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Abstract
This doctoral thesis is concerned with the theoretical description and investigation
of semiconductor quantum-dot microcavity lasers with the objective of understand-
ing the results of current experiments and to make predictions for how to further
optimize new components.

To accomplish this task, the theory used for description of semiconductor quantum-
dot lasers has been thoroughly revised, and a new unified theory is formulated that
enables us to see and apply different cluster-expansion approaches in a uniform man-
ner. A known disadvantage of these methods is an increased algebraic effort, which
rapidly increases the possibilities of doing the calculations by hand. For this reason,
parallel to the newly developed theory, a computer algebra program is developed to
carry out these tasks.

In the first half of this thesis, the foundations and the more general theoretical
concepts are presented, along with a detailed description of the computer algebra
program. To clarify the possibilities and strengths of these new descriptions, two ex-
amples of quantum-dot lasers are presented which determine the autocorrelation up
to the 5th order. On this basis, it is possible to examine the convergence properties
of the theory more precisely. From the physical point of view, however, the concept
of the laser threshold can be discussed in detail and, in particular, the properties of
lasers without spontaneous losses into the non-lasing modes are investigated, which
produce the link to a thresholdless laser.

The second half of the thesis is concerned with the theoretical description of
specific experimental situations. Motivated by current results of the group of Prof.
Reitzenstein at the TU Berlin, the laser theory is extended to two-mode lasers. We
are able to explain superthermal intensity fluctuations by the interaction of the two
modes with the common gain material. Thus, the results of the experiments can,
not only be reproduced very precisely, but can also be linked with an illustrative
explanation. The investigation on the coherence properties of two-mode lasers re-
veals a formal equivalence to strong coupling and also leads to the introduction of
unconventional normal-mode coupling. It allows us to compare not only to previous
experiments, but also to make predictions of parameters in which particularly strong
changes of linewidth and mode splitting are visible.

The last part is devoted to the question in which way superradiant coupling
affects the emission properties of nanolasers. The description of these effects is the
most challenging part of this dissertation. A new theory is introduced which makes
it possible to switch the superradiant coupling between emitters in the calculations
on and off. With this method, we can directly quantify the influence of superradiant
coupling. Its importance to current devices is examined in a broad-based parameter
study. We found that drastic changes in the optical properties can be found for
realistic parameters, e.g. the jump height in the input-output curve, and the photon
statistics differ strongly from the case when superradiant coupling is neglected.
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Introduction

Semiconductor quantum devices have enabled remarkable technological progress in
the current and last century. The Nobel Committee for Physics underlined this in
the year 2000 by awarding Zhores I. Alferov and Herbert Kroemer “for develop-
ing semiconductor heterostructures used in high-speed- and opto-electronics”. The
other half was awarded to Jack S. Kilby “for his part in the invention of the in-
tegrated circuit”[Nobelprize.org, 2000]. One of the most important results of their
work is the ability to produce lasers that are small, efficient and cheap at the same
time - semiconductor lasers. These kinds of miniature lasers are nowadays found in
our everyday electronics in various forms like laser printers, laser rangefinders, and
CD/DVD/Blu-ray. They also play a key role in communication technology and data
transmission for the Internet. To introduce the reader to the “Theory of Semicon-
ductor Quantum-Dot Microcavity Lasers” we like to give a short historical review
on the laser itself, that explains the evolution of the quantum-dot lasers.

The history of the laser goes back to 1917 when Albert Einstein published the
theoretical foundation for the quantum theory of radiation [Einstein, 1917]. It took
roughly 40 years until the first experimental realization came about in the form of the
“optical maser” by Charles Hard Townes and Arthur Leonard Schawlow [Schawlow
and Townes, 1958]. Later, in 1960, Theodore H. Maiman presented the first func-
tioning ruby laser with an optical wavelength [Maiman, 1960]. Only two years later
in 1962 the function principle was transferred to semiconductor material nearly at
the same time by Robert N. Hall [Hall et al., 1962] and Marshall Nathan [Nathan
et al., 1962] who produced the first gallium arsenide (GaAs) semiconductor diodes.
These first diodes were homojunction diodes which had the drawback of a working
point at low temperature and a high laser threshold. It took the research of Herbert
Kroemer on heterostructures [Kroemer, 1963] to fabricate the first heterojunction
diode laser by Zhores I. Alferov in 1970 [Alferov, 1970] which overcame the problems
of the first diodes. With the properties of a low threshold and a working point at
room temperatures the laser was ready to be commonly used with great success
outside the lab.

The development of semiconductor lasers made a leap forward yet again when it
was found that the reduction of dimensionality in a semiconductor has tremendous
effect on the density of states, and in consequence, on the lasing properties. Reducing
the spatial expansion below the size of the de Broglie wavelength in one, two or even
three dimensions leads to carrier confinement in structures such as quantum wells,
quantum wires, or quantum dots as shown in Fig. 1. We can deduce directly from
the changed single-particle density of states that the electronic properties, in terms
of carrier interaction and carrier–phonon interaction, are very different for those
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Figure 1: Sketch of the single-particle density of states for varying dimensions [Bim-
berg et al., 1999]. The density of states changes from a square root behavior in
a three dimensional bulk material to a delta peak behavior for zero-dimensional
quantum dots.

devices. These properties are responsible for the light-matter interaction and the
interesting optical properties of a laser. The density of states for the limiting case of
a quantum dot is described by delta-functions. They show no energy dispersion, and
in contrast to a bulk semiconductor, have a discrete energy level structure similar
to an atom.

After the first experimental proof of two dimensional quantum wells [Dingle et al.,
1974], Dingle and Well realized the advantages of quantum wells as active materials
for lasers application, and filed a patent application [Dingle and Henry, 1976]. It
has been shown that this approach allows for lasers with lower threshold currents.
Furthermore, the energy of discrete transition can be influenced by the thickness
of the quantum well. Only a few years later Arakawa and Sakaki [Arakawa and
Sakaki, 1982] predicted that the beneficial features of a two dimensional quantum
well can be surpassed by zero dimensional quantum-dot laser in terms of efficiency
and temperature stability. Nowadays there exist dozens of different approaches in
nanotechnology to fabricate semiconductor quantum dots out of various materials.
These include colloidal synthesis, plasma synthesis, and viral assembly. We like
to focus here on techniques that allow for embedding the quantum dots in a bulk
semiconductor in order to form an electrical device. One of the most prominent
growth methods is the Stranski–Krastanov growth [Bimberg et al., 1999], which is
used to produce coherently strained self-assembled quantum dots. It took several
years of research to find suitable materials and to produce quantum dots with optical
wavelengths of a good quality so that they could be used in a cavity to form a
quantum-dot laser [Kirstaedter et al., 1994]. Figure 2 shows a high quality InAs
quantum dot on GaAs with a size of under 20 nm.

Since that time, great progress has been made in the quality of tailor-made pro-
duction of quantum dots. Also, the second crucial part of the laser: the cavity, has
been improved a lot. While the first quantum-dot laser was an edge emitter, much
more sophisticated approaches for cavities have been found. Among the most used
approaches, cavities vary from micro-pillars [Reitzenstein and Forchel, 2010a; Rei-
thmaier et al., 2004] to photonic crystals [Strauf et al., 2006] to microdiscs [Michler
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et al., 2000; Vahala, 2003], as shown in Fig. 3. This development has led to the fab-
rication of “ultralow threshold” lasers or “threshold-less” lasers [Strauf et al., 2006;
Noda, 2006].

Figure 2: Scanning tunneling microscopy image of an InAs quantum dot [Dähne
et al., 2008].

Figure 3: Scanning tunneling microscopy images of different types of microcavities.
On the left is a micropillar cavity [Reithmaier et al., 2004], the image in the middle
shows a photonic crystal membrane cavity [Strauf et al., 2006], on the right side a
microdisc cavity is depicted [Michler et al., 2000].

Quantum-dot microcavities are a very attractive system to study quantum optical
effects in the solid state [Reitzenstein, 2012]. Apart from research on fundamental
light-matter interaction in the weak and strong coupling regime of cavity quantum
electrodynamics [Gérard et al., 1998; Bayer et al., 2001; Vahala, 2003; Reithmaier
et al., 2004; Yoshie et al., 2004], they offer the possibility to investigate stimulated
emission in a regime that approaches the ultimate limit of a thresholdless laser based
on a single zero-dimensional gain center [Noda, 2006]. Studies in this field include,
e.g., technological works on optically and electrically pumped microlasers aiming to
increase the β-factor, which expresses the fraction of spontaneous emission coupled
into the lasing mode [Wang et al., 2005; Strauf et al., 2006; Reitzenstein et al., 2008].
In high β-microlasers it becomes increasingly difficult to identify the transition from
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spontaneous emission to stimulated emission at threshold via their input-output
characteristics [Björk et al., 1994]. This issue has triggered comprehensive experi-
mental and theoretical research activities on the photon statistics of the emission in
terms of an intensity autocorrelation function in order to unambiguously identify the
onset of stimulated emission at threshold [Rice and Carmichael, 1994; Ulrich et al.,
2007; Wiersig et al., 2009; Chow et al., 2014]. Moreover, the autocorrelation func-
tion is very beneficial for identifying single quantum-dot controlled lasing effects [Xie
et al., 2007; Reitzenstein et al., 2008; Nomura et al., 2009] and for revealing other ef-
fects such as correlations between individual photon emission events [Wiersig et al.,
2009] and chaotic behavior of feedback coupled microlasers [Albert et al., 2011].

Semiconductor bulk materials, as well as atomic systems have extensively been
investigated in the past. The challenge for this thesis lies in a detailed theoreti-
cal description for quantum dots that considers their reduced dimensionality and
describes the quantum mechanical effects which distinguish it from a bulk laser.
The presented theory includes only the most important quantized states, but has
more than two states to keep the difference from an atom. In an atom, two states
correctly describe most optical properties since there is a large energy separation
between the states. Our description makes sure that not only the discrete structure
of the quantum dot is considered, and also its semiconductor nature that makes the
difference to an atom laser. This difference manifests in various properties of those
lasers. The most obvious one is simply the size, which is macroscopic for an atom
laser and microscopic for a quantum-dot laser. Another is its inherent properties
differ, e.g. one of the most prominent examples is the saturation of the laser output
in quantum-dot lasers which is caused by Pauli-blocking in a quantum-dot device.
The basic model that shows these key features and that is used in this thesis is
sketched in Fig. 4. The described quantum dots have a cylindrical symmetry, and
therefore s and p are good quantum numbers. We use a quantum-dot description
that contains two shells: an s- and a p-shell. In our model, the pump process is de-
scribed as the symmetrical creation of electrons and holes in the p-shell. The pump
process in experiments can either be initiated through optical pumping or through
electrical pumping in the wetting layer. As it would be a research project on its own
to describe the electron and hole creation in the quasicontinuum states of the wet-
ting layer, we assume that the pump process in the p-shell is a good approximation
for the kind of devices that are studied here. The starting point of this thesis is a
model that is a slight variation of the semiconductor model for quantum-dot-based
microcavity lasers introduced in [Gies et al., 2007]. In the following theory, the
model is developed further to allow for the study of current experimental situations
with extended questions like bimodal lasers or superradiant lasers.

To fulfill the requirements the modelling on the theoretical side we introduce a
new generalized formalism of the cluster expansion approach [Fricke, 1996a; Gies
et al., 2007; Kira and Koch, 2008]. This is to study many body quantum mechanical
systems that are too big to be solved with exact numerical methods or are too
small to be studied with well known statistical methods. Simultaneously with the
development of the theoretical background we develop a computer algebra program
that is capable of deriving more complex equations of motion than it would be
possible by hand. This computer aided approach also has the advantage of having
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Figure 4: Sketch of the quantum-dot model in the electron-hole picture. Electrons
and holes are created in the quasicontinuum states of the wetting layer by a pump
process, which is typically realized electrically in experiments. The created excita-
tion relaxes into the energetically highest states of the quantum dot. To further
simplify the model, we assume that these relaxation processes are very fast and
therefore we can assume that the pump process takes place directly in the energeti-
cally highest states of the quantum dot. The quantum dot in our model contains two
shells, a s- and a p-shell. The electrons and holes can scatter further into the s-shell,
where the light-matter interaction takes place. Due to the light-matter interaction
an electron hole pair can recombine to a photon and vice versa.

various models and variations that could be tested to understand the underlying
physics. As this subject is certainly the most versatile aspect of our research, we
put a special emphasis on it.

Finally, the physical results that have been obtained with the newly developed
theory and the computer algebra program provide progress for novel light sources
that are important for application in future technology. Although our research must
be regarded as fundamental research, the reader will find some ideas for new laser
devices and multi-photon spectroscopy as promising candidates that can benefit
from our investigation on quantum-dot microcavity lasers.

As mentioned before, this thesis addresses two main parts. The dirst part is the
new formulation of a general description of open quantum many-particle systems
that is suitable to be applied by a computer. The second part is the investigation
of state-of-the-art semiconductor quantum-dot lasers with focus on current experi-
mental data and results of micropillar-lasers.
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This thesis is organized as follows: We start with the general theoretical concepts
and innovations of this work in the first chapters and continue with the application
of the theory to two types of semiconductor quantum-dot lasers: bimodal and su-
perradiant lasers. The structure here does not follow the historical development of
the different parts. For this reason, we will give the relevant description to the used
model in each particular chapter.

In Chapter 1 we give a short overview of the general description of open quantum
many-particle systems and describe the derivation of the Hamiltonian. We introduce
the Lindblad formalism that we use to describe the openness of our systems and
explain the Lindblad terms that are relevant for our devices. The focus lies on the
theoretical description of light-matter interaction in semiconductor quantum-dot
lasers.

In Chapter 2 we develop our approach and formulation of the cluster expansion:
the expectation value based cluster expansion. It is developed to be well structured
and universal enough to contain the key ideas of various cluster expansion methods,
so that it is suitable to be the basis for a computer program. We show how one
can define operators that can symbolize the necessary steps to derive a closed set
of equation of motions with various approximation schemes. This chapter is com-
pleted with a revision of current literature that uses the cluster expansion from the
viewpoint of the expectation value based cluster expansion. An investigation on
higher-order photon-autocorrelation functions in quantum-dot lasers demonstrates
the central ideas of our theory.

In Chapter 3 we translate the ideas of Chapter 2 into a computer program that is
further referred as the computer-aided cluster expansion. We explain the operators
of the expectation value based cluster expansion that are necessary to implement
the computer-aided cluster expansion. Step by step we show how the mathematical
ideas are transformed into computer code in the programming language FORM. The
program implementation is illustrated on basis of a quantum-dot laser model. As a
working example, we study a laser with a β-factor close to one and demonstrated
the efficiency of our program.

Chapter 4 is concerned with the analysis of bimodal microcavity lasers. This
chapter is highly motivated by current experimental results of quantum-dot micro-
lasers that show surprisingly strong photon bunching. We develop a theoretical
model that is able to reflect the underlying physics and provide understanding of
the experimental results. The theory is further complemented with the description
of multi-time correlation functions that also allows for the comparison of spectral
and temporal coherence properties. As the main result, we are able to track this
features back to a formulation that is strongly related to normal-mode coupling.

Chapter 5 provides new theoretical insight into sub- and superradiance in quantum-
dot nanolasers. A completely new theory is developed to fulfill the requirements of
the description of sub- and superradiance in this context: the configuration based
cluster expansion. This theory allows for a quantitative comparison between lasers
that couple quantum dots superradiantly. It is shown that the results can have
pounced influence on the properties of state-of-the-art nanolasers. A short outlook
on inhomogeneously broadened quantum dots and a more intuitively approach to
understand the observed features concludes this chapter.
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Chapter 6 gives a summary of the achievements and an outlook of the impact of
the presented results as well as an overview on possible future studies.
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Chapter 1

Theoretical description of
light-matter interaction in
semiconductors

This chapter provides an overview about the theoretical framework that is needed
to describe semiconductor quantum dots (QDs). This concerns two major parts:
First the general description of open quantum-mechanical many-body systems with
the density operator and the von Neumann-Lindblad equation. Second the concrete
formulation of a Hamiltonian and Lindblad terms that can be inserted into the
general formalism.

In the first part, we show how to derive equation of motion (EoM) for the time
evolution of time t as well as the multi-time expectation values that introduce a sec-
ond time τ that is relative to t. These multi-time expectation values are of particular
interest for open quantum-mechanical systems since they give new insight into their
properties, e.g. they are needed to calculate the power spectrum[Mandel and Wolf,
1995]. We focus on the treatment of the openness of our system via Lindblad terms
that allows for more consistent results than a simpler heuristic scattering-process
description [Florian et al., 2013b].

The second part is concerned with the derivation of a Hamiltonian for semi-
conductor QD lasers. To formulate a microscopic QD theory we have to find a
Hamiltonian that suites the intended situation. To this end, we make special as-
sumptions that fit to the experimental material (III−V compound semiconductors),
the low-temperature regime of the experiment ≈ 4K, the wavelength of the light in
comparison to the size of the QDs and the situation of a high-Q cavity. We use a
Hamiltonian that consists of four parts

Ĥ = ĤPh + Ĥ0
Carr + ĤCoul + ĤD, (1.1)

the first part describes the electromagnetic field in the cavity, the second the carriers
that are confined in the QDs, the third the Coulomb interaction of the carriers and
the fourth the light-matter interaction. The origin and the concrete form of these
four parts is explained in the following sections. The commonly used Lindblad terms
for this kind of systems are motivated and introduced in a separate section 1.6.

The hat ˆ indicating an operator is only used in this chapter to distinguish
quantum-mechanical operators from classical quantities.
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1.1. GENERAL APPROACH TO OPEN QUANTUM-MECHANICAL
MANY-BODY SYSTEMS

HRHS!

Figure 1.1: Illustration of an open quantum-mechanical system, that can be de-
scribed in an interacting system-reservoir picture. The back-reaction on the reservoir
is neglected in the Markov approximation.

1.1 General approach to open quantum-mechanical
many-body systems

In this section, we introduce the quantum-mechanical Markovian master equation
in Lindblad form to determine the time evolution of the density operator. The
derivation that is presented here follows [Carmichael, 1999; Breuer and Petruccione,
2002] where more details can be found. With the term open quantum-mechanical
many-body system we assume that the whole system can be divided into a subsystem
S and a reservoir R. Therefore we can split the Hamiltonian in a part that describes
the subsystem ĤS, that we are interested in, and a part that describes the reservoir
ĤR as illustrated in Fig. 1.1. A third term ĤSR than describes the interaction of
those two subsystems

ĤSR = ~
∑

i

L̂iΓ̂i, (1.2)

with the Lindblad operators L̂i that act in the Hilbert space of the system S and
the operators Γ̂i that act in the Hilbert space of the reservoir R. The complete
Hamiltonian can be written as

Ĥ = ĤS + ĤR + ĤSR. (1.3)

Since we are not interested in the dynamics of the reservoir, it enters the calcu-
lation only with its general properties like temperature and the density of states.
Starting from this idea we apply the Liouville von Neumann equation for the density
operator ρ̂

d

dt
ρ̂ =

i

~

[
ρ̂, Ĥ

]
, (1.4)

to obtain a master equation for density operator of the system ρ̂S by taking the
partial trace over the reservoir

ρ̂S = trR {ρ̂(t)} = trR

{
Û(t)ρ̂(0)Û †(t)

}
. (1.5)

10



CHAPTER 1. LM INTERACTION

Û(t) denotes the unitary time evolution operator. At this point we apply the Markov
approximation, which relies on the fact that the relaxation time of the reservoir R
is much smaller than the relaxation time of subsystem S, which is usually valid
for wetting layer compared to the QDs. In consequence, the reservoir correlations
vanish immediately

〈Γ̂i(t)Γ̂j(t′)〉R ∝ δ(t− t′). (1.6)

Additionally, we apply the Born approximation, which means that the subsystem
S does not affect the reservoir R and the reservoir affect the system only with its
general parameters that are time-independent. Exemplary we use the temperature
T here as the bath parameter so that the whole density operator writes as

ρ̂(t) ≈ ρ̂S(t)ρ̂R(T ). (1.7)

With these approximations, the most general form of a trace-preserving Markovian
master equation [Breuer and Petruccione, 2002] can be derived

d

dt
ρ̂S =

i

~

[
ρ̂S, ĤS

]
+
∑

ν,ν′

λνν′
(

2L̂ν ρ̂SL̂
†
ν′ − L̂

†
νL̂ν′ ρ̂S − ρ̂SL̂†νL̂ν′

)
, (1.8)

which is called von Neumann-Lindblad equation. The first part is equal to equation
(1.4) and describes the unitary dynamics of S. The second part is the Lindblad part
and describes the influence of the reservoir, where λνν′ are the rates that depend
on the bath parameters. This part describes irreversible dynamics [Breuer and
Petruccione, 2002], e.g. the entropy production per time unit σ(ρS(t)) ≥ 0.

As we are interested in certain expectation values it is useful to apply the von
Neumann-Lindblad equation also for a specific system operator 〈Â〉 = trS(Âρ̂S)

d

dt

〈
Â
〉

=
i

~

〈[
ĤS, Â

]〉
+
∑

ν,ν′

λνν′〈2L̂†νÂL̂ν′ − L̂†νLν′Â− ÂL̂†νL̂ν′〉

=
i

~

〈[
ĤS, Â

]〉
+
∑

i

〈Ci(Â)〉

=
〈
L(Â)

〉
, (1.9)

which is called the generalized Ehrenfest EoM1. The operator functions Ci(Â) are
called the Lindblad processes and can be found in the section 1.6. L is called
superoperator and is used as short form for symbolic calculation in later chapters.

1.2 Multi-time expectation values
In the last section, we have shown how the time dynamics of the (reduced) density
operator (1.8) and the observables (1.9) can be calculated. The fact that we are

1This is not a generalized Heisenberg EoM. A Heisenberg equation is an EoM for an operator
in the Heisenberg picture. Equation (1.9) is an EoM for an EV and can only be derived from the
vNL Eq. (1.8) in the Schrödinger picture and not from the Heisenberg equation.
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describing open quantum-mechanical many-body systems has the consequence that
more information about the system can be obtained with the help of multi-time
expectation values [Gies et al., 2012]. A typical example is the first-order photon
correlation function 〈b̂†(t + τ)b̂(t)〉 that can be measured with an interferometer.
Also the power spectrum can be calculated with the help of the Wiener-Chintschin-
theorem [Mandel andWolf, 1995] by applying the Fourier transform on 〈b̂†(t+τ)b̂(t)〉.
The central idea to calculate these two-time expectation values is that the time
evolution of times t and τ are well separated and the quantum regression theorem
[Lax, 1967; Meystre and Murray, 1999; Breuer and Petruccione, 2002] can be applied.
The clearest prove is to assume that the system is described by a closed set of
differential equations for the operators {Âi} that can be derived with (1.9)

d

dt

〈
Âi(t)

〉
=
∑

j

Gij

〈
Âj

〉
, (1.10)

with a corresponding coefficient matrix Gij. The quantum regression theorem now
states that the two-time expectation values are described by the same differential
equations

d

dτ

〈
Âi(t+ τ)Âk(t)

〉
=
∑

j

Gij

〈
Âj(t+ τ)Âk(t)

〉
. (1.11)

In chapter 2.3.4 we show that this concept can also be applied on the truncated
EoM, that are derived with the cluster expansion.

1.3 Quantization of the electromagnetic field

The Hamiltonian ĤPh describes the quantized electromagnetic field and is the quan-
tized version of the electromagnetic field energy. Starting from the Maxwell equa-
tions we have to apply the formalism of the second quantization [Haug and Koch,
2004]. To this end, we use the Coulomb gauge

∇ ·A(r, t) = 0, (1.12)

to make the vector potential A(r, t) transversal. The wave equation for the vector
potential in a cavity can be written as

∇2A(r, t) =
n2(r)

c2
∂ttA(r, t), (1.13)

with the refractive index n(r), that describes the material of the resonator. We
expand the vector potential A(r, t) into modes uξ(r)

A(r, t) =
∑

ξ

cξ(t)uξ(r) + c∗ξ(t)uξ
∗(r), (1.14)

with the time dependence cξ(t) = cξ(0)e−iωξt. The notation of the mode index ξ here
also includes the polarization vector of the light. The explicit form of uξ(r) and the
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CHAPTER 1. LM INTERACTION

frequencies ωξ depend on the shape of the cavity and the refractive index n(r) and
must be determined by solving the Maxwell equations. For the general consideration
we do not have to know the modes of the specific resonator. However, for more
detailed information about dielectric microcavities we refer to [Vahala, 2003; Cao and
Wiersig, 2015]. In the next step, we apply the canonical quantization cξ(t) = Aξ b̂ξ

with the factor Aξ =
√

~
2ε0wξvolξ

, the mode-volume volξ and the permittivity ε0. The

operators b̂ξ, b̂†ξ fulfill the standard bosonic commutation relations
[
b̂ξ, b̂

†
ξ′

]
= δξ,ξ′ (1.15)

[
b̂ξ, b̂ξ′

]
= 0 =

[
b̂†ξ, b̂

†
ξ′

]
. (1.16)

The quantized vector potential can now be written as

A(r, t) =
∑

ξ

b̂ξuξ(r) + b̂†ξuξ
∗(r), (1.17)

and we find an expression for quantized field energy

ĤPh =
∑

ξ

~ωξ
(
b̂†ξ b̂ξ +

1

2

)
. (1.18)

Later in this thesis we shift the zero energy so that the +1
2
does not appear.

1.4 Single-particle states
The single-particle (carrier) states are needed for the evaluation of the parts of the
Hamiltonian that describes the semiconductor material. The calculation of single-
particle states is a research topic on its own, that strongly depends on the type of
material, the experimental situation, e.g. temperature, size of the semiconductor
and the calculation power that one can invest. We focus on III−V compound semi-
conductors like InGaAS QDs on a GaAs substrate. High accuracy calculation for this
kind of materials are possible with microscopic theories like the tight-binding method
[Singleton, 2001; Sheng et al., 2005; Schulz et al., 2006], the empirical tight-binding
method [Santoprete et al., 2003; Lee et al., 2004] or the empirical pseudopotential
method [Kim et al., 1998] that are able to take into account the symmetry of the
underlying lattice. The optical properties of self-organized wurtzite InN/GaN QDs
have been studied with tight-binding method and full configuration interaction cal-
culation [Baer et al., 2005]. It has been shown that also phenomenological theories
like the the 8-band k·p wave functions are in good agreement for InGaAs/GaAs QDs
[Schliwa and Winkelnkemper, 2008]. A study of the electronic and optical properties
of strained QDs modeled by 8-band k·p theory can be found [Stier et al., 1999].

As this thesis focuses more on the interaction of QDs and photons than on a real-
istic component simulation we present here a much simpler approach - the envelope
function ansatz [Haug and Koch, 2004; Yu and Cardona, 2010], which provides still
a sufficient accuracy for our purpose [Bimberg et al., 1999]. In the envelope function
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1.4. SINGLE-PARTICLE STATES

ansatz the wave function ψλν (r) of the band λ and the single-particle state |ν〉 of our
semiconductor is assumed to be the product of the periodic Bloch function at the
band edge uk≈0(r), describing the volume material, times the envelope function that
describes the additional confinement of the QD φλν(r)

ψλν (r) = uλk≈0(r)φ
λ
ν(r). (1.19)

The stationary Schrödinger equation for the QD can now be written
(
− ~2

2mλ
∆ + V (r)

)
φλν(r) = ελνφ

λ
ν(r), (1.20)

wheremλ denotes the effective mass and V (r) an approximate confinement potential.
The concrete confinement potential depends on the shape of the QDs, e.g. for typical
lense shaped QDs the harmonic disc model [Bimberg et al., 1999] yields to convincing
solutions

V (r) =
mλω2

2
(x2 + y2) + V0

(
θ(z − L

2
) + θ(−z − L

2
)

)
. (1.21)

This is a composition of a potential well that describes the strong confinement
in growth direction (z), with the confinement energy V0 and its extension L and
a harmonic oscillator potential in the x-y-plane. The field operator can now be
constructed with the single-particle wave functions [Schwabl, 2008]

Ψ̂(r, t) =
∑

λ,ν

âλ,ν(t)ψ
λ
ν (r), (1.22)

where the operators âk, â†k fulfill the standard fermionic anticommutation relations
[
âk, â

†
k′

]
+

= δk,k′
[
âk, âk′

]
+

= 0 =
[
â†k, â

†
k′

]
+
, (1.23)

for any indices k.
The number of states |ν〉 and levels is determined by the depth of the confinement

potential. The simplest and still widely used approach is a two-level description [del
Valle et al., 2009; Mu and Savage, 1992; Lodahl et al., 2004; Richter et al., 2009].
As one step further to more realistic model we take 4 levels and two electrons into
account [Gies et al., 2011, 2007]. Due to the cylindrical symmetry of the potential
the angular momentum is a good quantum number and from here on s and p will
label the names of the shells (similar to an atom). For the calculation in this thesis
we restrict our model on one spin subsystem. Taking all configurations and both
spin-direction for a 4-level-system into account would lead to 22∗4 = 256 possible
configurations, while one spin subsystem reduces the number of configuration to 24 =
16. Taking only symmetrical pumping of electrons and holes into account further
reduces the number of configurations to 6, which is used in this thesis. However, the
restriction to one spin-subsystem is usually an approximation which validity depends
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on the specific experimental situation. For optical pumping with circularly polarized
light only one spin subsystem is excited [Gies et al., 2012]. In comparison to the
spin-flip dynamics the relaxation and recombination dynamics are fast and therefore
the restriction is valid. In systems with other excitation processes, the quality of the
approximation mainly depends on the magnitude of the Coulomb coupling strength
of the two spin-sub-systems in comparison to the Coulomb coupling strength of the
carriers in one spin-subsystem. In [Gies et al., 2012] the authors showed that for
typical parameters used in InGaAS QD experiment, the calculation of only one spin
subsystem leads to satisfying results.

1.5 The many-body Hamiltonian

The many-body Hamiltonian Ĥ0
Carr, ĤCoul, ĤD is obtained as a result of single-

particle field operator inserted in the specific Hamiltonian parts. The Hamiltonian
of the free particles reads as

Ĥ0
Carr =

∫
d3r Ψ̂†(r, t)

(
− ~

2

2m
∆ + V (r)

)
Ψ̂(r, t), (1.24)

which is a diagonal sum

Ĥ0
Carr =

∑

λ,ν

ελν â
†
λ,ν âλ,ν , (1.25)

over the particle number operator n̂ = â†λ,ν âλ,ν with the single-particle energy ελν .
The Coulomb Hamiltonian is constructed in a similar way with the Coulomb matrix
element

V λλ′

α′ν,ν′α =

∫
d3r

∫
d3r′ Ψ̂λ†

α′ (r, t)Ψ̂
λ′†
ν (r′, t)VC(r− r′)Ψ̂λ′

ν′(r
′, t)Ψ̂λ

α(r, t), (1.26)

that contains the Coulomb potential VC(r) = e2

4πε0ε|r| with the elementary charge e,
the relative permittivity ε, and the vacuum permittivity ε0. The complete Coulomb
Hamiltonian in second quantization reads

ĤCoul =
∑

α′,ν,ν′,α,λ,λ′

V λλ′

α′ν,ν′αâ
†
λ,α′ â

†
λ′,ν âλ,ν′ âλ′,α, (1.27)

where the Coulomb matrix element mediates an electrostatic repulsion of carriers in
the same band as well as the attraction of carriers in valence and conduction band.

The light-matter interaction is described in dipole approximation, that is valid
whenever the wavelength of the mode is much bigger than the size of the QD.
The mode function in conclusion is nearly constant in the vicinity r0 of the QD
uξ(r) ≈ uξ(r0). The dipole Hamiltonian can be written as

ĤD =

∫
d3r Ψ̂†(r) (−eET (r0)) Ψ̂(r, t), (1.28)
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where we can use the mode expansion (1.17) to determine the electrical field ET =
− ∂
∂t
A. The strength of the light-matter coupling is determined by the dipole matrix

elements

gλλ
′

ξαν =

√
~wξ

2εε0volξ

∫
d3r ψλ∗α (r)eruξ(r0)ψλ

′

ν (r), (1.29)

where the prefactor is called the vacuum amplitude which contains the normalizing
mode-volume volξ of mode ξ. With this definition we can write the complete dipole
Hamiltonian

ĤD = −i
∑

ξ,α′,ν,ν′,α,λ,λ′

gλλ
′

ξαν â
†
λ,αâλ′,ν

(
b̂†ξ + b̂ξ

)
+H.c., (1.30)

that describes the emission and the absorption of a photon in mode ξ triggered by
a transition of a carrier from band λ′ in state ν to band λ in state α as well as
the conjugate process. To simplify calculations further we use the equal envelope
approximation for valence- and conduction-bands gλλ′ξαν = uξ(r0)dλλ′δαν [Baer et al.,
2006] with the inter-band matrix elements dλλ′ . Furthermore we use the Rotat-
ing Wave Approximation where we neglect the fast oscillating terms in the dipole
Hamiltonian. This approximation is valid for situations of weak coupling near the
resonance [Wu and Yang, 2007].

Applying these approximations to the many-body Hamiltonian for the case of
two shells (s- and p-shell) as sketched in Fig. 4 the Hamiltonian can be written
more intuitively by using the fermionic operators ĉj (ĉ†j) and v̂j (v̂

†
j) that annihilate

(create) a conduction-band carrier in the state |jc〉 and a valence-band carrier in
the state |jv〉, respectively. In the following all indices describe either the s- or the
p-shell j, k, k′ ∈ {s, p}. Using this notation the single-particle Hamiltonian can be
written as

Ĥ0
Carr =

∑

j

εcj ĉ
†
j ĉj +

∑

j

εvj v̂
†
j v̂j, (1.31)

with the energies for conduction and valence band carriers εc,vj . The two-particle
Coulomb Hamiltonian is given by

ĤCoul =
1

2

∑

k′jj′k

(V cc
k′jj′kĉ

†
k′ ĉ
†
j ĉj′ ĉk + V vv

k′jj′kv̂
†
k′ v̂
†
j v̂j′ v̂k) +

∑

k′jj′k

V cv
k′jj′kĉ

†
k′ v̂
†
j v̂j′ ĉk, (1.32)

and the dipole Hamiltonian by

ĤD = −i
∑

ξ,j

(gξj ĉ
†
j v̂j b̂ξ − g∗ξj v̂

†
j ĉj b̂

†
ξ). (1.33)

1.6 Lindblad processes

In this section, we give the specific Lindblad terms Ci(Â) (1.9), that are used for QD
model in this thesis. This terms are very intuitive since we can recognize the intended
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process directly [Gies et al., 2012]. The inter-band carrier scattering between the
two different levels of the QD is in general described with

Cscatt(Â) =
∑

i,j

γij

(
2â†i âjÂâ

†
j âi − â

†
j âiâ

†
i âjÂ− Ââ

†
j âiâ

†
i âj

)
, (1.34)

where the rates γij denote the scattering from level j to level i. The specific rates can
either be measured experimentally or be calculated e.g. by Fermi’s golden rule. As
we are describing experiments in the low temperature regime, it appears obvious that
the scattering rates into energetic favorable states will be the dominating process
[Gies et al., 2012].

The pump process in the model is described as a transfer from a carrier in the va-
lence band (v̂) to the conduction band (ĉ†) and has the same shape as the scattering
term

CP(Â) =
∑

i,j

Pij

(
2ĉ†i v̂jÂv̂

†
j ĉi − v̂

†
j ĉiĉ

†
i v̂jÂ− Âv̂

†
j ĉiĉ

†
i v̂j

)
, (1.35)

where Pij denotes the pump rate. This kind of pump process is guaranteed if we
excite the carriers optically e.g. via a laser that is tuned in resonance to the level
transition. For the electrical pumping via the wetting layer this kind of pumping
is only an approximation. In a more complex model one would have to take non-
symmetric capturing of carriers into account. Again, this would lead to more possible
configurations in the QD-model since it leads to the lifting of carrier conservation
in the QD.

The reservoir coupling also influences the optical processes in the QD-laser sys-
tem. First, we have to take spontaneous losses of carrier excitation into non-lasing
modes into account

Cnl(Â) = +
∑

i,j

γnlij

(
2v̂†i ĉjÂĉ

†
j v̂i − ĉ

†
j v̂iv̂

†
i ĉjÂ− Âĉ

†
j v̂iv̂

†
i ĉj

)
, (1.36)

where the non-lasing rate γnlij determines the β− factor. For example γnlij = 0 de-
scribes a laser with β = 1 where all of the spontaneous emission goes directly into
the lasing mode. The second process originates from the leakiness of the resonator

CC(Â) =
∑

i

κξ

(
2b̂ξÂb̂

†
ξ − b̂

†
ξ b̂ξÂ− Âb̂

†
ξ b̂ξ

)
, (1.37)

where κξ describes the cavity losses for each mode. The magnitude is determined
by the shape and the quality of the mode and is usually determined experimentally
via the line-widths in the light-spectrum. Also, there are processes that are related
to phonon-mediated off-resonant coupling [Florian et al., 2013a]

CPh(Â) =
∑

i,j,ξ

γinijξ

(
2b̂†ξâ

†
i âjÂb̂ξâ

†
j âi − b̂ξ b̂

†
ξâ
†
j âiâ

†
i âjÂ− Âb̂ξ b̂

†
ξâ
†
j âiâ

†
i âj

)

+ γoutijξ

(
2b̂ξâ

†
i âjÂb̂

†
ξâ
†
j âi − b̂

†
ξ b̂ξâ

†
j âiâ

†
i âjÂ− Âb̂

†
ξ b̂ξâ

†
j âiâ

†
i âj

)
, (1.38)
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where the absorption γinijξ of a photon in mode ξ and the loss of a photon γoutijξ is
described. This process becomes important if we assume the QDs to be homogeneous
broadened. With this process it becomes more likely that QDs that are detuned to
the lasing-mode couples mediated by a phonon. In some cases, it is necessary to
introduce a pure dephasing rate that broadens the homogeneous linewidth of the
QDs[Auffèves et al., 2009]

CD(Â) =
∑

i

γDii

(
2â†i âiÂâ

†
i âi − â

†
i âiâ

†
i âiÂ− Ââ

†
i âiâ

†
i âi

)
, (1.39)

similar to its name this process only introduces some dephasing γdii, that is propor-
tional to the occupation of the state i. This effect can experimentally be observed
by a broadening of the homogeneous line-width [Auffèves et al., 2009].

1.7 Statistical properties of light

An essential tool to analyze the properties of a light source is the investigation
of the statistical properties of light. In most cases the full photon statistics are
neither experimentally nor theoretically accessible and instead we study the photon-
autocorrelation functions. This functions allow us to distinguish between different
light sources and their coherence properties.

First-order photon-autocorrelation function The first-order photon-autocor-
relation function g(1)(t, τ) is the normalized amplitude-amplitude correlation. It is
typically used to study the coherence properties of light. In experiments it is com-
monly measured with a linear optical interferometer such as the Michelson interfer-
ometer, the Mach-Zehnder interferometer or the Sagnac interferometer [Mandel and
Wolf, 1995]. We can write it as

g(1)(t, τ) =
G(1)(t, τ)

〈b̂†(t)b̂(t)〉
=
〈b̂†(t+ τ)b̂(t)〉
〈b̂†(t)b̂(t)〉

, (1.40)

with the time t and the delay time τ . The function it normalized to one for τ = 0
and the time span that it takes for the function to relax to zero is referred as the
coherence time.

Second-order photon-autocorrelation functions The second-order photon-
autocorrelation function g(2)(t, τ) is the normalized intensity-intensity correlation.
In experiments it can be measured with the Hanbury Brown–Twiss setup [Mandel
and Wolf, 1995]. In the same way as g(1)(t, τ) we can write it as

g(2)(t, τ) =
G(2)(t, τ)〈

b̂†(t)b̂(t)
〉〈

b̂†(t+ τ)b̂(t+ τ)
〉 =

〈
b̂†(t)b̂†(t+ τ)b̂(t+ τ)b̂(t)

〉

〈
b̂†(t)b̂(t)

〉〈
b̂†(t+ τ)b̂(t+ τ)

〉 ,

(1.41)
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with the time t and the delay time τ . In most cases in this thesis we are interested
in the second-order photon-autocorrelation function with zero delay time τ = 0 that
we write from now on:

g(2)(0) =
〈b̂†2b̂2〉
〈b̂†b̂〉2

. (1.42)

With the help of g(2)(0) we can determine whether the emitted photons are uncor-
related as in laser light g(2)(0) = 1, or if the photons are correlated and emitted in
bunches g(2)(0) > 1 or if the photons are anticorrelated and display an antibunching
behavior g(2)(0) < 1 (see Fig 1.2)

t

a)

b)

c)

Figure 1.2: Illustration of the characterization of light via the photon statistics.
a) displays the antibunching of photons that is typical for single photon sources
g(2)(0) < 1. b) displays a photon statistic of uncorrelated photons that is typical for
a coherent light source like a laser. The intensity correlation function has a value of
g(2)(0) = 1. c) displays the bunching of photons. This is behavior is characteristic for
thermal light sources or other highly fluctuating emitters. The intensity correlation
functions has a value of g(2)(0) > 1.

As a natural generalization of the second-order coherence we also define the photon-
autocorrelation function of order n

g(n)(0) =
〈b̂†nb̂n〉
〈b̂†b̂〉n

, (1.43)

which will be part of our research in the next chapters. Similar as for g(2)(0) we can
calculate analytically the values for the special cases of thermal light g(n)(0) = n!
and coherent light g(n)(0) = 1.
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Chapter 2

Expectation value based cluster
expansion

In this chapter, we proceed from the general approach to open quantum-mechanical
many-body systems Sec. 1.1 to a new and more specific method to formulate equa-
tions of motion(EoM) - the expectation value based cluster expansion (EVCE). Our
approach allows for a numerically exact treatment as well as for approximations nec-
essary in large systems and can be applied to systems involving both bosonic and
fermionic particles. The method generalizes the cluster expansion (CE) technique by
using expectation values (EVs) instead of correlation functions (CFs). At the same
time, we develop a scheme to derive the EoM that paves the way for the computer-
aided cluster expansion in chapter 3. The use of expectation values not only makes
the equations more transparent, but also considerably reduces the algebraic effort
to derive the equations. Since we focus on the description of open systems, the
deviation of multi-time EVs (see also Sec. 1.2) in terms of the EVCE is discussed
explicitly. We demonstrate the application and the convergence of the EVCE on the
Jaynes-Cummings model [Jaynes and Cummings, 1963; Shore and Knight, 1993]
and the QD-based microcavity lasers model [Gies et al., 2007]. Finally the proposed
formulation offers a unified view on various approximation techniques presented in
the literature.

Parts of this chapter are published in [Leymann et al., 2014, 2013b]. The basic
theoretical concept of the EVCE is developed by A. Foerster in collaboration with
H.A.M. Leymann, the analytical EoM where mainly derived by H.A.M. Leymann,
computational derivation of EoM and the numerical integration of the EoM was
mainly done by A. Foerster, all authors of [Leymann et al., 2014, 2013b] discussed
the results and physical implications of the results.

2.1 Motivation of the expectation value based
cluster expansion

Interacting many-particle systems can drive strong correlations between the inter-
acting particles. A straight forward way to describe the dynamics of many-particle
systems is to derive the EoM for the quantities of interest. The ideas of the EVCE
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were developed parallel with the task to write a computer program that is capable
to derive EoM like the ones presented in [Gies et al., 2007]. Our new formulated
EoM technique is a general procedure that allows for all freedoms of modelling and
is still clear enough to be executed by a computer.

Equation of motion techniques have been used successfully to realize microscopic
descriptions of quantum systems, and are a way to systematically incorporate many-
particle correlations into the description of exciton dynamics in quantum wells
[Hoyer et al., 2003], ultracold Bose gases [Köhler and Burnett, 2002], spin dynamics
[Kapetanakis and Perakis, 2008], photoluminescence [Kira et al., 1998], resonance
fluorescence [Kira et al., 1999], cavity phonons [Kabuss et al., 2012], cavity-quantum-
electrodynamics [Carmele et al., 2010], and microcavity quantum dot (QD) lasers
[Gies et al., 2007]. The basic idea of EoM approaches is to truncate the hierarchy
of differential equations at a certain level, to allow for a numerical integration. The
details of the truncation depend strongly on the used technique and the investi-
gated system and are the subject of this chapter. Many different formulations and
approximation techniques are known in the field of EoM approaches. However, we
will distinguish between two basic types of formulation using CFs [Wiersig et al.,
2009; Kapetanakis and Perakis, 2008; Kira et al., 1998, 1999; Hoyer et al., 2003;
Hohenester and Pötz, 1997] as in the cluster expansion [Fricke, 1996a; Hoyer et al.,
2004] on the one hand and EVs on the other hand [Gartner, 2011; Richter et al.,
2009; Witthaut et al., 2011; Kabuss et al., 2012; Carmele et al., 2010]. The for-
mulation in CFs is algebraically demanding but has proven to be very effective in
approximately describing large systems. Expectation value based formulations are
algebraically less demanding and produce a linear and very clear system of EoM,
but are usually limited to small systems. The proposed approach combines the two
formulations with their respective advantages and adds a new perspective on former
techniques.

The outline of this chapter is as follows. In Sec. 2.2, we revisit the general concept
of CFs and the factorization of EVs. The approximation techniques presented in
Sec. 2.2 are the basis for the truncation variants presented in Sec. 2.3. Section 2.3
is devoted to the derivation of EoM and we show how the introduced formulation
can be used to truncate the unfolding hierarchy of EoM. We focus on the truncation
of EoM for systems involving bosons and fermions and provide details on various
truncation possibilities. The deviation of multi-time EoM is discussed in detail for
the first and second order coherence functions 2.3.4. In Sec. 2.4, we give an example
for the EoM of a coupled quantum system and show how different truncation schemes
result in known models. We also present an extension of the semiconductor QD laser
model introduced by Gies et al. [2007]. This extension is used to monitor the lasing
transition in higher-order photon-autocorrelation functions. Numerical results of
the applications in Sec. 2.4 are used to study the convergence properties of the
EVCE. Finally, in Sec. 2.5, various methods found in the literature are compared
and interpreted according to the formulation introduced.
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2.2 The concept of correlation functions
In the following, we recapitulate and work out the details of the CF concept. The
fundamental definitions of CFs and a formal introduction to CFs can be found in
Fricke [1996a]. We introduce a new formulation that will facilitate switching between
a formulation in EVs or CFs. With this flexibility in the formulation we give detail
to the various approximations that are related to the neglection of EVs and CFs.

2.2.1 Definition of correlation functions

A key point of this section is the fact that one can represent every EV 〈b1b2 · · · bk〉
of operators bi as a sum of products of CFs in a unique way. In this part, we stick
to bosonic operators to keep the general ideas clear.

For the mathematical framework, we define a set of indices I = {1, 2, · · · , k} and
a product of operators bI = b1b2 · · · bk. P is a partition of the set I meaning a set
family of disjoint nonempty subsets J of I with ∪J∈PJ = I, and finally PI is defined
as the set of all partitions of I. We introduce the factorization operator F. This
operator does not change the value of the complex number

〈
bI
〉
, instead F changes

the representation of the EV similar to a passive transformation of a vector. With
these preliminaries we can now give a general definition of the CFs δ(bJ):

F
〈
bI
〉

= δ(bI) + δ(bI)F =
∑

P∈PI

∏

J∈P
δ(bJ). (2.1)

where δ(bI)F is a short notation for the sum of products of all possible factorizations
of the operator EV

〈
bI
〉
into CFs containing a smaller number of operators than the

cardinality of I, #(I). We show as an example the factorizations of the first EVs
containing products of up to three operators according to Eq. (2.1):

F 〈b1〉 = δ(b1),

F 〈b1b2〉 = δ(b1b2) + δ(b1)δ(b2), (2.2)
F 〈b1b2b3〉 = δ(b1b2b3) + δ(b1b2)δ(b3) + δ(b1b3)δ(b2)

+δ(b2b3)δ(b1) + δ(b1)δ(b2)δ(b3).

One can define the inverse operation F−1F = 1 as well. Applying F−1 to Eq. (2.1),

F−1δ(bI) =
〈
bI
〉
− F−1δ(bI)F , (2.3)

gives an implicit definition of F−1. As well as F, the operator F−1 does not change
the value of the complex number δ(bI), but rather its representation. By successively
applying Eq. (2.3) to itself one arrives at the form

F−1δ(bI) =
∑

P∈PI
cP
∏

J∈P

〈
bJ
〉

(2.4)

with cP = (−1)#(P )−1(#(P ) − 1)!, where the CF is represented entirely by EV.
Due to the implicit definition of F−1 the coefficients cP are not equal to +1 as in
Eq. (2.2). The first three ’refactorized’ CFs according to Eq. (2.4) are:
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F−1δ(b1) = 〈b1〉 ,
F−1δ(b1b2) = 〈b1b2〉 − 〈b1〉 〈b2〉 , (2.5)

F−1δ(b1b2b3) = 〈b1b2b3〉 − 〈b1b2〉 〈b3〉 − 〈b1b3〉 〈b2〉
− 〈b2b3〉 〈b1〉+ 2 〈b1〉 〈b2〉 〈b3〉 .

With the recursive definition one can easily prove by induction that every EV can
be represented in an unambiguous way by CFs and every CF can be represented by
EVs as well. The definition of the lowest-order CF is linear and therefore obviously
unambiguous. By using this first definition one can solve the second-order equation
unambiguously and with these two solutions one can solve the third-order equation
unambiguously and so on, therefore F−1F = FF−1 = 1 holds for every order. Note
that a similar definition of CFs can be introduced for fermionic operators fi, if
the sign of δ(fJ) is changed for every commutation of operators corresponding to
identical fermionic particles that is performed in the factorization of δ(f I).

2.2.2 Approximations by lower-order quantities

In this section, we show how the concept of representing a quantity by a sum of
products of another quantity can be exploited for approximation schemes. To this
end we introduce the abbreviated notation δ(N), representing any function of CFs
δ(bI) of order N or smaller (O[δ(bI)] = #(I) ≤ N). As an example, we display the
third line of Eqs. (2.2) in this fashion:

F 〈b1b2b3〉 ≡ δ(3) + 3δ(2)δ(1) + δ(1)3 ≡ δ(3).

To symbolize neglections we define the truncation operator ∆δ(N). Applied to any
function of CFs, all CFs of order larger than N are neglected

∆δ(N)δ(N + 1) = δ(N). (2.6)

To further illustrate this notation we apply ∆δ(2) on the third line in Eqs. (2.2)

∆δ(2)

(
δ(3) + 3δ(2)δ(1) + δ(1)3

)
= 3δ(2)δ(1) + δ(1)3 ≡ δ(2),

leaving an expression that contains only CFs up to order two. Whether this neglec-
tion is justified depends on the physical system under investigation. An analogous
definition can be made for the neglection of EVs, here 〈N〉 is a short notation for any
function of EVs addressing N or less operators. The application of the truncation
operator ∆〈N〉,

∆〈N〉 〈N + 1〉 = 〈N〉 , (2.7)

reduces any function of EV 〈N + 1〉 of order (N+1) to a function of EVs containing
only EVs of order N or smaller by setting 〈N + 1〉 to zero.

The application of the truncation operator is simple when ∆δ(N) is applied to
CFs, and ∆〈N〉 is applied to EVs. However, the representation of the quantities in
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EV or CF is independent from the approximation one applies. One can formulate
all quantities in CFs and make an approximation by neglecting higher-order CFs.
Alternatively, one can formulate all quantities in EV and still apply the very same
approximation. Using the factorization operators F(−1) we can apply ∆δ(N) to EVs
as well. The EV must be rewritten into CFs (by application of F), then the highest
order CF is set to zero (by application of ∆δ(#I−1)) and finally the remaining CFs
are rewritten as EVs (by application of F−1). The EV

〈
bI
〉
is approximated by

F−1∆δ(#I−1)F
〈
bI
〉

= −
∑

P∈PI\I
cP
∏

J∈P

〈
bJ
〉
, (2.8)

a sum of products of lower-order EVs. We show in Sec. 2.3.2 that this approximation
scheme is very useful when it is necessary to describe systems with a large number
of particles and many degrees of freedom. To illustrate the approach, we apply ∆δ(1)

to 〈b1b2〉 and 〈b1b2b3〉 and∆δ(2) to 〈b1b2b3〉:

F−1∆δ(1)F 〈b1b2〉 = 〈b1〉 〈b2〉 , (2.9)
F−1∆δ(1)F 〈b1b2b3〉 = 〈b1〉 〈b2〉 〈b3〉 , (2.10)
F−1∆δ(2)F 〈b1b2b3〉 = 〈b1b2〉 〈b3〉+ 〈b1b3〉 〈b2〉 (2.11)

+ 〈b2b3〉 〈b1〉 − 2 〈b1〉 〈b2〉 〈b3〉 .

The reader will recognize Eq. (2.9) as the mean-field approximation and Eq. (2.10)
as related to the second Born approximation [Hoyer et al., 2003]. Equation (2.11) re-
produces the so-called Bogoliubov back-reaction method recently used by Witthaut
et al. [2011]; Trimborn et al. [2011].

Since we have defined unambiguous transformations between CFs and EVs, it is
also possible to formulate analogous approximations for CF δ(bI). In this case, the
truncation operator ∆〈N〉 is applied to a CF:

F∆〈N−1〉F−1δ(bI) = −
∑

P∈PI\I

∏

J∈P
δ(bJ). (2.12)

A CF is approximated by a sum of products of lower-order CFs, since the corre-
sponding EV vanishes. One can find this way of approximation in Florian et al.
[2013b], were the finite number of carriers confined in a single QD is considered by
replacing higher CFs with their factorizations.

We have formulated the two different approximations in a very symmetric fashion.
Nevertheless, the two approximations are quite the opposite of each other: when a
system has many degrees of freedom and a CF of certain order is negligible, the
corresponding EV is not,

δ(bI) = 0 ⇒
〈
bI
〉

= F−1δ(bI)F ,

but has to be replaced by products of non-zero EVs of lower order. If a system has
only a limited number of particles and certain normal ordered EVs vanish

〈
bI
〉

= 0 ⇒ δ(bI) = −δ(bI)F ,
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the corresponding CF cannot be neglected but must be replaced by its factorization.
In Sec. 2.4.1 we will give a specific example on the difference of the two approaches
and see how badly a system with vanishing EV can be described by EoM in which
CFs are neglected.

We emphasize that up to this point our considerations are of entirely formal
nature. We worked out the case of a vanishing CF and the effect this has on the
corresponding EV and vice versa. It depends on the investigated physical system
whether one of these approximations is adequate.

2.3 Equations of motion

In this section, we show how EVs and CFs are used to derive EoM for a given physical
system. We work out how the suggested approximation schemes can be applied to
different systems of EVs or CFs. We also discuss the situation of a mixed Hilbert
space describing different types of particles.

2.3.1 Infinite hierarchy

The dynamics of an open quantum mechanical system with the Hamiltonian H
is described by the von Neumann-Lindblad equation (vNL) (1.8) for the density
operator ρ. For many systems, an exact solution of ρ(t) is not feasible due to the
size of the system and the interaction part of H. Moreover, a solution of ρ(t) is
not necessary for many applications and it is enough to know the dynamics of some
EVs 〈A〉 = Tr(Aρ). Equation (1.8) can be used to derive generalized Ehrenfest EoM
Eq. (1.9) for the desired operator EVs 〈A〉. In Eq. (1.9), L is a superoperator that
stands for the application of the Lindblad form and the commutator with H to the
operator A. When deriving Ehrenfest EoM, the interaction part of the Hamiltonian
and the scattering terms in the Lindblad form lead to a hierarchy of EoM. These
terms couple a first-order quantity to a second-order quantity and a second order to
a third-order quantity and so on. Symbolically this reads:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

d

dt
〈2〉 = 〈L(2)〉 = 〈3〉 (2.13)

...
...

...

and without any truncation the hierarchy would go up to infinite order. In many
cases, it is possible to calculate the effect of L for a whole family of operators Aa and
to formulate an inductive scheme for arbitrary high orders [Gartner, 2011; Kabuss
et al., 2011]. When the system contains only n particles, then normal ordered EVs
addressing n+ 1 particles vanish,

〈b† · · · b† b · · · b︸ ︷︷ ︸
n+1

〉 = 0
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which has the same effect as the application of the truncation operator ∆〈N〉 with
N = 2n:

〈2n+ 1〉 ≈ ∆〈2n〉 〈2n+ 1〉 = 〈2n〉 . (2.14)

Note that in the case of finite particle numbers the total number of normal ordered
operators is not important, but the number of annihilation (creation) operators is.
However, we do not focus on this point because in every practical case one can
unambiguously identify the vanishing EV. The truncation operator ∆〈N〉 applied
on the Nth line of the hierarchy in Eqs. (2.13) leads to a finite system of linear
differential equations:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

... (2.15)
d

dt
〈N〉 = 〈L(N)〉 ≈ ∆〈N〉 〈N + 1〉 = 〈N〉 .

Figure 2.1 gives a visualization of the coupled linear EoM in system (2.15). This
truncation scheme is useful when the system contains a small number of particles
occupying a limited number of states, i.e. ,the Hilbert space is finite and manageable
with numerical methods. If a system can be described by this method it is, in
principle, also possible to solve the vNL Eq. (1.8) directly, since the corresponding
matrix equation can be solved in the basis of configurations the finite number of
particles occupy. These approaches are often called numerically exact methods.

Figure 2.1: Illustration of an EV hierarchy. The black lines indicate the linear
coupling between the EV of increasing order. One can imagine the hierarchy as a
line of EVs coupled by linear differential equations to the next order. The hierarchy
is truncated by setting the (N +1) EV to zero, i.e. applying the truncation operator
∆〈N〉.

When the physical system under consideration is too large to be described by
a finite Hilbert space, the cluster expansion method has proven beneficial. In this
method: the EoM are derived for the CFs and the CFs of certain order are neglected.
To derive the EoM for the CF δ(bI), the Ehrenfest EoM (1.9) has to be applied to
the corresponding EV and the resulting EVs have to factorized into CFs again and
finally the previously calculated derivatives of the lower-order factorizations have to
be subtracted:

d

dt
δ(bI) = F

〈
L(bI)

〉
− d

dt
δ(bI)F . (2.16)
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As well as for the EV hierarchy, the interaction and scattering terms in L give rise
to an infinite hierarchy of CFs:

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

d

dt
δ(2) = F 〈L(2)〉 − d

dt
δ(2)F = δ(3), (2.17)

...
...

...

The infinite hierarchy displayed in the set of Eqs. (2.17) is equivalent to the infinite
hierarchy in Eqs. (2.13) and the two systems of EoM produce exactly the same
results if they were formulated up to infinite order and solved exactly.

For a large system with sufficiently weak interaction, CFs δ(bI) of order #(I) > N
can be neglected and the hierarchy of CFs can be truncated. This is equivalent to
the application of the truncation operator ∆δ(N) (from Eq. (2.6)) to the Nth line of
the hierarchy in Eqs. (2.17)

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

...
...

... (2.18)
d

dt
δ(N) = F 〈L(N)〉 − d

dt
δ(N)F

≈ ∆δ(N)F 〈L(N)〉 − d

dt
δ(N)F = δ(N).

This system of Eqs. (2.18) visualized in Fig. 2.2 is no longer equivalent to the trun-
cated hierarchy of EVs in Eqs. (2.15) due to the application of different truncation
operators. In fact, Eqs. (2.15) and Eqs. (2.18) describe opposite situations in the
same sense as pointed out at the end of Sec. 2.2.2.

Figure 2.2: Illustration of a CF hierarchy. The CF of a certain order couple linearly
to the CF of the next order indicated by the black line, but also to products of lower-
order CF indicated by the blue merging lines on top. To truncate the hierarchy at
order N the (N +1)th CF is set to zero i.e. the truncation operator ∆δ(N) is applied.
In contrast to the EV hierarchy depicted in Fig. 2.1 the CF hierarchy cannot be
imagined as a straight line, due to the nonlinear coupling of the CF. The structure
of this hierarchy is nonlinear and can be imagined as an intertwined chain.

Let us compare the hierarchies (2.13,2.15) of EVs to the hierarchies (2.17,2.18)
of CFs. On the one hand Eqs. (2.13,2.15) are entirely linear since they originate
from the linear Ehrenfest EoM (1.9). The only necessary algebraic operation to
derive these equations is the normal ordering of L(bI). The truncated version in
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Eqs. (2.15) can be used to describe the dynamics of a finite quantum system. On
the other hand Eqs. (2.17,2.18) are nonlinear for all orders larger than one. To
derive these equations, L(bI) has to be normal ordered, the resulting EV has to be
factorized and time derivative of the lower-order factorizations has to be subtracted.
Without advanced methods the algebraic effort is very high since the factorization
(F
〈
L(bI)

〉
) and the time derivative of the products of the lower-order CFs ( d

dt
δ(bI)F )

are demanding and error intensive operations and have to be performed for every
single order in the hierarchy. The benefits of this effort are that Eqs. (2.18) can be
used to describe the dynamics of a large system with small correlations that would
in fact be too large to be described by the set of Eqs. (2.15).

2.3.2 Expectation value based cluster expansion

We will now give detail to the main concept of the EVCE, the independence of the
formulation of the EoM in EVs or CFs from the principle of approximation that is
used to truncate the infinite hierarchy of EoM. We have shown in Sec.2.2.2 that one
can apply ∆δ(N) to EVs and ∆〈N〉 to CFs as well. The consequence is that we can
apply the truncation operator ∆δ(N) also on the Nth line of Eqs.(2.13) and obtain a
system of EoM formulated in EVs that is equivalent to the CF system Eqs.(2.18):

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

... (2.19)
d

dt
〈N〉 = 〈L(N)〉 ≈ F−1∆δ(N)F 〈N + 1〉 = 〈N〉 .

Equations (2.19) are equivalent to Eqs. (2.18), and produce the same results, since
the same truncation scheme (∆δ(N)) is used. Note that equations (2.19) are almost
linear, only the EoM where actual approximations are made are nonlinear. An
infinite system of linear equations is approximated by a finite set of nonlinear equa-
tions in which the non-linearity arises from the approximation. A visualization of
Eqs. (2.19) can be found in Fig. 2.3. We emphasize that it is much less demanding to

Figure 2.3: Illustration of an EV hierarchy truncated by neglecting CFs. This
hierarchy is equivalent to the hierarchy illustrated in Fig. 2.2 though in its structure
it is very similar to the EV hierarchy illustrated in Fig. 2.1. The EVs of a certain
order couple linearly to the next order. The truncation here is not achieved by
setting the (N + 1)th EV to zero but by substituting it by products of lower-order
EVs indicated by the merging blue line entering the Nth EV from the side mediated
by the truncation operator. In consequence, this hierarchy can be imagined as an
“almost” straight line where only the last order couples nonlinearly to products of
lower-order quantities.

29



2.3. EQUATIONS OF MOTION

derive Eqs. (2.19) than Eqs. (2.18) since an inductive scheme can be used to derive
Eqs.(2.19) up to line N . The factorizations that are required in F−1∆δ(N)F 〈N + 1〉
can be listed as indicated in Eqs. (2.9-2.11) and all emerging EVs of order larger
than N can be substituted according to such a list. Though this formulation is very
different from the “traditional” cluster expansion it can still be called so, since its
approximations and results are exactly the same.

For the sake of completeness, we will also show a system of equations equivalent
to Eqs. (2.15) but entirely formulated in terms of CFs:

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

...
...

... (2.20)
d

dt
δ(N) = F 〈L(N)〉 − d

dt
δ(N)F

≈ F∆〈N〉 〈L(N)〉 − d

dt
δ(N)F = δ(N).

The visualization of this system of equations is displayed in Fig. 2.4. It is obvious

Figure 2.4: Illustration of a CF hierarchy truncated by neglecting EVs. This hierar-
chy is equivalent to the hierarchy illustrated in Fig. 2.1 though in its structure it is
very similar to the CF hierarchy illustrated in Fig. 2.2. The CF of a certain order
couple linear to the CF of the next order indicated by the black line, but also to
products of lower-order CF indicated by the blue merging lines on top. The trunca-
tion here is not achieved by setting the (N + 1)th CF to zero but by substituting it
by products of lower-order CF indicated by the merging blue line entering the Nth
CF from the right side.

that it is clearer and easier to derive Eqs. (2.15) than it is to derive Eqs. (2.20), but
we see that it is possible to describe a finite system exactly by EoM formulated in
CFs.

We conclude this subsection with the suggestion to formulate all EoM in terms
of EVs. If the neglection of CFs is required the truncation operator in combination
with the factorization operators F−1∆δ(N)F can be used. By this approach, one
can use simple inductive algebra to derive Ehrenfest EoM for the EVs and then
make the factorizations only in the highest order EVs. The resulting EoM are much
simpler in structure than the equivalent ones formulated in CFs and are much easier
to obtain. Another advantage of the formulation in terms of EVs is that the effect
of the neglection of CFs is directly marked in the equations by the nonlinearities in
the otherwise linear equations.
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2.3.3 Equation of motion for mixed Hilbert spaces

The advantage of the formulation of the EoM via EV becomes even more evident
when one investigates the dynamics of a coupled system, in which the various types
of particles have different constraints and correlation strength. For example, let us
consider a system coupling fermionic carriers described by creation/annihilation op-
erators from the set F = {f †1 , . . . , f †n, f1, . . . , fn} to a quantized light field described
by bosonic creation/annihilation operators B = {b†1, . . . , b†m, b1, . . . , bm}. A general
normal ordered EV in this system would be

〈
bIfK

〉
= 〈b†i . . . blf †o . . . fr〉, where I

and K are index sets addressing elements in B and F respectively. In analogy, to
the abbreviated notation introduced at the beginning of Sec. 2.2.2 we will write
〈N,M〉 for any function of EVs

〈
bIfK

〉
with a maximum order N,M given by the

cardinality of the index sets (#I ≤ N,#K ≤ M). And we will write δ(N,M) for
an arbitrary function of CFs δ(bIfK) with a maximum order N,M . In Sec. 2.2.2 we
have introduced the truncation operators ∆〈N〉/δ(N) acting either on EVs or CFs. For
mixed Hilbert spaces the truncation operator must be specified further to indicate
on which part of the EV/CF ∆ it is acting on. The upper index B,F specifies
whether ∆ is applied on the bosonic or on the fermionic part of the quantity. We
give examples for ∆δ(N/M) acting on CFs

∆Bδ(N−1)δ(N,M) = δ(N − 1,M), (2.21)

∆Fδ(M−1)δ(N,M) = δ(N,M − 1), (2.22)

∆B+Fδ(N+M−1)δ(N +M) = δ(N +M − 1). (2.23)

In our example ∆Bδ(N) neglects bosonic correlations in Eq. (2.21), ∆Fδ(M) neglects
fermionic correlations in Eq. (2.22) and ∆B+Fδ(N+M) neglects (N +M)-particle correla-
tions in Eq. (2.23), which can be reasonable in large systems with a direct coupling
between the different particles. There are many cases were the weighting of the
operators is not symmetrical (B + F) but weighted (B + wF) with w being the
weighting factor[Kira et al., 1999]. This is for instance the case when a large sys-
tem is dominated by the dipole Hamiltonian b†f †gfe + bf †efg. In this case one boson
operator is coupled to two fermi operators and the weighting factor is 1/2.

2.3.4 Multi-time equation of motion

In this section, we show how the EVCE can be applied to calculate multi-time EoM.
This topic is especially relevant for the description of open quantum systems since
some properties can be obtained with the help of multi-time expectation values
[Meystre and Murray, 1999; Ates et al., 2008; Gies et al., 2012]. Typical quantities
that can for example be measured in optical experiments are the autocorrelation
functions of first and second order for which the EVs 〈b†(t+ τ)b(t)〉 and 〈b†(t)b†(t+
τ)b(t+ τ)b(t)〉 have to be calculated.

For the von Neumann-Lindblad equation we have discussed this subject already
in chapter 1.2. If the system can be described with a finite density matrix(closed
set of linear differential equation) the multi-time EoM are described by the same
EoM Eq. (1.11) due to the quantum regression theorem [Meystre and Murray, 1999;
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Breuer and Petruccione, 2002]. In the formalism of the EVCE we have the choice
of the two fundamentally different approximation schemes. The first possibility is
to use ∆〈N〉. Since in this case we end up with a linear set of differential equations,
there is no principal difference to Eq. (1.11). The second possibility is to use ∆δ(N).
In this case the time dynamics are described by a closed set of nonlinear differential
equations and it is not possible to use the single-time EoM for the description of the
multi-time EoM.

In particular we are going to derive EoM of the type d
dτ

〈
bI(t+ τ)b(t)

〉
for the

first and d
dτ

〈
b†(t)bI(t+ τ)b(t)

〉
for the second order coherence functions that arise in

the hierarchy of the EoM. Without loss of generality we restrict ourselves again to
bosonic operators where bI that stands for a combination of creation and annihilation
operators. The calculation of a two-time EV can be understood in the following way:
first we calculate the t dynamics until a certain time tC is reached and afterwards
we are going to calculate the τ dynamics from this point on. For a convenient
presentation, we discuss here only the case of the stationary regime t → ∞ that is
already enough for many applications. We can concentrate on the τ dynamics and
write the differential equations d

dτ

〈
bI(τ)b∞

〉
or respectively d

dτ

〈
b†∞b

I(τ)b∞
〉
where

b∞ = b(t =∞).

First-order coherence

For the calculation of the first-order coherence function we have to derive EoM
for EV of the type

〈
bI(τ)b∞

〉
, where bI(τ) stands for a combination of creation

and annihilation operators. Applying the quantum regression theorem [Lax, 1967;
Meystre and Murray, 1999; Breuer and Petruccione, 2002] to the density operator
we can write down an equation similar to the generalized Ehrenfest EoM (1.9) for
the τ dynamics at time τ

d

dτ

〈
bI(τ)b∞

〉
=
i

~
〈[
H, bI(τ)

]
b∞
〉

(2.24)

+
∑

ν,ν′

λν,ν′
{

2
〈
L†νb

I(τ)L†ν′b∞
〉
−
〈
L†νLν′b(τ)Ib∞

〉
−
〈
b(τ)IL†νLν′b∞

〉}
,

where we obtain an infinite hierarchy of EoM. Following the concept of the EVCE
the new EVs can be factorized in the same manner as the EV that depend solely
from time t using Eq. (2.8)

F−1∆δ(#I′−1)F〈bI
′
(τ)〉 = −

∑

P∈PI′\I′
cP

(〈
bK(τ)b∞

〉∏〈
bJ(τ)

〉)
, (2.25)

with bI′(τ) = bI(τ)b∞ and J,K ⊂ I ′. The truncated EoM now consists of a sum of
products of two types of lower-order EVs. Since there is only one operator b∞ in the
EV every summand of the factorization contains only one EV of the type

〈
bK(τ)b∞

〉

and potentially a product of
〈
bJ(τ)

〉
. The EoM are vastly simplified in the case of

the stationary regime using the fact that 〈bJ(t+τ)〉 = 〈bJ(∞+τ)〉 = 〈bJ(∞)〉 = 〈bJ∞〉
we find that the closed set of EoM is a linear set of ODEs with the initial condition
from the nonlinear t system 〈bI′(τ = 0)〉 = 〈bI∞b∞〉. The general form of the EoM
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for the first order coherence function, can be written as

d

dτ
〈bi(τ)bk〉 =

∑

j

Gij 〈bj(τ)bk〉 . (2.26)

with a corresponding coefficient matrix Gij that consists of coefficients from the
Hamiltonian and the Lindblad processes as well as the stationary values with respect
to τ .

Second-order coherence

For the calculation of the second-order coherence function we have to derive EoM
for EV of the type

〈
b†∞b

I(τ)b∞
〉
, where b(τ)I stands for a combination of creation

and annihilation operators. Just in the same way we derived the EoM for the first-
order coherence function we can derive an Ehrenfest alike EoM for the second-order
coherence function

d

dτ

〈
b†∞b

I(τ)b∞
〉

=
i

~
〈
b†∞
[
H, bI(τ)

]
b∞
〉

(2.27)

+
∑

ν,ν′

λν,ν′
{

2
〈
b†∞L

†
νb
I(τ)Lν′b∞

〉
−
〈
b†∞L

†
νLν′b

I(τ)b∞
〉

−
〈
b†∞b

I(τ)L†νLν′b∞
〉}

and obtain an infinite hierarchy for this new type of EVs. Using Eq. (2.8) to factorize
EVs of the type

〈
b†∞b

I(τ)b∞
〉
we have

F−1∆δ(#I′−1)F〈bI
′′〉 = −

∑

P∈PI′\I′
cP
∏〈

bJ(τ)
〉

(2.28)

(〈
b†∞b

K(τ)
〉 〈
bL(τ)b∞

〉
+
〈
b†∞b

M(τ)b∞
〉)
, (2.29)

with 〈bI′′〉 =
〈
b†∞b

I(τ)b∞
〉
and J,K, L,M ⊂ I ′. This factorization consists a sum of

products of three types of lower-order EVs. Since there is only one operator b∞ and
one operator b†∞ in the initial EV there are two possibilities how these two operators
can be distributed. Either in one EV

〈
b†∞b

M(τ)b∞
〉
or in a product of two EVs〈

b†∞b
K(τ)

〉 〈
bL(τ)b∞

〉
. In the same way we could simplify the first-order coherence

function, we can again evaluate the EoM for t→∞ with 〈bJ(τ)〉 = 〈bJ∞〉. Now the
EoM form a nonhomogeneous linear set of ODEs

d

dτ

〈
b†∞b

I(τ)b∞
〉

=
∑

J

G̃IJ

〈
b†∞b

J(τ)b∞
〉

+ f(τ). (2.30)

with a corresponding coefficient matrix G̃ij that consists of coefficients from the
Hamiltonian and the Lindblad processes as well as the stationary values wit respect
to τ and a homogeneity f(τ) that consists of products of first-order coherence EVs〈
b†∞b

K(τ)
〉 〈
bL(τ)b∞

〉
. The homogeneous solution of Eq. (2.30) can be found in

the same way as for Eq. (2.26) while the particular solution can be found using
d
dτ
〈bi(τ)bk〉 = 0 for τ → ∞, where the value of f(τ = ∞) can be determined with

Eq. (2.26).
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2.4 Applications

To illustrate our approach, we give a specific example for a hierarchy of EoM describ-
ing a coupled electron-photon system. We give details on how the derived EoM can
be used to describe very different physical systems depending on the approximations
that are made to truncate the hierarchy. We show how our approach can be used to
exploit the cluster expansion further for one specific example. The transition from
thermal to laser light is monitored in higher-order photon-autocorrelation functions
for a microscopic semiconductor QD laser model. And we show for this system the
validity of the cluster expansion. To conclude this section we interpret former EoM
techniques according to our approach.

2.4.1 Hierarchy induced by the dipole Hamiltonian

For systems with coupling in-between the different kinds of particles, the hierarchy
unfolds into various directions. In this example, the dipole Hamiltonian

HD =
∑

gmb
†f †gmfem + h.c., (2.31)

for a single optical mode in rotating wave approximation (see, for example, [Meystre
and Murray, 1999]) couples the operators b(†) ∈ B annihilating (creating) a photon
in the cavity mode, b|n〉B =

√
n|n − 1〉B, to the operators f (†)

e/gm
∈ F annihilating

(creating) a carrier in the state |e/g;m〉F . In this context e/g specifies the energetic
state of the electron in the exited or ground level (conduction and valance band in a
semiconductor context) and m is a place holder for all remaining quantum numbers
specifying the carriers state. The EoM for the generalized electron density

d

dt

∣∣∣∣
HD

〈
b†abaf †eifei

〉
= −2giRe

〈
b†a+1baf †gifei

〉
(2.32)

− 2a
∑

gmRe
〈
b†aba−1f †eif

†
gmfeifem

〉
,

or more schematically

d

dt

∣∣∣∣
HD

〈2a, 2〉 = −2giRe 〈2a+ 1, 2〉 (2.33)

− 2a
∑

gmRe 〈2a− 1, 4〉 ,

is a quantity of order (2a, 2). It couples to the photon-assisted polarization of order
(2a+ 1, 2) and to EVs correlating polarizations in other shells m with the presence
of a second carrier in state |e; i〉, this term has the order (2a − 1, 4) (compare to
Eq. (2.33)). The EoM for the photon-assisted polarization
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d

dt

∣∣∣∣
HD

〈
b†a+1baf †gifei

〉
= (a+ 1)gi

〈
b†abaf †eifei

〉
(2.34)

+ gi
〈
b†a+1ba+1(f †eifei − f

†
gi
fgi)
〉

+ (a+ 1)
∑

gm
〈
b†abaf †emf

†
gi
feifgm

〉

− a
∑

gm
〈
b†a+1ba−1f †gif

†
gmfeifem

〉
,

d

dt

∣∣∣∣
HD

〈2a+ 1, 2〉 = (a+ 1)gi 〈2a, 2〉 (2.35)

+ gi 〈2a+ 2, 2〉

+ (a+ 1)
∑

gm 〈2a, 4〉

− a
∑

gm 〈2a, 4〉 ,

couples to the spontaneous emission (2a, 2), to the stimulated emission (2a+2, 2), to
the spontaneous emission modified by additional electrons present in semiconductor
systems (2a, 4) and to possible two-photon processes generated by transitions in
other shells (2a, 4) (compare Eq. (2.34) and Eq. (2.35)). The desired EVs couple to
EVs with a growing number of bose and fermi operators. To close this hierarchy it
has to be truncated by a combination of ∆B and ∆F as depicted in Fig. 2.5.

Figure 2.5: Illustration of the system of EoM (2.32-2.35) induced by the dipole
Hamiltonian HD. The hierarchy unfolds in two directions and therefore has to be
truncated by a combination of ∆B and ∆F . The sketch shows how the hierarchy
is truncated in our framework in the fermionic direction at single-particle level by
∆F2 standing for ∆F〈2〉 applicable to one-electron systems or for ∆Fδ(2) applicable to
semiconductor systems with more than one electron. The photonic direction of
the hierarchy is truncated by ∆BM standing for ∆B〈M〉 with applications in cavity-
quantum-electrodynamic systems or for ∆Bδ(M) applicable, for example, in laser sys-
tems.

To illustrate the application of the combined truncation scheme, we will give
examples that result in known models. To obtain these models, we show in the
following how Eqs. (2.32,2.34) must be modified and truncated and in some cases
augmented with additional EoM. Note that all systems in the following examples are
considered to be in the incoherent regime where EVs like

〈
b†
〉
,
〈
f †efg

〉
vanish[Mølmer,

1997]. So far, we have only defined the interaction part of the Hamiltonian in an
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abstract manner. To describe a real model, the free part of the Hamiltonian, the
number of particles and the level structure of the particles must be declared and
according to this the sum and indices in the dipole Hamiltonian. Furthermore,
several external processes must be included into the equations, either by Lindblad
terms or directly by adding phenomenological terms to the equations. However, the
processes induced by an external bath do not change the necessity to truncate the
hierarchy created by HD. For the sake of simplicity, we will not consider the external
processes explicitly.

Jaynes-Cummings model

A very basic example is the Jaynes-Cummings model (JCM) with N photons inside
the cavity and one carrier that can occupy the ground or exited state (a = 0 . . . N
and i = 1 in Eqs. (2.32,2.34)). The application of ∆B〈N〉∆

F
〈2〉 is sufficient to describe

this system. Since the JCM is a one-electron model all EV addressing two electrons
are zero:

∆F〈2〉
〈
bIf †f †ff

〉
= 0,

and because the number of photons is limited to N , the probability to find N + 1
photons is zero, i.e.

∆B〈N〉
〈
b†N+1bN+1f †f

〉
= 0.

In Fig. 2.6 this EoM approach is compared to the cluster expansion, which is totally
inappropriate for this finite system (see end of Sec. 2.2.2). Figure 2.6 shows the
time evolution of the second-order photon-autocorrelation function Eq.(1.42) at zero
delay time for the JCM with the electron initially in the exited state and the cavity
prepared in a Fock state with 1 photon (|ψ0〉 = |e〉F |1〉B). The system oscillates
between the initial state and a two-photon state with the electron in the ground
state (|ψ1〉 = |g〉F |2〉B) consequently the photon-autocorrelation function oscillates
between g(2)(0) = 0 and g(2)(0) = 0.5 with the Rabi-frequency ωR. The result
of the EoM truncated with ∆B〈4〉 is in perfect agreement with the exact analytical
result. The results obtained with the cluster expansion (i. e. by applying ∆Bδ(N))
diverge dramatically from the exact solution and exhibit even unphysical behavior
(g(2)(0) < 0). Going to higher orders enlarges the time interval in which the cluster
expansion matches the exact results. However, the algebraic effort is tremendous
and still the cluster expansion of order twelve is not able to monitor a half Rabi circle
for this system. Only the inclusion of an infinite number of CFs would be able to
compensate the vanishing EV, which is facilitated by ∆B〈4〉 in a very natural fashion.
Further details on this approach to the JCM and on the convergence properties of
the cluster expansion can be found in Leymann et al. [2013b].

Four-level laser rate equations

Allowing the index i to be {1, 2} and limiting the number of carriers per atom to one
gives the basis of a four-level laser model (a = 0, 1 and i = 1, 2 in Eqs. (2.32,2.34)).
The application of ∆

B+F/2
δ(2) gives the basis for the laser rate equations with

F−1∆B+F/2δ(2) F
〈
b†bf †f

〉
≈
〈
b†b
〉 〈
f †f
〉
,
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Figure 2.6: Dynamics of the photon-autocorrelation function g(2)(0) of the JCM for
an initially exited electron and the cavity field prepared in a Fock state with 〈b†b〉 = 1
and 〈b†nbn〉 = 0 for n > 1. The time is measured in units of the Rabi frequency ωR.
Depicted is the analytical exact solution compared to various numerical solutions of
the EoM from Eqs. (2.32,2.34). The fermionic part is truncated by ∆F〈2〉 since the
JCM is a one electron model, the photonic part is truncated by ∆B〈4〉 or ∆Bδ(N)with
N = {4, 6, 8, 10, 12}. Note that the analytical exact solution and the numerical exact
solution (∆B〈4〉) lie on top of each other. The results obtained by the cluster expansion
fail to describe the dynamics of this system and the orders eight to twelve even
reach unphysical values below zero marked by the gray hatched area. The curves
shown here were all obtained by the expectation value based cluster expansion. The
corresponding curves obtained by the traditional cluster expansion would lie on top
of them since both approaches differ only in the formulation but not in the results.

as the main approximation [Rice and Carmichael, 1994]. Since the gain medium
is considered to consist of one-electron systems the two-electron quantities vanish
∆F〈2〉

〈
f †f †ff

〉
= 0. This model provides no statistical information about the photons

other than the mean photon number
〈
b†b
〉
, but can easily be extended within our

framework by including higher-order correlations.

Semiconductor model for a single quantum dot

Characteristic for a semiconductor QD is the presence of more than one carrier con-
fined in the QD shell structure. Pauli blocking of recombination channels, Coulomb
interaction and scattering with wetting layer carriers and phonons influence the dy-
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namics of carriers in a semiconductor QD. We consider QDs with two shells (i = s, p
in Eqs. (2.32,2.34)) in the valence and the conduction band. Expectation values
addressing two carriers are different from zero in this system and thus have to be
considered. However, the Hilbert space corresponding to a single QD inside a cavity
with only one resonant photonic mode is still small enough to allow for a numerically
exact description (a = 1 . . . N). Single semiconductor QD systems have been stud-
ied for example by Ritter et al. [2010] by the direct solution of the vNL Eq. (1.8).
The application of the truncation operators ∆F〈4〉∆

B
〈N〉 on the Eqs. (2.32, 2.34) gives

a numerically exact semiconductor QD model in our formulation, when N is chosen
sufficiently large. To obtain a complete model the EoM for the two-electron quan-
tities

〈
bIf †f †ff

〉
has to be derived using Eq. (1.9) and the corresponding Lindblad

terms have to be included. The hierarchy is truncated at two-electron level, meaning
that EV addressing three electrons vanish,

∆F〈4〉
〈
bIf †f †f †fff

〉
= 0.

This truncation is justified by the assumption that the QD initial state is uncharged
and electrons and holes are pumped symmetrically; a discussion of the effects of
a unsymmetrical pump can be found in Florian et al. [2013b]. Every photonic
state that is produced by a single QD, be it a thermal or coherent state, can be
approximated by a finite number of Fock states N so that EVs addressing (N + 1)
photons vanish,

∆B〈N〉
〈
b†N+1bN+1fK

〉
= 0.

Semiconductor laser model for multiple quantum dots

In semiconductor QD microcavity lasers, typically, several QDs take part in the laser
dynamics. To obtain a microscopic semiconductor laser model, all the processes
mentioned in the single semiconductor QD model must be taken into account as
well. For three or four QDs the size of the Hilbert space is still small enough so that
the system can still be described by the vNL equation as in Florian et al. [2013a].
However, in the case of five or more QDs the fermionic part of the Hilbert space
is too large for an exact treatment. When the laser operates above threshold the
photon number grows too fast with the pump to set up a hierarchy that goes up to
vanishing EVs. To truncate the EoM hierarchy for such a large system, CFs have to
be neglected.

A model that is sufficient to describe an ensemble of semiconductor QDs coupled
to a single cavity mode and to provide statistical information about the photons
beyond the intensity is given when Eqs. (2.32,2.34) are carried up to order (a =
0, 1, 2) and the truncation operators ∆Fδ(2) and ∆Bδ(4) are applied. The hierarchy is
closed in the fermionic subspace by factorizing all two-electron quantities:

F−1∆Fδ(2)F
〈
bIf †f †ff

〉
≈

∑
c{J,L,M}

〈
bJf †f

〉 〈
bLf †f

〉 〈
bM
〉
,

where I = J ∪ L ∪M is the index set addressing the bose operators. In contrast to
the single QD model, a large number (> 10) of QDs takes part in the laser dynamics.
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Therefore, an exact treatment of the carriers is impossible and carrier-carrier corre-
lations are not in focus of this model. The carriers can be treated on Hartree-Fock
level since the Coulomb interaction is screened by the high carrier densities in the
lasing regime [Schneider et al., 2001a] and correlations are strongly diminished by
dephasing. In the bosonic subspace, the hierarchy is closed by factorizing all EVs
containing more than four photon operators

F−1∆Bδ(4)F
〈
b†b†b†bbfK

〉
≈

+
∑

c{Q,R,S,T}
〈
b†bfQ

〉 〈
b†bfR

〉 〈
b†fS

〉 〈
fT
〉

+
∑

c{Q′,R′,T ′}
〈
b†b†bbfQ

′
〉〈

b†fR
′
〉〈

fT
′
〉

+
∑

c{Q′′,R′′,T ′′}
〈
b†b†bfQ

′′
〉〈

b†bfR
′′
〉〈

fT
′′
〉
,

where K = Q∪R∪S ∪T is the index set addressing the fermi operators. There are
more possible factorizations, but these terms are zero in the incoherent regime or
not driven by the Hamiltonian. Expectation values with up to four photon operators
are considered in this model. Thereby we have access to the photon-autocorrelation
function of the cavity photons at zero delay time g(2)(0). An equivalent model
formulated in terms of CFs has been introduced by Gies et al. [2007].

We conclude this section with a comparison between the presented examples.
Note the similarities between our first and third example, in both examples, a lim-
ited number of carriers interact with limited number of photons. The single semi-
conductor QD can be regarded as the extension of the JCM to the case of a many
electron system. And finally, our fourth example can be considered as the extension
of the four-level system laser to a semiconductor laser model that provides additional
to the intensities, information about the photon statistics as well. All these models
originate from the same hierarchy of EVs and differ, with respect to the truncation
of the hierarchy, only in the order and combination of the truncation operators ∆F

and ∆B.

2.4.2 Laser transition in higher-order photon-autocorrelation
functions

The presented approach to the microscopic semiconductor QD laser is extended fur-
ther into the bosonic subspace. We take a closer look on the carrier-photon and
photon-photon correlations driven by the laser cavity feedback. The carriers can
still be treated on Hartree-Fock level due to the strong dephasing in this system. A
systematic study of the influence of carrier correlations in a single QD can be found
in Florian et al. [2013b] and will be subject to further investigations. Formally, the
truncation operator ∆Bδ(4) is changed in our example to ∆Bδ(N)with N = {6, 8, 10}.
With this approach, we obtain converged values for lower-order quantities and in-
formation about higher-order photon-autocorrelation functions g(n)(0) Eq. (1.43)
up to n = N/2. To demonstrate the capability of our theoretical framework, we
show numerical results for a semiconductor QD microcavity laser with 20 identical
QDs, a β-factor of 0.01 and all additional material parameters chosen as in Gies
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et al. [2007]. We concentrate on the photon-autocorrelation functions g(n)(0). Ex-
perimentally, higher-order photon correlations of coupled quantum systems were
investigated by several groups [Aßmann et al., 2009; Avenhaus et al., 2010; Stevens
et al., 2010; Rundquist et al., 2014]. The behavior of g(2)(0) at the lasing threshold
for a QD-based-microcavity laser is experimentally well studied and has been inves-
tigated with the cluster expansion [Gies et al., 2007; Wiersig et al., 2009; Leymann
et al., 2013c]. The transition from non-lasing to lasing can be characterized by a
change in the photon statistics from a thermal- to a Poisson-distribution. There-
fore, the photon-autocorrelation functions g(n)(0) drops from n! to one at the lasing
threshold [Loudon, 2000; Garrison and Chiao, 2014].

Figure 2.7 shows the behavior of g(2)(0) over the pump rate. For the chosen β
factor, the photon-autocorrelation function drops steeply from two to one at lasing
threshold. Note that the deviations of the different orders are small and are be-
coming smaller with increasing order. The strongest deviations appear directly at
the threshold because of the rapid change of photon correlations in this parameter
region. Below threshold, photon correlations are small due to the thermal state of
the photons and far above the threshold the dephasing induced by the pumping has
strong influence on the system and damps out all higher-order carrier correlations.
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Figure 2.7: Numerical solution of the semiconductor laser model for β = 0.01 and 20
QDs. The convergence of the photon-autocorrelation function g(2)(0) for different
truncation operators ∆Bδ(N)with N = {4, 6, 8, 10} is shown. Further information
about the model can be found in [Gies et al., 2007].

Laser light is coherent in all orders n, so the photon-autocorrelation functions
of all orders is one [Glauber, 1963]. Therefore observing the mean photon number
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and the two photon-autocorrelation function is not enough to monitor the laser
transition. The state |ψnl〉 = 1√

2
(|0〉 + |2〉) for example, is not a lasing state at all,

however, if one only looks at the photon number and the two-photon-autocorrelation
function one could think |ψnl〉 might be a laser state (〈b†b〉|nl = 1, g(2)(0)|nl = 1).
With our approach, higher-order CFs are accessible so we can monitor the transition
to laser light in higher orders of the photon-autocorrelation function. In Fig. 2.8(a)
one can see how the autocorrelation functions g(2···5)(0) drop from thermal values
n! to one. Note the logarithmic scale and that the deviation of g(5)(0) from one in
relation to its thermal value 5! = 120 is as large as the deviation for the lower-order
photon-autocorrelations. To be able to better monitor the transition in the photon
statistics we also depict scaled photon-CFs:

C(n)(0) =
δ(b†nbn)

〈b†b〉n

(
δ(b†nbn)|coh
〈b†b〉n

)−1
, (2.36)

were δ(b†nbn)|coh is the value of the CF for a coherent field, which can be obtained
by successively solving

g(n)(0)|coh = 1 =
F〈b†nbn〉|coh
〈b†b〉n

. (2.37)

For n = {2, 3} Eq. (2.37) reads:

g(2)(0)|coh = 1 = 2 +
δ(b†2b2)|coh
〈b†b〉2

g(3)(0)|coh = 1 = 6 + 9
δ(b†2b2)|coh
〈b†b〉2

+
δ(b†3b3)|coh
〈b†b〉3

.

In Fig. 2.8(b) the C(n)(0) are depicted and one can see that all photon-CF are zero
for low pump rates, which is consistent with Wick’s theorem. For pump rates above
threshold, all C(n)(0) approach one as assumed for a system emitting laser light.
However, the four depicted C(n)(0) have not a common threshold pump rate. They
all exhibit their maximum slope at different pump rates. So the term “threshold”
becomes questionable not only because of the missing threshold in systems with a
β-factor close to one in the input-output curve [Rice and Carmichael, 1994], but
also for intermediate systems like ours with β = 0.01 where one can still see a
threshold in the second-order photon-autocorrelation function. Taking a closer look
at the photon-autocorrelation functions reveals that the threshold is different for the
different CFs. In this context, it is more precise to speak of a threshold parameter
region than of one threshold value. Comparing Fig. 2.8(a) and (b) one sees that both
quantities g(n)(0) and C(n)(0) can be used to monitor the transition from thermal
to laser light. For a comparison of the different orders of coherence, the scaled CFs
C(n)(0) are more appropriate since all C(n)(0) have values between zero and one. To
conclude this section, we recapitulate that we have formulated the EoM in terms of
EVs to facilitate the computations. For the analysis, however, the formulation in
terms of CFs is very helpful.
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Figure 2.8: Numerical solution of the semiconductor laser model for β = 0.01 and 20
QDs for order N = 10. The higher-order photon-autocorrelation functions g(n)(0) in
dependence of the pump rate are depicted in (a). The theoretical expected transition
from thermal to coherent light could be approved up to g(5)(0) (note the logarithmic
scale). In (b) the scaled photon-CFs C(n)(0) are depicted. For the thermal field at
low pump rates, all CFs are zero. An ideal Poissonian distributed light field would
produce C(n)(0) = 1 for all n. The various C(n)(0) begin to approach one at different
pump rates and not at one threshold pump rate.

2.5 Classification of former approaches by the pro-
posed truncation scheme

At the end of this chapter, we will briefly touch on former approaches to truncate
hierarchies of EoM. The formulation in the literature may differ from ours but the
truncation techniques can all be regarded as an application of one or more truncation
operators as defined in Eqs.(2.6,2.7). Our formulation offers a new perspective to
the various approaches listed in Table 2.1.

Example (i) and (ii) in the table are concerned with relatively small systems that
can still be treated numerically exact. In the first example (i), the vNL. Eq. (1.8) for
the density operator ρ for a single QD laser is solved in the basis of the finite con-
figuration states |φi〉 numerically [Ritter et al., 2010], which could also be mapped
onto an EV hierarchy truncated at the order corresponding to the size of the ma-
trix ρij = 〈φi|ρ|φj〉. The second example (ii) is formulated in EV and describes a
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QD cavity system coupled to phonons, and the hierarchy is set up by the induction
method [Carmele et al., 2010] referred to in Sec. 2.3. The single QD described by a
finite Hilbert space investigated in the third example (iii) is coupled to a continuum
of modes and has therefore be treated approximately by neglecting photon corre-
lations. The EoM in this example are formulated in CF but the finite fermionic
part of the system is treated exactly by factorizing CFs that address three or more
carriers according to Eq. (2.12). Since this method is designed to set up a hierarchy
of EoM for a finite fermionic system, it is called finite-size hierarchy (FSH) [Florian
et al., 2013b]. Example (iv) treats its bosonic part exactly by using the photon
probability up to N photons, which could be mapped on EVs

〈
b†aba

〉
with a up

to N . The correlations between the two carriers are neglected and EVs with more
than two fermi operators are factorized. This method combines the photon prob-
ability with the factorization of the carrier EVs according to the cluster expansion
and is therefore called the photon probability cluster expansion (PPCE) [Richter
et al., 2009]. The FSH and the PPCE can be regarded as opposite approaches as
the FSH treats the fermi part exactly and factorizes bose EVs whereas the PPCE
factorizes the fermi part and treats the bose part exactly. Example (v) is exactly
the model described in Sec. 2.4.1 formulated in CFs [Gies et al., 2007]. Quantum
wells are described by a continuous Hilbert space and are predesignated for the clus-
ter expansion, i.e. the neglection of CFs as in example (vi), studying the effects of
Coulomb and phonon interaction on exciton formation in semiconductor quantum
wells [Hoyer et al., 2003]. Example (vii) is part of this thesis and is described in
detail in Ch. 5. The configuration cluster expansion (CCE) describes the carriers
confined in a single QD exactly with the configuration operators Q and allows to
evaluate different approximation depths of inter-emitter correlations. This scheme
allows for the systematical study of superradiance in QD lasers. Example (viii) is
also part of this thesis in Ch. 4 and is concerned with the first order coherence
properties of a bimodal microcavity laser. Technically example (viii) is like example
(v) with the extension of a second mode and the calculation of coherence properties
(see Sec. 2.3.4). The last example (xi) investigates the dynamics of Bose-Einstein
condensates (BECs) in optical lattices and has therefore a purely bosonic Hilbert
space. The hierarchy of EoM in this example is formulated in EVs. The influence
of two-particle correlations is investigated and the hierarchy is truncated by the
factorization of three-particle EV according to Eq. (2.11) and is called Bogoliubov
backreaction approximation [Witthaut et al., 2011].
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2.6 Chapter conclusion
We have shown how the description of many-particle quantum systems can be fa-
cilitated by making use of the connection between EVs and CFs. We have observed
that the formulation of the EoM in EVs or CFs is independent from the approxi-
mations that are made to truncate the infinite hierarchy. This independence allows
for a description entirely formulated in terms of EVs. The use of EVs has several
advantages: simple algebra can be used to derive the EoM for all orders, constraints
like a limited particle number can be incorporated directly, and the effect of ap-
proximations typical for the cluster expansion is directly marked by the nonlinear
terms in the otherwise linear equations. Additionally, we find it remarkable that
our formulation of the cluster expansion shows that it is possible to approximate
an infinite linear system of EoM by a finite, almost linear system of EoM. It is
also worth mentioning that the traditional cluster expansion formulated in CFs is
equivalent to this almost linear hierarchy of EVs. The linearity of the equations
up to the order where actual approximations result in factorizations may be inter-
esting for numerical implementation of the EoM as well as the possibility to give
an inductive scheme to set up the EoM. Another aspect we have concentrated on
is the truncation of hierarchies of EoM for systems containing different interact-
ing particles and the implementation of constraints like a limited particle number.
The flexibility that our approach offers, concerning the approximation principles, is
expressed in the various combinations of the truncation operators ∆

B/F
δ(N)/〈M〉. Our

formulation emphasizes the connections, similarities and differences between various
techniques found in the literature. The capability of our approach is demonstrated
in a specific example where we have extended the semiconductor laser model used
by Gies et al. [2007] to higher orders and validated the convergence of the cluster
expansion approach for this model. In microcavity systems, the common definition
of the laser threshold is not questionable only due to smooth transition in the input
output characteristic. Our results show different ’threshold’ pump rates for increas-
ing orders of photon-autocorrelation functions, thus speak of a threshold interval is
more appropriate.

The introduced formulation can be useful in all situations where a systematic in-
clusion of higher-order correlations is desirable. Essentially, our method is applicable
to all systems where the traditional cluster expansion is used, and with the alge-
braic simplifications higher-order correlations are accessible with our formulation as
demonstrated for the semiconductor QD laser in Sec. 2.4.
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Chapter 3

Computer-aided cluster expansion:
An efficient algebraic approach for
open quantum many-particle systems

Parts of this chapter are published in [Foerster et al., 2017]. The computer-aided
cluster expansion and the code were developed from A. Foerster in collaboration
with H.A.M. Leymann. The computational derivation of EoM and the numerical
integration of the EoM was done by A. Foerster, all authors of [Foerster et al., 2017]
discussed the results and implications of the results.

We introduce an equation of motion approach that allows for an approximate
evaluation of the time evolution of a quantum system, where the algebraic work to
derive the equations of motion is done by the computer. The introduced procedures
offer a variety of different types of approximations applicable for finite systems with
strong coupling as well as for arbitrary large systems where augmented mean-field
theories like the cluster expansion can be applied.

3.1 Introduction

Driven open quantum systems represent a broad class of physical systems where an
exact solution is not always feasible. However, in many cases numerically exact so-
lutions for the time evolution of the density matrix are not required, and alternative
approximation methods can be applied. The focus of this work is on driven open
quantum systems, where we are interested in either the dynamics of the system, or in
its non-equilibrium steady state. Such systems usually are hard to solve numerically
exact (solution of the full von-Neumann–Lindblad equation) due to the large number
of interacting particles and the size of the corresponding Hilbert space. The cluster
expansion (CE) and related theories are approximation methods that have proven to
be useful in various applications in many-body quantum mechanics, e.g. to describe
quantum wells [Hoyer et al., 2003], BEC in an optical lattice [Witthaut et al., 2011],
Rabi oscillations in a quantum dot (QD)-cavity system [Richter et al., 2009], and
sub- and superradiance in semiconductor QD-lasers [Leymann et al., 2015; Jahnke
et al., 2016]. The specification of the method is its comparatively small numerical
effort, while the derivation of the equations of motion (EoM) is a tedious algebraic
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task, especially when higher orders of approximations are required. To overcome this
obstacle we introduce a symbolic manipulation program that carries out the algebra,
so that the user can focus on the physical modeling and conceptual questions. The
aim of this chapter is to share our experience in deriving EoM using the presented
program and to allow the reader to apply the program to related problems. The
program is written in FORM [Vermaseren, 2000] and we recommend the extensive
and profound introduction [Heck, 2000].

The chapter is structured as follows: In Section 3.2 we recapitulate the basic
mathematical operations and ideas behind the CE. To this end we define the opera-
tors that are generic to the CE: time derivative of an expectation values (EV) with
enforced standard order of the quantum mechanical operators, factorization of EVs
into correlation functions (CF), re-factorization of CF back to EV, and the actual
approximation that neglects certain CFs or EVs. In Section 3.3 we outline the struc-
ture of our program. In Section 3.4 the generic CE operators that are introduced
in Section 3.2 are implemented into FORM modules. Together with the general pro-
cedures to derive EoM, we present an example program that is used to study the
threshold behavior of a high β−factor QD microcavity laser. To demonstrate the
ability of our approach we present in Section 3.5 calculations up to the 10th order of
the CE (EoM that if derived using pen and paper are usually truncated at the 4th
order, for this kind of system [Gies et al., 2007]). A complete working program that
contains all procedures and the QD laser-model is available for download[Foerster
et al., 2016].

3.2 Deriving equation of motion
In this section we recapitulate the basic ideas of the CE and introduce operators
that represent the different calculation steps to derive the equation of motion. The
computer procedures that we present in the following sections are exact implemen-
tations of these CE operators. For a more detailed introduction to this operator
based formulation of the CE we refer to Ch. 2 and [Leymann et al., 2014, 2013b].

In most cases, when encountering many-particle systems, one is interested only in
specific physical observables (EV/ CF) and not in the complete density matrix. The
first step of the CE is to calculate the time derivative using the generalized Ehrenfest
equation (1.9) for the EV of operator A with the system Hamiltonian H which
is summarized by the superoperator L. The collapse operators representing the
influence of the external bath in Lindblad form (cavity losses, spontaneous emission
into non-lasing modes, scattering, and dephasing) are introduced in Ch. 1.6. For
further calculations it is advisable to establish normal order of the operators, after
the application of the generalized Ehrenfest equation, which is symbolized by :A :.
As a combination of both operations we introduce the operator : d

dt
: that derives the

EoM in normal order:
〈

:
d

dt
A :

〉
= 〈:L(A) :〉 . (3.1)

To obtain the dynamics of a many-particle problem one encounters a hierarchy of
EoM that couples equations of O(N) to equations of O(N + 1). By order O(N) we
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mean the number of particles that are addressed by an EV or CF. In all practical
cases the hierarchy has to be truncated, which can be accomplished in two ways by
the truncation operator ∆δ/〈〉, either by neglecting CFs of order larger than N

∆δ(N)δ(N + 1) = δ(N), (3.2)

or by neglecting EVs of an order larger than N

∆〈N〉 〈N + 1〉 = 〈N〉 . (3.3)

Which one of these two truncation schemes is more appropriate depends on the
physical system. We introduce two particular examples where the truncation leads
to the exact solutions: For the ideal gas consisting of non-interacting particles one
can set all N -particle CFs larger than N = 1 to zero, i.e. apply ∆δ(1). Whereas an
interacting two-particle-system is highly correlated, but ∆〈2〉 truncates the hierarchy
of EoM since all three particle EVs vanish exactly in this system.

To neglect CFs one needs to factorize EVs into CFs, i.e. one needs to express an EV
by CFs and vice versa. In the following we recapitulate the factorization according
to [Leymann et al., 2013b] which is strongly orientated on [Fricke, 1996b]. We define
a set of indices I = {1, 2, · · · , k} and a product of Bosonic operators bI = b1b2 · · · bk.
P is a partition of the set I meaning a set family of disjoint nonempty subsets J of
I with ∪J∈PJ = I, and PI is defined as the set of all partitions of I. The EV

〈
bI
〉

is factorized into CFs δ(bJ) by applying the operator F

F
〈
bI
〉

=
∑

P∈PI

∏

J∈P
δ(bJ). (3.4)

One can define the inverse operation to re-factorize CFs into EVs as well by

F−1δ(bI) =
∑

P∈PI
cP
∏

J∈P

〈
bJ
〉
, (3.5)

with cP = (−1)#(P )−1(#(P ) − 1)!. To close the infinite hierarchy of EoM of EVs
induced by Eq. (1.9) for a system with a very large number of photons (type I)
interacting with a small finite number of atoms (type II) we would have to apply
F−1∆I+II

δ(N)F∆II
〈M〉. Where M is chosen according to the number of atoms and N

according to the interaction strengths. The algebraically most costly part is the
factorization F and the inverse operation F−1. These operations are the reason
why higher orders in general cannot be derived using pen and paper. To give an
impression of the complexity of the factorization problem we display the factorization
of the non-normalized photon-autocorrelation function 〈b†b†bb〉 with the bosonic
creation and annihilation operator b† and b

F〈b†b†bb〉 =δ(b†b†bb) + 2δ(b†b†b)δ(b) + 2δ(b†bb)δ(b†) + δ(b†b†)δ(bb) (3.6)
+δ(b†b†)δ(b)2 + 2δ(b†b)2 + δ(b†)2δ(bb) + 4δ(b†)δ(b†b)δ(b) + δ(b†)2δ(b)2.

This example elucidates the high combinatorial complexity originating from the fact
that every partition of the operators has to be regarded. Additional work steps are
required for the factorization of EV of fermionic operators, when the shift in sign
must be taken into count for every commutation of the fermionic operators.
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3.3 FORM and general concepts
We use the symbolic manipulation system FORM version 4.1 (Jan 13 2014 64-bits)
[Vermaseren, 2000]. We assume that the reader is familiar with the basic syn-
tax and concepts of FORM. An introduction to FORM can be found at https:
//www.nikhef.nl/%7eform/. The advantage of FORM is that the user has full
control over the working procedures, in contrast to commonly used computer alge-
bra systems. The calculations performed in our program can actually be regarded
as a combination of search and replace commands. Our implementation of the CE
consists of procedures that are the implementation the CE operators introduced in
the previous section, i.e. the Ehrenfest EoM of EVs with established standard order
of the operators (

〈
: d
dt
A :
〉
), and the application of the factorization and truncation

operators (F, F−1, ∆〈N〉,δ(N)), see Eqs. (3.1)-(3.5). The basic working principle of
the program is illustrated in the flowchart depicted in Fig. 3.1. At first we have to
set up the problem by defining a Hamilton operator H and the collapse operators Li
in the dissipator in Lindblad form. The set of EoM is than derived by using the gen-
eralized Ehrenfest equation (1.9) and establishing standard order of the operators.
In the next step the factorization and truncation operators are applied. Physical
constraints can be added optionally in an additional step. In this way one obtains
a closed set of EoM that can be integrated numerically.

To keep the discussion close to applications, the procedures in the next sections
are explained along a semiconductor QD laser-model. Here we use a formulation
based on EVs of operators in second quantization with the annihilation and creation
operators b/b† for the photons in the laser mode and configuration operators QM

ij =
|i〉M〈j|M mapping the many-particle configuration state |j〉 of QD M to the state
|i〉 with the commutation relation

[QM
ij , Q

P
kl] = (QM

il δj,k −QM
kjδl,i)δM,P , (3.7)

according to the model introduced in [Leymann et al., 2015]. Our program is not
restricted to this formulation and alternative formulations can be used with small
modifications, while leaving the core modules untouched.

3.4 The implementation of the CE operators in FORM
procedures

In this section we describe the implementation of the CE operators. The main
executable program is called EoM_main.frm and all definitions are made there. The
following function-types and sets will be used in the program:
1 function [Q],[N],[b+],[v],[v+],[b],[L+],[L],D,EV,DD,L,R;
2 Cfunction ev,first,eps,hq,om,kappa,g,gst,gammam,gammarc,gammarv,

gammasps,gammaspp,gammad,pcv,evv,dd,dummy,d(symmetric),conj;
3 symbol N,M,u,a,number;
4 index i,j,k,l,m,n,o,p,q,r,s,t;
5 set bose: [b+],[N],[b];
6 set operator:[b+],[N],[b],[Q],L,R;
7 set prefactor:g,gst,eps,pcv,kappa,gammam,gammarc,gammarv,gammasps,

gammaspp,gammad;
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Hamiltonian H and Lindblad operators Li

Application of
the extended
EoM d

dt 〈A〉

Establishing
standard order

Truncation scheme
Neglect expecta-
tion values ∆〈N〉

Factorisation F
Neglect correlation

functions ∆δ(N)

Physical
constraints

Output of EoM

Figure 3.1: Schematic flowchart of the computer-aided derivation of EoM. At first
we have to set up the problem by defining a Hamilton operator H and the collapse
operators Li in the dissipator in Lindblad form. The set of EoM is then derived
by using the generalized Ehrenfest equation (1.9) and establishing standard order
of the operators. In the next step the factorization and truncation operators are
applied. Physical constraints can be added optionally in an additional step. In this
way one obtains a closed set of EoM that can be integrated numerically.

FORM distinguishes between commutative( Cfunction ) and non-commutative func-
tions( function ). In our notation, quantum mechanical operators are non-commu-
tative functions that are always written in [..] brackets where [..+] symbolizes the
adjoined operator. Further non-commutative auxiliary functions are written in capi-
tal letters. Commutative functions are the EV ( ev ) and the parameters like coupling
strengths and decay rates. The type symbol is used as a generalized variable like
the number of QDs number . For indices the letters i, ..., t are used. FORM allows to
define sets that facilitates access to certain functions, details will be given later.

The desired EVs are defined as local in the main file, i.e. the EV of the config-
uration operator 〈QM

ij 〉:
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1 local [dev([Q](i,l,M))]=ev([Q](i,l,M));

All operations in the following will be applied on these local expressions. We
explain in Sec. 3.4.7 how one can define a closed set of EoM.

3.4.1 Defining the system

In the von-Neumann–Lindblad formalism the system is determined by its Hamilto-
nian and its coupling to the reservoir by the collapse operators. The declarations of
the Hamiltonian is in the main file EoM_main.frm , the collapse operators are defined
in QDlindbladterms.prc . First we define the Hamiltonian

H = H0 +Hph +HD, (3.8)

for the physical system which, in our case, consists of 3 parts. The electronic many-
particle configuration that are used to model the QDs are illustrated in Fig. 3.2.
In the diagonal part of the Hamiltonian the energy εMN can be defined for every

|1 ⟩ |2 ⟩ |3 ⟩ |4 ⟩ |5 ⟩ |6 ⟩

Figure 3.2: Illustration of the electronic configuration that are used in the 4-level
QD model. The configurations are numbered as in the Hamiltonian (3.9),(3.11).
Configuration |1〉 is the ground state, configuration |2〉 is the s-exciton, configuration
|3〉 is the dark state in the p-shell, configuration |4〉 is the dark state in the s-shell,
configuration |5〉 is the p-exciton and configuration |6〉 is the biexciton.

configuration N in every QD M separately

H0 =

NQD∑

M

CoN∑

N

εMNQ
M
N,N , (3.9)

1 [H0]=sum_(M,1,’NQD’,sum_(N,1,’CoN’,eps(M,N)*[Q](M,N,N)));

where the number of configurations (here 6) is called CoN and the number of QDs
is called NQD . The variables CoN and NQD are defined as preprocessor variables in
the main file EoM_main.frm to define the size of the system. The photonic part of the
Hamiltonian is

Hph = ~ωb†b, (3.10)

1 [Hph]=hq*om*[b+]*[b];

with the mode frequency ω and the reduced Planck constant ~. The light-matter
interaction takes place in QD M between configuration |2〉 and 〈1| (= QM

1,2) and be-
tween |6〉 and 〈5| (= QM

5,6) (see Fig. 3.2) with the QD specific light-matter-coupling
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constant g(g∗) which describes the transition of s-shell electron between the conduc-
tion and the valence band under the emission/absorption of a cavity-photon

HD = i

NQD∑

M

gMb
†(QM

1,2 +QM
5,6) + h.c., (3.11)

1 [HD]=sum_(M,1,’NQD’,i_*(-gst(M,1)*[b]*[Q](M,2,1)+g(M,1)*[b+]*[Q](M
,1,2)))+sum_(M,1,’NQD’,i_*(-gst(M,1)*[b]*[Q](M,6,5)+g(M,1)*[b+]*[Q
](M,5,6)));

The whole Hamiltonian is then declared as the sum of the three different parts
1 local [H]=[H0]+[Hph]+[HD];

The collapse operators for this model are diagonal and have to be defined for each
QD ’I’ individually. Note that we define the rate only in the L†I part instead of
defining the square root in both parts LI and L†I . As an example

L†I = P IQI
1,5,

LI = QI
5,1, (3.12)

1 #do I=1,(’NQD’)
2 local [L+’I’]=pcv(’I’)*[Q](’I’,1,5);
3 local [L’I’]=[Q](’I’,5,1);
4 #enddo

describes the pumping of an electron from the QD ground state |1〉 to the p-exciton
|5〉 (see Fig. 3.2) with the pump rate pcv . The other collapse operators for the QDs
can be implemented in an analogous fashion: carrier relaxation from the p-shell to
the s-shell in the conduction band (QI

2,3, Q
I
4,5), carrier relaxation from the s-shell

to the p-shell in the valence band (QI
2,4, Q

I
3,5) with the rates γIr,{c,v} respectively,

spontaneous losses of electron hole pairs in the p-shell (QI
1,5, Q

I
2,6) and the s-shell

(QI
1,2, Q

I
5,6) with the rates γI,{s,p}sp , direct dephasing in the s-shell (QI

2,2, Q
I
4,4, Q

I
6,6) and

in the p-shell (QI
3,3, Q

I
5,5, Q

I
6,6) with the rates γI,{s,p}d and the cavity photon losses b

with the loss rate κ, see [Leymann et al., 2015] for details.

3.4.2 Time derivative

This procedure applies the generalized Ehrenfest equation (1.9) to the previously
defined EVs to derive their time derivatives. The corresponding FORM procedure is
called derivative.prc .

After the Hamiltonian and the collapse operators are defined, the Ehrenfest equa-
tions can be applied to the operator EV 〈A〉:

1 id ev(?a)=L*D*EV(?a)*R;
2
3 id D*EV(?a)=i_*([H]*EV(?a)-EV(?a)*[H])+sum_(u,1,’NLT’*’NQD’+’NPM’,2*[L

+](u)*EV(?a)*[L](u)-[L+](u)*[L](u)*EV(?a)-EV(?a)*[L+](u)*[L](u));
4
5 #do v=1,’NLT’*’NQD’+’NPM’

53



3.4. THE IMPLEMENTATION OF THE CE OPERATORS IN FORM
PROCEDURES

6 id [L+](’v’)=[L+{’v’}];
7 id [L](’v’)=[L{’v’}];
8 #enddo
9 #call outfunction(EV,EV)

The id command is the central search and replace command in FORM. Its structure
is id search=replace , where search stands for a mathematical expression that is to
be replaced by the expression replace . To define a mathematical expression that
is to be replaced FORM uses different types of wild-cards. The first type of wild-
cards is encountered in the term ev(?a) where ?a is the argument-field wild-card
for any argument (of arbitrary number and complexity) entering the function ev .
The D symbolizes the derivative operator d

dt
that is going to be applied. The aux-

iliary variables L/R mimic the brackets 〈 and 〉 in the EVs and are an efficient way
to implement a linear map in FORM. The function EV is used to conserve the non
commutative property of the operators. The do loop identifies all collapse opera-
tors ( ’NLT’*’NQD’+’NPM’ =(Number of Lindblad Terms * Number of QD) + Number
of Photon Modes) declared in QDlindbladt.prc with the abstract collapse operators
applied in line 3 in procedure derivative.prc . The last line outfunction(EV,EV) en-
sures that the auxiliary functions are removed and leaves the time derivative of 〈A〉
enclosed in the L/R brackets that stand for the linear map 〈·〉, which is necessary
for further processing.

Simplifications for subsystems with the same properties

If we are going to derive the EoM for a specific number of QDs NQD we can define this
number at the beginning of the program and end this section here. However, for a
physical system consisting of subsystems with the same properties (in this case QDs)
vast simplifications can be made in the EoM. In this case only one representative of
each quantity (EV of configurations) has to be calculated. One can use the number
of QDs (NQD) in FORM as a new variable and derive the more general EoM in
dependence of this variable. In this case the application of the Kronecker delta
(from the commutation relations of the operators) proves to be problematic and
vulnerable to errors. As a workaround we define a specific NQD and adapt the EoM
in the main file EoM_main.frm subsequently to the more general case.

The many-particle nature of the system is considered account by replacing a
summation over subsystems with the same properties by the factor number in the
equations. This consideration is carried out analytically by checking whenever the
sum over all QDs in the Hamiltonian appears in the equations. Because this step is
different for every Hamiltonian and approximation scheme, we do not show the spe-
cific calculations for our model here and just give an example how it is implemented
in our program.

We choose the number of QDs to be NQD = 2, so that all two-QD-configuration
quantities are included in the EoM, which is sufficient for the desired approxima-
tion order (∆Q

δ(1)). At the end of the procedure the factor number is added to the
EoM using the fact that we can predict the terms that have to be summed over
all QDs. This is the case whenever the light-matter-coupling produces a product of
two-QD-configurations [Leymann et al., 2015]. As one can see in the definition of
the Hamiltonian Eqs. (3.8)-(3.11) we must sum over all QDs. Consequently, these

54



CHAPTER 3. COMPUTER-AIDED CLUSTER EXPANSION

quantities appear number-1 times, because the indices over the same QD contracts,
e.g. QM

i,jQ
M
l,m = QM

i,mδj,l. The second modification appears in the EoM of the gen-
eralized photon correlation [N](A) = 〈(b†)AbA〉. These EoM describe the common
light-field interacting with all QDs and therefore must be summed over all QDs. Ac-
cording to the choice NQD = 2 we have to multiply the whole equation by number/2

and since this affects also the damping we have to restore the original damping
−2κA〈(b†)AbA〉 by adding +2*’A’*ev([N](’A’))*kappa*(number/2-1) . The following lines
of code are at the end of the main file EoM_main.frm :

1 id ev(?a,[Q](?b),[Q](?c))=(number-1)*ev(?a,[Q](?b),[Q](?c));
2 #do A=0,(’PhC’)/2
3 local [d[N](’A’)]=[d[N](’A’)]*number/2+2*’A’*ev([N](’A’))*kappa*(

number/2-1);
4 #enddo

The variable PhC here denotes the number of photon correlations that are taken
into account by the truncation operator ∆

B/2+Q
δ(PhC).

3.4.3 Establishing standard order

In the Ehrenfest EoM, the commutator with the Hamiltonian and sum of the collapse
operators, produces ’strings of operators’1 deviating from a yet to define standard
order. To obtain a simple form of the EoM we need to establish a predefined standard
order of the operators. The most convenient order for our purposes is the one that
is closest to the normal order for operators in second quantization. We define the
standard order of operators in three steps: (i) separate bose- and fermi-operators
(bose left, fermi right), and within each group (ii) separate creation and annihilation
operators (creation operators left, annihilation operators right), and within these
groups (iii) alphanumeric order according to the letters of the operators and their
indices. This standard order ensures that we have a unique representation of every
EoM and that the set of EoM needs to be defined only for EVs of operators in
standard order. The normal ordering of creation and annihilation operators also
facilitates the implementation of the truncation operator ∆〈N〉, that is applied to
systems with a limited number of particles. The corresponding FORM procedure is
called standardorder.prc .

(i) Separate bose and fermi operators To establish the standard order FORM
searches for products of two operators that deviate from this order and replaces them
according to their commutation relation. The code within the repeat / endrepeat -
loop are executed until the expressions do not change further. The following lines
of code separate the fermi or configuration operators that describe the state of the
QDs from the bose operators that describe the cavity photons

1 repeat;
2 id [Q](?j)*[b+]?bose(?i)=[b+](?i)*[Q](?j);
3 endrepeat;

1This description has proven to be beneficial since for some operations in FORM the separations
of operators by commas instead of a product is more useful.
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To address specific (C)functions FORM has also the function wild-card ...? (in-
stead of the field wild-card ?a ). This wild-card is used in the following manner:
type_of_function?set , where type_of_function specifies the type of the function for
which FORM has to search for. The supplement set can be used to further specify
the function that are to be replaced by previously defined sets. In this particular
case FORM searches for all operators from the set bose=[b],[b+] . Altogether the code
above means: replace all products of functions [Q] times functions [b+] from the
set bose , regardless of their argument, by the very same bose function [b+] times
the [Q] function with their arguments respectively. In other words, the commu-
tation relation [Q, b(†)] = 0, between photon and configuration operators is applied
until (i) is reached.

(ii) Normal order In the configuration operator formulation [Leymann et al.,
2015] there are no carrier (i.e. fermionic) creation and annihilation operators used,
therefore we only have to do this step for the bose operators. The following lines of
code will establish normal order of the bose operators:
1 repeat;
2 id [b]*[b+]=[b+]*[b]+1;
3 id [b]*[N](a?)=a*[N](a-1)*[b]+[N](a)*[b];
4 id [N](a?)*[b+]=a*[b+]*[N](a-1)+[b+]*[N](a);
5 id [b+]*[N](a?)*[b]=[N](a+1);
6 endrepeat;

In the above we have used the generalized photon correlation [N](a) =b†aba, and
the substitutions are performed according to the standard bosonic commutation
relations.

(iii) Alphanumeric order To obtain alphanumeric order between the configura-
tion operators we use a combination of id commands:
1 repeat;
2 id [Q](k?,i?,j?)*[Q](k?,l?,m?)=[Q](k,i,m)*d(j,l);
3 id disorder [Q](k?,i?,j?)*[Q](t?,l?,m?)=([Q](k,i,m)*d(j,l)-[Q

](k,l,j)*d(i,m))*d(k,t)+[Q](t,l,m)*[Q](k,i,j);
4 endrepeat;
5 id d(i?,i?)=1;
6 id d(i?,j?)=0;

In line 2 the contracting property of the configuration operator is reflected (|i〉〈j|k ·
|l〉〈m|k = |i〉〈m|k δjl). This line ensures that no products of configuration operators
addressing the same QD are present in the EoM [Leymann et al., 2015]. Line 3
in the code above is the implementation of the commutation relation between the
configuration operators Eq. (3.7) with the aim to establish numerical order with
respect to the indices. The disorder option of the id command tells FORM to
substitute a matching expression only when this results in an increased numerical
order of an otherwise equivalent expressions. For example, id would replace Q21 ∗
Q12 by Q12 ∗Q21 and then by Q21 ∗Q12 and so on, while id disorder would replace
Q21 ∗Q12 by Q12 ∗Q21 and then stop. The d(i,j) function is the Kronecker delta,
which is implemented by the two lines id d(i?,i?)=1; and id d(i?,j?)=0; that can
be placed at the end of every procedure using the Kronecker delta.
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3.4.4 Factorization

In this section the implementation of the factorization operator F (Eq. (3.4)) and
its inverse operation F−1 (Eq. (3.5)) are described. For details on the mathematical
structure we refer to [Fricke, 1996b; Leymann et al., 2014]. The corresponding FORM
procedure is in createclustertable.frm which is not part of the main program (see
Sec. 3.4.8). The procedure described in this section is a direct implementation of

〈
bI
〉

= δ(bI) +
∑

I′ I

〈bI/I′〉δ(bI′). (3.13)

Equation (3.13) distributes operators in an EV into CFs multiplied by EVs, and when
applied successively all EVs are substituted by CFs. This procedure uses the build-
in combinatorial function distrib_(type,n,f1,f2,x1,...,xm) , which divides products
of operators [b+]?(?b) into arguments of functions EV,CF [Vermaseren et al., 2000].
Our program contains no anticommutating operators and therefore these procedure
is in general valid only for this kind of operators. However, with the modifications
suggested in Appendix C the anticommutation relations of fermi operators can be
taken into account. The following lines of code constitute the implementation of the
factorization operator F:

1 id ev(?a)=L*EV(?a)*R;
2
3 #do i=1,42
4 id EV([b+]?(?b),?a)=EV(first*[b+](?b),?a);
5 id EV(first*[b+]?(?b),?a)=distrib_(0,2,EV,CF,first*[b+](?b),?a

);
6 id EV=1;
7 id CF=1;
8 id EV(?a,first*[b+]?(?c),?b)=0;
9 argument;
10 id first=1;
11 endargument;
12 .sort
13 #enddo
14
15 id L=1;
16 id R=1;
17 id CF(?a)=cf(?a);

The lines in the #do -loop above are repeated until complete factorization is reached.
To prevent FORM from crashing the maximum number iterations is limited to an
arbitrary but large enough number (here 42). The argument / endargument -loop is
equivalent to the repeat -loop, only for this loop all commands are only applied
to expressions that are arguments of functions. Note that the variable first is a
dummy that marks the position of the summation in Eq. (3.13) where the EVs and
CFs are distributed. Using Eq. (3.13) the ’refactorization’, i.e. the application of
F−1, can be implemented analogue to the one of F:

1 id cf(?a)=L*CF(?a)*R;
2
3 #do i=1,42
4 id CF([b+]?(?b),?a)=CF(first*[b+](?b),?a);
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5 id CF(first*[b+]?(?b),?a)=-distrib_(0,2,EV,CF,first*[b+](?b),?
a)+EV([b+](?b),?a)+CF([b+](?b),?a);

6 id EV=1;
7 id CF=1;
8 id EV(?a,first*[b+]?(?c),?b)=0;
9 argument;
10 id first=1;
11 endargument;
12 .sort
13 #enddo
14
15 id L=1;
16 id R=1;
17 id EV(?a)=ev(?a);.

3.4.5 The truncation operator

In this section we describe how the application of the truncation operator ∆〈N〉 is im-
plemented. The corresponding FORM procedure for EVs is called countandneglect.prc .
To determine the order of a CF or EV the count command is used, which counts the
number of specified operators in a product and returns the number that corresponds
to the order of the CF count(typeofoperator_1,value_1,typeofoperator_2,value_2,...) =∑

i #(typeofoperator_i)∗value_i. For this operation it is necessary to rewrite the
[N](a) operator in terms of [b+] and [b] with #call Natobkb and to rewrite the op-
erators in the EV that are separated by commas into one product of operators using
#call commatoproduct(ev,EV) . The following lines of code are the implementation of a
product of the truncation operators ∆B〈’N’〉 (line 4) and ∆Q〈’M’〉 (line 5):

1 #call Natobkb
2 #call commatoproduct(ev,EV)
3 argument ev;
4 if (count([b+],1,[b],1)>’N’) discard;
5 if (count([Q],1)>’M’) discard;
6 endargument;
7 id ev(0)=0;
8 #call producttocomma(ev,EV)
9 #call bkbtoNa

When the logical expression behind the if command is true the operators in the
expectation value ev are discarded, i.e. replaced by zero. Expectation values with
the argument zero are then replaced by the number zero. Finally the commands
#call Natobkb and #call commatoproduct(ev,EV) are reversed with #call bkbtoNa and
#call producttocomma (ev,EV) .
The application of an operator that truncates CFs ( ∆Bδ(’N’)) is implemented in

the same way. In our formulation this operator can be applied on EVs with the aid
of the factorization F−1∆Bδ(’N’)F. This procedure is in createclustertable.frm which
is further described in Sec. 3.4.8.
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3.4.6 Physical constraints

This section shows how model-dependent physical constraints can be implemented
in the FORM program. The factorization of a higher-order EV can produce new
EVs that vanish exactly since they are not driven in the exact EoM. This could be,
e.g. the conservation of energy or angular momentum or the vanishing of coherent
terms like 〈b〉 in a system with incoherent excitation [Mølmer, 1997; Gies et al.,
2007]. The corresponding FORM procedure can be found in constraints.prc . In the
remainder of this sections we describe the implementation of physical constraints
that are relevant to our model.

Balanced amount of creation and annihilation operators

Due to the initial conditions and the excitation method of our model, all EVs 〈b†mbn〉
with m 6= n, which correspond to the coherent regime are zero

1 argument ev;
2 if ((count([b+],1,[b],-1)!=0)&&(count([Q],1)==0)) discard;
3 endargument;
4 id ev(0)=0;

This procedure discards all EVs that contain an imbalanced amount of photon cre-
ation and annihilation operators (count([b+],1,[b],-1) and does not include a con-
figuration operator count([Q],1)==0) .

Conservation laws

The formulation of the excitation conservation constraint depends on the definition
of the configuration operators. For this reason we show one example, which is
required in our QD model. The photon assisted s-exciton ground state polarization
〈b†mbnQM

1,2〉 vanishes if no new photon is created, i.e. if m+ 1 6= n holds.

1 argument ev;
2 id [Q](i?,j?,2)= [Q](i,j,2)*[v+];
3 id [Q](i?,2,j?)= [Q](i,2,j)*[v];
4 endargument;
5
6 argument ev;
7 if (count([b+],1,[b],-1)!=count([v+],1,[v],-1)) discard;
8 endargument;
9
10 argument ev;
11 id [v]=1;
12 id [v+]=1;
13 endargument;
14
15 id ev(0)=0;

The first loop states that the configuration operator |j〉〈2| annihilates one exci-
tation id [Q](i?,j?,2)= [Q](i,j,2)*[v+]; (note that the [v] operators are auxiliary
operators to count the excitations) and the conjugate operator |2〉〈j| creates one
excitation. In the second loop the procedure checks whether the number of exci-
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tations is balanced with the number of photon creation and annihilation operators
if (count([b+],1,[b],-1)!=count([v+],1,[v],-1)) discard; .

Selection rules

Selection rules constrain the possible transition in the QDs [Baer et al., 2007; Schulz
et al., 2006]. To check the conservation of angular momentum we have to determine
if all occurring EVs fulfill this condition. In our model the states |3〉 and |4〉 have
different angular momenta since in |3〉 both electrons occupy the p-shell state and
in |4〉 electrons occupy the s-shell state. The procedure therefore has to make sure
that an EV consists of a balanced transition between these states.
1 argument ev;
2
3 id [Q](i?,j?,3)= [Q](i,j,3)*[v]*[v];
4 id [Q](i?,j?,4)= [Q](i,j,4)*[v+]*[v+];
5
6 id [Q](i?,3,j?)= [Q](i,3,j)*[v+]*[v+];
7 id [Q](i?,4,j?)= [Q](i,4,j)*[v]*[v];
8
9 endargument;
10
11
12 argument ev;
13 if (count([v+],1,[v],-1)!=0) discard;
14 endargument;

In the first step each configuration is multiplied with [v]*[v] and [v+]*[v+] (note
that the [v]*[v] operators are auxiliary operators to count the angular momentum)
depending whether it describes a transition from |3〉 to |4〉 or |4〉 to |3〉 respec-
tively. Then if (count([v+],1,[v],-1)!=0) discard; checks whether the expression is
balanced, otherwise it is discarded.

3.4.7 Definition of a closed set of equations of motion

With the previous described procedures, we are able to apply the Ehrenfest equa-
tions, and the computational application of the factorization and truncation opera-
tors (F, F−1, ∆〈N〉,δ(N)) is settled. In this section, we explain how one can derive a
closed set of EoM. This step is not performed automatically in the current version
of our program since it is not very time consuming to determine for which EVs EoM
need to be derived. The set of EoM strongly depends on the chosen approximation
scheme. Although all these considerations can be done completely analytically [Ley-
mann et al., 2014], it is also instructive to use the program on a trial and error basis
to obtain a closed set of equations. This works in the following steps: i) implement
the desired boundary conditions and approximation ii) start to define the physical
quantities you are interested in, e.g. 〈b†b〉 iii) derive the EoM for these quantities iv)
search for unknown quantities in the EoM and go back to step ii) with the definition
of the ’new’ quantities until no more new quantities can be found in iv). This method
is a good way to compare between analytic considerations and the actual outcome
of the program. We strongly recommend this opportunity as a double check of your
program that easily can consist of thousands of bulky differential equations.
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3.4.8 Building cluster tables

The following section is not mandatory to obtain a closed set of EoM but we rec-
ommend to build a cluster table in advance independently from the main program,
which can save a lot of computation time. As illustrated in Eq. (3.6) the factor-
ization and the refactorization of an EV is the costliest part of the computer-aided
cluster expansion. Typically, one has to derive several different sets of EoM, in some
circumstances using different approximation schemes, until one obtains a set of EoM
that delivers satisfying results. Therefore, it is advisable to outsource the factoriza-
tion and instead of applying it to every EV separately, use the wild cards to declare
general factorizations that apply for all EVs containing negligible CFs. We call this
kind of procedures cluster tables and we use them also in the example program. The
lowest order approximation in our program is #procedure expectationvaluetableQDC1PhC2

which is the application of F−1∆B/2+Qδ(2) ∆Qδ(1)F. For example we factorize

〈b†bQi
jk〉 = 〈b†b〉〈Qi

jk〉
〈Qi

jkQ
l
mn〉 = 〈Qi

jk〉〈Ql
mn〉, (3.14)

which reads in the cluster table as:
1 id ev([b+],[b],[Q](i?,j?,k?))=+ev([b+],[b])*ev([Q](i,j,k));
2 id ev([Q](i?,j?,k?),[Q](l?,m?,n?))=+ev([Q](i,j,k))
3 *ev([Q](l,m,n));

The cluster tables are generated with the FORM program createclustertable.frm .
The output of this program is directly converted into a FORM procedure with the
Perl script createclustertable.pl .

3.5 Application to a semiconductor quantum-dot
laser model

In this section, we show results that have been produced using the previously de-
scribed program. The system we are describing is based on the laser model presented
in [Leymann et al., 2015]. These calculations illustrate the capability of our approach
by providing photon correlations up to 10th-order (∆Bδ(10)), so that results for the
photon autocorrelation function of 5th-order (g(5)(0)) are provided. For this model
the number of equations increases by 14 with every second photon correlation in-
cluded. Starting with 13 equations in second-order we end up with 69 equations in
10th-order. While the number of equations grows with a constant summand, the
size of the equations (measured in kilobyte) more than doubles with every second
photon correlations order. Starting with 2kB in second-order the size grows up to
94kB in the 10th-order. The execution of the main program EoM_main.frm takes only
a few seconds on a regular desktop PC. The limiting factor to progress to further
orders is given by the factorization scheme and the generation of the cluster tables
createclustertable.frm . The cluster table for the second-order was generated in less
than one second, whereas the 10th-order took several days.

We use the access to higher order photon autocorrelations to study the laser tran-
sition in high-β especially β = 1 lasers. Higher-order photon correlations of coupled
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quantum systems have been investigated by several groups [Aßmann et al., 2009;
Avenhaus et al., 2010; Stevens et al., 2010] experimentally. The threshold behavior
of g(2)(0) for a QD-based-microcavity laser is experimentally and theoretically well
studied [Gies et al., 2007; Wiersig et al., 2009; Leymann et al., 2013c]. The transition
from non-lasing to lasing can be characterized by a change in the photon statistics
from a thermal- to a Poisson-distribution [Rice and Carmichael, 1994]. The photon-
autocorrelation functions Eq. (1.43) drops from n! to one during the laser transition
[Loudon, 2000; Garrison and Chiao, 2014; Leymann et al., 2014]. It is instructive
to analyze the stimulated emission rate Γstim as well [Leymann et al., 2015], which
provides a deeper insight into the lasing properties

Γstim =
〈b†bInv〉
τDeph

, (3.15)

with the inversion operator defined as

Inv = Q6,6 −Q5,5 +Q2,2 −Q1,1, (3.16)

and the total dephasing rate τDeph, which is the sum of the exciton dephasing

τXDeph =
1

κ+ γssp + 2P
, (3.17)

that consists of the cavity loss rate κ, the spontaneous loss rate in the s-shell γssp
and the pump rate P . And the biexciton dephasing

τXXDeph =
1

κ+ 2γr,c + 3γssp
, (3.18)

with the carrier relaxation rate of the conduction band γr,c. Equation (3.15) indi-
cates absorption of cavity photons when Γstim < 0 and an enhancement of the light
emission for Γstim > 0 and is therefore a good indicator for lasing. Finally, we con-
sider the scaled photon correlation functions Eq. (2.36) introduced in Ch. 2, which
show the ’pure’ many-particle correlations separated from their lower-order factor-
ization. Using C(n)(0) we monitor the onset of lasing in each photon correlation and
reveal a more complex behavior for the transition, since C(n)(0) behaves differently
for every order n.

To compare the laser characteristics for different β-factors we identify the β-factor
directly from its definition via the spontaneous emission rates into the lasing (τl)
and non-lasing (τnl) modes [Musiał et al., 2015]

β =
1

τl

/(
1

τl
+

1

τnl

)
=

2|g|2

κ+ γssp

/(
2|g|2

κ+ γssp
+ γssp + γpsp

)
. (3.19)

In a first step, we examine a microlaser for varying β-factors close to 1 by changing
the spontaneous losses into the non-lasing modes γsp. Figure 3.3 shows the corre-
sponding input-output characteristics. With increasing β-factors more photons are
directly emitted into the lasing mode. Therefore, we observe a transition into lasing
at lower pump powers and a higher intensity. The saturation typical for a semicon-
ductor QD laser is caused by Pauli blocking. In this model the spontaneous emission

62



CHAPTER 3. COMPUTER-AIDED CLUSTER EXPANSION

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

P [1/ps]

In
te

n
si

ty

 

 

β=1

β=0.6

β=0.4

β=0.3

β=0.2

Figure 3.3: Input-output characteristics for different β-factors vs. pump power P.
The following parameters were used: number of quantum dots number = 100, cavity
losses κ = 0.02

[
1
ps

]
, spontaneous losses in non-lasing modes β = 1, 0.6, 0.4, 0.3, 0.2,

carrier relaxation rate γr,{c,v} = 0.04
[

1
ps

]
, and light-matter-coupling strength g =

0.015
[

1
ps

]
.

10
−4

10
−2

10
0

0

2

4

6

8

10

12

14

16

18

P [1/ps]

Γ
st

im

 

 

β=1

β=0.6

β=0.4

β=0.3

β=0.2

Figure 3.4: Stimulated emission for different β-factors in dependence on the pump
power.
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into non-lasing-modes (different β-factors) is altered by different cavities, but this
does not affect the inversion saturation caused by the Pauli-blocking. The intensity
differences are significantly larger in the low pump (non-lasing) regime, since here
the different spontaneous emission rates have the strongest effect.

To further analyze the onset of lasing we study the stimulated emission rates
Γstim. Once Γstim crosses the zero line the QDs begin to emit light due to stimulated
emission. The numerical results in Fig. 3.4 reveal that the stimulated emission for
higher β-factors is stronger suppressed in the non-lasing regime. The stimulated
emission reaches its maximum when the combined rate τDeph = τXDeph + τXXDeph of exci-
ton and biexciton is maximal. If the pump power is increased further the dephasing
due to the pump damps out the excitonic contribution (3.17) and the stimulated
emission saturates at the value of the biexciton contribution.
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Figure 3.5: Autocorrelation functions g(2)(0) to g(5)(0) in dependence from the light
intensity for a β = 1 laser. The gray shaded area marks the non-lasing sector with an
average of less than 1 photon in the cavity mode. The dashed lines indicate the value
for thermal light. For such a high β-value the laser is never really thermal, even if
there is less than 1 photon in the cavity. The following parameters were used: num-
ber of quantum dots number = 40, cavity losses κ = 0.0125
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To gain a deeper insight how the photon correlations are affected by the laser
transition we consider a β = 1 laser with only 40 QD emitter and a high quality
mode, which leads to a very smooth laser-transition. Note that we depict the next
figures in dependence on the light intensity [Chow et al., 2014]. The area with
less than a single cavity photon on average, which would be the traditional laser
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CHAPTER 3. COMPUTER-AIDED CLUSTER EXPANSION

threshold, is shaded gray. Figure 3.5 reveals that the threshold softens considerably
and that the lower-order autocorrelation function changes for lower pump rates to
the coherent value g(n)(0) = 1. This transition takes place at much higher intensity
than one would suspect by applying the one-photon criterion for lasing. Figure 3.5
shows the known feature that the autocorrelation function for a β = 1 laser starts
even for arbitrary small pump power with an autocorrelation value smaller than its
thermal value [Gies et al., 2007; Rice and Carmichael, 1994]. This indicates that the
built up of correlations between the photons is much stronger in systems without
spontaneous emission losses. This behavior is studied further in Fig. 3.6, where we
exhibit the scaled photon correlation function C(n) in Eq. (2.36), which visualizes
the nth degree of coherence of the ’pure’ photon correlations. In this figure it is
revealed that photon pairs are partially correlated already for low pump powers,
whereas the higher-order correlation built up gradually. This effect can only be
observed for β ≈ 1 lasers.
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Figure 3.6: Scaled photon CFs in dependence on the light intensity for a β = 1 laser.
The gray shaded area marks the non-lasing sector with an average of less than 1
photon in the cavity. The analysis of this function reveals that the two-photon
correlation have a remarkable magnitude also for small excitations. We also observe
that higher-order CFs built up at higher pump rates than low-order CFs.

Although we used a strongly improved QD laser-model in this chapter the results
here may remind the reader on the results of the laser transition in higher-order
photon-autocorrelation functions (Ch. 2.4.2). To clarify the improvements we like
to point out the main differences. Beside the different choice of the β-factor, in this
chapter we use a QD description that is based on configuration operators instead
of the fermionic annihilation and creation operators which allows us to describe
a single QD without the approximation in Ch. 2.4.2. The external bath here is
described with the Lindblad processes introduced in Ch. 1.6 while the description in
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the last chapter also uses some heuristic scattering/damping terms. Not only that
this description makes the model more consistent it also allows for the definition of
a pump dependent stimulated emission rate Γstim Eq. (3.15), which is an essential
innovation.

3.6 Chapter conclusion
We introduced an implementation of the computer-aided CE for the calculation
of the time evolution of quantum many-particle systems. We provided the reader
with the theoretical concepts and detailed description of a basic example program
that can be used as a starting point for further modifications. The implementation
of the factorization of EVs and the inverse procedure is the most important and
most versatile aspect of this program. All procedures and the complete program is
available for download[Foerster et al., 2016]. We kindly ask the reader to use this
program more as a development tool than as a black box. The application to a
semiconductor QD laser model illustrated the efficiency of our approach that led to
new physical insights. However, the field of application of the computer-aided CE
is much bigger than our investigations on QD lasers. We also recommend the usage
of regular expression, e.g. [Watt, 2005] so that the EoM created by FORM can easily
be rewritten in any other format like LATEX or ready to use code for the numerical
calculations.
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Chapter 4

Bimodal microcavity laser

In this chapter, we investigate the characteristics of quantum dot (QD) based bi-
modal microcavity lasers. Starting from an experimental study of a micropillar laser
with two orthogonally polarized cavity modes it has been observed that one emission
mode of this microlaser demonstrates a characteristic S-shaped input-output curve
while the output intensity of the second mode saturates and even decreases with
increasing injection current above threshold. Further analyzing the photon autocor-
relation function g(2)(τ) of the light emission confirms the onset of lasing in the first
mode with g(2)(0) approaching unity above threshold. In contrast, strong photon
bunching associated with superthermal values of g(2)(0) is detected for the other
mode for injection currents above threshold. We attribute this behavior to the gain
competition of the two modes induced by the common gain material, which is con-
firmed by photon crosscorrelation measurements revealing a clear anti-correlation
between emission events of the two modes

We develop a microscopic semiconductor theory for bimodal micropillar laser
that is based on [Gies et al., 2007] and derive equation of motion(EoM) that can
reproduce experimental results qualitatively. In a second step, we expand the theo-
retical model to calculate multi-time correlation functions (for the general theory see
Ch. 2.3.4). We analyze the occurrence of normal-mode coupling (NMC) in bimodal
lasers attributed to the collective interaction of the cavity field with a mesoscopic
number of QDs. In contrast to the conventional NMC we observe locking of the
frequencies and splitting of the linewidths of the eigenmodes of the system in the
coherent coupling regime. The theoretical analysis of the incoherent regime is sup-
ported by an additional experimental observation where the emission spectrum of
one of the orthogonally polarized modes of a bimodal QD micropillar laser that
demonstrates a two-peak structure.

Parts of the study of gain competition in this chapter are published in [Leymann
et al., 2013c,a]. The microscopic EoM where mainly derived by A. Foerster and
H.A.M. Leymann, and the numerical integration of the EoM was mainly done by
A. Foerster. M. Khanbekyan set the theory into context and provided physical
insight to the results. The experiments where mainly performed by C. Hopfmann
and F. Albert in the group of S. Reitzenstein, while the samples where produced by
C. Schneider in the group of A. Forchel.

Parts of the investigation of NMC in this chapter are published in [Khanbekyan
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et al., 2015]. M. Khanbekyan worked out the details of the connection between the
conventional NMC and the unconventional NMC of the two laser modes. H.A.M. Ley-
mann extended the theory for the first order coherence function to the two-mode
case. A. Foerster and H.A.M. Leymann implemented the theory in FORM and de-
rived the EoM. A. Foerster performed the numerical integration of the EoM. The
experiments where mainly performed by C. Hopfmann from the group of S. Reitzen-
stein, while the samples where produced by C. Schneider in the group of S. Höfling.
All authors of [Leymann et al., 2013c,a; Khanbekyan et al., 2015] discussed the
results and their physical implications.

4.1 Microcavity lasers
The research on microcavity lasers so far has been focused mostly on emission fea-
tures based on the interaction between a single laser mode and the QD gain medium.
Going beyond this investigations, micropillar lasers with a bimodal emission spec-
trum allow one to address the coupling of two orthogonally polarized optical modes
via the common gain medium which can lead to characteristic oscillations in the
coherence properties [Ates et al., 2007], an enhanced sensitivity on external pertur-
bations in the presence of optical self-feedback [Albert et al., 2011] and deterministic
polarization chaos in the absence of optical feedback [Virte et al., 2013].

We present a detailed experimental and theoretical analysis of the mode coupling
and gain competition of bimodal, electrically pumped micropillar lasers. A appro-
priate measure for the study of the statistical properties of the electromagnetic field
emission is the intensity correlation function Eq. (1.41) which can be generalized to
the case of two modes:

g
(2)
ξζ (τ) =

〈b†ξ(t)b
†
ζ(t+ τ)bζ(t+ τ)bξ(t)〉

〈b†ξ(t)bξ(t)〉〈b
†
ζ(t)bζ(t)〉

, (4.1)

where ξ, ζ = 1, 2, with delay time τ and photon annihilation (creation) operators
b
(†)
1 and b(†)2 of the mode 1 and the mode 2, respectively.
For the case of more than one mode the intensity correlation functions g(2)ξζ can be

studied for all possible index combination {ξ, ζ}. The gain competition is reflected
in distinct differences in the input-output characteristic and the autocorrelation
function g

(2)
ξξ (τ) of the two optical modes. Moreover, the crosscorrelation function

g
(2)
ξζ (τ) with ξ 6= ζ can reveal correlations between emission events from the two
modes.

To describe and analyze these specific features of bimodal microlasers we extend
the microscopic semiconductor model [Gies et al., 2007] accordingly by taking two
modes into account. The microscopic semiconductor theory is applied to model
the input-output characteristics, the intensity correlation functions of the laser and
the gain competition between the two emission modes within the framework of the
cluster expansion.

The chapter is organized as follows. In section 4.2 the experimental results ob-
tained from an electrically pumped, bimodal micropillar laser are presented. Sec-
tion 4.3 is concerned with the theoretical description of the experimental data. In
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section 4.4 a conclusive analysis of the experimental and the theoretical results is
presented. In section 4.5 NMC is introduced and the occurrence of NMC in the
literature is discussed. In section 4.6 the theory of section 4.3 is expanded to the
case of multi-time EoM. In section 4.7 the theory of two bimodal lasers is connected
to NMC and its impact is discussed. In section 4.8 the theory of section 4.6 is used
to calculate spectra for a bimodal laser and compares the results to the experiments.

4.2 Experiment

The electrically pumped micropillar lasers are based on a planar AlAs/GaAs mi-
crocavity structure which includes an active layer consisting of a single layer of
In0.3Ga0.3As QDs. High resolution electron-beam lithography, plasma enhanced
etching and metal deposition have been applied to fabricate high quality electri-
cally pumped microlasers. For more details on the sample processing we refer to
[Reitzenstein et al., 2011]. The microlasers have been investigated at low tempera-
ture (20 K) using a high resolution micro-electroluminescence (µEL) setup. A linear
polarizer in combination with a λ/4-wave-plate is installed in front of the entrance
slit of the monochromator to perform polarization resolved measurements of the
laser signal. The photon statistics of the emitted light has been studied by means of
the measurement of the photon autocorrelation function g(2)ξξ (τ), that has been car-
ried out using a fiber coupled Hanbury-Brown and Twiss (HBT) configuration with
a temporal resolution τirf = 40 ps. The HBT configuration is coupled to the output
slit of the monochromator which has a focal length of f = 0.75 m. The interaction of
the orthogonally polarized modes of the microlaser has been investigated by means of
photon crosscorrelation g(2)12 (τ) measurements. For this purpose, the light emitted by
the microlaser is split by a polarization-maintaining 50/50 beamsplitter and coupled
into two monochromators, each of which is equipped with a linear polarizer at the
input slit and a fiber coupled single photon counting module at the output slit. This
configuration allows to perform polarization resolved crosscorrelation measurements
with a spectral resolution of 25 µeV. Within the present setup, it is not possible to
perform photon number distribution measurements due to low (� 1µW ) power of
the microlaser, in contrast to the measurements presented recently for a standard
laser diode with the output power of order of milliwatts [Roumpos and Cundiff,
2013]. First, let us focus on the input-output characteristics of the microlaser. Due
to slight asymmetry of the cross-section(see Fig. 4.1) of the pillar and the ring-
shaped contact the degeneracy of the fundamental mode in the pillar microcavity is
lifted and two distinct linearly polarized modes are supported [Reitzenstein et al.,
2007]. In this context, the spectral splitting ∆12 and accordingly the overlap between
the two modes plays an important role for the studies of emission of bimodal cavi-
ties. Figure 4.2 shows representative polarization resolved spectra of an electrically
pumped bimodal microlaser at threshold (injection current, Iinj = 5.1 µA). The two
linearly polarized modes are split in energy by 103 µeV and have absorption limited
Q-factors of Q = 13900 (mode 1) and Q = 13100 (mode 2) that are extracted from
the linewidth at the threshold. The input-output characteristic of the bimodal mi-
crolaser is presented in Fig. 4.3(a). We observe pronounced differences between the
two modes: while mode 1 shows a standard S-shaped input-output characteristic
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Figure 4.1: Illustration of the emergence of two linearly polarized modes
in a micropillar (picture on the left taken from [Reitzenstein and Forchel,
2010b]). Due to slight asymmetry of the cross-section of the pillar and
the ring-shaped contact(sketched on the right side) the degeneracy of
the fundamental mode in the pillar microcavity is lifted and two distinct
linearly polarized modes are supported [Sebald et al., 2009].

with a threshold current of about Ith = 5.1 µA, the intensity of mode 2 saturates at
Iinj/Ith = 2 and even drops down for injection currents exceeding Iinj/Ith = 2.5. This
behavior indicates a pronounced competition between the modes 1 and 2 which is
mediated by the common QD gain material.

To study the lasing features, we extract the emission linewidths of the two modes
and plot them as a function of the injection current in Fig. 4.3(b). Interestingly the
linewidths of both modes have similar magnitude and decrease strongly at thresh-
old which reflects enhanced temporal coherence in the lasing regime. While the
linewidth of mode 1 stays at a resolution limited value of 25 µeV, a slight increase
of the linewidth can be observed for mode 2 above Iinj/Ith = 3. This behavior is
surprising because also mode 2 that loses the gain competition has a laser typical
small linewidth which can only be explained due to NMC in Sec. 4.5.

To verify the interpretation of mode coupling, crosscorrelation measurements
between the modes 1 and 2 at different injection currents have been performed.
A representative example of such a measurement is presented in Fig. 4.3(e) for
Iinj/Ith = 3. The cross-correlation function g(2)12 (τ) demonstrates a pronounced dip
g
(2)
12,min= 0.62 at τ = 0 which indicates an anti-correlation between emission events
from the two laser modes. The anti-correlated emission occurs at a characteristic
timescale of τ12 = 3.8 ns. Figure 4.3(d) reveals that the crosscorrelation function
g
(2)
12 (0) strongly depends on the injection current. In the regime of certain injection
currents above the threshold (2.7<Iinj/Ith< 3.3), the anti-correlation between the
modes is the strongest.

As it can be seen from Fig. 4.3(a), at these values of the injection currents above
the threshold the intensity of mode 2 decreases. The interplay between the two
emission modes is also accompanied by strong intensity fluctuations which are iden-
tified by measuring the photon autocorrelation function of the two competing modes
for different injection currents. The respective dependencies, i.e. g(2)11 (0) and g(2)22 (0)
versus injection current, are plotted in Fig. 4.3(c), while Fig. 4.3(f) shows the auto-
correlation function g(2)22 (τ) for Iinj/Ith = 3. The mode 1 shows the typical maximum
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Figure 4.2: Polarization resolved µEL emission spectra of a microlaser with a diam-
eter of 3 µm. The electromagnetic field emission features two orthogonally polarized
cavity modes, the mode 1 (Q = 13900) and the mode 2 (Q = 13100) with a spectral
separation of 103 µeV (Injection current: Iinj = 5.1 µA).

of g(2)11 (0) around threshold, which indicates the transition from spontaneous emis-
sion to stimulated emission, where g(2)11 (0) is lower than expected from theory due
to the limited temporal resolution of the HBT configuration [Ulrich et al., 2007]. In
contrast, as can be concluded from Fig. 4.3(c), the statistics of the mode 2 at certain
injection currents demonstrates strongly super-Poissonian behavior, since the auto-
correlation function g(2)22 (0) increases strongly at the pump rates well above threshold
and reaches its maximum value of 3.08 at Iinj/Ith = 3. This value is significantly
higher than g(2)22 (0) = 2, expected for thermal light and indicates a different photon
statistic that allows for superthermal bunching.

Similar statistical properties of the emission, i.e. strong super-Poissonian behav-
ior for the weak mode, have also been observed for microlasers in the presence of an
external mirror, where a delayed feedback of the emitted signal disturbs laser oper-
ation and leads to strong bunching for the weak mode [Albert et al., 2011; Schulze
et al., 2014]. Optical feedback in the single photon limit has also been used to sta-
bilize intrinsic quantum cavity electrodynamics [Carmele et al., 2013]. Despite the
major similarities of the experimental results there has not been found a common
theoretical basis of these effects.
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Figure 4.3: Experimental characteristics of a bimodal micropillar laser with a di-
ameter of 3 µm. (a) Input-output characteristic, (b) emission mode linewidth and
the photon (c) auto- and (d) crosscorrelation functions g(2)11 (0), g(2)12 (0) and g(2)22 (0) of
emission from modes 1 and 2, respectively. Panels (e) and (f) show exemplary cross-
correlation g(2)12 (τ) and autocorrelation g(2)22 (τ) measurements at an injection current
of Iinj/Ith = 3.
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4.3 Microscopic semiconductor theory

To study the interaction of QDs with the electromagnetic field inside an optical
bimodal microcavity we have extended the microscopic semiconductor theory [Gies
et al., 2007] to the case of two modes and photon crosscorrelation functions [Foerster,
2012]. The microscopic semiconductor theory allows for inclusion of many-body
effects of the carriers and can be used to calculate correlations required to determine
the statistics of the emission of microcavities with active QDs (for a review see, e. g.,
Ref. [Michler, 2009]). The calculations are based on the cluster expansion approach
introduced in Ch. 2. In contrast to Ch. 2 the EoM are formulated here in terms of
correlation functions. The calculations described in Sec. 2.4.1 are governed by the
operator F−1∆B+F/2δ(4) F〈A〉 basically stay the same for the two-mode case. In order
to use the Ehrenfest EoM Eq.(1.9) the operator F−1δ(A) has to be applied. Then
the operator ∆

B+F/2
δ(4) F〈A〉 can be applied to close the hierarchy. This approach has

the advantage that we can directly compare the EoM to the single-mode case in
[Gies et al., 2007].

In what follows we assume that only two confined QD shells (see Fig. 4) for both
electrons and holes are relevant: whereas one of the modes interacts resonantly
with the electromagnetic field of the bimodal cavity due to the coupling with the
s-shell transition, the second mode is detuned. The carrier generation due to elec-
trical pumping takes place in the p-shell. The assumption suits well also for an
experimental situation, where the electrical pumping is to take place via injection
of electrons and holes into the wetting layer and subsequent fast relaxation to the
discrete electronic states of the QDs. Further, carrier-carrier and carrier-phonon
scattering contributions to the dynamics are evaluated using a relaxation time ap-
proximation, where the relaxation towards quasi-equilibrium is given in terms of a
relaxation rate [Nielsen et al., 2004]. Although the Lindblad formulation in Ch. 1
provides a more general approach the relaxation rates are used for a better compar-
ison to the single-mode case in [Gies et al., 2007].

The Hamiltonian given by Eq. (1.1) together with Eqs. (1.18,1.31,1.32,1.33) deter-
mines the dynamical evolution of the carrier and field operators and, in particular,
the time evolution for operator expectation values. The effect of the many-body
Coulomb Hamiltonian can be discussed in two different regimes: (i) the regime of
high-temperature and high-carrier density, (ii) the regime of low-temperature and
low-carrier density. In (i) the interaction between the QDs and the wetting layer
carriers leads to self-energy shifts for the QD transitions, while the Coulomb inter-
action between the QDs is screened by the high-carrier density [Schneider et al.,
2001b,a]. In (ii) the interaction with the wetting layer carriers is neglectable due
to the low-carrier density in the wetting layer [Schwab et al., 2006] and the inter-
action between the QDs creates intra- and interband effects. Here we are mainly
interested in (ii) and similar to [Gies et al., 2007] the Coulomb interaction in the
following is reflected by an effective transition energy and the oscillator strength
for the coupling to the laser mode instead of taking the full Coulomb Hamiltonian
into account. The equations of motion for quantities of interest, as for example the
average photon number 〈b†ξbξ〉 in the cavity modes and the average electron popula-
tion in the conduction 〈c†c〉 and valence 〈v†v〉 bands, have source terms that contain
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operator expectation values of higher order. In this way, the approach bears an infi-
nite hierarchy of equations of motion for various expectation values for photon and
carrier operators. To perform a consistent truncation of the equations the cluster
expansion scheme ∆

B+F/2
δ(4) is applied (for details, see Ch. 2). Namely, starting from

the expectation values of the first order of photon operators, the equations of motion
for operator expectation values are replaced by equations of motion for correlation
functions. For example, instead of the EoM for expectation values of amplitudes
of the cavity mode operators 〈b†ξbζ〉, the equations of motion for corresponding am-
plitude correlation functions δ(b†ξbζ) = 〈b†ξbζ〉−〈b

†
ξ〉〈bζ〉 are used. Then, to achieve a

consistent classification and inclusion of correlations up to a certain order the trun-
cation of the equations for correlation functions rather than for expectation values
is performed.

In particular, in the case of a system without coherent external excitation 〈b(†)ξ 〉= 0

and 〈c†jvj′〉= 0 hold. The amplitude correlation functions of the mode operators can
be given by

d

dt
δ(b†ξbζ) = −(κξ + κζ)δ(b

†
ξbζ) +

∑

j,p

(
gξjδ(c

†
jvjbξ) + gξjδ(v

†
jcjb

†
ζ)
)
, (4.2)

where κξ is the loss rate of the ξth cavity mode and p= 1 . . . N , with N being the
total number of QDs. Note, that both cavity-mode amplitude correlation functions
δ(b†ξbζ) and the coupled photon-assisted polarization amplitude correlations δ(v†jcjb

†
ξ)

and δ(c†jvjbζ) are classified as doublet terms B + F/2 = 2 in the cluster expan-
sion scheme, i.e., they correspond to an excitation of two electrons (four carrier
operators). The equation of motion for the photon-assisted polarization amplitude
correlation read [see also Eq. (A.1) in Appendix A]:

d

dt
δ(v†jcjb

†
ξ) = −i(∆ξj − iκξ − iΓ)δ(v†jcjb

†
ξ) + gξjδ(c

†
jcj)(1− δ(v

†
jvj))

+
∑

ξ′

[
gξ′jδ(b

†
ξ′bξ)(δ(c

†
jcj)− δ(v

†
jvj)) +gξ′jδ(c

†
jcjb

†
ξ′bξ)− gξ′jδ(v

†
jvjb

†
ξ′bξ)

]
, (4.3)

where ∆ξj = εcj − εvj − ~ωξ is the detuning of the ξth cavity-mode from the QD
transition and Γ is a phenomenological dephasing parameter describing spectral line
broadening. In the case of a bimodal cavity only the cavity modes with indices
ξ = 1, 2 are nearly resonantly coupled to the QDs. Whereas the modes with ξ 6= 1, 2
are not within the gain spectrum of the QD ensemble or have low Q-value. Since
the population of the non-lasing modes 〈b†ξbξ〉 and the cross-correlation functions
〈b†ξb1〉 and 〈b†ξb2〉 with ξ 6= 1, 2 remain negligibly small, the third terms on the
right-hand side of Eq. (4.3) for ξ 6= 1, 2 can be effectively set equal to zero. Thus,
Eq. (4.3) for ξ 6= 1, 2 can be solved in the adiabatic limit yielding a time constant
τnl that describes the spontaneous emission into non-lasing modes according to the
Weisskopf-Wigner theory. The spontaneous emission of QDs into non-lasing modes
leading to a loss of excitation is described by a β-factor defined as the ratio of the
spontaneous emission rate into the lasing modes 1/τl and the total spontaneous
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emission rate enhanced by the Purcell effect 1/τsp:

β =
τ−1l

τ−1sp

=
τ−1l

τ−1l + τ−1nl

. (4.4)

The dynamics of carrier population of the electrons in the s-shell is given by

d

dt
δ(c†scs) = −

∑

ξ

Re(gξqδ(c
†
svsbξ))+δ(c†pcp)(1−δ(c†scs))τ−1c −δ(c†scs)(1−δ(v†svs))τ−1nl .

(4.5)

Here, the first term on the right-hand side originates from the interaction with the
cavity-modes, the second term describes the relaxation of carriers from the p- to the
s-shell with a relaxation timescale τc and the term represents the loss of excitation
into the non-lasing modes.

Further, we assume, that the p-shell carriers are generated at a constant pump
rate p. Then, like Eq. (4.5), the EoM for the carrier population of the electrons in
the p-shell reads:

d

dt
δ(c†pcp) = p(δ(v†pvp)− δ(c†pcp))− δ(c†pcp)(1− δ(c†scs))τ−1c − δ(c†pcp)(1− δ(v†pvp))τ−1sp ,

(4.6)

where the last term on the right-hand side describes spontaneous recombination of
p-shell carriers. The corresponding equations for valence band carriers are relegated
into Appendix A.

The form of the expression for the intensity correlation functions suggests (see
Eq. (4.1)) that to exploit the statistical properties of the light emission using in-
tensity correlations, a consistent treatment within the cluster expansion up to the
quadruplet order is required. The equations of motion for cavity-mode intensity
correlations read:

d

dt
δ(b†ξb

†
ξ′bζbζ′) = −(κξ + κξ′ + κζ + κζ′)δ(b

†
ξb
†
ξ′bζbζ′)

+
∑

j

(
gξjδ(c

†
jvjb

†
ξ′bζbζ′) + gξ′jδ(c

†
jvjb

†
ξbζbζ′) +gζjδ(v

†
jcjb

†
ξb
†
ξ′bζ′) + gζ′jδ(v

†
jcjb

†
ξb
†
ξ′bζ)

)
.

(4.7)

The equations of motion for further correlation functions of the quadruplet order,
which include correlation between the photon-assisted polarization and the photon
number, can be found in Appendix A (see Eqs. (A.4)–(A.7)).

4.4 Analysis of intensity fluctuations
As described above, the quadruplet order of the cluster expansion leads to a system of
coupled equations (see Eqs. (4.2)–(4.3), (4.5)–(4.6), (4.7) together with Eqs. (A.1)–
(A.7)). The system of differential equations describes the dynamics of various cor-
relations between carriers and cavity modes.The method makes it possible to obtain
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both amplitude and intensity correlation functions of the cavity emission modes in-
cluding the effects of the carrier-photon correlations and the many-body interaction.
In the ensuing section the numerical analysis of the time evolution of the emission

E −−−−−−−−−−→

ρ
−−
−−
−−
−−
−−
→

quantum
dots

∆1 ∆2

κ1 κ2

Γ

Figure 4.4: Sketch of the single-particle density of states in the theoretical descrip-
tion. The QDs have the inhomogeneous line broadening Γ that has an overlap with
the linewidth κ1 and κ2 of the modes. The detuning of the modes to the QDs is
measured with ∆1 or respectively ∆2.

correlation functions are presented. To relate our theory to the experimental results
we estimate the number of QDs with effective gain contribution by starting with the
initial density of present QDs and excluding the ones with negligible spectral and
spatial overlap. Thus, we assume N identical QDs with an effective inhomogeneous
line broadening Γ that has an overlap with the linewidth κ1 and κ2 of the modes
(see Fig. 4.4). Further, we consider continuous carrier generation in the p-shell at a
constant pump rate p as an excitation process.

To obtain a valid comparison with the experimental results we simulate the cou-
pled system using numerical integration routines with a realistic set of parameters
β = 0.2, κ1 = 0.03 [1/ps], κ2 = 0.0318 [1/ps], Γ = 2.06 [1/ps], τsp = 50 [ps], τc = 1 [ps]
and τv = 0.5 [ps]. The number of carriers within the frequency region of interest is
estimated from the total density of QDs to be N = 40. For the assumed β = 0.2
the carrier recombination is determined by the stimulated emission into the lasing
modes 1 and 2 with a characteristic time scale τl = τsp/β and into the non-lasing
modes with a characteristic time scale that can be found from Eq. (4.4) for the
given set of parameters. Further, we assume that the cavity mode 1 is in exact
resonance with the QD transition (∆11 = ∆12 = ∆1 = 0) and the mode 2 is detuned
with ∆21 = ∆22 = ∆2 = 0.2 [1/ps]. In Fig. 4.5 we present the simulation results for
intensity functions for the modes nξ = 〈b†ξbξ〉, ξ = 1, 2, autocorrelation functions
and crosscorrelation as a function of the pump power. Figure 4.5(a) reveals, that
whereas the mode 1 shows a drastic increase of emission intensity, the intensity of
the emission mode 2 reaches a maximum and then slowly decreases with increasing
pump power in good agreement with the experimental data depicted in Fig. 4.3(a).
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The calculations further show, that, again in agreement with the experimental data
in Fig. 4.3(c), the dependencies of the autocorrelation functions for the cavity modes
1 and 2 on the pump power exhibit dramatically different behavior. As shown in
Fig. 4.5(b) for low values of pump power, the autocorrelation function is equal to
2 which is characteristic for the statistics of thermal light. For higher rates of the
pump power, the autocorrelation function of the mode 1 drops close to the value
1 indicating the emission of coherent laser light. In contrast, the autocorrelation
function of mode 2 slightly decreases at first with increasing pump powers, but for
larger values of the pump power, it increases and reaches values well above 2, which
agrees with the behavior of the autocorrelation function detected in the experiment
(see Fig. 4.3(c). The autocorrelation function below the threshold could not be mea-
sured because of the limited temporal resolution of the HBT configuration [Ulrich
et al., 2007]). The gain competition behavior between the modes can be approved
by plotting the crosscorrelation function (see Fig. 4.5(c)), that decreases to the val-
ues smaller than unity at the power pump values for which the lasing behavior of
the mode 1 is observed (also, compare to Fig. 4.3(d)). Further, numerical calcula-
tions demonstrate that the observed effect is independent of the modification of the
spontaneous emission rate due to the many-body interaction [Foerster, 2012]. One
important parameter proves to be the detuning between the two modes as shown in
Fig. 4.6. With zero detuning, there is no difference between the two modes and the
system behaves as a single-mode laser. Increasing the detuning shows measurable
effects if the detuning is bigger than the linewidth of the modes ∆2 > κ. This leads
to higher and finally superthermal values of the autocorrelation function. If how-
ever, the detuning is increased much further the role of the detuned mode becomes
negligible (not shown).

Note that the discrepancy of the experimental and theoretical results, i.e. the
kink above the threshold for the autocorrelation function of mode 2 (Figs. 4.3(c)
and 4.5(b), correspondingly) and the crosscorrelation function (Figs. 4.3(d) and
4.5(c), correspondingly) at the higher pump powers appears to be crosstalk between
the modes, but can later be explained due to NMC (see Sec. 4.8).

The numerical simulation of the cluster expansion truncation scheme of the
quadruplet order(∆B+F/2δ(4) ) can be approved by plotting the emission mode autocor-
relation functions for higher order of truncation ∆

B+F/2
δ(6...10) (not shown), which demon-

strates qualitatively the same behavior of the functions independent of the order
of truncation. It is important to note that since the framework of the microscopic
semiconductor theory presented in this section is based on the truncation of the
hierarchy of equations for correlation functions, the numerical results are valid in
the regime when higher order correlations remain small. As it can be seen from
the numerical evaluation of the truncated equations, this is not the case for pump
power rates exceeding 2 × 10−1 [1/ps], where the correlation functions strongly in-
crease. Furthermore in [Leymann et al., 2013c] we show that the photon statistics
becomes a composition of a thermal and a coherent photon statistic and therefore
the cluster expansion is not the ideal approximation method.

In conclusion, the system consisting of a single low-density layer of QDs and two
spectrally split but overlapping modes with nearly equal Q-factors, induced from the
double degenerate fundamental mode by slight cross-section asymmetry of the pillar,
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Figure 4.5: Laser characteristics calculated with the semiconductor model. (a)
Intensity for the modes 1 and 2 as a function of the pump power in a log-log plot.
(b) Autocorrelation functions of the two modes. (c) Crosscorrelation between the
modes 1 and 2.

represents a viable platform for the study of the coupling of two cavity modes in
the presence of a common gain medium. The polarization resolved measurements of
the statistical properties of the emitted light reveal that the two competing modes
display completely different features. One of the modes (mode 1) demonstrates
typical statistical behavior of a laser mode, namely the mode intensity displays
the usual S-shaped input-output characteristic, and the autocorrelation function at
zero-time delay indicates the transition from spontaneous to stimulated emission
for increasing pump rates. The measurements of the input-output characteristic
of mode 2 indicate the threshold behavior, but for further increasing pump rates
the intensity saturates and even decreases, as the result of the competition of the
two modes induced by the common gain material. Moreover, the autocorrelation
function at zero-time delay of mode 2 at certain pump rates higher than the threshold
values exhibits superthermal intensity fluctuation.

The theory allows to obtain the emission statistics of the carrier-photon system
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p [1/ps]

Δ  [1/ps]

Figure 4.6: Calculations of the autocorrelation function g
(2)
22 (0) versus pumping

power and detuning ∆2 of the second mode (first mode is in resonance with the
QDs). With zero detuning there, is no difference between the two modes and the
system behaves as a single-mode laser. Increasing the detuning leads to higher and
finally superthermal values of g(2)22 (0).

in the bimodal cavity considering the many-body effects. Importantly, within our
approach the effects related to the coupling of the two modes of the bimodal cavity,
induced by the interaction with the common QD carriers are consistently included
on the microscopic level. The solution of the equations of motion for correlation
functions using the cluster expansion scheme reveals, that indeed the autocorrelation
function of the mode 2 for the pump rates larger than the threshold rate reaches
values well above g(2)(0) = 2, that would correspond to the thermal state of light.
The decrease of the crosscorrelation function of the two modes below unity indicates
anti-correlated behavior of the mode coupling at these pump rates. In fact, this effect
can be explained by random intensity switching between the two modes, which has
negligible influence on the photon statistics of the lasing mode, but strongly affects
the mode 2 for which the relative strength of fluctuations is larger [Redlich et al.,
2016; Lett, 1986]. It is worth to mention, that in the case of macroscopic two-mode
ring lasers [Singh and Mandel, 1979] large intensity fluctuations have been also found
in the statistics of the more lossy mode, as the result of the mode competition with
the favored mode and emission switching of the common atomic ensemble.

4.5 Occurrence of normal-mode coupling

The last section has shown that the experimental results, e.g. the intensities, the
autocorrelation and crosscorrelation functions can be reproduced and explained with
the single-time semiconductor theory. In Sec. 4.2 the question was raised why both
modes show laser typical small linewidths, which is not intuitively clear since the
second mode is highly fluctuating (g(2)22 (0) > 2). Therefore, we extend the single-time
theory to multi-time correlation functions, which creates a connection to NMC. In
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this section, we report the current status of research on strong coupling and NMC.
We set this subject into context with bimodal microcavities before we explain the
details of the multi-time semiconductor theory in the following section.

The study of cavity quantum electrodynamics (cQED) in the strong coupling
regime between atom-like emitters and the confined light field of microcavities has
been a subject of considerable attention. In the traditional cQED, low-mode volume
resonators are used to enhance the coupling rate g between a single emitter and
the field in comparison to the system damping rates. Prominent realizations of
the strong coupling include experimental demonstrations of reversible exchange of
excitation between a single emitter with the field from both atomic [Brune et al.,
1996; McKeever et al., 2003; Nußmann et al., 2005] and solid-state [Reithmaier et al.,
2004; Yoshie et al., 2004] systems. A typical evidence of the strong coupling regime
represents splitting of the two degenerate modes, i.e. normal-mode splitting, that is a
consequence of NMC e.g. between emitter polarization mode and field mode leading
to a doublet cavity transmission spectrum [Shore and Knight, 1993]. In addition,
NMC occurs i.a. in exciton-photon and phonon-photon interactions [Weisbuch et al.,
1992] and optomechanical phenomena [Kippenberg and Vahala, 2008], where the
cavity field couples to a mechanical mode [Dobrindt et al., 2008].

In view of the variety of implications of the regime of coherent coupling (see, e. g.,
[Monroe, 2002]), a different approach to achieve strong coupling has also attracted
much attention. Instead of reducing the cavity mode-volume to achieve large g,
the number of emitters N interacting with the field can be increased leading to the
collective strong coupling regime, where the coupling rate scales as

√
Ng [Tavis and

Cummings, 1968; Andreani et al., 1999]. Various experimental observations of the
cavity mode spectra proportional to

√
Ng due to the collective coherent coupling

with two [Reitzenstein et al., 2006; Albert et al., 2013] or multiple [Reitzenstein
et al., 2006; Albert et al., 2013] emitters have been experimentally observed, includ-
ing the case of multimode cavity [Wickenbrock et al., 2013]. In solid-state systems,
the coherent coupling between a cavity mode and an ensemble of emitters has been
achieved in the classical regime with semiconductor quantum wells [Weisbuch et al.,
1992; Khitrova, 1999]. However, in the quantum regime the significant inhomo-
geneous broadening of emission from self-assembled QDs has so far hindered the
observation of collective coherent coupling for semiconductor based quantum emit-
ters.

In many different situations, (see e.g. Refs. [Brune et al., 1996; McKeever et al.,
2003; Nußmann et al., 2005; Reithmaier et al., 2004; Yoshie et al., 2004; Shore and
Knight, 1993; Kippenberg and Vahala, 2008; Dobrindt et al., 2008; Monroe, 2002;
Tavis and Cummings, 1968; Andreani et al., 1999; Reitzenstein et al., 2006; Albert
et al., 2013; Raizen et al., 1989; Tuchman et al., 2006; Wickenbrock et al., 2013;
Weisbuch et al., 1992; Khitrova, 1999]), per convention coherent coupling of two
(nearly degenerate) modes is commonly explained by studying the eigenvalues of
the system,

Λ± =
ω1 + ω2

2
− iγ1 + γ2

4
± {[(ω1 − ω2)/2− i(γ1 − γ2)/4]2 +Ng2}1/2, (4.8)

where ω1,2 and γ1,2 are the frequencies and decay rates of the modes, correspond-
ingly. Analysis of this expression reveals that in the resonant case (ω1 = ω2) for
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√
Ng < |γ1 − γ2|/4 the square root term is fully imaginary and modifies the decay

rates of the modes. Further, for
√
Ng > |γ1 − γ2|/4 it becomes real and the frequen-

cies exhibit splitting attributed to NMC. Coherent coupling is also relevant to laser
physics for achieving the regime of bistable lasing of the two-mode lasers [Meystre
and Murray, 1999; Siegman, 1986]. In particular, in the case of large pump rates
when strong coupling regime of emitter-field interaction is achieved and the Rabi
frequency is larger than mode separation mode locking has been observed [Hillman
et al., 1984; Wang et al., 2007]. Otherwise, bimodal cavities are investigated in the
context of single-photon generation with whispering-gallery mode resonators [Dayan
et al., 2008; Majumdar et al., 2012], where an atom strongly interacts with two cavity
modes, or in QDs to control the properties of the photon on-the-fly and all-optically
with a classical laser field [Heinze et al., 2015].

M1

M2

QDs =
M1

M2
! !

L99

L9
9

Figure 4.7: Illustration of the interaction of the modes M1 and M2 (cavity modes)
of a passive microcavity with a mesoscopic number of QDs induces unconventional
coherent coupling between these modes.

Here, we show that interaction (see Fig. 4.7) of the modes of a passive bimodal
microcavity (cavity modes) with a mesoscopic number of quantum emitters induces
unconventional coupling between these modes in the lasing regime. In contrast to
the conventional NMC described above, here, in the case of the near-resonant cavity
modes the eigenmodes of the total active system (eigenmodes) exhibit frequency
locking, and the effective coupling rate with the emitters

√
Ng induces splitting of

the linewidths of the eigenmodes. Further, for sufficiently large spectral splitting
between the cavity modes, the incoherent coupling between the modes leads to a
mixing of the "bare" cavity mode frequencies in the emission spectrum. We report
below experimental observation of this mode mixing for bimodal micropillar lasers.
Moreover, the theoretical study shows, that in the case of incoherent coupling and
approximately equal mode-QD coupling rates the eigenmode linewidths demonstrate
locking, leading to almost equal values of the coherence times of the cavity mode
emission. This intriguing and unexpected scenario has been observed for bimodal
microlasers in Sec. 4.4, where the inferior mode which exhibits large superthermal
intensity fluctuations, indeed has a coherence time of the same order of magnitude
as the dominant lasing mode.
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4.6 Theory of multi-time correlation functions

The microscopic semiconductor model and the derivation of single time EoM has
already been discussed in Sec. 4.3. The general approach to derive multi-time EoM
in terms of the expectation value based cluster expansion can be found in Ch. 2.3.4.
For the purposes of this section the lowest order approximation ∆

B+F/2
δ(2) is best

suited, since it allows us to trace the problem back on an eigenvalue equation that
can be compared to Eq. (4.8).

The coherent features of the output radiation are described by the (normalized)
first-order correlation function Eq. 1.40. This function is generalized to the case of
two modes by

g
(1)
ξ (t, τ) =

G
(1)
ξξ (t, τ)

〈b†ξ(t)bξ(t)〉
, ξ = 1, 2, (4.9)

with G
(1)
ξξ′(t, τ) = 〈b†ξ(t+ τ)bξ′(t)〉. The coherence times and the frequency spectra

are given, respectively, by

τ cξ = 2

∫ ∞

0

dτ |g(1)ξ (τ)|2, (4.10)

Sξ(ω) = 2Re

∫ ∞

0

dτg(1)ξ (τ)e−2πiτω. (4.11)

We assume continuous wave excitation and that two-time quantities as the corre-
lation function g(1)ξ (t, τ) are t-time independent in the steady-state regime for large
enough t-times. According to Ch. 2.3.4 the two-time evolution problem can be sepa-
rated into two single-time problems. Then, the equations of motion with respect to
the delay time τ can be solved with initial values given by the stationary steady-state
result of the t-time problem [Wiersig, 2010]. The Heisenberg equations of motion
for expectation values of the quantities of interest lead to a hierarchy problem which
can be treated by the cluster expansion (see Ch. 2 for details).

Further, assuming carrier generation in the p-shell at a fixed rate we derive a sys-
tem of Heisenberg equations of motion and introduce phenomenological dissipative
terms, where both pump and dissipative processes are of Lindblad form [Gardiner
and Zoller, 2001]. To obtain the dynamical equations of the first-order coherence
the cluster expansion up to doublet level ∆

B+F/2
δ(2) is required, which implies the semi-

classical factorization (in the following we omit the dependence on the time t, as
bξ(τ)≡ bξ(t, τ), bξ≡ bξ(t, 0) etc.)

〈c†j(τ)cj(τ)b†ξbξ(τ)〉 ≈ 〈c†j(τ)cj(τ)〉〈b†ξbξ(τ)〉, (4.12)

where 〈c†j(τ)cj(τ)〉 in the stationary regime is τ -time-independent. Thus, assuming
identical QDs with equal transition energies and coupling rates gξ ≡ gξj, we ob-
tain the closed system of linear differential equations for the correlation functions
Gξζ ≡ G

(1)
ξζ (τ) and Pξ(τ) ≡ Pξj(τ) = 〈c†j(τ)vj(τ)bξ〉 in the rotating-wave approxima-
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tion and in the frame rotating at εcj − εvj

d
dτ
Pξ(τ) = −ΓPξ(τ) + Ig1G1ξ(τ) + Ig2G2ξ(τ), (4.13)

d
dτ
G1ξ(τ) = (i∆1 − 1

2
κ1)G1ξ(τ) +Ng1Pξ(τ), (4.14)

d
dτ
G2ξ(τ) = (i∆2 − 1

2
κ2)G2ξ(τ) +Ng2Pξ(τ), (4.15)

where ∆ξ ≡ ∆ξj = εcj − εvj −~ωξ is the detuning of the cavity modes from the QD
transition, and κ1, κ2 describe cavity mode losses. The inhomogeneous broadening
is approximated by the spectral line broadening rate Γ in Eq. (4.13). The excitation
of emitters with given pump rate is encoded into the steady-state inversion per
QD, I ≡ Ij(t) = 〈c†jcj〉−〈v

†
jvj〉, that represents an important pump rate-dependent

parameter for the τ -dynamics.

4.7 Normal-mode coupling in bimodal lasers
The system of six equations above consists of two independent subsystems with
ξ = 1, 2. Autocorrelation functions of two cavity modes G(1)

ξξ (τ) are coupled to each
other indirectly, namely, through Pξ(τ) representing the common gain medium. To
provide a simple understanding of the coupling of the two cavity modes, we use
an approximation of fast relaxation of Pξ(τ) compared to the time-scale of the
dynamics of Gξζ(τ), typically valid for semiconductor systems [Alferov, 2001]. Then,
we formally insert (d/dτ)Pξ(τ) =0 into Eq. (4.13) and reduce Eqs. (4.13)–(4.15) to

d
dτ

(
G1ξ

G2ξ

)
= i

(
∆1 + iκ̃1/2 −iNIg1g2/Γ
−iNIg1g2/Γ ∆2 + iκ̃2/2

)(
G1ξ

G2ξ

)
, (4.16)

which represents two 2 × 2 identical matrices and characterize the coupling of the
two cavity modes. The eigenvalues of the matrix above read

λ± =
∆1 + ∆2

2
+ i

κ̃1 + κ̃2
4
±{[(∆1−∆2)/2 + i(κ̃1−κ̃2)/4]2− (NIg1g2/Γ)2}1/2,(4.17)

where from the notation κ̃ξ = κξ − 2NIg2ξ/Γ follows, that increasing NIg2ξ/Γ effec-
tively reduces the linewidths. The inspection of Eq. (4.17) reveals that the depen-
dence of the eigenvalues on the involved parameters behave quite differently from
the case of conventional NMC, Eq. (4.8). For ∆1 = ∆2 and g1 = g2, the square root
term of λ± remains imaginary and modifies the peak widths independent on how
large the effective coupling |NIg1g2/Γ| is chosen in comparison with |κ1−κ2|. In
the case, when κ1 =κ2 and g1 = g2, the square root term leads to two regimes. For
|NIg1g2/Γ|< |∆1−∆2|/2, the regime of incoherent coupling, the term is real and
modifies the peak positions of the modes. In the regime of coherent coupling, i.e. for
|NIg1g2/Γ|> |∆1−∆2|/2, it becomes imaginary and modifies the peak widths of the
modes. Note, this striking behavior is qualitatively opposite from that of conven-
tional NMC. Furthermore, since the effective coupling |NIg1g2/Γ| is proportional
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Figure 4.8: Real part of the eigenvalues corresponding to the peak positions (a),
(c) and imaginary parts of the eigenvalues corresponding to the peak widths (b),
(d) [cf. Eq. (4.17)] vs. ∆1 for fixed pump strength [(a), (b), I = 0.3] and vs. NI
[(c), (d), ∆1 = 115 µeV], N = 42, κ1 = 36 µeV, κ2 = 44 µeV, ∆2 = 0, Γ = 1.38 meV,
g1 = 30.4 µeV, and g2 = 30.3 µeV. The shaded regions indicate incoherent coupling.
The hatched area indicates experimentally accessible NI-range (see Fig. 4.10). The
values of κξ and ∆ξ are measured in the experiment, and the values of N , Γ and gξ
are estimated in correspondence to the experiment.

to |I|, the experimental observation of the coherent regime of collective coupling
requires |I| to be close to unity.

To demonstrate the unconventional NMC we plot the real and imaginary parts of
the eigenvalues for a coupled bimodal cavity system in Fig. 4.8. The dependence on
the detuning ∆1 (∆2 = 0) [Figs. 4.8(a) and (b)] reveals that in the near-resonant re-
gion where the coherent coupling regime is maintained, the splitting of the imaginary
parts of the eigenvalues (peak widths) is observed. For increasing detuning between
the cavity modes, in the incoherent coupling regime, the eigenvalues demonstrate
splitting in the real parts (peak positions) and locking of the peaks widths. To il-
lustrate the dependence on the effective coupling rate the eigenvalues are presented
as functions of NI in Figs. 4.8(c,d). In the regime of incoherent coupling, for small
effective coupling rate (small N |I|), the splitting of the peak positions is observed.
In the regime of coherent coupling the splitting of the peak widths increases for
increasing effective coupling rate. Whereas in the case of the conventional coher-
ent NMC, Eq. (4.8), the splitting of the mode resonances increases for increasing
N [Thompson et al., 1992].

4.8 Cavity Mode Spectra

Importantly, above discussed effects can be deduced starting with the more general
Eqs. (4.13)–(4.15). In the following we use Eqs. (4.13)–(4.15) to obtain τ -dependent
expressions for the auto-correlation functions. The initial values of quantities Pξ(τ),
Gζξ(τ) are taken as the stationary solutions of t-time-dependent problem. Figure 4.9
reveals that in the regime of incoherent coupling the coherence times of the dominant
and inferior modes, which correspond to the decay rates of |g(1)1 (τ)| and |g(1)2 (τ)|,
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respectively, are of the same order of magnitude. This counter-intuitive behavior,
which has been earlier experimentally observed (see Fig. 4.3(b)), is particularly
interesting considering that the inferior mode features large superthermal intensity
fluctuations with g(2)(0) ≈ 3 (Fig. 4.3(f)). The spectra of both modes (Fig. 4.9, inset)
exhibit a two-peak structure according to the eigenvalues in Eq. (4.17). Indeed, for
the chosen parameters NI = 27.3, which corresponds to the incoherent coupling,
Figs. 4.8(c, d) reveal splitting of peak positions and locking of the widths. Obviously,
emission in the basis of the two cavity modes carries both "bare" frequencies of the
passive cavity modes due to NMC via the common gain medium. The emission
peak positions and widths are established by the real and imaginary parts of the
eigenvalues λ±, since every mode carries both basis eigenvalue vectors. The mode
coupling is also associated with the oscillations of |g(1)ξ (τ)| (easy to see in Fig. 4.9 for
|g(1)2 (τ)| but holds true for |g(1)1 (τ)|). The oscillation amplitudes are attributed to
the corresponding frequency spectra peak heights, whereas the oscillation frequency
is defined by the peak position difference, which in turn is related to the relative
detuning of the cavity modes. Importantly, the oscillations of |g(1)ξ (τ)| originate from
a double-peak feature of two cavity modes and need to be distinguished from those
reported by Ates et al. [2007], which arise from the interference of emission in two
different polarization directions.

Cavity mode 1
Cavity mode 2

-200 -100 1000

Figure 4.9: Absolute values of the autocorrelation functions and the frequency
spectra (inset, semi-log scale) for the emission of the cavity modes for I = 0.65,
∆1 = 115 µeV and estimated cavity-enhanced QD spontaneous emission rate of
20 ns−1. Other parameter values are from Figs. 4.8(c, d). The vertical lines mark
the cavity mode frequencies.

For the comparison to the experiment we use a similar setup to the one pre-
sented in Sec. 4.2. The micropillar laser has a diameter of 3.6 µm, and the two
modes of 0◦ and 90◦ polarizations and Q-factors of 10000 and 10800 are split by
115 µeV. The emission has been investigated at low temperature (10-20 K) by a
micro-electroluminescence (µEL) setup (spectral resolution, 20 µeV). A linear po-
larizer in combination with a λ/4-wave plate is installed to perform polarization-
resolved measurements.

The input-output dependence of the emission in 0◦ and 90◦ detection angle is
depicted in Fig. 4.10(c). The emission mode in 0◦ polarization shows a thresh-
old current of about Ith = 4µA. The smooth transition at threshold and the S-
shaped input-output characteristics indicates the high-β lasing with β≈ 0.2(see also
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Sec. 4.4). A similar behavior is observed for emission in 90◦ polarization up to
Iinj ∼= 1.5Ith. At higher injection currents saturation and even a decrease of the
output intensity is observed. This anticorrelation between emission of the dominant
mode in 0◦ and the inferior mode in 90◦ polarization is explained by means of the
microscopic semiconductor model in terms of gain competition (see Sec. 4.4). More-
over, the model allows us to determine the inversion per pump rate which changes
from −0.8 to 0.8 for the used parameter values (see Fig. 4.10(c)). The corresponding
NI range is indicated in Fig. 4.8(c,d) as hatched area.
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Figure 4.10: (a) Injection current-dependent µEL emission spectra in 90◦ po-
larization for 2.1 ≤ Iinj/Ith ≤ 5.5, plotted relative to the high energy peak val-
ues to compensate for an injection current-dependent shift of the emission energy
[cf. (d)]. (b) Calculated frequency spectrum in 90◦ polarization for inversion values
0.63 ≤ I ≤ 0.67. Parameter values are the same as in Fig. 4.9. (c) Calculated inver-
sion (green, crosses) vs. injection current and integrated µEL intensity for 0◦ and
90◦ polarizations. (d) Emission energy (relative to the reference point 1.366 eV) of
the 0◦-component and the two-mode features in 90◦ detection vs. injection current.

Interestingly, the intensity of emission in 90◦ polarization increases again for
Iinj & 4Ith. To analyze this feature we study emission spectra for different injection
currents. While in 0◦ orientation emission a single peak is observed (not shown), for
the 90◦ component at injection currents exceeding about 1.5Ith a transition of a single
emission peak into a doublet occurs (see Fig. 4.10(a)), where the intensity of the
low-energy component rises with increasing current and dominates for Iinj > 5Ith.
This double-peak feature of the 90◦ orientation emission and its peculiar current
dependence is in very good agreement with the calculated emission spectra presented
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in Fig. 4.10(b) for incoherent collective coupling 1. Indeed, for the range of the chosen
parameters NI ≈ 26 . . . 28 according to Figs. 4.8(c, d) corresponds to the region of
incoherent coupling.

In Fig. 4.10(d) mode energies of 0◦ and 90◦ polarizations vs. injection current
are plotted. At low injection currents the single-peak emission in both polarization
directions correspond to the "bare" frequencies of the cavity modes. Moreover,
the low-energy component of the 90◦ emission for low injection currents coincides
spectrally with emission from the 0◦ emission, but at high excitation currents it
approaches the energy of the high-energy peak in 90◦ orientation. This clearly
shows that this emission does not originate from possible cross-talk between 0◦ and
90◦ components, but is in accordance with the theoretical prediction in Fig. 4.8(c),
namely that the peak positions approach each other with increasing NI.

4.9 Chapter conclusion

We have investigated laser emission of electrically pumped QDs in a bimodal mi-
cropillar cavity with special emphasis to the effects induced by gain competition of
the two orthogonally polarized modes.

Starting with the microscopic semiconductor model [Gies et al., 2007] we have
developed a framework for the description of the interaction of two cavity modes
with the QD gain medium.

Within this theory, we can reproduce and explain the mode competition of bi-
modal microcavity lasers. The decisive parameters, e.g. detuning and loss rates
that enables mode competition and the high autocorrelation function of the losing
mode have been analyzed. The theory also provides a good understanding of the
experimental results and confirms the possibility of having light sources with high
intensities and superthermal values of g(2)(0) at the same time. This kind of light
sources could be used efficiently in the multi-photon spectroscopy, where more than
one photon at a time is needed and samples can easily be damaged by radiation
[Denk et al., 1990]. Light sources that have a high probability of emitting multiple
photons at the same time could increase the performance enormously as shown in
[Jechow et al., 2013].

In a second step, we have demonstrated the existence of collective NMC in bi-
modal microlasers. In contrast to the conventional case, here, in the coherent cou-
pling regime, the increase of the effective coupling strength produces a splitting of
the linewidths instead of the frequencies. In the incoherent coupling regime, in-
creasing effective coupling induces splitting of frequencies and locking of linewidths.
The consequence is the double-peak structure of the output spectra of the modes
and the large coherence times for both dominant lasing and inferior modes, which
has been confirmed experimentally in QD-based bimodal micropillar lasers. The
latter offers unique possibilities to study collective coupling, since the stimulated
emission of the dominant mode leads to clamping of the carrier density with large
inversion (I ≈ 0.8), while the inferior mode experiences collective coupling mediated

1These spectra were convoluted with a Lorentzian to consider the spectral resolution of 20 µeV
of the experimental setup.
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by multiple inverted emitters. Further interesting effects related to NMC in bimodal
lasers in the coherent coupling regime which could be accessed by using micropillar
cavities with small mode splitting and larger inversion.

The developed microscopic semiconductor theory of bimodal cavities is well-suited
for further investigation of the emission properties for various interaction regimes
depending on the cavity mode detuning and decay rates or effects related to the
many-body interaction [Fanaei et al., 2016]. Thus, the theory lays the groundwork
for investigations of the coupling of the modes in the bimodal cavity by means of
interaction with the common gain media.
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Chapter 5

Sub- and
Superradiance in quantum-dot
nanolasers

In this chapter, we present the most advanced laser theory of this thesis. We combine
ideas of the expectation value based cluster expansion Ch. (2) with a configuration
description of the quantum dots(QDs) [Florian et al., 2013b]. We use this theory
to investigate the radiative coupling between emitters in QD nanolasers. For typ-
ical systems with tens to hundreds of active emitters, a strong impact of sub- and
superradiance on steady-state properties is demonstrated. In a device-relevant pa-
rameter regime, it is shown that radiative coupling enhances spontaneous emission
such that significantly fewer emitters are required to reach the lasing threshold. The
formation of QD-QD correlations can seemingly change the β-factor by an order of
magnitude. The results provide insight into a new kind of lasing in a highly efficient
regime dominated by cavity quantum electrodynamics (cQED) effects.

Parts of this chapter are published in [Leymann et al., 2015]. The basic theory
was developed in discussions between C. Gies, A. Foerster, and H.A.M. Leymann.
The details of the theory were mainly worked out by H.A.M. Leymann while the
equations of motion were mainly derived and integrated by A. Foerster. All authors
of [Leymann et al., 2015] discussed the results.

5.1 Introduction

When the active material compensates photon losses from the cavity, a conventional
laser crosses the threshold into coherent emission. In nanolasers, spontaneous emis-
sion is strongly enhanced, and the previous criterion must be augmented such that
stimulated and spontaneous emission must compensate the cavity losses. The en-
hancement originates from the Purcell effect and the high β-factor that quantifies
the coupling efficiency of spontaneous emission into the laser mode. The thresh-
old condition is again modified when emitters of the gain material act no longer
independently, but radiative coupling triggers a collective spontaneous emission.
The radiative coupling originates from the exchange of photons via the high-Q cav-
ity mode that establishes Dicke states [Garraway, 2011]. Super- and subradiance,
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which is the enhancement or inhibition of emission due to radiative coupling, was
first discussed as a collective effect in a gas of atoms coupled to a common radiation
field [Dicke, 1954]. The work of Dicke has been the foundation for a vast number of
studies on superradiance (SR), reaching from single-photon emission enhancement
[Scully and Svidzinsky, 2009; Chen et al., 2012] over photosynthetic bio-complexes
[Ferrari et al., 2014] to Dicke phase transitions [Liu et al., 2014; Baumann et al.,
2010] and directional SR emission from statistically independent incoherent sources
[Oppel et al., 2014]. Regarding semiconductor systems, radiative lifetime changes
have been observed in a QD ensemble due to emitter-coupling effects [Scheibner
et al., 2007]. Superfluorescent spontaneous-emission enhancement has been demon-
strated in quantum well systems [Timothy Noe Ii et al., 2012]. Recent investigations
have also addressed dynamical and statistical properties of SR coupling effects in
cavities where QD emitters couple to a single mode [Temnov and Woggon, 2005,
2009; Auffèves et al., 2011].

This chapter is concerned with the impact of radiative coupling in continuously
driven (cw) state-of-the-art nanolasers. Strong cavity enhancement and a limita-
tion of the achievable gain due to the smallness of the resonator enhances many-
particle correlations in these systems. As an example, non-classical antibunching
has been observed within the broad threshold region to lasing in QD microcavity
lasers [Wiersig et al., 2009]. While in conventional lasers stimulated emission com-
pletely dominates above threshold, this is not necessarily so in nanolasers, where
spontaneously emitted photons can constitute a significant part of the laser emis-
sion. It is not farfetched to assume that inter-emitter coupling effects play a role
in the emission properties, even though they are typically assumed to be weak in
semiconductor systems due to strong dephasing. These collective effects are typ-
ically not contained in most applications of laser theories, which are derived and
used under the assumption of individual uncoupled emitters. To this date, radiative
coupling is seldom associated with steady-state properties. The possible coexistence
of lasing and superradiance in systems with few (2–5) two-level systems was dis-
cussed in Ref. [Mascarenhas et al., 2013]. The prediction of emerging superradiance
in a continuously driven gas of atoms [Meiser and Holland, 2010] has led to the
recent demonstration of a new kind of “nearly photon-less” SR laser [Bohnet et al.,
2012]. Collective effects are also expected to play an important role in random lasers,
where the role of the cavity is replaced by multiple scattering events within the gain
material [Wiersma, 2008; Baudouin et al., 2013].

We develop and apply a laser model for QD nanolasers that explicitly takes inter-
emitter correlations and photon correlations into account. For a many-emitter gain
medium, density-matrix approaches can account for inter-emitter coupling, but are
limited to a small number of emitters (∼ 10 two-level systems, < 5 multi-level
QDs on present-day computer systems) due to the rapidly increasing size of the
Hilbert space [Auffèves et al., 2011; Florian et al., 2013a; Sitek and Manolescu,
2013; Lax and Louisell, 1969; Scully and Lamb, 1967]. Established quantum-optical
master equations for the diagonal elements of the density matrix do not account for
inter-emitter coupling [Rice and Carmichael, 1994], and rate equations are obtained
under the assumption of individual emitters and prohibit access to the statistical
emission properties [Moelbjerg et al., 2013; Rice and Carmichael, 1994; Yokoyama
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and Brorson, 1989; Chow and Koch, 1999]. Monte-Carlo approaches have also been
used to study SR [Meiser and Holland, 2010]. Here, we use a method that is based
on the systematic inclusion of expectation values of QD-configuration and cavity-
photon operators that allows to keep correlations up to a desired order and truncate
higher clusters of operators. Photon-photon and inter-emitter correlations provide
access to the photon autocorrelation function g(2)(0) and radiative emitter coupling.
Related cluster-expansion or cumulant-expansion approaches have been used both
in the atom [Meiser et al., 2009; Witthaut et al., 2011] and semiconductor fields
[Chow et al., 2014; Gies et al., 2007; Kira and Koch, 2008; Carmele et al., 2009] to
describe either extended systems, or systems with many emitters, as the numerical
problem typically scales only linearly with particle number.

The laser model in configuration description is presented the Sec. 5.2. In Sec. 5.3,
the impact of radiative coupling on the input/output curve is analyzed to reveal that
correlations introduced by the radiative coupling drastically change the height of
the jump in the input/output curve, as well as its slope in the spontaneous emission
regime. In Sec. 5.4, the impact of radiative coupling is quantified by means of suit-
able pair-correlation functions for electronic and photonic degrees of freedom. These
are used to introduce an effective rate of spontaneous emission and to explain the
superthermal photon bunching that appears at low excitation powers. In Sec. 5.5,
radiative coupling effects are quantified in terms of cavity-Q factor and emitter num-
ber and it is demonstrated that superradiance enhances the “coherence per photon”,
so that significantly fewer emitters suffice to reach lasing in comparison to the case of
individual emitters. In Sec. 5.6 we study the influence of inhomogeneous broadening
on the sub/superradiant features. In Sec. 5.7 we provide an illustrative explanation
of the observed features in terms of Dicke states between pairs of emitters in the
ensemble. The appendix B provides technical details about the underlying laser
theory.

5.2 Laser theory in configuration description

Figure 5.1: Illustration of the electronic configuration states |i〉 of a QD with
two confined states for electrons and holes that accommodates two electrons (i =
{G,Xs, 0p, 0s, Xp, XX}). The different configurations are the ground state |G〉, the
s-exciton |Xs〉, the dark states with the electrons in the p-shell |0p〉 and in the s-shell
|0s〉 respectively, the p-exciton |Xp〉 and the bi-exciton |XX〉.

We consider an ensemble of self-assembled QDs coupled to a single high-quality
mode of an optical microcavity. Three-dimensional carrier confinement of the QDs
leads to a discrete density of states below a quasi-continuum of states from the sur-
rounding semiconductor material. Interaction with carriers in these states is source
of capture, scattering and dephasing processes. For the laser model, we consider
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generic QDs each having two localized states for electrons and holes. Assuming ex-
citation by simultaneous capture of electron-hole pairs from the continuum states,
six configurations are possible that represent bright and dark (multi-) exciton config-
urations |i〉α = {G,Xs, 0p, 0s, Xp, XX} of QD α, as shown in Fig. 5.1. Both the Xs

and XX configurations allow for an optical recombination of an s-shell electron-hole
pair into the laser mode. This model captures the essential properties of a multi-
level emitter that can accommodate bright and dark multi-exciton configurations
[Gies et al., 2011]. We introduce the projection operator

Qα
ij = |i〉α 〈j|α . (5.1)

For i 6= j, it describes the transition from configuration j to configuration i in QD
α, whereas for i = j, its expectation value refers to the probability to find QD
α in configuration i. In the picture of many-particle configurations, we define the
excitation operator for the s-shell of QD α as

Eα†
s = Qα

XsG +Qα
XX,Xp . (5.2)

The product states |i1 . . . iN , n〉 span the Hilbert space of N QDs and photons of
the cavity mode. The dimension 6N × nmax of the Hilbert space grows quickly with
emitter number, which is why a solution of the von Neumann equation for the full
system density operator, popular for single-emitter systems, becomes costly already
for a handful of emitters.

The dynamics of the microcavity-QD system is governed by the Hamiltonian
H = H0 + HD + HC

1, with the free Hamiltonian H0 =
∑

α,i ε
α
i Q

α
ii + ~ωb†b that

contains the configuration energies εαi and the mode frequency ω, the light-matter
interaction Hamiltonian HD, and the Coulomb interaction Hamiltonian HC . We
have introduced the photon creation and annihilation operators b†, b for photons in
the laser mode. In terms of the configuration operators, in dipole- and rotating-wave
approximation the dipole Hamiltonian is given by

HD = −i
∑

α

gα[b†Eα
s + h.c.] (5.3)

and couples the s-shell recombination to the creation of a cavity photon, and vice
versa. gα is the light-matter coupling strength of the s-transition of QD α to the
laser mode. In the scope of the present work, we take the Coulomb interaction
into account by renormalized configuration energies and an effective light-matter
coupling strength.

We obtain the system dynamics by deriving equations of motion for observable
quantities with the generalized Ehrenfest EoM, in the formalism of the Expectation
Value Based Cluster Expansion which is explained in Ch. 2. The two-particle nature
of the dipole Hamiltonian creates two different hierarchies: 1) EVs with M photon
operators are coupled to EVs with M + 1 photon operators. 2) EVs acting on
transitions or occupations in one QD are coupled to EVs that couple transitions
or occupations in different QDs. Both hierarchies do not end at low orders: 1)

1This is the same Hamiltonian that we described in Ch.1 but here reformulated in terms of
configuration operators
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is only limited if the cavity field is represented by a finite linear combination of
number states, and 2) is limited by the finite, but possibly large number of emitters
in the gain material. In the spirit of the cluster-expansion method (see Ch. 2.3.3),
both hierarchies are truncated consistently at a desired level to close the set of
coupled equations. Cluster-expansion methods have been used with great success to
model quantum-well [Kira and Koch, 2008; Kira et al., 1999; Kira and Koch, 2011]
and QD [Feldtmann et al., 2006; Gies et al., 2007; Richter et al., 2009; Leymann
et al., 2014] systems. Our approach here differs in two ways from the conventional
method: Rather than using single-particle operators, we work in the many-particle
configuration picture using the operators Qα

ij defined in Eq. (5.1), and we expand
the hierarchy in terms of EVs rather than correlation functions. For details, we refer
to Appendix B.2.

We start from the mean photon number 〈b†b〉 and the configuration probabili-
ties 〈Qα

ii〉 in each QD and derive their equations of motion. Photon correlations
are included up to 〈b†b†bb〉, because they are needed to access the second-order au-
tocorrelation function Eq. (1.42). EVs containing more than 4 photon operators
are factorized. Radiative emitter coupling is related to expectation values of the
type 〈(b†)nbmQα

ijQ
β
i′j′〉, which contain operators Q acting on different emitters α, β.

Higher order correlations of the kind 〈(b†)nbmQα
ijQ

β
i′j′Q

γ
i′′j′′〉 are factorized. In our

results, we compare to the case of “individual emitters”, which is obtained by per-
forming a separate calculation, in which the hierarchy is truncated at the lowest level
with respect to the Q operators, i.e. only EV of the type 〈(b†)nbmQα

ij〉 are explicitly
considered.

Self-organized QDs are embedded systems, and their localized states are coupled
to continuum states of wetting layer and barrier material. This enables efficient
above-band-gap pumping. A simplified treatment consists of modeling incoherent
carrier-capture into higher confined QD states and successive relaxation via a Lind-
blad term (see Ch. 1.6). This is a commonly used method with the twist that
here, configurations are used, and the formalism needs to be spelled out in terms
of the operators Qα

ij. We use the following rates: Pα capture of e-h pairs into
the QD p-shell (pump rate), γαr carrier relaxation, γα,{s,p}spont spontaneous losses of
s and p-shell electron-hole pairs, and κ the loss rate of photons from the cavity.
The Lindblad contributions are added to the EV-equations of motion by evaluating
〈Ȧ〉|Lindblad = γη

∑
{i,j}〈([Qα

ij, A]Qα
ji + Qα

ij[A,Q
α
ji])〉 for each pair {i, j} of configura-

tions connected by the underlying microscopic process η [Florian et al., 2013b]. A
similar term using photon operators arises for cavity losses. Details are found in
Appendix B.3. The large number of coupled equations of motion are generated by
means of the computer-aided cluster expansion in Ch. 3. Inhomogeneous broaden-
ing is an inherent property of QD-emitter ensembles obtained from self-assembled
growth techniques [Bimberg et al., 1999]. The number of QDs considered in our
calculations corresponds to the number of QDs in the ensemble found in spectral
vicinity to the cavity mode. For these emitters, we assume that radiative coupling
effects are fully present. The effect of detuning is investigated separately with 3
three case studies in Sec. 5.6.
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Figure 5.2: (a) Input/output curve for a typical nanolaser device [Lermer et al., 2013;
Aßmann et al., 2010]. N = 100 QD emitters are used with a light-matter coupling
of g = 0.015/ps, cavity loss rate κ = 0.05/ps (corresponding to Q = 20, 000), carrier
relaxation rate γr = 0.05/ps, and spontaneous losses into leaky modes γspont =
0.01/ps. The solid blue curve results from a calculation without radiative coupling
effects, the dashed red curve includes sub- and superradiant coupling between pairs
of emitters. The thin solid green line shows the intensity produced by a single QD
multiplied by the emitter number. (b) The cooperativity factor CF (dash-dotted
black curve) gives a measure of the change in photon output caused by the radiative
coupling.

5.3 Signatures of radiative coupling in the input
and output characteristics of nanolasers

In a conventional laser, a sudden intensity jump in the input/output curve over
several orders of magnitude serves as an indicator for the onset of coherent emission.
The height of the jump may be used to estimate the spontaneous-emission coupling
factor β [Yokoyama and Brorson, 1989; Chow and Koch, 1999]. In microcavity
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systems that approach the thresholdless β ≈ 1 regime, a more gradual transition to
coherent emission can be revealed by studying statistical properties of the emitted
light [Jin et al., 1994; Khurgin and Sun, 2012; Rice and Carmichael, 1994; Strauf
et al., 2006].

In Fig. 5.2(a), the input/output characteristics with (dashed line) and without
(solid line) inter-emitter coupling are compared for a nanolaser with 100 emitters
that are resonant with a high-quality (Q = 20, 000) mode of the cavity. The system
shows a transition into lasing at a pump rate of about 0.01 electron-hole pairs
per ps and QD. It is striking that suppression of photon production below and
enhancement above threshold increases the height of the gradual intensity jump. If
rate- or master-equation approaches that neglect inter-emitter coupling were used to
describe an experiment, in which strong inter-emitter coupling is present, one would
erroneously conclude a β-factor that is smaller by about one order of magnitude.
Furthermore, the radiative coupling visibly increases the slope of the input/output
curve in the spontaneous emission regime.

To quantify the impact of the inter-emitter coupling, we define the cooperativity
factor

CF =
Irad. coupled QDs

Iindependent QDs
− 1, (5.4)

which is shown in Fig. 5.2(b). It gives a direct measure whether radiative coupling
enhances or inhibits photon production. In addition to the laser transition from
thermal to coherent light emission, it reveals a second transition from the subradiant
(CF < 0) to the superradiant (CF > 0) regime. CF is obtained from two separate
calculations in- and excluding the QD-QD coupling terms while keeping everything
else unchanged. The possibility to do so is an advantage of our method over multi-
emitter density-matrix approaches that compare the full system to N times a single-
emitter system [Mascarenhas et al., 2013]. The latter method amplifies the effects
of saturation and reduced absorption of the single emitter by a factor N , causing
significant deviations from the N -emitter input/output curve especially for larger
emitter numbers. This is demonstrated by the thin green line in Fig. 5.2(a) showing
the input/output characteristics of a single QD-system multiplied with the number
of QDs N . Comparing this result to the dashed red curve (calculated for N emitters
including inter-emitter coupling) would result in an overestimation of the radiative
coupling effects.

5.4 Statistical properties of the emission and effec-
tive spontaneous emission rate

In the following we demonstrate that superradiance enhances spontaneous emission
in a way that fewer emitters are required to overcome the cavity losses of a nanolaser
and to reach coherent emission. To this end, we chose slightly different parameters
than in the previous section that are given in the caption of Fig. 5.3. Panels (a)
and (b) depict input/output curve and the photon autocorrelation function g(2)(0)
with and without radiative coupling effects. In the gray area with CF < 0 (P .
10−2 ps−1), the inter-emitter coupling reduces the photon output. Microcavity lasers
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Figure 5.3: Stationary states for increasing pump rates into the QDs p-shell for
the case with (dashed red curve) and without radiative coupling effects (solid blue
curve). (a) The intensity is measured on the left y-axis in logarithmic scale and the
cooperativity factor CF is measured on the right y-axis, (b) photon autocorrelation
function (c) dipole correlation function CD (d) two-photon emission function C2P .
The gray area marks the subradiant regime where the cooperativity factor CF is
below zero. A schematic representation of both correlation functions in the sub- and
superradiant regime is shown as insets. The calculations are performed for 20 QDs
in resonance with the cavity mode. The photons have a loss rate of κ = 0.0125/ps,
the other parameters are g = 0.01/ps, γr = 0.05/ps, γpspont = γsspont = 0.005/ps (see
Appendix B.3).
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are well known to exhibit saturation effects at high excitation. This is owed to the
limited amount of gain that can be obtained from the active medium [Strauf et al.,
2006]. If saturation sets in before or during the threshold, it can prohibit lasing
or suppress the development of the full intensity jump [Gies et al., 2008]. Here,
coherent emission with g(2)(0) = 1 is only reached when collective effects enhance
the emission (red curves). Without SR coupling (blue curves), the system saturates
before coherent emission is reached. The important finding that radiative emission
enhancement reduces the number of emitters required to reach lasing is further
analyzed in Sec. 5.5.

Enhancement of photon-intensity fluctuations with superthermal bunching values
g(2)(0) > 2 are observed at low pump rates and reflect the increased probability
that two photons are emitted at the same time. Its microscopic origin is given
by synchronous dipole transitions in separate QDs α and β as described by the
expectation value 〈b†b†Eα

s E
β
s 〉, where Eα

s is defined in Eq. (5.2). To quantify the
two-photon (2P) emission probability from pairs of radiatively coupled emitters, we
use the normalized correlation function

C2P =
∑

α 6=β

〈b†b†Eα
s E

β
s 〉

〈b†Eα
s 〉〈b†E

β
s 〉
, (5.5)

shown in Fig. 5.3(d).

Figure 5.4: Contributions to the total emission rate Γem for the parameters used in
Fig. 5.3 plotted versus pump rate P . The solid (dashed) curve represent the effective
spontaneous emission rate excluding (including) radiative coupling effects. The end
of the shaded area indicates the onset of lasing, where the stimulated contribution
(dot-dashed line) changes from absorption to amplification.

More insight can be obtained by looking at the modification of spontaneous emis-
sion caused by the radiative coupling. In the commonly used rate-equation approach,
independent emitters are considered, and spontaneous emission into the laser mode
enters the dynamics via β × nex/τspont, with nex and τspont being the number of
excitations in the gain medium and the total rate of spontaneous emission, respec-
tively. In a semiconductor system, optical recombination is driven by electrons and
holes, and the assumption of independent electron- and hole populations f e,h leads
to the spontaneous recombination rate β × f efh/τspont [Chow and Koch, 1999; Gies
et al., 2007]. We explicitly calculate the degree of correlations between electrons and
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holes and the resulting spontaneous-emission contribution. With the dipole opera-
tor Dα = E†αs + Eα

s , we define the dipole correlation function [Meyer and Yeoman,
1997]

Cαβ
D =

〈DαDβ〉
〈E†αs Eα

s + E†βs E
β
s 〉

, (5.6)

where the diagonal EV 〈DαDα〉 is the spontaneous-emission contribution from QD
α. Of interest is the off-diagonal EV 〈DαDβ〉, which is the spontaneous-emission
contribution due to radiative inter-emitter coupling. In the following we use CD,
which is defined as the arithmetic mean of Cαβ

D over all QD pairs α 6= β. The
sign of CD indicates whether the dipoles of QD pairs are in phase (CD > 0) or
out of phase (CD < 0). The results in Fig. 5.3(c) show a clear transition from
out-of-phase to in-phase in the threshold region when the pumping is increased.
Comparing Fig. 5.3(a,c) we see that dipoles that are in phase (out of phase) lead
to an enhancement (suppression) of the emission into the cavity mode. An intuitive
explanation of this effect is provided in Sec. 5.7. The impact of the SR emitter
coupling can be cast into the form of an effective emission rate into the laser mode,
as it is familiar from laser theories. It consists of three contributions

Γem = Γspont + Γsr + Γstim , (5.7)

where Γspont =
∑

α〈DαDα〉/τdeph, and Γsr =
∑

β 6=α〈DαDβ〉/τdeph, see Appendix B.4.
The first two terms constitute the total rate of spontaneous emission into the laser
mode: The diagonal one is the usual contribution from independent emitters to the
spontaneous emission, and the non-diagonal sum reflects the enhancement or sup-
pression of spontaneous emission due to QD-QD correlations. For identical emitters,∑

β 6=α leads to the well-known factor N(N − 1) in the spontaneous photon produc-
tion rate [Mandel and Wolf, 1995]. The third term represents the contribution due to
stimulated emission or absorption. For the situation discussed in Fig. 5.3, the three
contributions as functions of pump rate are shown in Fig. 5.4. Sub-radiant coupling
is seen to reduce the effective spontaneous emission rate until the onset of stimu-
lated emission. Stimulated emission is reached when its contribution (dot-dashed
curve) becomes positive. Then, lasing rapidly decreases the population of excitonic
states, while excitation-induced dephasing increases with pump, thereby reducing
the spontaneous emission (see Appendix B.4). We emphasize that the sub/superra-
diant suppression/enhancement of the spontaneous emission rate is not caused by
a de/increase of exciton population, but solely by the build-up of correlations be-
tween QDs. Equation (5.7) also allows for an interpretation of the photon-less laser
in Ref. [Bohnet et al., 2012]: There, by the absence of photons, coherence is only
obtained from dipole correlations stored in the atoms. These are represented by Γsr,
which completely takes over the role of the stimulated contribution in conventional
lasers.
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Figure 5.5: Stationary states for increasing number of QDs N at a low (P = 10−4/ps
solid lines), and a high pump rate (P = 1/ps dashed lines), all other parameters are
the same as in Fig. 5.3. (a) Cooperativity factor CF , (b) dipole correlation function
CD, (c) photon autocorrelation function g(2)(0) for low pump rates ((d): high pump
rates). Compared are results for independent (blue) and radiatively coupled QDs
(red). The shaded region marks the QD numbers where lasing is only possible due
to radiative coupling effects.

99



5.5. INFLUENCE OF THE EMITTER NUMBER AND COHERENCE PER
PHOTON

5.5 Influence of the emitter number and coherence
per photon

In Fig. 5.5 we study how the influence of the coupling changes with the number of
emitters N . Values in the stationary regime of the discussed quantities are shown
for two selected pump rates. At low excitation (solid lines), out-of-phase QD-QD-
dipole alignment (CD < 0) and superthermal bunching (g(2)(0) > 2) are observed.
They are strongest for few emitters and reach the values of independent-emitter
theories in the limit of large N (c.f. panels (b) and (c)). At high excitation (dashed
lines), the impact of radiative coupling also decreases for large QD numbers, as the
system is then entirely dominated by stimulated emission.

Inter-emitter coupling effects have the most striking impact at low and interme-
diate QD numbers: In this regime, the presence or absence of SR coupling decides
whether the system can reach coherent emission or not. This important finding is
reflected in the autocorrelation function g(2)(0) at high excitation rates (panel (d)).
Without radiative coupling (blue curves), lasing is reached with N & 40 emitters in
the cavity, indicated by a mean photon number above one and g(2)(0) ≈ 1. In the
presence of radiative coupling (red curves), lasing by the same criteria is possible
with only half the emitter number N & 20. The regime, where lasing is possible only
in the presence of the collective coupling effects is shaded in orange. In fact, many
current realizations of microcavity laser systems operate in the regime of 20–100
emitters effectively coupling to the laser mode [Strauf and Jahnke, 2011].

Interestingly, in the presence of radiative coupling, the same level of coherence
expressed in g(2)(0) is achieved at a much lower mean photon number (〈b†b〉 ≈ 8
with and 〈b†b〉 ≈ 35 without radiative coupling). Thus, the creation of dipole-phase-
correlations between the emitters, associated with a positive value for CD, leads to
an increase of the “coherence per photon”, so that a lower mean photon number
suffices to reach the same level of coherence in the emission.

The influence of the cavity-mode Q factor is studied in Fig. 5.6 for a range of values
from 80,000 to 5,000. Shown are results for the high-excitation regime (P = 1/ps), in
which lasing occurs when the emitter gain can compensate the photon losses. With
increasing photon losses (decreasing Q), this requires emission from more emitters N
in the gain material and effectively shifts the lower-Q curves to higher emitter num-
bers. Of particular interest is the region, in which lasing is only reached if radiative
coupling is present. For each value of Q, this is indicated by the solid-colored bars.
The width of these regions increases at higher N , as the emission enhancement seen
in the cooperativity factor CF scales with emitter number (top panel). While at
Q=80,000, about half the number of emitters suffices to reach stimulated emission
in the presence of the discussed enhancement, at Q=10,000 it is less than a fourth.
At the same time, it is interesting to note that the strength of the dipole correlations
between pairs of emitters (CD, shown in lower panel) is largely independent of the
cavity-Q factor and is solely determined by the light-matter coupling strength. We
point out that the size of the resonator and the line width of the cavity provides a
physical limit for the number of emitters that can effectively couple to a single mode.
Nevertheless, the implications of the insensitivity of radiative coupling effects to the
Q-factor may be of interest in devices that naturally offer lower quality factors, such
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Figure 5.6: Stationary states of the cooperativity factor CF (top) and dipole cor-
relation function CD as function of emitter number. Results are obtained for high
pumping (P = 1/ps) and shown for cavities with Q-factors of 80,000, 40,000, 20,000,
10,000 and 5,000 from left to right. All other parameters are unchanged with respect
to Fig. 5.5. The Q=80,000 results (black curves) are identical to the data in the
top panels of Fig. 5.5. The solid bars indicate the interval of QD numbers N for
which coherent emission is only reached when radiative coupling between the QDs
is present (analogue to the shaded region in Fig. 5.5).

as surface plasmon lasers [Noginov et al., 2009].

5.6 Inhomogeneous broadened ensembles of quan-
tum dots

In this section we investigate the influence of inhomogeneous broadening [Bimberg
et al., 1999] on the sub/superradiant features discussed in the previous sections.
Typically the inhomogeneous broadening of InGaAS QDs has values of a few ten
electronvolts [Xie et al., 2000; Chow et al., 2015]. To get an idea of the general effect
of detuning we introduce three distributions of QDs that are sketched in Fig. 5.7 as
model examples. The laser theory described in Sec. 5.2 can still be applied with the
difference that now all EVs must be calculated separately for each QD since they can
have different values. For this reason we slightly change the parameters that are used
in the last section to bound the computational effort that grows proportional to the
number N of the QDs. We choose Q = 100, 000 and N = 15 so that a significant
difference between radiative coupled QDs and independent QDs is retained. The
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Figure 5.7: Sketch of the density of states(DOS) for the three distributions that
are used to investigate the effect of inhomogeneous broadening. ∆ is the detuning
from the cavity mode in meV. Distribution I is an ensemble with 10 QDs that are
exactly in resonance with the cavity mode and 5 QDs that have a detuning of 10
meV . Distribution II is an ensemble of 15 QDs that has a discretized shape of a
Gaussian profile with a maximal detuning of ±0.08meV. In distribution III 10 QDs
are in resonance with the cavity mode and 5 additional QDs are detuned. One QD
has a very small detuning of ∆ = 0.001meV and two other QDs have also a quite
small detuning of ∆ = 0.005meV and ∆ = −0.0051meV. Two additional QDs are
more off resonant with ∆± 0.07meV.

three distributions that are sketched in Fig. 5.7 are chosen in the following way.
Distribution I is an ensemble with 10 QDs that are exactly in resonance with the
cavity mode and 5 QDs that have a detuning of 10meV. This ensemble is used
to check weather QDs that have a big detuning can have an influence on the inter-
emitter correlation of QDs with a small detuning. Distribution II is an ensemble of 15
QDs that have a discretized shape of a Gaussian profile with a maximal detuning of
±0.08meV. With this ensemble, we try to find the limit of the detuning where QDs
can built up inter-emitter correlation. In distribution III 10 QDs are in resonance
with the cavity and 5 additional QDs are detuned. One QD has a very small detuning
to the cavity mode with ∆ = 0.001meV and two other QDs have also a quite small
detuning ∆ = 0.005meV and ∆ = −0.0051meV. Two additional QDs are more off
resonant at ∆ ± 0.07meV. With this ensemble we demonstrate a case where the
features of the sub/superradiance are partly present.

The stationary states for the three distributions are shown in Fig. 5.8. The
calculations show that the input/output curve and the photon autocorrelation of
distribution I behave as if the 5 detuned QDs would not exist. Nevertheless, its
dipole correlation is significant smaller since CD is defined as arithmetic mean of
Cαβ
D (Eq. (5.6)) over all QD pairs. We can conclude from this case that far off-

resonant QDs do not disturb the inter-emitter coupling of resonant QDs. For this
reason we can neglect them in our calculations as done in the previous sections.

Distribution II has the highest output for very low pump rates while its output
is between 10 and 15 resonantly coupled QDs for high pump rates. There are no
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Figure 5.8: Stationary states for the three different distributions of QDs shown
in Fig. 5.7 as function of the pump rate P . For a better comparison, we have
added the characteristic curves of 10 and 15 radiative coupled QDs without detuning
(solid lines). (a) Input/output curve, (b) photon autocorrelation function (c) dipole
correlation function CD of the 5 QD ensembles. The input/output curve and photon
autocorrelation of distribution I behaves exactly like the 10 resonantly coupled QDs.
The dipole correlation of distribution I is less pronounced since the 5 additionally
QDs of this distribution do not contribute to the correlation. Distribution II has
more output than the 10 resonantly coupled QDs and has a photon autocorrelation
that shows no signatures of subradiance. Surprisingly the dipole correlation has
only small values for low pump rates while at high pump rates it has a considerable
magnitude. In consequence distribution II behave like 15 independent emitters in the
subradiant regime and show some features of radiative coupling in the superradiant
regime. Distribution III shows nearly the same behavior in the input/output curve
and photon autocorrelation as the 15 radiative coupled QDs. In the subradiant
regime the dipole correlation is less expressed than in the two reference cases (blue
and red solid line) while it shows a higher correlation in the superradiant regime
than the 10 radiative coupled QDs (blue solid line).

signatures of subradiance in the photon autocorrelation. Surprisingly, the dipole
correlation has only small values for low pump rates while at high pump rates it has
a considerable magnitude. In consequence distribution II behave like 15 independent
emitters in the subradiant regime and show some features of inter-emitter coupling
in the superradiant regime. In this case neglecting the detuning of the QDs would
lead to significantly different results, in fact the independent description of resonant
QDs is closer to the results than the radiative coupled description.
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Distribution III shows nearly the same behavior in the input/output curve and
photon autocorrelation as 15 resonantly radiative coupled QDs. A qualitative change
in the dipole correlation becomes visible due to the change from the subradiant
regime to the superradiant regime if one compares it to reference cases of 10 and
15 resonantly coupled QDs. While the dipole correlations are weak in the subradi-
ant regime they become stronger than the dipole correlations of the 10 resonantly
coupled QDs in the superradiant regime.

Re
(P
AP

n)

Figure 5.9: Normalized photon-assisted polarization (PAPn) in dependence of the
detuning ∆ for three different pump rates P . In distribution I, only the 10 resonant
QDs contribute to the emission, while the other 5 QDs have negligible contributions.
Distribution II reproduces the Gaussian shape also in its contribution to the photon-
assisted polarization. It becomes visible that the relatively importance of the more
detuned QDs increases with higher pump rates which is in accordance with their
increasing dipole correlation in Fig. 5.8. Distribution III shows that for small pump
rates the two detuned QDs with ∆ = 0.005meV and ∆ = −0.0051meV have the
highest contribution to the photon-assisted polarization since they do not couple
subradiantly to the 11 QD at ∆ ≈ 0meV. With increasing pump rate these two
QDs begin also to couple superradiantly so that now the 13 QDs (∆ < 0.051meV)
in the center contribute nearly in the same way to the photon-assisted polarization.
The two further detuned QDs with ∆±0.07meV increase their relative contribution
to the photon-assisted polarization also stronger with the pump rate compared the
similar detuned QDs in distribution II.

To further analyze the contribution of each individual QD to the light field (see
Appendix B.4) we show the real part of the normalized photon-assisted polarization
Re(PAPn) in Fig.5.9 where the maximum value of the photon-assisted polarization
for each pump rate has been normalized to one. For distribution I, the impression
of the stationary states is confirmed and we see that the detuned QDs are indeed
negligible. In distribution II the shape of the photon-assisted polarization reflects
it Gaussian profile. It becomes visible that with increasing pump rate the relative
contribution of the further detuned QDs increase. This behavior can be used to
understand the increasing dipole correlation since it shows that now also the weakly
detuned QDs can built up a dipole correlation. Distribution III makes this even
clearer. Here for low pump rates only the 11 QD with ∆ ≈ 0meV couple subradiantly
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while the two more detuned QDs with ∆ = 0.005meV and ∆ = −0.0051meV do not
couple. Consequently, these two QDs have the strongest contribution to the photon-
assisted polarization. With increasing pump, rate also these two QDs seem to build
up a dipole correlation as they are now contributing equally to the light-field.

Although we have only shown three cases of inhomogeneous broadening we can
deduce some general behavior of detuned QD ensembles. First, we can neglect
far off-resonant emitters since they do not influence the inter-emitter correlations
of resonant emitters. Second, the detuning is even more critical for the buildup
of inter-emitter correlations than for their contribution to the light-field. Third,
it is more likely to find superradiant effects at higher pump rate than to observe
subradiant effects at low pump rates. Altogether a theory that includes radiative
coupling should be favored also for detuned QDs if the parameters are in a sector
where sub- and superradiance is important (see Fig. 5.5 and Fig. 5.6).

5.7 Dicke states of pairs of emitters
The origin of sub- and superradiance is often discussed in a simplified picture of
two coupled two-level systems [Dicke, 1954; Meyer and Yeoman, 1997]. The eigen-
states of the coupled system are the ground state |↓↓〉, the fully excited state |↑↑〉
and the two degenerate states |↓↑ ± ↑↓〉. The antisymmetric state is, in general,
dipole forbidden [Mandel and Wolf, 1995], on which basis one can explain the photon
bunching in the subradiant regime [Auffèves et al., 2011]. By considering EVs of the
type 〈(b†)nbmQα

ijQ
β
i′j′〉 within our formalism, we have access to occupation probabil-

ities of QD pairs, which corresponds to information contained in a reduced two-QD
density matrix. In an ensemble of many emitters, the expectation value 〈QGGQGG〉
represents the averaged probability to find QD-pairs in the ground state |↓↓〉, and
〈QXXXXQXXXX〉 in the fully excited state |↑↑〉, respectively. When the |↑↑〉 state is
likely to be occupied, not only single-photon emission is possible, but also correlated
two-photon emission via the process 〈b†b†EαEβ〉, which leads to C2P > 1. The dipole
correlation function CD contains information on whether pairs of QDs predominantly
occupy the symmetric |↓↑ + ↑↓〉 (CD > 0), or the antisymmetric |↓↑ − ↑↓〉 (CD < 0)
state. Analogous to the two-emitter case, in the antisymmetric configuration the
excitation is trapped. This is reflected in the effective spontaneous emission rate
(5.7), where negative values of CD suppress the spontaneous emission into the laser
mode. On the other hand, photon emission from the symmetric state is acceler-
ated, as positive CD enhances the emission rate into the laser mode. These two
regimes are referred to in the literature as subradiance [Auffèves et al., 2011] or
anti-superradiance [Mandel and Wolf, 1995] (CD < 0), and superradiance (CD > 0).

In contrast, on the level of independent emitters, EV between pairs of emitters
are factorized: 〈↓↑ ± ↑↓〉 → 〈↓〉〈↑〉. This results in a much simpler structure of pos-
sible processes as illustrated in Fig. 5.10. In this case, a distinction between the
discussed symmetric and antisymmetric states of QD pairs is not possible, and the
corresponding emission inhibition or enhancement due to out-of-phase (in-phase)
dipole moments is not accounted for. Neither is correlated two-photon emission
(C2P > 1) possible on the level of independent emitters, which results in the van-
ishing superthermal photon bunching with g(2)(0) > 2.
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Figure 5.10: Illustration of the population and depopulation processes for the re-
duced two-QD density matrices. We compare the case of the product states of in-
dividual emitters, which is obtained when QD-QD correlations are factorized (left),
to the case of radiatively coupled emitters (right). The solid red lines indicate the
coherent photon emission into the cavity b†. Dotted gray lines indicate the effective
incoherent pump P resulting from the electron-hole capture in the p-shell and the
various relaxation and scattering processes.

Neumeier [2016] demonstrated in his master thesis that it is possible to transfer
this illustrative explanation to rate equations. The obtained results show the basic
features of sub- and superradiance and allow for a justification of our simplified
picture.

5.8 Chapter conclusion

Current quantum-dot nanocavity devices challenge our understanding of lasers. The
small mode volume sets a limit for the number of emitters that can effectively cou-
ple to a single cavity mode. Micropillar devices operate with about 20–200 emitters
[Lermer et al., 2013], and even less in photonic-crystal resonators [Strauf and Jahnke,
2011]. In this extreme regime, cQED effects are known to enhance correlations and
to alter the nature of the emitted light [Nomura et al., 2010; Wiersig et al., 2009].
In a range of Q values typical for current microcavity lasers, we predict correlations
between the emitters to influence the output characteristics of cw-driven lasers signif-
icantly: In the presence of collective effects, coherent emission is reached with fewer
emitters and at lower mean photon numbers. The increased “coherence per photon”
reflects the presence of dipole correlations in the gain medium. At low excitation,
sub-radiant suppression of emission increases the jump in the input/output curve
that is typically associated with the β-factor. Theories that neglect radiative emitter
coupling may underestimate the β-factor by an order of magnitude. These findings
can explain the efficiency in photon production of current few-emitter nanolasers,
which is often better than predicted from conventional laser models, and stimulate
further experimental effort to identify the role of sub- and superradiance in these
systems, e.g. by investigating the laser dynamics with respect to collective lifetime
changes in the emission, or by high time-resolution measurements of the emission
statistics to reveal superthermal photon bunching. Strong collective effects are also
expected under pulsed excitation, which will be the topic of future work.

Our results are obtained from a laser theory that includes radiative inter-emitter
coupling and photon correlations to obtain g(2)(0). The underlying configuration
cluster-expansion is based on the factorization of higher-order expectation values
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of electronic configuration and photon operators and allows for the description of
systems with many of degrees of freedom. This is well suited to model the coupling
of the multi-exciton states of several hundred solid-state emitters to a cavity mode in
the present work. The method may also prove useful to describe collective effects in
cold atomic gases, for which lifetime changes due to sub- and superradiant coupling
have been reported [Bienaimé et al., 2013; Pellegrino et al., 2014], in the context of
random lasers with many photonic modes [Wiersma, 2008], or in the description of
collective effects in coupled microcavity arrays [Ruiz-Rivas et al., 2014].
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Chapter 6

Final Conclusions

To conclude this thesis we split this chapter into three paragraphs: Advances in the-
ory, Advances in physics, and Outlook and future prospects. The chapter structure
in this thesis follows a logical order: at the beginning, we build up the theoreti-
cal foundations, and then we are investigate the properties of realistic quantum-dot
microcavity lasers. The paragraph Advances in theory follows the chronological
traces of the development so the reader can understand the motivations of the de-
velopment process. Then the paragraph Advances in physics stresses the important
physical results according to the chapter structure. In the last paragraph, we discuss
interesting follow-up projects that can be investigated based on this work.

Advances in theory In this part of the conclusion we address the advances of
the used theory and methods in the order of their chronological development so that
the reader can understand in detail which improvements have been made.

The work on this thesis started with the project on bimodal lasers. From the be-
ginning, we worked closely together with the experimental physics group of Prof. Re-
itzenstein at the TU Berlin where interesting features in experiments with bimodal
quantum-dot microcavity lasers had been observed. To explain the experimental
results we developed a bimodal laser theory (first part of chapter 4) that is an ex-
tension to the laser theory for a single-mode laser [Gies et al., 2007]. This theory
could explain most features like mode competition and superthermal values of the
autocorrelation function. Already at this level the theory contained 80 equations of
motion, and it was helpful to use the computer in order to avoid mistakes. For this
reason, we developed a previous version of the computer-aided cluster expansion
(chapter 3). The work on this project made clear that formulating the equations in
terms of correlation functions as Gies et al. [2007] was by no means simple and not
well suited to be generalized. Additionally, to these problems, the usage of heuristic
scattering/damping was problematic since they are known case false results when
used inconsistently [Florian et al., 2013b].

The experience of this first project led to the development of the expectation value
based cluster expansion in chapter 2. First, we proved that that the formulation
of equations of motion in terms of expectation values is equivalent to the former
formulation in terms of correlation functions. This is demonstratively shown in
chapter 2 where we used the expectation value based cluster expansion to calculate
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the autocorrelation function for a quantum-dot laser up to order 5 which is similar
to the results with the correlation function [Foerster, 2012]. The advantage of this
theory is a reduced algebraic effort and a much clearer presentation of the equations.
Although all equations are nonlinear if we use the formulations in terms of correlation
functions, the formulations in terms of expectation values are nonlinear for only the
equations where we have applied an approximation. This advantage makes it easier
to check the equations manually and more likely to be numerical stable. The study of
various Hamiltonian systems also allowed us to understand the pitfalls of the cluster
expansion approach. The truncation of finite systems as well as the treatment of
mixed Hilbert spaces had been made possible within this formulation.

The next step was to implement the expectation value based cluster expansion
in the computer program. With this theory it became easier to investigate the
multi-time correlation functions which was used in the second part of chapter 4. As
the main result, we could reproduce and explain the experimental spectra observed
by the group of Prof. Reitzenstein. The mode coupling, which is mediated by the
quantum dots is responsible for the occurrence of a second peak in the polarization
resolved experiments. Without our theoretical background this was first suspected
to be crosstalk between the two polarization directions, which we could disprove
with our theory. By using the lowest order of approximation of our theory, we could
show a formal equivalence to strong coupling and introduce unconventional normal-
mode coupling. This 2x2 matrix formulation opened a new perspective on bimodal
lasers and the connection between linewidth and mode splitting.

Still, this theory was using the heuristic damping terms that were introduced by
Gies et al. [2007]. We resolved this problem in chapter 5 where we started to com-
pletely redesign the theoretical description of the quantum-dot model. Considering
a single quantum dot as a closed entity described by a finite set of configurations
we could built the configuration based cluster expansion, as extension of the ex-
pectation value based cluster expansion. Finally, using the Lindblad formulation to
describe the scattering in a general valid form, this theory allowed us to switch the
super-/ subradiantly coupling on and off. By taking the inter-emitter correlations
into account or neglecting them, we were able to investigate the emergence of sub-
and superradiance in nanolasers. We studied the effects of inter-emitter coupling on
continuously driven lasers in chapter 5. In a separate project we also studied the
effects of sub- and superradiance on quantum-dot nanolasers with pulsed excitation
[Pistorius, 2015; Jahnke et al., 2016]. The advantage here was the direct access to
experiments from the group of Prof. Bayer at the TU Dortmund that showed giant
photon bunching and superradiant pulse emission. With our presented theory, we
could reproduce and explain the experimental results which would have been im-
possible with the previous theory. This development led to the final stage of our
program presented in chapter 3.

Advances in physics This part of the conclusion focuses on the physical results,
while the underlying methodological advances of the theory were discussed in the
previous paragraph.

As part of the investigation on high-β single-mode lasers we have extensively
discussed the concept of the laser threshold in chapter 2 and in chapter 3. We can
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conclude that neither having more than one photon in the cavity nor the inversion
point nor a single value of the photon autocorrelation function g(n)(0) is adequate to
define a strict lasing threshold. Instead our calculations on this subject suggest to
treat the laser threshold as a parameter area rather than to define a single threshold
value that is arbitrary.

Related to the laser threshold is the way to determine the β-factor from the
intensity jump as suggested by the results of the laser rate equations [Rice and
Carmichael, 1994]. This widely used method takes the jump height of the input-
output curve as a direct measure of the β-factor. Our calculations, by contrast,
have shown that a change in the theoretical model always leads to different inten-
sity jumps. We have observed this for the direct dephasing (chapter 3), a second
mode (chapter 4), or the inclusion of inter-emitter correlations (chapter 5). Conse-
quently these jumps can only be regarded as a rough estimate for the β-factor in
an experiment. Our calculations within the framework of the configuration based
cluster expansion in chapter 5 revealed that a more detailed description proves the
total emission rate into the laser mode to be pump dependent (Appendix B.4). All
in all, one should not estimate a certain β-factor based on input-output character-
istics only. Instead, a carefully adapted theory should be the basis of a realistic
description of the laser threshold.

The most convenient way to represent the behavior of the modes in a bimodal
laser is shown in Fig. 4.7. The interaction of the two cavity modes of a passive
microcavity with a mesoscopic number of quantum emitters induces unconventional
coupling between these modes in the lasing regime. If the difference between the
modes is adequately high, features like mode competition in the input-output char-
acteristics, enhanced autocorrelation functions of the competition losing mode, and
a pronounced anti-correlation become visible. For sufficiently large spectral split-
ting between the cavity modes, the incoherent coupling between the modes leads
to a mixing of the cavity mode frequencies in the emission spectrum. These results
motivated the study of direct dissipative coupling between the laser modes [Fanaei
et al., 2016] which found results similar to those in chapter 4. These results can be
regarded as a justification of our much simpler master equation approach where we
described the observed effects by an effective direct mode coupling [Leymann et al.,
2013c] and were able calculate the full photon statistics of the bimodal laser.

The theory in chapter 5 made it possible to study the influence of sub- and su-
perradiant coupling of the quantum dots for realistic devices. We were able to find
situations where the inter-emitter coupling plays a critical role to reach the lasing
regime. In these cases, macroscopic dipole-dipole correlations build up and modify
the spontaneous emission rate significantly. We also investigated the limit when
inter-emitter coupling becomes negligible. Namely the limit of many quantum dots
and the case of large inhomogeneous broadening. Despite the discussed limitations
our theory is supported by an experiment where we could show the super-/ subradi-
ant features for a pulse-excited quantum-dot laser [Jahnke et al., 2016]. Additionally
we introduced a simplified explanation based on Dicke states that could easily be
transformed into a master equation approach [Neumeier, 2016].
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Outlook and future prospects The directions of future research is hard to
predict and is influenced by many factors. In this paragraph, we list the most
obvious extensions of the presented work and some additional promising ideas.

The investigations on bimodal lasers have led to two new questions: (i) On the
one hand the unconventional coherent coupling studies indicated a regime change
in dependence from coupling strength and the detuning (Fig. 4.8). Currently there
is no experimental evidence that shows these features and studies their impact on
the laser properties. (ii) On the other hand, it has recently been found out that
there is a close connection between multi-mode lasers and the physics of equilibrium
Bose-Einstein condensation [Leymann et al., 2016]. This new insight allows for the
question of whether these previously separated research topics can mutually benefit.

The study of super-/ subradiant coupling showed that already the lowest order
of inter-emitter coupling can reproduce the experimentally observed features. Natu-
rally an analysis of higher order coupling is necessary to gain a deeper understanding
of those features. In addition a more detailed analysis of inhomogeneous broadening
that is always present in quantum-dot lasers could provide a clear measure when
super-/ subradiant coupling is important for a specific experiment. Moreover, the
fluctuations in subradiant regime can be studied better with above mentioned mas-
ter equation for superradiance that allows for the calculation of the full photon
statistics.

Recently it has been shown that the complete photon statistics can be experi-
mentally determined with a transition edge sensor [Schlottmann et al., 2016]. This
technology now enables us to compare our calculations of the full photon statistics to
experimental results without the direct measurement of g(2)(0) . The specific shape
of the two-photon statistics which have been predicted with our master equation
approach [Leymann et al., 2013c] can be validated in the near future.

The general formalism of how to calculate the second order coherence function
has been presented in chapter 2. This formalism can be used to easily calculate
the autocorrelation function g(2)(τ) within our theory. It can be anticipated that
this theory can be generalized for calculating higher-order coherence functions which
have not been examined for this system till the present day.

We also suggest to extend the usage of the master equation approach, as dis-
cussed for bimodal lasers and super-/ subradiant lasers. This approach could be
used to verify explanation attempts or even hand weaving explanations of physical
circumstances that could be comprehended in a simple picture like Fig. 5.10.

Finally, we would like to highlight the computer-aided cluster expansion. The
field of application is certainly much wider than our investigations on quantum-dot
lasers have demonstrated and modifications to our open source software [Foerster
et al., 2016] can easily be made.
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Appendix A

Equations of motion for the
microscopic bimodal laser model

In this appendix, we provide supplementary material to the second section of chapter
4. We present the equations of motion that together with Eqs. (4.2), (4.3), (4.5),
(4.6) and (4.7) complete the full set of equations of motion for one-time correlation
functions on the quadruplet level of the cluster expansion:

d

dt
δ(c†jvjbξ) = i(∆ξj + iκξ + iΓ)δ(c†jvjbξ) + gξjδ(c

†
jcj)(1− δ(v

†
jvj))

+
∑

ζ

[
gζjδ(b

†
ζbξ)(δ(c

†
jcj)− δ(v

†
jvj)) +gζjδ(c

†
jcjb

†
ζbξ)− gζjδ(v

†
jvjb

†
ζbξ)
]

(A.1)

d

dt
δ(v†svs) =

(∑

ξ

gξjδ(c
†
svsbξ) + H.c.

)

− δ(v†p, vp)(1− δ(v†s, vs))τ−1v + δ(c†scs)(1− δ(v†svs))τ−1nl (A.2)

d

dt
δ(v†pvp) = −P (δ(v†pvp)−δ(c†pcp))+δ(v†p, vp)(1−δ(v†s, vs))τ−1v +δ(c†pcp)(1−δ(v†pvp))τ−1sp

(A.3)

d

dt
δ(c†jcjb

†
ξbζ) = −(κξ + κζ)δ(c

†
jcjb

†
ξbζ)− gξjδ(c

†
jcj)δ(c

†
jvjbζ)− gζjδ(c

†
jcj)δ(v

†
jcjb

†
ξ)

−
∑

ξ′

gξ′j

(
δ(c†jvjb

†
ξbξ′bζ)− δ(c

†
jvjbζ)δ(b

†
ξbξ′) −δ(v

†
jcjb

†
ξ′b
†
ξbζ)− δ(v

†
jcjb

†
ξ)δ(b

†
ξ′bζ)

)

(A.4)

d

dt
δ(v†jvjb

†
ξbζ) = −(κξ + κζ)δ(v

†
jvjb

†
ξbζ)

+
∑

ξ′

[
gξ′jδ(c

†
jvjb

†
ξbξ′bζ) + gξ′jδ(c

†
jvjbζ)(1− δ(v

†
jvj) + δ(b†ξbξ′))

+gξ′jδ(v
†
jcjb

†
ξ′b
†
ξbζ) + gξ′jδ(v

†
jcjb

†
ξ)(1− δ(v

†
jvj) + δ(b†ξ′bζ))

]
(A.5)
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d

dt
δ(c†jvjb

†
ξbζbξ′) = i[∆ξ′j + ∆ζj −∆ξj + i(κξ + κζ + κξ′) + iΓ]δ(c†jvjb

†
ξbζbξ′)

− gξ′jδ(c†jcj)(δ(v
†
jvjb

†
ξbζ)− δ(v

†
jvjb

†
ξbξ′) + δ(b†ζ′b

†
ξbζbξ′))

+
∑

ζ′

[
gζ′jδ(c

†
jcjb

†
ξbζ)(1− δ(v

†
jvj) + δ(b†ζ′bξ′)) + gζ′jδ(c

†
jcjb

†
ξbξ′)(1− δ(v

†
jvj)− δ(b

†
ζ′bζ))

− 2gζ′jδ(c
†
jvjbζ)δ(c

†
jvjbξ′)− gζ′jδ(v

†
jvj)δ(b

†
ζ′jb
†
ξbζbξ′)

−gζ′jδ(v†jvjb
†
ξbζ)δ(b

†
ζ′bξ′)− gζ′jδ(v

†
jvjb

†
ξbξ′)δ(b

†
ζ′bζ)

]
(A.6)

d

dt
δ(v†jcjb

†
ξb
†
ζbξ′) = i[−∆ξj −∆ζj + ∆ξ′j + i(κξ + κζ + κξ′) + iΓ]δ(v†jcjb

†
ξb
†
ζbξ′)

− gjδ(c†jcj)(δ(v
†
jvjb

†
ξbξ′)− δ(v

†
jvjb

†
ζbξ′) + δ(b†ξb

†
ζbnbξ′))

+
∑

ζ′

[
gζ′jδ(c

†
jcjb

†
ξbξ′)(1− δ(v

†
jvj) + δ(b†ζbζ′)) + gζ′jδ(c

†
jcjb

†
ζbξ′)(1− δ(v

†
jvj) + δ(b†ξbζ′))

− 2gζ′jδ(v
†
jcjb

†
ξ)δ(v

†
jcjb

†
ζ)− gζ′jδ(v

†
jvj)δ(b

†
ξb
†
ζbζ′bξ′)

−gζ′jδ(v†jvjb
†
ξbξ′)δ(b

†
ζbζ′)− gζ′jδ(v

†
jvjb

†
ζbξ′)δ(b

†
ξbζ′)

]
(A.7)
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Appendix B

Details of the laser theory
formulated in configuration operators

In this appendix, we provide supplementary material to chapter 5.

B.1 Configuration operators
The confinement of electrons and holes in a QD in all three spatial dimensions leads
to states with discrete energies. Because of the finite height of the confinement
potential, a QD can provide only a limited number of electronic single-particle states.
Distributing carriers in these states results in electronic configurations as shown in
Fig. 5.1. The corresponding many-particle Hilbert space vectors |i〉 define the basis
states of our QD model. For simplicity, we restrict ourselves to charge neutral states
within one spin system, which couples to one circular polarization of the light field.
A generalization to charged multi-exciton states or to QDs with a different level
structure is possible without changing the fundamental aspects of this formulation.
The electronic state of all carriers confined in multiple QDs is described by the
tensor product of all single QD states:

|ψ〉 = |i〉1|j〉2 · · · |k〉α · · · |l〉N , (B.1)

where |k〉α denotes QD α to be in configuration k. We assume that the QDs are
spatially well separated. Therefore, the carriers confined in different QDs can be
treated as distinguishable particles and we do not have to antisymmetrize the vector
|ψ〉. In fact, the position of the configuration state |k〉α in the tensor product is
irrelevant since the index α always denotes a specific QD

|i〉1 · · · |j〉α|k〉β · · · |l〉N = |i〉1 · · · |k〉β|j〉α · · · |l〉N . (B.2)

We define the QD configuration operators

Qα
ij = |i〉α〈j|α (B.3)

mapping the configuration j of QD α to the configuration i of the same QD. The al-
gebraic properties of the configuration operators follow from the fact that all configu-
ration states of the same QD are orthonormal, 〈iα|jα〉 = δij, and can be summarized
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B.2. EQUATION OF MOTION HIERARCHY

by the commutation relation

[Qα
ij, Q

β
kl] = (Qα

ilδj,k −Qα
kjδl,i)δα,β. (B.4)

To illustrate our approach and to connect it to former theories we give a few ex-
amples on how one can construct single-particle operators in second quantization
with the configuration operators Qα

ij for the model QD illustrated in Fig. 5.1. In
the following c

(†)α
s annihilates (creates) a conduction-band carrier in the single-

particle s-state of QD α and v
(†)β
p annihilates (creates) a valence-band carrier in

the single-particle p-state of QD β. Contributions from all configurations contain-
ing an (un)occupied single-particle state must be summed up to represent the cor-
responding single-particle operator. For example, the number operator of p-shell
conduction-band electrons in QD α is given by c†αp cαp = Qα

0p0p +Qα
XpXp

+Qα
XX,XX .

The annihilation of an s-shell electron-hole pair in QD β can be constructed by
v†βs c

β
s = Eβ

s = Qβ
GXs

+Qβ
XpXX

. The total number of electrons in the valence band in
QD γ is given by

∑
i v
†γ
i v

γ
i = 2Qγ

GG +Qγ
XsXs

+Qγ
0p0p +Qγ

0s0s +Qγ
XpXp

.

B.2 Equation of motion hierarchy

In this section we illustrate how the dipole Hamiltonian creates two hierarchies in
the equations of motion (EoM) 〈Ȧ〉 = i〈[H,A]〉/~ for the photon- and QD-operator
EVs. In the second half of this section we explain the technique we use to truncate
this hierarchy. In terms of the configuration operators, the dipole Hamiltonian has
the form

HD = −i
N∑

γ

g̃γb
†(Qγ

G,Xs
+Qγ

Xp,XX
) + H.c., (B.5)

where b(†) is the photon annihilation (creation) operator of the laser mode, N is the
number of QDs, and g̃α = ~gα is the scaled light-matter interaction strength. The
dipole Hamiltonian couples the photon operators of a single mode to N different
QD-operators. To illustrate the structure of the hierarchies created by the dipole
Hamiltonian, we first consider the time derivative of the occupation probability of
the s-exciton configuration in QD α

d

dt

∣∣∣∣
HD

〈Qα
XsXs〉 = −2gαRe〈b†Qα

GXs〉, (B.6)

that couples to the photon-assisted polarization of the ground-state- to s-exciton-
transition. This polarization is an EV with one additional photon operator. The
EoM for the photon-assisted polarization

d

dt

∣∣∣∣
HD

〈b†Qα
GXs〉 = gα〈Qα

XsXs〉+
∑

γ 6=α
gγ〈Qα

GXs(Q
γ
XsG

+Qγ
XX,Xp

)〉

+gα〈b†b(Qα
XsXs −Q

α
GG)〉
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APPENDIX B. DETAILS OF THE LASER THEORY FORMULATED IN
CONFIGURATION OPERATORS

couples to EVs describing correlations between different QDs (second term) and to
EVs describing correlations between the electronic configurations of the given QD
and the cavity photons (third term). The two higher-order terms that occur here
have one additional QD operator and one additional photon operator, giving rise to
the mentioned hierarchies.

For the rest of this section, to make the considerations more transparent, we omit
all configuration indices and prefactors and the information whether the considered
photon operators create or annihilate photons. The following equations should be
seen as illustrations of the hierarchy structure, that can be explored best by consid-
ering the time derivative of a general EV 〈b(†)nQα . . . Qω〉 containing a product of n
photon operators and m QD operators addressing the QDs α to ω:

d

dt

∣∣∣∣
HD

〈b(†)nQα . . . Qω〉 = 〈[HD, b
(†)n]Qα . . . Qω〉

+〈b(†)n[HD, Q
α] . . . Qω〉+ · · ·+ 〈b(†)nQα . . . [HD, Q

ω]〉.

We can evaluate this expression with [HD, b
(†)n] = b(†)n−1

∑
γ Q

γ and
[HD, Q

α] = b(†)Qα. By omitting all details and possible lower-order terms we obtain

d

dt

∣∣∣∣
HD

〈b(†)nQα . . . Qω〉 =
∑

γ 6={α...ω}
〈b(†)n−1Qα . . . QωQγ〉

+〈b(†)n+1Qα . . . Qω〉.

In the first term on the right-hand side we can clearly see the emergence of QD-QD
correlations that are induced by the interaction of different QDs with a common
radiation field. These terms are not included in laser theories that do not ac-
count for inter-emitter coupling effects. The second term describes the coupling
to higher-order photon correlations. It provides access to the next rung in the
Jaynes-Cummings ladder. We see that the dipole Hamiltonian creates two different
hierarchies. An EV with n photon operators and m QDs operator couples to EVs
with one additional QD operator and one additional photon operator:

d

dt

∣∣∣∣
HD

〈b(†)nQ . . . Q︸ ︷︷ ︸
m

〉 = 〈b(†)n−1Q . . . Q︸ ︷︷ ︸
m+1

〉+ 〈b(†)n+1Q . . . Q︸ ︷︷ ︸
m

〉.

The first hierarchy only terminates exactly i) at the order m = N , where N is the
number of QDs. Including the EV 〈bnQ . . . Q︸ ︷︷ ︸

N

〉 i.e. all QD N operators of the system

(∆Q〈N〉 in terms of the truncation operator from chapter 2). The second hierarchy
only terminates exactly if ii) the photonic state of the system can be represented
by a finite linear combination of Fock states. We need approximations to truncate
the hierarchies consistently and at a computable level. Being interested in systems
where up to several hundred QDs take part in the dynamics, it is impossible to match
condition i) numerically. Condition ii) cannot be fulfilled because we are studying
laser systems, whose coherent states cannot be represented by a small number of
Fock states.
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We introduce a variant of the well-established cluster expansion (see chapter 2)
which we refer to as the configuration cluster expansion (CCE). The main differ-
ences of our formulation to the traditional cluster expansion [Kira et al., 1998] are
that a) we formulate our theory in EVs instead of correlation functions (see chapter
2) and, more importantly, b) the electronic state of the QDs is described by the
configuration operators Qα

ij instead of single-particle creation (annihilation) opera-
tors. The configuration operators are considered as the elementary constituents of
our theory and therefore the factorization of EVs is done in terms of the configura-
tion operators. This method reduces the algebraic effort to a minimum and ensures
that all many-particle states of the confined QD carriers are treated without further
approximation.

In our system the two-particle nature of the dipole Hamiltonian is the source
of higher-order correlations and the hierarchies in the EoM must be truncated ac-
cording to the structure of the dipole Hamiltonian (see chapter 2). As we have
shown, the dipole Hamiltonian couples a single-mode photon operator to all QD
operators and hereby creates two hierarchies, one in the photonic and one in the
electronic part of the part of the Hilbert space. To truncate the hierarchies all EVs
containing a total number of operators (b(†) and Q) larger than the desired order are
factorized (∆Q+Bδ(4) ). The factorization of the EV is accomplished by neglecting the
corresponding correlation function according to the cluster expansion (see chapter
2). The intensity I = 〈b†b〉 is of second order. The photon autocorrelation func-
tion at zero delay time G(2)(0) = 〈b†b†bb〉 and the correlated two-photon emission
function 〈b†b†EαEβ〉 are both of fourth order. The fourth order of the CCE used
in this chapter provides information about the photon statistics g(2)(0) Eq. (1.42).
Additionally we introduce a truncation that addresses the QD-QD correlations. We
use two variants of the theory: one with and one without inter-emitter correlations.
To systematically neglect QD-QD correlations we factorize all EVs addressing two
different QDs according to

〈Qα
ijQ

β
kl〉 ≈ 〈Q

α
ij〉〈Q

β
kl〉, (B.7)

which corresponds to a mean-field approximation1 and the assumption of individual
emitters (∆Qδ(1)). To take radiation-induced QD-QD correlations into account we
have to include EVs of the form 〈Qα

ijQ
β
kl〉. At this level, three-QD EVs are factorized

according to

〈Qα
ijQ

β
klQ

γ
mn〉 ≈ 〈Qα

ijQ
β
kl〉〈Q

γ
mn〉+ 〈Qα

ij〉〈Q
β
klQ

γ
mn〉

+〈Qβ
kl〉〈Q

α
ijQ

γ
mn〉 − 2〈Qα

ij〉〈Q
β
kl〉〈Q

γ
mn〉, (B.8)

which corresponds to the application of ∆Qδ(2) and is formally equivalent to the Bo-
goliubov back-reaction method mentioned in chapter 2. In this way, our theory
enables us to directly switch the QD-QD correlation effects on and off and to com-
pare our approach to laser theories, in which QD-QD correlations are not contained,
e.g. Refs. [Gies et al., 2007; Wiersig et al., 2009; Rice and Carmichael, 1994].

1Since we are using configuration operators that automatically treat all carriers confined to a
QD exactly this mean-field means that the confined carriers in a QD are in the mean-field of all
other carriers in the other QDs
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B.3 Coupling to the continuum states
In this section we discuss the influence of the continuum states that arise from the
interaction of QD carriers with carriers in the wetting-layer and barrier states, as
well as the out-coupling of photons from the cavity. These environment states are
not represented by configuration and photon operators but by the Lindblad form

d

dt

∣∣∣∣
Lindblad

〈A〉 =
∑

i

γηi〈[η
†
i , A]ηi + η†i [A, ηi]〉

in the general EoM. First, we enlist the various microscopic processes generated by
the operators ηi that are triggered by the coupling of the confined-state carriers
to the continuum states. Then we give explicit examples for the resulting terms
in the EoM, showing that the process ηi transfers occupation probability from one
configuration to another while dephasing the corresponding polarization.

The microscopic processes in QD α are the following: electron-hole capture in
the QD p-shell with rate Pα (pump) generated by ηαP,1 = Qα

XpG
and ηαP,2 = Qα

XX,Xs
,

carrier relaxation from the p-shell to the s-shell in the conduction band generated
by ηαr,c,1 = Qα

Xs0p
and ηαr,c,2 = Qα

0sXp
, carrier relaxation from the s-shell to the p-

shell in the valence band generated by ηαr,v,1 = Qα
Xs0s

and ηαr,v,2 = Qα
0pXp

with the
rates γαr,{c,v} respectively, spontaneous losses of electron hole pairs in the p-shell
generated by ηα,pspont,1 = Qα

GXp
and ηα,pspont,2 = Qα

XsXX
, and in the s-shell generated by

ηα,sspont,1 = Qα
GXs

and ηα,sspont,2 = Qα
XpXX

with the rates γα,{s,p}spont and the cavity-photon
losses ηph = b with the loss rate κ.

As a first example we discuss the impact of spontaneous electron-hole recombi-
nation in the s-shell on the s-exciton configuration

d

dt

∣∣∣∣
ηαspont,s

〈Qα
XsXs〉 = −2γα,sspont〈Qα

XsXs〉, (B.9)

the ground-state configuration

d

dt

∣∣∣∣
ηαspont,s

〈Qα
GG〉 = +2γα,sspont〈Qα

XsXs〉, (B.10)

and the photon-assisted polarization between the ground- and s-exciton state

d

dt

∣∣∣∣
ηαspont,s

〈b†Qα
GXs〉 = −γα,sspont〈b†Qα

GXs〉. (B.11)

The process generates a direct transfer of population from the s-exciton to the ground
state and dephases the polarization between these states. Note that no additional
terms are needed to take account for Pauli-blocking. As a second example, we
discuss the impact of carrier relaxation in QD α from the s-shell to the p-shell in
the valence band on the correlation between the p-exciton configuration of QD α
and the ground-state configuration of QD β

d

dt

∣∣∣∣
ηαr,v

〈Qα
XpXpQ

β
GG〉 = −2γαr,v〈Qα

XpXpQ
β
GG〉, (B.12)
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the correlation between the dark p-shell configuration of QD α and the ground-state
configuration of QD β

d

dt

∣∣∣∣
ηαr,v

〈Qα
0p0pQ

β
GG〉 = +2γαr,v〈Qα

XpXpQ
β
GG〉, (B.13)

and on the correlation between the photon-assisted polarization of the p-exciton con-
figuration and biexciton configuration in QD α and the ground-state configuration
of QD β

d

dt

∣∣∣∣
ηαr,v

〈b†Qα
XpXXQ

β
GG〉 = −γαr,v〈b†Qα

XpXXQ
β
GG〉. (B.14)

As in the example before, the microscopic process generates a direct transfer of pop-
ulation from one configuration to the other and dephases a polarization connected
to the initial state. In this example, all occupations and processes in QD α are
correlated with an occupation in QD β. However, since the microscopic process ηαr,v
takes place in QD α it has no influence on a possible correlation with QD β.

B.4 Total emission rate into the laser mode
The total emission rate into the laser mode, Γem, can be obtained from the EoM for
the mean photon number

d

dt
〈b†b〉 =− 2κ〈b†b〉+ 2

∑

α

gαRe(〈b†Qα
GXs〉+ 〈b†Qα

XpXX〉)

=− 2κ〈b†b〉+ Γem . (B.15)

To simplify the discussion in the main text, an approximate expression of Γem has
been used there. This facilitates a comparison to laser theories that consider only one
bright configuration, i.e. [Rice and Carmichael, 1994]. In the following, we derive
the exact expression that is used to compute the curves in Fig. 5.4. To this end
we solve the EoM for the photon-assisted polarization adiabatically and insert the
solution into Eq. (B.15). The adiabatic solution for the photon-assisted polarization
of the s-exciton and biexciton can be written as

〈b†Qα
GXs〉 = gτXDeph

∑

β 6=α
〈Qα

GXs(Q
β
XsG

+Qβ
XX,Xp

)〉

+gτXDeph

(
〈b†b(Qα

XsXs −Q
α
GG)〉+ 〈Qα

XsXs〉
)
, (B.16)

〈b†Qα
Xp,XX〉 = gτXXDeph

∑

β 6=α
〈Qα

Xp,XX(Qβ
XsG

+Qβ
XX,Xp

)〉

+gτXXDeph

(
〈b†b(Qα

XX,XX −Qα
XpXp)〉+ 〈Qα

XX,XX〉
)

(B.17)

respectively, with the exciton and biexciton dephasing times

τXDeph =
1

κ+ γspont + 2P
,
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and

τXXDeph =
1

κ+ 2γr + 3γspont
.

For the sake of simplicity of our discussion, we choose the light-matter interaction
gα = g, and relaxation and spontaneous loss rates γα,{s,p}spont = γspont, γαr,{s,p} = γr to
be equal for all QDs. Comparison to Eq. (B.15) leads to an expression of the total
emission rate in terms of the right-hand side of Eqs. (B.16) and (B.17)

Γem = 2g2τXDeph

∑

β 6=α
〈Qα

GXs(Q
β
XsG

+Qβ
XX,Xp

)〉

+ 2g2τXDeph

∑

α

〈b†b(Qα
XsXs −Q

α
GG)〉+ 2g2τXDeph

∑

α

〈Qα
XsXs〉

+ 2g2τXXDeph

∑

β 6=α
〈Qα

Xp,XX(Qβ
XsG

+Qβ
XX,Xp

)〉

+ 2g2τXXDeph

∑

α

〈b†b(Qα
XX,XX −Qα

XpXp)〉+ 2g2τXXDeph

∑

α

〈Qα
XX,XX〉 . (B.18)

To connect our results to theories that consider only one bright configuration, the
assumption of equal dephasing of the bright configurations allows the definition of
a common dephasing rate

τ−1Deph ≈ 2g2τXDeph ≈ 2g2τXXDeph .

Rewriting Eq. (B.18) in terms of the dipole operator Dα = E†αs + Eα
s we obtain the

simple form of Eq. (5.7) for the total emission rate used in the main text:

Γem =

∑
α〈DαDα〉
τDeph

+

∑
β 6=α〈DαDβ〉
τDeph

+
〈b†bInv〉
τDeph

= Γspont + Γsr + Γstim

with the total inversion operator defined as

Inv =
∑

α

(Qα
XX,XX −Qα

XpXp +Qα
XsXs −Q

α
GG) .

Note that in all numerical calculations, the correct dephasing rates are used.
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Appendix C

Factorization with fermion
anticommutation relations

The following lines of code are an exemplary implementation of fermionic anticom-
mutation relations in the CE [Fricke, 1996b]. The introduction of this additional
procedure is necessary because distrib_(type,n,f1,f2,x1,...,xm) does not respect the
sign change when two fermi operators are swapped. Therefore, our exemplary code
should be added in line 14 in the factorization and refactorization in Sec. 3.4.4 when
fermi creation and annihilation operators are used. The fermi operators [c],[c+]

and the non commutative auxiliary function SIG have to be declared as new func-
tions in the header of the main file function [c],[c+],SIG; . The sign of the factor-
ized/refactorized EV or CF is determined inside the function SIG with the usage of
anticommutation relations.

1 id L=L*SIG;
2
3 repeat;
4 id SIG(?a)*’ff’(?b)=SIG(?a,?b)*’f’(?b);
5 endrepeat;
6
7 #call commatoproduct(SIG,SIG)
8
9 argument SIG;
10
11 repeat;
12 id [c](?j)*[b+]?bose(?i)=[b+](?i)*[c](?j);
13 id [c+](?j)*[b+]?bose(?i)=[b+](?i)*[c+](?j);
14 endrepeat;
15
16 repeat;
17 id disorder [c+](?i)*[c+](?j)=-[c+](?j)*[c+](?i);
18 id disorder [c](?i)*[c](?j)=-[c](?j)*[c](?i);
19 endrepeat;
20
21 id [c]?(?a)=1;
22 endargument;
23
24 id SIG(1)=1;
25 id SIG(-1)=-1;
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We introduce the sign keeping function and copy all the information of the func-
tion ’ff’ ( CF or EV ) into the functions SIG and ’f’ ( cf or ev ). The following
operations are only executed in the function SIG . Basically we are establishing the
standard order inside this function and replace afterwards all operators inside the
function by 1. The lines 16 to 19 are the anticommutation relations of the fermi
operators. The last lines of this code replace the argument of the auxiliary function
SIG by 1 or -1.
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