If the game contains inferior choices, eliminate them and 

carry on with STEP 1. Otherwise carry on with STEP 3. 

 STEP 3: Eliminate the semiduplicate classes and carry on with STEP 

1. 

 STEP 4: Compute the solution of the irreducible game (see the fol-

lowing subsections). 

Here the term “game” always means the original perturbed game after previous 

elimination steps. So each game will be reduced to an irreducible game after fi-

nitely many steps. 
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2.3. The Linear Tracing Procedure 

LINEAR TRACING PROCEDURE. An important component of the Harsanyi-Selten 

theory is the so-called linear tracing procedure, introduced by Harsanyi (1975). 

The linear tracing procedure is an attempt to extend principles of Bayesian 

rationality from one-person decision problems to  -person noncooperative 

games. It is assumed that players form prior beliefs about the other players’ 

strategic intentions, maximize their expected payoffs on the base of these beliefs, 

modify continuously the prior beliefs by “observing” more and more of the other 

players’ maximizing behavior, and change in case of need their own actions on 

the base of these modified beliefs. Formally, player  ’s payoff function    of a 

given game   is transformed to: 

  
                                   (10) 

  
Here   is the so-called tracing parameter with      . The tracing parameter 

can be loosely interpreted as “time”, so     marks the beginning and     

marks the end of the process generated by the linear tracing procedure. The prior 

beliefs (or simply the priors) of player   about the other players’ strategic inten-

tions are expressed by the  -incomplete mixed strategy combination     , whereas 

   and      are player  ’s and the other players’ actual mixed strategies at time t. 

Each player is assumed to  choose    at time   in order to maximize   
 . To put it 

differenty, player   plays at time   a best reply to the following  -incomplete 

mixed strategy (see also Harsanyi & Selten (1988), p. 142n): 

              ( 1) 
  
Hence, at time     player   plays a best reply to his priors independent of the 

other players’ actual strategies, which are in fact their best replies to their priors. 

When   increases player   lays less stress on his priors and lays more stress on 

the “observed” actual strategies of the other players. At time     the influence 

of the priors completely vanished and, since all players choose best replies to the 

other players’ actual strategies, an equilibrium point of the original game   is 

reached. 

PATH AND RESULT OF THE LINEAR TRACING PROCEDURE. We will say that 

the set of pairs       for all       describes the path of the linear tracing pro-

cedure. In some cases, however, the path of the linear tracing procedure is not 

well-defined. We will discuss this problem at the end of this subsection. For the 

moment let us assume that no difficulties of this kind arise. Then it is clear that 
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the path of the linear tracing procedure ends in an equilibrium point of the con-

sidered game. This equilibrium point is called the result of the linear tracing pro-

cedure. 

If the strategy combination given by the best replies to the priors (i. e.   at    ) 

forms an equilibrium point of the considered game, it is obvious that this strategy 

combination will be played along the whole path of the linear tracing procedure 

up to the end (because in this case for each player   his strategy is a best reply to 

both     and     and, therefore, also a best reply to each convex combination of 

these two  -incomplete strategy combinations). 

DESTABILIZATION POINTS. If the vector of best replies to the priors does not 

form an equilibrium point of the considered game, it is clear that at least one 

player must alter his strategy along the path of the linear tracing procedure at 

some time  . This value for   is called this player’s destabilization point. 

STRATEGY SHIFT. At a player’s destabilization point a player shifts his strategy. 

Maybe after the strategy shift an equilibrium point is reached and then this strat-

egy combination is followed in the further path of the linear tracing procedure. 

But it is also possible that a series of strategy shifts is necessary to reach an equi-

librium point at the end. Notice that with each strategy shift of a player   at time t 

payoff shifts for all players are usually connected (    changes in the modified 

payoff functions given by (10) for all players j with    ). So it is important to 

calculate who is the first player to shift his strategy. It is the player with the small-

est value for t at his destabilization point. After his strategy shift the new destabi-

lization points are calculated (if there are some) and the next player to shift his 

strategy is determined, etc. Let us mention that even if the path of the linear trac-

ing procedure is well defined, it can have so-called backward-moving variable 

segments (see section 4.19 in Harsanyi & Selten (1988)). In our analysis this 

phenomenon will not arise and so we omit any discussion of this issue.  

The tracing procedure is involved in three ways in Harsanyi’s and Selten’s 

solution concept. The three jobs of the linear tracing procedure are: 

 Risk-dominance comparison between two equilibrium points 

 Forming a substitute of a candidate set 

 Computation of the solution of a basic game. 

In the next subsection we will explain at which steps of the solution procedure 

these three jobs come into play. Here we describe the implications for the 

construction of the priors. 
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RISK-DOMINANCE COMPARISON. Consider the situation that all players are 

convinced that the solution of a game is one out of two equilibrium points, say    

and   , with the property that   
    

  holds for each player i. It will turn out that 

in our analysis only comparisons between strong equilibrium points are 

necessary, so the following explanations are restricted to such a situation. Each 

player i is assumed to be initially doubtful about the “correct” equilibrium point, 

but he believes that all the other players know the correct one and consequently 

they will play jointly either    
  or    

 . According to Bayesian rationality player i 

must form a subjective probability, say   , for the event that the other players 

choose    
  and a subjective probability      for the event    

 . Therefore player i 

is assumed to play initially (   ) a best reply to the following i-incomplete joint 

mixture: 

     
           

  ( 2) 
  
Since    and    are strong equilibrium points, there must exist for each player i a 

particular value     with          , such that   
  is  for all               a strong 

best reply to the joint mixture given in (12), but for all                
  is a strong 

best reply. 

But how does player i form his subjective probability    about the “correct” equi-

librium point? Or, to put it more precisely, what should the other players think 

about the way player i forms   ? As Bayesians the other players have to construct 

a distribution function of    over the interval      . Because the initial state must 

be considered as a situation of complete naivety, there is no reason whatsoever to 

put more weight on a specific value of    than on another one.  Hence, Harsanyi 

and Selten assume that    is uniformly distributed over the interval      . 

 This has the consequence that player i is assumed to choose initially (at    )   
  

with probability       and   
  with probability    , where as explained above     is 

that particular value of    of player i that makes him indifferent between   
  and 

  
 . So the prior beliefs about player i are that he plays the following mixed strate-

gy: 

            
       

  ( 3) 
  
These priors are also called the bicentric priors because just two equilibrium 

points are compared. 

Given these priors for all players, the path of the linear tracing procedure can be 

computed. If the result of the linear tracing procedure is   , than we will say that  

   risk-dominates   . If    is the result,    risk-dominates   . 
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SUBSTITUTION OF A CANDIDATE SET. Sometimes in the calculation of the 

Harsanyi-Selten solution for a given game the linear tracing procedure is used to 

substitute a set of equilibrium points by a single equilibrium point. In such a case 

the priors about player i are formed by the equally weighted average of his mixed 

strategies used in the equilibrium points of the set that should be substituted. In 

our case it will turn out that only sets of two pure equilibrium points must be 

substituted, so the priors are simply given by the players’ centroid strategies (see 

subsection 2.2). With the term “substitution of a candidate set” used in the next 

subsection we mean the following: If we replace a set of equilibrium points (the 

candidate set) by that equilibrium point which is the result of the linear tracing 

procedure using the players’ centroid strategies as their priors, then we say that 

this set of equilibrium points is substituted.  

SOLUTION OF A BASIC GAME. In the next subsection we introduce the concept 

of a basic game. Here we want to state that the solution of a basic game is the re-

sult of the linear tracing procedure using the players’ centroid strategies in that 

basic game as their priors.  

EXISTENCE OF A WELL-DEFINED PATH OF THE LINEAR TRACING PROCE-

DURE. Hitherto, we have excluded any discussion about the uniqueness of the 

path (and, therefore, the result) of the linear tracing procedure. Unfortunately, 

such a well-defined path exists only for “almost all” games. For example, in a game 

of complete symmetry (or complete asymmetry) between two players, they will 

have the same destabilization points and the path of the linear tracing procedure 

does not have a unique continuation after this point (think of a symmetric “battle 

of sexes” game). 

Harsanyi and Selten attempted to single out a unique equilibrium point for all fi-

nite games and not only for the generic subset. So they could not be satisfied that 

the linear tracing procedure as one of their most important tools in solving games 

lead to dubious results in nongeneric cases. Therefore they introduced the loga-

rithmic tracing procedure. The logarithmic tracing procedure generates a well-

defined path for all finite games and the result of the logarithmic tracing proce-

dure is the same as the result of the linear tracing procedure if the latter’s path is 

well-defined. Hence the logarithmic tracing procedure can be considered as a 

generalization of the linear tracing procedure. 

The payoff function along the logarithmic tracing procedure differs from that of 

the linear tracing procedure (see (10)) by an additional logarithmic term which 

“punishes” to some extent each deviation from the player’s centroid strategy. This 
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term ensures that for each     each player has a unique best reply in complete-

ly mixed strategies to any strategy combination of the other players. 

The logarithmic tracing procedure only comes into play in nongeneric games. In 

this work we will only determine the solution of the generic elements in our class 

of signaling games, therefore the linear tracing procedure is sufficient. Since 

1988, when Harsanyi’s and Selten’s book was published, some properties of the 

tracing procedure and its computability are investigated in more detail (Schanuel, 

Simon & Zame (1991),  van den Elzen & Talman (1995), van den Elzen (1996), 

Herings & van den Elzen  (2002)).  However, for our purposes these advances are 

of no relevance. 

 

2.4. Solution of Irreducible Games 

After the preparations given in subsection 2.2 (the process of decomposition and 

reduction) and in subsection 2.3 (the linear tracing procedure), we want to ex-

plain in this subsection how Harsanyi and Selten solve an irreducible game (for 

the definition see subsection 2.2). However, we need some further definitions. 

FORMATIONS. Consider a game   which results from a game G by eliminating 

some pure strategies (and changing the payoff functions in the appropriate way). 

If for each i-incomplete mixed strategy combination permissible in F player i’s 

best replies in G are all contained in F, and if this holds for each player, we call F a 

formation.  

PRIMITIVE FORMATIONS.  A formation is called primitive if it contains no prop-

er subformations. For example, a strong equilibrium point generates a primitive 

formation. However, strong equilibrium points do not always exist. Harsanyi and 

Selten introduced the concept of a primitive formation to have a concept with 

similar stability properties as a strong equilibrium point. 

BASIC GAMES. A game is called basic if it is irreducible and if it contains no for-

mations. Hence, each irreducible game must be basic or it must contain some 

primitive formations. 

INITIAL CANDIDATES. The initial candidates for the solution of an irreducible 

game are defined as follows: If the game is basic, then the solution of this basic 

game is the only initial candidate. If the game is not basic, then the solutions of 

the primitive formations of this game are the initial candidates. The set of initial 

candidates is also called the first candidate set. 
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It will turn out that in the class of games we consider a game can have two primi-

tive formations at most, and that in this case these two primitive formations must 

be generated each by a strong pure equilibrium point. So the first candidate set 

contains either one (pure or mixed) or two (pure) equilibrium points.  

If there is only one candidate, this equilibrium point is the solution of the game. If 

we have two initial candidates, we first look whether one of them strictly payoff-

dominates the other one. If this is not the case, a risk-dominance comparison via 

the linear tracing procedure between these two equilibrium points is necessary 

(see subsection 2.3). The solution of the game is then the equilibrium point that 

dominates (strictly payoff-dominates or risk-dominates) the other one, where 

priority is given to payoff-dominance. However, it is possible that neither (strict) 

payoff-dominance nor risk-dominance exist between two equilibrium points. No 

risk-dominance relationship between two equilibrium points is given if the path 

of the (logarithmic) tracing procedure with the bicentric priors does not end in 

one of these equilibrium points. This can only happen in degenerate cases. Then a 

substitution step becomes necessary. 

SUBSTITUTION OF A CANDIDATE SET (see also subsection 2.3).  If the first can-

didate set consists of two equilibrium points without dominance relationship, we 

substitute this set by the equilibrium point which is the result of the tracing pro-

cedure using the players’ centroid strategies as their priors. This equilibrium 

point is the solution of the game. Notice that this resulting equilibrium is general-

ly not among the two initial candidates. For example, in a symmetric battle-of-

sexes game the first candidate set consists of the two pure equilibrium points, but 

its substitute (and, therefore, the solution of the game) is the mixed equilibrium 

point. 

SUMMARY OF PROCEDURES. In subsection 2.2 we explained how games are 

transformed to become irreducible games. In the present subsection we defined 

how an irreducible game is solved. First, we check whether the game is basic. If 

the game is basic we compute its solution, which is the result of the linear tracing 

procedure using the players’ centroid strategies as their priors. If the game is not 

basic, we compute the solutions of its primitive formations. If the game has two 

primitive formations (generated by two pure equilibrium points), we make a 

payoff-dominance comparison and, if necessary, a risk-dominance comparison be-

tween the two generating pure equilibrium points. If no dominance relationship 

exists we compute the result of the linear tracing procedure using the players’ cen-

troid strategies as their priors.  In any case we come out with a unique equilibrium 

point which is called the solution of the game. 
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Pay special attention to the fact that all procedures mentioned above are done 

within the perturbed game. The solution of the unperturbed game is obtained as 

the limit of the solutions of its perturbations letting   go to zero. 

 

2.5. Solution of 2x2 Games with Two Strong     

Equilibrium Points 

In many game-theoretical models 2x2-games arise as subgames or cells (see sub-

section 2.2). Therefore their solutions are of special interest. Here we are con-

cerned only with the equilibrium selection problem resulting of a 2x2-game with 

two strong equilibrium points. Let such a game be given as follows (figure 1): 

 

 Player 2 
      

Player 1 

   

    
 
 
 

    

    
 
 
 

    

   

    
 
 
 

    

    
 
 
 

    
 

Figure 1: A 2x2-game with the two strong equilibrium points 
        and         because we assume that        , 
       ,         and         hold. For each strate-
gy combination, player 1’s payoff is shown in the upper left 
corner and player 2’s payoff is shown in the lower right cor-
ner of the respective square. 

 

 

The game described in figure 1 can be transformed in a best-reply structure pre-
serving game, as shown in figure 2: 
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Figure 2: A 2x2-game with the two strong equilibrium points 
        and         which results from the following best-
reply structure preserving transformations:        
     ,             ,              and 
            . 

 

The term “best-reply preserving transformations” simply means that after some 
payoff manipulations of a game G a game G’ is received with the property that for 
each player his best replies against all opponents’ strategy combinations are the 
same in both games. 

Harsanyi and Selten provide an axiomatic foundation for the risk-dominance 

comparison between two pure equilibrium points of a 2x2-game like in figure 2. 

In their book they proof that three plausible requirements on the solution of the 

selection problem between the two equilibrium points         and         are 

only fulfilled by the following criterion: 

         is the solution if           holds. 

         is the solution if           holds. 

The mixed equilibrium of the game is its solution if            holds. 

Furthermore, Harsanyi and Selten show that these results are equivalent to those 

obtained by making a risk-dominance comparison between the two equilibrium 

points via the linear tracing procedure (see subsection 2.3). This means that the 

axiomatically founded solution concept for 2x2 games with two strong equilibri-

um points is embedded into the general solution theory for all games roughly de-

scribed in this section. The comparison of the payoff products      and      is 
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similar to the analysis of the Nash product (Nash (1953)). In consequence, this 

embedding is called the Nash property of the Harsanyi-Selten theory. 

The solution of a 2x2-game can therefore be obtained without explicitly making 

use of the tracing procedure. If the game is given as in figure 1, then you have to 

check whether one of the two equilibrium points strictly payoff-dominates the 

other one. In this case, the payoff-dominating equilibrium point is the solution of 

the game. Otherwise, you have to transform the game into a game as in figure 2 

preserving the best-reply structure. Then you have to compute which of the equi-

librium points yields the higher “Nash product”. This one is the solution of the 

game. If both equilibrium points yield the same Nash product, the mixed equilib-

rium of the game is its solution. 

In the following lemma we show that there exists a simple measure equivalent to 

the Nash product criterion in 2x2-games, which is in some applications easier to 

compute (see Potters, van Winden & Mitzkewitz (1991)). 

LEMMA. Given a 2x2-game as in figure 2. Then the two pure strategies (one for 

each player) chosen in the pure equilibrium with the higher product of payoffs 

(Nash product) are chosen in the mixed equilibrium point of the game with 

probabilities adding up to less than 1. 

PROOF. In the mixed equilibrium         of the game in figure 2 the strategies    

and    are chosen with the following probabilities: 

   
  

     

 ( 4) 

 
 

 

   
  

     

 ( 5) 
 

 
It follows: 

 

  

        
           

              
 ( 6) 

  
  
Since all    and    are greater than zero, it follows that         if           

and that         if          .   

We  make use of this result in our analysis. 
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3. The Class of Games Considered and 

the Solution of Its Decomposable and 

Reducible Members 

Consider the following class of signaling games. The sender is one of two types 

which occur with known positive probabilities   and    . Each type has to 

choose between two alternatives: the move “inside” and the move “outside”. If the 

activated type chooses “outside” the game is finished, but if he chooses “inside” a 

receiver observes this message without being informed about the sender’s type. 

Afterwards, the receiver has to choose between two responses, called “left” and 

“right” to terminate the game. At each of the six possible endpoints of the game 

the players receive their respective payoffs. Following Harsanyi (1967-1968) we 

consider the two types as different players, hence the payoff vectors have three 

components. Figure 3 shows the extensive form of the game without specifying 

the payoff vectors. The two types of the sender are called player 1 and player 2, 

and the receiver is called player 3. Nature choosing sender’s type by chance is 

called player 0. 

 

 

 

 

 

 

 

 

 

 

Figure 3: The extensive form of the considered class of 

games. Information sets are indicated by the dotted lines. 

Payoff vectors are unspecified. 
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NORMALIZATION. In this section, we make some steps to normalize this class of 

signaling games as follows: A type always receives nothing if he is not active. Fur-

thermore, we subtract the payoff vector after an “outside” choice of a type from all 

three payoff vectors which can be achieved if this type has become active. This 

transformation preserves the best-reply structure for all players. By this proce-

dure the new payoff vectors of the normalized game are obtained. The payoffs are 

named as in figure 4. We will call this steps semi-normalization. In section 4, deal-

ing with the indecomposable and irreducible games, we will proceed with the 

normalization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The extensive form of the semi-normalized games.  

 

DECOMPOSITION AND REDUCTION. Now we explain the meaning of “decom-

posable” and “reducible” (see subsection 2.2) in the normalized signaling games. 

Fortunately, for the simple game structure considered here the two concepts are 

closely connected. 

ELEMENTARY CELLS. First we look on possible kinds of elementary cells (see 

subsection 2.2). Obviously, the two types together cannot form an elementary cell 

because their best replies are always independent from each other. Furthermore, 

the receiver together with one type cannot form an elementary cell by the follow-

ing reason. If they form a cell, the receiver must be independent from the strategy 

0 
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inside inside outside outside 
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of the other type and, therefore, the receiver should calculate only for the situa-

tion after an “inside” choice of the cell type. But this means that the receiver’s best 

reply is independent of the probability of this move. Consequently, in this case the 

receiver forms an elementary cell by himself. It follows, that,if signaling games of 

our class are decomposable, an elementary cell is formed by a single player. 

CONDITIONS THAT A TYPE FORMS A CELL. By definition, the best-reply struc-

ture of a type forming a cell must be independent of the receiver’s strategy. This 

situation can occur in three ways: 

1. The cell type receives in one case more than null and in the other case at 

least null after an “inside” choice in dependence on the receiver’s response. 

This means that the cell type’s “outside” choice is inferior. 

2. The cell type receives in one case less than null and in the other case he re-

ceives null at most after an “inside” choice in dependence on the receiver’s 

response. This means that the cell type’s “inside” choice is inferior. 

3. The cell type receives always null. This means that his two pure strategies 

are semiduplicates (see subsection 2.2). 

CONDITIONS THAT THE RECEIVER FORMS A CELL. This  situation is given in 

two cases : 

1. One of the receiver’s choices is (weakly) dominated. Then this pure strate-

gy is, of course, inferior. 

2. The payoffs of the receiver only depend on the active type but not on his 

own choice. Then his two pure strategies are semiduplicate classes. 

REDUCTION. In our simple games, the process of solving first the one-person 

cells is equivalent to the process of reduction. Every player who forms a cell is 

fixed at his superior choice (if he has an inferior choice) or at his centroid strategy 

(if his pure strategies are semiduplicates). If all three players form cells for them-

selves the solution of the game is obtained immediately by such strategy fixing. 

Otherwise, the reduced game has to be analyzed further. Solutions for all decom-

posable signaling games of our class are developed in the following subsections. 

The results of the somewhat tedious case-by-case analysis are summarized in an 

overview presented in section 6 after the results of the indecomposable and irre-

ducible games have also been calculated in section 5.  
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3.1. At least the receiver forms a cell 

The situations are quite similar if only the receiver forms a cell or if the receiver 

and one type form cells or if all three players form cells. This similarity arises 

from the fact that at the latest after the elimination of the receiver’s inferior choice 

or of his semiduplicate class both types will form cells by themselves. In these 

cases, the solution of the reduced game is obtained by fixing the types at their su-

perior choices (if they have inferior choices) or at their centroids (if their pure 

strategies are semiduplicates). 

In the remaining subsections those situations are considered in which at least one 

type forms a cell but the receiver does not. 

   

3.2. Both types form cells 

In this case it is necessary to look at the  -perturbed game. First, both types are 

fixed at their superior choices or at their centroid strategies. But notice that in the 

perturbed game inferior choices still occur with probability  . Table 1 presents 

the conditional probabilities that the node after player 1’s “inside” choice (the left 

node in player 3’s information set in figure 3) is reached, given that the receiver 

has observed an “inside” choice. 

 

Probability for player 3’s left 
node after fixing the types 

Player 2 
Inferior choice 

“inside” 
Inferior choice 

“outside” 
Semiduplicate 

Class 

Player 1 

Inferior 
choice 

“inside” 

  
 

             
 

   

         
 

Inferior 
choice 

“outside” 

      

             
   

       

         
 

Semi-
duplicate 

class 

 

         
 

 

             
   

 

Table 1: Conditional probabilities that the node after player 

1’s “inside” choice is reached, given that the receiver ob-

served an “inside” choice. 
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Given these conditional probabilities, the receiver is able to compute which of his 

two responses yields a higher expected payoff. This response is his  -extreme 

strategy in the perturbed game. If both responses yield the same expected payoff, 

the receiver has to choose his centroid strategy. By letting    , the limit solu-

tion of the game is obtained. 

 

3.3. Only one type forms a cell – he has the inferior 

choice “outside” 

In the remaining parts of section 3 the cell forming type is always called player 1. 

In this subsection we consider the reduced game after elimination of an inferior 

“outside” choice of player 1. However, this choice occurs with positive probability 

due to the perturbation. The two responses of the receiver are called    and   , 

and player 2’s “inside” choice is called    and his “outside” choice is called   . 

The payoffs are named as in figure 4. 

Since player 2 and player 3 do not initially form cells in the case considered in 

this subsection, the following conditions for the payoffs must hold: 

                        ( 7) 
 

                                  ( 8) 
 

Without loss of generality we can assume that the receiver’s responses are named 

in such a way that         holds. In the reduced perturbed game (after elimi-

nation of player 1’s inferior “outside”) player 2 does obviously not form a cell. But 

player 3 gets an inferior choice    if the following inequality holds: 

                      ( 9) 
 

This inferiority results from the fact that the left node in player 3’s  information 

set is reached in the reduced game with probability       , but the right node is 

reached with probability            at most. If (19) holds, player 3 is fixed at 

   and finally player 2 has to choose    if      and    if     . 

If (19) does not hold the reduced game is not further decomposable and reduci-

ble. Therefore, the equilibrium points of this game are examined. The probability 

that player 2 chooses    is called    and the probability that player 3 chooses    

is called   . Best reply of player 2 is    if either (20) or (21) holds: 
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              (20) 

  

   
   

     

              (21) 

 

Since (17) holds, we have always      .  

   is a best reply of player 3 if: 

        
        

            
        

(22) 
 

  
Since (18) holds and (19) does not hold in the situation considered, it follows 

that      . 

First, consider the case that     . The best-reply correspondences are shown in 

figures 5 and 6 for arbitrary values of  , b and c. For sufficiently small values of   

we must have         and             . 

                           

 

 

 

Figure 5: Best-reply correspondence of player 2 in a subclass 

of subsection 3.2.  

 

                           

 

 

 

Figure 6: Best-reply correspondence of player 3 in a subclass 

of subsection 3.2.  
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Obviously, the (mixed) strategy combination                    is the only 

equilibrium point of the reduced game. Defining    as player 1’s probability to 

choose    (his “inside” choice), the limit solution of the whole game is therefore 

                  . 

The situation is quite different for     . Player 3’s best-reply correspondence is 

the same as in figure 6, and player 2’s best-reply correspondence is obtained by 

interchanging    and    in figure 5. The reduced game has three strategy com-

binations         as equilibrium points:                 and           . The 

third one is not in the first candidate set for the solution of the reduced game be-

cause it is not the solution of a primitive formation (see subsection 2.4). There-

fore, the first candidate set contains only the two  -extreme equilibrium points 

          and      .  We first analyze under which conditions there is a pay-

off-dominance relationship between these two equilibrium points. 

At the first equilibrium point, player 2’s (expected) payoffs are approximately 

        for sufficiently small  , hence they are strictly positive (since     ). At 

the second equilibrium point, his expected payoffs are approximately null. Simple 

computations show that the (expected) payoffs of player 3 are at least as much at 

the first equilibrium point than at the second one, if the following inequality 

holds:  

   
 

   
             (23) 

 

This inequality is independent of    because the knot at which player 3 receives 

this payoff is reached in both equilibrium points with the same probability (i.e. 

           ). In the case we consider,  (19) does not hold. Therefore we have: 

      
 

   
         (24) 

 
 

Thus, (23) always holds if    is nonnegative or if it is negative but its absolute 

value is small enough. Hence, the equilibrium point           payoff domi-

nates the equilibrium point       for sufficiently small   if: 

   
 

   
         (25) 

  

In this case, the limit solution of the game is                   . 

If (25) does not hold (this implies that    is negative and its absolute value is 

large enough) there is no payoff-dominance relationship between the two equi-
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librium points in the first candidate set. Therefore a risk-dominance comparison 

between the two candidates becomes necessary.  

Since the reduced game is a 2x2-game, the lemma of subsection 2.5 can be ap-

plied. It implies that the sums of the probabilities chosen in the mixed equilibri-

um point for those strategies used in the first pure equilibrium point determines 

the result of the risk-dominance comparison. In our case it follows: 

 If           , the equilibrium point                   risk-

dominates the equilibrium point      . This condition is satisfied for each 

    if       holds. Hence, in this case we obtain                    

as the limit solution of the game, too. 

 On the other hand, if       holds, the inequality            is 

implied for sufficiently small  . In this case the equilibrium point       risk-

dominates the equilibrium point           and we obtain            

        as the limit solution of the game.  

 

3.4. Only one type forms a cell – he has the inferior 

choice “inside” 

Now we consider the reduced perturbed game after fixing player 1 at his “outside” 

choice. Clearly, (17), (18) and         still hold.  Player 3 obtains (after the 

fixing) an inferior choice    if the following inequality holds: 

                      (26) 
  

The definition of   given by (22) implies that (26) is equivalent to    . If (26) 

holds, player 3 is fixed at his    choice, and, finally, player 2 must choose    if 

     or    if     .  

If (26) does not hold, we must look at the equilibrium points of the reduced per-

turbed game. The best-reply structure is still given by (20) and (21). Different to 

(22),    is a best reply of player 3 if the following inequality holds: 

    
        

            
    (27) 

  
Since (26) does not hold, we have      for each     and we have        

for sufficiently small  .  For      the situation is illustrated in figures 7 and 8. 
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Figure 7: Best-reply correspondence of player 2 in a subclass 

of subsection 3.3.  

 

                           

 

 

 

Figure 8: Best-reply correspondence of player 3 in a subclass 

of subsection 3.3.  

 

The mixed-strategy combination                is the only equilibrium point of 

the reduced perturbed game. Hence, for     we obtain                    as 

the limit solution of the whole game. 

In the case      the best-reply correspondence of player 2 is obtained by inter-

changing    and    in figure 7. Now the reduced game has the three equilibrium 

points          ,       and       . The first two equilibrium points form the 

first candidate set. Like in subsection 3.3 player 2’s (expected) payoffs at the 

         -equilibrium point are approximately         (hence, strictly posi-

tive) and approximately null at the      -equilibrium point. The (expected) pay-

offs of player 3 at the first equilibrium point are not smaller than at the second 

one if the following holds: 

   
 

   
         (28) 

  
Since        , inequality (28) is fulfilled for sufficiently small   if      holds. 

In this case the          -equilibrium point payoff-dominates the      -

equilibrium point. The limit solution of the game is                   . 
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If      and     , a risk-dominance comparison between the two  -extreme 

equilibrium points is necessary. If   goes to zero, then in the mixed equilibrium 

point of the reduced game the sum of the probabilities of the pure strategies used 

in the equilibrium point       approaches      , whereas the sum of the 

probabilities of the pure strategies used in the equilibrium point           

approaches    . According to the lemma of subsection 2.5, we obtain the result 

that the          -equilibrium point risk-dominates the      -equilibrium 

point. Again, the limit solution is                   . Hence, for      the limit 

solution is independent of the sign of   . 

 

3.5. Only one type forms a cell – his pure strate-

gies are semiduplicates 

In this subsection we consider the reduced game after fixing player 1 at his cen-

troid strategy (because his two pure strategies are semiduplicates). As before, 

(13), (14) and         hold. After fixing player 1, player 3 gets an inferior 

choice    if the following inequality holds: 

                       (29) 
  

This inequality is equivalent to     (see the implicit definition of c given in 

(22)). If (29) holds player 3 is fixed at his choice   . Then, player 2 must choose 

   if      and    if     . 

If    , player 3 has the best reply    if we have: 

   
        

             
 

 

 
 (30) 

  
The following analysis is quite similar to that of subsection 3.3, replacing        

by     (compare (22) and (30)). Thus, we present the results only briefly. For 

    and       the mixed strategy combination                 is the only 

equilibrium point of the reduced game.  Therefore, the limit solution of the game 

is                       . 

For     and        there are three equilibrium points          ,       and 

       . The          -equilibrium point payoff-dominates the      -

equilibrium point, if (compare with (23)): 

   
 

      
        (3 ) 
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    implies: 

      
 

      
        (32) 

  
Thus (31) always holds if      or it holds if    is negative but with a small abso-

lute value. In these cases,                      is the limit solution of the game. 

If (31) does not hold, a risk-dominance comparison between the two  -extreme 

equilibrium points becomes necessary. Similar to subsection 3.3 it follows: 

 If         holds, the equilibrium point                   risk-

dominates the equilibrium point      . We obtain                      

as the limit solution of the game. 

 If         holds, the risk-dominance comparison is the very opposite 

and we obtain                      as the limit solution of the game. 

 If         holds, the mixed equilibrium point                 is ob-

tained as the solution of the reduced game. The limit solution of the whole 

game is                       . 
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4. Normalization of the Indecomposable 

and Irreducible Games 

In section 3 we characterized the conditions under which one of the types or the 

receiver form a cell and analyzed these cases. If none of the three players forms a 

cell by himself  the signaling game is indecomposable and irreducible. This situa-

tion allows the following steps of normalization: 

1. Call the “inside” choice of the two types    and the “outside” choice   . 

2. Call the receiver player 3. 

3. A type receives nothing if he is inactive. 

4. Subtract the payoff vector after a   -choice of each type from those three 

payoff vectors which can be reached if this type is the active one. By this 

subtraction the new payoff vectors of the normalized game are obtained. 

5. For each type compute the difference of the receiver’s payoffs achieved af-

ter his two responses, given that this type has become active and has cho-

sen   . Multiply these differences with the respective probability of occur-

rence of the two types. Call that type player 1 who induces the greater ab-

solute value of these “weighted differences”. If both types induce the same 

weighted difference, call by random some type player 1. Call the remaining 

type player 2. 

6. Call player 1’s probability of becoming active  . 

7. Call that response of player 3    that yields the smaller payoff to him if play-

er 1 becomes active and chooses   . Call the other response   . Indiffer-

ence is not possible because the games considered in this section are in-

decomposable. 

The extensive form of the normalized game is shown in figure 9. The following 

properties of the payoff structure result from the process of normalization de-

scribed above and from the fact that in this section only indecomposable and ir-

reducible games are considered.  

                              (33) 
  

                              (34) 
  

      (35) 
  

      (36) 
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                      (37) 

  
 

 

 

 

 

 

 

 

 

 

 

Figure 9: The extensive form of the normalized games.  

 

In the following the probabilities that player 1 and player 2 choose    are called 

   and   , respectively.    is the probability that player 3 chooses   . All three 

players have just two pure strategies, hence, player i’s mixed strategy is com-

pletely described by   . The conditions that a player becomes indifferent between 

his two choices are calculated now. 

INDIFFERENCE POINT OF PLAYER 1. The pure strategies    and    yield the 

same (expected) payoffs for player 1 if the following holds: 

                (38) 
  
This is equivalent to: 

   
   

     

   (39) 

  

From (33) we can see that       holds. If     , then    is a best reply of 

player 1 if     . If     , then    is a best reply of player 1 if     . The next 

results are obtained in a similar way. 
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INDIFFERENCE POINT OF PLAYER 2.  

   
   

     

   (40) 

  

(34) ensures      . A best reply of player 2 is    if      and      hold 

simultaneously or if      and      hold simultaneously. 

INDIFFERENCE LINE OF PLAYER 3. The pure strategies    and    yield the same 

(expected) payoffs for player 3 if the following holds: 

                                (41) 
  
This is equivalent to:  

   
        

            
       (42) 

  
Since (35), (36) and (37) hold, it follows that      . If         then    is a 

best reply of player 3, if         then    is a best reply of player 3. 

We have to mention that the indifference points for players 1 and 2 and the indif-

ference line for player 3 given (39), (40) and (42) matter not only for the unper-

turbed game, but represent also the exact values of the perturbed game. We show 

this only for player 1. In the perturbed game his two  -extreme strategies yield 

the same expected payoffs if: 

                                      (43) 
  
Or, equivalently: 

                        (44) 
  

Since   
 

 
, equation (44)  is equivalent to      (see (38) and (39)). 

In this work we are only concerned with the generic cases of signaling games. The 

indecomposable and irreducible games are nongeneric if     and/or if    . 

Their solutions have also been calculated by the author (using if necessary the 

logarithmic tracing procedure and numerical methods), but their presentation 

will go beyond the scope of this work. 
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5. Solution of the Generic Indecompos-

able and Irreducible Games 

In this section we solve the indecomposable and irreducible games with the addi-

tional properties     and    . Let        for       be player i’s best reply to 

a    choice of player 3. We have to distinguish eight cases which are analyzed in 

the following subsections: 

Subsection 5.1.: Case                      

Subsection 5.2.: Case                         

Subsection 5.3.: Case                          

Subsection 5.4.: Case                      

Subsection 5.5.: Case                      

Subsection 5.6.: Case                         

Subsection 5.7.: Case                         

Subsection 5.8.: Case                     . 

Throughout this section we always assume that in the uniformly perturbed game 

the trembling hand parameter   is sufficiently small, i.e.:  

                  
 

   
  (45) 

  
 

5.1. Case                      

The best-reply correspondences of players 1 and 2 in the case considered are giv-

en in figure 10. In the following cases we omit the corresponding figures. They 

can be obtained easily by interchanging    and     for player i if            

holds instead of          , and by interchanging the positions of the markings 

of a and b if     holds instead of     . 
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Figure 10: Best-reply correspondences of players 1 and 2 in 

dependence of player 3’s strategy in case 5.1.  

 

The best-reply correspondence of player 3 is shown in figure 11. Such figures are 

presented for all eight cases considered in this section. The horizontal axis of fig-

ure 10 refers to player 1’s mixed strategy    and the vertical axis to player 2’s 

mixed strategy   . The inner square corresponds to the perturbed game whereas 

the outer square to the unperturbed game. The straight line        shows the 

set of points at which player 3 is indifferent between his two choices (see (42)). 

Points above this line have the property that    is player 3’s unique best reply. 

The same is true for    if we consider points below the indifference line. This fol-

lows from the discussion from (42) in section 4 and is true both for the unper-

turbed and the perturbed game. 

In figure 11 and the corresponding figures of the remaining subsections we also 

mark equilibrium points or connected sets of equilibrium points by the symbol □i
  

if we deal with the unperturbed game and by the symbol ■
i 
 if we deal with the uni-

formly  -perturbed game. The exact mathematical description of an equilibrium point 

   or of a set of equilibrium points    is given in the text.    or    correspond to □
i
 in 

the following figures. Likewise,   
  or   

  correspond to ■
i
. The index i is the number 

of different equilibrium points or sets of equilibrium points starting with     in case 

5.1. It should be clear that equilibrium points in the lower left or the upper right corner 

of figures correspond to pooling equilbria because both types choose the same signal, 

whereas equilibrium points in the upper left or lower right corner are so-called sepa-

rating equilibria. 

   

 

   

Best replies of player 2:                                                                                               

Best replies of player 1:                                                                             

0                                                                            b                                          1 

 a 
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Figure 11: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.1.  

 

As one can easily check with the help of figures 10 and 11, in case 5.1 the unper-

turbed game has the set   , indicated by □1 in figure 11, as equilibrium points and 

no others: 

                             (46) 
  

But each perturbed game has for sufficiently small   (see condition (45)) a 

unique equilibrium point, as indicated by ■1 in figure 11: 

  
          (47) 

  

Therefore, in case 5.1 the limit solution of the game is           . Of course, 

     . 
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5.2. Case                         

Figure 12 illustrates the case considered in this subsection. The unperturbed 

game has a unique equilibrium point              which is therefore the solu-

tion of the game. The unique equilibrium point of the perturbed game is: 

  
                  (48) 

  

Clearly,         
    . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.2.  

 

5.3. Case                          

The equilibrium points in this case are given as follows (see figure 13): 

           (49) 
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              (50) 

  

           (51) 
  

  
            (52) 

  
                               (53) 

  
  

           (54) 
  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.3.  

Since   
  is not the solution of a primitive formation, the first candidate set of the 

perturbed game consists of   
  and   

 . There is no payoff-dominance between the-

se two equilibrium points because player 1 gets positive payoffs at   
  and zero 

payoffs at   
 , whereas player 2 gets positive payoffs at   

  and zero payoffs at   
 . 

The linear tracing procedure (see subsection 2.3) has to decide which equilibrium 

point risk-dominates the other one (see subsection 2.4). 

To analyze the path of the linear tracing procedure we start with the determina-

tion of the bicentric priors. In the following pure strategy symbols with an addi-
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tional lower index “ ” refer to  -extreme strategies of the perturbed game. The 

bicentric priors of the first two players can be calculated easily with the help of 

the appropriate modification of figure 10. We obtain: 

Bicentric prior of player 1: 

      
  

   

    
    (55) 

  
Bicentric prior of player 2: 

      
    

   

    
      (56) 

  
To compute the bicentric prior of the third player figure 14 is useful. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Visualization of player 3’s bicentric prior in case 

5.3.  

Since player 3 assumes that the other player choose either     

  or     

 , his expec-

tations are formed along the dashed line in figure 14. x is that part of the whole 

dashed line at which    is his best reply, y is the rest. Thus his bicentric prior is 

given by: 
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 (57) 

  
Simple facts of geometry yield: 

 

 
 

     

     
 (58) 

  
Furthermore: 

             (59) 
  
We define    as follows: 

   
        

        
 (60) 

  
(57), (58), (59) and (60) together yield the following result. 

Bicentric prior of player 3: 

      
  

        

           
 

 

    
 (61) 

  

The “hat” variables   ,    and   , defined in (55), (56) and (60) converge to a, b and 

c, respectively, if   goes to zero. Therefore,       and      hold for sufficiently 

small  . Let     be the i-incomplete bicentric prior resulting from (55), (56) and 

(61). We now analyze what are the players’ best replies to the bicentric priors, i.e. 

the starting point of the linear tracing procedure. Of course, the best replies of the 

first two players only depend on player 3’s bicentric prior. 

Best reply to     for player 1: 

    
                 

    
                 

Best reply to     for player 2: 

    
                 

    
                 

Best reply to     for player 3: 
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Now we examine which combinations of best replies to the bicentric priors are 

impossible due to parameter restrictions: 

i. If            holds then            is impossible because    . 

ii. If            holds then          is impossible. The first inequality 

implies        , but this is a contradiction to          because 

        and      for sufficiently small  .  

iii. By a similar argument as above we can conclude that            and 

         cannot hold simultaneously. 

Next, we want to show the implications of some relations between a, b and c for 

their corresponding “hat” variables. From (60) it is clear that      holds for each 

 . Thus we can conclude: 

                     (62) 
  

                     (63) 
  

Now assume that        holds. With the help of (55) and (56) one can see 

that this equation is equivalent to the following one: 

              
 

    
 (64) 

  
Since     holds we can conclude: 

                (65) 
  
After these preparations we can analyze the best replies to the bicentric priors for 

the four possible relations among a, b and c. The vector of best replies is denoted 

by   . We obtain: 

                                (66) 
  

                              (67) 
  

                                (68) 
  

                                  (69) 
  
No problems arise in the situations given by (66) and (69) since in both cases the 

resulting    is one of the two  -extreme equilibrium points in the first candidate 

set of the perturbed game and, therefore, no player has an incentive to deviate 
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from this strategy combination along the path of the linear tracing procedure. 

Thus, in the situation described in (66) the limit solution of the game is  

            and in the situation described in (69) the limit solution is 

          . 

The best replies to the bicentric priors in the situations described by (67) and 

(68) do not yield an equilibrium point. But in (67) the analysis is still simple: 

Player 2 and player 3 have no incentive to deviate from their initial strategies 

since they are not only best replies to the bicentric priors but also to   . This is 

not true for player 1, in consequence he must change his strategy if t, the tracing 

parameter, becomes sufficiently large.  After he has changed his strategy from 

   
 to    

 the  -extreme equilibrium point   
            is reached and no 

further change of strategies will occur along the remaining path of the tracing 

procedure. Thus, the limit solution of the game is            . 

The situation described in (68) is more difficult since here two players’ (player 2 

and player 3) best replies to the bicentric priors are not best replies to   . To ana-

lyze the path of the linear tracing procedure it must be determined who is the first 

to change his strategy. For this reason we calculate the destabilization points (see 

subsection 2.3) of players 2 and 3. We show that for sufficiently small   player 2 is 

the first player to shift to his other strategy. 

Player 2’s destabilization point    must satisfy the following equation: 

      
 

    
           (70) 

  
Thus    is given as follows: 

   
         

             
 (7 ) 

  
Since            holds (see (63) and (68)), the numerator is positive, and 

since       holds, the numerator is smaller than the denominator. Therefore, 

       holds for sufficiently small  . We obtain: 

   
   

     
   

 
 (72 ) 

  
Player 2’s destabilization point    can be computed with the help of  (42): 

                                 (73) 

  
Simple computations yield: 
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 (74) 

  
(68) ensures that the numerator is positive for sufficiently small   and     en-

sures that the numerator is smaller than the denominator. Hence,        

holds. However, 

   
   

     (75) 

  
From (72) we know that    is positive but smaller than b for sufficiently small  . 

Since     we can conclude that       holds for sufficiently small  . This means 

that player 2 is the first player to shift his strategy. But after his shift (from    
 to 

   
) the equilibrium point   

  is reached and for t with        no further 

strategy changes occur. We have shown that in the situation described by (68) 

the limit solution is   . 

Now our results for case 5.3 can be summarized. Since    is the limit solution in 

the situations described by (66) and (67), and    is the limit solution in the situa-

tions described by (68) and (69), we can claim:    is the limit solution if 

       holds. Otherwise    is the limit solution. 

 

5.4. Case                      

Figure 15 indicates the equilibrium points in case 5.4. 
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Figure 15: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.4.  

 

The formal equivalents to the square symbols in figure 15 for   ,   
  and   

  are 

still given by (47), (48) and (54), respectively. However,    is not identical with 

   given by (53). Instead, we have: 

                             (76) 
  
Furthermore: 

           (77) 
  

  
              (78) 

  

The equilibrium points   
  and   

  of the perturbed game are not solutions of prim-

itive formations. Consequently the first candidate set contains only   
 . For this 

reason the limit solution of the game is   . 
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5.5. Case                      

Figure 16 illustrates the case considered now. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.5. 

  
 ,   ,   

  and   
  are still given by (46), (47), (48) and (54), respectively. Fur-

thermore: 

                             (79) 
  
Each perturbed game has three equilibrium points, but only   

  is the solution of a 

primitive formation. For this reason, the limit solution of the case 5.5 is 

          . 
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5.6. Case                         

This case is illustrated by figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.6.  

 

The set    is given as follows: 

                               (80) 
  
However, the perturbed game has the unique equilibrium point    

 , given by 

(54). Hence, the limit solution in this case is: 

           (81) 
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5.7. Case                         

Figure 18 indicates the equilibrium points in case 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.7.  

 

            , and the other equilibrium points    ,   
 ,   ,   

 ,    and   
  are 

given by (48) to (52). Since   
  is not the solution of a primitive formation of the 

perturbed game, the first candidate set contains only   
  and   

 . Obviously, there 

is payoff-dominance relationship between these two equilibrium points.  The 

risk-dominance by means of the linear tracing procedure has to resolve which of 

the equilibrium points is the solution of the game. 

Notice that case 5.7 is similar to case 5.3 except that     holds instead of    . 

The bicentric priors are equivalent to those given by (55), (56) and (61). Moreo-

ver, the best replies to the bicentric priors are exactly the same as in the analysis of 

case 5.3, and we omit the repetition of the formulas. However, in the case at hand 

we can exclude combinations of best replies to the bicentric priors different from 
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those in case 5.3.  The “hat” variables   ,    and    are defined as in (55), (56) and 

(60). 

i. If            holds then            is impossible because    . 

ii. If            holds then          is impossible. The first inequality 

implies        , but this is a contradiction to          because      

and         hold for sufficiently small  .  

iii. By a similar argument as above we can conclude that            and 

         cannot hold simultaneously. The first inequality implies 

       , but this is a contradiction to          because         and 

     hold for sufficiently small  .  

Note that the implications for the “hat” variables given by (62), (63) and (65) 

still matter. Now we can list the possible relations between a, b and c and the re-

sulting vectors of best replies to the bicentric priors, still denoted by   . 

                                (82) 
  

                                  (83) 
  

                                    (84) 
  

                                  (85) 
  
In the situation described by (82) the best replies to the bicentric priors establish 

the equilibrium point   
 , and no player has an incentive to shift his strategy along 

the path of the tracing procedure.            is the limit solution of the game. 

Similarly,            is the limit solution in the situation given by (85). 

In the situation described by (83) player 2 is the only player whose initial strate-

gy is not a best reply to   . Hence, if the tracing parameter t becomes sufficiently 

large player 2 will shift to his other  -extreme strategy    
. Then the equilibrium 

point   
  is reached and no further strategy changes will occur in the remaining 

course of the linear tracing procedure. Therefore, the limit solution in this situa-

tion is           . 

The situation described by (84) is similar to that of (68). Now player 1’s and 

player 3’s best replies to the bicentric priors are not best replies to   . We have to 

compute their destabilization points    and    to decide who is the first player to 

shift to his other strategy.  

The computation of player 1’s destabilization point    is analogously to that of    in 

(71) for the situation of (68). We obtain:  
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 (86) 

  
Since            (see (62) and (84)) the numerator is positive and since 

      the numerator is smaller than the denominator. Therefore,        

holds for sufficiently small  . It follows: 

   
   

     
   

 
 (87 ) 

  
Player 3’s destabilization point    can be obtained by interchanging the  ’s by 

     ’s in formulas (73) and (74) because now player 1 and player 2 both 

choose    
 in    instead of    

 as in the situation of (68). Simple computations 

yield: 

   
        

                   
 (88) 

  
In view of (65), (84) and     it is clear that        holds for sufficiently 

small  . However, different to (75) we obtain now: 

   
   

   
      

      
 (89) 

  
From (84) it follows that              and that              holds. Un-

fortunately we cannot identify one player who is always the first to shift his strat-

egy. For example, let                 (satisfying the conditions of (84)). 

We obtain                            . Thus, for these parameter values 

player 3 is the first to shift his strategy. But for                  , satisfy-

ing also the conditions of (84), we obtain                             , 

and player 1 is the first to shift his strategy. Hence, we have to look closer at the 

parameters. 

The condition that                    yields the following relation among the 

parameters a, b and c: 

  
               

          
 (90) 

  
If (90) holds with “ ” instead of “=”, we obtain                   and, there-

fore,       for sufficiently small  . Otherwise, if (90) holds with “ ” instead of 

“=”, we obtain                   and, therefore,       for sufficiently small  . 

But now consider the case that (90) holds strictly. To answer the question who is 
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the first to change his strategy we look directly at    and    as given by (86) and 

(88) and substitute the “hat” variables by their definitions in (55), (56) and (60). 

Some tedious definitions show that       holds for sufficiently small   if and on-

ly if: 

  
                                    

            
 (91) 

  
Obviously, the numerator of the right-hand side of (90) is greater than that of 

(89) and the denominator of the right-hand side of (90) is smaller than that of 

(89). Because all numerators and denominators are positive for sufficiently small 

  it follows that (89) implies (90). Hence, if (89) holds, player 1 is the first player 

to shift to his other  -extreme strategy. 

Now we must consider the consequences of a strategy shift of player 1 or player 3 

along the path of the linear tracing procedure in the situation described by (84). 

If player 1 is the first to shift his strategy the strategy combination          

  , i.e. the equilibrium point   
 , is reached and no further strategy changes occur 

afterwards in the remaining course of the linear tracing procedure.  

If player 3 is the first to shift his strategy the strategy combination        

     is reached. This is not an equilibrium point of the perturbed game, but now 

player 2 is the only player whose momentary strategy is not a best reply to the 

other players’ momentary strategies. So player 2 is the next one who changes his 

strategy. Then the strategy combination          , i.e. the equilibrium point   
 , 

is reached und is sustained until the end of the tracing procedure. 

The analysis of the situation given by (84) can be summarized as follows. The 

equilibrium point            is the limit solution of the game if the following 

holds: 

  
               

          
 (92) 

  
If (92) does not hold,            is the limit solution. 

Connecting this result for (84) with those obtained for (82), (83) and (85) we 

can claim: 

 If either        holds or if (84) holds but (92) does not hold, 

           is the limit solution in case 5.7. 

 Otherwise,            is the limit solution of the game in case 5.7. 
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5.8. Case                      

The final generic case is illustrated by figure 19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Best-reply correspondences of player 3 in de-

pendence of players’ 1 and 2 strategies and equilibrium 

points in case 5.8.  

 

The equilibrium points    and   
  are explained by (77) and (78).     is given as 

follows: 

                              (93) 
  
However     has no corresponding equilibrium points in the perturbed game. 

Hence,   
  is the unique equilibrium point of the perturbed game and            

is the limit solution of the game. 
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6. Overview of the Results 

In this section we present an overview of the limit solutions for all generic games 

of the class of signaling games investigated. The solutions were derived in sec-

tions 3 and 5. If someone is interested in a special game this overview can be used 

to pick up quickly its solution. 

The first step to find the solution for a particular game is to check whether some 

strategy sets are semiduplicate classes or whether inferior choices exist. If this is 

the case the particular player forms an elementary cell and the game is decom-

posable and reducible (part A of this overview reports the results of section 3). 

Part B presents the results of the indecomposable and irreducible games calcu-

lated in section 5. 

 

Part A: Solutions of Decomposable and Reducible 

Games 
 

A1: At least the receiver forms an elementary cell.  

After fixing the receiver, both types eventually form cells. When they are fixed, 

the solution is obtained. 

The following case distinctions of part A are concerned with situations where the 

receiver does not initially form a cell but at least one type does. 

A2: Both types form cells.  

After fixing the two types, the conditional probabilities that the decision node af-

ter player 1’s “inside” choice is reached are given in table 1. With the help of this 

table the receiver can easily compute his best reply and the solution is obtained. 

For convenience we repeat table 1 here.  
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Probability for player 3’s left 
node after fixing the types 

Player 2 
Inferior choice 

“inside” 
Inferior choice 

“outside” 
Semiduplicate 

Class 

Player 1 

Inferior 
choice 

“inside” 

  
 

             
 

   

         
 

Inferior 
choice 

“outside” 

      

             
   

       

         
 

Semi-
duplicate 

class 

 

         
 

 

             
   

 

Table 1: Conditional probabilities that the node after player 

1’s “inside” choice is reached, given that the receiver ob-

served an “inside” choice. 

The remaining case distinctions of part A are concerned with situations where 

only one type forms a cell. We call him player 1. 

A3: Player 1 has the inferior choice “outside” 

Subcases Solution            

   ,      (1,1,0) 

   ,      (1,0,0) 

   ,      (1,c,b) 

   ,     ,                   (1,1,1) 

   ,     ,                  , b+c   (1,1,1) 

   ,     ,                  , b+c   (1,0,0) 

 

Table 2: Player 1 has the inferior choice “outside”. 
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A4: Player 1 has the inferior choice “inside” 

Subcases Solution            

     (0,1,1) 

   ,      (0,0,b) 

   ,      (0,0,1) 

 

Table 3: Player 1 has the inferior choice “inside”. 

 

A5: Player 1’s choices are semiduplicates 

Subcases Solution            

   ,      (1/2,1,0) 

   ,      (1,/2,0,0) 

   ,      (1/2,c/2,b) 

   ,     ,                    (1/2,1,1) 

   ,     ,                  , b+      (1/2,1,1) 

   ,     ,                  , b+      (1/2,c/2,b) 

   ,     ,                  , b+      (1/2,0,0) 

 

Table 4: Player 1’s choices are semiduplicates. 
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Part B: Solutions of Indecomposable and Irreducible 

Games 
 

Cases Solution            

B1:                      (0,0,0) 

B2:                         (1/c,1,a) 

B3: :                          

     Subcase:        (1,0,0) 

     Subcase:        (0,1,1) 

B4:                      (1,1,0) 

B5:                      (0,0,0) 

B6: :                         (0,0,b) 

B7: :                          

     Subcase:        (1,0,0) 

     Subcase:           
 

   
    

                             
(1,0,0) 

     Subcase:           
 

   
    

                             
(0,1,1) 

     Subcase:          
 

   
 (0,1,1) 

B8:                      (1,1,0) 

 

Table 5: Solutions of indecomposable and irreducible games. 
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Summary 

 
In this paper we apply the Harsanyi-Selten solution to a class of simple signal-

ing games. Somebody who is not familiar with the theory of Harsanyi and 

Selten can use this paper as an introduction and can observe different con-

cepts and procedures at work. The overview of the results allows for easy ap-

plication to economic or other models and for comparisons to the outcomes of 

alternative equilibrium selection criteria.  
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Jan Potters, Frans van Winden and Michael Mitzkewitz* 

1. Introduction 

In Potters and Van Winden (1989) a repeated game model is used to analyze 

whether and under which conditions a government would be put under pres

sure (punished) by a pressure group for not conceding to a certain claim. 

In the model it is assumed that the punitive (aggressive) action is not 

used by the pressure group if the government concedes to the claim. The 

same kind of assumption is used in similar models. In the models of 

Selten (1978), Kreps and Wilson (1982) and Milgrom and Roberts (1982), 

for example, the monopolist cannot employ an aggressive marketing 

strategy if the entrant stays out, in Calvert (1987) the political leader 

cannot punish if the follower obeys, in Alt et al. (1988) the hegemon 

cannot punish if the ally obeys. In the present paper it will be examined 

to what extent the outcome of the game changes if this assumption is 

dropped, that is (in our terminology), if the pressure group is allowed to 

use the punitive strategy even if the government takes the action which 

is preferred by the group. 

It appears that extending the strategy space in this way makes the 

repeated game much more complex, even in a two-period context. The number 

of equilibria increases significantly, and some of them are intuitively 

implausible. In order to reduce the set of equilibria we will employ two 

completely different concepts which refine the set of Nash-equilibria. 

First, we will use a concept which restricts "out-of-equilibrium" beliefs 

of a sequential equilibrium. Following VanDamme (1987, Ch.10) we will 

call this concept (Kohlberg-Mertens) admissibility. Secondly, we apply 

the selection theory of Harsanyi and Selten (1988). An additional 

motivation for the present paper is to see the differences and agreements 

beteen the two theories. We will start off with sequential equilibria, 

since for our purposes - the study of pressure, as defined in Potters and 

We are grateful to Eric van Damme, werner Guth, Akira Okada and 
Reinhard Selten for helpful discussions. We alone are responsible 
for any errors and the views expressed. 
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Van Winden (1989) - it is useful that the beliefs of the players and the 

payoffs in any single period of the repeated game are explicitly 

modelled. 

It will be seen that, for a fairly large set of parameter values, the 

use of a punitive action after a concession is part of the equilibrium 

strategies. However, often it need not come into force because the 

government anticipates on that strategy and does not concede. As a 

consequence, the pressure group is often worse off with the extended 

strategy space. Also the comparative statics of the extended game are 

different for some admissible equilibria. Hence, the analysis indicates 

that the assumption, mentioned above, of no punishment after a concession 

may have an important impact on the outcome of the game. 

In Section 2 the "standard" game without the possibility to punish 

a conceding opponent will shortly be discussed. Section 3 presents the 

"extended" game and the equilibria of the one period game. Section 4 and 

5 present the equilibria in case of a repetition of the extended game, 

using the admissibility concept and Harsanyi-Selten's selection theory, 

respectively. Section 6 concludes. 

2. The standard game 

2.1 Structure of the game 

In the sequel we will use an interpretation of the model which refers to 

a context of political pressure (cf. Potters and Van Winden (1989)). 

Other interpretations, such as those in the papers mentioned in the 

introduction, are also possible. 

Assume that a firm f, at a certain point in time, asks a government 

g for a subsidy. The firm claims that it can invest profitably only with 

the subsidy. If the government does not give the subsidy (N) the firm 

must decide whether to punish (D, not invest) or not (I, invest). If the 

government subsidizes (S) it is assumed that the firm does not punish 

(invests). Furthermore, it is assumed that g has incomplete information 

about f's payoffs. The firm can be of two possible types (in the sense 

of Harsanyi (1967-8)). With probability 1-P the firm is of the "weak" 

type (type 1), which prefers to invest (not to punish) even if there is 

no subsidy. With probability P the firm is of the "strong" type (type 2), 

which is better off not to invest if there is no subsidy (e.g., because 

of better opportunities elsewhere). The government prefers not to 

subsidize if the firm would still invest. Table 1 illustrates this 

situation. 



payoffs to 
g f 

<g concedes: s f does not punish: I 0 1 

N<: 

does not punish: I a 0 

g does not concede: 
punishes: D a-1 b-d 

with 0 < a, b < 1 

and d { 
1 with probability 1-P (f is type 1, "weak") 

o with probability P (f is type 2, "strong") 

TABLE 1. The standard game 

2.2 Equilibrium analysis 
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It is a matter of simple calculation to show that for all P f a there is 
a unique sequential (and perfect) equilibrium. The government will 

concede (S) if P > a, and will not concede (N) if P < a. A firm of type 
1 will always invest and a firm of type 2 will invest only if g plays 
subsidy. The situation becomes more interesting if this game is repeated 
a number of times because then a weak type of firm can try to mimic the 
strong type by punishing the government if it does not concede, thereby 

exerting pressure and building a "reputation" for being strong. 
The repeated game has many sequential equilibria, some of which are 

intuitively "implausible". In a two-fold repetition, for instance, the 
following is a sequential equilibrium. The government has a high initial 
belief P1 > a that the firm is of type 2 but does not give a subsidy in 

'the first period (x1 = N) , and plays x2 = s if and only if the firm 

invests (y1 = I). Both types of firm respond to this strategy by investing 

in the first period (if b <~).This equilibrium rests on an implausible 

adjustment of the belief P2 after a deviation from the equilibrium. It is 

implausible because y1 = D after x1 = N should not decrease g's belief P2 

that the firm is of type 2, and therefore g should play x2 = S after 

(x1,y1 ) = (N,D). Such equilibria, however, do not pass the test of admis

sibility. This concept requires an equilibrium to be invariant with 
respect to elimination of never weak best responses. Translated to our 

signalling game, it requires (cf. VanDamme (1987, Ch.lO)) that beliefs 

after a deviation from the equilibrium are concentrated on the type which 

is "most easily" induced to make that deviation voluntary. Admissibility 

is a necessary, but not suffient condition for stability in the sense of 

Kohlberg Mertens' (1986). Furthermore, in our game it leads to the same 
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equilibria as the concept of universal divinity by Banks and Sobel (1987). 

The following notation will be useful to describe the sequential 

equilibrium of the repeated game. Let x, E {S,N} denote g's action in 

period t and y, E {I,D} f's action. P, is g's belief in period t that f 

is of type 2. Let u,(P.) denote the probability (mixed strategy) that g 

plays s in period t when g's current belief is P,. Finally, let p~(P,,x,) 

indicate the probability that f type k (= 1,2) plays I in period t when 

g plays x, (= S,N) and g's belief is P,. Beliefs are common knowledge and 

updated according to Bayes' rule. The following proposition is a special 

case of Proposition 3 in Potters and Van Winden (1989) (see also Van 

Damme (1987, p.297) and Kreps and Wilson (1982)}. 

Proposition 1 

The unique admissible sequential equilibrium strategies are: 

{ 
0 if 0 :5: Pt < aT-t+l 

a,(P.J = 1-b if P, = aT-t+l 

1 if aT-t+l < P, :5: 1 

·{ 
1 if x, s 

Pi (P,, X.) 1 - P.(1-P.)-1 (a-<T-tl_1) if x, N and Pt :5: aT-• 

0 if x, N and P, > aT-t 

={ 
1 if x, s 

p~(P,,x.) for all P, 
0 if x, N 

Uniqueness, here and in the sequel, refers to the equilibrium outcome (the 

probability distribution over end-nodes in the extensive form of the 

game) • Off the equilibrium path the equilibrium strategies need not be 

unique. 

This - very interesting - equilibrium is extensively analyzed and 

discussed in Potters and Van Winden (1989). In the present paper it will 

(for T = 2) mainly be used for comparison with the equilibria of the 

extended game. The following observations are important in that respect. 

2.3 Some observations 

Ex ante (i.e., in expected value terms) it is never profitable to both 

players to make binding agreements to a certain course of action. The 

firm would (only) gain from a binding agreement to play p~(P,,N) = o if 

P1 < a. The government, however, would always lose from such a commit

ment. 
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According to the definition of pressure in Potters and Van Winden 

(1989) - which says that pressure involves a costly action aimed at 
influencing the government's beliefs - the firm can only exert pressure 

if it is of type 1 in this equilibrium. The firm will then play Yt = D if 
~ = N (with a positive probability). This action is costly in the short 
run for the firm of type 1 (b-1 < 0) but not for type 2 (b > 0). 

The government concedes in a certain period t if Pt > aT-u1 • So, the 

probability of concession is non-decreasing in Pt (the probability that 
the firm "needs" the subsidy), and non-increasing in a (the cost tog of 
concession). These result are intuitively very plausible. 

3. The extended game 

We will now extend the game of Section 2 in the sense that the firm will 
be allowed to punish (not invest) even if the government concedes 
(subsidizes). It seems reasonable to assume that the payoff (G(x,y)) to 

the government in case of subsidy and no investment is less than in case 
of no subsidy and no investment. Supplying the subsidy but still being 
punished is the worst alternative to g. So the payoff structure to g is: 

G(N,I) > G(S,I) > G(N,D) > G(S,D) (3 .1) 

A further reasonable assumption seems to be that the firm gains from a 

subsidy even if it does not invest: F(S,D) > F(N,D), where F(x,y) denotes 
the payoff to the firm. Again, it is supposed that the government has 

incomplete information~ut the firms' payoffs. With probability 1-P the 
firm (type 1, with payoff F1 ) prefers to invest even if there is no 
subsidy: 

(3.2) 

With probability P the firm (type 2, with payoff F2 ) prefers to invest if 

and only if there is a subsidy: 

(3.3) 

A parametrization of the payoffs is given in Table 2. [This parametriza
tion can be generalized without qualitatively affecting the results, 

provided that payoffs satisfy the constraints (3.1)-(3.3)]. 
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<f 

~g concedes' s ------~· ~ 

g does not concede: N<: 

f 

does not punish: I 

punishes: D 

does not punish: I 

punishes: D 

where o < a < 1, o < b < c < 1 

G{x,y) F"{x,y) 

0 

-1 

a 

a-1 

1 

c-d 

0 

b-d 

{ 
1 with probability 1-P {f is type 1, "weak") 

and d = 
o with probability P {f is type 2, "strong") 

TABLE 2. The extended game 

It is easily seen that the unique sequential equilibrium of the one

period extended game is identical to that of the standard game. In a one

period analysis the assumption that y = I if x = S has no effect on the 

equilibrium strategies or the expected equilibrium payoffs. Hence, the 

sequential equilibrium strategies in the second period of the repeated 

game are as follows. 

{ 3. 4) 

if P2 > a, where mE [0,1] 

1, for all P 2 and x 2 E {S,N} (3. 5) 

if x 2 N 
(3. 6) 

if X2 s 
The next two sections present the equilibrium analysis of the two-period 

extended game. 

4. Admissible equilibria of the two-period extended game 

It appears that the analysis of the repeated play of the extended game 

is far more complex than that of the standard game. A two-fold repeti

tion of the stage game of Table 2, however, will suffice to illustrate 

our arguments.· In this case the normal form of the game contains 225 pure 

strategy combinations, and if the game is reduced such that players are 

fixed at dominant strategies we are still left with 28 pure strategy 

combinations. There are many sequential equilibria and even more Nash 

equilibria, some of which are intuitively very implausible. To give a 

complete list of all {sequential) equilibria does not seem very useful. 



47 

We will concentrate on admissible equilibria. It will be shown that in 

some cases the concept of admissibility leads to a unique equilibrium, 

but that in other cases this concept is not strong enough to select a 

unique equilibrium (outcome). 
It is useful for the equilibrium analysis to make a distinction 

between two sets of the government's initial belief P1 that the firm is 

of type 2. We will deal separately with the case P1 < a and the case P1 

> a. [The degenerate case P1 = a will not be discussed. In the sequel we 

will disregard all such "knife-edge" cases.) 

4.1 A low initial reputation: P 1 < a 

It is easy to check that the strategies of Proposition 1 for the case T=2 

still form a sequential equilibrium of the extended game. However, the 

following proposition shows that these strategies, at least for certain 

values of the initial belief P1 , no longer are admissible. 

Proposition 2 

For P1 < a, admissibility requires that 

Pi(P11 x1=S) = 1 and pf(P11 x 1=S) = 0 

[The proof is in Appendix A) 

This proposition shows the importance of allowing f to punish (y1 = D) 

even if g concedes (x1 = S). The firm of type 2 will not invest even if 

the government gives the subsidy. This may seem remarkable in view of the 

short run cost of this strategy to f: as can be seen in Table 2, also the 
firm of type 2 prefers to play I if g plays s. This short run cost, 

however, is outweighed by the longer run benefit of this strategy. 

Suppose that type 2 would play pf (P11 x 1 ) = 1 if x1 = S. Then Bayesian 

updating of beliefs after x 1 s, y1 = I requires: 

P2 = Prob{ f is type 21 x1 = S, y1 I} 
( 1-Pl) Pi + P1p~ 

P2 < a would induce g to play x2 = N in period 2 and type 2 to play y2 = 

D. The strategy pf in the proposition, however, leads to P2 = 1 with 

Bayesian updating after x1 = S, y1 = D, and then g will play x2 = S. The 

firm of type 2 takes a costly action in order to influence g•s beliefs. 

According to the definition in Potters and Van Winden (1989) the firm 

exerts pressure on the government. Since F2 (S,D) + F2 (S,I) > F2 (S,I) + 
F2 (N, D) the latter strategy is rational for the firm of type 2 but not for 

type 1: F1 (S,D) + F1 (S,I) < F1 (S,I) + F1 (N,D). This fact causes that the 
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strategies in proposition 1 are no longer admissible {although they still 

form a sequential equilibrium). 

Proposition 3 

For P1 < a there is a unique admissible equilibrium. 

{ 
Oif P1 < a{a) or a < a{a) 

lif a(a) < P1 < a, where a(a) := a 2/(l-a2 ) 

s 

N 

0 for x 1 e {S,N} 

The strategies in the second period, are as in equations (3.4)-(3.6) with 

m = 1-b. 

A first observation that can be made is, that the government supplies 

the subsidy in the first period only if a(a) < P1 < a. [Note that this 

condition can only hold if a< ()5-1)/2.] It is only in this case that 

the firm of type 2 will (be able to) exert pressure. In the other cases 

the threat, of no investment even with a subsidy, deters the government 

from supplying the subsidy. In these latter cases, however, the firm of 

type 1 will exert pressure by not investing (with a positive probabi

lity). So, whatever the government's action (concession or no conces

sion), pressure cannot be avoided! 

A simple comparison of the expected payoffs of the players of the 

equilibria in Proposition 3 and Proposition 1 (for P1 < a) reveals the 

following. 

Proposition 4 

The government is worse off in the extended game if a 2 < P1 < a, and never 

better off. The firm of type 1 is worse off in the extended game if a 2 < 

P1 < min{a,a(a)} and never better off. The firm of type 2 is worse off if 

a 2 < P1 < min{a,a(a)} and better off if a(a) < P1 < a. 

Hence, for a 2 < P1 <min {a,a(a)} a binding agreement not to play the 

punitive action after a concession, would be beneficial to both players. 

Contrary to the standard game, in the extended game there is scope for 

mutually benefical binding agreements. Note that, for a 2 < P1 < 

min{a,a(a) }, the firm would not reveal its type if it expressed a wish 

to enter such an agreement. 
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4.2 A high initial reputation: P1 > a 

Also in this case the strategy by the firm of type 2 not to invest with 

a positive probability if there is a subsidy is part of two admissible 

equilibria (denoted E2 and E3). A major difference with the case P1 <a, 
however, is that now there is also a admissible equilibrium (denoted E1 ) 

in which both types of firms invest if the subsidy is being supplied. 

Moreover, this equilibium E1 payoff dominates the other admissible 
equilibria. 

Proposition 5 

For P1 > a there are three admissible equilibria, denoted E1 and E2 and E3 • 

N 
for k 1, 2 

s 

{ 
1 if a < P 1 < 13 (a) 

C11 (Pd = 
0 if j3(a) < P1 < 1, where j3(a) = a 2-a+1 

N 

s • a 
1-a 

{ 
1 if a < P 1 < -y (a) 

0 if -y (a) < P1 < 1 or -y (a) < a, where -y(a) = 1/(1+a) 

N 

s 

N 

s 

The second period strategies are given by ( 3. 4)- ( 3. 6) , where for 

equilibrium E2 g must play m = (c-b)/(1-b) if it is indifferent (P2=a). 

Proposition 6 

Equilibrium E1 payoff dominates equilibrium E2 , which in turn (weakly) 

payoff dominates equilibrium E3 • 

[The proof is by simple comparison of expected payoffs.] 

The outcome of equilibrium E1 appears to be identical to the outcome of 

the equilibrium of the standard game in Proposition 1. Contrary to the 
case P1 <a (see Proposition 2), this equilibrium is admissible now. The 
reason for this is that the higher value of P1 is sufficient to ensure 

that the government will again supply a subsidy in period 2, even if P2 
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remains unchanged. Therefore, there is no reason for the firm to exert 

pressure in order to raise P2 • 

It is remarkable that for the equilibria E2 and E3 the comparative 

statics results of the standard game need no longer hold. A higher belief 

P1 that the firm "needs" the subsidy may decrease the "probability" o 1 

that the government supplies the subsidy in the first period. This, of 

course, is due to the fact that type 2 does not invest (with a positive 

probability) if the government supplies the subsidy, which is even worse 

to g then not supplying the subsidy and being punished. 

The players could again benefit from a binding agreement always to 

play the strategy p~(P1 ,S) = 1. However, as long as the possibility to 

make binding agreements is not explicitly included in the rules of the 

game, equilibria E2 and E3 cannot be excluded. Although we have not 

checked all the details yet, we conjecture that not only the outcome of 

equilibrium E1 but also that of E3 is stable in the sense of Kohlberg and 

Mertens (1986), whereas the equilibrium outcome of E2 is not. In the next 

Section we will see that the strategy pf(P1 ,S) which supports equilibria 

E2 and E3 is eliminated in Harsanyi-Selten's selection theory. 

5. The Harsanyi-Selten solution of the two-period extended game 

Because the theory of equilibrium selection by Harsanyi and Selten (1988) 

considers uniformly perfect: equilibria and not sequential equilibria, we have 

to change some of the terminology used in the previous sections. In order 

to facilitate comparison of the results we will use similar notations. 

Assume that the firm's agents in the second period are fixed at their 

dominant choices. Because we are only interested in non-degenerate cases, 

the avoidance of perturbations in the last stage of the game does not 

change the results. The truncated game has nine agents. We call 

government's first-period agent g 1 , and o 1 (P) is his probability (mixed 

strategy) to play s. The four agents of the firm in the first period are 

denoted by f~x, where ke { 1, 2} indicates f' s type, and xe { s, N} is g 1 ' s 

action. The local mixed strategy of ~x is p~(P,x) and represents his 

probability to play I. The four second-period agents of the government 

are called g~, where xe(S,N} is again g 1 's action and ye{I,D} is the 

firm's action in the first period. o 2 (P,x,y) is the mixed strategy of g~, 

the probability to choose S. Harsanyi-Selten's theory does not re.quire 

posterior beliefs to be specified. Therefore, the argument P, also in the 

strategies for the second period, refers to the init:ial belief (which is 

denoted P1 in the preceding sections). 

In Appendix B we will briefly describe those elements of the 

Harsanyi-Selten theory which are used to calculate the solution of the 
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two-period extended game. Appendix B also includes the proof of the 
following proposition. 

Proposition 7 

The Harsanyi-Selten theory prescribes the following local strategies for 
the agents of the two-period extended game. 

{ 
o if P < min{a,a(a)} 

ul(P) = 1 
if P > min{a,a(a)} 

={ 

0 if P < a 
u2 (P,S,I) 

1 if P > a 

u2 (P,S,D) =1 

={ 

0 if P < a 
u2 (P ,N, I) 

b if P > a 

={ 

1-b if P < a 
u2 (P,N,D) 

1 if P > a 

Pi(P,S) 1 

{ 0 if P < a 
p~(P,S) 

1 if P > a 

{ 1-P( 1-P) -l (a-1-1) if 
Pi(P,N) 

0 if 

p~(P,N) 0 

A low initial reputation: P < a 

P < a 

P > a 

A comparison with the results of Propositions 2 and 3 shows that the 

Harsanyi-Selten theory selects exactly the unique admissible equilibrium. 

It should be noted, however, that it is not always the case that a 

unique admissible (or stable) equilibrium and Harsanyi-Selten's solution 

coincide (Figure 10.9 in Harsanyi-Selten (1988,p. 351) provides a 
counterexample.) But, perhaps, the results of these completely 

differently constructed - theories more often coincide than one might a 

priori expect. 
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A high initial reputation: P > a 

The equilibrium selected by Harsanyi-Selten is close to equilibrium E1 of 

Proposition 5. Differences only occur off the equilibrium paths (consider 

the strategy of agent g~r). 

Proposition 6 shows that the E1-outcome payoff-dominates the outcomes 

E2 and E3 • Although payoff-dominance plays a crucial role in Harsanyi

Selten's theory, it is not true that always a payoff-dominant equilibrium 

of the whole game is selected if such an equilibrium exists. The solution 

of the whole game is obtained by comparison of solely government's solution 

payoffs for the "concessi\n cell" and the "non-concession cell" (see 

Appendix B, Lemma 3). Howeve~, the solution of the "concession cell" (see 

Appendix B, Lemma 1) is determined by payoff-dominance considerations in 

the case P > a, which indeed eliminates the strategies which sustain 

equilibria E2 and E3 • 

Comparative statics 

If we neglect the degenerate case P = a, the Harsanyi-Selten solution 

reveals the following properties: 

(a) for each agent of the government the probability to supply the 

subsidy is a nondecreasing function of P, given a, and a nonincrea

sing function of a, given P (recall that a indicates the cost to g 

of concession); 

(b) for each agent of the firm's weak type (type 1) the probability to 

invest is a nonincreasing function of P, given a, and a nondecreasing 

function of a, given P; 

(c) for each agent of the firm's strong type (type 2) the probability to 

invest is a nondecreasing function of P, given a, and a nonincreasing 

function of a, given P. 

These - intuitively appealing - comparative statics results, are of 

course analoguous to those obtained for the unique admissible equilibrium 

in the case P1 < a, and the payoff dominant admissible equilibrium E1 in 

the case P1 > a. 

6. Conclusions 

The use of the punitive strategy after a concession by the opponent, 

may be part of the (unique) equilibrium strategies for the strong type 

of firm. The short run costs of this strategy may be outweighed by a 

longer run benefit, because of the effect on the government's beliefs. 

However, this (remarkable) strategy need not come into force because of 

anticipation by the government - conceding but still being punished is 

the worst alternative to the government. Consequently, both the firm and 
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the government can - for a significant range of parameter values -
benefit from a commitment by the firm, not to use the punitive action if 

the government concedes. This fact, which is not visible in the standard 
model, may provide a rationale for government regulation (e.g., subsidies 

being coupled with certain conditions). 
The probability that pressure is exerted increases in the extended 

model. Both types of the firm may now exert pressure (i.e., send a costly 

signal). Moreover, for certain parameter sets pressure cannot be avoided. 
If the government concedes the strong type of firm will exert pressure, 
and, if it does not concede the weak type will exert pressure (with a 
positive probability). 

We have also shown that in the extended game the admissibility 
concept does not always select a unique equilibrium outcome, contrary to 
the standard game. For some parameter values payoff dominated equilibria 

survive the admissibility test. Furthermore, the (three) different 
admissible equilibria mutually disagree on some comparative statics 

results. Harsanyi-Selten's theory, by definition, selects a unique 
equilibrium. On the equilibrium path this equilibrium appears to be 

identical to the admissible equilibrium, when the latter is unique, and 
identical to the payoff dominant admissible equilibrium, if admissibility 

does not yield uniqueness (the comparative statics of these equilibria 
are intuitively plausible). Hence, in our- fairly complex- game there 
seems to be more agreement between the two theories then one might 

perhaps a priori expect. 

APPENDIX A 

First some additional notation will be introduced. ~(P.), (fort= 1,2 
and k = g,1,2) denotes the total expected payoffs of playing the repeated 
extended game in period t, for player g, f type 1, and f type 2, respec

tively. P2 (P1 ,x11 y1 ) denotes the updated (posterior) beliefs of g in period 
2 as a function of the initial beliefs and the actions in period 1. Using 

the strategies (3.4)-(3.6) the values of ~(P2 ), k = g,1,2, can easily be 
computed. We will use these values in the proofs of Propositions 2 and 

4, without presenting them explicitly here. 

Proof of Proposition 2 

We will prove that p~(P11 S) 
tion. 

o for all P1 < a by contradic-
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A) Assume that p~(P11 S) < 1. This can only be an equilibrium (i.e., 

optimal) strategy if the total expected payoffs of playing y 1 = I do 

not exceed those of playing y 1 = D: 1 + wi(P2 (P1 ,S,I)) :5 c-1 + 

wi(P2 (P1 ,S,D)) or equivalently: wi(P2 (P1 ,S,D)) - wi(P2 (P1 ,S,I)) ~ 2- c (> 

1). This, however, gives a contradiction since the left-hand side can 

never exceed 1. Hence p~(P1 ,S) = 1. 

B) Assume Pi(P11 S) = 1, p~(P11 S) = 1. Consistency with Bayes' rule then 

implies: P2 (P1 ,S,I) = P~" P2 (P1 ,S,D) cannot be determined by Bayes' rule 

since (x1=S,y1=D) is a "zero-probability event". For the strategies to 

be optimal it is required that: 1 + wi(P2 (P11 S,I)) ~ c-1 + wi(P2 (P1 ,S,D)) 

and 1 + w~(P2 (P11 S,I)) ~ c + w~(P2 (P1 ,S,D)). Since P2 (P1 ,S,I) = P1 < a 

these inequalities amount to, respectively: wi(P2 (P1 ,S,D)) :52- c and 

w~(P2 (P1 ,S,D)) :51+ b- c. Since o < b < c < 1, the former inequality 

holds for any P2 (P1 ,S,D) e [0,1] whereas the latter does not. Thus, only 

type 2 can - for certain values of P2 (P1 ,S,D) - be induced to play y 1= 

D after x 1=S voluntarily. Therefore, admissibility requires that the 

beliefs after the "zero-probability event" (x1=D,y1=I) are concentrated 

on type 2: P2 (P1 ,S,D) = 1. But then w~(P2 (P1 ,S,D)) = 1 which means that 

p~(P1 ,S) = 1 cannot be optimal. 

C) Assume Pi(P11 S) = 1, 0 < pf(P11 S) < 1. Consistency implies: P2 (P11 S,D) 

= 1 and P2 (P1 ,S,I) < Pp This means that 1 + ~(P2 (P11 S,I)) = 1 + b < c 

+ w~(P2 (P11 S,D)) = c + 1, so pf(P11 S) > 0 cannot be optimal. 

Combining A, B, and C establishes the claim. 

Proof of Proposition 3 

First, by condradiction it will be proved under A, B and C that Pi(P1 ,N) 

< 1 and pf(P11 N) = 0. 

A) Assume Pi(P11 N) = 1 and p~(P11 N) < 1. Consistency with Bayes' rule 

implies that: P2 (P1 ,N,D) = 1 and P2 (P1 ,N,S) < Pp Then type 2 prefers to 

play y 1 = N since b + ~(P2 (P11 N,D)) = b + 1 > ~(P2 (P11 N,I)). Hence, 

pf(P1 ,N) = o. Constistency implies P2 (P1 ,N,I) = 0. But then y 1 = I cannot 

be optimal for type 1, since wi(P2 (P11 N,I)) = 0 < b-1 + wi(P2 (P1 ,N,D)). 

B) Assume Pi(P11 N) = 1 and pf(P11 N) = 1. Consistency implies P2 (P11 N,I)) = 
P1 and P2 (P11 N,D)) is undetermined. For these strategies to be optimal, 

it must hold that, 

wi(P2 (P1 ,N,I)) ~ b-1 + wi(P2 (P11 N,D)) and 

~(P2 (P1 ,N,I)) ~ b + ~(P2 (P1 ,N,D)) 
(A.1) 

(A.2) 

The first inequality holds for all P2 (P1 ,N,D)) whereas the second can 

only hold if P2 (P1 ,N,D) ~ a. So, only type 2 can be induced to play y 1 

= D voluntary. Therefore, admissibility requires that the posterior 
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beliefs are concentrated on this type: P2 (P11 N, D) 

inequality (A.2) can never hold. 

1. But then 

C) Combining A and B yields Pi(P1 ,N) < 1. Type 1 never strictly prefers to 

play y 1 = N after x 1 = D, that is, it must always hold that 

w~(P2 (P1 ,N, I)) !'> b-1 + wi(P2 (P1 ,N,D)). For this it is necessary that 

P2 (P1 ,N,D) > P2 (P11 N,I). But then type 2 strictly prefers to play y 1 = 

N after x1 = N: p~(P1 ,N) = o. This establishes the claim and also that 

P2 (P11 N,I) = 0. 

D) Pi(P11 N) = 0 cannot be optimal if P1 < a, since then P2 (P11 N,D) = P1 and 

thus the strict inequality in (A.1) would hold. Now, assume o < Pi(P1 ,N) 

< 1. Then (A.1) must hold with equality, or, equivalently wi(P2 (P11 N,D)) 

= 1-b. This can only hold if a2 (P2 ) = 1-b, which requires that g is 

indifferent in the second period: P2 (P1 ,N,D) = a. To justify this 

posterior belief, Bayes' rule requires that 

Plpf(PliN) 
------------------------ = a or 

P1 ( 1-a) 
Pi(Pl,N) = 1 -

(1-PtJa 

Since, of course, Pi(P1 ,N) !'> 1, this can only hold if P1 < a. If P1 > a, 

Pi(P1 ,N) = pf(P1 ,N) = 0 are the only admissible strategies. 

E) Given the unique admissible equilibrium strategies p~(P1 ,x1=N), fork 

= 1, 2, and P1 < a, the optimal response a 1 (P1 ) to these strategies for 

player g follow by simple calculation. The optimal strategy for player 

g is a 1 (P1 ) = 1 if and only if a 2/(1-a2 ) < P1 < a. This condition, 

however, can never hold if a 2j(1-a2 ) > a, that is, if a > (}5-1)/2. 

Proof of Proposition 5 

The unique admissible equilibrium strategies p~(P1 ,x1=N) = 0, k = 1, 2, 

for P1 > a follow from part D of the proof of Proposition 3. Note also 

that Pi(P1 ,x1=S) = 1 is a dominant strategy for type 1 (see part A of the 

proof of Proposition 2). We will now show that (A) p~(P1 ,S) = 1, (B) 

p~(P11 S) = [ (1-P1)a]/[Pd1-a)], and (C) pf(P11 S) = 0 are part of the admis

sible sequential equilibria E1 , E2 , and E3 , respectively. 

A) Suppose pf(P11 S) = 1 is an equilibrium strategy. Consistency with Bayes' 

rule requires: P2 (P1 ,S,I) = Pl" (Since P1 >a this implies a 2 (P2 (P11 S,I)) 

= 1.) P2 ( P1 , I, D) cannot be updated according to Bayes' rule, but, 

whatever its value neither type of player f can be induced to play y 1 

= D after x 1 = S: 1 + w~(P2 (P1 ,S,I)) = 2 > c-1 + wi(P2 (P11 S,D)) and 1 + 

~(P2 (P1 ,S,I)) = 2 > c + w~(P2 (P11 S,D)). Since any posterior belief 

P2 (P1,I,D) supports the equilibrium it is admissible. 

B) Suppose pf(P11 S) = [ (1-P1)a]/[Pd1-a)]. Consistency with Bayes' rule 

implies: P2 (P11 S,D) = 1, and P2 (P1 ,S,I) = P1p~(P11 S)/[P1p~(P11 S)+(1-
P1Jpi(P11S)] = a. This makes g indifferent in period 2 after (x1 ,ytJ = 
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(S,I). To justify type 2's randomization after x 1=S, a 2 (a) = m must be 

such that type 2's expected payoffs of playing y 1 = D and y 1 =I are 

equal: c+l = m2 + (1-m) (b+l). Solving form yields m = (c-b)/(1-b). 

There are no zero-probability events in this sequential equilibrium, 

so it is admissible. 

C) Suppose p~(P11 S) = O. Consistency requires P2 (P1 ,S,I) = 0 and P2 (P11 I,D) 

= 1. Given these beliefs playing y 1 = I after x 1 = s is optimal for type 

1: 1 + w~(P2 (P1 ,S,I)) = 1 > c-1 + w~(P2 (P11 S,D)) = c, and playing y 1 = D 

after x 1 = S is optimal for type 2: 1 + ~(P2 (P1 ,S, I)) = 1 + b < c + 

w~(P2 (P1 ,S,D)) = 1 +c. Since there can be no zero-probability events 

in this sequential equilibrium it also is admissible. 

D) The optimal strategies a 1 (P1 ) in reponse to the strategies p~(P1 ,x1 ) in 

equilibria E1 , E2 , and E 3 follow by simple calculation. [In equilibrium 

E3 the optimal strategy for g is atCP1 ) = 1 if a < P1 < 1/(l+a). This 

condition, however, can never hold if a> 1/(l+a), that is, if a> (}5-

1)/2.] 

APPENDIX B 

Before proving Proposition 7, some of the concepts and procedures from 

Harsanyi-Selten's selection theory (HS), used in the proof, will be 

presented. 

UniformlY perfect equilibria. Perturb a game such that each agent has to 

play each of his choices with probability not smaller than'· The limit 

equilibria of this perturbed game as < goes to zero are the uniformly 

perfect equilibria of the original game. HS requires the solution to be 

uniformly perfect. 

Cell-consistency. A group of agents forms a cell, if for each of these 

agents the strategic situation only depends on the other members of the 

group. In the two-period extended game the four agents fi5 , f~5 , g~1 , and 

g~0 , which come into play in case g 1 chooses S, form a cell which we call 

the "concession cell". The "non-concession cell" is formed by the agents 

fiN, f~N, g~1 , and g~0 • HS has the property that the solution of the game 

and the solution of a cell always prescribe the same local strategies to 

all agents in the cell. 

This cell consistency enables us to proceed as follows. First, the 

solution of the concession cell (Lemma 1) and of the non-concession cell 

(Lemma 2) are calculated. The eight involved agents are fixed at their 
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solution strategies and the optimal behavior of agent g1 is determined 

afterwards (Lemma 3). 

Elimination of inferior choices. If an agent has a weakly dominated 

choice, he is fixed at his other choice. In our game each agent has only 

two possible choices. This means that the dominating choice is played 

with probability 1-•. To meet HS's terminology we will use the term 

"inferior choice" instead of "weakly dominated choice". In our game there 
is no difference between the two concepts (see HS, p. 118). 

Solution of 2x2-games. If a 2x2-game has two pure strategy equilibria and 

one of them is payoff dominant, this is the one selected by HS. If no payoff 

dominance exists, let (q1 ,~) be the mixed strategy equilibrium, with q1 

player i's probability to play the strategy belonging to the, say, first 

pure equilibrium. If q1+~ < 1 then the first pure equilibrium, if q1+q2 

> 1 then the other pure equilibrium, and if q1+q2 = 1 then the mixed 

equilibrium is selected as the solution of the game. This is not an ad 

hoc rule, but the consequence of an axiomatic approach (see HS, p. 86). 

Also the risk dominance comparison between the two pure equilibria using 

the tracing procedure yields the same result. 

Now we are well-prepared to calculate the Harsanyi-Selten solution of the 

two-period extended game. 

Lemmal 
The HS solution for the concession cell is: 

p~(P,S} = 1 1 

a2 (P,S,D) 

Proof 

p~(P,S) { 
o if P < a 

1 if P > a 

{
OifP<a 

1, a 2 (P,S,I) = 
1 if P > a 

Strategies in the perturbed game are indicated by a lower index '· 

Agent f~5 has the inferior choice D since this choice yields him at most 

c, whereas I yields at least 1. So he is fixed at p~,(P,S) = 1-• in the 

perturbed game. Now consider agent g~. He has the best reply s if: 

-•(1-P)-P(l-p~(P,S)) ~ <(1-P) (a-l)+P(l-p~(P,S)) (a-2) 

or, equivalently, if: 

1-p~,(P,S) ~ (1-P)a 
P(l-a) ' (B.l) 

Suppose P > a. Then the right-hand side of (B.l) is smaller than • and 

the left-hand sight is at least '. Thus, if P>a (B.l) always holds. 

Consequently, g~n has the inferior choice N and is fixed at a 2,(P,S,D} = 

1-•. The remaining 2x2-game between ff5 and g~I has two pure strategy 
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equilibria (I,S) and (D,N). The first equilibrium yields the (un

perturbed) payoffs 2 for f and 0 for g. The second yields l+cP for f and 

a-P-aP for g. Since P>a, the first equilibrium payoff dominates the 

second one. Thus, p~,(P,S) = a 2,(P,S,I) = 1-< is obtained. 

Suppose P < a. Now (B.l) does not always hold. But consider agent g~1 • He 

has the best reply N if: (1-<) (1-P)a + Pp~,(P,S) ~ o, or, equivalently, 

if: 
2 ( < ( 1-P) a ) 

P1c P,S) - P(1-a) (1-< (B. 2) 

Since P<a, the right-hand side of (B.2) is always greater than 1-< and 

the left-hand side is at most 1-<. This implies (B.2). Hence, agent g~1 

is fixed at al< (P, s, I) = <. The remaining 2x2-game between f~s and g~0 has 

two pure equilibria, namely (I,N) and (D,S). {The first of which is only 

strong in the perturbed game.) Because there is no payoff dominance 

between them, we consider the mixed equilibrium of the perturbed game, 

which is given by p~,(P,S) = 1 - a{l-P) [P(1-a) ]-1, and a 2,(P,S,D) = {1-

c) ( 1-b) -1 + , • For sufficiently small , , the sum of the probabilities that 

f~s chooses D and that g~0 chooses S is strictly less than 1. According to 

the properties mentioned in the introduction of this appendix {D,S) is 

selected as the solution of the 2x2-game. We obtain p~,(P,S) = ' and 

a~(P,S,D) = 1-,, if P<a. 

By letting < go to zero the claim of the Lemma follows immediately. 

Lemma 2 

The HS solution for the non-concession cell is as follows: 

{ 1 - P{1-P)-1(a-1-1) if P < a 
Pi(P,N) 

0 if P > a 

p~(P,N) = 0 

={ 
0 if P < a 

a 2 (P,N, I) 
b if P > a 

={ 
1-b if P < a 

a 2 {P,N,D) 
1 if P > a 

Proof 

We start with the determination of the best replies. 

Agent fi" has the best reply I if: 

a 2, ( P, N, D) :5 a 2, ( P, N, I) + 1 - b 

Agent f~" has the best reply I if: 

a 2, ( P, N, D) :5 a 2, ( P, N, I) - b/ ( 1-b) 

Agent g~1 has the best reply S if: 

p~,(P,N) ~ (1-P)a[P(l-a) ]-1Pi,(P,N) 

Ag nt g~ has the best reply S if: 

(B. 3) 

(B. 4) 

(B. 5) 
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p~,(P,N) ~ (1-P)a[P(l-a) ]-1pi,(P,N) + (P-a) [P(l-a) ]-1 (B. 6) 

Suppose b ;?: 1/2. In that case (B. 4) never holds, so agent f~N has the 

inferior choice I and is fixed at p~,(P,N)=e. Consider the subcase P>a. 

After fixing f~N, (B.6) always holds for sufficiently small e. Con

sequently, g~1 is fixed at a 2,(P,N,D)=1-e. The remaining 2x2-game between 

fi" and g~1 has a unique equilibrium given by: 

Pi,(P,N) = P(l-a) [ (1-P)a]-1 < and a 2,(P,N,I) =b-e. 

Now, consider the subcase b;?:1/2 and P<a. After fixing f~N, (B. 5) could 

never hold, so agent g~1 has the inferior choice s and is fixed at 

a2, (P, N, I) =e. The remaining 2x2-game between agents fiN and g~0 has the 

following unique equilibrium: 

Pi,(P,N) = (a-P) [a(1-P) ]-1 + P(l-a) [a(1-P) ]-1 < and a 2,(P,N,D) = 1-b+e. 

Letting < go to zero, the claim follows immediately for the case b ;?: 1/2. 

Now consider the more difficult case b < 1/2 in which no inferior 

choices exist. Figure B1 illustrates (B.3) and (B.4) if b<1/2. The 

letters above and below the indifference curves indicate the best reply 

regions for the respective choices of the agent associated with this 

curve. The inner square corresponds to the c-perturbed game. Similarly, 

Figures B2 and B3 illustrate (B.5) and (B.6), but here we have to distin

guish between P>a and P<a. 

Since there are no intersections of the indifference curves, we can 

conclude that both agents of a player cannot be indifferent simul

taneously. From the fact that no indifference curve intersects with one 

of the corners of the inner square (perturbed game) it follows that it 

is impossible that one agent is indifferent while none of the agents of 

the other players is indifferent, because then they would have to play 

a "corner" strategy combination. Consequently, in equilibrium points of 

the perturbed game either no agent is indifferent (all four agents play 

e-extreme strategies) or exactly two agents (one of each player) are 

indifferent. With the help of this conclusion we can list all strategy 

combinations for g 1 s agents, the best replies against these for f 1 s 

agents (with the help of Figure B1), and the best replies against these 

best replies for g 1 s agents (with the help of Figures B2 and B3). If the 

"last" best replies are equal to the initial strategy combination, an 

equilibrium of the perturbed game is found. Tables B1 and B2 present the 

lists. The symbol "i" is used for a completely mixed strategy of an 

indifferent agent, chosen appropriately to make one agent of the other 

player indifferent too. 
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(1-t,l-t) 
( 1-£ 1 i ) 
(1-t, £ ) 

( i ,1-t) 
( i 1 £ ) 

( £ 1 1-£) 
( £ 1 i ) 
( £ I £ ) 

... 
( 1-£ 1 £ ) 
(1-t, i ) 
(1-,,1-t) 
( i 1 £ ) 

(1-£, i ) 
( £ I £ ) 

( i 1 £ ) 

( 1-£ 1 £ ) 

... 

( £ 1 1-£) 
( i 1 1-£) 
(1-,,1-t) 
( i ,1-t) 
( i ,1-t) 
(1-t,l-t) 
( i ,1-t) 
( £ ,1-t) 

no equilibrium 
no equilibrium 
no equilibrium 

EQUILIBRIUM 
no equilibrium 
no equilibrium 
no equilibrium 
no equilibrium 

Table B1. Equilibrium analysis of the perturbed non-concession cell 
if b < 1/2 and P >a (see Figures B1 and B2). 

Table Bl demonstrates that if b<1/2 and P>a the non-concession cell has 

a unique uniformly perfect equilibrium with a 2.(P,N,D) = 1-< and p~.(P,N) 

= t. The specific values for the mixed strategies of agents fiN and g~r are 

obtained from (B.3) and (B.5): Pi.CP,N) = P(1-a)[(1-P)a]-1t and a 2.(P,N,I) 

= b-e. This unique uniformly perfect equilibrium (hence, the solution) 

is indicated in Figures B1 and B2 by black points. 

(a2.(. ,I) ,a2.(. ,D)) (pi. ( • ) I p ~£ ( • )) (a2• (.,I) ,a2.(. ,D)) 

(1-,,1-t) ... (1-£, £ ) ... ( £ ,1-c) no equilibrium 
(1-t, i ) .... (1-c, i ) ... ( £ I i ) no equilibrium 
(1-£, £ ) .... (1-c,1-c) ... ( £ I £ ) no equilibrium 
( i ,1-c) ... ( i I £ ) 

I 
... ( £ I i ) no equilibrium 

( i I £ ) .... (1-£, i ) ... ( £ I i ) no equilibrium 
( £ 1 1-t) ... ( £ I r. ) ... ( £ I £ ) no equilibrium 
( £ I i ) ... ( i I £ ) ... ( £ I i ) EQUILIBRIUM 
( £ I £ ) ... (1-c, £ ) ... ( £ 11-£) no equilibrium 

Table B2. Equilibrium analysis of the perturbed non-concession cell 
if b < 1/2 and P <a (see Figures B1 and B3). 

Likewise, there is a unique uniformly perfect equilibrium if P<a, as 

Table B2 shows. Here a 2.(P,N,I) ='and p~.(P,N) = t. (B.3) and (B.6) 

yield: Pi.CP,N) = (a-P)[a(1-P)]-1+P(1-a)[a(1-P)]-1 t and a 2.(P,N,D) = 1-b+t. 

Figures B1 and B3 indicate this equilibrium by black squares. 

Hence, there is no difference between the solutions strategies for 

the cases b ~ 1/2 and b < 1/2. Let , go to zero and the claim of the 

Lemma follows immediately. o 

Lemma 3 

The HS solution prescribes the following strategy for agent g 1 

{ 
0 if P < min{a,a(a)} 

a1(P) = 1 
if P > min{a,a(a)} 
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Proof 

Easy calculation shows that g's solution payoffs in the concession cell 

are 0 if P > a and a-P(l+a) if P < a. In the non-concession cell g 

obtains a-1 if P > a and 2a-P(l+a-1 ) if P < a. Consequently, agent g 1 

chooses s if P >a. If P <a, agent g 1 prefers s only if P > a(a), as 

simple computation shows. 

Proof of Proposition 7 

The proposition summarizes the results of Lemmata 1, 2, and 3. 

1 

1 

Figure Bl. Example (b=l/3) for the best reply structures 

of agents fiN and f~N if b < ~ . 

1 

p~(P,N) 

0 Pi(P,N) 1 

Figure B2. Example (P=2/3,a=1/3) for the best reply structures 

of agents g~r and g~0 if P > a. 
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1 

N 

s 
(B. 6) 

0 

Figure B3. Example (P=1/3,a=2/3) for the best reply structures 
of agents g~1 and ~ if P < a. 
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