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Predicting stable crystalline compounds using chemical
similarity
Hai-Chen Wang1, Silvana Botti 2 and Miguel A. L. Marques 1✉

We propose an efficient high-throughput scheme for the discovery of stable crystalline phases. Our approach is based on the
transmutation of known compounds, through the substitution of atoms in the crystal structure with chemically similar ones. The
concept of similarity is defined quantitatively using a measure of chemical replaceability, extracted by data-mining experimental
databases. In this way we build 189,981 possible crystal phases, including 18,479 that are on the convex hull of stability. The
resulting success rate of 9.72% is at least one order of magnitude better than the usual success rate of systematic high-throughput
calculations for a specific family of materials, and comparable with speed-up factors of machine learning filtering procedures. As a
characterization of the set of 18,479 stable compounds, we calculate their electronic band gaps, magnetic moments, and hardness.
Our approach, that can be used as a filter on top of any high-throughput scheme, enables us to efficiently extract stable
compounds from tremendously large initial sets, without any initial assumption on their crystal structures or chemical
compositions.
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INTRODUCTION
The quest for new materials is one of the most important
endeavors of materials science1,2. The discovery of materials with
tailored properties hold the promise of improving existing
technologies, but also of enabling new disruptive applications3.
Unfortunately, there exist many examples of technologies that
remain in the realm of science fiction due to the unavailability of
adequate materials4,5. This may happen because known com-
pounds are toxic, rare, or too expensive for industrial, large scale
use, or simply because no material is known with good enough
properties6–8.
It is clear that the number of imaginable materials is extremely

large, as it derives from the combinatorial problem of arranging
chemical elements of the periodic table in all possible stoichio-
metries and dynamically stable crystal structures9. This number is,
however, reduced as most combinations are not prone to
experimental synthesis2. There are several reasons for this: the
crystal structure may describe a high-energy polymorph that can
not be stabilized, the stoichiometry itself may be highly unstable
to decomposition to other compounds, or it may simply be that
there is no easy thermodynamically favored reaction path for
experimental synthesis. In spite of these problems, there remains a
very large number of experimentally reachable materials, of which
we know only a small fraction10.
For the past decades, we have witnessed spectacular advances

in computational materials science. One of the main reasons for
this was the progression of density functional theory (DFT)11,12

that, thanks to its excellent accuracy combined with remarkable
computational efficiency, has become the workhorse method for
the theoretical study of materials13. Favored by the advent of
faster supercomputers and better software, DFT opened the way
for extensive numerical studies of large datasets of compounds14.
These so-called high-throughput studies15, whose results are
conveniently stored in online databases, have greatly extended

our knowledge of materials and have already lead to the discovery
of a variety of compounds with improved properties15–18.
There are several strategies that can be used for the theoretical

search of materials18,19. One of the most prominent approaches
for inorganic solids is "component prediction”, following the
definition of ref. 19, meaning that one scans the composition space
of a prototype structure searching for stable materials, instead of
scanning the space of possible crystal structures for a given
composition19–21.
In this context, we use the word "stable” to denote thermo-

dynamical stability, i.e., compounds that do not transform or
decompose (even in infinite time) to other different phases or
stoichiometrically compatible compounds9. It is true that meta-
stable materials, like diamond, are also synthesizable and
advances in chemistry have made them more accessible22,23.
Nevertheless, thermodynamically stable compounds are in gen-
eral easier to produce and handle. The usual criterion for
thermodynamic stability is based on the energetic distance to
the convex hull24: the energy distance of a compound to the
convex hull is hence a measure of its instability.
Using high-throughput approaches, the whole periodic table

has already been scanned for a series of prototypes of relevant
crystal structures. The most extensive studies of this kind can be
found in the aflowlib database25 that, at present, includes more
than 2 million compounds. Unfortunately, this number is dwarfed
by the total number of possibilities. Just for ternary intermetallics,
there are 1391 structure-types known experimentally26 and there
are ~500,000 possibilities of combining three metallic elements for
each of these prototypes. Moreover, ternary structures can be
rather complex: the average number of atoms in the unit cell turns
out to be 14, but the majority of intermetallic ternary prototypes is
considerably larger26. The situation is obviously even worse for
quaternary or multinary systems. Considering that a DFT calcula-
tion scales with the cube of the number of atoms in the unit cell,
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we are quickly led to conclude that an exhaustive search of the
composition space will be out of reach for the foreseeable future.
To mitigate the combinatorial curse, chemical constrains have

been successfully applied to filter out compounds that are unlikely
to be formed27. Alternatively, machine learning can be used to
predict compounds and their properties14,28–31. In view of the
scarcity of experimental data, the machine is usually trained on
DFT calculations and then used to predict which compositions
and/or crystal structures are more likely to be stable14,19,28,29.
Already in 2010, in the seminal work by Hautier et al.32, machine
learning was used to predict the probability that a chemical
substitution of an existing compound can give another stable
compound. Predictions are then validated a posteriori performing
DFT calculations of the candidate systems.
In this article, we propose an approach to scan efficiently the

space of all possible stable materials that relies on data mining
rather than empirical rules or chemical intuition, inspired from
ref. 32. We borrow the idea of component prediction19–21 and
combine it with the concept of chemical similarity. This means
that the compositions to be tested are selected using a measure of
the likelihood that a chemical element A can be replaced by
another B in a given structure. Such a scale of similarity was
obtained by statistical analysis through data mining in ref. 33. To
some extent, the concept of similarity can be intuitively under-
stood from the graphical representation of the periodic table.
Elements that are neighbors in the periodic table are known to be
similar chemically, a fact has been used by chemists to create
materials for more than 100 years. However, statistical analysis
goes beyond pure chemical intuition and can identify unexpected
correspondences.
Any approach based on chemical similarity can be applied

immediately to any crystal structure, and even to systems of
reduced dimensionality, such as two-dimensional materials and
nano-structures.

RESULTS
Thermodynamic stability
The number of substituted materials in each iteration that were
not in the database, and hence were calculated is shown in Table 1.
Our initial set was composed by elemental, binary, ternary,
quaternary, and quintenary compounds. The first iteration is
strongly biased by the distribution of materials in the database,
which is mainly composed of binary and ternary compounds.
Before discussing in detail the results, we can better motivate

the choice to set the threshold value of the element replaceabilty
at 5%. We verified that higher values of the threshold would lead
to a higher percentage of stable materials. In particular, our results
indicate that a threshold of around 20% would maximize the
fraction of stable compounds found in each iteration. However,
the total number of stable compounds would be reduced by a
factor of three. We believe therefore that setting the threshold
value to around 5% is a more convenient compromise.
There are a total of 713 different prototypes in the first

generation, and the most common one is the cubic full-Heusler

compound, with a total of 10,653 systems. These are very simple
ternary cubic compounds (from the crystallographic point of view)
with composition ABC2, and that can be stable for a large variety
of elements in the periodic table. This family has already been
subject to extensive and systematic studies using either high-
throughput or machine learning techniques, and the optimized
crystal structures for most compounds can be found, e.g., in the
Aflowlib database25. In the second generation, Heusler com-
pounds remain the most common prototype, but with only
4238 systems. The situation changes in the third generation,
where the most common prototype becomes the hexagonal
ZrNiAl–Fe2P structure, with 5009 compounds.
It is interesting to analyze the distance to the convex hull (Ehull)

of stability for all 189,981 materials. A histogram with this
information can be found in Fig. 1. Note that we plot Ehull with
respect to the hull composed of compounds in the materials
database solely. This means that stable structures not included in
the database will appear with negative Ehull. Of course, in this case,
the hull has to be redefined to include these compounds. This will
be further discussed in the following.
The first impression we get from the figure is that the

distribution of Ehull is very different from a skewed Gaussian we
know for DFT calculations of families of materials (e.g., perovs-
kites30 or tI10 materials31). In fact, we believe that the distribution
displayed in Fig. 1 is a demonstration of the validity of our
approach. In comparison with the distributions shown in refs. 30,31,
obtained by performing systematic substitutions, we observe an
enhanced percentage of materials with a negative distance to the
hull, while the histogram decays rapidly for positive distances. The
large peak at zero is due to substitutions leading to materials
already present in the database. We did check whether the
transmuted material is already in the database, i.e., if an entry with
the same composition and space group exists before running
the calculation. However, often the geometry optimization
procedure relaxes structures into other space groups (usually to
more symmetric ones), and these final structures can sometimes
be found in the database.

Table 1. The number of new structures (not in the database) at each iteration.

Loop Structure Elementary Binary Ternary Quaternary Quinternary

1 59,853 370 (0.62%) 14,309 (23.9%) 40,455 (67.6%) 4432 (7.4%) 287 (0.48%)

2 50,917 44 (0.09%) 5708 (11.2%) 38,959 (76.5%) 6077 (11.9%) 129 (0.25%)

3 79,211 45 (0.06%) 6554 (8.3%) 60,136 (75.9%) 12,216 (15.4%) 260 (0.33%)

Total 189,981 459 (0.24%) 26571 (14.0%) 139,550 (73.5%) 22,725 (12.0%) 676 (0.36%)

Compounds for which the calculations failed to converge were excluded.
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Fig. 1 Thermodynamic stability. Distribution of the distances to
the convex hull of all 189,981 compounds.
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There are a total of 31,602 structures with a negative distance to
the convex hull, but not all of these can be counted as stable
structures. Firstly, the procedure we follow could find more than
one structures with negative Ehull with the same composition. And
secondly, we have to redefine the convex hull including all our
structures. After taking these two points into consideration,
we found a total of 18,479 systems on the redefined convex hull.
The structures of these materials are available in our website (see
Section "Data Availability"). We crosschecked our list against the
Aflowlib database25, and found that only 417 out of 18,479 (2.3%)
stable structures are overlapping with entries of this database.
Thus, almost all stable compounds reported in the present work
are not included in materials databases.
We have to stress that our calculations are approximate (after

all, we are using DFT with the PBE approximation to the exchange-
correlation functional), and that we are working at zero
temperature, neglecting entropy effects. Systematic analysis
reported that the error in DFT estimated stabilities are around
several tens meV per atom, e.g. 24meV per atom34, and 70meV
per atom35. Therefore, one can still expect that a large majority of
these 18,479 structures may indeed be stable thermodynamically,
and are therefore promising candidates for experimental
synthesis.
In this work we decided not to take into account all systems

that are "technically” unstable (having positive Ehull). In our
opinion those structures that have a small positive distance to the
theoretical convex hull should however not be completely
discarded for two reasons: (i) Some might actually be
stable, and only appear above the hull due to the
Perdew–Burke–Ernzerhof (PBE) approximation; (ii) Some might
be stabilized by temperature, pressure, defects, etc. and thus
could be experimentally synthesizable. Nevertheless, due to the
large number of structures, we decided, for the time being, to
concentrate only on the theoretically stable materials and leave
the rest for future investigations.
Comparing the number of stable structures (18,479) with the

total amount of systems tried (189,981), we find a success rate of
9.72%. This result is encouraging if we compare it with the success
rates of systematic high-throughput and machine learning studies.
With a threshold set at 25meV above the convex hull, Sarmiento-
Perez et al.36 have a success rate of 1%, while Körbel et al. in ref. 37

consider a much larger set of compositions and achieve only
0.25% unreported stable compounds. We should also consider
that the success rate of a random search is already biased by
restricting calculations to a specific family of compounds. In fact,
one usually selects a family of systems that looks intuitively
promising to start a materials search. In ref. 30, the success rate of
systematic calculations of the whole dataset of around 250,000
perovskites is 0.25%, while the proposed machine learning
procedure allows to increase the rate by a factor of 4–5.

Indeed, by combining chemistry intuition with a high-
throughput approach, our method provides a remarkably efficient
overview of large portions of the phase space of stable
compounds, at a strongly reduced computational effort. Further-
more, we should not forget that most of the "unstable”
transmuted compounds are rather close to the hull, and might
therefore be interesting for further research.
To further characterize our set of stable systems, we plot, in Fig. 2,

the number of materials that contain one specific chemical
element. We see that most stable materials include oxygen. One
reason is probably the large number of oxides in our starting set,
although other elements are also present in large numbers. We
would also like to emphasize the abundance of predicted
materials with lanthanide and actinide atoms. These elements
are often overlooked in systematic studies, but of great
importance in many areas of science. For example, they are often
components of permanent magnets38, or are relevant to under-
stand which materials are formed upon nuclear decay of
radioactive waste39. In our work, we found 8970 and 2437 stable
compounds including lanthanides and actinides, respectively, and
the corresponding success rates were 11.6% and 12.2%, respec-
tively. If we exclude entirely these chemical elements, we have
96,543 transmuted structures and a total of 7421 stable com-
pounds. This gives a success rate of 7.7% for compounds that do
not contain either lanthanides or actinides. Thus, replacements
involving lanthanides and actinides are more likely to yield stable
compounds, but 7.7% is still a rather high success rate. In contrast,
we note the relatively small number of stable materials containing
Be, and transition metals of the groups IVB–VIIB. These elements
seem therefore to be harder to combine and form stable
compounds.
Now we turn to how the distribution of stable structures and

how the success rate changes across the periodic table. The
number of stable (Nnew) and initial structures (Nini) that contain a
certain chemical element are showed in Supplementary Fig. 1. We
also show in that figure the success rates for substitutions that
involved that element.
It can be seen that the distribution of compounds follows to

some extent the distribution of the initial structures. For example,
there are many oxides in both sets, and Nnew is approximately
proportional to Nini for most 3d transition metals. However, there
are several exceptions, e.g. for Al, Si, K, Ga, As, Rb, Cs, lanthanides,
and actinides. In some of these cases, there are many more
compounds than expected. In contrast, for Mo and W, there are
much fewer than expected. This shows that the distribution is not
completely biased by the initial database. Furthermore, there is
some variation of the success rate through the periodic table, but
most elements have a success rate around 10%. However, there
are indeed some elements that yield very high success rates,
especially some lanthanides or actinides like Pm or Pa.

Fig. 2 Distribution of stable materials. The number of stable materials containing a given element through the periodic table.

H.-C. Wang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    12 



Band gap
The electronic band-gap is certainly one of the most important
properties of materials, and it can be used to determine the
suitability of a given compound for opto-electronic applications.
We plot a histogram of the electronic (indirect) band-gap in Fig. 3
for our stable materials. These were calculated with the PBE
approximation to the exchange-correlation functional and are,
therefore, underestimated by around 45% on average40. We find a
total of 4840 systems with a gap larger than 0.1 eV, which is 26.1%
of the total number of our stable systems. We should also expect a
number of false negatives of around 5–10%, i.e., around
250–500 systems are likely misidentified as metals due to the
PBE approximation.
Not surprisingly, the histogram decays with a fat tail as a function

of the band-gap. We also show the distribution of semiconductors
and insulators through the periodic table in Fig. 4. The most
common non-metallic elements in the list of stable semiconductors
and insulators is O and F, followed by halogens and other
chalcogens. As expected from the electronegativity scale41, the
largest gaps are obtained for fluorides, followed by oxides and
chlorides. There are fewer, and still thousands, systems with narrower
gaps that include pnictogens and hydrogen. For metallic elements,
the most common one found in semiconductors and insulators are
the heavy alkali metals Cs, Rb, and K. In all these systems, the largest
PBE gap we found was around 7.8 eV for a series of tetragonal
ternary fluorides, namely LiLnF4, where Ln is a lanthanide (Tm, Dy,
Ho, Tb, Er, Sm, Nd, Pr in order of decreasing band gap).

Magnetic properties
Another property we analyzed is the magnetic moment. In Fig. 5
we plot a histogram of the total magnetization per unit volume

(in μB ⋅Å−3) for all our compounds in the convex hull. Before
analyzing the results, we would like to stress that each calculations
started from an initial ferromagnetic configuration of the spin
moments, as common in other high-throughput studies15,37. Thus
we very likely obtain ferromagnetic states for most magnetic
compounds after optimization. However, the correct identification
of the ferromagnetic, antiferromagnetic, or ferrimagnetic ground
states is crucial for understand the spin interactions in each
system. Unfortunately, this would require accurate energy
calculations for large supercells, drastically increasing the compu-
tational effort. Therefore, in present work we adopt the usual
setup of high-throughput studies, and leave the precise identifica-
tion of the correct ground-states magnetic phases for future
research. In any case, from the energetic point of view, this
problem is harmless, because the differences of total energy
between different magnetic phases are often of the order of the
meV per atom42, while the stability of the composition is
evaluated on an energy scale that is one or two orders of
magnitude larger.
As expected, from Fig. 5 one can see that a large majority of the

systems is not spin-polarized (note that the y-axis is truncated). In
fact, the probability of finding a magnetic compound is only
22.6% (4187 systems out of 18,479), and with the number of
systems decreasing rapidly with the total magnetization. We show
the number of magnetic systems containing each given element
of the periodic table in Fig. 6. The ten most represented metallic
elements in these magnetic compounds are, in decreasing order,
Pu, Eu, Gd, Mn, Fe, Np, Ge, Ce, Ni, and Co. These include, evidently,
the actinides (Pu and Np), the lanthanides (Eu, Gd, and Ce), and
the 3d transition metals (Mn, Fe, Ni, and Co).
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Fig. 3 Band gaps. Histogram of the electronic band-gap for all new
stable compounds.

Fig. 4 Distribution of semiconductors and insulators. The number of stable semiconductors and insulators containing the given chemical
element of the periodic table.

Fig. 5 Total magnetization. Histogram of the total magnetization
per unit volume (in μB ⋅Å−3) for all new stable compounds.
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The fact that Ge appears in this list is actually interesting. By
looking closer at the composition of the magnetic compounds
containing this chemical element, we found that 91% of Ge-
containing magnetic compounds include at least one other
element included in the top-10 list. Moreover, the remaining 9%
compounds also contain other rare-earth or transition metals. A
quick look at some specific materials in our list reveals that the
magnetic moments are not localized on Ge, but on the other
(magnetic) atoms. Therefore, the reason why Ge appears in the list
is that Ge is likely to form stable compounds together with
magnetic elements. This also implies that Ge compounds could be
a promising search ground for experimentalists aiming at the
synthesis of magnetic compounds.
The most common non-metallic elements found in this set are

O, and F. Among all systems, the highest magnetization is around
0.2 μB ⋅Å−3 for a cubic structure of SnGd3, followed by several
other Gd and Eu compounds, often in the inverted perovskite
structure (such as NAlGd3, CGeGd3, CGaGd3, and CSnGd3). Finally,
the most common crystal phase is the cubic double-perovskite
structure with 215 compounds, while magnetic systems were
found in a total of 253 different prototypes.
Having looked at magnetic systems and semiconductors, it is

natural to ask how many magnetic semiconductors are found in
our dataset. If the two properties are completely uncorrelated, the
probability of finding a system exhibiting both is given by the
product of the individual probabilities, yielding 22.6% × 26.1%=
5.9%. The actual number of systems that we found was 884,
yielding a probability of 4.8%. This is consistent with the two
properties being uncorrelated. We also performed a similar
analysis on the Materials Project database. The fractions of stable
systems with a gap above 0.1 eV and of magnetic systems are
45.7% and 31.5%, respectively. This yields a combined probability
of 14.4% to find magnetic semiconductors if the two properties
are uncorrelated. The actual percentage of stable magnetic
semiconductors in the database is 12.1%, which also supports
the hypothesis of absence of correlations.
Among all semiconducting magnetic systems, the most

common prototype that we found was again the cubic double-
perovskite (75 systems). We note that most magnetic semicon-
ductors could be, in fact, antiferromagnetic. Moreover, usually the
antiferromagnetic state has a larger gap than the ferromagnetic
one. Therefore, those band gaps could be "doubly” under-
estimated—due to the PBE approximation and the misidentifica-
tion of magnetic phases. This subset of 884 materials is however,
quite interesting, as it can serve, e.g., as a starting basis for the
discovery of unreported transparent ferromagnets or anti-
ferromagnets with high critical temperatures.

Mechanical properties
Finally, we performed a preliminary analysis of the mechanical
properties by evaluating the hardness. The calculation of the
Vicker’s hardness for the predicted structures was based on the
simple model by Zhang et al.43 This model extends the work of
Šimůnek and Vackář44,45 and improves the earlier hardness
models46 based on bond strength by applying the Laplacian
matrix47 to account for highly anisotropic and molecular systems.
It turns out that laminar systems are correctly described as having
low hardness, but this model still fails for some molecular crystals
that are incorrectly assigned large values for the hardness. This is,
however, not a big problem as these false-positive cases can be
easily identified and discarded.
Most systems are found to be extremely soft, with only a hand-

full of materials being hard or superhard (hardness > 40 GPa).
These, usually a combination of light covalent elements with
transition metals, are shown in Table 2, together with their bulk
and shear moduli (calculated with the PBE). We found that the
oxides in this list have low elastic moduli, which implies that the
simple model has likely overestimated their hardness. This
anomalous behavior can be explained by the unusual oxidation
states and bonding patterns present in these structures. One
should keep in mind that the stability of these oxides is likely
overestimated, as it has been shown in several references48,49

The remaining systems do exhibit large values of the hardness
and of the bulk and shear moduli, indicating that they are
probably hard or even super-hard. This is particularly true for three
compounds, namely VRu2Sn, CrGeRu2, and MnH2.

Fig. 6 Distribution of magnetic systems. The number of magnetic systems containing a given element of the periodic table.

Table 2. Vicker’s Hardness (HV), as well as bulk (B) an shear (G) moduli
of some hard and superhard materials.

Formula HV (GPa) B (GPa) G (GPa)

NiO4 28.7 60.9 35.7

AsB3O6 29.7 53.2 33.3

CuO4 31.7 65.4 25.0

CoO4 36.6 107.6 72.5

BeCrFe2 25.2 241.9 126.4

RuN2 30.2 163.8 93.3

IrN2 30.7 177.8 99.0

CoH 34.8 217.2 116.9

VRu2Sn 41.5 210.8 85.8

CrGeRu2 58.3 235.3 117.3

MnH2 64.4 133.6 49.6
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DISCUSSION
In this work, we combined fundamental knowledge of chemistry
with high-throughput calculations to efficiently search for stable
crystals. To this end, we replaced chemical elements in known
stable substances by choosing substitutions with "similar”
chemical elements. The elusive concept of similarity was
quantified by a similarity scale obtained by data-mining experi-
mental databases of crystal structures. The transmuted com-
pounds were then studied with DFT, and their stability was
evaluated with respect to the convex hull of stability. The stable
compounds were in their turn transmuted, and this cycle was
repeated three times.
We obtained in total 18,479 stable crystal structures out of

189,981 substitutions, resulting in a success rate of about 10%,
one order of magnitude larger than the usual one of high-
throughput methods. This success rate shows not only the validity
of our approach, but also its high efficiency, leading to a
significant reduction of the computational costs. Our set of stable
materials include elements from across the periodic table, from
main group elements to transition metals, to lanthanides and
actinides.
We also performed a preliminary analysis of the physical

properties of these crystals. We obtained 4840 semiconductors,
with band gaps (calculated with the PBE approximation) extend-
ing almost to 8 eV. These include not only many oxides and
fluorides, but also semiconductors with other halogens, chalco-
gens, pnictogens, etc. We also identified 4187 magnetic systems
with magnetizations extending up to 0.2 μB ⋅Å−3. As expected,
these mostly include some actinides, some lanthanides, and some
3d transition metals. Combining both properties, we filtered out
884 structures having non-zero gap and magnetic moments.

Finally, we evaluated the hardness of our materials, and found few
possible hard and super-hard systems that deserve further
attention.
All in all, this work shows that with a systematic help of

common chemistry knowledge, one can greatly improve the
output of high-throughput calculations for material prediction.
Thanks to this iterative procedure of transmutation, we efficiently
gain access to large unknown portions of the phase space of
stable materials, that may be hiding key materials for future
technologies.

METHODS
Prediction strategy
The starting point of our search is a set of stable compounds, i.e. the
(experimental or theoretical) crystal structures and compositions of a series
of materials on the convex hull of stability. We obtained these structures
from the materials project database50. For computational affordability, we
limited crystal structures to a maximum of 12 atoms in the unit cell. The
starting set is composed of 9524 compounds in 713 different prototype
crystal structures. For each material in this set, we mutate the composition
by replacing each chemical element by another "similar” element, if the
probability of a successful replacement is higher than a certain threshold.
We will see below how we define this probability. Note that only one
element is replaced at a time, and that we do not perform partial
substitutions, i.e. all atoms of a given element in the crystal structure are
replaced simultaneously.
The outcome of this procedure is a set of hypothetical materials. We

observe that it is impossible to perform systematic substitutions of all
elements in known stable crystal structures, employing all other atoms of
the periodic table. Assuming 84 atomic species, from H up to Bi, excluding
noble gases and including Ac, Th, Pa, U, Np, and Pu, and considering 713
prototype crystal structures, we can build 59,892 elementary crystals,

Fig. 7 Work flow. An illustration of a work flow for predicting stable materials based on substitution.
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almost 5 million binaries, 400 million ternaries, and 33 billion quaternary
compositions. We can clearly see that we need to filter out the most
unlikely substitutions and focus on the most promising ones.
At any iteration, we validate the set by performing a geometry

optimization of the resulting structure with DFT, and calculating its
distance to the convex hull of stability. This step is performed with
PYMATGEN

51, using all materials present in the Materials Project database50 as
reservoirs. All stable phases (with negative distances to the materials
project convex hull) are then collected, and the construction of the convex
hull is repeated including our structures. A new cycle of substitutions starts
then for the stable compounds identified in the previous iteration. In total
we performed three iterations of this kind, replacing always one chemical
species per iteration. Thus, the prediction procedure is illustrated in Fig. 7.
Of course, the crucial part of this approach is the knowledge of the

probability that replacing an element by another will yield a stable
compound. We could just take advantage of the periodic table, and define
this probability as the (geometrical) distance between the two elements in
its usual two-dimensional representation. A couple of counter-examples
show, however, that this is clearly not the ideal approach. For example, it
turns out that H can be much more easily replaced by F and not by Li, or Ba
can be replaced by Eu more often than by Cs.
One can certainly use for filtering empirical rules based, e.g., on ionic

radii and oxidation states27. However, in the age of data-driven research,
we have the option to let computer algorithms transform empirical
chemical knowledge into a similarity scale between the chemical elements.
Recently, by performing a statistical analysis of stable crystal phases

Table 3. The number of substitution pairs (Npairs) and the quantity of
resulting compounds (Ncompounds) as a function of the threshold (t),
starting from the initial set of 9524 compounds.

t Npairs Ncompounds

70% 7 214

60% 16 214

50% 47 824

40% 118 1469

30% 200 1957

20% 346 12,007

10% 626 35,579

5% 992 73,375

4% 1111 87,738

3% 1281 104,508

2% 1556 142,617

1% 2235 234,385

0.75% 2554 277,111

0.5% 3008 341,180

Fig. 8 Substitution schema. Replacements are shown by arrows that start from the elements being replaced. Substitutions between elements
within a group are indicated by arrows starting from and pointing to the same box. The thickness of the arrow and the color scale are
proportional to the number of substitutions between the groups, with the thick red line between the Ru-group and the Fe-group
corresponding to 100% replaceability between the two groups. For example, we can immediately see that most lanthanides can be replaced
by Sc or Y, but the elements of the group IIIA can only sometimes be replaced by Fe, Co, or Ni.

H.-C. Wang et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    12 



present in the inorganic crystal structure database52,53, some of us
determined such a scale33. The first step was the calculation of the
likelihood that an element A can be replaced by another B in a given
structure. This information was then used to construct a matrix where each
entry (A, B) is a measure of this likelihood. To obtain a probability, every
entry of this matrix has to be normalized in some way. This is a rather non-
trivial step that is complicated by the fact that our knowledge of materials
is unfortunately rather incomplete. Here, we used the quantity33

SAB :¼ 1
NA

X
I;J≠I

δIJAB (1)

where δIJAB ¼ 1 if materials I and J are both in the experimental database
and are connected by the substitution of the chemical element A by B, and
is 0 otherwise. The normalization factor (NA) is the total number of
materials including the given chemical element that are present in the
database.
We also need a threshold value of the element replaceability, below

which we do not consider as likely the corresponding element mutation.
We set the threshold to a value that is a good compromise to keep
affordable the total number of substituted compounds and to have at the
same time a sufficient variety of substitution pairs. A threshold lower than
20% is necessary to include all substitutions within each group of the
periodic table. This means that fixing this threshold to 20% would lead to
include only "obvious” cases, while we would miss other less intuitive and
less common substitutions. We therefore decided to favor a practical
approach and include as many substitutions as possible, selecting the
lowest threshold that our computational resources could reasonably
support. We have to keep in mind that the number of substitution
increases rapidly with the number of substitution pairs, because we have a
large initial set of materials (see Table 3 and discussion in Section
"Thermodynamic stability"). We chose a threshold value equal to 5% that
gives 992 pairs (see List 1 in Supplementary Notes), a number that is
approximately twice as large as the number of in-group substitution pairs.
A schema depicting the result of this procedure can be found in Fig. 8.

To improve readability, we gathered the chemical elements in groups.
There are a series of immediate conclusions we can draw from the figure.
First of all, with the chosen threshold, almost no first-row element can be
replaced by any other element. In chemistry this is known as the first-row
anomaly54, i.e., the small-core elements of the first row are in some sense
special and are only vaguely similar to second-row elements. Second,
many elements only accept replacements with elements within the same
group of the periodic table. This is in particular true for the alkali metals,
the halogens, etc. Third, we identify two main groups of metals in Fig. 8,
one centered around the lanthanides and the other around Fe, Co, and Ni.
It is rather interesting that our threshold roughly divides the metals in

two families. The subdivision is simply related to the geometry of the
periodic table, namely family I includes the left side of the periodic table
(groups 2–5, as well as the lanthanides and actinides), while family II
contains the remaining groups (6–15). Furthermore, we find no substitu-
tions between group 5 and 6. This would indeed indicate that there seems
to be a significant discontinuity in the periodic table. In fact, we can see
some indications of this discontinuity by looking, for example, at the
typical oxidation states that show from a monotonous increase from +2
(group 2), +3 (group 3), +4 (group 4), +5 (group 5) back to +3 and +4 in
group 6. However, we emphasize that this analysis depends on our choice
for the threshold, and that a more detailed investigation, using more
powerful statistical tools, is required to achieve general conclusions.

DFT calculations
We used the code VASP

55,56, where all parameters were set to guarantee
compatibility with the data available in the Materials Project database50.
We used the PAW57 datasets of version 5.2 with a cutoff of 520 eV. The
Brillouin zone was sampled by Γ-centered k-point grids with a uniform
density calculated to yield 1000 points per reciprocal atom, i.e. the same k-
point density used by the Materials Project58. All energies were converged
to better than 2meV per atom and the geometry optimization was
stopped when forces were smaller than 0.005 eV per Å. We used a denser
k-point mesh of 5000 points per atom to calculate band structures. All
calculations were performed with spin-polarization using the PBE59

exchange-correlation functional, with the exception of oxides and fluorides
containing Co, Cr, Fe, Mn, Mo, Ni, V, W, where an on-site Coulomb repulsive
interaction U with a value of 3.32, 3.7, 5.3, 3.9, 4,38, 6.2, 3.25, and
6.2 eV, respectively, was added to correct the d-state (https://docs.
materialsproject.org/methodology/gga-plus-u/#calibration-of-u-values).

A correction scheme which allows to mix GGA and GGA + U calculations to
obtain the correct formation energy and distance to the convex hull is
applied60.
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