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Abstract
The homogeneous electron liquid is a cornerstone in quantum physics and chemistry. It is an
archetypal system in the regime of slowly varying densities in which the exchange-correlation
energy can be estimated with many methods. For high densities, the behavior of the ground-state
energy is well-known for 1, 2, and 3 dimensions. Here, we extend this model to arbitrary integer
dimensions and compute its correlation energy beyond the random phase approximation (RPA).
We employ the approach developed by Singwi, Tosi, Land, and Sjölander (STLS), whose
description of the electronic density response for 2D and 3D for metallic densities is known to be
comparable to QuantumMonte-Carlo. For higher dimensions, we compare the results obtained
for the correlation energy with the values previously obtained using RPA. We find that in
agreement with what is known for 2 and 3 dimensions, the RPA tends to over-correlate the liquid
also at higher dimensions. We furthermore provide new analytical formulae for the
unconventional-dimensional case both for the real and imaginary parts of the Lindhard
polarizability and for the local field correction of the STLS theory, and illustrate the importance of
the plasmon contribution at those high dimensions.

1. Introduction

The ground states of the homogeneous electron gases and liquids have played a prominent role in the
modeling and understanding of a wide range of interacting electronic systems [1–14]. They are, in fact,
well-known models of choice commonly used to develop, improve and benchmark many approximate
approaches for the many-electron problem, including some of the most popular exchange-correlation
functionals of density functional theory [15–18].

An important aspect of these systems is the dependency of the correlation energy, among other relevant
quantities, on the dimension of the physical space in which they are embedded. This is a quite relevant
question in light of the wealth of experimental electronic setups in which one or two of the physical
dimensions are much smaller than the remaining ones. As a result, they are usually modeled as one- or
two-dimensional quantum systems [19–24]. Furthermore, reduced dimensional systems often exhibit
notable physical properties, ranging from Luttinger physics [25] to Moiré superlattices [26]. More recently,
progress in the fabrication of artificial materials is paving the way for the realization of non-integer
dimensions, as fractal substrates (e.g. Sierpiński carpets of bulk Cu) confining electron gases [27–29]. Quite
remarkably, the possibility to circumvent the von Neumann–Wigner theorem, which rules out energy
crossings in systems with reduced dimensionality, or to produce unconventional topological phases by
engineering (or mimicking) additional synthetic dimensions [30–33] also highlights the importance of
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realizing, studying and understanding interacting fermionic systems embedded in non-conventional
dimensions.

For the high-density (spin-unpolarized) homogeneous electron gas (HEG) in D= 1,2, and 3
dimensions, the energy per electron can be expanded in terms of rs, the Wigner-Seitz radius, as follows [34]:

εD(rs → 0) =
aD
r2s

− bD
rs

+ cD ln rs +O(r0s ) . (1)

The constants aD, bD and cD are independent of rs, and their functional form in terms of the dimension D is
well known [10]. In recent work, the HEG was extended to arbitrary integer dimensions [35]. It was found a
very different behavior for D> 3: the leading term of the correlation energy does not depend on the
logarithm of rs, as in equation (1); instead, it scales polynomially as cD/rηD

s , with the exponent
ηD = (D− 3)/(D− 1). In the large-D limit, the value of cD depends linearly on the dimension. This result
was obtained within the random-phase approximation (RPA) by summing all the ring diagrams to infinite
order.

The RPA is known to be exact in the limit of the dense HEG (rs → 0), includes long-range interactions
automatically, and is applicable to systems where finite-order many-body perturbation theories break down
[36]. Yet, unfortunately, it has well-known deficiencies at the metallic (intermediate) densities of the typical
homogeneous electron liquid (HEL) (i.e. 1⩽ rs ⩽ 6). While quantumMonte-Carlo (QMC) is an option [14,
37], there are other high-quality approaches such as the celebrated Singwi, Tosi, Land, and Sjölander (STLS)
method that provides results comparable to QMC for those densities regimes [38]. This method attempts to
tackle in an approximate manner both the exchange and electronic correlations through a local-field
correction. As such, this scheme is often surprisingly accurate in the description of the full electronic density
response and is commonly used to investigate quasi-one-dimensional [39], inhomogeneous [40–42] and
warm dense electron liquids [43–45]. It has also inspired the development of new functional methods that
explicitly retain the dynamical and non-local nature of electronic correlations, while properly accounting for
the exchange contribution [46–50]. In sum, while STLS should not be seen as a replacement for QMC
methods to obtain accurate correlation energies of the electron liquid, this is a quite insightful
(semi-)analytical theory for the many-body physics of this system.

Inspired by the recent theoretical and experimental progress in the dimensional enhancing of many-body
systems by mimicking additional synthetic dimensions [51–55], our purpose in this paper is to calculate the
correlation energy of the HEL (i.e., the metallic-density regime of the homogeneous electron system) for
arbitrary integer dimensions with the STLS method. Our motivation is threefold: first, shed light on the
dimensional dependency of electronic properties (as the conductivity or the correlation energy); second,
study the performance of the RPA method in the regime of metallic densities for unconventional dimensions;
and third, explore the numerical behavior of the STLS method on those dimensions. As expected, one of our
main results is that the value of the correlation energy for unconventional dimensions improves significantly
with respect to the RPA result (that tends to over-correlate the liquid) obtained previously in [35].

The rest of this paper is organized as follows. In section 2 we review the main STLS equations and rewrite
them explicitly in arbitrary D dimensions. We compute the Lindhard polarizability, the structure factor, and
the so-called local field correction in the Hartree–Fock approximation, providing explicit formulae for some
representative systems. In section 3 we explain how the correlation energy is computed in this scheme, and in
section 4 discuss the fully polarized case. In sections 5 and 6 we present and discuss our numerical results for
the correlation energies as well as the density–density pair distribution function. We also discuss the
fulfillment of the compressibility sum rule. In the last section, we present our main conclusions. Three
Appendices that give further technical details on our calculations are presented at the end of the paper.

2. STLS theory inD dimensions

In this section, we review the main STLS equations and write them explicitly in arbitrary D dimensions. We
follow the standard notation, namely, n is the D-dimensional particle density, Ω is the volume occupied by
the electronic liquid, and qF is the usual Fermi wavevector. We employ atomic units along the paper. To
include short-range correlation between electrons, the STLS theory departs from RPA by writing the
two-particle density distribution f2(r,p,r ′,p ′, t) as follows:

f2(r,p,r
′,p ′, t) = f(r,p, t)f(r ′,p ′, t)gD(r− r ′) , (2)

where f(r,p, t) is the one-particle phase-space density and gD(r) is the D-dimensional equilibrium, static pair
distribution function. Equation (2) can be seen as an ansatz that terminates the hierarchy that otherwise
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would write the two-particle distribution function in terms of the three-particle distribution function, and
so on. This leads to the following density–density response function [38]:

χD(q,ω) =
χ0
D(q,ω)

1−Φ(q)[1−GD(q)]χ0
D(q,ω)

. (3)

Here χ0
D(q,ω) is the Lindhard polarizability, i.e. the inhomogeneous non-interacting density response

function of an ideal Fermi gas in D dimensions, GD(q) is the local field correction, and Φ(q) is the
D-dimensional Fourier transform of the Coulomb potential:

Φ(q) =
(4π)

D−1
2 Γ

(
D−1
2

)
qD−1

, (4)

where Γ denotes the gamma function. The presence of GD(q) in equation (3) is the key feature of the STLS
equations that gives the ‘beyond RPA’ flavor to the theory. This local field correction is a direct result of the
short-range correlation between the electrons. In arbitrary dimensions, it is given by:

GD(q) =−1

n

ˆ
q ′ · q qD−3

q ′D−1
[SD(q− q ′)− 1]

dDq ′

(2π)D
, (5)

with SD(q) being the structure factor. We can simplify this integral to a two-dimensional one by substituting
q− q ′ = t and using the fact that SD(q) = SD(q) in homogeneous systems. Afterwards, we rewrite the
integral using D-dimensional spherical coordinates, where q is parallel to the Dth-axis, and integrate over all
angles except the angle θ between q and t to obtain:

GD(q) =− qD−3

(2π)Dn

2π
D−1
2

Γ
(
D−1
2

) ˆ ∞

0

ˆ π

0
[SD(t)− 1]

[q2tD−1 − qtD cosθ](sinθ)D−2

(q2 + t2 − 2qtcosθ)
D−1
2

dθdt . (6)

Note in passing that in the 2D case we must use polar coordinates instead of the spherical coordinates and
obtain:

G2(q) =− 1

(2π)2n

ˆ ∞

0

ˆ 2π

0
[S2(t)− 1]

qt− t2 cosθ

(q2 + t2 − 2qtcosθ)1/2
dθdt . (7)

These equations, together with the equation for the dielectric function, 1/ϵD(q,ω) = 1+Φ(q)χD(q,ω),
lead to an equation for the dielectric function within the STLS theory, namely:

ϵD(q,ω) = 1− Φ(q)χ0
D(q,ω)

1+GD(q)Φ(q)χ0
D(q,ω)

. (8)

Finally, the relation between the structure factor and the dielectric function ϵD(q,ω) (see, for instance,
[56]) can be easily generalized for arbitrary dimensions:

SD(q) =− 1

πnΦ(q)

ˆ ∞

0
Im

(
1

ϵD(q,ω)

)
dω . (9)

We can improve the readability of this equation by separating the contributions of the single-particle and
plasmon excitations [57]:

SD(q) =− 1

πnΦ(q)

ˆ qvF+
q2

2

0
Im

(
1

ϵD(q,ω)

)
dω

+
1

Φ(q)n

(
∂ReϵD(q,ω)

∂ω

)−1

δ(ω−ωp(q)) , (10)

where vF is the Fermi velocity and ωp(q) is the plasmon dispersion [58]. Equations (6), (8) and (10) form the
core of the celebrated STLS set of equations. In this framework, they can be evaluated self-consistently.
Notice, indeed, that GD(q) and SD(q) can be written symbolically as GD = F1[SD] and SD = F2[GD],
indicating the existence of the mutual functional relations introduced above [49].

We should reiterate here that the crucial aspect of the STLS method is the appearance of the
density-density pair distribution function gD(r− r ′) in the decoupling of the equation of motion (2). Despite
the crudeness of such a factorization scheme, the formalism gives correlation energies for both 3D and 2D
homogeneous electron gases that significantly improve the RPA results. Unfortunately, the factorization also
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results in a number of well-known shortcomings, including negative values of gD(r− r ′) for sufficiently large
values of rs, and the failure to satisfy the compressibility sum rule (i.e. at long wavelengths the exact screened
density response is determined by the isothermal compressibility). The first problem, the un-physical
behavior of the pair distribution, is counter-balanced by the fact that the exchange-correlation energy is in
reality an integral over gD(r): it turns out that its value is still quite reasonable in the metallic range as it
benefits from an error cancellation [45]. As we will see below, this result, known for the case of 2D and 3D,
does also hold for larger dimensions. To tackle the second problem, Vashista and Singwi [59] provided a
correction to the STLS method that established the correct compressibility sum rule in the metallic-density
regime. This is however a partial solution as both the original STLS method and the Vashista-Singwi
extension under-estimate the exchange energy, as pointed out by Sham [60].

2.1. Real part of the Lindhard function forD= 5,7
The expressions for χ0

2(q,ω) and χ0
3(q,ω) are widely known since long ago (see for instance [34, 61]), but

higher dimensional expressions are missing in the literature. In appendix A we detail their calculation for
higher dimensional settings by performing a linear perturbation from equilibrium. We sketch here the main
results.

The real part of χ0
D(q,ω) can be written explicitly as:

Reχ0
D(q,ω) =

2

(2π)D
P
ˆ

Θ(qF − |p− 1
2q|)Θ(|p+ 1

2q| − qF)

ω− p · q
dDp

− 2

(2π)D
P
ˆ

Θ(|p− 1
2q| − qF)Θ(qF − |p+ 1

2q|)
ω− p · q

dDp , (11)

where P denotes the principal value. By evaluating these integrals, it is possible to obtain analytical
expressions for specific cases. For instance, for D= 5 and D= 7 one gets:

Reχ0
5(q,ω) =

qF
3

8π3

{
1

96q̃5

[(
3
2

(
q̃2 − 2ω̃

)4
+ 24q̃4 − 12q̃2(q̃2 − 2ω̃)2

)
ln

∣∣∣∣2q̃− q̃2 + 2ω̃
2q̃+ q̃2 − 2ω̃

∣∣∣∣
+

(
3
2

(
q̃2 + 2ω̃

)4
+ 24q̃4 − 12q̃2(q̃2 + 2ω̃)2

)
ln

∣∣∣∣2q̃− q̃2 − 2ω̃
2q̃+ q̃2 + 2ω̃

∣∣∣∣+ 12q̃7 − 16q̃5 + 144q̃3ω̃2

]
− 2

3

}
(12)

and

Reχ0
7(q,ω) =

qF 5

368640π4q̃5

{[
60(16q̃4 + 3(q̃2 + 2ω̃)4 − 12(q̃3 + 2q̃ω̃)2)− 15(q̃2 + 2ω̃)6

q̃2

]
ln

∣∣∣∣2q̃− q̃2 − 2ω̃

2q̃+ q̃2 + 2ω̃

∣∣∣∣
+

[
60(16q̃4 + 3(q̃2 − 2ω̃)4 − 12(q̃3 − 2q̃ω̃)2)− 15(q̃2 − 2ω̃)6

q̃2

]
ln

∣∣∣∣2q̃− q̃2 + 2ω̃

2q̃+ q̃2 − 2ω̃

∣∣∣∣
− 4224q̃5 + 1280q̃3(q̃4 + 12ω̃2)− 120q̃(q̃8 + 40q̃4ω̃2 + 80ω̃4)

}
. (13)

A similar calculation gives a closed expression for the imaginary part:

Imχ0
D(q,ω) =



h(D)
1

q̃

[(
1− ν2−

) D−1
2 −

(
1− ν2+

) D−1
2

]
ω̃ <

∣∣∣q̃− q̃2

2

∣∣∣and q̃< 2

0 ω̃ <
∣∣∣q̃− q̃2

2

∣∣∣and q̃> 2

h(D)
1

q̃

[
1− ν2−

]D−1
2

∣∣∣q̃− q̃2

2

∣∣∣⩽ ω̃ ⩽ q̃+ q̃2

2

0 ω̃ > q̃+ q̃2

2

(14)

where q̃= q/qF, ω̃ = ω/qF 2, h(D) = qD−2
F

[
2D−2(D− 1)π

D−1
2 Γ

(
D−1
2

)]−1

and ν± = ω̃/q̃± q̃/2.

2.2. The Hartree–Fock approximation for the first iteration
For the first iteration, the original STLS theory uses the structure factor obtained from the Hartree–Fock
calculation [38]. We take the same approach here. Formally, the generalized D-dimensional structure factor
is straightforward and reads:

SHF
D (q) = 1− 2

(2π)D n

ˆ
k,k′⩽qF

δ(q− k′ + k)dDk′dDk .

4
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Substituting this formal result into equation (5) gives the general D-dimensional expression for the local field
correction of STLS within the Hartree–Fock approximation, namely,

GHF
D (q) =

2qD−3

(2π)2Dn2

ˆ
k,k ′⩽qF

q · (q+ k− k ′)
|q+ k− k ′|D−1

dDk ′dDk . (15)

This integral can be evaluated by making use of the extracule and intracule substitutions:
s= (k+ k ′)/2and t= k− k ′. Then, because the integrand only depends on q and t, one can perform the
integration over s. This eventually gives the relevant integration region as the intersection of two
hyperspheres, as discussed in detail in appendix B, where we obtain the following expression:

GHF
D (q) =

qD−3

qF D
√
π

Γ
(
D
2 + 1

)
Γ
(
D−1
2

) ˆ 2qF

0

ˆ π

0
I
1− t2

4qF
2

(
D+ 1

2
,
1

2

)
× (q2 + qtcosθ)tD−1 sinD−2 θ

(q2 + t2 + 2qtcosθ)
D−1
2

dθdt , (16)

with Ix(a,b) denoting the regularized incomplete beta function. The numerical evaluation of the local field
correction as expressed in equation (16) is now a much simpler task. We present the lengthy analytical
expression for GHF

5 (q) in appendix B.

3. Energy contributions

The calculation of the kinetic energy of the D-dimensional HEG is as straightforward as it is for D= 3. It is
given by:

Ekin =
α2
DD

2(D+ 2)

Υ2(ξ)

r2s
, (17)

where αD = 2(D−1)/DΓ(D/2+ 1)2/D,

Υn(ξ) =
1
2

[
(1+ ξ)(D+n)/D +(1− ξ)(D+n)/D

]
is the spin-scaling function, and ξ is the usual spin-polarization. The interaction energy per particle is given
by the following expression:

Eint =
1

Ω

∑
q ̸=0

Φ(q)

2
(SD(q)− 1) . (18)

If we introduce the function γD(rs) =− 1
2qF

´∞
0 [SD(q)− 1]dq we can rewrite the energy of the unpolarized

electron gas in equation (18) as:

Eint =−2
D−3
D D

2
D

√
π

Γ

(
D− 1

2

)
Γ

(
D

2

) 2−D
D γD(rs)

rs
.

By using the adiabatic-connection formula, the total interaction energy per particle can be computed by
using the formula [62]:

´ 1
0 λEint(λrs)dλ, where λ is a coupling constant that represents the strength of the

interaction. Therefore, the full ground-state energy of the unpolarized electron gas in the STLS theory can
then be written as:

E0 =
α2
DD

2(D+ 2)

Υ2(0)

r2s
− E(D)

1

r2s

ˆ rs

0
γD(r

′
s )dr

′
s , (19)

where E(D) is defined as:

E(D) =
2
D−3
D D

2
D

√
π

Γ

(
D− 1

2

)
Γ

(
D

2

) 2−D
D

. (20)

To obtain the correlation energy we need to make use of the Hartree–Fock energy. While the kinetic
energy is already calculated, the calculation of the exchange energy is not trivial. This was already calculated
by two of us in [35]:

EHF =
α2
DD

2(D+ 2)

Υ2(ξ)

r2s
− 2αDD

π (D2 − 1)

Υ1(ξ)

rs
. (21)

5
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Since the correlation energy is defined as the difference between the ground-state energy and the
ground-state Hartree–Fock energy, we get for the D-dimensional gas the following compact formula:

Ecorr =
1

r2s

ˆ rs

0

[
−E(D)γD(r

′
s )+

2αDDΥ1(0)

π (D2 − 1)

]
dr ′s . (22)

This is the formula we are going to use for the calculation of the correlation energy.

4. The fully polarized case

The extension of the above equations for the fully polarized case is quite straightforward (for D= 3 see
[63, 64]). The relation between the local field correction and the structure factor is given by:

G↑↑
D (q) =−1

n

ˆ
(q ′ · q)qD−3

q ′D−1
[S↑↑D (q− q ′)− 1]

dDq ′

(2π)D
, (23)

where S↑↑D (q− q ′) is the spin-resolved structure factor. The corresponding density-density response function
is given by:

χ↑↑
D (q,ω) =

χ0,↑↑
D (q,ω)

1−Φ(q)[1−G↑↑
D (q)]χ0,↑↑

D (q,ω)
. (24)

where χ0,↑↑
D (q,ω) is the polarizability of the fully polarized non-interacting HEG that can be easily related

with the spinless quantities χ0
D(q,ω) by a factor of 1/2 [34]. In addition, the Fermi wavevector should be

re-scaled qF,↑ = 21/DqF. Finally, the fluctuation-dissipation theorem leads to:

S↑↑D (q) =− 1

πn

ˆ ∞

0
Imχ↑↑

D (q,ω)dω . (25)

As a result, in the fully polarized case, the correlation energy is given by:

Ecorr =
1

r2s

ˆ rs

0

[
−F(D)γ↑↑

D (r ′s )+
2αDDΥ1(1)

π (D2 − 1)

]
dr ′s . (26)

where F(D) is a simple re-scaling of E(D) in equation (20):

F(D) = 21/DE(D) , (27)

and γ↑↑
D (rs) =− 1

2qF,↑

´∞
0 [S↑↑D (q)− 1]dq.

5. Numerical results

Starting from the expression for the local field correction in the Hartree–Fock approximation GHF
D (q)

presented in section 2.2 we calculated SD(q) using equation (10). In this case ωp(q) is obtained from the zero
of the dielectric function ϵD(q,ω), which in turn is given by equation (8). We then started the entire
self-consistent cycle of the STLS equations. To improve the convergence of the iterative procedure we applied
the following linear mixing:

Ḡi
D(q) = Gi−1

D (q)+ [Gi
D(q)−Gi−1

D (q)]/a , (28)

where i is the iteration number and a takes values between 1 and 3.5 (for the 5D and the 7D cases we used
a= 1.5). At each iteration, we calculated the quantity γD(rs) with the new structure factor SD(q). After 10
iterations we obtained convergence in γD(rs) within 0.1%. The value of γD(rs) at the end of the
self-consistent calculation is then used to calculate the correlation energy using equation (22).

We first benchmarked our implementation for 2D and 3D. The results are presented in figure 1, where it
can be seen that we recovered the original STLS results and obtained the well-known agreement of STLS with
the QuantumMonte-Carlo results [65, 66]. In the 2D case we also obtained similar results to the ones
obtained previously by Jonson [67]. The decrease of the magnitude of the correlation energy in the
paramagnetic case is consistent with the QuantumMonte-Carlo results [14].

Our new results for the HEL in 5D and 7D (for which we were able to compute analytically the Lindhard
polarizability and the local field correction) in the paramagnetic and the ferromagnetic case are presented in

6
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Figure 1. Correlation energy for HEL in 3D and 2D expressed as a function of rs. Our results for STLS in the paramagnetic case
are compared with the results of Jonson [67] and the results of QMC from [65, 66]. In the ferromagnetic case our results for STLS
are compared with the results of QMC from [14].

Figure 2. Correlation energy of the unpolarized HEL in 5D and 7D expressed as a function of rs. Our results for STLS with and
without the plasmon contribution are compared with RPA results from [35].

figures 2(a), (b) and 3(a), (b), respectively. Those are compared with the RPA results previously obtained
in [35, 68]. It is a general result of our implementation that the STLS correlation energy decreases
(in absolute value) in comparison with the one from RPA, which confirms that this latter approximation
tends to over-correlate the gas, even in dimensions higher than 3. Yet, for high dimensions, the general error
of RPA is smaller, both in the ferromagnetic and the paramagnetic cases. The correlation energy is smaller in
magnitude in the ferromagnetic case in comparison with the paramagnetic one in all the dimensions studied,
the same behavior found with the RPA. Furthermore, since the structure factor of STLS can be easily
separated into the pair and the plasmonic contributions [56, 58], we investigated the plasmon contribution
separately by calculating the correlation energy with and without it. We conclude that the plasmonic
correction is more relevant for intermediate densities at all dimensions: this term indeed improves the
correlation energy on average by 30.9% in the 5D case and 49.2% in the 7D case.

7
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Figure 3. Correlation energy of the fully polarized HEL in 5D and 7D expressed as a function of rs. Our results for STLS are
compared with the RPA results from [35].

Figure 4. The local field correction GD(q) for rs = 2 in the 3D, 5D and 7D case for the para- and ferromagnetic HEL.

For the sake of completeness, we also present in figure 4 the values for the local field correction GD(q) we
obtained for both paramagnetic and ferromagnetic gases for D= 3,5,7 for a selected value of the density (i.e.
rs = 2). While the magnitude of the local correction is larger for the fully polarized gas, the global value
diminishes for large dimensions in the whole domain of q.

Finally, to study the quality of the density-density pair distribution function gD(r) we compute it by
utilizing the fact that gD(r)− 1 is the Fourier transform of (1/n)[SD(q)− 1] and plot gD(r) as well as SD(q) at
the metallic density rs = 5 and the large radius rs = 10 for dimensions D= 3,5, and 7 (see figures 5 and 6).
The behavior of gD(r) for the metallic densities (i.e. rs = 5) is physical in the sense that it takes positive values
for all the analyzed dimensions, whereas for rs = 10 an un-physical, though small, negative value can be
observed for small distances. This is in agreement with the 2D and 3D cases, discussed above; this also shows
that the range of validity of the STLS scheme is limited to the metallic-density regime, even at
unconventional dimensions.

8
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Figure 5. The density-density pair distribution gD(r) of the HEL is sketched at rs = 5 and 10 for dimensions D= 3,5 and 7.

Figure 6. The structure factor SD(q) at rs = 5 and 10 for dimensions D= 3,5 and 7.

6. Sum rules

As already mentioned, one of the known shortcomings of the STLS method is the failure to satisfy the
compressibility sum rule (CSR) which is an exact property of the HEL. In the long wavelength limit, the
static response and dielectric functions are related to the compressibility of the electronic system. For
arbitrary dimensions, the following exact expression holds (see appendix C):

lim
q→0

ϵD(q,0) = 1+

(
qTF
q

)D−1
κ

κf
, (29)

where κ/κf is the ratio of the compressibility of the interacting-free D-dimensional electron liquid, and qTF is
the D-dimensional Thomas-Fermi wave vector. For the free electron liquid, the corresponding free
compressibility is κf = Dr2s /nα

2
D. Also by taking the limit q→ 0 at ω= 0 in equation (8) and comparing the

result with equation (29) (see also appendix C) one obtains:

κf

κ
= 1− γD

(
qTF
qF

)D−1

≡KD . (30)

Another way to calculate the same compressibility ratio in arbitrary dimensions is to use both the
thermodynamic formula κ−1 = n(∂P/∂n), where P denotes the pressure, and the expression of the energy
for the free liquid (17), which leads to

κf

κ
=

r4s
α2
DD

[
(1−D)

rs
ϵ ′D(rs)+ ϵ ′ ′D (rs)

]
≡ K̄D . (31)

In practice, equation (29) implies that the compressibility ratio κ/κf derived from the thermodynamic
expression in equation (31) should be equal to the same ratio derived from the limq→0 ϵD(q,0) of

9
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Table 1. Compressibility ratiosKD (30) and K̄D (31) predicted by the STLS scheme in 3D, 5D and 7D.

3D 5D 7D

K3 K̄3 K5 K̄5 K7 K̄7

rs = 2 0.35 0.64 0.75 0.88 0.85 0.93
rs = 4 −0.39 0.25 0.46 0.73 0.69 0.85
rs = 6 −1.18 −0.16 0.15 0.58 0.52 0.77

equation (8) with GD(q) as given in equation (6). Yet, calculating the compressibility from an approximate
expression of the dielectric function will generally result in a value that differs from the one obtained as the
derivative of the pressure. This is the case of STLS theory, indeed. As a matter of fact, there are few theoretical
settings where they coincide [69].

The numerical results of κf/κ in 3D, 5D and 7D calculated both as KD (30) and K̄D (31) for some rs are
shown in table 1. In general, for all dimensions KD ̸= K̄D. For 3D we obtained the results of the original
STLS paper [38]. Notice that the STLS compressibility ratio K3 becomes already negative for rs > 3. Yet,
interestingly, the larger the underlying dimension the better the performance of the CSR within the original
STLS framework. For instance, for rs = 4, KD/K̄D =−1.56,0.63, and 0.81 for 3D, 5D and 7D, respectively.

There are other well-known sum rules that can be discussed in the context of STLS [70]. For instance, in
the limit of large frequencies, one can show that ϵD(q,ω) = 1− [ω ′

D(q)/ω]
2, where [ω ′

D(q)]
2 =Φ(q)nq2 is a

frequency that in the case of D= 3 is equal to ω2
p = 4πn, the plasma frequency of the liquid. Moreover, by

using the results of appendix C and the frequency moment sum rules [70], it is also straightforward to see
that the so-called screening requirement is independent of the dimension of the space:

lim
q→0

[ϵD(q,0)]
−1 = 0 . (32)

7. Conclusion and outlook

In this paper, we have studied the homogeneous electron liquid (HEL) in arbitrary integer dimensions
beyond the random phase approximation (RPA). Our main motivation was to study the quality of the RPA
results previously obtained for the homogeneous electron gas in dimensions larger than 3 [35]. To that goal,
we have employed the Singwi, Tosi, Land, and Sjölander (STLS) scheme whose accuracy to compute the full
electronic density response is comparable to QuantumMonte-Carlo. We provided new analytical formulae
for the real and imaginary parts of the Lindhard polarizability and for the so-called local field correction of
the STLS theory. We have also discussed the un-physical predictions of the STLS method for large values of rs
in arbitrary dimensions and the incapability of the scheme of fulfilling the compressibility sum rule. From
our results, we can conclude that the algebraic properties of the correlation energy found in [35] are mainly
valid in the high-density limit of the homogeneous electron gas. Furthermore, in agreement with what is
known for 2 and 3 dimensions, the RPA tends to over-correlate the gas, also in the high dimensions studied
here. This result can potentially shed light on the more far-reaching problems of quantum many-body
systems embedded in fractional or synthetic dimensions [27, 29, 71–73]. We believe that the results of this
paper can be a useful framework to improve our overall comprehension of Coulomb gases, and to develop a
more coherent and unified dimensional approach to the correlation problem of those systems [22, 74–76].
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Appendix A. Calculation of the Lindhard polarizability inD ⩾ 3

To compute the Lindhard polarizability for dimensions larger than 3 we start by writing the one-particle
density and the external potential as linear perturbations from equilibrium:

f(r,p, t) = f0(p)+λδf(r,p, t) ,

v(r, t) = v0(r)+λδv(r, t) . (A1)

After substituting equation (A1) in equation (2) one obtains the following result for the induced charge
density ρind(q,ω):

ρind(q,ω) =
χ0
D(q,ω)

1−Φ(q)[1−GD(q)]χ0(q,ω)
δv(q,ω) , (A2)

where χ0
D(q,ω) is given by:

χ0
D(q,ω) =− lim

η→0+

ˆ
q ·∇pf0(p)

ω+ iη− p · q
dDp (A3)

By using the Taylor expansion: f0(p± 1
2q) = f0(p)± 1

2q ·∇pf0(p)+ · · · , we can then rewrite χ0
D(q,ω) as:

χ0
D(q,ω)≈ lim

η→0+

ˆ
f0(p− 1

2q)− f0(p+
1
2q)

ω+ iη− p · q
dDp . (A4)

This is the Lindhard polarizability of a D-dimensional Fermi gas [77].
At T= 0 the equilibrium density reads

f0(p± 1
2q) =

2

(2π)D
Θ
[
1
2

(
qF

2 −
∣∣p± 1

2q
∣∣2)]= 2

(2π)D
Θ(qF − |p± 1

2q|) . (A5)

Plugging these equations and the identity limη→0+
1

x−x0±iη = P 1
x−x0

∓ iπδ(x− x0) into equation (A4)
yields:

χ0
D(q,ω) =

2

(2π)D
P
ˆ

Θ(qF − |p− 1
2q|)−Θ(qF − |p+ 1

2q|)
ω− p · q

dDp

− i
2π

(2π)D

ˆ [
Θ

(
qF −

∣∣∣∣p− 1

2
q

∣∣∣∣)−Θ

(
qF −

∣∣∣∣p+ 1

2
q

∣∣∣∣)]δ (ω− p · q)dDp . (A6)

The real part of χ0
D(q,ω) can then be rewritten as:

Reχ0
D(q,ω) =

2

(2π)D
P
ˆ

Θ(qF − |p− 1
2q|)Θ(|p+ 1

2q| − qF)

ω− p · q
dDp

− 2

(2π)D
P
ˆ

Θ(|p− 1
2q| − qF)Θ(qF − |p+ 1

2q|)
ω− p · q

dDp . (A7)

The second integral can be rewritten with the substitution p→−p so that the expression of Reχ0
D(q,ω)

reduces to just one single integral:

Reχ0
D(q,ω) =

2

(2π)D
P
ˆ

Θ(qF − |p− 1
2q|)Θ(|p+ 1

2q| − qF)

(
1

ω− p · q
− 1

ω+ p · q

)
dDp . (A8)

Utilizing the following property of the Heaviside step function:Θ(x) = 1−Θ(−x) and the symmetry of the
integrand under the transformation p→−p, Reχ0(q,ω) can be further simplified to:

Reχ0
D(q,ω) =

2

(2π)D
P
ˆ

Θ(qF − |p− 1
2q|)

(
1

ω− p · q
− 1

ω+ p · q

)
dDp . (A9)

This integral becomes dimensionless by putting p− q
2 = k and introducing the following substitutions

q̃= q/qF, k̃= k/qF and ω̃ = ω/qF 2:

Reχ0
D(q,ω) =

2qD−2
F

(2π)D
P
ˆ

Θ(1− k̃)

(
1

ω̃− q̃ · k̃− q̃2

2

− 1

ω̃+ q̃ · k̃+ q̃2

2

)
dDk̃ . (A10)
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To solve this integral we choose D-dimensional spherical coordinates such that q̃ is parallel to the last axis:

Reχ0
D(q,ω) =

2qD−2
F

(2π)D
2π

D−1
2

Γ
(
D−1
2

)P ˆ 1

0

ˆ π

0

(
k̃D−1 sinD−2 θ

ω̃− q̃k̃cosθ− q̃2

2

− k̃D−1 sinD−2 θ

ω̃+ q̃k̃cosθ+ q̃2

2

)
dθdk̃ , (A11)

where θ is the angle between q̃and k̃. The full evaluation of this integral is quite involved. We just mention
that this gives the known result for D= 3:

Reχ0
3(q,ω) =

qF
2π2

{
− 1+

1

2q̃

[
1−

(
2ω̃− q̃2

2q̃

)2
]
ln

∣∣∣∣2q̃− q̃2 + 2ω̃

2q̃+ q̃2 − 2ω̃

∣∣∣∣
− 1

2q̃

[
1−

(
2ω̃+ q̃2

2q̃

)2
]
ln

∣∣∣∣2q̃+ q̃2 + 2ω̃

2q̃− q̃2 − 2ω̃

∣∣∣∣
}
. (A12)

We provide the explicit results for D= 5 in (12) and D= 7 in (13).
The imaginary part of the Lindhard polarizability can be computed by using the same substitutions as in

the calculation of Reχ0
D(q,ω):

Imχ0
D(q,ω) =− qD−2

F

(2π)D−1

ˆ
[Θ(1− k̃)−Θ(1− |q̃+ k̃|)]δ

(
ω̃− q̃ · k̃− q̃2

2

)
dDk̃ . (A13)

Next we want to investigate the symmetry of Imχ0
D(q,ω). By considering Imχ0

D(−q,−ω) and substituting
k̃ ′ = k̃− q̃ we realize that Imχ0

D(q,ω) =−Imχ0
D(−q,−ω). This symmetry allows us to restrict ourselves to

case where ω> 0. Imχ0
D(q,ω) can then be rewritten for positive ω as follows:

Imχ0
D(q,ω) =− qD−2

F

(2π)D−1

ˆ
Θ(1− k̃)Θ(|q̃+ k̃| − 1)δ

(
ω̃− q̃ · k̃− q̃2

2

)
dDk̃ . (A14)

There are 2 cases where the integrand is different from 0:

•
∣∣∣q̃− q̃2

2

∣∣∣⩽ ω̃ ⩽ q̃+ q̃2

2

• ω̃ < q̃− q̃2

2 , q̃< 2

The evaluation of both integrals is technically similar. Thus we just want to discuss the evaluation in the first
case. The minimum value of k̃ in the first case is k̃min = |ω̃/q̃− q̃/2|. Performing the integration over all
angles except the angle θ between q̃ and k̃ and substituting cosθ = t leads to:

Imχ0
D(q,ω) =− qD−2

F

(2π)D−1

2π
D−1
2

Γ
(
D−1
2

) 1
q̃

ˆ 1∣∣∣∣ ω̃q̃ − q̃
2

∣∣∣∣
ˆ 1

−1
δ
(

ω̃
q̃k̃
− q̃

2k̃
− t
)
k̃D−2(1− t2)

D−3
2 dtdk̃ . (A15)

To evaluate it we should put ω̃ = q̃2/2+ q̃k̃cosθ ⇒−1⩽ ω̃/q̃k̃− q̃/2k̃⩽ 1, so that the integral over t can be
carried out easily. We obtain in this case the following result:

Imχ0
D(q,ω) = h(D)

1

q̃

[
1− ν2−

]D−1
2 , (A16)

where we define h(D) = qD−2
F

[
2D−2(D− 1)π

D−1
2 Γ

(
D−1
2

)]−1

and ν± = ω̃/q̃± q̃/2.

In the second case, kmin =
√
1− 2ω and we obtain the following result:

Imχ0
D(q,ω) = h(D)

1

q̃

[(
1− ν2−

) D−1
2 −

(
1− ν2+

) D−1
2

]
. (A17)

Eventually Imχ0
D(q,ω) reads as in equation (14).
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Figure 7. Integration region of GHF
D (q).

Appendix B. The local field correction in the Hartree–Fock approximation

After the substitution s= (k+ k ′)/2and t= k− k ′ equation (15) becomes:

GHF
D (q) =

2qD−3

(2π)2Dn2

ˆ
|s+ t

2 |⩽qF

ˆ
|s− t

2 |⩽qF

q · (q+ t)
|q+ t|D−1

dtds . (B1)

Because the integrand only depends on q and t, we can perform the integration over s. This gives us the
volume of the integration region and the integral becomes:

GHF
D (q) =

2qD−3

(2π)2Dn2

ˆ
dt
q · (q+ t)
|q+ t|D−1

ˆ
dsΘ(qF − |s+ t

2 |)Θ(qF − |s− t
2 |) . (B2)

Thus we need to identify the region in hyperspace in which we are integrating. The region after the
substitution is mathematically defined by |s+ t/2|⩽ qF and |s− t/2|⩽ qF and therefore can be seen as the
overlap region of two Fermi spheres in hyperspace (as shown by the colored region in figure 7). The centers
of the spheres sit at a distance |t| from each other, the origin of s is the midpoint of the connecting line of two
centers.

The integration over s is the volume of this overlap region, which is the combined volumes of two
identical hyperspherical caps. The volume of a D-dimensional hyperspherical cap was already calculated by
Li [78]:

VD =
1

2
VD(r)Isin2ϕ

(
D+ 1

2
,
1

2

)
,

where VD(r) is the volume of a hypersphere with radius r in D-dimensional space, ϕ is the angle between a
vector and the positive Dth-axis of the sphere and I(x,y) is the regularized incomplete beta function. In our

case it can easily be verified that sin2ϕ = 1− t2

4qF 2 and VD(r) = πD/2qF D/Γ
(
D
2 + 1

)
. As a result, GD

HF(q)
becomes:

GHF
D (q) =

2qD−3

(2π)2Dn2
πD/2

Γ
(
D
2 + 1

)qF D

ˆ
I
1− t2

4qF
2

(
D+ 1

2
,
1

2

)
q · (q+ t)
|q+ t|D−1

dt . (B3)

By changing to D-dimensional spherical coordinates such that q is parallel to the Dth-axis and using the
relation between the density and the Fermi wavelength qF we obtain equation (16). For some cases this
calculation can be done analytically. Here we provide the result for the 5D case:

GHF
5 (q) =

−5

4928

(
q

qF

)8

+
25

1232

(
q

qF

)6

+
1775

7392

(
q

qF

)4

− 5

66

(
q

qF

)2

+
25

154

+

[
−15

128

(
q

qF

)5

+
15

224

(
q

qF

)3

+
5

56

(
q

qF

)
− 25

154

(
qF
q

)]
ln

∣∣∣∣q+ 2qF
q− 2qF

∣∣∣∣ (B4)

+

[
−5

19712

(
q

qF

)10

+
5

896

(
q

qF

)8

− 15

224

(
q

qF

)6
]
ln

∣∣∣∣q2 − 4qF 2

q2

∣∣∣∣ . (B4)
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Appendix C. Compressibility sum rule

By applying the compressibility sum rule (see, for instance, [34]) one can rewrite the dielectric function in
the limit q→ 0 at ω= 0 as follows:

lim
q→0

ϵD(q,0) = 1+Φ(q)n2κ= 1+
(4π)

D−1
2 Γ

(
D−1
2

)
qD−1

Dr2s n

α2
D

κ

κf
, (C1)

where κf =
Dr2s
nα2

D
is the free compressibility. By defining the D-dimensional Thomas-Fermi wavelength as:

qTF =

(
(4π)

D−1
2 Γ

(
D−1
2

)
Dr2s n

α2
D

) 1
D−1

we obtain equation (29). In 3D this amounts to the well-known result

lim
q→0

ϵ3(q,ω) = 1+
q2TF
q2

κ

κf
.

Finally, by applying the sum rules to the Lindhard polarizability (i.e. limq→0χ0(q,0) =−n2κf ,) we obtain
the dielectric function in the STLS theory (equation (8)) in the limit q→ 0:

lim
q→0

ϵD(q,0) = 1+

(
qTF
q

)D−1

1− γD

(
qTF
qF

)D−1 , (C2)

where γD =− 1
2qF

´∞
0 [SD(q)− 1]dq. From equation (29) one eventually finds:

κf

κ
= 1− γD

(
qTF
qF

)D−1

. (C3)
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