
Safety stock determination in

production systems with random

yield and positive lead times

Schriftliche Promotionsleistung

zur Erlangung des akademischen Grades

Doctor rerum politicarum

vorgelegt und angenommen

an der Fakultät für Wirtschaftswissenschaft

der Otto-von-Guericke-Universität Magdeburg

Verfasser: Danja R. Sonntag
Geburtsdatum und -ort: 22.11.1988, Eckernförde
Arbeit eingereicht am: 18.07.2017

Gutachter der schriftlichen
Promotionsleistung: Prof. Dr. Gudrun P. Kiesmüller,

Otto-von-Guericke Universität Magdeburg
Prof. Johan Marklund, PhD,

Universität Lund, Schweden

Datum der Disputation: 28.11.2017



Contents

List of Figures I

List of Tables II

1 Introduction 1

1.1 Modeling random yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The shape of the yield and its impact on inventory decisions 13

3 The Influence of Quality Inspections on the Optimal Safety Stock Level 25

4 Investing into quality inspections or reducing the yield variability? 41

5 Disposal versus Rework - Inventory control in a production system with ran-

dom yield 52



List of Figures I

List of Figures

1.1 Error sources in the microchip production . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



List of Tables II

List of Tables

1.1 Embedding in existing literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



Introduction 1

1. Introduction

In recent decades, the production of high-tech products has greatly increased. Within the

European Union, the monetary value of high-tech products sold nearly doubled from 170 billion

euros to 320 billion euros between 2003 and 2013 (Eurostat, 2014). In such a huge market,

companies have to deal with numerous competitors, which makes it necessary to produce high

quality products under low costs to guarantee low prices for customers and therefore achieve a

competitive advantage. In an environment like the high-tech industry, producing high quality

at low prices is not always an easy task. Samsung, for example, has problems producing the

curved glass for a new cell phone series. They have to deal with yields of less than 50%, which

means that more than half of all glasses manufactured cannot be used in cell phones (McNutt,

2015). Such low yields are the result of very complex production processes—in the Samsung

example, the bending of the glass is very difficult—but there are vast differences among various

industries and the companies.

One well-known example for random yield problems is the semiconductor industry and the cor-

responding microchip production. In this sector, the yields can vary tremendously during pro-

duction and among companies. The chip yields, defined as the fraction of produced microchips

which can be sold to customers, can vary between zero and 100% (Leachman & Hodges, 1996).

The reasons for yield losses are manifold, as illustrated in Figure 1.1.

chip yield loss

throughput
yield loss

misprocessing mishandling

die yield loss

global
disturbance

local
disturbance

Figure 1.1: Error sources in microchip production (according to yieldWerx, 2016)

On one hand, yield losses can occur due to misprocessing by handlers, or mishandling of the

wafers or equipment. Both error sources imply human error and are currently negligible because

of automated production systems (yieldWerx, 2016). On the other hand, die yield losses can

occur during the production of integrated circuits (ICs) on the wafers. Global disturbances affect

all ICs on a wafer due to e.g. variations in the temperature, while local disturbances only affect

small parts of the wafer because of e.g. missing connections between two circuit nodes (Khare &

Maly, 2012, p. 2f). It is obvious that a global disturbance leads to a yield of zero, while a local

disturbance can lead to different yields, depending on the degree of failure. This overview on

failure sources in the semiconductor industry illustrates the complexity of production processes
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in the high-tech industry, which makes it difficult to predict failures.

Besides uncertainties according to the yield between several production runs, the yield can also

differ from one company to another, depending on the quality of the production process. For

example, Intel has a production yield in the high 90% range, while rivals have yields of 60% to

80% which is a great competitive advantage (Foremski, 2012).

Although many papers on random yield consider the semiconductor industry as an example,

random yield occurs in several other industries, such as the agricultural sector as well as the

chemical and pharmaceutical industries (Inderfurth & Clemens, 2014). In the agricultural sector

the weather determines the quality of the crop. In addition, yield losses occur due to e.g. weeds,

fungal diseases, insects or post-harvest losses, which were responsible for 50% of the global

harvest losses in 2008 (Statista, 2016).

The example clarifies that the sources of failures are manifold and that, even though production

processes have improved over time, failures cannot be avoided.

1.1. Modeling random yield

In the literature, several concepts are known to model yield uncertainty as described above. All

the mentioned yield models are able to reflect different situations causing yield uncertainty. An

overview can be found in Yano & Lee (1995) and Grosfeld-Nir & Gerchak (2004).

The most common yield model considers binomial yield (see e.g. Delfausse & Saltzman, 1966;

Sepehri et al., 1986; Parlar & Wang, 1993; Pentico, 1994; Barad & Braha, 1996; Grosfeld-Nir

et al., 2000; Sloan, 2004; Ben-Zvi & Grosfeld-Nir, 2007; Inderfurth & Vogelgesang, 2013). In a

binomial yield model, each unit has a probability of p to be produced without errors. Thus, the

number of good units in a lot of size n is binomially distributed. Binomial yield is appropriate

in situations like thermal or chemical treatments e.g. coating, where the probability that one

unit is defective is independent of the condition of all other units (Grosfeld-Nir & Gerchak, 2004).

A second common yield model considers stochastic proportional yield (see e.g. Bollapragada

& Morton, 1999; Henig & Gerchak, 1990; Huh & Nagarajan, 2010; Inderfurth & Vogelgesang,

2013; Güler, 2015; Inderfurth & Kiesmüller, 2015). Stochastic proportional yield is used if a

certain quantity of items in a batch is defective due to a limited ability to react to environmen-

tal changes or variations in materials (Yano & Lee, 1995). In this case, the output Y (Q) of the

production process equals a random fraction Z ∈ [0, 1] of the input Q: Y (Q) = Z ·Q (Shih, 1980).

Another way of modeling yield uncertainty is the use of an interrupted geometric yield (see e.g.

Zhang & Guu, 1998; Guu & Liou, 1999; Guu & Zhang, 2003; Inderfurth & Vogelgesang, 2013)
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where a constant probability θ exists that the process falls to an out-of-control state during pro-

duction. As long as the process is in an in-control state, only error-free products are produced.

Once the system falls into an out-of-control state, from that point on, all produced items are

defective (Zhang & Guu, 1998). Such a situation occurs when e.g. manufacturing equipment

damages due to attrition. In such a production environment, either a preventive maintenance

policy before machine breakdown or a corrective maintenance strategy, once the machine falls

into an out-of-control state, is required.

The simplest yield model considers all-or-nothing yield (see e.g. Tomlin, 2009; Grosfeld-Nir &

Gerchak, 2004). All-or-nothing yield leads to only good units in a production batch with prob-

ability κ while all items are defective with probability 1 − κ. Such a yield is reasonable in

situations of natural strikes, terrorism or disasters e.g. fires, earthquakes or flooding (Tomlin,

2009).

The last common yield model uses discrete uniform yield (see e.g. Anily, 1995; Grosfeld-Nir

et al., 2000; Inderfurth, 2003), assuming that the quantity of good items is discrete and uni-

formly distributed. This yield model is used basically in theory, due to its simplicity (Anily,

1995).

Besides these common yield models, others can be found (see Grosfeld-Nir & Gerchak, 1990;

Parlar et al., 1995) but will not be discussed in the following.

In all the papers presented below, a stochastic proportional yield model is considered. Inter-

rupted geometric yields as well as all-or-nothing or discrete uniform yields are not suitable for

production systems similar to the microchip production. For such production systems, bino-

mial and stochastic proportional yields are applicable, both of which were used by Inderfurth

& Vogelgesang (2013) and Inderfurth & Kiesmüller (2015). The main advantage of stochastic

proportional yield over binomial yield is that, under stochastic proportional yield, higher yield

variances and therefore a higher uncertainty concerning the production output can be modeled.

In production systems where the production output can vary between zero and 100% as men-

tioned by Leachman & Hodges (1996), a high yield variability exists and therefore stochastic

proportional yield is more appropriate for modelling such situations.
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1.2. Model description

In this work, the focus is on make-to-stock production systems. The production process is fol-

lowed by a quality control, i.e. the inspection of all produced items in negligible time. The

products satisfying the required quality standards are stocked in a warehouse to satisfy stochas-

tic customer demand. Thus, the inspection ensures that only high quality items are sold to

customers to guarantee high customer satisfaction. As illustrated in Figure 1.2, defective prod-

ucts - defined as those products not satisfying the quality standards - can be handled in several

ways. In the following chapters, defective products are primarily disposed of, which means that

they leave the production process (see Chapters 2, 3 and 4). In Chapter 5, defective products

can instead be reworked. It is assumed that the rework process can be processed parallel to the

production process. After rework, these products are assumed to be in the same condition as

immediately perfectly produced items and therefore have the same price. It is also conceivable

that defective products are sold as lower quality products at a lower price (see e.g. Gerchak et al.,

1996; Hsu & Bassok, 1999) or otherwise utilized. However, these options are not considered in

the presented papers.

Figure 1.2: Overview of Chapters: Make-to-stock production system with/without rework

To be able to satisfy stochastic customer demand and thus reduce the probability of stock-outs,

a planner must ensure that sufficient stock is available. To replenish stock, orders can be placed

at the beginning of each period after the delivery of previous orders. Each order initiates the

start of an in-house production run. The difficulty is to determine the optimal order quantity,

while minimizing average holding and backorder costs per period. Holding costs are charged

at the end of a period for each unit in stock whereas backorder costs are charged for each unit
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backlogged.

In a production environment with random yield, the optimal ordering policy does not have a

simple structure (Henig & Gerchak, 1990). On one hand, stochastic demand leads to uncertainty

regarding outward stock movements. On the other hand, stochastic supply represented by

random yields leads to uncertainty regarding inward stock movements. Huh & Nagarajan (2010)

and Bollapragada & Morton (1999) showed that what is called a linear inflation policy performs

extremely well under zero lead times. In the case of a linear inflation policy, the order quantity

Qt in the period t equals

Qt =





F (S −Xt) , Xt < S

0 , Xt ≥ S
(1.1)

where F is the inflation factor, often defined as the reciprocal of the mean yield (see e.g. Bol-

lapragada & Morton, 1999; Huh & Nagarajan, 2010; Inderfurth & Vogelgesang, 2013; Inderfurth

& Kiesmüller, 2015). The inflation factor compensates for expected yield losses during the pro-

duction process. Note that while the inflation factor takes into consideration average yield losses,

variability represented by the variance of the yield is neglected. The order quantity equals the

inflated difference between the base stock level S and the actual inventory position Xt if this

difference is positive, and zero otherwise. The base stock level equals the mean demand during

the lead time plus some safety stock required due to the uncertainty in the system because of

demand and yield randomness.

The difficulty in determining the order quantity arises from the definition of the inventory

position which is not straightforward under random yield. While the inventory position in

a situation without random yield is defined as the stock on hand minus backorders plus all

outstanding orders, it changes if not all outstanding orders are delivered to the warehouse

due to imperfect production processes. Under random yield, the quantity of good items is

uncertain, because a planner does not know how many items will satisfy the quality requirements.

Therefore, the inventory position contains only an expectation of items being delivered in future

periods. Once the exact quantity of good items and thus the realized yield is known, a planner

can update the inventory position. This update is reflected by a ”forecast error”, which equals

the difference between the expected production outcome of an order and its realization. These

forecast errors do not exist in the case of zero production times, because ordered items arrive in

the warehouse immediately. Therefore, the production outcome can be observed instantaneously

and thus the planner can react to higher or lower amounts of perfect items by increasing or

decreasing the order quantity of the subsequent order. Because no forecast errors have to be

considered for production systems with zero production times, they are much easier to solve

and receive more attention in the literature (see e.g. Bollapragada & Morton, 1999; Huh &

Nagarajan, 2010; Zipkin, 2000). The focus of this work is on production systems with positive
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production times.

1.3. Contribution

Table 1.1 categorizes the literature on production systems with random yield regarding two

crucial assumptions: the number of production stages and the length of the production time of

each stage. It is obvious that a variety of literature exists on make-to-order production systems,

in particular with zero production times. All this literature mainly focuses on the question how

to set the lot size and thus the number of production runs when yield is random and a given

demand quantity has to be fulfilled in total (rigid demand). The authors focus either on optimal

or heuristic solution approaches under different yield models and different settings of the model

(e.g. different cost structure, rework, downward substitution).

zero lead time positive lead time

single-stage

make-to-order make-to-order

Delfausse & Saltzman (1966) Wang & Gerchak (2000)

Sepehri et al. (1986) Hsu et al. (2009)

Grosfeld-Nir & Gerchak (1990)

Anily (1995) make-to-stock

Grosfeld-Nir & Gerchak (1996) (Bollapragada & Morton (1999))

Zhang & Guu (1998) Gotzel & Inderfurth (2005)

Guu & Liou (1999) Inderfurth & Vogelgesang (2013)

Grosfeld-Nir et al. (2000) Inderfurth & Kiesmüller (2015)

Guu & Zhang (2003) Sonntag & Kiesmüller (2016)

Sloan (2004) Sonntag & Kiesmüller (in press)

Grosfeld-Nir & Gerchak (2004)

. . .

make-to-stock

Henig & Gerchak (1990)

Yano & Lee (1995)

Bollapragada & Morton (1999)

Zipkin (2000)

Huh & Nagarajan (2010)

multi-stage

make-to-order make-to-stock

Vachanf (1970) Choi et al. (2008)

Lee & Yano (1988) Dettenbach & Thonemann (2015)

Wein (1992) Sonntag & Kiesmüller (2017)

Grosfeld-Nir & Ronen (1993) Sonntag (2017)

Pentico (1994)

Barad & Braha (1996)

Grosfeld-Nir & Gerchak (2002)

Grosfeld-Nir & Gerchak (2004)

Ben-Zvi & Grosfeld-Nir (2007)

. . .

Table 1.1: Embedding in existing literature
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While a lot of literature on make-to-order production systems under random yield exists, the

literature on make-to-stock systems under random yield is very limited and mainly focuses on

single-stage systems because they are easier to solve. The contribution of this work is to give

solution approaches for imperfect make-to-stock production systems with positive production

times.

Examining the existing literature, Bollapragada & Morton (1999) consider random yield prob-

lems in particular with zero production times and give only a very brief overview of how to

deal with positive production times. Nevertheless, like Inderfurth & Vogelgesang (2013) and

Inderfurth & Kiesmüller (2015), they assume that the forecast error can be approximated by a

normal distribution due to the central limit theorem (Bollapragada & Morton, 1999). According

to Sonntag & Kiesmüller (2016), as presented in Chapter 2, we showed that the assumption of

a normally distributed forecast error is not suitable in case of skewed yield. Because, except for

Gotzel & Inderfurth (2005), all papers on make-to-stock systems assume that defective items

are disposed of, Sonntag & Kiesmüller (in press) consider that defective items are reworked. In

addition to having a slightly different model compared to Gotzel & Inderfurth (2005), we also

present a different definition of the inventory position, which includes only the relevant infor-

mation for the actual decision. Beyond that, we also present a solution approach which is very

fast, compared to the stochastic dynamic programming of Gotzel & Inderfurth (2005), even for

larger problem settings.

The literature on multi-stage make-to-stock production systems with positive production times

is even more limited. The only approaches come from Choi et al. (2008) and Dettenbach &

Thonemann (2015), who use simulation and stochastic dynamic programming to solve the prob-

lem. They are only able to solve small problem sizes, due to these solution approaches. The

approach in Sonntag & Kiesmüller (2017) is the first one able to deal with large multi-stage pro-

duction systems. While Sonntag & Kiesmüller (2017) focus on the question of where to locate

intermediate quality inspections to reduce the safety stock level, Sonntag (2017) considers one

further option to reduce the safety stock level: under a given budget constraint either additional

quality inspections can be introduced or the yield variability can be reduced. Thus, the question

is how to invest a given budget to reduce the safety stock.

In the following chapter, a more detailed overview is presented of the papers which form part of

this work.
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1.4. Bibliography

As already mentioned, the present work considers different problem settings regarding make-

to-stock production systems with random demand and random supply and positive production

times. An overview is given in Table 1.2.

Chapter Stages Defectives Status Title

Chapter 2 single-stage disposed of published Sonntag, D., Kiesmüller, G. P. (2016).
The shape of the yield and its impact
on inventory decisions. 4OR, 14, 405-
415.

Chapter 3 multi-stage disposed of published Sonntag, D., Kiesmüller, G. P. (2017).
The Influence of Quality Inspections
on the Optimal Safety Stock Level.
Production and Operations Manage-
ment, doi: 10.1111/poms.12691.

Chapter 4 multi-stage disposed of published Sonntag, D. (2017). Investing into
quality inspections or reducing the
yield variability?. Proceedings of the
Logistikmanagement 2017, 258-266.

Chapter 5 single-stage reworked in press Sonntag, D., Kiesmüller, G. P. (in
press). Disposal versus Rework - In-
ventory control in a production system
with random yield. Accepted for pub-
lication in: European Journal of Op-
erational Research.

Table 1.2: List of publications

Although the model is similar in all the papers, each paper considers different research questions

which are described in detail in the following text.

Chapter 2 focus on a single-stage production system with positive production times. As already

mentioned, the inventory position includes the estimated quantity of goods to be delivered, which

leads to a forecast error. Literature focusing on random yield problems with positive produc-

tion times usually assume that this forecast error is normally distributed (see e.g. Bollapragada

& Morton, 1999; Inderfurth & Vogelgesang, 2013). In the presented paper, it is shown that,

for skewed yield, the assumption of a normally distributed forecast error leads to poor results.

Therefore, the forecast error is approximated by a skewed normal or a generalized extreme value

distribution and a Markov chain approach is used to determine the optimal base stock levels.

The numerical study reveals that the proposed approaches are excellent and outperform existing

ones.

In Chapter 3 the single-stage production system is extended to a multi-stage production system.

In such a production system, earlier information about realized yields has a positive effect on
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cost, because uncertainty about the production outcome decreases. Specifically, production costs

as well as holding costs can be reduced by introducing quality inspections, discarding defective

items before further production. To achieve the greatest cost savings, it is important to deter-

mine the optimal number and positions of these inspections across the production process which,

due to several influencing parameters, is not simple. It is shown how the positions of inspection

within a production process influence the safety stock level by deriving analytical formulas. The

approach is the first to combine decisions about the number and positions of inspections with

inventory control strategies in a warehouse. A maximum safety stock reduction of more than

30% can be achieved in the presented examples, which may be even larger depending on the

parameter setting. This allows for significant savings for a company like Intel, which reported

inventories for finished goods of nearly 1.5 billion dollars in the 2014 Annual Report.

Chapter 4 considers a similar model for the production process to that in Chapter 3, but focuses

on the question of how to reduce the required safety stock level and therefore holding cost, re-

sulting in a new optimization model. On the production site, a planner has two opportunities of

reducing uncertainty about the production output and therefore the safety stock level. He can

implement intermediate quality inspections as in Chapter 3 and/or reduce the yield variance

under a given budget constraint. Thus, a planner has to optimize the number and locations

of additional inspections, as well as the amount of money spent on each production stage, in

order to reduce the yield uncertainty. The problem is solved using a fix-and-optimize solution

approach. The results indicate that, depending on the extent of yield variability, either im-

plementing additional inspections or reducing the yield variance is more favorable. Moreover,

significant safety stock reductions can be recognized, depending on the current yield variability.

In a production environment where random yield plays a significant role, a decision has to be

made how to handle products which do not satisfy the given quality requirements. While, in

Chapter 2 to 4 it is assumed that defective items are disposed of, Chapter 5 compares two

different strategies for handling defective items: disposal or rework. It is important to note that

a planner can make the strategic decision between disposal and rework only once and cannot

change it within the planning horizon. It is shown how to determine the optimal base stock

level. This is very difficult because of unknown correlations between orders. Subsequently, an

optimization model is proposed to support the decision of a planner whether to dispose of or

rework defective items. The parameters which directly affect this decision are analyzed within

a sensitivity analysis. The analysis indicates that significant cost reductions can be obtained by

choosing the best strategy for defective products.
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Abstract We consider an inventory model with stochastic demand, positive lead time
and random yield where ordering decisions are made according to a linear inflation
rule. In case of a positive lead times the complexity of such inventory systems increases
distinctly. Due to positive lead times, the inventory position contains no longer a term
for outstanding orders but the estimated quantity of goods to be delivered after a known
positive lead time period, which differ from the realized deliveries. Thus, a forecast
error occurs in each period. In previous research this forecast error was assumed to be
normally distributedwhich is not an appropriate assumption in case of symmetric yield.
Since yield skewness can’t be neglected, we propose to fit a skew normal distribution
or a generalized extreme value distribution on the forecast error to account for the
yield skewness. A numerical study reveals that the proposed approaches are excellent
and outperform existing ones.

Keywords Stochastic inventory model · Random yield · Positive lead time · Yield
skewness

Mathematics Subject Classification 90B05 · 60J10

1 Introduction

In many inventory models, e.g. the classical newsvendor model, uncertain demand is
assumed. However, these models in the basic form suppose that ordered items are of
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perfect quality and that the quantity delivered is equal to the quantity ordered. Thus, the
second source of uncertainty—supply quantity uncertainty—is not considered despite
the fact that in many industries companies have to deal not only with random demand
but also with random supply. The agricultural sector and the related industries for
example are to some extent substantially dependent on the not influenceable factor
weather (He and Zhang 2008). Furthermore, in electronic fabrication and chemical
processes random production yield plays an important role (Yano and Lee 1995).

Beyond a system with random yield we consider a system with positive lead time,
which is according to our knowledge only studied byBollapragada andMorton (1999),
Inderfurth andKiesmüller (2015) and Inderfurth andVogelgesang (2013). Positive lead
times increase complexity distinctly since the information about outstanding orders is
uncertain. Thus, the inventory position, which is the basis for the ordering decision,
contains a term for the expected yield. Whenever an order is delivered, the inventory
position needs to be updated by the difference of the expected yield and the realized
yield. Therefore, in every period there exists a forecasting error. In previous literature,
Bollapragada and Morton (1999) and Inderfurth and Kiesmüller (2015) as well as
Inderfurth and Vogelgesang (2013) assumed that the forecast error is approximately
normally distributed due to the central limit theorem (Bollapragada andMorton 1999).
Numerical studies show an excellent performance for symmetric demand and yield
distributions. However, a symmetric yield is very unlikely especially for a high mean
yield, as for example in the agricultural sector (Hennessy 2009). As can be seen in
Inderfurth and Kiesmüller (2015), the consideration of an asymmetric yield on the
one hand but a symmetric forecast error on the other hand leads to cost 20% above
optimum under positive lead times. This effect is unsurprising bearing in mind that
the forecast error somehow depends on the yield. Nonetheless, it is neglected in the
literature so far.

Wewill show that the approximation of the forecast error with a normal distribution
fails in case of a skewed yield and investigate two different approaches, able to deal
with yield skewness. We suggest fitting a generalized extreme value distribution and
a skew normal distribution. Both approximations show excellent results.

The rest of the paper is organized as follows. In Sect. 2, we formulate the mathe-
matical model and outline the markov chain approach to calculate the optimal base
stock level. In Sect. 3, we explain the concept of the forecast error in detail as well
as the already mentioned generalized extreme value distribution and the skew normal
distribution to model the forecast error. Section 4 provides the results of the numerical
study followed by a summary and outlook in Sect. 5.

2 Model formulation

We consider a periodic review inventory model where an order of size Q can be
placed at the beginning of each period after the delivery of the order placed λ periods
before. Subsequently, demand D occurs whereby demand which cannot be satisfied
directly from stock is backlogged. We assume that demand is discrete and stochastic
with constant parameters over time, and independent and identically distributed (iid)
across the periods. At the end of each period inventory holding and backorder costs
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are charged. Due to e.g. production risks the delivered quantity does not necessarily
equal the quantity ordered. Under the assumption of a stochastic proportional yield
model the yield is a random multiple of the input, Y (Qt ) = Zt · Qt , with mean
E[Y (Qt )] = μZ Qt and variance VAR[Y (Qt )] = σ 2

Z Q
2
t . Zt ∈ [0, 1] is denoted as the

yield factor in period t with mean μZ and variance σ 2
Z . We assume that (Zt )t=1,2,...

is iid and independent on the demand distribution. The lead time λ is deterministic,
positive (λ > 1), and constant over time.

When placing an order, the random yield has to be taken into account. Since the
optimal ordering policy has not a simple structure (Henig and Gerchak 1990), a linear
inflation policy, which has shown to perform very well (Huh and Nagarajan 2010), is
considered. Thus, the order quantity Qt in period t is determined as

Qt =
{
F(S − Xt ), Xt < S
0, Xt ≥ S

(1)

with the yield inflation factor F , the critical stock level S and the inventory position
Xt at the beginning of the period before an order is placed. Since only discrete values
for the order quantity are permitted, it is rounded to the closest integer value using the
following notation: Qt = �F(S − Xt )�. The inventory position is defined as

Xt = It−1 + Y (Qt−λ) +
λ−1∑
l=1

μZ Qt−l (2)

with the inventory level It−1 at the end of period t − 1, the delivered quantity
Y (Qt−λ) in period t , and the expected outstanding deliveries,

∑λ−1
l=1 μZ Qt−l . We can

rewrite Eq. (2) to the following recursive equation for the inventory position in period
t + 1:

Xt+1 = Xt + μZ Qt − Dt − (μZ Qt+1−λ − Y (Qt+1−λ)). (3)

The last term in brackets equals the difference between the expected yield and the
actual yield, and can be interpreted as a forecast error. We define the forecast error
Rt+1−λ as follows:

Rt+1−λ = μZ Qt+1−λ − Y (Qt+1−λ) (4)

In order to compute a near optimal critical stock level we model the system as a
markov chain similar as in Inderfurth and Kiesmüller (2015). Note, while modelling
the system as a markov chain, we ignore effects from previous periods in Xt . Thus,
the markov model can only approximate the real system. However, in Inderfurth and
Kiesmüller (2015) it is shown that this approximation works well. States are defined
as �t = Xt − S, which is positive if the actual yield exceeds the expected yield and
negative otherwise. With this definition we get from (1) and (3):

�t+1 =
{

�t + Z · F(−�t ) − (Dt + Rt+1−λ), �t < 0
�t − (Dt + Rt+1−λ), �t ≥ 0

(5)

It is obvious that the distribution of the forecast error Rt+1−λ has an impact on the
calculations of the markov chain which clarifies the importance of a good approxima-
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tion. The markov chain approach is used to determine the stationary distribution of�t

and Xt . This information is needed to compute the distribution of the inventory level,
It+λ, which equals

It+λ = Xt + Z · Qt −
λ−1∑
l=0

Rt−l −
λ∑

l=0

Dt+l . (6)

The forecast error can also be interpreted as a second demandprocesswhere demand
can be positive as well as negative. Adding this process to the customer demand leads
to an adapted demand process, which is defined for general lead times as

η(λ + 1) :=
λ∑

l= 0

Dt+l +
λ−1∑
l= 0

Rt−l . (7)

It can be seen that the distribution of the forecast error has again an influence on the
computations. Using the information about the stationary distribution of the inventory
position and the adapted demand process, a nearly optimal critical stock level S can
be determined. For this purpose, the newsvendor like condition in (8) is used. The
smallest value of S satisfying this inequality for a given yield factor F minimizes the
long run average costs of the system (we refer to Inderfurth and Kiesmüller (2015) for
details):

S−1∑
k=−∞

P
(
η(λ + 1) ≤ k + �Z · �F(S − k)��

)
vk +

+∞∑
k=S

P
(
η(λ + 1) ≤ k

)
vk

≥ b

b + h
(8)

vk equals the stationary distribution vk = limt→∞P(�t = k).

3 The forecast error

For the newsvendor like condition (8) we need the distribution of the adapted demand
process which means, we have to derive the distribution of the sum of the fore-
cast errors, respectively. In Inderfurth and Kiesmüller (2015) and Inderfurth and
Vogelgesang (2013) the distribution of the forecast error is approximated by a normal
distribution as well as in Bollapragada and Morton (1999), where it is argued that
if lead times are sufficiently long the central limit theorem justifies this assumption.
Figure 1 shows the frequency distribution of the forecast error for a simulation of the
inventory system in ARENA 12.0 (Kelton et al. 1998) for one million periods with
the following input parameters: a normally distributed demand with mean μD = 20
and coefficient of variation of ρD = 0.1, a beta distributed unsymmetrical yield with
mean μZ = 0.85 and coefficient of variation of ρZ = 0.2, a critical ratio of 0.995 and
a lead time of λ = 2.
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Fig. 1 Relative frequency distribution of the forecast error in case of a symmetrical demand and an
unsymmetrical yield

Although the simulated forecast error has a mean of zero, it is obviously not nor-
mally distributed, since it is not symmetric, but skewed. For this example the markov
chain approachwith a normally distributed forecast error leads to a non-optimal critical
stock level, resulting in 20% larger costs compared to the optimum.We can conclude,
that using a distribution for the forecast error which is defined only by two central
moments is not appropriate. In the following, we investigate two approaches based on
three central moments which differ in the distribution for the forecast error.

3.1 Central moments of the forecast error

We start with the derivation of the first three central moments of the forecast error,
because in a second step, we fit an appropriate distribution on thesemoments. It is easy
to see that the expectation of R is equal to zero, E[R] = μR = E(μZ Q − ZQ) = 0.
From Inderfurth and Kiesmüller (2015) we know that the variance VAR[R] = σ 2

R =
VAR[μZ Q − ZQ] can be transformed to

VAR[R] = σ 2
Z (μ2

Q + σ 2
Q) (9)

withμQ = μD/μZ and σ 2
Q = [1/μ2

Z · (σ 2
D +ρ2

Zμ2
D)/(1−ρ2

Z )]with the coefficient of
variation of the yield factor ρZ = μZ/σZ . The skewness of the forecast error equals:

SWN[R] = E[(R − μR)3]
σ 3
R

= E[R3]
σ 3
R
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= E[(μZ Q − ZQ)3]
σ 3
R

= E[Q3] · (−2μ3
Z + 3μZμ2,Z − μ3,Z )

σ 3
R

(10)

μ2,Z and μ3,Z denote the second and third moment of the yield factor Z . From Inder-
furth and Kiesmüller (2015) we know that

E[Q3] = 1

μ3,Z − 3μZσ 2
Z

·
[
μ3,D + 3μDρ2

Z

(
μ2
D + σ 2

D + ρ2
Zμ2

D

1 − ρ2
Z

)]
(11)

with the third moment of the demand, μ3,D . Formula (10) and (11) show that the third
moment of the yield has an impact on the shape of the forecast error. Thus, it can not
ne neglected.

3.2 The generalized extreme value distribution

The generalized extreme value distribution (GEVD) is defined by the location para-
meter τ , the scale parameter ψ and the shape parameter ξ and has the following
probability density function (for more information on the GEVD we refer to Coles
(2001), p. 48):

f (x; τ, ψ, ξ) = 1

ψ

[
1 + ξ

(
x − τ

ψ

)](−1/ξ)−1

exp

{
−

[
1 + ξ

(
x − τ

ψ

)]−1/ξ
}

(12)
We fit the distribution of the forecast error on the expectation E[R], the variance

VAR[R] and the skewness SWN[R]. We first have to solve the following equation to
get the shape parameter ξ :

SWN[R] = g3 − 3g1g2 + 2g31
(g2 − g21)

3/2
(13)

where gk = 
(1 − kξ) with the complete gamma function 
(v). In the next step we
determine the scale parameter ψ from

ψ =
√
VAR[R] · ξ2/(g2 − g21). (14)

Finally, the location parameter τ is given as

τ = E[R] + ψ

ξ
(1 − g1). (15)
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3.3 The skew normal distribution

The skew normal distribution is defined by the location parameter ζ , the scale para-
meter ω and the shape parameter α and has the probability density function (Sartori
2006)

f (x; ζ, ω, α) = 2

ω
ϕ

(
x − ζ

ω

)
�

(
α
x − ζ

ω

)
(16)

with the standard normal probability density function ϕ and the standard normal
cumulative distribution function �.

To get the shape parameter α, the following equation has to be solved:

SWN[R] = 4 − π

2

(δ
√
2/π)3

(1 − 2δ2/π)3/2
(17)

where δ = α/
√
1 + α2. The scale parameter ω equals

ω =
√
VAR[R] · 1

1 − 2
π
δ2

(18)

and the location parameter ζ is defined as

ζ = E[R] − ωδ ·
√

2

π
. (19)

3.4 Fitting the distribution

Equations (13) and (17) can easily be solved numerically and also the other parameters
of the distribution can be determined such that theGEVor the skewnormal distribution
equal the first three moments of the forecast error. The convolution of the forecast
distribution and the demand distribution in (5) can be determined numerically to obtain
the matrix of the transition probabilities of the markov chain.

For the adaptive demand process (7) we directly fit on the sum of the forecast
errors

∑λ−1
l=0 Rt−l , which has mean zero. The variance and the third moment can be

computed easily since all terms in the sum are independent and identically distributed.
Therefore, we get

VAR

[
λ−1∑
l=0

Rt−l

]
= λVAR[R] and E

⎡
⎣

(
λ−1∑
l=0

Rt−l

)3⎤
⎦ = λE[R3]. (20)

Thus, if period demand has a distribution where the sum of the random variables
stays in the same class, only one convolution has to be computed for the newsvendor
condition (8).
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4 Numerical results

In a detailed numerical study we investigated the impact of the distribution assumption
of the forecast error on the cost performance of the inventory system.We approximated
the critical stock level using the markov chain as described in Sect. 2 and determined
the corresponding average costs by simulation. We distinguished between the cases
where the forecast error is assumed to be normally distributed (N ), where a generalized
extreme value distribution is fitted (GEVD), and a skew normal distribution is fitted
(SN). We compared the obtained average costs Capp, (app ∈ {N ,GEVD, SN}) with
the optimal costs Copt determined by simulation and computed the relative difference
for every instance i :

δi = Capp − Copt

Copt
· 100% app ∈ {N ,GEVD, SN} (21)

Furthermore, we computed the maximum relative difference over N instances as

δmax = maxi=1,...,N δi (22)

and the average relative difference over N instances as

δ̄ = 1

N

N∑
i=1

δi . (23)

We test our approaches for the same data set as in Inderfurth and Kiesmüller (2015)
and we also set the yield inflation factor equal to the reciprocal of the average yield
(F = 1

μZ
).We consider on the one hand a normally distributed demandwithμDnorm =

20 and a coefficient of variation of ρDnorm ∈ {0.1, 0.2, 0.3}. On the other hand we
consider a gamma distributed demand with μDgam = 20 and a coefficient of variation
of ρDgam ∈ {0.1, 0.2, 0.3, 0.5, 0.75} to allow for non-symmetric demand and larger
demand uncertainty. We assume that the holding cost parameter equals one (h = 1)
and chose six different parameters for the backorder costs such that b/(b + h) ∈
{0.85, 0.9, 0.95, 0.97, 0.99, 0.995}. Furthermore, we assume a beta distribution for
the yield and consider three symmetric distributions with different variability (μZ =
0.5, ρZ ∈ {0.2, 0.4, 0.5774}) and three asymmetric distributions (μZ = 0.75, ρZ =
0.2; μZ = 0.85, ρZ = 0.2; μZ = 0.85, ρZ = 0.1). Further, three different
numerical values for the lead time λ ∈ {2, 5, 10} are investigated.

Overall we computed 324 instances in case of normally distributed demand and
540 instances in case of gamma distributed demand and measured the impact of the
input parameters in theworst case performance (22) and the average performance (23).
Table 1 shows the percentage maximum relative deviation from the optimal solution
in case of a normally distributed demand.

It can be seen that in case of a symmetrical demand distribution with a low variance
and a skewed yield distribution the maximum deviation of the average cost runs up
to 20% if the forecast error is approximated with a normal distribution. This example
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Table 1 Maximum relative deviation from optimum (in %) for a normally distributed demand

Parameter Maximum relative deviation

Value Normal Skew normal GEVD

ρD 0.1 20.6694 1.0937 2.8142

0.2 6.6381 0.8579 2.3743

0.3 1.3230 0.5895 1.5362

(μZ , ρZ ) (0,85;0,1) 2.3855 0.2537 0.2537

(0.85;0.2) 20.6694 0.6112 0.1718

(0.75;0.2) 6.9429 0.2094 2.8142

(0.5;0.2) 0.3417 0.3417 1.7412

(0.5;0.4) 0.6386 0.6386 2.1119

(0.5;0.5774) 1.0937 1.0937 2.8142

λ 2 20.6694 1.0937 2.8142

5 7.5036 0.3417 1.7412

10 3.8163 0.3288 0.6914

b/(b + h) 0.85 0.5119 0.5119 1.7412

0.9 0.5613 0.5613 0.5613

0.95 1.3799 0.3130 0.3130

0.97 1.9552 0.2662 0.1718

0.99 7.7290 0.2667 1.1407

0.995 20.6694 1.0937 2.8142

Total 20.6694 1.0937 2.8142

illustrates that the skewness of the yield cannot be neglected. Approximating the
forecast error with a skew normal distribution or with a GEV distribution reduces the
maximum relative deviation to acceptable values. It can also be seen in Table 1 that
the skew normal distribution outperforms the generalized extreme value distribution,
especially in case of symmetric yield. In this situation the skew normal distribution
coincides with the normal distribution.

The proposed approaches do not only improve the worst case performance but also
the average performance as shown in Table 2.

It can be seen, that independently of the distribution for the forecast error, the
maximumaswell as the average relative deviationdecreaseswith increasing coefficient
of variation of the demandwhichmight be surprising at first glance. The reason for this
effect is risk pooling. A higher demand variability leads to a higher safety-stock level.
With an increased inventory level, more stock is available for hedging against yield
uncertainty. The same effect can be observed for varying lead times since demand
uncertainty during the lead time increases.
Beyond that, especially the normal distribution leads to poor results in case of lower
lead times. Referring to formula (7), η(λ + 1) equals the sum of independent random
variables. Due to the central limit theorem, η(λ+1) can be approximated by a normal
random variable for high λ (Bollapragada and Morton 1999). Since λ = 2 is not
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Table 2 Average relative deviation from optimum (in %) for normally distributed demand

Average relative deviation

Parameter Value Normal Skew normal GEVD

ρD 0.1 0.7595 0.0572 0.1747

0.2 0.3149 0.0551 0.1163

0.3 0.1074 0.0594 0.0756

(μZ , ρZ ) (0,85;0,1) 0.1324 0.0081 0.0101

(0.85;0.2) 1.4738 0.0366 0.0200

(0.75;0.2) 0.4697 0.0113 0.0579

(0.5;0.2) 0.0245 0.0245 0.1007

(0.5;0.4) 0.0696 0.0696 0.2222

(0.5;0.5774) 0.1935 0.1935 0.3221

λ 2 0.6543 0.0856 0.1847

5 0.3208 0.0375 0.1117

10 0.2066 0.0487 0.0702

b/(b + h) 0.85 0.0501 0.0501 0.1025

0.9 0.0672 0.0647 0.0783

0.95 0.0985 0.0239 0.0217

0.97 0.1836 0.0209 0.0215

0.99 0.6960 0.0460 0.1499

0.995 1.2681 0.1379 0.3592

Total 0.3939 0.0573 0.1222

Table 3 Average and maximum relative deviation from optimum (in %) for gamma distributed demand
over all instances

Normal Skew normal GEVD

Maximum relative deviation 12.51 1.37 2.90

Average relative deviation 0.21 0.06 0.09

sufficiently high, an approximation of the forecast error with a normal distribution is
deficient.
Comparing the different distributions, the results illustrate that the approach based
on the skew normal distribution leads to an excellent performance and leads to much
better results especially in situations with skew yield and high critical ratios. The
GEVD approach also outperforms the approach based on the normal distribution but
is not as excellent as the approach based on the skewed normal distribution. The
cost differences are a result of different values of the critical stock level. It can be
observed that the approaches based on a normal and a generalized extreme value
distributed forecast error have a tendency to underestimate the critical stock level.
With a skew normal approximation of the forecast error the critical stock level is
likely to be overestimated. Since the effect of overestimation is much smaller, because
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holding costs are usually smaller than backorder costs, the better cost performance
can be explained.

Similar observations can be made in case of gamma distributed demand, as shown
in Table 3.

5 Summary and outlook

We presented a way to take into account the effect of a skewed yield on the distribution
of the forecast error in an appropriate way. The results show, that the skew normal
distribution can deal very well with a symmetrical and an unsymmetrical yield factor
and thus is a much better approximation for the forecast error than the normal distri-
bution. We can also conclude, that neglecting the skewness of the yield leads to an
underestimation of the stocklevel and therefore to more backorders, less service, and
larger costs.

For future research, it would be interesting to extend the above approach to more
complex systems. In this paper, we assumed that random yield occurs during the lead
time, which equals a given number of periods. We can extend this system to a two-
stage system where both stages are concerned with random yield. Such a situation
exists when e.g. freight is first transported by a container ship and afterwards by a
truck. Beyond that, stochastic lead times are not unusual in practice but neglected in
our model.
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D ue to yields of less than 50% during the production of curved glass for the displays on their new cell phone series,
Samsung has to deal with higher than expected production costs of several million dollars. Where there is random

yield, production costs as well as holding costs can be reduced by introducing quality inspections, in which defective
items are discarded before further production. To achieve the greatest cost savings, it is important to determine the opti-
mal number and positions of these inspections across the production process which, due to several influencing parame-
ters, is not simple. We show how the positions of inspection within a production process influence the safety stock level
that is required to buffer against uncertainties due to demand and yield randomness. Our approach is the first one, com-
bining decisions about the number and positions of inspections with inventory control strategies in a warehouse. We
achieve a maximum safety stock reduction of more than 30% in our examples, which can be even larger depending on
the parameter setting. For a company like Intel, reporting inventories for finished goods of nearly 1.5 billion dollars in the
2014 annual report, this allows for significant savings.
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1. Introduction

Between 2003 and 2013, the value of high-tech prod-
ucts sold in the European Union rose by over 85%
(Eurostat 2016). Due to this increasing number of
high-tech products and the challenge of achieving
higher quality standards, production processes
become more and more complex. Samsung, for exam-
ple, has problems producing the curved glass for a
new cell phone series. Due to low yields of less than
50%, the price for such displays is approximately
eight times higher than the former one (McNutt 2015).
Samsung ordered around 8.5 million displays in the
second quarter of 2015 wherefore several problems
arose. On one hand, the production costs increase by
millions of dollars if approximately every second item
is defective. On the other hand, the low production
output leads to difficulties in delivery. By way of com-
parison, Intel leads the world in the production of
microchips especially because their production yields
are in the high 90% range, whereas competitors have
to deal with yields of 60–80% (Foremski 2012). Taking
into consideration that Intel spends around 7 billion
dollars for a semiconductor fabrication plant–called
“fabs”–high yields are necessary for profitable
production and low consumer prices.
Random yields as well as random demand increase

the complexity of production systems enormously
since the planner can only deal with an expectation of

the production outcome. Choi et al. (2008) as well as
Dettenbach and Thonemann (2015) showed that early
information about realized yields can reduce the
uncertainty generated by an unknown number of
defective items being produced. The knowledge
about the amount of items not fulfilling given quality
standards leads to a reduction of the corresponding
safety stock level required to achieve a predefined ser-
vice level for the final product stocked in a ware-
house. However, this information is not directly
available, with the result that the planner needs to
introduce costly quality inspections to obtain it. In the
semiconductor industry for example, inspection sys-
tems to increase and maintain integrated circuit chip
yields cost about 700 million dollars per year (Sto-
kowski and Vaez-Iravani 1998). Depending on the
effectiveness of quality inspections, the yield, for
example, in microchip production can vary between
0% and 100% (Leachman and Hodges 1996). A trade-
off exists between high costs for inspections and the
need to ensure high quality throughout the produc-
tion. On one hand, many quality control stations lead
to a direct elimination of all defective items, which
reduces uncertainty about the production output and
therefore the safety stock level. On the other hand,
these inspections are very costly and it might not be
economical to order an inspection after each produc-
tion stage. Therefore, it is important to determine the
optimal number and position of these inspections
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across the production process. This is not easy
because several parameters, such as the mean and the
variance of the yield and the total production time,
influence these decisions.
In this study, we consider multi-stage make-to-

stock production systems for a single product. Since
studies have shown that product quality has a direct
effect on customer satisfaction, purchase intentions,
and therefore economic returns (Anderson et al.
1994; Taylor and Baker 1994), we allow only items of
perfect quality to be sold to the customer. To ensure
that produced products meet the desired quality
standards, all units are inspected after the last pro-
duction stage, before items are stocked in a ware-
house, to remove all items not satisfying the quality
requirements. Each production stage is related to a
positive production time and random yield, which is
assumed to be stochastically proportional. Our pur-
pose is to analyze existing production systems with
in between quality inspections and afterwards opti-
mize the number as well as the position of these
inspections across the production process with the
objective of minimizing the overall costs consisting
of holding, backorder, production, quality control,
and disposal costs.
There exists a variety of literature on the position-

ing of quality inspections within a production
process. Lindsay and Bishop (1964) and Eppen and
Hurst Jr (1974) are some of the first authors consider-
ing this kind of question. Lindsay and Bishop (1964)
used a dynamic programming approach to determine
the position of quality control and the optimal per-
centage of items being checked to reach a contractual
given quality level of delivered products. Eppen and
Hurst Jr (1974) instead considered imperfect inspec-
tions which can lead to good items being rejected and
bad items being accepted. They also used dynamic
programming to decide whether to inspect products
before the next production step. Over the years a lot
of literature has come up with problem settings in a
similar production environment but with different
constraints (e.g., imperfect inspections or reworking
of defective items). A comprehensive overview is
given by Mandroli et al. (2006) and Shetwan et al.
(2011). All literature about the positioning of quality
controls has in common that the production quantity
is either externally given (e.g., one item or a batch of
items with a fixed batch size per period) or affected
by demand due to the use of make-to-order produc-
tion. Peters et al. (1988) and Ben-Daya and Noman
(2008) connect “quality-control and inventory poli-
cies”, but they only consider a one-stage production
system with only one quality control inspection
before the product enters the warehouse.
In contrast to the existing literature we consider a

multi-stage make-to-stock environment in which the

warehouse can place an order with the production at
the beginning of a period, which determines the pro-
duction volume. The literature on inventory manage-
ment reveals that the optimal ordering policy in
systems with random yield is very complex (Henig
and Gerchak 1990). As a consequence, a linear infla-
tion rule that performs very well (Huh and Nagarajan
2010), is commonly used to take the yield losses into
account. A linear inflation policy is defined by two
parameters, the pseudo-order-up-to level and the
yield inflation factor, whereas we assume that
the yield inflation factor is given by the reciprocal of
the mean yield of the total system, which is a com-
monly used assumption (see e.g., Bollapragada and
Morton 1999; Henig and Gerchak 1990; Inderfurth
and Kiesm€uller 2015). Thus, only the pseudo-order-
up-to level has to be determined. Contributions in this
area are devoted either to the optimal order policy
(see Henig and Gerchak 1990; Bollapragada and Mor-
ton 1999) or to the optimization of policy parameters
of a given policy, for example the linear inflation pol-
icy (Huh and Nagarajan 2010). A literature overview
was given by Yano and Lee (1995). In this line of
research the realized yield can be observed only at the
moment of delivery, which means that yields are
unknown during the production process.
In contrast, Choi et al. (2008) and Dettenbach and

Thonemann (2015) look at multi-stage production
with the possibility of observing realized yields
between the stages. Thus, they combine the literature
on multi-stage serial production systems with the
literature on make-to-stock policies and analyze the
effect of real-time yield information in a serial supply
chain with one manufacturer and one supplier. Choi
et al. (2008) compare different alternatives of real-
time yield information when the supplier produces
the items in two steps. As well as a production time of
one period on each production stage, they include a
one-period transportation time to the manufacturer in
their model. For identical random yield at each pro-
duction step they show in a simulation study that
real-time yield information leads to a reduction in
safety stock. The focus of Dettenbach and Thonemann
(2015) is different, because they are interested in opti-
mal decisions and therefore present a dynamic pro-
gramming approach. The optimal decisions can only
be determined numerically for very small systems
and no structural properties can be obtained. There-
fore, they also present two heuristics. The first one is
based on an idea of Ehrhardt and Taube (1987) and
can lead to poor results since it does not reflect the
multi-stage production with random yield on each
production stage in an appropriate way. The second
heuristic, based on the approach of Huh and Nagara-
jan (2010), requires simulation since “it is difficult
to calculate [...] analytically” (Dettenbach and

Sonntag and Kiesm€uller: The Influence of Inspections on Safety Stock
2 Production and Operations Management 0(0), pp. 1–15, © 2017 Production and Operations Management Society

Please Cite this article in press as: Sonntag, D., G. P. Kiesm€uller. The Influence of Quality Inspections on the Optimal Safety Stock
Level. Production and Operations Management (2017), doi 10.1111/poms.12691



Thonemann 2015), and therefore might need consid-
erable computation time.
Choi et al. (2008) and Dettenbach and Thonemann

(2015) give very good insights into the effect of real-
time yield information on the holding and backorder
costs but they do not address the question of which
production stage should be followed by a quality con-
trol test or how many should be established under a
comprehensive cost model.
Our contribution in this study is as follows: (1) For

given production systems, we analyze the effect of
intermediate quality control on the optimal safety
stock level. A steady-state approach leads to a simple
newsboy-like equation for the pseudo-order-up-to
level and therefore the safety stock. (2) We introduce
a new model to optimize the position of one inspec-
tion with respect to holding, backorder, production,
quality control, and disposal costs. Results show that
a safety stock reduction of over 30% is possible,
depending on the parameter setting. (3) We deter-
mine the optimal number of inspections that mini-
mize overall costs and show that the value of quality
control decreases marginally with an increase in the
number of inspections. (4) We specify the positioning
of the inspection control stations, which reveals the
layout of the production process with respect to the
inspection strategy. The examples reveal that it is best
for inspections to be equally spaced across the
production stages.
The remainder of the study is organized as follows:

In section 2, we describe the multi-stage production
system and formulate the model. In section 3, the
complex steady-state approach, which leads to a sim-
ple newsboy-like calculation of pseudo-order-up-to
levels and safety stocks, is introduced. The formula is
used to analyze given production systems with inter-
mediate inspections in section 4. To optimize the
number and position of control stations, a compre-
hensive cost model is introduced in section 5. In sec-
tion 6, this model is used to show where inspections
should be placed over the course of the production
stages. We conclude with a summary and suggestions
for future research in section 7.

2. Model Formulation

We consider an in-house n-stage serial production
system with a warehouse for the final product and a
total production time k for one batch of items. Since
no capacity constraints are taken into account the pro-
duction time is independent of the batch size. We
assume that m quality inspections are integrated into
the production process (m ≤ n). They can be placed
after any production stage. The inspections perfectly
check all incoming items (100% inspection), take a
negligible amount of time and are not affected by

capacity constraints. Due to perfect inspections all
defective items are discarded with certainty and all
good items stay in the process. We number the quality
inspections in a sequential way such that the last
inspection–the inspection of the final product–is
denoted with m. After the last inspection, perfect
products are stored in the warehouse. We define
�jðj ¼ 1; 2; . . .; mÞ as the production time between
inspection j � 1 and j (j = 0 represents the start of the
production process). Moreover, we define Kj as the
cumulated production time until quality control j
(Kj ¼

Pj
k¼1 �k and Km ¼ �). Without loss of general-

ity we can consider an n-stage production system
with a quality inspection after each production stage
(m = n). Note that every n-stage production system
with less than n quality inspections (m < n) can be
modeled as an m-stage production system with m
quality inspections by aggregating the stages. Thus,
assuming that the number of production stages
equals the number of quality inspections does not
cause a limitation of the model. The arising n-stage
production system is illustrated in Figure 1.
We would like to mention that we formulate the

model in a production environment, but each stage
can also be interpreted as a transportation process
where every transportation stage is related to random
yield. One example in a transportation environment,
where random yield plays an important role, is the
freightage of perishable products (White and Cheong
2012). These products are typically packed in refriger-
ated trucks or containers whereby it is important that
the cool chain is not interrupted. If goods perish dur-
ing the transportation process, it is important to sort
out these goods as soon as possible to avoid wasting
even more products. The following formulations are,
however, based on a production rather than a trans-
portation process.
The production process suffers from quality prob-

lems resulting in an uncertain production output. We
assume that these problems can be modeled with a
stochastic proportional yield, which means the pro-
duction output depends on the input Q as follows:
Y(Q) = Z � Q, where the random variable Z
(Z 2 [0, 1]) denotes the yield factor. If the system is
modeled as an n-stage production system, the mean
and the variance of the yield for production stage

Figure 1 An n-Stage make to Stock Production System
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i = 1, . . ., n equal lZi
and r2Zi

respectively. Thus, the
mean yield lZ for the whole production system is
given as

Qn
i¼1 lZi

and the variance of the total yield r2Z
equals

Qn
i¼1ðr2Zi

þ l2Zi
Þ � Qn

i¼1 l
2
Zi
.

Since we want to analyze the effect of different
positions of quality inspections within the system, we
introduce the following random variables YiðQÞ for
i = 0, 1, 2, . . ., n equal to

Qi
j¼1 Zj

Qn
j¼iþ1 lZj

Q and
define

Q0
i¼1 yi ¼ 1. These random variables reflect the

fact, that, because quality control is introduced after
the production stage i, information about realized
yields of all previous stages as well as of stage i
becomes available. The planner can use this real-time-
yield information when he or she releases new
production orders. In advance of any production the
realized yields are unknown, so that no information is
obtained and the planner has no more than an expec-
tation of the production outcome (Y0ðQÞ). If, due to
quality inspections, yield information becomes avail-
able after the first inspection, which means after a
production time of �1 periods, then the realized yield
of the first production stage, z1, is known and the
planner can use this additional information to update
his or her expectations of the production outcome.
After realization of the first production yield, the
expectation of the production outcome Y1ðQÞ equals
z1
Qn

j¼2 lZj
Q. This can be done for each production

stage until YnðQÞ equals the real delivery quantity. As
mentioned earlier, there is always an inspection after
the n-th production stage, such that full yield infor-
mation is available and only conforming goods are
delivered to the warehouse and therefore to the
customer.
The production process is used to refill the inven-

tory at the warehouse, which observes stochastic
demand. The sequence of events in one period within
the warehouse is the following: at the beginning of
each period the order placed k periods before is deliv-
ered and the inventory position is updated. Note that
realized yields, unknown up to this point, are
observed after the final quality inspection which is
close to the warehouse due to negligible transporta-
tion times between production and the warehouse.
Afterwards, a new order is placed, including the yield
information of the incoming order, and demand
occurs. At the end of the period holding and backo-
rder costs are charged.
Our model is similar to that in Dettenbach and

Thonemann (2015) and an extension of the model in
Choi et al. (2008), because they consider only two pro-
duction stages with one period production time and
they have allowed only identical yield distributions at
both stages.
We assume continuous period demand, indepen-

dent and identically distributed across the periods
and denote the first two moments with ðlD; r2DÞ.

Demand that cannot be satisfied directly from stock is
backlogged. Production orders are released periodi-
cally by the warehouse according to a linear inflation
rule

Qt ¼ FðS� XtÞ; Xt\S
0; Xt � S

�
ð1Þ

This ordering policy has shown to have very good
performance (Huh and Nagarajan 2010) and it is
usually proposed since the optimal ordering policy
in the presence of random yield does not possess a
simple structure (Henig and Gerchak 1990). The
order quantity is the inflated difference between the
pseudo-order-up-to level S and the inventory posi-
tion Xt if this difference is positive, and zero other-
wise. The yield inflation factor F is assumed to be
the reciprocal of the mean yield over the whole pro-
duction period (F ¼ 1=lZ). In Equation (1) it can be
seen that the inventory position has an impact on
the order quantity. For periodic order-up-to policies
without random yield, the inventory position is
defined as the stock on hand minus backorders plus
outstanding orders (Tempelmeier 2006, p. 16f).
Where there is random yield the order quantity is
not necessarily equal to the delivery quantity and
thus only limited information is available about the
outstanding orders. Therefore, the expected quanti-
ties delivered are included in the definition of the
inventory position. Under the assumption that n
quality inspections exist, which provide information
about the realized yields at the corresponding pro-
duction stage, the inventory position at the begin-
ning of period t after the delivery of the order,
placed � periods before, is defined as

Xt ¼ It�1 þ YnðQt��Þ þ
XK1�1

l¼1

Y0ðQt�lÞ

þ
XK2�1

l¼K1

Y1ðQt�lÞ þ � � � þ
X��1

l¼Kn�1

Yn�1ðQt�lÞ;
ð2Þ

where It�1 is the inventory level at the end of period
t � 1 and YnðQt��Þ the delivered quantity of the
order placed in period t � �. The following terms
are related to the outstanding orders. For example,PK1�1

l¼1 Y0ðQt�lÞ describes the outstanding orders that
have not passed the first production stage, which
means that no realized yields are known. If the total
production time is zero or one period it is obvious
that the terms for the outstanding orders cancel out
since we define

P0
i¼1 yi ¼ 0. This explains why

neglecting positive production times reduce the
complexity of the system enormously: there is no
uncertainty about the production outcome when
making an ordering decision.
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Based on the the definition in Equation (2) a recur-
sive equation for the inventory position can be
obtained:

Xtþ1 ¼Xt þY0ðQtÞ �Dt � ðY0ðQtþ1��1Þ �Y1ðQtþ1��1ÞÞ
� ðY1ðQtþ1�K2

Þ �Y2ðQtþ1�K2
ÞÞ

� � � � � ðYn�1ðQtþ1��Þ �YnðQtþ1��ÞÞ:
ð3Þ

The inventory position in period t + 1 before an
order is placed equals the inventory position at the
beginning of the previous period plus the expected
delivery of the order placed in period t, Y0ðQtÞ, minus
the demand in period t, Dt. The rest of the terms
reflect updates of the inventory position. More pre-
cisely, whenever the realization of a yield is known
due to a quality inspection, this information is
included in the inventory position and replaces the
information about the expected yield. Thus, these
terms ensure that the forecasts about the expected
deliveries are updated whenever we get information
about the realized yields within the production pro-
cess (compare with Figure 1). These forecast errors Ri

are defined as

Ri;tþ1�Ki
¼Yi�1ðQtþ1�Ki

Þ � YiðQtþ1�Ki
Þ

¼
Yi�1

j¼1

Zj

Yn
l¼i

lZl
Qtþ1�Ki

�
Yi
j¼1

Zj

Yn
l¼iþ1

lZl
Qtþ1�Ki

; i ¼ 1; . . .; n

ð4Þ

and also play an important role when the distribu-
tion of the inventory level is determined.
In a periodic order-up-to policy without random

yield, the inventory level is given by the inventory
position after ordering, which equals the order-up-to
level and includes all incoming quantities minus the
outgoing quantities during the risk period (Axs€ater
2007, p. 69). In the presence of random yield, the
incoming quantities may differ from the quantities
included in the inventory position, modeled by the
forecast error as defined in Equation (4). This leads to
the following equation for the inventory level at the
end of period t + �:

Itþ� ¼Xt þ
Yn
i¼1

lZi
Qt �

X�
l¼0

Dtþl

�
X�1�1

l¼0

R1;t�l þ
X�1þ�2�1

l¼0

R2;t�l þ � � � þ
X��1

l¼0

Rn;t�l

 !

¼Xt þ lZQt �
X�
l¼0

Dtþl �
Xn
i¼1

XKi�1

l¼0

Ri;t�l: ð5Þ

We can also interpret the forecast error as an addi-
tional demand, which can be positive as well as nega-
tive, and define an adapted demand process as

gð�þ 1Þ ¼
X�
l¼0

Dtþl þ
Xn
i¼1

XKi�1

l¼0

Ri;t�l: ð6Þ

As a result, we get the following equation for the
inventory level, which has a structure similar to that
of the case of no random yield.

Itþ� ¼ Xt þ lZQt � gð�þ 1Þ: ð7Þ
Our first purpose is to analyze given production

systems with given positions of quality inspections.
This means that we cannot influence quality inspec-
tion costs, production costs or disposal costs. Relevant
costs are only holding and backorder costs which can
be controlled by the amount of safety stock stored in
the warehouse. Holding and backorder costs are
charged at the end of a period based on the average
inventory level. If h denotes the unit holding and b the
unit backorder costs, we obtain

CðSÞ ¼ hE½ðIðSÞÞþ� þ bE½ð�IðSÞÞþ�; ð8Þ
where ðXÞþ is defined as max{0, X}. It can be seen
that the costs depend on the pseudo-order-up-to
level which is related to the amount of safety stock.
If we denote with uIðxÞ the density of the inventory

level as given in Equation (7), the average cost for a
given pseudo-order-up-to level can be computed as

CðSÞ ¼ h

Z 1

0

xuIðxÞdx� b

Z 0

�1
xuIðxÞdx: ð9Þ

The density of the inventory level remains to be
determined.

3. The Optimal Safety Stock for a
Given Production Layout

In previous literature, the pseudo-order-up-to level in
a multi-stage serial production system was deter-
mined using simulation (Choi et al. 2008; Dettenbach
and Thonemann 2015). The disadvantage of this solu-
tion method is that it leads to high computation times
and is therefore not suitable for practical application.
We instead use a heuristic steady-state approach
which is shown to perform very well by Inderfurth
and Kiesm€uller (2015) for a single-stage production
system. The steady-state approach assumes a lin-
earization of the function for the order quantity in
Equation (1), which means that the possibility that Xt

is larger or equal S is neglected (Zipkin 2000) and the
order quantity Qt equals FðS � XtÞ. Under this
assumption, closed-form expressions for the first two
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moments of the inventory level can be obtained and a
reasonable distribution can be fitted. In Inderfurth and
Kiesm€uller (2015) it is shown, that a normal distribu-
tion leads to excellent results in symmetric situations
and in case of non-symmetric yield or demand a mir-
rored gamma distribution is appropriate. This
approach is easy to implement in a spreadsheet with
low computation times and leads to very good results.
Since we neglect any kind of inventory between

production stages, the total holding and backorder
costs at the end of a period as given in Equation (9)
are of a structure similar to that of the single-stage
system, and we obtain for the pseudo-order-up-to
level the following expression (see Inderfurth and
Kiesm€uller 2015):

S ¼ ð�þ 1ÞlD þ U�1 b

bþ h

� �
rI: ð10Þ

Φ(�) denotes the cumulative distribution function of
the standard normal distribution and rI is the stan-
dard deviation of the inventory level. Similar to the
classical newsvendor model, the pseudo-order-up-to
level equals the mean demand during the risk per-
iod plus some safety stock. It is obvious that real-
time yield information can just have an influence on
the safety stock due to a reduction of the variance of
the inventory level. To determine the influence of
quality inspections on the safety stock, the standard
deviation of the inventory level is required.

LEMMA 1. Under a strictly linear control rule, the var-
iance of the inventory level is given as:

r2I ¼ ð�þ 1Þr2D þ
Xn
i¼1

Kir
2
Ri
: ð11Þ

PROOF 1. In case of a strictly linear control rule the
order quantity Qt equals FðS � XtÞ. Since we have
assumed that the yield inflation factor equals the
reciprocal of the average yield, for the inventory
position after ordering we get:

Xt þ lZQt ¼ Xt þ lZFðS� XtÞ ¼ S: ð12Þ

Therefore, Equation (11) follows directly from Equa-
tion (5). h

Formula (11) shows that the variance of the inven-
tory level is influenced by both the variance of the
demand and by the variances of the forecast errors.
As defined in section 2, Kj reflects the cumulated
production time until quality inspection j
which equals the time until forecast error Ri is known
(∀i, i = 1, . . ., n).

We illustrate the influence of production times with
a small example where we consider a two-stage pro-
duction system with one intermediate quality inspec-
tion. In this environment, the variance of the
inventory level equals: r2I ¼ ð� þ 1Þr2D þ �1r2R1

þ
ð�1 þ �2Þr2R2

. In the following, we show how the vari-
ances of the forecast errors depend on the position of
quality inspections implicitly given by the moments
of the yield factors Zi ði ¼ 1; . . .; nÞ.

LEMMA 2. Let n denote the number of stages of the pro-
duction system. Then, under a strictly linear control rule,
the variance of the forecast error for stage i (i ≤ n) is
given as:

r2Ri
¼ ðr2Q þ l2QÞ

Yi�1

j¼1

ðr2Zj
þ l2Zj

Þ �
Yn
l¼iþ1

l2Zl
� r2Zi

2
4

3
5: ð13Þ

The proof of the lemma is given in Appendix A.
We illustrate the result for an example with a three-

stage production system and obtain the following
variances for the forecast errors.

r2R1
¼ ðr2Q þ l2QÞ½r2Z1

l2Z2
l2Z3

�
r2R2

¼ ðr2Q þ l2QÞ½r2Z2
l2Z1

l2Z3
þ r2Z2

r2Z1
l2Z3

�
r2R3

¼ ðr2Q þ l2QÞ½r2Z3
l2Z1

l2Z2
þ r2Z3

r2Z2
l2Z1

þ r2Z3
r2Z1

l2Z2

þ r2Z3
r2Z2

r2Z1
�

:

The example confirms that the variances of the fore-
cast errors can be easily calculated, depending on the
information on the mean and the variance of the yield
for each production stage and the mean and the var-
iance of the order quantity. The following lemma shows
how to calculate the variance of the order quantity.

LEMMA 3. Under a strictly linear control rule with F
equal to 1=lZ, the variance of the order quantity in an n-
stage production system is given as:

r2Q ¼ ðq2Zl2D þ r2DÞ
l2Z � r2Z

; ð14Þ

where qZ equals the coefficient of variation of the total
yield as the ratio of the standard deviation rZ and the
mean lZ.

The proof can be found in Appendix B.
In the long run, the mean order quantity has to

equal the inflated mean of the adapted demand
defined in Equation (6). Thus, E[Q] equals
F � ðPn

i¼1 E½Ri� þ E½D�Þ. Since the means of the forecast
errors are equal to zero, the mean order quantity
equals the inflated mean demand FlD. The results for
the mean and the variance of the order quantity show
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that the ordering process is independent of the fore-
cast errors and the production times and therefore
independent of the position of quality inspections.
Thus, real-time yield information has no impact upon
this. It only has an impact on the variance of the
inventory level and therefore on the safety stock.
The above formulae show that the effect of real-

time yield information obtained by quality inspec-
tions and analyzed by Choi et al. (2008) and Detten-
bach and Thonemann (2015) via simulation can be
easily calculated in a spreadsheet.
As posed in the contribution of this study, our first

purpose is to analyze given production systems with
intermediate quality control. In such a given environ-
ment the position of the inspection cannot be chan-
ged, which results in given production costs, quality
control costs and disposal costs. Nevertheless, the
planner in the warehouse can influence the amount of
holding and backorder costs by making the best
choice for the safety stock level. In the following, we
show how formula (11) can be used to determine the
optimal safety stock level for a given production sys-
tem, which minimizes the average holding and backo-
rder costs.

4. The Impact of the Position of
Inspections on the Safety Stock

In the following, we compare given production sys-
tems which contain one intermediate inspection. We
analyze the impact of its position on the optimal
safety stock, using the approximate steady-state
approach. The safety stock level can be obtained
directly from Equation (10) and equals U�1ð b

bþhÞrI .
We fix the total production time � and model the

system as an n-stage production system with a pro-
duction time of one period at each stage and a fixed
mean yield on every production stage and consider
different scenarios with respect to yield uncertainty.
We distinguish between constant yield variance
across all production stages (1), decreasing (2) or
increasing (3) yield variance over all stages. With
these three cases, we represent balanced production
systems as well as production systems that have to
deal with higher discard variations at the beginning
or at the end of the production process. A process
with increasing yield variance can be found in micro-
chip production. At the end of the production process
the manufacturer checks whether the chips are work-
ing or whether there was a production fault in the
electrical circuits. As mentioned in the beginning of
the study, the yield in microchip production can vary
between 0% and 100% (Leachman and Hodges 1996).
An example of a decreasing yield variance is the pro-
cessing of agricultural products. These products enter
production in large amounts and are afterwards

cleaned and sorted before further production.
Depending on the quality of the harvest, the yield at
the beginning of the production process differs. Note
that these are only two examples of possible parame-
ter constellations. The steady-state approach pre-
sented is able to deal with all other conceivable yield
settings across the production process as well. For the
examples in this study, with constant, decreasing or
increasing yield, it is important to remark that
although the yield variability over the production
stages is different in all three systems, the total yield
for the whole production process as well as the mean
yield remains the same over all scenarios, making the
examples comparable.

We define a skewness factor d (d ≤ 1) which reflects
the degree of skewness of the yield variability across
the system. For d equal to one no skewness exists,
resulting in a balanced production with constant yield
variance across all production stages. The yield vari-
ances of the systems will be calculated as follows.
Considering the production system with decreasing
yield variance across the stages first, for a given yield

variance in the first stage r2dec;Z1
the yield variance for

all following production stages r2dec;Zi
equals

r2dec;Zi�1
� d2 ð8i ¼ 2; . . .; nÞ. Where there is increasing

yield variability the variance of the yield looks the

same but is mirrored: r2inc;Zi
¼ r2dec;nþ1�i;

8i ¼ 1; . . .; n. As mentioned, the overall yield vari-

ability r2Z stays the same. Thus, the variance of the

yield in the symmetric case r2sym;Zi
equalsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2Z þ l2nZi

n

q
� l2Zi

; 8i ¼ 1; . . .; n with r2Z equal toQn
i¼1ðr2dec;Zi

þ l2Zi
Þ � Qn

i¼1 l
2
Zi
.

Remember that up to now the position of the inter-
mediate quality inspection is not a decision criterion.
We assume that the production process with the con-
trol station is given such that only the determination
of the safety stock level implies a potential for opti-
mization to the planner. The following parameter set-
ting is used to analyze the amount of safety stock
required when quality inspections are given at differ-
ent positions in the process.

The total production time � equals ten periods and
we model the system as a ten-stage production system
(n = 10) with a production time of one time period for
each stage. We consider ten different system configura-
tions based on the position of the quality inspection
resulting in: ð�1; �2Þ ¼ ð1; 9Þ; ð2; 8Þ; . . .; ð9; 1Þ.
We allow for one intermediate inspection after

stage one to nine which meas that �1 and �2 can equal
1, 2, . . ., 9 and 9, 8, . . ., 1. The mean demand lD and
the corresponding coefficient of variation qD equal 20
and 0.1. The results of Choi et al. (2008) and Detten-
bach and Thonemann (2015) show that the value of
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real-time yield information decreases with increasing
demand variability. In case of a larger demand vari-
ability a higher amount of safety stock is required to
buffer against demand uncertainty. Therefore, more
stock is made available to hedge against yield uncer-
tainty. As a result, the effect of introducing quality
control is the largest for small demand variability.
Service level a equals 0.99 which leads to a backorder

costs parameter b of a
1�a � h equal to 99 for given holding

costs h per item on stock of one unit. Choi et al. (2008)
and Dettenbach and Thonemann (2015) reveal, that the
service level has nearly no impact on the value of real-
time yield information as long as it is appropriately
high (>0.8). The mean yield lZi

per production stage i
equals 0.95 (∀i = 1, . . ., n) and the coefficient of varia-
tion of the yield qdec;Z1

on the first production stage is
assigned to be 0.25. The skewness parameter d equals
0.7. Table 1 shows how the variance of the yield in the
three production systems differs across the production
stages given d. It is evident that the variance of the
yield decreases/increases exponentially when there is
asymmetric yield variability. As the skewness parame-
ter d decreases, the distribution of the yield variability
across the stages steepens.
In the following, we determine the optimal safety

stock level according to Equation (10) for the three
yield scenarios with fixed mean yield and varying
yield variance across the stages, when there is only
one additional inspection before the final inspection.
We compute the optimal fraction of safety stock
needed to ensure an alpha service level of 99% rela-
tive to the benchmark with no intermediate control
for different scenarios. The numerical results are
depicted in Figure 2.
It is obvious that the non-optimal position of an

inspection substantially increases the required safety
stock, especially when there is decreasing yield vari-
ability. This phenomenon can be explained by the
utility of real-time yield information generated by
quality inspections after different stages in the pro-
duction process. If early information about realized
yields is obtained, the forecast errors defined in Equa-
tion (4) are known at early production stages, which
allows an update of the inventory position and there-
fore a reduction of the safety stock level. Due to
decreasing yield variability over all stages, yield
becomes less uncertain at later production stages and
to some extent more predictable. Since real-time yield

information has no value if the production output is
100% certain, the value of real-time yield information
and therefore of quality inspections is greatest at early
stages, with a relatively high corresponding yield
variability.
When there is increasing yield variability, quality

control after an early stage has a limited effect on the
options for safety stock reduction. This is because, in
early stages the number of defective items is roughly
equal to the mean, which is not critical for the ware-
house because it is predictable with near certainty.
Since real-time yield information has the greatest util-
ity when the forecast errors are significantly different
from zero, quality inspections are more valuable after
later stages, when the yield variability is high. Never-
theless, the problem arises that after the 10th stage a
final quality inspection exists which means that real-
time yield information generated after stage nine
would have been available after the 10th stage any-
way, which reduces the utility of the information
enormously.
If yield variability is constant across all production

stages, a quality control measure is most valuable if it
lies in the middle of the production process. Notice
that early quality control leads to early information
about realized yields, but the information is generated
out of a small number of stages and therefore limited.
A late quality control process in turn leads to a lot

Table 1 Yield Scenarios

Stage i 1 2 3 4 5 6 7 8 9 10

lZi 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
rsym;Zi 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109
rdec;Zi 0.0564 0.0276 0.0135 0.0066 0.0033 0.0016 0.0008 0.0004 0.0002 0.0001
rinc;Zi 0.0001 0.0002 0.0004 0.0008 0.0016 0.0033 0.0066 0.0135 0.0276 0.0564

Figure 2 Fraction of Safety Stock Relative to no Additional Inspection
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more information about realized yields, but is less
valuable since after the 10th stage the final inspection
takes place. As a result, it is obvious that the greatest
benefits are obtained from an inspection in the middle
of the production process, because real-time yield
information has been generated from a certain num-
ber of stages but there are still stages left before the
final quality control.
It is important to keep in mind that the safety

stock level can be reduced enormously for a given
service level depending on the moments of the yield
across the stages and the position of the quality
inspection. For a company like Intel, reporting inven-
tories for finished goods of nearly 1.5 billion dollars
in the 2014 annual report, a significant safety stock
reduction can lead to savings of several million
dollars.
After analyzing different production systems with

one fixed intermediate quality inspection, our next
aim is to determine the optimal position for one or
more intermediate control stations in an environment
where there has thus been only a final inspection. If
the control station is not fixed, production costs, costs
for additional quality control, and disposal costs are
relevant to holding and backorder costs. Therefore, in
the following, we investigate a comprehensive cost
model.

5. Optimization Model

In the previous section, we showed how to determine
the optimal safety stock level, which influences the
amount of holding and backorder costs, for given pro-
duction systems with a fixed position for the interme-
diate quality control. In the continued analysis, we
focus on the optimization of the number and the posi-
tions of the possible inspections. In this situation, not
only holding and backorder costs have to be taken
into account, but also production costs, costs for qual-
ity inspections and disposal costs.
Before we look into more detail on the cost parame-

ters, we will focus on the position of quality inspec-
tions within the production process. In the following,
the planner can decide after which stage
i = 1, . . ., n � 1 he or she wants to place quality
inspections in addition to the final one after stage n.
Let x ¼ ðxiÞi¼ 1;...;n be a binary row vector of length n
with

xi ¼ 1; if a quality control exists after stage i
0; otherwise.

�
ð15Þ

If we consider a production time of � equal to ten
periods and model the system as a ten-stage produc-
tion system with a production time of one unit at each

stage, then xi could look like (0, 0, 1, 0,
0, 0, 1, 0, 1, 1). This would mean that there are qual-
ity inspections after stage three, seven, nine and ten
(final inspection). In section 2, we introduced
�j ðj ¼ 1; . . .; mÞ reflecting the production time
between quality inspection j � 1 and j. Thus, we
would get �1; �2; �3; and �4 equal to 3, 4, 2 and 1,
which reveals that using xi leads to the same model
as presented in Figure 1. Beyond the definition in
(15), we define qi as maxfxk � kjk ¼ 1; . . .; i � 1g
8i ¼ 2; . . .; nwith q1 equal to zero. qi determines after
which stage the latest quality inspection before stage i
took place (qi [ 0) or if there has been non so far
(qi ¼ 0).
Based on the position of quality inspections repre-

sented by x, the following costs are considered: Vari-
able production costs P(x) occur for each stage of
production and each item being produced. We
neglect fixed production costs which might arise
whenever the production process has to be set up,
since we assume the production of only a single
product and therefore no product changes within
production. At the end of the production process,
quality control exists to ensure that only products ful-
filling the desired quality standards are stored in the
warehouse. Beyond this quality control, the planner
can decide whether additional quality inspections
should be introduced after other stages. We measure
the fixed and variable costs of each quality control.
Fixed costs F(x) occur whenever a batch of items, in
our case one order, is inspected and variable costs
V(x) are charged for each item being checked. There-
fore, the costs for quality control depend on the batch
size. For every non-conforming item, disposal costs
G(x) are taken into account. Within the warehouse
holding and backorder costs C(x) are charged. Hold-
ing costs occur for each item and period on stock and
backorder costs at the end of each period for unsatis-
fied demand.
Thus, we get the following total cost function TC(x)

which has to be minimized depending on the position
of quality inspections represented by x:

TCðxÞ ¼ PðxÞ þ FðxÞ þ VðxÞ þ GðxÞ þ CðxÞ: ð16Þ

Variable production costs P(x) are charged with
parameter pi for each item produced on production
stage i. If no quality control–except the final one–
exists, on average the mean order quantity lQ is pro-
duced on every production stage. If an additional
inspection is introduced, all defective items produced
so far are sorted out and are no longer part of the
production process. Thus, after an inspection, the pro-
duction costs decrease. Since under a strictly linear
control rule an order is placed in every period, pro-
duction costs occur in each period for all stages of
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production (with a production time of one time unit
on each stage). The average variable production costs
per period can be determined by

PðxÞ ¼ lQ �
Xn
i¼1

pi �
Yqi
k¼1

lZk

" #
; ð17Þ

with
Q0

i¼1 yi ¼ 1. Since a quality inspection sorts out
all defective items, the production costs are reduced
after each control station represented by

Qqi
k¼1 lZk

.
The costs for a quality control are divided into fixed

and variable costs. The fixed costs F(x) occur for each
batch of items independent of the batch size if an
inspection takes place after stage i with the cost
parameter fi:

FðxÞ ¼
Xn
i¼1

xi � fi: ð18Þ

Variable inspection costs V(x) can be calculated
similarly to the production costs, with the differ-
ence that they occur only if there is quality control
after production stage i. Variable inspection costs
equal

VðxÞ ¼ lQ �
Xn
i¼1

vi � xi �
Yqi
k¼1

lZk

" #
; ð19Þ

with the cost parameter vi for each item being
checked after stage i.
If an item does not meet the quality requirements,

it cannot be sold to the customer and therefore is not
stored in the warehouse. The quality control located
after the whole production process ensures that all
defective items are discarded. If prior inspections
exist, the defective items are sorted out earlier.
Average disposal costs G(x) occur for each item
that is discarded from production with the cost
parameter gi:

GðxÞ ¼ lQ �
Xn
i¼1

gi � xi � 1�
Yi
k¼1

lZk

 !" #
: ð20Þ

The holding and backorder costs C(S) have been
defined in (9) to be dependent on the optimal pseudo-
order-up-to level. The pseudo-order-up-to level S
depends on the variance of the inventory level, which
in turn depends on xi as follows:

r2I ðxÞ ¼ ð�þ 1Þr2D þ
Xn
i¼1

Xi
l¼1

Kl �
Xi

k¼qiþ1

r2Rk
� xi

2
4

3
5: ð21Þ

To determine the optimal number and positions of
intermediate quality inspections, a planner has to
solve the following model:

min
x

TCðxÞ ¼ PðxÞ þ FðxÞ þ VðxÞ þ GðxÞ þ CðxÞ ð22Þ

¼ lQ �
Xn
i¼1

pi �
Yqi
k¼1

lZk

" #
ð23Þ

þ
Xn
i¼1

xi � fi ð24Þ

þlQ �
Xn
i¼1

vi � xi �
Yqi
k¼1

lZk

" #
ð25Þ

þlQ �
Xn
i¼1

gi � xi � 1�
Yi
k¼1

lZk

 !" #
ð26Þ

þh

Z 1

0

yuIðyÞdy� b

Z 0

�1
yuIðyÞdy ð27Þ

subject to

xn ¼ 1 ð28Þ
xi 2 f0; 1g 8i ¼ 1; . . .; n: ð29Þ

The constraint in (28) reflects that there is always a
final quality control after the nth production stage.

6. Numerical Analysis

In the following, we optimize the position of one inter-
mediate quality control and afterwards determine the
optimal number and position of several inspections.

6.1. Optimal Position of One Intermediate
Control Test
In section 4, we determined the optimal safety stock
level for a given production system with one interme-
diate quality control. Now, we consider a production
system where only a final quality control test exists,
whereas the planner has the possibility to place one
additional intermediate inspection. Due to a limited
budget, it may not be possible to place more control
stations. The question is, after which stage this addi-
tional inspection should be placed in order to generate
the largest benefits. Unlike the model in section 4, not
only holding and backorder costs have to be optimized,
but also production costs, inspection costs, and dis-
posal costs. Thus, the cost model presented in equa-
tion (22) is considered with the additional restriction:

Xn�1

i¼1

xi ¼ 1: ð30Þ

Since the yield plays an important role when
answering the question of where to place inspections,
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we assume different shapes in the yield variance as
already shown in Table 1. Furthermore, we assume
the same parameter setting as in section 4: we con-
sider � equal to 10 production periods, a mean
demand lD and a corresponding coefficient of varia-
tion qD of 20 and 0.1, a service level a of 0.99, a mean
yield lZi

per production stage of 0.95 (∀i = 1, . . ., n)
and a coefficient of variation of the yield on the first
production stage for decreasing yield variance qdec;Z1

of 0.25. We assume the following setting for the cost
parameters: production costs pi equal to 2
(∀i = 1, . . ., n), fixed costs fi for inspecting one batch
of items of 5 (∀i = 1, . . ., n), variable inspection costs
vi for one item after stage i of 0.1 times pi which equals
0.2 (∀i = 1, . . ., n) and disposal costs gi of 0 (∀i =
1, . . ., n). The costs for quality inspections are a frac-
tion of the production costs (see e.g., Schiffauerova
and Thomson 2006). This assumption leads to notably
lower costs for inspections than for production costs.
We neglect disposal costs since the final quality
inspection leads to a 100% disposal of all defective
items. Disposal costs play a role only if the costs differ
from one stage to another since waste separation
becomes more difficult at a later stage of production.
Despite the above parameter setting, we need an

assumption about the distribution of the inventory
level to determine holding and backorder costs (for-
mula (9)). Like Inderfurth and Kiesm€uller (2015) we
assume a normally distributed inventory level which
leads to the following formula:

CðxÞ ¼ ðhþ bÞ rIðxÞ � u �lI
rIðxÞ
� �

þ lI � 1�U
�lI
rIðxÞ
� �� �� �

� b � lI:
ð31Þ

We run a complete enumeration to determine the
optimal position of one intermediate control. Negligi-
ble computation times make this possible, using the
steady-state approach for determining the optimal
safety stock level and therefore holding and back-
order costs.
Figure 3 shows the average cost computed with

formulae (24)–(29) for different shapes of the yield
variance across the production stages.
It is clear that the effect of different yield scenarios

vanishes distinctly when all cost parameters are
involved (compare with Figure 2). This is because of
the production costs, which are the main cost driver
beside the holding and backorder costs. Each item
that is produced at one stage generates costs. Unlike
the possibility of reducing the safety stock, the possi-
bility of reducing production costs is heavily influ-
enced by the mean yield. Every defective item that is
discarded reduces production costs at later stages,
whereas only defective items differing from the mean

lead to changing safety stock levels. Changing the
mean yield strongly influences the optimal position
of the intermediate inspection. Figure 4 shows how
the optimal position of the quality control station
changes as the mean yield varies. If the mean yield is
very high (lZi

¼ 0:99; 8i ¼ 1; . . .; n), which is desir-
able for an economically sound company, the produc-
tion costs can be influenced only marginally and
holding and backorder costs become the dominant
factor (see also Figure 2). On the other hand, if the
mean yield is relatively low (lZi

¼ 0:5; 8i ¼ 1; . . .; n)
the production costs dominate all other cost parame-
ters. In this case, the allocation of the yield variance
across the stages has no influence on the total costs,
which is why it is best to place an inspection after
early production stages.
To sum up, for a low mean yield such as in the Sam-

sung example, production costs are the main cost dri-
ver and thus one intermediate inspection should be
placed after the first stages of production. For a high
mean yield such as the one in the Intel example, the
holding and backorder costs, and therefore the safety
stock level, determine the optimal position of the
inspection. Since the safety stock level is strongly
dependent on the shape of the yield variance across
the production stages, the position of an inspection
should be determined with respect to the minimum
safety stock level where there is a high mean yield.

6.2. Optimal Number and Position of Multiple
Quality Inspections
After answering the question of the optimal position
of one intermediate quality control, we focus on the
optimal quantity and position of several inspections.
This analysis can work to support decisions in cases

Figure 3 Influence of the Inspection Station on the Average Cost
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where a given number of inspections has to be located
optimally.
We use the same parameter setting as in the setting

with one intermediate control despite the coefficient
of variation of the yield qZi

which equals 0.25
(∀i = 1, . . ., n) since we consider only production sys-
tems with constant yield across the production stages.
We used a complete enumeration to calculate the

total costs for all possible combinations of control
stations and their positions. Since the final quality

control is fixed, this leads to
Pn�1

i¼0

ðn�1Þ!
i!ðn�1�iÞ! equal to 512

scenarios if a maximum of n � 1 equal to nine quality
controls can be placed. For every number of installed
inspections, we determined the one that minimizes
the total costs. This solution is presented in Figure 5.
The first diagram reflects the minimum total costs

per period under the assumption that only a given
number of inspections can be introduced. If there is
only one control station, this inspection equals the
final one after stage ten, and provides a benchmark.
The square marks the point where the total costs are
minimized over all possible solutions. The second
diagram shows after which production stages the con-
trol stations should be placed to determine the mini-
mum total costs for the corresponding number of
inspections.
It is clear that it is best to introduce five quality con-

trols and space them equally over the production
stages. When deciding about the number of control
stations it is obvious that the marginal utility of an
additional quality control decreases until the opti-
mum is reached. For more inspections, the running
costs increase slightly. Nevertheless, the reduction in

costs between three, four, and five quality inspections
is very small whereas the marginal utility for less
inspections is significantly higher.
The optimal number of control stations is highly

dependent on the input parameters. Changing the
cost parameters or the mean/variance of the yield
leads to different results. Nevertheless, for a limited
number of inspections, it is best to place them equally
across the production stages. After the fifth inspection
is placed, the parameter setting determines whether
further inspections are located between existing con-
trol stations in the beginning or at the end of the pro-
duction process.

(a) (b)

Figure 4 Influence of the Mean Yield Rate on the Optimal Inspection Station

Figure 5 Optimal Number and Position of Quality Inspections
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It is important to be aware of the fact that
every additional quality inspection leads to the
reallocation of all existing inspections. Thus, it is
not possible to simply add additional inspections
at later points in time. If we assume that produc-
tion systems work with high mean yields, which
should be the target for an economically sound
company, the decision about the number and
position of quality inspections should be driven
primarily by holding and backorder costs and
therefore by the amount of safety stock. This
makes clear the need for an appropriate inventory
management.

7. Summary and Outlook

We examined an in-house multi-stage serial produc-
tion system with random yield and a warehouse for
the final product. Within the warehouse, a linear
inflation policy was used to determine the order
quantities. Our contribution was to (1) analyze certain
given production systems with intermediate quality
control and we show how the optimal safety stock
can be computed, (2) optimize the position of one
inspection, (3) determine the optimal number and (4)
the optimal position of quality inspections across the
production stages.
The results are as follows: (1) the safety stock level

heavily depends on the shape of the yield across the
production stages. In the case of decreasing yield,
quality inspections are most valuable. The examples
show a maximum safety stock reduction of over 30%
which can be even larger depending on the parameter
setting. Where there is increasing yield variability
across the stages, the position of one intermediate
inspection has almost no effect on the safety stock.
For symmetric yield variability, the safety stock level
can be reduced by placing an inspection in the middle
of the production process. (2) The effect of the safety
stock reduction vanishes when production costs and
the costs for quality inspections are taken into account
in addition to holding and backorder costs, since pro-
duction costs are the main cost driver. Nevertheless,
as the mean production yield increases, holding and
backorder costs become dominant and determine the
placement of an inspection. (3) The marginal cost
reduction of every additional worthwhile quality
inspection decreases rapidly. (4) In general, for sym-
metric yields, it is best to locate control stations
equally spaced across the production stages to mini-
mize overall costs.
Since the steady-state approach is a powerful tool

when it comes to the calculation of safety stocks, it
can be easily used to answer other research questions
concerning multi-stage production systems with

random yield. We modeled an n-stage production
system where inspection stations can be placed after
each production stage. However, in some situations,
this might not be possible due to the design of the
production process. Think of two working steps
which are closely related because they are processed
on one machine. In such a case, it might not be reason-
able to place an inspection between the stages, thus
interrupting production. To see how the number of
possible positions influences the required safety stock
level and the costs, lZi

and r2Zi
have to be adjusted (for

all i = 1, 2, . . ., n). Beyond that, the analysis is similar
to the numerical analysis in this study.
If defective products remain in the production

process and continue to be produced even though
they are defective, production costs increase. In this
study, we have introduced quality inspections as
an opportunity to reduce production as well as
overall costs. A second option for cost reduction is
increasing the yield. Bohn and Terwiesch (1999)
mention that a 1% increase in yields can lead to a
6% increase in gross revenue. Thus, a decision
maker with limited budget has to choose between
the implementation of inspection stations and the
improvement of yields within the system. Both
approaches can lead to an overall cost reduction.
Our approach, together with the cost model we
have presented, is able to determine, what situa-
tions warrant the introduction of quality inspections
and when it is better to concentrate on the reduc-
tion of yield losses. If one reduces yield losses, the
question remains where within the system it is best
to do so. There is also the option of reducing yield
losses as well as introducing quality inspections, in
which case it would be interesting to determine
whether the decisions affect each other and if
so, how.
Despite the issues mentioned above, concerning

further analysis of the production system, using the
steady-state approach, future research should take
into consideration that inspections are not necessarily
perfect. Sometimes defective items are not discarded
although they have been checked through an inspec-
tion; conversely perfectly produced items can be dis-
carded by mistake.
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Appendix A: Proof of Lemma 2
In order to improve readability we will use E[X] for
the expectation of a random variable and VAR[X] for
its variance.
The proof of Lemma 2 is based on an induction and

we start with the case n = 2. Then the forecast error
for the first stage (i = 1) according to Equation (4) is
given as
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This yields the following variance in a steady-state:
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For the forecast error at the second stage we obtain:
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This leads to:
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Since the yield is iid we get
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which means the statement in Lemma 2 is true for
n = 1, 2. Let us now assume that Equation (4) is true
for an arbitrary n and i, i = 1, . . ., n. We will show that
it then follows that it is also true for n + 1. To make
clear how many stages are included in the system con-
sidered, we denote this number as a superscript.
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Appendix B. Proof of Lemma 3
Since we assume a steady-state, the variance of the
order quantity equals the variance of the inflated
adapted demand, as defined in Equation (6). Thus, for
the variance of the order quantity we get:
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The variance of the sum of the forecast errors is
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From Equations (B.1) to (B.2) we get:
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whereby q2Z equals the squared coefficient of varia-
tion equal to r2=l2Z with
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Investing into quality inspections or reducing the yield 

variability?  

Sonntag, Danja, Otto-von-Guericke-University Magdeburg, Faculty of Economics 

and Management, Chair of Operations Management, Danja.Sonntag@ovgu.de 

In this paper, a multi-stage make-to-stock production system is considered. Due to 

imperfect production, each production stage produces a random fraction of defective 

items. A quality inspection, screening all produced products, exists at the end of the 

production process. While defective items are disposed of, items conforming to quality 

standards are stored in a warehouse to satisfy stochastic customer demand. Random 

demands as well as random yields make it necessary to hold some safety stock to reduce 

the probability of stock-outs. On the production site a planner has two opportunities to 

reduce uncertainty about the production output and therefore the safety stock level. He 

can implement intermediate quality inspections and/or reduce the yield variance under 

a given budget constraint. Thus, he has to optimize the number and locations of 

additional inspections as well as the amount of money spend on each production stage 

to reduce the yield uncertainty. The problem is solved using a fix-and-optimize solution 

approach. The results indicate that depending on the extent of yield variability either 

implementing additional inspections or reducing the yield variance is more favorable. 

Moreover, significant safety stock reductions can be recognized depending on the 

investment strategy and the current yield variability. 

Keywords: quality inspection, yield reduction, safety stock 

1 Introduction 

Nowadays product quality becomes more and more important due to high customer 

requirements. In addition with significantly more complex production processes, 

especially the high-tech industry has to deal with partially high yield losses. Yield 

losses occur if produced items do not correspond to given quality standards. Samsung, 

for example, has problems producing the curved glass for a new cell phone series 

because of low yields of less than 50 % (McNutt, 2015). But not every industry and not 

every company has to deal with such low yields; Intel for example has a production 

yield in the high 90 % range (Foremski, 2012). To ensure that only high quality 

products are sold to the customers, a quality inspection exists at the end of the 

production process checking all produced items. The products meeting the quality 

requirements are stored in a warehouse to satisfy stochastic customer demand whereas 

defective products are disposed of. 
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Besides the uncertain supply there is also uncertainty about the demand. Because of 

these uncertainties, costly safety stock is required to minimize the probability of 

stock outs. A planner has two opportunities to reduce the safety stock level by capital 

investments: On one hand, he can decrease the yield variability through investments 

into modern production technology, which leads to a realized production outcome that 

differs less from the expected one. Thus, a planner can improve the production process 

itself. On the other hand, he can introduce further quality inspections, which results in 

earlier information about realized yields. In this case, the production process remains 

the same without reducing the number of defectives being produced but the information 

system is improved, which enables the planner to react to unexpectedly low or high 

yield losses at early production stages. Both strategies as well as a combination of them 

reduce the uncertainty in the system and therefore the safety stock level. For a company 

like Intel, reporting inventories for finished goods of more than 1.5 billion dollars in the 

2016 annual report (Intel, 2017), a safety stock reduction can lead to significant savings. 

 

Within this paper, the objective is to minimize the required amount of safety stock in 

the warehouse by determining the number and location of additional intermediate 

quality inspections and the amount of yield variance reduction on each production stage 

under a given budget constraint. The presented research is closely related to the 

literature on random yield problems (see Henig / Gerchak, 1990; Yano / Lee, 1995; Huh 

/ Nagarajan, 2010), especially those focusing on positive production times 

(Bollapragada /Morton, 1999; Choi et al., 2008; Inderfurth / Vogelgesang, 2013; 

Inderfurth / Kiesmüller, 2015; Dettenbach / Thoneman, 2015; Sonntag / Kiesmüller, 

2017). Positive production times in combination with random yield increase the 

complexity of the system tremendously because the inventory position contains only an 

expectation about outstanding orders and is therefore uncertain (Sonntag / Kiesmüller, 

2016). Because of this complexity, existing literature, analyzing the effect of an 

investment to reduce yield variability, consider much simpler production models e.g. 

without positive production times (see e.g. Lin / Hou, 2005; Kulkarni, 2008). 

Nonetheless, there is no literature combining a yield variability reduction and additional 

quality inspections under stochastic demand in make-to-stock environments.  

The problem is solved by applying a fix-and-optimize solution approach, which is 

suitable to solve mixed-integer programs as given in this paper (for more details about 

the fix-and-optimize approach see Helber / Sahling, 2010). In a first step, all possible 

sets of additional inspections under a given budget constraint are determined. 

Afterwards, for each of these fixed sets, the allocation of the remaining budget to 

production stages is optimized with respect to minimizing average holding and 

backorder cost per period. To determine on which stage the remaining budget should be 

invested and therefore the yield variability be reduced, a nonlinear program is solved.  

The remainder of the paper is organized as follows: In section 2, the model is presented 

followed by the solution approach in section 3. Subsequently, results of a numerical 
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analysis are shown and some managerial insights are given in section 4. The paper 

concludes with a summary in section 5. 

2 Model formulation 

The considered production system, consisting of m production stages, a quality 

inspection after the last production stage and a warehouse for the final product, is 

presented in Figure 1.  

 

Figure 1: Production system 

 
 

Because of imperfect production, defective items can be produced during each 

production stage. These products remain in the process until the final quality control at 

the end of production, which inspects all produced items regarding their required quality 

standards. The quality inspection eliminates all defective items with certainty. While 

defective products are disposed of and leave the production system, perfectly produced 

items are stored in a warehouse to satisfy stochastic customer demand. The warehouse 

can replenish stock periodically at the beginning of each period e.g. one day using an 

adjusted base stock policy. Hereinafter, the described situation illustrated in Figure 1 is 

used as a benchmark. In the following, the whole system will be described in more 

detail. 

 

The stochastic customer demand, which has to be satisfied, is modelled with a 

continuous random variable in each period. Demand across the periods is independent 

and identically distributed with mean 𝜇𝐷 and standard deviation 𝜎𝐷 and demand which 

cannot be satisfied directly from stock is backlogged. For the production process we 

assume that each production stage m involves a positive production time 𝜆𝑖 (∀𝑖 =

1, … , 𝑚) and random yield, which is assumed to be stochastically proportional with 

mean 𝜇𝑍,𝑖 and standard deviation 𝜎𝑍,𝑖 (∀𝑖 = 1, … , 𝑚). In a stochastic proportional yield 

model the production output Q depends on the input as follows: 𝑌(𝑄) = 𝑍 ∙ 𝑄, where 

𝑍 (𝑍 ∈ [0,1]) is a random variable called yield factor. The system has a total production 

time of 𝜆 periods (𝜆 = ∑ 𝜆𝑖
𝑚
𝑖=1 ) as well as a total yield factor with mean 𝜇𝑍 and standard 

deviation 𝜎𝑍 equal to ∏ 𝜇𝑍,𝑖
𝑚
𝑖=1  and ∏ (𝜎𝑍,𝑖

2 +𝑚
𝑖=1 𝜇𝑍,𝑖

2 ) − ∏ 𝜇𝑍,𝑖
2𝑚

𝑖=1 , respectively 
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(Sonntag / Kiesmüller, 2017). The sequence of events in one period is as follows: at the 

beginning of each period the order placed 𝜆 periods before arrives, the realized yield is 

observed and the inventory position is updated. Based on the new value of the inventory 

position an order is placed. During the period, demand occurs and at the end of the 

period holding and backorder cost are charged based on the inventory level. 

To replenish stock a production of quantity Q is released periodically according to a 

linear inflation policy. A linear inflation policy shows a very good performance 

(Huh / Nagarajan, 2010) and is used because the optimal ordering policy under random 

yield does not possess a simple structure (Henig / Gerchak, 1990). The ordering policy 

is an adapted form of a classical base stock policy whereas the order quantity Qt in 

period t equals 

 

𝑄𝑡 = {
𝐹(𝑆 − 𝐼𝑃𝑡)      , 𝐼𝑃𝑡 < 𝑆 
                0        , 𝐼𝑃𝑡 ≥ 𝑆 

       (1) 

 

S is the base stock level and 𝐼𝑃𝑡 the inventory position at the beginning of period t.  

F is called the yield inflation factor usually set to 1/𝜇𝑍 (e.g. Huh / Nagarajan, 2010; 

Inderfurth / Vogelgesang, 2013; Inderfurth / Kiesmüller, 2015). The yield inflation 

factor compensates for the expected yield losses occurring during the production 

process. For the benchmark scenario in Figure 1, the inventory position 𝐼𝑃𝑡 before 

ordering is defined as 

 

𝐼𝑃𝑡 = 𝐼𝐿𝑡−1 + 𝑍𝑡−𝜆𝑄𝑡−𝜆 + ∑ 𝜇𝑍𝑄𝑡−𝑙
𝜆−1
𝑙=1        (2) 

 

according to Inderfurth / Kiesmüller (2015). 𝐼𝐿𝑡−1 is the inventory level at the end of 

period 𝑡 − 1. The second term reflects the order placed 𝜆 periods before, which is 

delivered in period t. The moment an order arrives in the warehouse, the corresponding 

realized yield 𝑍𝑡−𝜆 can be observed. The last term equals the expected yield of all 

outstanding orders. Since no information about realized yields is available before or 

during production, an expectation 𝜇𝑍 about the yield factors is included in the inventory 

position. 

The inventory level ILt+λ at the end of period 𝑡 + 𝜆 is given as 

 

𝐼𝐿𝑡+𝜆 = 𝐼𝑃𝑡 + 𝜇𝑍𝑄𝑡 − ∑ 𝐷𝑡+𝑙
𝜆
𝑙=0 − ∑ 𝑅𝑡−𝑙

𝜆−1
𝑙=0      (3) 

 

with the period demand 𝐷𝑡 and the forecast error 𝑅𝑡 defined as 𝜇𝑍𝑄𝑡 − 𝑍𝑡𝑄𝑡. The 

forecast error replaces the expected yield by the realized yield once the products pass 

the quality inspection and thus realized yields can be observed. This update is necessary 

because when placing an order only the expected yield is included in the inventory 

position (∑ 𝜇𝑍𝑄𝑡−𝑙
𝜆−1
𝑙=1 ). When the planner observes how many good items leave the 

production process, he can replace the estimated outcome with the realized one. This 
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update is expressed by the forecast error Rt (for more details see Inderfurth / Kiesmüller, 

2015 or Sonntag / Kiesmüller, 2016). Due to uncertainties in the inventory position, 

production systems with positive production times are very complex and therefore 

difficult to analyze.  

 

As mentioned before, a planner has two opportunities to reduce the uncertainty in the 

system. On one hand, he can introduce further quality inspections to improve the 

information system and therefore get earlier information about realized yields. On the 

other hand, he can reduce the yield variability and therefore improve the production 

process.  

Let 𝒏 denote a binary vector of size 𝑚 − 1, reflecting if an additional quality inspection 

exists after production stage 𝑖 (𝑖 = 1, … , 𝑚 − 1) or not. The implementation of each 

inspection involves cost of 𝑐𝑞𝑐𝑖 (∀𝑖 = 1, … , 𝑚 − 1) if the inspection is located after 

stage 𝑖 (𝑖 = 1, … , 𝑚 − 1). Besides, 𝒗 is a binary vector of size 𝑚, containing the 

amount invested into yield variability reduction on each production stage 𝑖 (𝑖 =

1, … , 𝑚). Reducing the yield variability for stage 𝑖 (𝑖 = 1, … , 𝑚) from 𝜎𝑍,𝑖 to 𝜎𝑍,𝑖
∗  imply 

cost of 1/𝑐𝑖 defined as the fraction of yield standard deviation reduction per monetary 

unit increase in investment. The relation between the yield standard deviation and the 

capital investment in the yield standard deviation reduction ξ(𝜎𝑍,𝑖
∗ ) is defined according 

to Lin / Hou (2005): 

 

ξ(𝜎𝑍,𝑖
∗ ) = 𝑐𝑖 ∙ ln (

𝜎𝑍,𝑖

𝜎𝑍,𝑖
∗ ) ,       0 < 𝜎𝑍,𝑖

∗ ≤ 𝜎𝑍,𝑖      (4) 

 

Thus, 𝒗 equals (ξ(𝜎𝑍,1
∗ ), ξ(𝜎𝑍,2

∗ ), … , ξ(𝜎𝑍,𝑚
∗ )).  

 

The investment into further quality inspections as well as into yield variability reduction 

is limited due to a given budget B. The objective is to determine the investment strategy 

minimizing holding and backorder cost C, which is similar to minimizing the required 

safety stock level. The total average holding and backorder cost depend on the number 

of additional inspections represented by 𝒏, the reduction of the yield variability 

reflected by 𝒗 and the base stock level S. The total average holding and backorder cost 

per period C can be calculated based on the expected inventory level as follows: 

 

𝐶(𝑆, 𝒏, 𝒗) = ℎ𝐸 [(𝐼𝐿(𝑆, 𝒏, 𝒗))
+

] + 𝑏𝐸 [(−𝐼𝐿(𝑆, 𝒏, 𝒗))
+

]    (5) 

 

(𝑀)+ is defined as max{0,M} whereas h and b denote the unit holding and unit 

backorder cost, respectively. Thus, the optimization model is defined as: 
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min 𝐶(𝑆, 𝒏, 𝒗)          (6) 

𝑠. 𝑡. ∑ 𝑐𝑞𝑐𝑖 ∙ 𝒏𝑖

𝑚−1

𝑖=1

+ ∑ 𝒗𝑖

𝑚

𝑖=1

≤ 𝐵 

 

In the next section, the solution approach to determine the best combination of S, n and 

v is presented.  

3 Solution approach 

Because of the complexity of the model due to uncertain yield and demand in 

combination with positive production times, Inderfurth / Kiesmüller (2015) developed a 

heuristic solution approach to determine the base stock level and therefore the required 

safety stock for a production system like the benchmark scenario. The approach is easy 

to implement in a spreadsheet with low computation times even for large problem sizes, 

leading to excellent results. One assumption is that the system is in a steady state and 

that the order quantity is linearized, such that 𝑄𝑡 always equals 𝐹(𝑆 − 𝐼𝑃𝑡). 

Furthermore, the distribution of the inventory level 𝐼𝐿𝑡 is approximated by a normal 

distribution with the first two moments 𝜇𝐼𝐿 and 𝜎𝐼𝐿. In this case, the base stock level S 

can be calculated as 

 

𝑆 = (𝜆 + 1)𝜇𝐷 + Φ−1 (
𝑏

𝑏+ℎ
) 𝜎𝐼𝐿       (7) 

 

where Φ(∙) denotes the cumulative distribution function of the standard normal 

distribution. The base stock level is composed of the average demand during the risk 

period (𝜆 + 1)𝜇𝐷 and the safety stock level Φ−1 (
𝑏

𝑏+ℎ
) 𝜎𝐼𝐿. The variance of the 

inventory level 𝜎𝐼𝐿
2  follows directly from equation (1) and (3) and equals (𝜆 + 1)𝜎𝐷

2 +

𝜆𝜎𝑅
2. The variance of the forecast error 𝜎𝑅

2 can be calculated using the definition of the 

forecast error and equals 𝜎𝑅
2 = (𝜎𝑄

2 + 𝜇𝑄
2 )𝜎𝑍

2. According to Inderfurth / 

Kiesmüller (2015), the mean 𝜇𝑄 and the variance 𝜎𝑄
2 of the order quantity can be 

calculated as 𝜇𝐷/𝜇𝑍 and (𝜌𝑍
2𝜇𝐷

2 + 𝜎𝐷
2)/(𝜇𝑍

2 − 𝜎𝑍
2) where 𝜌𝑍 is the coefficient of 

variation of the yield factor defined as 𝜎𝑍/𝜇𝑍. Using all these formulae the optimal base 

stock level and therefore the optimal safety stock level can be determined easily. If 

further quality inspections are introduced, the above formulae have to be extended to 

incorporate earlier information about realized yields, which requires some calculation 

effort. The results can be found in Sonntag / Kiesmüller, 2017. 

 

To determine the cost minimizing investment strategy, the best set of  𝒏, 𝒗 and S–the 

number and position of additional inspections, the yield variability reduction on each 

production stage and the base stock level–has to be determined. In this paper, a fix-and-
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optimize solution approach is used to determine these parameters. For a fixed set of 

inspections 𝒏, the reduction of yield variability 𝒗 and the base stock level S are 

optimized.  The investment in yield variability reduction is optimized solving a 

nonlinear program using the Matlab function fmincon whereas the base stock level is 

calculated using formula (7). After the optimization over all 𝒏, the best combination of 

𝒏, 𝒗 and S regarding average holding and backorder cost per period is determined out of 

the set of solutions.  

 

As an example consider a production system consisting of three production stages and a 

budget of 10 monetary units. If one inspection costs 6 units, only one inspection 

additional to the final one can be implemented and 𝒏 could equal (0,1), meaning that an 

additional inspection exists after stage 2. Other possible solutions for 𝒏 are (0,0) and 

(1,0), which will not be considered in the following. Note, that after the final stage an 

inspection always exists wherefore it is not part of 𝒏. The remaining budget equals 4 

monetary units and will be used to reduce the yield variability. Thus, 𝒗 could e.g. equal 

(0.5,1.5,2) meaning that 0.5 monetary units are used to reduce the yield variability 

during the first, 1.5 during the second and 2 during the third production stage.  

4 Numerical analysis 

To give some managerial insights, a production system consisting of five production 

stages is examined. The demand is normally distributed with mean 20 and a coefficient 

of variation of 0.1 while holding and backorder cost are charged with one dollar and 99 

dollars, respectively. This cost structure leads to a cost ratio 𝑏 (𝑏 + ℎ)⁄  of 0.99. All 

stages have a mean yield of 95% and coefficients of variation of either 0.05 or 0.35 to 

model a production system with low as well as with high uncertainty in the yield. The 

planner has an available budget of 65,000 dollars whereas each additional quality 

inspection costs 30,000 dollars and the yield standard deviation of each production stage 

can be reduced by 0.01 for 1,000 dollars investment (𝑐𝑖 = 100,000 ∀𝑖 = 1, … , 𝑚). It is 

obvious that a maximum of two additional inspections can be introduced. 

 

Figure 2a shows after which production stages quality inspections can be located 

additionally to the final inspection, while Figure 2b shows how the remaining budget (in 

1,000 dollars) is allocated to the five production stages to minimize the required safety 

stock. At the top of the figures the best solution as a combination of 𝒏, 𝒗 and S is 

presented whereas the following solutions are sorted in ascending order according to the 

required safety stock level.  

It can be seen that for low yield variability (𝜌𝑍 = 0.05) it is reasonable to introduce as 

many inspection stations as possible and spend just little money on reducing the yield 

variability. Instead for higher yield uncertainty (𝜌𝑍 = 0.35) it is better to place fewer 

inspections and therefore invest the budget in yield uncertainty reduction. The reason 
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for this phenomenon is that a reduction of the yield variability is not very valuable if the 

yield variance is already very low. Instead, if the yield variability is very high even 

small reductions lead to large effects according to the required safety stock level. 

 

Figure 2: Locations of inspections (a) and investment in yield variance reduction at 

each working step in 1,000 dollars (b) 

  
(a) (b) 

  

A closer look at Figure 2b indicates that the budget is particularly invested at later 

production stages. To explain this phenomenon the second best solution for a coefficient 

of variation of the yield of 0.35 is used where 3,800 dollars are invested at the first three 

and 11,700 dollars at the last two stages. Figure 2a shows that for this solution an 

additional inspection is located after the third production stage, which means that all 

uncertain yields of the first three stages become known after this inspection and all 

defective items are disposed of before the fourth production stage. While the uncertainty 

about the production outcome of the first three stages is eliminated, the uncertainty 

about the yield of the last two stages still exists. A high yield uncertainty for later 

production stages require a larger amount of safety stock because the uncertainty cannot 

be eliminated significantly before finishing the whole production. Thus, reducing the 

yield variability at the last two production stages is more valuable and therefore most of 

the budget is invested there. 

 

Figure 3 summarizes the results from Figure 2 by showing the corresponding safety 

stock level, which minimizes average holding and backorder cost as in formula (5). The 

horizontal axis shows all optimal solutions regarding 𝒗 and S for given 𝒏 in descending 

order according to the required safety stock level. On the vertical axis the relative safety 

stock level compared to the worst solutions in case of a coefficient of variation of the 

yield of 0.05 and 0.35 is presented. Thus, the safety stock level for the worst solution 

equals 100%. 
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Figure 3: Minimum safety stock level for all sets of additional inspections and optimal 

investments in yield variability reduction 

 
 

The best investment strategy as a combination of additional inspections and a reduced 

yield variability can reduce the required safety stock level by 8% for low yield 

variability and nearly 25% for high yield variability compared to the worst strategy. 

5 Summary 

In this paper, a production system producing a random fraction of defective items due to 

imperfect production processes is considered. Supply as well as demand uncertainty 

require large safety stock in a warehouse resulting in high holding cost. It is assumed 

that a planner has two opportunities to reduce the safety stock level. He can implement 

additional quality inspections and/or reduce the variability of the yield.  

It is shown how to determine the best combination of quality inspections and a 

reduction in the yield variability under a given budget constraint. The results emphasize 

that in production systems with low yield variability money should be invested into 

further quality inspections whereas in production systems with high yield variability it 

is best to use the budget to reduce the yield variance rather than investing into further 

inspections. Applying the best budget allocation strategy can lead to significant 

reductions in the required safety stock level and therefore holding and backorder cost. 
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In a production environment where random yield plays a fairly significant role, a decision has to be 

made on how to handle products that do not satisfy given quality requirements. We consider a single- 

stage production system with a positive production time and random yield. To ensure that only high 

quality items are sold to the customer, a post-production quality control system has been put in place. 

We compare two different strategies for defective items: disposal or rework. Disposal is possible without 

any time delay whereas the rework process requires a positive rework time. While disposed-of items 

leave the production process, reworked products stay in the process and are assumed to be as good as 

products that are perfect when they are initially produced. The end products are stored in a warehouse to 

satisfy stochastic demand. We show how to determine the optimal base-stock level, which is very difficult 

because of unknown covariances between orders. Subsequently, an optimization model is proposed to 

support the planner’s decision on which strategy to choose when it comes to whether to dispose of 

or rework defective items. By means of a sensitivity analysis we show which parameters directly affect 

this decision and give managerial insights. The analysis indicates that significant cost reductions can be 

obtained by choosing the best strategy for defective products. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Customer service plays an especially important role in highly 

competitive markets where dissatisfaction about e.g., product qual- 

ity leads to a loss of the customer’s goodwill resulting in the 

customer selection of a new vendor. Thus, the plan must be to 

sell only high-quality products. A problem arises when the pro- 

duction process is not perfect, such that random yield losses oc- 

cur. Random production yield is a common problem in the high- 

tech industry with complex production processes. For example, in 

the production of microchips, yields differ between 60% and the 

high 90% range depending on the manufacturer ( Foremski, 2012 ). 

A second example is the production of curved glass for the dis- 

play of a new cell phone series, where Samsung has to deal with 

yields down to less than 50% ( McNutt, 2015 ). In such an environ- 

ment, where sometimes more than every second item is defective, 

it is obvious that random production yield cannot be neglected. 

To guarantee that only high-quality products are sold to the cus- 

tomers, a quality control inspecting 100% of all produced items is 

∗ Corresponding author. 

E-mail address: danja.sonntag@ovgu.de (D. Sonntag). 

required. The items passing the inspection are stocked in a ware- 

house to serve stochastic customer demand. This begs the ques- 

tion, how to handle all the defective products which should not 

be sold to the customer due to poor quality. Several opportuni- 

ties arise: the products can either be scrapped (see e.g., Yano & 

Lee, 1995; Huh & Nagarajan, 2010; Inderfurth & Kiesmüller, 2015; 

Sonntag & Kiesmüller, 2017 ), sold as lower quality products for a 

lower price (see e.g., Gerchak, Tripathy, & Wang, 1996; Hsu & Bas- 

sok, 1999 ), reworked (see e.g., Wein, 1992; Grosfeld-Nir & Gerchak, 

2004 ) or used otherwise. 

In this paper, we study the strategic choice between scrapping 

and reworking which means that the planner can decide between 

these opportunities only at the beginning of the planning horizon. 

We assume that reworked items satisfy all quality requirements 

and are as good as items that are well made from the start and can 

be sold for the same price (see e.g., Inderfurth, Lindner, & Rachan- 

iotis, 2005; Gotzel & Inderfurth, 2005; Buscher & Lindner, 2007 ). 

Reworking defective products to raise their quality might be desir- 

able for a company for several reasons: First of all, rework might 

be reasonable for economic reasons. This is the case when defec- 

tive products are of substantial value because of expensive input 

materials, e.g., in the high tech industry ( Buscher & Lindner, 2007; 

Inderfurth et al., 2005 ) or when the time and cost for rework are 

https://doi.org/10.1016/j.ejor.2017.11.019 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
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lower than for the initial production of new items. Second, new 

legislation might force companies to reduce waste ( Teunter & Flap- 

per, 2003 ). Third, ecological aspects are gaining more and more at- 

tention and therefore influence the waste policy and the image of 

the company ( Inderfurth et al., 2005 ). The image of a company has 

an influence on customer satisfaction and therefore on sales and 

the equity, which provide a competitive advantage especially in 

highly competitive markets where it is difficult to differentiate be- 

tween the products ( Chen, 2010; Teunter & Flapper, 2003 ). Flapper, 

Fransoo, Broekmeulen, and Inderfurth (2002) give an overview of 

industries mentioned in the literature where rework plays an im- 

portant role for at least one of the specified reasons (e.g., the semi- 

conductor and pharmaceutical industry). 

We consider a single-stage production system producing 

batches of items with a known and constant production time in- 

dependent of the batch size, and stochastic proportional yield, 

which leads to a random number of defective items. In a stochas- 

tic proportional yield model, the yield is a random multiple of 

the input ( Henig & Gerchak, 1990 ). Subsequent to the production 

process, a quality control system is in place, inspecting all items 

with no time delay. Items satisfying the quality requirements are 

stocked in a warehouse to satisfy incoming stochastic customer 

demand, whereas defective items are either entirely disposed of 

or reworked. Note that once the planner has chosen one of these 

strategies, he cannot change it in the near future. The rework pro- 

cess – like the production process – corresponds to a known and 

constant rework time but is performed on a different machine. 

Thus, the production and the rework process require different re- 

sources. The rework process brings all defective items in a condi- 

tion equal to that of perfectly produced products such that they 

can be stored in the warehouse as well. The warehouse has to ini- 

tiate the production of a batch of items with varying lot size peri- 

odically to replenish stock. 

The literature includes work on imperfect production systems 

where defective products are either scraped or reworked – totally 

or partially. Yano and Lee (1995) give a literature overview of dif- 

ferent problem settings and approaches to solving imperfect pro- 

duction environments where yield losses are disposed of. In the 

following discussion, we will amplify two different streams of lit- 

erature: make-to-stock models under random yield with disposal 

of defective items and make-to-order models under random yield 

with rework of defective items. 

The literature on make-to-stock production systems, combining 

random yield settings with inventory control strategies, can be di- 

vided into two groups: production time zero or one (e.g., Henig 

& Gerchak, 1990 ; Bollapragada & Morton, 1999 ; Huh & Nagara- 

jan, 2010) and arbitrary positive production times ( Dettenbach & 

Thonemann, 2015; Inderfurth & Kiesmüller, 2015; Inderfurth & Vo- 

gelgesang, 2013; Sonntag & Kiesmüller, 2017 ). Production times of 

zero or one period (called zero production time in the follow- 

ing discussion) substantially reduce the complexity of the problem 

since no uncertainties of outstanding orders have to be considered, 

which means that the inventory position used to determine the or- 

der quantity is known. For zero production times, Henig and Ger- 

chak (1990) and Bollapragada and Morton (1999) focus on the op- 

timal order policy whereas Huh and Nagarajan (2010) concentrate 

on the optimization of the policy parameters in case of a linear 

inflation rule. A linear inflation rule is the commonly used heuris- 

tic order policy under random production yield since the optimal 

ordering policy is very complex ( Henig & Gerchak, 1990 ). 

Positive production times involve an uncertainty in the in- 

ventory position which makes the problem far more complex. 

Therefore, only a few authors have considered positive production 

times (e.g., Inderfurth & Vogelgesang, 2013 ; Dettenbach & Thone- 

mann, 2015; Inderfurth & Kiesmüller, 2015 ; Sonntag & Kiesmüller, 

2017) . Inderfurth and Vogelgesang (2013) present concepts to de- 

termine safety stocks under different types of yield randomness. 

Dettenbach and Thonemann (2015) take into consideration multi- 

stage production systems with the aim of determining the loca- 

tion of quality inspections to obtain real-time yield information 

which reduces the required safety stock. They use dynamic pro- 

gramming for small and medium-sized problems and two heuris- 

tic approaches for larger problems. One of the heuristics is based 

on an idea of Ehrhardt and Taube (1987) and can lead to poor re- 

sults depending on the parameter setting. The second heuristic is 

based on an idea of Huh and Nagarajan (2010) and leads to very 

good results but requires simulation since “it is difficult to calcu- 

late [...] analytically” ( Dettenbach & Thonemann, 2015 ). Since the 

optimal order policy is difficult to determine and dynamic pro- 

gramming as well as simulation might involve high computation 

times, Inderfurth and Kiesmüller (2015) developed a new heuris- 

tic solution method. The so-called steady-state approach leads to 

very good results and is easy to implement in a spreadsheet. 

While Inderfurth and Kiesmüller (2015) present a single-stage pro- 

duction system, Sonntag and Kiesmüller (2017) extend the ap- 

proach to analyze multi-stage production systems with in-between 

quality inspections. All these papers have in common that de- 

fective items are disposed of and therefore leave the production 

system. 

Unlike the limited literature on make-to-stock production sys- 

tems with random yield and disposal of defectives, there exists 

a variety of literature on make-to-order systems where defective 

items are reworked. Most researchers investigate production and 

rework processes on the same machine and thus have to solve a 

scheduling problem (e.g., So & Tang (1995) ) or a lot-sizing problem 

(see e.g., Liu & Yang, 1996; Teunter & Flapper, 2003; Inderfurth, Ko- 

valyov, Ng, & Werner, 2007; Grosfeld-Nir & Gerchak, 2002; Wein, 

1992 ). Jaber and Khan (2010) extend the production system with 

learning curves for the time to produce and rework items. 

There is only one paper, by Gotzel and Inderfurth (2005) , where 

an inventory-control policy in a production environment with ran- 

dom yield and stochastic demand is studied in which defective 

items are reworked. While Gotzel and Inderfurth (2005) assume 

that defective items can be temporarily stocked before rework, we 

consider a situation where defective items have to be reworked 

immediately. As an example, consider the steel industry where 

steel coming out of the furnace is inspected for quality. If it does 

not satisfy the given quality standards it has to be returned to a 

furnace. This reworking in a furnace is much faster when the steel 

is still hot and has had no time to cool down. In such a situation 

intermediate stock points are not favorable for economic reasons. 

Other examples can be found in industries such as the chemical, 

pharmaceutical or food industries, where items cannot be stored 

to wait for rework. Further, it is sometimes the case that there is 

no storage space available for items waiting for rework or that the 

company wants to reduce work in process inventory. 

Allowing only one stockpoint in the system has consequences 

for the analysis, because no decision has to be made on the 

amount to be reworked. The rework quantity is dependent only 

on the production output, and therefore on the order quantity of 

a previous period and the realized yield. The number of defec- 

tive items increases as the order quantity increases, thus the or- 

der quantity in a previous period determines the amount to be 

reworked in a later period. If a large number of reworked items 

arrive at the warehouse, the order quantity in the actual period 

can be reduced. Therefore, the actual order quantity depends on 

previous order quantities and thus covariances occur. 

Aside from the fact that our model includes only one stockpoint 

we define the inventory position differently from Gotzel and In- 

derfurth (2005) and include only information about orders arriving 

during the risk period and thus only relevant information for the 

actual decision. 
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The contribution of this paper is as follows: (1) We show how 

to determine the base-stock level in a production environment 

where defective products are not disposed of but reworked and 

thus stay within the system. The induced covariances cannot be 

calculated easily and thus we propose an approximation. In a de- 

tailed numerical study we illustrate the excellent performance of 

our approximation. (2) We introduce a mathematical model repre- 

senting production, quality control, disposal or rework as well as 

holding and backorder costs. The model can be used as a decision 

support tool for a planner when he or she has to decide if de- 

fective items should be disposed of or reworked. We show which 

parameters have an influence on this decision and give an idea on 

how robust the decision of the planner is regarding changes in the 

environment or the cost parameters. With the derived model we 

also gain some managerial insights. 

The remainder of the paper is organized as follows: In 

Section 2, we describe the multi-stage production system and for- 

mulate the model. In Section 3, the steady-state approach is intro- 

duced. Since covariances between orders occur, which are not easy 

to calculate but cannot be neglected, we present an approxima- 

tion and analyze its accuracy in Section 4 . In Section 5 , we present 

a mathematical model considering above-mentioned cost parame- 

ters, and analyze the effect of changes within the input parameters 

of the production system (5.3) and the cost parameters (5.4) on the 

decision whether to rework or dispose of defective items. Based on 

this analysis, we formulate managerial insights in Section 5.5 . We 

conclude with a summary and suggestions for future research in 

Section 6 . 

2. Model formulation 

We consider a single-stage production system producing 

batches of one single product with a constant production time of 

L P periods per batch ( L P > 0). The production time can be indepen- 

dent of the batch size in, for example, the chemical industry where 

processing times are often independent of the amount being pro- 

duced. Further, in the context of an MRP planning system, planned 

lead times are assumed to be constant, even though some variabil- 

ity exists, in order to enable coordinated decisions. 

Due to deficiencies in the production, not all produced items 

are of perfect quality. Since it is not desirable to sell products of 

lower quality to the customers, a quality inspection subsequent to 

the production process is established. The inspection station checks 

the quality properties of all produced items with no time lag. We 

would like to note that the time for an inspection can be included 

in the production time since all items pass quality control. Thus, 

neglecting any delay for the inspection does not reflect a limitation 

in the model. 

Items that satisfy the quality requirements are stocked in a 

warehouse to serve incoming stochastic customer demand. We as- 

sume that the demand across periods is independent and iden- 

tically distributed (iid) and backlogged if it cannot be satisfied 

directly from stock. Inderfurth and Kiesmüller (2015) as well as 

Dettenbach and Thonemann (2015) and Sonntag and Kiesmüller 

(2017) analyzed single or multi-stage production systems where 

defective items are scrapped. In contrast to these contributions, 

we focus on a situation where defective items are reworked. The 

reworking process – like the production process – requires a re- 

work time of L R time units ( L R > 0) whereas the rework time can 

be either smaller, equal to or larger than the production time. Af- 

ter rework these products are stocked in a warehouse with the 

same quality as items that were perfect when first produced. Note 

that the rework process proceeds on a different machine from the 

one used in the production process, which means that different re- 

sources are required and they do not interfere with each other. 

Fig. 1 illustrates the whole model composed of a production 

and a rework process, a quality-control process and a warehouse 

for the final product. The sequence of events in one period is as 

follows: First, the good items of the order placed L P periods before 

as well as the reworked items of the order placed L P + L R periods 

before are delivered. Subsequently, a new order is placed and de- 

mand occurs. At the end of the period, inventory holding and back- 

order costs are charged based on the inventory level. 

We apply a stochastic proportional yield model which is com- 

monly used to describe random yield due to an imperfect produc- 

tion process ( Yano & Lee, 1995 ). In a stochastic proportional yield 

model the output Y ( Q ) of the production process equals a posi- 

tive fraction Z of the input Q such that Y (Q ) = Z · Q . In our model, 

the input for production is determined by the order quantity Q re- 

quested by the warehouse to refill stock and ensure that demand 

can be satisfied. Z ∈ [0, 1] is a random variable called the yield fac- 

tor with mean μZ and variance σ 2 
Z 

and is iid across the periods 

and independent of the demand distribution. 

As already mentioned, at the beginning of each period, after re- 

ceiving the batch of a prior order, the warehouse has to determine 

the required order quantity in order to minimize average holding 

and backorder costs. We consider a periodic review base-stock pol- 

icy with a review period of one time unit and a base-stock level 

S . Such a policy is used because the optimal ordering policy for 

production systems with random yield does not possess a simple 

structure, even for production times equal to zero ( Henig & Ger- 

chak, 1990 ). In this paper, positive instead of zero production times 

are considered, which increases the complexity of the system and 

makes it even more difficult to determine the optimal policy struc- 

ture. Therefore, we propose a heuristic ordering policy, which is 

easy to implement. The periodic review base-stock policy is such 

a candidate, and it is also optimal if there is no uncertainty in the 

yield. In such a situation the order quantity in period t equals the 

difference between the base-stock level S and the actual inventory 

position IP t ( Tempelmeier, 2006 ): Q t = S − IP t , where the inventory 

position is defined as the physical stock on hand minus backorders 

plus the outstanding order quantities. 

In case of random production yield and a positive production 

lead time it is not reasonable to include the outstanding order 

quantities, because the production output is uncertain. Therefore, 

we have to define the inventory position differently and suggest 

the use of the expected amount to be delivered instead of the out- 

standing order quantities, as long as we do not have information 

about the realized yield. This means that for all orders in the pro- 

duction process the yield is unknown and the expected amount 

to be delivered is included in the inventory position, while for all 

orders in the rework process realized yield is known and the esti- 

mates can be updated. Further, we only include information about 

the orders that will be delivered during the risk period (see also 

Kiesmüller, 2003 ). The risk period equals L P + 1 review periods, be- 

cause between review periods it is not possible to influence the 

amount of incoming items, either from production or from rework. 

Altogether, we get the following definition of the inventory posi- 

tion IP t at the beginning of period t before ordering: 

I P t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

I L t−1 + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l + 

L P + L R −1 ∑ 

l= L P 
(1 −Z t−l ) Q t−l 

+(1 − Z t−L P −L R ) Q t−L P −L R + 

L P −1 ∑ 

l= L R 
(1 − μZ ) Q t−l , L P ≥ L R 

I L t−1 + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l + 

L P + L R −1 ∑ 

l= L R 
(1 −Z t−l ) Q t−l 

+(1 − Z t−L P −L R ) Q t−L P −L R , L P < L R 

(1) 

Note that the realized yield is modeled with a random variable 

( Z t ) because all possible values have to be considered. However, 
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Fig. 1. A single-stage make-to-stock production system with random yield and rework. 

if the model is applied in practice the random variables have to 

be replaced by the observed realized values. For example, if the 

planner has to decide on the order quantity, he uses the actual 

values for the yield ( z t ), the demand ( d t ) and the outstanding order 

quantities ( q t ). 

It is clear that we also have to distinguish between a situation 

where the production time is larger than or equal to the rework 

time, and one where the production time is smaller than the 

rework time. For the first case ( L P ≥ L R > 0), the inventory posi- 

tion equals the inventory level IL t−1 at the end of the previous 

period plus the sum of the following components: The first term 

Z t−L P 
Q t−L P 

represents the delivered number of good items of 

the order placed in period t − L P , because in the moment when 

production is finished, the yield Z t−L P 
Q t−L P 

is known. The second 

term 

∑ L P −1 

l=1 
μZ Q t−l represents all orders still in production such 

that the yield is not known and therefore the expected amount 

to be delivered after production has to be estimated. The fol- 

lowing term 

∑ L P + L R −1 

l= L P (1 − Z t−l ) Q t−l equals outstanding quantities 

within the rework process, where yield is known because the 

production process for these items has already been completed. 

(1 − Z t−L P −L R 
) Q t−L P −L R 

equals the number of delivered reworked 

items of the order placed L P + L R periods before. The last term ∑ L P −1 

l= L R (1 − μZ ) Q t−l is related to the orders in production and rep- 

resents an estimate of the number of units which will not satisfy 

the quality requirements and therefore have to be reworked. 

It is important to note that while all outstanding orders within 

the production process are included in the inventory position 

( 
∑ L P −1 

l=1 
μZ Q t−l ), only a part of the outstanding orders in the re- 

work process is taken into account ( 
∑ L P −1 

l= L R (1 − μZ ) Q t−l ), because 

we consider only orders that arrive during the risk period. Thus, in 

contrast to Gotzel and Inderfurth (2005) , who include all outstand- 

ing orders, we only include orders which will be delivered to the 

warehouse during the risk period of L P + 1 periods. 

In cases where the rework time exceeds the production time 

( L R > L P > 0), the inventory position consists of the same elements 

with one difference: the last term, the defective quantities thus so 

far unknown, which will enter the rework process in future peri- 

ods, does not appear. If the production time is smaller than the 

rework time, no order exists where the quantity of defective units 

is not yet known but will be delivered during the risk period of 

length L P + 1 . 

We can merge some terms in (1) and reformulate the inventory 

position as 

I P t = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

I L t−1 + 

L P + L R ∑ 

l= L P +1 

(1 − Z t−l ) Q t−l + 

L P ∑ 

l= L R 
Q t−l + 

L R −1 ∑ 

l=1 

μZ Q t−l , L P ≥ L R 

I L t−1 + 

L P + L R ∑ 

l= L R 
(1 − Z t−l ) Q t−l + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l , L P < L R 

(2) 

with 

∑ b 
i = a x i = 0 for b < a . 

Since the inventory position includes the expected number of 

units to be delivered, the moment when the realized yield is ob- 

served the inventory position has to be updated as follows. 

I P t+1 = I P t − D t − (μZ − Z t+1 −L P ) Q t+1 −L P (3) 

It can happen that the realized yield ( Z t+1 −L P 
) is much larger 

than expected ( μZ ), which increases the inventory position with- 

out placing an order. In extreme cases, which occur vary rarely, it 

is possible that the inventory position before ordering is already 

above the base-stock level. Therefore, the ordering policy in case 

of random yield has to be adjusted as follows: 

Q t = 

{
S − IP t , IP t < S 
0 , IP t ≥ S 

(4) 

Note that we do not apply a linear inflation policy as often used 

in the random yield literature with disposal of defective items, be- 

cause all ordered units will arrive. There is only a difference in 

the observed lead time, because some of the units have to be re- 

worked. Inflation factors are necessary if units not satisfy quality 

requirements are disposed of. 

The inventory position in formula (2) is not only used to deter- 

mine the order quantity, but it is also used in our model to deter- 

mine the inventory level IL t+ L p at the end of period t + L P : 

IL t+ L P = IP t −
L P ∑ 

l=0 

D t+ l + μZ Q t − R t −
min { L P ,L R }−1 ∑ 

l=1 

R t−l (5) 

The term 

∑ L P 
l=0 

D t+ l equals the demand that occurs between the 

beginning of period t and the end of period t + L P . The second term 

reflects the estimated amount to be delivered in period t + L p from 

the order, placed in period t , where the yield is unknown when 

production starts. The next terms are related to the updates of the 

inventory position as shown in Eq. (3) which are done in each pe- 

riod, when yield is realized. We call the difference between ex- 

pected and realized yield for a given order quantity Q t the forecast 

error, which is defined as 

R t = μZ Q t − Z t Q t . (6) 

It is obvious that the inventory level as given in (5) is a func- 

tion of the base-stock level S and hence we denote it as IL ( S ) in the 

following discussion. The higher the base-stock level S , the higher 

the stock-on-hand and the lower the backorder quantities and vice 

versa. Our objective is to determine a base-stock level S , which 

minimizes the average holding and backorder cost C ( S ): 

C(S) = hE[(IL (S)) + ] + bE[(−IL (S)) + ] (7) 

where h denotes the unit holding and b the unit backorder costs, 

and (M) + is defined as max {0, M }. 

Determining the optimal base-stock level in case of random 

yield is not easy in the presence of positive production times, even 

without reworking defective items. For production systems where 

imperfect products are scraped instead of being reworked, previous 

approaches in the literature involve high computation times due 
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to the application of Markov chains ( Dettenbach & Thonemann, 

2015; Inderfurth & Kiesmüller, 2015 ), simulation ( Dettenbach & 

Thonemann, 2015; Inderfurth & Kiesmüller, 2015 ) or stochastic dy- 

namic programming ( Gotzel, 2010 ). Therefore, Inderfurth and Kies- 

müller (2015) introduced an approximate steady-state approach for 

a single-stage production system where defective items are dis- 

posed of. The performance of the approach has been shown to be 

excellent while it is easy to implement in a spreadsheet. Because 

of the excellent performance of the approach and the absence of 

efficient solution methods for production systems where defective 

items are reworked, we adapt the idea for the production system 

described above. 

As a starting point for this approach, formula (7) can be rewrit- 

ten as 

C(S) = h 

∫ ∞ 

0 

xϕ IL (x ) dx − b 

∫ 0 

−∞ 

xϕ IL (x ) dx (8) 

where ϕIL reflects the probability density function of the inventory 

level IL defined in (5) . To determine the base-stock level S which 

minimizes the average holding and backorder cost, the distribution 

of the inventory level IL with the density function ϕIL is required. 

3. Determining the base-stock level 

To calculate the average cost for a given base-stock level, 

Inderfurth and Kiesmüller (2015) showed that, for symmetric de- 

mand distributions, a normal distribution with mean μIL and 

variance σ 2 
IL 

is a suitable approximation of the inventory level. 

For asymmetric demand distributions Inderfurth and Kiesmüller 

(2015) as well as Sonntag and Kiesmüller (2016) showed that other 

distribution functions for modelling the inventory level are suit- 

able. In this paper, we will not focus on asymmetric demand dis- 

tribution because the analysis and the insights are similar. 

For a normally distributed inventory level, the optimal base- 

stock level is given by the following newsboy equation ( Inderfurth 

& Kiesmüller, 2015 ): 

P (IL ≥ 0) = 

b 

b + h 

(9) 

We will fit a normal distribution on the first two moments of 

the inventory level, which means we need to derive expressions 

for the moments. The mean inventory level μIL can be determined 

directly from (5) and (4) . 

Lemma 1. Under a strictly linear control rule (which means: Q t = S −
IP t ), the mean inventory level μIL in a production system with positive 

production and rework times is given as: 

μIL = S − (L P + 1) μD − (1 − μZ ) μQ (10) 

where μD and μQ reflect the mean demand and the mean order 

quantity, respectively. 

Proof. For the proof see Appendix A. �

In order to derive an expression for the variance of the inven- 

tory level, we need the moments of the forecast error as defined in 

(6) . While the mean of the forecast error equals zero ( μR = E[ R t ] = 

E[ μZ Q t − Z t Q t ] = 0 ), the variance does not. Sonntag and Kiesmüller 

(2017) demonstrate that the following equation holds: 

σ 2 
R = (σ 2 

Q + μ2 
Q ) σ

2 
Z (11) 

Knowing the first two moments of the forecast error, the sec- 

ond central moment of the inventory level – the variance – can be 

determined. 

Lemma 2. Under a strictly linear control rule, the variance of the in- 

ventory level σ 2 
IL 

in a production system with positive production and 

rework times can be calculated as 

σ 2 
IL = (L P + 1) σ 2 

D + L R σ
2 
R + (1 − μZ ) 

2 σ 2 
Q (12) 

where σ 2 
D 
, σ 2 

R 
and σ 2 

Q 
reflect the variances of the period demand, 

the forecast error and the order quantity. 

Proof. For the proof see Appendix B. �

It is clear that the mean and the variance of the order quan- 
tity are required to determine the mean and the variance of the 
inventory level. The mean order quantity equals the mean demand 

( μQ = μD ) since in the long run all demands have to be satisfied. 

To determine the variance of the order quantity, σ 2 
Q 
, a recursive 

equation for the order quantity can be obtained: 

Q t = 

{ 

D t−1 , L P ≥ L R = 1 
D t−1 + (1 − μZ ) Q t−1 − (1 − μZ ) Q t−L R 

, L P ≥ L R > 1 

D t−1 + (1 −μZ ) Q t−1 −(1 −Z t−L R 
) Q t−L R 

+ (μZ −Z t−L P 
) Q t−L P 

, L R > L P > 0 

(13) 

For the proof see Appendix C. 

It is clear that for rework times larger than one time unit, 

the order quantity Q t in period t depends on the order quanti- 

ties in previous periods. To explain this phenomenon, remember 

that yield is random and estimates are included in the inventory 

position for the amount that is delivered L P periods after produc- 

tion starts and the quantity delivered after L P + L R periods when 

the rework is finished. When yield is realized these estimates are 

updated. If in one period the realized yield of the production pro- 

cess is larger than expected, more items than expected arrive in 

the warehouse and fewer items have to be reworked. Therefore 

the items arrive earlier than expected. This means that the order 

quantity in one period depends on the order quantities of previ- 

ous periods and covariances occur when the variance of the order 

quantity has to be determined. 
It is obvious that, if rework time is one period, the variance of 

the order quantity equals the variance of the demand: σ 2 
Q = σ 2 

D . 

Moreover, for larger rework times the variance of the order quan- 
tity depends on the covariances of orders as follows. 

VAR [ Q t ] = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

VAR [ D t−1 ] + VAR [(1 − μZ ) Q t−1 ] + VAR [(1 − μZ ) Q t−L R 
] 

−2(1 −μZ ) 
2 COV [ Q t−1 , Q t−L R 

] , L P ≥L R > 1 

VAR [ D t+1 ] + VAR [(1 − μZ ) Q t−1 ] 

+ VAR [(1 − Z t−L R 
) Q t−LR ] + VAR [(μZ − Z t−L P 

) Q t−L P 
] 

−2 COV [(1 − μZ ) Q t−1 , (1 − Z t−L R 
) Q t−L R 

] 

+2 COV [(1 − μZ ) Q t−1 , (μZ − Z t−L P 
) Q t−L P 

] 

−2 COV [(1 −Z t−L R 
) Q t−LR , (μZ −Z t−L P 

) Q t−L P 
] , L R > L P > 0 

(14) 

To determine the covariances, we need to know corresponding 

joint probability distribution of the two random variables consid- 

ered. These joint distributions are unknown and therefore the co- 

variances cannot be calculated easily. In the following discussion, 

we show how the covariances between order quantities can be ap- 

proximated to get a good estimate. The numerical study reveals 

that the performance of the approximation is excellent. 

4. Approximation of the covariances between orders 

For all the subsequent analyses we focus on rework times that 

are smaller than or equal to the production times (1 < L R ≤ L P ). 

Nevertheless, an analysis similar to the one for production times 

exceeding rework times can be adapted for the opposite relation. 

We approximate the covariance between order quantities by 

using the recursive equation of the order quantity as given in 

(13) . For every L R , the recursive equation of the order quantity is 

plugged into the formula for the covariance in (14) . Unfortunately, 

we end up with different formulae for the covariances for different 

values of L R (for details see Appendix D). 
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Table 1 

Covariance factors. 

L R A L R 

4 [ −(1 − μZ ) 
∞ ∑ 

k =0 

(−(1 − μZ )) 
k 
] 

5 [ −(1 − μZ )] 

6 [ −(1 − μZ ) − (1 − μZ ) 
3 ·

∞ ∑ 

k =0 

(−(1 − μZ )) 
k · f k +1 ] 

7 [ −(1 − μZ ) ·
∞ ∑ 

k =0 

((1 − μZ ) 
2 ) k ] 

8 [ −(1 − μZ ) − (1 − μZ ) 
3 − 2 (1 − μZ ) 

5 + (1 − μZ ) 
6 − 5 (1 − μZ ) 

7 · · · ] 

9 [ −(1 − μZ ) − (1 − μZ ) ·
∞ ∑ 

k =1 

2 k −1 ((1 − μZ ) 
2 ) k ] 

10 [ −(1 − μZ ) − (1 − μZ ) 
3 − 2 (1 − μZ ) 

5 − 5 (1 − μZ ) 
7 · · · ] 

� �

The covariances, and therefore the variance of the order quan- 

tity, can be calculated nearly exactly for rework times of two and 

three periods. For rework times larger than three, the covariances 

can be approximated very well by (σ 2 
Q 

− σ 2 
D 
) · A L R 

, whereas A L R 
de- 

pends on the mean yield μZ in different ways for each L R (for de- 

tails see Appendix E). 

Lemma 3. Under a strictly linear control rule, the variance of the or- 

der quantity σ 2 
Q 

in a production system with positive production and 

rework times (L P ≥ L R > 0 ) can be approximated as 

σ 2 
Q ≈

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σ 2 
D , L R = 1 

σ 2 
D 

1 −2(1 −μZ ) 2 
[ 

1 − 1 
2 −μZ 

] , L R = 2 

σ 2 
D 

1 −2(1 −μZ ) 2 
, L R = 3 

σ 2 
D (1+2(1 −μZ ) 

2 ·A L R 
1 −2(1 −μZ ) 2 +2(1 −μZ ) 2 ·A L R 

, L R > 3 

(15) 

with the factors A L R 
as given in Table 1 and f k denoting the Fi- 

bonacci numbers starting with f 0 = 0 , f 1 = 1 and f k = f k −1 + f k −2 

( ∀ k ≥ 2 ). 

Proof. Formula (15) directly follows from (14) . For details on 

Table 1 see Appendix E. �

Before we make further use of the above formulae within the 

solution approach, it is important to validate the quality of the 

approximation of the variance of the order quantity as given in 

Eq. (15) . 

The aim of this study is to investigate the performance of the 

approximations of the covariances relating to the optimal base- 

stock levels and costs. We analyze several instances with respect 

to the effect of different production and rework times and dif- 

ferent coefficients of variation for both demand and yield fac- 

tor under two different cost ratios b/ (b + h ) . We compare the 

results of the steady-state approach with the optimal solution 

determined by simulation. The parameter setting is presented 

in Table 2 : 

The critical ratio b/ (b + h ) equals 0.9 or 0.95. The demand 

parameters are similar as in Inderfurth and Kiesmüller (2015) . 

Demand is normally distributed with a fixed mean ( μD = 20 ) 

whereas the coefficient of variation varies between 0.1 and 0.3. 

Table 2 

Numerical values of the input parameters. 

L P = 5 L P = 10 

b/ (b + h ) {0.9; 0.95} 

μD 20 

ρD {0.1; 0.2; 0.3} 

μZ {0.5}; {0.8;0.9} 

ρZ {0.1; 0.2; 0.3; 0.4; 0.5}; {0.1;0.2;0.3} 

L R {1; 3; 4; 5} {1; 5; 9; 10} 

If higher coefficients of variation for the demand are requested, 

a gamma distribution is suitable which is not considered in 

the following discussion. Furthermore, we assume a symmetric 

( μZ = 0 . 5 ) as well as an asymmetric ( μZ = { 0 . 8 ; 0 . 9 } ) beta dis- 

tributed yield factor. Using these mean yields we are able to 

model productions where on average half of all products are 

defective, as in the Samsung example in the introduction, or 

situations where fewer yield losses occur (e.g., Intel’s microchip 

production Foremski, 2012 ). In the symmetric case, we allow for 

values for the coefficient of variation of the yield between 0.1 and 

0.5 whereas for the asymmetric case, the coefficient of variation 

varies between 0.1 and 0.3. 

We distinguish between a production time L P of five and ten 

periods. Depending on the production length, we consider a sys- 

tem, where the rework time is very short ( L R = 1 ), half of the 

length of the production time ( L R = 3 for L P = 5 and L R = 5 for 

L P = 10 ), just one period smaller ( L R = 4 for L P = 5 and L R = 9 for 

L P = 10 ) or of equal length as the production time ( L R = L P = 5 and 

L P = L R = 10 ). In total we analyze 240 instances of symmetric yield 

and 288 instances of asymmetric yield. 

For the steady-state approach the base-stock levels were calcu- 

lated solving formula (8) with respect to S , whereas the base-stock 

level was rounded up to the next integer. Therefore, only discrete 

values occur for S . We compare the base-stock levels with the op- 

timal solution determined via simulation by increasing S stepwise 

by one unit until the minimum costs are reached. This procedure 

is possible because the cost function is convex in S ( Huh & Na- 

garajan, 2010 ). Each simulation run represented 50 0 0 periods with 

a 10 0 0-period warm-up phase. To guarantee high accuracy, a se- 

quential sampling procedure was used where the number of sim- 

ulation runs was determined such that the half width of the 95% 

confidence interval of the average cost per period was smaller than 

0.5% of the corresponding sample average. The simulation-based 

optimal base-stock level is the one minimizing the simulated cost 

based on formula (8) . 

Tables 3 and 4 show the results for symmetric and asymmetric 

yield. The first column gives the number of instances within 

the full factorial design in which the base-stock level of the 

steady-state approach is equal to the optimum S Sim 

determined 

via simulation. The second column ( S Sim 

+ / − 1 ) indicates that 

the base-stock level is one unit below or above the optimum. The 

third column reveals that the deviation from optimum is larger 

than one unit. 

For symmetric yields in Table 3 the approach leads to excellent 

results independent of the production time L P . We would like to 

mention that in only six instances the base-stock level is underes- 

timated, which is worse than overestimating it because one unit 

backordered is more expensive than one unit of additional inven- 

tory. 

For asymmetric yields in Table 4 , the results are similar even 

though the number of instances with a deviation from the simu- 

lated solution increased. It is obvious that, for a cost ratio b/ (b + h ) 

of 0.9, the approach leads to very good results for short as well 

as for long production times – independent of all other parame- 

ter settings. For a cost ratio of 0.95, deviations from optimum can 

be greater than one unit with a maximum of four. The results dif- 

fer only slightly for increased production time. Nevertheless, since 

the base-stock level increases for longer production times, a higher 

absolute variation from the optimal solution has only small effects, 

especially when it comes to cost. 

Therefore, after showing the effect of the approximations on 

the base-stock level, we analyzed the effect on the corresponding 

average inventory holding and backorder costs. We simulated the 

average cost C ∗ for the base-stock levels S SS calculated with the 

steady-state approach and compared the results with the mini- 

mum average cost C ∗
Sim 

obtained by simulation. The percentage 
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Table 3 

Quality of base-stock level under symmetric yield. 

L P = 5 L P = 10 

S Sim S Sim + / − 1 Larger S Sim S Sim + / − 1 Larger 

L R 1 19 11 0 17 13 0 1 L R 
3 19 11 0 20 10 0 5 

4 17 13 0 24 6 0 9 

5 17 13 0 12 16 2 10 

ρD 0.1 22 18 0 28 12 0 0.1 ρD 

0.2 24 16 0 26 14 0 0.2 

0.3 26 14 0 19 19 2 0.3 

b/ (b + h ) 0.90 32 28 0 33 26 1 0.90 b/ (b + h ) 

0.95 40 20 0 40 19 1 0.95 

ρZ 0.1 14 10 0 16 8 0 0.1 ρZ 

0.2 19 5 0 16 8 0 0.2 

0.3 12 12 0 12 11 1 0.3 

0.4 13 11 0 14 9 1 0.4 

0.5 14 10 0 15 9 0 0.5 

Table 4 

Quality of base-stock level under asymmetric yield. 

L P = 5 L P = 10 

S Sim S Sim + / − 1 Larger S Sim S Sim + / − 1 Larger 

L R 1 19 16 1 21 15 0 1 L R 
3 21 13 2 23 10 3 5 

4 22 12 2 18 14 4 9 

5 17 15 4 20 13 3 10 

ρD 0.1 29 14 5 27 16 5 0.1 ρD 

0.2 24 21 3 27 18 3 0.2 

0.3 26 21 1 28 18 2 0.3 

b/ (b + h ) 0.90 45 27 0 47 25 0 0.90 b/ (b + h ) 

0.95 34 29 9 35 27 10 0.95 

μZ 0.8 38 33 1 39 32 1 0.8 μZ 

0.9 41 23 8 43 20 9 0.9 

ρZ 0.1 21 27 0 27 21 0 0.1 ρZ 

0.2 33 15 0 32 15 1 0.2 

0.3 25 14 9 23 16 9 0.3 

cost difference of instance i was then calculated as 

δi = 

C ∗(S SS ) − C ∗
Sim 

C ∗
Sim 

· 100% (16) 

and the maximum relative difference of N instances was computed 

as 

δmax = max i =1 , ... ,N δi (17) 

and the average relative difference of N instances as 

δ̄ = 

1 

N 

N ∑ 

i =1 

δi . (18) 

Table 5 shows the average and maximum percentage cost devi- 

ation from the optimal solution for a production time of five and 

ten periods under symmetric yield ( μZ = 0 . 5 ). 

The calculations reveal that the approximation of the covari- 

ance and the variance as given in (15) shows excellent performs 

especially for high production time. The results for an asymmet- 

ric yield are similar when it comes to an optimal solution with an 

average percentage cost deviation of 0.15% for a production time 

of five periods and 0.09% for a production time of ten periods, 

the maximum deviation over all instances equalling 2.5% and 1.4%, 

respectively. 

Due to the satisfying results, formula (15) can be used to ap- 

proximate the variance although the covariances are unknown. 

Note that the higher the mean yield the lower the influence of the 

covariances because they are multiplied with the term (1 − μZ ) 
2 

Table 5 

Average and maximum percentage deviation from optimal costs for L P = 5 

and L P = 10 . 

L P = 5 L P = 10 

δ̄ δmax δ̄ δmax 

L R 1 0.08 0.64 0.08 0.58 1 L R 
3 0.10 0.72 0.04 0.30 5 

4 0.16 1.22 0.02 0.18 9 

5 0.09 0.60 0.06 0.34 10 

ρD 0.1 0.21 1.22 0.06 0.58 0.1 ρD 

0.2 0.07 0.45 0.03 0.36 0.2 

0.3 0.04 0.24 0.06 0.34 0.3 

b/ (b + h ) 0.90 0.12 1.22 0.05 0.58 0.90 b/ (b + h ) 

0.95 0.09 1.12 0.05 0.42 0.95 

ρZ 0.1 0.17 1.22 0.09 0.42 0.1 ρZ 

0.2 0.04 0.45 0.02 0.18 0.2 

0.3 0.15 0.72 0.07 0.39 0.3 

0.4 0.10 0.45 0.05 0.58 0.4 

0.5 0.07 0.64 0.02 0.12 0.5 

(compare formula (14) ) and the approximation itself also consists 

of several such terms. 

5. Disposal versus rework 

Since we are able to compute the optimal base-stock policy, 

we can compare two strategies for defective products. The first 

strategy results in the disposal of all defective items whereas the 
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Table 6 

Formulae for rework or disposal. 

With rework ( i = wR ) With disposal ( i = nR ) 

μQ , i μD μD / μZ 

σ 2 
Q,i 

σ 2 
D , L R = 1 (ρ2 

Z μ
2 
D + σ 2 

D ) / (μ
2 
Z − σ 2 

Z ) 

σ 2 
D 

1 −2(1 −μZ ) 2 
[ 

1 − 1 
2 −μZ 

] , L R = 2 

σ 2 
D 

1 −2(1 −μZ ) 2 
, L R = 3 

σ 2 
D (1+2(1 −μZ ) 

2 ·A L R 
1 −2(1 −μZ ) 2 +2(1 −μZ ) 2 ·A L R 

, L R > 1 

σ 2 
R,i 

(σ 2 
Q,wR + μ2 

Q,wR ) σ
2 
Z (σ 2 

Q,nR + μ2 
Q,nR ) σ

2 
Z 

σ 2 
IL,i 

(L P + 1) σ 2 
D + L R σ 2 

R,wR + (1 − μZ ) 
2 σ 2 

Q,wR (L P + 1) σ 2 
D + L P σ 2 

R,nR 

S i (L P + 1) μD + (1 − μZ ) μQ,wR �
−1 (b/ (b + h )) σIL,wR (L P + 1) μD + �−1 (b/ (b + h )) σIL,nR 

μIL , i S wR − (L P + 1) μD − (1 − μZ ) μQ,wR S nR − (L P + 1) μD 

second strategy considers that all defective items are reworked. 

Note that whether to dispose of or rework imperfect products is 

a one-time decision. Once the planner has made a decision as to 

which strategy to choose, this decision cannot be changed, e.g., 

from batch to batch. 

First, we focus on the differences in the model and therefore in 

the formulae depending on what has been decided about what to 

do with imperfect products. Afterwards a mathematical model in- 

corporating different cost parameters, e.g., production and inspec- 

tion cost, is presented. This model is used in the numerical analy- 

sis in Section 5.2 to examine how sensitive the decision concerning 

disposal or rework is to various input and cost parameters. 

In a production system where defective products are disposed 

of, not all ordered items arrive at the warehouse. Unlike the model 

for rework, in the case of disposal, defective items leave the pro- 

duction system. Therefore, an ordering policy as presented in (4) is 

not suitable because in every period fewer products than required 

are received. Therefore, a linear inflation policy, which has been 

shown to perform very well ( Huh & Nagarajan, 2010 ), is commonly 

used. The order quantity in this case equals: 

Q t = 

{
F (S − IP t ) , IP t < S 

0 , IP t ≥ S 
(19) 

F is called the linear inflation factor and is often defined as 

the reciprocal of the mean yield: F = 1 / μZ (see e.g., Bollapragada 

& Morton, 1999; Huh & Nagarajan, 2010; Inderfurth & Vogelge- 

sang, 2013; Inderfurth & Kiesmüller, 2015 ). The yield inflation fac- 

tor takes into account that defective items are disposed of, which 

reduces the output of the production process. It compensates for 

fewer items with better quality. 

Using the definition of the order quantity in (19) , the steady- 

state formulae for the case with disposal rather than rework 

are required, which were derived by Inderfurth and Kiesmüller 

(2015) and Sonntag and Kiesmüller (2017) . In Table 6 , we sum- 

marize the formulae for the cases with rework ( wR ) and with no 

rework ( nR ). 

These formulae show, that the variance of the order quantity 

differs a lot. Since the variance of the order quantity influences the 

variance of the forecast error as well as the variance of the inven- 

tory level, it has a large effect on the base-stock level S . 

As already mentioned, we approximate the inventory level with 

a normal distribution. For a normally distributed inventory level, 

the average inventory holding and backorder cost can be calculated 

as in Sonntag and Kiesmüller (2017) : 

H(S i , i ) = (h + b) 

[
σIL,i · ϕ 

(
−μIL,i 

σIL,i 

)
+ μIL,i ·

(
1 −Φ

(
−μIL,i 

σIL,i 

))]
− b · μIL,i , i ∈ { wR, nR } (20) 

with the corresponding mean and variance of the inventory level 

as presented in Table 6 . 

5.1. Mathematical model 

To support the decision on whether a rework station should 

be integrated or defective items should be scrapped, a cost model 

considering production and quality control costs, possible rework 

or disposal costs as well as holding and backorder costs is intro- 

duced to calculate the average cost per period. For simplicity, we 

introduce the binary variable X , which indicates whether defective 

products are reworked or disposed of: 

X = 

{
1 , rework 

0 , disposal 
(21) 

We consider variable production costs P per period, charged 

with p for every produced item ( p ≥ 0). On average, the produc- 

tion volume equals the mean order quantity (μQ,i ) i ∈{ wR,nR } in each 

period. Thus, we get 

P (i ) = p · L P · μQ,i , i ∈ { wR, nR } . (22) 

We do not consider fixed production costs because only a sin- 

gle product is produced and thus no set-up costs are required to 

initialize the machine in advance of each production run. Concern- 

ing quality control costs, we neglect fixed costs for implementing 

such a control station because these costs are not relevant for the 

decision as to whether products should be scrapped or reworked. 

A quality control process exists in both cases. Variable quality con- 

trol costs A are charged with parameter a for each item produced 

( a ≥ 0): 

A (i ) = a · μQ,i , i ∈ { wR, nR } (23) 

If defective products are reworked, variable costs R ( i ) occur 

with parameter r ( r ≥ 0)for every defective item ( (1 − μZ ) μQ,wR ): 

R (i ) = X · r · L R · (1 − μZ ) μQ,i , i = wR (24) 

Instead, if defective products are scrapped, disposal costs g 

( g ≥ 0) are charged for each defective and thus disposed of item 

( (1 − μZ ) μQ,nR ): 

G (i ) = (1 − X ) · g · (1 − μZ ) μQ,i , i = nR (25) 

Finally, inventory holding and backorder costs H are charged as 

in formula (20) with h ≥ 0 and b ≥ 0: 

H(S i , i ) = h 

∫ ∞ 

0 

xϕ IL,i dx − b 

∫ 0 

−∞ 

xϕ IL,i dx, i ∈ { wR, nR } (26) 
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Fig. 2. Effect of input parameter variations ( ρD and b/ (b + h ) ) on total cost. 

Summarizing all the different cost terms, we get the following 

cost function for i ∈ { wR, nR } : 
T C(S i , i ) = P (i ) + A (i ) + R (wR ) + G (nR ) + H(S i , i ) 

= p · L P · μQ,i 

+ a · μQ,i 

+ X · r · L R · (1 − μZ ) μQ,wR (27) 

+(1 − X ) · g · (1 − μZ ) μQ,nR 

+ h 

∫ ∞ 

0 

xϕ IL,i dx − b 

∫ 0 

−∞ 

xϕ IL,i dx 

In the next section, we analyze different production systems 

where all defective products are either scrapped or reworked. 

5.2. Numerical analysis 

To analyze the effect of different input parameters on the 

decision concerning whether defective items should be scrapped 

or reworked, we use one example as a benchmark and change 

one parameter after another. This analysis indicates which input 

parameters are critical and therefore should be accorded greater 

attention. As a benchmark we consider a production system with a 

production time L P of ten periods and a rework time L R which can 

vary between one and ten periods. The mean demand μD and the 

corresponding coefficient of variation are 20 and 0.2, respectively. 

The cost ratio b/ (b + h ) is set to 0.95. The mean yield μZ equals 

0.8 with a coefficient of variation ρZ of 0.3, which indicates that 

yield losses are not negligible but improvable. 

The setting for the cost parameters is as follows: variable pro- 

duction cost p are charged with one unit for each produced item, 

quality control cost a equal the production cost. If defective items 

are disposed of, cost g of two units per item occur. Instead, if de- 

fective products are reworked, variable cost r of three units per 

item are charged. Thus, we get a rework to disposal cost ratio of 

1.5 and a production to rework cost ratio of 1/3. 

In the following section, we run a sensitivity analysis to illus- 

trate which parameters are critical and should therefore receive 

more attention than others. 

5.3. Variations in the input of the production environment 

First, we change the values of the coefficients of variation of 

the demand, ρD , as well as the mean μZ and the coefficients 

of variation ρ2 
Z of the yield. Additionally, we look at the effect 

of changes in the cost ratio b/ (b + h ) , which follows from ser- 

vice level agreements with the customers. Note that while one 

of the parameters is changed, all the other parameters are fixed. 

Obviously, changes in demand can occur over time due to the ad- 

dition of new customers or varying demand quantities of existing 

customers. Changes in the yield arise from an improved production 

system, producing less defective items. The service level is agreed 

by contract with the customer. There are situations conceivable 

where a customers willingness to pay for high service increases 

and therefore he signs a contract, which guarantees a higher ser- 

vice level. 

The considered scenarios are as follows: ρD ∈ {0.1, 0.2, 0.3}, 

b/ (b + h ) ∈ { 0 . 90 , 0 . 95 , 0 . 98 } , μZ ∈ {0.7, 0.8, 0.9} and ρZ ∈ {0.1, 0.3, 

0.5}. Thus, we analyze the effect of single parameter changes – ei- 

ther a decrease or an increase – compared with the benchmark 

scenario. To make the results comparable, we calculated the total 

average cost per period relative to the cost of the production sys- 

tem without rework in the benchmark scenario. 

Fig. 2 shows the results for a variation of the demand variabil- 

ity and the cost ratio b/ (b + h ) . It can be seen that demand varia- 

tions as well as variations in the cost ratio b/ (b + h ) have almost 

no effect on the decision whether to dispose of or rework defec- 

tive products. The point of indifference between both strategies al- 

ways lies between a rework time of six and seven periods and thus 

depends entirely on the length of rework times. Because of the 

slope of the cost when reworking defectives, the decision whether 

to rework or scrap defective items becomes even more important 
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Fig. 3. Effect of input parameter variations ( μZ and ρZ ) on total cost. 

because a wrong decision leads to a high amount of additional 

cost. 

Fig. 3 shows the results for a variation of the mean and the 

coefficient of variation of the yield. 

If the results are compared with the results in Fig. 2 , it is obvi- 

ous that the yield parameters have a greater impact. On one hand, 

an increasing mean yield goes in line with decreasing yield losses, 

which reduces total cost. On the other hand, the higher the mean 

yield, the less valuable is a costly rework process, represented by a 

decreasing slope. In other words, the greater the yield, the smaller 

the difference between the cost of reworking and of disposing of 

defective items. 

As well as the mean yield, the coefficient of variation of the 

yield also has a large effect. We can see that, compared with the 

other parameters where the decision whether to rework or not was 

independent of the parameter setting, the variation of the yield 

forces the decision of a planner. For a coefficient of variation of 

the yield of 0.1, the point of indifference lies between a rework 

time of five and six periods: for a coefficient of variation of 0.2, 

between a rework time of six and seven periods; and for a coeffi- 

cient of variation of 0.3, between a rework time of seven and eight 

periods. Thus, with higher yield variability reworking remains the 

best strategy even for larger rework times. High yield variability 

makes it difficult to estimate the yield losses. Thus, the probability 

of stock-outs during the risk period increases. The shorter the re- 

work time, the earlier initially imperfect items arrive in the ware- 

house, reducing the probability that customer demand cannot be 

fulfilled. 

The analysis illustrates the fact that the demand variability as 

well as the target cost ratio b/ (b + h ) should not affect the deci- 

sion of a planner on whether to scrap or rework defective items. In 

other words, the model is robust against variations in the demand 

and changes in the required cost ratio. Changes in these parame- 

ters affect only total cost. The planner should instead decide based 

on the mean and the variance of the yield whether it is worth- 

while to rework defective items or not. While the point where the 

planner is undecided between rework and disposal is not affected 

by the demand parameters, the cost ratio or the mean yield, this 

point changes for different coefficients of variation of the yield. In 

this case, the decision on how to handle imperfect items depends 

heavily on the ratio between production time and rework time. 

5.4. Variations in costs 

We now focus on the robustness of the decision whether to re- 

work or not if cost parameters change. Specifically, we change the 

ratio of rework and disposal cost r / g , the ratio of production and 

rework cost p / r and quality control cost a . The cost parameters may 

increase if the products become more and more complex over time 

due to new functionality. On the other hand, the cost parameters 

may decrease due to learning effects and improvements in the pro- 

duction, rework or quality control processes. 

For all three cost parameters we analyze three scenarios as in 

the previous section: 

r / g ∈ {1.25, 1.5, 1.75}, p / r ∈ {1/6, 1/3, 1/2} and a ∈ {0.5 · p , p , 

1.5 · p }. Fig. 4 shows the results. 

Of course, the cost ratio of rework and disposal has no effect on 

total cost for the model where defective products are disposed of. 

However, with increasing cost ratio the slope of the total cost func- 

tion increases if the products are reworked. The decision whether 

to dispose of or rework defective items is also affected by the re- 

work cost parameter. The higher the rework cost per item and pe- 

riod relative to the disposal cost, the lower the rework time L R has 

to be to make rework profitable. The longer the rework times, the 

higher the cost during the reworking process for bringing imper- 

fect products to a condition equivalent to that of items that were 

produced correctly in the first place. 

If we look at the production to rework cost ratio, reworking be- 

comes more favorable with increasing production costs even if the 

rework time equals the production time. The reason for this is that 
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Fig. 4. Effect of cost parameter variations on total cost. 

if all defective items are scrapped, these products have to be pro- 

duced again, which becomes more expensive with increasing pro- 

duction costs. If production becomes expensive, the length of the 

rework time becomes more and more negligible to a point where 

reworking is always cheaper than producing defective items again. 

Next, a change in quality control cost is analyzed. It is obvious 

that this parameter has only small effects. Only the total costs in- 

crease because of the higher cost parameter. The small effect arises 

due to small changes in the cost parameter. For larger variations 

an effect is recognizable in such a way that reworking becomes 

more and more favorable with an increasing quality control cost 

per item. This effect results from the assumption that reworked 

products are of perfect quality without any further inspection. 

With these results in mind, a planner should focus mainly on 

production and rework costs when he has to decide whether to 

scrap or rework defective items. The higher the production cost 

relative to rework cost, the more profitable is rework. 

5.5. Managerial insights 

Whether to dispose or rework defective items is a difficult de- 

cision for a planner due to lots of different influencing parameters. 

It is obvious that reworking becomes more favorable for shorter 

rework times and lower corresponding costs compared to produc- 

tion and disposal. Nevertheless, a planner should not only focus 

on these effects but should be aware that the decision between 

rework and disposal has wide-ranging consequences especially re- 

garding the required safety stock. Reducing the safety stock is im- 

portant especially in situations where limited storage capacity is 

available. Although rework is in some situations more costly than 

disposal, the safety stock level under rework is always below the 

safety stock level under disposal. The reason for this is that under 

rework former defective items enter the warehouse after rework at 

a certain time wherefore these quantities – different from disposal 

– do not have to be reordered. 

Even though the safety stock level is lower under rework, the 

difference com pared to disposal of defectives highly depends on 

the parameter setting. As an example consider the demand vari- 

ability, which has no effect on the question whether disposal or 

rework is favorable, but a high effect on the safety stock level. The 

difference in safety stock between rework and disposal decreases 

with increasing demand variability, which means rework is even 

more favorable for low demand variability. This is not intuitive at 

the first moment, because one would expect that rework becomes 
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more favorable for increasing uncertainty in the system. The effect 

can be explained in two ways: First, under low demand variability 

the uncertainty due to random yield is dominant. This uncertainty 

is lower if defective items are reworked and therefore do not leave 

the system and do not have to be reordered. Second, under low 

demand variability less safety stock is available to hedge against 

demand uncertainty. Thus, there is less stock available which can 

also be used to hedge against yield uncertainty. Indeed, there is a 

pooling effect which reduces the safety stock level under high de- 

mand and yield uncertainty. 

6. Summary and Outlook 

We studied a single-stage production system with stochastic 

proportional yield, which results in random yield losses in each 

period. Since only items of perfect quality are stored in the ware- 

house to satisfy stochastic customer demand, defective products 

are either disposed of or reworked. We assumed that the rework- 

ing process converts all defective items into products that satisfy 

the required quality standards. 

Our contribution was (1) to show how to determine the base- 

stock level minimizing average inventory holding and backorder 

cost in a production environment where defective products are 

not disposed of but reworked, and (2) to develop a mathemati- 

cal model to be used as a decision-making support for the planner 

when it comes to the question of whether defective items should 

be disposed of or reworked. 

The results are as follows: (1) the adaptation of the steady- 

state approach to a situation where defective products are not 

disposed of but reworked is not easy. The reworking process re- 

sults in covariances between orders, which are difficult to calcu- 

late exactly because the joint distribution is unknown. We pre- 

sented an approximation of the covariances depending on the re- 

working times. A numerical study confirmed that the approxima- 

tion works very well. In 319 of 528 instances the approximation 

leads to the optimal solution as determined by the simulation. For 

all other 209 instances the average deviation equals approximately 

0.10%. Over all 528 instances we get an average deviation from 

optimum of 0.10% with a standard deviation of 0.23%, which is 

excellent. 

(2) We introduced a mathematical model addressing produc- 

tion, quality control, rework and inventory holding, and backo- 

rder cost. Based on this model, we analyzed the effect of vary- 

ing parameter settings. The results show that the demand vari- 

ation as well as the cost ratio b/ (b + h ) has nearly no effect on 

cost and on the decision whether to dispose of or rework de- 

fective items. Thus, the model is robust for these parameters. 

On the other hand, the mean and the coefficient of variation of 

the yield have an enormous effect. The higher the mean yield, 

the less valuable is reworking because only a few items are of 

imperfect quality. The higher the coefficient of variation of the 

yield, the more valuable is a rework. Concerning a change in the 

cost parameters, the ratio of production and rework cost is the 

main determiner of whether to dispose of or rework a defective 

item. 

Future research should focus on production systems where 

the planner can decide in each period if he or she wants to 

rework defective items or dispose of them. A mixture of both 

strategies is conceivable, where some products are scrapped and 

some are reworked. Furthermore, the reworking process like the 

production process might be imperfect, which means that ei- 

ther good products would be classified as defective or imperfect 

products would stay in the system by mistake. In such situa- 

tions it might be necessary to place several inspection stations in 

tandem. 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.ejor.2017.11.019 
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Appendix A

E[ILt+Lp ] = E[IPt −
LP∑

l=0

Dt+l + µZQt −Rt −
min{LP ,LR}−1∑

l=1

Rt−l]

= E[(S −Qt)−
LP∑

l=0

Dt+l + ZtQt −
min{LP ,LR}−1∑

l=1

Rt−l]

= E[S − (1− Zt)Qt −
LP∑

l=0

Dt+l −
min{LP ,LR}−1∑

l=1

Rt−l]

= S − (1− µZ)µQ − (LP + 1)µD − (min{LP , LR} − 1)µR

= S − (LP + 1)µD − (1− µZ)µQ (28)

Appendix B

V AR[ILt+Lp ] = V AR[IPt −
LP∑

l=0

Dt+l + µZQt −Rt −
min{LP ,LR}−1∑

l=1

Rt−l]

= V AR[(S −Qt)−
LP∑

l=0

Dt+l + ZtQt −
min{LP ,LR}−1∑

l=1

Rt−l]

= V AR[S − (1− Zt)Qt −
LP∑

l=0

Dt+l −
min{LP ,LR}−1∑

l=1

Rt−l]

= V AR[S] + V AR[(1− Zt)Qt] + V AR[

LP∑

l=0

Dt+l] + V AR[

min{LP ,LR}−1∑

l=1

Rt−l]

= V AR[(1− Zt)Qt] + (LP + 1)V AR[Dt+l] + (min{LP , LR} − 1)V AR[Rt−l]

= V AR[(1− Zt)Qt] + (LP + 1)σ2D + (min{LP , LR} − 1)σ2R (29)

with V AR[(1− Zt)Qt] equal to:

V AR[(1− Zt)Qt] = E[(1− Zt)
2Q2

t ]− E[(1− Zt)Qt]
2

= E[(1− 2Zt + Z2
t )Q2

t ]− E[(1− Zt)Qt]
2

= (1− 2µZ + E[Z2
t ])E[Q2

t ]− [(1− µZ)µQ]2

= (1− 2µZ + (µ2Z + σ2Z))(µ2Q + σ2Q)− (1− µZ)2µ2Q

= ((1− µZ)2 + σ2Z)(µ2Q + σ2Q)− (1− µZ)2µ2Q

= σ2Q(1− µZ)2 + (µ2Q + σ2Q)σ2Z

= σ2Q(1− µZ)2 + σ2R (30)

Thus, we get for the variance of the inventory level

V AR[ILt+Lp ] = V AR[(1− Zt)Qt] + (LP + 1)σ2D + (min{LP , LR} − 1)σ2R

= σ2Q(1− µZ)2 + σ2R + (LP + 1)σ2D + (min{LP , LR} − 1)σ2R

= (LP + 1)σ2D +min{LP , LR}σ2R + (1− µZ)2σ2Q (31)
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Appendix C

In case that the production time exceeds the rework time (LP ≥ LR), the order quantity can be
calculated using the definition of the inventory position in (2):

Qt = S − IPt

= S −


ILt−1 +

LP+LR∑

l=LP+1

(1− Zt−l)Qt−l +

LP∑

l=LR

Qt−l +

LR−1∑

l=1

µZQt−l


 (32)

The inventory level ILt−1 at the end of period t− 1 equals the inventory level at the end of period
t− 2 less the incoming customer demand Dt−1 between the end of period t− 2 and t− 1, while stock
increases due to the arrival of an order leaving production and one leaving rework:

ILt−1 = ILt−2 −Dt−1 + (1− Zt−1−LP−LR
)Qt−1−LP−LR

+ Zt−1−LP
Qt−1−LP

(33)

(1 − Zt−1−LP−LR
)Qt−1−LP−LR

equals the amount leaving the rework process. The underlying
order was placed in period t − 1 − LP − LR. The last term Zt−1−LP

Qt−1−LP
reflects the fraction of

good items leaving production after LP periods wherefore the underlying order was placed in period
t− 1− LP .

Using the recursive definition of the inventory level in (33), the order quantity in (32) can be
rewritten as

Qt = S − [ILt−2 −Dt−1 + (1− Zt−1−LP−LR
)Qt−1−LP−LR

+ Zt−1−LP
Qt−1−LP

]

−




LP+LR∑

l=LP+1

(1− Zt−l)Qt−l +

LP∑

l=LR

Qt−l +

LR−1∑

l=1

µZQt−l


 . (34)

Using equation (32), the order quantity in period t− 1 equals

Qt−1 = S − IPt−1

= S −


ILt−2 +

LP+LR∑

l=LP+1

(1− Zt−1−l)Qt−1−l +

LP∑

l=LR

Qt−1−l +

LR−1∑

l=1

µZQt−1−l


 .

(35)

We transform equation 35 to determine an equation for S − It−2 in formula (34):

S − ILt−2 = Qt−1 +

LP+LR∑

l=LP+1

(1− Zt−1−l)Qt−1−l +

LP∑

l=LR

Qt−1−l +

LR−1∑

l=1

µZQt−1−l

(36)

S − ILt−2 is plugged in formula (34):

Qt = S − ILt−2 − [−Dt−1 + (1− Zt−1−LP−LR
)Qt−1−LP−LR

+ Zt−1−LP
Qt−1−LP

]

−




LP+LR∑

l=LP+1

(1− Zt−l)Qt−l +

LP∑

l=LR

Qt−l +

LR−1∑

l=1

µZQt−l




2



= Qt−1 +

LP+LR∑

l=LP+1

(1− Zt−1−l)Qt−1−l +

LP∑

l=LR

Qt−1−l +

LR−1∑

l=1

µZQt−1−l

+Dt−1 − (1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−1−LP
Qt−1−LP

−
LP+LR∑

l=LP+1

(1− Zt−l)Qt−l −
LP∑

l=LR

Qt−l −
LR−1∑

l=1

µZQt−l

= Qt−1 +

LP+LR∑

l=LP+1

(1− Zt−1−l)Qt−1−l

−




LP+LR+1∑

l=LP+2

(1− Zt−l)Qt−l + (1− Zt−LP−1)Qt−LP−1 − (1− Zt−LP−LR−1)Qt−LP−LR−1




+

LP∑

l=LR

Qt−1−l −




LP+1∑

l=LR+1

Qt−l +Qt−LR
−Qt−LP−1




+

LR−1∑

l=1

µZQt−1−l −
(

LR∑

l=2

µZQt−l + µZQt−1 − µZQt−LR

)

+Dt−1 − (1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−1−LP
Qt−1−LP

(37)

Simplifying this equation leads to

Qt = Qt−1 +− ((1− Zt−LP−1)Qt−LP−1 − (1− Zt−LP−LR−1)Qt−LP−LR−1)

− (Qt−LR
−Qt−LP−1)− (µZQt−1 − µZQt−LR

)

+Dt−1 − (1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−1−LP
Qt−1−LP

= Dt−1 + (1− µZ)Qt−1
−(1− Zt−LP−1)Qt−LP−1 − Zt−1−LP

Qt−1−LP
+Qt−LP−1 (38)

(Qt−LR
+ µZQt−LR

= Dt−1 + (1− µZ)Qt−1 − (1− µZ)Qt−LR
(39)

Thus, the order quantity in period t equals the demand of the previous period plus two additional
terms. It is obvious, that for LR = 1 the order quantity equals the demand of the previous period:
Qt = Dt−1. The term +(1− µZ)Qt−1 compensates for the items of the order in the previous period,
which are expected to be defective and thus will move to the rework process. The last term arises
through the forecast error which adjusts the amount of items if new information about realized yields
become known.

For the case, that the production time is smaller than the rework time (LP < LR), the procedure
is similar:

Qt = S − IPt

= S −


ILt−1 + Zt−LP

Qt−LP
+

LP−1∑

l=1

µZQt−l +

LP+LR∑

l=LR

(1− Zt−l)Qt−l


 (40)

with

ILt−1 = ILt−2 −Dt−1 + (1− Zt−1−LP−LR
)Qt−1−LP−LR

+ Zt−1−LP
Qt−1−LP

(41)

and
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Qt−1 = S −


ILt−2 + Zt−1−LP

Qt−1−LP
+

LP−1∑

l=1

µZQt−1−l +

LP+LR∑

l=LR

(1− Zt−1−l)Qt−1−l


 (42)

Thus,

S − ILt−2 = Qt−1 + Zt−1−LP
Qt−1−LP

+

LP−1∑

l=1

µZQt−1−l +

LP+LR∑

l=LR

(1− Zt−1−l)Qt−1−l (43)

which will be plugged in (40) under consideration of (41):

Qt = S − [ILt−2 −Dt−1 + (1− Zt−1−LP−LR
)Qt−1−LP−LR

+ Zt−1−LP
Qt−1−LP

]

−


Zt−LP

Qt−LP
+

LP−1∑

l=1

µZQt−l +

LP+LR∑

l=LR

(1− Zt−l)Qt−l




= Qt−1 + Zt−1−LP
Qt−1−LP

+

LP−1∑

l=1

µZQt−1−l +

LP+LR∑

l=LR

(1− Zt−1−l)Qt−1−l

+Dt−1 − (1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−1−LP
Qt−1−LP

−Zt−LP
Qt−LP

−
LP−1∑

l=1

µZQt−l −
LP+LR∑

l=LR

(1− Zt−l)Qt−l (44)

The order quantity in period t then equals:

Qt = Qt−1 +Dt−1 +

LP+LR∑

l=LR

(1− Zt−1−l)Qt−1−l

−



LP+LR+1∑

l=LR+1

(1− Zt−l)Qt−l + (1− Zt−LR
)Qt−LR

− (1− Zt−LP−LR−1)Qt−LP−LR−1




+

LP−1∑

l=1

µZQt−1−l −
[

LP∑

l=2

µZQt−l + µZQt−1 − µZQt−LP

]

−(1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−LP
Qt−LP

= Qt−1 +Dt−1
− [(1− Zt−LR

)Qt−LR
− (1− Zt−LP−LR−1)Qt−LP−LR−1]

− [µZQt−1 − µZQt−LP
]

−(1− Zt−1−LP−LR
)Qt−1−LP−LR

− Zt−LP
Qt−LP

= Dt−1 + (1− µZ)Qt−1 − (1− Zt−LR
)Qt−LR

+ (µZ − Zt−LP
)Qt−LP

(45)
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Appendix D

1. Calculation of COV [Qt−1, Qt−LR] for LR = 2

COV [Qt−1, Qt−2] = COV [(1− µZ)Qt−2 − (1− µZ)Qt−3, Qt−2]

= (1− µZ)[σ2Q − COV [Qt−2, Qt−3]]

= (1− µZ)[σ2Q − COV [(1− µZ)Qt−3 − (1− µZ)Qt−4, Qt−3]]

= (1− µZ)[σ2Q − ((1− µZ)σ2Q − (1− µZ)COV [Qt−3, Qt−4])]

= (1− µZ)σ2Q[1− (1− µZ) + (1− µZ)COV [Qt−3, Qt−4]]

· · ·

= (1− µZ)σ2Q

∞∑

k=0

(−(1− µZ))k

≈ σ2Q
1− µZ
2− µZ

2. Calculation of COV [Qt−1, Qt−LR] for LR = 3

COV [Qt−1, Qt−3] = COV [(1− µZ)Qt−2 − (1− µZ)Qt−4, Qt−3]

= (1− µZ)(COV [Qt−2, Qt−3]− COV [Qt−3, Qt−4]

= 0

3. Calculation of COV [Qt−1, Qt−LR] for LR = 4

COV [Qt−1, Qt−4] = (1− µZ)COV [Qt−2, Qt−4]− (1− µZ)COV [Qt−4, Qt−5]

= lag1 · [−(1− µZ)]

+(1− µZ)COV [Qt−2, Qt−4]

COV [Qt−1, Qt−4] = lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−4]− (1− µZ)2COV [Qt−4, Qt−6]

= lag1 ·
[
−(1− µZ) + (1− µZ)2

]

−(1− µZ)2COV [Qt−4, Qt−6]

= lag1 ·
[
−(1− µZ) + (1− µZ)2

]

−(1− µZ)3COV [Qt−5, Qt−6] + (1− µZ)3COV [Qt−6, Qt−8]

= lag1 ·
[
−(1− µZ) + (1− µZ)2 − (1− µZ)3

]

+(1− µZ)3COV [Qt−6, Qt−8]

· · ·

= lag1 ·
[
−(1− µZ)

∞∑

k=0

(−(1− µZ))k

]

≈ lag1 · −(1− µZ)

1− (−(1− µZ))

≈ lag1 · −(1− µZ)

2− µZ
4. Calculation of COV [Qt−1, Qt−LR] for LR = 5

COV [Qt−1, Qt−5] = (1− µZ)COV [Qt−2, Qt−5]− (1− µZ)COV [Qt−5, Qt−6]

= lag1 · [−(1− µZ)]

+(1− µZ)COV [Qt−2, Qt−5]

= lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−5]− (1− µZ)2COV [Qt−5, Qt−7]

= lag1 · [−(1− µZ)]
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5. Calculation of COV [Qt−1, Qt−LR] for LR = 6

COV [Qt−1, Qt−6] = (1− µZ)COV [Qt−2, Qt−6]− (1− µZ)COV [Qt−6, Qt−7]

= (1− µZ)2COV [Qt−3, Qt−6]− (1− µZ)2COV [Qt−6, Qt−8]

−(1− µZ)COV [Qt−6, Qt−7]

= (1− µZ)3COV [Qt−4, Qt−6]− (1− µZ)3COV [Qt−6, Qt−9]

−(1− µZ)3COV [Qt−7, Qt−8] + (1− µZ)3COV [Qt−8, Qt−12]

−(1− µZ)COV [Qt−6, Qt−7]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]
+ (1− µZ)3COV [Qt−8, Qt−12]

+(1− µZ)3COV [Qt−4, Qt−6]− (1− µZ)3COV [Qt−6, Qt−9]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 + (1− µZ)4

]

−(1− µZ)4COV [Qt−6, Qt−10]

−(1− µZ)4COV [Qt−7, Qt−9] + (1− µZ)4COV [Qt−9, Qt−12]

+(1− µZ)4COV [Qt−9, Qt−12]− (1− µZ)4COV [Qt−12, Qt−14]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 + (1− µZ)4

]

−(1− µZ)4COV [Qt−6, Qt−10]− (1− µZ)4COV [Qt−7, Qt−9]

+2(1− µZ)4COV [Qt−9, Qt−12]− (1− µZ)4COV [Qt−12, Qt−14]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 + (1− µZ)4 − 2(1− µZ)5

]

−(1− µZ)5COV [Qt−7, Qt−10] + (1− µZ)5COV [Qt−9, Qt−13]

+3(1− µZ)5COV [Qt−10, Qt−12]− 2(1− µZ)5COV [Qt−12, Qt−15]

+(1− µZ)5COV [Qt−14, Qt−18]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 + (1− µZ)4 − 2(1− µZ)5 + 3(1− µZ)6

]

−(1− µZ)6COV [Qt−8, Qt−10] + 2(1− µZ)6COV [Qt−10, Qt−13]

−3(1− µZ)6COV [Qt−12, Qt−16]− 3(1− µZ)6COV [Qt−13, Qt−15]

+3(1− µZ)6COV [Qt−15, Qt−18]− (1− µZ)6COV [Qt−18, Qt−20]

COV [Qt−1, Qt−6] = lag1 · [−(1− µZ)− (1− µZ)3 + (1− µZ)4 − 2(1− µZ)5 + 3(1− µZ)6

−5(1− µZ)7]

+(1− µZ)7COV [Qt−10, Qt−14] + 2(1− µZ)7COV [Qt−11, Qt−13]

−5(1− µZ)7COV [Qt−13, Qt−16] + 3(1− µZ)7COV [Qt−15, Qt−19]

+6(1− µZ)7COV [Qt−16, Qt−18]− 3(1− µZ)7COV [Qt−18, Qt−21]

+(1− µZ)7COV [Qt−20, Qt−24]

= lag1 · [−(1− µZ)− (1− µZ)3 + (1− µZ)4 − 2(1− µZ)5 + 3(1− µZ)6

−5(1− µZ)7

+8(1− µZ)8]

+(1− µZ)8COV [Qt−11, Qt−14]− 2(1− µZ)8COV [Qt−13, Qt−17]

−6(1− µZ)8COV [Qt−14, Qt−16] + 8(1− µZ)8COV [Qt−16, Qt−19]

−6(1− µZ)8COV [Qt−18, Qt−22]− 6(1− µZ)8COV [Qt−19, Qt−21]

+4(1− µZ)8COV [Qt−21, Qt−24]− (1− µZ)8COV [Qt−24, Qt−26]

= lag1 · [−(1− µZ)− (1− µZ)3 + (1− µZ)4 − 2(1− µZ)5 + 3(1− µZ)6

−5(1− µZ)7

+8(1− µZ)8 − 13(1− µZ)9]

+(1− µZ)9COV [Qt−12, Qt−14]− 3(1− µZ)9COV [Qt−14, Qt−17]

+6(1− µZ)9COV [Qt−16, Qt−20] + 10(1− µZ)9COV [Qt−17, Qt−19]
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−14(1− µZ)9COV [Qt−19, Qt−22] + 6(1− µZ)9COV [Qt−21, Qt−25]

+10(1− µZ)9COV [Qt−22, Qt−24]− 4(1− µZ)9COV [Qt−24, Qt−27]

+(1− µZ)9COV [Qt−26, Qt−30]

· · ·

= lag1 ·
[
−(1− µZ)− (1− µZ)3 ·

∞∑

k=0

(−(1− µZ))k · fk
]

where fk equals the Fibonacci numbers starting with f0 = 0, f1 = 1 and fk = fk−1 + fk−2
(∀k ≥ 2).

6. Calculation of COV [Qt−1, Qt−LR] for LR = 7

COV [Qt−1, Qt−7] = (1− µZ)COV [Qt−2, Qt−7]− (1− µZ)COV [Qt−7, Qt−8]

= lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−7]− (1− µZ)2COV [Qt−7, Qt−9]

= lag1 · [−(1− µZ)]

−(1− µZ)3COV [Qt−8, Qt−9] + (1− µZ)3COV [Qt−9, Qt−14]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

+(1− µZ)3COV [Qt−9, Qt−14]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

+(1− µZ)4COV [Qt−10, Qt−14]− (1− µZ)4COV [Qt−14, Qt−16]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

−(1− µZ)5COV [Qt−15, Qt−16] + (1− µZ)5COV [Qt−16, Qt−21]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − (1− µZ)5

]

+(1− µZ)6COV [Qt−17, Qt−21]− (1− µZ)6COV [Qt−21, Qt−23]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − (1− µZ)5

]

+(1− µZ)7COV [Qt−18, Qt−21]− (1− µZ)7COV [Qt−21, Qt−24]

−(1− µZ)7COV [Qt−22, Qt−23] + (1− µZ)7COV [Qt−23, Qt−28]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − (1− µZ)5 − (1− µZ)7

]

+(1− µZ)7COV [Qt−23, Qt−28]

COV [Qt−1, Qt−7] = lag1 ·
[
−(1− µZ) ·

∞∑

k=0

((1− µZ)2)k

]

≈ lag1 ·
[
−(1− µZ) · 1

1− (1− µZ)2

]

≈ lag1 ·
[ −(1− µZ)

µZ(2− µZ)

]

7. Calculation of COV [Qt−1, Qt−LR] for LR = 8

COV [Qt−1, Qt−8] = (1− µZ)COV [Qt−2, Qt−8]− (1− µZ)COV [Qt−8, Qt−9]

= lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−8]− (1− µZ)2COV [Qt−8, Qt−10]

= lag1 · [−(1− µZ)]

+(1− µZ)3COV [Qt−4, Qt−8]− (1− µZ)3COV [Qt−8, Qt−11]

−(1− µZ)3COV [Qt−9, Qt−10] + (1− µZ)3COV [Qt−10, Qt−16]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]
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+(1− µZ)4COV [Qt−5, Qt−8]− (1− µZ)4COV [Qt−8, Qt−12]

−(1− µZ)4COV [Qt−9, Qt−11] + (1− µZ)4COV [Qt−11, Qt−16]

+(1− µZ)4COV [Qt−11, Qt−16]− (1− µZ)4COV [Qt−16, Qt−18]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5

]

+(1− µZ)5COV [Qt−6, Qt−8]− (1− µZ)5COV [Qt−8, Qt−13]

−(1− µZ)5COV [Qt−9, Qt−12] + (1− µZ)5COV [Qt−11, Qt−17]

+3(1− µZ)5COV [Qt−12, Qt−16]− 2(1− µZ)5COV [Qt−16, Qt−19]

+(1− µZ)5COV [Qt−18, Qt−24]

COV [Qt−1, Qt−8] = lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 + (1− µZ)6

]

−(1− µZ)6COV [Qt−8, Qt−14]− (1− µZ)6COV [Qt−9, Qt−13]

−(1− µZ)6COV [Qt−10, Qt−12] + 2(1− µZ)6COV [Qt−12, Qt−17]

+4(1− µZ)6COV [Qt−13, Qt−16]− 3(1− µZ)6COV [Qt−16, Qt−20]

−3(1− µZ)6COV [Qt−17, Qt−19] + 3(1− µZ)6COV [Qt−19, Qt−24]

−(1− µZ)6COV [Qt−24, Qt−26]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 + (1− µZ)6 − 5(1− µZ)7

]

−(1− µZ)7COV [Qt−9, Qt−14]− (1− µZ)7COV [Qt−10, Qt−13]

+(1− µZ)7COV [Qt−12, Qt−18] + 3(1− µZ)7COV [Qt−13, Qt−17]

+5(1− µZ)7COV [Qt−14, Qt−16]− (1− µZ)7COV [Qt−16, Qt−21]

−5(1− µZ)7COV [Qt−17, Qt−20] + 3(1− µZ)7COV [Qt−19, Qt−25]

+6(1− µZ)7COV [Qt−20, Qt−24]− 3(1− µZ)7COV [Qt−24, Qt−27]

+(1− µZ)7COV [Qt−26, Qt−32]

= lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 + (1− µZ)6 − 5(1− µZ)7

+5(1− µZ)8]

−(1− µZ)8COV [Qt−10, Qt−14]− (1− µZ)8COV [Qt−11, Qt−13]

+2(1− µZ)8COV [Qt−13, Qt−18] + 4(1− µZ)8COV [Qt−14, Qt−17]

−5(1− µZ)8COV [Qt−16, Qt−22]− 4(1− µZ)8COV [Qt−17, Qt−21]

−6(1− µZ)8COV [Qt−18, Qt−20] + 8(1− µZ)8COV [Qt−20, Qt−25]

+7(1− µZ)8COV [Qt−21, Qt−24]− 6(1− µZ)8COV [Qt−24, Qt−28]

−6(1− µZ)8COV [Qt−25, Qt−27] + 4(1− µZ)8COV [Qt−27, Qt−32]

−(1− µZ)8COV [Qt−32, Qt−34]

COV [Qt−1, Qt−8] = lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 + (1− µZ)6 − 5(1− µZ)7

+5(1− µZ)8 − 14(1− µZ)9]

−(1− µZ)9COV [Qt−11, Qt−14] + (1− µZ)9COV [Qt−13, Qt−19]

+3(1− µZ)9COV [Qt−14, Qt−18] + 4(1− µZ)9COV [Qt−15, Qt−17]

−9(1− µZ)9COV [Qt−17, Qt−22]− 6(1− µZ)9COV [Qt−18, Qt−21]

+6(1− µZ)9COV [Qt−20, Qt−26] + 12(1− µZ)9COV [Qt−21, Qt−25]

+12(1− µZ)9COV [Qt−22, Qt−24]− 7(1− µZ)9COV [Qt−24, Qt−29]

−14(1− µZ)9COV [Qt−25, Qt−28] + 6(1− µZ)9COV [Qt−27, Qt−33]

+10(1− µZ)9COV [Qt−28, Qt−32]− 4(1− µZ)9COV [Qt−32, Qt−35]

+(1− µZ)9COV [Qt−34, Qt−40]

= lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 + (1− µZ)6 − 5(1− µZ)7

+5(1− µZ)8 − 14(1− µZ)9 + 16(1− µZ)10]
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−(1− µZ)10COV [Qt−12, Qt−14] + 2(1− µZ)10COV [Qt−14, Qt−19]

+3(1− µZ)10COV [Qt−15, Qt−18]− 4(1− µZ)10COV [Qt−17, Qt−23]

−12(1− µZ)10COV [Qt−18, Qt−22]− 7(1− µZ)10COV [Qt−19, Qt−21]

+12(1− µZ)10COV [Qt−21, Qt−26] + 21(1− µZ)10COV [Qt−22, Qt−25]

−12(1− µZ)10COV [Qt−24, Qt−30]− 19(1− µZ)10COV [Qt−25, Qt−29]

−20(1− µZ)10COV [Qt−26, Qt−28] + 20(1− µZ)10COV [Qt−28, Qt−33]

+17(1− µZ)10COV [Qt−29, Qt−32]− 10(1− µZ)10COV [Qt−32, Qt−36]

−10(1− µZ)10COV [Qt−33, Qt−35] + 5(1− µZ)10COV [Qt−35, Qt−40]

−(1− µZ)10COV [Qt−40, Qt−42]

8. Calculation of COV [Qt−1, Qt−LR] for LR = 9

COV [Qt−1, Qt−9] = (1− µZ)COV [Qt−2, Qt−9]− (1− µZ)COV [Qt−9, Qt−10]

= lag1 · [−(1− µZ)] + (1− µZ)COV [Qt−2, Qt−9]

= lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−9]− (1− µZ)2COV [Qt−9, Qt−11]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]
+ (1− µZ)3COV [Qt−11, Qt−18]

+(1− µZ)3COV [Qt−4, Qt−9]− (1− µZ)3COV [Qt−9, Qt−12]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

−(1− µZ)4COV [Qt−10, Qt−12] + 2(1− µZ)4COV [Qt−12, Qt−18]

−(1− µZ)4COV [Qt−18, Qt−20]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5

]

+(1− µZ)5COV [Qt−12, Qt−19] + 2(1− µZ)5COV [Qt−13, Qt−18]

−2(1− µZ)5COV [Qt−18, Qt−21] + (1− µZ)5COV [Qt−20, Qt−27]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5

]

+(1− µZ)6COV [Qt−13, Qt−19]− 3(1− µZ)6COV [Qt−19, Qt−21]

+3(1− µZ)6COV [Qt−21, Qt−27]− (1− µZ)6COV [Qt−27, Qt−29]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 4(1− µZ)7

]

+(1− µZ)7COV [Qt−14, Qt−19]− (1− µZ)7COV [Qt−19, Qt−22]

+3(1− µZ)7COV [Qt−21, Qt−28] + 3(1− µZ)7COV [Qt−22, Qt−27]

−3(1− µZ)7COV [Qt−27, Qt−30] + (1− µZ)7COV [Qt−29, Qt−36]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 4(1− µZ)7

]

−(1− µZ)8COV [Qt−20, Qt−22] + 4(1− µZ)8COV [Qt−22, Qt−28]

−6(1− µZ)8COV [Qt−28, Qt−30] + 4(1− µZ)8COV [Qt−30, Qt−36]

−(1− µZ)8COV [Qt−36, Qt−38]

COV [Qt−1, Qt−9] = lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 4(1− µZ)7 − 8(1− µZ)9

]

+(1− µZ)9COV [Qt−22, Qt−29] + 4(1− µZ)9COV [Qt−23, Qt−28]

−4(1− µZ)9COV [Qt−28, Qt−31] + 6(1− µZ)9COV [Qt−30, Qt−37]

+4(1− µZ)9COV [Qt−31, Qt−36]− 4(1− µZ)9COV [Qt−36, Qt−39]

+(1− µZ)9COV [Qt−38, Qt−45]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 4(1− µZ)7 − 8(1− µZ)9

]

+1(1− µZ)10COV [Qt−23, Qt−29] + 4(1− µZ)10COV [Qt−24, Qt−28]

−5(1− µZ)10COV [Qt−29, Qt−31] + 10(1− µZ)10COV [Qt−31, Qt−37]

+4(1− µZ)10COV [Qt−32, Qt−36]− 10(1− µZ)10COV [Qt−37, Qt−39]
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−4(1− µZ)10COV [Qt−28, Qt−32] + 5(1− µZ)10COV [Qt−39, Qt−45]

−4(1− µZ)10COV [Qt−36, Qt−40]− (1− µZ)10COV [Qt−45, Qt−47]

= lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 4(1− µZ)7 − 8(1− µZ)9

−16(1− µZ)11]

+1(1− µZ)11COV [Qt−24, Qt−29] + 4(1− µZ)11COV [Qt−25, Qt−28]

−4(1− µZ)11COV [Qt−28, Qt−33]− 5(1− µZ)11COV [Qt−29, Qt−32]

+5(1− µZ)11COV [Qt−31, Qt−38] + 14(1− µZ)11COV [Qt−32, Qt−37]

+4(1− µZ)11COV [Qt−33, Qt−36]− 4(1− µZ)11COV [Qt−36, Qt−41]

−14(1− µZ)11COV [Qt−37, Qt−40] + 10(1− µZ)11COV [Qt−39, Qt−46]

+9(1− µZ)11COV [Qt−40, Qt−45]− 5(1− µZ)11COV [Qt−45, Qt−48]

+(1− µZ)11COV [Qt−47, Qt−54]

· · ·

= lag1 ·
[
−(1− µZ)− (1− µZ) ·

∞∑

k=1

2k−1((1− µZ)2)k

]

9. Calculation of COV [Qt−1, Qt−LR] for LR = 10

COV [Qt−1, Qt−10] = (1− µZ)COV [Qt−2, Qt−10]− (1− µZ)COV [Qt−10, Qt−11]

= lag1 · [−(1− µZ)]

+(1− µZ)COV [Qt−2, Qt−10]

= lag1 · [−(1− µZ)]

+(1− µZ)2COV [Qt−3, Qt−10]− (1− µZ)2COV [Qt−10, Qt−12]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

+(1− µZ)3COV [Qt−4, Qt−10]

−(1− µZ)3COV [Qt−10, Qt−13]

+(1− µZ)3COV [Qt−12, Qt−20]

= lag1 ·
[
−(1− µZ)− (1− µZ)3

]

+(1− µZ)4COV [Qt−5, Qt−10]− (1− µZ)4COV [Qt−10, Qt−14]

−(1− µZ)4COV [Qt−11, Qt−13] + 2(1− µZ)4COV [Qt−13, Qt−20]

−(1− µZ)4COV [Qt−20, Qt−22]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5

]

+(1− µZ)5COV [Qt−6, Qt−10]− (1− µZ)5COV [Qt−10, Qt−15]

−(1− µZ)5COV [Qt−11, Qt−14] + (1− µZ)5COV [Qt−13, Qt−21]

+3(1− µZ)5COV [Qt−14, Qt−20]− 2(1− µZ)5COV [Qt−20, Qt−23]

+(1− µZ)5COV [Qt−22, Qt−30]

COV [Qt−1, Qt−10] = lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5

]

+(1− µZ)6COV [Qt−7, Qt−10]− (1− µZ)6COV [Qt−10, Qt−16]

−(1− µZ)6COV [Qt−11, Qt−15]− (1− µZ)6COV [Qt−12, Qt−14]

+2(1− µZ)6COV [Qt−14, Qt−21] + 4(1− µZ)6COV [Qt−15, Qt−20]

−3(1− µZ)6COV [Qt−20, Qt−24]− 3(1− µZ)6COV [Qt−21, Qt−23]

+3(1− µZ)6COV [Qt−23, Qt−30]− (1− µZ)6COV [Qt−30, Qt−32]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 5(1− µZ)7

]

+(1− µZ)7COV [Qt−8, Qt−10]− (1− µZ)7COV [Qt−10, Qt−17]
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−(1− µZ)7COV [Qt−11, Qt−16]− (1− µZ)7COV [Qt−12, Qt−15]

+(1− µZ)7COV [Qt−14, Qt−22] + 3(1− µZ)7COV [Qt−15, Qt−21]

+5(1− µZ)7COV [Qt−16, Qt−20]− 4(1− µZ)7COV [Qt−20, Qt−25]

−5(1− µZ)7COV [Qt−21, Qt−24] + 3(1− µZ)7COV [Qt−23, Qt−31]

+6(1− µZ)7COV [Qt−24, Qt−30]− 3(1− µZ)7COV [Qt−30, Qt−33]

+(1− µZ)7COV [Qt−32, Qt−40]

= lag1 ·
[
−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 5(1− µZ)7 + (1− µZ)8

]

−(1− µZ)8COV [Qt−10, Qt−18]− (1− µZ)8COV [Qt−11, Qt−17]

−(1− µZ)8COV [Qt−12, Qt−16]− (1− µZ)8COV [Qt−13, Qt−15]

+2(1− µZ)8COV [Qt−15, Qt−22] + 4(1− µZ)8COV [Qt−16, Qt−21]

+6(1− µZ)8COV [Qt−17, Qt−20]− 5(1− µZ)8COV [Qt−20, Qt−26]

−7(1− µZ)8COV [Qt−21, Qt−25]− 6(1− µZ)8COV [Qt−22, Qt−24]

+8(1− µZ)8COV [Qt−24, Qt−31] + 10(1− µZ)8COV [Qt−25, Qt−30]

−6(1− µZ)8COV [Qt−30, Qt−34]− 6(1− µZ)8COV [Qt−31, Qt−33]

+4(1− µZ)8COV [Qt−33, Qt−40]− (1− µZ)8COV [Qt−40, Qt−42]

COV [Qt−1, Qt−10] = lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 5(1− µZ)7 + (1− µZ)8

−14(1− µZ)9]

−(1− µZ)9COV [Qt−11, Qt−18]− (1− µZ)9COV [Qt−12, Qt−17]

−(1− µZ)9COV [Qt−13, Qt−16] + (1− µZ)9COV [Qt−15, Qt−23]

+3(1− µZ)9COV [Qt−16, Qt−22] + 5(1− µZ)9COV [Qt−17, Qt−21]

+7(1− µZ)9COV [Qt−18, Qt−20]− 6(1− µZ)9COV [Qt−20, Qt−27]

−9(1− µZ)9COV [Qt−21, Qt−26]− 9(1− µZ)9COV [Qt−22, Qt−25]

+6(1− µZ)9COV [Qt−24, Qt−32] + 15(1− µZ)9COV [Qt−25, Qt−31]

+15(1− µZ)9COV [Qt−26, Qt−30]− 10(1− µZ)9COV [Qt−30, Qt−35]

−14(1− µZ)9COV [Qt−31, Qt−34] + 6(1− µZ)9COV [Qt−33, Qt−41]

+10(1− µZ)9COV [Qt−34, Qt−40]− 4(1− µZ)9COV [Qt−40, Qt−43]

+(1− µZ)9COV [Qt−42, Qt−50]

= lag1 · [−(1− µZ)− (1− µZ)3 − 2(1− µZ)5 − 5(1− µZ)7

+(1− µZ)8 − 14(1− µZ)9 + 7(1− µZ)10]

−(1− µZ)10COV [Qt−12, Qt−18]− (1− µZ)10COV [Qt−13, Qt−17]

−(1− µZ)10COV [Qt−14, Qt−16] + 2(1− µZ)10COV [Qt−16, Qt−23]

+4(1− µZ)10COV [Qt−17, Qt−22] + 6(1− µZ)10COV [Qt−18, Qt−21]

−7(1− µZ)10COV [Qt−20, Qt−28]− 11(1− µZ)10COV [Qt−21, Qt−27]

−12(1− µZ)10COV [Qt−22, Qt−26]− 10(1− µZ)10COV [Qt−23, Qt−25]

+15(1− µZ)10COV [Qt−25, Qt−32] + 24(1− µZ)10COV [Qt−26, Qt−31]

+21(1− µZ)10COV [Qt−27, Qt−30]− 15(1− µZ)10COV [Qt−30, Qt−36]

−25(1− µZ)10COV [Qt−31, Qt−35]− 20(1− µZ)10COV [Qt−32, Qt−34]

+20(1− µZ)10COV [Qt−34, Qt−41] + 20(1− µZ)10COV [Qt−35, Qt−40]

−10(1− µZ)10COV [Qt−40, Qt−44]− 10(1− µZ)10COV [Qt−41, Qt−43]

+5(1− µZ)10COV [Qt−43, Qt−50]− (1− µZ)10COV [Qt−50, Qt−52]
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Appendix E

We approximate the covariance of the order quantity by using the recursive equation of the order
quantity in formula (45): Qt = Dt−1 + (1 − µZ)Qt−1 − (1 − µZ)Qt−LR

. For every LR, the recursive
equation for the order quantity is plugged in the formula for the covariance. For example, if the rework
time equals two periods, the covariance can be reformulated as: COV [Qt−1, Qt−2] = COV [Dt−2 +
(1− µZ)Qt−2 − (1− µZ)Qt−3, Qt−2]. Repeating this procedure, we end up with: COV [Qt−1, Qt−2] =
σ2Q(1 − µZ)

∑∞
k=0(−(1 − µZ))k. The same procedure follows for all COV [Qt−1, Qt−LR

] with respect
to all LR taken into consideration e.g. in a numerical analysis. For LR equal to two and three, it
is possible to derive exact formulae for the covariances (see Appendix D). For larger rework times,
this is not possible. Therefore, at first we express the covariance for a given LR as a function of the
first lag (lag1LR

) varying in LR. lag1LR
is defined as V AR[Qt−LR−i, Qt−LR−i−1] for all i ∈ Z≥0 in a

steady-state system.

Lemma 1. Under a strictly linear control rule, the covariance COV [Qt−1, Qt−LR
] of the order quanti-

ties Qt−1 and Qt−LR
in a production system with positive production and rework times (LP ≥ LR > 1)

can be approximated as

LR Covariances

2 σ2
Q(1− µZ)

∑+∞
k=0(−(1− µZ))

k ≈ σ2
Q · [(1− µZ)/(2− µZ)]

3 0

4 lag1LR · [−(1− µZ)
∞∑

k=0

(−(1− µZ))
k] ≈ lag1LR · [−(1− µZ)/(2− µZ)]

5 lag1LR · [−(1− µZ)]

6 lag1LR · [−(1− µZ)− (1− µZ)
3 ·
∞∑

k=0

(−(1− µZ))
k · fk+1]

7 lag1LR · [−(1− µZ) ·
∞∑

k=0

((1− µZ)
2

)k] ≈ lag1LR · [−(1− µZ)/(µZ(2− µZ))]

8 lag1LR · [−(1− µZ)− (1− µZ)
3 − 2(1− µZ)

5 + (1− µZ)
6 − 5(1− µZ)

7 · · ·]
9 lag1LR · [−(1− µZ)− (1− µZ) ·

∞∑
k=1

2k−1((1− µZ)
2)

k
]

10 lag1LR · [−(1− µZ)− (1− µZ)
3 − 2(1− µZ)

5 − 5(1− µZ)
7 · · ·]

Table 5:

where fk equals the Fibonacci numbers starting with f0 = 0, f1 = 1 and fk = fk−1 +fk−2 (∀k ≥ 2).

For the proof see Appendix D.
Table 5 shows that the covariance can be calculated nearly exactly for rework times of two and

three periods—just the geometric series for a rework time of two periods is an approximation. For a
rework time of eight and ten periods the formula for the covariance indicates no structure. Therefore,
the formula will be cut after (1− µZ)10 in all following analyses. For rework times larger than three,
the covariances depend on lag1LR

. An extensive study has shown that lag1LR
can be approximated

very well by σ2Q − σ2D. Using this approximation, the covariance of the order quantity for LR > 3 can

be written as (σ2Q − σ2D) ·ALR
.
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