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SUMMARY 

As ecometabolomics gains more and more interest, not just as a tool to investigate the metabolomic 

adaptations but also to bring them in context with the plant community level, the need for tailored and 

structured methods that effectively combine both the vast amount of metabolomics data and the natural 

diversity in ecological data increases rapidly. The standardised methods used in ecological experiments provide 

the opportunity to describe characteristics of plants on both the individual plant level, e.g. developmental stages 

and the community level, e.g. species diversity. Plant metabolite profiles directly reflect these environmental 

dynamics and provide the opportunity to investigate and gain insights into plant adaptations in different 

ecological contexts and schemes on yet another level. Especially secondary metabolites are often associated with 

responses to abiotic and biotic stress factors, such as seasonal changes and varying plant community 

neighbourhoods. However, experiments conducted in natural and semi-natural environments come with a 

combination of factors that can not always be accounted for. These unpredictable variations require tailored 

experimental designs, methods and data curation to capture the complexity of both ecological experiments and 

precise metabolomic data. Therefore, this study aims to combine methods and analysis strategies established 

for and successfully used in metabolomics and ecological studies to meet the custom requirements of 

ecometabolomic datasets to make metabolic profiles usable as standardised traits, especially regarding 

secondary metabolites. 

This thesis used UPLC-ESI-Qq-TOF-MS to acquire metabolic profiles of the aboveground tissues in seven grass 

and six herb plant species across four seasons. The performance of different statistical methods (partial least 

squares, support vector machines and random forests) was tested for their usability, accuracy and predictive 

power on different matrices generated in this ecometabolomic study. These methods were tested on three 

independent data sets; two acquired in a field experiment and one in an outdoor greenhouse experiment. Plant 

samples were collected from neighbourhoods with different compositions, accompanied by trait records 

concerning both the individual plant and the plot community level. The data sets provided four different levels 

of metabolite profile complexity, ranging from distinct to similar profiles for comparison. Raw data and all 

workflows used to analyse the data sets in this thesis are published and available in the respective data 

repositories. 

Chapter one of this thesis focuses on acquiring metabolite profile data of the aboveground tissues of thirteen 

grassland species in a semi-maintained field experiment (The Jena Experiment – Trait-based-experiment) from 

diverse plant communities across the growing season in 2017. This chapter mainly focussed on data curation, 

providing a comprehensive, reproducible workflow for pre-processing and curating the acquired data with 

missing data imputation, batch correction and validity checks on features and samples. The second chapter 

comprehensively demonstrates and discusses the challenges of such ecometabolomics studies. The 

ecometabolomic data sets used in this study demonstrate the usability of already established statistical methods 

on metabolomic data on four different levels with varying similarities of the profiles, starting with very distinct 

profiles in the functional group level and species level, down to similar profiles within the same species across 

the season and diversity levels. Depending on the metabolic profiles used within an experiment, guidance is 

provided to choose the most suitable statistical methods for the question. For the data handling, both the data 

amount from metabolomics analysis and dynamics from field experiments needed to be taken into account to 

investigate ecometabolomics data sets and to draw conclusions about underlying mechanisms reflected in the 

metabolite profiles. Here it was found that choosing a suitable classification method depended mainly on the 

complexity of the provided background for classification. Adapting existing methods to the needs of 

ecometabolomic data sets provided the opportunity to use more diverse data acquired for and relevant to 

ecological contexts. The third chapter focused on exploring the dynamics of the metabolic profiles of leaves in 

thirteen grassland plant species. This study investigated the chemical dynamics in the metabolomic fingerprints 

as a response to a changing neighbourhood regarding plant species richness and diversity caused by different 

seasons. The metabolite profiles across species were found to be very distinguishable compared to the within 

species profiles that were found to be more similar while still reflecting dynamics in seasonal and community 

changes.  

This thesis focused on providing a road map for integrating metabolomics data to complex ecological 

environments and implementing reproducible, standardised methods across multiple experimental setups. 

Unravelling specific mechanisms reflected in the metabolic profiles will provide insights into underlying 

ecosystem functions. 
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ZUSAMMENFASSUNG 

Da Ecometabolomics nicht nur als Werkzeug zur Untersuchung metabolischer Anpassungen, sondern auch 

zur Einordnung dieser im Kontext von Pflanzengemeinschaften immer mehr Interesse weckt, steigt der Bedarf 

an maßgeschneiderten und strukturierten Methoden, die sowohl die Vielzahl an metabolomischen Daten, als 

auch die natürliche Vielfalt an ökologischen Daten effektiv kombinieren können. Die standardisierten Methoden, 

die in ökologischen Experimenten verwendet werden, bieten die Möglichkeit, Eigenschaften von Pflanzen sowohl 

auf der individuellen Pflanzenebene, z.B. Entwicklungsstadien, als auch auf der Gemeinschaftsebene, z.B. 

Artenvielfalt, zu beschreiben. Die metabolomischen Profile von Pflanzen spiegeln direkt diese Umweltdynamik 

wider und bieten die Möglichkeit, Pflanzenanpassungen in verschiedenen ökologischen Kontexten und Schemata 

auf einer weiteren Ebene zu untersuchen. Insbesondere Sekundärmetabolite sind oft mit Reaktionen auf 

abiotische und biotische Stressfaktoren verbunden, wie z.B. saisonale Veränderungen und unterschiedliche 

Pflanzennachbarschaften. Experimente, die in natürlichen und semi-natürlichen Umgebungen durchgeführt 

werden, bringen jedoch Kombinationen von Faktoren mit sich, die nicht immer berücksichtigt werden können. 

Diese unvorhersehbaren Variationen erfordern maßgeschneiderte experimentelle Designs, Methoden und 

Datenpflege, um die Komplexität sowohl ökologischer Experimente als auch präziser metabolomischer Daten zu 

erfassen. Diese Dissertation zielt daher darauf ab, Methoden und Analysestrategien, die in der Metabolomik und 

in ökologischen Studien bereits etabliert und erfolgreich eingesetzt wurden, zu kombinieren, um den speziellen 

Anforderungen von Ecometabolomic Datensätzen gerecht zu werden und metabolische Profile als 

standardisierte Charakteristik nutzbar zu machen; insbesondere im Hinblick auf Sekundärmetabolite. 

In dieser Arbeit wurde UPLC-ESI-Qq-TOF-MS verwendet, um metabolomische Profile der oberirdischen 

Gewebe von sieben Gras- und sechs Kräuterpflanzenarten über vier Jahreszeiten hinweg zu erfassen. Die 

Leistungsfähigkeit verschiedener statistischer Methoden (partial least squares, support vector machines and 

random forests) wurde auf unterschiedlichen Matrizen, die im Rahmen der vorliegenden Ecometabolomik-Studie 

generiert wurden, auf ihre Nutzbarkeit, Genauigkeit und Vorhersagekraft getestet. Diese Methoden wurden an 

drei unabhängigen Datensätzen getestet, von denen zwei in einem Feldexperiment und einer in einem Freiland-

Gewächshaus-Experiment erhoben wurden. Pflanzenproben wurden aus Nachbarschaften mit unterschiedlicher 

Zusammensetzung entnommen und von Merkmalsaufzeichnungen begleitet, die sowohl die individuelle Pflanze 

als auch die Gemeinschaftsebene des Versuchs betrafen. Die Datensätze lieferten vier verschiedene Ebenen von 

metabolomischer Profilkomplexität, die von sehr unterschiedlich bis hin zu sehr ähnlich reichten. Die Rohdaten, 

sowie die erstellten Workflows für die Analyse der Daten sind in den jeweiligen Datenarchiven auf MetaboLights 

verfügbar. 

Kapitel eins dieser Dissertation beschreibt die Erhebung von metabolomischen Profildaten der oberirdischen 

Gewebe von dreizehn Graslandarten in einem halbgepflegten Feldexperiment (Das Jena Experiment - Trait-

based-experiment) aus verschiedenen Pflanzengemeinschaften während der Wachstumsperiode 2017. Dieses 

Kapitel konzentriert sich hauptsächlich auf die Datenkuration und lieferte einen umfassenden, reproduzierbaren 

Workflow zur Vorverarbeitung und Handhabung der erworbenen Daten mit Imputation von fehlenden Daten, 

Chargenbedingter-Messkorrektur und Validitätsprüfungen von Merkmalen und Proben. Im zweiten Kapitel 

werden die Herausforderungen von Ecometabolomics Studien umfassend demonstriert und diskutiert. Die hier 

verwendeten Ecometabolom Datensätze demonstrieren die Verwendbarkeit bereits etablierter statistischer 

Methoden auf metabolomische Daten auf vier verschiedenen Ebenen mit zunehmender Ähnlichkeit der Profile 

über die Ebenen hinweg, beginnend mit sehr unterschiedlichen Profilen zwischen funktionellen Gruppen und 

Arten bis hin zu ähnlichen Profilen innerhalb derselben Art über verschiedene Jahreszeiten und Diversitätsstufen. 

Abhängig von den verwendeten metabolomischen Profilen innerhalb eines Experiments wird ein Vorschlag zur 

Auswahl der am besten geeigneten statistischen Methoden für die gestellte Frage bereitgestellt. Für die 

Datenverarbeitung mussten sowohl die Datenmenge aus der Metabolomik-Analyse als auch die Dynamik aus 

Feldexperimenten berücksichtigt werden, um Ecometabolomik-Datensätze zu untersuchen und Schlüsse über 

zugrunde liegende Mechanismen zu ziehen, die in den metabolomischen Profilen widergespiegelt werden. Die 

Auswahl einer geeigneten Klassifizierungsmethode hing hauptsächlich von der Komplexität des bereitgestellten 

Hintergrunds für die Klassifizierung ab. Die Anpassung bestehender Methoden an die Bedürfnisse spezifizierter 

Datensätze bot die Möglichkeit, vielfältigere Daten zu verwenden, die für ökologische Zusammenhänge relevant 

sind. Das dritte Kapitel konzentriert sich darauf, die Dynamik der metabolischen Profile von Blättern in dreizehn 

Graslandpflanzenarten zu erforschen. Diese Studie untersuchte die chemischen Dynamiken in den 

metabolomischen Fingerabdrücken als Reaktion auf eine sich ändernde Nachbarschaft in Bezug auf die 



 

 

 

Artenvielfalt und Diversität, die durch verschiedene Jahreszeiten ausgelöst wurde. Die metabolomischen Profile 

zwischen den Arten waren im Vergleich zu den innerhalb der Arten gefundenen Profilen klar unterscheidbar, 

während sie dennoch die Dynamik saisonaler und gemeinschaftlicher Veränderungen widerspiegelten. Die 

vorliegende Dissertation hatte zum Ziel,einen Fahrplan für die Integration von Metabolomik-Daten in komplexe 

ökologische Umgebungen zu liefern und reproduzierbare, standardisierte Methoden über verschiedene 

experimentelle Setups hinweg umzusetzen. Die Entschlüsselung spezifischer Mechanismen, die in den 

metabolomischen Profilen widergespiegelt werden, wird Einblicke in die zugrundeliegenden ökologischen 

Funktionen ermöglichen. 
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INTRODUCTION 

 
<Criminal cases are continually hinging upon that one point. A man is 

suspected of a crime months perhaps after it has been committed. His 

linen or clothes are examined, and brownish stains discovered upon them. 

Are they blood stains, or mud stains, or rust stains, or fruit stains, or what 

are they? That is a question which has puzzled many an expert, and why? 

Because there was no reliable test&= 

Sherlock Holmes, A Study in Scarlet by A. C. Doyle, 1887 

 

& except, now there is! 

 

 

 
Metabolomics has become a powerful tool to identify compounds and unravel underlying metabolomic 

variations within biological systems (Weston et al. 2015). Describing the entirety of metabolites in a living 

organism (Fang et al. 2019, Walker et al. 2022), metabolomics usually refers to the systematic study of 

chemical compounds regulated by cellular biochemical processes (Weston et al. 2015). By reflecting the 

current state of a plant (Weston et al. 2015), metabolites serve as a biochemical bridge between a plants 

genotype, phenotype, and the environment (Fiehn 2002, Weston et al. 2015, Berini et al. 2018, Fang et al. 

2019), balancing resources between fitness, reproduction and defence strategies (Walker et al. 2022). While 

primary metabolites support growth, reproduction, and stability (Obata & Fernie 2012, Sulpice & McKeown 

2015, Weston et al. 2015, Fernandez et al. 2016, Sardans et al. 2020), secondary metabolites are mainly 

involved in defence mechanisms (Fang et al. 2019, Ober & Hartmann 2000, Quinn et al. 2014). Secondary 

metabolites are also of interest to food, health (Rai et al. 2017) and the cosmetics industry (Rochfort 2005), 

enhancing the general interest in elucidating and predicting underlying mechanisms (Gromski et al. 2015, 

Fang et al. 2019).  

Since secondary metabolites hold a wide range of effects on the interaction of plants with their 

environment (Berini et al. 2018), using metabolomics within ecological experimental setups has the 

potential to improve the predictive power of ecological traits (Walker et al. 2022). Classical ecological traits, 

such as plant height, developmental stage and carbon/nitrogen contents, are commonly used to evaluate 

plant performance, particularly in connection with dynamics in plant species richness and diversity within 

plant communities (Scherling et al. 2010). Species loss and changing plant diversity, in general, are 

increasingly becoming one of the biggest drivers and motivations for ecosystem research (Hooper et al. 

2005) and the urge to understand underlying processes that shape the networks in which plants interact 

with the constantly changing abiotic environment and the biotic community (Vandenkoornhuyse et al. 

2015). Across these environmental dynamics, plants continuously need to balance the resources between 

their primary metabolism – dealing with growth and biomass production – and secondary metabolism, used 

for defence against herbivores and pathogens (Wright et al. 2004, Díaz et al. 2016, Gargallo-Garriga et al. 

2020). The effect of environmental conditions on the metabolite profiles of plants is mainly influenced by 

water, light and nutrient availability, leading to plant neighbourhood composition dynamics and, as a result, 

pathogen and herbivore interactions (Scherling et al. 2010). Ristok et al. (2022), for example, showed that 

increasing plant species richness led to decreasing rates of herbivory in some species and showed a positive 

effect of diversity on primary productivity. While many diversity studies have shown positive relationships 

between species richness and primary productivity (Balvanera et al. 2006, Cardinale et al. 2007), Scherling 
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et al. (2010) point out that these findings can be highly species specific in certain compositions and 

biogeographic contexts and are not necessarily transferable to other systems. 

Ecological questions are often answered by comparing functional traits (Walker et al. 2022) in field 

experiments (e.g. plant height, leaf area and carbon/nitrogen contents) to help understand drivers of 

temporal community stability and enable predictability of ecosystem services. Plant functional traits are 

standardised sets of characteristics that provide a metric for measuring and comparing species (Violle et al. 

2007). These classical physiological traits are the tool of choice to describe and characterise organisms and 

their interactions with the environment, which might be limited in elucidating the underlying mechanisms 

of ecosystems. Visible functional traits are a combination of underlying physio-chemical processes. They are 

limited in their information content compared to high-resolution and high-throughput analysis techniques, 

e.g. metabolomics, making it challenging to predict them as single traits (Walker et al. 2022). Metabolic 

profiles, on the other hand, represent plant fitness between and within generations and are a great addition 

to classical traits (Walker et al. 2022). Hence, combining visible ecological traits with metabolomics is 

essential to elucidate the underlying mechanisms of plants9 interaction with their environment. 
Ecometabolomics studies include metabolomics to answer ecological questions (van Dam & van der 

Meijden 2011) and support classical physiological traits (Walker et al. 2022). Previous studies showed the 

change in secondary metabolite abundances as a response to environmental changes in different species 

(Weston et al. 2015, Berini et al. 2018). These include both abiotic and biotic factors. For instance, plant 

metabolite abundances can change rapidly or progressively (Schuman & Baldwin 2016). Therefore, the 

distinction between short- and long-term responses is of particular interest. Assuming that plants have a 

fixed set of defence strategies (Zanne et al. 2014), we would also expect to find similar responses to similar 

environmental pressure factors. Scherling et al. (2010) were already able to show that similar herb species 

respond with similar strategies and changes to their metabolic profiles to species richness in the direct 

neighbourhood. For instance, plant neighbourhood diversity affects plant performance (Scherling et al. 

2010, Chiapusio et al. 2018) and metabolite profiles in terms of richness and composition (Scherling et al. 

2010, Ristok et al. 2022). One reason for these changes might lie in inducing the production of allelopathic 

compounds (Baldwin et al. 2006, Fernandez et al. 2016). Plant species diversity and metabolite diversity 

affect herbivory rates (M-25: Ebeling & Meyer et al. 2014, Ristok et al. 2022), broadening the range of 

potential host plants and enabling herbivores to locate potential host plants through specific metabolites 

(Agrawal & Weber 2015). Shifts in metabolite profiles can also occur due to resource limitations that reflect 

and alter plant species richness and diversity (Scherling et al. 2010) and influence fitness and productivity 

(Walker et al. 2022), which leads to environment-dependent profiles (Berini et al. 2018). Furthermore, 

secondary metabolite profiles change along temperature gradients (Berini et al. 2018, Defossez et al. 2021) 

and can depend on plant height (Scherling et al. 2010) and developmental stage (Mandal et al. 2010). 

Furthermore, ecometabolomic studies often focus on model plant species and intra-species study 

designs in controlled environmental conditions, e.g. greenhouse setups (Walker et al. 2022). Those 

experiments usually aim at a targeted approach to understanding specific factors (metabolites) that are 

influencing or are influenced by their environment and to be able to confirm the specific function of certain 

compounds (Weston et al. 2015, Berini et al. 2018, Fang et al. 2019). These targeted techniques support the 

identification of single components that are actively involved in responses to the environment. However, 

the identification of metabolites requires the elucidation of the stereochemical and elemental composition 

of features and compounds (Fiehn 2002) and requires profound knowledge about the metabolites that are 

present in the analysed species and a good estimation of which metabolites will be affected. Comprehensive 

reviews of metabolomics and techniques commonly used can be found elsewhere in the literature (Ellis & 

Goodacre 2006, Nguyen et al. 2012, Tugizimana et al. 2013). 

Some of the identified secondary metabolites are unique to certain plant families, for example 

glucosinolates (Grubb & Abel 2006, Agerbirk & Olsen 2012, Fang et al. 2019), which are unique to Brassicales 

(Fahey et al. 2001), while some serve a specific function, phenolic compounds (Schuman & Baldwin 2016), 

alkaloids, terpenoids and flavonoids, which are known to be involved in addressing drought, and 

temperature stress (Yonekura‐Sakakibara et al. 2014, Fernandez et al. 2016, Yang et al. 2018), and UV 

tolerance (Peng et al. 2017), to name a few examples. However, the exact function of many metabolites 

(Weston et al. 2015, Alseekh & Fernie 2018) and how abiotic and biotic factors trigger responses on the 

metabolite profiles remain unexplained (Berini et al. 2018). Although targeted metabolomics has already 

revealed numerous functions of specific metabolomics and how they are involved in the complexity of 

environmental changes, untargeted metabolomics allows capturing the full range of metabolomic 
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compound classes in the context of the plant9s physiological stage within a certain environmental condition 

(Fiehn 2002). 

Many approaches and techniques are being made available to study metabolomics in complex systems 

and convert knowledge already gained from complex ecological experiments and highly precise 

metabolomics experiments to understand underlying mechanisms on a biochemical level. However, these 

proposed workflows and approaches contain different priorities for different objectives and differ in their 

statistical methods and analysis power. Tailored and conclusive techniques for identifying compounds and 

metabolite families are also not yet available for untargeted approaches with big data sets. In contrast to 

targeted analysis, untargeted analysis does not require each feature or compound to be annotated for 

statistical analyses (Scherling et al. 2010). Commonly for untargeted metabolomics data, feature richness 

and feature abundance are valuable data that can be acquired and used for statistics. The untargeted 

metabolomics approach allows quantifying a plant's whole measurable feature profile snapshot without the 

need for identification or classification (Scherling et al. 2010). Compared to targeted analysis of metabolites, 

the advantage of untargeted analysis is the power of untargeted analysis to investigate global changes in 

the metabolic profile without making assumptions about underlying mechanisms (Berini et al. 2018). 

Detected features in untargeted metabolomics have high statistical relevance, which enables automated 

data processing (Hoehenwarter et al. 2008). Untargeted metabolomics is a powerful tool to investigate links 

between the environment and biochemical processes (Walker et al. 2022), but it also holds some obstacles 

that need to be addressed adequately to be able to draw funded conclusions from the data (Allard et al. 

2017).  

Walker et al. (2022) point out that metabolite profiles, especially in the context of ecometabolomics, 

serve as a repository of functional traits, which reflect the plant state at a certain point in time (Weston et 

al. 2015), and can therefore serve as a valuable trait themselves (Walker et al. 2022). In eco-metabolomics, 

selecting relevant features from metabolite profiles can provide insights into plant phenotype adaptations 

to environmental dynamics. It might be, for example, a reliable predictor of herbivory pressures in plant 

communities (Ristok et al. 2022). Although ecometabolomics has become a major interest in plant research, 

there is no standard available to yet to unify study design, data acquisition and handling (Walker et al. 2022). 

Although metabolomic is widely used in ecometabolomics studies, there is not always taken special care in 

properly handling the data, including quality controls, blanks, randomisation strategies and data handling 

techniques that ensure proper data used for conclusion drawing. The collection of metabolomics data 

requires a careful study design and considered inclusion of environmental factors (van Dam & Heil 2011, 

Walker et al. 2022) and can easily lead to false assumptions when not acquired with certain care and level 

of background information, e.g developmental and environmental components (Fang et al. 2019). 

Metabolomics data also require quite some caution when interpreted, as effects can easily occur as 

artefacts during sample preparation and data acquisition (Fiehn 2002). One example is induced responses, 

e.g triggered by herbivory attack may change metabolic profiles throughout the plant or only in the attacked 

tissue (van Dam & Heil 2011); therefore, a special collection of material is required. 

Furthermore, during sample collection, it is also important to conserve the current state of the 

metabolite profile, e.g. by snap freezing in the field (Marr et al. 2021). This ensures that all metabolomics 

processes are stopped in their tracks, and the sample presents an accurate picture of the current state of 

being. In contrast to classical plant traits that shift and change at a slower pace, the exact time of sample 

collection is an important element of the ecometabolomics study design and the research question (Weston 

et al. 2015). The sampling timepoint across the year strongly affects herbivory pressure on the plants and, 

thereby, the richness and composition of secondary metabolites (Ristok et al. 2022). To overcome the 

incomplete snapshot phenomenon, including multiple samplings across the year does improve the 

interpretation of the metabolomics data (Ristok et al. 2022). 

As Weston et al. (2015) pointed out, one of the main challenges in metabolomics is the sheer number 

of secondary metabolites and their related compounds that can be measured in plants. Given the enormous 

amount of produced metabolites within plants (Fang et al. 2019), handling the measured data and gaining 

reliable insights is still a challenging task within ecological experiments and studies (e.g. Marr et al. 2021). 

While metabolomics measurements, including sampling and extract preparation, is relatively easy and 

quick, handling the vast amount of data generated with these methods can be challenging on a multitude 

of levels (Weston et al. 2015). Single plant species only produce a subset of known secondary metabolites 

(Fernie et al. 2004). Hence, multispecies studies can result in zero-inflated data matrices. The extent of the 

effects of plant species diversity on general performance can be highly species specific (Scherling et al. 
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2010). Therefore, changes in the metabolite profiles to change environmental conditions to be similarly 

species specific can be expected. Integration of multiple species within the same experiment can, therefore, 

lead to an increased chance of zero-inflated data matrices. Currently available statistical tools are not yet 

tailored to capture the complexity of ecological experiments, especially regarding the growing interest in 

the role of secondary metabolites. As Walker et al. (2022) discussed, extensive research has been done to 

understand the interplay of metabolite responses to environmental dynamics. Therefore, a common 

strategy that allows comparison and reuses collected data in broader studies is important. 

Expecting that environmental dynamics, especially season related changes in the direct neighbourhood, 

will be reflected in the secondary metabolite profiles regarding the richness and composition of the features 

and compounds. Expecting that similar species respond with similar metabolites and strategies to 

environmental pressure, we tested thirteen species in the two functional groups (FG) grass and herb in this 

thesis. Therefore, this study aims to compare the performance of classical metabolomics feature selection 

and classification methods in eco-metabolomics data sets, which provide challenges regarding sample size 

and background noise; the combination of ecological questions in open study systems (Jena Experiments) 

with biochemical analysis methods (metabolomics) and bioinformatic tools (automated processing) to gain 

interpretation potentials on diverse levels; identify suitable and stable statistical methods that are 

commonly used in „classical< metabolomics data and how they can be adjusted to be used with 
ecometabolomics data and to answer ecological motivated questions. This thesis aims to introduce an 

automated and reproducible workflow for metabolomics data handling, curation and analysis to enable the 

automated analysis of multiple species with highly diverse metabolite profiles across environmental 

dynamics. 

 

 

 

 

 



| CHAPTER 1 

| 5 

CHAPTER 1 

LC-MS based plant metabolic profiles of thirteen grassland species grown in 
diverse neighbourhoods 
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Abstract 
In plants, secondary metabolite profiles provide a unique opportunity to explore seasonal variation and 

responses to the environment. These include both abiotic and biotic factors. In field experiments, such stress 
factors occur in combination. This variation alters the plant metabolic profiles in yet uninvestigated ways. This 
data set contains trait and mass spectrometry data of thirteen grassland species collected at four time points 
in the growing season in 2017. We collected above-ground vegetative material of seven grass and six herb 
species that were grown in plant communities with different levels of diversity in the Jena Experiment. For 
each sample, we recorded visible traits and acquired shoot metabolic profiles on a UPLC-ESI-Qq-TOF-MS. We 
performed the raw data pre-processing in Galaxy-W4M and prepared the data for statistical analysis in R by 
applying missing data imputation, batch correction, and validity checks on the features. This comprehensive 
data set provides the opportunity to investigate environmental dynamics across diverse neighbourhoods that 
are reflected in the metabolomic profile.  

 

 

Background & Summary 
Plants respond and adapt to environmental changes in many ways. Some plant species, for example, possess 

physical defences to cope with herbivores and abiotic stress factors1. In addition, plants also produce chemicals 

as defence strategies. These plant metabolites provide a unique opportunity to explore these adaptations as the 

metabolic profile is known to reflect environmental changes2-4. Both the primary and the secondary metabolome 

are involved in the responses to biotic5-6 and abiotic factors7-9. However, especially secondary metabolites, which 

are not directly involved in the primary metabolism, play a key role in plant defence strategies5-6,10-12.  

Furthermore, compared to primary metabolite profiles, secondary metabolite profiles are more species 

specific even in varying environments13. Previous studies showed that plants change the composition of their 

metabolic profile and alter the abundance and the number of specific compounds, such as phenolics and 

terpenoids7,14 while maintaining their distinctive profiles13,15. In field experiments, the impact of abiotic and biotic 

factors vary across the season16-17. These factors include, for instance, light, nutrients, water and herbivory18. 
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Changes in these conditions may affect the plants9 metabolic fingerprint in yet uninvestigated ways. The 

investigation of these changes may provide insights into the mechanisms behind plant adaptation strategies. 

Grasslands are an ideal study system to investigate the effects of plant community compositions on the plant 

metabolomic profiles. In these ecosystems, we find a relatively high number of fast-growing grass and herb 

species19. Species that share similar characteristics form functional groups (FG). Here, we distinguish between 

the two FG: grasses and herbs. Most studies focus on visible traits when investigating these two FG20-22. Visible 

traits, for example, are a useful tool to understand and predict ecological strategies and functions. They are also 

supporting the investigation of relationships between functional traits – that describe all measurable 

characteristics of a plant individual - and the individual plant performance23-26. However, the investigative power 

of combining metabolomics data with such trait data has already been demonstrated in other studies14-15,27-29.  

In this data set, we collected plant material for metabolomic analysis in the field experiment <The Jena 
Experiment: Trait-Based-Experiment=, Germany30. An overview of the data set is provided in Table 1 and Fig. 1, 

including the experimental setup (d-h), metabolomic analysis (i-m), and the data processing (n-s). 

We recorded both visible traits and metabolomic profiles to investigate species specific responses of thirteen 

grassland species to the composition of their neighbourhoods. For the metabolomic analysis, we collected shoot 

material across the growing season in 2017 at four time points: May (A), July (B), August (C), October (D). We 

chose these time points to cover the whole growing season (May to October; Fig. 1 d). The sown (target) species 

belonged to the FGs grasses and herbs (Fig. 1 e, Fig. 2 a). We investigated plants grown in communities with 

diversity levels (DL) composed of one (DL1), two (DL2), four (DL4) and eight (DL8) different species (Fig. 1 f, 
Fig. 2). We collected shoots of two replicates per DL and species (Fig. 1 g-h). For each species, we recorded 

characteristics of their surrounding neighbourhoods, including the number of plant species and their abundances 

per plot. For each sample, we recorded visible traits, such as the plant height, number of leaves and the level of 

damage caused by herbivory or pathogens.  

In total, we collected 512 samples. For each sample, we acquired the metabolic profiles of methanolic extracts 

of the shoots on an Ultra Performance Liquid Chromatography coupled with an Electrospray Ionisation 

Quadrupole Time-of-Flight Mass Spectrometry (UPLC-ESI-Qq-TOF-MS; abbreviated to LC-MS in the following; Fig. 

1 i-m). We used quality controls (blanks and pooled extracts) to ensure data quality. We converted the 

acquired raw LC-MS data to an open file format (Fig. 1 n) and processed them on the Galaxy-W4M 

infrastructure31. In Galaxy-W4M, we performed the feature detection, grouping and feature annotation (Fig. 1 

o). After this pre-processing, we prepared the data for statistical analysis. In R32, we performed missing data 

imputation, batch correction and validity checks on the LC-MS feature (Fig. 1 p-s). In this data descriptor, we 

provide a detailed description of the analytical steps performed on the acquired LC-MS data and provide the 

comprehensive data set in the MetaboLights repository MTBLS67933. 

 

 

Methods 
Experimental Setup. Experimental Design The Jena Experiment34 is a biodiversity ecosystem functioning 

experiment, designed to study plant and trait diversity effects on plant communities. The Jena Experiment is 

located in Jena, Germany, and includes the Trait-Based-Experiment30 (TBE; Fig. 2 a). We collected plant material 

in the plots of the TBE. In the TBE, eight species selected from the functional groups (FG) grass and herb form a 

species pool. These Pools include four grass and four herb species30. Pool 1 (P1) comprises the grass species 

Avenula pubescens (AVEPUB), Festuca rubra (FESRUB), Phleum pratense (PHLPRA) and Poa pratensis (POAPRA) 

and the herbs Centaurea jacea (CENJAC), Knautia arvensis (KNAARV), Leucanthemum vulgare (LEUVUL) and 

Plantago lanceolata (PLALAN). Pool 2 comprises the grasses Anthoxanthum odoratum (ANTODO), Dactylis 

glomerata (DACGLO), Holcus lanatus (HOLLAN) and Phleum pratense (PHLPRA) and the herbs Geranium pratense 

(GERPRA), Leucanthemum vulgare (LEUVUL), Plantago lanceolata (PLALAN) and Ranunculus acris (RANACR). The 

target species of this study belonged to either P1 or P2 (Table 1, Fig. 2 b). The three species Leucanthemum 

vulgare, Phleum pratense, and Plantago lanceolata were part of both pools.  

In the TBE, the plant species are grown in plots with different diversity levels (DL): one (DL 1), two (DL 2), four 

(DL 4), and eight (DL 8) different species per plot (Fig. 2 a). The plots are randomly distributed across the 

experimental site. P1 and P2 determine the plant species composition for each DL. Hence, all DL were composed 

of the species belonging to the respective Pool. For example, DL8 (P1) was composed of the following species: 

grass: AVEPUB, FESRUB, POAPRA, PHLPRA, herb: CENJAC, KNAARV, LEUVUL, PLALAN, while DL8 (P2) comprises 

these species: grass: ANTODO, DACGLO, HOLLAN, PHLPRA, herb: GERPRA, RANACR, LEUVUL, PLALAN. We 

collected the above-ground vegetative tissues of the thirteen target species. Per plot, we collected two plant 

individuals (replicates) at four time points in 2017. We chose dates across the growing season: May (A), July (B), 
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August (C) and October (D). In total, we sampled 512 study samples: 

4 Season x 4 DL x 2 Pools x 8 species x 2 replicates (Fig. 1 d-g, Fig. 2).  

 

Traits & Sampling. Prior to plant biomass collection in each season, we surveyed each plot to record the actual 

number of present species (species richness), both sown (target) and weed (not deliberately cultivated) species. 

We also estimated the abundance of each species (Shannon diversity) in relation to the plot size. In each season, 

we collected the above-ground tissue of two replicates per plot and species (Fig. 2 b). In each plot, we randomly 

chose two plant individuals as replicates from specimens with a similar phenological stage according to the 

BBCH35 scale. We recorded the following traits of these plant individuals: phenological stage (BBCH35), the 

number of leaves and inflorescences, plant height, and the proportional damage inflicted by either pathogen or 

mechanically.  

The plants were cut 3 cm above the ground (Fig. 1 h). An aliquot of shoot (leaf and stem) tissues was 

collected in plastic vials, snap-frozen on dry ice and stored for LC-MS analysis (referred to as study sample). The 

remaining biomass, including the inflorescences, was stored in plastic bags for biomass measurements. We 

collected the samples following the order of plots in the TBE (randomised DLs and Pools across the experimental 

site), starting at the southern end of the TBE30. We also recorded the exact time of the sampling for each sample 

to account for possible time-related shifts in the metabolic profile (sampling between 1 pm and 8 pm). We 

collected the samples within a single day to reduce the environmental influences to a minimum (for the exact 

dates see the MTBLS67933 data repository). We applied the following labelling scheme to ensure the 

randomisation for sample extraction and LC-MS data acquisition. For each season, we assigned a number 

between 001 and 128 to each sample. These Lab-IDs were chosen randomly for each sample while collecting the 

biomass. For example, the Lab-ID 013_2017_A refers to the sample 2017_A_PHLPRA_A002_a: collected in 

season 2017_A; Phleum pratense, in plot A002, which is referring to DL2 in P1, replicate a; and 013_2017_C refers 

to the sample 2017_C_FESRUB_B067_b: collected in season 2017_C; Festuca rubra; in plot B067, which is 

referring to DL4 in P1; replicate b. The plot numbers (e.g. A002 and B067) and the corresponding DLs (e.g. DL2 

and DL4) are specified in the sample metadata in the data records MTBLS67933. The sample preparation and 

extraction for the LC-MS data acquisition were conducted in the order of the respective Lab-IDs to ensure the 

equal distribution of seasons and full randomisation across the species, DL and replicates. Details on the 

randomisation can be found in the section <Sequence of LC-MS Measurements=. All details concerning the 
sampling strategy are included in the sample table in the MTBLS67933 data repository. 

 

LC-MS Data Acquisition. Cryo Sample Preparation. We prepared the 511 study samples of frozen shoot 

material, collected in 20 mL vials, by adding two steel balls (7 mm) to the tubes. One sample tube (2017_B: 

FESRUB (P1): DL1_b) broke prior to analysis and was, therefore, excluded from further analysis. We used a cryo 

ball mill equipped with an autosampler (Labman IPB Cryogrinder Ball Mill, Labman Automation, Middlesbrough, 

UK) to grind the material at -75 °C for 150 s (5 cycles: 30 s grinding, 30 s pausing). We ground the samples 

according to their Lab-IDs and the season they were collected in (Fig. 1 i). 

 

Methanolic Extraction. We transferred aliquots (100 mg ± 50 mg) of the fine frozen powder to extraction 

tubes and added extraction beads (Rimax/Zircosil, 1.2 - 1.7 mm). For the extraction, we used methanol/water 

(80/20 v/v; HPLC-grade, Honeywell, Seelze, Germany) as the extraction solvent. We added the following internal 

standards at a 5 mM concentration to the extraction solvent: Kinetin (Roth, Karlsruhe, Germany), IAA-Val (Sigma-

Aldrich, St. Louis, USA) and Biochanin A (Sigma-Aldrich, St. Louis, USA). The extraction solvent was added in a 

weight-specific five-fold surplus (Fig. 1 j) to the frozen powder (e.g. 500 µL added to 100 mg powder), which 

we kept on liquid nitrogen. We thawed the prepared samples for 3 minutes at room temperature before 

extracting them in a homogeniser (Precellys® 24 Tissue Homogenizer, Bertin Technologies, Montigny-le-

Bretonneux, France) for 90 s (2 cycles: 45 s run, 15 s pausing) at 6500 rpm. We centrifuged the extracts at 16168 

g for 15 min and collected the supernatants in fresh extraction tubes (Fig. 3 a). After an additional extraction of 

the remaining pellet, 160 µL of the combined supernatants were added to 40 µL of water/formic acid (99.9/0.1 

v/v) (formic acid: VWR International, Radnor, USA) and stored at -20 °C for at least 48 hours (Fig. 3 a). To prepare 

the samples for mass spectrometry, we centrifuged the sample extracts at 16168 g for 15 minutes to remove 

particles. We transferred 160 µL of the resulting supernatant to vials equipped with 300 µL glass inserts 

(analytical sample). We extracted all study samples in batches of 44 samples, in the order of their Lab-IDs (e.g. 

one analytical batch contains analytical samples with the Lab-IDs 001 to 011 of season 2017_A, 2017_B, 2017_C, 

and 2017_D). 
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Quality Controls. We used two types of blanks to account for possible contamination or inconsistency during 

extraction. The field blanks (plastic vials used for sampling) were included in the sampling, transportation and 

grinding steps. After the sampling in season 2017_A, we used a new shipment of plastic vials. We, therefore, 

labelled the field blanks <old= and <new= for the vials either used in 2017_A or 2017_B to 2017_D, respectively. 

We used the extraction blanks (eX01 - 03) to capture contaminations introduced in the methanolic extraction 

steps. For each replacement of extraction solvent, a new extraction blank was used. Both field blanks and 

extraction blanks were processed according to the extraction protocol applied to the study samples. 

Furthermore, we pooled 10 µL aliquots of the 511 sample extracts, which we used as Quality Control (QC) 

throughout the LC-MS measurements (Fig. 1 k; Fig. 3 b).  

Sequence of LC-MS Measurements. We measured the 511 analytical samples in 12 analytical batches. Each 

batch was composed of an acetonitrile aliquot, a blank, a QC aliquot and 44 analytical samples (Fig. 1 l, Fig. 3 

c). We distributed the analytical samples equally across the batches in the order of their Lab-IDs, and the season 

they were collected in (Lab-IDs were assigned to the samples randomly while sampling; see <Traits & Sampling=). 
For example, the analytical samples 2017_A_001 to 011, 2017_B_001 to 011, 2017_C_001 to 011, and 

2017_D_001 to 011 were measured in batch <pos01=. We started the batch measurement sequence with three 
acetonitrile runs followed by the QC. After this run-in sequence, we measured the QC again, to equilibrate both 

the LC-column and MS-system, followed by one blank and a block of 11 analytical samples (Fig. 3 c). We used the 

different blanks to detect potential systematic contaminations that were either introduced during sampling, 

extraction or the LC-MS measurements. After each block of analytical samples, we measured the QC again. The 

samples measured within one block were chosen randomly from the 44 samples assigned to the batch. After 

each batch, the MS ion source was cleaned, and the MS was recalibrated. 

Analytical Setup & Data Acquisition. We performed the data acquisition (Fig. 1 m) on a liquid 

chromatography system (UPLC; ACQUITY UPLC System, Waters Corporation, Milford, USA) coupled with a mass 

spectrometer (ESI-Qq-TOF-MS; ESI-micrOTOF-Q-II, Bruker Daltonics, Bremen, Germany). Aliquots (2 µL) of the 

analytical samples were separated at 40 °C on an HSS T3 C18-column (1.8 µm, 1.0 x 100 mm, RP, Waters 

Corporation, Milford, USA) with the elution binary gradient at 0.15 mL min-1 flow rate: Solvent A (water/formic 

acid 99.9/0.1 v/v)/ Solvent B (acetonitrile/formic acid 99.9/0.1 v/v; acetonitrile: Merck, Darmstadt, Germany); 

initial: A 95%, 3 minutes linear A 82.7%, 10 minutes linear A 76%, 17 minutes linear A 5%, 18 minutes A 5%, 18.1 

minutes linear A 95%, 20 min A 95%. We measured the ions in positive mode from 100 – 1000 m/z using the 

following instrument settings: capillary voltage 5000 V; nebuliser gas nitrogen; nebuliser 1.4 bar; dry gas 

nitrogen; dry gas temperature 190 °C; dry gas flow 6 L min-1; spectra rate 3 Hz; endplate offset: -500 V; Funnel 1 

RF: 200 Vpp; Funnel 2 RF: 200 Vpp; in-source CID energy 0 eV; hexapole RF 100 Vpp; quadrupole ion energy 3 

eV; collision gas nitrogen; collision energy 7 eV; collision RF 200/200 Vpp (timing 50/50); transfer time 58.3 µs; 

pre pulse storage 5 µs. We used an internal calibration (lithium formate clusters, 10 mM lithium hydroxide in 

isopropanol/water/formic acid, 49.9/49.9/0.2 v/v/v, at 18 min) for the normalisation of the measurements. 

 

LC-MS Data Pre-processing. We exported the vendor-specific data files (Bruker <.d=) using CompassXport 
(Bruker, version 3.0.9, http://www.bruker.com). The conversion of LC-MS raw data files to the open data format 

(<.mzML=)36 enables the data analysis in vendor-independent environments (Fig. 1 n). We pre-processed the 

raw LC-MS spectra of the analytical samples and the quality controls (blanks and QC) on the Galaxy-W4M 

infrastructure31 (based on XCMS 3.0). The workflow (DOI: 10.15454/1.5640497789529167E12) includes the 

following analytical and processing steps: feature detection, grouping and retention time correction (Fig. 1 o). 

A detailed description of parameter settings and tool versions used in the workflow is also shown in Table 2.  

The initial step in the workflow is feature detection. The parameters were set in order to separate measured 

peaks from background noise (Table 2). We then grouped the features across samples and corrected them for 

retention time shifts. We grouped the corrected spectra again and annotated adducts and isotopes of the 

measured features. After these pre-processing steps, we filtered the detected features for the region of interest 

(ROI). We cut features with retention times between 0 s to 80 s (injection peak and very polar compounds) and 

from 840 s to 1080 s (very nonpolar compounds). We exported the pre-processed data as separate data tables 

for sample metadata (sampleMetadata), variable metadata (variableMetadata) and the data matrix 

(dataMatrix), containing the measured intensities. These data matrices are also available in the associated 

metadata records MTBLS67933 (https://www.ebi.ac.uk/metabolights/MTBLS679). The number of detected 

features per species is shown in Table 3. 

 

 

http://www.bruker.com/
http://dx.doi.org/10.15454/1.5640497789529167E12
https://www.ebi.ac.uk/metabolights/MTBLS679
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Data Records 
A detailed description of the experimental setup, the performed analysis and the metadata of both study 

samples and the quality controls are available as MTBLS679 <From Field to Feature in Ecometabolomics – LC-MS 

Based Metabolite Profiles of Thirteen Grassland Plant Species Reflecting Environmental Dynamics= on 
https://www.ebi.ac.uk/metabolights/MTBLS679. Raw data files of LC-MS analysis are also available in the 

repository. Furthermore, we provide data matrices of all stages of the processing steps (see Table 1). The W4M-

Galaxy history (DOI: 10.15454/1.5640497789529167E12) that was used for data pre-processing is available at 

https://workflow4metabolomics.usegalaxy.fr/histories/list_published. All processing steps used for the data 

clean up are explained in the Supplementary File 1. 

 

 
Technical Validation 

Data Processing. A detailed tutorial of the processing steps performed in R32 and the complete code used for 

data processing are provided as PDF and as R script in the MTBLS67933 repository. The tutorial PDF is also made 

available as supplemental material (Supplementary File 1). 

Missing Data Imputation. In this study, the pre-processing of highly diverse LC-MS spectra lead to a data 

matrix with 90% zero values. This high number of zeros is a result of the data matrix containing all detected 

features, of which only small fractions belonged to a particular species (Table 3). Hence, features that are not 

part of the metabolic fingerprint in this species were not detected and are recognised as true zeros. Within a 

species, some features are only detected in a few specimens. These absences either occur due to variations in 

the technical performance or are indicators of actual biological adaptations to environmental changes. These are 

NA values, as the reason for their absence is uncertain at this stage of analysis. In the following, we refer to any 

missing values as missing data. In order to prepare the data matrix for further data cleaning and to make it 

accessible to processing and statistical analysis, we replaced the missing data with imputed values. Here, we 

imputed the missing data with random values (noise) by drawing absolute values from a normal distribution with 

mean 70 and a standard deviation of 20. We chose these values as they are below the threshold initially set for 

our data set, which equals 100 (Fig. 1 p, see Table 2: feature detection). This choice is instrument specific and 

based on the prefilter parameters used in the pre-processing steps.  

Batch Correction. We performed a batch correction on the imputed data matrix. Splitting the 511 analytical 

samples into 12 analytical batches enhanced the chance of technical performance variability due to cleaning, 

recalibration and solvent replacements. These batch effects are mostly reflected in changes of intensities of the 

features across different batches. To account for these intensity shifts, the QC, which was measured multiple 

times across all batches (see <Sequence of LC-MS Measurements=), was used to determine the unwanted 
variation within (intra-batch distance) and between (inter-batch distance) batches. Ideally, the intensity profiles 

of the QC in all batches are identical. However, systematic variation between and within batches was present. 

Here, we used the RUVs function in the RUVSeq package (version 1.20.0)37, which is based on a principal 

component analysis (PCA), and applied it to the QC measurements (referred to as pool in dataMatrix). RUVs 

creates a PCA model of the systematic part of the variation of the QC. This PCA model describes unwanted 

systematic variation. In the next step, it substracts the PCA model from the study samples; thereby eliminating 

any unwanted systematic variation. A detailed description of the underlying calculations can be found in Risso et 

al.37. The performance of the batch correction mainly depends on the number of components used for the 

analysis. We determined the optimal number of components to be used for the correction with a scree plot. In 

this scree plot, we compared the remaining inter-batch distances (Supplementary File 1 Fig. 1) after correction 

for different numbers of components. In this data set, the knee (or elbow) in the plot was reached after 6 

components, as the inter-batch distances did not decrease anymore after 6 components (see Supplementary File 

1 Table 3.2). After the batch correction, the calculated inter-batch distances for the QC measurements showed 

a strong decline (Table 4; Fig. 1 q). The score plots before the batch correction show apparent batch effects in 

PC 1 and PC 2 (Fig. 1 q). This shows that the batches, in which the QC has been measured, are the largest 

systematic source of variation for the QC measurements. After correction, the pattern in the PCs related to the 

different batches was no longer distinguishable. This shows that the huge variation of the feature intensities 

present in the original measurements related to the batches is removed and does not influence any consequent 

(statistical) analysis. After performing the batch correction, the QC measurements are removed from both the 

metadata and data matrix (Table 1). 

Blank Removal. We checked the validity of the features before using them in the statistical analysis. We 

assigned a feature as valid when it was derived from an analytical sample. Here, we used the blanks as a reference 

for the validity check. Blanks did not contain a biological sample but were handled and processed like the 

http://dx.doi.org/10.15454/1.5640497789529167E12
https://workflow4metabolomics.usegalaxy.fr/histories/list_published
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analytical samples. Hence, we considered all features that were detected in blanks to be systematic 

contaminations introduced during sampling, extraction or the LC-MS analytical process. We removed all features 

that were detected in at least one blank from the data matrix and excluded them from any further analysis (Fig. 

1 r; see Table 3 for the number of features before and after the blank removal). Following this feature validity 

check, we also removed the blank samples from the sample metadata (Table 1). 

Sample Validity Check. The amount of biological variation in the metabolomic profiles within a species 

differed across the species. This intra-species variation was found to be lower than the inter-species variation. 

To check the validity of each sample and, thereby, ensuring that the sample was not contaminated, we compared 

their metabolomic profiles to the average composition of their species. Here, we defined a feature as belonging 

to a species when it was detected in at least 8 of the samples (25%) in that species (Table 3). Note that for 

assigning a feature to the respective species, we used the data matrix without the imputed values (see <Missing 
Data Imputation=). As a quality measure, for each sample, we calculated Mahalanobis distances (Fig. 1 s). We 

compared the distance of each sample to the average distance of the remaining samples in the respective 

species. For example, we calculated distances for the 32 samples in the species Holcus lanatus and compared the 

distance of the sample <HOLLAN (P2): 2017_A (DL4_b)= to the average distance of the other 31 samples. We kept 
only those samples that were closer than three times the average distance and shared over 25% of their features 

with their species (Table 1). Consequently, we excluded the following samples from further analysis as they did 

not pass the validity check: ANTODO (P2): 2017_B (DL8_b), 2017_C (DL1_b); HOLLAN (P2): 2017_A (DL4_b); 

LEUVUL (P2): 2017_D (DL4_a, DL4_b); PHLPRA (P1): 2017_D (DL1_b, DL8_b); PHLPRA (P2): 2017_D (DL8_a, 

DL8_b), POAPRA (P1): 2017_D (DL2_b, DL8_a, DL8_b). 

Preparation for Statistical Analysis. After performing validity checks on the data, we prepared the cleaned 

and processed data matrix to be used for statistical analysis. The data matrix can be accessed in three different 

stages, with 1) imputed values or 2) zeros or 3) NAs for missing values (see <Missing Data Imputation=). 
Depending on the nature of the planned analysis, either one of the matrices can be used for statistical analysis 

and conclusion drawing. 

 

 

Usage Notes 
This comprehensive data set provides the opportunity to investigate the metabolomic profiles on the feature 

level of thirteen grassland species grown in diverse neighbourhoods. The profiles were acquired from plants 

collected at different time point across the growing season. Therefore, relevant features and seasonality can be 

investigated within this eco-metabolomic dataset. Additionally, the mass spectrometry raw data are available in 

an open file format (mzML) and provide the opportunity to be re-processed with common metabolomics tools, 

such as xcms, OpenMS and MS-Dial.  

 

 

Code availability 
The raw data files and processed data matrices are available in the online repository MTBLS679 

(https://www.ebi.ac.uk/metabolights/MTBLS679). The complete history of the used workflow for the raw LC-MS 

data pre-processing is available in Galaxy-W4M31 from https://doi.workflow4metabolomics.org/W4M00008. We 

provide the complete R32 script used to process the data along with a detailed tutorial in the supplemental 

material (Supplementary File 1).  
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Tables 
Table 1: Steps of analysis performed on the thirteen target species and the quality controls. Species belonging to 

the functional groups (FG) grass and herb were assembled in two groups of eight species (Pool). The Pools 

included four species per FG. Three of the species were represented in both pools (*). Shoots were collected at 

four time points (Season: A, B, C, D) in four diversity levels (DL1, DL2, DL4, DL8). A detailed list of the study 

samples can be found in the associated Metadata Record (MTBLS67933). For details of the experimental setup, 

see Fig. 1, and Ebeling et al. 30 for a plot overview. Study samples are processed in the respective analysis step 

(+). One sample was excluded from the analysis due to the loss of the sampled material, and some samples did 

not pass the final validation check (±; see section <Cryo Sample Preparation= and <Sample Validity Check=). This 
overview also indicates where the quality controls were used for the analysis. 
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Table 2: Tools and Parameter used for pre-processing the LCMS raw data. The complete workflow is available in 

Galaxy-W4M (https://doi.workflow4metabolomics.org/W4M00008). 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
Table 3: Number of unique LC-MS features (Fmeas) measured in both the analytical samples and the quality 

controls (Smeas). A feature is counted as part of the species when it is detected in at least 25% of the samples 

belonging to this particular species. After processing and blank removal, the remaining number of samples (Sval) 

and features (Fval) is used for analytical statistics. 

 

Table 4: Inter-batch distances calculated for both the QC (multiple measurements) and the analytical samples 

(single measurements). Distances are calculated before (pre BC) and after (post BC) applying the batch 

correction. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Data set overview. The data set includes the metadata of the experimental setup for the plant material 

collected in the TBE plots of the Jena Experiment (d-h), LC-MS raw data acquisition (i-m), data pre-

processing steps (n-o), as well as data cleaning and validation (p-s). Created with BioRender.com 
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Figure 2: Experimental Design. (a) Plot and species overview. Plant material was collected in the plots of the TBE 

(grey borders) in the Jena Experiment. We collected shoots of seven grass (light green) and six herb species (dark 

green) in plots with four different diversity levels (DL). Here, either one (DL1), two (DL2), four (DL4) or eight (DL8) 

different species were grown per plot. In each plot, we harvested shoots of two replicates. The white arrow 

indicates the sampling direction, starting at the south end of the TBE. (b) Design overview. Plant material of 

species in both P1 and P2 were collected at four time points across the growing season in 2017 (May: A, July: B, 

August: C, October: D). The species pools P1 and P2 were each composed of four grass and four herb species. 

The three species LEUVUL, PHLPRA and PLALAN, were part of both pools. In total, we collected 512 study samples: 

4 Season x 4 DL x 2 Pool x 8 species x 2 replicates. For a detailed list of the species codes see Table 1. Created 

with BioRender.com 
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Figure 3: LC-MS sample extraction and sequence of measurements. a) We prepared the 511 frozen study 

samples by grinding and extracting the resulting fine powder with methanol (note: one sample was lost prior to 

analysis, see <Cryo Sample Preparation=). For each sample, we combined the supernatants of two extraction 
steps to the sample extract. b) We pooled aliquots of all 511 sample extracts and used them as the Quality Control 

(QC). c) The LC-MS measurements were split into 12 analytical batches. Here, each batch measurement was led 

by a run-in sequence: 3 x acetonitrile, 1 x QC measurement. Per batch, samples were measured in four blocks, 

consisting of eleven analytical samples. The sample measurements were preceded by one QC measurement and 

one blank, and flanked by QC measurements. We randomised the 511 LC-MS samples (13 species, 4 seasons, 4  

 diversity levels) equally across the 12 batches. For treatment colour codes, see Fig. 2. Solid black arrows mark 

processing steps, while dashed black arrows indicate the transfer to another process. The dashed grey arrow 

indicates a zoom-in for clarification purposes. Created with BioRender.com 

 

 

 

 

 

 

 
 

 



| CHAPTER 1 

 

| 19 

References 

 

1. Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade‐offs between physical 
and chemical carbon‐based leaf defence: of intraspecific variation and trait evolution. J. Ecol 103 (6), 

1667-1679 (2015). 

2. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155-171 

(2002). 

3. Fernie, A. R., Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolite profiling: from diagnostics to 

systems biology. Nat. Rev. Mol. 5 (9), 763-769 (2004). 

4. Weir, T. L., Park, S. W. & Vivanco, J. M. Biochemical and physiological mechanisms mediated by 

allelochemicals. Curr. Opin. Plant Biol. 7 (4), 472-479 (2004). 

5. Rosenthal, G. A. & Berenbaum, M. R. Herbivores: their interactions with secondary plant metabolites: 

ecological and evolutionary processes. Vol. 2 (Academic Press, 2012). 

6. Schweiger, R., Heise, A. M., Persicke, M. & Müller, C. Interactions between the jasmonic and salicylic 

acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant 

Cell Environ. 37 (7), 1574-1585 (2014). 

7. Arbona, V., Manzi, M., Ollas, C. D. & Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic 

stress tolerance in plants. I. J. Mol. Sci. 14 (3), 4885-4911 (2013). 

8. Bais, H. P., Park, S., Weir, T. L., Callaway, R. M. & Vivanco, J. M. How plants communicate using the 

underground information superhighway. Trends Plant Sci. 9 (1), 26-32 (2004). 

9. Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32 (6), 666-

681 (2009). 

10. Treutter, D. Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4 (3), 147-157 

(2006). 

11. Wurst, S., Wagenaar, R., Biere, A. & van der Putten, W. H. Microorganisms and nematodes increase 

levels of secondary metabolties in roots and root exudates of Plantago lanceolata. Plant Soil 329 (1-2), 

117-126 (2010). 

12. van Dam, N. M. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40, 373-391 

(2009). 

13. Dixon, R. A. Natural products and plant disease resistance. Nature 411 (6839), 843-847 (2001). 

14. Ristok, C., Poeschl, Y., Dudenhöffer, J.‐H., Ebeling, A., Eisenhauer, N., Vergara, F., Wagg, C., van Dam, N. 
M. & Weinhold, A. Plant species richness elicits changes in the metabolome of grassland species via soil 

biotic legacy. J. Ecol. 107 (5), 2240-2254 (2019). 

15. Macel, M., de Vos, R. C., Jansen, J. J., van der Putten, W. H. & van Dam, N. M. Novel chemistry of invasive 

plants: exotic species have more unique metabolomic profiles than native congeners. Ecol. and Evol. 4 

(13), 2777-2786 (2014). 

16. Atkinson, N. J. & Urwin, P. E. The interaction of plant biotic and abiotic stresses: from genes to the field. 

J. Exp. Bot. 63 (10), 3523-3543 (2012). 

17. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. 

New Phytol. 203 (1), 32-43 (2014). 

18. Breitschwerdt, E., Jandt, U., Bruelheide, H. Trait-performance relationships of grassland plant species 

differ between common garden and field conditions. Ecol. Evol. 9, 1691–1701 (2019).  

19. Dıáz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. 

Trends Ecol. Evol. 16 (11), 646-655 (2001). 

20. Barry, K. E., Weigelt, A., Ruijven, J., de Kroon, H., Ebeling, A., Eisenhauer, N., Gessler, A., Ravenek, J. M., 

Scherer-Lorenzen, M., Oram, N. J., Vogel, A., Wagg, C. & Mommer, L. Above-and belowground 

overyielding are related at the community and species level in a grassland biodiversity experiment. Adv. 

Ecol. Res. 61, 55-89 (2019). 

21. Barry, K. E., van Ruijven, J., Mommer, L., Bai, Y., Beierkuhnlein, C., Buchmann, N., de Kroon, H., Ebeling, 

A., Eisenhauer, N., Guimaraes-Steinicke, C., Hildebrandt, A., Isbell, F., Milcu, A., Neßhöver, C., Reich, P. 

B., Roscher, C., Sauheitl, L., Scherer-Lorenzen, M., Schmid, B., Tilman, D., von Felten, S. & Weigelt, A. 

Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. 

Ecology 101 (1), e02905 (2020). 

22. Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N., Schmid, B. & Schulze, 

E.-D. Using plant functional traits to explain diversity–productivity relationships. PloS one 7 (5), e36760 

(2012). 

23. Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. Let the concept of 

trait be functional!. Oikos 116 (5), 882-892 (2007). 



CHAPTER 1 | 

20 | 

24. Ackerly, D. D., Dudley, S. A., Sultan, S. E., Schmitt, J., Coleman, J. S., Linder, C. R., Sandquist, D. R., Geber, 

M. A., Evans, A. S., Dawson, T. E. & Lechowicz, M. J. The Evolution of Plant Ecophysiological Traits: Recent 

Advances and Future Directions: New research addresses natural selection, genetic constraints, and the 

adaptive evolution of plant ecophysiological traits. Bioscience 50 (11), 979-995 (2000). 

25. Herz, K., Dietz, S., Haider, S., Jandt, U., Scheel, D. & Bruelheide, H. Predicting individual plant 

performance in grasslands. Ecol. and Evol. 7 (21), 8958-8965 (2017). 

26. Gross, N., Kunstler, G., Liancourt, P., De Bello, F., Suding, K. N. & Lavorel, S. Linking individual response 

to biotic interactions with community structure: a trait‐based framework. Funct. Ecol. 23 (6), 1167-1178 

(2009). 

27. Herz, K., Dietz, S., Gorzolka, K., Haider, S., Jandt, U., Scheel, D. & Bruelheide, H. Linking root exudates to 

functional plant traits. PloS one 13 (10), e0204128 (2018). 

28. Fernie, A. R. & Schauer, N. Metabolomics-assisted breeding: a viable option for crop improvement?. 

Trends Genet. 25 (1), 39-48 (2009). 

29. Stitt, M., Sulpice, R. & Keurentjes, J. Metabolic networks: how to identify key components in the 

regulation of metabolism and growth. Plant Physiol. 152 (2), 428-444 (2010). 

30. Ebeling, A., Pompe, S., Baade, J., Eisenhauer, N., Hillebrand, H., Proulx, R., Roscher, C., Schmid, B., Wirth, 

C. & Weisser, W. W. A trait-based experimental approach to understand the mechanisms underlying 

biodiversity–ecosystem functioning relationships. Basic Appl. Ecol. 15 (3), 229-240 (2014). 

31. Giacomoni, F., Le Corguillé, G., Monsoor, M., Landi, M., Pericard, P., Pétéra, M., Duperier, C., Tremblay-

Franco, M., Martin, J.-F., Jacob, D., Goulitquer, S., Thévenot, E. A. & Caron, C. Workflow4Metabolomics: 

a collaborative research infrastructure for computational metabolomics. Bioinformatics 31 (9), 1493-

1495 (2014). 

32. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria https://www.R-project.org/ (2019). 

33. Marr, S., Hageman, J. A., Wehrens, R., van Dam, N. M., Bruelheide, H., Neumann, S. From Field to Feature 

in Ecometabolomics: LC-MS Based Metabolite Profiles of Thirteen Grassland Plant Species Reflecting 

Environmental Dynamics. MetaboLights http://identifiers.org/metabolights:MTBLS679. (2020). 

34. Roscher, C., Schumacher, J., Baade, J., Wilcke, W., Gleixner, G., Weisser, W. W., Schmid, B. & Schulze, 

E.-D. The role of biodiversity for element cycling and trophic interactions: an experimental approach in 

a grassland community. Basic Appl. Ecol. 5 (2), 107-121 (2004). 

35. Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T. H., Hack, H. & Stauss, R. Use of the extended 

BBCH scale—general for the descriptions of the growth stages of mono; and dicotyledonous weed 

species. Weed Res. 37 (6), 433-441 (1997). 

36. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Römpp, A., 

Neumann, S., Pizarro, A. D., Montecchi-Palazzi, L., Tasman, N., Coleman, M., Reisinger, F., Souda, P., 

Hermjakob, H., Binz, P.-A. & Deutsch, E. W. mzML—a Community Standard for Mass Spectrometry Data. 

Mol. Cell. Proteomics 10 (1), R110.000133 (2010). 

37. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control 

genes or samples. Nat. Biotechnol. 32 (9), 896-902 (2014). 

 

 

 

 

 

 

 

Supplemental Material – Workflow for MTBLS679 

See Appendix – Chapter 1 

 

 

 

 



| CHAPTER 2 

 

| 21 

CHAPTER 2 

A CASE OF INVESTIGATION: SELECTING STATISTICAL TOOLS FOR DIFFERENT LEVELS IN AN ECO-
METABOLOMICS EXPERIMENTAL SETUP 

 
 
 
 
 
Title: A Case of Investigation: Selecting Statistical Tools for Different Levels in an Eco-Metabolomics Experimental 

Setup 

 
 
 
Authors: 

Sue Marr 1,2,3*, Jos A. Hageman4 & Steffen Neumann1,3 

 

1 Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany. 

2 Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am 

Kirchtor 1, 06108, Halle, Germany.  

3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, 

Germany.  

4 Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The 

Netherlands.  

*corresponding author 

 
 
 
Author contribution:  

 

Author contributions (ctb) to the manuscript in percent. 

chapter status author ctb 

(2) A Case of Investigation: using common 

metabolomics statistical tools in an eco-

metabolomics experimental setup 

draft S. Marr 90 

 J. A. Hageman 5 

 S. Neumann 5 

 

 

 

 

 

 

 





| CHAPTER 2 

 

| 23 

 

 

A Case of Investigation:  
using common metabolomics statistical 

tools in an eco-metabolomics 
experimental setup 

 

 

S Marr 1, 2, 3, *, JA Hageman4 and S Neumann1,3 
 

1 Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany 
2 Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany 

³ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig 
4 Biometris, Wageningen UR, Wageningen, The Netherlands 

* Correspondence: smarr@ipb-halle.de 

 

 

Abstract:  
Introduction In eco-metabolomics, selecting relevant features from metabolomic profiles can provide 

insights into plant phenotype adaptations to environmental dynamics. Currently available statistical tools are not 

yet tailored to capture the complexity of ecological experiments, especially regarding the growing interest in the 

role of secondary metabolites. 

Objectives Therefore, this study aims to compare the performance of classical metabolomics feature 

selection and classification methods in eco-metabolomics data sets, which provide challenges regarding sample 

size and background noise. 

Methods We tested the performance of Partial Least Squares Discriminant Analysis (PLS), Support Vector 

Machines (SVM) and Random Forests (RF) in terms of accuracies and their predictive power on three different 

pre-processed data matrices in three independent data sets. The data sets provided four different levels of 

metabolomic profile complexity, ranging from distinct to similar profiles for comparison. 

Results In general, the data matrices that either used measured intensities and zeros (ZeroInt) or imputed 

log-transformed data (ImpLog) were found to have the highest accuracies. In contrast, accuracy calculated on 

measured intensities with imputed values for missing data (ImpInt) was low overall. Comparing the model 

performance, we found the highest accuracies in PLS and RF. PLS, SVM and RF worked equally well on very 

distinguishable metabolomic profiles, while PLS and RF provided a greater classification power when the 

background was more similar. 

Conclusion Choosing a suitable classification method depended mainly on the complexity of the provided 

background for classification. The choice of the data matrix depending on the model also improved the 

performance.  
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1 Introduction: 
In eco-metabolomics, one primary goal is to provide insights into phenotypes and metabolic profiles of 

biological systems. Combining metabolomics tools (e.g. mass spectrometry) with ecological experimental designs 

(Fiehn, 2020) allows using chemical properties to compare metabolic profiles and identify relevant compounds 

in the dynamics of environmental changes. In mass spectrometry, different measured features, defined by their 

specific mass-to-charge ratio (m/z) and retention time (RT), can derive from the same metabolic compound as 

they break down into multiple ion species during the analysis (Shi et al., 2019). The enormous amount of 

produced data can add major obstacles to statistical analysis, such as high dimensionality due to the imbalanced 

number of detected features that often exceed the number of samples by far and an increased risk of 

classification by chance due to a missing control level (Broadhurst & Kell, 2006; Gromski et al., 2015). As this 

research area is recently gaining more importance, so does the need for methods used for data handling, 

classification, and selecting important features. However, according to Smilde et al. (2005), the currently 

available statistical tools, which are developed mainly for clean experimental designs with a focus on case-

control-samples, are not yet at a point where the complexity of ecological experiments is captured adequately 

(compare Broadhurst & Kell, 2006; Tang et al., 2014).  

Furthermore, Shi et al. (2019) point out that only a limited number of algorithms include redundant features 

while noisy features are being removed. A high variability, often introduced in field or greenhouse experiments 

data, requires tailored analytical tools. In classical metabolomics studies, common tools for species classification 

and feature selection are, among others, Partial Least Squares Discriminant Analysis (PLS), Support Vector 

Machines (SVM) and Random Forests (RF). As discussed by Tang et al. (2014), for building proper models, it is 

essential to realise that all feature selection methods work under different assumptions and are, therefore, not 

compatible with all classification problems per se. As Mendez et al. (2019) discussed, getting any model is granted 

while getting an almost perfect model reflecting natural phenomena is almost impossible. The most reliable 

method for a data set can depend on its size, data types, and noise level (Broadhurst & Kell, 2006). According to 

Brereton and Lloyd (2014), observatory methods like PLS can play a significant role in exploratory studies. It is 

mainly used to classify complex data due to its ability to handle high dimensionality and noisy data (Brereton & 

Lloyd, 2014; Gromski et al., 2015). However, one major limitation in PLS methods is the assumption of linear 

relationships between even-sized classes and the equal importance of all measurements, which is not necessarily 

the case in eco-metabolomics studies (Brereton & Lloyd, 2014; Gromski et al., 2015; Mendez et al., 2019). 

In contrast to PLS, SVM can be used on both linear and non-linear classification problems. However, as 

discussed by Statnikov et al. (2008), SVM is sensitive to an unbalanced distribution of classes. Furthermore, SVM 

is robust to outliers and less likely to overfit while performing well with noisy and high-dimensional data. On the 

other hand, Random Forests (RF) only require prior knowledge about the class labels and select the smallest set 

of features that can be used for classification. Generally, RF is comparable with SVM in terms of robustness 

towards outliers, noisy data handling and high dimensionality (Cutler et al., 2007; Statnikov et al., 2008). 

However, an advantage of RF over PLS and SVM is the ability to handle multiclass problems without any prior 

assumptions about the structure of the data and the robustness towards overfitting. Furthermore, RF has been 

shown to be a powerful tool, especially for ecological data, mainly due to its high classification accuracy and the 

ability to handle missing data (Cutler et al., 2007; Statnikov et al., 2008).  

In this study, we want to compare the performance of PLS, SVM and RF in terms of their suitability in eco-

metabolomics studies. We use three eco-metabolomics data sets that incorporate some of the most common 

obstacles occurring in these types of experiments, i.e., few observations, uneven distribution of samples and 

noisy data. The data sets we use in this study are derived from a long-term field experiment (MTBLS679 and 

MTBLS1224) as well as from a greenhouse setup (MTBSL2140), each including secondary metabolomic profiles 

of above-ground tissue of grassland plant species. We used plant species (species) from the functional groups 

(FG), grasses and herbs and collected samples at different time points (season) from plots with varying stages of 

neighbourhood diversity (diversity levels). Hence, these data sets provide four analysis levels (FG, species, 

season, diversity) ranging from a very clear separation across multiple species with very distinctive metabolomic 

profiles (FG and species) to a more challenging separation in the analysis level of season and diversity where 

metabolomic profiles are compared within each species and, therefore, have major overlaps in their profiles. 

This eco-metabolomics study did not include a control level and, therefore, relied on the other species in the 

respective data set for classification background. 

Consequently, the comparison and discrimination of one species is only as good as the reference data it is 

compared to. Furthermore, the environmental conditions were not controlled for, which introduced a high level 

of unexplained variation and an increased number of redundant or noisy features that do not directly contribute 

to the classification, which increases the chance of selecting some features just by chance (John et al., 1994). 
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Analysing multiple grassland plant species with different profiles within each data set also created high amounts 

of missing values. Performing the analysis on either zero or imputed data for these missing values is a highly 

discussed challenge when working with eco-metabolomic data sets. Both strategies might lead to 

misinterpretation of the data.  

Therefore, we want to test different classification models and how well they perform on the different levels 

of analysis and investigate which matrices (zero vs imputed) are the most suitable for each of the models within 

a certain analysis level. Hence, our three motivations are: 1) do selection models use other than the unique 

features within each class for the classification of the samples; 2) how do the models perform on different data 

matrices with missing values being either treated as zeros or imputed values; 3) which model performs best on 

which level of analysis, including the increasing overlap of metabolic profiles within the samples. This study aims 

to compare and evaluate the usability of each feature selection method on the three data sets in terms of the 

number of selected features and their classification performance and stability. 

 

2 Methods: 
 
2.1 Data sets 

The three data sets we used for the model calculations share a similar experimental design (Fig. 1, Table 1). 

All data sets (MTBLS679, MTBLS1224, MTBL2140) include thirteen grassland species (Species) in the functional 

group (FG) herb: Centaurea jacea L. (CENJAC), Geranium pratense L. (GERPRA), Knautia arvensis (L.) 

Coult. (KNAARV), Leucanthemum vulgare (Vaill.) Lam. (LEUVUL), Plantago lanceolata L. (PLALAN), 

Ranunculus acris L. (RANACR); and grass: Anthoxanthum odoratum L. (ANTODO), Avenula 

pubescens (Huds.) Dumort. (AVEPUB; species is now referred to as Helictotrichon pubescens (Huds.) Schult. & 

Schult.f.), Dactylis glomerata L. (DACGLO), Festuca rubra L. (FESRUB), Holcus lanatus L. (HOLLAN), Phleum 

pratense L. (PHLPRA), Poa pratensis L. (POAPRA). The dataset MTBLS2140 additionally contained the four grass 

species: Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. (ARRELA), Festuca pratensis Huds. (FESPRA), Poa 

trivialis L. (POATRI), and Trisetum flavescens (L.) P.Beauv. (TRIFLA). A detailed description for the MTBLS679 data 

set, regarding the experimental design, sampling, measurements and processing steps can be found in Marr et 

al. (2021). Detailed descriptions for the data sets MTBLS1224 and MTBLS2140 can be found in the MetaboLights 

repositories MTBLS1224 (MetaboLights: MTBLS1224) and MTBLS2140 (MetaboLights: MTBLS2140), respectively. 

Raw data and sample metadata of all data sets are available in the respective repository: MTBLS679 

(http://identifiers.org/metabolights:MTBLS679), MTBLS1224 (http://identifiers.org/metabolights:MTBLS1224) 

and MTBLS2140 (http://identifiers.org/metabolights:MTBLS2140). In data set MTBLS2140, seed material was 

grown in a phytocabinet and then transferred to an outdoor greenhouse. The plants were maintained, and the 

pots were kept free of weeds. The plant material for this data set was collected within 3 days in October 2019. 

The samples in the data sets MTBLS679 and MTBLS1224 were collected at four time points (season) across the 

growing in 2017 and 2018, respectively, from plots with different diversity levels (DL) in the TBE-Jena-Experiment 

(Ebeling et al. 2014). The diversity levels were compositions of either one species (DL 1), two (DL 2), four (DL 4) 

or eight different species (DL 8; Fig. 1). The collected above-ground material (MTBLS679, MTBLS1224, 

MTBLS2140) was snap-frozen, extracted with Methanol/Water (80/20 v/v) and analysed on a UPLC (Acquity, 

Waters, USA) coupled with an ESI-micrOToF-Q-II (Bruker, USA) in positive ion mode (LC-MS analysis).  

We pre-processed the obtained raw data in the Galaxy-W4M (Giacomoni et al. 2015) instance using the 

workflow provided by Marr (https://doi.workflow4metabolomics.org/W4M00008) with adapted parameters for 

each data set. The generated data was then processed in R, performing a batch correction, blank removal, and 

sample validity check (Marr et al. 2021). The processed and cleaned data matrices are available as three matrices 

for each data set. One matrix contains the measured intensities and zero values, where no intensity was 

measured (ZeroInt; e.g. MTBLS679_dataMatrixZ_processed), measured intensities and imputed data for missing 

values (ImpInt; e.g. MTBLS679_dataMatrixImp_processed) and imputed and log-transformed data (ImpLog; e.g. 

MTBLS679_dataMatrixImpLog_processed). We are aware that there are several strategies for imputing missing 

data; however, we chose randomly selected small values for these data sets, assuming that there is no traceable 

relationship between the features. We analysed the data sets MTBLS679 and MTBLS1224 on four analysis levels 

(FG, species, season, diversity) and MTBLS2140 on two levels (FG and species; Table 1). 

 

2.2 Classification methods 
Many tools are already available for metabolomics data that can be used for feature selection and 

classification problems, all well implemented and described in detail. Hence, we avoid in-depth mathematics and 

https://doi.workflow4metabolomics.org/W4M00008
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focus on their general functionality, working principles, and differences between their approaches. Reviews of 

feature selection methods and their requirements may be found elsewhere (Tang et al., 2014). For each model, 

we used repeated 10-fold cross-validation. The data set is split randomly into 10 parts, building the model on 

nine of them and using the remaining part for validation. The average of the error terms of each validation is 

calculated. This procedure is then repeated 10 times, and the overall average is calculated. We implemented all 

methods in R (version 4.0.3; R Core Team 2019) and used the caret package (version 6.0-86; Kuhn, 2020) for 

model building. These methods are also available in the MetaboAnalyst software (MetaboAnalyst 5.0; Pang et 

al., 2021).  

Partial Least Squares Discriminant Analysis (PLS) PLS is a linear classifier used as a multivariate regression 

method for calibration (Barker & Rayens 2003). It is a widely used tool in the fields of chemometrics (Wold et al. 

2001), proteomics (Christin et al. 2013) and metabolomics (Gromski et al. 2015) that, although designed to solve 

binary case-control problems, can also be adapted to multiclass problems by using latent variables on a one-vs-

one or one-vs-rest approach. The PLS algorithm gives the likelihood for a sample to belong to either class while 

providing information about the features that contribute to the separation. PLS, therefore, can also be used for 

biomarker identification. In PLS, the data are projected to a new dimensional space, finding a linear hyperplane 

alongside the discriminating features spanning a maximum space between the two classes. The weighted sums 

of the regression coefficient are used to calculate the variable importance for each feature (Kuhn 2020). Features 

that provide less information, therefore, are being downweighed. Features assigned relevant, however, are being 

selected based on their corresponding VIP values. A detailed description of the underlying PLS algorithm and VIP 

calculation can be found here (Barker & Rayens 2003, Brereton & Lloyd 2014). We used the pls package (version 

2.7-3; Mevik et al. 2019) in the caret implementation in R for building the PLS model. 

Support Vector Machines (SVM) SVM are commonly used in metabolomics (Mahadevan et al. 2008) and also 

many other research fields (e.g. Kriegl et al. 2005, Sattlecker et al. 2010). In contrast to PLS, which performs best 

for linearly separable data (linear kernel; SVMl), SVM can also solve non-linear problems (Sanz et al. 2018). 

Different kernels in the training phase enable SVM, for example, to deal with polynomial problems (poly kernel,. 

SVMp) and infinite dimensions (radial kernel; SVM). SVM are generally robust and effective predictors, suitable 

for both classification and regression, and are, therefore, used to select relevant features for classification and 

prediction (Burges, 1998; Statnikov et al. 2008). In SVM, the classifier is built by projecting a hyperplane into a 

higher dimensional space, separating the two classes with a maximal margin. The support vectors, being the 

features closest to the boundaries of the margin, are selected as the most relevant features giving the best 

separating and classification accuracy (Mahadevan et al. 2008, Tang et al. 2014). A large margin, therefore, also 

means a good generalisation. For prediction, SVM focuses on which side of the support vector a sample falls. The 

variable importance is assessed by ranking the features according to their relevance, separating the classes and 

the subset with the highest classification accuracy is chosen (Sanz et al 2018). A detailed explanation of the 

working principles and underlying math may be found elsewhere (Mahadevan et al. 2008). For a linear SVM, we 

use a recursive feature elimination to calculate the variable importance of each feature. For building the SVM 

model, we used the e1071 package (version 1.7-6; David et al. 2019) in the caret package implementation.  

Random Forests (RF) In order to cope with high dimensional and complex data, RF – a collection of single 

classification trees – are an effective statistical tool for classification and feature selection in metabolomics 

studies. RF can be used on complex and high dimensional data and is, therefore, also a popular tool amongst 

ecologists (e.g. Cutler et al. 2007). However, the selection of features is not implemented as a direct output. In 

general, RF is defined as a supervised classification method consisting of a collection of classification trees that 

randomly splits the features in trainings and test sets to grow full and unpruned trees that are aggregated to a 

single data set (forest) including the predictions from all classification trees (Breiman 2001, Genuer et al. 2010). 

At each node, the binary partitioning is performed on randomly selected subsets of features within the bootstrap 

samples. One tree is grown per bootstrap sample, where each node, being equally distributed vectors, casts a 

single vote for the most common feature. Prediction accuracy is recorded for each tree. The variable importance 

can also be used for clustering, multidimensional scaling and missing value imputation (Strobl et al. 2007). 

Detailed information about the underlying algorithm and statistical backgrounds are explained in Breiman (2001) 

and Genuer et al. (2010) and are furthermore discussed in (Cutler et al. 2007). Here, we used the randomForest 

package (version 4.6-14; Liaw & Wiener 2002) in the caret implementation in R. 
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3 Results: 
This study used three eco-metabolomics data sets that included common obstacles such as few observations, 

uneven distribution of samples, and noisy data. In these data sets, metabolomic profiles were compared at four 

analysis levels that ranged from very distinct metabolomic profiles across multiple species (FG and species), and 

hence, easy classification, to very similar profiles within the same species (season and diversity) and, therefore, 

more challenging classification problems. Based on the provided metabolomic background, we defined features 

present in more than one factor per analysis level in their data set as non-unique. Hence, features present in only 

one factor were defined as unique. We compared those features that were selected by the respective models 

with the selected unique features per analysis levels. At the FG level, we selected features that are either present 

in grass or herb species. At the species level, we selected features present in only one species and no other 

species within each data set (one-vs-rest). For the levels of season and diversity (MTBLS679 and MTBLS1224) we 

selected the features within each species. Here, we selected features present in only one season or diversity 

level. For model comparison, we used accuracy and Cohen's Kappa values, where the accuracy gives the rate of 

correctly classified species out of all classified species in a data set, and the Kappa value gives an estimate on the 

reliability of the calculated accuracy for unbalanced data (some species have more features than others). The 

Kappa value ranges from -1 to 1, where values above 0.8 are assumed to be strong and above 0.9 as almost 

perfect (McHugh, 2012). We assessed the prediction performance of each model using the true positive and true 

negative prediction rates. 

Depending on the applied threshold on the variable importance (in all levels in all models: 65, except species 

level's PLS: 10), the presented features (Fig. 2) are the variables with the highest variable importance selected by 

the models. Therefore, the total number of presented features would change accordingly with a lower or higher 

applied threshold. However, in the analytical level FG, we found the majority of unique features not to be 

selected by the models (Fig. 2 a). In this level, PLS selected most features from the pool of non-unique features 

and shared a major part with the SVMs models. RF only selected 5% of the features that PLS and SVMs selected. 

At this level, all models selected their features mainly from the collection of non-unique features. However, two 

features were selected by all models from the pool of unique features. In the level of species, most of the unique 

features were not selected by any of the models (Fig. 2 b). However, PLS and SVM took a majority of their features 

from the pool of unique features, while RF took less than 1% of these features. RF was found to draw almost 

equally from both pools unique and non-unique. There were no features in common between all models and the 

pool of unique features. On the analytical level season, SVMs drew almost as much of their features from the 

pool of unique features as from the pool of non-unique features (Fig. 2 c), while PLS and RF selected a majority 

of the features from the pool of unique features. In general, RF selected only 3% compared to the number of PLS 

selected features. In total, 36 features were selected from all models within the pool of unique features. In the 

analytical level diversity (Fig. 2 d), most of the unique features were not selected by the models. However, all 

three models selected a majority of their features from the pool of unique features. In total, 14 features were 

selected by all models from the pool of unique features in this analysis level.  

Here, we compared the model performances based on their accuracies, i.e. the rate of correctly identified 

samples and the Kappa value. High Kappa values (>0.8 strong, >0.9 almost perfect) support the reliability of the 

calculated accuracies (Fig. 3, Table 2). Models with an accuracy level above 0.8 were considered reliable 

classification models. In general, the data matrices ImpLog and ZeroInt were found to have the highest 

accuracies. In the levels FG and Species, the overall mean accuracy was very high and supported greatly by the 

Kappa value. The differences between the data matrices in these two levels were found to be rather small (Table 

2). ImpLog and ZeroInt showed the highest mean accuracies in FG, with 0.984 to 1.0 for ZeroInt and 0.997 to 1.0 

for ImpLog. At the species level, the accuracies had a greater range between the data matrices. ImpLog had 

accuracies between 0.975 and 0.982, followed by ZeroInt with 0.955 to 0.978. In the levels of season and 

diversity, the mean overall accuracy was relatively low compared to the FG and species levels. Here the 

accuracies ranged from 0.332 to 0.877 and 0.203 to 0.395 for season and diversity, respectively. In these two 

levels, the ZeroInt data matrix had the highest accuracies. In the season level, the accuracies calculated ob the 

ZeroInt and ImpLog data matrices were relatively close, with 0.824 to 0.844 for ZeroInt (except SVMr: 0.332) and 

0.743 to 0.877 for ImpLog (except SVMr: 0.669). In contrast, accuracies calculated on the ImpInt data matrix were 

overall low at 0346 to 0.787. In season, the accuracies differed greatly between the data matrices, e.g. SVMr 

performed best on the ImpLog data matrix (mean accuracy: 0.669), and was very weak with ZeroInt (0.33) and 

ImpInt (0.35) data matrices (Table 2). The accuracies for each species for SVMr on ImpLog ranged between 0.393 

and 0.873, ZeroInt between 0.199 and 0.970, and ImpInt between 0.210 and 0.531 (Supplement Table A). The 

models SVMl and SVMp performed in the same range between accuracies of the different data matrices, with 

the highest accuracies on the ZeroInt data matrix (SVMl: 0.832, SVMp: 0.839), middle performance on ImpLog 

(SVMl: 0.746, SVMp: 0.743) and lowest accuracy for the ImpInt data matrix (SVMl: 0.554, SVMp: 0.565). In the 
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analysis level diversity, the highest accuracies across all models were reached in the ZeroInt data matrix (0.243 

to 0.395), followed by ImpLog (0.203 to 0.380) and ImpInt (0.206 to 0.362). Furthermore, in the levels of season 

and diversity, the Kappa values were found to be rather low (season: 0.087 to 0.784, diversity: 0.013 to 0.174), 

except for PLS on the ImpLog data matrix in season (0. 827). Kappa values below 0.8 are considered not very 

strong and do not support the calculated accuracies (Table 2). 

Comparing the model performance, we found PLS and RF generally with the highest accuracies compared to 

the SVMs. All models generally showed high accuracy in FG and species' analytical levels (Table 2). In FG, PLS had 

the highest accuracy (0.998 to 1.000) along with SVMl (0.998 to 1.000), followed by SVMp (0.997 to 1.000) and 

RF (0.996 to 1.000). SVMr showed the lowest accuracy (0.984) within this level. We found the highest accuracy 

and widest range in the analysis level species in PLS (0.943 to 0.982). RF (0.975 to 0.976), SVMp (0.970 to 0.978), 

and SVMl (0.968 to 0.977) performed almost equally well. SVMr had a slightly lower accuracy (0.955 to 0.979). 

In both levels of FG and species, the mean Kappa was above 0.9. In season, PLS was found to have the highest 

accuracy with the data matrices ZeroInt (0.824) and ImpLog (0.877), whereas ImpInt had a rather low accuracy 

(0.695). This performance was followed by RF (0.787 to 0.844), SVMl (0.746 to 0.832, except ImpInt: 0.554) and 

SVMp (0.743 to 0.839, except ImpInt: 0.565). Here, SVMr also showed very low accuracy levels (0.332 to 0.669). 

In this analysis level, the Kappa values were only slightly above 0.7 in RF (all matrices), SVMl (ZeroInt) and SVMp 

(ZeroInt), and between 0.784 and 0.877 for PLS on the ZeroInt and ImpLog data matrix, respectively. All other 

models had a Kappa below 0.7 (Table 2). All models were found to have generally low accuracies at the diversity 

level. PLS (0.362 to 0.395) were slightly higher than RF (0.296 to 0.351), SVMp (0.258 to 0.378) and SVMl (0.241 

to 0.355). The accuracies in SVMr even stayed below 0.3 (0.203 to 0.243). All Kappa values in the diversity analysis 

level were below 0.18 (Table 2). 

We compared the predictive power of each model by using the rates for true positive and negative 

predictions (Table 3). In the analysis level FG, both the true positive and true negative rates were at 1.0, meaning 

all samples were predicted correctly, with no false positives or false negatives. Only in RF we found a less accurate 

prediction (0.995). In the level of species, PLS (pos: 0.981, neg: 0.999), RF (pos: 0.974, neg: 0.998) and SVMl (pos: 

0.808, neg: 0.966) had a very high prediction rate for both true positives and negatives (Table 3). However, in 

SVMr and SVMp, we found a slightly less accurate prediction rate for true positives (SVMr: 0.742, SVMp: 0.792) 

but an equally good rate for the true negatives (SVMr: 0.964, SVMp: 0.968). In the analysis level season, we found 

the PLS model to predict a true positive rate above 0.8, followed by RF with 0.795. The SVM models in this analysis 

level ranged from 0.649 to 0.693. The best true negative rates were also found in PLS (0. 960) and RF (0.934), 

while this rate ranged from 0.886 and 0.898 in the SVM models (Table 3). The true negative rates in the analysis 

level diversity were all above 0.7. However, the positive prediction rates in this level were below 0.4, with the 

best rates in PLS (0. 358) and SVMr (0.314). SVMl, SVMp and RF showed a prediction rate of true positives below 

0.3 (Table 3). 

 

 

4 Discussion: 
The key goal of this study was to compare the performance of the three statistical tools, PLS, RF and SVM, in 

terms of their suitability for eco-metabolomics data sets.  

The first question we addressed was if classification models are generally needed for a reliable classification 

on different levels of distinctiveness in metabolomic profiles. In general, we found that the overall composition 

of the metabolomic profiles was most important for classification as the pool of unique features that the models 

could choose from strongly depended on the provided background of metabolomic profiles (either across or 

within species). For example, in the levels FG and species where we compared distinct metabolomic profiles 

across species, we found that non-unique features were used throughout the classification process. On the other 

hand, the models selected more unique features in season and diversity, where the classification was performed 

within each species and hence on a less distinct background. As Gromski et al. (2015) discussed, using more than 

one feature selection method, especially when used on a data set with unknown structures or a combination of 

them, might improve the comprehensive interpretation of the results. In our study, a small number of features 

were also globally selected by all three models, which makes it likely that they, even if they might not play a key 

role in the classification, are of potential interest and worth a second look. The annotated and identified 

corresponding metabolites can then be used in more in-depth studies to prove their relevance within the 

ecosystem services. 

The second main question concerned the handling of missing values. As discussed by Mendez et al. (2019), 

data sets should be curated well and pass thorough quality control checks before they are used to build a 

classification model. In this study, the data matrix used significantly influenced the classification performance in 
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all methods. In general, we found that in the levels that compared profiles across multiple species and therefore 

had relatively little overlap in the metabolic profiles, ImpLog (using log-transformed intensities and randomly 

imputed low values for missing values) was the preferred choice. In contrast, in the levels that compared profiles 

within one species and were more challenging to separate based on their profiles, classification models worked 

better on the ZeroInt (using measured intensities and zeros for missing values) data matrix. The ImpInt matrix, 

which used measured intensities with randomly imputed low values for missing values, showed generally lower 

accuracies across all analysis levels. Although imputed with very low values, in the ImpInt data matrices, the 

differences between the measured intensities and the imputed data are most likely not determined enough to 

provide a good classification base. In contrast, in ZeroInt, intensity values are distinguished with zeros from 

missing values. In the log-transformed imputed data matrix, all values are compelled in a normal distribution, 

making it easier to separate and classify. 

However, in the levels of season and diversity, the differentiation between the plant samples across the 

growing season (season) and between different biogeographic legacies (diversity levels) depended on the 

respective species. Some profiles of the tested plant species were comparably easy to classify across different 

seasons and diversity levels, where these environmental dynamics could not be classified in some other species. 

In season, both ZeroInt and ImpLog data matrices showed the best overall accuracies. Although generally low in 

classification performance, the ZeroInt data matrix showed the best classification rate in the diversity levels. The 

ZeroInt data matrix was the most suitable at this level, probably due to the great overlap in metabolic profiles 

and the more explicit distinction between them based on the zeros for missing values.  

We found that PLS seemingly worked best with the ImpLog data matrix as model-matrix combinations, 

followed by ZeroInt. RF, across all levels of analysis, worked best on the ZeroInt data matrix. SVMl and SVMp 

worked equally well with ZeroInt and ImpLog data matrices. SVMr, although showing only a poor performance 

in general, worked best with the ImpLog data matrix. Both model-matrix strategies, ZeroInt (SVMl, SVMp, RF) 

and ImpLog (PLS, SVMr), worked well but were also highly dependent on the different plant species in the 

seasonal and diversity levels, with some species being reliably classified and some showing almost no differences 

in their profiles. The choice of models and data matrix influenced the classification performance in season and 

diversity significantly. In season, for example, PLS on ImpLog and RF on ZeroInt showed a rather good 

performance, whereas, in the diversity level, both PLS and RF worked best on the ZeroInt data matrix. In the 

analysis level FG and species, the accuracies of all model-data matrix combinations varied very little. However, 

at the Species level, where the species-specific metabolic profiles are distinctive but generally share some more 

features between closely related species, we found that the choice of data matrix did change the performance 

of the tested models to a greater deal than in the FG levels. ImpLog seemingly worked best for PLS and SVM, 

while RF performed better with the ZeroInt data matrix.  

The third major question in this study was to compare the model performances on each analysis level. Both 

the FG and Species analysis levels showed great overall accuracy in all tested models with only slight variations. 

The accuracy of this one-vs-rest approach in these levels, although enabling the models to distinguish between 

metabolic profiles, highly depends on the profiles they are compared to. In all tested analysis levels, we found 

the linear classifier PLS to perform best in terms of accuracies and Kappa values. RF showed very similar values 

compared to PLS, except in FG, where SVMl and SVMp performed slightly better. RF showed a comparatively 

good performance in the analysis level season, although without a supporting Kappa value. In the analysis level 

of diversity, we found no suitable classification strategy in most species. In general, the classification in the level 

of diversity is most challenging due to the underlying experimental setup. The sampled plant communities are 

not replicated in the Trait-Based-Experiment. Each diversity level has a different plant community as a reference 

and, therefore, unknown diverse effects on the metabolomic profiles. Additionally, at the diversity level, the 

models have to classify across the seasonal level, which comes with a greater variety in the metabolomic profiles. 

Here, RF was found to be the second-best model after PLS.  

Across all four analysis levels, both the linear and poly kernel models in SVM were always close to each other 

in terms of accuracies and Kappa values. Our analysis found that SVMp often showed the best results when using 

one dimension for the data separation, which makes it a linear classification model. This most likely occurred due 

to the ability of the polynomial kernel to test different numbers of dimensions (degree) that worked best for the 

classification of each group (Burges, 1998; Statnikov et al., 2008). SVMl and SVMp are very close in their 

performance but are not as accurate as PLS and RF. SVMr seemed the least suitable for these data types in terms 

of performance across all data sets and within the analysis level (Burges, 1998).  

Addressing the underlying structures of the measured features could significantly improve the classification 

performance (Tang et al., 2014; Hageman et al., 2017). However, in this study, we found excellent classifications 

at FG and species level, especially in PLS models, which might result from the data's underlying structure. The 
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data sets we used in this study included species whose secondary metabolite patterns are highly diverse and 

allowed for an excellent classification per se (Marr et al., 2021). Another reason for getting those almost perfect 

classifications in the FG and species levels may occur due to the over-optimistic prediction of the eco-

metabolomics data. For example, the imbalance between the number of features and samples can increase the 

ratio of features that correlate with the initial research question just by chance or lead to overfitting models. An 

overfitting model would represent the training data nearly perfectly while lacking the ability of generalisation 

(Broadhurst & Kell 2006, Tang et al. 2014, Gromski et al. 2015). Furthermore, as discussed by Mendez et al. 

(2019), carefully choosing parameters while training the model is essential to avoid drawing wrong conclusions. 

Therefore, the outcome and interpretation of results can be very different depending on the methods used. 

 
5 Conclusion: 

In eco-metabolomics, choosing a suitable classification method relies on multiple conditions. Therefore, 

which method is better suited for a specific problem may be based on the combination of strengths and 

limitations of the classification and feature selection method concerning the individual data sets. Depending on 

the goal of the classification and feature selection, we found RF to be a great choice for selecting only a few 

features that are needed for the classification. In contrast, PLS selected a greater number of features that were 

involved to some degree in the classification of the classes. For the usage of the latter method, the feature 

selection goal could be to find a fixed number of the most relevant features for separating the groups. However, 

due to its underlying structure, PLS has a tendency to overfit the provided data and might not be the best choice 

as a prediction model.  

The careful handling of the data matrix can also improve the performance of the chosen model. This study 

found that the more similar the metabolic profiles are, the better the ZeroInt data matrix worked with the 

models. In general, we found that the overall composition of the metabolomic profiles was most important for 

classification. Depending on the complexity of the provided background for classification, PLS, SVM, and RF work 

comparably reliably when distinguishable metabolomics profiles are used, e.g. when classifying across different 

species. PLS and RF provide a greater classification power when the provided background is similar, e.g. when 

comparing different treatments within one species. We, therefore, suggest using the introduced feature 

selection tools with care and as observatory tools for eco-metabolomics data sets to reduce the amount of 

available data and retrieve relevant information. Selected features and identified metabolites can then be used 

in more in-depth studies to prove their relevance within ecosystem services.  
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Figures 
 

Figure. 1 Data set overview. All data sets are composed of species (pink) from the functional groups (FG; green) 

grasses (light green panel) and herbs (dark green panel). The data set MTBLS2140 (orange panel) includes four 

additional grass species. In the data sets MTBLS679 and MTBLS1224 (grey panel) each species was sampled in 

four different seasons (late spring, early summer, late summer, early autumn; peach) from plots with four 

different diversity levels (DL; pale purple).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 | 

34 | 

 

 

 

 

 

 

 

 

 

Figure 2 Features selected by classification methods, compared to unique features of each analysis level. For 

plotting purposes, we combined model selected features from all calculated factors within the three data sets 

(MTBLS679, MTBLS1224, MTBLS2140). SVMl, SVMr, and SVMp models are combined to SVM to increase the 

readability of the figure. In all analysis levels, we used 65 as the variable importance threshold for PLS, SVM, and 

RF (except in Species, PLS: 10). In each analysis level, we selected unique features separately and combined them 

across the three data sets (MTBLS679, MTBLS1224, MTBLS2140). a) In the analysis level FG (MTBLS679, 

MTBLS1224, MTBLS2140), features were selected as unique that only occurred in either one of the groups grass 

or herb. b) In the species level (MTBLS679, MTBLS1224, MTBLS2140), we selected unique features per species 

based on the one-vs-rest concept. c) Unique features in the Season level (MTBLS679, MTBLS1224) and d) 

Diversity level were selected within each species for each Season and Diversity level (MTBLS679, MTBLS1224), 

respectively, using the one-vs-rest approach.  
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Figure 3 Model performances compared based on their accuracy. Calculated accuracies of each data matrix 

(ZeroInt, ImpInt, ImpLog) are used to show the range within one model in one analysis level. The analysis levels 

are FG (green), species (deep pink), season (peach) and diversity (pale purple). The calculated models are PLS 

(circle), SVMl (square), SVMr (up pointing triangle), SVMp (down pointing triangle), and RF (diamond). The data 

matrices are arranged to show the minimal, medium and maximal accuracy value, which was reached by the 

respective model in each analysis level. Compare Table 2. The levels FG and species are additionally zoomed in 

the partial plots b (FG) and c (Spec) to increase the visibility and comparability. Note the different ranges on the 

x axis in both plots. 
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Tables  
 

Table 1 Data set overview. All data sets (MTBLS679, MTBLS1224, MTBLS2140) are composed of species belonging 

to the functional groups (FG) grasses and herbs. The data set MTBLS2140, additionally, contained four grass 

species. Samples in the data sets MTBLS679 and MTBLS1224 were collected in four different seasons from plots 

with four different diversity levels.  
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Table 2 Model performances compared across levels of analysis and data matrices. Models were calculated for 

each data set (MTBLS679, MTBLS1224, MTBLS2140) separately. In the data sets MTBLS679 and MTBLS1224, the 

levels season and diversity were calculated for each species (Spec) separately. We compare the model 

performances based on their accuracy and the corresponding Kappa. In order to increase readability, the table 

shows the mean accuracy (mAc) and mean Kappa (mKa), averaged across the data sets (MTBLS679, MTBLS1224, 

MTBLS2140). Additionally, for the analysis levels season and diversity, the mAc and mKa were averaged across 

all species. Reliable mAc (mKa > 0.6) are highlighted in bold font. A comprehensive table, including all calculations 

and the best model choices, are available in Supplemental Table 1 (Online Resource 1).  

 

 

 

 

Table 3 Mean values of true positive prediction rate (pos rate) and true negative prediction rate (neg rate) for all 

levels in the respective data sets. Predictions are calculated on each level separately. For the level FG the rates 

are predicted for grass vs herb species. For the species level, the rates are calculated per species vs rest, for the 

levels season and diversity, the rates are calculated in each species per season and per diversity level, 

respectively. 
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Abstract 

The impact of plant species diversity on productivity in plant communities has already been shown for 

multiple ecosystems. Secondary metabolites and how they shape the interaction within these plant networks, 

on the other hand, are increasingly becoming an important part of ecological studies. However, the level and 

extent to which these interactions occur are not well understood yet. In this study, we investigated the LC-MS 

profiles of thirteen grassland species grown in diverse communities across the growing season within the Jena 

experiment. We found a unique metabolite composition for all species in this study, shaping a species-specific 

fingerprint across the year and environmental dynamics. The specific part of the metabolite profiles actively 

responding to environmental pressures was found to directly correlate with plant species richness and 

composition in some of the species. These dynamic defence profiles generally showed similar changes in closely 

related plant species. 

 

Introduction 
Species loss in natural ecosystems has increased the motivation for studies investigating the relationships 

between plant diversity on the productivity of ecosystems (Rasmann & Turlings, 2016). Beneficial effects of 

biodiversity are reported throughout the literature (Lorentzen et al. 2008, Marquard et al. 2009), such as 

increased plant performance, resource management and overall resilience, and plants' extreme capability to 

adapt rapidly to changing environmental conditions. As pointed out by Scherling et al. (2010), biodiversity can 

trigger a multitude of effects on the performance of plant species or species communities. For example, in 

monocultures, plants would have to invest many resources in the same specific and precise defence strategies 

to tackle biotic and abiotic pressures, while diverse plant communities can benefit from shared defence 

mechanisms among the different species without having them present in all plants simultaneously. Representing 

the direct link between genotype, and phenotype (Fiehn 2002, Weston et al. 2015, Fang et al. 2019), including 

central (primary) and specialised (secondary) metabolism, metabolites serve as the reflection of the chemical 

response of plants to environmental changes (Fiehn 2002, Weston et al. 2015). Especially the interplay of 

secondary metabolites with ecological traits (Walker et al. 2022), in combination with proteomics and 

transcriptomics, are the focus of studying complex plant-plant and plant-herbivore interactions within their 

environment (Weston et al. 2015) and evolutionary concepts (Fang et al. 2019). As pointed out by Gargallo-

Garriga et al. (2020), metabolomic variation can be driven by herbivores, as plants have to balance between 

primary (growth, reproduction) and secondary metabolism (defence, communication). When studying stress 

coping strategies, including biotic and abiotic interactions with environmental changes, metabolites are a 

valuable addition to traditional ecological traits as they reflect environmental conditions in their richness and 

composition throughout the plant kingdom (Scherling et al. 2010, Berini et al. 2018, Fang et al. 2019). Responses 

in plant metabolite profiles, as response to changing diversity in plant communities, can give insights into the 

underlying mechanisms that shape the herbivory pressure in those communities Ristok et al. (2022). For example, 

identifying species-specific profiles could narrow the number of metabolites relevant to defence and stress-

coping strategies. For example, previous studies already showed the importance of specialised secondary 

metabolites in plant-insect interactions (Tikunov et al. 2005), leading to the assumption that some metabolites 

serve a specialised purpose in multiple plant species (Fiehn 2002, Weston et al. 2012, Quinn et al. 2014, Sardans 

et al. 2020), i.e. an active involvement in plant-plant and plant-herbivore interactions. However, most secondary 

metabolites' functions remain unexplained and only little understood (Fiehn 2002, Fang et al. 2019). Moreover, 
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previous studies showed that many metabolites are species specific (Weston et al. 2012, Quinn et al. 2014). 

Leading to the assumption that some parts of the metabolite profiles will be conserved and inherent to specific 

plant families. In order to investigate the function of specific metabolites, we first need to understand the 

interplay of the metabolomic profiles with biotic and abiotic environmental changes. This can also enable the 

research to understand the role of compounds as responses to these pressures (Berini et al. 2018).  

Especially plant-plant interactions can influence the plant metabolome in specific ways, for example, volatiles 

(Tikunov et al. 2005) and other allelopathic compounds (Fernandez et al. 2016), which reflect both short and 

long-term defence mechanisms in plant species. Some studies are already investigating plant biodiversity effects 

on metabolomic profiles and physiological responses of plants (Scherling et al. 2010). A positive influence of 

phytochemical diversity on plant species richness and composition has also been reported in the literature 

(Richards et al 2015). Changes to the metabolomic profile is also associated with changing visible traits, especially 

along the developmental gradient. Along with the developmental stage, plant height per se can influence the 

metabolite profiles, for instance, due to the availability of light, and thereby imposed stress levels (Scherling et 

al. 2010). As discussed by Walker et al. (2022), the responses to environmental dynamics can be measured in the 

richness and composition of secondary metabolites (Fang et al. 2019), as the metabolite abundance is driven by 

abiotic (Sardans et al. 2020) and biotic pressures (Weston et al. 2015, Ristok et al. 2022). Previous studies already 

showed that certain biotic and abiotic stress factors, e.g. temperature (Yang et al. 2018), change specific 

metabolites in terms of richness and abundance, which leads to the assumption that the same stress will cause 

the same groups of metabolites to respond within similar plant species. For some of the secondary metabolites, 

such as phenolic compounds, alkaloids, and terpenoids, studies have already shown that their production is 

increased in different plant species in response to herbivory pressure (Fang et al. 2019). This study investigates 

the metabolite profiles of thirteen grassland plant species belonging to either functional group (FG) herb or grass. 

Thereby, functional groups are assembled with plant species that share similar characteristics, such as growth 

form and reproduction strategies.  

Furthermore, in this study, we try to show the variation in metabolite profiles based on physiological traits 

and developmental stages and on the changes under the influences of seasonal dynamics (i.e. abiotic factors, 

such as light, water, nutrient availability and biotic factors, such as herbivory pressure), especially those triggered 

by neighbourhood richness and species composition. As metabolomic profiles represent both the developmental 

stage of a plant optimising performance across seasonal dynamics and at the same time investing in defence 

strategies to minimise stress caused by biotic and abiotic factors, we expect that these two strategies are also 

visible in the metabolomic profile. Across the season, environmental factors change dramatically, including 

temperature, water and light availability and nutrient demand depending on the plant species that grow within 

the community (Scherling et al. 2010). The variation in these biotic and abiotic factors will be reflected in the 

metabolomic fingerprints of the plant species by increased production of defence compounds (Weston et al. 

2013, Berini et al. 2018). Analysing environmental changes across the growing season can help to capture the 

specific changes in metabolomic profiles that reflect a stress response within the plant species. Ristok et al. 

(2022) showed in their study that collecting samples from the same environments in different seasons can greatly 

influence the metabolomic profiles in terms of richness and composition. However, in contrast to visible traits 

that can be monitored over time (Flynn et al. 2008), metabolomic profiles only represent snapshots of a specific 

metabolomic profile at the time of sampling, affecting the ability to draw general conclusions from responses to 

the environment (Weston et al. 2015). What remains unknown is how the whole metabolomic profile is changing 

for different species under the same conditions, here across the season, especially across the changing 

neighbourhood that is changing across the growing season. Therefore, we sampled multiple times in this study 

to capture the variation in metabolite profiles across the growing season. 

Plant species have highly specialised defence mechanisms in place that result in the production of specific 

metabolites. Assuming that in plant communities with balanced species diversity environmental pressures are 

significantly lower than in uneven neighbourhoods, and thereby, the production of defence compounds are not 

required in the same amount. Therefore, in plant species communities with lower or uneven diversity we expect 

to find more specialised metabolites, while the protective diversity shield will result in balanced metabolomic 

profiles. Having said that, our three main questions, in this study, are 1) plant species richness and 2) plant species 

diversity of the plant community reflected in the metabolite profiles, and 3) do we find similarities in species of 

the same functional group. 

 

 

 



| CHAPTER 3 

 

| 43 

Methods 
Plant Material Collection 

Experimental Design. In this study, we used thirteen grassland plant species as target species that belong to 

the functional groups (FG) grass and herb. The seven FG grass species belonged to the family Poaceae 

(Anthoxanthum odoratum L., Avenula pubescens (Huds.) Dumort. (according to http://www.theplantlist.org/, 

now listed as Helictotrichon pubescens (Huds.) Schult. & Schult.f.), Dactylis glomerata L., Festuca rubra L., Holcus 

lanatus L., Phleum pratense L., Poa pratensis L.). The FG herb included five genera: Asteraceae (Centaurea jacea 

L., Leucanthemum vulgare (Vaill.) Lam.), Caprifoliaceae (Knautia arvensis (L.) Coult.), Geraniaceae (Geranium 

pratense L.), Plantaginaceae (Plantago lanceolata L.), and Ranunculaceae (Ranunculus acris L.). The plant 

samples were collected in the Jena Experiment (Roscher et al. 2004) from plots in the Trait-Based Experiment 

(Ebeling et al. 2014). We chose 48 plots (3.5 m x 3.5 m), initially planted in 2010 as Pool 1 and Pool 2 (Supple 

Figure 1), with different plant species compositions (compare Ebeling et al. 2014). Each species was collected 

from four plots with different initial compositions. The plots were designed with the initial composition of 

diversity levels (DL) with either one (DL1), two (DL2), four (DL4) or eight (DL8) different species (Figure SP2 

(new01)). Phleum pratense, Leucanthemum vulgare, and Plantago lanceolata were collected in additional four 

plots, resulting in eight plots for each species (Supple Table 1). Note that the plots in the Trait-Based-Experiment 

are semi-maintained, with two cutting events per growing season. Two specimens of each target species were 

collected as one replicate, with a total of two replicates in each plot on four occasions (season) across the growing 

season 2018 (for further details, see also Marr et al. 2021). Due to the design of the Trait-Based Experiment, 

some plots were used to collect multiple target species. The seasons (S) were chosen as snapshots representing 

late spring (E; May 2018), early summer (F; June 2018), late summer (G; July 2018) and early autumn (H; August 

2018), respectively.  

Recording Plant Diversity. Plot-specific factors were recorded prior to each sampling. We recorded the current 

number of species (richness) for each plot in each season (spring, early and late summer, and autumn). We 

estimated the abundance of each species as relative coverage in relation to the plot size. For the abundance 

estimation, we applied a decimal scale modified after the Londo scale using the following scheme: coverage (c) 

<= 1% equals (→) scale value (sv) 1, c >1% to <= 3% → sv 2, c >2% to <=5% → sv 4, >5% to <=15% → sv 10, >15% 

to <= 25% → sv 20, >25% to <= 35% → sv 30, et cetera, > 95% → sv 100. Note that the whole coverage of each 

species was taken into account. Hence, also values above sv 100 were occasionally recorded. These values were 

used to calculate the Shannon index per plot (species Shannon). The index uses the number of species and their 

abundances, denoting an individual's probability of belonging to the respective species (Izsàk & Papp 2000). A 

higher value of this index will indicate a higher diversity, whereas a 0 would imply that only one species is present 

in the plot. Note that this resulted in replicates of the same plot having the same richness and Shannon indices. 

Measurements and calculations can be found in Supple Table 1. 

Recording Plant Traits (Plant individual factors) and sampling. Plant individual factors were recorded for each 

collected replicate separately. For each replicate, we measured the height of both plant individuals and recorded 

the higher value. Following the BBCH scale by Hess et al. (1997), the developmental stage was recorded for the 

further developed plant individual. However, only those two plants were combined into one replicate, showing 

both an equal BBCH and similar height. The mechanical and pathogen-inflicted damage was collectively 

estimated in relation to the biomass of both individuals (for details, see Marr et al. 2021).  

In this study, we collected two individual plants with similar developmental stages as one combined replicate. 

Leaf tissues of each plant were cut, collected in plastic vials, immediately snap-frozen, and stored on dry ice. The 

samples were collected within one day between midday and sunset for each season (2018_E, 2018_F, 2018_G, 

2018_H) to keep possible time-related shifts in the metabolome to a minimum. Each replicate was assigned a 

random lab-ID as described by Marr et al. (2021). Therefore, a number between 1 and 128 per season was drawn 

randomly. These lab-IDs then determined the sequence of the following analysis.  

 

 

Liquid-Chromatography-Mass-spectrometry (LC-MS) 
Sample Extraction. This study based the extraction process on the workflow described by Marr et al. (2021). 

Modifications to this method are stated where applicable. Frozen leaf material was ground (20 mL plastic Vials; 

2 x 7 mm steel beads) at -75 °C for 150 seconds (5 x cycles: 30 s grinding, 30 s pausing) using the automated 

Labman IPB Cryogrinder Ball Mill (Labman Automation, UK). Zircosil beads (1.2 - 1.7 mm) and 500 µL extraction 

solvent (Methanol/Water (80/20 v/v) were added to 100 mg aliquots (± 50 mg) of the ground frozen samples in 

2 mL Extraction-Tubes, while kept on liquid nitrogen. Samples were thawed for 3 minutes and then extracted in 

a Homogenizer (Precellys® 24 Tissue Homogenizer, Bertin Technologies, USA) for 90 seconds (2 x cycles: 45 s run, 
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15 s pausing) at 6500 rpm. Samples were then centrifugated at 16168 x g for 15 minutes, and the supernatants 

were collected in a new 2 mL Extraction-Tube. In contrast to the method used by Marr et al. (2021), after an 

additional extraction of the remaining pellet, the combined supernatants were evaporated to dryness and then 

redissolved in a weight-specific five times surplus of the extraction solvent. Prior to the LC-MS measurements, 

we mixed aliquotes of 160µL pr sample with 40 µL of Water/Formic acid (99.9/0.1 v/v) with added internal 

standard N-alkyl pyridinium-3-sulfonate (NAPS) (1/100 v/v). The extracts were stored at -20 °C for at least 

24 hours before supernatants were centrifugated at 16168 x g for 15 minutes and transferred to HPLC-Vials 

(Glasinlet, 300 µl). Note that two samples (2018_E_POAPRA_B075_b and 2018_F_ANTODO_A018_a) had to be 

excluded from further measurements as the amount of collected biomass was too little for the extraction. 

Quality Control (QC) and Species Pools. In this study, we used fieldBlanks that underwent the entire process 

of sampling and transportation, including the grinding preparation in the ball mill. Furthermore, We used blank 

samples throughout the extraction process to keep track of possible contaminations during this process. Using a 

10 µL aliquot of each sample per species, we created a pooled sample for each of the thirteen species (MSMS 

species pool). Aliquots of these pools were then further combined into functional-group-specific (FG) pools 

QC_herb and QC_grass, combining all herb and grass species. We prepared the QC_pool by combining aliquots 

of the two FG specific pools. 

LC-MS Measurements. Liquid-Chromatography-Mass-Spectrometry measurements were conducted 

following the methods proposed by Marr et al. (2021). The analysis was performed on an ACQUITY UPLC (Waters 

Corporation, Milford, USA) coupled to ESI-micrOToF-Q-II (Bruker Daltonics, Bremen, Germany). Aliquots of 2 µL 

per sample were separated at 40 °C on an HSS T3 C18 column (1.8 µm, 1.0 x 100 mm, RP, Waters Corporation). 

The binary elution gradient at 0.15 mL min-1 flow rate was increased linearly: Solvent A (water/formic acid 

99.9/0.1 v/v)/Solvent B (acetonitrile/formic acid 99.9/0.1 v/v); initial: A 95%, 3 minutes A 82.7 %,10 minutes A 

76 %, 17 minutes A 5 %, 18 minutes A 5 %, 18.1 minutes A 95 %, 20 minutes A 95%. In contrast to the methods 

used by Marr et al. (2021), features were measured in positive ion mode using internal calibration (sodium 

formate clusters, 10 mM sodium hydroxide in isopropanol/water/formic acid, 49.9/ 49.9/0.2 (v/v/v), at 18 min) 

and following instrument settings: nebuliser gas: nitrogen; nebuliser: 1.6 bar; dry gas: nitrogen; dry gas 

temperature: 190 °C; dry gas flow: 6 L min-1; spectra rate: 3 Spec sec-1 (Hz); in-source CID energy: 0 eV; hexapole 

RF: 120 Vpp; collision gas: nitrogen; pre pulse storage 7 µs; MSMS collision 100/100 (timing 50/50); capillary 

voltage 4500 V; scan from 50 to 1600 m/z; endplate 1072 nA; endplate offset: -500 V; Funnel 1 RF: 200 Vpp; 

Funnel 2 RF: 220 Vpp; quadrupole ion energy 4 eV; collision energy 10 eV; collision RF 160/350 Vpp (timing 

70/30); transfer time 90 µs. The measurement of each batch was initiated by a run in sequence using three runs 

of acetonitrile, one run of a blank, QC_grass, and QC_herb, followed by three runs of the QC_pool to equilibrate 

the column. Within a batch, we randomised the run order of the samples and measured the QC_pool after each 

11th sample again. The measurement of each batch was finalised with one run of QC_pool, QC_herb, QC_grass, 

and blank. All samples were measured in 12 batches, splitting them by their assigned lab-IDs after each 11th 

sample per season. Therefore, batch "pos01", for example, included the samples 001 to 011 of 2018_E, 2018_F, 

2018_G, and 2018_H, and "pos02" samples 12 to 22 of 2018_E, 2018_F, 2018_G, and 2018_H, et cetera. The 

thirteen MSMS species pools were measured in a separate batch using the following changed or additional 

parameters: endplate 1122 nA, number of precursors 3, mass tolerance 0.20 m/z, CID energy for MS/MS 5.0 eV, 

collision energy for MS/MS 70.0 eV.  

 
 

LC-MS raw data preparation 
Pre-processing. We converted the obtained Bruker files to the open data format '.mzML' using CompassXport 

(Bruker, version 3.0.9, http://www.bruker.com). The raw LC-MS data were pre-processed in Galaxy-W4M (based 

on XCMS 3.0) using the workflow provided by Marr et al. 2021: 

https://doi.workflow4metabolomics.org/W4M00008. The tool versions and parameters used to analyse this 

study's data set are listed in Suppl. Table 2. Peaks in the raw spectra are detected and grouped. In the second 

step, the peaks are corrected for retention time shifts. After a second grouping, isotopes and adducts are 

annotated using the CAMERA tool (Kuhl et al. 2012). The region of interest was filtered to 80 and 880 seconds.  

Validity Check. To ensure the quality of the data, we applied different validity checks on both the LC-MS 

features and the samples. Following the example by Marr et al. (2021), in this study, we used batch correction 

to remove equipment-related variation from the measured intensities of each feature. These signal drifts are 

likely introduced to the mass spectrometer over time and cause slight changes in the measured intensities. To 

correct for signal drops within and across batches, we used the multiple measurements of the QC_pool sample, 

assuming that ideally, the measured intensities for each feature within this sample would rather be the same. 
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We calculated and subtracted the variation between the QC_pool measurements from all features. To ensure 

the quality of each feature and that they were not contaminations but derived from a biological sample, we 

removed all features detected in the blanks and excluded them from further analyses. In this study, we tested 

the metabolomic fingerprints of each sample for their similarity to the fingerprints of their species to ensure that 

the collected plant samples were not contaminated. Applying the proposed method by Marr et al. (2021), we 

calculated Mahalanobis distances for the samples within each species. We used these distances to flag outliers 

with a distance three times the average distance to the respective species. These samples were then tested for 

the number of features that they shared with the species. Flagged samples that shared less than 25% of their 

features with their species were excluded from further analysis. Resulting in 6 samples being excluded from 

further analysis (Anthoxanthum odoratum: 2018_F_ANTODO_A044_a, 2018_H_ANTODO_A018_a; Phleum 

pratensis: 2018_F_PHLPRA_B073_a, 2018_G_PHLPRA_B073_a; Poa pratensis: 2018_F_POAPRA_B073_b; 

Ranunculus acris: 2018_G_RANACR_A018_b). The complete code used for the data validation is available in the 

MetaboLights repository MTBLS1224 as "SciData_ProcessingTutorial_Rscript.R".  

 

 

Feature diversity and selection 
Feature indices. We used the R package vegan (version 2.5-7, Oksanen et al. 2013) to calculate the feature 

diversity indices richness (fRich), Shannon (fShan), and Evenness (fEven) for each sample (504 samples used for 

this analysis). The feature richness was calculated by counting the number of features with measured intensities. 

The feature Shannon diversity was calculated based on the Shannon index (Shannon 1948) using the feature 

identity as species and the measured intensity as abundance. We used the richness and the Shannon index to 

calculate the feature Evenness. This index accounts for the abundance of features – ranging from 0 to 1, with 1 

accounting for the equal abundance of all detected features within a sample. Therefore, a low Evenness accounts 

for only a few highly abundant features with an increased number of low-intensity features. 

Feature selection. Variance partitioning Prior to the feature selection, we used variance partitioning to 

identify the experimental factors that explain most of the variance in the feature's intensities. To calculate the 

variance partitioning with the AnDec function of the StatTools package (version 0.0.916, Brunius 2022), we used 

the prepared data matrix, filled missing values with small random numbers and log-transformed the matrix 

(compare Missing Data Imputation in Marr et al. 2021). 

PLS pre-selection In this study, we used partial least square (PLS) models with the pls package (version 2.7-3, 

Mevik 2020) used by the caret package (version 6.0-88, Kuhn 2015) to select relevant features within each 

species. The PLS was performed for each species separately for the factors: species richness, species Shannon 

(Shan_total), plant height, plant BBCH, and mechanical- and pathogen-inflicted damage. The selected features 

were assigned a putative metabolite family ID (pMetFam_ID) that encodes the level of identification (Table 2, 

Suppl. Table 3).  

Feature annotation. To putatively annotate the measured compound families, we used the MetFamily web 

service (Treutler et al. 2016). To use the MetFamily web service, we converted the raw LC-MS/MS data of 

QC_pool and the MSMS species pools using the ABF converter (AbfConverter_1.3.7815, Reifycs Inc.) for Bruker 

files (CompassXtract_3.2.201_64_bit, Bruker Corporation). We pre-processed them with MS-Dial (MSDIAL ver 

4.70, Tsugawa et al. 2015). The parameter used for the processing were set as follows: MS1 tolerance 0.01 Da, 

MS2 tolerance 0.05 Da, retention time 1 to 15 min, MS1 mass range 100 - 1500 Da, min peak height 2000 

amplitude, mass slice width 0.05 Da, min peak width 4 scans, including all adduct species suggested by 

MetFamily. We used the libraries linked to MetFamily: Leibniz_positive_mode_20170801_2021-09-02, 

lib_spectra_pos_new_2021-09-02, MoNA-export-LC-MS-MS_Spectra_2021-09-02, MSMS-GNPS-Curated-

Pos_2021-09-02, and MSMS-Respect-Curated-Pos_2021-09-02 (Suppl. Table 3). We only used these features for 

the annotation that statistically showed reliability (p<=0.05). We used the annotations provided by MetFamily to 

annotate the selected features (see Feature selection). 

 

Linear Model Calculation 
For calculating linear models, we used the recorded plant species richness (pRich) and plant Shannon diversity 

(pShan) as predictor variables (preV). The metabolic fingerprint richness and composition indices (fRich, fShan, 

fEven) were used as response variables (resV). Linear models were calculated for each species, including all 

samples per species across all four seasons. Models calculated across all species included all 504 samples (all). 

We calculated the models as simple linear regression with one preV as fixed effect per resV, resulting in 84 
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models (Suppl. Table 4). To compare the linear models and evaluate their reliability and predictive power, we 

calculated the coefficient of determination (R²), the root-mean-square error (RMSE), confidence intervals (CI) 

and p-values as reference. The models were calculated with the stats package (R version 4.1.1 2021-08-10, R 

Core Team 2013) as used by the caret package (version 6.0-88, Kuhn 2015). Additionally, we calculated the p-

values with the package lmerTest (version 3.1-3, Kuznetsova et al. 2017). All R packages and version information 

are available in Suppl Table 6. 

 
Results  

Environmental traits on plot level In this study, we focussed on the dynamics in metabolite fingerprints of 

grassland plant species as a response to changing plant neighbourhoods across seasonal shifts. We compared 

the species richness designed for the TBE plots with the recorded richness (pRich) in the plots prior to sampling 

(Figure 01). We found that the species diversity in the plots did not represent the initially planted biodiversity 

(Suppl Table 4). In general, species richness ranged from 5 to 27, with an average of 13 (Supple Table 4, Figure 

01). In plots with the target species belonging to FG grass, pRich ranged from 5 to 24, and in plots with target 

species FG herb, from 5 to 27. On average, observed species richness ranged from 13 (DL2 and DL4) to 14 (DL1 

and DL8) across the year. We recorded 15 (Block A), 13 (Block B) and 12 (Block C) species on average across the 

seasons in the TBE plots we sampled our target species in (Supple Figure 1). We also found the most differences 

in plant species richness across the season and not across the plots. As averages per season, we recorded 16 to 

18 species for spring, 7 to 11 species in early summer, 12 to 15 species in late summer and 14 to 15 species on 

average in autumn (Figure 1). We recorded the plant species Shannon index (pShan) of the surrounding plant 

community for each target plant. In this study, pShan ranged from 0.43 to 2.64 for FG grass plots, with an average 

of 1.88 and from 0.77 to 2.59, with an average of 2 in FG herb plots. Across the season, the Shannon diversity 

(pShan) followed the pattern as the species richness within the Blocks of the TBE. In Block A, the Shannon 

diversity was recorded with an average of 1.93, in Block B with 1.89 and in C with 1.73. In each Block, we found 

pShan to be the lowest in early summer (season code F), followed by late summer (season code G). The highest 

pShan values were recorded in autumn (season code H) and spring (season code E). Across all Blocks, pShan for 

seasons, in general, was found to be 2.06 in spring (E), 1.58 in early summer (F), 1.81 in late summer (G) and 2.03 

in autumn (H). We use the recorded plant species exclusively for linear models and observation interpretation to 

investigate the relationship between plant species richness and diversity in different neighbourhoods on the 

metabolomic fingerprint of the thirteen different species. Because we found the species richness to be 

dependent on the season we sampled in, we treated each sample as independent replicated and independent 

of the plot designed diversity, plot location in the TBE and season.  

Environmental Traits on plant level In order to investigate the dynamics in the plant metabolite profiles, we 

also recorded environmental traits on the plant level. We measured height, recorded the developmental stage 

(according to the BBCH scale by Hess et al. 1997) and estimated mechanical- and pathogen-inflicted damage on 

each plant. Measurements for each sample are available in Suppl. Table 4. In our study, we recorded heights 

from 6.9 cm to 102.1 cm with an average of 29.9 cm (Table 1). The general average across all seasons was found 

to be 31.7cm in FG grass species and 27.8 in FG herb. In FG grass, the plant heights ranged from 57.9 to 102 cm, 

in spring, from 10.0 to 23 cm, in early summer, from 9.1 to 35.5 cm in late summer and from 9.6 to 21.5 cm in 

autumn. For FG herb, the individual plant heights were recorded from 23.5 to 76.3 cm in E, 8.5 to 38.8 cm in F, 

11 to 38 cm in G and 6.9 to 25.3 cm in H. The collected samples' plant developmental stages (BBCH scale) ranged 

from 30 to 85 in FG grass and 25 to 85 in FG herb (Table 1). In this study, we found the highest mechanical damage 

on leaves and stems averaged across Plantago lanceolata samples (15.3 %). Species of FG grass showed an 

average damage of 3.2 %, while the species in FG herb were recorded with 4.6 % on average. Across the seasons, 

we found the lowest mechanical damage for FG grass in E (0.4%), followed by F (4.1%), G (4.0%) and H (4.1%). 

While in FG herb, the lowest mechanical damage was found in G (3.6%), followed by E (3.8%), F (4.9%) and H 

(6.0%). Pathogen-inflicted damage, including signs of senescence, was found with up to 22.5% (Table 1). In FG 

grass species, the lowest average pathogen damage was recorded in H (7.7%), followed by E (10.4%), F (15%) and 

G (18.4%). In the species of FG herb, we recorded the lowest damage in F (8.7%) and H (9.8%), with higher rates 

in E (12.6%) and G (13.8%). 

Metabolite richness and composition In this study, we measured the metabolite richness as feature richness 

(fRich), i.e. the number of recorded metabolite fragments and the metabolite composition, by taking the 

abundance of each feature into account, as Shannon diversity index of features (fShan) and feature Evenness 

(fEven). Across all species and seasons, we found fRich to range from 321 to 642 in FG grass species and from 

452 to 800 in FG herb species (Suppl Table 4). On average, we found in Festuca rubra (347) and Poa pratensis 

(360) the lowest fRich across the seasons, while Anthoxanthum odoratum (579) and Avenula pubescens (532) 
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had the highest fRich in FG grass (Table 1a). In FG herb, we found the lowest fRich in Ranunculus acris (465) and 

Geranium pratensis (484) and the highest in Knautia arvensis (728) and Plantago lanceolata (738) on average 

(Table 1b). FG grass samples collected in autumn (H) and spring (E) showed the lowest fRich, while FG herb 

species showed the lowest when collected in autumn and early summer. Furthermore, when collected in late 

summer, most FG herb species showed the highest fRich on average. We found fRich to be highest on average 

across all seasons in the plots of Block A, followed by B and C (Suppl Table 4). fShan ranged from 0.11 to 5.52 in 

FG grass and 0.69 to 5.89 in FG herb (Suppl Table 4). On average for FG grass species, fShan was lowest in Poa 

pratensis (1) and Festuca rubra (1) and highest in Anthoxanthum odoratum (4) and Avenula pubescens (5) (Table 

1 a). In FG herb, fShan was found to be lowest in Ranunculus acris (1) and similarly high in Leucanthemum vulgare 

(5), Knautia arvensis (5), Geranium pratensis (5), Centaurea jacea (5) and Plantago lanceolata (6) (Tabel 1b). 

Across the seasons, fShan was found to follow the same trend in FG grass species, with low values on average in 

spring (E), and high values in late summer (G) and autumn (H). For species of FG herb, we found the lowest fShan 

values for most species in early summer (F) and autumn (H), while in late summer (G), higher values were 

recorded (Table 1 b). Generally, slightly higher fShan values were measured in plants collected in Block C, 

compared to plots in Blocks A and B (Supple Table 4). Across the seasons and species, we found fEven to range 

from 0.02 to 0.87 in FG grass and from 0.11 to 0.88 (Suppl Table 4). In FG grass species, Festuca rubra (0.10) and 

Poa pratensis (0.13) were found to have the lowest fEven values. In contrast, Anthoxanthum odoratum (0.60) 

and Avenula pubescens (0.78) had the highest values on average (Table 1 a). However, only Ranunculus acris 

(0.20) in FG herb showed comparably low values. In contrast, Leucanthemum vulgare (0.80), Knautia arvensis 

(0.80), Geranium pratensis (0.80), Centaurea jacea (0.80) and Plantago lanceolata (0.83) all showed a similar 

fEven value (Table 1 b). However, the change in Evenness was only minor across the seasons within the FGs. For 

both FG, we found the general trend in fEven with low values in spring (E), followed by early summer (F) and high 

values in late summer (G) and autumn (H) (Suppl Table 4), across the blocks of the TBE. The fEven values were 

found to be similar, with samples collected from Block C having a slightly higher fEven across the seasons (Supple 

Table 4). 

Metabolite profiles dynamics We accessed the impact of the plot (season, plot diversity as either desDiv or 

pRich and pShan) and plant level traits (height, BBCH, mechDam, pathDam) on the metabolite profile dynamics 

via variance partitioning Figure 2). When calculated across all samples using the designed plot diversity of the 

TBE, we found that about 66% of the dynamics of the fingerprint were explained by species identity (65%) and 

plot level factors (1%). Plant-level traits added about 8%, leaving 25% as unexplained residuals (Figure 2 a). 

However, when using pRich and pShan in the calculation rather than the designed diversity, 80% are explained 

by species identity (65%) and plot level traits (15%), with 5% added through plant level traits and 15% residuals 

(Figure 2 c). When focusing on the plant identity and calculating the variance partitioning per species, we found 

that, on average, about 33% of the profile dynamics are explained by plot level traits (Figure 2 b) when using 

designed diversity as a plot trait. Plant level traits were found to account for an additional 51%, resulting in 15% 

unexplained residuals. On the contrary, when taking pRich and pShan into account as plot level traits, 62% of the 

dynamics of the profiles could be explained on average. In comparison, plant level traits were found to account 

fan or an additional 29% of the variation of the metabolomic fingerprint, with only 9% remaining residuals (Figure 

2 d). 

Metabolite family annotation In this study, we used the measured LC-MS features to putatively annotate 

metabolite families (pMetFam) found in the thirteen target plant species (Figure 03, Table 2, Suppl. Table 3a and 

3b). We used PLS models for pre-selecting features that showed significant relevance for plot or plant level traits 

in at least one species. The selection was performed with a threshold, so not being selected does not mean that 

the feature is not relevant in the species, but it means that for the tested factors, it was not selected with a high 

enough variable importance. In total, we were able to annotate 305 compounds within 8 metabolite families 

(Table 2). We putatively annotated compounds in the metabolite families Organic nitrogen compounds 

(pMetFam01), Organopnictogen compounds (pMetFam02), Benzenoids (pMetFam03), Organic acids and 

derivatives (pMetFam04), Lipids and lipid-like molecules (pMetFam05), Organoheterocyclic compounds 

(pMetFam06), Organic oxygen compounds (pMetFam07), and Phenylpropanoids and polyketides (pMetFam08). 

For example, for pMetFam_05, we found reliable annotations to the fourth and for Benzenoids (pMetFam_03) 

to the third level. The features for compound family pMetFam_02 were only annotated on the first level (Figure 

03, Table 2, Suppl. Table 3a). A detailed list of features, their specifications (retention time, exact mass, etc.), and 

annotations are available in Supple. Table 3a. For each selected feature, we counted the number of samples (QCs 

and species pools not included) that had a measurement, even though the feature was only selected as relevant 

in one species-trait combination (feature count). For example, 20 selected features were annotated as Coumaric 

acid esters (pMetFam_08-F2.2a), adding up to a total count of 1703 (Table 2). The measured intensities for the 

selected feature are available in Supple. Table 3b. The lowest count was found for pMetFam01 (114), with only 
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two features annotated within this metabolite family (Figure 3). In pMetFam02, pMetFam03, pMetFam04 and 

pMetFam05 were also annotated for less than 10 features each. The highest count was found in pMetFam08 

(11797) for 118 annotated features, followed by pMetFam07 and pMetFam06 with a count of 3411 in 37 features 

and 2034 in 23 features, respectively. When looking at the species, we found the most selected and annotated 

features in samples of PA (3813) for FG grass and KA (2712) for FG herb. In the herb species RA (513) and grass 

species HL (710), and AO (843), we found the lowest feature counts. The FG herb species PL (1283) and CJ (1839) 

had also a smaller feature count. The species AP (2138), PP (2505), DG (2617), and FR (3049) in FG grass and GP 

(2409) and LV (2459) in FG herb shared a relatively equal feature count. 

Linear correlations of plot and feature traits To further investigate the relationship of plot traits with the 

dynamics in the metabolomic fingerprints, we used simple linear models with one feature trait as the response 

variable (resV) and one plot level trait as the predictor variable (preV). Models were calculated for each species 

separately and as a full model across all 504 samples using fRich as a response to pRich or pShan, fShan as the 

response to pRich or pShan and fEven as a response to pRich and pShan (Table 3, Figure 4). A detailed list of all 

model results is available in Suppl. Table 5. All linear models calculated across all thirteen species (504 samples) 

were found to be negatively correlated, with R² ranging only from 0.25 to 0.28 (Table 3). For the linear models 

that used pRich as the predictor variable, p values were found as slightly significant (0.03 to 0.05), while the 

models using pShan only had p values > 0.1. For the linear models using pRich as preV and fRich as resV, we found 

in FG grass species PP (R² = 0.19; p = 0.82) and FR (R² = 0.46; p = 0.63) to be positively correlated (Figure 4 a). 

Only HL and PA generally showed higher R² values, with 0.64 and 0.65, respectively. Significant p values were 

only found for AO (p = 0.03) and HL (p = 0.01; Table 3). For species of FG herb, we found three species with a 

positive and three with a negative correlation. Only CJ was found to have a slightly higher R² value at 0.57 (p = 

0.15). Significant p values were only found for LV (0.01) and PL (0.01) but with low R² values between 0.22 and 

0.23 (Table 3). We only found FR positively correlated for models with resV fShan and preV pRich (R² = 0.74, p = 

0.02). PA showed a higher R² value (0.79). Most species of FG herb showed a positive correlation, while only PL 

(R² = 0.25, p = 0.08) and GP (R² = 0.48, p = 0.26) were negatively correlated. Here, only CJ was found with a higher 

R² value of 0.69 (p = 0.11). Furthermore, the models using preV pRich and resV fEven were found with a positive 

correlation in FR (R² = 0.75, p = 0.02) of FG grass, and LV (R² = 0.28, p = 0.02), KA (R² = 0.42, p = 0.58), CJ (R² = 

0.46, p = 0.24) and RA (R² = 0.56, p = 0.24  ) for FG herb. The highest R² values were found for FR and PA (R² = 

0.78, p = 0.17). Linear models calculated with pShan as preV and fRich as resV were found to be negatively 

correlated in all species of FG grass, but PP (R² = 0.16, p = 1). The highest R² was found for HL at 0.51 (p = 0.02) 

and DG at 0.52 (p = 0.02). In FG herb, the two species RA (R² = 0.52, p = 0.2) and CJ (R² = 0.55, p = 0.3) were found 

with a positive correlation of the factors. The highest R² was found for KA (R² = 0.56). Models that used fShan as 

resV and pShan as preV were negatively correlated in all FG grass species, with R² ranging from 0.22 to 0.68. In 

FG herb, the only models for RA (R² = 0.43, p = 0.69) and CJ (p = 0.23) showed a positive correlation for the 

factors. The highest R² was found in CJ with 0.64. For the models using fEven as resV and pShan as preV, all FG 

grass species were also found with a negative correlation and R² values ranging from 0.21 to 0.68. The highest R² 

values were found for AP (0.62) and DG (0.68) models. Moreover, we found three species of FG herb with positive 

and three with negative correlations. The highest R² value, here, was found in GP (0.68, p = 0.05). 

 

Discussion 
In this study, our three main questions focused on 1) how plant species richness (pRich) and 2) species 

diversity (pShan) are reflected in metabolomic profiles of thirteen grassland plant species in terms of richness 

(fRich) and composition (fShan), and evenness (fEven) of their LC-MS measured features, and 3) if we can find 

similarities in these profiles changes in species belonging to the same functional groups (FG). Although the TBE, 

as part of the Jena Experiment, provided plots with different levels of plant species diversity, composed of 

different species pools that included 4 grass and 4 herb species each, the underlying concept was unsuitable for 

our study. As sampling had to take place multiple times throughout the year and, therefore, could not be timed 

according to the maintenance procedures happening twice a year in these plots, the plant species composition 

across the full growing season that we focussed on for our metabolite analysis was not effectively reflected by 

the plant community present in the plots. Therefore, we separately recorded plant species richness (pRich) and 

diversity (pShan) for each plot on each sampling occasion.  

Previous studies were able to show that seasonal dynamics directly (temperature, water and light availability) 

and indirectly (plant-plant and plant-herbivore) influence the production of metabolites and, in the dynamic 

defence profile (Weston et al. 2013], Berini et al. 2018). In this study, we define the term <season= as the interplay 

of weather dynamics (light, water, nutrient availability), growth and reproduction cycles of plants, and semi-

maintenance occurring twice within the growing season. In our study, the snapshots of the metabolomic profiles 
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across the year do not comprehensively reflect the dynamics within the profiles but rather give an idea of the 

overall picture. Moreover, the semi-maintenance, i.e. mowing and weeding, in all TBE plots, included increased 

mechanical damage to the plants and general disturbance to the plot and soil structure. Depending on the set 

species composition in each plot, weeding was accomplished by taking out the majority of plants, leaving only a 

few individuals of the sown species in the plot with large patches of cleared bare ground. In contrast, in other 

plots, mainly grass species plots, only a few weed plants were removed, leaving those plots nearly undisturbed. 

Since we assume that all those external changes also directly influence the metabolite profiles by increasing 

stress and, thereby, triggering an increased production of defence compounds, analysing the thirteen target 

species in a single correlation model would have prevented us from drawing reliable conclusions. As shown in 

the results, integrating all species into a single correlation model would overshadow the correlations in single 

species with strong correlations in only a few species. Furthermore, we only used the plot level traits, pRich and 

pShan, for our correlation models. We assume that the recorded traits for the individual plant samples are both 

a direct and indirect result of the community dynamics and are, therefore, already reflected in the plot level 

traits. 

Throughout the literature, the term metabolomic profile and profiling are often used to refer to the entirety 

of all, e.g. plant, produced primary and secondary metabolites (Weston et al. 2015) or as a synonym to targeted 

metabolomics (Fiehn 2022). However, here, we use the term metabolomic profile to refer to all LC-MS measured 

features deriving from mainly secondary metabolites, regardless of their origin (plant, microorganisms, etc.), as 

the interaction between plants and microorganisms is seamlessly intertwined. To be able to confirm the specific 

function of compounds, their identification is often a top priority in metabolomics studies (Fang et al. 2019); 

however, in this study, we focus instead on the big picture, presented as the profile of measured features, rather 

than the identification of single compounds. Many studies report that environmental changes are reflected in 

the secondary metabolite profile (e.g. Berini et al. 2018), leading to the assumption that all or at least major parts 

of the profiles are responding to environmental changes in a brief time frame; however, in our study, we were 

able to show that only parts of the secondary metabolite profile is directly representing the changes induced by 

biotic and abiotic factors. Already mentioned by Walker et al. (2022), metabolomic profiles are most likely 

composed of two sets of metabolites, including metabolites produced throughout the life cycle of a plant, and 

metabolites, which abundance is induced by environmental changes and pressures. In our study, we found that 

species identity accounted for 65% of the variation in the metabolomic profiles, leading to the assumption that 

all species maintain several metabolites, mainly representing the species identity. We identified these parts as 

the metabolomic fingerprint of a plant accounting for its biogeographic legacy. At the same time, the remaining 

metabolite represented the dynamic defence profile influenced by environmental changes and seasonal 

dynamics. These fingerprints also seemed to be mainly independent of direct plant features such as 

developmental stage, height and level of damage. We could show those two types of secondary metabolites for 

all thirteen species. All species showed another set of metabolites that represents changes caused by 

environmental dynamics.  

Furthermore, we found some of the annotated metabolite families to play an important role in the defence 

mechanisms of some of the thirteen target species. In contrast, they are not found to undergo considerable 

changes in other species or haven't been measured. This finding also contributed to the decision to analyse the 

relationships of plant species richness and composition per species and not in a global model. As discussed by 

Zanne et al. (2014) and Díaz et al. (2016), plants commonly have a set of available strategies to maximise their 

fitness, which should make it possible to predict certain responses to environmental changes. This would support 

the assumption that specific metabolites are engaged in responses to specific environmental pressures, for 

instance, Jasmonic acid for herbivory pressure (Wasternack & Hause 2013) and p-coumaroylagmatine for UV 

stress (Kusano et al. 2011). However, the responses may be broader and less specific for similar pressure that is 

less specific, such as weather conditions. In the TBE Jena Experiment, different seasons come with different 

combinations of species composition in various abundance levels. The different neighbourhoods, abundances 

and diversity levels influence the performance, appearance and, hence, the metabolomic fingerprints of each 

target plant species resulting in altered metabolite richness and composition. Since the species richness present 

in a plot is a direct result of the time point defining the sampling season, including all environmental factors but 

also maintenance-related factors, the effects and correlations we find may not represent a true image of natural 

diversity settings. 

We generally found plant species richness to be mostly season dependent, with relatively equal numbers for 

FG grass and FG herb target species. However, species richness was not found according to the general 

expectation of finding an increasing number of species over the year. Still, it mainly depended on the semi-

maintenance in the TBE plots. In spring, we found the highest number of species, as this sampling was done 

before the first weeding and mowing action. The species had about 8 to 9 months to recover, undergo the winter 
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season and grow back in a natural composition with little to no disturbance, allowing many species to grow big 

enough for identification. On the other hand, the lowest species richness was found in early summer. Here the 

sampling was conducted only a few weeks after mowing and weeding, leaving the plants mostly small-statured 

and some plots with large bare patches of soil. For the diversity assessed by the Shannon index, we found the 

most range in early and late summer, while the smallest range was recorded in spring and autumn. Across the 

FGs, the diversity levels were mostly stable, leading to the assumption that the changes are mainly related to the 

initial species composition. Using species richness as an independent factor regardless of the season allowed us 

to investigate the influence of plant species richness and composition on LC-MS features' richness and 

composition.  

Plant species richness (pRich) was mainly negatively correlated with featuring richness (fRich). Here we found 

the correlations according to our assumption that higher plant species richness would result in lower counts of 

features per sample confirmed. Assuming that a high species number and hence high diversity would result in 

less pressure, such as less herbivory, better shading, better nutrient availability, and less production of defence 

metabolites. For the model using plant species Shannon (pShan) index to predict feature richness (fRich), we also 

found a negative correlation for most species in FG herb and grass with moderately reliable R² values. This seems 

to confirm the assumption that in a neighbourhood with more species that are equally distributed, the stress 

levels are reduced and metabolite production can be reduced to a necessary minimum. However, some species 

also showed a positive correlation, which supports the assumption that the responses to environmental changes 

can be highly species specific. For fShan and pRich, we would have expected to find lower fShan values in 

communities with a lower species number (small pRich), as this would account for high pressure to abiotic and 

biotic factors are being answered with very specific metabolites that are produced as defence mechanisms. 

However, in our study, we found most species of FG grass to be negatively correlated, with the highest feature 

Shannon measured in plots with a high species richness. On the other hand, plant species of FG herb all showed 

a slightly positive correlation, underpinning the initial assumption. When calculated across all thirteen species, 

the trend clearly is negative, although only grass species showed this tendency in our study. According to the 

theory that plant species diversity acts as a protective shield within the plant community and that plants produce 

highly specialised defence compounds in higher amounts depending on the pressure, we would expect to see a 

positive correlation between feature Shannon (fShan) and plant community composition (pShan). However, in 

this study, we found only slight correlations but hardly any clear direction for FG herb, while grass species were 

mostly negatively correlated. The overall model reliability was very low when calculated across all species. When 

testing the correlation between plant species richness (pRich) and the feature evenness (fEven), we found that 

the FG herb species showed a slightly positive correlation which would be according to the expectation that with 

higher species richness, we have a more evenly distributed metabolite profile. In comparison, with less richness, 

we would see more metabolites in overproduction and, hence, less feature evenness. 

However, FG grass species showed a clear negative correlation between plant species richness and feature 

evenness. For models with fEven and pShan, we see a similar picture. FG herb showed a slightly positive but 

mostly no correlation between plant diversity and feature evenness, while FG grass species were negatively 

correlated. We found the changes to the metabolomic profiles for the thirteen tested species to be highly 

species-dependent. No common change was found in the profiles for all species, but similarities in the closely 

related species, i.e. FG grass. The species tested here in FG herb are probably phylogenetically too far from one 

another to show the same changes in their metabolomic profiles. In general, differences between FGs point to 

different defence strategies.  

In this study, we found, on average most residuals in herb species compared to grass species, highlighting the 

different strategies of incorporating defence mechanisms to survival and reproduction strategies on limited 

resources in a diverse neighbourhood. But, these species also had the most residuals remaining unexplained, 

pointing to other influences that weren't accounted for in the models. One explanation for the differences found 

in FG grass and FG herb species might be related to the fact that species richness is also influencing resource 

availability, which can have negative effects on plant productivity (Marquard et al. 2009, Scherling et al. 2010) 

and is thereby also effecting the metabolite profiles (Flynn et al. 2008). The fact that in FG grass species, we 

found a negative correlation between feature richness and diversity with plant species richness and diversity 

more often might be due to the fact that grass species in the TBE were more exposed to beneficial plant species 

mixtures. For example, soil-related effects, such as mycorrhiza, microorganisms, or legumes' beneficial effect. 

For example, Hooper et al. (2005) argue that legumes present in plant communities provide beneficial effects to 

plant productivity. While (Forbey and Hunter 2012) point out that herbivores can also strategically use certain 

secondary metabolites, which would alter the herbivore pressure in these plant communities, beneficial effects 

of mycorrhiza are also more associated with FG herb species than grass species, which can also affect the 

production of metabolites as more resources are made available by the fungi (Ristok et al. 2019) 
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Another explanation points toward the different strategies used by FG herb and FG grass species, including 

the more mechanical defence structures in grasses, which lead to the overall lower production of metabolites in 

FG grass species. When investigating the influence of seasons, temperature changes are one of the most 

apparent influences that can trigger changes to the metabolomic profiles. However, as discussed by 

Berini  et  al. (2018) the findings are not consistent across the studies. Interpreting the findings can be very 

challenging as even small changes in environmental conditions can dramatically affect metabolite profiles. 

Moreover, changes in plant species richness and plant species Shannon are not only related to the season where 

weather conditions change and developmental stages are different but also depend on the semi-maintenance of 

the plots in the TBE. Therefore, our finding that low pRich and low pShan were correlated with higher metabolite 

richness can also be a result of the semi-maintenance procedures being applied in the plots of the TBE Jena 

Experiment, where plots of FG grass species are mainly undisturbed in contrast to the highly disturbed FG herb 

plots across the year, resulting in sampling timepoints with high response to disturbance in cleaned and cut 

plants (less species abundance, and richness). Plants that are under pressure from plot disturbance and resource 

collection to grow back and reproduce might be more prone to biotic and abiotic factors due to free spaces in 

the plot (less dense community), less protection from herbivores, less beneficial effects of legumes (get weeded 

out), mechanical damage from mowing. As shown by (Ristok et al. 2022), metabolite diversity as a response to 

resource availability was found to vary in FG grass and FG herb. This might be related to resource availability, 

which can be more limited in communities with a higher number of species as the resource pools, such as light, 

water and nutrient availability are more dependent than in communities with fewer species. As discussed by 

(Berini et al. 2018), changes in secondary metabolite profiles might also have beneficial effects on the plant 

community by contributing to defence strategies against various biotic and abiotic pressures. As discussed by 

(Walker et al. 2022), the different strategies presented by plant species in terms of ecological traits, i.e. fast-

growing (acquisitive) and slow-growing (conservative) strategies, will be reflected in their metabolite profiles. 

Therefore, using the recorded plant height across the season as an indicator of potential changes in the 

metabolite profile might provide insights into the bio-geo-legacy strategies of different plant species. Scherling 

et al. (2010) found in their study that plants with shorter growing habitus showed a correlation in their 

metabolomics profiles as a response to higher plant species richness in contrast to plants with a taller habitus, 

which seemingly did not show a response to different plant species richness in their metabolomic profiles. The 

authors concluded that small plant species are less competitive and, hence, more affected by resource limitations 

imposed upon the species by a higher richness. 

In contrast, tall plants, which had reportedly become dominant in the tested communities, were not found 

to respond to the changes with alterations to their metabolomic profiles. Also, the correlation between biomass 

production and the metabolomic profile structure showed that larger species with more complex reproductive 

organs commonly produce more metabolites. Therefore, altering plant metabolite profiles likely depends on 

individual survival strategies of the plant species, as metabolite production must come to a balance and a trade-

off between defence mechanisms and productivity on a limited resource (Díaz et al. 2016). Metabolites are the 

result of biochemical mechanisms and processes that shape plants9 physiology and function and might, therefore, 

not only be influenced and shaped by the surrounding plant community but actively influence the diversity of 

the plant community by influencing the attractiveness to herbivores in the community (Richards et al. 2015). 

 

Conclusion  

Assuming that plant communities can benefit from higher diversity in multiple ways, including shared 

production of defence metabolites, in our study, we expected that the tested plant species would regulate their 

metabolomic profiles according to changes in plant species richness and diversity within their community in 

similar patterns. Communities with high species richness and evenly distributed abundances, hence, would result 

in metabolite profiles with higher numbers of features that are evenly distributed. In contrast, on the other hand, 

in communities with only a few dominant species, we would mainly find higher abundant specialised defence 

metabolites. Although finding these expectations to some degree resembled in two herb and one grass species, 

most of the tested species were negatively correlated or showed varying patterns for the tested diversity indices. 

Our finding indicates that the response to specific plant species compositions is not only FG specific but highly 

depends on each species individually. While biodiversity might have an inherent beneficial effect on some plant 

species, at the same time, it can present other species with increased resource pressure or act less beneficial due 

to changed attractiveness for a broader range of herbivores and other parties in the community. In our study, 

for FG grass, which only included species from the Poaceae family, we found similar responses to plant richness 

and diversity more often, leading to the assumption that grass species use similar strategies to respond to 

environmental changes, as they share similar physiology. As secondary metabolites are produced constantly 
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throughout the lifecycle of a plant, resource limitation and the tradeoff between growth and survival across 

environmental dynamics is a substantial part of defence strategies. We found that FG herb species produced 

more metabolites throughout the year than FG grass. These differences likely stem from the different defence 

strategies of grass and herb species. While grasses invest more resources in physical defence structures such as 

silica structures (Massey & Hartley 2009), herbs tend to invest more in their complex reproduction organs' 

chemical protection (Cooke & Leishman 2012). We conclude that the two FG have different coping mechanisms 

and rely on different strategies for their response to environmental dynamics. FG grass species were generally 

producing fewer metabolites than FG herb species, leading to the conclusion that FG herb species are investing 

more in chemical defence. In contrast, FG grass species rely more on their mechanical defence structures.  

In our study, we found the distinction between two profile parts within the secondary metabolomic profiles, 

making up the species specific fingerprints, identifying each species across environmental and lifecycle changes 

and the dynamic defence profiles, which show strong responses to external dynamics. The proportion of the 

secondary metabolites used for environmental responses and those that are not is not investigated well and 

might alter greatly between the different species. However, in this study, we were able to show that the 

secondary metabolite fingerprint can be a useful tool for building up a database that can be used for species 

identification. In general, the underlying experimental design plays a significant role when drawing conclusions 

about global patterns. When investigating pattern similarities for multiple species, the selection of the species 

included in the study substantially impacts the comparability. Here, we used a diverse selection of herb species 

that differ vastly from one another in terms of physiological traits. The grass species, all Poaceae, were 

significantly closer to one another, allowing the drawing of broader conclusions about response patterns to 

specific environmental changes. However, including all species in a global model can easily lead to wrong 

conclusions, as many features are only detected in a few samples or are even unique to one of the tested species, 

making it challenging to draw a reliable conclusion. 

Furthermore, the impact of metabolite profile changes also varies on multiple scales, including the plant 

individuum, species, populations and environment, as they are influenced by above and belowground microbial 

realms within their functional networks. Changes to the metabolomic profiles can, on the other hand, also alter 

biotic and abiotic interaction and, thereby, influence the ecosystem as a whole (Berini et al. 2018). Furthermore, 

the plants we used in our study grow mainly undisturbed throughout the year under natural conditions. The 

plants have included metabolites produced by endophytes as much as they produced their own physical and 

chemical defence structures. Studying defence dynamics in field experiments allows for including all natural 

interactions between the plants and their environment, increasing the reliability of potential pattern findings; 

however, the number of environmental factors that cannot be controlled for increases drastically. Furthermore, 

compared with greenhouse studies, where design-unrelated factors are kept to a minimum, measuring artefacts 

in rapidly changing metabolomic profiles from plants collected in the field can drastically alter the interpretability 

of the data.  

In our study, we found that the reliability of linear models differed greatly between species, depending on 

the number of features measured for each species. The tested models, therefore, do not necessarily represent a 

true picture of underlying mechanisms, but they serve to get an idea of the correlations between plant species 

diversity and metabolite profile changes across the year. In order to be fully able to test the influences of 

developmental stages and environmental pressures on the defence metabolite production, the experimental 

design would need to be adapted accordingly. We agree with the valuation by Berini et al. (2018) that due to the 

different influences of abiotic and biotic factors on the metabolomic profile, predicting concrete responses to 

novel environmental conditions might be challenging. Although metabolite studies are still at the beginning of 

reliably contributing to understanding underlying processes, these studies have great potential to examine and 

predict plant fitness in present species loss and future climate scenarios. Narrowing down the parts of metabolite 

profiles that are actually involved in environmental response will also facilitate reliable identification of 

metabolites, and the prediction of defence-facilitating compounds might also contribute to bio-protected plant 

breeding environments in agricultural contexts. For instance, untargeted metabolomics might allow the 

investigation of changes in the metabolomic profiles across environmental dynamics without needing time and 

cost-intensive key compound identification. Based on their fingerprints, plant samples can be identified and 

grouped into their functional groups. The fingerprint is conserved across seasonal dynamics or changing 

environmental conditions, facilitating low-cost analysis of plant samples and forming a fingerprint-based 

database for ecological experiments. 
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Data availability 
The data set, including raw LC-MS measurements, field records and metadata tables, are available in the 

MetaboLights repository http://identifiers.org/metabolights:MTBLS1224. 
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Figures 
 

 

Figure 01: Observed plant species richness in plots of the TBE. TBE plot richness included diversity levels (DL) 

with one (DL1), two (DL2), four (DL4), and eight (DL8) initial species. Richness was recorded in 48 plots in total 

(DL1 = 16 plots, DL2 = 16 plots, DL4 = 14 plots, DL8 = 2 plots), representing one set of DL plots for thirteen target 

plant species, including three species with two sets of DL plots. To cover changes across the growing season, 

plant species richness was recorded for each plot in spring (E), early summer (F), late summer (G) and autumn 

(H).  
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Figure 02: Explained variation in metabolite profiles. Explained variation of feature intensities based on different 

experimental design factors. Experimental design factors were recorded either at the plot or at the individual 

plant level. Factors at plot level: time point of sampling (season), number of species per plot as designed (desDiv), 

number of species recorded per plot (pRich), species diversity recorded per plot (pShan). Factors at the individual 

plant level: aboveground height (plant height), developmental stage (plant BBCH), inflicted visible damage 

(mechanical and pathogen damage). The remaining, unexplained variation is shown as residuals. Variance 

partitioning was calculated a) across all species and b) for each species separately using the designed richness 

per plot. The variance partitioning using both the recorded plant species richness and species Shannon is shown 

c) across all species and d) species specific. 
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Figure 03: Relative abundance of putatively annotated metabolite families. The features are shown were pre-

selected for each experimental factor and separately within each species. The colours refer to the eight 

annotated kingdoms Organic nitrogen compounds (01, gold), Organopnictogen compounds (02, orange), 

Benzenoids (03, yellow), Organic acids and derivatives (04, light green), Lipids and lipid-like molecules (05, grey), 

Organoheterocyclic compounds (06, blue), Organic oxygen compounds (07, cyan), and Phenylpropanoids and 

polyketides (08, pink). Please refer to the pMetFam_ID identification table (Table 2) for the subfamilies. The plot 

was calculated in excel and designed and annotated with BioRender.com. 
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Figure 04: Linear models and correlation of richness and composition indices of metabolomic LC-MS features 
and plant species. Correlation is shown for each species separately and all species (13 species) combined. Plots 

show true measurements and the fitted linear model (black line). Values are colour coded by season: spring (E; 

white), early summer (F; light blue), late summer (G; dark blue), and autumn (H; purple). To investigate the 

correlation, we used feature richness (fRich) as a response variable to a) plant species richness (pRich) and plant 

species Shannon (pShan), feature Shannon (fShan) as response to c) pRich and d) pShan and feature Evenness 

(fEven) as response to e) pRich and f) pShan.  
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Tables 
 

Table 1a: Overview of plot traits, plant traits and metabolite feature diversity for species of FG grass. Recorded 

traits data on plot and plant level, including feature diversity across four seasons (S; E: spring, F: early summer, 

G: late summer, H: autumn) for species in the functional group (FG) grass. Data are presented as average per 

season and species. Recorded traits on the plot level include the plant species richness (pRich) and plant species 

Shannon index (pShan) for each plot, and height (in cm), developmental stage (BBCH scale), as well as mechanical 

(mechD in % above ground biomass) and pathogen inflicted damage (pathD in % above ground biomass) on the 

plant level. For each sample, the chemical composition was calculated as LC-MS feature richness (fRich), feature 

Shannon diversity (fShan) and feature Evenness (fEven). Detailed results for all 504 samples can be found in 

Supple Table 1 for plot level traits and in Suppl. Table 4 for plant level traits.  

 

FG grass plot trait plant trait feature diversity 

Species plots code S pRich pShan height BBCH mechD pathD fRich fShan fEven 

Anthoxanthum odoratum 

A018, A044, 

B060, C115 

AO E 18.5 2.3 57.9 78.8 0.0 16.4 499.5 2.2 0.3 

Anthoxanthum odoratum AO F 10.0 1.8 10.0 50.0 4.7 15.8 633.7 3.9 0.6 

Anthoxanthum odoratum AO G 13.5 1.9 9.1 51.9 10.4 21.3 642.0 5.2 0.8 

Anthoxanthum odoratum AO H 13.4 2.1 9.6 37.1 3.7 4.9 541.6 4.4 0.7 

Avenula pubescens 

B073, B092, 

C103, C110 

AP E 18.0 2.2 99.0 56.9 1.3 16.5 471.8 4.0 0.7 

Avenula pubescens AP F 9.8 1.7 17.4 40.6 4.0 11.0 561.0 5.1 0.8 

Avenula pubescens AP G 13.8 1.8 15.4 42.5 1.6 22.5 545.6 5.2 0.8 

Avenula pubescens AP H 13.3 1.9 13.4 40.0 3.5 8.3 549.0 5.3 0.8 

Dactylis glomerata 

A005, A018, 

C097, C137 

DG E 18.3 2.1 102.1 65.0 0.6 13.8 435.3 2.3 0.4 

Dactylis glomerata DG F 9.5 1.7 23.8 55.0 5.1 10.6 432.5 2.8 0.5 

Dactylis glomerata DG G 13.3 1.8 24.9 46.3 1.9 18.1 433.0 2.9 0.5 

Dactylis glomerata DG H 15.8 2.1 21.5 41.3 4.4 9.8 390.9 3.0 0.5 

Festuca rubra 

B064, B067, 

B073, C114 

FR E 13.5 1.9 70.1 60.0 0.3 5.3 371.1 0.4 0.1 

Festuca rubra FR F 9.0 1.4 23.3 46.3 4.5 15.3 334.6 0.4 0.1 

Festuca rubra FR G 11.8 1.4 21.5 50.0 4.4 18.1 362.3 0.6 0.1 

Festuca rubra FR H 12.8 1.7 12.1 38.8 4.6 5.6 321.9 0.6 0.1 

Holcus lanatus 

A018, A035, 

A040, B080 

HL E 17.3 2.1 76.1 62.5 0.6 10.6 449.6 1.3 0.2 

Holcus lanatus HL F 9.3 1.5 12.6 51.9 3.1 21.9 515.1 1.9 0.3 

Holcus lanatus HL G 15.5 2.0 10.8 55.0 3.0 17.5 489.5 2.7 0.4 

Holcus lanatus HL H 16.5 2.3 11.1 46.3 3.4 10.6 407.4 2.0 0.3 

Phleum pratense 
A002, A018, 

A045, A046, 

B051, B059, 

B073, C133 

PP E 17.8 2.2 57.9 61.6 0.1 3.3 509.7 0.8 0.1 

Phleum pratense PP F 9.6 1.8 23.4 44.7 3.2 15.8 507.9 1.7 0.3 

Phleum pratense PP G 11.9 2.0 35.3 50.0 4.0 15.1 452.5 1.7 0.3 

Phleum pratense PP H 15.3 2.0 15.3 38.4 3.8 10.1 395.0 2.2 0.4 

Poa pratensis 

A026, B073, 

B075, C131 

PA E 16.7 2.0 60.1 62.1 0.0 7.1 321.4 0.4 0.1 

Poa pratensis PA F 7.4 1.1 18.3 50.0 4.3 14.6 372.3 1.0 0.2 

Poa pratensis PA G 10.5 1.5 20.1 45.0 2.9 16.3 372.8 0.5 0.1 

Poa pratensis PA H 13.5 1.7 16.3 40.0 5.1 4.4 371.9 0.7 0.1 
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Table 1b: Overview of plot traits, plant traits and metabolite feature diversity for species of FG herb. Recorded 

traits data on plot and plant level, including feature diversity across four seasons (S; E: spring, F: early summer, 

G: late summer, H: autumn) for species in the functional group (FG) herb. Data are presented as average per 

season and species. Recorded traits on the plot level include the plant species richness (pRich) and plant species 

Shannon index (pShan) for each plot, and height (in cm), developmental stage (BBCH scale), as well as mechanical 

(mechD in % above ground biomass) and pathogen inflicted damage (pathD in % above ground biomass) on the 

plant level. For each sample, the chemical composition was calculated as LC-MS feature richness (fRich), feature 

Shannon diversity (fShan) and feature Evenness (fEven). Detailed results for all 504 samples can be found in 

Supple Table 1 for plot level traits, and in Suppl. Table 4 for plant level traits.  

 

FG herb plot trait plant trait feature diversity 

Species   code S R H height BBCH mechD pathD fRich fShan fEven 

Centaurea jacea 

A013, A027, 

A030, B073 

CJ E 15.0 2.0 30.0 40.0 1.3 6.5 691.0 5.1 0.8 

Centaurea jacea CJ F 7.5 1.4 28.9 42.5 2.3 11.3 637.8 5.0 0.8 

Centaurea jacea CJ G 11.8 1.8 25.3 44.4 2.5 8.4 649.6 5.0 0.8 

Centaurea jacea CJ H 14.3 2.0 21.0 38.8 3.5 4.8 601.0 5.0 0.8 

Geranium pratense 

A018, B081, 

C109, C121 

GP E 15.0 1.8 45.0 62.5 4.6 11.6 496.5 5.2 0.8 

Geranium pratense GP F 10.5 1.7 31.8 38.1 5.1 11.8 463.9 5.1 0.8 

Geranium pratense GP G 13.5 1.9 28.6 44.4 3.5 18.5 502.1 5.2 0.8 

Geranium pratense GP H 14.8 2.2 12.6 40.0 3.9 10.6 471.8 5.1 0.8 

Knautia arvensis 

A010, A020, 

A042, B073 

KA E 15.5 1.8 76.3 83.1 2.9 11.9 762.9 5.5 0.8 

Knautia arvensis KA F 8.5 1.3 38.8 48.1 5.0 7.6 724.4 5.5 0.8 

Knautia arvensis KA G 9.5 1.5 38.0 51.9 5.0 17.5 800.1 5.6 0.8 

Knautia arvensis KA H 11.5 1.8 25.3 40.0 6.3 12.5 625.4 5.3 0.8 

Leucanthemum vulgare 
A018, B048, 

B051, B073, 

B085, B090, 

C135, C136 

LV E 16.1 1.9 60.9 65.9 1.1 10.9 604.3 5.3 0.8 

Leucanthemum vulgare LV F 7.9 1.5 8.5 43.4 1.0 3.8 602.9 5.2 0.8 

Leucanthemum vulgare LV G 11.6 1.6 11.0 53.1 0.6 2.8 616.5 5.3 0.8 

Leucanthemum vulgare LV H 15.3 2.0 6.9 40.6 1.9 4.4 528.6 5.2 0.8 

Plantago lanceolata 
A009, A011, 

A018, A043, 

B054, B057, 

B073, C115 

PL E 18.3 2.1 23.5 59.7 9.0 13.4 720.6 5.6 0.8 

Plantago lanceolata PL F 8.9 1.6 26.1 46.6 13.8 13.1 748.0 5.6 0.8 

Plantago lanceolata PL G 13.5 2.0 23.9 51.3 7.9 14.7 771.3 5.7 0.9 

Plantago lanceolata PL H 15.5 2.2 9.3 41.6 15.3 9.1 712.6 5.4 0.8 

Ranunculus acris 

A003, A016, 

A018, B071 

RA E 21.0 2.4 54.6 80.0 4.0 21.5 470.3 1.3 0.2 

Ranunculus acris RA F 11.8 1.9 16.3 42.5 2.0 4.4 452.5 1.1 0.2 

Ranunculus acris RA G 17.9 2.4 14.1 51.4 2.1 20.7 483.7 1.0 0.2 

Ranunculus acris RA H 15.0 2.1 11.6 36.3 5.0 17.3 453.9 1.0 0.2 
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Table 2: pMetFam_ID identification table for putatively annotated metabolite families. Features for annotation 

were selected by PLS models performed for each species on both plot-level (season, pRich, pShan) and plant-

level traits (BBCH, height, mechanical, and pathogen inflicted damage). The selected features were putatively 

annotated using databases available with MetFamily. The number of samples that had an intensity measured for 

a feature annotated in one of the metabolite families is given as count across all 504 samples. Note that in some 

metabolite families multiple features were annotated, resulting for the count to exceed the number of 504 

samples. A detailed list of annotated features is available in Suppl Table 3a (feature selection overview) and Suppl 

Table 3b (feature intensities).  
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Table 3: Linear models calculated for the prediction variables (preV): plant species richness (pRich) and plant 

species Shannon (pShan) and the response variables (resV): LC-MS feature richness (fRich), LC-MS feature 

Shannon (fShan) and LC-MS feature Evenness (fEven). For each model, the coefficient of determination (R²), root 

means square error (RMSE) and p-values (p) are shown. The positive and negative values shown in square 

brackets indicate the direction of the relationship between the two variables. Linear models were calculated as 

a combination of all species (all) and for each species separately. Species name abbreviations can be found in 

Table 1 a (grass species) and b (herb species). Detailed results are also available in Suppl. Table 5. 

 

  resV fRich fShan fEven 

preV spec R² RMSE p R² RMSE p R² RMSE p 

pRich all [-] 0.28 135.90 0.03 [-] 0.28 2.05 0.04 [-] 0.25 0.32 0.05 

pRich AO [-] 0.37 83.06 0.03 [-] 0.53 1.44 0.09 [-] 0.55 0.22 0.11 

pRich AP [-] 0.45 62.51 0.30 [-] 0.43 0.88 0.10 [-] 0.58 0.13 0.10 

pRich DG [-] 0.41 41.66 0.08 [-] 0.56 1.32 0.76 [-] 0.56 0.22 0.80 

pRich FR [+] 0.46 41.93 0.63 [+] 0.74 0.23 0.02 [+] 0.75 0.04 0.02 

pRich HL [-] 0.64 56.34 0.01 [-] 0.42 0.76 0.16 [-] 0.41 0.12 0.18 

pRich PP [+] 0.19 79.31 0.82 [-] 0.20 1.11 0.38 [-] 0.20 0.18 0.42 

pRich PA [-] 0.65 45.03 0.43 [-] 0.79 0.54 0.17 [-] 0.78 0.10 0.17 

pRich CJ [+] 0.57 65.53 0.15 [+] 0.69 0.12 0.11 [+] 0.46 0.01 0.24 

pRich GP [-] 0.49 34.57 0.58 [-] 0.48 0.13 0.26 [-] 0.53 0.01 0.22 

pRich KA [+] 0.48 80.65 0.73 [+] 0.50 0.16 0.64 [+] 0.42 0.01 0.58 

pRich LV [-] 0.22 60.62 0.01 [+] 0.26 0.16 0.90 [+] 0.28 0.02 0.02 

pRich PL [-] 0.23 62.16 0.01 [-] 0.25 0.18 0.08 [-] 0.30 0.02 0.35 

pRich RA [+] 0.50 37.05 0.93 [+] 0.56 0.28 0.23 [+] 0.56 0.05 0.24 

           
pShan all [-] 0.25 136.33 0.21 [-] 0.27 2.06 0.13 [-] 0.25 0.32 0.16 

pShan AO [-] 0.41 79.89 0.00 [-] 0.54 1.52 0.32 [-] 0.56 0.24 0.39 

pShan AP [-] 0.51 60.01 0.13 [-] 0.59 0.80 0.04 [-] 0.62 0.12 0.04 

pShan DG [-] 0.52 42.29 0.02 [-] 0.68 1.29 0.26 [-] 0.68 0.22 0.29 

pShan FR [-] 0.51 40.49 0.79 [-] 0.58 0.23 0.88 [-] 0.59 0.04 0.94 

pShan HL [-] 0.51 57.21 0.02 [-] 0.48 0.78 0.25 [-] 0.48 0.13 0.29 

pShan PP [+] 0.16 79.01 1.00 [-] 0.22 1.10 0.10 [-] 0.21 0.18 0.11 

pShan PA [-] 0.49 46.30 0.86 [-] 0.51 0.47 0.81 [-] 0.50 0.08 0.82 

pShan CJ [+] 0.55 68.06 0.30 [+] 0.64 0.13 0.23 [+] 0.55 0.01 0.35 

pShan GP [-] 0.54 33.25 0.23 [-] 0.53 0.12 0.04 [-] 0.68 0.01 0.05 

pShan KA [-] 0.56 81.60 0.63 [-] 0.55 0.16 0.54 [-] 0.48 0.01 0.50 

pShan LV [-] 0.25 60.30 0.00 [-] 0.17 0.16 0.59 [+] 0.31 0.02 0.16 

pShan PL [-] 0.26 64.16 0.05 [-] 0.22 0.18 0.10 [-] 0.21 0.02 0.26 

pShan RA [+] 0.52 36.75 0.20 [+] 0.43 0.29 0.69 [+] 0.41 0.05 0.74 
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DISCUSSION 

The main objectives in this thesis included the development of an automated workflow to enable the analysis 

of ecometabolomics data across highly diverse species and environments, the evaluation of available statistical 

tools and their power to be integrated with ecometabolomics experiments, and the investigation of secondary 

plant metabolite profile changes across season and diversity. 

Season, in this study, describes a time point of sampling within the growing phase of grassland plant species, 

ranging from spring across summer to autumn. This includes the collective factors of weather dynamics, including 

light, water, and nutrient availability, that impact plant growth and productivity without being recorded 

separately. Moreover, given the Jena-Experiment-specific conditions, season, here, also includes changes to the 

immediate plant community in the plots through maintenance actions, such as weeding and mowing that are 

completed up to twice a year, resulting in infrequently influenced plant communities on a non-reproducible level. 

For example, in plots with mainly grass species accounting for the community richness, usually only a few weed 

species, e.g. larger herbs, are weeded out, leaving the majority of the plot undisturbed. In contrast, plots with 

dominant herb communities got weeded out thoroughly, leaving large patches of dug-up bare soil in the plots 

behind, thereby changing soil profiles and nutrient availability and herbivory pressure. Hence, plants will have to 

invest all available resources to grow back to reproduce within their growing period; in contrast to the spring 

sample collection, where the plant had about 6 months of the undisturbed growing period, early summer 

sampling took place right after the first weeding and mowing action in the year, resulting in an overall lower 

plant species richness. Late summer samples were collected before each year's second mowing and weeding. 

Hence, the richness of plant species was generally higher with more flowering species. Autumn samples were 

collected a few weeks after the second mowing and weeding. At this point, most plants had already fully 

matured. Therefore, the metabolite data collected in this thesis are not comprehensively representative of 

general dynamics in the metabolite profiles of grassland plant species but gave the unique opportunity to use a 

complex data set collected from a none-uniform environment to create a workflow that is capable of handling 

metabolite profiles with a high biological variance. Therefore, the diversity that was used to draw conclusions 

about the interaction of the plant species communities and the metabolite profiles, and is discussed in this study, 

is the actual species richness and abundance recorded in each plot prior to each sample collection, rather than 

the designed TBE diversity levels (Chapter 3).  

Performing ecometabolomics studies across multiple species includes a range of obstacles that need to be 

addressed properly to ensure reliable results and conclusion drawing (Marr et al. 2021). If these measures are 

not taken into account, for instance, the use of quality controls, blanks and randomisation strategies for both 

sampling and measurements, it may result in over-optimistic results that inevitably lead to conclusions that are 

not or not entirely supported by the data. Most studies also do not include details about their sampling protocols, 

including information about the use of blank samples to trace contaminations, randomisation strategies of their 

sample collection, and measurements (Scherling et al. 2010, Berini et al. 2018, Ristok et al. 2019, Ristok et al. 

2022). With few exceptions (Ristok et al. 2019), reproducible strategies regarding data preprocessing, including 

blank subtraction or removal, batch correction and the handling of missing values, are also often overlooked or 

not given in detail (Scherling et al. 2010, Berini et al. 2018, Ristok et al. 2019, Ristok et al. 2022). For example, 

Scherling et al. (2010) reported a significant correlation between plant species diversity and metabolic profiles 

in some of the tested herb species. However, in this study, the authors do not comprehensively report how these 

data were acquired or which blanks, quality controls or randomisation strategies were used. This does not mean 

that their findings are incorrect; it only challenges the data to the point that the conclusion drawing should be 

done with the uttermost care. Moreover, even dedicated reviews stating key rules for the successful acquisition 

of metabolomic data do not take into account the relevance of blanks taken while sampling or sample extraction, 

randomisation while sample collection and measurements, nor the use of QC samples for signal drift control and 

batch correction (Defossez et al. 2023). Hence, the need for a comprehensive handbook that includes 

standardised protocols for ecometabolomics studies is one of the highest priorities in developing 

ecometabolomics experiments and observational studies (Walker et al. 2022). 

In general, the amount of data generated in ecometabolomic studies requires careful handling and curation 

strategies. Biases, for example, are commonly introduced by biological variance and technical deficiencies. 

Increasing efforts are being taken to improve available data analysis tools (Wang et al. 2016, Marr et al. 2021, 

Walker et al. 2022). However, no common standard is available yet. This thesis focused on providing a 

comprehensive workflow that includes sample handling, data curation and preparation steps to ensure the 
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quality of ecometabolomics data collected from field experiments. One important point is that data handling not 

only needs to consider the data amount but also the biology-prone dynamics in samples obtained from field 

experiments in order for the scientist to be able to draw conclusions about underlying mechanisms altering and 

reflecting the metabolomics profiles. It was already shown that plant metabolite profiles could show a large 

biological fluctuation under environmental pressure (Scherling et al. 2010). As Berini et al. (2018) discussed, in 

ecometabolomics, findings and interpretations can be very challenging and small changes in environmental 

conditions can dramatically affect metabolite profiles. In this thesis, the biological variance was taken into 

account by introducing a comprehensive randomisation strategy during each sampling in the fields, ensuring that 

samples were collected across FG and plot specifications. Furthermore, given the rapid changes in the dynamic 

metabolite profiles across the diurnal circle and environmental conditions, keeping sampling collection in a 

narrow time frame and recording the exact time of sampling can contribute to the reliability of the 

ecometabolomics data. However, these data are still only rarely stated in ecometabolomics studies (Scherling et 

al. 2010, Berini et al. 2018, Marr et al. 2021, Ristok et al. 2022). Another often overlooked obstacle is using blank 

samples, not only in the lab or as run-in samples while starting measurements, but also directly in the fields to 

trace back contaminations. These include volatiles of unknown origins, abrasion from rubber gloves or sample 

tubes and organic materials that are introduced while sampling. Tracing all these sources of contamination and 

excluding features from the associated measurement is an essential step towards reliability increase and data 

quality enhancement. 

Moreover, the inclusion of quality control samples (QCs) has been shown to be an important step in 

ecometabolomics LC-MS-based studies, to overcome technical limitations. For example, the signal shift is a 

common issue when using LC-MS analysis methods, as the instruments get clogged with sample extract, and the 

measurement capacity decreases over time. Addressing signal drift and other machine-dependent biases is 

crucial in metabolomic analysis, as the importance of a certain metabolite is defined by its relative changes in 

abundance. Therefore, it must be ensured that any metabolite's intensity can be directly compared to the 

measured intensities in other samples (Fiehn 2002). To be able to address these issues and keep samples 

comparable across multiple batches, QC samples, which are aliquots of the same sample that gets measured 

multiple times within a batch, are used to correct for unwanted shifts of the measured intensities (Chapter 1: 

Marr et al. 2021). As Walker et al. (2022) pointed out, underlying chemical structures, including degrees of 

chemical similarity, are not represented in the commonly used statistical methods. Hence, the consequences of 

environmental stress on metabolite profile composition and abundance remain mainly unpredictable (Berini et 

al. 2018). In order to be able to link changes in plant metabolite profiles to classical functional traits, significant 

overlap of these data is required, with harmonised strategies for metabolomic data acquisition across studies, 

species and ecosystems (Walker et al. 2022).  

One of the major obstacles in multi-species studies is the huge number of missing values in the resulting data 

matrix, as many features are unique to certain species and are, therefore, not measured in the other species in 

the experiment. PLS, RF and SVM are among the common choices to analyse zero-inflated data sets (Defossez et 

al. 2021, Marr et al. 2021) as they are less biased than other ordinations (Walker et al. 2022). Especially in multi-

species studies with very distinctive secondary metabolite fingerprints, the generated data matrices can include 

a high number of missing values (see Chapter 1 for an explanation) that should be considered before using the 

processed data in statistical analysis. Therefore, in this thesis, the usability of differently prepared matrices with 

different statistical methods was tested to show how reliable classifications were based on the level of 

background similarity. Statistical methods that are already successfully used in classical metabolomics 

experiments were tested: random forest (RF), support vector machines (SVM) and partial least squares (PLS). 

Performance tests and evaluations were performed on three levels of distinctiveness: functional-group-wise, 

species wise and across treatment within a species. Here, the data matrix was either used with the original zeros 

as present after the pre-processing step or with distinctive small values to replace zeros in the data matrix. 

Choosing a suitable classification method mainly depended on the complexity of the provided background for 

classification. The choice of the data matrix depending on the model also improved the performance. For 

example, comparing the model performance, we found the highest accuracies in PLS and RF. PLS, SVM and RF 

worked equally well on very distinguishable metabolite profiles, while PLS and RF provided a greater classification 

power when the background spectra were more similar. The best <statistical tool-data matrix= combination 
highly depended on the complexity level used as a reference for classification (see discussion Chapter 2), 

indicating that secondary metabolite profiles include highly species-specific parts – the secondary metabolite 

fingerprint –, and parts responding to environmental changes – the dynamic profile.  

All species tested in this thesis showed a distinctive pattern of species-specific metabolite fingerprints and 

dynamic profiles (see Chapter 1). The terms metabolomic profiling and fingerprinting are vastly used in the 

research community with an often slightly different focus. For example, Weston et al. (2015) used metabolomic 
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profiling to describe quantity changes in a specific subset of metabolites that respond to environmental changes. 

According to Fiehn (2002), identifying and quantifying pre-selected metabolites in a sample is referred to as 

metabolite profiling, for instance, the investigation of a specific metabolite family, such as isoprenoids and 

carbohydrates. In comparison, others argue that the term metabolite profiling is used to describe the 

investigation of any metabolite changes as a response to a certain environmental factor or treatment (Kim and 

Verpoorte 2010, Obata & Fernie 2012). Furthermore, in the literature, the term fingerprinting is used to describe 

the process of classifying samples <according to the origin or their biological relevance= (Fiehn 2002) and to 
describe detected metabolomic shifts by LC-MS and GC-MS as a result of responses to environmental pressures 

(Scherling et al. 2010), which also corresponds with metabolite profiling as per definition. Therefore, to avoid 

confusion and to use clear identifiers to distinguish between methods, findings, and biological characteristics, in 

this thesis, the terms metabolite fingerprint and dynamic profile are used to describe the two different areas that 

the secondary metabolite profile of plant leaves is composed of (see discussions Chapters 2 and 3).  

As demonstrated in chapter 2 of the thesis, the classification of plant species works reliably across all seasons 

and plant community dynamics, even in closely related species, although they share a greater overlapping 

proportion in their secondary metabolite fingerprints. When using the same statistical methods within the same 

species to distinguish between environmental changes – using the dynamic profile – the results strongly depend 

on the combination of statistical methods and the choice of a suitable data matrix format. All changes in the 

environment, such as the season of sample collection, plant species richness and composition in the plots, were 

reflected in the metabolite profile, mostly in the dynamic part. For metabolites representing conserved 

phylogenetic reproduction and coping strategies, it can be expected that such metabolites maintain the same 

importance over the life cycle of an individual plant across seasonal dynamics (Walker et al. 2022). It is unknown 

to what extent metabolites serve an explicit function, i.e. the proportion between fingerprint and dynamic profile 

is unknown and might vary greatly between species (Fiehn 2002). Those changes could be accessed by selecting 

the proportion of features that account for changes in the profiles across environmental dynamics, including 

classical traits such as developmental stages and plant height. However, separating the effects of each trait or 

environmental factor will increase the chance of overinterpretation as most of these factors are interconnected. 

The findings in this thesis suggest that metabolite profile changes are directly influenced by changes in the 

plant neighbourhood. These changes in the plant community can be, for example, triggered by seasonal changes, 

including changing day length and, hence, changing light and water availability, and changing temperatures. 

Furthermore, fertilization and nutrient availability change throughout the year, causing changes in herbivory 

activity, terrestrial fauna, and metabolite profiles (Scherling et al. 2010, Richards et al. 2015). Previous studies 

showed that the plant metabolome also shapes the herbivore pressure within plant communities (Fernandez-

Conradi et al. 2021, Philibin et al. 2021, Ristok et al. 2022). As described above, the semi-maintenance, i.e. 

disturbance of plots up to twice a year, also contributes to changes in the plant community, as some plots are 

weeded out entirely. In contrast, others remain mainly undisturbed throughout the year. Although the responses 

to the changing plant diversity were mainly species-specific, we also found similarities in closely related species, 

i.e. FG grass. In this study, the species combined to FG herb are probably phylogenetically too far and dissimilar 

to show the same changes in their metabolite profiles. This bio-geo-legacy response was mainly independent of 

direct plant features such as developmental stage and inflicted damage. Similar to Ristok et al. (2022), in this 

study, the metabolite richness and diversity was found to differ between FG grass and FG herb species, with 

grasses generally having fewer metabolites. While grass species mostly rely on physical structures for defence 

(Massey & Hartley 2009), herb species mostly invest in chemical defence (Cooke & Leishman 2012). As Ristok et 

al. (2022) pointed out, grass and herb species also vary in their interaction with mycorrhizal fungi, which might 

enhance the differences between herb and grass metabolite richness and composition.  

Variations of physical traits between plant species can support a successful plant community (Scherling et al. 

2010). Following this, it can be speculated that the comprehensive coverage of secondary metabolites that effect 

herbivory and other environmental pressures is beneficial for diverse plant communities as they can be prepared 

for a broad range of stress factors while not having to invest all resources on their own. Plants may benefit from 

sharing recourses for secondary metabolites used as a defence against pests and herbivores. Our findings of 

metabolites in each single species, hence, might be a result of the specific species composition present in each 

plot. As discussed in chapters 2 and 3 of this thesis, the feature selection revealed that some metabolite families 

were found to be important for the metabolite profile changes as a response to the environment. In contrast, 

the same metabolite families were present in other species but seemingly did not contribute to the dynamic 

profile responses.  

As demonstrated in this thesis, the fingerprints in the LC-MS features profiles can be used to identify plant 

species across environmental dynamics. However, using secondary metabolite profiles for species identification 
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is usually based on unique metabolites that accurately identify a species, though this can be challenging. For 

example, a unique feature-based identification requires identifying these unique compounds first and 

establishing a broad database as a reference that explicitly shows that this feature is unique to only one species. 

Secondly, these compounds and metabolites might be produced throughout closely related species, making it 

challenging to distinguish these species solely based on one unique compound. In this thesis, using secondary 

metabolite profiles as a whole was proposed to be used for species identification, not requiring the identification 

of each compound or metabolite, but using full fingerprints for out of the raw data. With the fingerprint being 

conserved across the growing season and across changing community neighbourhoods, as demonstrated in this 

thesis, here it is also assumable that the secondary metabolite fingerprint can be used to classify species across 

environmental changes and treatments and that this classification can also be used in multiple species assembles 

with closely related species. Unlike in most ecometabolomics studies, identification of marker compounds and 

metabolites unique to a single species is not required. Using the whole fingerprint provides the advantage that 

the profiles can be used for classification based on the raw data and do not require cost- and time-intensive 

identifications of single relevant compounds and metabolites.  

There are some possible applications for using secondary metabolite fingerprint-based identification. For 

example, metabolite-assisted crop breeding and fodder for the livestock industry, as a broad collection of weed 

plants, would automatically identify different species and screen for potentially toxic plants (Fang et al. 2019). 

Automated identification of species-specific profiles can also help narrow down the number of potentially 

interesting features and compounds involved in stress responses and identify only those of interest. Possible 

areas of application could be metabolomic engineering, for instance, to increase the nutritional value of foods of 

defence metabolites to decrease the need for pesticides and improve plant performance in general (Fiehn 2002). 

Fast identification of plants can be of interest to farmers to test a field of unknown plants for potentially toxic 

plants to livestock or beneficial plant species for crop production. Especially in industrial contexts, the benefit 

from reliable predictions of metabolite abundance and composition in certain plant species will be tremendous, 

for example, when using such predictions to estimate potential growth and resistance (Lipka et al. 2015, Tohge 

et al. 2016, Peng et al. 2017).  

In the context of global change, it is inevitable to understand the underlying processes of ecosystem 

function (Berini et al. 2018). The metabolome represents the collective result of all biotic and abiotic interactions 

of the plant with its environment. Extending ecometabolomics studies across multiple species and across 

multiple ecosystems will drastically improve the understanding of the role of specialised metabolites in 

ecosystem services (Walker et al. 2022). Predicting how plants will respond to environmental changes can be 

challenging as not all parts of the metabolic profiles are equally influenced by different factors (Berini et al. 2018). 

Metabolomics and prediction of the abundance of certain metabolites can be of interest for example to check 

whether weeds growing in the field could potentially be toxic to livestock (Weston et al. 2013). Understanding 

how plants respond to climate change is highly interesting to the research community. However, testing the 

influence of temperature changes alone is nearly impossible in field experiments (Berini et al. 2018), as other 

biotic and abiotic interactions cause constant changes to metabolite profiles. On the other hand, conducting such 

an experiment under controlled greenhouse conditions will also take away these interactions and won9t allow 
for a precise interpretation and estimation of changes to the metabolite profile. Hence, performing these types 

of field studies, where all interactions with the environment are included in the experimental design, is an 

important step towards unravelling underlying mechanisms and reliable predictions for future climates. 

This thesis showed that secondary metabolite profiles maintain several metabolites as species-specific 

fingerprints, representing species identity, compared to the dynamic metabolites representing the 

environmental bio-geo-legacy. The fast profile-based identification of plant species enables the researcher to 

narrow down the number of potentially interesting compounds and metabolites that take part in stress response. 

The fast identification will also be of interest in industrial contexts, progressing in the direction of metabolite-

assisted breeding strategies. Furthermore, gaining new insights into biochemical diversity interactions and 

environment-related production of secondary metabolites finds special interest in the exploration of future 

climate scenarios. There is a growing interest in understanding how warming and changing environmental 

conditions, in general, will influence certain plant species and their secondary metabolite profiles. In the context 

of climate change, being able to use LC-MS feature-based databases as a classification tool will have a major 

impact on the understanding and potential prediction of plant responses. Being able to predict plant responses, 

especially changes to metabolite profiles, and phytochemistry in general under different conditions will also 

enable the understanding and prediction of changes in plants when changing the environment into the unknown, 

such as space stations and other planets. 
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In this thesis, the discussion was initiated what reliable data handling and curation need in terms of tools, 

methods, and strategies to enable reliable research in ecometabolomic experiments and to include the natural 

diversity brought in by plant species into the data handling strategies. Furthermore, it was discussed how 

established statistical methods could be adapted and made available for the big data sets that incorporate 

massive amounts of feature data from different backgrounds and contexts without overestimating the power 

and dependency of independent data. Given that metabolomics profiles can change rapidly under environmental 

dynamics, including daytime and weather changes, it is exceptionally difficult to acquire reliable data from 

samples collected in the field. Therefore, handling samples with uttermost care is crucial to ecometabolomics 

experiments. However, in many studies, using blanks or other quality controls of any kind, including 

randomisation strategies for sampling and data acquisition, is still not integrated as standard in the studies 

protocols. Drawing conclusions from those studies challenges the reliability of the findings used to elucidate 

underlying mechanisms and artefacts that belong to biases introduced by design and lab protocols. As 

ecometabolomics is rapidly gaining interest in the research community, the need for a handbook that 

comprehensively describes the obstacles and steps needed to be taken in ecometabolomics studies would 

drastically increase the data quality and enhance the reliability of the conclusions. Till there is no common 

consensus found within the community, drawing conclusions from ecometabolomic studies should be done 

carefully and with an open mind. 
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Table 1: Comprehensive model evaluation (eval.), including model accuracies (ac), settings for the best model 

(bm), the area under the receiver-operator curve (AUC), and Kappa value (Kpp) for the data sets MTBLS679, 

MTBLS1224, and MTBLS2140. In MTBLS679 and MTBLS1224, the levels season and diversity were analysed for 

each species separately. bm were chosen on model specific parameters: For Partial Least Squares Discriminant 

Analysis (PLS), the number of components (ncomp); for Support Vector Machines (SVM) with linear kernel (l) 

cost (c), with radial kernel (r) sigma (s) and c, with poly kernel (p) degree (d), scale (sc) and c; and for Random 

Forests (RF) the number of variables that is randomly collected to be sampled at each split time (mtry). 
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Data set

Level species eval. ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog

FG ac 0.999 0.995 1.000 0.998 0.998 1.000 0.992 0.992 1.000 0.998 0.998 1.000 1.000 1.000 1.000

bm ncomp = 11 ncomp = 16 ncomp = 2 c = 1 c = 1 c = 1

s = 7.016e-05, 

c = 16

s = 7.309e-05, 

c = 8

s = 5.467e-05, 

c = 4

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 15 mtry = 148 mtry = 22

AUC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968 0.998 0.998

Kpp 0.999 0.990 1.000 0.996 0.996 1.000 0.984 0.984 0.999 0.996 0.996 1.000 1.000 1.000 1.000

Species ac 0.967 0.888 0.971 0.957 0.957 0.962 0.949 0.948 0.968 0.960 0.957 0.965 0.968 0.968 0.968

bm ncomp = 21 ncomp = 30 ncomp = 29 c = 1 c = 1 c = 1

s = 7.033e-05, 

c = 2

s = 6.470e-05, 

c = 2

s = 5.907e-05, 

c = 1

d = 1, sc = 

0.001, c = 0.25

d = 1, sc = 0.001, 

c = 2

d = 1, sc = 0.001, 

c = 0.25 mtry = 7 mtry = 81 mtry = 209

AUC 0.995 0.989 0.996 0.910 0.910 0.918 0.827 0.836 0.859 0.910 0.911 0.919 0.997 0.965 0.996

Kpp 0.964 0.877 0.968 0.953 0.953 0.958 0.944 0.943 0.965 0.956 0.953 0.962 0.965 0.996 0.965

Season ANTODO ac 0.848 0.601 0.842 0.791 0.605 0.664 0.245 0.385 0.564 0.794 0.588 0.628 0.812 0.795 0.785

bm ncomp = 3 ncomp = 8 ncomp = 3 c = 1 c = 1 c = 1

s = 2.385e-04, 

c = 2

s = 4.842e-05, 

c = 2

s = 4.917e-05, 

c = 2

d = 2, sc = 

0.001, c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 148 mtry = 2147 mtry = 3030

AUC 0.942 0.858 0.976 0.929 0.806 0.898 0.500 0.809 0.859 0.931 0.848 0.856 0.924 0.882 0.881

Kpp 0.787 0.481 0.761 0.710 0.458 0.545 0.000 0.241 0.431 0.719 0.451 0.511 0.716 0.694 0.689

Season AVEPUB ac 0.888 0.575 0.902 0.843 0.693 0.852 0.239 0.258 0.747 0.859 0.689 0.874 0.818 0.764 0.770

bm ncomp = 8 ncomp = 7 ncomp = 5 c = 1 c = 1 c = 1

s = 1.896e-04, 

c = 2

s = 4.908e-05, 

c = 2

s = 4.915e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 24 mtry = 48 mtry = 383

AUC 0.966 0.815 0.969 0.950 0.802 0.937 0.500 0.722 0.885 0.822 0.829 0.922 0.945 0.906 0.906

Kpp 0.838 0.416 0.854 0.786 0.587 0.800 0.000 0.121 0.677 0.619 0.580 0.826 0.742 0.672 0.678

Season DACGLO ac 0.826 0.626 0.818 0.682 0.534 0.666 0.277 0.296 0.613 0.774 0.573 0.668 0.753 0.662 0.653

bm ncomp = 3 ncomp = 7 ncomp = 4 c = 1 c = 1 c = 1

s = 2.760e-04, 

c = 1

s = 5.082e-05, 

c = 2

s = 5.003e-05, 

c = 2

d = 1, sc = 

0.001, c = 1

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 136 mtry = 271 mtry = 192

AUC 0.927 0.837 0.937 0.879 0.816 0.865 0.501 0.703 0.862 0.884 0.835 0.853 0.872 0.809 0.809

Kpp 0.749 0.491 0.747 0.566 0.372 0.557 0.036 0.115 0.500 0.679 0.424 0.577 0.663 0.541 0.540

Season FESRUB ac 0.758 0.575 0.806 0.816 0.708 0.628 0.263 0.265 0.642 0.817 0.738 0.661 0.774 0.718 0.716

bm ncomp = 9 ncomp = 9 ncomp = 5 c = 1 c = 1 c = 1 s = 1.514, c = 1

s = 4.817e-05, 

c = 2

s = 5.151e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 249 mtry =7819 mtry = 9290

AUC 0.942 0.743 0.952 0.882 0.826 0.846 0.500 0.595 0.855 0.874 0.796 0.858 0.900 0.841 0.840

Kpp 0.659 0.409 0.706 0.742 0.603 0.503 0.000 0.021 0.457 0.746 0.624 0.526 0.690 0.621 0.622

Season HOLLAN ac 0.829 0.538 0.962 0.807 0.716 0.846 0.199 0.317 0.689 0.787 0.702 0.832 0.881 0.803 0.818

bm ncomp = 10 ncomp = 10 ncomp = 6 c = 1 c = 1 c = 1

s = 2.474e-04, 

c = 1

s = 5.062e-05, 

c = 2

s = 5.008e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 52 mtry = 57 mtry = 74

AUC 0.971 0.798 0.994 0.934 0.881 0.500 0.708  0.913 0.887  0.955 0.918 0.918

Kpp 0.763 0.353 0.944 0.709 0.609 0.781 0.000 0.137 0.599 0.688 0.606 0.768 0.826 0.724 0.735

Season PHLPRA ac 0.878 0.624 0.830 0.860 0.768 0.746 0.265 0.340 0.714 0.864 0.760 0.761 0.860 0.824 0.824

bm ncomp = 4 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 2.076e-04, 

c = 1

s = 5.074e-05, 

c = 2

s = 5.043e-05, 

c = 4

d = 1, sc = 

0.001, c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 1077 mtry = 589 mtry = 496

AUC 0.955 0.834 0.955 0.935 0.865 0.871 0.500 0.690 0.856 0.924 0.847 0.868 0.949 0.912 0.912

Kpp 0.835 0.498 0.770 0.810 0.687 0.662 0.000 0.112 0.617 0.815 0.675 0.679 0.809 0.761 0.762

Season POAPRA ac 0.789 0.833 0.908 0.801 0.711 0.710 0.263 0.431 0.648 0.793 0.743 0.720 0.823 0.693 0.689

bm ncomp = 7 ncomp = 9 ncomp = 4 c = 1 c = 1 c = 1

s = 2.742e-04, 

c = 2

s = 4.938e-05, 

c = 2

s = 4.895e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 228 mtry = 176 mtry = 136

AUC 0.931 0.957 0.950 0.857 0.869 0.900 0.480 0.501 0.863 0.878 0.862 0.888 0.934 0.899 0.901

Kpp 0.708 0.774 0.858 0.703 0.598 0.593 0.000 0.211 0.539 0.683 0.658 0.595 0.755 0.587 0.578

Season CENJAC ac 0.696 0.633 0.678 0.661 0.588 0.601 0.224 0.258 0.537 0.686 0.535 0.596 0.708 0.653 0.645

bm ncomp = 3 ncomp = 4 ncomp = 8 c = 1
c = 1 c = 1

s = 2.227e-04, 

c = 2

s = 4.936e-05, 

c = 2

s = 4.857e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 3600 mtry = 52
mtry = 1395

AUC 0.851 0.784 0.891 0.767 0.694 0.767 0.500 0.273 0.718 0.786 0.684 0.764 0.844 0.796 0.796

Kpp 0.565 0.493 0.552 0.519 0.439 0.477 0.000 0.138 0.433 0.553 0.367 0.470 0.594 0.534 0.516

Season GERPRA ac 0.928 0.671 0.973 0.926 0.720 0.872 0.248 0.435 0.778 0.941 0.732 0.880 0.918 0.853 0.856

bm ncomp = 7 ncomp = 10 ncomp = 6 c = 1 c = 1 c = 1

s = 2.478e-04, 

c = 4

s = 5.028e-05, 

c = 2

s = 5.050e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 8523 mtry = 6038 mtry = 10125

AUC 0.990 0.865 1.000 0.947 0.848 0.961 0.521 0.798 0.913 0.954 0.830 0.948 0.964 0.936 0.936

Kpp 0.899 0.540 0.961 0.905 0.614 0.818 0.000 0.325 0.713 0.917 0.642 0.831 0.889 0.799 0.802

Season KNAARV ac 0.818 0.543 0.900 0.773 0.699 0.750 0.243 0.310 0.666 0.793 0.696 0.719 0.780 0.707 0.713

bm ncomp = 7 ncomp = 10 ncomp = 10 c = 1 c = 1 c = 1

s = 2.149e-04, 

c = 4

s = 4.843e-05, 

c = 2

s = 4.856e-05, 

c = 2

d = 2, sc = 

0.001, c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d= 1, sc = 0.001, 

c = 0.25 mtry = 161 mtry = 6581 mtry = 1658

AUC 0.963 0.739 0.979 0.863 0.820 0.869 0.500 0.277 0.839 0.877 0.826 0.889 0.916 0.870 0.871

Kpp 0.743 0.348 0.861 0.684 0.591 0.671 0.000 0.136 0.553 0.708 0.587 0.626 0.699 0.604 0.610

Season LEUVUL ac 0.757 0.492 0.793 0.763 0.668 0.767 0.292 0.427 0.715 0.783 0.669 0.752 0.873 0.883 0.885

bm ncomp = 10 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 1.873e-04, 

c = 4

s = 4.992e-05, 

c = 2

s = 4.871e-05, 

c = 2

d= 2, sc = 

0.001, c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 10125 mtry = 4663 mtry = 5540

AUC 0.912 0.719 0.936 0.922 0.829 0.902 0.511 0.731 0.904 0.919 0.829 0.898 0.942 0.920 0.920

Kpp 0.674 0.319 0.719 0.680 0.554 0.686 0.046 0.236 0.619 0.707 0.560 0.665 0.828 0.841 0.844

Season PLALAN ac 0.810 0.560 0.863 0.772 0.708 0.743 0.258 0.531 0.690 0.786 0.722 0.716 0.813 0.786 0.792

bm ncomp = 5 ncomp = 8 ncomp = 8 c = 1 c = 1 c = 1

s = 2.093e-04, 

c = 2

s = 4.938e-05, 

c = 2

s = 4.915e-05, 

c = 2

d = 2, sc = 

0.001, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 161 mtry = 832 mtry = 496

AUC 0.921 0.813 0.964 0.880 0.844 0.882 0.531 0.802 0.863 0.888 0.842 0.867 0.922 0.892 0.892

Kpp 0.743 0.406 0.814 0.692 0.604 0.655 0.013 0.384 0.592 0.712 0.627 0.624 0.747 0.711 0.719

Season RANACR ac 0.855 0.785 0.885 0.813 0.542 0.631 0.248 0.352 0.596 0.844 0.553 0.636 0.735 0.668 0.671

bm ncomp = 5 ncomp = 8 ncomp = 6 c = 1 c = 1 c = 1

s = 2.392e-04, 

c = 2

s = 4.915e-05, 

c = 2

s = 4.885e-05, 

c = 2

d = 1, sc = 

0.001, c = 1

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 37 mtry = 7174 mtry = 5540

AUC 0.945 0.932 0.966 0.925 0.769 0.804 0.500 0.662 0.755 0.933 0.804 0.805 0.882 0.842 0.843

Kpp 0.790 0.785 0.840 0.732 0.382 0.491 0.000 0.148 0.483 0.776 0.385 0.487 0.625 0.553 0.549

MTBLS679
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Level species eval. ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog

Diversity ANTODO ac 0.163 0.211 0.103 0.146 0.115 0.059 0.180 0.103 0.080 0.259 0.012 0.192 0.093 0.198 0.198

bm ncomp = 3 ncomp = 1 ncomp = 9 c = 1 c = 1 c = 1

s = 2.346e-04, 

c = 2

s = 4.943e-05, 

c = 0.25

s = 4.864e-05, 

c = 2

d = 3, sc = 0.1, 

c = 0.25

d = 3, sc = 0.01, c 

= 0.25

d = 3, sc = 0.01, c 

= 0.25 mtry = 3 mtry = 10125 mtry = 10125

AUC 0.332 0.445 0.316 0.550 0.600 0.692 0.500 0.514 0.668 0.629 0.655 0.727 0.240 0.240 0.240

Kpp -0.061 -0.017 -0.178 -0.095 -0.135 -0.167 0.000 -0.007 -0.099 -0.006 0.012 -0.013 -0.122 -0.021 -0.021

Diversity AVEPUB ac 0.291 0.279 0.288 0.291 0.167 0.156 0.242 0.219 0.127 0.238 0.227 0.148 0.280 0.179 0.179

bm ncomp = 7 ncomp = 6 ncomp = 9 c = 1 c = 1 c = 1

s = 1.987e-04, 

c = 2

s = 5.033e-05, 

c = 2

s = 4.938e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 3, sc = 0.1, c 

= 0.25

d = 3, sc = 0.1, c 

= 0.25 mtry = 10125 mtry = 455 mtry = 455

AUC 0.546 0.536 0.576 0.535 0.525 0.569 0.500 0.345 0.640 0.665 0.570 0.561 0.405 0.404 0.404

Kpp 0.095 0.050 0.054 0.041 -0.043 -0.012 0.000 0.005 0.021 0.055 0.000 -0.004 0.094 0.040 0.040

Diversity DACGLO ac 0.396 0.303 0.243 0.377 0.204 0.103 0.220 0.173 0.123 0.414 0.182 0.139 0.313 0.372 0.372

bm ncomp = 10 ncomp = 8 ncomp = 1 c = 1 c = 1 c = 1 s = 2.848, c = 2

s = 4.802e-05, 

c = 2

s = 4.890e-05, 

c = 2

d = 2, sc = 

0.001, c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 2, sc = 0.001, 

c = 0.25 mtry = 1077 mtry = 8523 mtry = 8523

AUC 0.659 0.468 0.545 0.614 0.551 0.539 0.498 0.412 0.502 0.650 0.576 0.535 0.548 0.548 0.548

Kpp 0.175 0.071 0.035 0.176 -0.034 -0.072 -0.009 -0.013 -0.049 0.210 -0.040 0.048 0.103 0.201 0.201

Diversity FESRUB ac 0.366 0.308 0.396 0.338 0.358 0.223 0.264 0.247 0.183 0.456 0.363 0.215 0.311 0.222 0.222

bm ncomp = 8 ncomp = 5 ncomp = 7 c = 1 c = 1 c = 1

s = 1.815e-04, 

c = 2

s = 5.176e-05, 

c = 2

s = 5.048e-05, 

c = 2

d = 2, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 10125 mtry = 7819 mtry = 7819

AUC 0.673 0.598 0.710 0.615 0.473 0.564 0.500 0.461 0.445 0.619 0.555 0.545 0.612 0.439 0.439

Kpp 0.147 0.087 0.176 0.108 0.140 0.014 0.000 0.016 0.012 0.270 0.158 0.049 0.087 0.037 0.037

Diversity HOLLAN ac 0.471 0.313 0.341 0.377 0.294 0.216 0.171 0.103 0.134 0.367 0.264 0.212 0.294 0.254 0.254

bm ncomp = 7 ncomp = 4 ncomp = 7 c = 1 c = 1 c = 1

s = 2.036e-04, 

c = 4

s = 4.956e-05, 

c = 2

s = 5.013e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 2551 mtry = 2551 mtry = 3303

AUC 0.584 0.597 0.562 0.463 0.507 0.477 0.500 0.446 0.461 0.513 0.434 0.503 0.514 0.514 0.465

Kpp 0.276 0.112 0.132 0.146 0.104 0.029 0.000 -0.013 -0.006 0.159 0.064 0.007 0.066 0.066 0.080

Diversity PHLPRA ac 0.525 0.449 0.536 0.506 0.393 0.427 0.225 0.260 0.436 0.507 0.421 0.428 0.462 0.392 0.392

bm ncomp = 10 ncomp = 10 ncomp = 9 c = 1 c = 1 c = 1

s = 1.580e-04, 

c = 0.25

s = 5.031e-05, 

c = 1

s = 5.115e-05, 

c = 4

d = 1, sc = 

0.001, c = 0.5

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 11 mtry = 176 mtry = 176

AUC 0.735 0.695 0.715 0.708 0.580 0.579 0.500 0.637 0.642 0.702 0.585 0.621 0.652 0.568 0.568

Kpp 0.358 0.263 0.374 0.335 0.180 0.237 0.000 0.072 0.260 0.338 0.228 0.236 0.285 0.199 0.199

Diversity POAPRA ac 0.310 0.253 0.249 0.351 0.378 0.304 0.219 0.298 0.294 0.396 0.401 0.346 0.269 0.465 0.465

bm ncomp = 10 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 2.552e-04, 

c = 4

s = 5.057e-05, 

c = 2

s = 4.909e-05, 

c = 2

d = 3, sc = 1, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 2, sc = 0.001, 

c = 0.25 mtry = 8523 mtry = 8523 mtry = 8523

AUC 0.576 0.530 0.616 0.409 0.401 0.471 0.512 0.410 0.460 0.493 0.441 0.490 0.507 0.477 0.477

Kpp 0.089960727 0.023073147 0.028571429 0.1146744 0.1966071 0.1103013 0 0.07888408 0.1268409 0.1980685 0.1731203 0.11585665 0.058916424 0.306938432 0.306938432

Diversity CENJAC ac 0.423 0.345 0.362 0.342 0.293 0.179 0.252 0.286 0.187 0.350 0.273 0.195 0.418 0.317 0.317

bm ncomp = 6 ncomp = 2 ncomp = 8 c = 1 c = 1 c = 1

s = 1.984e-04, 

c = 2

s = 4.999e-05, 

c = 2

s = 5.030e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 4278 mtry = 1077 mtry = 1077

AUC 0.662 0.578 0.598 0.729 0.702 0.668 0.500 0.496 0.527 0.725 0.569 0.703 0.597 0.523 0.523

Kpp 0.18579932 0.147426647 0.14357143 0.1435185 0.0777417 -0.03380952 0 0.07335257 0.03757816 0.140833333 0.0639881 -0.01220238 0.23386905 0.15315476 0.15315476

Diversity GERPRA ac 0.293 0.253 0.338 0.260 0.128 0.143 0.242 0.221 0.123 0.332 0.144 0.143 0.212 0.159 0.159

bm ncomp = 10 ncomp = 1 ncomp = 4 c = 1 c = 1 c = 1

s = 2.963e-04, 

c = 2

s = 5.010e-05, 

c = 2

s = 5.164e-05, 

c = 2

d = 2, sc = 0.1, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 18 mtry = 4 mtry = 4

AUC 0.561 0.461 0.472 0.518 0.515 0.516 0.479 0.459 0.551 0.522 0.532 0.575 0.428 0.341 0.341

Kpp 0.073 0.016 0.070 0.019 -0.073 -0.030 0.000 0.041 0.006 0.120 -0.062 -0.032 -0.009 0.029 0.029

Diversity KNAARV ac 0.372 0.352 0.275 0.292 0.220 0.144 0.250 0.150 0.091 0.330 0.213 0.160 0.293 0.134 0.134

bm ncomp = 4 ncomp = 1 ncomp = 10 c = 1 c = 1 c = 1

s = 1.965e-04, 

c = 4

s = 5.090e-05, 

c = 2

s = 5.025e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 114 mtry = 17 mtry = 17

AUC 0.659 0.572 0.534 0.587 0.508 0.487 0.500 0.521 0.471 0.625 0.580 0.476 0.529 0.290 0.290

Kpp 0.150 0.169 0.008 0.078 -0.025 -0.053 0.000 0.030 -0.055 0.119 -0.010 -0.057 0.094 -0.034 -0.034

Diversity LEUVUL ac 0.377 0.278 0.370 0.354 0.244 0.249 0.252 0.214 0.236 0.357 0.273 0.264 0.423 0.379 0.379

bm ncomp = 3 ncomp = 7 ncomp = 10 c = 1 c = 1 c = 1

s = 2.361e-04, 

c = 2

s = 5.008e-05, 

c = 2

s = 4.987e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 2, sc = 0.1, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 125 mtry = 7174 mtry = 7174

AUC 0.593 0.531 0.634 0.641 0.527 0.578 0.493 0.497 0.599 0.677 0.544 0.590 0.605 0.577 0.577

Kpp 0.170 0.037 0.164 0.138 0.003 0.013 0.010 -0.035 0.002 0.144 0.066 0.035 0.233 0.175 0.175

Diversity PLALAN ac 0.404 0.360 0.380 0.409 0.302 0.313 0.277 0.309 0.281 0.395 0.286 0.287 0.373 0.317 0.317

bm ncomp = 6 ncomp = 5 ncomp = 2 c = 1 c = 1 c = 1

s = 2.253e-04, 

c = 4

s = 4.929e-05, 

c = 2

s = 4.935e-05, 

c = 2

d = 1, sc = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 5540 mtry = 148 mtry = 148

AUC 0.724 0.671 0.655 0.676 0.639 0.631 0.507 0.632 0.592 0.481 0.640 0.597 0.629 0.570 0.570

Kpp 0.205 0.150 0.187 0.216 0.079 0.100 0.036 0.089 0.066 0.189 0.054 0.063 0.163 0.107 0.107

Diversity RANACR ac 0.278 0.314 0.317 0.275 0.171 0.094 0.182 0.104 0.088 0.283 0.153 0.105 0.313 0.192 0.192

bm ncomp = 8 ncomp = 1 ncomp = 9 c = 1 c = 1 c = 1

s = 2.778e-04, 

c = 2

s = 4.972e-05, 

c = 2

s = 4.903e-05, 

c = 0.25

d = 1, sc = 

0.001, c = 2

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 7819 mtry = 3924 mtry = 3924

AUC 0.573 0.635 0.636 0.453 0.570 0.507 0.500 0.646 0.555 0.228 0.551 0.465 0.521 0.397 0.397

Kpp 0.031 0.111 0.137 0.050 -0.054 -0.097 0.000 -0.034 -0.013 0.015 -0.075 -0.088 0.108 0.023 0.023

PLS SVMl SVMr SVMp RF
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Table 1: continued – MTBLS1224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data set

Level species eval. ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog

FG ac 1.000 1.000 1.000 1.000 0.997 1.000 0.987 0.989 1.000 1.000 0.999 1.000 1.000 1.000 1.000

bm ncomp = 1 ncomp = 3 ncomp = 2 c = 1 c = 1 c = 1

s = 1.122e-04, 

c = 1

s = 1.081e-04, 

c = 1

s = 1.101e-04, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 3, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 2 mtry = 2 mtry = 2

AUC 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.991 0.991

Kpp 1.000 1.000 1.000 1.000 0.993 1.000 0.975 0.977 1.000 1.000 0.998 1.000 1.000 1.000 1.000

Species ac 0.971 0.970 0.974 0.969 0.960 0.968 0.958 0.958 0.970 0.970 0.964 0.970 0.971 0.971 0.971

bm ncomp = 15 ncomp = 28 ncomp = 20 c = 1 c = 1 c = 1

s = 1.154e-04, 

c = 1

s = 1.205e-04, 

c = 1

s = 1.241e-04, 

c = 1

d = 1, sc = 0.001, 

c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 26 mtry = 4 mtry = 9

AUC 0.996 0.996 0.996 0.883 0.882 0.905 0.790 0.781 0.796 0.884 0.882 0.911 0.999 0.998 0.998

Kpp 0.969 0.968 0.972 0.966 0.957 0.965 0.954 0.954 0.967 0.967 0.961 0.967 0.968 0.968 0.968

Season ANTODO ac 0.785 0.645 0.770 0.798 0.263 0.548 0.281 0.284 0.451 0.802 0.281 0.583 0.764 0.622 0.633

bm ncomp = 8 ncomp = 10 ncomp = 6 c = 1 c = 1 c = 1

s = 3.448e-04, 

c = 2

s = 8.280e-05, 

c = 2

s = 8.376e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 3, sc = 0.1, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 3541 mtry = 1462 mtry = 603

AUC 0.931 0.911 0.974 0.922 0.516 0.718 0.512 0.522 0.652 0.909 0.535 0.688 0.913 0.831 0.832

Kpp 0.684 0.477 0.679 0.695 0.035 0.396 0.040 0.039 0.239 0.701 0.048 0.397 0.667 0.468 0.484

Season AVEPUB ac 0.867 0.726 0.934 0.835 0.346 0.711 0.312 0.283 0.665 0.828 0.426 0.724 0.910 0.861 0.866

bm ncomp = 8 ncomp = 10 ncomp = 6 c = 1 c = 1 c = 1

s = 4.550e-04, 

c = 1

s = 8.457e-05, 

c = 2

s = 8.708e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 68 mtry = 270 mtry = 195

AUC 0.986 0.883 0.988 0.957 0.559 0.909 0.547 0.460 0.799 0.944 0.612 0.891 0.964 0.943 0.943

Kpp 0.816 0.626 0.905 0.774 0.097 0.610 0.075 0.050 0.566 0.757 0.253 0.612 0.873 0.809 0.819

Season DACGLO ac 0.898 0.857 0.906 0.877 0.427 0.823 0.293 0.230 0.646 0.856 0.455 0.794 0.923 0.865 0.872

bm ncomp = 3 ncomp = 8 ncomp = 3 c = 1 c = 1 c = 1

s = 4.944e-04, 

c = 2

s = 9.081e-05, 

c = 2

s = 8.634e-05, 

c = 2

d = 1, sc = 0.001, 

c = 1

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 22 mtry = 902 mtry = 832

AUC 0.972 0.968 0.966 0.957 0.675 0.888 0.544 0.427 0.853 0.954 0.707 0.904 0.964 0.938 0.939

Kpp 0.854 0.814 0.856 0.824 0.234 0.758 0.072 0.059 0.560 0.799 0.259 0.731 0.891 0.818 0.830

Season FESRUB ac 0.860 0.670 0.851 0.869 0.358 0.726 0.311 0.286 0.647 0.859 0.373 0.664 0.837 0.823 0.843

bm ncomp = 10 ncomp = 8 ncomp = 7 c = 1 c = 1 c = 1

s = 6.370e-04, 

c = 2

s = 8.570e-05, 

c = 2

s = 8.739e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 270 mtry = 141 mtry = 80

AUC 0.963 0.862 0.978 0.935 0.600 0.896 0.532 0.453 0.877 0.902 0.582 0.890 0.954 0.921 0.923

Kpp 0.808 0.533 0.781 0.811 0.138 0.625 0.073 0.059 0.547 0.803 0.159 0.572 0.776 0.753 0.786

Season HOLLAN ac 0.938 0.885 0.998 0.931 0.642 0.885 0.368 0.336 0.823 0.956 0.663 0.897 0.951 0.945 0.944

bm ncomp = 5 ncomp = 8 ncomp = 6 c = 1 c = 1 c = 1

s = 6.653e-04, 

c = 2

s = 9.063e-05, 

c = 2

s = 8.897e-05, 

c = 2

d = 2, sc = 0.001, 

c = 0.5

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 153 mtry = 63 mtry = 94

AUC 0.989 0.990 1.000 0.981 0.834 0.962 0.583 0.573 0.913 0.985 0.848 0.975 0.990 0.981 0.981

Kpp 0.905 0.836 0.997 0.907 0.511 0.841 0.160 0.139 0.764 0.938 0.544 0.857 0.931 0.924 0.924

Season PHLPRA ac 0.277 0.815 0.916 0.854 0.493 0.812 0.416 0.426 0.787 0.860 0.496 0.825 0.824 0.780 0.784

bm ncomp = 9 ncomp = 10 ncomp = 10 c = 1 c = 1 c = 1

s = 3.126e-04, 

c = 4

s = 9.059e-05, 

c = 2

s = 8.493e-05, 

c = 2

d = 1, sc = 0.001, 

c = 2

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 229 mtry = 153 mtry = 153

AUC 0.962 0.901 0.978 0.959 0.662 0.945 0.657 0.643 0.914 0.946 0.680 0.949 0.946 0.915 0.916

Kpp 0.814 0.748 0.885 0.801 0.324 0.746 0.223 0.237 0.716 0.810 0.322 0.766 0.763 0.704 0.710

Season POAPRA ac 0.858 0.840 0.883 0.817 0.441 0.711 0.238 0.232 0.499 0.834 0.456 0.705 0.920 0.796 0.808

bm ncomp = 10 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 5.402e-04, 

c = 2

s = 8.792e-05, 

c = 2

s = 8.619e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 437 mtry = 2017 mtry = 2567

AUC 0.942 0.938 0.968 0.885 0.676 0.846 0.544 0.513 0.814 0.882 0.608 0.853 0.941 0.895 0.894

Kpp 0.791 0.759 0.832 0.744 0.283 0.587 0.034 0.043 0.349 0.750 0.246 0.601 0.878 0.714 0.7264438

Season CENJAC ac 0.628 0.448 0.733 0.651 0.295 0.465 0.253 0.210 0.393 0.622 0.268 0.476 0.589 0.466 0.461

bm ncomp = 9 ncomp = 2 ncomp = 8 c = 1
c = 1 c = 1

s = 4.402e-04, 

c = 2

s = 8.001e-05, 

c = 4

s = 8.869e-05, 

c = 2

d = 1, sc = 0.1, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 1148 mtry = 832
mtry = 195

AUC 0.858 0.590 0.864 0.782 0.526 0.676 0.531 0.534 0.658 0.807 0.507 0.675 0.805 0.703 0.703

Kpp 0.491 0.248 0.627 0.499 0.050 0.296 0.033 -0.015 0.211 0.482 0.030 0.316 0.440 0.295 0.301

Season GERPRA ac 0.921 0.717 0.899 0.950 0.441 0.768 0.420 0.346 0.624 0.938 0.499 0.778 0.928 0.879 0.8925

bm ncomp = 5 ncomp = 6 ncomp = 6 c = 1 c = 1 c = 1

s = 5.741e-04, 

c = 2

s = 8.450e-05, 

c = 2

s = 8.881e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 437 mtry = 166 mtry = 343

AUC 0.986 0.900 0.971 0.984 0.571 0.928 0.658 0.625 0.905 0.991 0.649 0.941 0.958 0.936 0.936

Kpp 0.882 0.609 0.858 0.931 0.253 0.685 0.246 0.183 0.531 0.915 0.335 0.700 0.896 0.835 0.852

Season KNAARV ac 0.968 0.904 1.000 0.981 0.435 0.934 0.502 0.418 0.873 0.973 0.458 0.926 0.995 0.986 0.986

bm ncomp = 9 ncomp = 9 ncomp = 3 c = 1 c = 1 c = 1

s = 4.615e-04, 

c = 4

s = 8.850e-05, 

c = 2

s = 8.332e-05, 

c = 2

d = 2, sc = 0.001, 

c = 1

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 120 mtry = 74 mtry = 102

AUC 0.995 0.975 1.000 1.000 0.703 0.992 0.684 0.702 0.945 1.000 0.691 0.977 0.996 0.985 0.985

Kpp 0.959 0.874 1.000 0.973 0.230 0.907 0.323 0.252 0.823 0.962 0.305 0.899 0.993 0.981 0.981

Season LEUVUL ac 0.944 0.825 0.943 0.939 0.507 0.876 0.539 0.501 0.862 0.921 0.502 0.879 0.923 0.913 0.911

bm ncomp = 8 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 5.000e-04, 

c = 1

s = 8.937e-05, 

c = 2

s = 8.724e-05, 

c = 2

d = 1, sc = 0.001, 

c = 2

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 557 mtry = 343 mtry = 229

AUC 0.991 0.944 0.997 0.977 0.672 0.973 0.730 0.704 0.971 0.978 0.665 0.974 0.973 0.967 0.967

Kpp 0.924 0.765 0.923 0.918 0.338 0.832 0.382 0.333 0.814 0.931 0.333 0.836 0.895 0.881 0.879

Season PLALAN ac 0.835 0.722 0.854 0.862 0.626 0.803 0.475 0.481 0.799 0.859 0.619 0.803 0.863 0.832 0.834

bm ncomp = 5 ncomp = 8 ncomp = 5 c = 1 c = 1 c = 1

s = 4.170e-04, 

c = 2

s = 8.772e-05, 

c = 2

s = 9.081e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 22 mtry = 3267 mtry = 46

AUC 0.957 0.870 0.969 0.964 0.742 0.935 0.737 0.745 0.942 0.958 0.727 0.929 0.956 0.940 0.940

Kpp 0.777 0.625 0.804 0.813 0.495 0.737 0.302 0.308 0.734 0.808 0.485 0.737 0.815 0.772 0.777

Season RANACR ac 0.960 0.968 0.969 0.973 0.459 0.848 0.970 0.351 0.731 0.980 0.503 0.823 0.958 0.900 0.912

bm ncomp = 10 ncomp = 9 ncomp = 4 c = 1 c = 1 c = 1

s = 6.240e-04, 

c = 1

s = 8.737e-05, 

c = 2

s = 8.807e-05, 

c = 2

d = 1, scale = 

0.01, c = 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 46 mtry = 49 mtry = 74

AUC 0.998 0.990 1.000 0.980 0.624 0.923 0.543 0.598 0.903 0.957 0.677 0.910 0.985 0.957 0.957

Kpp 0.940 0.949 0.957 0.960 0.251 0.780 0.193 0.129 0.656 0.972 0.312 0.760 0.942 0.866 0.881

SVMl SVMr SVMp RF

MTBLS1224

PLS
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Level species eval. ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog ZeroInt-pP ImpInt ImpLog

Diversity ANTODO ac 0.426 0.400 0.327 0.369 0.363 0.251 0.287 0.277 0.232 0.383 0.387 0.306 0.283 0.356 0.344

bm ncomp = 3 ncomp = 2 ncomp = 7 c = 1 c = 1 c = 1

s = 3.734e-04, 

c = 2

s = 8.770e-05, 

c = 2

s = 8.107e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 2, sc = 0.01, c 

= 0.25 mtry = 5737 mtry = 4159 mtry = 2567

AUC 0.332 0.588 0.546 0.521 0.419 0.376 0.470 0.482 0.505 0.577 0.494 0.434 0.465 0.419 0.420

Kpp -0.061 0.183 0.085 0.164 0.100 0.033 0.021 0.008 0.013 0.164 0.168 0.035 0.072 0.176 0.157

Diversity AVEPUB ac 0.411 0.414 0.411 0.317 0.173 0.262 0.212 0.157 0.228 0.361 0.326 0.268 0.337 0.317 0.331

bm ncomp = 7 ncomp = 9 ncomp = 7 c = 1 c = 1 c = 1

s = 3.855e-04, 

c = 4

s = 8.450e-05, 

c = 2

s = 8.773e-05, 

c = 2

d = 2, sc = 0.001, 

c = 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 1584 mtry = 372 mtry = 3838

AUC 0.546 0.645 0.723 0.499 0.500 0.544 0.495 0.497 0.468 0.539 0.564 0.586 0.543 0.506 0.507

Kpp 0.095 0.225 0.222 0.106 -0.080 0.059 0.002 -0.019 0.034 0.151 0.098 0.062 0.136 0.146 0.154

Diversity DACGLO ac 0.342 0.269 0.447 0.257 0.259 0.276 0.250 0.215 0.153 0.306 0.255 0.246 0.257 0.243 0.233

bm ncomp = 10 ncomp = 2 ncomp = 7 c = 1 c = 1 c = 1

s = 4.651e-04, 

c = 2

s = 8.512e-05, 

c = 2

s = 8.615e-05, 

c = 2

d = 1, sc = 0.001, 

c = 2

d = 1, sc = 0.001, 

c = 0.25

d, = 1, sc = 

0.001, c = 0.25 mtry = 20 mtry = 2017 mtry = 1584

AUC 0.659 0.441 0.729 0.649 0.546 0.447 0.520 0.478 0.348 0.639 0.528 0.456 0.475 0.473 0.471

Kpp 0.175 0.055 0.262 0.020 0.008 0.101 0.004 0.000 0.018 0.053 -0.007 0.074 0.043 0.069 0.053

Diversity FESRUB ac 0.558 0.576 0.610 0.540 0.273 0.376 0.287 0.239 0.347 0.533 0.344 0.393 0.498 0.412 0.426

bm ncomp = 8 ncomp = 8 ncomp = 9 c = 1 c = 1 c = 1

s = 5.941e-04, 

c = 2

s = 8.791e-05, 

c = 2

s = 8.764e-05, 

c = 2

d = 1, sc = 0.1, c 

= 0.25

d = 2, sc = 

1e+05, c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 2185 mtry = 292 mtry = 372

AUC 0.673 0.766 0.824 0.686 0.514 0.666 0.482 0.436 0.627 0.690 0.503 0.679 0.731 0.654 0.651

Kpp 0.147 0.448 0.461 0.354 0.047 0.202 0.045 0.030 0.211 0.366 0.144 0.255 0.312 0.254 0.258

Diversity HOLLAN ac 0.406 0.380 0.314 0.380 0.236 0.116 0.248 0.213 0.105 0.394 0.231 0.250 0.300 0.168 0.140

bm ncomp = 7 ncomp = 10 ncomp = 6 c = 1 c = 1 c = 1

s = 5.448e-04, 

c = 2

s = 9.056e-05, 

c = 2

s = 8.782e-05, 

c = 2

d = 3, sc = 0.001, 

c = 0.5

d = 3, sc = 0.01, c 

= 0.25

d = 3, sc = 0.1, c 

= 0.25 mtry = 33 mtry = 24 mtry = 17

AUC 0.584 0.724 0.538 0.567 0.563 0.575 0.435 0.445 0.563 0.524 0.599 0.532 0.494 0.363 0.362

Kpp 0.276 0.189 0.097 0.150 0.005 -0.078 0.052 0.001 -0.051 0.185 0.040 -0.003 0.095 0.026 -0.022

Diversity PHLPRA ac 0.465 0.428 0.442 0.427 0.275 0.341 0.299 0.246 0.228 0.436 0.340 0.334 0.350 0.347 0.356

bm ncomp = 10 ncomp = 10 ncomp = 10 c = 1 c = 1 c = 1

s = 3.831e-04, 

c = 4

s = 9.177e-05, 

c = 2

s = 8.663e-05, 

c = 1

d = 1, sc = 0.1, c 

= 0.25

d = 2, sc = 10, c = 

0.25

d = 3, sc = 0.001, 

c = 0.25 mtry = 832 mtry = 26 mtry = 195

AUC 0.735 0.669 0.725 0.697 0.519 0.642 0.557 0.509 0.574 0.690 0.531 0.648 0.642 0.598 0.599

Kpp 0.358 0.222 0.252 0.231 0.038 0.123 0.059 0.020 0.113 0.240 0.120 0.134 0.128 0.140 0.151

Diversity POAPRA ac 0.543 0.490 0.670 0.464 0.215 0.328 0.348 0.252 0.281 0.462 0.256 0.362 0.523 0.328 0.319

bm ncomp = 10 ncomp = 10 ncomp = 9 c = 1 c = 1 c = 1

s = 6.184e-04, 

c = 8

s = 7.964e-05, 

c = 2

s = 8.631e-05, 

c = 2

d = 1, sc = 0.01, c 

= 0.25

d = 3, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 1861 mtry = 5737 mtry = 5294

AUC 0.576 0.770 0.841 0.777 0.509 0.606 0.524 0.472 0.672 0.820 0.589 0.626 0.725 0.534 0.534

Kpp 0.089960727 0.3199708 0.51528822 0.283812 -0.05768287 0.1119529 0.1187996 0.03829966 0.13143338 0.08249158 0.038571429 0.200680272 0.33603896 0.141774892 0.110329485

Diversity CENJAC ac 0.654 0.425 0.680 0.671 0.425 0.619 0.238 0.233 0.473 0.683 0.393 0.574 0.725 0.678 0.691

bm ncomp = 6 ncomp = 9 ncomp = 10 c = 1 c = 1 c = 1

s = 4.364e-04, 

c = 2

s = 1.021e-04, 

c = 2

s = 8.301e-05, 

c = 4

d = 1, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 2567 mtry = 557 mtry = 654

AUC 0.662 0.618 0.869 0.827 0.647 0.743 0.447 0.511 0.742 0.808 0.577 0.760 0.852 0.796 0.796

Kpp 0.18579932 0.21612666 0.5547374 0.5374325 0.2526725 0.4811207 0.009583333 0.02154762 0.3440957 0.54680451 0.22065476 0.441618567 0.6044974 0.5525493 0.5679413

Diversity GERPRA ac 0.400 0.421 0.455 0.313 0.184 0.193 0.174 0.102 0.153 0.313 0.261 0.201 0.418 0.212 0.243

bm ncomp = 10 ncomp = 6 ncomp = 5 c = 1 c = 1 c = 1

s = 6.170e-04, 

c = 4

s = 8.801e-05, 

c = 2

s = 8.708e-05, 

c = 2

d = 1, sc = 0.1, c 

= 0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 4885 mtry = 3838 mtry = 2017

AUC 0.561 0.613 0.684 0.435 0.472 0.417 0.552 0.517 0.476 0.451 0.511 0.435 0.544 0.454 0.453

Kpp 0.073 0.214 0.267 0.090 -0.067 -0.009 -0.047 -0.001 0.035 0.070 0.056 0.002 0.206 0.012 0.035

Diversity KNAARV ac 0.293 0.354 0.269 0.229 0.214 0.253 0.171 0.143 0.113 0.286 0.236 0.236 0.363 0.230 0.219

bm ncomp = 4 ncomp = 1 ncomp = 5 c = 1 c = 1 c = 1

s = 4.266e-04, 

c = 8

s = 8.949e-05, 

c = 2

s = 8.740e-05, 

c = 0.25

d = 2, sc = 1, c = 

0.25

d = 2, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 5737 mtry = 768 mtry = 4507

AUC 0.659 0.554 0.541 0.435 0.524 0.362 0.520 0.461 0.545 0.611 0.547 0.367 0.476 0.445 0.445

Kpp 0.150 0.140 0.057 -0.003 -0.013 0.069 -0.060 -0.069 0.017 0.070 0.026 0.040 0.181 0.050 0.041

Diversity LEUVUL ac 0.392 0.387 0.315 0.322 0.238 0.156 0.277 0.152 0.161 0.337 0.259 0.185 0.296 0.215 0.218

bm ncomp = 3 ncomp = 10 ncomp = 9 c = 1 c = 1 c = 1

s = 4.218e-04, 

c = 2

s = 8.432e-05, 

c = 2

s = 8.750e-05, 

c = 0.25

d = 1, sc = 0.001, 

c = 2

d = 3, sc = 0.001, 

c = 0.25

d = 3, sc = 0.001, 

c = 0.25 mtry = 141 mtry = 8 mtry = 13

AUC 0.593 0.640 0.572 0.451 0.482 0.415 0.473 0.489 0.515 0.491 0.503 0.538 0.492 0.394 0.397

Kpp 0.170 0.179 0.091 0.096 -0.008 -0.104 0.042 -0.092 -0.017 0.119 0.042 0.004 0.071 -0.006 -0.008

Diversity PLALAN ac 0.359 0.367 0.374 0.331 0.222 0.243 0.317 0.314 0.262 0.345 0.297 0.271 0.305 0.259 0.264

bm ncomp = 6 ncomp = 2 ncomp = 1 c = 1 c = 1 c = 1

s = 4.443e-04, 

c = 2

s = 8.543e-05, 

c = 2

s = 8.548e-05, 

c = 4

d = 2, sc = 0.01, c 

= 0.25

d = 2, sc = 0.01, c 

= 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 102 mtry = 2 mtry = 8

AUC 0.724 0.577 0.579 0.505 0.504 0.483 0.482 0.465 0.473 0.556 0.496 0.496 0.526 0.466 0.050

Kpp 0.205 0.151 0.172 0.109 -0.028 0.007 0.095 0.092 0.045 0.129 0.088 0.040 0.076 0.050 0.053

Diversity RANACR ac 0.345 0.473 0.377 0.281 0.222 0.252 0.232 0.119 0.153 0.308 0.232 0.259 0.423 0.356 0.351

bm ncomp = 8 ncomp = 7 ncomp = 1 c = 1 c = 1 c = 1

s = 6.415e-04, 

c = 8

s = 9.009e-05, 

c = 0.25

s = 8.763e-05, 

c = 2

d = 1, sc = 0.001, 

c = 4

d = 1, sc = 0.001, 

c = 0.25

d = 1, sc = 0.001, 

c = 0.25 mtry = 2369 mtry = 4159 mtry = 5737

AUC 0.573 0.696 0.688 0.591 0.530 0.554 0.504 0.495 0.504 0.589 0.568 0.624 0.640 0.545 0.544

Kpp 0.031 0.253 0.149 0.040 -0.011 0.056 0.028 0.003 0.011 0.073 0.016 0.065 0.238 0.135 0.148

PLS SVMl SVMr SVMp RF
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Table 1: continued – MTBLS2140 
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Supplement Table 1: Plant species indices. Plant species richness and Shannon were recorded in each season 

for each plot separately. Seasons represent sampling in spring (E) , early summer (F), late summer (G) and autumn 

(H) of the 2018 growing season. Only identified species were included in the analysis. Species Shannon is shown 

as calculation for each species. Due to the number of species, the table is split across multiple parts: Shannon & 

Richness, FG legume, FG herb, FG grass. 

 

(Shannon & Richness Season 2018 E) 
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Supplement Table 1: Plant species indices – continued (Shannon & Richness Season 2018 F & G) 
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Supplement Table 1: Plant species indices – continued (Shannon & Richness Season 2018 H) 
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Supplement Table 1: Plant species indices – continued (FG legume Season 2018 E) 
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Supplement Table 1: Plant species indices – continued (FG legume Season 2018 F) 
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Supplement Table 1: Plant species indices – continued (FG legume Season 2018 G) 
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Supplement Table 1: Plant species indices – continued (FG legume Season 2018 H) 
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Supplement Table 1: Plant species indices – continued (FG herb species A-B Season 2018 E) 
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Supplement Table 1: Plant species indices – continued (FG herb species A-B Season 2018 F) 
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Supplement Table 1: Plant species indices – continued (FG herb species A-B Season 2018 G) 
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Supplement Table 1: Plant species indices – continued (FG herb species A-B Season 2018 H) 
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Supplement Table 1: Plant species indices – continued (FG herb species C Season 2018 E) 
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Supplement Table 1: Plant species indices – continued (FG herb species C Season 2018 F) 
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Supplement Table 1: Plant species indices – continued (FG herb species C Season 2018 G) 
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Supplement Table 1: Plant species indices – continued (FG herb species C Season 2018 H) 
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Supplement Table 1: Plant species indices – continued (FG herb species E-O Season 2018 E) 
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Supplement Table 1: Plant species indices – continued (FG herb species E-O Season 2018 F) 
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Supplement Table 1: Plant species indices – continued (FG herb species E-O Season 2018 G) 
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Supplement Table 1: Plant species indices – continued (FG herb species E-O Season 2018 H) 
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Supplement Table 1: Plant species indices – continued (FG herb species P-Z Season 2018 E & F) 
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Supplement Table 1: Plant species indices – continued (FG herb species P-Z Season 2018 G & H) 
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Supplement Table 1: Plant species indices – continued (FG grass Season 2018 E) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



| APPENDIX – CHAPTER 3 

 

| LXI 

Supplement Table 1: Plant species indices – continued (FG grass Season 2018 F) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX – CHAPTER 3 | 

 

LXII | 

Supplement Table 1: Plant species indices – continued (FG grass Season 2018 G) 
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Supplement Table 1: Plant species indices – continued (FG grass Season 2018 H) 
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Supplement Table 2: Tool versions and parameters used in the Galaxy-W4M workflow. The workflow for the 

LC-MS raw data pre-processing is available at https://doi.workflow4metabolomics.org/W4M00008 using an 

example dataset. 
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Supplement Table 3: Metabolite families for PLS selected features putatively annotated. The features were 

selected in thirteen species for seven factors. Putative annotations were based on database searches performed 

by MetFamily. Only those annotations that showed certain statistical reliability (p <= 0.05) were accepted. For 

each annotated family, we assigned a putative metabolite family ID (pMetFam_ID) used to indicate the features 

used for the statistical analysis. a) shows the annotation of each feature, for which trait in which species it was 

selected and which library was used for the putative annotation. b) Shows the intensity of the feature measured 

in each sample and the number of samples (across all species) that had an intensity measured for the feature. 

Note that to allow the table to be searchable by species and trait, features that had been PLS-selected for 

multiple species-trait combinations are listed for all these combinations. 
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Supplement Table 3a: Metabolite families - continued 
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Supplement Table 3a: Metabolite families - continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX – CHAPTER 3 | 

 

LXVIII | 

Supplement Table 3a: Metabolite families - continued 
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Supplement Table 3a: Metabolite families – continued 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam01 to 05) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam06 to i1.2a) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam07 to A1.1a) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam07-A2 to A3.2a) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08 to E3.1) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08-F1 to F2.2) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08-F2.2a) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08-G to G2.1b) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08-G2.1c) 
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Supplement Table 3b: Metabolite intensities – showing Season E as example (pMetFam08-G3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX – CHAPTER 3 | 

 

LXXX | 

Supplemental Table 4: Recorded traits on plot and plant level, and feature diversity indices across four seasons 

and thirteen plant species. The plant species belong to the functional groups (FG) grass and herb and were 

collected in plots of the Trait-Based Experiment located in the Jena Experiment. Trait recorded on plot level 

included plant species richness (pRich) and plant species Shannon diversity (pShan) per plot and season. On the 

plant level we recorded height, developmental stage (BBCH scale), mechanical (mechD) and pathogen inflicted 

damage (pathD) for each replicate. For each sample, LC-MS feature richness (fRich), feature Shannon diversity 

(fShan) and feature Evenness (fEven) was measured and calculated. Data is shown for 504 validated samples. 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplemental Table 4: continued 
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Supplement Table 5: Linear models were calculated for all 504 samples across thirteen species (all samples) and 

species specific for all species separately. We calculated the models using the prediction variables (preV): plant 

species richness (pRich) and plant species Shannon (pShan) and the response variables (resV): LC-MS feature 

richness (fRich), LC-MS feature Shannon (fShan) and LC-MS feature Evenness (fEven). We use the model intercept 

and coefficient (coef) to show the direction of the model that indicates the relationship. To compare the models' 

predictive power, we calculated the coefficient of determination (R²), root means square error (RMSE), and 

confidence intervals upper bound (CI_ub) and lower bound (CI_lb) and included the p-value as reference.  
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Supplement Table 6: R session info. The list of R packages, including their versions, used for data analysis and 

plot creation.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX – CHAPTER 3 | 

 

XC | 

Supplement Figure 1: Schematic overview of plots in the Trait-Based Experiment (TBE) in the Jena Experiment. 
In this study, we used the two plant species pools Pool1 (orange) and Pool2 (green) each containing four selected 

grass and four selected herb species. In the TBE, plots with different initial diversity levels (DL) were arranged 

randomly across three blocks: Block A, Block B and Block C, which are located next to each other along the river 

Saale, where each plot measured 3.5 m by 3.5 m. Due to an overlap in the species pools Pool1 and Pool2, three 

target species were collected from both pools. Which target species were collected from which plots can be 

found in tables 1a and 1b of the main manuscript. In the TBE A009, A016, A020, A027, A040, A043, B048, B059, 

B060, B064, B085, C097, C110, C121, C131, and C133 were designed as DL 1, being initially planted with only the 

target species; A002, A011, A013, A026, A042, A044, A046, B054, B071, B080, B081, B090, B092, C114, C135, 

C137 were designed as DL 2 with the target species and one additional plant species randomly assigned from the 

species pool; A003, A005, A010, A030, A035, A045, B051, B057, B067, B075, C103, C109, C115, and C136 were 

designed as DL4 with the target species and three additional species; A018 and B073 were designed as DL8 with 

all target species from the species pool. 
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Hiermit erkläre ich, Susanne Marr, an Eides statt, dass ich die vorliegende Dissertationsschrift mit dem Titel:  

 

„A Study in Green: Investigating Secondary Metabolite Profiles in Thirteen Grassland Plant Species< 
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