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ABSTRACT 

Agricultural systems are expected to face enormous challenges 

worldwide. On the one hand, the demand for food is increasing due to 

ongoing population growth and change in eating habits. At the same 

time, global environmental changes such as climate change and 

biodiversity loss are putting additional pressure on agricultural 

production.  

High-quality and spatially explicit data on the extent and 

diversity of cultivated crops, i.e. crop type maps, are essential for 

planning and managing various agricultural activities such as yield 

prediction, water supply management, crop damage assessment, etc. 

Earth Observation data has been one of the primary information 

sources for crop type mapping for decades. Regularly acquired remote 

sensing imagery over large geographic areas enables the mapping of 

crop types and their spatial-temporal extent at local, regional and even 

global scales. 

In the past, optical or Synthetic Aperture Radar (SAR) data were 

the most commonly used remote sensing datasets for mapping crop 

types. In recent decades, an increasing number of studies have 

examined the benefits of using the combination of these two datasets. 

Research on this topic has intensified with the launch of Sentinel-1 and 

Sentinel-2 from the European Space Agency's Copernicus programme. 

Free access to global optical and SAR datasets with the high spatial and 

temporal resolution has boosted research on the optical-SAR 

combination. 

This thesis researched the potential of the synergetic use of 

Sentinel-1 SAR data and Sentinel-2 optical data for accurate, large-

scale crop type mapping. The systematic review of existing research 

publications (Chapter II) on the optical-SAR combination for crop type 

mapping helped uncover research gaps that were addressed further in 

two research studies. 

The first study (Chapter III) focused on large-scale crop type 

mapping using bi-weekly dense time-series features from both sensors 

to map 16 plant classes in the German federal state of Brandenburg. In 

addition, auxiliary variables such as parcel sizes, pixel location within 

a parcel, and optical data availability were used to explain the 

classification results. 

The second study (Chapter IV) addressed the issue of spatial 

transferability of Random Forest models based on only optical, only 

SAR and their combination using two feature selection methods. In the 

example of seven study sites distributed across Germany, the study 

investigates the effect of different datasets and feature selection 

methods on the spatial transferability of Random Forest models. 
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The research outcomes of the thesis present the advantages and 

limitations of using one or the combination of both, Sentinel-1 and 

Sentinel-2 data sources for large-scale, detailed crop type mapping in 

Germany. 
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ZUSAMMENFASSUNG 

Es wird erwartet, dass landwirtschaftlichen Systeme weltweit vor 

zunehmenden Herausvorderungen stehen. Einerseits steigt die 

Nachfrage nach Nahrungsmitteln aufgrund des anhaltenden 

Bevölkerungswachstums und sich ändernder 

Ernährungsgewohnheiten. Gleichzeitig wird die Produktion durch 

globale Umweltveränderungen wie Klimaveränderungen und 

Biodiversitätsverlust zusätzlich unter druck gesetzt. 

Qualitativ hochwertige und räumlich explizite Daten über den 

Umfang und die Vielfalt angebauter Nutzpflanzen, d. h. Karten von 

Nutzpflanzenarten, sind für die Planung und das Management einer 

Vielzahl landwirtschaftlicher Aktivitäten wie Ertragsvorhersage, 

Wasserversorgungsmanagement, Beurteilung von Ernteschäden usw. 

von entscheidender Bedeutung. 

Seit Jahrzehnten sind Erdbeobachtungsdaten eine der 

wichtigsten Informationsquellen für die Kartierung von 

landwirtschaftliche Kulturarten. Regelmäßig erfasste Bilddaten der 

Fernerkundung über weite geografische Gebiete ermöglichen die 

Kartierung von Kulturarten und ihrer räumlich-zeitlichen Ausdehnung 

auf lokaler, regionaler und sogar globaler Ebene. 

In der Vergangenheit waren optische oder Synthetic Aperture 

Radar (SAR)-Daten die am häufigsten verwendeten 

Fernerkundungsdatensätze für die Kartierung von Pflanzenarten. In 

den letzten Jahrzehnten haben immer mehr Studien die Vorteile der 

Verwendung der Kombination dieser beiden Datensätze untersucht. 

Die Forschung zu diesem Thema wurde mit dem Start von Sentinel-1 

und Sentinel-2 aus dem Copernicus-Programm der Europäischen 

Weltraumorganisation intensiviert. Der freie Zugang zu globalen 

optischen und SAR-Datensätzen mit hoher räumlicher und zeitlicher 

Auflösung hat die Forschung zur optischen SAR-Kombination mit 

einem beispiellosen Detaillierungsgrad vorangetrieben. 

In dieser Arbeit wurde das Potenzial der synergetischen Nutzung 

von Sentinel-1 SAR-Daten und Sentinel-2 optischen Daten für eine 

genaue, großflächige Kartierung von Pflanzenarten untersucht. Ein 

systematisches Review der existierenden Forschung (Kapitel II) zur 

optischen SAR-Kombination für die Kartierung von Kulturarten trug 

dazu bei, aktuelle Forschungslücken aufzudecken, die in zwei 

Forschungsstudien im Detail addressiert wurden. 

Die erste Studie (Kapitel III) konzentrierte sich auf die 

großflächige Kartierung von Kulturarten unter Verwendung von 

zweiwöchentlichen dichten Zeitreihenmerkmalen von beiden 

Sensoren zur Kartierung von 16 Pflanzenklassen im deutschen 

Bundesland Brandenburg. Zusätzlich wurden Hilfsvariablen wie 

Parzellengröße, Lage des Pixels innerhalb einer Parzelle und optische 
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Datenverfügbarkeit verwendet, um die Klassifikationsergebnisse zu 

erklären. 

Die zweite Studie (Kapitel IV) befasste sich mit der Frage der 

räumlichen Übertragbarkeit von Random-Forest-Modellen basierend 

auf nur optischen, nur SAR und der Kombination von optischen und 

SAT Daten unter Verwendung von zwei Merkmalsauswahlverfahren. 

Am Beispiel von sieben über Deutschland verteilten Standorten 

untersucht die Studie den Einfluss unterschiedlicher Datensatz- und 

Merkmalsauswahlverfahren auf die räumliche Übertragbarkeit von 

Random-Forest-Modellen. 

Die Forschungsergebnisse der Dissertation zeigen die Potentiale 

und Grenzen der Nutzung von Sentinel-1 bzw. Sentinel-2 Daten und 

deren Kombination  für flächige, detaillierte Kulturartenkartierung in 

Deutschland auf. 

  



 

vii 
 

CONTENT 

 

ABSTRACT ........................................................................................................ III 

ZUSAMMENFASSUNG ..................................................................................... V 

CONTENT ........................................................................................................ VII 

LIST OF FIGURES ........................................................................................... XI 

LIST OF TABLES ............................................................................................. XV 

LIST OF ABBREVIATIONS ......................................................................... XVII 

CHAPTER I: INTRODUCTION ....................................................................... 1 

1. MOTIVATION ............................................................................................. 1 
2. SCIENTIFIC BACKGROUND ........................................................................ 2 

2.1. Crop Type Classification using Remote Sensing Data.................................. 2 
2.2. Combination of Sentinel-1 and Sentinel-2 ................................................... 3 
2.3. Mapping Crops with Machine Learning ...................................................... 5 
2.4. Spatial Transferability of Crop Classification Models ............................ 7 

3. OBJECTIVES OF THE THESIS ...................................................................... 8 
4. STRUCTURE OF THE THESIS ..................................................................... 11 

CHAPTER II: CROP TYPE CLASSIFICATION USING A COMBINATION OF 

OPTICAL AND RADAR REMOTE SENSING DATA: A REVIEW .................. 13 

CHAPTER III: CROP TYPE CLASSIFICATION USING FUSION OF 

SENTINEL-1 AND SENTINEL-2 DATA: ASSESSING THE IMPACT OF 

FEATURE SELECTION, OPTICAL DATA AVAILABILITY, AND PARCEL 

SIZES ON THE ACCURACIES ......................................................................... 55 

ABSTRACT ....................................................................................................... 56 
1. INTRODUCTION ...................................................................................... 56 
2. MATERIALS AND METHODS .................................................................... 60 

2.1. Study Area ................................................................................................. 60 
2.2. Reference Data .......................................................................................... 61 
2.3. Remote Sensing Data Pre-Processing and Features Generation ............... 62 

2.3.1. Optical Data Pre-Processing and Gap-Filling .................................................. 63 
2.3.2. SAR Data Pre-Processing ................................................................................ 64 

3. METHODOLOGY ...................................................................................... 65 
3.1. Single Sensor Features Versus SAR-Optical Combination.......................... 66 
3.2. Sampling Strategy ..................................................................................... 66 
3.3. Group-Wise forward Feature Selection ..................................................... 67 
3.4. Classification Approach ....................................................................... 69 
3.5. Analysis of the Impact of Parcel Size, Pixel’s Location within a Parcel, 

Optical Data Availability on Classification Accuracy ........................................ 70 
4. RESULTS................................................................................................. 70 

1.1. Classification Accuracies (Overall and Class-Specific) ......................... 70 
4.2. gFFS Rankings and Feature Importance.............................................. 73 
4.3. Potential Influences of Parcel Size, Optical Data Availability, and Pixel 

Location within the Parcel on the Classification Accuracy ............................... 75 
5. DISCUSSION ........................................................................................... 78 
6. CONCLUSIONS ........................................................................................ 82 



viii 
 

CHAPTER IV: SPATIAL TRANSFERABILITY OF RANDOM FOREST 

MODELS FOR CROP TYPE CLASSIFICATION USING SENTINEL-1 AND 

SENTINEL-2 ..................................................................................................... 85 

ABSTRACT ....................................................................................................... 86 
1. INTRODUCTION ....................................................................................... 86 
2. STUDY SITES AND DATA .......................................................................... 89 

2.1. Study Sites ................................................................................................. 89 
2.2. Reference Data ......................................................................................... 90 
2.3. Remote Sensing Data and Pre-processing ................................................ 91 
2.4. Auxiliary Data ........................................................................................... 92 

3. METHODOLOGY ...................................................................................... 93 
3.1. Generation of Dense Time Series Features ............................................... 93 
3.2. Training and Testing Samples ................................................................... 94 
3.3. Model Performance Estimation Using Spatial Cross-Validation ............... 94 
3.4. Feature Selection and Model Building ...................................................... 95 

4. RESULTS ................................................................................................. 98 
4.1. Overall Classification Accuracies ............................................................... 98 

4.1.1. Accuracies without Spatial Transfer (Reference Systems) .............................. 98 
4.1.2. Accuracies for Spatially Transferred Models (Target Systems) ....................... 99 

4.2. Class-Specific Classification Accuracies ................................................... 100 
4.2.1. Accuracies without Spatial Transfer (Reference Systems) ............................ 100 
4.2.2. Accuracies for Spatially Transferred Models (Target Systems) ..................... 100 

4.3. Features Selected with Spatial gFFS........................................................ 102 
4.4. (Potential) Influences of Environmental Settings .................................... 103 

5. DISCUSSION .......................................................................................... 105 
6. CONCLUSIONS ........................................................................................ 110 

CHAPTER V: SYNTHESIS ............................................................................111 

1. FINDINGS ...............................................................................................111 
1.1. Objective I: Comprehensive Review ........................................................ 111 
1.2. Objective II: Large-Scale Detailed Crop Type Map using Sentinel-1 and 

Sentinel-2 Combination.................................................................................. 112 
1.3. Objective III: Spatial Transferability of Crop Type Classification Models 

based on Sentinel-1 and Sentinel-2 Combination .......................................... 114 
2. DISCUSSION AND OUTLOOK ................................................................... 115 

2.1. Crop Type Mapping with Sentinel-1 and Sentinel-2 .......................... 116 
2.1.1. Sentinel-1 and Sentinel-2: Different but Complementary ....................... 116 
2.1.2. Freely Available Reference Data .............................................................. 116 
2.1.3. Mapping Minor Crops .............................................................................. 117 
2.1.4. Analysis of Auxiliary Variables .................................................................. 117 
2.1.5. Moving from Random Forest to Deep Learning Models’ ......................... 118 

2.2. Spatial Transferability of Random Forest Models ............................. 118 
2.2.1. The complexity of Random Forest Models............................................... 118 
2.2.2. Groups-wise Feature Selection with Spatial Cross-Validation.................. 118 
2.2.3. Accuracy Estimation with Spatially Independent Test-Set: When Relevant?

 119 
3. CONCLUSION ......................................................................................... 119 

REFERENCES ................................................................................................. 121 

APPENDIX ....................................................................................................143 

A.1 LIST OF PUBLICATIONS .....................................................................143 
A.2 CURRICULUM VITAE .......................................................................... 145 



 

ix 
 

A.3 REPRINTING PERMISSIONS OF THE PUBLISHERS ...................... 147 

EIDESSTATTLICHE ERKLÄRUNG / DECLARATION UNDER OATH ..... 149 

 

 

 

  



x 
 

  



 

xi 
 

LIST OF FIGURES 

Figure I-1. The supervised machine learning workflow for 

crop type mapping with optical-SAR data combination. 
6 

Figure II-1. Temporal distribution of reviewed studies and 

availability of relevant Earth Observation satellites. 
18 

Figure II-2. Number of citations per year of reviewed 

literature. 
18 

Figure II-3. Number of studies focusing on particular crop 

types.  
19 

Figure II-4. Number of studies conducted per country and 

region on synergistic use of optical and radar remote sensing 

data for crop type classification 

20 

Figure II-5. Spatial extent of study sites of the reviewed 

articles focusing on synergetic use of optical and radar remote 

sensing data for crop type classification. 

20 

Figure II-6. Combination of optical and radar sensors used 

in studies for crop type classification covered by this review. 
21 

Figure II-7. Fusion of optical and radar data for crop type 

classification at pixel-, feature- and decision levels. 
28 

Figure II-8. Pixel level fusion methods used in the reviewed 

literature on combination of optical and radar remote sensing 

data for crop type classification. 

29 

Figure II-9. Frequency of the usage of optical and radar 

features for crop type classification. 
39 

Figure II-10. Temporal distribution of classification 

approaches which were used in the reviewed literature on 

combination of optical and radar remote sensing data for crop 

type classification. 

41 

Figure II-11. A number of studies using pixel-based and 

object-based image analysis approaches focusing on 

synergetic use of optical and radar remote sensing data for 

crop type classification. 

44 

Figure III-1. The study area Brandenburg with the density of 

agricultural parcels according to Land Parcel Identification 

System data for the year 2017. 

61 

Figure III-2. Overview of Sentinel-2 tiles covering 

Brandenburg and available Sentinel-1 SAR data in the study 

region. 

63 

Figure III-3. Sentinel-2 data pre-processing and feature 

generation. 
64 



xii 
 

Figure III-4. Sentinel-1 data pre-processing and feature 

generation. 
65 

Figure III-5. Schematic overview of the methodological 

workflow. 
65 

Figure III-6. Group-wise forward feature selection scheme. 68 

Figure III-7. Crop-specific accuracies derived from the 

classifications based on only SAR, only optical features, and 

optical-SAR feature stacks and decision fusion. 

71 

Figure III-8. Classification maps based on only SAR features, 

only optical features, their combination. 
72 

Figure III-9. Confusion matrix derived from the 

classification results using a combination of optical and SAR 

features. 

73 

Figure III-10. Grouped crop-specific accuracies derived from 

the classifications based on only SAR features, only optical 

features, their combination, and decision fusion. 

73 

Figure III-11. Feature learning curves of time-wise and 

variable-wise gFFS based on only optical, only, SAR, and 

optical-SAR feature stacking. 

74 

Figure III-12. Feature importance derived from RF models 

built using only optical, only SAR, and optical-SAR features. 

Circles illustrate the RF importance scores, while border axes 

illustrate the number of sequences at which variable-wise and 

time-wise gFFS have been picked. 

74 

Figure III-13. The parcel size distribution of misclassified 

and correctly classified pixels for ff(S1&S2). 
76 

Figure III-14. Variations in accuracy, depending on the 

distance of pixels to the parcel borders (y-axis). Vertical red 

lines indicate that 80% of the data lie on the left side of this 

axis. 

76 

Figure III-15. Incidence of 1–5 monthly observations for 

correctly- and misclassified pixel. NDVI. 
77 

Figure III-16. NDVI and VH temporal profiles of correctly 

classified and misclassified pixels of class maize. 
78 

Figure IV-1. Location of the seven study sites in Germany. 89 

Figure IV-2. Mean monthly air temperature (top), monthly 

total precipitation (bottom) across the seven study sites from 

October 2017 to October 2018. 

90 

Figure IV-3. NDVI profile of original and interpolated values 

for the class potatoes. 
93 

Figure IV-4. Graphical illustration of model validation and 

feature selection procedures. 
95 



 

xiii 
 

Figure IV-5. 3-step group-wise Forward Feature Selection 

approach. 
97 

Figure IV-6. Overall F1-scores of classifications based on 

three feature sets, with variants of using all features and spatial 

feature selection. 

98 

Figure IV-7. Classification accuracy (F1-score) losses in 

target systems compared to reference system accuracies for all 

six experiments based on three sensor inputs and two feature 

selection approaches. 

99 

Figure IV-8. Crop-specific classification accuracies (F1-

score) in reference and target systems based on the optical-

SAR combination and two feature selection approaches. 

100 

Figure IV-9. Crop-specific accuracy losses in the target 

systems for models using a combination of optical and SAR 

features. 

101 

Figure IV-10. NDVI temporal profile of class alfalfa across 

seven study sites. 
102 

Figure IV-11. Analysis of feature selection results with spatial 

feature selection. 
103 

Figure IV-12. Distribution of parcel sizes, surface elevation, 

and Müncheberger soil quality values among the seven study 

sites. 

104 

Figure IV-13. Phenological phase observations for maize and 

summer barley (part of summer cereals class) located within 

the seven study sites. 

105 

Figure V-1. Crop type classification results from Chapter III 

based on only SAR (S1), only optical (S2) and optical-SAR 

feature combination (S1+S2). 

113 

 

 

  



xiv 
 

  



 

xv 
 

LIST OF TABLES 

Table I-1. Description of Sentinel-2 A/B spectral bands. 4 

Table I-2. Description of Sentinel-1A/B satellites. 5 

Table II-1. Main search words and their analogs used in the 

Scopus search query. 
17 

Table II-2. Main characteristics of radar remote sensing 

satellites used in the reviewed studies (excluding airborne 

sensors). 

22 

Table II-3. Main characteristics of optical remote sensing 

satellites used in the reviewed studies (excluding airborne 

sensors). 

23 

Table II-4. Examples of the most cited definitions of the data 

fusion terms in remote sensing domain. 
26 

Table II-5. Commonly used data fusion methods in the 

reviewed literature. 
27 

Table II-6. Optical and radar features employed in feature 

level fusion. 
35 

Table II-7. An overview of the partly complementary 

capabilities and limitations of optical and SAR data in the 

context of crop type classification and monitoring. 

53 

Table III-1. Overview information for the crop types 

considered in this study. 
62 

Table III-2. Classification accuracies based on all features 

and the features subsets selected based on time-wise and 

variable-wise gFFS after grouping legume and cereal classes. 

71 

Table IV-1. Number of parcels per crop type in each study 

site. 
91 

Table IV-2. Overview of conducted six model building 

approaches with three input datasets and two feature selection 

approaches. 

96 

Table IV-3. The average number of selected single features 

or feature groups using 3-step group-wise Forward Feature 

Selection (gFFS) and the corresponding total number of model 

evaluation runs. 

103 

 

  



xvi 
 

 

  



 

xvii 
 

LIST OF ABBREVIATIONS 

ARD Analysis Ready Data 

BAP Best-Available-Pixel 

BB Brandenburg 

BGR 
The Federal Institute for Geosciences and Natural 
Resources (Bundesanstalt für Geowissenschaften 
und Rohstoffe) 

BT Brovey Transform 

BW Baden-Wüttenberg 

BY Bavaria 

CAP Common Agricultural Policy 

CNN Convolutional Neural Network 

CV Cross-Validation 

DIAS Data and Information Access Services 

DWD German Weather Service 

DWT Discrete Wavelet Transform 

EF Ehlers Fusion 

EO Earth Observation 

ESA European Space Agency 

EU European Union 

EVI Enhanced Vegetation Index 

F1 F1-score 

FAO Food and Agriculture Organization 

FD Freeman-Durden Decomposition 

FFS Forward Feature Selection 

FN False Negative 

FP False Positive 



xviii 
 

GEE Google Earth Engine 

GIS Geographic Information System 

GRD Ground Range Detected 

HE Hessen 

HLS Harmonized Landsat-8 Sentinel-2 

HPF High Pass Filter 

IACS Integrated Administration and Control System 

IGARSS 
International Geoscience and Remote Sensing 
Symposium 

IHS Intensity, Hue and Saturation 

ISO International Organization for Standardization 

IWS Interferometric Wide Swath 

KELM Kernel-based Extreme Learning Machine 

L2A Level-2A 

LAI Leaf Area Index 

LPIS Land Parcel Identification System 

LUCAS Land Use/Cover Area Frame Survey 

LULC Land Use Land Cover 

MAJA MACCS-ATCOR Joint Algorithm 

MIR Mid-Infrared  

ML Machine Learning 

MLC Maximum Likelihood Classifier 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSI Multi-Spectral Instrument 

MSMD Maximum Separability and Minimum Dependency 

MV Mecklenburg-Western Pomerania 

NASA National Aeronautics and Space Administration 



 

xix 
 

NDFI Normalized Difference Flood Index 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NDYI Normalized Difference Yellow Index 

NIR Near-Infrared 

NN Neural Network 

OLI Operational Land Imager 

PA Producer’s Accuracy 

PCA Principal Component Analysis 

PMI Paddy Rice Mapping Index 

PSRI Plant Senescence Reflectance Index 

RADAR Radio Detection And Ranging 

RF Random Forest 

RGRI Red-Green Ratio Index 

S1 Sentinel-1 

S1TBX Sentinel-1 Toolbox 

S2 Sentinel-2 

SAR Synthetic Aperture Radar 

SAVI Soil-Adjusted Vegetation Index 

SCL Scene Classification Layer 

SITS Satellite Image Time Series 

SNAP Sentinel Application Platform 

SR Simple Ratio 

SRTM Shuttle Radar Topography Mission 

SVI Simple Vegetation Index 

SVM Support Vector Machine 

SWIR Short-wave infrared 



xx 
 

TH Thuringia 

TM Thematic Mapper 

TP True Positive 

UA User’s Accuracy 

UN United Nations 

URL Uniform Resource Locator 

USGS United States Geological Survey 

ZALF Leibniz Centre for Agricultural Landscape Research 

 

 

 



 

1 
 

 

 

 

 

 

 

CHAPTER I: INTRODUCTION 

1. Motivation 

With the human population reaching the eight billion mark, food 

security and food demand have become top priority issues worldwide 

(Foley et al., 2011). The actions towards “sustainable intensification” of 

agriculture (H. Charles J. Godfray et al., 2010), which implies 

increasing the yields from the same area of land while reducing the 

negative environmental impact, require detailed spatial-temporal 

information on croplands at different scales. Such information is vital, 

for instance, to understand the regional cropping patterns, their impact 

on the various environmental factor (e.g. groundwater use, 

agrobiodiversity, soil erosion) and the prediction of expected yields. 

Due to the dynamic nature of croplands, information on their state has 

to be regularly updated (Atzberger, 2013). Earth Observation (EO) 

data, as a significant resource of reliable land surface information from 

a global to local scale, plays a fundamental role in building sound 

information products for decision-makers (Weiss et al., 2020). 

The generation of crop type maps, which are one of the Essential 

Agricultural Variables (EAV) for the Group on Earth Observations 

Global Agricultural Monitoring Initiative (GEOGLAM) (Whitcraft et 

al., 2019), using EO data, has been a subject of numerous studies 

(Atzberger, 2013). Research studies have shown the successful 

applicability of optical (e.g., Conrad et al., 2017), radar (e.g., Bargiel, 

2017), hyperspectral (e.g., Aneece and Thenkabail, 2021) and lidar 

(e.g., Prins and Van Niekerk, 2020) remote sensing data for crop type 

mapping. Optical data provides information such as plant pigment and 

water content within tissues and is the most widely used remote 

sensing dataset for crop type classification. The research on optical 

remote sensing data was particularly boosted with the opening of the 

Landsat archive in 2008 (Wulder et al., 2012). However, the quality of 

the optical data can be substantially reduced due to atmospheric 

effects, clouds, and cloud shadows. Such issues could be eliminated 

with weather-independent radar data. Early studies have shown that 

the quality of radar-based maps is lower than those based on optical 

data (Orynbaikyzy et al., 2019). However, the earlier studies were 

mainly based on mono-temporal scenes. 
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The launch of optical - Sentinel-2 A/B and Synthetic Aperture 

Radar (SAR) – Sentinel-1 A/B satellites as a part of the European Space 

Agency’s (ESA) Copernicus Program gave new possibilities for studies 

on crop type mapping by providing high spatial-temporal resolution 

data. The free availability of both datasets and their global coverage 

triggered a strong interest in exploring the potential of their combined 

use in various application domains (Joshi et al., 2016), including 

agriculture (Dusseux et al., 2014). New three red-edge bands from 

Sentinel-2 were expected to improve further the monitoring and 

mapping of cropping practices (Weiss et al., 2020). The research 

investigating the significance of the new remote sensing datasets, 

particularly their combination, was needed for the crop type mapping 

domain.  

2. Scientific Background 

This chapter outlines the scientific background of the thesis. It presents 

state-of-the-art research in crop type mapping using remote sensing 

data, the application of machine learning techniques and the issues of 

spatial transferability. 

2.1. Crop Type Classification using Remote Sensing Data 

Within the remote sensing domain, an action of assigning the crop type 

label to a pixel or object based on the associated descriptive features is 

called crop type classification. Since the output of crop type 

classification is commonly a map with spatial and temporal context, 

the term crop type mapping and crop type classification are 

interchangeably used in remote sensing research. 

Before the rise of remote sensing technologies, crop type 

mapping was done manually by inspecting the fields or collecting 

census data at the farmland level. With technological advancement and 

subsequent increased use of remote sensing techniques in agricultural 

applications, such time-consuming and costly data collection methods 

are expected to be replaced by (semi-)automatic classification of 

agricultural fields using remote sensing images. For instance, to reduce 

the subsidy control costs in the context of the European Union’s 

Common Agricultural Policy (CAP), much research is being done 

towards incorporating remote sensing-based solutions for large-scale 

crop type labelling (López-Andreu et al., 2022; Schmedtmann and 

Campagnolo, 2015). In this respect, remote sensing data allows for 

gathering and analysing data over large geographic spaces without 

physically visiting each field or farmland.  

The main objective of crop type classification using remote 

sensing data is to correctly label the crop class of a given pixel or object 

using a set of input variables. Input variables, depending on the remote 
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sensing sensor type, contain information on the physical or biophysical 

properties of the target on the ground. For example, the absorbed and 

reflected portions of the light at visible and infrared spectral regions 

depend on the plants’ pigmentation. Likewise, plants' canopy structure 

affects the amount of backscattered signal to the active radar sensor.  

 Up to now, most of the studies on crop type mapping was based 

on optical remote sensing data (Belgiu et al., 2021; Conrad et al., 2010; 

Defourny et al., 2019). By collecting data on reflected solar radiation 

from the target on the ground at visible, near-infrared and short-wave 

infrared portions of the electromagnetic spectrum, optical data capture 

vital information on vegetation health, leaf pigments, water content 

and other biophysical parameters. Besides, dense time series of optical 

data may reproduce the phenological development stages of crops 

(Veloso et al., 2017), which helps to differentiate crop classes with 

varying phenological patterns. 

Nonetheless, the main limitations of optical data are the gaps due 

to cloud cover, cloud shadows and other atmospheric effects, which 

hide or degrade the information of interest. This is particularly an issue 

for large-area mapping, where the derivation of high-quality large-area 

features is challenging due to strongly varying data availability (Gómez 

et al., 2016). 

For areas with persistent cloud cover, using Synthetic Aperture 

Radar (SAR) data for crop type mapping is particularly attractive. The 

longer wavelength (1cm – 1m) at which SAR sensors operate allows 

penetration through the clouds that make the system weather-

independent. The SAR backscatter delivers information on plants’ 

canopy structure (McNairn and Brisco, 2004) and can capture the 

changes in plants’ phenological phases when its time-series is used 

(Veloso et al., 2017). SAR-based crop types classification has been 

successfully implemented and tested in many studies (Bargiel, 2017; 

Clauss et al., 2018; Kenduiywo et al., 2018; McNairn et al., 2014).  

2.2. Combination of Sentinel-1 and Sentinel-2 

The complementary nature of optical and SAR datasets allows for the 

simultaneous utilization of information on plants’ structural and bio-

physical parameters. The first investigative studies on the potential of 

optical-SAR combination for crop type mapping date back to the 80s 

(Li et al., 1980; Ulaby et al., 1982). Starting from 2000, the number of 

studies on this topic started to increase due to the launch of several 

satellites with radar (e.g., ERS, RADARSAT, ENVISAR ASAR) and 

optical (e.g., Landsat, SPOT, IRS, MODIS, QuickBird) data acquisition 

sensors, and the advancements in computing capabilities (Orynbaikyzy 

et al., 2019). Notably, the launch of Sentinel-1 A/B (in 2014/2016) and 

Sentinel-2 A/B satellites (in 2015/2017) from ESA’s Copernicus 

Program added more pace to research on the combined use of optical 
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and SAR data. The first global products such as WorldCover 

(https://esa-worldcover.org) and WorldCereal (https://esa-

worldcereal.org), aim to map global land cover and monitoring of 

global croplands at the field level accordingly, were initiated using the 

combination of Sentinel-1 and Sentinel-2 data. 

Table I-1. Description of Sentinel-2 A/B spectral bands. Source: ESA. 

 Sentinel-2 A Sentinel-2 B  

Spectral 

Band 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

Resolution 

B01 442.7 21 442.2 21 60 

B02 492.4 66 492.1 66 10 

B03 559.8 36 559.0 36 10 

B04 664.6 31 664.9 31 10 

B05 704.1 15 703.8 16 20 

B06 740.5 15 739.1 15 20 

B07 782.8 20 779.7 20 20 

B08 832.8 106 832.9 106 10 

B8A 864.7 21 864.0 22 20 

B09 945.1 20 943.2 21 60 

B10 1373.5 31 1376.9 30 60 

B11 1613.7 91 1610.4 94 20 

B12 2202.4 175 2185.7 185 20 

 

The MultiSpectral Instrument (MSI) onboard Sentinel-2 satellites 

sense spectral reflectance at three visible, two near-infrared, four red-

edge and two short-wave-infrared regions of the electromagnetic 

spectrum (Table I-1). New bands at the red-edge spectral region, 

sensitive to the plants’ nutritional status  (Filella and Peñuelas, 1994), 

were reported to be helpful for successfully classifying various crops 

(Immitzer et al., 2016). After satellite data were available to the public, 

numerous research studies have shown the added values of new red-

edge bands and improved mapping capabilities that were now possible 

with Sentinel-2 data (Belgiu and Csillik, 2018; Griffiths et al., 2019; 

Veloso et al., 2017). Notably, with the minimum mapping unit of 1ha, 

Sentinel-2 datasets allowed analysis at a sub-field scale and facilitated 

the research on mapping minor crops that often have very small field 

sizes. With short revisit frequency, the data can capture the temporal 

growth dynamics of crops.  

Active C-band SAR sensors onboard Sentinel-1 A/B satellites 

record backscattered radar signals regardless of daytime and weather 

conditions. SAR-based crop type classification has been successfully 

implemented in numerous studies (e.g., Bargiel, 2017; Clauss et al., 

2018; Kenduiywo et al., 2018; McNairn et al., 2014). Based on the 

frequency and polarization, backscattering information delivers the 

complex representation not only of crop plants but also soil moisture, 

surface roughness, canopy structure and topography (McNairn and 
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Brisco, 2004). Thus, the synergetic use of SAR and optical data is 

particularly interesting for crop type mapping.  

Table I-2. Description of Sentinel-1A/B satellites. Source: ESA. 

Band type C-band 

Centre frequency, GHz 5.405 

Orbit: 

- height, km 

- inclination, degree 

Sun-synchronous 

- 693 

- 98.1 

Swath width, km 20-400 

Image resolution, m 5-40 

Polarization Dual. (VH, VV) 

Incidence angle, degree 18.3 to 47 

Repeat rate, days 12 (combined – 6) 

With freely accessible Sentinel-1 and Sentinel-2 data, combining 

optical and SAR data became much more straightforward. While using 

data from each sensor separately for crop type mapping is possible with 

reasonable accuracy (Preidl et al., 2020), the early research showed 

that combining these datasets results in much more improved accuracy 

than single sensor cases (Sonobe et al., 2017). The increased number of 

studies on the combination of Sentinel-1 and Sentinel-2 also enables a 

more consistent comparison of the methodologies (e.g., machine 

learning models, generated features) based on the same input data. 

2.3. Mapping Crops with Machine Learning 

As part of the agricultural sector's digital transformation, machine 

learning techniques have gained increasing attention due to their 

ability to automate complex tasks such as e.g. yield prediction, crop 

type mapping, and weed detection (Benos et al., 2021). The core idea 

of machine learning is to ‘learn’ from the data without explicitly being 

instructed by a human. Among core machine learning methods 

(unsupervised, supervised, semi-supervised and reinforcement 

learning), supervised machine learning that requires labelled data for 

the ‘learning’ process is the most widely used in crop type classification 

research. 

Supervised machine learning for crop type classification typically 

consists of four main stages: input data generation, model building, 

model performance evaluation and crop type map generation (Figure 

I-1). Each stage consists of a multistep workflow that varies depending 

on the study design, data availability and spatial-temporal extent of the 

study.  

The input feature generation includes several pre-processing 

steps that transform raw data into analysis ready data (ARD). As the 

literature shows, the type of applied pre-processing steps affects the 

quality of output map products (Inglada et al., 2016; Sun et al., 2020). 

Apart from core remote sensing pre-processing steps (e.g., 
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atmospheric correction for optical data or, e.g., radiometric correction 

for SAR data), such techniques as gap-filling and monthly and seasonal 

composite calculation could be required for generating consistent 

features over large geographic areas. 

Another essential data pre-processing step is splitting reference 

samples into training, validation and test sets (Figure I-1). As the name 

suggests, training data is used for training a machine learning 

classifier. It has been shown that the quality (Foody et al., 2016) and 

quantity (Foody et al., 1995) of training samples substantially impact 

the model performance and, in some cases, even more than the 

selection of the classification algorithm itself (Maxwell et al., 2018). 

The validation data is typically used for getting the model performance 

estimates while tuning its hyperparameters. Since validation data is 

used for model adjustments, it cannot be further used for deriving 

unbiased estimates of model performance. The independent test set is 

used exclusively for final classification accuracy estimation. The issue 

of acquiring reliable quality estimates of map products is widely 

discussed in the remote sensing community (Stehman and Foody, 

2019).  

 

Figure I-1. The supervised machine learning workflow for crop type mapping with 
optical-SAR data combination. 

The most common strategy of splitting reference data to training-

validation and test sets is splitting based on a split ratio (e.g., 70/30, 

80/20), where the larger share is used for model training, and the 

smaller share is used for model evaluation. However, Lyons et al. 

(2018) argue that a multiple partitioning (e.g. cross-validation) 

strategy should be preferred over a single hold-out split to acquire 
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unbiased accuracy estimates. The sampling design and data 

partitioning are widely discussed topics within the remote sensing 

community (Stehman and Foody, 2019). 

While the quality and quantity of input data significantly impact 

the construction of an accurate machine-learning classifier, the type of 

classifier and the way it was built is another crucial aspect to consider. 

The algorithm that assigns class labels to unlabelled instances is called 

a classifier (Bishop, 2006). The numerous comparative studies on 

commonly used machine learning classifiers have shown the Random 

Forest (Breiman, 2001b) algorithm's superiority over others due to its 

ability to handle large feature spaces and being less sensitive to the 

noise in the training data (Belgiu and Drăgu, 2016). Random Forest is 

one of the most used algorithms for crop type classification (Asam et 

al., 2022; Griffiths et al., 2019; Preidl et al., 2020). A comprehensive 

review of the application of the classifier within the remote sensing 

domain is given by Belgiu and Dragu (2016). 

The generation of crop type maps is the last stage in the workflow 

for research studies whose objective is the production of crop type 

maps (e.g., Inglada et al., 2017). The map production stage could be 

omitted in some investigative studies that only use sample pixels or 

objects to test the raised hypothesis (e.g., Waldner et al., 2019). The 

map production stage's complexity increases with the study site's 

spatial extent and the cropping pattern's complexity that should be 

mapped. Generating consistent features across whole study sites 

typically requires large processing and storage capacities. But, with the 

recent advancements of cloud computing in remote sensing, producing 

seamless maps across large regions or even globally has become more 

feasible (Azzari et al., 2017). 

2.4. Spatial Transferability of Crop Classification Models 

The first law of geography states that ‘near things are more related than 

distant things’ (Tobler, 1970), which emphasizes the main property of 

spatial data: spatial dependence. Spatial dependence is inherent to 

geospatial information, such as remote sensing data. The presence of 

spatial dependence in the data violates the assumption of the 

independent and identical distribution of samples, which is one of the 

central machine learning concepts (Nikparvar and Thill, 2021). The 

effect of spatial autocorrelation, a measure of the similarity of nearby 

observations, in remotely sensed data is well-known and widely 

discussed in the research community (Congalton, 1991). 

Large-scale crop type mapping using spatially limited reference 

data assumes the spatial transfer of the trained models to previously 

unseen geographical spaces. Such transfer over space often 

significantly reduces the model’s performance. The main reason for the 

spatial non-transferability of supervised machine learning models is 
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the absence of representative crop type samples, samples that 

adequately reflect the characteristics of the entire crop class 

population, in the region where the model is being spatially 

transferred, i.e. target region. Solving this issue by acquiring the 

appropriate datasets from target regions is often impossible due to the 

data acquisition costs (time, finance and general accessibility of the 

region). 

The spatial transferability of statistical models is an old and 

certainly everlasting topic (Geary, 1954). Since the 2000s, this issue 

has gotten more attention with the rise of the species distribution 

modelling domain (Wenger and Olden, 2012). Studies on the spatial 

transferability of machine learning models emphasized the pitfalls of 

ignoring the spatial dependencies present in the data (Ferraciolli et al., 

2019; Overmars et al., 2003; Randin et al., 2006; Rocha et al., 2018). 

When feeding a machine learning classifier with remote sensing time-

series features, we desire the model to learn distinct phenological 

phase differences among various crop types and be able to assign 

correct labels to unknown pixels or objects. While this could be a valid 

strategy for predicting under the environmental conditions of the 

training sites, it is not always suitable to predict distant geographical 

spaces where e.g. a shift of phenological phases may occur for several 

days or even weeks. Predictions outside the 'known' to model 

environments and geographical spaces can result in substantial 

accuracy losses, as illustrated in recent studies (Karasiak et al., 2019; 

Ploton et al., 2020). 

While the absence of reference data from the target region is one 

of the main reasons for increased misclassification, the quality, 

quantity and type of remote sensing data can also affect the spatial 

transferability of the classifier. For instance, Inglada et al. (2016) 

confirmed that errors in gap-filled optical features significantly impact 

classification accuracy, especially when these errors coincide with the 

training samples. In large-scale mapping, due to altering atmospheric 

conditions during image acquisitions across different sensor swaths, 

the gap-filling is unavoidable to get consistent optical features across 

the entire study site. When using optical features to map large-scale 

study sites, we continuously face spatially clustered noise due to 

undetected clouds or cloud shadows. Such issues are not present in 

SAR data due to its weather-independent data acquisition capabilities. 

This suggests that models based on SAR features may show more 

robust performance in spatial transfer than those based on optical data. 

3. Objectives of the Thesis 

The overarching objective of this thesis is to explore the potential of the 

combined use of optical data from Sentinel-2 and SAR data from 

Sentinel-1 for crop type mapping. Together, these satellites deliver 
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unprecedented high spatial-temporal resolution remotely sensed 

information and enable global agricultural land monitoring. The 

combined use of these datasets allows simultaneously utilising the 

spectral reflectance and the SAR backscatter to build more accurate 

machine learning models for crop type mapping. The following 

research topics guided the setup of the present thesis:  

• Review the currently available research on combining 

optical and SAR data for crop type mapping and outline 

common findings and possible research gaps; 

• Large-scale mapping of a wide variety of crop classes using 

dense time-series optical and SAR features; 

• Investigating the spatial transferability of machine learning 

models using optical-SAR combination over single sensor 

data. 

First, an in-depth review of the published studies was conducted 

(Chapter II). Since the 2000s, the number of research papers focusing 

on the optical-SAR combination for crop type mapping has rapidly 

increased (Orynbaikyzy et al., 2019). The studies investigated diverse 

aspects of the crop type classification, such as early crop type mapping 

(e.g. Inglada et al., 2016), selection of best-suited features (e.g. Inglada 

et al., 2016), large-scale mapping (e.g. Griffiths et al., 2019), etc. The 

review work presented in section II focuses on summarizing existing 

knowledge based on outcomes of the reviewed research publications. 

The following objectives were set for the review study:  

• provide a general overview of research studies on crop type 

mapping using optical and SAR data published from 1972 to 

late 2018;  

• identify similarities and trends in the fusion methods and 

classification approaches;  

• outline common and conflicting findings;  

• define the research gaps and possible future development 

directions. 

Based on the outcomes of the review study, two research directions 

were delineated: mapping a wide variety of crops with dense time-

series data at a large scale (here, an area covering more than 10.000 

km2) and spatial transferability of the machine learning models for 

crop type mapping. The first research objective was addressed in 

Chapter III. The predictive performance of Random Forest models 

using bi-weekly time series of optical-SAR features was compared to 

single sensor features to classify 16 crop classes in Brandenburg, 

Germany. The effect of feature selection, parcel sizes, location of the 

pixels within the field and optical data availability on the classification 
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were investigated. More precisely following research questions were 

addressed:  

• How does the optical-SAR combination perform (here, 

accuracy) compared to single sensor data for crop type 

mapping?  

• Would the reduction of feature space improve the 

performance of Random Forest models? Which features 

show high relevance for the classifier?  

• How do parcel sizes, pixel location within the field and 

optical data availability affect the classification 

performance?  

The spatial transferability of crop type classification models was 

another research gap identified during the review. Unless 

representative reference data is disturbed across whole study sites, as 

in Chapter III, large-scale mapping assumes the spatial transfer of the 

pre-trained model to unseen geographic spaces. Previous studies did 

not address the spatial transferability of models based on the optical-

SAR combination. In Chapter IV, the following research questions were 

addressed: 

• How much does the classification accuracy decrease in the 

target system compared to the reference system? 

• Which dataset (SAR, optical or optical-SAR combination) 

would perform better in terms of spatial transferability? 

• How does the application of spatial feature selection affect 

the spatial transfer ability of Random Forest models? 

The following three chapters address the above-described research 

objectives (II-IV). Each of these chapters is a self-contain manuscript 

that was published in peer-reviewed international journals: 

• Orynbaikyzy, A., Gessner, U., Conrad, C., 2019. Crop type 

classification using a combination of optical and radar 

remote sensing data: a review. Int. J. Remote Sens. 40, 

6553–6595. 

https://doi.org/10.1080/01431161.2019.1569791  

• Orynbaikyzy, A., Gessner, U., Mack, B., Conrad, C., 2020. 

Crop type classification using fusion of sentinel-1 and 

sentinel-2 data: Assessing the impact of feature selection, 

optical data availability, and parcel sizes on the accuracies. 

Remote Sens. 12. https://doi.org/10.3390/RS12172779 

• Orynbaikyzy, A., Gessner, U., Conrad, C., 2022. Spatial 

Transferability of Random Forest Models for Crop Type 

https://doi.org/10.1080/01431161.2019.1569791
https://doi.org/10.3390/RS12172779
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Classification Using Sentinel-1 and Sentinel-2. Remote Sens. 

14, 1493. https://doi.org/10.3390/rs14061493  

4. Structure of the Thesis 

The thesis is based on three research papers published in peer-review 

international journals in 2019, 2020 and 2022. First, the overall 

motivation, objectives and scientific background of the thesis and its 

organization are presented in Chapter I. The following three chapters 

correspond to three research publications (Chapters II, III, and IV). 

The last chapter (Chapter V) presents a comprehensive discussion of 

all papers and the main findings of the thesis. 
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Abstract 

Crop type classification using Earth Observation (EO) data is 

challenging, particularly for crop types with similar phenological 

growth stages. In this regard, the synergy of optical and Synthetic-

Aperture Radar (SAR) data enables a broad representation of 

biophysical and structural information on target objects, enhancing 

crop type mapping. However, the fusion of multi-sensor dense time-

series data often comes with the challenge of high dimensional feature 

space. In this study, we (1) evaluate how the usage of only optical, only 

SAR, and their fusion affect the classification accuracy; (2) identify the 

combination of which time-steps and feature-sets lead to peak 

accuracy; (3) analyze misclassifications based on the parcel size, optical 

data availability, and crops’ temporal profiles. Two fusion approaches 

were considered and compared in this study: feature stacking and 

decision fusion. To distinguish the most relevant feature subsets time- 

and variable-wise, grouped forward feature selection (gFFS) was used. 

gFFS allows focusing analysis and interpretation on feature sets of 

interest like spectral bands, vegetation indices (VIs), or data sensing 

time rather than on single features. This feature selection strategy leads 

to better interpretability of results while substantially reducing 

computational expenses. The results showed that, in contrast to most 

other studies, SAR datasets outperform optical datasets. Similar to 

most other studies, the optical-SAR combination outperformed single 

sensor predictions. No significant difference was recorded between 

feature stacking and decision fusion. Random Forest (RF) appears to 

be robust to high feature space dimensionality. The feature selection 

did not improve the accuracies even for the optical-SAR feature stack 

with 320 features. Nevertheless, the combination of RF feature 

importance and time- and variable-wise gFFS rankings in one 

visualization enhances interpretability and understanding of the 

features’ relevance for specific classification tasks. For example, by 

enabling the identification of features that have high RF feature 

importance values but are, in their information content, correlated 

with other features. This study contributes to the growing domain of 

interpretable machine learning 

1. Introduction 

Crop type maps deliver essential information for agricultural 

monitoring and are likewise relevant for other fields such as 

environmental assessments. Respective classification approaches 

using Earth Observation (EO) stand to benefit from the availability of 

high-resolution Sentinel-1 and Sentinel-2 dense time series. 
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Particularly, the synergistic use of these optical and Synthetic-Aperture 

Radar (SAR) datasets bears high potential. In previous research, 

single-sensor approaches based on optical and SAR data were used the 

most to map crop types at different scales. A larger share of research 

was based on optical data (Belgiu and Csillik, 2018; Conrad et al., 2010; 

Defourny et al., 2019a; Griffiths et al., 2019; Inglada et al., 2015). The 

classification of crop types using only SAR data has also been 

successfully implemented in several studies (Bargiel, 2017; Clauss et 

al., 2018; Kenduiywo et al., 2018; McNairn et al., 2014). Optical data 

that makes use of the visible, near-infrared, and short-wave-infrared 

portion of the electromagnetic spectrum, provides valuable 

information about leaf pigments, water content, and plants’ overall 

health condition.; whereas SAR data, dependent on the frequency and 

polarization, delivers a complex representation of canopy structure, 

surface roughness, soil moisture, and topography (H and B, 2004). 

The first studies that focused on optical-SAR data fusion date 

back to the 80s (Li et al., 1980; Ulaby et al., 1982). However, starting 

from 2000, the number of studies on this topic gradually increased, 

which can be partially explained by the launch of new space-borne 

radar (ERS, RADARSAT, ENVISAR, ASAR, etc.) and optical (Landsat, 

SPOT, IRS, MODIS, QuickBird, etc.) satellites (Orynbaikyzy et al., 

2019). The launch of Sentinel-1 (2014/2016) and Sentinel-2 

(2015/2017), operated by the European Space Agency (ESA), boosted 

the interest in using these freely available SAR and optical datasets for 

crop type mapping in a synergistic way. Optical and SAR data’s 

complementary nature gives the possibility to simultaneously utilize 

information on plants’ structural and bio-physical conditions. This 

explains that most previous fusion studies reported improvements in 

crop classification accuracy when optical and SAR data were combined 

compared to single sensor experiments (Denize et al., 2018; Forkuor et 

al., 2014; Torbick et al., 2017). Commonly, optical-SAR fusion studies 

used several cloud-free optical and available SAR scenes for their 

studies (Orynbaikyzy et al., 2019). The use of dense time-series of both 

became more common in recent studies (Demarez et al., 2019; Van 

Tricht et al., 2018). However, for large-scale studies, it is still a 

challenge to combine these two datasets since vast volumes of diverse 

datasets demand higher processing power and resources. 

There are three primary data fusion levels: pixel-level, feature-

level (further, feature stacking), and decision-level (Pohl and Van 

Genderen, 1998) (for details see Section 2.4.1). Among crop type 

classification studies, Gibril et al. (Gibril et al., 2017) compared pixel-

level fusion techniques (Brovey Transform, Wavelet Transform, 

Ehlers) with feature stacking results. To the best of our knowledge, the 

comparison between optical-SAR feature stacking and optical-SAR 

fusion at decision-level was not subject to any study even though 

decision fusion was successfully applied (Waske and Van Der Linden, 
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2008). Multi-sensor feature stacking may result in high dimensional 

feature space, which may negatively affect the classification accuracy. 

While decision fusion, based on classification confidences derived from 

single sensor predictions, might profit from less complex models. It 

could be valid to expect that optical-SAR fusion at the decision-level 

could be more performant than simple feature stacking. To test this 

hypothesis, in this study, we compare the classification results derived 

from optical-SAR feature stacking and optical-SAR fusion at decision-

level (further, decision fusion). 

Combining dense optical and SAR time series features can 

quickly result in a high-dimensional feature space that can pose 

challenges for pattern recognition and machine learning. In terms of 

classification accuracy, earlier methods such as the parametric 

maximum likelihood classifier are more susceptible to high-

dimensional feature spaces than to state-of-the-art classifiers, such as 

Support Vector Machines and Random Forest (RF). Nevertheless, 

studies have shown that these classifiers’ accuracy can also be 

increased by feature selection (Löw et al., 2013), particularly when the 

amount of training samples is limited (Jain, 1997). Elaborated pre-

processing, feature generation, and selection of suitable features are 

needed for many classification algorithms. Commonly derived features 

as spectral-temporal variability metrics (Müller et al., 2015), time-

weighted interpolation (Inglada et al., 2015), or computationally more 

expensive approaches such as time-weighted dynamic time warping 

(Maus et al., 2019) are being used less often for large-scale 

applications. This happens probably due to, among other reasons, high 

computational complexity, particularly over very large areas. 

Feature selection methods have a long tradition in pattern 

recognition analysis of remote sensing data (Goodenough et al., 1978; 

Richards, 2005), alleviating the challenges mentioned earlier. It helps 

to train more accurate models, decrease computational complexity, 

and improve the understanding of the used features (Roscher et al., 

2020; Yu et al., 2016). Data and model understanding is essential in 

the development of operational products (Inglada et al., 2017) and in 

scientific research where feature importance and rankings are often 

essential elements (Immitzer et al., 2019; Roscher et al., 2020; 

Sitokonstantinou et al., 2018). The main groups of feature selection are 

filters and wrappers methods (Guyon and Elisseeff, 2011). Filter 

methods use various statistical measures (e.g., Chi-square test, 

Pearson’s correlation) to score the relevance of features. Whereas, 

wrapper methods perform feature selection based on the chosen 

classifiers’ performance, which enables to select most performant 

features with low correlation. The main drawback of the wrapper 

approaches is the high computational costs. In crop type classification 

studies, embedded methods such as classifier specific RF feature 

importance is often used to select the most important features (Belgiu 
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and Drăgu, 2016). It is a fast approach, but a drawback is that features 

with correlating information content can show similarly high 

importance scores. 

To alleviate the limitations of wrapper methods concerning high 

computing efforts, in this study, we perform a group-wise forward 

feature selection (gFFS). gFFS allows focusing the analysis and 

interpretation on useful feature sets like spectral bands, vegetation 

indices (VIs), or data acquisition dates (for details see Section 2.4.3). A 

similar approach was followed by Defourny et al. (2019b). The 

grouping strategies of features in the gFFS have two important 

benefits: 1) gFFS allows to tailor the feature selection towards better 

interpretability and supports a more efficient feature selection process. 

For example, the time-steps with most discriminative power can be 

better analyzed by considering all information available at a particular 

time-step as a group and not only as single features. 2) gFFS allows the 

substantially reduced computational time of the feature selection step 

while considering all features at hand. 

In addition to an appropriate feature selection, the quality of the 

satellite data features concerning data availability and gaps are crucial 

aspects that can influence classification accuracy. Croplands are 

typically characterized by management activities such as tilling, 

sowing, and harvesting or cutting and are, therefore, amongst the most 

dynamic land cover elements. Their successful identification via 

remote sensing data often requires dense time-series information 

capable of capturing critical plant development phases and the 

mentioned land management activities (Veloso et al., 2017). The 

comparison of seasonal, monthly composites, and gap-filled 

Harmonized Landsat and Sentinel-2 (Claverie et al., 2018) time-series 

(10-days interval) data by Griffiths et al. (Griffiths et al., 2019) showed 

that the highest classification performance was achieved with gap-

filled 10-day time-series data. However, the quality of the gap-filled 

data depends on the duration and number of gaps. Gaps originate 

mainly from cloud cover, cloud shadows, and other atmospheric effects 

from which optical data are often suffering. In this sense, combining 

dense time series of SAR features and gap-filled optical data could 

result in more accurate classifications. 

In summary, despite the large number of studies focusing on the 

combination of optical and SAR features for crop type mapping, the 

following aspects were not sufficiently investigated: (1) combined 

performance of a comparably high number of relevant Sentinel-2 and 

Sentinel-1 dense time-series features for larger areas covering more 

than one sensor swath, where the derivation of spatially homogeneous 

features across all the study area is required; (2) impact of optical-SAR 

feature stacking and decision fusion on classification accuracies; (3) 

analysis and interpretation of feature importance and ranking based 

on dates, bands, and VIs instead of single features and their effect on 
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classification accuracies; (4) the performance of respective 

classification approaches to differentiate 16 crop types; (5) analysis of 

the influence of the optical data availability, parcel size, and pixel 

location within the parcel on the classification results. 

This study aims to contribute to these open issues by evaluating 

how the synergetic use of dense optical and SAR time-series data 

derived from Sentinel-1 and Sentinel-2 improves the classification 

accuracy of typical crop types of Central Europe. The study site covers 

the Brandenburg state, located in northern Germany. In this context, 

we investigate how a large number of optical and SAR features affect 

the performance of RF models and evaluate the relevance of various 

feature-sets and time-steps to the classifier. It is also analyzed how 

agricultural parcel size, mixed pixels occurrence at parcel borders, and 

the non-availability of optical satellite data at specific dates of the year 

affect the classification accuracy. More explicitly, the following 

questions were addressed: 

• How do the usage of single-sensor dense time-series data and the 

fusion of Sentinel-1 and Sentinel-2 data affect the classification 

accuracy? Do classification accuracies based on optical-SAR 

feature stacking differ from decision fusion? 

• How does a high dimensionality of optical-SAR feature stack 

impact on the performance of RF? Which features are most 

relevant, and which dates and bands or VIs lead to the highest 

accuracies? 

• What is the influence of cloud-related gaps in optical data, how 

do parcel sizes, and the pixel location within a parcel affect 

classification accuracy? 

2. Materials and Methods 

2.1. Study Area 

The study site (Figure 1) is located in Northern Germany and covers the 

territory of Brandenburg state with an area of 29,654 km2, where 45% 

is agricultural land (Gutzler et al., 2015). Large-scale farms dominate 

the state croplands with 238 ha of average field size (Gutzler et al., 

2015). The area has low topographic complexity with the highest peak 

in the state being at 201 m.a.s.l. (Kutschenberg hill) and the lowest 

point is Rüdersdorfer opencast mining area with −46.5 m below sea 

level. The average annual precipitation is 719 mm, and the average 

annual temperature is 9.9 °C. Winter cereals are sown at the beginning 

of September and harvested at the end of July and beginning of August. 

Summer crops are sown at the end of March—beginning of April and 

harvested at the end of July—beginning of August (German National 

Weather Service, 2019). 
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Figure III-1. The study area Brandenburg with the density of agricultural parcels 
according to Land Parcel Identification System (LPIS) data for the year 2017. 

2.2. Reference Data 

As ground truth data on crop types for the year 2017, we used reference 

data from the Brandenburg Surveying and Geospatial Information 

Office (Landesvermessung und Geobasisinformation Brandenburg) 

web-portal (Brandenburg Surveying and Geospatial Information 

Office, 2017). This reference parcel data, managed by Land Parcel 

Identification System (LPIS), is based on the reports of farmers who 

applied for agricultural subsidies in the frame of the European Union’s 

(EU) Common Agricultural Policy (CAP). Further, we refer to this 

dataset as LPIS. The data contains parcel boundaries and crop types 

harvested in the year 2017. 

The original dataset is available in a geospatial vector format and 

contains 161,503 parcels. Overlapping parcels and parcels with an area 

less than 1000 m2 were excluded from the reference data (1364 parcels, 

3017.516 ha). Out of the 158 original crop types, several crop classes 

were merged into grouped classes based on their biological plant family 

membership and phenological similarity. For example, class maize 

includes silo maize, maize for biogas, maize with flowering path, etc., 

and class potatoes comprise starch potatoes and potatoes for food. 

Supplementary material A gives an overview of the original and 

grouped classes. Only those grouped crop classes were selected from 

the original reference data, which accounted for at least 0.5% of the full 

LPIS area. The only exception was made for the class sugar beets, 
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which areal cover was close to the threshold (0.46%). This resulted in 

16 crop classes (Table 1) for which a total of 134,379 parcels 

(1,220,160.86 ha) was available in the LPIS data. Since crop groups 

such as winter cereals (winter wheat, winter rye, winter rape, winter 

barley, winter triticale), summer cereals (summer barley, summer oat), 

and legumes (legume mixture, peas-beans, lupins) are expected to 

show high intra-class confusion, we additionally report the accuracy 

results when these classes are grouped into one. The present study 

focuses only on crop type classification. No other land cover land use 

classes were considered. 

Table III-1. Overview information for the crop types considered in this study. 

Crop Type Number of Parcels Average Parcel Size [ha] 
Permanent grasslands 59,182 4.94 
Temporal grasslands 12,092 3.77 

Maize 14,449 14.27 
Sunflowers 834 12.26 

Potatoes 1015 9.17 
Sugar beets 240 24.86 

Winter wheat 9758 17.59 
Winter rye 14117 11.45 

Winter rape 6299 20.09 
Winter barley  5189 17.36 

Winter triticale 3289 11.01 
Summer barley 934 7.49 

Summer oat 2394 5.91 
Legume mixture 2297 8.98 

Peas-Beans 897 10.89 
Lupins 1393 8.70 

2.3. Remote Sensing Data Pre-Processing and Features Generation 

The data sensed by the Multi-Spectral Instrument (MSI) onboard 

Sentinel-2A/B, and by the C-band synthetic aperture radar (SAR) 

instrument onboard Sentinel-1A/B were analyzed in this study. The 

data were accessed via The Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). The tiling grid of Sentinel-2 data was 

used as a base grid (Figure 2.). Brandenburg’s entire territory is 

covered by eight Sentinel-2 tiles. Overall, 494 optical scenes and 473 

SAR scenes (in ascending mode) were utilized with temporal coverage 

from the beginning of January until the end of September 2017. Optical 

data acquired in October were entirely excluded from the analysis due 

to the lack of any scene with cloud cover below 80%. 
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Figure III-2. Overview of Sentinel-2 tiles covering Brandenburg and 
available Sentinel-1 SAR data (ascending mode) in the study region. 

2.3.1. Optical Data Pre-Processing and Gap-Filling 

The individual pre-processing steps that were applied to Sentinel-2 

data are shown in Figure 3. Sentinel-2 data at Level-1C (top of 

atmosphere) were processed to Level-2A (bottom of atmosphere) using 

sen2cor v2.4.0 (Müller-Wilm, 2016). Ten Sentinel-2 bands were used 

for further analysis. Bands 1 (coastal aerosol), 9 (water vapor), and 10 

(Short-Wave-Infrared (SWIR)-cirrus) were excluded from the analysis 

because of their irrelevance for crop type mapping. The data of the red-

edge (5, 6, 7), near-infrared narrow (8A), and SWIR bands (11, 12) were 

resampled from 20 to 10 m spatial resolution using the nearest 

neighbor algorithm. In addition to the original Sentinel-2 bands, four 

well-known VIs were generated: Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI), 

Normalized Difference Yellow Index (NDYI), and Plant Senescence 

Reflectance Index (PSRI) (Hatfield and Prueger, 2010; Sulik and Long, 

2015). 

Cloud masks were produced in two steps. First, cloud masks were 

calculated using the fmask (Zhu et al., 2015) extended for Sentinel-2 

data, according to Frantz (2018). Second, we combined information 

from the Scene Classification Layer (SCL) generated by sen2cor 

(Müller-Wilm, 2016) and the output of the fmask into a single binary 
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invalid pixel mask. We flagged a pixel as invalid if at least one of these 

two input layers detected cloud, cloud shadow, snow, defect, saturated 

pixels. 

Different acquisition times, clouds and cloud shadows lead to 

irregular time series of valid observations over the study area. Instead 

of using generic ways of handling missing data within RF (Tang and 

Ishwaran, 2017), we build a consistent gap-free time series over the 

whole study site with time-weighted linear interpolation. It allows 

accounting better for the temporal information contained within the 

original satellite time series data. Dense time series were created based 

on invalid pixel masks, four VIs, and the 10 bands of Level-2A data at 

10 m spatial resolution. Following the approach of Inglada et al. 

(Inglada et al., 2015), gap-filling started by defining bi-weekly target 

dates from January to September 2017. In total, we defined 20 target 

dates. After applying the invalid pixel mask, band wise time-weighted 

linear interpolation was performed considering only valid pixels to fill 

the defined target dates. 

 

Figure III-3. Sentinel-2 data pre-processing and feature generation. 

2.3.2. SAR Data Pre-Processing 

C-band Level-1 Ground Range Detected (GRD) Sentinel-1 products, 

acquired in Interferometric Wide (IW) swath mode, were accessed via 

the Google Earth Engine (GEE) platform (Gorelick et al., 2017). The 

data available in GEE were pre-processed with the Sentinel-1 toolbox 

from ESA, which involved updating orbit metadata, thermal noise 

removal, radiometric calibration, and terrain correction. For the scenes 

in ascending mode, we filtered extreme incidence angles so that only 

observations with incidence angles of 32° to 42° were used. The 

average incidence angle in the study area is equal to 37°. Lee speckle 

filtering and square cosine correction were applied as it was outlined 

by Tricht et al. (Van Tricht et al., 2018). After the incidence angle 

correction, we calculated bi-weekly medians and matched the time 

steps to the 20-target time-series dates of the optical features (Figure 

4). 
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Figure III-4. Sentinel-1 data pre-processing and feature generation. 

3. Methodology 

The methodological workflow of this study consists of the following 

steps (Figure 5): (1) extraction of optical and SAR time-series features 

at the pixel level (see Section 2.3 for more details); (2) sampling of 

training and testing pixels; (3) performing group-wise forward feature 

selection (gFFS), where individual features are grouped by time or 

variable respectively; (4) building RF models using all existing features 

and the best-performing feature subsets identified in (3); (5) predicting 

test-sets; (6) extracting accuracy metrics; (7) analyzing results using 

the information of RF feature importance and feature group ranking; 

(8) analyzing auxiliary data on the parcel size, optical data availability, 

temporal profiles of correctly and misclassified pixels. 

 

Figure III-5. Schematic overview of the methodological workflow. 
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3.1. Single Sensor Features Versus SAR-Optical Combination 

To compare and evaluate the accuracy achieved with single sensor 

features and their fusion, we separately classified only optical features, 

only SAR features, and a fusion of optical and SAR features. As optical 

features (in plots shown as S2), we selected 10 Sentinel-2 spectral 

bands and four VIs, as described in Section 2.3.1. In total, 20 time-steps 

of 10 spectral bands and four VIs summed up to 280 optical features. 

As for SAR features (in plots shown as S1), bi-weekly medians of VV 

and VH bands were used (pre-processing steps in Section 2.3.2.). They 

summed up to 40 SAR features. 

According to Pohl and van Genderen (Pohl and Van Genderen, 

1998), there are three levels of data fusion: pixel-level, feature-level, 

and decision-level. At the pixel-level fusion, multi-sensor input data 

are fused into a new dataset using various compression, dimensionality 

reduction methods (e.g., Principal Component Analysis, Wavelet-

based approaches, Brovey Transform) and then used for prediction or 

analysis. The feature-level fusion implies combining extracted features 

from different sensors to form a new multi-source feature stack. In this 

study, we will refer to this method as a feature stacking. Such multi-

sensor feature stacking is more commonly used in crop type 

classification studies (Orynbaikyzy et al., 2019). Joshi et al., (Joshi et 

al., 2016) refers to these two data fusion levels as ‘pre-classification or 

-modeling fusion’. Whereas ‘post-classification or -modeling fusion’ 

would be a decision-level fusion, which is performed by fusing the 

classification results of single sensor features based on pre-delineated 

rules or decisions. In this study, we perform optical-SAR feature 

stacking and decision fusion. 

The feature stacking was performed by stacking the 

abovementioned optical and SAR features into one optical-SAR feature 

stack (in plots shown as ff(S1&S2)). The decision fusion was done by 

fusing classifications derived from single-sensor features. We used the 

class probabilities of the RF to derive confidence values for S1 and S2, 

respectively. In the scikit-learn implementation of RF (Pedregosa et al., 

2011), the class probabilities were calculated as the mean predicted 

class probabilities of the trees in the forest. For a single tree, the class 

probability is defined by the fraction of samples of the same class in a 

leaf. The confidence level was calculated by the difference between the 

highest and second-highest class pseudo-probabilities. During 

decision fusion (in plots shown as df(S1&S2)), the prediction with the 

highest confidence level was selected as a final prediction. 

3.2. Sampling Strategy 

From the refined LPIS reference data (Section 2.2.), 50% of the 

parcels were selected for training, and 50% of the parcels for testing. 

Train-test split was done at the parcel level, to ensure that none of the 
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test-set pixels come from a parcel which already was chosen for 

training. Training and testing pixels were not chosen within a buffer of 

1 (10 m) pixel distance from parcel borders to avoid mixed spectral 

signatures. Training and testing pixels were sampled using equally 

stratified random sampling with 3000 samples size per crop type. This 

sample size was chosen to competently represent the spectral and 

phenological variability of the classes under investigation. It was 

ensured that training and testing pixels were equally sampled from 

small and large parcels to avoid underrepresentation of the small 

parcels. For each training and testing sample, information about the 

parcel size, the number of valid and invalid optical observations per 

month, and the sample’s distance to the parcel border was stored as 

auxiliary data. These datasets were further used for the analysis of the 

results (Section 3.3.). 

3.3. Group-Wise forward Feature Selection 

To evaluate the significance of the features and the effect of the high 

feature amounts on the accuracy of the RF classifier, we used a 

modified sequential forward feature selection (FFS) approach. FFS is 

one of the variations of the sequential feature selection (SFS) approach, 

which belongs to wrapper methods. The procedure starts with building 

several RF, each using only one of the available features (1st sequence). 

Based on the accuracies of these RFs, the best (e.g., in terms of 

accuracy) feature is selected and combined to sets of two features using 

all remaining features. Again, several RFs are generated, based on sets 

of two features (2nd sequence). This process is repeated, and with every 

iteration, a new feature is added until only one RF, including all 

features, is constructed. This is often done to get a full feature ranking 

and investigate if the accuracy decreases at a certain point while 

increasing dimensionality. Early stopping is also possible, e.g., by 

defining a desired number of features, by stopping when the peak 

performance is reached, or if the accuracy of a new iteration does not 

increase significantly compared to the previous iteration (Saeys et al., 

2007). 

Wrapper methods such as FFS are computationally expensive 

and often impractical to perform when large amounts of features are 

used. It is particularly true for studies using dense time-series like the 

presented study. For example, to run a complete FFS with the 320 

features considered in this study, it would need 51,360 model 

evaluation runs (Equation (1)), where one model evaluation comprises 

to train an RF, predict validation data, and calculate the accuracy of the 

model. Moreover, with 5-fold cross-validation, it sums up to 256,800 

model evaluation runs (Equation (2)). 
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Since the focus of our study is not to evaluate the significance of 

individual features but rather to understand which time steps or 

spectral bands, VIs, and backscattering coefficients contribute the 

most to the accuracy of the classification model, we modified FFS in a 

way that also reduced computational efforts (Figure 6). The 

modification was done by performing group-wise FFS (gFFS), where 

features are grouped based on a time-step (further, time-wise gFFS) 

and on a variable (further, variable-wise gFFS). For example, in time-

wise gFFS, the group ‘07-May’ consists of 2 (VV, VH), 14 (all bands and 

VIs), and 16 (a combination of those) features in case of S1, S2, and 

ff(S1&S2), respectively. Whereas the variable-wise gFFS considers the 

full time-series of a particular band or index as one entity (e.g., NDVI 

full time-series, VH full time-series). As a base of gFFS, we used the 

core implementation of the sequential feature selection (SFS) available 

in the MLxtend python package (Raschka, 2018). In total, time-wise 

gFFS required 1050 model evaluations for only optical, only SAR, and 

a combination of optical and SAR features. Variable-wise gFFS 

required 15 runs for SAR, 525 runs for optical, and 680 runs for optical-

SAR features. These numbers already include the five-fold cross-

validation runs, which were applied for receiving more robust 

estimates. 

 

Figure III-6. Group-wise forward feature selection scheme, where fgi is a group of 
features, e.g., fg1 = all features on date 1, fg2 = all features on date 2, etc. In the first 
sequence, fg1 is selected as the best (highest accuracy) of all feature groups. In the 
second sequence, each of the remaining feature groups is evaluated pair-wise together 
with already selected ones. The sequences are continued until the final set of features 
is evaluated. 
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3.4. Classification Approach 

The classification process was performed using state-of-the-art remote 

sensing image classifier-RF algorithms. It is a non-parametric machine 

learning algorithm consisting of an ensemble of randomized decision 

trees (Breiman, 2001a). Each decision tree predicts a target class for 

each training sample, and the class with the highest number of votes 

within the forest is selected as the ensemble’s final decision. Previous 

studies focusing on crop type mapping (Conrad et al., 2014; Inglada et 

al., 2015; Onojeghuo et al., 2018) show that RF produces generally 

accurate results. Due to its robustness to class label noise and high 

dimensional input data (Belgiu and Drăgu, 2016), it is extensively used 

in crop type classifications (Forkuor et al., 2014; Inglada et al., 2017; 

Zhou et al., 2017). 

In our study, we used the scikit-learn Python implementation of 

the RF algorithm. Based on the results of a randomized search using a 

five-fold cross-validation (Pedregosa et al., 2011), the following 

parameters were applied: (1) number of trees—700; (2) maximum 

depth—30; (3) maximum number of features used to split the node—

square root of the sum of features; (4) minimum sample number to 

split a node—25. 

The final RF models were built for optical, SAR, optical-SAR 

features using all features, and feature subsets selected based on the 

results of the time-wise and variable-wise gFFS (Section 2.4.3.). For all 

final RF models, the Gini importance score (also known as Mean 

Decrease in Impurity (MDI)) was used to evaluate the significance of 

the single features, further referred to as the RF feature importance. 

These feature importance scores were compared to the outcomes of the 

gFFS. 

To assess and compare the classification accuracies, we 

computed class-specific metrics such as precision (i.e., user’s 

accuracy), recall (i.e., producer’s accuracy) and class-specific f1-score. 

The f1-score (Equation (3)) is a weighted average measure of precision 

and recall, where f1-score reaches the best values at 1 and worst values 

at 0. The average over the class-specific f1-scores has been computed 

to get a single accuracy metrics over all classes (Pedregosa et al., 2011). 

In addition, we calculated confusion matrices. 

 

(

3

) 

Accuracies were calculated for all 16 classes. To understand how 

accuracy is impacted by expected confusion among cereal and legume 

crops, we also calculated grouped classification accuracy while treating 

cereals and legumes as one crop class. 
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3.5. Analysis of the Impact of Parcel Size, Pixel’s Location within 
a Parcel, Optical Data Availability on Classification Accuracy 

As was mentioned in Section 2.4.2., for each training and testing 

sample, we stored the information about the parcel size from which it 

was sampled. This data was then used to plot parcel size distributions 

for mis- and correctly-classified test samples. 

The pixel’s distance to the parcel border was calculated using the 

eo-box python package (Mack, 2019). Further, testing samples from 

individual crop types were grouped based on the distance to parcel 

borders, and then for each group, f1-score was calculated. Because of 

the parcel size variations, the number of samples in each group varies. 

Especially for more considerable distances such as 30–40 pixels away 

from parcel border, the underlining number of pixels used to calculate 

f1-score could be minimal. This results in expected significant 

variations on large distances. In the plot, the red vertical line indicates 

the distance at which 80% of samples have already been used to 

calculate f1-scores. Depending on the parcel size distributions of each 

crop type, the red vertical line switches along the x-axis. 

Using the invalid pixel mask (see Section 2.3.1.), we calculated 

the number of valid optical observations per month for each sample. 

The numbers varied from 0 to 5, where 0 means that no valid optical 

observation was available for considered samples at the specific month. 

The temporal profiles were built using NDVI and VH values for 

mis- and correctly classified samples. 

4. Results 

1.1. Classification Accuracies (Overall and Class-Specific) 

The f1-scores obtained from the predictions based on all features and 

the best-performing feature subsets selected using time-wise gFFS and 

variable-wise gFFS are shown in Table 2. The gFFS did not have any 

effect on the accuracy values for the experiments based on only SAR 

features (S1), optical features (S2), and decision fusion (df(S1&S2)). 

The decrease of f1-score by only 0.01 was recorded with time-wise gFFS 

for experiments based on optical-SAR features stacks (ff(S1&S2)). 

Also, in the class-specific accuracies, no significant changes were 

recorded (Supplementary Materials B). Based on these outcomes, we 

continue reporting classification accuracies based on the results when 

all the existing features were used. 

The f1-score of the predictions based on S2 and S1 was equal to 

0.61 and 0.67, respectively, without class-grouping. After grouping 

cereal and legume classes, f1-score derived from S2, and S1 

classifications increased to 0.73 and 0.76, respectively. There was no 

significant difference in the mean precision and recall values for single 
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sensor experiments (S2: precision—0.62, recall—0.61; S1: precision—

0.68, recall—0.67). 

Table III-2. Classification accuracies (f1-score) based on all features and the features 
subsets selected based on time-wise and variable-wise gFFS after grouping legume and 
cereal classes. 

 All Features 
Subset 

(Variable-Wise gFFS) 

Subset 

(Time-Wise gFFS) 

S1 0.76 0.76 0.76 

S2 0.73 0.73 0.73 

ff(S1&S2) 0.81 0.81 0.80 

df(S1&S2) 0.80 0.80 0.80 

The classifications based on ff(S1&S2) resulted in an f1-score of 0.72 

with a precision of 0.73 and a recall of 0.72 without class-grouping. 

Decision fusion showed similar results (f1-score—0.71, precision—

0.72, recall—0.72). Considering the grouped cereal and legume classes, 

f1-scores of both fusion approaches increased to 0.81, 0.80 for 

ff(S1&S2) and df(S1&S2) accordingly. Thus, both considered fusion 

approaches outperformed the single sensor accuracies. 

Figure 7 gives an overview of the class-specific accuracies for a 

single sensor and fused feature results. In general, class-specific 

accuracies showed higher diversity compared to overall accuracies. 

Winter rape and sugar beet classes showed the best accuracy results 

(f1-score > 0.90), with only minor differences between the used sensors 

or fusion types. 

 

Figure III-7. Crop-specific accuracies derived from the classifications based on only 
SAR (S1), only optical (S2) features, and optical-SAR feature stacks (ff(S1&S2)) and 
decision fusion (df(S1&S2)). 

Most crop types showed the highest accuracies when using ff(S1&S2), 

and were better classified with S1 compared to S2. For example, this 

applies to all winter cereals (winter rape, winter wheat, winter rye, 

winter barley, and winter triticale) with f1-scores > 0.70. The same 

pattern could be seen for summer cereals (summer barley and summer 
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oat) and potatoes. Nevertheless, f1-scores remained below 0.6 for both 

summer cereals. Potatoes and maize had the highest f1-score with 

ff(S1&S2), which were 0.75 and 0.79. For classes such as sunflowers, 

lupins, and peas-beans, the performance of models built using S1 was 

quite close to the performance of the models built using ff(S1&S2) (f1-

scores: ∆ = 0.03, ∆ = 0.03, ∆ = 0.01, accordingly) while using S2 

resulted in slightly lower accuracies (f1-scores: ∆ = 0.18, ∆ = 0.21, ∆ = 

0.19, accordingly). In contrast, the two considered grassland classes 

had higher classification accuracies when using S2 (f1-scores: 

temporal grasslands—0.42, permanent grasslands—0.62) compared to 

S1 (f1-scores: temporal grasslands—0.38, permanent grasslands—

0.51). This can also be seen from the map presented in Figure 8. 

Nonetheless, for these classes, the maximum accuracy score is reached 

with fused datasets (f1-scores ff(S1&S2): temporal grasslands—0.45, 

permanent grasslands—0.64). 

 

Figure III-8. Classification maps based on only SAR (S1) features, only optical (S2) 
features, their combination (ff(S1&S2)). 

Permanent and temporal grasslands had a high within-group 

confusion rate (Figure 9). The test samples of legume mixture and 

temporal grasslands were often predicted as permanent grasslands, 

reflecting low precision and high recall values. Maize samples were 

often predicted correctly (recall = 86), but false predictions of 

sunflower, potato, and lupin samples as maize affected the precision, 

which was equal to 73. Summer and winter cereals formed two groups 

with high intra-group confusion. For winter cereals, higher confusion 

was present among classes such as winter wheat, winter rye, and winter 

triticale. Whereas, summer cereals were not only confused within the 

group but also often were classified as one of the legume classes. The 

confusion between summer cereals and legume classes are higher 

when using only optical feature compared to SAR only features. 

Supplementary Materials C includes all confusion matrices for all 

experiments. 
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After combing summer barley and summer oat (which were 

heavily confused, see Figure 10) into a single class of summer cereals, 

the f1-score increased to 0.78 with ff(S1&S2) (Figure 8). The classes 

lupins, peas-beans, and legume mixture, when grouped to one legumes 

class, got the highest f1-score of 0.77 with ff(S1&S2). The f1-score of 

class winter cereals raised above 0.90 with ff(S1&S2) after grouping. 

However, when merging classes, the general pattern, that optical-SAR 

feature combination and decision fusion were outperforming single 

sensor information, remained unchanged. 

 

Figure III-9. Confusion matrix derived from the classification results using a 
combination of optical and SAR features (ff(S1&S2)). 

 

Figure III-10. Grouped crop-specific accuracies derived from the classifications 
based on only SAR (S1) features, only optical (S2) features, their combination 
(ff(S1&S2)), and decision fusion df(S1&S2). 

4.2. gFFS Rankings and Feature Importance 

The RF model with the highest accuracy (f1-score: 0.7) was achieved 

using a variable-wise gFFS at the 5th sequence with 100 features with 

ff(S1&S2) (Figure 11). By variable-wise gFFS, the full time-series of 

VH, VV, red-edge (B06), green (B03), and SWIR (B11) were identified 

as the most performant feature-sets (Figure 12, border axis). The f1-
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score difference at the point with the maximum performance (100 

features) and the last sequence (320 features) was only 0.01. 

The time-wise gFFS showed the maximum performance (f1-

score: 0.69) with 112 features at the 7th sequence with ff(S1&S2). The 

dates chosen as being most crucial by time-wise gFFS are shown in the 

border axis of Figure 12. No significant difference was observed 

between the maximum performance value and the f1-score at the last 

sequence with 320 features (∆ = 0.001). 

 

Figure III-11. Feature learning curves of time-wise and variable-wise gFFS based on 
only optical (S1), only, SAR (S2), and optical-SAR feature stacking (ff(S1&S2)). 

When applied to only optical features, time-wise and variable-wise 

gFFS showed identical maximum accuracy results with f1-score of 

0.58. The difference was in the number of features, where time-wise 

gFFS peaked at the 5th sequence with 70 features, and variable-wise 

gFFS peaked at the 6th sequence with 120 features. 

 

Figure III-12. Feature importance derived from RF models built using only optical, 
only SAR, and optical-SAR features. Circles illustrate the RF importance scores, while 
border axes illustrate the number of sequences at which variable-wise and time-wise 
gFFS have been picked. 

The use of both, VH and VV feature-sets (40 features), showed the 

highest performance (f1-score: 0.65) of the variable-wise gFFS when 

applied to only SAR features. The maximum performance (f1-score: 
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0.66) of the time-wise gFFS for VV and VH features was achieved at 

the 16th sequence. 

The RF importance scores derived from the RF models trained 

using optical (greens), SAR (blues), and optical-SAR feature stack 

(orange-brown) are illustrated in Figure 12. The experiments using 

only SAR features showed that data from April until mid-September 

were the most valuable for the classifier. The highest importance scores 

were given to the features acquired in June when the majority of crops 

are close to their full development stage. The results of those 

experiments that were based on only optical features showed that 

information obtained from three VIs (psri, ndwi, ndvi), red-edge 

(B06), and SWIR (B11) bands had higher importance scores compared 

to other features. The features acquired at the end of May had a distinct 

significance to the classifier. When optical and SAR data were used 

simultaneously, SAR features received higher ranking compared to 

optical features. Notably, none of the VIs were selected by variable-

wise gFFS when using the stacked features. 

4.3. Potential Influences of Parcel Size, Optical Data Availability, 
and Pixel Location within the Parcel on the Classification 
Accuracy 

For mis- and correctly-classified pixels, we analyzed the information 

on parcel sizes, the distance of pixels to parcel borders, optical data 

availability, their NDVI, and VH temporal profiles to assess their 

influence classification outcomes. 

Except for winter triticale and winter rye, all crops with f1-score 

below 0.70 at ff(S1&S2) have average field sizes below 9 ha (see, Table 

1). Among winter cereals, winter triticale and winter rye have the 

smallest average parcel sizes. Figure 13 shows, for each class, the 

distribution of field sizes of correctly and incorrectly classified pixels. 

For most classes, the parcel size distribution of correctly classified 

records is much broader than from misclassified records. Also, 

differences in medians suggest that pixels coming from large parcels 

were more often correctly classified. The medians’ differences derived 

from the parcel size distributions of correctly and misclassified records 

are smaller for the classes with the smallest average parcel sizes. For 

example, classes such as permanent grasslands (0.29 ha), temporal 

grasslands (0.33 ha), winter rye (0.85 ha), summer oat (1.03 ha), lupins 

(1.71 ha) show differences in medians of less than 2 ha. Whereas the 

highest differences in median parcel sizes were recorded for the 

following classes: winter wheat (7.44 ha), winter rape (6.15 ha), winter 

barley (5.80 ha), potatoes (5.14 ha), and peas-beans (5.12 ha). 
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Figure III-13. The parcel size distribution of misclassified and correctly classified 
pixels for ff(S1&S2). The plots for S1, S2, and df(S1&S2) can be found in 
Supplementary Materials D. 

The variations of f1-scores depending on a pixel’s distance to parcel 

border are illustrated in Figure 14. Plots for all remaining crop types 

can be found in Supplementary Materials E. 

As can be seen from Figure 14, border pixels have lower accuracy 

than those located 6–8 pixels away from the parcel borders. 

Predictions based on only optical features seem to have a higher 

variation of f1-scores even for classes with overall high accuracy values 

(e.g., winter rape, peas-beans, sunflowers) except for maize and sugar 

beets classes (see Supplementary Materials E). The classifications 

based on optical-SAR stacked features and decision fusion, in most of 

the cases, showed the highest accuracy, even for mixed pixels close to 

parcel border, compared to classifications based on one sensor only. 

 

Figure III-14. Variations in accuracy, depending on the distance of pixels to the 
parcel borders (y-axis). Vertical red lines indicate that 80% of the data lie on the left 
side of this axis. 

As various atmospheric conditions can considerably influence optical 

data quality, the effect of optical data availability on the classification 

accuracy was assessed based on the invalid pixel mask (see Section 

2.3.1.). We analyzed monthly optical data availability for correctly 

classified and misclassified pixels predicted by S2 (Figure 15). Further 

plots showing all crop types are available as Supplementary Materials 

F. 
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Correctly predicted pixels have, on average, more valid optical 

observations compared to misclassified pixels. For example, the class 

maize had the highest difference in optical data availability for 

correctly and incorrectly classified pixels in May and August. In May, 

94.4% of the correctly predicted pixels had one or more valid optical 

observations, whereas for misclassified pixels, this number was equal 

to 65.2%. In August, only 20.1% of all misclassified maize test pixels 

had one or more valid optical observations, while for the correctly 

classified pixels, it was 70%. For winter cereals, the maximum 

differences in the percentages occurred in July for winter barley and 

winter triticale; in May for winter rape and winter rye, in August for 

winter wheat. No significant differences were observed for summer 

cereals, temporal grasslands, and legume classes. In August, the 

difference for correctly- and misclassified pixels was the highest for 

classes such as sugar beets (77.1% vs. 37.6%), potatoes (58.9% vs. 

38.2%), and sunflowers (41.2% vs. 21.3%). Consequently, such optical 

data scarcity influenced the temporal profile curves. 

 

Figure III-15. Incidence of 1–5 monthly observations for correctly- and misclassified 
pixel. 

NDVI temporal profiles of mis- and correctly classified samples deviate 

considerably in the month, where we also observed large differences in 

optical data availability reported in the previous paragraph (Figure 15). 

Optical data scarcity can also be seen from the NDVI temporal profiles 

of misclassified and correctly classified pixels (Figure 16). 

Supplementary Materials G gives an overview of NDVI temporal 

profiles for all crop types. The months when misclassified pixels had 

the lowest amount of valid optical observations, apparent 

discrepancies in the NDVI curves can be identified. For example, the 

lowest percentage of optical data availability for misclassified pixels in 

August (Figure 15) is reflected in the lower NDVI values in August for 

the class maize. Surely, climatological, meteorological, and biological 

factors should also be taken into account when interpreting the 

alterations seen in these NDVI profiles. Smaller differences were 

present between the VH temporal profiles of correctly- and 
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misclassified pixels (Figure 16). These profiles are presented in 

Supplementary Materials H. 

 

Figure III-16. NDVI and VH temporal profiles of correctly classified and 
misclassified pixels of class maize. 

5. Discussion 

We evaluated the classification accuracies of RF models built using 

dense time-series features of only optical data (Sentinel-2), only SAR 

data (Sentinel-1), their combination, and decision fusion. Time-wise 

and variable-wise gFFS was employed to investigate the relevance of 

specific bands, Vis, and time-steps. To understand further influences 

on misclassifications, we additionally analyzed parcel sizes, optical 

data availability, and pixel distance to polygon borders. 

The results acquired for the example of Brandenburg (year 2017) 

showed that the combination of optical and SAR features and decision 

fusion leads to better overall classification accuracy (f1 score: 0.81) 

compared to single-sensor approaches. These findings are in line with 

several previous studies (Inglada et al., 2016; Salehi et al., 2017; 

Sonobe et al., 2017). In the presented study, no significant differences 

in accuracy were found between optical-SAR feature-stacking and 

decision fusion. When considering class-specific accuracies, several 

crop types were classified more accurately with only SAR features (e.g., 

lupins, peas-beans), while fewer crop types showed higher accuracies 

when using only optical features (e.g., permanent grasslands, sugar 

beets). However, in most cases, crop-specific accuracy based on a 

combination of sensors was insignificantly higher than the better-

performing single sensor accuracy. Respectively, the increase of overall 

accuracy in the fusion approaches is an expected consequence as each 

target class could achieve higher accuracies using best performing 

optical or SAR features. These results suggest that if the remote sensing 

data availability for the study region is not a subject of concern, the 
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decision to use optical-SAR fusion or single sensor data should be 

considered depending on the crop types being investigated. Data fusion 

is an attractive option for the classification of a broad range of diverse 

crop classes, but it also comes with more significant computational 

expenses. 

For the majority of investigated classes, classification accuracies 

derived from only SAR features showed higher values compared to only 

optical features. These results are contrasting to those where the 

performance of optical features was higher than SAR (Demarez et al., 

2019; Denize et al., 2018). However, several reasons can serve as a 

possible explanation for these outcomes. First, a large number of crop 

classes show similar phenological patterns. Existing crop type mapping 

studies often focus on few and partly merged classes such as maize, 

grasslands, winter cereals (one class), summer cereals (one class), and 

sugar beets. These classes have distinct phenological development 

profiles, which are well reflected in optical data. As our grouped class-

specific accuracy showed (Figure 10), the accuracy values based on only 

optical features increases when both cereals and legumes are grouped 

into single classes. Nonetheless, when predicting individual cereal 

classes, the SAR data were more successful in capturing the important 

short term differences in phenological development phases (see 

Supplementary Materials H, for VH temporal profiles) for those crops 

which optical data could not separate (see Supplementary Materials G, 

for NDVI temporal profiles). We assume that this is most likely due to 

the data gaps in optical data. It surely depends on the quality and 

amount of optical and SAR data used for feature generation, as seen in 

(Van Tricht et al., 2018). Second, in the presented study, we focus 

purely on the crop type classification, but no other land cover class was 

considered. The majority of crop type mapping studies often include 

land cover and land use classes such as urban areas, water bodies, 

forest, etc. [e.g., 4,17,21]. When differentiating, e.g., maize pixels from 

water, built-up, or forest pixels, it could be the case that optical features 

are more relevant for the classifier rather than SAR features. 

When looking at Figure 11, we may notice that the feature 

learning curve of S2 has a higher starting point than S1. However, with 

the increasing number of grouped features, the accuracy for S1 

increases much stronger than the accuracy of S2. It could, thus be 

concluded that single optical features are more informative than single 

SAR features; nevertheless, dense time-series of SAR data are able to 

reach higher accuracies compared to dense time-series of optical 

features. 

No significant accuracy differences were recorded among 

classifications based on full time-series data (320 features) and their 

subsets selected using gFFS. This supports that RF algorithm is robust 

to a large number of input features as stated also by other authors 

(Belgiu and Drăgu, 2016). However, it is also shown that 
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dimensionality reduction of input features improves the stability of RF 

classification accuracies (Millard and Richardson, 2015). Only in the 

last sequences of gFFS, we recorded an insignificant decline in 

accuracies (f1-score: ∆ = 0.01). But at the same time, the gFFS proved 

that based on a selection of the most relevant feature subsets (here: 120 

features), it was possible to reach the peak accuracy. 

Feature selection is used not only to improve the classification 

accuracy but also to better understand and interpret the input dataset 

(Immitzer et al., 2019; Sitokonstantinou et al., 2018; Yu et al., 2016), 

leading to explainable classification outcomes (Roscher et al., 2020). 

In this context, combining the information of RF feature importance 

and the rankings of the gFFS allows more profound insights into the 

relevance of individual features and groups of features for mapping 

typical crop types of Germany. It enables the identification of features 

that have high RF feature importance values but are correlated with 

other features in their information content. For example, many S2 

based features of 21 May show very high RF feature importance values. 

However, many of these features are not needed to reach maximum 

accuracy with the gFFS (see Figure 12). Thus, their information content 

for the classification must be highly correlated with one of the already-

selected features. Similarly, the RF feature importance of the psri from 

9 April, 23 April, and 7 May are high, but they are not needed to reach 

maximum accuracy in case of time-wise gFFS on S2. Instead, the date 

2 July is selected where the Gini feature importance is relatively low for 

all single features. However, concerning the information already 

selected in previous sequences, it seems to include some unique 

additional details. The combination of this information shows a certain 

limitation of the RF feature importance when the goal is to select a 

minimum of features with the maximum amount of information for the 

classification tasks. It also shows that the combination of both feature 

relevance information sources (Gini feature importance and gFFS 

ranking) increases the understanding and insight in feature relevance. 

Group-wise FFS allowed to substantially reduce the 

computational costs of a feature selection step while receiving 

meaningful outcomes. Usage of such feature grouping strategies could 

be an alternative choice for studies where computational expenses of 

feature selection were considered as one of the main challenges (Liang 

et al., 2020; Löw et al., 2013). For studies investigating the spatial-

temporal transferability of machine learning models (Meyer et al., 

2019, 2018), where the feature selection methods as FFS were 

extensively used, the application of gFFS might make this process more 

performant in large input feature-set cases. 

The feature learning curve of time-wise gFFS applied on optical-

SAR feature combination (Figure 11) shows high accuracy increases in 

the first five sequences, which correspond to 4 June, 2 July, 21 May, 13 

August, and 18 July (Figure 12). These time frames cover critical 
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phenological phases such as full stem development of most of the 

cereals, flowering, and land management events like harvest and hay 

cut. The following two time-steps, 9 April and 10 September improved 

the f1-score only by 0.01 each. According to the German National 

Weather Service data (German National Weather Service, 2019), these 

two time-steps are associated with significant plant height 

development for winter cereals. As for summer crops, it is the phase of 

the first plant emergence above ground. The beginning of September is 

a time of harvest for classes such as maize, sunflowers, and pre-harvest 

phase for sugar beets. Thus, all time steps selected by time-wise gFFS 

reflect significant phenological developments or management actions 

on the ground. The results we acquired from time-wise gFFS and RF 

feature importance scores enable us to infer that the temporal coverage 

from the beginning of April until the end of September is sufficient to 

classify the classes under consideration, including winter cereals in our 

study region. 

The results of variable-wise gFFS (Figure 12) applied on the 

optical-SAR combination, together with our results on the comparison 

of single-sensor performances (Section 3.1.), showed the high 

importance of SAR features. These outcomes were reaffirmed by the 

highest RF importance scores of VH and VV. This result was different 

from the findings of some studies, where optical features turned out to 

be more relevant for crop type classification (Demarez et al., 2019; 

Denize et al., 2018). In our variable-wise gFFS results, VH and VV were 

followed by the red-edge band (B06) as the next most relevant feature 

set. A recent study by Griffiths et al. 2019 (Griffiths et al., 2019) also 

pointed out that adding the red-edge band to other optical bands 

improved crop-specific accuracy while it had a lower impact on the 

accuracy of non-cropland cover classes. The last feature sets that finally 

raised the feature learning curve to maximum were the green and 

SWIR bands, which improved the f1-score by only 0.01 each (Figure 

11). This supports the finding of previous studies stating that green and 

SWIR bands also contain important information for crop type mapping 

tasks (Immitzer et al., 2016). 

The crop-specific accuracies were influenced by the parcel sizes 

(Figure 13). The results showed that classes with small average parcel 

sizes (Table 1) were classified with lower f1-scores. This issue was 

similarly discussed in recently published studies (Arias et al., 2020; 

Defourny et al., 2019a). One of the reasons for this effect is the 

influence of mixed pixels at parcel borders. Often, small parcels have 

elongated shapes, which would result in an increased number of mixed 

pixels. As it was seen from Figure 14, in the majority of cases (all except 

sugar beets and winter rape), border pixels were classified with lower 

accuracies almost until the 4th pixel away from parcel border. However, 

some studies successfully employ information from mixed pixels in 

their classification tasks (Foody and Mathur, 2006). 
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Apart from the effect of border pixels, differences in the field 

management practices (e.g., tillage practices, fertilization, time, and 

frequency of weeding, water management) for small and large parcels 

certainly influence the spectral response. Based on this, we explicitly 

built our sampling strategy in a way that all training and testing pixels 

were equally distributed among all polygons. We assumed that the 

differences in classification accuracy for large and small parcels could 

have been bigger if we had not adjusted our sampling strategy. 

It was also shown how optical data availability affected the 

performance of the classifier. As we saw from Figure 15 (for all crop 

types, see Supplementary Materials F), predictability of all crop types 

suffered from a scarcity of optical observations. Nonetheless, some 

crops appeared to be more sensitive to the lack of optical data at 

specific months. For example, for the winter rape, it was May, which 

was associated with the flowering phase. The high RF importance 

scores (Figure 12) of feature ‘21 May’ in the experiments based on only 

optical features could also be explained by the optical data availability, 

as the number of optical observations was much higher in May 

compared to all other months (Figure 15). Therefore, it is suggested to 

consider the aspect of data availability when concluding the 

importance of specific features or time-steps. 

Further steps could include testing spectral-temporal variability 

metrics such as medians, percentiles of optical and SAR features. The 

spatial transferability of machine learning models would also be 

considered in future research. 

6. Conclusions 

The present study investigated the advantages of using the fusion of 

optical (Sentinel-2) and SAR (Sentinel-1) dense time-series data over 

the single sensor features. The importance of the features was 

evaluated using variable- and time-wise grouped forward feature 

selection (gFFS). Additionally, the effects of optical satellite data gaps 

and parcel size were analyzed to understand the reasons for 

misclassifications. 

The classification accuracy based on only SAR features 

outperformed those based on optical features alone. Optical-SAR 

feature stacking showed the highest accuracies, while no significant 

difference was found between feature stacking and decision fusion. 

The combined assessment of feature ranking based on gFFS and 

RF feature importance enabled a better interpretation of the results 

and selecting the most relevant features from both data sources. The 

question of selecting time-steps with most discriminative power for a 

classification task is better analyzed by considering all the information 

available at a particular time step compared to single features. 
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With optical-SAR feature combination, the peak accuracy of the 

RF model was achieved when using the full time-series of VH, VV, red-

edge (B06), green (B03), and short-wave infrared (B11) bands. As for 

temporal information, the classifier’s performance was the highest 

when the full feature-sets acquired on 9 April, 21 May, 4 June, 2–18 

July, 13 August, and 10 September were used. 

The analysis of the parcel sizes showed that these had a high 

impact on classification accuracies. Crop classes with a large number 

of small parcels are harder to classify than large parcels. One reason for 

this is that border pixels had lower classification accuracy than those 

in the center of the agricultural parcels. 

Also, it was shown that for most of the crop classes, the 

classification accuracy drops when a lower amount of valid optical 

observations is available at specific months. 
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Abstract 

Large-scale crop type mapping often requires prediction beyond the 

environmental settings of the training sites. Shifts in crop phenology, 

field characteristics, or ecological site conditions in the previously 

unseen area, may reduce the classification performance of machine 

learning classifiers that often overfit to the training sites. This study 

aims to assess the spatial transferability of Random Forest models for 

crop type classification across Germany. The effects of different input 

datasets, i.e., only optical, only Synthetic Aperture Radar (SAR), and 

optical-SAR data combination, and the impact of spatial feature 

selection were systematically tested to identify the optimal approach 

that shows the highest accuracy in the transfer region. The spatial 

feature selection, a feature selection approach combined with spatial 

cross-validation, should remove features that carry site-specific 

information in the training data, which in turn can reduce the accuracy 

of the classification model in previously unseen areas. Seven study sites 

distributed over Germany were analyzed using reference data for the 

major 11 crops grown in the year 2018. Sentinel-1 and Sentinel-2 data 

from October 2017 to October 2018 were used as input. The accuracy 

estimation was performed using the spatially independent sample sets. 

The results of the optical-SAR combination outperformed those of 

single sensors in the training sites (maximum F1-score–0.85), and 

likewise in the areas not covered by training data (maximum F1-score–

0.79). Random forest models based on only SAR features showed the 

lowest accuracy losses when transferred to unseen regions (average 

F1loss–0.04). In contrast to using the entire feature set, spatial feature 

selection substantially reduces the number of input features while 

preserving good predictive performance on unseen sites. Altogether, 

applying spatial feature selection to a combination of optical-SAR 

features or using SAR-only features is beneficial for large-scale crop 

type classification where training data is not evenly distributed over the 

complete study region. 

1. Introduction 

Supervised machine learning methods are widely used for large-scale 

crop type classification (Griffiths et al., 2019; Inglada et al., 2017; 

Preidl et al., 2020). Due to the limited availability of field data (e.g., 

because of location inaccessibility or reference data collection costs), 

large-scale crop type mapping often implies model predictions in 

geographical spaces far beyond the training locations. Due to the 

presence of spatial autocorrelation in the geo-referenced datasets, the 

predictor variables in reference systems (i.e., the training sites) 
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might significantly differ from those in transfer systems (i.e., 

unseen by model transfer sites). Spatially transferring the model 

outside the ‘known’ to a model environment could substantially reduce 

its performance. In the context of crop type mapping, the good spatial 

transferability of a machine learning classifier indicates its ability to 

predict crop classes in unseen environments with minimal accuracy 

losses compared with classification accuracies achieved in training 

areas. 

In recent years, the spatial transferability of machine learning 

models has been rigorously studied in various geo-spatial application 

fields (e.g., land cover classification (Lucas et al., 2020), species 

distribution modelling (Schratz et al., 2018)). Many crop type 

classification studies have illustrated the successful use of transfer 

learning and domain adaptation techniques (Ajadi et al., 2021; 

Gadiraju and Vatsavai, 2020; Nowakowski et al., 2021). For example, 

Bazzi et al. (2020) (Bazzi et al., 2020) applied ‘distil and refine’ 

approach, where the Convolutional Neural Network (CNN) trained 

with large reference system samples is first distilled into a smaller 

‘student’ model and then refined using the limited target system 

samples for mapping irrigated areas. Lucas et al. (2021) (Lucas et al., 

2021) presented a semi-supervised domain adaptation technique with 

a novel regularisation method for CNN for mapping a wide variety of 

crops with the limited number of samples available in the target 

system. Gilcher and Udelhoven (2021) (Gilcher and Udelhoven, 2021) 

compared the spatial and temporal transferability of pixel-based and 

convolution-based classifiers for binary maize and non-maize 

classification using Synthetic Aperture Radar (SAR) data. Hao et al. 

(2020) (Hao et al., 2020) researched how the length of time-series of 

Normalized Difference Vegetation Index (NDVI) features affects the 

predictive performance of Random Forest models in target systems. 

Most of such studies were investigating the classifier adaptation 

techniques to the target domain using semi-supervised or 

unsupervised learning. In comparison, much less research is available 

on the influence of input remote-sensing datasets on the classifier’s 

performance in the target systems as performed by, e.g., Hao et al. 

(2020) (Hao et al., 2020). 

Besides the lack of representative samples, overfitting of a 

classification model to reference samples is a major reason for poor 

spatial transferability and hence poor generality. Spatial overfitting can 

occur when machine learning algorithms such as Random Forest are 

optimized, e.g., for the training data acquired from certain localities 

(Wenger and Olden, 2012). Recent studies have illustrated that a 

reduction in spatial overfitting, i.e., fitting the model to samples of one 

location exclusively, is possible by performing spatial cross-validation 

(CV) based feature selection (Meyer et al., 2018; Roberts et al., 2017), 

also known as spatial feature selection. Spatial feature selection allows 
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detecting and removing problematic predictor variables that carry 

information about specific training sites but negatively affect the 

accuracy of predictions in a new geo-location (Meyer et al., 2019). Such 

approaches to feature selection fall into the ‘invariant feature selection’ 

category of domain adaptation techniques (Tuia et al., 2016). While 

spatial feature selection showed improvements in model transferability 

in other research fields (Meyer et al., 2018), the effect of spatial feature 

selection on improving the spatial transferability of crop type mapping 

has not yet been tested. 

The type of remote-sensing datasets used for crop type 

classification has a substantial effect on crop type accuracies 

(Orynbaikyzy et al., 2019). Many studies underpin higher classification 

accuracy based on optical-SAR combinations than single sensor 

datasets (Inglada et al., 2016; Orynbaikyzy et al., 2020; Van Tricht et 

al., 2018). Joint use of sensors provides complementary information, 

such as plant pigment information and canopy structure, and allows 

improved discrimination of crop types (Veloso et al., 2017). However, 

to the best of our knowledge, it is unknown if Random Forest models 

for crop type mapping based on the combination of optical-SAR data 

show superior results when spatially transferred to the previously 

unseen environment compared with single-sensor models. Moreover, 

no comparative studies were found investigating the spatial 

transferability of models based on only optical and only-SAR datasets. 

Operational SAR sensors such as Sentinel-1 observe the Earth’s surface 

through clouds at regular intervals over large spaces. Whereas 

acquisitions from optical data are less regular due to the clouds, which 

in turn affect the generation of regular time series. It can be 

hypothesised that SAR-based models with more regular data 

acquisitions would perform better concerning spatial transferability to 

distant geographical spaces than optical datasets. This hypothesis is 

relevant to the areas where the persistent presence of clouds could 

substantially affect the quality of optical features. 

Against this background, this study aims to quantify, reduce, and 

assess the accuracy losses introduced through the spatial transfer of 

Random Forest models for crop type mapping in the example of the 

diverse agricultural landscapes of Germany. First, we test the 

performance of single SAR or optical data in comparison to a 

combination of both when predicting crop type classes in a target 

system, i.e., the transfer region. Second, we attempt to improve the 

spatial transferability of the widely used machine learning classifier 

Random Forest using spatial feature selection with a modified feature 

selection approach—three-step group-wise forward feature selection. 

Moreover, we analyse auxiliary information such as surface elevation, 

parcel sizes, soil quality rating, and phenological observation data to 

understand their possible influences on spatial transferability.  
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2. Study Sites and Data 

2.1. Study Sites 

Seven study sites across Germany in the shape of Sentinel-2 tiles (109.8 

km × 109.8 km) were chosen based on the reference data availability, 

the reference data quantity, the distance between study sites, and their 

regional dissimilarities (Figure 1). The acronyms of the study sites 

correspond to the second part of the ISO 3166-2 codes of the German 

federal states where the study sites are mainly located. (Here, BW-

Baden-Württemberg, BY–Bavaria, BB–Brandenburg, HE–Hesse, 

MV–Mecklenburg-Western Pomerania, NI-Lower Saxony, TH–

Thuringia). Three sites are located in the Northern German Lowlands 

(MV, BB, NI), one site in the Central Uplands (TH), two sites in the 

South German Scarplands (BW, HE), and another one in the Alpine 

Foreland (BY). The elevation gradually increases from the German 

Lowlands in the north to the Alps in the country’s south. Furthermore, 

we will use the codes of the German federal states to refer to the specific 

study site. 

 

Figure IV-1. Location of the seven study sites in Germany. 



90 
 

According to the present Köeppen-Geiger climate classification (Beck 

et al., 2018), the western three tiles (NI, HE, and BW) are located in 

class Cfb, which is characterised by a temperate oceanic climate with 

warm summers and no dry season. A warm-summer continental 

climate defines the eastern four tiles (TH, BY, MV, and BB) with no dry 

seasons (class Dfb). During the summer months of 2018, the lowest 

and the highest monthly mean air temperatures were recorded in tiles 

BY and BB (DWD, 2018a). The precipitation pattern varied over the 

year in all tiles (DWD, 2018b). The outstanding peaks of the monthly 

total precipitation occurred in tile BW (Figure 2). In general, the year 

2018 was recorded as the warmest and sunniest year in Germany since 

at least 1881 (DWD, 2018c), with the longest heat periods in July and 

August. This led to substantial negative anomalies in remotely sensed 

vegetation activity on agricultural land (Reinermann et al., 2019) and 

substantial yield losses (Klages et al., 2020). However, the spatial 

patterns of anomalies recorded in 2018 were different across the 

country. It was a good study case for the assessment of the spatial 

transferability of Random Forest models under varying environmental 

and climatic conditions at the country scale. 

 

Figure IV-2. Mean monthly air temperature (top), monthly total precipitation 
(bottom) across the seven study sites from October 2017 to October 2018. Data 
source: German Weather Service (DWD). 

An agricultural season in Germany typically lasts from March to 

September for the majority of summer crops and from September to 

August of the following year for winter cereals. However, due to the 

differences in natural landscapes and abiotic factors across the 

country, regional variation of a few days or even weeks can occur in 

phenological crop growth stages (Gerstmann et al., 2016).  

2.2. Reference Data 

The reference datasets were acquired from seven German federal states 

in the form of vector files containing agricultural parcels and crop types 
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for the year 2018. These datasets rely on farmers’ crop declarations, 

which are part of a subsidy payment scheme within the European 

Union’s Common Agricultural Policy. Agricultural parcels were 

recorded in the context of the Integrated Administration and Control 

System (IACS) that is executed by national administrations (in 

Germany, at the federal state level) and uses the Land Parcel 

Identification System (LPIS) as a basis. We will refer to the reference 

datasets as ‘LPIS data.’ 

The declarations by farmers involve manual digitalization of 

parcel borders. In many cases, such datasets contain geometry 

overlaps. Parcels overlapping adjacent parcels by more than 500 m2 

and parcels with a parcel size of less than 0.1 ha were filtered out from 

the original dataset. These thresholds were selected empirically. The 

following spectrally inseparable classes were combined: Maize with 

flowering path, silo maize, and maize for biogas classes were merged 

into one ‘maize’ class; Starch potatoes and potatoes for food were 

merged into one ‘potatoes’ class; Temporal and permanent grasslands 

were merged into one ‘grasslands’ class. The ‘summer oat’ and ‘summer 

barley’ classes were merged into a general ‘summer cereals’ class. We 

selected all crop types that were present in all tiles and that had at least 

20 parcels after filtering. The threshold of 20 polygons was set to limit 

the number of pixels sampled from one polygon. The resulting 

selection of crop types is shown in Table 1. 

Table IV-1. Number of parcels per crop type in each study site. 

 HE BW  NI TH BY MV BB Sum 

Grasslands 2563 124,977 55,511 25,233 95,925 22,766 19,615 346,590 

Maize 9837 28,756 26,486 2762 37,947 4165 2383 112,336 

Alfalfa 486 942 46 1007 532 103 516 3632 

Potatoes 1390 561 6023 159 4551 360 206 13,250 

Sunflowers 43 69 20 31 32 83 406 684 

Winter 

wheat 
29,547 22,397 13,149 10,495 32,742 5585 1259 115,174 

Winter 

barley 
8741 7959 6356 3418 17,511 2513 1065 47,563 

Winter rape 9392 5433 5273 5327 5694 3746 860 35,725 

Winter 

triticale 
1721 4585 3293 839 5137 386 717 16,678 

Winter rye 2497 846 9944 468 2069 1902 4195 21,921 

Summer 

cereals 
7017 11,399 10,065 3272 6001 1519 1176 40,449 

Sum 73,234 207,924 
136,16

6 
53,011 208,141 43,128 32,398 754,002 

2.3. Remote Sensing Data and Pre-processing 

Optical and SAR data sensed by the Multi-Spectral Instrument (MSI) 

onboard Sentinel-2 A/B and by the C-band SAR instrument onboard 
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Sentinel-1 A/B were downloaded from the Copernicus Open Access 

Hub covering the time frame from 1st of October 2017 to 31st of 

October 2018. In total, 679 Sentinel-2 scenes and 3709 Sentinel-1 

scenes (1898 scenes in ascending and 1811 in descending modes) were 

processed. Due to its all-weather sensing capabilities, SAR data 

provides more consistent and valid observations over time. Whereas 

the availability of valid optical data highly depends on the weather 

conditions of the sensed locations. 

For the pre-processing of optical data, we used the MACCS-

ATCOR Joint Algorithm (MAJA) version 3.3 (Hagolle et al., 2017). 

From the available 12 Sentinel-2 bands, we selected three visible (B2, 

B3, B4), one near-infrared (B8), four red-edge (B5, B6, B7, and B8A), 

and two short-wave infrared (B11, B12) bands that were corrected for 

slope effects (so-called ‘FRE products’ from MAJA). The red-edge and 

short-wave infrared bands with a 20 m spatial resolution were 

resampled to 10 m using the nearest neighbour algorithm. Commonly 

used vegetation indices (d’Andrimont et al., 2020; Tardy et al., 2017; 

Van Tricht et al., 2018), namely, Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI) and 

Normalized Difference Yellow Index (NDYI), were calculated from 

Sentinel-2 bands (Equations (1)–(3)). 

NDVI = (B8 − B4) (B8 + B4)⁄  (4) 

NDWI =  (B8 − B12) (B8 + B12)⁄  (5) 

NDYI =  (B3 − B2) (B3 − B2)⁄  (6) 

We pre-processed Level-1 Ground Range Detected (GRD) and 

Interferometric Wide Swath (IWS) Sentinel-1 scenes using the S1TBX 

toolbox (v7.0.4) of the SNAP software. The following pre-processing 

steps were conducted: (1) applying orbit files; (2) removing GRD 

border noise; (3) thermal noise removal; (4) subset to the study site 

area; (5) radiometric calibration; (6) refined Lee speckle filtering (filter 

window size–5 × 5); (7) terrain flattening; (8) terrain correction; (9) 

conversion of data from digital numbers to decibels (dB). The output 

images were resampled with the nearest neighbour algorithm to 10 m 

spatial resolution using gdal’s gdalwarp utility. 

We have used pre-processed co-polarized VV and cross-polarized 

VH bands in ascending and descending data acquisition modes. 

Additionally, we have calculated the VH/VV ratio for each data 

acquisition mode. 

2.4. Auxiliary Data 

To explore potential factors influencing the quality of the spatial 

transferability, we gathered auxiliary information such as parcel sizes, 

phenological observation records, surface elevation, and soil quality 

rating values for each sampled pixel. The parcel sizes were calculated 
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based on the reference LPIS datasets. Surface elevation information 

was extracted from a digital elevation model of the Shuttle Radar 

Topography Mission SRTM (NASA-JPL, 2013). We downloaded the 

Müncheberger soil quality rating layer from the product centre of the 

German Federal Institute for Geosciences and Natural Resources 

(BGR, 2013). The Müncheberger soil quality rating, developed by the 

Leibniz-Centre for Agricultural Landscape Research (ZALF), 

comprises information on basic soil and soil hazard indicators (Mueller 

et al., 2014). For each sample pixel, we extracted scores that ranged 

from 0 to 100, where a higher score indicates better soil quality for 

cropping and grazing and higher crop yield potential. We further 

processed phenological observation records provided by German 

Weather Service (DWD) via the Climate Data Center (DWD, 2018d) for 

maize, summer barley, summer oat, winter wheat, and winter rape 

crops for the season 2017–18.  

3. Methodology 

3.1. Generation of Dense Time Series Features 

The remote-sensing data acquired for seven study sites are located in 

different orbit tracks, resulting in variation of data acquisition times 

across sites. In the case of optical data, clouds and cloud shadows 

reduce the consistency of the time-series. To generate evenly 

distributed dense time-series features for all study sites, we first 

generated bi-weekly datetime arrays from the 1 October 2017 to the 31 

October 2018. The resulting 29 time-steps were used as the anchor 

dates to which we interpolated nearest (on time dimension) 

observation values from optical data (Figure 3). For SAR data, we 

selected images recorded seven days before and six days after the 

anchor date and calculated the median of these images at the pixel 

level. Generation of dense time-series features was performed for all 

optical and SAR variables described in Section 2.3. 

 

Figure IV-3. NDVI profile of original and interpolated values for the class potatoes 
(500 sample points) in tile HE. 
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3.2. Training and Testing Samples 

The study was performed at the pixel-level to avoid the introduction of 

biases due to the segmentation quality across seven study sites (Tetteh 

et al., 2021). For each of the seven study sites, we sampled 500 pixels 

per crop type using stratified random sampling. From the resulting 

sample set, 60 percent (300 pixels) was used as a training-set and 40 

percent (200 pixels) as a test-set for the classification model. It was 

ensured that no overlaps occurred between training and test samples 

at the parcel level. To avoid the underrepresentation of samples from 

small parcels, we adjusted our sampling scheme to consider the parcel 

size information by distributing samples more evenly among parcels of 

different sizes. A negative buffer of 10 m (one Sentinel-2 pixel) was 

applied to exclude the border pixels from sampling. For each sample, 

we kept information about the size of the parcel from which it was 

sampled. 

3.3. Model Performance Estimation Using Spatial Cross-Validation 

To evaluate the models’ performance on a spatially independent test-

set, we ran a 7-fold spatial CV where sample data from one study site 

was considered as one-fold (see Figure 4, ‘Model Validation’ part). In 

literature, spatial CV is also called leave-location-out CV (Meyer et al., 

2018) and block CV (Roberts et al., 2017). 

In each run of 7-fold spatial CV, the entire test data from one-fold 

is held out as an independent test-set representing the target system. 

The remaining six folds are used as a training site representing the 

reference system. After building the Random Forest model using 

training samples from the reference system, we spatially transfer the 

model to predict the test-set in the target system. Since we also want to 

evaluate the model’s performance in the training sites, we additionally 

predict the crop types for the test-set samples in the reference system. 

This procedure runs seven times; each time, the hold-out fold changes 

so that each fold is once the spatially independent test-set (target 

system) and six (k − 1) times the training-set (reference system). 
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Figure IV-4. Graphical illustration of model validation and feature selection 
procedures. The pseudo-code of this workflow is provided in Supplementary Material 
A. 

We call the accuracy scores received from the reference system test-set 

samples ‘reference system accuracy’. The accuracy scores received from 

the target system test-set samples we call ‘target system accuracy’. The 

average and class-specific F1-scores (F1) were used as accuracy 

measures (Equation (4)). To better assess the quality of the model 

transfer to the target systems, we calculated the ‘accuracy loss’ (F1loss) 

by subtracting the F1-score acquired from the reference system from 

the F1-score acquired from the target systems (Equation (5)).  

F1 =
True Positive (TP)

True Positive (TP) +
1
2

(False Positive (FP) + False Negative (FN))
 

(7) 

F1loss = F1target system − F1reference system (8) 

3.4. Feature Selection and Model Building 

In reference systems, Random Forest models were built with the 

following two strategies: first by using all available features (‘All 

features’) and second by applying spatial feature selection 

(‘gFFS+sCV’). In total, we ran six experiments (see Table 2). We 

applied two feature selection approaches for each of only optical (‘S2’), 

only SAR (‘S1’) and the combination of optical-SAR (‘S1+S2’) datasets. 

The combination of optical and SAR features was performed by 
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stacking features together. For each of conducted six experiments, we 

calculated reference and target system accuracy and classification 

accuracy losses by subtracting target system accuracy from reference 

system accuracy. 

Table IV-2. Overview of conducted six model building approaches with three input 
datasets and two feature selection approaches. For each experiment, the classification 
accuracies from the reference system (‘Ref.System’) and target system (‘Trg.System’) 
were recorded. 

  Input Dataset 
  S1 1 S2 2 S1+S2 3 

Feature 
Selection 
Method 

All features 4 
Ref. System 6 and 

Trg. System 7 
Ref. System 6 and 

Trg. System 7 
Ref. System 6 and Trg. 

System 7 

gFFS+sCV 5 
Ref. System 6 and 

Trg. System 7 
Ref. System 6 and 

Trg. System 7 
Ref. System 6 and Trg. 

System 7 

1 ‘S1’—SAR data from Sentinel—1 satellite; 2 ‘S2’—optical data from Sentinel—2 

satellite; 3 ’S1+S2’—combination of S1 and S2 by feature stacking; 4 ‘All features’—

all features of input datasets were used to build the final Random Forest model; 5 

‘gFFS+sCV’—a subset of features selected using three-step group-wise Forward 

Feature Selection (gFFS) with spatial cross-validation (sCV) was used to build the final 

Random Forest model; 6 ‘Ref.System’—reference system is the system from which 

the training samples were used to build a model; 7 ‘Trg.System’—target system is the 

system from which no training samples were used. The target systems are only used to 

evaluate the classification performance of the models. 

In ‘All features’, we selected all input features and all training samples 

from the six reference system folds to build final Random Forest 

models. The spatial feature selection was performed using a 3-step 

group-wise Forward Feature Selection (gFFS, described below). In 

‘gFFS+sCV’, all training samples of the reference systems were split 

into six folds (see Figure 4, bottom) based on their spatial allocation 

(one study site = one spatial fold). The feature selection is then 

performed using gFFS and 6-fold spatial CV.  

The final Random Forest model is then built using all reference 

system training samples and the selected feature subset. The Random 

Forest algorithm (Breiman, 2001b) was selected based on numerous 

reports of its successful application in crop type classification tasks 

(Forkuor et al., 2014; Zhong et al., 2014), its ability to handle high 

dimensional feature spaces (Belgiu and Drăgu, 2016) and relatively low 

sensitivity to hyperparameter tuning (Schratz et al., 2018). The 

standard setting of the scikit-learn (version 0.22) implementation 

(Pedregosa et al., 2011) of the Random Forest algorithm was used to 

build the final prediction models, with the only change in the number 

of trees from 100 to 500 as recommended in (Belgiu and Drăgu, 2016). 

This hyperparameter setting is also commonly used among large-scale 

crop type mapping studies (Blickensdörfer et al., 2022; Preidl et al., 

2020). The square root of the total number of features was used to split 

the nodes in the single trees of this ensemble classifier. 
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Group-wise Forward Feature Selection (FFS) is a variation of 

standard Forward Feature Selection (FFS) (Saeys et al., 2007) that 

begins by evaluating all single features individually. Here, by 

‘evaluation’, we mean model building, predicting, and measurement of 

a performance score. After the first iteration, the input feature of the 

model with the highest performance score is selected as a fixed feature 

and passed to the next sequence. The procedure is reiterated by 

evaluating the set of fixed features from previous iterations together 

with one new feature from the remaining unselected features. The best-

performing feature pair is fixed for the next iteration and subsequently 

again combined with each of the remaining features individually. The 

process runs until, e.g., no unselected features are left, the number of 

desired features is reached, or other custom stopping criteria are met. 

One of the main limitations of FFS is its computational intensity. 

Intending to reduce the computational costs and still investigate all 

available features, we used group-wise FFS (gFFS) as presented in 

Orynbaikyzy et al. (2020), based on Defourny et al. (2019c). In gFFS, 

instead of considering single features within a given FFS iteration, 

groups of features were used. 

The gFFS was conducted in three sequential steps (Figure 5). 

First, we run variable-wise gFFS, where features are grouped based on 

variables (e.g., complete time-series of S2 bands, vegetation indices, 

two S1 bands and their ratio). Each group of variables was considered 

as a single entity within gFFS. The feature groups selected by the 

variable-wise gFFS step then go to the second step—the time-wise 

gFFS. Here, the features are grouped based on time-steps (e.g., all 

features selected in the 1st step are from the 7th of June) and each 

group of time-steps was considered as a single entity within gFFS. The 

resulting selection of variable and time feature groups is then passed 

to the final third step, the standard FFS, where only single features are 

considered.  

 

Figure IV-5. 3-step group-wise Forward Feature Selection (gFFS) approach. 

In the variable-wise gFFS, the number of groups varies between the 

two sensors. SAR data has six (VVasc, VVdsc, VHasc, VHdsc, 

VV/VHasc, VV/VHdsc), optical data has 13 (B2, B3, B4, B5, B6, B7, B8, 
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B8A, B11, B12, NDVI, NDWI, NDYI), and consequently, the optical-

SAR combination has 19 groups. In the time-wise gFFS, the number of 

groups is the same for both sensors and for their combination (29 time 

steps). 

Feature selection was performed using the Random Forest 

(Breiman, 2001b) model with standard settings of scikit-learn 

implementation (Pedregosa et al., 2011) of the algorithm but with 500 

trees. Each of three gFFS procedures was stopped if adding a new 

feature or feature group did not increase the F1-score five times in a 

row. Open source Python packages such as MLxtend (version 0.17.2) 

(Raschka, 2018), eo-box (version 0.3.10) (Mack, 2020), pandas 

(version 1.0.3) (McKinney, 2010) and NumPy (version 1.18.1) 

(Oliphant, 2006) were used in the implementation of the presented 3-

step gFFS. 

4. Results 

4.1. Overall Classification Accuracies 

4.1.1. Accuracies without Spatial Transfer (Reference Systems) 

Without considering a spatial transfer, the accuracies based on all 

features exceed those based on features selected using spatial gFFS 

(Figure 6, ‘Ref.System’). This pattern is common for all three feature 

sets. The highest median F1-score of 0.85 was reached with all features 

from optical and SAR sensors. The classification accuracies based on 

spatial gFFS showed lower median accuracies and higher accuracy 

ranges among reference systems, compared with the results using ‘All 

features’. On average, F1-scores were 0.02 lower, and the F1-score 

range (here, maximum-minimum) was reaching 0.03 of a difference. 

 

Figure IV-6. Overall F1-scores of classifications based on three feature sets, with 
variants of using all features and spatial feature selection. The abbreviation keys are 
provided in Table 2. 



 

99 
 

The classification accuracies based on S1 features were marginally 

lower than those based on only S2 features when not considering 

spatial transfer; the difference of corresponding experiments never 

exceeded 0.05 F1-score. 

4.1.2. Accuracies for Spatially Transferred Models (Target Systems) 

When spatially transferring the models (Figure 6, ‘Trg.System’), the 

highest median F1-score of 0.79 was reached with the combination of 

optical and SAR features selected using ‘gFFS+sCV’. But the median 

F1-score differences between no feature selection and spatial feature 

selection approaches remained below 3% for all sensor groups. The 

ranges of F1-scores in target systems are, on average, ten times higher 

than in reference systems. No distinct pattern was found indicating one 

approach’s superiority or inferiority in target systems.  

Figure 7 shows that the highest average accuracy loss across all 

six experiments was observed in target tiles HE, BB, and BW (F1-score 

loss–−0.09). The lowest average F1-score reduction of 0.01 occurred in 

target tile BY.  

The spatial transfer experiments based on S1 features showed 

higher accuracy values than those based on only S2 features (Figure 6). 

The lower accuracy losses in models based on S1 features and S1+S2 

were received compared to those based on S2 (Figure 7). The median 

F1-score loss with S1 features is −0.04. For S2 features, it equals −0.08, 

and for the combination of two sensors, it is −0.06. In the experiments 

with S1+S2, performing spatial feature selection helped to reduce the 

average accuracy loss to 0.04 across the seven target systems. 

 

Figure IV-7. Classification accuracy (F1-score) losses in target systems compared to 
reference system accuracies for all six experiments based on three sensor inputs and 
two feature selection approaches. The abbreviation keys are provided in Table 2. 
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4.2. Class-Specific Classification Accuracies 

4.2.1. Accuracies without Spatial Transfer (Reference Systems) 

Without considering a spatial model transfer, class-specific accuracies 

were the highest when using optical and SAR features in combination 

(see supplementary material B). Except for summer cereals and winter 

barley, the highest median accuracies within the reference systems 

were reached when all features were used to build the models. In 

addition to Figure 8, we provide a table with median class-specific F1-

scores for reference and target systems in supplementary material C. 

The highest average range of F1-score values across the seven 

reference systems was observed for the class sunflowers (mean 

variation–0.06) and the lowest for the class winter rape (mean 

variation–0.01). Classification accuracies were higher for grasslands, 

maize, alfalfa, and summer cereals with only S2 features than with S1 

or S1+S2. For winter cereals, the difference in median F1-scores 

between runs based on S2 or S1 features did not exceed 0.05 for 

corresponding feature selection approaches. For a detailed plot with all 

six experiments, see supplementary material B. 

 

Figure IV-8. Crop-specific classification accuracies (F1-score) in reference and target 
systems based on the optical-SAR combination and two feature selection approaches. 
The abbreviation keys are provided in Table 2. For a complete plot with three sensor 
groups, check supplementary material B. 

4.2.2. Accuracies for Spatially Transferred Models (Target Systems) 

As in the reference systems, the average accuracy values in the target 

systems were the highest when we combined optical and SAR features 

(see Supplementary Material C). The potato and winter rape classes 

have shown equally high median accuracies with only S1 features as 
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with features combinations (S1+S2). In target systems, the average 

accuracy dropped for all classes except for winter rape when compared 

with the reference systems (Figure 9). For alfalfa, sunflowers, and 

winter triticale, the accuracy losses were most significant. The 

maximum F1-score losses for these three classes reached the following: 

−0.27 for alfalfa (target tile MV); −0.38 for sunflowers (target tile HE); 

−0.28 for winter triticale (target tile BW). Moreover, increased 

confusion among winter cereals and between alfalfa and grasslands 

was observed with ‘gFFS+sCV’. 

 

Figure IV-9. Crop-specific accuracy losses in the target systems for models using a 
combination of optical and SAR features (S1+S2). The abbreviation keys are provided 
in Table 2. For a complete plot with three sensor groups, check Supplementary 
Material D. 

The accuracy range (maximum-minimum) between the target systems 

was, on average, six times higher than that between the reference 

systems for the corresponding experiment sets (Figure 8). Among crop 

classes, the highest F1-score range across the seven target systems was 

observed for alfalfa (0.30), sunflowers (0.28), grasslands (0.27), and 

potatoes (0.21). For grasslands, the high variation resulted from tile 

HE, which showed a substantial accuracy loss when it is set as a target 

tile. Almost half of the grassland samples (84 samples) in target tile HE 

were misclassified as alfalfa, resulting in a very low F1-score. 

The classes with high accuracy variations in the target systems 

also showed significant alteration of NDVI temporal profiles across the 

seven study sites. For example, alfalfa fields are harvested several times 

during the growing period, with varying harvest event patterns across 

the country. This results in various reflectance and backscatter 

patterns in the time-series and increases the within-class variance, 

which complicates the identification of the alfalfa fields (Figure 10). 

The NDVI temporal profiles for all considered crop classes and tiles are 

provided in Supplementary Material E. 
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Figure IV-10. NDVI temporal profile of class alfalfa across seven study sites. 

Except for sunflowers and potatoes, no clear pattern was observed 

indicating the superiority or inferiority of a particular model building 

approach. For sunflowers and potatoes, the use of spatial feature 

selection on optical-SAR features reduced the median accuracy losses 

in target systems to 0.01 for potatoes (from an F1-score of 0.07 with 

‘All features’) and 0.06 for sunflowers (from an F1-score of 0.10 with 

‘All features’).  

The models built using only SAR features showed the lowest 

accuracy losses in target systems for the following seven classes: 

grasslands, alfalfa, sunflowers, winter wheat, winter barley, winter 

rape, and winter triticale (Figure 9). The remaining four classes (maize, 

potatoes, winter rye, and summer cereals) showed the lowest accuracy 

losses with the combination of optical and SAR features. 

4.3. Features Selected with Spatial gFFS 

For runs with only S2 features and S1+S2, the average number of 

selected single features was lower than with S1 features (Table 3). The 

dissimilarities were present not only in the number of selected single 

features or groups but also in the repeatedly selected variables (Figure 

11). Among optical variables, NDVI, NDYI, B6, and B11 were selected 

the most in the S2 and S1+S2 runs. All six SAR variables were selected 

more than four times in the S1 and S1+S2 runs. 

The temporal groups covering the period from mid-April (15 

April 2018) to the beginning of August (5 August 2018) were selected 

the most in all three sensor combinations. This period covers the most 

critical agro-phenological phases (e.g., plant emergence, plant height 

development, flowering) and land management activities (e.g., hay cut, 

harvest) across all study sites. The temporal groups in the two autumn 

seasons (autumn 2017, autumn 2018) were rarely selected with spatial 

CV. 
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Table IV-3. The average number of selected single features or feature groups using 
3-step group-wise Forward Feature Selection (gFFS) and the corresponding total 
number of model evaluation runs. 

Sensors 

Feature 

Selection 

Approach 

Avg. Number 

of Selected 

Variable 

Groups 

Avg. Number 

of Selected 

Time Groups 

Avg. 

Number of 

Selected 

Single 

Variables 

Total 

Number of 

Model 

Evaluation 

Runs 

Number of 

Needed Runs 

If Standard 

FFS Applied 

S1  
All features  - - 174 - - 

gFFS+sCV  6 17 53 4474 7965 

S2  
All features  - - 377 - - 

gFFS+sCV  7 13 31 2807 11,568 

S1+S2  
All features  - - 551 - - 

gFFS+sCV  11 14 46 6649 24,816 

 

Figure IV-11. Analysis of feature selection results with spatial feature selection. The 
abbreviation keys are provided in Table 2. Outer boxes: The number of times a 
variable group (y-axis) or a time group (x-axis) was selected by spatial gFFS on runs 
with only SAR (blue borders), only optical (green border), and optical-SAR feature 
combinations (orange borders). Inner boxes: The single features, selected in the last 
step of spatial gFFS. The circle sizes represent the number of times a feature was 
selected, and the colour intensity represents the median order (sequence) at which it 
was selected. 

4.4. (Potential) Influences of Environmental Settings 

As illustrated in Figure 12a, the sizes of the parcels in the study sites 

(MV, BB, and TH) located in Eastern Germany are bigger than those 

(BW, HE, NI, and BY) located in Western Germany. The smallest 

average parcel sizes were recorded in the southwestern two tiles—HE 

(1.2 ha) and BW (1.1 ha). These tiles showed high accuracy losses when 

a classification model built on all other regions was transferred to 

them. The parcel sizes also substantially vary depending on crop types 
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(see Supplementary Material F). The crops with smaller average parcel 

sizes, such as grasslands and alfalfa, showed higher accuracy ranges 

when a model was spatially transferred to the unseen area than those 

crops grown on larger parcels.  

 

Figure IV-12. Distribution of (a) parcel sizes, (b) surface elevation, and (c) 
Müncheberger soil quality values among the seven study sites. Each boxplot contains 
all sampled 5500 points. 

Moreover, a considerable difference in surface elevation values is 

present across the study sites (Figure 12b). The highest average 

elevation was recorded for the tile BW, and the lowest elevation values 

were observed for three tiles located in the Northern German Lowlands 

(NI, MV, and BB). We observed considerable accuracy losses when 

Random Forest models were transferred to the tile BW.  

The average values of the Müncheberger soil quality rating range 

between 60 and 70 points (Figure 12c), except for two northern tiles 

(MV, BB). The data from those two tiles showed the lowest average 

values, which indicate lower soil suitability for cropping purposes and 

potentially reduced plant vitality or biomass development. High 

accuracy losses were recorded when trained models were spatially 

transferred to those two northern tiles (Figure 7). 

The temporal shifts in the timing of phenophases or field 

management activities (e.g., harvest) across the seven study sites can 

be observed from the phenological observation data acquired from 

DWD (Figure 13). For example, the average harvesting time for maize 

in tile BB happened approximately 3.5 days (minimum difference with 

tile MV) and 23 days (maximum difference with tile BW) earlier 

(Figure 13). When the Random Forest model was spatially transferred 

to tile BB, we obtained high accuracy losses for the maize class (see 

Figure 9). The same is true for summer barley, which is part of the 

summer cereals class (Figure 13). For winter wheat, notable temporal 
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shifts (variation of median values: 27 days) were present in crop sowing 

events; For winter barley, higher dissimilarities were present in harvest 

time (17 days) than in the average timing of sowing events (8 days). The 

accuracy losses were higher for winter barley, with more temporal 

dissimilarities in harvest occurrence than for winter wheat (Figure 9). 

However, accuracy losses in the winter rape class were minimal despite 

similar differences in average harvest (14 days) and sowing (10 days) 

days across seven regions. More information is available in 

Supplementary Material G.  

 

Figure IV-13. Phenological phase observations for maize and summer barley (part of 
summer cereals class) located within the seven study sites (data source: DWD, 2018d). 
The following grouping of recorded phenological phases was applied: ‘Planting and 
emergence’ include ‘beginning of tilling sowing drilling’ and ‘beginning of emergence’ 
for maize; ‘Developing’ includes ‘beginning of flowering’, ‘beginning of mil ripeness’, 
‘beginning of wax-ripe stage’, ‘yellow ripeness’, ‘tip of tassel visible’, ‘beginning of 
growth in height’ for maize and ‘beginning of heading’, ‘yellow ripeness’, ‘beginning of 
shooting’ for summer barley; ‘Harvesting’ includes ‘harvest’ for both classes. No 
observation was found for the ‘Planting and emergence’ stage for summer barley. 

5. Discussion 

Due to the environmental, climatic, and phenological differences 

across the study sites, classification accuracy losses in target systems 

are inevitable. While such regional differences and the lack of 

representative training samples are the main drivers of the reduced 

performance of Random Forest models in target sites, the quality and 

relevance of input remote-sensing features are other important aspects 

affecting the spatial transferability of the models. Our study 

demonstrated that the optical-SAR combination outperforms the 

classification results based on single sensors in both reference and 

target systems (Figure 6). The superior performance of the optical-SAR 
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combination for crop type classification in model training sites is well 

known (Forkuor et al., 2014; Orynbaikyzy et al., 2019; Van Tricht et al., 

2018). Our finding adds that the optical-SAR combination outperforms 

the single sensor datasets also in geographic spaces unseen by the 

model. A combination of optical and SAR features should be preferred 

when performing large-scale crop type mapping with spatially limited 

training data. 

The classification accuracies of the models based on only optical 

features were marginally better than those based on only SAR features 

in the training sites (Figure 6). This goes in line with the available 

comparative literature on the application of optical and SAR data for 

crop type mapping (Orynbaikyzy et al., 2019). However, in the target 

systems, it flipped to the opposite: models based on SAR features 

showed better accuracies than those based on optical. This resulted in 

lower accuracy losses with only SAR data compared to only optical, or 

a combination of both. This is a new finding that is relevant for real-

world crop mapping scenarios where training data often has limited 

spatial coverage. It might be more important to select an approach or 

dataset that is more robust regarding spatial transferability than the 

best in the reference system. 

The presented results show that the models built with SAR 

features are more robust (i.e., have lower accuracy losses in transfer 

systems) than optical or optical-SAR combinations. The majority of the 

investigations to date have reported SAR data’s suitability for crop type 

mapping in the training sites (Bargiel, 2017). The results of our 

comparative study support the findings of (Gilcher and Udelhoven, 

2021) that SAR data is well suited for building spatially transferable 

crop type classification models and add that, in similar climatic 

conditions as in Germany, SAR-based models are more spatially 

transferable than those based on optical data. Recent studies from 

Woźniak et al. (2022) (Woźniak et al., 2022) and d’Andrimont et al., 

2021 (d’Andrimont et al., 2021) illustrated that detailed mapping of 

crops at the country and continental scale with good accuracy is 

possible using only SAR data. 

A reason for the lower accuracy losses of models based on SAR 

data could be the availability of consistent valid observations due to its 

all-weather sensing capabilities, which is crucial for successfully 

classifying various crops. Whereas the availability of valid optical data 

highly depends on the weather conditions of the sensed locations. For 

example, Ghassemi et al. (2022) (Ghassemi et al., 2022) reported that 

generating monthly composites for the entire Europe was not possible 

due to the persistent cloud presence in some regions. Knowing that 

data from both sensors can successfully replicate the agro-phenological 

development phases of crops (Veloso et al., 2017), it is reasonable that 

SAR-based models with more usable observations across large areas 

show better performance for spatial transfer than those based on 
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optical data only. However, for areas with no persistent cloud cover 

issues, such spatial transferability study outcomes could be the 

opposite. Also, the capacity for spatial transferability of models based 

on only optical features could be different when other data compositing 

approaches are applied, as proposed by Preidl et al. (2020), or a 

combination of two or more optical sensors is used, as shown by 

Griffiths et al. (2019).  

Contrary to the findings of (Meyer et al., 2019) on small scale 

land use and land cover classification, performing spatial feature 

selection had no substantial effect on the spatial transferability of 

Random Forest models for crop type mapping. Nonetheless, spatial 

feature selection helped to eliminate irrelevant for the classifier 

features and to build much simpler models that are, based on the 

classification accuracies, comparable or even better (in the case of 

optical-SAR combination) than those based on all features. The models 

built using only eight percent from all single optical-SAR features 

(gFFS+sCV, Table 3) showed marginally improved absolute accuracies 

(Figure 6) and reduced accuracy losses (Figure 7) in target systems. 

Reduction of accuracy losses in target systems was also recorded for 

only optical features when spatial feature selection is applied (Figure 

7). The models built with fewer predictor variables showed better 

spatial transferability as have already been reported by (Ferraciolli et 

al., 2019; Wenger and Olden, 2012). This underpins the relevance of 

spatial feature selection, especially for large-scale crop type mapping 

studies where an increased number of predictor variables decreases 

computational feasibility and requires substantial storage capacity. 

As anticipated, accuracy losses vary among crop classes. Crops 

that are harvested several times during the growing period (e.g., 

grasslands and alfalfa), classes with a small number of parcels (e.g., 

sunflowers and potatoes), and classes with high genetic variability 

(e.g., wheat and rye) showed high accuracy losses in target systems. 

The survey of German farmers (Macholdt and Honermeier, 2017) 

indicated that the choice of cultivars is mainly driven by environmental 

variables such as soil quality. Consequently, this results in the spatially 

clustered representation of cultivars across the region, which could 

negatively affect a model’s ability to correctly predict the unseen 

cultivar. However, spatially transferring models for mapping of, e.g., 

maize and winter rape across large areas was possible with low 

accuracy losses. This supports the recent findings of Gilcher and 

Udelhoven (2021) where acceptable spatial generalisation was possible 

for binary maize vs. non-maize classification with CNN. In future 

research, specific features designed to express generalised patterns, 

such as cutting event indicators that are independent of a specific 

moment in time, or various texture features based on optical and SAR 

data, should be considered for testing their usefulness for improving 

spatial transferability. 
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The spatial feature selection emphasised the importance of all 

SAR features along with NDVI, NDYI, B6 and B11. The relevance of 

NDVI, red-edge (B6) and short-wave infrared (B11) information for 

crop type mapping has already been reported in earlier studies 

(Griffiths et al., 2019; Orynbaikyzy et al., 2020). In this study, NDYI 

from the May-June period, which corresponds to the rapeseed 

flowering phase in Germany, showed high importance. For mapping 

rapeseed crops with high accuracy, it is highly suggested to consider 

NDYI which has been also successfully applied for mapping rapeseed 

flowering events in Germany (d’Andrimont et al., 2020). Contrary to 

the finding (Sun et al., 2003) where NDWI was among the top six 

important features, no NDWI features were selected in our study by 

spatial feature selection, indicating their irrelevance. As for SAR 

features, based on the outcomes of spatial feature selection (see Figure 

11), we advise using a VH/VV ratio. The advantages of using the 

polarization ratio were reported by Veloso et al. (2017) for separating 

maize and sunflowers during the flowering phase and by Inglada et al. 

(2016) for early crop type mapping. 

The results underpin that mapping dynamic land-use classes 

such as croplands at a larger scale without well-distributed training 

data is challenging and complex. Many abiotic and anthropogenic 

factors influence the development of the crops throughout the growing 

period (Bajocco et al., 2021). Expectedly, those influencing factors 

enormously vary across geographic regions within Germany.  

The variations in phenological crop development stages across 

the seven study sites (Figure 12) seem to be among the main drivers of 

the reduced spatial transferability of the tested Random Forest models. 

For example, due to a mild climate in the region of the upper Rhine 

valley (tiles HE and BW), winter crops reach maturity earlier 

(Wizemann et al., 2014) than in other regions of the country. In the 

German low mountain ranges (tile TH) and northern sites (tile MV), 

phenological development stages could occur later for a few days or 

even weeks. Phenological observation records presented in this study 

have shown considerable temporal differences in their occurrence 

across seven study sites. Consequently, when models are spatially 

transferred to the study sites with prominent differences in 

phenological development phases, the model will fail to predict crop 

labels accurately. Identifying an ‘area of applicability’ could be a 

potential approach to accounting for the fitness of the machine 

learning or deep learning models to new geographic areas for crop type 

mapping tasks (Meyer and Pebesma, 2020). 

The surface elevation varies substantially across the study sites 

(see Figure 12b). The tile BW with the highest average altitude (in 

sampled areas) above 500 m has also shown higher accuracy losses 

than other tiles. Similar results were reported by Stoian et al. (2019), 

where higher misclassifications were recorded when models were 
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spatially transferred to the high altitude zones with more complex 

topography. Besides shifts in phenology, in comparison to warmer 

lowlands, geometric distortions in the SAR data such as layover, 

foreshortening, shadow and high precipitation frequency (see Figure 

2) in tile BW could have had a negative effect on the quality of SAR 

features in our study. This most likely explains the substantial accuracy 

losses in this tile when only SAR features are used. 

Parcels sizes much smaller than those from the remaining tiles 

(Figure 12a) could have increased accuracy losses in the two southern 

tiles—HE and BW. As reported in earlier studies (Arias et al., 2020; 

Löw and Duveiller, 2014), small parcels are harder to classify due to 

the increased amount of mixed pixels and potential differences in field 

management. In our case, variations in farm management (e.g., 

seeding dates, management decisions) or type of farming (Bichler et 

al., 2005) could be the reason for higher accuracy losses than the parcel 

sizes themselves.  

The uneven spatial distribution of extreme drought in 2018 

(Reinermann et al., 2019) combined with low soil quality (Figure 12c) 

could drive higher misclassification in tiles BB and MV. The north-

eastern part of Germany is characterised by sandy soils and lower water 

holding capacities (Mueller et al., 2014). Thus, in severe drought events 

such as in 2018, these areas were often hit the hardest (Lüttger and 

Feike, 2018). Especially, temperature-sensitive crops such as potatoes 

and sunflowers, and crops with high water demands, such as alfalfa, 

are among those most affected by drought. While the year 2018 was a 

particularly interesting case for evaluating the spatial transferability of 

the Random Forest models under varying climatic and environmental 

conditions, it would be beneficial to perform such a transferability 

analysis for other years with more typical climatic conditions across all 

study sites. Moreover, testing not only spatial but also temporal 

transferability of machine learning models using multi-sensor features 

and multi-year crop type information could advance our 

understanding of model transferability across space and time. 

The study design was structured in the typical nested cross-

validation manner where an outer loop is used for accuracy estimation 

using a spatially independent test-set while an inner loop is used for 

tuning the models via spatial feature selection (Figure 4). The training 

data distribution across Germany partially reflects the existing studies 

(Griffiths et al., 2019; Preidl et al., 2020) where dense reference data is 

available for large areas but completely missing over other large areas, 

for example, entire federal states. In future studies, the permutation of 

not all study sites but all possible combinations (site-to-site transfer, 2 

× 2 split) could be considered to better understand and maybe 

compensate for the reasons for accuracy losses in transfer regions. 

The proposed 3-step gFFS method showed a good ability to select 

the relevant features with substantially reduced computational costs 
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than the original Forward Feature Selection method. However, the 

main limitation of the proposed method is the risk of losing informative 

single features in omitted groups.  

The accuracy losses were measured to assess the transferability 

and accuracy declines of the models in unseen geographic spaces by 

subtracting the F1-score acquired in the target system from that in the 

reference system. Here, F1-score values in each of the systems were 

based on the same number of validation points per crop type in each 

fold (tile). However, in studies with a varying number of samples for 

different crop types in the folds, the accuracy losses for the target 

system could be influenced by the dominant presence of ‘easy to 

predict’ (e.g., winter rape, maize) or small and complex crops (e.g., 

alfalfa, grasslands). 

6. Conclusions 

The presented research examines the spatial transferability of Random 

Forest models by analysing only optical, only SAR, and optical-SAR 

feature combinations, and testing if transferability could be improved 

by spatial feature selection. Based on the study outcomes, the following 

conclusions were drawn for our crop type mapping case in Germany:  

• Random Forest models based on optical-SAR combinations 

outperform models based on single sensor data in training sites 

and geographic spaces unseen by the model; 

• SAR-based models show the lowest accuracy losses when 

transferred to an area outside the training regions; 

• Performing spatial feature selection on feature sets with only 

optical data and optical-SAR combination reduces classification 

accuracy losses in areas where the models were not trained; 

• Small classes, grasslands, and alfalfa show high accuracy losses 

in areas outside the training regions; 

• Environmental and geographic variables could aid in explaining 

or anticipating poor spatial transferability for specific regions. 

Remote sensing data is undoubtedly one of the primary information 

sources for successful crop type mapping. Thus, understanding the 

strengths and weaknesses of different elements in classification 

approaches (e.g., datasets, derived features, and classifiers) with 

respect to spatial model transferability is an important issue, for those 

faced in practise with a situation where transferability is required.  
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CHAPTER V: SYNTHESIS 

1. Findings 

This thesis explored the potential of the synergetic use of optical data 

from Sentinel-2 and SAR data from Sentinel-1 for crop type mapping. 

The comprehensive review on the topic (Chapter II) led to two detailed 

studies focusing on Sentinel-1 and Sentinel-2 combinations for 

mapping a wide range of crops (Chapter III) and testing the spatial 

transferability of the Random Forest models (Chapter IV). The current 

Chapter V presents the main findings and concludes this manuscript. 

1.1. Objective I: Comprehensive Review 

Chapter II presents a detailed analysis of 75 peer-reviewed research 

publications focusing on the optical-SAR combination for crop type 

mapping. Most studies reported that the combined use of optical and 

SAR data produces higher classification accuracies than those based on 

single sensors. As for single sensors, optical data mostly outperform 

results based on only SAR data. However, it is necessary to consider 

that those comparative studies were based on several cloud-free optical 

and few SAR scenes. SAR data were mainly considered as 

complementary to the more traditional crop type mapping approach 

based on only optical data. The usage of dense time-series features was 

rare, mainly due to the absence of freely available optical and SAR 

datasets with regular observations over desired locations. 

As anticipated in the review study (published in early 2019), the 

launch of Sentinel-1 and Sentinel-2 satellites proving global coverage 

with the high spatial-temporal resolution, boosted the research on crop 

type mapping using the optical-SAR combination. The recent studies 

on the country (e.g., Blickensdörfer et al., 2022; Van Tricht et al., 

2018), continent (e.g., Venter and Sydenham, 2021) and global scale 

(e.g., World Cereal www.esa-worldcereal.org) based on Sentinel-1 and 

Sentinel-2 data is an excellent example of it.  

It is vital to have representative crop reference data for the study 

site, along with remote sensing data. The study highlighted the unique 

role of reference data from the Integrated Administration and Control 

System (IACS) of the Common Agricultural Policy (CAP). Freely 
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available, high quality and high spatial precision reference data from 

IACS would become essential for detailed research on the application 

of machine learning techniques for crop type mapping at various scales 

in Europe. For example, all recently published German-wide crop type 

mapping studies were based on IACS (commonly known as LPIS data) 

(Asam et al., 2022; Blickensdörfer et al., 2022; Griffiths et al., 2019; 

Preidl et al., 2020). 

Among three data fusion levels, categorized by Pohl and van 

Genderen (1998), feature-level fusion, i.e., simple band stacking, was 

used the most compared to pixel-level or decision-level fusion 

techniques. The review also revealed that most studies on optical-SAR 

combinations were performed on a small spatial extent (less than 

15,000 km2). The studies mainly focused on the major crop types, 

where the top five include maize, wheat, rice, soya beans and barley. 

Minor crops (crops grown in a small amount and typically have 

reduced spatial coverage), such as legumes and nuts, were less 

researched. 

Until the publication of the review study, no research was 

published on machine learning models' spatial or temporal 

transferability for crop type mapping with the optical-SAR 

combination. However, the issue of model transferability is of 

paramount relevance for accurate crop type mapping, especially when 

performing large-scale crop type mapping with spatially limited 

reference (ground truth) data. 

The research gaps identified in the review study (Chapter II) were 

used to develop the research objectives of the following studies 

presented in Chapter III and Chapter IV. 

1.2. Objective II: Large-Scale Detailed Crop Type Map using 
Sentinel-1 and Sentinel-2 Combination 

As emphasised in the review study, less research was done on the 

optical-SAR combination for mapping a wide variety of crops 

(including minor crops) at a large scale and using dense time-series 

features from both sensors. These research gaps were set as research 

objectives for the study presented in Chapter III, where the analysis of 

large scale (~30,000 km2), detailed (16 crop classes) crop type 

classification results based on the dense time-series (bi-weekly 

features) of the optical-SAR combination were presented. Additional 

to classification accuracies from three feature sets, the influence of 

feature selection, parcel sizes and optical data availability on the 

accuracies were investigated. The study site covered the whole 

Brandenburg federal state (Germany) territory, and the analysis was 

done in 2017. 

The study outcomes supported the existing knowledge that the 

optical-SAR combination outperforms the single sensor data. 

However, contrary to available literature, the performance of SAR data 
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showed marginally higher accuracies than those based on optical data. 

The following reasons were used as a possible explanation: (a) SAR 

data were able to better separate spectrally similar crops (e.g., summer 

or winter cereals, legumes), which were more challenging for optical 

data; (b) The study was focused only on crop classes, and no other 

LULC class (such as water, urban, forest etc.) were considered, where 

optical data could have been more informative than SAR data; (c) The 

number of cloud-free optical scenes were very limited in 2017 and 

affected the quality of the optical features. 

The feature selection showed that mono-temporal optical scenes 

are more informative than mono-temporal SAR scenes. However, with 

the addition of features, the increase in accuracies of SAR-based 

models was much higher than those based on optical data only. 

In line with the previous studies (Van Tricht et al., 2018), the 

Random Forest models showed that they could handle the high feature 

dimensionality. An increasing number of features did not harm the 

classification accuracies (Figure III-11).  

 

Figure V-1. Crop type classification results from Chapter III based on only SAR (S1), 
only optical (S2) and optical-SAR feature combination (S1+S2). 

Crop type maps based on the optical-SAR combination show a more 

homogenous representation of the crop fields than optical or SAR only 

crop type maps (Figure V-1). The reduction of the ‘salt-and-pepper 

effect’, which is clearly visible on maps based on only SAR and only 

optical data, could be explained due to the fewer misclassifications, 

particularly among minor crops and winter cereals.  

As anticipated, on average, small parcels had higher 

misclassifications than big parcels among all investigated crop classes 

except for grasslands (see Figure III-13). Also, crop classes with a large 

share of small fields, such as potato and lupins (with an average field 

size of 10 ha), showed higher misclassifications than major crops with 
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more than 20 ha as winter rapeseed or sugar beets. This makes minor 

crops that are usually planted on small-sized fields harder to classify. 

This study's training and test samples were randomly distributed 

across study sites, which in our case was the entire state of 

Brandenburg. Suppose a trained machine learning model is used to 

classify croplands in another state where no reference data is available. 

In that case, the resulting accuracies will likely differ from those 

calculated on the training sites in Brandenburg. The accuracy variation 

results from the absence of representative samples in the new sites. 

However, accuracy variations are also possible due to the input data 

quality, crop types and complexity of the machine learning models. The 

issue of spatial transferability of Random Forest models was 

investigated in Chapter IV. 

1.3. Objective III: Spatial Transferability of Crop Type Classification 
Models based on Sentinel-1 and Sentinel-2 Combination 

In Chapter IV, the spatial transferability of Random Forest models 

was tested using three input datasets and two feature selection 

methods. As reported in Chapter III, the combination of optical-SAR 

features showed higher classification accuracies in training sites than 

with single sensors. The new finding was that the combination 

outperforms single sensors in unseen-by-model study sites. This new 

finding highlights another essential advantage of using the optical-SAR 

combination over single sensor data for crop type mapping tasks. 

The study experiments also showed that SAR-based models have 

lower accuracy losses than models based on optical data or optical-SAR 

data combinations. When spatially transferring the model to unseen by 

model areas, i.e., new environmental and management conditions with 

no training samples, the SAR-based models show better accuracies 

than those based on optical data. SAR provide weather-independent 

and regular land surface observations. Optical data is weather 

dependent, and the quality is directly related to the presence of clouds 

or cloud shadows. No such comparative study quantitively proved that 

the models based on SAR data outperform those based on optical data 

in sites unseen by the model. This finding was one of the central in the 

manuscript. However, one should note that this finding is valid for 

regions where persistent cloud cover is an issue, like Germany. 

The study results showed that spatial feature selection helps to 

reduce classification accuracy losses in sites with no training data when 

only optical data or the combination of optical and SAR data is used. 

As previously reported (Meyer et al., 2019), performing spatial feature 

selection helps to remove redundant input features that carry site-

specific information. This substantially lessens the number of features 

while preserving the most informative ones and allows to build simpler 

machine-learning models. 
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The performance, i.e. losses in classification accuracy, of models 

based on features selected using spatial and random cross-validation, 

the resampling method used to evaluate model performance, did not 

differ when using only SAR data. However, only optical and optical-

SAR combination using spatial feature selection helped to reduce the 

accuracy losses in unseen sites. 

The reduction of classification accuracies when the machine 

learning model is spatially transferred to a previously unseen site is not 

surprising. The causes of such accuracy reduction are mainly due to the 

absence of representative samples from the target sites. When the 

target site’s environmental and climatic conditions differ substantially 

from the reference sites, the model fails to predict the crop labels 

correctly. The analysis of auxiliary variables, such as land surface 

elevation, soil quality rating, phenological observations and parcel 

sizes, helped to understand the possible driving forces of higher 

misclassifications in regions across Germany. For example, higher 

elevation and more complex topography in the southern part of the 

country could affect the quality of the SAR features, resulting in low 

classification accuracies of the experiments based on solo SAR data. 

Crop classes with a higher number of small parcels (e.g., sunflower, 

potatoes) have shown a more significant misclassification rate than 

those with bigger parcels (e.g. winter cereals). Regions with a lower soil 

quality rating (north-eastern Germany) were more affected by the 

drought in 2018, resulting in substantially different phenological 

growth than the rest of the country. This led to high misclassification 

in the region. 

Such analysis of environmental and phenological variables is 

vital to understand the driving forces behind the high 

misclassifications in particular sites. When large-scale crop type 

classification work is carried out, such analysis could also facilitate 

understanding which region could be error-prone due to differing 

climatic or environmental conditions. On the other hand, using 

environmental and climatic variables could be helpful before reference 

data collection, promoting data collection from more diverse regions.  

2. Discussion and Outlook 

Detailed crop-type mapping with dense time-series data and spatial 

model transferability were the central topics of two experimental 

studies (Chapters III and IV). In addition to each detailed discussion 

provided in Chapter III and Chapter IV, the current sub-chapter offers 

a general discussion of the research outcomes in the context of recent 

literature.  
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2.1. Crop Type Mapping with Sentinel-1 and Sentinel-2 

2.1.1. Sentinel-1 and Sentinel-2: Different but Complementary 

Optical and SAR sensors collect information at different regions of the 

electromagnetic spectrum and capture substantially different 

characteristics of plants. Combining optical and SAR data gives more 

diverse information about sensed targets rather than single sensor data 

or a combination of sensors with similar data acquisition properties 

(e.g., optical-optical, SAR-SAR). This is supported by studies reporting 

classification accuracy increases when SAR data is added to the 

combination of optical sensors such as Sentinel-2 and Landsat-8 (e.g., 

Blickensdörfer et al., 2022; Song et al., 2021).  

Another fundamental difference between the two datasets is their 

weather dependence. In scenarios where persistent cloud cover does 

not allow building good quality optical features over specific time 

windows, SAR data can still deliver relevant land surface observations. 

Notably, combining optical-SAR data should be the preferred option 

for countries like Germany, where persistent cloud cover could be an 

issue.  

The data from Sentinel-1 and Sentinel-2, with their global and 

frequent acquisitions, give great opportunities for consistent mapping 

of global agricultural lands.  These remote sensing datasets became the 

most frequently used ones for crop type mapping tasks in the last few 

years. The new developments towards cloud-based solutions could be 

one of the triggers.  

For the last few years, accessing the analysis-ready Sentinel-1 and 

Sentinel-2 data has required little effort. With the shift towards cloud-

native computing and data storage, the combination of satellite data 

became more straightforward. As one of the core freely available Earth 

Observation datasets, Sentinel-1 and Sentinel-2 data is part of many 

free (for research purposes) and commercial cloud-computing services 

such as Data and Information Access Service (DIAS) from ESA, Google 

Earth Engine from Google, Planetary Computer from Microsoft, UP42 

geospatial platform from UP42, Sentinel Hub from Synergise. With the 

growing popularity of such geospatial services, combining both sensors 

for various application domains would soon become the new 

normality.  

2.1.2. Freely Available Reference Data 

Additional to the remote sensing data, the availability of good quality 

reference data for the supervised machine learning tasks is critical. In 

recent years, more crop type reference data have become available to 

the research community and the general public. For example, Radiant 

MLHub (https://mlhub.earth/datasets) from Radian Earth gathers 

and freely distributes the crop reference data collected worldwide, but 
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with a focus on African countries. At the EU level, LPIS data became 

more accessible for research purposes. Moreover, some EU member 

states such as Austria, Denmark and Slovenia annually publish 

country-wide LPIS data. The new initiative on harmonizing the crop 

reference data at the European level has been started by the EuroCrops 

project (https://www.eurocrops.tum.de/). The availability of such 

openly accessible, high quality and quantity reference data enables 

more detailed research on crop type mapping as presented in Chapters 

III and IV.  

The unique role of LPIS data for studies on crop type mapping in 

EU countries could be recognized by the number of published papers 

where LPIS data is used as a reference data source (Asam et al., 2022; 

Blickensdörfer et al., 2022; Griffiths et al., 2019; Preidl et al., 2020; 

Woźniak et al., 2022).  

2.1.3. Mapping Minor Crops 

The inclusion of minor crops to the classification scheme should be 

more often considered by the crop type classification studies in order 

to gain more knowledge on the advantages and limitations of various 

datasets and model-building approaches. For example, the results of 

the second paper (Chapter III) illustrated that some minor crops in 

Germany are better mapped with only SAR data (e.g., pean-beans, 

lupins) than with only optical and wise-versa (e.g., legume mixture). 

The results of the third paper (Chapter IV) indicated that crops with 

small field sizes (mainly minor crops) show higher accuracy losses in 

unseen sites compared to major crops with, on average, larger field 

sizes. 

While minor crops were included in the analysis in Chapters III 

and IV, no particular strategy for improving the accuracies of minor 

crops was conducted as in Waldner et al. (2019). This was mainly due 

to the availability of reference data that allowed balanced stratified 

sampling. However, the availability of a large amount of reference data 

is often not the case. Thus, other sampling designs should be tested to 

understand their effect on mapping minor crops with the optical-SAR 

combination. 

2.1.4. Analysis of Auxiliary Variables 

The analysis of auxiliary information presented in two papers 

(Chapters III and IV) helped to explain the classification accuracies to 

a certain extent. By-products of input reference and remote sensing 

data such as field size, reference pixel location within the field and 

cloud cover probability are often omitted and not considered for post-

classification analysis. Also, auxiliary environmental variables such as 

soil quality or surface elevation could be used to understand the output 
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classification results better. The post-classification analysis should be 

more often considered along with the classification accuracies. 

2.1.5. Moving from Random Forest to Deep Learning Models’ 

Both studies presented in the thesis (Chapters III and IV) use the 

Random Forest classifier. The choice was motivated by its reported 

superiority over other machine learning classifiers (Sun et al., 2019) 

and its robustness against sample noise or large feature space (Belgiu 

and Drăgu, 2016). However, a comparison to other classifiers such as 

XGboost or Convolutional Neural Networks (CNN) would be desired to 

understand their advantages or disadvantages over Random Forest for 

crop type mapping with optical-SAR data combination. 

2.2. Spatial Transferability of Random Forest Models 

2.2.1. The complexity of Random Forest Models 

As illustrated in the third paper (Chapter IV), simpler models with 

fewer features are more spatially transferable than complex models. 

This finding aligns with Ferraciolli et al. (2019), where simpler models 

performed better on an independent test set for sugarcane yield 

predictions. Apart from more robust performance concerning spatial 

transferability, simpler models can be better interpreted and explained 

(Roscher et al., 2020). While Random Forest can handle large feature 

space without negatively affecting its performance in the training sites 

(see Chapter III), it is advised to reduce the feature space for cases 

when the spatial transfer of the models is expected (Orynbaikyzy et al., 

2022).  

2.2.2. Groups-wise Feature Selection with Spatial Cross-Validation 

The grouping of the features by bands and dates helped to substantially 

reduce the computational complexity of the feature selection 

procedure while analyzing all features from Sentinel-2 and Sentinel-1 

simultaneously. The results from both papers (Chapter III and IV) 

showed a similar pattern by emphasizing the importance of short-wave 

infrared, red-edge bands, vegetation indices (e.g., NDVI, NDYI, PSRI) 

from Sentinel-2 together with VV, VH bands with their ratio from 

Sentinel-1. To avoid the unnecessary burden of handling all features 

from two sensors, using only a subset of proven and effective features 

is suggested. In such cases, it will not be necessary to group features.  

In line with the findings of Hengl et al. (2021) and Meyer et al. 

(2019), the results of Chapter IV have shown that feature selection with 

spatial cross-validation can remove redundant features and reduce 

classification accuracy losses in previously unseen sites. However, 

reducing features also reduces absolute accuracies in reference and 
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target systems. The reduction of accuracies in the reference system 

could indicate that some relevant features were also removed during 

feature selection.  

When partitioning the reference data into cross-validation folds, 

the spatial distance was used as a primary indicator of dissimilarity. 

However, as it was emphasized by Yates et al. (2018), the model 

transferability is more dependent on the environmental dissimilarity 

between reference and target regions rather than spatial. Future 

research should investigate the spatial or spatial-temporal 

transferability of machine learning models across diverse 

environments and climatic regions. 

2.2.3. Accuracy Estimation with Spatially Independent Test-Set: 

When Relevant? 

A spatially independent test set is expected to deliver unbiased 

estimates of the model’s performance outside the training sites. In 

recent years, more and more research papers within the geospatial 

domain are calling for the usage of accuracy estimation techniques, 

such as e.g. spatial cross-validation, that account for spatial 

dependence present in the data (Ferraciolli et al., 2019; Karasiak et al., 

2022, 2019; Ploton et al., 2020). However, spatial cross-validation 

could be the wrong strategy for estimating the crop type map quality. 

When training sites are a large part of the general map extent, using 

spatially independent test sets outside the training sites may result in 

negatively biased accuracy estimates. This was recently argued by 

Wadoux et al. (2021), where random cross-validation led to lower bias 

than spatial cross-validation for large-scale above-ground biomass 

mapping. Designing the sampling strategy as presented in 

Pohjankukka et al. (2017), where training and test samples lie within a 

certain spatial-temporal distance from each other, should be 

considered for getting unbiased accuracy estimates for large-scale map 

products. 

3. Conclusion 

This thesis addressed the advantages and limitations of the synergetic 

usage of optical data from Sentinel-2 and SAR data from Sentinel-1 

satellites for crop type mapping.  

The comprehensive review of the state-of-the-art research helped 

to structure existing scientific knowledge on the subject and uncover 

the research gaps. The anticipated substantial increase of studies on 

optical-SAR combination after the launch of Sentinel-1 and Sentinel-2 

satellites became a reality during the last few years.  

The investigation of the joint use of dense time-series features 

from both satellites revealed the superior performance of optical-SAR 
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feature combination over single sensor datasets. The proposed feature 

selection workflow helped to emphasize optical and SAR features with 

high relevance for the classifier. Also, the study illustrated the added 

values of SAR features in large-scale mapping scenarios where building 

consistent and good quality optical features could be challenging. 

Particularly in cloud-prone regions such as northern Germany.  

In the context of large-scale crop type mapping, the spatial 

transferability of the Random Forest models was addressed. It has 

been shown that accuracy losses outside of the training sites are not 

only driven by geographic and environmental dissimilarities but also 

by the type of input remote sensing data and the way the machine 

learning classifier was built.  

Current research intends to contribute to the scientific effort to 

automate the generation of high-quality spatial-temporal information 

on agricultural lands. Such information derived from remote sensing 

datasets is essential in successful food production and supply chain 

management. 
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