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Abstract

Agricultural sustainability (AS) is a topic that has been evolving since the mid-20th

century, and is a key component in the UN’s Sustainable Development Goals. De-

spite its wide use in both research and policy, there is still not a universally accepted

method for its measurement. This is particularly the case for farm level AS assess-

ment, with strong data requirements being one of the major obstacles to developing

a useful farm level sustainability index. This research proposes using item response

theory (IRT) to generate a farm-level AS index. IRT has a number of advantages

over existing methods, the most important of which is that the proposed AS index is

independent of the variables used in the IRT model. Use of a variable-independent

model means farm level AS scores can be generated using readily-available data

and compared across multiple regions with different sets of variables. The thesis is

comprised of three scientific articles outlining the design and application of an AS

index using IRT. The first article is the key contribution of the research and focuses

specifically on the design of the AS index using data from the Farm Accountancy

Data Network (FADN) and other secondary sources. Nine sustainability items are

generated and used as inputs in a graded response model, and robustness tests are

conducted on the model using a leave-one-out cross validation to test the model de-

sign, then items are systematically removed to test the model against missing data

and simulate a scale linking procedure. The second and third articles then present

applications of the index on two key topics within the literature on the sustainability

of farming. The second article provides a descriptive analysis comparing differences

in AS with respect to non-food crop production and producing on marginal lands



in the context of the bioeconomy, and the third article aims to identify causal links

between AS and the conversion from conventional to organic farming methods. The

key findings of the research are that (1) constructing an AS index with IRT may be

a suitable alternative to existing methods and can ease the issue of data constraints,

(2) farms producing a combination of non-food crops with food crops are more

sustainable on average than those not producing non-food crops, and (3) while

there is not enough evidence to suggest a causal relationship between AS and the

conversion to organic production, organic farms are more sustainable on average

with respect to every farm type and size in the data set.

Keywords: Sustainable agriculture, item response theory, non-food crops, bioecon-

omy, organic farming
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1

Introduction

1.1 Background

In 1987, the release of “Our common future” (Brundtland 1987) played a key role

in the emergence of sustainability into mainstream debate. Also referred to as the

Brundtland Report, the popularity of the publication was centered around a key

definition of sustainability as “meeting the needs and aspirations of the present

generation without compromising the ability of future generations to meet their

needs” (Brundtland 1987, p. 292). Debate at the time was mainly focused on the

negative impacts of human activity on the environment and included, as examples,

resource depletion from practices such as deforestation (see Geist and Lambin 2001)

and overfishing (Murawski 2000). This time period also marks the emergence of

communication on anthropogenic climate change; however, the topic at the time

was a niche idea limited to a narrow scope of scientific articles and synthesis reports

(Moser 2010).

Today, many of the environmental concerns introduced in the late 20th century have

been realized as emergent crises. Factors such as biodiversity loss and air pollution

are critical issues in many parts of the world, and the effects of climate change from

greenhouse gas emissions are detectable somewhere on the planet every day (Sippel

1



2 Chapter 1

et al. 2020) in the form of e.g. floods and extreme temperatures (Stott 2016). What

is more, other environmental issues that were unrealized a only few decades ago have

now emerged as ever-increasing global threats. Plastic pollution, for example, is now

found in almost every landscape on the planet, including deep oceans, deserts, and

arctic snow (MacLeod et al. 2021).

While many of the sustainability discussions still focus on environmental crises,

the concept has been extended in recent decades to address societal issues and the

world’s economies as well (Hajian and Kashani 2021). As shown in Figure 1.1, sus-

tainability is now generally subdivided into three dimensions (also known as pillars

or spheres). Social sustainability addresses basic human needs, changes in behav-

ior to meet or exceed environmental and biophysical goals, and the continuance of

social and cultural characteristics (Vallance, Perkins and Dixon 2011). In contrast,

economic sustainability places emphasis on financial stability while reducing or elim-

inating negative externalities. Examples for reducing externalities include, among

others: investments in the adoption of renewable resources, reductions of waste and

pollution, and ensuring that economic growth is inclusive and equitable and does

not leave certain groups behind.
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Figure 1.1: Common visualizations of sustainability and its components.

Despite clear distinctions in the goals of each dimension, an important aspect of

sustainability is the idea that the individual dimensions must be considered as part

of a larger holistic framework. This holistic perspective is best represented in the

right panel of Figure 1.1 showing a nested hierarchy among the dimensions. From

this perspective, the economy is only considered as a subset of society, and all eco-
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nomic and social activities take place within a subset of the natural environmental

we live in. The idea of a holistic approach to sustainability gained significant at-

tention in 2015 when the United Nations (UN) developed a comprehensive set of 17

short- and long-term goals addressing a wide range of global sustainability concerns.

Designed as an upgrade to the Millennium Development Goals (see Sachs 2012), the

Sustainable Development Goals (SDGs) encompass more than 300 individual in-

dicators among the three sustainability dimensions. The indicators cover a broad

range of global goals and initiatives that include ending poverty, improving health

and education, and setting targets for reducing greenhouse gas emissions and pollu-

tion (United Nations and Development 2015). A key advantage to the SDGs is the

aforementioned holistic approach, where it is not possible to achieve the individual

components of sustainability in isolation (Haywood et al. 2019).

Considering projections for the world population to continue growing well into the

future (see Gerland et al. 2014), a particularly important aspect of the SDGs is

the development of a sustainable food supply. SDG 2 aims to "end hunger, achieve

food security and improved nutrition, and promote sustainable agriculture" by 2030

(United Nations and Development 2015). Within this goal, indicator 2.4.1 specifi-

cally targets agricultural sustainability (AS). The effective measurement and moni-

toring of AS is critical because in addition to its role as the provider of food, feed,

and fiber, agriculture is a key driver of economic growth by providing employment

opportunities and income generation. Further, it has a significant impact on social

development and poverty reduction, particularly in rural areas. In this context,

the promotion of sustainable agricultural practices can help to empower rural com-

munities while providing for a growing population. However, agriculture is also a

major contributor to many of the world’s most pressing environmental challenges.

For example, almost one third of global anthropogenic emissions originate in the

agricultural sector, a majority of which are produced by enteric fermentation (37%)

and fertilizers (29%) (Tubiello et al. 2013).
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In addition to SDG indicator 2.4.1, a broad range of methods have been proposed

for measuring and tracking AS in the last few decades. The methods can be cate-

gorized into four basic types: life cycle analysis (LCA), green accounting, ecological

footprinting, and composite indicators (Frater and Franks 2013). SDG indicator

2.4.1 belongs to the latter group, which is perhaps the most widely used due to its

flexibility in both design and application. Ewert et al. (2009), for example, proposes

an assessment suited for analysis throughout Europe, and a variety of national level

assessments have been developed such as the national report published by the Ger-

man Agricultural Society (DLG 2016) and a group of studies out of Ireland (e.g.

Hennessy et al. 2013; Ryan et al. 2016; Lynch et al. 2016; Dillon et al. 2015). Ex-

amples of smaller scale assessments include studies such as Dantsis et al. (2010) and

Gómez-Limón and Riesgo (2009) who developed assessments for regions of Greece

and Spain, respectively.

1.2 Problem and research question

The problem this dissertation addresses is the issue of so-called data dependency.

Data dependency refers to the idea that the aforementioned methods are produced

a priori, and that missing data or inconsistencies in the set of variables used for

constructing the model can lead to biased results or misrepresentations of the phe-

nomena being measured. Using the composite indicator typology as an example,

these indices are generally compiled using a method such as a simple sum-score

aggregation: y = x1 + x2 + xn, where y represents the AS index and xn are the

variables used to generate it. While this format is attractive for its simplicity and

transparency, the weakness is that any changes to the list of x variables will change

the meaning and interpretation of y.

There are two main issues where data dependency causes problems in an AS index.

The first is in the case of missing data, where one or more of the individual variables

are not available for a particular observation. Missing data is a common occurrence
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and can happen randomly or from a systematic flaw in the data collection design.

Depending on the method used to construct the composite indicator and the sever-

ity of the problem, missing data may be imputed using some form of estimation

technique. However, the accuracy of the index may be compromised if the missing

data are not well handled (for an overview of missing data issues and imputation

methods, see OECD 2008).

The second issue in data-dependent indices occurs when multiple data sets from

different regions are merged together to create larger-scale (i.e. international) in-

dices. This is particularly problematic for AS indices because agricultural data are

generally collected at the regional or national level, and there are no international

standards for data collection regarding the specific variables, measurement units, or

frequencies of collection (e.g. annually, bi-annualy, etc.). The consequence is that

while most agricultural data sets do share a common set of basic indicators such as

farm size and output, much of the data varies across regions. This is problematic

because the index produced by a data-dependent method can only contain variables

that are common to all of the data sets being used.

Table 1.1 demonstrates this problem by simulating a situation where researchers

would like to create a multi-regional composite indicator with data from three inde-

pendent regions, each of which are responsible for collecting their own data. Individ-

ually, each region could construct relatively strong indices with four variables each:

Region 1 could construct an index with a function f(x1, x2, x3, x4), Region 2 could

could construct an index with f(x2, x3, x4, x5), and Region 3 with f(x3, x4, x5, x6).

However, employing a data-dependent method to construct an index for all three

regions would limit the study to the function f(x3, x4) since these are the only two

variables that all three regions have in common.
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Variable Region 1 Region 2 Region 3

x1

x2

x3

x4

x5

x6

Table 1.1: Demonstration of data constraints in current AS assessment methods with
multiple data sets

.

Considering the demonstrated issues with current AS methods, the overarching ques-

tion of this research is: Can an AS assessment method be developed that eases the

data dependency problem of existing methods? Corresponding to this question, the

main body of the dissertation is divided into three chapters outlining the devel-

opment and application of a new approach to measuring AS that is more flexible

to data substitutions. The chapters are outlined in greater detail in the following

section.

1.3 Structure of the dissertation

The dissertation consists of three scientific articles centered around the development

of a new AS assessment method. Chapter 2 introduces the approach used to develop

the proposed index and performs a series of simulations to test the robustness of the

index under various data restrictions. Chapters 3 and 4 then present applications

of the proposed index by addressing, respectively, the sustainability non-food crop

production and producing on marginal lands in the context of the bioeconomy, and

differences in sustainability between conventional and organic farms.
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Chapter 2 proposes the development of an AS index using item response theory

(IRT). IRT has a number of advantages over existing methods, the most important

of which is that our AS index is independent of the variables used in the IRT

model. This means that farm level AS scores can be estimated with readily-available

data and compared across different sets of variables from multiple regions. This

application uses data from the Farm Accountancy Data Network (FADN) and other

secondary sources to estimate an AS index, then compares the results of the IRT

estimations with known associations between the sustainability of farms relative

to their type and size. In line with the literature, the model finds (1) a positive

relationship between farm size and AS, (2) higher levels of sustainability for crop

and mixed farming systems, and (3) below-average performance for livestock farms

and vineyards. Chapter 2 further tests the sensitivity of the AS index against

randomly missing data and simulate a scale linking procedure to test the flexibility

in measuring multiple regions with different data sets, finding that the index is

generally robust in both analyses.

After demonstrating the feasibility of the AS index in the first section of the disser-

tation, Chapter 3 presents the first application of the proposed index by addressing

the sustainability of non-food crop (NFC) production in the context of the bioecon-

omy. In recent decades there has been a rapid expansion in the market for NFCs,

with corresponding attention directed at producing the crops on marginal lands to

mitigate competition with food. However, little is known about the relationship

between farm sustainability and NFC production. As such, the chapter uses the AS

index to estimate the sustainability NFC production as well as the sustainability of

production on marginal lands. Three key findings from the analysis are presented.

First, farms producing NFCs are more sustainable on average than those that only

produce food crops. Second, this association between higher AS levels and NFC pro-

duction is nonlinear: The highest predicted sustainability levels occur when farms

produce between 40% and 60% NFCs with respect to total output, but sustain-

ability levels are predicted to decrease as specialization in NFCs increases. Third,
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there appears to be no difference in farm sustainability when NFCs are produced on

marginal lands. The chapter concludes that the production of NFCs can be bene-

ficial for the sustainability of the bioeconomy, with the primary factor determining

the relative level of AS being the ratio of NFC output to total output.

Chapter 4 presents a second application of the model by addressing differences

in farm sustainability between organic and conventional production methods. A

common perception is that organic farming is more sustainable mostly because of

reduced environmental pressures, while also socioeconomic benefits from price pre-

miums and greater employment opportunities. This perception is shared by both

consumers and producers alike, and is often an underlying assumption behind fund-

ing and policies directed at promoting organic farming. While there are numerous

studies comparing individual components of the two methods, such as differences in

productivity, land quality, and chemical use, there is a lack of attention directed at

comparing the sustainability of these systems from a holistic perspective. Chapter

4 addresses this gap in the literature by using the AS index to identify differences

in farm sustainability between conventional and organic farming. The assessment is

conducted first as a descriptive analysis comparing differences in conventional farms,

farms that are converting to organic, and fully organic farms. The comparison is fur-

ther subdivided across different farm sizes and types to provide a more nuanced un-

derstanding of the differences the different groups. A difference-in-difference (DiD)

regression is then employed to estimate the potential for a causal relationship be-

tween AS and the conversion from conventional to organic production. The chapter

finds that organic farms are more sustainable on average than conventional farms

in every farm size and type classification, and the results of the DiD model suggest

that there may be a causal relationship between AS and the conversion to organic.

However, the estimated effect is quite small and large confidence intervals prevent

the possibility of a definitive conclusion on causality.

The dissertation concludes by first providing an overview of the findings, then dis-

cussing the current limitations and suggesting further research into the development
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of the index. The general directions for further research should include taking stock

of agricultural databases internationally to compile a list of common items that can

be used as a basis for scale linking, testing the model internationally, and develop-

ing a multidimensional model comprised of the economic, environmental, and social

dimensions of sustainability.

The code used for all statistical analyses in the dissertation is provided in the Github

repository brianbeadle/sustainability_index.
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2.1 Introduction

Agricultural sustainability (AS) is a concept that has been evolving since the mid-

dle of the 20th century. Interest in the sustainability of agricultural systems was

focused primarily on environmental concerns in 1950’s and 60’s (Pretty 2008), which

expanded into a perspective of ecological interaction in the 1980’s (Edwards 2020).

It has since grown further to recognize the main principles of sustainable develop-

ment (economic, environmental, and social) and is now a component in the United

Nation’s Sustainable Development Goals (specifically, SDG indicator 2.4.1: FAO

2018b).

Despite its increasing importance in both policy and practice, there is still not a uni-

versally accepted method for measuring AS. A broad range of variable-based tools

have been developed for the task (Marchand et al. 2014; Zhen and Routray 2003),

which are generally a collection of variables used to assess farm sustainability. As an

example, the Monitoring Tool for Integrated Farm Sustainability (MOTIFS) frame-

work (Meul, Nevens and Reheul 2009) is comprised of several ecological variables to

monitor the performance of Flemish dairy farms. However, a significant drawback to

existing methods is that they require a large set of variables that are rarely readily

available (Frater and Franks 2013; Kelly et al. 2018; Zhen and Routray 2003). This

is problematic because it often leads to the omission of important variables (Terres

et al. 2015) and misinterpretations of the phenomena being measured (see OECD

2008).

Our research contributes to the literature by providing proof of concept for using

item response theory (IRT) for AS measurement. Generally, IRT models can be

used to empirically analyze the relationships between observed items and a latent

variable. In contrast to existing AS indices, IRT model results are independent of the

individual variables selected for the estimations (assuming the variables have certain

properties) (see Lord 1953). This variable independence means that all items reflect

the latent variable in a comparable way, and the latent variable values of subjects
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(farms) do not change (except for random error) when some items are replaced

by others or missing entirely. Variable independence is an important advantage

over existing AS assessment methods because it (1) facilitates comparing AS scores

across (samples from) different surveys comprising different variable sets1, e.g. from

different countries, and (2) it means that reliable AS indices can still be estimated

for observations with some missing values.

The use of an IRT model to construct an AS index has another important advan-

tage: it allows us to quantify the uncertainty of the AS measurement by identifying

credible intervals that contain the true AS value with high probability. This way,

we can take into account, for example, that the precision of the measurement may

vary across different types of farms or regions.

There are two core challenges to creating a new index for AS measurement, the

first of which involves a proper definition of the concept of AS. As a result of its

definitional flexibility (Frater and Franks 2013; Franks 2010; White 2013), there

is significant variation in how AS is defined and thus pursued in policy-making

(Waltner-Toews 1996; Binder, Feola and Steinberger 2010). The working definition

we use for AS follows that of the Brundtland Report as a farm that is "meeting the

needs and aspirations of the present generation without compromising the ability

of future generations to meet their needs" (Brundtland 1987, p. 292). From this

definition, we can derive a set of variables that show the extent to which a farm is

sustainable. For example, suggested goals to achieve this definition include the pro-

motion of biodiversity on farms (Roy and Chan 2012), enabling stable productivity

over time to cope with natural or economic shocks (Conway and Barbie 1988), and

maintaining the well-being of the farmers and their families while meeting society’s

demands, values, and concerns (Lebacq, Baret and Stilmant 2013; Diazabakana

et al. 2014).

1The basic requirement for these comparisons is that the data sets share a minimum set of common
items, which can then be used to align the scales of the different estimations in a process called
scale linking. For an introduction to the procedure in the context of education assessments, see
Meyer and Zhu (2013).
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The second challenge involves validation of the model. We conduct three main forms

of model validation: First, we use leave-one-out cross-validation (LOO-CV) to find

the best parameterization of our IRT model. We then use the results of the model

to compare the distributions of farm level AS scores with existing knowledge on

associations between AS and farm size and type. Finally, we conduct a series of

sensitivity analyses to (1) test the robustness of the model results in the presence of

missing data, and (2) simulate a concurrent scale linking procedure to evaluate the

potential for expanding the AS index to larger geographic scales with different data

sets.

Results of the model estimations suggest that the IRT model represents a feasible

framework for estimating a farm level AS index. Our AS index is characterized by

a positive relationship between farm size and AS, higher than average sustainability

performances for crop and mixed farms, and below average performance for livestock

farms (milk, grazing livestock, etc.). These trends are also reflected geographically,

as the regions in the eastern part of Germany have the highest average sustainability

scores, and areas with high livestock production are among the lowest. We addi-

tionally find that the results are robust even for farms with missing items, as well

as in the case of scale linking simulations.

The remainder of the paper is organized as follows: After a brief literature review

in Section 2.2, Section 2.3 provides a short background on IRT and the assumptions

used in creating the model. Section 2.4 then discusses the data, items, and IRT

model estimations used to generate the index. The model results are discussed in

Section 2.5, and Section 2.6 concludes.

2.2 Review of existing methods

This section summarizes the four main methods of AS assessment outlined in Frater

and Franks (2013), the first three of which belong to a larger group of environmental

accounting methods and include life cycle analysis (LCA), green accounting, and
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ecological footprinting. Conceptually, these approaches are designed to quantify

both the direct and indirect effects of human activity (Patterson, McDonald and

Hardy 2017), generally in the creation of a specific product, process, or service.

Haas, Wetterich and Geier (2000) provides an example of a farm-level LCA that

was developed to assess the environmental impact of farms in southern Germany

by looking at factors such as resource use and consumption (including energy and

chemicals), and impacts to biodiversity and animal welfare. A detailed overview of

green accounting methods currently used to analyze European farming is provided

by Halberg, Verschuur and Goodlass (2005), a majority of which focus specifically

on energy, chemical, and nutrient usage. Finally, Blasi et al. (2016) present a farm-

level application in ecological footprinting by comparing the inputs (e.g. energy,

chemicals, and labor) and outputs for durum wheat production for a single farm in

Italy.

There are a number of challenges presented by these approaches. First, because the

methods are framed in environmental accounting, there is little attention given to

the socioeconomic aspects of farming. Ecological footprinting is perhaps the weakest

in this aspect because it only considers a narrow view of environmental impacts

by measuring land use, emissions, and chemical use (Frater and Franks 2013). In

contrast, LCAs are more flexible to a broader range of sustainability aspects through

the development of social LCAs (SLCAs) (e.g. Prasara-A et al. 2019) and life cycle

costing (LCC) (e.g. Baquero et al. 2011) as an economic approach to complement

the existing LCA framework. However, data availability is still a central issue to

these expansion efforts, as e.g. Chen and Holden (2017) and Martínez-Blanco et al.

(2014) both cite a lack of key social variables in constructing agricultural SLCAs.

Methodologically, another drawback to these methods is the monetization of envi-

ronmental impacts. The design of the frameworks are focused on quantifying and

expressing the environmental impacts of agriculture as a monetary value, which is

then used as an avoidance mechanism (Beckenbach, Hampicke and Schulz 1988;

Krieg, Albrecht and Jäger 2013). Such an approach is highly subjective because
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it is based on willingness to pay (Reap et al. 2008), which can vary widely based

on location. Further, the monetization of environmental impacts imply that any

consequences to farming can be compensated through financial means.

Composite indices are the fourth method identified by Frater and Franks (2013).

This approach is used most often in AS research due to its flexibility in terms

of methodological choices, as well as its ability to incorporate all sustainability

dimensions. The basic framework for a composite index involves a collection of

variables that are aggregated to explain a complex issue (OECD 2008). Index results

are often reported as a simple sum-score aggregation (e.g. Vitunskiene and Dabkiene

2016), though more complex aggregation methods exist such as geometric mean

aggregation (e.g. Talukder et al. 2017) or multi-criteria decision making (MCDA)

(e.g. Gómez-Limón and Riesgo 2009). Despite significant debate in the literature

over the respective strengths and weaknesses of each method, they generally produce

similar statistical results (for methods comparisons in AS assessment, see Gómez-

Limón and Riesgo 2009; Gómez-Limón and Sanchez-Fernandez 2010; Gómez-Limón,

Arriaza and Guerrero-Baena 2020). It is noted that some studies choose instead to

report the results as a “dashboard” of the individual variables. Examples of this

approach include a group of studies in Ireland (e.g. Hennessy et al. 2013; Ryan

et al. 2016; Lynch et al. 2016; Dillon et al. 2015) and the SDG 2.4.1 indicator (FAO

2018b), which reports both as a dashboard and an aggregated value. While useful,

a dashboard can lead to more complex interpretations of the results, particularly

when a large number of variables are used.

Regardless of the aggregation technique, data dependency is still a critical drawback

of composite indices. The Farm Accountancy Data Network (FADN) often serves

as a foundation for the assessments, but sustainability-oriented variables are lim-

ited since the data set is designed specifically as a financial database and excludes

many environmental and social components needed for a robust sustainability index

(see Kelly et al. 2018). As a result, a variety of alternative data sources have been

merged with FADN to improve the design of the index. Such sources include na-
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tional databases for Ireland (Buckley et al. 2015; 2016) and the UK (Westbury et al.

2011), the Land Parcel Identification System (LPIS) (Latruffe and Piet 2014), tax

records (Latruffe and Mann 2015), and the International Farm Comparisons Net-

work (IFCN) (Thorne and Fingleton 2006). Alternatively, studies such as Batalla,

Pinto and Del Hierro (2014) and Sulewski, Kłoczko-Gajewska and Sroka (2018) use

primary data to strengthen their respective analyses. The integration of both pri-

mary and secondary data is beneficial for the robustness of the composite indices;

however, this can be time consuming, costly, and difficult to expand beyond the

current sample groups.

2.3 IRT overview and assumptions

In this study, we propose measuring farm-level AS using an IRT model. This ap-

proach addresses three important drawbacks of existing approaches, as the IRT

model allows: (1) calculation of an AS index from data sets with some missing

values, (2) comparisons across different surveys with different variable sets, and (3)

quantification of uncertainty. With origins in educational and psychological testing

(for an overview, see van der Linden and Hambleton 1997; Cai et al. 2016), the

general idea of an IRT model is that a set of categorical or dichotomous observed

indicators can be used to measure a continuous unobserved latent construct on a

common scale. In educational testing, for example, IRT models are used to model

the relationship between a set of observed categorical responses to exam questions

and the unobserved ability of the examinee. Other applications of IRT models are

in medical research to assess health outcomes (Hays, Morales and Reise 2000) or to

identify clinically meaningful subgroups of high-risk patients (Prenovost et al. 2018).

In terms of socioeconomic applications, IRT has been used in poverty research to

construct a deprivation scale (Cappellari and Jenkins 2007), and as a means to

estimate wealth (Vandemoortele 2014).
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The use of IRT for AS measurement has several advantages over existing methods.

The first, and most critical in our view, is the aforementioned variable independence.

In exploiting this advantage, we can design an index using local secondary sources

and the model results can still be comparable on a larger scale (i.e. internationally).

For example, multiple AS indices could be generated and compared using FADN data

in Europe and USDA Census of Agriculture data in the United States. Second, the

IRT model makes explicit the assumptions underlying the construction of the AS

index. This is of particular importance when compared to composite indices, which

leaves the assumptions underlying the method implicit (for a similar argument in

the context of the measurement of deprivation, see Cappellari and Jenkins 2007).

Finally, IRT allows - and accounts for - varying degrees of difficulty (Yount et al.

2019) and discrimination for each item (see Section 2.4.3 for an explanation of the

item easiness and discrimination parameters) (Nguyen et al. 2014). This allows for

more flexibility in the choice of items, as the IRT model does not assume that all

the items are equally difficult for a farm to achieve, or that the items are equal with

respect to their ability to explain the latent trait.

The IRT model requires two assumptions. The first assumption is the reflectivity of

the model, where the items are considered as manifestations of the latent construct

we are attempting to measure and cannot directly influence the underlying latent

construct (Peterson, Gischlar and Peterson 2017). While this requirement has faced

criticism in more recent years (see, e.g. Bollen and Diamantopoulos 2017), we follow

this idea by assuming that (1) the level of AS for any given farm represents the

farmer’s mindset along with the structural conditions of the farm, and (2) this

property impacts all of the observed items used in the model. We illustrate these

assumptions in Figure 2.1, where the farmer’s mindset refers to factors such as the

farmer’s knowledge or beliefs with regard to sustainability, their willingness to invest

in technology, etc. Structural conditions refer to aspects of the farm itself that are

constant or difficult to change within the farm, but vary across e.g. regions or

farm types. Such conditions include, for example, local soil or weather conditions,
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or differences in machinery requirements for different farm types. Together, the

farmer’s mindset and the structural conditions are what determines the items we

include into the IRT model, meaning that the item values reflect farm AS.

Farmer’s mindset
• Knowledge
• Beliefs
• Values

Structural conditions
• Location
• Soil conditions
• Labor/machinery needs

AS

Item 1

Item 2

Item n

Figure 2.1: Flowchart depicting the reflectivity of the AS index with the decision to switch
to organic as an observed component of the farmers’ mindset

The second assumption we adhere to refers to unidimensionality in the model con-

struct. IRT models are considered to be unidimensional when only one dominant

component or factor is being measured by the model (Hambleton, Swaminathan and

Rogers 1991). This term, however, can be misleading because a unidimensional trait

often requires multiple processes or skills (Ziegler and Hagemann 2015). Further,

testing for unidimensionality is not a straightforward process (Ziegler and Hage-

mann 2015), and it is unclear as to the severity of the problem if the assumption is

violated. Zhang (2008), for instance, finds that models are generally robust against

such a violation when secondary latent traits are present in the model. Since the

definition, testing, and consequences of the assumption are rather ambiguous, we

choose to approach the topic conceptually by assuming that AS is a unidimensional

latent trait comprised of sub-processes following the economic, environmental, and

social aspects of sustainability. However, this does not preclude the possibility of

extending our approach so that the IRT model reflects multiple latent constructs.

While less common, multidimensional IRT models are possible. Reckase (2009)

provides and example of such a model.
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2.4 Methods

In this section, we present the steps in producing our AS index using item response

theory. After introducing the data used for the model, Subsection 2.4.2 provides an

overview of the items used in the index. Further descriptions and calculations for

each item are provided in Appendix A.1 and A.2. The final subsection provides the

model statement for the item response model used to generate the index.

2.4.1 Data sources

Similar to other studies discussed in Section 2.2, we use farm-level FADN data in

conjunction with other secondary sources. We use a sample of farms reporting to the

system in Germany for the accounting year of 2013, as data for this year are the most

recent available to us. The final sample size of 8,928 farms. We then supplement the

information from FADN with data from Destatis for fuel and electricity prices, UC-

Berkeley (2020) for energy unit conversions, Dämmgen (2009) for Germany-specific

animal weight data, and the Bundesarbeitsagentur (Antoni, Ganzer and von Berge

2019) for regional median wages.

2.4.2 Item selection

In this subsection, we provide an overview of the nine items generated for the model.

Table A.3 in Appendix A.1 provides a list of the items with general descriptions.

Further information on the item selection choices and calculations can be found in

Appendix A.1, and descriptions of the category thresholds with relative frequencies

can be found in Appendix A.2.

Profitability is included in SDG 2.4.1 (FAO 2018b) to assess the economic viability of

the farm and is considered by Schaller (1993) to be a requirement for AS. The item

can be indicative of the quality of life for the farmers and their families (defined as
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"livability" by Spicka et al. 2019), and is one of the drivers behind inter-generational

succession of the farm (see Glauben, Tietje and Weiss 2005). The item for solvency

combines both short- and long-term aspects of AS (see Slavickiene and Savickiene

2014) and signals the ability for farmers to continue their operations (Whitehead

et al. 2016) by repaying their debts through the sale of assets if financial difficul-

ties occur (Zwilling and Raab 2019). Similar to profitability, economic diversity is

another key component in SDG 2.4.1 (FAO 2018b) and indicates the ability for the

farm to recover from external shocks (e.g. weather disruptions, price fluctuations,

etc.). Finally, multi-factor productivity (MFP), also referred to as total factor pro-

ductivity (Goodridge 2007), is defined by Eurostat (2022b) as a means of measuring

economic performance by comparing the amount of output relative to the amount

of combined inputs used to create said output.

We use three items to account for the environmental soundness of the farm. Despite

a variety of different estimation methods2, some form of pesticide expenditure is a

central component in most AS assessments. It is estimated that less than 0.1% of

total pesticides used actually reach the target pests, with the vast majority causing

environmental contamination and adverse risks to public health (Pimentel 1995).

Thus, the reduction of plant protection products is considered as a high priority

goal in the path to AS (Lechenet et al. 2014a). Estimations for GHG emissions are

also common in AS indices and frameworks (e.g. van der Meulen et al. 2014; Ryan

et al. 2016; Vitunskiene and Dabkiene 2016; Dillon et al. 2015; Lynch et al. 2016). As

of 2019, almost 8% of emissions in Germany are from agriculture, with methane and

nitrous oxide from animal husbandry and soils (respectively) making up a majority of

total emissions (Rösemann et al. 2021). Thus, a reduction in agricultural emissions is

critical, as Germany aims to reduce emissions by at least 80% by 2050 (compared to

1990 levels) (Weingarten et al. 2016). The final environmental item is land ecosystem

quality. Approximately half of all land in Germany is used for agricultural purposes

2As examples, Longhitano et al. (2012) calculates the indicator as expenditure per hectare, van der
Meulen et al. (2014) and Westbury et al. (2011) use the expenditure variable provided by FADN
to estimate physical quantities
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(Destatis 2020), and intensive production impacts the quality of air, water, soils,

and biodiversity (Schiefer, Lair and Blum 2015).

To reflect the social desirability of the farm, we chose items that reflect the farms’

contribution to rural economic development. Sullivan (2003) contends that a farm’s

ability to support agricultural workers and other businesses in the community is a key

aspect of agricultural social sustainability. The item for the provision of employment

reflects this by measuring the ratio of expenditures on wages and contract work, with

total output of the farm in the denominator as a means to control for farm size and

reflect the employment intensity of the farm. We then include an item for wage

ratio, which compares the relative differences between the average wages paid on

the farm relative to the median wage in the region (NUTS 3 level). The indicator

is included as a proxy to estimate the extent to which agricultural workers in the

region are able to cope with economic shocks and maintain a sustainable standard

of living.

2.4.3 IRT application

In this section, we introduce the IRT model as an alternative approach to existing

AS assessment methods. We use the graded response model (GRM) to summarize

the AS items (for an overview of item response modeling and the GRM, see Bürkner

2019; Samejima 1997a). The outcome of the ith sustainability item for farm j, yij, is

measured with C categories representing the ratings of sustainability on an ordered

scale. For that purpose, the continuous variables are transformed into ordinal scales

with C = 4 categories taking on the labels “very unsustainable”, “unsustainable”,

“sustainable”, and “very sustainable”3. Using ordered categories and the GRM

allows us to combine the information from different continuous variables with quite

different empirical distributions. Table A.3 in Appendix A.2 provides details about

the definition of the categories.

3In a sensitivity analysis, we use C = 3 categories with labels “unsustainable”, “neutral”, and
“sustainable”.
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In the GRM, the probability of a particular category is

P (yij = c|τ, ψij) = F (τc − ψij) − F (τc−1 − ψij), (2.1)

where F denotes the CDF of the standard logistic distribution and τ is a vector of

C − 1 unknown thresholds.4 The distributional parameter ψij can be expressed as

a function of farm parameters, θj, and item parameters, ξi:

ψij = θj + ξi. (2.2)

The farm parameter θj represents the latent construct of agricultural sustainability

(i.e. the AS index). The larger the value of the AS index is, the larger the probability

that the farm is classified as “very sustainable” for each of the items and the more

likely the farm is to fit the definition of a farm that is “meeting the needs and

aspirations of the present generation without compromising the ability of future

generations to meet their needs” (Brundtland 1987, p. 292).

The specification of the IRT model in equation 2.2 relies on the unrealistic as-

sumptions that the effect of farm-specific agricultural sustainability on each item

probability is constant. To relax this assumption, we introduce an item-specific

discrimination parameter, αi, that reflects that some items can better differentiate

among farms with different degrees of agricultural sustainability than others:

ψij = αi(θj + ξi) = αiθj + δi. (2.3)

We fit the model in a Bayesian framework using the brms package (Bürkner 2017) in

R (R Core Team 2021), which allows to interface with the probabilistic programming

language Stan (Carpenter et al. 2017).5 We use weakly informative prior distribu-

tions that help to improve convergence of the sampling algorithm while they do not

4The threshold parameters τ1, τ2, and τ3 are freely estimated whereas τ0 and τ4 are set to −∞
and +∞, respectively.

5The model was fit using R version 3.6.3, brms version 2.16.3, and Stan version 2.21.0.
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have a strong influence on the posterior distribution because of the large amount

of sample data available from the FADN. Following Bürkner (2019), we impose two

constraints to ensure identification. First, we restrict the discrimination parameters

αi to be positive because a change of the sign of αi can be offset by a change of the

sign of θj + ξi. This constraint is not overly restrictive because higher categories

of the items represent always a higher degree of sustainability.6 Second, we fix the

standard deviations of the farm-specific parameters to 1, as the multiplicative rela-

tionship of αi and θj does not allow to freely estimate the scale of the farm-specific

parameters. That is, the scale of the farm-specific parameters is determined by the

scale of the discrimination parameters.

2.5 Results

The following section presents the results generated by the IRT model. Subsec-

tion 2.5.1 uses leave-one-out cross-validation to compare the two IRT models in-

troduced in Subsection 2.4.3. Subsection 2.5.2 provides an overview of the item

parameter estimations, where we explain the interpretation and use of the parame-

ters and provide an example of how they affect the index calculations. Subsection

2.5.3 then compares patterns in the predicted probabilities of the sustainability cat-

egories with respect to (1) farm type, (2) farm size, and (3) geographic location.

Finally, in Subsection 2.5.4 we conduct two sensitivity analyses of the index to test

the robustness of the index results in the presence of missing items. The first analysis

randomly drops items for portions of the sample and compares the results with the

full sample estimations. In the second analysis, we simulate concurrent scale linking

procedures (see Meyer and Zhu 2013) by splitting the data set into two samples and

dropping different items from each group.

6A negative sign of αi would imply that a higher degree of AS is associated with a decrease in
the probability for the category “sustainable” and an increase in the probability for the category
“unsustainable”.
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2.5.1 Model comparison

We compare the restricted IRT model without a discrimination parameter (equa-

tion 2.2) and the unrestricted IRT model with a discrimination parameter (equa-

tion 3.4). The purpose of the comparison is to determine which model has a better

fit. We use approximate leave-one-out cross-validation (LOO-CV) to measure the

predictive accuracy for the purpose of model comparison (Vehtari, Gelman and

Gabry 2017). LOO-CV works by leaving out one data point from the training set,

fitting the model to the remaining data points, and then scoring the model on the

left-out data point. This process is then repeated for each data point in the training

set.

LOO-CV helps us identify potential issues with overfitting or underfitting our data

while also providing an objective measure for choosing between models of different

complexities. This measure is the expected log pointwise predictive density (ELPD),

which is an estimate of the out-of-sample predictive accuracy for each model. The

ELPD can be used to assess how well a probabilistic model can explain an observed

set of data points. The model with the highest ELPD best explains our observations

while minimizing overfitting or underfitting issues.

Table A.4 in Appendix A.3 presents the results of a comparison between the two

models, one with and one without the discrimination parameter. The ELPD values

for both models are shown along with their respective standard errors. Furthermore,

the difference in ELPDs and its corresponding standard error is also reported. From

these findings, we can conclude that the model including the discrimination parame-

ter fits the data substantially better than that without the discrimination parameter;

this is indicated by the substantially larger ELPD of the unrestricted model. There-

fore, due to its superior performance on predictive accuracy, we proceed with the

model that includes the discrimination parameter.
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2.5.2 Item parameters

The interpretation of the item parameters is based on a visual representation of the

easiness and discrimination parameters, with the aim of assessing the model design

and fit of the items. Figure 2.2 presents the means and 95% credible intervals of

the parameter estimations, with the item numbers corresponding to those provided

in Table A.3 in Appendix A.3.

Figure 2.2: Easiness ξi and discrimination αi parameter estimates with 95% credible in-
tervals

The discrimination parameter is useful for evaluating the choice of (1) the model

design and (2) the items used for the index. We first visually inspect the item-specific

discrimination parameters to check the fit of the model. The observed variation in α

with largest values more than threefold the size of the smallest (Figure 2.2) validates

the use of the item-specific parameters introduced in equation 3.4 for our model.

This finding confirms the results from the model comparison using LOO-CV carried

out in the Subsection 2.5.1.

With respect to item selection, α can be used as a guide to include or omit certain

items from the model based on their respective discriminatory power. This is espe-

cially useful if future research included a larger bank of test items to choose from.
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In this regard, the model suggests that the provision of employment and economic

diversity are the most important items to include in the model because they are

the best at differentiating between the farms with posterior means of approximately

α = 1.6. In contrast, the decision could be made to either omit or replace prof-

itability and the expenditure on pesticides from future models since they have the

weakest discrimination values (α1 = 0.4 and α6 = 0.6, respectively). Items could

be replaced with substitutes that measure a similar phenomenon (e.g. farms’ profit

margins) but have a higher discrimination value.

Similarly, item easiness ξi (left panel of Figure 2.2) can be used to determine the

appropriateness and accuracy of the items in the model. For reference, the values

produced by the model can be confirmed by comparing the relative frequencies of

each category c found in Table A.3. The results suggest that (in Germany) it is

easy for farms to remain highly solvent, with a vast majority of those in the sample

(almost 70%) maintaining a debt to asset ratio of less than 0.3, and thus resulting in

a very high easiness value of approximately ξ2 = 15. In contrast, we find that very

few farms score well in the provision of employment item, with an easiness value of

ξ5 = −12. Similar to the discrimination parameter, future research could make the

decision to exclude both solvency and the provision of employment from a larger

test bank because there are categories in these items with almost no information. As

Table A.3 shows, there are only 207 of 8,928 farms that are classified as insolvent,

and only 35 farms with the highest level of employment relative to output. However,

we contend that these items may be beneficial to the model by capturing unique

characteristics of the latent trait that are not common in the sample.

As an example of how the extreme values in the easiness parameters affect the

predicted probabilities of a farm achieving a particular category of a given item, we

provide an interpretation of the AS index using three sample farms. We show the

probability of the sample farm j achieving the highest category ("very sustainable")

for the easiest item (solvency, i = 2) and the most difficult item (provision of

employment, i = 5). As shown in Table A.5 in Appendix A.3, a farm with an AS
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score of θ = 1.57 has a 77% chance of being classified as very sustainable for solvency,

decreasing to a 69% chance when the farm has a AS score of θ = −0.58. The same

decreasing trend is also found with respect to the provision of employment item;

however, due to its exceedingly low value for the easiness parameter, the probability

of a random farm achieving the highest sustainability category is virtually zero. The

results imply that these items may be the most useful in the model for farms in the

far sides of the distribution, as e.g. only the least sustainable farms are likely to

insolvent, and only the most sustainable farms are likely to have a high provision of

employment.

2.5.3 Modeling farm covariates

In this subsection, we generate average predicted probabilities with respect to farm

size, farm type, and region (NUTS 2 level). We additionally review the literature to

identify mechanisms that might contribute to the identified patterns of the predicted

probabilities across groups of farms with different characteristics.

Farm type comparisons

Figure 2.3 presents the posterior means of the predicted probabilities for all sustain-

ability categories by the TF8 farm type classifications, and Table A.6 in Appendix

A.3 presents the results numerically with standard errors of the estimates. TF8 clas-

sifications refer to a group of codes denoted the type of agricultural specialization

for each farm (see European Commission 2000). Our findings suggest that field-

crop farms and mixed farms are the most sustainable on average, with the predicted

probability of a random farm of these types achieving a sustainable category of “very

sustainable” approximately equal to 0.17 (s.e. = 0.06) and 0.16 (s.e. = 0.04), respec-

tively. Correspondingly, these farms have the lowest likelihood of being classified as

“very unsustainable” with predicted probabilities of, respectively, 0.22 (s.e. = 0.06)

and 0.24 (s.e. = 0.07). In contrast, all of the livestock-based farm types (i.e. milk,
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other grazing livestock, and granivores) have relatively low probabilities of achieving

a “very sustainable” classification, and wine farms rank the lowest with the predicted

probability of a “very sustainable” classification approximately equal to 0.09.

Figure 2.3: Predicted probabilities with 80% credible intervals, by farm type.

In general, we find that the results of the analysis are consistent with known associa-

tions between the type of farm and its relative sustainability. It is likely that the key

mechanisms contributing to the gap between fieldcrops and the livestock categories

are a result of differences in productivity (see Woods 2019) and much higher levels

of emissions in livestock production (i.e. methane and nitrous) (see e.g. Haenel et al.

2020). Consequently, authors have more recently been promoting mixed farming as

a way to improve nitrogen balances and increase productivity (Mosnier et al. 2022),

and as a general improvement to ecosystem services (Martin et al. 2016). Our model

is consistent with these earlier findings about the benefits mixed farming systems

on AS. While the exact mechanism behind the low values for vineyards is unclear,

viticulture is commonly recognized as an area for GHG emissions reductions (see

e.g. Marras et al. 2015; Vázquez-Rowe, Rugani and Benetto 2013).
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Economic size class comparisons

We next compare the predicted probabilities by economic size class, which is defined

by FADN as the annual standard output7 of the farm (in e) and is calculated as a

categorical variable (see European Commission 2000). As shown by the predicted

probabilities displayed in Figure 2.4 (Table A.6 in Appendix A.3 provides numerical

values of the predictions with standard errors), we find a positive relationship be-

tween farm size and AS. Farms with a standard output of 50,000-100,000e per year

are the least likely to be classified as “very sustainable”, with a predicted probability

of 0.11, which gradually increases to 0.27 for farms with a standard output of more

than 3,000,000e per year. Correspondingly, the probabilities of a farm in the same

size classes being classified as “very unsustainable” are 0.30 and 0.13, respectively.

There is also a divergence within the middle sustainability categories as farm size

increases: the predicted probabilities of the “unsustainable” and “sustainable” cate-

gories are very similar in the lower size classes, but the likelihood of a “sustainable”

classification increases with farm size while the likelihood of an “unsustainable”

classification decreases.

Similar to the results of the farm type analysis, these findings generally correspond

with known associations between farm size and its relative sustainability in existing

literature. Authors often cite economic benefits to larger-scale farming that include,

as examples: improved productivity, profits, and solvency (van der Meulen et al.

2014). Additionally, large farms can comparatively have environmental advantages

(Kirner and Kratochvil 2006) such as lower chemical usage per hectare (Ren et al.

2019).

7Eurostat (2023b) defines standard output as “the average monetary value of the agricultural
output at farm-gate price, in euro per hectare or per head of livestock”.
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Figure 2.4: Predicted probabilities with 80% credibility intervals, by economic size class.

Regional analysis

To conclude this subsection, we look at the average predicted probabilities by NUTS

2 region and find that the regional averages generally reflect the differences in farm

size and type. Figure 2.5 shows the average predicted probability of a random

farm achieving the “very sustainable” category, and Table A.8 in Appendix A.3

additionally includes standard errors of the probabilities and 80% credible intervals.

The results show that the highest average probabilities are in the eastern part of

Germany (formerly GDR), an area primarily comprised of large-scale fieldcrop farms.

In the southern regions of the country (i.e. Bavaria and Baden-Württemberg), small

family farms are the most prevalent type of agricultural holding, which is assumed

to be the reason for lower predicted probabilities compared to the eastern regions.

Finally, the regions with the lowest predicted probabilities in the north-western

regions of the country are likely due to a higher proportion of livestock farming.
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Figure 2.5: Regional averages of the predicted probability for a random farm achieving the
“very sustainable” category

2.5.4 Sensitivity analysis

The following subsection presents the results of two sensitivity analyses. In the first

analysis, we test the robustness of the index in the presence of missing items by

randomly dropping items from different proportions of the sample and comparing

the index estimations with the complete index (i.e. control group). The second

analysis then simulates a concurrent scale linking procedure by splitting the sample

into two groups and systematically removing one item from each group.
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Missing data tests

For the first analysis, we conduct nine tests where we randomly omit up to three

items for 10%, 30%, and 50% of the farms in the sample. The purpose of the

exercise is to test the accuracy of the index results in the case where a sample

contains randomly missing observations. An example of this situation would be in

developing an index using survey data with incomplete responses. We compare the

latent sustainability scores (θ) of two samples, where one sample contains missing

items and the other is the complete sample we use for all previous analyses (i.e.

control group). Comparisons between the groups are performed using correlation

coefficients and scatter plots (see Table A.9 and Figure A.2 in Appendix A.3).

We find that in all nine tests, the results of the index are robust against randomly

missing items. When items are randomly removed from 10% of the sample, the

comparisons with the control group are nearly identical. The correlation coefficients

are equal to 0.9918 when one item is removed, 0.9868 when two items are removed,

and 0.9823 when three items are removed. When items are removed from 30% of the

sample, the correlation coefficients are still strong with values of 0.9806 and 0.9646

when one and two items are removed (respectively), and 0.9500 when three items

are removed. Some accuracy is lost when we remove items from 50% of the sample,

where the coefficients range from 0.9691 when one item is removed, 0.9449 when

two items are removed, and 0.9178 when three items are removed. Despite some

information loss in the most extreme examples (i.e. 3 missing items from half of the

sample), our results strongly support the argument that an AS index using IRT can

handle data sets with missing items.

Scale linking simulations

The second sensitivity analysis simulates concurrent scale linking. This concept

refers to the process of combining more than one set of data (and item list) into

a single data set and estimating all parameters and results simultaneously (Meyer
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and Zhu 2013). The ability to combine multiple data sets is particularly useful

in the context of AS assessment, as there are no international standards for farm

data collection. As such, the implementation of scale linking for an AS index would

allow researchers to compare farm sustainability using data sets from FADN as well

as national data bases (e.g. the Censuses of Agricultural for the United States

and Canada), data collected for SDG indicator 2.4.1, and other large agricultural

surveys.

We simulate the linking procedure using the common item nonequivalent groups

design (Kolen and Brennan 2014), where groups of farms share a set of common

items along with a subset of items that are unique to the group. The method is

selected because the heterogeneity of information available across agricultural data

sets means that most data sources will have a set of very similar (or identical)

variables that can be used to build common items. Examples of common variables

in agricultural data sets include land size, number of livestock units, and basic

financial components such as expenditures and a monetary value of output. The

advantage of nonequivalent group linking is that after the set of common items are

developed, researchers can then include items specific to the needs of the region or

group they are studying. For example, land tenure rights are a critical topic for

farm sustainability in many developing countries (see e.g. Xu et al. 2018), but such

an item would be less practical for an AS index in Germany.

The simulations are done by splitting our sample into two groups (subsamples),

which are divided between former East and West Germany. The East/West division

was chosen because significant structural differences persist between the regions since

the reunification (see e.g. Beckmann and Hagedorn 2018), so the exercise can more

closely simulate scale linking on an international level. We then systematically drop

one distinct item from each subsample and compare the model estimations with

the results produced by the full sample (i.e. control group). The experiment is

simplified in that we (1) maintain a total of eight items for each subsample, and (2)

only consider one combination of dropped items. That is, we examine, for example,
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only the situation in which we drop profitability in the West subsample and solvency

in Wast subsample, but we do not drop profitability in the East and solvency in the

West.

We first compare latent sustainability scores between the subsamples and control

group using correlation coefficients and scatter plots. Referring to Table A.10 in

Appendix A.3, we interpret the correlation coefficients as a measure of information

lost in the subsamples versus the control group. The results suggest that most of

the scale linking tests are robust to concurrent scale linking. A majority of the

correlation coefficients remain above 0.94 and reach as high as 0.9742 in the case of

the test missing items 1 (profitability) and 2 (solvency). However, the tests where

items 4 (economic diversity) or 7 (GHG emissions) in the west group show a higher

degree of information loss. The coefficients for these tests range from 0.84 to 0.89.

Turning next to the scatter plots (Figures A.4 through A.12 in Appendix A.3), we

can see how the omission of different combinations of items impacts the subsample

estimates. Items with low discrimination parameters (see Figure 2.2) have a low

impact on the estimations, as evidenced by scatter plot results fitting tighter to the

linear fit line (as well as higher correlation coefficients). For instance, profitability

and solvency (top left panel of Figure A.4) are both relatively low in terms of

discrimination, and scatter plot results from their omission show points that are

clustered tightly to the fit line. In contrast, economic diversity and GHG emissions

both have high discrimination parameters, and the omission of these items from

the subsamples results in scatter plots that show (1) points that are spread farther

away from the fit line, and (2) evidence of linear bias in some of the farm estimates.

Examples of the latter effect are the top right panel of Figure A.6, where the west

subsample (in blue) appears to have θ patterns across three parallel fit lines, and

in the bottom left panel if Figure A.10 where the omission of item 5 (provision of

employment) causes two distinct parallel patterns in the East subsample.

We further look into the East/West differences by plotting the mean predicted prob-

abilities of each NUTS 2 region (similar to Subsection 2.5.3) using the same scale
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linking tests. Despite clear differences in the absolute values of the predicted prob-

abilities (see Figures A.13 through A.18 in Appendix A.3), the results show that

the relative differences between the regions are similar to the control group in every

exercise (see Figure 2.5). We do find some variation among the regions, with an

example being the bottom right panel of Figure A.17 where Saxony Anhalt shows

a higher probability than Thuringia of achieving a “very sustainable” classification,

yet Thuringia is a stronger performer in the bottom middle panel of Figure A.18.

However, the broader trends, particularly with respect to the East/West differences

found in the control group, remain for every simulation.

In general, we conclude that scale linking is a plausible approach to expanding the

AS index internationally. However, care should be exercised in selecting and testing

the items, as the results of the simulations show varying levels of sensitivity to

different item combinations.

2.6 Conclusion

The sustainability of agricultural production is increasingly becoming a focus within

large-scale policies and goals (e.g. CAP, SDGs, etc.), yet there is still not a univer-

sally accepted method for measuring it. In this paper, we provided proof of concept

for the novel use of an IRT model for AS measurement. We used nine ordinal items

and estimated the index scores with the graded response model developed by Same-

jima (1969). The results of the model are generally consistent with the literature,

finding a positive relationship between farm size and sustainability, as well as higher

sustainability performance on average for field crop and mixed production systems.

The IRT model has several advantages over existing AS methods. We have demon-

strated that a reliable AS index can be developed using readily-available data that

(1) can handle randomly missing data, which would be useful in the case of e.g.

incomplete survey data, and (2) can be expanded to larger geographic scales con-

taining different data sets using scale linking procedures (see Meyer and Zhu 2013).
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We view the latter advantage as the most important aspect of the proposed AS

index given the heterogeneity among agricultural data sets around the world. Other

advantages of the proposed index include the ability to design an index with explicit

assumptions of the underlying construction, and the ability to estimate item-specific

easiness and discrimination parameters.

A drawback to using a unidimensional construct for the model is that it does not

distinguish between the economic, environmental, and social considerations of sus-

tainability. As such, there may be trade-offs among different aspects of sustainabil-

ity (e.g. a decrease in profits from investing in emission-reducing technologies) that

could be overlooked in process of making targeted policies. We therefore suggest that

future research should be focused on increasing the level of detail by constructing a

multidimensional IRT model with a larger bank of items to choose from. This would

enable researchers to distinguish between the different aspects of sustainability and

develop a better understanding of the trade-offs one might face when interpreting

the results for policies. Consciously taking such trade-offs into account can lead the

way towards the best policies possible.

To further exploit the benefits of IRT models in AS assessment, we also suggest that

future research be directed toward expanding the model internationally. Section

2.5.4 demonstrated the potential for scale linking the index across data sets with

(slightly) different sets of items, so we suggest that the next step should involve

the development of a set of common items that can be found in most international

agricultural data sets. After a common item set is established, researchers will

have the ability to customize their own AS indices and compare the results at an

international level. Such an exercise would have benefits for both domestic and

international policies targeting the sustainability of agricultural systems.
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3.1 Introduction

In response to the growing need to reduce dependence on fossil fuels and mitigate the

consequences of greenhouse gas emissions, governments have been developing strate-

gies and initiatives focused on the promotion of the bioeconomy (e.g. White House

2012; European Commission 2012). Defined by McCormick and Kautto (2013) (p.

2589) as "an economy where the basic building blocks for materials, chemicals and

energy are derived from renewable biological resources", such initiatives aim to tran-

sition towards an economic structure centered around renewable resources while im-

proving rural economies, employment, growth, and the environment (Gawel, Pan-

nicke and Hagemann 2019). In this context, bioeconomy models are designed to

accommodate the three dimensions of sustainability: economic, environmental, and

social (D’Amato et al. 2017). Germany’s National Bioeconomy Strategy (BMBF

2020), for example, aims to meet objectives of the 2030 Agenda for Sustainable De-

velopment through the creation of a bioeconomy model focused on innovation that

is within ecological boundaries and incorporates society into its development.

At the heart of the bioeconomy is the production and use of non-food crops (NFCs).

Current bioeconomy strategies view the agricultural sector as the primary producer

in the value chain (Efken et al. 2016) and expand the agro-industry to include a wide

variety of non-food products previously made with fossil fuels (Bastos Lima 2018).

Approximately 16% of all agriculturally used land in Germany is currently dedicated

to the production of energy and industrial crops (about 2.67 million hectares in total)

(BMBF 2015), with significant growth in the non-food sector expected in the coming

decades (OECD 2009; Sheppard et al. 2011). However, unintended side effects to

the bioeconomy have begun to emerge in recent years (Egenolf and Bringezu 2019),

many of which are a consequence of NFC production. Such side effects include, for

example, threats to biodiversity and concerns over increased chemical usage (Pfau

et al. 2014).
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Perhaps more importantly, the continuing increase in the demand for NFCs has led

the issue of land availability (and land use competition) to be one of the primary

limiting factors in the development of the bioeconomy (Pfau et al. 2014). Known

as the "food versus fuel" debate (see Kretschmer, Bowyer and Buckwell 2012), this

issue places the increasing demand for NFCs at the forefront of problems such as

land competition (Johansson and Azar 2007) and rising food prices (Zilberman et al.

2013). As a potential solution to this issue, authors such as Fu et al. (2022) and

Mitchell et al. (2016) suggest the use of marginal lands for NFC production. While

these lands can ease some of pressure exerted on the food supply, the conversion

of marginal lands may still have negative impacts to sustainability. Raghu et al.

(2011), for example, cites impacts to biodiversity as a potential consequence to

marginal land production.

Given the aforementioned sustainability concerns with NFCs and marginal land use,

we ask the question: Are there observable relationships between the sustainability

of farms, NFC production, and the use of marginal land to produce NFCs? In

response to calls for a socio-ecological approach to sustainability assessments (see

Jiang, Jacobson and Langholtz 2019; Wohlfahrt et al. 2019), we propose using item

response theory (IRT) for the development of a farm level agricultural sustainability

index (ASI). Originally used in educational and psychological testing, IRT models

were developed to measure an unobserved latent trait using a set of observed char-

acteristics (items) (for an overview of item response theory, see van der Linden and

Hambleton 1997). The derivation of the ASI using an IRT model has the important

advantages over other methods in that it (a) allows for the inclusion of economic,

environmental, and social model inputs; and (b) offers more flexibility in terms of

data requirements.

We generate the ASI using an IRT framework for a sample of farms in Germany.

We estimate a parametric and a nonparametric regression using splines to explore

the nexus between agricultural sustainability and NFC production in a flexible way,

taking into account potential differences between farms producing on marginal lands

and those not producing on marginal lands.
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3.2 Data and methods

3.2.1 Data

Data from the Farm Accountancy Data Network (FADN) form the foundation of our

sample. We use all farms in the German FADN data set for the year 2013, giving

us a sample size of 8,928 farms. A caveat to using FADN is that in Germany, it is

common for farms to register biogas production as separate legal entities even though

the business is physically located on the farm and has technical, organizational, and

economic interlinks with the farming activity. This legal separation introduces bias

in the ASI scores, which could be significant depending on the success of the biogas

plant relative to the rest of the farm. For example, a farm that is operating a highly

profitable and productive biogas plant with many employees is likely to be very

sustainable in economic terms. However, if that farm has very little activity outside

of biogas production and reports low levels of profit, employment, etc., there will

be a negative bias in the sustainability index because the farm will appear to be

stagnant.

3.2.2 Independent variables

This subsection presents an overview of the calculations used for the independent

variables in the reminder of the analysis. The raw data consists of each farm’s

NFC output (in e), total output (in e), marginal land classification, economic size,

and farm type. FADN provides two NFC variables for energy crops and industrial

crops, both of which are reported as the total value produced in the accounting

year. From these, we generated two variables reflecting the proportion that each

NFC type contributes to total output:
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energyj = Ej

Oj

× 100, (3.1)

and

industrialj = Ij

Oj

× 100, (3.2)

where the variables for energy crop production energy and industrial crop produc-

tion industrial are ratios of, respectively, energy crop output E and industrial crop

output I to total output O for farm j. A small proportion of the farms (n=16, or

about 0.18% of total observations in the sample) reported producing both energy

and industrial crops in the same accounting year. An inspection of these farms

found that in all but one case, the relative proportions of each crop type were highly

unequal, so we categorize these farms as either energy or industrial based on which

ratio is larger.

Marginal lands are defined as falling under three general definitions: (1) land un-

suitable for food production, which are areas where food production is not possible

and can be a result of degradation, poor soil, or bad weather; (2) ambiguous lower

quality land, which is similar to definition (1) except that food production is unsuit-

able rather than impossible; and (3) economically marginal land, which simply refers

to land that is not cost effective for food production (Shortall 2013). We use the

farm’s less favored area (LFA) classification as a proxy for marginal lands. LFAs

are generally defined as land areas that are either mountainous or suffering from

issues such as low productivity or a dwindling agriculturally-dependent population

(Cooper et al. 2006). In the FADN data set, LFA classifications are reported under

three categories: (1) not in an LFA, (2) in an LFA - other than mountains, and (3)

in an LFA - mountains.

We generate marginal land classification as a dummy variable, ml, where ml = 0 if

a farm is not located in a LFA and ml = 1 if a farm is located in an LFA. We do

not differentiate between mountainous and non-mountainous LFA classifications, as
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the third classification for farms located in the mountains makes up a very small

proportion of the sample (approximately 1.8%), none of which produce NFCs. Table

B.1 in Appendix B provides the descriptive statistics of the sample with respect to

both marginal land classification and the type of NFC that the farm produces.

3.2.3 Items for assessing agricultural sustainability

We define nine continuous variables to be used as indicators of agricultural sustain-

ability. Because IRT requires the use of binary or categorical variables in the model,

we then transform the indicators into 4-category ordinal items for the generation of

the ASI. The categories convey the extent to which the respective aspect of sustain-

ability is achieved on the respective farm, expressed as 0=“low”, 1=“mid”, 2=“high”,

and 3=“very high". The items correspond to those used in Chapter 2, with Table

A.3 in Appendix A providing the descriptions of the items and frequencies of each

category in the sample.

3.2.4 Estimation of the AS index

To capture agricultural sustainability as a single comprehensive measure for each

farm, we construct the AS index using a graded response model (GRM) (see Bürkner

2017; Samejima 1997b). The GRM is an extension of basic item response models

that use binary items (e.g. yes/no, true/false, etc.) by allowing multiple ordered

responses for each item. We make two assumptions when applying item response

theory to agricultural sustainability, where (a) the sustainability of a farm is a

continuous latent trait that cannot be directly observed or measured, and (b) this

trait impacts the observed items in the index, meaning that the latter are regarded

as reflective indicators of agricultural sustainability.

The general GRM operates on the conditional probability that a subject (farm) will

be categorized – based on the values of nine sustainability indicators, in one of the

C = 4 categories of agricultural sustainability from Table A.3 in Appendix A. The
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probability of a farm j being classified in a particular category based on item i is

P (yij = c|τ, ψij) = F (τc − ψij) − F (τc−1 − ψij), (3.3)

where F denotes the CDF of the standard logistic distribution and τ is a vector

of C − 1 unknown thresholds.1 We specify a two-parameter IRT model for the

distributional parameter ψij:

ψij = αi(θj + ξi). (3.4)

The farm parameter θj represents the latent construct of agricultural sustainability

(i.e. the ASI score) for farm j. The larger the value of the ASI score is, the larger

is the probability that the farm is classified as “very high” for each of the items.

The item-specific parameter, ξi, can be interpreted as the easiness of item i. The

larger ξi is, the higher is the probability that the farm is classified as “very high”

for sustainability, regardless of the farm. Furthermore, equation 3.4 includes an

item-specific discrimination parameter, αi, that reflects that some items can better

differentiate among farms with different degrees of agricultural sustainability than

others.

Next, we extend our analysis and model the determinants of the latent agricultural

sustainability. For that purpose, we specify two regression models for θj. First, we

include a set of dummy variables, zkj, that represent the type of the farm defined

by three categories of NFC production (i.e. energy, industrial, none) and whether

or not the farm produces on marginal lands:

1For C = 4 categories, the threshold parameters τ1, τ2, and τ3 are freely estimated whereas τ0 and
τ4 are set to −∞ and +∞, respectively.
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θj =
6∑︂

k=2
ζkzkj + θ̃j, (3.5)

where ζk is the effect of the farm type and θ̃j is the unexplained part of the latent

agricultural sustainability, assuming that θ̃j ∼ N(0, σ2
θ̃
). The second specification

for θj further refines the analysis by modeling the shares of energy crop in total

output and industrial crop in total output as determinants of latent agricultural

sustainability using flexible, non-parametric functions:

θj = f1(energyj) + f2(energyj,mlj) + g1(industrialj) + g2(industrialj,mlj) + θ̃j.

(3.6)

More precisely, the functions f1 and g1 represent thin-plate splines, and the functions

f2 and g2 are interaction splines that allow for different relationships between farms

that produce on marginal lands and those that do not produce on marginal lands

(for another application of splines in an IRT model framework, see, Kolczynska et al.

2020). We refer to Wood (2017) for a detailed technical explanation of splines. We

fit the model in a Bayesian framework using the brms package (Bürkner 2017) and

the probabilistic programming language Stan (Carpenter et al. 2017) in R (R Core

Team 2021). We checked the convergence of the eight Markov Chain Monte Carlo

(MCMC) chains for each parameter using the scale reduction factor R̂, which is

close to one (R̂ < 1.05) for all parameters (Gelman et al. 2013). Also, we inspected

the MCMC trace plots and calculated the effective sample sizes.

3.3 Results and discussion

There are four parts to this section. In the first part, we validate the model by pre-

senting the easiness and discrimination parameters. The second and third sections

present how predicted probabilities of agricultural sustainability levels vary with
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NFC type and marginal land classification, and with the proportion of NFC output

to total output. We conclude the section with a discussion on what the results may

imply for current and future bioeconomy strategies and policies.

3.3.1 Easiness and discrimination parameters

Figure B.1 in the appendix presents the posterior means along with 95% credible

intervals of the easiness and discrimination parameters of each item, with the item

numbers corresponding to those found in Table A.3. The results show large positive

easiness parameters for items 2 (solvency) and 8 (multi-factor productivity), indicat-

ing that a relatively large proportion of farms were classified as “very sustainable”

by these items. On the contrary, we find large negative easiness parameters for items

3 (wage ratio) and 5 (provision of employment), indicating that many farms were

classified as very unsustainable by these items.

The two-parameter model allows us to further estimate a discrimination parameter

for each item, which is assumed to be positive for identification. The discrimination

parameters refer to an item’s ability to differentiate between farms with different lev-

els of agricultural sustainability. Items with large discrimination are more sensitive

to small differences in agricultural sustainability than items with small discrimi-

nation. Here, we find that the items with the lowest ability to differentiate are

profitability and pesticide expenditure, while the items with the highest discrimina-

tion are economic diversity, the provision of the employment, and GHG emissions.

3.3.2 Results for farm types

In this subsection, we present results from the parametric model that includes a

set of indicator variables for the type of farm. The model uses six categories that

are derived from combining the type of NFC production and the type of marginal

land production, which are lettered as letters A-F in Tables B.1 and B.2 (Appendix

B). The reference category are non-NFC producing farms that are not on marginal
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lands (i.e. category A). Table B.2 presents the regression coefficients of the indicator

variables of the farm type (see equation 3.5). The estimates reflect differences be-

tween farm types in the likelihood of higher agricultural sustainability levels but they

can be interpreted in relative terms only, as the latent agricultural sustainability is

measured on an arbitrary scale.

The results show that it is practically irrelevant for agricultural sustainability whether

a farm produces on marginal land or not. That is, for any given type of NFC produc-

tion, there is no evidence that farms producing on marginal lands are less sustainable

than farms not producing on marginal lands. The 95% credible intervals for the two

marginal lands categories overlap for given types of NFC production. However, the

results document that NFC production matters for agricultural sustainability. Both

types of NFC production, energy crops and industrial crops, show a clear positive

association with agricultural sustainability.

3.3.3 Predicted probabilities

We next estimate the effect sizes of NFCs on agricultural sustainability by looking

at predicted probabilities. Figures 3.1 and 3.2 show the predicted probabilities of a

random farm achieving each sustainability category C for any given proportion of

NFC output to total output. The left and right side panel show, respectively, the

results for farms either on or not on marginal land. Using the baseline of no NFC

production (i.e. energy = 0 and industrial = 0) as an example, we can see that the

likelihood is nearly equal for a farm achieving one of the bottom three categories,

with the probabilities all close to 0.3 (or 30%). Reaching the top category of "very

high" is more difficult, however, with a predicted probability of about 0.12 (12%).

Looking first to the results for energy crops (Figure 3.1), we find that a farm’s

probability of reaching the "high" or "very high" sustainability category increases

with the share of energy crop output in total output up to a share of about 60%.

At that proportion, the probabilities of a farm being classified in those categories
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are about 60% cumulatively (38% and 22%, respectively). Further increases of the

energy crop share beyond 60% are associated with declines of sustainability. In

other words, the nonlinear relationship can be described as inverted u-shaped. It is

interesting to note that farms at the extreme that produce 100% energy crops have

predicted probabilities that are still slightly better than the baseline. This finding

suggests that producing energy crops at any proportion corresponds with higher

agricultural sustainability.

Figure 3.1: Predicted probabilities of achieving each category C by marginal land ml clas-
sification and the proportion of energy crop output to total output.

With respect to industrial crops (Figure 3.2), we again find an inverted u-shaped

relationship/association between the share in total output and predicted probabili-

ties of sustainability categories. However, there are two key differences from energy

crops. First, predicted sustainability peaks much lower in the range on the x-axis:

whereas predicted sustainability began to decrease at energy = 60 for energy crops,

it begins to decrease at industrial = 40 for industrial crops. Perhaps as a conse-

quence, the second key finding is that we find negative association with sustainability
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when farms become specialized in industrial crops. As industrial exceeds approxi-

mately 90%, the categories with the highest probabilities are "low" and "mid".

Figure 3.2: Predicted probabilities of achieving each category C by marginal land ml clas-
sification and the proportion of industrial crop output to total output.

In line with the findings in Section 3.3.2, the strong similarities between the left

and right panels in Figures 3.1 and 3.2 indicates that operating on marginal lands

does not make any meaningful difference with regard to predicted sustainability

probabilities.

3.3.4 Implications for the bioeconomy

Germany’s bioeconomy strategy (BMBF 2020) recognizes the need to improve sus-

tainability in agriculture and suggests innovation-based solutions such as locally-

specific smart farming or vertical farming. While such innovations are certainly

beneficial for improving agricultural sustainability, our findings suggest that there

may be simpler options as well. Given the nonlinear relationships we found between

sustainability and the proportion of NFC output to total output, it may be ad-
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vantageous for bioeconomy strategies to discourage farms from specializing in NFC

production. Instead, farmers should produce a combination of food crops and NFCs.

Policymakers and farmers should consider both the type and level of production in-

tensity, favoring higher proportions of energy crops over industrial crops.

Regarding the production of NFCs on marginal lands, another key area of focus

in Germany’s national strategy (see section 4.1 in BMBF 2020), we conclude that

there appears to be no significant difference in farm sustainability with respect to

marginal land classification. Differences across these classifications in the estimated

likelihood of higher sustainability levels are not large enough to suggest any sub-

stantial conclusions, as evidenced by virtually identical predicted probabilities in

the right- and left-hand panels of figures 3.1 and 3.2. As such, we find that the

production of NFCs on marginal lands is a viable option to ease pressures on the

food supply without negatively impacting the sustainability of the farms.

3.4 Conclusion

The primary objectives of this paper were to (a) study the relationships between the

sustainability of farms in Germany, NFC production, and producing on marginal

land (as measured by LFA classification), and (b) evaluate the potential impacts

of these relationships on the sustainability goals of the bioeconomy. Through the

application of an agricultural sustainability index (ASI), we found that (1) there are

positive relationships between farm sustainability and NFC production, (2) these

relationships are nonlinear and can even lead to negative associations between NFC

production and agricultural sustainability in the case of industrial crops, and (3) it

appears not to make a difference to sustainability whether NFCs are produced on

marginal or non-marginal lands. Thus, we conclude that the production of NFCs

may be beneficial for sustainability efforts in the bioeconomy depending on the type

of NFC and the intensity of production, and that production on marginal lands is

unlikely to have a significant impact on these efforts.
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However, these findings should serve as a starting point for future research into

sustainable NFC use in the bioeconomy. Since we are currently only viewing sus-

tainability through the lens of the farms themselves, our findings do not represent

an overall assessment of the NFC value chain. Further research should continue to

parse out the individual components of the value chain to gain a more comprehen-

sive view of what is required for the bioeconomy to maintain sustainable resource

production and manufacturing.
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4.1 Introduction

Recent decades have experienced a significant rise in organic agricultural production.

Occurring as a result of rapidly increasing demand for organic foods, the area of

land under organic production in Europe alone has expanded to almost 15 million

hectares in 2017, up from only about 100,000 hectares in 1985 (see figure 72 in

Willer, Schaack and Lernoud 2019). Today, this translates to approximately 9% of

all agriculturally used land in Europe (Eurostat 2022c).

One of the reasons for the rise in demand is the perception that organic production

is a more sustainable alternative to conventional methods. Many consumers are con-

cerned about the impacts of conventional production (Meemken and Qaim 2018) and

view organic foods as more environmentally friendly (Seufert and Ramankutty 2017).

Similarly, farmers commonly cite environmental benefits in the decision to convert

to organic production methods, rather than for economic gains (Cranfield, Henson

and Holliday 2010). This perception is also reflected in sustainability-oriented pol-

icy development. For example, the European Commission’s Farm to Fork strategy

(European Commission 2020) claims organics to be a key sector in the coming years,

and the new Common Agricultural Policy (CAP) mentions organic food as part of

its eco-scheme, with at least 25% of the direct payments budget dedicated to the

scheme in the 2023-2027 CAP plan (European Commission 2022b).

Despite this rise in organic production, the consequences of using these methods on

the sustainability of the farms is not fully understood yet. As such, this research

asks two questions: First, are there differences in agricultural sustainability (AS)

between conventional and organic farms in Germany? Second, is there a causal effect

on AS when farms transition from conventional to organic production? Identifying

a causal link between organic farming and AS would have relevance to both policy

making and for general audiences in making sustainable consumption and production

choices.
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The current scientific literature on the sustainability of organic farming identifies

four key sustainability themes where conventional and organic farms often differ:

productivity, economic viability, environmental soundness, and (contributions to)

social well-being (Reganold and Wachter 2016). While there is a breadth of literature

discussing components of each theme individually, there is little attention given to

addressing farm level AS differences between conventional and organic farms. Such

an approach would have the distinct advantage of accounting for trade-offs between

the individual components.

Our research contributes to the existing literature by conducting a two-step estima-

tion process to test differences in AS between conventional and organic production

methods at the farm level. The first step modifies the AS index proposed in Chapter

2 as a time-series model estimating a single sustainability score for each farm over

a 10-year observation period. In the second step, we use descriptive statistics and a

difference-in-differences (DiD) model to identify changes in AS before and after the

transition to organic production.

Our analysis faces two important challenges, however, the first of which involves

the use and interpretation of the statistics derived from the AS index. Our two-

step approach requires that the index scores are treated as observed data for the

the descriptive and causal analyses. These scores, however, are predicted within a

Bayesian framework and contain a certain degree of uncertainty. This uncertainty

in the measurement of AS is ignored in the second step of the analysis.

The second challenge to the analysis is selection bias. There are two primary mech-

anisms to explain differences in AS with respect to conventional versus organic

production: self-selection, and learning by doing (for a similar argument in the con-

text of firm productivity, see De Loecker 2007). The former refers to the idea that

farmers are not randomly selected for conventional or organic production. Rather,

the decision to produce organically is based on the farmers’ mindset and includes a

variety of factors such as personal values and beliefs. As such, farmers who choose

to produce organically may already be more concerned about sustainability and
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taking steps to improve their operations, while those who decide to continue using

conventional methods may naturally make different choices1. In contrast, learning

by doing suggests that once the farmers make the transition to organic, they gain

new knowledge and skills that enable them to become more sustainable. It is this

latter mechanism that we are attempting to capture in the analysis. We take ac-

count of selection bias by (1) creating subgroups to compare differences between

farms that remain conventional during the observation period versus farms that

have not yet made the conversion to organic, (2) using a DiD model with propensity

score matching, and (3) running multiple iterations of the DiD model with different

control groups and sample sizes.

By using data from the Farm Accountancy Data Network (FADN) and applying

our descriptive and DiD regression analyses, our research reveals several key find-

ings about the sustainability of organic versus conventional farms. The descriptive

analysis finds that farms observed to be organic throughout the observation period

are more sustainable on average than farms that remain conventional. This finding

holds regardless of the size or type of the farm. When looking specifically at farms

that make the transition to organic during the observation period, we find evidence

of a non-linear effect to AS from the conversion to AS. During the conversion process

there is an decrease in AS followed by a slow long-term increase after farms complete

the conversion to organic. While the findings suggest a causal relationship between

AS and organic farming, the size of the confidence intervals prevent a definitive

conclusion.

The remainder of the paper is organized as follows: Section 2 briefly summarizes key

differences in conventional versus organic agricultural production, Section 3 outlines

the two-step estimation process, the results are presented in Section 4, and Section

5 concludes.

1For example, a survey study by Läpple (2013) concluded that conventional farmers are less envi-
ronmentally aware than farmers who are (or have been) producing organically.
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4.2 Literature review

In this section, we review the literature to discuss the structural and operational dif-

ferences between conventional and organic farms that may contribute to differences

in AS. The review is structured around the four sustainability themes described by

Reganold and Wachter (2016).

The productivity theme generally refers to differences in the intensity of production

on the farm. By design, organic farming is less intensive than conventional meth-

ods to promote healthy soils without the need for chemical additives. As such, this

strand of literature generally expresses productivity in terms of yield (by weight)

over a given land area and finds that organic farms are less productive than con-

ventional (see e.g. De Ponti, Rijk and Van Ittersum 2012; Seufert, Ramankutty and

Foley 2012). This method, however, is limited in terms of explanatory power with

regard to AS. A better alternative employed by others is a multi-factor productiv-

ity estimation (also known as total factor productivity) to incorporate measures of

resource use efficiency. Baležentis (2015), for instance, uses an input/output ra-

tio with measurements for land, labor, and assets relative to monetary outputs of

crops and livestock. Using this approach, the authors find no notable differences in

productivity between conventional and organic farming. When looking at a disag-

gregated view of productivity, Coomes et al. (2019) emphasizes that many of the

new technologies embraced under organic farming, such as no-tilling or the use of

precision inputs, are beneficial for both productivity and sustainability.

The strand of literature on economic viability points out that while yields may be

lower, organic farms are generally more profitable. Despite a finding that conven-

tional farmers are typically more profit-oriented (Läpple 2013), a meta-analysis by

Crowder and Reganold (2015) concluded that the price premiums found in organic

products resulted in organic farms being up to 35% more profitable than conven-

tional. The study also noted a benefit/cost ratio up to 24% higher in organic farms.

What is more, organic practices such as maintaining soil health and water conser-
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vation can increase profits over time (Kleemann and Abdulai 2013). However, an

important consideration for economic viability is debt. Canavari et al. (2007) and

Krause and Machek (2018), for example, both find that organic farms typically have

higher debt levels compared to conventional practices. This can have an impact on

the economic sustainability of a farm, as it can signal the ability to continue opera-

tions in the event of financial difficulties (Whitehead et al. 2016; Zwilling and Raab

2019).

Two important topics dealing with the environmental soundness of farms refer to

chemical use and greenhouse gas (GHG) emissions. Reducing pesticides is considered

as a high priority for AS (Lechenet et al. 2014b), and the use of these chemicals is

already either banned or heavily restricted in organic farming (Niggli 2015). The

regulations have had a clear impact, as Geissen et al. (2021) reported 70-90% less

pesticide residues in organic soils. Pesticide reductions can have economic benefits as

well, as a study by Klonsky (2012) concludes that spending on pesticides (measured

in USD/acre) is considerable lower in organic production systems.

The distinction between conventional and organic farming with respect to emissions

is less clear. Organic practices typically favor modes of production with potential

for lower emissions. As examples, Küstermann, Kainz and Hülsbergen (2008) finds

higher potential for carbon sequestration as a result of growing perennial legumes

and grasses, and West and Marland (2002) finds significantly lower emissions in

practicing zero tillage, a practice more common in organic production. However,

Venkat (2012) finds that while farms that recently converted to organic do in fact

show significant reductions in emissions (almost 18% compared to conventional),

steady-state organic (i.e. systems that have not changed in a long time) show

higher levels of emissions. Further, a meta-analysis by Mondelaers, Aertsens and

Van Huylenbroeck (2009) concludes that despite lower emissions by organic farms

over a given land area, lower yields per unit of land result in a reduction or complete

elimination of the effect.
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A key component to the social well-being of organic farming is the effect it has

on farm employment. A large-scale analysis by (Finley et al. 2018) found that the

intensity of employment on organic farms (measured as a ratio of hired labor per

acre) is considerably higher than that of conventional farms. Further, the authors

found that the employment is typically more stable, as the percentage of workers

being employed more than 150 work days per year is much higher on organic farms.

This has a noticeable overall impact on the rural labor market, as Mon and Holland

(2006) finds improvements to regional total employment near organic farms as a

result of higher labor requirements.

4.3 Data and variable construction

In this section, we provide an overview of the data and variable calculations we

use in all analyses. After introducing the data in Subsection 4.3.1, Subsection 4.3.2

then describes the control variables used in all regressions. Subsection 4.3.3 then

describes the derivation of the organic groupings we use to differentiate between

conventional farms, farms switching to organic, and organic farms.

4.3.1 Data

We use an unbalanced farm-level panel data set from the Farm Accountancy Data

Network (FADN) with a 10-year observation period of 2004-2013. Because we are

interested in analyzing sustainability over multiple time periods, we drop all farms

with fewer than five2 observations in the sample. This minimum threshold was

selected because farms are required to undergo a transition period of up to three

years3 prior to receiving official organic certification, so a five-year minimum should
2Sensitivity analyses were conducted by running multiple iterations of the model while varying the
minimum number of observations per farm. Results of the analyses are presented in Subsection
4.5.3.

3The duration of the conversion varies by farm type, with minimum conversion periods of one year
for pig and poultry, two years for land ruminant grazing annual crops, and three years for fruit
orchards European Commission (2022a)
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allow us to observe at least two time periods outside of the transition period to aid

in identifying the point in which the farm begins the transition.

4.3.2 Descriptive variables

Given the large differences in AS across farm sizes and types (see Chapter 2), we

include these characteristics as variables in a descriptive analysis (Subsection 4.5.1)

to provide a more nuanced understanding on the differences between conventional

and organic farms. Farm size is determined by its standard output, which is defined

by Eurostat (2023b) as “the average monetary value of the agricultural output at

farm-gate price, in euro per hectare or per head of livestock”. Farm type defines

the specialization of each farm, and we use a set of broadly defined classifications4

such as fieldcrops, milk farms, or vineyards. Both variables are categorical and

are supplied by FADN, the definitions and descriptions of which can be found in

European Commission (2000).

4.3.3 Organic status and grouping variable

The main explanatory variable for our analysis is the organic status of the farm. The

variable is self-reported yearly by the farmers in the FADN data set following the

EU’s official organic certification (Regulation (EEC) Number 2092/1991: Council

of European Union 1991). The German FADN data contains three categories of

organic classification: fully conventional (which we denote as category C), partially

organic or transitioning to organic (P/T), and fully organic (O).

Next, we categorize the farms into groups according to their reported organic clas-

sifications over the duration they are observed in the data set. We create five

groups with labels “starters” (S), “always conventional” (AC), “always organic”

(AO), “quitters” (Q), and “disqualified” (DQ). Table C.1 in the appendix provides

a set of nine example farms with five generic time periods (denoted as year Y ) to

show how the farms are assigned to each group.
4We use the TF8 classifications supplied by FADN.
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The benchmark we set for farms in the starters group is that they must have entered

the observation period as fully conventional (C) and converted to fully organic (O)

with at least one year of transition (P/T). Example farm 1 presents a complete three-

year transition period, where the farm is first registered as C in year 1, reports the

three-year mandatory period as P/T in years 2-4, then reports as O in year 5. We

also allow farms to the starters group that report periods of P/T after the initial

conversion to O is complete. Farm 2 provides an example of this, where it reports

with a shorter conversion period in year 3 prior to moving to full organic in year 4,

but later reports a period of P/T in year 5. We also create subcategories for farms

in the starters group that differentiate between pre-treatment5 (labeled as pre-S)

and post-treatment (post-S). In Table C.1, example farm 2 is pre-S in years 1-2, and

post-S in years 3-5. The subcategories are used for checking the representativeness

of our sample and assessing the potential for selection bias in the model.

Farms categorized as always conventional (AC) or always organic (AO) are those

that do not report in all three organic classifications during the observation period.

The key criteria are that AC farms can never report as O within the observation

period, and AO farms can never report as C. However, we do allow for periods

of P/T in both groups. AC farms are shown by example farm 3, which remains

fully conventional for all observed years; and by example farm 4, which is fully

conventional but reports some years as P/T. Example farms 5 and 6 show the same

patterns for always organic farms, with the exception that they primarily report as

fully organic rather than conventional.

The fourth group of “quitters” (Q) are those that exit organic production during

the observation period. Farm 7 is an example of a fully organic farm that reverted

back to conventional, and farm 8 shows a starter that entered the organic market

and exited shortly after. We drop these observations because (1) the sample size for

these types is comparatively quite small so the results may be less reliable than the

other groups, and (2) keeping them in the analysis would violate the assumption in

5See Subsection 4.4.1 for the definition of the treatment.
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the model of treatment irreversability. The DiD model assumes that once a subject

(farm) is treated (transitions to organic), it cannot "forget" about the treatment

experience (see Callaway and Sant’Anna 2021).

Finally, the fifth group labeled “disqualified” (DQ) are farms that do not report a

partial/transition period prior to switching to fully organic from fully conventional.

Since EU regulations require a transition period prior to being certified as an organic

farm, it is unclear what the abrupt transition represents. We regard this as an

accounting error and exclude the farms without a transition period.

Table C.2 in the appendix presents the frequencies of the farms in the sample relative

to the organic groupings, and the farm size and type covariates. The final sample

size over the entire observation period is 64,102 observations from 8,170 individual

farms. Of these, a vast majority of the farms (>95%) are in the always conventional

group, 4% are in the always organic group, and less than 1% are in the starters

group.

To assess the representativeness of our sample, we rely on the statistics provided

by Eurostat (2023a) measuring organic production as a percentage of total utilized

agricultural area (UAA) in Germany. We replicate this statistic within our sample

by calculating annual percentages representing the share of UAA under organic

production relative to total UAA. The estimation includes AO and post-S farms,

with Figure C.1 showing the comparison between our estimations and those from

Eurostat. The results suggest that organic farms are slightly underrepresented in our

sample. In 2004, approximately 4.5% of total UAA in Germany was under organic

production, while only about 3.8% of the UAA in our sample is produced organically.

The largest difference between these values is in 2012, where the percentages are

5.8% in the Eurostat figures and 3.5% in our sample. The cause of this under-

representation is likely a consequence of the FADN data set, as farms with less than

25,000e per year of standard output are not reported in the data. As such, we do

not make inferences to the total population of farms in Germany when reporting

the results.
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4.3.4 AS index

We measure the sustainability of each farm in the sample using the AS index devel-

oped in Chapter 2. The advantage to using the AS index is that it can build on the

literature discussed in Section 4.2 by estimating a single farm level sustainability

score that allows us to take into account trade-offs between different aspects of farm

sustainability. Examples of potential trade-offs in the conversion from conventional

to organic include reduced yields in exchange for higher prices, or increased labor

requirements in exchange for savings on inputs (e.g. chemicals).

The index is estimated using the nine sustainability items described in Table C.3

in the appendix. The items loosely follow the four sustainability themes identified

by Reganold and Wachter (2016) and cover all of the topics addressed in Section

4.2. Economic viability is accounted for using items for the profitability, solvency,

and economic diversity of the farm. The items for farms’ expenditure on pesticides,

estimated GHG emissions, and estimated land ecosystem quality account for the

environmental soundness theme. With respect to the social well-being theme, we

view a narrow scope of the theme by inspecting the farms’ wage ratio (i.e. average

wages paid on the farm relative to regional median wages) and the intensity of

employment generated from production (i.e. expenditures on wages relative to total

output). Finally, the productivity theme is estimated using a multi-factor measure

similar to that of Baležentis (2015), which estimates the farms’ total value added

relative to factor inputs for land, labor, and capital.

In contrast to the cross-sectional AS index estimated in Chapters 2 and 3, our

analysis requires the use of time-series data to estimate changes in AS over time

as farms convert from conventional to organic production methods. Section C.2 in

the appendix provides a model statement for the development of a time-series AS

index spanning the same 10-year observation period specified in Subsection 4.3.1.

A key aspect of the time-series version of the index is that it incorporates a set of

time dummies shown in equation C.3 that allow for the index to vary over time.
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The variable from the AS index estimations that we use for the remainder of the

analysis is the latent trait of sustainability for each farm, θ (see equation C.4). To

help with the interpretation of the magnitude of the results presented in Section 4.5,

we standardize θ to have a mean of zero and standard deviation of one, which we

denote as θ′.

4.4 Empirical strategy

In this section, we discuss the approach for estimating a difference-in-differences

(DiD) regression model for our analysis. Subsection 4.4.1 outlines the identification

strategy we use for the model, then Subsection 4.4.2 discusses the model assump-

tions. Subsection 4.4.3 then provides an overview of a series of robustness tests used

to validate the model results.

4.4.1 Identification strategy

To address the question of a causal relationship between AS and the conversion from

conventional to organic production, we rely on a DiD estimation strategy. Examples

of other DiD models applied to agriculture include an analysis of employment effects

in Eastern Germany as a result of the Common Agricultural Policy (CAP) (Petrick

and Zier 2011), and impacts of immigration enforcement on the agricultural sector in

the US (Kostandini, Mykerezi and Escalante 2014). The general idea is that a DiD

model compares a change over time between a treated group and a control group

before and after a treatment occurs. In the context of our analysis, we define the

treatment as the conversion from conventional to organic production, the treated

group as the farms that are observed to convert to organic during the observation

period (group S), and the control group as the group of farms that are never treated

(group AC)6.
6Alternatively, in a robustness test in Subsection 4.4.3 we substitute the AC control group with
the “not yet treated” (pre-S) farms.
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A significant challenge to our analysis comes from the fact that the treatment can

take place at any time during the observation period (i.e. staggered treatment). DiD

models are generally designed to measure a treatment occurring over a single time

period (e.g. from the introduction of a new policy), and the effects are estimated

using a two-way fixed effects (TWFE) approach (e.g. Hackenberger et al. 2021). The

TWFE model takes into account both time and group fixed effects, where the group

refers to the units of analysis (i.e. farms). The group fixed effects would then control

for any group-level confounding factors that might affect the outcome variable, such

as differences in baseline characteristics, unobserved heterogeneity, or selection bias.

Time fixed effects control for any time-varying confounding factors that might affect

the outcome variable, such as changes in the economy, technology, or weather (for

an overview of TWFE models, see de Chaisemartin and D’Haultfoeuille 2022).

While the TWFE model produces reliable estimations in the case of a treatment oc-

curring in a single time period, the use of TWFE in models with staggered treatment

times has come under scrutiny lately. Authors such as Goodman-Bacon (2021) show

that TWFE models introduce bias into staggered treatment estimates as a result of

“forbidden” comparisons. This occurs when the TWFE makes comparisons between

units that are both already treated in addition to comparisons between treated and

“not yet treated” (i.e. “clean” comparisons). In this context, TWFE will suffer from

heterogeneity bias if the treatment effect is not homogeneous. The consequence of

heterogeneity bias is that the direction of the estimated coefficient may be negatively

weighted, meaning that the TWFE coefficients may have an opposite sign compared

to the individual treatment effects (Roth et al. 2022).

For that reason, we use the DiD model developed by Callaway and Sant’Anna (2021)

in our analysis (henceforth, CSDiD). The model overcomes the problem of “forbid-

den” comparisons by considering a group-time average treatment effect (ATT) that

differentiates between groups of farms that are not yet treated versus those that

already treated. In simple terms, the group-time ATT means that all ATTs are es-

timated relative to the year a particular group of farms converted to organic during
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the observation period. This approach uses a new time variable t to represent the

number of time periods before and after the conversion to organic. For example,

the ATT value reported in time period t = 4 represents the treatment effect in the

year 2008 for farms treated in 2004, the treatment effect in the year 2011 for farms

treated in 2007, and so on.

However, a challenge to our approach is in properly identifying the treatment time

t = 0, i.e. the exact point at which a farm converts to organic. The conversion

to organic essentially has two clearly defined time periods: the first time it reports

as P/T after being fully conventional (C), and the first time it reports as fully

organic (O) after one to three years (minimum) of P/T. We chose to define t = 0

as the first year a farm reports as P/T under the rationale that it should be the

first demonstrable actions taken by the farmer to produce organically. In contrast,

if we had selected the first time period that a farm reports as fully organic, the

prior P/T time periods may distort the ATT estimates because the assumption of

no anticipation effects could be violated (see Subsection 4.4.2). Referring to the

last column in Table C.1 in the appendix as an example, t = 0 occurs in year 2 for

example farm 1, and in year 3 for example farm 2. Note that the time variable is not

required for the AC group, and the AO group is excluded from the CSDiD model.

4.4.2 Model assumptions

In this subsection, we outline three key assumptions for the CSDiD estimations.

First, one of the basic ideas of any DiD model is the assumption that in the absence

of a treatment, both the treatment and the control group would follow a similar

trend over time (parallel trends assumption). There are several methods to test this

assumption, such as the introduction of an interaction term (see, e.g. Tang et al.

2022). However, parallel trends tests have been shown to have low power and can

introduce additional bias into the model estimates (Roth et al. 2022). The CSDiD

model controls for this assumption in the group-time comparisons.
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The second assumption for the model is that there are no anticipation effects. If the

assumption is violated, it would mean that farmers begin making changes to their

operations that affect AS prior to the actual transition into organic production.

While the CSDiD model does allow to control for this assumption, we estimate

the model assuming that the assumption holds and inspect the pre-treatment time

periods in the CSDiD model estimates for trends in the ATT that might suggest

anticipation effects. This inspection is discussed in detail in Subsection 4.5.2.

Finally, as highlighted in Section 4.1, selection bias is a significant challenge to our

study. If present in the model, it would violate the assumption of random sam-

pling. The CSDiD model accounts for selection bias by incorporating a generalized

propensity score that is uniformly bounded away from one to rule out irregular

identification. Propensity scores function as a counterfactual by matching treated

subjects (farms that switch to organic) with observationally similar untreated sub-

jects (farms that do not switch) (see Heinrich et al. 2010), thereby correcting for

the aforementioned issue with TWFE models in staggered treatment applications.

As an additional step, we inspect patterns between the AC and pre-S groups in our

descriptive analysis to look for evidence of selection bias prior to the CSDiD analysis

(see Section 4.5.1).

4.4.3 Robustness tests

We conduct two robustness tests to verify the main CSDiD model estimations. For

the first test, we run a second CSDiD regression using the “not yet treated” farms,

i.e. the pre-S group. The rationale behind running a second regression is so that

we can account for the strengths in both estimations. On the one hand, the large

sample size of the AC group (see Table C.2) is favorable for use as the control group;

however, a requirement of using a “never treated” group as the control is that the

farms should be similar to the “eventually treated” group (i.e. pre-S). Because of

the difficulty in determining how similar the AC and pre-S groups are, we add the
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second regression so that all farms in the regression are either “not yet treated”

(pre-S) or have been treated (post-S).

In the second test, we run 12 iterations of the CSDiD model using both the AC and

pre-S control groups (i.e. six iterations of each control group). In each iteration we

incrementally increase the minimum number of observations per farm in the sample

from five up to ten observations (i.e. balanced panel data set). The purpose of

the test is to assess whether any change in the minimum number of observations

would have an effect on the magnitude or direction of the ATTs, as well as how the

confidence intervals might be affected.

4.5 Results

In this section, we provide a descriptive analysis of AS among the organic group-

ings and discuss the findings of the CSDiD model estimations. In Subsection 4.5.1,

we present an overview of the descriptive analysis using the variables introduced

in Subsection 4.3.2. Subsection 4.5.2 then discusses the CSDiD model results pro-

duced using the AC control group and a minimum of five observations per farm.

We conclude with Subsection 4.5.3 by discussing findings from the robustness tests

outlined in Subsection 4.4.3.

4.5.1 Descriptive analysis

In this section, we present a descriptive analysis on the differences in θ′ among the

farm groups. Group differences are tested using a series of ANOVA and pairwise

comparison estimations that focus on the contrast (i.e. the relative differences in

the means of θ′) between the groups.

For this subsection, we reduce the data set to only include data from 2004. We select

a single year for the analysis to avoid distorting the tests from repeated observations

of the same farm, and the first year of the observation period is chosen specifically
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so that all farms in the starters group are categorized as pre-S. We are particularly

interested in the pre-S farms because the rationale is that since both the AC and

pre-S farms are fully conventional in the time period they are being observed, any

differences in θ′ between the groups may be a sign of selection bias. We first run the

ANOVA and pairwise tests for the entire 2004 sample, then subdivide the sample in

groups for the eight farm types and nine economic size classes provided in the data

set.

We summarize two important findings about the full 2004 sample. First, the kernel

density plot shown in Figure 4.1 suggests that selection bias is unlikely in the sample.

This is evidenced by the similarity in the density curves between the AC and pre-S

groups.
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Figure 4.1: Kernel densities of θ′ for the AC, pre-S, and AO groups in 2004

The second finding from Figure 4.1 is that AO farms are clearly more sustainable

on average than the AC or pre-S farms. As shown in Table C.5 in the appendix,

the mean θ′ for AO farms is 0.54 while the pre-S and and AC means are 0.12 and

0.05, respectively. When the groups are tested using the pairwise mean comparison
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in Table C.7, we find no meaningful differences between the pre-S and AC groups

(contrast = 0.08), while the contrast values are 0.50 between the AO and AC groups

and 0.42 between the AO and pre-S groups.

Next, we subdivide the sample using the farm size and type descriptive variables

discussed in Subsection 4.3.2. We conduct a separate set of ANOVA and pairwise

comparison tests for each farm size and type classification. Looking first at the farm

type classifications, Figure 4.2 presents box plots of the θ′ distributions and Tables

C.8 through C.31 present the results of the ANOVA and pairwise comparison tests.
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Figure 4.2: θ′ distributions by TF8 farm type, 2004

We find that the mean θ′ values for AO farms are significantly higher than for the

AC farms in most of the farm type classifications. The largest contrasts between

AO and AC farms are found in grazing livestock (0.70, Table C.25) and permanent

crop farms (0.67, C.19). These differences do not hold for all farm types, however,

as there appears to be no significant differences in θ′ between the AO and AC
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groups in horticulture farms and vineyards (Tables C.13 and C.15, respectively).

With respect to evidence for selection bias, we do not find statistically significant

differences between the pre-S and AC farms in any of the farm types. The finding

suggests that selection bias is not an issue.

With respect to the economic size classes, Figure 4.3 presents box plots of the

distributions for each organic grouping, and Tables C.32 through C.58 show the

results of the ANOVA and pairwise comparison tests. Similar to the farm type

comparisons, we find no meaningful differences in θ′ between the AC and pre-S

groups in any of the size classes. This again suggests a lack of selection bias.
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Figure 4.3: θ′ distributions by economic size class, 2004

We also find that the differences in θ′ between the AO and AC groups vary across

the economic size classes. The contrast between the two groups steadily increases

relative to farm size up to 1,000,000e of standard output per year. As shown

in Table C.34, the contrast between AO and AC farms is 0.37 for farms in the
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25,000 -<50,000e and the largest contrast between these groups is 1.17 for farms

in the 750,000 -<1,000,000e range (Table C.49). This gap diminishes for farms

exceeding 1,000,000e of standard output (Tables C.52, C.55, and C.58), though the

small sample sizes introduce a high level of uncertainty in the findings for these size

classes.

4.5.2 CSDiD model analysis

The following subsection presents the results of the CSDiD model specified in Sub-

section 4.4. Results of the model estimations are provided by Figure 4.4 showing the

ATT on θ′ based on length of exposure with 95% confidence intervals. The length of

exposure is defined as the duration (measured in time periods t, where t = 1 year)

before and after a farm begins the conversion to organic production. Table C.59 in

the appendix provides numerical results of the estimations shown in Figure 4.4.

We discuss two main findings from the results. First, an examination of the pre-

treatment results (i.e. t < 0) is inconclusive regarding the potential for anticipation

effects in the model. The volatility in the pre-treatment trend is suggestive of

anticipation effects, as we would expect AS to become unstable if farmers begin

making structural changes to their operations. Literature discussing the steps taken

by farmers in the years prior to treatment is sparse; however, it seems likely that

this volatility could be a result of factors such as investments into new equipment,

preliminary changes to cropping systems, etc. Despite this volatility, it is unclear

how large the anticipation effects, if present, have on the outcome of the model. The

overall pre-treatment mean ATT is 0.018 with 95% confidence intervals of [-0.122,

0.157] (Table C.59), which does not suggest an overall positive or negative trend

away from zero.

Second, the post-treatment trend suggests a non-linear causal effect to AS from the

transition to organic. We find a slight increase in the ATT for the first two post-

treatment time periods, a decrease in time period t = 3, and a relatively steady
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increase for the remaining time periods. The findings suggest that there may be a

long-term positive effect on AS from the organic transition, but that the transition

period when farms are still in the process of conversion (up to three years depending

on the type of farm) remains volatile. The European commission offers financial

support for transitioning farms in recognition of potential hardships during this

period (see European Commission 2022a), which may contribute to the downswing

in the ATT during the conversion. However, overall the large confidence intervals

preclude definitive conclusions on the effect of the organic conversion to AS. Only in

last time period does the 95% confidence interval begin to suggest a significant effect

in the lower boundary, but we do not regard this finding as conclusive evidence of a

causal relationship.
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Figure 4.4: ATT on θ′ with AC control group and a minimum of five observations per
farm
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4.5.3 Robustness test results

In this subsection, we present the results of the robustness tests discussed in Subsec-

tion 4.4.3. We first inspect the test that substitutes the AC control group with the

“not yet treated” i.e. pre-S group. As shown in Figure C.3 and Table C.60, there

are virtually no differences in the CSDiD estimates between the two control groups

when a minimum of five observations per farm are included in the sample.

Similarly, we find only minor differences in the tests where we vary the minimum

number of observations for each farm in the sample. As shown in Figures C.4 and C.5

in the appendix, there are slight variations in the ATT depending on the minimum

number of observations. With respect to the pre-treatment trends, we notice less

volatility in the time period t = −5 with the tests that have minimums of 6, 7, and

8 observations. Overall, we find that the confidence intervals widen as the minimum

number of observations increase. This is expected since a higher restriction in the

minimum observations results in a decreased sample size. Interestingly, the test

with a minimum of 10 observations per farm (i.e. balanced panel) shows a smoother

post-treatment trend with a steady increase in the ATT. The reason for this finding

is unclear. Finally, similar to the previous test, we find that there are no noticeable

differences between the tests substituting the AC control group with the pre-S farms.

4.6 Conclusion

The goal of this paper was to identify differences in farm sustainability between

conventional and organic production methods. We used a 10-year FADN data set

in Germany and separated farms into groups based on whether the farm is always

conventional during the observation period, converts to organic production while

it is being observed, or is fully organic during this period. We then use a time-

series farm level AS index to compare relative sustainability of the groups. The

comparison is first done descriptively using ANOVA and pairwise comparison tests
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for a single year of the data, and for each farm size and type classification. We

then used a difference-in-differences model developed by Callaway and Sant’Anna

(2021) that allows for staggered treatment times (CSDiD) to look for a potential

causal relationship between farm sustainability and the transition from conventional

to organic farming.

We highlight the following findings from the analyses. First, we found that the

farms in the always organic (AO) group are more sustainable on average than farms

that are always conventional (AC) regardless of farm size or type. The descriptive

analysis also shows that the pre-S farms are nearly identical to the AC farms in

almost all farm types and sizes, suggesting that selection bias is not an issue in

our sample. Second, the results of the CSDiD model show evidence suggestive of

a non-linear effect to AS from the conversion to organic, where the years that the

farm is transitioning are relatively volatile, but a steady long-term effect emerges in

subsequent years. However, the size of the confidence intervals preclude a definitive

conclusion of causality, and an inspection of the pre-treatment trends suggests the

possibility of anticipation effects.

Based on the results, we hypothesize that there might be effects to AS from the

transition to organic production that occur over a longer duration than what is

captured in our analysis. This hypothesis is based on the findings of (1) a lack of

evidence for selection bias, (2) an upward trend in the post-treatment ATT values

after the conversion period is complete (Figure 4.4), and (3) clear differences in

farm sustainability when comparing the AC and AO groups (Figure 4.1). However,

we recognize that an alternative hypothesis to explain the differences between the

AC and AO groups is that there may be time-sensitive components of the organic

transition that are unobserved in our analysis. This hypothesis would suggest that

farms making the transition to organic during the observation period of 2004-2013

could somehow be systematically different from the farms that made the transition in

decades prior. An example of potential differences between these farms is discussed

by Padel (2001), who uses an innovation diffusion perspective to highlight differences
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in early versus late adopters of organic methods.

Considering both of the aforementioned hypotheses, we regard the observation pe-

riod as the most critical limitation to the analysis. We suggest that future research

should replicate the study with a longer set of FADN data. If the duration of the

study were expanded to include all available years in the FADN data set, we could

test both hypotheses and make a more definitive conclusion on potential causal

effects to AS from the transition to organic.
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Conclusion

5.1 Summary of results

The goal of the dissertation was to present the design and application of a new novel

approach to estimating the sustainability of farms using IRT. Overall, the findings

throughout the dissertation suggest that the proposed AS measurement method is

a viable substitution for existing methods. The research further demonstrated the

usefulness of the index in addressing important issues related to the sustainability

of farms under different methods, agricultural products, and scales of production.

Chapter 2 provided proof of concept for using IRT by (1) generating nine sustain-

ability items on a 4-category ordinal scale and estimating an AS index using the

graded response model developed by Samejima (1969; 1997b), (2) comparing the

index estimations with known associations between AS and farm type and size, and

(3) conducting a series of simulations to test the ability for the index to handle

missing data and accommodate scale linking procedures.

Testing of the proposed index found that the patterns in the results with respect

to sustainability differences across farm types and sizes were generally consistent

with the literature. Further testing of the index found that (with proper care) the

index is generally robust against missing data, and can allow for substitutions in

75
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some of the items by using scale linking. The latter finding is particularly useful for

expanding the model internationally in the future.

Chapter 3 then demonstrated an application of the index by using a descriptive

analysis of the AS scores to identify correlations between farm sustainability and

non-food crop (NFC) production, as well as producing on marginal lands. The topic

has relevance for current and future bioeconomy strategies and policies. The analysis

was carried out by estimating the proportion of NFC output to total output for each

farm, then using the ratios as explanatory variables along with control variables for

farm size and type to look for changes in AS relative to NFC output ratios.

The index found that the most sustainable farms on average were those that pro-

duced a combination of NFCs and food crops. Depending on the type of NFC

produced (either energy crops or industrial crops), farms with the highest predicted

probabilities of being very sustainable were those that produced between 40% and

60% NFC output to total output. There were no noticeable differences if the farm

was producing on marginal land or not. As such, Chapter 3 concluded that NFC

production may be a positive effort for sustainability in the context of the bioe-

conomy, and that producing on marginal lands may aid in meeting the demand for

NFCs without negative consequences to AS.

Finally, Chapter 4 presented another application of the index by addressing the

sustainability of organic production. The chapter compared differences between

conventional and organic farms descriptively by farm type and size, then used a

difference-in-differences (DiD) model to examine the potential for a causal relation-

ship between AS and the conversion to organic production.

Results of Chapter 4 did not find conclusive evidence of a causal relationship between

AS and converting to organic production; however, the analysis did reveal that

organic farms are more sustainable on average than conventional farms across all

farm sizes and types.
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5.2 Limitations and future research

While the dissertation has demonstrated potential for the proposed AS index, there

are three main limitations to consider. The following subsections discuss these

limitations and suggest directions for future research to improve the proposed index.

5.2.1 Large-scale feasibility

The use of a single country in the development of the index presents limited op-

portunities for testing the large-scale flexibility of the model. While the simulations

between the former East and West Germany in Chapter 2 have shown that scale link-

ing is a plausible option, the differences between these regions are minimal relative

to the differences across the Global North and South divide, for example. Compar-

isons between developed countries such as Germany and developing countries differ

significantly in terms of both the farms themselves, as well as the availability and

quality of the data that can be used to build an AS index.

An important first step towards an international AS index using IRT would be

to take inventory of available agricultural data sets (and the variables included in

them) in different regions around the world. While this would be an arduous task,

the advantage to starting here is that a full inventory of agricultural variables would

enable the development of a set of common items applicable to all countries that

could be used as a “base” model. As mentioned in Chapter 2, these items would

likely be limited to basic factors of operation such as the land size of the farm,

monetary values for output and expenditures, and input quantities (e.g. labor).

5.2.2 Holistic approach versus multidimensional

While Chapter 4 shows an advantage of the holistic approach to estimating AS as

a single measurement, there may be important trade-offs between the sustainability
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dimensions that are not accounted for. Examples may include hiring more em-

ployees (which is beneficial for social sustainability by increasing rural employment

opportunities) or investing in new technologies that reduce environmental impacts,

both of which would come at the expense of the farms’ economic sustainability by

lowering profits.

Overcoming this limitation would involve the development and testing of a multi-

dimensional version of the AS index. Under this approach, each item should be

categorized according to the sustainability dimension it belongs in (i.e. economic,

environmental, or social) to build the basic framework of the index. Estimating

the index could then be done compartmentally by estimating three unidimensional

models individually, or by using a more complex multi-dimensional item response

theory model (MIRT). Reckase (1997) and McDonald (2000) provide overviews of

the latter approach, and statistical packages such as mirt in R (Chalmers 2012) are

designed for this application.

5.2.3 Limited observation period

Lastly, the observation period currently used in the dissertation limits the potential

for examining long-term effects. This limitation was demonstrated in Chapter 4,

where findings show clear differences between organic and conventional farms, yet

any measurable effects to sustainability were not becoming realized until the later

stages of the analysis. While other unobserved factors may account for the lack of

conclusive evidence, it is likely that a longer duration of study may have provided

a more nuanced understanding to the effects to AS over time.

The obvious solution to this limitation is to simply extend the observation period;

however, one must consider the limitations of the data available as well. This is not

a problem for the case of FADN or other large statistical databases found in e.g. the

United States or Canada, but many developing countries may offer less freedom in

extending the observation period.
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Appendix A

A.1 Item selection considerations and definitions

In the literature, profitability (item 1 in table A.3) is measured in a variety of ways

such as income relative to operation income (Ehrmann 2010) and gross margin per

hectare (Ryan et al. 2016). Perhaps more appropriate in the context of sustainability,

van der Meulen et al. (2014) calculates profitability as a ratio of farm net income

to unpaid annual work units (AWU). The inclusion of unpaid (family) labor in

the equation can (a) ensure adequate accounting for farmer(s) income sufficiency

(Gómez-Limón, Arriaza and Guerrero-Baena 2020), (b) control for variations in farm

size (van der Meulen et al. 2014), and (c) reflect the potential for contributing to

social sustainability attributes (Sullivan 2003) such as inter-generational succession

of the farm1 and the ability for farmers to contribute to the local economy. This

method, however, is unsuitable for corporate or cooperative farms that do not have

unpaid labor. Since all labor costs are already compensated in these cases, the

proposed solution to measure family and corporate farms equally is to subtract

from family farms’ income an allowance for unpaid (family) labor. We compute this

allowance as family labor input quantity times the median wage w̃ for the federal

state the farm is located in (denoted by subscript fs) FNI as:

1A study by Glauben, Tietje and Weiss (2005) found that profitability of the farm has a significant
influence on the likelihood of inter-generational succession in Germany.
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iprofit = FNI − w̃fs, (A.1)

where iπ is the farm’s profit and FNI is calculated as total output plus the balance

of current subsidies and taxes, less depreciation, intermediate costs (specific costs

and farm overhead costs), and total external factors (wages, rent, and interest paid)

(European Commission 2000). In this calculation, the variable is a absolute sum for

the whole farm, which is then converted to a relative calculation when converted to

an ordinal item.

Solvency (item 2) is calculated using the same equation as Vitunskiene and Dabkiene

(2016), the indicator uses a common formulation as the farms’ total debts to total

assets:

isolvency = DT

AT

, (A.2)

where DT is the combined total T of short-, medium-, and long-term loans, and

AT refers to the total of both long-term fixed assets (land, buildings, machinery,

and breeding livestock) and short-term current assets (non-breeding livestock, the

stock of agricultural products, and other circulating capital) (European Commission

2000).

Wage ratio WR (item 3) is measured as the ratio of the average hourly wage

paid on the farm (total wages paid to total paid labor hours) to the median wage

of the region. In contrast to Vitunskiene and Dabkiene (2016) who calculates this

indicator as the ratio of average annual wages for farm workers to average wages in

the whole country, the calculation for this index is the ratio of average wages on the

farm to the median income in each NUTS3 region to capture regional differences in

purchasing power and the cost of living:
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WR = wh

wn3
h

, (A.3)

where wh is the mean hourly h wage on the farm and wn3
h is the mean hourly wage

in the NUTS3 n3 region the farm is located in.

Whereas the fourth item for economic diversity ED is calculated as a dummy

variable used in SDG 2.4.1 to signal if a single agricultural product accounts for

more than 66% of total output on the farm, we instead calculate the indicator as a

continuous value:

iED = max

(︄
ϕn

OT

)︄
, (A.4)

where the value for economic diversity is the maximum max contribution of a single

nth product ϕ to the farm’s total output OT , with n representing any combination

of the 19 products specified in FADN such as grains, milk, wine, etc.

The provision of employment indicator PE (item 5) is calculated as the ratio

of total expenditure on wages wT and contracted work c to total output OT to

control for farm size and reflect the intensity to which farms are providing income

opportunities for agricultural workers and businesses in the region:

PE = wT + c

OT

, (A.5)

with contracted work including the expenditures for both contracted services and

hired machinery (European Commission 2000).

The expenditure on pesticides EP (item 6) is measured as the total pesticide

expenditure EPt (in e) over the farm’s land area in UAA LUAA:
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EPUAA = EPT

UAAha,T

. (A.6)

The seventh item for GHG emissions measures the total emissions produced by the

farm and includes both direct emissions (e.g. nitrogen from fertilizers) and indirect

emissions (e.g. CO2 from fuel consumption). The framework of emission sources

used for estimating total emissions developed by Coderoni and Esposti (2018) and

Coderoni et al. (2013) is modified to suit German agriculture2. All calculations are

performed in accordance to IPCC (2006) tier-1 and tier-2 estimates and summed to

produce a total level of emissions for the farm:

GHGCO2−eq = Σ11
s=1GHGs ×GWPv

V AG

, (A.7)

where the level of CO2 equivalent greenhouse gas emissions GHGCO2−eq on the

farm is the sum of greenhouse gases from source s converted to CO2 equivalents

using their global warming potential values GWPv (see Eurostat 2017), as shown

in Table A.1. To reflect the farm’s CO2-eq intensity, total emissions are divided

by the farm’s gross value added V AG (see Umweltbundesamt 2007), which is the

total monetary value received by the producer including subsidies, less taxes and

intermediate consumption (Eurostat 2022a).

We define multi-factor productivity MFP (item 8) as the quotient of total value

added V AT over the sum of quantities q of the three factor inputs I (land, labor,

and capital) at given factor prices pI :

iMF P = V AT∑︁
pIqI

, (A.8)

2Variables for CH4 from rice cultivation and biological N fixation are not included in the German
FADN data set and are thus omitted from the calculation.
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where V AT is the sum of total output OT and subsidies and taxes, less total inter-

mediate input Iint,T expenditure (i.e. specific costs and farming overheads):

V AT = OT + ST − Iint,T . (A.9)

Factor inputs I are estimated on an annual basis (i.e. one full agricultural season)

(see FAO 2018a, p. 57) to reflect the opportunity costs of using the inputs for

production. The price of land input Il includes the total expenditure for rented land

rT plus an opportunity cost that is the sum of land owned o in hectares UAAha,o

times an estimated rental value of the land according to the average rent paid per

hectare rha,T F 14 TF14 farm type:

Il = rT + Σ(UAAha,o × rha,T F 14). (A.10)

Similarly, labor input iL is an aggregation of the farm’s total wage expenditure for

paid labor wT,pl plus an estimated opportunity cost equal to the total quantity of

unpaid labor in annual work units Lawu,ul times an expected return to labor based

on the average wage per awu of paid labor wawu,pl on the farm:

iL = wT,pl + Σ(Lawu,ul × wawu,pl). (A.11)

Finally, the value for capital input iK is calculated as the total interest paid by the

farm ιT plus the net worth of the farm capital K (without land values) multiplied

by an assumed interest rate ιar of 4%:
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iK = ιt + (K × ιar). (A.12)

In contrast to other studies that use the Shannon Index (e.g. Westbury et al. 2011;

Gerrard, Padel and Moakes 2012) measuring the quantity and evenness of different

types of land use, land ecosystem quality LEQ (item 9) assigns different values

to agricultural land based on the type and intensity of production on the farm. The

total ecosystem quality value LEQT is calculated as:

LEQT = (Lip × EQlt) + UAAnp

LT

, (A.13)

where Lip is the total land used in production ip (e.g. cereals, vineyards, etc.), which

is weighted by the ecological quality percentage EQ of land type lt (see table A.2).

The product is then added to land with no production Lnp (woods, agricultural

fallows and land set aside, and natural grassland), and divided by the total land

area of the farm: LT = Lip + Lnp. All land values are reported in hectares and the

EQlt values shown in table A.2 are derived from Reidsma et al. (2006).
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GHG type GWPv GHG emission source (GHGs)

CH4 25
Manure management

Enteric fermentation

N2O 298

Manure management

Synthetic fertilizers

Crop residue

Atmospheric deposition

Leeching and run-off

CO2 1

Energy

Forest land

Cropland

Grassland

Table A.1: GHG emission sources. Source: Adapted from Coderoni et al. (2013)
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EQlt Description of Lip O Ir G LU In

0.5
Irrigated X

Highly intensive >250

0.10 Intensive 80-250

0.15
Highly intensive organic X X >250

Intensive arable grazing livestock <66% >80

0.20

Intensive organic X 80-250

Intensive pasture >66% <2 <250

Highly intensive pasture >66% >2 OR >250

0.25 Extensive <80

0.325 Extensive arable grazing livestock <66% <1 <80

0.35 Extensive organic X <80

0.4 Extensive pasture >66% <1 <80

1
Natural grassland >66% <0.3

No production

EQlt = Ecological quality of land

Lip = land in production

O = Denotes if the farm is organic, partially organic, or transitioning to organic

Ir = Denotes if the farm has installed irrigation

G = Percentage of land for forage crops (% of total used land

LU = Number of livestock units per hectare

In = Value of direct inputs (fertilizers, pesticides, and feedstuffs for grazing) per hectare

Table A.2: Percentage values of land ecosystem quality. Source: Reidsma et al. (2006)
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A.2 Mapping of AS items to discrete (ordinal)

categories

Table A.3 outlines the thresholds defining four discrete classes for each continuous

item used in the GRM model. Wherever possible, the threshold values are assigned

using absolute values from external sources. Debt to asset ratio thresholds for sol-

vency (item 2) are provided by the University of Minnesota Extension (Bau et al.

2018). Thresholds for pesticide expenditure (item 6) involve converting the ex-

penditure into kilograms (kg) of active ingredient (glyphosate) per hectare of land.

Kehlenbeck et al. (2016) suggest a maximum of 3.6kg/ha, with the cost per kg being

estimated from US data in Bonny (2011). Finally, wage ratio (item 3) thresholds

are determined from (OECD 2019) definitions based on the agricultural worker’s

income relative to the median income in Germany.

The remaining indicator thresholds are assigned using relative statistical ranges.

Economic diversity (item 4) and the provision of employment (item 5) should the-

oretically be a value with a range of [0, 1], so the cutoff points in the scale are set

to 0.25, 0.5, and 0.75. Similarly, the range for land ecosystem quality (item 9) is

normalized to create the same scale and threshold values. Thresholds for MFP (item

8) are set to 0, 0.5, and 1 to reflect negative productivity, 50% returns to inputs, and

100% returns to inputs. For profitability (item 1), thresholds are defined according

to percentiles of the distribution of paid wages. Finally, the threshold values for

GHG emissions (item 7) are calculated based on the median with cutoff points at

0 for farms that are net zero or negative in emission output, the median value, and

twice the median value.



104
C

hapter
A

Item # Variable Description Cat. Thresholds Obs.

1 Profitability
Farm net income less an allowance for unpaid
labor based on percentiles of regional agricul-
tural wages

1 x < 0 4127
2 0 ≤ x < WAp25 1099
3 WAp25 ≤ x < WAmed 1629
4 WAmed ≤ x 2073

2 Solvency Ratio of total debts to total assets

1 1 ≤ x 207
2 0.6 ≤ x < 1 660
3 0.3 ≤ x < 0.6 1651
4 x < 0.3 6410

3 Wage ratio
Ratio of average wages paid on the farm to
overall median wage in the region (NUTS 3)

1 x < 0.5 6038
2 0.5 ≤ x < 0.75 1550
3 0.75 ≤ x < 2 1337
4 2 ≤ x 3

4
Economic
diversity

The maximum percentage of a single agricul-
tural product to total output

1 0.75 ≤ x 2993
2 0.5 ≤ x < 0.75 3736
3 0.25 ≤ x < 0.5 2173
4 x < 0.25 26

5
Provision of
employment

Ratio of total expenditure on wages and con-
tract work to total output of the farm

1 x < 0.25 8137
2 0.25 ≤ x < 0.5 698
3 0.5 ≤ x < 0.75 58
4 0.75 ≤ x 35



A
.2.

M
apping

ofA
S

item
s

to
discrete

(ordinal)
categories

105

Item # Variable Description Cat. Thresholds Obs.

6
Expenditure on
pesticides

Ratio of total pesticide expenditure to total
utilized agricultural area (in e/ha)

1 144 < x 3318
2 72 ≤ x < 144 2268
3 36 ≤ x < 72 1196
4 x ≤ 36 2146

7 GHG emissions

GHG intensity on the farm as a ratio
of annual CO2 equivalent greenhouse gases
CO2e emitted/absorbed to gross value added
(GHG = CO2e/e)

1 GHG2×med < x 1609
2 GHGmed ≤ x < GHG2×med 2550
3 0 ≤ x < GHGmed 4308
4 x < 0 461

8
Multi-factor
productivity

Ratio of total value added to factor inputs
for land, labor, and capital

1 x ≤ 0 403
2 0 ≤ x < 0.5 1427
3 0.5 ≤ x < 1 2858
4 1 ≤ x 4240

9
Land ecosystem
quality

Estimated land quality (in percent) relative
to pristine (untouched) natural landscape

1 x < 0.25 3934
2 0.25 ≤ x < 0.5 3008
3 0.5 ≤ x < 0.75 1058
4 0.75 ≤ x 928

Note: WA = wage allowance, med = median value, and p25 = 25th percentile.

Median and percentile values are calculated within the data set.

Table A.3: Agricultural sustainability items with category definitions and frequencies
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Figure A.1: Frequencies for each category of the nine sustainability items



A.3. Results 107

A.3 Results

∆ELPD s.e.(∆ELPD) ELPD s.e.(ELPD)

Model with discrimination 0.0 0.0 -83991.7 192.8

Model without discrimination -3148.7 77.1 -87140.4 188.8

Note: ELPD is the expected log pointwise predictive density. ∆ ELPD is the
difference in ELPDs. s.e. denotes the standard error.

Table A.4: Model comparison using LOO-CV
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j θ P (y2j = “very sustainable′′) P (y5j = “very sustainable′′)

1 1.573 0.7712 0.00013

2 1.263 0.7605 0.000105

3 -0.5826 0.6896 0.000032

Table A.5: Parameter estimates for three sample farms
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Farm type P(Y = very unsustainable) P(Y = unsustainable) P(Y = sustainable) P(Y = very sustainable)

Mixed 0.2373 0.2725 0.3335 0.1568

(0.0661) (0.0545) (0.0421) (0.0430)

Granivores 0.3523 0.2937 0.2554 0.0986

(0.0654) (0.0550) (0.0425) (0.0444)

Other grazing livestock 0.3180 0.2922 0.2776 0.1122

(0.0640) (0.0551) (0.0439) (0.0476)

Milk 0.3396 0.2935 0.2635 0.1034

(0.0649) (0.0552) (0.0429) (0.0456)

Other permanent crops 0.2437 0.2748 0.3290 0.1525

(0.0603) (0.0507) (0.0507) (0.0555)

Wine 0.3682 0.2932 0.2455 0.0931

(0.0661) (0.0545) (0.0421) (0.0430)

Horticulture 0.3014 0.2900 0.2888 0.1198

(0.0634) (0.0548) (0.0452) (0.0493)

Fieldcrops 0.2231 0.2661 0.3434 0.1673

(0.0579) (0.0483) (0.0530) (0.0576)

Table A.6: Posterior means of the predicted probabilities for each sustainability category with standard errors in parentheses, by farm type.
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Farm economic size class P(Y = very unsustainable) P(Y = unsustainable) P(Y = sustainable) P(Y = very sustainable)

25,000-50,000 0.2979 0.3003 0.2879 0.1140

(0.0711) (0.0536) (0.0498) (0.0510)

50,000-100,000 0.3073 0.3015 0.2815 0.1097

(0.0718) (0.0536) (0.0495) (0.0498)

100,000-250,000 0.2884 0.2987 0.2945 0.1183

(0.0700) (0.0534) (0.0501) (0.0520)

250,000-500,000 0.2732 0.2955 0.3053 0.1261

(0.0685) (0.0531) (0.0509) (0.0538)

500,000-750,000 0.2491 0.2885 0.3226 0.1399

(0.0661) (0.0523) (0.0524) (0.0570)

750,000-1,000,000 0.2105 0.2717 0.3504 0.1674

(0.0616) (0.0503) (0.0555) (0.0627)

1,000,000-1,500,000 0.1875 0.2581 0.3664 0.1880

(0.0583) (0.0487) (0.0579) (0.0661)

1,500,000-3,000,000 0.1434 0.2230 0.3922 0.2415

(0.0510) (0.0443) (0.0628) (0.0733)

>3,000,000 0.1272 0.2067 0.3981 0.2680

(0.0477) (0.0427) (0.0644) (0.0760)

Table A.7: Posterior means of the predicted probabilities for each sustainability category with standard errors in parentheses, by farm size.
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Region Est Error Q10 Q90

Stuttgart 0.1207 0.0508 0.0582 0.1879

Karlsruhe 0.1278 0.0521 0.0625 0.1976

Freiburg 0.1263 0.0523 0.0613 0.1973

Tübingen 0.1246 0.0515 0.0615 0.1934

Oberbayern 0.1224 0.0512 0.0589 0.1909

Niederbayern 0.1139 0.0492 0.0536 0.1798

Oberpfalz 0.1274 0.0521 0.0618 0.1967

Oberfranken 0.1167 0.0498 0.0555 0.1842

Mittelfranken 0.1268 0.052 0.0616 0.1958

Unterfranken 0.134 0.0535 0.0668 0.206

Schwaben 0.1085 0.0478 0.0496 0.1718

Brandenburg 0.2043 0.0642 0.1198 0.2874

Hamburg 0.0883 0.0431 0.0379 0.1465

Darmstadt 0.1273 0.0522 0.0626 0.1965

Gießen 0.1177 0.0502 0.0558 0.1852

Kassel 0.1095 0.0482 0.0507 0.1748

Mecklenburg-Vorpommern 0.1862 0.0621 0.1062 0.2662

Braunschweig 0.1521 0.0569 0.0799 0.2277

Hannover 0.1313 0.053 0.0653 0.2025

Lüneburg 0.1307 0.0528 0.0646 0.2013

Weser-Ems 0.1017 0.0463 0.0458 0.163

Düsseldorf 0.1183 0.0503 0.0563 0.1859

Köln 0.1223 0.0513 0.0596 0.1904

Münster 0.0955 0.0447 0.0421 0.1554

Detmold 0.1199 0.0506 0.0574 0.1878

Arnsberg 0.1163 0.0497 0.0543 0.1826

Koblenz 0.1158 0.0497 0.0538 0.1825

Trier 0.1004 0.046 0.0447 0.1624
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Region Est Error Q10 Q90

Rheinhessen-Pfalz 0.1151 0.0494 0.0548 0.1813

Saarland 0.118 0.0506 0.0564 0.1849

Dresden 0.1696 0.0597 0.0913 0.2474

Chemnitz 0.1639 0.0588 0.0882 0.2431

Leipzig 0.197 0.0638 0.1125 0.2804

Sachsen-Anhalt 0.1942 0.0631 0.1114 0.2757

Schleswig-Holstein 0.1236 0.0513 0.0599 0.1923

Thüringen 0.1984 0.0635 0.1155 0.2792

Table A.8: Regional averages of the predicted probability for a random farm achieving the
"very sustainable" category, with standard errors and scores for top and bottom 10% of the
sample.
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Percent of farms with missing

Number of missing items 10 30 50

1 0.9918 0.9806 0.9691

2 0.9868 0.9646 0.9449

3 0.9823 0.9500 0.9178

Table A.9: Correlation coefficients for missing item tests
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Figure A.2: Scatter plots for missing item tests (1/2)
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Figure A.3: Scatter plots for missing item tests (2/2)
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Item missing Item No. 1 2 3 4 5 6 7 8 9

Profitability 1 X

Solvency 2 0.9742 X

Wage ratio 3 0.9474 0.9538 X

Economic diversity 4 0.8633 0.8683 0.8362 X

Provision of employment 5 0.9691 0.9732 0.9440 0.9429 X

Expenditure on pesticides 6 0.9784 0.9741 0.9629 0.9529 0.9625 X

GHG emissions 7 0.8865 0.8864 0.8580 0.8572 0.8644 0.8855 X

Multi-factor productivity 8 0.9524 0.9445 0.9300 0.9240 0.9257 0.9469 0.9354 X

Land ecosystem quality 9 0.9593 0.9523 0.9477 0.9439 0.9430 0.9545 0.9528 0.9552 X

Table A.10: Correlation coefficients for concurrent scale linking simulations between East (columns) and West (rows) Germany. All data sets are
correlated with AS scores estimated with the full data set.
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Figure A.4: Scatter plots for concurrent scale linking simulations between East and West Germany (1/9)
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Figure A.5: Scatter plots for concurrent scale linking simulations between East and West Germany (2/9)
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Figure A.6: Scatter plots for concurrent scale linking simulations between East and West Germany (3/9)
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Figure A.7: Scatter plots for concurrent scale linking simulations between East and West Germany (4/9)
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Figure A.8: Scatter plots for concurrent scale linking simulations between East and West Germany (5/9)
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Figure A.9: Scatter plots for concurrent scale linking simulations between East and West Germany (6/9)
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Figure A.10: Scatter plots for concurrent scale linking simulations between East and West Germany (7/9)
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Figure A.11: Scatter plots for concurrent scale linking simulations between East and West Germany (8/9)
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Figure A.12: Scatter plots for concurrent scale linking simulations between East and West Germany (9/9)



A
.3.

R
esults

125

12 13 14

15 16 17

(.24,.25]
(.23,.24]
(.22,.23]
(.21,.22]
(.2,.21]
(.19,.2]
(.18,.19]
(.17,.18]
(.16,.17]
(.15,.16]
(.14,.15]
(.13,.14]
(.12,.13]
(.11,.12]
(.1,.11]
(.09,.1]
(.08,.09]
(.07,.08]
(.06,.07]
[.05,.06]

Figure A.13: Maps of scale linking tests by NUTS 2 region (1/6). The two digit number refers to the items missing from the samples. As an
example, map number 12 means that item 1 (profitability) is missing in East Germany and item 2 (solvency) is missing in West Germany.
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Figure A.14: Maps of scale linking tests by NUTS 2 region (2/6). The two digit number refers to the items missing from the samples. As an
example, map number 18 means that item 1 (profitability) is missing in East Germany and item 8 (multi-factor productivity) is missing in the West
Germany.
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Figure A.15: Maps of scale linking tests by NUTS 2 region (3/6). The two digit number refers to the items missing from the samples. As an
example, map number 27 means that item 2 (solvency) is missing in East Germany and item 7 (GHG emissions) is missing in West Germany.
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Figure A.16: Maps of scale linking tests by NUTS 2 region (4/6). The two digit number refers to the items missing from the samples. As an
example, map number 37 means that item 3 (wage ratio) is missing in East Germany and item 7 (GHG emissions) is missing in West Germany.
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Figure A.17: Maps of scale linking tests by NUTS 2 region (5/6). The two digit number refers to the items missing from the samples. As an
example, map number 48 means that item 4 (economic diversity) is missing in East Germany and item 8 (multi-factor productivity) is missing in
West Germany.
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Figure A.18: Maps of scale linking tests by NUTS 2 region (6/6). The two digit number refers to the items missing from the samples. As an
example, map number 67 means that item 6 (expenditure on pesticides) is missing in East Germany and item 7 (GHG emissions) is missing in
West Germany.



Appendix B

B.1 Descriptive statistics

Category Mean SD Min Max N=

Not on marginal land (ml = 0)

No NFC production A - - - - 5010

Energy crops, % of total output B 11.62 14.63 0.00 92.49 464

Industrial crops, % of total output C 35.89 32.01 0.01 97.21 94

On marginal land (ml = 1)

No NFC production D - - - - 3130

Energy crops, % of total output E 11.80 15.09 0.02 76.99 178

Industrial crop, % of total output F 21.53 27.41 0.04 94.47 51

Table B.1: Descriptive statistics of NFC production variables by marginal land classifica-
tion.
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B.2 Results

Figure B.1: Posterior means and 95% credible intervals for easiness and discrimination parameters.
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Category Mean SD 95% lower 95% upper

Not on marginal land (ml = 0)

Energy crop output B 1.89 0.19 1.53 2.27

Industrial crop output C 1.93 0.31 1.32 2.54

On marginal land (ml = 1)

No NFC production D 0.12 0.07 -0.02 0.27

Energy crop output E 1.32 0.24 0.87 1.80

Industrial crop output F 1.68 0.41 0.89 2.47

Table B.2: Parametric regression results for the farm types
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C.1 Methods

Year Y

Farm 1 2 3 4 5 Group t = 0

1 C P/T P/T P/T O Starter (S) Year 2

2 C C P/T O P/T Starter (S) Year 3

3 C C C C C Always conventional (AC) -

4 C C P/T C P/T Always conventional (AC) -

5 O O O O O Always organic (AO) -

6 O O P/T O P/T Always organic (AO) -

7 O O O C C Quitter (Q) -

8 C P/T O O C Quitter (Q) -

9 C C C O O Disqualified (DQ) -

Table C.1: Examples of farm groupings based on different combinations of organic classi-
fications over time.
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Group

Category S AC AO Total
Fa

rm
ty

pe
(T

F8
)

Fieldcrops 5 2158 88 2251

Horticulture 2 558 16 576

Wine 7 438 8 453

Other permanent crops 1 221 9 231

Milk 21 2057 108 2186

Other grazing livestock 13 852 69 934

Granivores 2 1413 18 1433

Mixed 8 2568 113 2689

Ec
on

om
ic

siz
e

cl
as

s

25,000 - <50,000 8 935 70 1013

50,000 - <100,000 20 2352 148 2520

100,000 - <250,000 34 4351 167 4552

250,000 - <500,000 19 2936 88 3043

500,000 - <750,000 6 998 35 1039

750,000 - <1,000,000 0 414 8 422

1,000,000 - <1,500,000 0 372 11 383

1,500,000 - <3,000,000 1 425 6 432

>= 3,000,000 1 238 3 242

Total 49 7798 323 8170

Note: Frequencies are reported for the data set with a minimum five obs. per farm.

Table C.2: Frequencies of organic classifications by farm type and economic size class
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Figure C.1: UAA under organic production, percent of total. Data source: Eurostat
(2022c)



C
.1.

M
ethods

137

No. Item Description (+/-) Unit Mean SD

1 Profitability Farm net income less an allowance for unpaid labor based on the regional

median agricultural wage

+ e 13123 104732

2 Solvency Ratio of total debts to total assets - Ratio 0.2378 0.3453

3 Economic diversity The maximum percentage of a single agricultural product to total output - Ratio 0.6454 0.1898

4 Expenditure on pesticides Ratio of total pesticide expenditure to total utilized agricultural area

(UAA)

- e/ha 233.4 882.1

5 GHG emissions CO2 intensity on the farm: ratio of annual CO2 equivalent gases emit-

ted/absorbed to gross value added

- Tonnes/e 0.4234 2.2437

6 Land ecosystem quality Estimated quality of land as a percent relative to pristine (untouched)

natural landscape

+ Percent 0.1680 0.1300

7 Wage ratio Ratio of average wages on the farm to the median wage in the region + Ratio 0.3239 0.3794

8 Provision of employment Ratio of total expenditure on wages and contract work to total output

of the farm

+ Ratio 0.1052 0.5542

9 Multi-factor productivity Ratio of total value added to factor inputs for land, labor, and capital + Ratio 0.8867 0.5799

Table C.3: Agricultural sustainability items and descriptions. The (+/-) refers to the relationship between the value of the variable and its effect on
farm sustainability. Adapted from Table A.3
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C.2 IRT model specification

In this section, we specify the model for the time-series AS used in Chapter 4. The

model is an extension of the cross-sectional models used in Chapters 2 and 3. In the

time-series model, the outcome of the ith sustainability item at time t for farm j,

yitj, is measured with C categories representing the ratings of sustainability on an

ordered scale. We use the same ordinal items with the same C = 4 categories as in

the previous chapters.

In the time-series model, the probability of a particular category is

P (yitj = c|τ, ψitj) = F (τc − ψitj) − F (τc−1 − ψitj), (C.1)

where F denotes the CDF of the standard logistic distribution and τ is a vector of

C − 1 unknown thresholds.1 The distributional parameter ψitj can be expressed as

a function of farm parameters, θtj, and item parameters, ξi:

ψitj = θtj + ξi. (C.2)

The farm parameter θtj represents the latent construct of agricultural sustainability

for farm j at time t (i.e. the AS index). The larger the value of the AS index is,

the larger the probability that the farm is classified as “very sustainable” for each

of the items.

The AS index is allowed to vary over time, as we observe our nine sustainability

items repeatedly during the sampling period. We specify a flexible model for the

1The threshold parameters τ1, τ2, and τ3 are freely estimated whereas τ0 and τ4 are set to −∞
and +∞, respectively.
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possibly nonlinear trajectories of the AS index by including a set of time dummies:

θtj = γ1j + γ2jd2t + ...+ γT jdTt, (C.3)

where γ1j is a farm-specific intercept, γ2j through γT j are farm-specific time effects,

and d2t through dTt represent a set of T − 1 time dummies. The item parameter ξi

in equation C.2 represents the easiness of item i. For items with a high value of ξi,

each farm has a higher probability of being classified as “very sustainable”.

The specification of the IRT model in equation C.2 relies on the unrealistic as-

sumptions that the effect of farm-specific agricultural sustainability on each item

probability is constant. To relax this assumption, we introduce an item-specific

discrimination parameter, αi, that reflects that some items can better differentiate

among farms with different degrees of agricultural sustainability than others:

ψitj = αi(θtj + ξi) = αiθtj + δi. (C.4)

We fit the model in a Bayesian framework using the brms package (Bürkner 2017) in

R (R Core Team 2021), which allows to interface with the probabilistic programming

language Stan (Carpenter et al. 2017).2 We use weakly informative prior distribu-

tions that help to improve convergence of the sampling algorithm while they do not

have a strong influence on the posterior distribution because of the large amount

of sample data available from the FADN. Following Bürkner (2019), we impose two

constraints to ensure identification. First, we restrict the discrimination parameters

αi to be positive because a change of the sign of αi can be offset by a change of the

sign of θj + ξi. This constraint is not overly restrictive because higher categories

of the items represent always a higher degree of sustainability.3 Second, we fix the

2The model was fit using R version 3.6.3, brms version 2.16.3, and Stan version 2.21.0.
3A negative sign of αi would imply that a higher degree of AS is associated with a decrease in
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standard deviations of the farm-specific parameters to 1, as the multiplicative rela-

tionship of αi and θj does not allow to freely estimate the scale of the farm-specific

parameters. That is, the scale of the farm-specific parameters is determined by the

scale of the discrimination parameters.

Parameter Prior distributions Constraints

Thresholds: τ1, τ2 Student-t(3, 0, 2.5) τ1 < τ2

Discrimination parameters: αi Normal(µα, σα)

µα ∼ Normal(0, 1)

σα ∼

Half-Normal(0, 1)

αi > 0

Item-specific effects: δi Normal(µδ, σδ)

µδ ∼ Normal(0, 1)

σδ ∼

Half-Normal(0, 1)

Farm-specific effects: γ1j, ..., γT j Normal(µγ,Σ)

µγ ∼ Normal(0, 1)

Σ is parameterized

using a Cholesky

factor with a LKJ(1)

prior.

σγ = 1

Table C.4: Prior distributions

the probability for the category “sustainable” and an increase in the probability for the category
“unsustainable”.
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C.3 Descriptive analyses

Descriptive analysis for all observations, 2004

Group Mean s.e. obs.

AC 0.0458 0.5180 5031

Pre-S 0.1248 0.5091 42

AO 0.5447 0.5619 189

Table C.5: Summary statistics for all observations, 2004

Source SS df MS F Prob > f

Between groups 45.49 2 22.74 84.26 0.000

Within groups 1419.64 5259 0.2699

Total 1465.13 5261 0.2785

Table C.6: ANOVA results for all observations, 2004

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0786 0.0805 0.592 -0.1102 0.2673

AO vs AC 0.4989 0.0385 0.000 0.4086 0.5891

AO vs pre-S 0.4203 0.0886 0.000 0.2125 0.6281

Table C.7: Tukey pairwise comparisons of means with equal variances
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Descriptive analysis for fieldcrops, 2004

Group Mean s.e. obs.

AC 0.3836 0.3753 806

Pre-S 0.8066 0.2628 2

AO 0.8521 0.4413 40

Table C.8: Summary statistics of fieldcrop farms

Source SS df MS F Prob > f

Between groups 8.68 2 4.3420 30.31 0.000

Within groups 121.05 845 0.1436

Total 129.73 847 0.1532

Table C.9: ANOVA results of fieldcrop farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.4230 0.2680 0.255 -0.2061 1.0521

AO vs AC 0.4685 0.0613 0.000 0.3245 0.6124

AO vs pre-S 0.0455 0.2742 0.985 -0.5984 0.6893

Table C.10: Tukey pairwise comparisons of means with equal variances of fieldcrop farms
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Descriptive analysis for horticulture, 2004

Group Mean s.e. obs.

AC -0.1005 0.5679 442

Pre-S -0.0642 0.0884 2

AO 0.4248 0.3565 4

Table C.11: Summary statistics of horticulture farms

Source SS df MS F Prob > f

Between groups 1.10 2 0.5479 1.71 0.1821

Within groups 142.61 445 0.3205

Total 143.70 447 0.3215

Table C.12: ANOVA results of horticulture farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0363 0.4012 0.995 -0.9072 0.9797

AO vs AC 0.5253 0.2843 0.156 -0.1433 1.1939

AO vs pre-S 0.4890 0.4903 0.579 -0.6639 1.6419

Table C.13: Tukey pairwise comparisons of means with equal variances of horticulture
farms
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Descriptive analysis for wine, 2004

Group Mean s.e. obs.

AC -0.4075 0.3522 206

Pre-S -0.3518 0.2067 3

AO -0.3985 0.1275 4

Table C.14: Summary statistics of vineyards

Source SS df MS F Prob > f

Between groups 0.01 2 0.0047 0.04 0.9620

Within groups 25.56 210 0.1217

Total 25.57 210 0.1206

Table C.15: ANOVA results of vineyards

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0557 0.2029 0.959 -0.4232 0.5346

AO vs AC 0.0090 0.1761 0.999 -0.4067 0.4247

AO vs pre-S -0.0466 0.2665 0.983 -0.6756 0.5823

Table C.16: Tukey pairwise comparisons of means with equal variances of vineyards
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Descriptive analysis for other permanent crops, 2004

Group Mean s.e. obs.

AC -0.0359 0.4169 115

Pre-S -0.1951 - 1

AO 0.6295 0.2673 4

Table C.17: Summary statistics for other permanent crops

Source SS df MS F Prob > f

Between groups 1.744 2 0.8721 5.09 0.0076

Within groups 20.03 117 0.1712

Total 21.77 119 0.1830

Table C.18: ANOVA results for other permanent crops

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC -0.1594 0.4155 0.922 -1.1457 0.8272

AO vs AC 0.6654 0.2104 0.006 0.1659 1.1650

AO vs pre-S 0.8247 0.4626 0.180 -0.2734 1.9228

Table C.19: Tukey pairwise comparisons of means with equal variances for other permanent
crops



C.3. Descriptive analyses 147

Descriptive analysis for milk, 2004

Group Mean s.e. obs.

AC -0.0762 0.4080 1338

Pre-S 0.0355 0.5179 20

AO 0.1837 0.4295 60

Table C.20: Summary statistics of milk farms

Source SS df MS F Prob > f

Between groups 4.08 2 2.0399 12.10 0.0000

Within groups 238.50 1415 0.1685

Total 242.58 1417 0.1712

Table C.21: ANOVA results of milk farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.1117 0.0925 0.449 -0.1053 0.3287

AO vs AC 0.2599 0.0542 0.000 0.1328 0.3871

AO vs pre-S 0.1482 0.1060 0.342 -0.1005 0.3969

Table C.22: Tukey pairwise comparisons of means with equal variances of milk farms



148 Chapter C

Descriptive analysis for other grazing livestock, 2004

Group Mean s.e. obs.

AC 0.0229 0.5545 314

Pre-S 0.0949 0.3886 8

AO 0.7231 0.6592 29

Table C.23: Summary statistics for other grazing livestock farms

Source SS df MS F Prob > f

Between groups 13.02 2 6.5115 20.70 0.0000

Within groups 109.47 348 0.3146

Total 122.50 350 0.3500

Table C.24: ANOVA results for other grazing livestock farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0721 0.2008 0.931 -0.4006 0.5447

AO vs AC 0.7004 0.1089 0.000 0.4441 0.9566

AO vs pre-S 0.6283 0.2240 0.015 0.1011 1.1555

Table C.25: Tukey pairwise comparisons of means with equal variances for other grazing
livestock farms
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Descriptive analysis for granivores, 2004

Group Mean s.e. obs.

AC -0.2711 0.4207 666

Pre-S 0.2834 - 1

AO 0.3428 0.4967 7

Table C.26: Summary statistics of granivore farms

Source SS df MS F Prob > f

Between groups 2.91 2 1.4554 8.19 0.0003

Within groups 119.19 671 0.1776

Total 122.10 673 0.1814

Table C.27: ANOVA results of granivore farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.5544 0.4218 0.388 -0.4364 1.5451

AO vs AC 0.6139 0.1601 0.000 0.2378 0.9901

AO vs pre-S 0.0596 0.4506 0.990 -0.9988 1.1179

Table C.28: Tukey pairwise comparisons of means with equal variances of granivore farms
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Descriptive analysis for mixed farms, 2004

Group Mean s.e. obs.

AC 0.2878 0.5240 1144

Pre-S 0.6473 0.4922 5

AO 0.7766 0.4451 41

Table C.29: Summary statistics of mixed farms

Source SS df MS F Prob > f

Between groups 10.05 2 5.0241 18.48 0.000

Within groups 322.79 1187 0.2719

Total 332.84 1189 0.2799

Table C.30: ANOVA results of mixed farms

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.3597 0.2337 0.273 -0.1888 0.9081

AO vs AC 0.4890 0.0829 0.000 0.2945 0.6835

AO vs pre-S 0.1293 0.2470 0.860 -0.4504 0.7090

Table C.31: Tukey pairwise comparisons of means with equal variances of mixed farms
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Descriptive analysis for size class 25,000 -<50,000, 2004

Group Mean s.e. obs.

AC -0.0466 0.4141 203

Pre-S -0.2957 0.6846 2

AO 0.3242 0.4462 26

Table C.32: Summary statistics for size class 25,000 -<50,000

Source SS df MS F Prob > f

Between groups 3.34 2 1.6681 9.49 0.0001

Within groups 40.09 228 0.1758

Total 43.42 230 0.1888

Table C.33: ANOVA results for size class 25,000 -<50,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC -0.2491 0.2980 0.681 -0.9521 0.4538

AO vs AC 0.3707 0.0873 0.000 0.1647 0.5768

AO vs pre-S 0.6199 0.3077 0.111 -0.1062 1.3458

Table C.34: Tukey pairwise comparisons of means with equal variances for size class 25,000
-<50,000
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Descriptive analysis for size class 50,000 -<100,000, 2004

Group Mean s.e. obs.

AC -0.0709 0.4223 1006

Pre-S 0.0242 0.6737 13

AO 0.2484 0.4538 54

Table C.35: Summary statistics for size class 50,000 -<100,000

Source SS df MS F Prob > f

Between groups 5.30 2 2.65 14.51 0.000

Within groups 195.62 1070 0.183

Total 200.92 1070 0.1828

Table C.36: ANOVA results for size class 50,000 -<100,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0951 0.1194 0.705 -0.1850 0.3753

AO vs AC 0.3194 0.0597 0.000 0.1792 0.4595

AO vs pre-S 0.2242 0.1321 0.207 -0.0859 0.5342

Table C.37: Tukey pairwise comparisons of means with equal variances for size class 50,000
-<100,000
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Descriptive analysis for size class 100,000 -<250,000, 2004

Group Mean s.e. obs.

AC -0.0277 0.4581 2102

Pre-S 0.1701 0.3571 15

AO 0.5922 0.4347 61

Table C.38: Summary statistics for size class 100,000 -<250,000

Source SS df MS F Prob > f

Between groups 23.27 2 11.6327 55.72 0.000

Within groups 454.10 2175 0.2088

Total 477.35 2177 0.2193

Table C.39: ANOVA results for size class 100,000 -<250,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.1978 0.1184 0.217 -0.0799 0.4755

AO vs AC 0.6199 0.0593 0.000 0.4807 0.7591

AO vs pre-S 0.4221 0.1317 0.004 0.1133 0.7309

Table C.40: Tukey pairwise comparisons of means with equal variances for size class
100,000 -<250,000
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Descriptive analysis for size class 250,000 -<500,000, 2004

Group Mean s.e. obs.

AC -0.0138 0.4712 1034

Pre-S 0.2867 0.3899 8

AO 0.7055 0.5853 27

Table C.41: Summary statistics for size class 250,000 -<500,000

Source SS df MS F Prob > f

Between groups 14.25 2 7.1226 31.73 0.000

Within groups 239.30 1066 0.2245

Total 239.30 1066 0.2245

Table C.42: ANOVA results for size class 250,000 -<500,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.3005 0.1682 0.174 -0.0942 0.6952

AO vs AC 0.7193 0.0924 0.000 0.5025 0.9360

AO vs pre-S 0.4188 0.1907 0.072 -0.0289 0.8664

Table C.43: Tukey pairwise comparisons of means with equal variances for size class
250,000 -<500,000
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Descriptive analysis for size class 500,000 -<750,000, 2004

Group Mean s.e. obs.

AC 0.1978 0.4802 241

Pre-S -0.1120 0.3300 3

AO 1.1512 0.7259 12

Table C.44: Summary statistics for size class 500,000 -<750,000

Source SS df MS F Prob > f

Between groups 10.76 2 5.3812 22.53 0.000

Within groups 60.42 253 0.2388

Total 71.18 255 0.2792

Table C.45: ANOVA results for size class 500,000 -<750,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC -0.3098 0.2840 0.520 -0.9792 0.3595

AO vs AC 0.9533 0.1445 0.000 0.6126 1.2941

AO vs pre-S 1.2632 0.3155 0.000 0.5194 2.0069

Table C.46: Tukey pairwise comparisons of means with equal variances for size class
500,000 -<750,000
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Descriptive analysis for size class 750,000 -<1,000,000, 2004

Group Mean s.e. obs.

AC 0.3271 0.5814 65

AO 1.4969 0.2248 2

Table C.47: Summary statistics for size class 750,000 -<1,000,000

Source SS df MS F Prob > f

Between groups 2.65 1 2.6548 7.96 0.0063

Within groups 21.68 65 0.3336

Total 24.34 66 0.3688

Table C.48: ANOVA results for size class 750,000 -<1,000,000

Group Contrast s.e. p-value 95% lower 95% upper

AO vs AC 1.1697 0.4146 0.006 0.3416 1.9978

Table C.49: Tukey pairwise comparisons of means with equal variances for size class
750,000 -<1,000,000
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Descriptive analysis for size class 1,000,000 -<1,500,000, 2004

Group Mean s.e. obs.

AC 0.5689 0.6306 103

AO 1.3739 0.2703 4

Table C.50: Summary statistics for size class 1,000,000 -<1,500,000

Source SS df MS F Prob > f

Between groups 2.50 1 2.4952 6.42 0.0127

Within groups 40.78 105 0.3884

Total 43.27 106 0.4082

Table C.51: ANOVA results for size class 1,000,000 -<1,500,000

Group Contrast s.e. p-value 95% lower 95% upper

AO vs AC 0.8050 0.3176 0.013 0.1753 1.4347

Table C.52: Tukey pairwise comparisons of means with equal variances for size class
1,000,000 -<1,500,000
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Descriptive analysis for size class 1,500,000 -<3,000,000, 2004

Group Mean s.e. obs.

AC 0.8925 0.5227 178

AO 1.1660 - 1

Table C.53: Summary statistics for size class 1,500,000 -<3,000,000

Source SS df MS F Prob > f

Between groups 0.07 1 0.0744 0.27 0.6025

Within groups 48.36 177 0.2732

Total 48.43 178 0.2721

Table C.54: ANOVA results for size class 1,500,000 -<3,000,000

Group Contrast s.e. p-value 95% lower 95% upper

AO vs AC 0.2735 0.5242 0.602 -0.7609 1.3079

Table C.55: Tukey pairwise comparisons of means with equal variances for size class
1,500,000 -<3,000,000
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Descriptive analysis for size class >3,000,000, 2004

Group Mean s.e. obs.

AC 0.9830 0.4113 99

Pre-S 0.9910 - 1

AO 1.2302 0.0940 2

Table C.56: Summary statistics for size class >3,000,000

Source SS df MS F Prob > f

Between groups 0.1198 2 0.0599 0.36 0.7004

Within groups 16.59 99 0.1676

Total 16.71 101 0.1654

Table C.57: ANOVA results for size class >3,000,000

Group Contrast s.e. p-value 95% lower 95% upper

pre-S vs AC 0.0080 0.4114 1.000 -0.9710 0.9869

AO vs AC 0.2472 0.2924 0.676 -0.4485 0.9426

AO vs pre-S 0.2392 0.5014 0.882 -0.9538 1.4321

Table C.58: Tukey pairwise comparisons of means with equal variances for size class
>3,000,000
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C.4 DiD model results

Time period ATT 95% lower 95% upper

Pre-treatment 0.018 -0.122 0.157

Post-treatment 0.125 -0.125 0.375

-6 0.197 -0.748 1.141

-5 -0.190 -0.732 0.352

-4 0.006 -0.385 0.398

-3 0.073 -0.286 0.431

-2 -0.116 -0.447 0.215

-1 0.137 -0.177 0.451

0 0.040 -0.278 0.358

1 0.096 -0.249 0.441

2 0.102 -0.242 0.446

3 -0.024 -0.355 0.307

4 0.056 -0.351 0.463

5 0.172 -0.373 0.717

6 0.214 -0.330 0.758

7 0.179 -0.578 0.936

8 0.288* -0.035 0.610
* p < 0.10, ** p < 0.05, *** p < 0.01

Table C.59: CSDiD model results with the AC control group and a minimum of five ob-
servations per farm
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Figure C.3: DiD results with “not yet treated” (pre-S) control group



162 Chapter C

Time period ATT 95% lower 95% upper

Pre-treatment 0.018 -0.122 0.157

Post-treatment 0.125 -0.125 0.375

-6 0.197 -0.748 1.141

-5 -0.190 -0.732 0.352

-4 0.007 -0.385 0.398

-3 0.073 -0.286 0.432

-2 -0.116 -0.447 0.215

-1 0.137 -0.177 0.451

0 0.040 -0.278 0.359

1 0.096 -0.249 0.441

2 0.102 -0.242 0.446

3 -0.024 -0.355 0.307

4 0.056 -0.351 0.463

5 0.172 -0.374 0.717

6 0.214 -0.330 0.758

7 0.179 -0.578 0.936

8 0.288* -0.035 0.610
* p < 0.10, ** p < 0.05, *** p < 0.01

Table C.60: CSDiD model results with the “not yet treated” control group and a minimum
of five observations per farm
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Figure C.4: DiD results with varying minimum observations per farm and always conven-
tional control group
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Figure C.5: DiD results with varying minimum observations per farm and “not yet treated”
control group
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