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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Potentially groundwater-dependent 
vegetation (pGDV) was derived for the 
Mediterranean biome. 

• The novel pGDV index integrates 
globally-available remote sensing and 
geodata. 

• Vegetation surveys and regional pGDV 
maps show moderate to good agreement 
with the pGDV index. 

• 31 % of the naturally vegetated areas in 
the Mediterranean likely depend on 
groundwater. 

• The pGDV index supports the local 
identification of actual GDV and biodi
versity conservation.  
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A B S T R A C T   

Groundwater-dependent vegetation (GDV) is essential for maintaining ecosystem functions and services, 
providing critical habitat for species, and sustaining human livelihoods. However, climate and land-use change 
are threatening GDV, highlighting the need for harmonised, global mapping of the distribution and extent of 
GDV. This need is particularly crucial in vulnerable biodiversity hotspots such as the Mediterranean biome. This 
study presents a novel multicriteria index to identify areas in the Mediterranean biome that provide suitable 
environmental conditions to support potentially groundwater-dependent vegetation (pGDV) where vegetation 
behaviour is also indicative of groundwater use. Global datasets targeting 1) groundwater vegetation interaction; 
2) soil water holding capacity; 3) topographical landscape wetness potential; 4) land use land cover and 5) 
hydraulic conductivity of rocks have been combined for the first time in an easy-to-use index. Layer weightings 
from Analytical Hierarchy Process and Random Forest showed limited applicability on biome scale, but an 
unweighted overlay of eleven thematic layers produced plausible results. The final pGDV map indicates that 31 
% of the natural vegetation in the Mediterranean biome likely depend on groundwater. Moreover, moderate to 
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good agreement was found compared to actual GDV locations in Campania, Italy (91 % with at least moderate 
potential) and California, USA (87 % with at least moderate potential). The results provide valuable information 
for identifying regions with a substantial presence of pGDV in the Mediterranean biome and can be used for 
decision making, e.g. to prioritise field surveys and high-resolution remote sensing for GDV mapping. It can 
therefore support effective groundwater resource management and the conservation of biodiversity hotspots.   

1. Introduction 

In the Mediterranean biome, known for its high plant diversity 
(Mittermeier et al., 2005), 50 % of the plants use groundwater (Evaristo 
and McDonnell, 2017), at least in the dry periods of the year (Barbeta 
et al., 2015). However, a decline in winter precipitation and increased 
groundwater use for consumption and irrigation exacerbate water stress 
in this biome, threatening vegetation and ultimately biodiversity (Pérez 
Hoyos et al., 2016; Tuel and Eltahir, 2020; Underwood et al., 2009). In 
this context, the identification of groundwater-dependent vegetation 
(GDV) can be assessed as an initial step of paramount relevance for 
ensuring the conservation of endangered ecosystem services (Kløve 
et al., 2014; Pérez Hoyos et al., 2016). 

Several ground-based methods, including phreatophyte (Meinzer, 
1927) and habitat mapping (Killroy et al., 2008), or stable isotope an
alyses (Jones et al., 2020) allow for direct identification of GDV, which 
however is resource intensive and hence limited to local scale applica
tion (Pérez Hoyos et al., 2016). At larger scales, remote sensing (RS) and 
geodata integration gained importance in the identification of GDV, 
although these datasets indicate potential locations of GDV instead of 
actual occurrences (hereafter referred to as potentially groundwater- 
dependent vegetation (pGDV)). 

Different thematic layers and datasets have been explored for the 
identification of pGDV. Common criteria include, the delineation of 
green islands (Akasheh et al., 2008) together with analyses of topo
graphically driven water availability (Münch and Conrad, 2007) from 
RS. For instance, Páscoa et al. (2020) mapped pGDV in the Iberian 
Peninsula (IP) based on MODIS Normalized Difference Vegetation Index 
(NDVI) timeseries. Liu et al. (2021) used MODIS data to map pGDV in 
Central Asia, targeting vegetation that remains green during the summer 
dry period and shows low seasonal and interannual changes in vitality. 
Similar approaches have been used to map potentially groundwater- 
dependent ecosystems (pGDEs), which also include wetlands, rivers or 
springs (Eamus et al., 2006). Recently, in addition to vegetation char
acteristics, environmental site conditions have gained attention in the 
detection of pGDE. Martínez-Santos et al. (2022) included permeability, 
geology, soil, groundwater table depth (GWTD), NDVI, topographic 
wetness index (TWI), slope and flow accumulation in a supervised 
classification to identify wetlands in Spain. Doody et al. (2017) focused 
on system recharge, groundwater availability, soil, lithology and vege
tation types as well as RS-based identification of wet areas in a weighted 
index to map pGDEs in Australia. 

Data integration is also an essential feature in the mapping of 
groundwater potential zones (GWPZ), e.g. for the detection of exploit
able groundwater resources (Arulbalaji et al., 2019; Pande et al., 2021). 
The GWPZ approach resembles the research on pGDE mapping, as 
several environmental parameters are combined that hint at the pres
ence of groundwater, e.g., through multi-criteria decision analysis, 
weighted-overlay, or machine learning (Arulbalaji et al., 2019; Martí
nez-Santos and Renard, 2020; Pande et al., 2021). Recently, Duran- 
Llacer et al. (2022) proposed a method that combines GWPZ-mapping 
with multispectral indices to map zones that likely contain pGDEs in 
semi-arid environments. Nevertheless, transferability to other regions, 
as well as application at the biome level depends on the availability of 
input data or appropriate weighting and has not been tested yet. 

From a mapping perspective, one challenge is the range of scales and 
resolutions in the geodata applied for these approaches, as globally 
applicable data are mixed with local ground data (e.g., Doody et al., 

2017; Duran-Llacer et al., 2022). Also, the detection of pGDV over 
extensive areas remains difficult, because supporting data with suffi
ciently high resolution are rare (Glanville et al., 2023). For instance, 
whilst high-resolution RS data for detecting pGDV (e.g., Doody et al., 
2017; El-Hokayem et al., 2023; Gou et al., 2015) is available at the 
global scale, required and detailed hydrogeological or edaphic infor
mation is mainly available at local scale only. Using high-resolution RS 
data globally challenges also in terms of computation intensity and 
storage demands. 

However, in face of these trade-offs, and with the exception of Link 
et al. (2023) who mapped global pGDEs at 0.5◦ spatial resolution, pGDV 
maps are available from local to continental scale only. There are no 
maps available that cover the entire Mediterranean biome at global 
scale. 

In this study, we present a novel approach to detect areas in the 
Mediterranean biome providing suitable conditions to hold pGDV where 
vegetation behaviour also indicates groundwater use, at least in the dry 
period (partially dependent on groundwater). Therefore, global data is 
combined with a simple index. The index aims to identify areas where 
high groundwater potential exists and groundwater is also likely to be 
accessible for plants. GWPZ-mapping parameters are complemented 
with vegetation-related RS parameters to address: 1) groundwater 
vegetation interaction (GVI); 2) soil water holding capacity (SWHC); 3) 
topographic landscape wetness potential (TLWP); 4) land use land cover 
(LULC) and 5) hydraulic conductivity of rocks (K) in an easy-to-use 
index showing low to high pGDV. Input data is globally and openly 
available. Expert-based and automated methods are compared to find 
the optimal approach for combining the parameters. The plausibility of 
the pGDV map is tested against GDV layers in Australia (Doody et al., 
2017) and California (USA) (Klausmeyer et al., 2018) and ground truth 
vegetation data in Campania (Italy). 

To identify pGDV, we combine, for the first time, several global 
datasets into a harmonised index. Such a novel index should allow the 
identification of regions with a high proportion of pGDV in the Medi
terranean biome, but is ideally transferable to other semi-arid environ
ments. The potential utility of the index is to decide where high- 
resolution mapping of actual GDV could be applied, e.g. to ensure sus
tainable groundwater management and to protect GDV as local biodi
versity hotspots. 

2. Material and methods 

To calculate the pGDV index we integrated thematic layers focussing 
on GVI, SWHC, TLWP, LULC and K (Fig. 1). We tested layer weighting 
via an expert-based approach through Analytical Hierarchy Process 
(AHP) as well as using Random Forest (RF). Existing pGDV calculated 
for Australia (Doody et al., 2017), ground truth vegetation data for 
Campania (El-Hokayem et al., 2023, and new field samplings), as well as 
GDV locations in California (Klausmeyer et al., 2018), are used to 
analyse the plausibility of the produced Mediterranean pGDV map. 

2.1. Study extent 

The zonal vegetation of the five Mediterranean regions consists of 
subtropical evergreen and broadleaved forests and shrublands domi
nated by sclerophyllous woody plants. Despite differences in species 
composition and structure between holm oak forests and maquis of the 
Mediterranean Basin, the South African fynbos, the Californian 

L. El-Hokayem et al.                                                                                                                                                                                                                           



Science of the Total Environment 898 (2023) 166397

3

chaparral, the matorral of central Chile and the karri forests of Australia, 
physiognomic similarities exist (Pignatti, 2003). Mean annual temper
atures in the Mediterranean climate range between 14 ◦C and 18 ◦C. The 
annual rainfall varies between 400 mm and 1200 mm and is charac
terised by wet winters (at least 65 % of the annual rainfall) and summer 
droughts leading to a severe soil water deficit in summer. During this 
period, the plants are exposed to severe stress that lasts for 3–5 months 
(Pignatti, 2003). Within the Mediterranean biome, temperate climates 
with a dry and hot summer (Csa) and arid, cold steppes (BSk) dominate 
(Beck et al., 2018). Climates without an annual dry season (Beck et al., 
2018) were excluded from our analysis. Fig. 2 presents an overview of 
the Mediterranean biome and the calculated beginning of the annual 16 
weeks dry period per basin as week of the year. 

2.2. Thematic layer selection 

To detect pGDV, we integrated thematic layers and methods widely 
used in the delineation of GWPZ (e.g., Arulbalaji et al., 2019; Mohan 
et al., 2018; Singh et al., 2013) and pGDEs (Doody et al., 2017; Duran- 
Llacer et al., 2022; Gomes Marques et al., 2019; Páscoa et al., 2020). The 
index aims to identify landscapes where high groundwater potential 
exists and groundwater is also likely to be accessible for plants. Thus, 
environmental site conditions would allow for the presence of pGDV. We 
included eight out of the ten most used parameters in GWPZ studies 
(Thanh et al., 2022). Topographic wetness index (TWI) and lineament 
density were excluded due to limited global applicability. However, flow 
accumulation is used alternatively to TWI. Additional input parameters 
targeting GVI (e.g., Doody et al., 2017; Duran-Llacer et al., 2022) such as 
vitality or distance to groundwater were integrated. Five major pa
rameters (GVI, SWHC, TLWP, LULC, K) consisting of eleven thematic 

layers are aggregated in a pGDV index on the biome level. Thematic 
layers either determine pGDV occurrence through favourable site con
ditions (RDGW, SWHC, TLWP) or control pGDV detection (pIDE, 
NDVIdry, LULC). CPU-intensive processing steps and data acquisition 
were performed in Google Earth Engine (GEE) (Gorelick et al., 2017). 

Thematic layers and datasets used in the index composition are listed 
in Table 1 and described in the following subchapters. Time series data 
for evapotranspiration, precipitation and NDVI were extracted for the 
period 2003–2021 and mean values were calculated over this period. All 
other datasets, however, mark a fixed point in time. 

2.2.1. Groundwater vegetation interaction (GVI) 
Besides parameters that define groundwater potential in terms of 

groundwater storage (Rodell et al., 2007), yield (Nampak et al., 2014), 
or quality (Dhar et al., 2015), the interaction between groundwater and 
vegetation must be characterised to map pGDV. The most limiting 
parameter for the growth and survival of GDV is root access to 
groundwater resources (Doody et al., 2017; Gomes Marques et al., 
2019). Other studies on GDV further focus on areas that maintain 
greenness constant during dry periods, between seasons and interann
ually (e.g., Liu et al., 2021; Gou et al., 2015; Páscoa et al., 2020). ET 
rates exceeding precipitation further indicate external water inflows to 
the ecosystem, such as groundwater (Doody et al., 2017). 

2.2.1.1. Root distance to groundwater (RDGW). To estimate whether 
roots may access groundwater resources, we combined three global 
datasets related to hydrogeology (GWTD), soil texture and vegetation 
(rooting depth) (Link et al., 2023). Globally modelled natural patterns of 
GWTD are extracted from Fan et al. (2013). The model is forced by 
climate, terrain, sea level and GWTD observations (Fan et al., 2013). To 

Fig. 1. Concept to map pGDV in the Mediterranean by integrating global datasets related to climate, vegetation, topography, soil, geology, hydrology and land cover. 
Eleven thematic layers addressing groundwater vegetation interaction (GVI), soil water holding capacity (SWHC), topographic landscape wetness potential (TLWP), 
land use and land cover (LULC) and hydraulic conductivity of rocks (K) are combined in the index. Layers either estimate favourable site conditions or allow for the 
detection of pGDV. The final pGDV map can be used to specify areas for high-resolution regional identification of GDV. The index can be adopted for other semi-arid 
environments. Numbers in brackets refer to the respective equations in the text. Abbreviations: ECOGDV - Ecohydrological potential of GDV; P% - Phreatophyte 
coverage; F - Mean moisture value of non-phreatophyte species. 
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account for the actual level of accessible water, capillary rise in different 
soil texture classes for the maximum depth available (200 cm) (Hengl, 
2018) was added to the water table. Experimental results from Shen 
et al. (2013) are used to derive capillary fringe thickness in meters for 
each soil textural class. Defining thresholds for shallow GWTD as pro
posed e.g., by Doody et al. (2017) is not suitable on the biome scale due 
to the high alternation of rooting depth in different vegetation types 
(Canadell et al., 1996) and phreatophyte species (e.g., Lewis, 2011; 
Thomas, 2014). Fan et al. (2017) modelled the maximum depth of root- 
water uptake on a global scale. This model integrates soil water profiles 
(calculated from atmosphere, soil texture and topography), water de
mand of ecosystems and 2200 rooting depth observations. By subtract
ing modelled mean maximum depth of root water uptake (Fan et al., 
2017) against the estimated level of groundwater capillary rise, we 
decided where groundwater uptake of plants is possible. Hence, values 
≥0 imply that the deepest roots reach the modelled water table and may 
use groundwater. 

2.2.1.2. NDVIdry. The application of multispectral RS-based indices 
allows the detection of trends and patterns of plant vitality which are 
crucial to identify pGDV (Eamus et al., 2006; Tweed et al., 2007; Pande 
et al., 2021). We utilised the mean NDVI (Rouse et al., 1974) (Eq. (1)) 
during the annual dry period between 2003 and 2021 (NDVIdry) from 
MOD13Q1: 

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)  

where ρNIR represents the reflectance in the near-infrared and ρRed is 
the reflectance in the red visible band. 

First, mean weekly precipitation was aggregated from daily CHIRPS 

data (Funk et al., 2015) for 607 HydroBASINS (level 6) (Lehner and 
Grill, 2013) over the period 2003–2021. The driest consecutive 16 
weeks per basin were considered to represent annual dry periods. 
NDVIdry was calculated in GEE for the last 8 weeks of the respective dry 
period, when soil moisture stores are likely depleted and photosynthetic 
activity is more likely dependent on groundwater (Páscoa et al., 2020). 
According to the CGLS-LC100 land cover map (Buchhorn et al., 2020), 
cultivated and managed vegetation, urban areas, water bodies and moss 
and lichen were excluded from the analysis (Gou et al., 2015), as were 
pixels with mean NDVI values below 0.3 during the dry periods from 
2003 to 2021 because they are unlikely to show natural pGDV (Páscoa 
et al., 2020). Finally, NDVIdry values were reclassified to five pGDV- 
classes in accordance with the final potentials, using unsupervised k- 
means clustering in GEE. Classes with high NDVIdry values are more 
likely to represent pGDV. 

2.2.1.3. pIDE. Integration of climate data helps to highlight areas 
where climatic conditions indicate external water inflow. A simple ratio 
between mean annual ET derived from MOD16A3 (Running et al., 2017) 
and mean annual precipitation from CHIRPS was calculated for the 
period 2003–2021 in GEE to evaluate the pIDE of each pixel (Doody 
et al., 2017; Link et al., 2023). Pixels showing higher annual ET rates 
than actual precipitation are more likely to be groundwater-dependent 
(Doody et al., 2017). Thresholds for pIDE were adapted from Doody 
et al. (2017) to derive five pGDV classes. 

2.2.2. Soil water holding capacity (SWHC) 
Soils affect groundwater infiltration and thus groundwater recharge 

(Doody et al., 2017; Sun et al., 2018). Hence, SWHC depends on the 
type, texture and depth of the soil (Mollinedo et al., 2015). Physical soil 

Fig. 2. Overview map of the Mediterranean biome and the beginning of the 16 driest weeks per year in 607 level 6 HydroBASINS (Lehner and Grill, 2013) calculated 
from daily CHIRPS precipitation data for the period 2003–2021. 
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properties such as clay (Cl%) and silt (Si%) content in the topsoil (0–30 
cm) (Gomes Marques et al., 2019) were collected from SoilGrids250 2.0 
(Poggio et al., 2021) and combined with global estimates of average soil 
thickness (ST) included from Pelletier et al. (2016) using Eq. (2). 

SWHC = (Cl%+ Si%)*ST (2) 

SoilGrids250 2.0 models global soil properties based on soil obser
vations from 240,000 locations and environmental variables including 
vegetation, terrain, climate, geology or hydrology (Poggio et al., 2021). 
Pelletier et al. (2016) include topography, climate and geology to model 
soil thickness for different landform types. Thick soils with high shares 
of clay and silt allow the least infiltration and highest storage of water 
(Barbeta et al., 2015; Martínez-Santos and Renard, 2020) and thus are 
less likely to hold pGDV. 

2.2.3. Topographical landscape wetness potential (TLWP) 
Topographic-related parameters are commonly used predictors for 

the occurrence of GWPZ (Thanh et al., 2022) and pGDV, as they describe 
the accumulation and runoff of water (Martínez-Santos et al., 2021). Our 
approach to defining pixel-wise TLWP integrates elevation, slope and 
landforms with hydrological-related parameters on natural drainage 
density (Dd) and flow accumulation. Elevation and slope were acquired 
from the global SRTM digital elevation model (DEM) (Farr et al., 2007) 
in the GEE. Groundwater availability is often limited at higher eleva
tions (Pande et al., 2021), whereas flat slopes generally indicate higher 
infiltration capacity (Gomes Marques et al., 2019) and thus low runoff 
and higher groundwater recharge (Magesh et al., 2012). SRTM-derived 
landforms based on hillslope position from Theobald et al. (2015) help 
to deduce groundwater movement and storage (Abijith et al., 2020) and 
hence the position of pGDV in the landscape. Valleys and flat slopes are 
related to water accumulation and support interaction between surface 
water and groundwater (Duran-Llacer et al., 2022). Peaks or ridges, on 

the other hand, support runoff and are therefore assigned low ground
water potential (Duran-Llacer et al., 2022; Pande et al., 2021). However, 
hydrological parameters complement topography-derived GWPZ 
(Thanh et al., 2022). For instance, natural drainage density, i.e., the 
length of streams within a specific area (Lin et al., 2021), is crucial to 
address groundwater availability. High Dd implicates less infiltration 
and hence lower groundwater potential (Arulbalaji et al., 2019). Global 
basin-wise Dd was extracted from Lin et al. (2021). The movement of 
water across the surface is represented by flow accumulation (Münch 
and Conrad, 2007), which is calculated in the MERIT hydro map from 
flow direction and describes the amount of the upstream catchment area 
(pixels) that drains into each pixel (Yamazaki et al., 2019). Hence, it 
allows for extracting pixels with high water accumulation such as stream 
channels but also wet areas that likely contain pGDV (Münch and 
Conrad, 2007). We adjusted thresholds for the five FA classes from 
Duran-Llacer et al. (2022) to target pGDV in the Mediterranean. Hence, 
pixels showing the highest flow accumulation (streams) are assigned the 
highest potential to include pGDV. 

2.2.4. Land use land cover (LULC) 
Hydrological dynamics such as infiltration or soil moisture, and 

hence groundwater availability, are affected by current LULC (Arulbalaji 
et al., 2019). LULC products allow locating classes such as forests, 
shrubland, urban areas or cropland and reclassifying them based on 
their likelihood to contain pGDV (Duran-Llacer et al., 2022). For our 
purpose we chose the CGLS-LC100 global land cover map from 2019 due 
to its high differentiation of 22 LULC classes, a resolution of 100 m and 
an overall accuracy of 80 % (Buchhorn et al., 2020). However, non- 
natural LULC classes (cultivated and managed vegetation, urban / 
built up) and water bodies were excluded from the final index to map 
natural pGDV only (Gou et al., 2015). 

Table 1 
Compilation of datasets used for the pGDV index. Input datasets are globally and openly available as well as ready-to-analyse and easy-to-use. Abbreviations: ET – 
Evapotranspiration; Prc – Precipitation; GWTD – groundwater table depth; Cf – Capillary fringe, Rd – Rooting depth; Perm – Intrinsic permeability; GWT – groundwater 
temperature; LULC – Land use land cover, Cl% – Clay content; Si% – Silt content; ST – Soil thickness; Dd – Drainage density; FA – Flow accumulation; LF – Landforms; Sl 
– Slope; El – Elevation.  

Parameter Factor Application Dataset Spatial 
resolution 

Unit Data source 

GVI Climate (ET) Calculation pIDE MOD16A3 500 m kg/m2/ 
8day 

Running et al., 
2017 

GVI Climate (Prc) Calculation pIDE CHIRPS 2.0 0.05 ◦ mm Funk et al., 2015 
GVI Hydrogeology 

(GWTD) 
Root distance to groundwater Global Patterns of Groundwater Table Depth 30 s m Fan et al., 2013 

GVI Soil (Cf) Root distance to groundwater OpenLandMap Soil texture 250 m m Hengl, 2018 
GVI Vegetation (Rd) Root distance to groundwater Maximum depth root water uptake 30 s m Fan et al., 2017 
GVI Vegetation 

(NDVIdry) 
Vitality dry period MOD13Q1 250 m – Didan, 2015 

SWHC Soil (Cl%) Infiltration and storage of 
precipitation water 

SoilGrids250 2.0 250 m g/kg Poggio et al., 
2021 

SWHC Soil (Si%) Infiltration and storage of 
precipitation water 

SoilGrids250 2.0 250 m g/kg Poggio et al., 
2021 

SWHC Soil (ST) Infiltration and storage of 
precipitation water 

Average Thickness of Soil, Regolith, and 
Sedimentary Deposit Layers 

1 km m Pelletier et al., 
2016 

TLWP Hydrology (Dd) Low Dd implies high groundwater 
potential 

Global Dd Watersheds km− 1 Lin et al., 2021 

TLWP Topography (FA) Water movement on surface MERIT Hydro 3 s – Yamazaki et al., 
2019 

TLWP Geomorphology 
(LF) 

Interaction between surface water 
and groundwater 

Global SRTM Landforms 90 m – Theobald et al., 
2015 

TLWP Topography (Sl) Percolation of water into soil SRTM 30 m % Farr et al., 2007 
TLWP Topography (El) Groundwater availability SRTM 30 m m a.s.l. Farr et al., 2007 
LULC Land cover Classification and masking of LULC 

classes 
CGLS LC100 100 m – Buchhorn et al., 

2020 
K Geology (Perm) Calculation K GLHYMPS 10 km2 m2 Huscroft et al., 

2018 
K Hydrogeology 

(GWT) 
Calculation K Global patterns of shallow groundwater 

temperatures 
1 km ◦C Benz et al., 2017  
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2.2.5. Hydraulic conductivity rocks (K) 
The geological setting determines the existence of GWPZ in any 

terrain as infiltration depends primarily on the permeability of different 
rock types (Abijith et al., 2020). To directly account for permeability, we 
calculated K in m/s using Eq. (3) (Hubbert, 1956). 

K = Ki*g/v (3)  

where K is the hydraulic conductivity, Ki is the intrinsic permeability, g 
is the standard acceleration due to gravity (9.81 m/s2) and v represents 
kinematic viscosity. Global intrinsic logarithmic permeability was 
extracted from Huscroft et al. (2018). Permeability was multiplied by 
0.1 and the logarithm was solved to receive Ki in m2 (Huscroft et al., 
2018). Kinematic viscosity, calculated as a function of temperature and 
salinity, was derived following preceding studies (Dorsey, 1940; Weast, 
1987). After obtaining values of kinematic viscosity in the common 
range of groundwater temperature (0 ◦C – 60 ◦C) and with a salinity of 0 
ppm, a fourth-degree polynomial function (R2 = 0.99) was applied to 
interpolate data and calculate global kinematic viscosity (v) in m2/s 
from groundwater temperature (GWT) (Benz et al., 2017) (Eq. (4)). 

v = (4.3 ê ( − 9)*(GWT)̂ 4 − 2.1ê ( − 6)*GWT̂ 3
+ 4.1 ê ( − 4)*(GWT)̂ 2 − 3.6 ê ( − 2)*GWT+ 1.6 )*0.000001

(4) 

In general, high hydraulic conductivity of the upper geological layer 
indicates deeper infiltration of water and reduced accessibility of 
groundwater for plants. 

2.3. Weighting of thematic layers 

Weighting assessment is crucial to prioritise the importance of 
several thematic layers for identifying pGDV (Doody et al., 2017; Duran- 
Llacer et al., 2022). In general, weight assessment accounts for the 
reliability of the different layers to identify pGDV as well as for the ac
curacy of the datasets used (Doody et al., 2017). Regional studies assume 
varying influence for several layers on pGDV’s distribution and density 
and hence a strong need for weighting, especially in multicriteria ana
lyses (Gomes Marques et al., 2019). However, the assignment of weights 
has a major impact on the uncertainty in multicriteria analyses and 
hence influences the final results (Fildes et al., 2023). We tested and 
combined the two most popular models used in GWPZ mapping (Thanh 
et al., 2022) to assign weights to each thematic layer and calculate 
different versions of the pGDV index to investigate how sensitive the 
final map accuracy is to different weightings. Expert-based AHP and 
predictive RF classifiers are presented in detail in the following sections. 

2.3.1. Analytical Hierarchy Process (AHP) 
Expert-based AHP (Saaty, 1986) is most commonly used in delin

eating GWPZ (Thanh et al., 2022), but was recently also used to map 
pGDEs regionally (Fildes et al., 2023; Rampheri et al., 2023). Following 
the procedure proposed by Rampheri et al. (2023), we decided on 
relative weights based on the mutual consensus, in our case the five 
authors from the fields of botany, hydrogeology, and remote sensing. 

For each classified thematic layer, we defined relative weightings 
(single value per layer) according to the Saaty scale (1–9) in a pairwise 
comparison matrix (Arulbalaji et al., 2019; Pande et al., 2021) within an 
AHP (Goepel, 2018). Weightings were assigned in terms of environ
mental suitability for pGDV occurrence, pGDV detection and quality of 
the implemented datasets to address the influence on groundwater 
availability for plants (Pande et al., 2021). Weighting the layers is an 
iterative process considering known positions of GDV and weightings 
assigned in similar studies (e.g., Doody et al., 2017; Duran-Llacer et al., 
2022; Gomes Marques et al., 2019) to calibrate the results. At last, the 
consistency of the pair comparisons is validated by a consistency ratio 
that should be ≤0.1 to continue the analysis (Saaty, 1990). AHP shows 
fast results but depends on expert opinion, thus the results are subjective 

(Thanh et al., 2022). 

2.3.2. Random Forest (RF) 
RF are predictive machine learning models that use an ensemble of 

uncorrelated decision trees to predict information, i.e., classes or values 
(Breiman, 2001). We trained three RF classifiers in three different 
Mediterranean regions, where information on potential or actual GDV 
locations was available. RF classifiers were used to predict modelled and 
known locations of GDV based on the eleven thematic layers. Potential 
GDV locations were extracted from studies in Australia (Doody et al., 
2017), California (USA) (Klausmeyer et al., 2018) and the Iberian 
Peninsula (IP) (Páscoa et al., 2020). Because the studies differ in terms of 
GDV mapping methods (expert-based weighted pGDV index in 
Australia, habitat and species mapping in California, remote sensing 
pGDV based on NDVI time series in the IP), input data and final reso
lution, multiple RF were applied, also to analyse differences in layer 
importance in different regions. 

We selected 500 random points across all GDV classes for each re
gion, with two classes in California and the IP (low and high pGDV) and 
four classes in Australia (low, moderate, high, and very high pGDV). For 
each region, the plots were split into 80 % training and 20 % validation 
sets and a RF classifier was trained using the thematic layers as input. 
Non-natural LULC classes were masked before the implementation. 

In a RF, the Gini impurity index was used to measure the importance 
of each feature (thematic layers) in the model. Gini impurity measures 
the probability of misclassifying a randomly chosen variable. Features 
with a larger decrease in Gini impurity are more important because they 
result in more homogeneous subsets (Breiman, 1984). Finally, the 
relative importance of each layer was extracted from the trained clas
sifier (Murmu et al., 2019; Singh et al., 2013) and assigned as mean 
value over all regions (RF_mean). Additionally, the mean of weightings 
derived from AHP and RF_mean was calculated for each layer to 
combine expert-based and statistical approaches (AHP_RF). 

2.4. Index calculation 

To calculate the pGDV index, eleven thematic layers targeting GVI, 
SWHC, TLWP, LULC and K were overlaid in a novel multicriteria index. 
Firstly, pre-processing of the single layers include reclassification, cor
relation analysis, harmonisation and weight assessment. Therefore, 
input vector data such as Dd and intrinsic permeability were rasterized. 
Subsequently, all thematic raster layers were reclassified to five classes 
to estimate the potential of each pixel for the presence of pGDV (very 
high (5) to very low (1)) using statistical or manual thresholds. No data 
pixels are classified as 0. The distinction of five classes was not possible 
for RDGW, K and LF. Hydraulic conductivity (K) was reclassified based 
on existing thresholds (Freeze & Cherry, 1979) that define aquifer, 
aquitard and aquiclude. RDGW shows if the deepest roots reach the 
groundwater table or not. Intermediate classes were not distinguished. 

Pearson correlation, derived from ‘ArcGIS Multivariate Tool’, was 
below 0.5 for all thematic layers, which indicates independency of the 
index variables. Consequently, all initial considered layers are included 
in the final index calculation (Duran-Llacer et al., 2022). 

After reclassification and correlation analysis, input layers were 
harmonised in terms of extent, resolution (500 m) and projection (WGS 
1984, EPSG:4326) using the spatial_sync_raster function (nearest neigh
bour interpolation) in the R-package ‘spatial.tools’ (Greenberg, 2021). 
All eleven layers and their respective class boundaries are summarised in 
Table 2. The derived classes represent potentials for each layer to either 
hold or identify pGDV. 

Eq. (5) shows the final index that overlays all thematic layers and 
their respective weightings to identify pGDV. We calculated four 
different versions of the pGDV index with varying weights derived from 
1) AHP; 2) RF_mean; 3) AHP_RF and 4) unweighted (see Section 2.2.6).  

L. El-Hokayem et al.                                                                                                                                                                                                                           



Science of the Total Environment 898 (2023) 166397

7

The resulting pGDV values were masked against the LULC layer, 
excluding cropland, urban areas, bare areas and water bodies, to map 
natural pGDV only. All remaining pixels were reclassified into five 
classes (very low to very high pGDV) using Jenks natural breaks (Gomes 
Marques et al., 2019) in each region (Mediterranean Basin, Chilean 
Matorral, California, South Africa, Australia) separately, to account for 

differences in vegetation (Pignatti, 2003), phreatophyte species (e.g., 
Gomes Marques et al., 2019; Lewis, 2011; Thomas, 2014) and envi
ronmental characteristics derived from the thematic layers between the 
regions. Areal shares of high and very high pGDV were finally calculated 
for level 8 HydroBASINS (Lehner and Grill, 2013) and reclassified to 
quartiles. 

2.5. Plausibility analysis 

The plausibility analysis should allow the selection of the weighting 
model from the four different approaches, which then has been used for 
the final pGDV map for the Mediterranean biome. Therefore, we 
compared the results to GDV locations in Campania (El-Hokayem et al., 
2023 and this study) and California (Klausmeyer et al., 2018) as well as 
to a pGDV layer for Australia (Doody et al., 2017). In California, GDV 
was mapped based on vegetation alliances, vegetation types, and habitat 
types and assessment of whether the dominant species is a phreatophyte 
(Klausmeyer et al., 2018). Doody et al. (2017) mapped pGDV based on 
water use of vegetation, shallow groundwater, low SWHC and GDV 
species using a weighted index. Resulting pGDV polygons were ras
terized and harmonised to match our final index map. 

Ground truth vegetation data was obtained from botanical field 
campaigns in Campania (Italy). In 2021, 116 vegetation plots (10 m ×
10 m) were collected in low permeable terrains (El-Hokayem et al., 
2023). In 2022, 120 plots (10 m × 10 m) were collected in low, medium 
and high permeable regions. For each plant species we assigned adapted 
Ellenberg (1974) moisture values (Pignatti et al., 2005), which are 
helpful to characterise ecological site conditions and hence groundwater 
dependency (Killroy et al., 2008). Each species was further classified as 
phreatophyte or not based on studies of phreatophyte species (e.g., 
Gomes Marques et al., 2019; Lewis, 2011; Thomas, 2014). 

All vegetation plots were classified to represent GDV likelihoods 
using a simple ecohydrological rule set introduced in El-Hokayem et al. 
(2023) considering plot-wise phreatophyte coverage (P%) and mean 
moisture value of non-phreatophyte species (F). We adjusted the rule set 
to derive five final classes. Consequently, each plot was classified into 
five classes for P%: 1) non-GDV (P% < 1); 2) unlikely GDV (P% = 1–25); 
3) as likely as unlikely GDV (P% = 25–50); 4) likely GDV (P% = 50–75); 
5) GDV (P% > 75) and F: 1) non-GDV (F < 3 (arid)); 2) unlikely GDV (F 
= 3); 3) as likely as unlikely GDV (F = 4); 4) likely GDV (F = 5) and 5) 
GDV (F > 5 (well supplied with water)). Finally, the ecohydrological 
potential of GDV (ECOGDV) was calculated from P% and F-derived 
classes (1–5) as follows: 

ECOGDV =
2*P% + F

3
(6) 

Locations that were used in the weight assessment with RF (Australia 
and California) were excluded prior to the plausibility analysis. We also 
first merged the five derived pGDV classes into two classes (very low to 
low and moderate to very high) to obtain a nominal scale. The same 
aggregation was applied for the reference data in Campania and 
Australia. Then, we calculated percentage agreement for the two classes 
compared to GDV locations in Campania (pGDV extracted for 236 
vegetation plots) and pGDV in Australia (pixel-wise comparison of 
527,244 pixels). Therefore, we divided the total number of correct pixels 
per class by the total number of pixels in that class as derived from the 
reference data (Congalton, 1991). As only polygons with mapped GDV 
exist for California, we calculated the proportion of moderate to very 

Table 2 
Reclassification of the input thematic layers according to their potential of GDV 
occurrence based on statistical (quantiles, Jenks natural breaks, k-means) or 
manual classes.  

Thematic layer Method Class boundaries Rank 

Root distance to 
groundwater 

Manual ≥ 0 5 
< 0 1 

NDVIdry k-means centroids  
0.78 5 
0.64 4 
0.52 3 
0.42 2 
0.34 1 

Potential inflow 
dependency 

Manual (Doody 
et al., 2017) 

> 1.22 5 
≤ 1.22 4 
≤ 1.10 3 
≤ 0.99 2 
≤ 0.90 1 

Soil water holding 
capacity 

Quantiles ≤ 38.8 5 
≤ 58.1 4 
≤ 445.7 3 
≤ 1608.5 2 
≤ 4941.6 1 

Elevation [m a.s.l.] Natural breaks ≤ 278 5 
≤ 674 4 
≤ 1170 3 
≤ 1943 2 
≤ 4658 1 

Slope [◦] Natural breaks ≤ 1.9 5 
≤ 6.9 4 
≤ 13.0 3 
≤ 20.8 2 
≤ 59.0 1 

Landforms Manual valley 5 
lower slope (flat) 4 
upper slope (flat); lower slope 3 
peak/ridge; mountain/divide; 
cliff; upper slope 

1 

Drainage density 
[km− 1] 

Natural breaks ≤ 0.3 5 
≤ 0.5 4 
≤ 0.6 3 
≤ 0.8 2 
≤ 1.2 1 

Flow accumulation 
[n cells] 

Manual (Duran- 
Llacer et al., 
2022) 

> 5000 5 
100–5000 4 
20–100 3 
5–20 2 
0–5 1 

Land use land 
cover 

Manual herbaceous wetland 5 
closed and open forest, 
evergreen broad leaf 

4 

shrubs, other forests types 3 
herbaceous vegetation 2 
bare / sparse vegetation 1 
cultivated and managed 
vegetation, urban / built up, 
water bodies 

mask 

Hydraulic 
conductivity [m/ 
s] 

Manual (Freeze & 
Cherry, 1979) 

≤ 1e-8 5 
≤ 1e-6 3 
> 1e-6 1  

pGDV =

(
(RDGW*w1) +

(
NDVIdry*w2

)
+ (pIDE*w3) + (SWHC*w4) + (El*w5) + (Sl*w6) + (LF*w7) + (Dd*w8) + (FA*w9) + (LULC*w10) + (K*w11)

)

∑11
i=1wi

(5)   
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high pGDV pixels in these polygons, which relates to 3203 pixels of our 
pGDV map. 

Based on the percentage agreement, we finally calculated Cohen’s 
Kappa (κ) to interpret interclass correlation. The κ measures the agree
ment between reference data and classification, while also accounting 
for chance agreement between classes and was calculated using Eq. (7) 
(Cohen, 1960). 

κ =
po − pc

1 − pc
(7)  

where po is the observed agreement between raters and pc is an esti
mation of the ‘per chance’ agreement. Despite, documented flaws in the 
use of κ to measure accuracy of classified images in RS (e.g., Foody, 
2020; Pontius and Millones, 2011) we used κ, as we analysed the 
agreement beyond change (Foody et al., 2020) of nominally scaled 
pGDV maps. 

3. Results 

3.1. Thematic layers 

Spatial patterns for each reclassified thematic layer in the Mediter
ranean biome are presented in Figs. 3-5. 

Fig. 3 highlights those layers contributing to groundwater vegetation 
interaction (GVI). Patterns of shallow GWTD (≤10 m) explain 89 % of 
the pGDV, classified from RDGW, while deep roots (≥10 m) are found in 
31 % of the high pGDV. High pGDV is extracted in all regions along river 
courses and around waterbodies in the inland. Moreover, wetlands and 
lagoons of river deltas, such as the ‘Parc naturel régional de Camargue’ 
in Southern France are classified as high pGDV. Large patterns where the 
GWTD exceeds rooting depth are located in Southern Maghreb, inland 
Australia and Northern Chile, which is in line with patterns observed for 
NDVIdry. Based on NDVIdry, 45 % of the natural vegetation pixels indi
cate low pGDV and 22 % show at least high pGDV. Pixels, with high 
pIDE are more commonly found in coastal areas. Thus, 90 % of the pixels 
are not inflow dependent, as ET is lower than precipitation. Contiguous 
areas with high pIDE can be found on the Greek coast and islands in the 
Aegean Sea and the Californian coast, also in accordance with high 

NDVIdry and low RDGW. A belt of high pIDE is present in the Southern 
Atacama Desert in Chile which is not pronounced for NDVIdry or RDGW. 

Fig. 4 highlights pGDV locations suggested by geology, soils, and 
land cover. Large patches of favourable soil conditions for groundwater 
recharge and hence pGDV can be found on thin and sandy soils in the 
North-Western part of the IP, West-Australia, South Africa and the 
Southern part of the Maghreb, i.e., on Regosols, Leptosols or Arenosols 
(Poggio et al., 2021). However, regions with water-holding soils are 
concentrated e.g., in Eastern Australia or in the high steppe plateaus 
between Morocco and Algeria and make up around 30 % of the whole 
Mediterranean. 

LULC classes indicating cultivated and managed vegetation, urban 
areas or water bodies (29 % of the Mediterranean area) were excluded 
from our analysis. Bare lands with low pGDV can be found in Southern 
Maghreb and the Atacama Desert in Chile. For 41 % of the area, mod
erate potentials were assumed, as no further discrimination of pGDV was 
possible from the given LULC classes. Larger areas of evergreen trees 
that may depend on groundwater usage are located in Western Australia 
and Southern Chile but represent only 1 % of the total area. Those areas 
in Western Australia have also high potentials for GVI. 

Patterns of low permeability and expected shallow groundwater 
circulation derive from hydraulic conductivity. Low to high potentials 
for pGDV are distributed throughout the whole biome, often in close 
proximity. However, 27 % of the lithological units are likely to hold 
pGDV, such as in central Spain or South Africa, where sedimentary rocks 
predominate. For 53 % of the Mediterranean, the suitability for pGDV is 
low due to geology, e.g., in carbonate sedimentary rocks in Western 
Australia and Italy, or volcanic rocks in Chile (Hartmann and Moosdorf, 
2012). 

Layers determining TLWP are presented in Fig. 5. Higher altitudes 
and expected lower pGDV can be found primarily in Atlas, Andes, 
Apennines or Taurus mountains. Here, steep slopes >20.8◦ also indicate 
surficial runoff and less recharge. Whereas, coastal areas, Australia, 
Southern Chile and the Western part of the IP are characterised by al
titudes below 674 m a.s.l. and flat slopes, favouring the presence of 
pGDV. Preferable geomorphological conditions for pGDV are refined in 
the IP and Maghreb. Watersheds along the coastline of the Mediterra
nean Basin, South Africa or Australia show low Dd, while inland areas in 

Fig. 3. Thematic layers that indicate groundwater vegetation interaction (GVI) in the five Mediterranean sub-regions. RDGW = Root distance to groundwater; 
NDVIdry = Normalized Difference Vegetation index in the dry period; pIDE = potential inflow dependency. 
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Fig. 4. Thematic layers that indicate soil water holding capacity (SWHC), land use land cover (LULC) and hydraulic conductivity of rocks (K) in the five Medi
terranean sub-regions. 

Fig. 5. Thematic layers that indicate topographic landscape wetness potential (TLWP) in the five Mediterranean sub-regions.  
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Turkey, Greece and the IP have high Dd. Areas of concentrated flow 
(high FA) such as streams are distributed in the whole biome and make 
up 16 % of the area. In general, patterns of high FA resemble landforms 
with high pGDV such as valleys. Nevertheless, FA still refines pixels 
towards which surface water flows and is more likely to accumulate. 
Low FA and thus decreased water availability were classified for 67 % of 
the pixels. 

3.2. Weightings from AHP and RF 

Detailed results from both weighting approaches (AHP and RF) are 
presented in Tables 3 and 4. Additionally, Table 5 summarises the 
weightings applied for the biome-wise map. 

Highest mean weightings from AHP and RF_mean were calculated 
for NDVIdry (16.1), FA (13.9), LF (10.7) and pIDE (9.4). However, dif
ferences exist between both weight assessments (AHP and RF_mean) as 
well as across the different Mediterranean regions. The highest varia
tions between the methods are found for Dd and elevation and K where 
weightings from RF_mean are twice as high as from AHP. Importance 

found for FA and LF highly resemble each other. Across the regions, 
RF_mean weightings widely differ for pIDE, slope and elevation. 

3.3. Plausibility analysis 

The plausibility of the results varies depending on assessed layer 
weightings compared to GDV locations or potentials in Campania 
(CAM), California (CAL) and Australia (AUS) (Table 6). Compared to 
AUS, results from the unweighted index show the highest consistency of 
pixels indicating at least moderate pGDV. However, the comparison 
suggests an overestimation of pGDV, as 80 % of low pGDV pixels in AUS 
are assigned to higher potentials, resulting in poor agreement according 
to κ. Depending on the applied weightings, 86 % to 99 % of likely GDV or 
GDV in CAM were located in areas with at least moderate suitability for 
the occurrence of pGDV. Based on κ, a moderate agreement (0.41) is 
presented for the unweighted index. Also, for CAL, the highest plausi
bility was found using the unweighted index, as only 13 % of the GDV 
area is located in regions indicating very low to low pGDV, and good 
agreement was derived. 

Table 3 
Pairwise comparison matrix used in the AHP to calculate respective weightings between eleven thematic layers based on expert opinion. Values range between 0.25 
(row layer strongly less important than column layer) to 4 (row layer strongly more important than column layer). The consistency ratio was 0.048, hence the 
comparisons are consistent and derived weightings are reliable.  

Thematic layer pIDE RDGW NDVIdry SWHC FA LF Sl El Dd LULC K 

pIDE  1  3  0.33  1  1  1  2  3  3  2  3 
RDGW  0.33  1  0.25  1  0.5  1  3  3  3  0.5  2 
NDVIdry  3  4  1  2  1  3  3  4  4  2  3 
SWHC  1  1  0.5  1  0.5  1  1  2  3  2  2 
FA  1  2  1  2  1  1  3  4  3  2  3 
LF  1  1  0.33  1  1  1  3  3  2  2  3 
Sl  0.5  0.33  0.33  1  0.33  0.33  1  4  1  1  2 
El  0.33  0.33  0.25  0.5  0.25  0.33  0.25  1  0.5  0.33  0.5 
Dd  0.33  0.33  0.25  0.33  0.33  0.5  1  2  1  2  1 
LULC  0.5  2  0.5  0.5  0.5  0.5  1  3  0.5  1  1 
K  0.33  0.5  0.33  0.5  0.33  0.33  0.5  2  1  1  1  

Table 4 
Weightings of all thematic layers derived from variable importance of RF classifiers trained by available pGDV maps from Australia, the Iberian Peninsula and Cal
ifornia (see Section 2.3). pGDV locations originate from maps in Doody et al. (2017); Páscoa et al. (2020) and Klausmeyer et al. (2018).  

Region pIDE RDGW NDVIdry SWHC FA LF Sl El Dd LULC K Training accuracy Validation accuracy 

Australia  6.0  3.5  10.3  12.1  16.0  13.0  5.5  3.7  13.9  6.6  9.5  0.73  0.51 
Iberian Peninsula  4.1  6.1  14.4  10.1  12.8  10.7  9.6  9.3  11.4  2.7  8.5  0.74  0.59 
California  10.0  4.7  12.1  9.5  12.1  8.5  7.2  8.7  13.0  5.2  9.0  0.94  0.82  

Table 5 
Final weights for all thematic layers derived from AHP, RF_mean and AHP_RF used for the different pGDV maps. In the unweighted version, all layers have been given a 
weight of 1.  

Weighting method pIDE RDGW NDVIdry SWHC FA LF Sl El Dd LULC K 

AHP  12.1  8.5  19.9  9.2  14.1  10.7  6.1  3.0  5.1  6.7  4.5 
RF_mean  6.7  4.8  12.3  10.1  12.8  10.8  7.4  7.3  12.8  4.8  9.0 
AHP_RF  9.4  6.7  16.1  9.7  13.5  10.8  6.8  5.2  9.0  5.8  6.8  

Table 6 
Percentage agreement of pGDV maps based on different layer weightings from AHP, RF_mean, mean of AHP and RF_mean (AHP_RF) and unweighted with GDV lo
cations (Campania: CAM, California: CAL) or pGDV (Australia: AUS). Numbers for AUS and CAM present the percentage of pixels in which the merged classes match. 
The proportion of moderate to very high pGDV classes inside mapped GDV polygons is shown for CAL. Cohen’s kappa (κ) expresses the level of agreement.  

Dataset Type Classes AHP [%] AHP_RF [%] RF_mean [%] unweighted [%] 

AUS pGDV (pixel) Very low – low  44.1  40.3  32.2  19.8 
Moderate – very high  53.6  59.1  66.6  79.2 
κ  − 0.06  − 0.09  − 0.16  − 0.27 

CAM pGDV field surveys (plot) Very low – low  8.6  18.5  33.3  32.1 
Moderate – very high  99.0  99.0  86.1  91.1 
κ  0.34  0.40  0.37  0.41 

CAL GDV locations (polygon) Moderate – very high  73.6  76.2  76.9  86.7 
κ  0.53  0.58  0.59  0.76  
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Compared to AUS, results from the unweighted index show the 
highest consistency of pixels indicating at least moderate pGDV. How
ever, the comparison suggests an overestimation of pGDV, as 80 % of 
low pGDV pixels in AUS are assigned to higher potentials, resulting in 
poor agreement according to κ. Depending on the applied weightings, 
86 % to 99 % of likely GDV or GDV in CAM were located in areas with at 
least moderate suitability for the occurrence of pGDV. Based on κ, a 
moderate agreement (0.41) is presented for the unweighted index. Also, 
for CAL, the highest plausibility was found using the unweighted index, 
as only 13 % of the GDV area is located in regions indicating very low to 
low pGDV, and good agreement was derived. 

Fig. 6 shows a spatial comparison between the unweighted pGDV 
index and the AUS, CAM and CAL maps. From a conservative point of 
view, it showed the highest agreement (CAL and CAM) with known GDV 
locations and high pGDV (AUS). 

3.4. Final pGDV map 

The final pGDV map and frequency distributions of different pGDV 

levels and area shares of high pGDV per basin are shown in Fig. 7. Re
gions with high pGDV are distributed throughout the Mediterranean 
biome. Occurrence increases in coastal areas and along riverine land
scapes. 31 % of the natural vegetation in the Mediterranean shows a 
high potential to be GDV. Moderate potentials were calculated for 37 % 
and 32 % have low or very low potentials. However, 11 % of 5331 level 
8 HydroBASINS (Lehner and Grill, 2013) in the biome have an area 
share of pGDV above 50 %. 

4. Discussion 

4.1. Global geodata and thematic layers 

Global datasets were selected for this study based on the findings on 
appropriate thematic layers for pGDV identification (see Chapter 2). The 
use of global datasets can overcome data coverage issues, and recently 
published datasets (e.g., Fan et al., 2013; Fan et al., 2017; Yamazaki 
et al., 2019) can improve the quality of global analyses. However, there 
remains a trade-off between the level of detail required and data 

Fig. 6. Plausibility analysis of a) pGDV from the unweighted index calculation against b) the pGDV layer of Australia (Doody et al., 2017); c) pGDV field surveys in 
the ‘Cilento, Vallo di Diano and Alburni National Park’ and d) a high-resolution GDV likelihood map for the ‘Mount della Stella’ area in Campania (Italy) (El- 
Hokayem et al., 2023); e) GDV locations in California (USA) (Klausmeyer et al., 2018). In a) and b) the ‘Danggali Conservation Park’ (Australia) is highlighted 
(relevant for discussion). 
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availability. For instance, the resolution of global faults extracted by 
Styron & Pagani (2020) is too coarse to match the expected spatial 
variability of GDV. As a consequence, regions with high groundwater 
potential due to fractured aquifer potential (Münch and Conrad, 2007; 
Duran-Llacer et al., 2022) could not be included in the index calculation. 

Other global datasets may have had weaknesses, which the auto
mated weighting approaches with RF or plausibility analysis ultimately 
revealed. The availability of datasets on GWTD (Fan et al., 2013), 
rooting depth (Fan et al., 2017) and capillary rise (Hengl, 2018) has 
allowed us to more directly account for root access to groundwater 
(RDGW) over larger areas, where the utilisation of one threshold for 
shallow GWTD was insufficient (see Section 2.2.1). The RF-based ap
proaches clearly underestimated this relevant parameter, which in turn 
raises the question of introducing weightings at the sub-biome level, as 
used for ecozones in Australia (Doody et al., 2017). Nevertheless, the 
application of the approach leads to plausible results at the global level, 
as shown by the plausibility analysis and confirmed by the study of Link 
et al. (2023) on global pGDE. Other aspects, such as unevenly distrib
uted training data (e.g., Fan et al., 2017; Poggio et al., 2021), errors in 
LC100 LULC classes that are not associated with natural GDV but are 
likely to be detected by the pGDV index (e.g., irrigated cropland, 
waterbodies), upscaling of detailed LULC information, or downscaling of 
hydroclimatic data may be potential sources of uncertainty that global 
datasets introduce into the global index. 

In terms of computational and storage requirements, continuous 
medium-scale NDVI time series were compiled from MODIS data, 
although high-resolution Landsat or Sentinel-2 time series used by Box 
et al. (2023) or Gou et al. (2015) on local scales, could have increased 
the spatial accuracy of the results. The plausibility analysis shows clear 
signs of overestimation of pGDV, which could be explained by the 

identification of e.g. drought-tolerant species that do not use ground
water but still maintain a constant vitality during a dry period, or areas 
with a persistent water supply from soil water (Gomes Marques et al., 
2019). 

Although, several global datasets (e.g., CHIRPS 2.0, Global Patterns 
of Groundwater Table Depth, Maximum depth root water uptake, Soil
Grids250 2.0) rely on similar input parameters and data for modelling, 
no intercorrelation was found between the reclassified thematic layers, 
in contrast to studies by Gomes Marques et al. (2019) or Duran-Llacer 
et al. (2023). In addition, the limited coastal coverage of some data (e. 
g., Benz et al., 2017; Lin et al., 2021) resulted in missing values and 
underrepresentation of pGDV in these areas with high probability of 
GDV occurrence (Doody et al., 2017). 

4.2. RF-based weights from regional data sets 

As mentioned in Section 2.3.2, it was not possible to derive a global 
RF model due to the differing training data of the included regional 
studies. Nevertheless, and despite the variations considered by the 
ecozone-wise weighting proposed by Doody et al. (2017), similar 
weightings would have been expected at the biome scale. However, the 
characteristics of individual thematic layers vary from region to region. 
For instance, small variations in elevation or slope in Australia (see 
Fig. 5) resulted in a lower weight, while large variations in pIDE in 
California (see Fig. 4) have led to a higher weight (Table 4). These 
variations are due to the fact that RF fits the parameter expressions of 
the training data. On the other hand, the random selection of training 
points may not represent all variations in the thematic layers, resulting 
in known overfitting issues of RF (Belgiu and Drăguţ, 2016). 

However, in particular K, SWHC, Dd, and SI show similar weightings 

Fig. 7. Final Mediterranean pGDV map at 500 m resolution based on the unweighted index.  
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across the regions (Table 4) and hence were evaluated to influence the 
occurrence of pGDV formed by azonal phreatophyte vegetation in a 
similar way. The averaging (RF_mean) finally tested for the global pGDV 
index can be seen as a compromise, as it can compensate for over- and 
underestimations of weights at the regional scale. 

Classification accuracies derived from RF are low for pGDV esti
mated for Australia (Doody et al., 2017) or the IP (Páscoa et al., 2020) 
compared to those for actual GDV locations in California (Klausmeyer 
et al., 2018), which reach a remarkably high level (Table 4). At first 
glance, this suggests that, at least for the RF-based approach presented, 
it is preferable to derive weights from actual GDV locations, which are 
primarily produced by taking field data into account, rather than using 
other pGDV datasets, which are inherently subject to uncertainty. 
However, it must be added that the resolution of the datasets used, the 
availability of the datasets and the different target (pGDE instead of 
pGDV), especially for the Australian dataset, as well as the possibly over- 
simplified, purely RS-based approach for the IP (Páscoa et al., 2020) 
were most likely also reasons for the low accuracy of these RF models. 

4.3. Global weights (AHP and RF_mean) 

In general, expert-based weights show notable differences depending 
on whether GDV, GDE or GWPZ is the subject of the analysis. As the 
proposed index focuses on vegetation, plant vitality in the dry period 
(NDVIdry) was given the highest weight in the AHP. The results are 
similar to the AHP of Fildes et al. (2023), who also point to improved RS 
technology as a reason for prioritising, for example, vegetation indices 
over ecosystem-characterising site conditions. Nevertheless, and espe
cially when appropriate thematic layers are available, geology, precip
itation and landforms are given the highest importance in pGDE (e.g. 
Duran-Llacer et al., 2022) or GWPZ mapping (e.g. Pande et al., 2021). 

RF-based results suggest that AHP overestimates the influence of 
NDVIdry and pIDE (Table 5). Similarly, AHP assess drainage density to be 
less important for mapping pGDV globally, e.g. due to its coarse ag
gregation at the catchment scale. Nevertheless, it was found to be the 
second most important weight in RF_mean. Also, in comparison with 
available regional studies, RF_mean and AHP showed different weight
ings. For AUS, GWTD is given the highest weight and the occurrence of 
known groundwater dependent species is the least important. (Doody 
et al., 2017). Similarly, the RDGW, i.e. the parameter adapted for global 
application, ranks fifth in the AHP, certainly slightly downgraded by the 
experts’ knowledge of its very strong generalisation. Conversely, based 
on the RF_mean used for weighting, RDGW is among the least important 
variables for predicting pGDV in this study. This was also observed by 
Gomes Marques et al. (2019) and can most likely be explained by poor 
data quality and the limitations of the globally modelled natural 
groundwater levels and rooting depths (see Section 4.1), which can 
hardly represent all local variations and anthropogenic impacts. 

As suggested by Gomes Marques et al. (2019), regression analysis can 
help overcome the problems of expert-based weighting to assign 
appropriate weights to thematic layers when modelling pGDV. Howev
er, due to the spatial variance of thematic layers, upscaling the approach 
to regional or even biome scale may not provide adequate results, as it 
requires appropriate adjustment to local environmental conditions. 

4.4. Final pGDV map and its application 

The final map at 500 m resolution is crucial to delineate regions with 
high pGDV in the Mediterranean. However, smaller pGDV patterns are 
not detected. The final map for the Mediterranean provides information 
on pGDV for a given time section (2003− 2021). Vegetation using 
groundwater outside of this period or vegetation affected by drought or 
fire may not have been identified as pGDV. The map confirms that pixels 
indicating natural vegetation in low permeable valleys or at low slope 
areas, where water accumulates and GWTD is shallow, which also show 
high vitality during the annual dry period and high pIDE while SWHC is 

low, are hence most likely to include pGDV. 
The unweighted index performs well in delineating pGDV at ex

pected GDV locations. For example, similar distribution patterns of 
pGDV derived from the index were observed in comparison to a local 
study in Southern Italy (see Fig. 7) based on high-resolution Sentinel-2 
timeseries analysis and local DEM data (El-Hokayem et al., 2023). 
However, after iterative weighting and adjustment of input data, pGDV 
occurrence is still overestimated, especially compared to the AUS pGDV 
layer, which may be due to differences in weights, thresholds and the 
aggregation of moderate to very high pGDV classes for the plausibility 
analysis. The differences observed in Australia are striking, where there 
is considerable variation between areas of low pGDV (Doody et al., 
2017) compared to moderate or high pGDV estimates derived from the 
index. To compare both maps against the backdrop of limitations of the 
Australian map (e.g., limited coverage, incomplete datasets, large 
polygons) (Doody et al., 2017), we assessed the water use of the vege
tation present in the ‘Danggali Conservation Park’ (see Fig. 6) and 
compiled a species list from ‘NatureMaps’ (Government of South 
Australia, 2023). Out of the ten most prevalent species, eight are linked 
to GDV (e.g., Dodonaea viscosa, Senna artemisioides, Olearia pimeleoides, 
Atriplex stipitate) (Department of Environment and Science, Queensland, 
2013), indicating that the prevalence of pGDV may be higher than 
estimated by the broad-scale assessment in the Australian pGDE Atlas 
(Doody et al., 2017). 

The accuracy of the pGDV index is limited by parameters that favour 
the occurrence of GDV instead of parameters that control the detection 
of GDV. In many regions the environmental site conditions may be 
suitable for pGDV occurrence although GDV is not present, which could 
explain the observed overestimation, as also reported by e.g., Box et al. 
(2022), El-Hokayem et al. (2023), and Fildes et al. (2023). 

As GDV is globally distributed and threatened, particularly in the 
Mediterranean biome, the novel global pGDV map of the Mediterranean 
biome can support their detection and management. For instance, the 
Mediterranean pGDV map can be used by regional authorities or re
searchers to select regions of interest where the proportion of pGDV is 
high and a detailed analysis of GDV is required, i.e. the combination of 
ground-based identification and high-resolution RS as shown e.g. by 
Klausmeyer et al. (2018) or El-Hokayem et al. (2023) is required. 
Overlaying maps with predicted groundwater declines, e.g. du to 
pumping or climate change, can, for instance, help to identify areas in 
need of biodiversity protection. 

5. Conclusion 

This study proposes a novel easy-to-use multicriteria index to iden
tify pGDV in the Mediterranean biome. The index integrates global 
geodata from different sources, complementing regional models on 
GWPZ with vegetation-related parameters to map pGDV at the biome 
scale. Eleven thematic layers are combined, targeting groundwater 
vegetation interaction, soil water holding capacity, topographic land
scape wetness potential, land use land cover and hydraulic conductivity 
of rocks. Overlaying environmental conditions together with vegetation 
dynamics and characteristics allows the determination of pGDV. 

The discussion underpinned that expert-based weighting from AHP 
can be subjective and hence prone to bias. On the other hand, RF can 
only be applied if there is sufficient training data to provide reasonable 
weighting. Thus, the results of the plausibility analysis imply that the 
overall weighting or general classification of thematic layers has limited 
applicability across regions. Furthermore, the highest plausibility 
resulting from the unweighted index suggests that the several site con
ditions included, are equally important in influencing the presence of 
pGDV, at least from a global perspective. Finally, the high agreement of 
the final map in particular with actual GDV information and field 
measurements indicates that the selection of thematic layers was 
appropriate. 

For further optimisation, the main goal would be to reduce the 

L. El-Hokayem et al.                                                                                                                                                                                                                           



Science of the Total Environment 898 (2023) 166397

14

overestimation of pGDV. This could be achieved by subdividing the 
biome into ecozones, possibly integrating further improved global 
datasets, and calibrating to more ground data. 

The novel map attributes 31 % of the natural vegetation pixels in the 
Mediterranean with a high potential to be GDV. Highest share occurs in 
lowlands close to the coast. Those areas indicate precipitation- 
independent high vitality and evapotranspiration of natural vegetation 
in low permeable valleys or at low slope areas where water accumulates 
and the groundwater table is shallow, while soil properties allow infil
tration. The results for the Mediterranean can support prioritisation of 
areas for essential regional high-resolution identification of pGDV. 
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