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Editorial on the Research Topic

Hydrogenase: structure, function, maturation, and application

Molecular hydrogen (H2) is an important molecule in the metabolism of diverse

microorganisms (Greening et al., 2015). Many microorganisms use H2 as an electron donor

to support aerobic respiration, anaerobic respiration, and carbon fixation. Others produce

H2 as a means to dispose reducing equivalents through fermentative and photobiological

processes. Furthermore, exchange of H2 between different species shapes the ecology and

biogeochemistry of diverse ecosystems globally (Schwartz et al., 2013). The enzymes that

split or evolve H2 are called hydrogenases and these metalloproteins can be divided into

three phylogenetically unrelated classes distinguishable by the metal composition of their

active sites, namely [Fe]-, [FeFe]-, and [NiFe]-hydrogenases (Lubitz et al., 2014). Following

a century of hydrogenase research, it is now possible to isolate, handle, and investigate

these fragile enzymes. There have been numerous advances in understanding the regulation,

function, structures, and maturation of these enzymes, as well as their involvement in

important processes such as microbial pathogenesis and greenhouse gas cycling (Lubitz

and Tumas, 2007; Greening et al., 2019; Benoit et al., 2020; Ehhalt and Rohrer, 2022). The

employment of hydrogenases and hydrogenase-based applications could also potentially

facilitate the world’s transition to a sustainable H2-based energy economy in the future.

Hydrogenases mediate a seemingly simple reaction, i.e., the splitting of H2 into a

proton and a hydride, followed by the complete separation of protons and electrons.

However, the reaction mechanisms of the different enzyme types are not yet fully

understood. Likewise, the intricate maturation of the metal cofactors is a constant

resource of unprecedented biological chemistry (Bortolus et al., 2018; Britt et al.,

2020; Schulz et al., 2020; Arlt et al., 2021; Stripp et al., 2021; Pagnier et al., 2022;

Arriaza-Gallardo et al., 2023; Caserta et al., 2023). Additionally, features such as the

frequent membrane association and O2 sensitivity of hydrogenases has so far hindered

in vitro harnessing of their function. New structural, spectroscopic, and electrochemical

data and methods will enable new insights into their maturation and reactions. In

addition, the discovery and characterization of diverse hydrogenases occurring in

different microorganisms provide opportunities to discover new physiological roles,
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structural adaptations, and potential applications of these enzymes

(Peters et al., 2015; Dragomirova et al., 2018; Schuchmann et al.,

2018; Pinske, 2019; Winkler et al., 2021). Attempts to employ

hydrogenases for industrial purposes have been made, however,

there is presumably still a long way to go until processes involving

hydrogenases (biological H2 production or biological fuel cells) will

become economically feasible (Rögner, 2015; Ji et al., 2023; Xuan

et al., 2023).

This Research Topic comprises 11 articles that aimed

to bring together recent advances in hydrogenase research,

including structure, function, maturation, and application. In

terms of structural investigation, Dragelj et al. theoretically and

experimentally analyzed an isolated large subunit of a [NiFe]-

hydrogenase. They confirmed that [NiFe] large subunits dimerize

in the absence of their small subunit (Hartmann et al., 2018; Kwon

et al., 2018; Caserta et al., 2020), and showed that the [NiFe]-

cofactor is stabilized by the dimerization. In the realm of structure-

function relationships, Kisgeropoulos et al. investigated the effect

of amino acid exchanges of the primary proteinaceous proton

acceptor in [FeFe]-hydrogenase. The data expand previous work

(Cornish et al., 2011; Morra et al., 2012; Duan et al., 2018; Artz

et al., 2020), demonstrating that the pKa of the proton acceptor

is one factor controlling the catalytic bias of the enzyme. Three

further articles dealt with functional aspects of hydrogenases.

Morra reviewed the identification and characterization of novel

[FeFe]-hydrogenases, described their functional roles, and recent

findings regarding their O2 tolerance. Kpebe et al. reported on

the essential role of a bifurcating [FeFe]-hydrogenase in the

sulfate reducer Solidesulfovibrio fructosivorans, showing that during

ethanol oxidation, the hydrogenase confurcates electrons from

NADH and reduced ferredoxin to produce H2, which is later on

used for energy conservation using sulfate as electron acceptor. The

function of a bidirectional [NiFe]-hydrogenase in Synechocystis sp.

PCC 6803 was investigated by Burgstaller et al.. They showed that

this hydrogenase is essential for growth on arginine and glucose in

the presence of light and O2, and interestingly this function seems

to be unrelated to H2 catalysis. Instead, an H2-independent role for

the transfer of electrons into the photosynthetic electron transfer

chain is proposed, which is an important hypothesis that may also

be relevant for certain multisubunit hydrogenases in other species.

On the subtopic of hydrogenase maturation, Haase and

Sawers investigated residues that contribute to [NiFe]-hydrogenase

maturation. They found a histidine residue in a HypC-type

chaperone that is important for efficient binding to its maturation

partner HypD (Blokesch and Böck, 2002). In addition, this residue

is important for selectivity, ensuring that only the correct large

[NiFe]-hydrogenase subunit is matured. It should be emphasized

that understanding cofactor maturation and incorporation is of

high importance for any future application of hydrogenases, which

is demonstrated in the following article. In an interdisciplinary

approach in the fields of maturation and application, Fan et al.

significantly improved the [NiFe]-cofactor incorporation in the

course of heterologous production of a [NiFe]-hydrogenase

from Cupriavidus necator in Escherichia coli. Previously, cofactor

insertion was not functional, resulting in production of inactive

hydrogenases (Fan et al., 2021).

Another four articles explore the application of hydrogenases.

Hogendoorn et al. isolated the novel strain “Candidatus

Hydrogenisulfobacillus filiaventi” R50 gen. nov., sp., nov. which

was characterized as a chemolithoautotrophic thermoacidophilic

aerobic H2-oxidizing bacterium. This strain excretes about half

of the fixed CO2 in the form of amino acids, which makes

it a promising candidate for the industrial production of

organic compounds from CO2, using H2 as energy source. H2

oxidation in this strain is facilitated by two [NiFe]-hydrogenases

from the groups 1b and 1h, with the latter conferring high

affinity toward H2 (Søndergaard et al., 2016). Kobayashi et al.

engineered the acetogenic bacterium Moorella thermoacetica

for enhanced acetate, ethanol and acetone production. They

found that H2 supplementation under mixotrophic conditions

increases NADH levels but can inhibit growth due to an

unbalanced redox status. This study emphasized the role of a

reversible electron-bifurcating group A3 [FeFe]-hydrogenase

for balancing the cellular redox state. These observations

may also be exploited for biohydrogen production by that

strain. Another way to produce H2 was analyzed by Barahona

et al.. In order to enhance nitrogenase-driven H2 production

in Rhodobacter capsulatus, they used a sensory hydrogenase

coupled to the production of a fluorescence signal. By inducing

genome-wide mutations and using high-throughput fluorescence-

activated cell sorting, they were able to generate mutants

with elevated H2 evolution capabilities. Finally, Schumann

et al. reviewed current state-of-the-art and future perspectives

for efficient light-driven H2 production using phototrophic

microorganisms. This technology potentially enables conversion

of solar energy into a chemical compound that enables storage

and transport. However, as discussed by the authors, extensive

engineering is required for this technology to be efficient

and scalable.

Taken together, the Research Topic advances our knowledge

especially on the function and application of hydrogenases and

provides important perspectives for future H2-based biologically

green technologies.
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