HemaSphere

P994 GERMLINE SINGLE-NUCLEOTIDE VARIANTS (SNV) IN THE JAK-STAT PATHWAY GENOME OF ADOLESCENT AND YOUNG ADULTS (AYA) AND NON-AYA PATIENTS WITH *BCR*::*ABL* NEGATIVE MYELOPROLIFERATIVE NEOPLASM (MPN)

Topic: 15. Myeloproliferative neoplasms - Biology & Translational Research

Alice Diepers^{*1,2}, Susann Schulze², Nadja Jäkel², Danny Misiak¹, Christina Zahn¹, Claudia Spohn³, Regina Moeller³, Dietrich Kämpfe⁴, Maik Schwarz⁵, Katrin Nerger¹, Bayram Edemir^{1,6}, Haifa Kathrin Al-Ali^{1,2}

¹Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; ²University Hospital Halle (Saale), Halle (Saale), Germany; ³Hämatologisch-Onkologische Gemeinschaftspraxis, Halle (Saale), Germany; ⁴Praxis Fuer Haematologie Und Onkologie, Luedenscheid, Germany; ⁵Paracelsus Medizinisches Versorgungszentrum, Schwerpunktpraxis Für Hämatologie Und Onkologie, Schoeneck, Germany; ⁶Witten/Herdecke University, Witten, Germany

Background:

Phenotype driver mutations (mut.) in *JAK2*, *CALR*, and *MPL* and JAK-STAT pathway dysregulation characterize MPN. Germline SNV have been associated with susceptibility to various cancers. Little is known about germline SNV in the JAK-STAT genome as causal mediators of *BCR::ABL* negative MPN.

Aims:

To present germline SNV in the *JAK2*, *CALR*, *MPL*, and 7 STAT-family genes in AYA and Non-AYA from the MARY project of the East German Study Group for Hematology and Oncology (OSHO)

Methods:

After signed informed consent, phenotype data and blood samples were collected [n=122: AYA (<39 y)=45, Non-AYA (>40 y)=77]. Besides whole transcriptome sequencing (RNA-seq) from blood derived RNA, WES from blood and FACS sorted CD3+ cells derived DNA was performed on an Illumina NovaSeq 6000 at Novogene. At the Core Facilty Imaging of the MLU Halle-Wittenberg (www.medizin.uni-halle.de/cfi), raw reads were quality checked (FastQC, version 0.11.9), low quality reads clipped off (Cutadapt, version 2.8), processed reads aligned (HiSat2 [https://doi.org/10.1038 /nmeth.3317] ,version 2.1.0) to the human genome (UCSC hg38), indexed (samtools, version 1.10), and used for variant calling (bcftools, version 1.10.2) mpileup pipeline. Annotation was performed (Ensembl VEP [doi:10.1186/s13059-016-0974-4], version 108.1) using Ensembl GRCm38.108 [https://doi.org/10.1093/nar/gkab1049], and merging/summarizing of variant and annotation data was performed via an in-house R script. MARY was approved by the ethical committee and funded by Incyte.

Results:

Median age in AYA and Non-AYA was 32.5 and 52 years respectively. Diagnoses were ET in 54 (44%), PV in 33 (27%), and PMF in 28 (23%) pts. *JAK2* exon 14, *CALR*, and *MPL* mut. were detected in 77%, 11%, and 1.7%. 11 (9%) pts were triple negative. Thyroid dysfunction (23%), thrombosis (37%) and a family history of thrombosis (43%) were similar across age. ET (p<0.001), thrombosis after diagnosis (p=0.05), *CALR* mut., and a triple negative genotype (p=0.004) were higher in AYA.

All pts harbored *JAK2* protein coding SNV (median n=44). In 93% and 71% of pts, a median of 27 and 8 SNV in *CALR* and *MPL* were detected respectively. *MPL* SNV correlated with triple negative genotype (p=0.03). Irrespective of phenotype driver mut., *JAK2* SNV correlated negatively with *CALR* and *MPL* SNV in AYA (p=0.02) and positively in non-AYA (p=0.03). Of 5 germline *CALR* and *MPL* SNV detected in >50% of pts, 3 were purely

Copyright Information: (Online) ISSN: 2572-9241

© 2023 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2023;7(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.

germline while somatic rs2974752 and rs1049481,COSV57131545 were found in further pts without the germline counterpart (**Table 1**). Median *STAT1* (n=370), *STAT2* (n=70), *STAT4* (n=75), *STAT5A* (n=28), *STAT5B* (n=127), and *STAT6* (n=127) SNV were comparable across age. *STAT3* SNV were less in AYA (mean n=451) vs Non-AYA (mean n=573) (p=0.02). In AYA, *CALR* SNV correlated with *STAT1* (p=0.04) and *STAT5B* SNV (p=0.02) while in Non-AYA, *JAK2* SNV correlated with *STAT4* SNV (p=0.02) and a negative association between *STAT1* and *STAT5B* SNV was found (p=0.04). Irrespective of the number of *STAT* SNV, the percentages of protein coding to nonsense-mediated-decay, and intron retention biotypes within a gene were entirely constant across all pts. A negative association between protein coding *STAT3* SNV and protein coding *STAT4* SNV in non-AYA was found (p<0.001).

Summary/Conclusion:

The recurrent germline mut. in JAK-STAT pathway genes establish a linkage to map certain DNA regions that may be responsible for the MPN trait in AYA and Non-AYA. The integration of RNA-seq data will document the functional role of these genes and their potential cooperative activity with the classical phenotype driver mut.

		Gene			
		MPL		CALR	
	Percent	Germline SNV	Somatic SNV	Germline SNV	Somatic SNV
Frequency of genetic variations (SNV) in the entire cohort* * Phenotype driver mutations are excluded	≥ 1-5%	rs2069378; rs839993,CR043164; rs12058355; rs911161496,COSV100196353; rs156701833; rs1760669; rs200460456; rs1051097,COSV60522559; rs1749959; rs114338202; rs59776175; rs35732878; rs1199038; rs839996	rs 2069378; rs839993,CRO43164; rs12058355; rs76186025; rs56701833; rs76186025; rs576701833; rs1760669; rs1749959; rs77612379; rs114338202; rs111888775; rs1199038	rs2965220; rs4987202,COSV100330635; rs5016037; rs52499200; rs769694323; rs28365950; rs4987202,COSV100330635	rs2965220; rs765476509, COSV5711655,COSV5711815 rs5016037; rs891822005
	<u>≥</u> 5 - 20%	rs16830693,COSV65244224; rs710252; rs41269541,COSV65245731; rs1273191,CMO10063,COSV65244707	rs17499601; rs1749961; rs59776175; rs710252; rs839996	rs1010222; rs2974751; rs56290054; rs11558955,COSV57120330	rs1049481,COSV57131545; rs2974752; rs35819755; rs1010222; rs2974751
	<u>≥</u> 20 - 50%			rs35819755	
	<u>≥</u> 50%	rs1760670,COSV65245058; rs839995		rs2974750; rs1049481,COSV57131545; rs2974752	

Copyright Information: (Online) ISSN: 2572-9241

© 2023 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2023;7(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.