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Abstract

The field of laser-induced ultrafast demagnetization has gathered a lot of attention, at both

the experimental and theoretical level, for its possible technological applications. At the

ab initio level, most density-functional-based studies in this area use the local spin-density

approximation (LSDA) which is known to describe poorly the electronic structure of 3d

transition metals.

In this thesis we employ a correction to the LSDA, the Hubbard U correction, to bet-

ter account for Coulomb correlations among the localized d electrons and show that these

correlations alter significantly the amount of demagnetization in both ferro- and antiferro-

magnetic materials with the 3d transition metals manganese, iron, cobalt, and nickel. We

use the Hubbard U correction also as a tool to investigate the part that several laser pa-

rameters, such as pulse duration or intensity, play on the demagnetization dynamics. At the

LSDA level with frozen ions the demagnetization is due to spin-orbit mediated spin flips after

optical excitations. This in turn means that the rate of demagnetization depends critically

on several parameters of the laser pulse used. Turns out that the amount of energy carried

by the pulse is not a good indicator of how much a material will demagnetize and changes

in pulse duration and shape influence significantly the outcome. We relate these findings to

the electronic structure of the material and the phase space for optical transitions.
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Abstrakt

Das Gebiet der laserinduzierten ultraschnellen Entmagnetisierung hat aufgrund seiner mög-

lichen technologischen Anwendungen sowohl auf experimenteller als auch auf theoretischer

Ebene viel Aufmerksamkeit erregt. Für theoretische Forschung in diesem Bereich wird mei-

stens die Dichtefunktional mit der lokalen Spin-Dichte-Näherung (LSDA) verwendet. Von

Letzterer ist bekannt, dass sie die elektronische Struktur von 3d Übergangsmetallen schlecht

beschreibt.

In dieser Arbeit verwenden wir eine Korrektur der LSDA, die Hubbard U -Korrektur, um

Coulomb-Korrelationen zwischen den lokalisierten d-Elektronen besser zu berücksichtigen.

Wir zeigen, dass diese Korrelationen das Ausmaß der Entmagnetisierung sowohl in ferro- als

auch in antiferromagnetischen Materialien mit den 3d-Übergangsmetallen Mangan, Eisen,

Kobalt und Nickel deutlich verändern. Wir verwenden die Hubbard U -Korrektur auch als

Werkzeug, um die Rolle zu untersuchen, die verschiedene Laserparameter, wie Pulsdauer oder

Intensität für die Entmagnetisierungsdynamik spielen. Auf dem LSDA-Niveau mit eingefro-

renen Ionen ist die Entmagnetisierung auf Spin-Orbit-vermittelte Spin-Flips nach optischen

Anregungen zurückzuführen. Dies wiederum bedeutet, dass die Geschwindigkeit der Entma-

gnetisierung entscheidend von mehreren Parametern des verwendeten Laserpulses abhängt.

Es stellt sich heraus, dass die vom Puls übertragene Energiemenge kein guter Indikator dafür

ist, wie stark ein Material entmagnetisiert wird, und dass Änderungen der Pulsdauer und

-form das Ergebnis erheblich beeinflussen. Wir stellen die Verbindug diese Erkenntnisse mit

der elektronischen Struktur des Materials und dem Phasenraum für optische Übergänge her.
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Chapter 1

Introduction

Ever since Beaurepiare et al. first presented results of ultrafast demagnetization[1] (under

the picosecond mark) in 1995 (see figure 1.1), a vast amount of effort, both at the experi-

mental and theoretical level, has gone into trying to understand the mechanisms behind this

phenomenon[2]. All this work is justified not only by the continuous human quest for knowl-

edge but also by the possible technological advancements that a mastery of laser induced

ultrafast demagnetization could provide. These include an increase in the speed of data

storage by orders of magnitude[2], the creation of spintronic logic devices and the broader

field of spintronics[3], as well as applications on time-resolved magnetic imaging[4].

This is clearly a complex problem where several different processes play important roles.

The photons, the electrons, the lattice and the spins all interact with each other and all

interactions have different contributions, some of more importance than others, to the overall

process of femtosecond magnetism. This leads to a multitude of models attempting to

describe this process. Some of the more important ones are the three temperature model[1],

superdiffusive spin transport[5], Elliott-Yafet scattering induced spins flips[6], or spin-orbit

induced spins flips.[7]

Ab initio simulations are evidently of great interest when trying to gain insights into how

this phenomenon works. So far ab initio studies have investigated, for example, the role of

spin-orbit interaction for Ni and Co films [8], the influence of finite size effects [9] and the

possibility of demagnetizing correlated magnetic insulators [10]. These studies, and most ab

initio studies in this field, use time-dependent density functional theory (TDDFT), which

extends density functional theory (DFT) to the time domain enabling the application of

these ab initio tools to dynamical problems such as the change in magnetic moments under

the influence of an external field. The accuracy of DFT obviously depends on the density

functional used, of which there are numerous options to chose from. The local spin density

approximation (LSDA) is one of the most popular approximations used in ab initio TDDFT

9



10 CHAPTER 1. INTRODUCTION

Figure 1.1: The graph that started it all, sub-picosecond laser induced demagnetization
measured in ferromagnetic Ni, from ref. [1].

calculations in this area.[9, 11, 12] It is the simplest approximation possible, it was in fact

the first one proposed done so in the very same paper where Kohn and Sham first proposed

their DFT scheme[13]. Despite its simplicity it is a surprisingly effective tool, even more than

one would expect. And yet it has some known problems. It has, for example, a tendency to

delocalize the 3d electrons on transition metals. That is, the electronic structure of metals

such as iron or nickel is not properly described with the LSDA.[14] How important is a

correct description of these states in the demagnetization dynamics of materials containing

3d transition metals? That is one of the questions we will be looking at.

Another big issue with using the LSDA to describe demagnetization is that, to put it

plainly, it just does not work very well. Several studies have shown that the demagnetiza-

tion is severely underestimated when employing the adiabatic LSDA (ALSDA) in TDDFT

calculations.[11, 15, 16] That is perhaps not too surprising given the amount of complexity

ignored when using the ALSDA. For example one study [16] has found that memory effects

that are ignored in the ALSDA have a profound impact and produce demagnetization that

is larger and much closer to what is observed experimentally. The effects of phonons, usually

also neglected, are becoming better understood as well.[17] Another important difference

between the experimental results and those of computational simulations with the ALSDA

is what happens after laser pulse. In reality the magnetization recovers, in a much longer

time scale than that of the demagnetization [18], while in ab initio calculations that recovery

is not present[19]. Part of the problem is that longer calculations are much more expensive

and so simulations tend to focus on the initial process of demagnetization in only the first

few femtoseconds (as, we must confess, is also the case of the results present in this thesis).
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Another reason is that phonons likely play a key role in the recovery process and they also

lead to more demanding calculations as they require larger cells. This, coupled with the fact

that their lower time-scale means that they can be ignored in the first few femtoseconds,

leads to phononic effects being often neglected in ab initio simulations. We must again make

a mea culpa as we will also not consider phonons in our calculations but this is still an

important discrepancy with reality that we should keep in mind.

It is the objective of the present work to contribute to a better understanding of the

shortcomings of the ASLDA by investigating the role of correlations in demagnetization.

That is, how does a better description of the ground-state impact the demagnetization

dynamics in correlated systems? How does it affect the electronic structure of the systems

in question and how can we relate that to the demagnetization observed?

To do so we employed the DFT+U method to different types of magnetic systems. This

method is known to improve the electronic properties of 3d transition metals compared to

the LSDA while still being quite efficient numerically. The Hubbard U also helps us to

investigate the role played by various laser parameters, the ground-state electronic structure

and the spin-orbit correction.

This thesis is organized as follows. In the next chapter we lay the foundations of our

work. That means explaining the tools and concepts we will rely on for the rest of this work.

We will go into more detail on DFT as well as explain what exactly constitutes the LSDA

approximation. Then we move on to one way of improving on some of the shortcomings

mentioned above, the Hubbard U correction also referred to as LSDA+U . Because ours is a

dynamical problem a time-dependent theory is needed and so we will also go into some detail

on TDDFT including some numerical considerations that are required when implementing

it in practice. We then discuss spin-orbit coupling (SOC), a fundamental ingredient in time-

dependent laser induced demagnetization.

In chapter 3, we start showing the fruits of our labour by applying the tools mentioned

in chapter 2 to ferromagnetic materials. We first establish that our calculations are well

converged with regards to a number of computational variables before moving on to results

with the LSDA and LSDA+U . We finish this chapter not by looking directly at the effects

of the Hubbard U but by using it as a way to investigate the impact of several different laser

parameters on the demagnetization observed.

In chapter 4 we move on to a new class of materials, antiferromagnets. We follow the

structure of chapter 3 and start by laying out all the necessary convergence to guarantee

the validity of our results. Those results being the ones we show next, of the impact of

the Hubbard U on the electronic structure of the antiferromagnets we study and how that

changes their demagnetization dynamics. We conclude this chapter by investigating again
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the relationship between laser parameters, electronic structure and demagnetization.

The next chapter looks at the role of SOC on the demagnetization dynamics at this level

of theory. We investigate how the demagnetization proceeds without SOC, as well as with

different strengths for it.

In the final chapter we present the conclusions found throughout this thesis as well as

some of the challenges still present.



Chapter 2

Background

Before we start presenting the results of the work done in this thesis (which we will do in its

due course in the next chapters) we must first establish clearly the theoretical backdrop in

which it was conducted. We will be performing computational simulations of the processes

in question and investigating some of the shortcomings of some of the most popular methods

used to investigate ultrafast demagnetization and so it is important that we are familiar

with what these methods are, their theoretical basis, what approximations are used in the

calculations and some other theoretical considerations important for our problem. All of this

is addressed in this first chapter which is organized as follows.

The first section deals with our problem in the broadest of terms, how to tackle the

systems we are interested in, systems with many electrons and many atoms, i.e. how to

approach the many-body problem.

In the second section, we present what is one of the most popular theories used to solve the

many-body problem and the one used in the work presented here, Density Functional Theory

(DFT). We present the Kohn-Sham system, an ingenious solution to solve the problem in

practice, as well as some of the approximations used in it, the ones used in this work, the

Local Spin Density Approximation (LSDA) and an extension to it, used to better describe

localized electrons, the LSDA+U .

But ours is not a static problem and so in the third section, we present an extension

of DFT used to deal with time-dependent processes such as the demagnetization dynamics

we are interested in, known as Time-Dependent Density Functional Theory (TDDFT). We

introduce as well an extension of the LSDA to time-dependent problems, the Adiabatic Local

Spin Density Approximation (ALSDA), and also some important considerations regarding

the practical solution of the time-dependent Schrödinger equation, that is, how the time

propagation is achieved.

Finally, we pool all things together and present the equations we will be dealing with

13



14 CHAPTER 2. BACKGROUND

in the remaining chapters as well as some considerations on spin-orbit coupling (SOC), a

relativistic correction that plays an important role in ultrafast demagnetization.

2.1 Many-body problem

To study the problem of light-induced demagnetization in ferromagnetic solids we must first

know how to describe such systems. At the simplest level, discarding relativistic effects and

any external perturbation, a system of M nuclei and N electrons can be defined by the

Hamiltonian

Ĥ =− 1

2

∑
i

∇2
i +

1

2

∑
i ̸=j

1

|ri − rj|
−
∑
I

1

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
+
∑
i,I

ZI

|ri −RI |
,

(2.1)

where as usual lower case indices refer to the electrons and upper case indices correspond

to the nuclei. Atomic units (e = me = ℏ = 4πϵ0 = 1) have been used here and will

also be used throughout this text. The electronic part of the system is described in the

first two terms, −1
2

∑
i ∇2

i +
1
2

∑
i ̸=j

1
|ri−rj | , the first of which represents the kinetic energy

of the electrons and the second represents the electron-electron interaction. The two next

terms in the Hamiltonian represent the same quantities but for the nuclei, the kinetic energy

−
∑

I
1

2MI
∇2

I and the nucleus-nucleus interaction 1
2

∑
I ̸=J

ZIZJ

|RI−RJ |
. Finally, the last term∑

i,I
ZI

|ri−RI |
is the interaction between the electrons and the nuclei.

Now all that is left is to solve the time-independent Schrödinger equation

Ĥ({r}, {R})Ψ({r}, {R}) = EΨ({r}, {R}), (2.2)

to obtain the system’s wave-function Ψ({r}, {R}), where {r}, {R} represent the set of elec-

tronic ({r} = (r1, ..., rN)) and nucleic coordinates ({R} = (R1, ...,RM)), and then we could

calculate the expected value of any property of interest. Unfortunately, this problem is too

convoluted to solve in practice. The wave-function we would obtain from solving equation

2.2 is a function of 3N + 3M variables. There is just too much complexity, making solving

this problem directly infeasible.

We can, however, try to tackle the problem by simplifying it. The nuclei mass is much

bigger than the electron mass (around 1800 times bigger[20]) which means that the nuclear

motion is a lot slower than the electronic motion. In fact, we can consider that the electrons

move in a field created by the static nuclei and that they react instantaneously when the

nuclei move. This allows us to separate the problem into two new ones, one dealing solely

with the nuclear motion, and the other dealing with the electronic motion that depends on
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the positions of the nuclei simply as parameters. This is known as the Born-Oppenheimer

approximation. Since we care only about the electronic properties, the nuclear problem can

safely be ignored and we have thus successfully reduced our problem from 3N+3M variables

to only 3N . But alas 3N is still too much for any meaningfully interesting system, the sheer

amount of computational resources necessary is too big. An example of such difficulties, one

that is mentioned elsewhere in the literature[21], is that of storing the ground-state wave-

function of a simple atom, for instance, an oxygen one. An oxygen atom has eight electrons

and so our wave-function depends on 24 coordinates. If we store this in a very modest grid

with just 10 points for each coordinate that means we need to store 1024 numbers. If each

number is a byte that is 1024 bytes, a quantity much greater than we can feasibly hope to

deal with. And we haven’t even accounted for spin yet.

Fortunately, there are several approaches to further treat and simplify the problem so

that we can obtain relevant insights. One of the most popular ones, and the one used in this

work, is known as DFT.

2.2 Density Functional Theory

In 1964 Hohenberg and Kohn published a paper where they proved two theorems[22]. The

first of these theorems states that the electronic density (n(r)) uniquely determines, up to

an additive constant, the external potential vext(r) of a system of interacting particles. If

the external potential is determined by the external potential then so is the Hamiltonian

and thus also the wave-functions. This means that the expectation value of any observable

is also a functional of the non-degenerate ground-state density

O[r] = ⟨Ψ[n(r)]|Ô|Ψ[n(r)]⟩ (2.3)

which in turn also provides the name for the overall theory, Density Functional Theory.

The second Hohenberg-Kohn theorem deals specifically with the energy. It states that

the energy of the system, for any vext(r), can be written as:

EHK [n] = F [n] +

∫
vext(r)n(r⃗)dr (2.4)

where F [n] is a universal functional that encompasses all interactions not dependent on the

external potential, and therefore is valid for any number of electrons. Moreover, the density

that minimizes this energy functional is the ground-state energy and that minimum energy

is the ground-state energy. If the universal functional F [n] were known (and simple enough
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to calculate) all our problems would be solved. Regrettably that is not the case.

We have nonetheless succeeded in reducing our problem from looking for a function of

3N variables, the wave-function, to looking for a function of only 3 variables, the electronic

density. Only one problem remains, how do we find the electronic density?

2.2.1 The Kohn-Sham equations

One year after Hohenberg and Kohn published their theorems, Kohn again, this time with

Sham, proposed a way to calculate the many-body density[13]. The main idea to simplify the

problem is to substitute the N electron problem with a fictitious system of non-interacting

particles. Since all properties are a functional of the density, if the density of the fictitious

system is the same as the real one then we can find the solutions we seek by solving the

simpler non-interacting system.

The solutions for the new system are obtained through the so-called Kohn-Sham equa-

tions: [
−1

2
∇2 + v̂KS(r)

]
ψi(r) = ϵiψi(r). (2.5)

The effective Kohn-Sham potential felt by the independent particles is given by

v̂KS(r) = v̂ext(r) +

∫
n(r′)

|r− r′|
dr′ + v̂xc(r). (2.6)

Here vext is the external potential and vxc is the exchange and correlation potential, which

is given by the functional derivative of the exchange and correlation energy (Exc)

vxc(r) =
δExc [n]

δn(r)
. (2.7)

In Exc are contained all the non-trivial many-body contributions to the total energy. The

ground-state density is obtained from the single particle wave-functions,

n(r) =
N∑
i=1

|ψi(r)|2. (2.8)

Looking at the Kohn-Sham equations (equations 2.5 to 2.7), we see that they depend

explicitly on the density that in 2.8 is calculated with the single particle wave-functions

that in turn come from 2.5. To solve this problem we must then do it iteratively. A guess

density is chosen to start and plugged into the Kohn-Sham equations that are then solved,

resulting in a set of wave-functions ϕi. These are then used to calculate a new density and
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a new exchange-correlation potential. The new density and potential are again plugged into

equation 2.5 and the whole process is repeated. We finish when the difference between the

previous density and the next one is negligible, i.e. the system is considered converged. This

whole iterative process is known as the self-consistency field (SCF) loop.

So far we have been dismissing spin considerations but it is possible to extend the concepts

we have discussed so far to deal with non-colinear spin[23–25]. The biggest change is that

the single-particle wavefunctions become two-component spinors,

Ψi(r) =

(
ψi,↑(r)

ψi,↓(r)

)
. (2.9)

This in turn means that the KS spin density becomes a 2× 2 Hermitian matrix,

n(r) =

(
n↑↑(r) n↑↓(r)

n↓↑(r) n↓↓(r)

)
, (2.10)

as is the KS potential,

v̂KS
αβ (r) = v̂extαβ (r) + v̂xcαβ(r) + v̂Hαβ(r). (2.11)

In equation 2.11 α and β denote the spin indices and vextαβ (r), v
xc
αβ(r) and v

H
αβ(r) are respec-

tively the external electron-ion potential, the exchange-correlation potential, and the Hartree

potential. One should add that the Hartree potential is diagonal and the electronic density

is the trace of the density matrix,

nTr(r) = Tr[n(r)] = n↑↑(r) + n↓↓(r). (2.12)

Having a non-colinear version of the KS system is important to our goal of simulating

laser-induced demagnetization, however our problem is not entirely resolved just yet. There

is still one big issue to solve, how do we find the exchange and correlation energy?

Given that we have essentially condensed all complications into this one functional it

should come as no surprise that finding it is not a trivial task. In general we do not know its

form. Fortunately there are numerous approximations available to tackle this problem[26,

27]. These approximations can be divided into several families of increasing complexity. The

simplest of these, the local density approximation (LDA), depends only on the density and

was considered originally by Kohn and Sham in the paper where they also first proposed

the scheme we have been talking about[13]. Increasing the complexity a bit, we can look

at functionals that depend on the gradient of the density in addition to the density itself, a

family known as generalized-gradient approximations (GGAs). Other more involved families
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have names such as meta-GGAs and hybrid functionals. These other functionals add terms

such as the Laplacian of the density, the kinetic energy density, and exact-exchange.

From among all these different functionals, the calculations in this work have been done

with the LDA, so it is worth it to look into it in a bit more detail.

2.2.2 Local Density Approximation

Even though it is the simplest approximation to the exchange and correlation energy, the

LDA is still a very powerful and useful tool. There is of course also a non-colinear version

of the LDA, the local spin density approximation (LSDA)[23] which is the version we use

throughout this work.

Despite not knowing the general form of Exc, we do know it for a spin-polarized homo-

geneous gas of electrons (HEG). In this case it has the form

Exc[n↑↑, n↓↓] =

∫
nTr(r)ϵHEG

xc [n↑↑, n↓↓]dr (2.13)

where ϵHEG
xc is the exchange-correlation energy per atom for the spin-polarized HEG. The

main idea behind LSDA then, is to approximate the unknown exchange-correlation energy

of our system with that of a spin-polarized homogeneous gas of electrons, whose density is

the same as the density of our system at each point.

The problem now is that our density, equation 2.10, is not necessarily diagonal. We can,

however, perform a unitary transformation at a given point in space that diagonalises it.

n(r) =

(
n↑↑(r) n↑↓(r)

n↓↑(r) n↓↓(r)

)
→

(
n+(r) 0

0 n−(r)

)
(2.14)

We can then use n+ and n− to calculate Exc and therefor vxc and transform back to obtain

vxcαβ(r).

The exchange-correlation energy per atom for the HEG, ϵHEG
xc , can be divided into two

parts, the exchange contribution that can be calculated analytically and the correlation

contribution that has been tabulated using Monte Carlo calculations.[28]

Despite its surprising usefulness (given how it is such a simple approximation) the LSDA

does fall short sometimes. For example, it has a tendency to over-delocalize the 3d electrons

in transition metals[14]. One way to deal with this is to use the LSDA+U method, which

we present in the next section.

These shortcomings, and the existence of corrections to it, means that the LSDA is a

good choice if we want to highlight the role of correlations. Combine that with the fact
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that most ab initio studies that have considered only electronic degrees of freedom (and

thus neglecting the effects of phonons) have used it[11, 12], and we have the motivation for

the choice of the LSDA as the exchange-correlation approximation used in this work. On

a more practical note, the choice of the LSDA also presents advantages in relation to the

code chosen for this work, Octopus[29], since in it, in order to use spin-orbit coupling (a

relativistic correction with an important role in the demagnetization process that we present

in more detail in one of the following sections) the calculations must be done with spinors,

and those are only implemented with LSDA, not with GGAs or other functionals.

2.2.3 The LSDA+U method

Describing strongly correlated systems is not an easy task and the LSDA is certainly not the

tool to do so. The most famous example of this is Mott insulators. These are materials that

are predicted by DFT to have a metallic ground-state when in fact they are insulators[30].

The strong Coulomb interaction forces the electrons into localized atom-like orbitals which

gives rise to their insulator behavior. The LSDA tends to over-delocalize these valence

electrons, leading to a wrong tendency towards metallic ground-states.

Enter the Hubbard correction. The LSDA+U approach was first introduced by Anisimov

and co-workers.[31–33] This method aims at a better description than the common LSDA,

particularly by keeping some information about orbital localization, all while having a small

impact on the overall computational cost. It is however not the only way to deal with

strongly correlated systems, with other alternatives being some hybrid functionals and self-

interaction-corrected local spin density approximation.[30]

In the LSDA+U approach, we essentially just add a correction to the total energy term

for the orbitals of interest.

EDFT+U

[
n,
{
nI,σ
mm′

}]
=EDFT[n] + Eee

[{
nI,σ
mm′

}]
− Edc

[{
nI,σ
m′

m

}]
(2.15)

where EDFT [n] is the DFT total-energy functional, Eee is the electron-electron interaction

energy, and Edc is the double counting term to make sure that the part of the electron-electron

interaction already present in EDFT is not counted twice. Both the electron-electron and the

double counting terms depend on the density matrix of a localized orbital set composed of

localized orbitals around the atom I, {ϕI,m}. Edc is also not known in the general case with

several approximations existing. In the rotationally invariant form proposed by Dudarev et
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al. [34], which is also the one implemented in Octopus[35], we have:

Eee

[{
nI,σ
mm′

}]
=
U

2

∑
m,m′,σ

Nσ
mN

−σ
m′ +

U − J

2

∑
m̸=m′,σ

Nσ
mN

σ
m′ , (2.16)

Edc

[{
nI,σ
mm′

}]
=
U

2
N(N − 1)− J

2
N

(
N

2
− 1

)
, (2.17)

In this Nσ =
∑

m n
σ
mm and N = N↑ + N↓. Combining these two expressions we get the

formula for the total correction to be added to the DFT total energy.

EU

[{
nI,σ
mm′

}]
= Eee

[{
nI,σ
mm′

}]
− Edc

[{
nI,σ
mm′

}]
=
∑
I,n,l

U eff
I,n,l

2

∑
m,σ

(
nI,n,l,σ
mm −

∑
m′

nI,n,l,σ
mm′ n

I,n,l,σ
m′m

)

Here I is the atom index, σ is the spin index, and n, l and m are the principal, azimuthal,

and angular quantum numbers. Let us note that the total correction EU depends only on

an effective Hubbard U , Ueff = U − J , and not on U and J individually.

For a periodic system, as is the case in this work, the occupation matrices nI,n,l,σ
mm′ are:

nI,n,l,σ
mm′ =

∑
n

BZ∑
k

wkf
σ
nk

〈
ψσ
n,k | ϕI,n,l,m

〉 〈
ϕI,n,l,m′ | ψσ

n,k

〉
, (2.18)

where wk is the weight of the k-point, fσ
nk is the occupation of the Bloch state | ψσ

n,k⟩
and | ϕI,n,l,m⟩ are the localized orbitals that constitute the basis used to describe electron

localization.

In order to obtain the set of generalized Kohn-Sham equations corresponding to this

energy, equation 2.15 is minimized with respect to the wave-functions for fixed occupations:

δEDFT+U

[
n,
{
nI,σ
mm′

}]
δ (ψσ

i )
∗ −

δ
∑

j Ejfj ⟨ψj | ψj⟩
δ (ψσ

i )
∗ = 0 (2.19)

with i and j referring to both band and k-point indexes since we are dealing with periodic

systems. We can now obtain the expression of the (nonlocal) potential to be added to the

DFT Hamiltonian by comparing the results from equation 2.19 to the usual Kohn-Sham

equations. This potential is given by:

V σ
U

∣∣ψσ
n,k

〉
=
∑
I,n,l

∑
m,m′

V I,n,l,σ
m,m′ P

I,n,l
m,m′

∣∣ψσ
n,k

〉
(2.20)
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where we have defined:

V I,n,l,σ
m,m′ = U eff

I,n,l

(
1

2
δmm′ − nI,n,l,σ

mm′

)
(2.21)

P I,n,l
mm′ = |ϕI,n,l,m⟩ ⟨ϕI,n,l,m′| . (2.22)

The value of U eff
I,n,l is a parameter and must be chosen empirically in order to reproduce the

desired properties.

Since the value of U is chosen by us, we do not need to limit ourselves to reproducing

experimental properties. We can change the values of U used to modify the strength of the

Coulomb correlations in order to gain insights into its effects. This is in fact the aim of the

work presented in this thesis, as its title suggests. We are more concretely looking into the

effects of correlation on the demagnetization dynamics of several systems and the Hubbard

U correction is the tool that allows us to do so.

One should mention that using an empirical U is not the only option available, ab initio

ways to calculate U have been developed and have also been implemented in the Octopus

code[35, 36].

2.3 Time-dependent DFT

So far all of these considerations have dealt with the system in its ground state but if we

intend to study the demagnetization process in ferromagnets, that is an inherently time-

dependent process. We therefore need a time-dependent version of the theoretical tools we

have been discussing.

That was precisely the problem tackled by Runge and Gross in 1984 when they developed

a time-dependent version of DFT[37]. In it they present the time-dependent version of the

Hohenberg-Kohn theorem, the Runge-Gross theorem. Analogously to the ground-state case,

there is also a one-to-one mapping between the time-dependent external potential vext(r, t),

such as one created by an external laser field or by the movement of the nuclei, and the

time-dependent density n(r, t), evolving from a given initial state, up to a purely time-

dependent constant in the potential. If two potentials differ only by a time-dependent

constant C(t), their corresponding wave-functions will differ by a purely time-dependent

phase factor, e−iα(t) and so their densities will be identical. The wave-function can therefore

be seen as a functional of the density and the initial state:

Ψ[t] = e−iα(t)Ψ[n,Ψ0](t). (2.23)

Expectation values of Hermitian operators are also not affected by this time-dependent
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constant since the phase cancels out, meaning they are also functionals of the density and

the initial state:

O[n,Ψ0] = ⟨Ψ[n,Ψ0](t)|Ô(t)|Ψ[n,Ψ0](t)⟩ (2.24)

Having established that there is a one-to-one correspondence between the time-dependent

density and the external potential, and that expectation values are functionals of the time-

dependent density, one problem still remains, as it did in the ground-state case, how to

actually calculate these quantities. For that, we turn again to the Kohn-Sham formulation.

One particular case of potential is vKS[n,Ψ0](r, t) and so the RG theorem also applies

and we can substitute the interacting system with a non-interacting one that reproduces its

density n(r, t), starting from an initial state Ψ0. The density of the non-interacting system,

which mirrors the interacting one, is given by

n(r, t) =
N∑
i=1

|ψi(r, t)|2 (2.25)

where the orbitals ψi(r, t) are obtained from the time-dependent Kohn-Sham equations

i
∂

∂t
ψi(r, t) =

[
−1

2
∇2 + v̂KS(r, t)

]
ψi(r, t) (2.26)

The Kohn-Sham potential is

v̂KS[n,Ψ0](r, t) = v̂ext[n,Ψ0](r, t) + v̂xc[n,Ψ0](r, t) +

∫
n(r′, t)

|(r)− (r′)|
dr′. (2.27)

In equation 2.27, analogous to equation 2.6, the first term, vext, is the external potential,

that includes the interaction of the electrons with the nuclei that may move as well as any

other time-dependent external field like, for example, one created by a laser pulse. The last

term is the time-dependent Hartree potential describing the Coulomb interaction and vxc is

the exchange-correlation term and must be approximated, as in the static case.

One characteristic that is exclusive of the TDKS procedure and has no analogue in the

static case is the dependence on the initial state Ψ0.

2.3.1 Adiabatic LDA

The simplest, and most popular, approximations used are adiabatic approximations[38]. In

this class of functional, the functional’s memory, i.e. its dependence on the history of the

density, is ignored.

The time-dependent version of the local density approximation is the same as the static
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one but with the density evaluated at the time-dependent density.

v̂ALDA
xc (r, t) = v̂HEG

xc (r)|n=n(r,t) (2.28)

The ALDA can be considered an appropriate approximation to systems that vary slowly in

both time and space, yet it turns out to be better than that and produces reasonable results

for systems far from this regime[21].

The same approach of evaluating the time-independent functional at the time-dependent

density can be extended to other static functionals (for example GGAs) to obtain an adia-

batic version of them (AGGAs).

We should point out that adiabatic functionals are not the only class of functionals

available for use in TDDFT, other alternatives like orbital-dependent functionals exist[38]. In

fact, a recent study[16] has shown that memory effects usually ignored are of great importance

when describing light-induced demagnetization and lead to bigger demagnetization values

than those observed in calculations without memory effects.

2.3.2 Time propagation

The time-dependent Schrödinger equation can be reformulated as [39]

ψ(t) = Û(t, 0)ψ0 = T exp
{
−i
∫ t

0

Ĥ(τ)dτ

}
ψ0 (2.29)

where T exp is the time-ordered exponential.

In this section, we present the numerical approximations needed to apply the propagation

in equation 2.29, in particular the ones used in the calculations we performed in this work

and which we present in the next chapters.

The first step when applying 2.29 in practice is to divide the total propagation from the

initial time t0 = 0 to the final time t into several smaller propagations. This is possible since

Û(t2, t1) = Û(t2, t3)Û(t3, t1), (2.30)

that is, propagating from t1 to t2 is the same as propagating form t1 to an intermediary time

t3 and then from t3 to the final time t2. The full propagator will then be

Û(t, 0) =
N−1∏
i=0

Û(ti +∆t, ti), (2.31)

where t0 = 0, tN = t, and ∆t is the time-step each propagation covers and we set it to be
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the same for all propagations. The choice of the time step is an important one in practice

to guarantee the convergence of the calculations.

If the Hamiltonian was not time-dependent, the propagator would have a quite simple

form, it would just be exp{−i∆tĤ}. That is obviously not the case when we are dealing

with laser excitations. However, since we divided the original interval into many smaller

ones we can consider that in this small interval ∆t the time-dependence is small and so we

approximate the propagator by a simple exponential with the Hamiltonian taken at a certain

time τ in the interval. This is indeed the case in what is perhaps the simplest approximation

to the propagator, the exponential midpoint rule, where the Hamiltonian is taken at the

midpoint of the interval considered,

ÛEM(t+∆t, t) = exp{−i∆tĤ(t+∆t/2)}. (2.32)

The propagation should be time-reversible, that is, propagating forwards from the initial

state should be the same as propagating backwards from the final state. This is not the

case in the systems we investigate, since the presence of spin-orbit coupling breaks time-

reversal symmetry[40]. Nonetheless it is still an important property in the general case. Any

propagator we use should respect time-reversal symmetry when no term that breaks it is

present. We can use time-reversibility explicitly and propagate the initial state ψ(t) half of

the interval (∆t
2
) forward and the final state ψ(t+∆t) the same amount backwards and we

should arrive at the same state. That is,

exp

{
−i∆t

2
Ĥ(t)

}
ψ(t) = exp

{
i
∆t

2
Ĥ(t+∆t)

}
ψ(t+∆t). (2.33)

Upon rearranging we get the propagator

ÛETRS(t+∆t, t) = exp

{
−i∆t

2
Ĥ(t+∆t)

}
× exp

{
−i∆t

2
Ĥ(t)

}
. (2.34)

This is called enforced time reversal symmetry (ETRS).

This propagator depends on the Hamiltonian at t and t+∆t. This is a problem because

Ĥ(t+∆t) depends on the wave-functions at t+∆t, ψi(t+∆t), which we obviously do not

know a priori, since they are what we are trying to find in equation 2.29. We can solve this

in two ways. We can solve it iteratively, that is we extrapolate Ĥ(t+∆t), use it to create the

propagator in equation 2.34 and get ψ(t+∆t). We then use ψ(t+∆t) to recalculate Ĥ(t+∆t)

and repeat the whole process (minus extrapolation) until self-consistency is reached. For

small time-steps, doing only the first step of the iterative cycle, the extrapolation, can be
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enough. The other option then is to move forward using the extrapolated Hamiltonian. This

is known as the approximate time reversal symmetry (AETRS) and it was the propagator

used in the calculations done in this thesis. In Octopus the extrapolation is done via a

second-order polynomial, that is, by using the Hamiltonian in the current plus in the two

previous steps. This is about it 40% faster than the implementation for ETRS. AETRS is

generally the best compromise between accuracy and speed.

There are countless other propagators one could use, not surprisingly given that the time-

dependent KS equations can be viewed as an example of a system of initial value ordinary

differential equations and thus subject to a great deal of interest throughout history. Many

of these propagators are available in Octopus[39, 40], but since they were not the ones used

in this work, we do not go into further detail on them.

We are not yet done with computational details regarding the time propagation however.

One question still remains. How do we calculate the exponential of an operator?

The exponential of a matrix Â is defined as:

exp
{
Â
}
=

∞∑
n=0

1

n!
Ân. (2.35)

Obviously, we can just approximate the exponential by truncating the sum in equation 2.35

but this is far from the optimal way to do it. In our calculations we employ the Lanczos

method which allows for longer time-steps, according to the Octopus variable reference.

In truth, we are not interested in the exponential of a matrix, exp
{
Â
}
, but in its effect

on a vector v, exp
{
Â
}
v. With the Lanczos method we iteratively generate a basis {vi}mi=1

such that

ÂV̂m = V̂mĤm + hm+1,mvm+1e
T
m (2.36)

where V̂m = [v1, ..., vm] is an orthonormal basis of the Krylov space

Km = span{v, Âv, ..., Âm−1v}, (2.37)

Ĥm is an m×m Hessenberg matrix (and which forms the upper left part of Ĥm+1), and em

is the mth unit vector in Cm. In Octopus, the maximum dimension of the basis {vi}mi=1 must

be given. In our case it was 16. The iterative process is done until a tolerance is reached,

which in our case had the same value as the default in Octopus, 10−5. One can then prove

that[41]

exp
{
Â
}
v ≈ V̂m exp

{
Ĥm

}
e1. (2.38)

We have reduced the problem from calculating the exponential of a large sparse matrix
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Â, to a small dense matrix Ĥm. The calculation of Ĥm can then be done in a number of

ways[42].

2.4 Our calculations

In the end, the time-dependent Kohn-Sham equations, within the adiabatic approximation,

that are going to be propagated in all calculations presented in this work are:

iℏ
∂

∂t
|ψn,k(t)⟩ =

{(p̂+A(t)/c)

2
+ v̂ext + v̂H[n(r, t)] + v̂xc[n(r, t)] + v̂U

}
|ψn,k(t)⟩, (2.39)

where |ψn,k⟩ is a Pauli spinor representing the Bloch state with the band index n at the

point k in the Brillouin zone, v̂ext is the electron-ion potential, A(t) is the external vector

potential describing the laser field, v̂H is the Hartree potential, v̂xc is the exchange-correlation

potential given by the adiabatic LSDA and lastly v̂U is the potential coming from the DFT+U

correction.

For most atoms, such as those considered in this work, the core electrons do not play an

important part in the electronic properties of the system and so we can treat them and the

nucleus as an inert ion, with v̂ext being described by a pseudopotential. The pseudopotential

replicates the effective interaction between the outer electrons and the nucleus screened by

the core electrons. This greatly reduces the number of electrons we have to deal with, thus

further simplifying our problem.

Octopus comes with an array of different pseudopotential sets, at both the LSDA and

GGA levels. Of these, two, labeled by the code as hgh lda and hgh lda sc, also describe the

SOC, as we shall discuss in more detail in the next subsection. These are the non-semicore

and semicore versions of the Hartwigsen-Goedecker-Hutter LDA pseudopotentials[43], a

semicore pseudopotential being one where the distinction between core and valence elec-

trons is not clear and so fewer electrons are treated as part of the core. The non-semicore

version proved to give wrong densities of states (DOS) for the ferromagnets studied (see

figure 2.1). For this reason, all calculations presented in the next chapters have been done

with the semicore version of the pseudopotentials.

2.4.1 Spin-orbit coupling

The SOC is a relativistic correction caused by the interaction between the electron spin

magnetic moment and the orbital angular momentum. As we said previously, spin-orbit

mediated spin-flip transitions are among the possible culprits for laser-induced ultrafast
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Figure 2.1: Comparison of the Co majority and minority DOS calculated using the semicore
(hgh sc) and non-semicore (hgh) versions of the Hartwigsen-Goedecker-Hutter LDA pseu-
dopotentials as implemented on the Octopus code version. The reference density is from the
materials project database.[44]

demagnetization, since it allows transitions between spin states[7]. Thus it is important that

we account for it in our calculations.

The SOC term has the form

ĤSO =
1

4c2
σ · [∇vext × p̂] (2.40)

where vext is the electron-ion potential and σ are the Pauli matrices.

The SOC does not enter directly in this form in the Hamiltonian in Octopus. The SOC is

taken into account in some of the pseudopotentials available, the hgh lda pseudopotentials[43],

as we have referenced above. These pseudopotentials reproduce fully relativistic all-electron

calculations. That is, for each of the atoms available (H to Rn) the authors of ref. [43] solved

the two-component Dirac equation and then fitted their parameters to it.

In the end, their potential has the form

V (r, r′) = Vloc(r)δ (r− r′) +
∑
l

Vl (r, r
′) + ∆V SO

l (r, r′) L̂ · Ŝ. (2.41)
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In equation 2.41, Vloc and Vl represent, respectively, the local and non-local parts of the

potential and V SO
l represents the spin-orbit part of the potential. This is of special interest

to us because it means that the SOC is parameterized independently of the rest and so its

strength can be scaled when used by a program like, say, Octopus. This will prove of interest

in chapter 5.

Additionally, just for the sake of completeness, the SOC part of the potential has the

form

∆V SO
l (r, r′) =

3∑
i=1

3∑
j=1

+l∑
m=−l

Yl,m(r̂)p
l
i(r)k

l
i,jp

l
j (r

′)Y ∗
l,m (r̂′) , (2.42)

where Yl,m are the spherical harmonics, pli(r) are projectors with a Gaussian form (for more

details see ref. [43]) and kli,j are the parameters.



Chapter 3

Ferromagnets

Now that we have laid out all the necessary theoretical details in the previous chapter, now

that we know what TDDFT calculations of laser-induced ultrafast demagnetization actually

entail, we can move on to the calculations themselves.

In this chapter, we start applying laser fields to magnetic materials to simulate how

their magnetic moments respond. We start by looking at the most famous class of magnetic

materials, ferromagnets (as one could probably have guessed given this chapter’s name).

More specifically we will start with bulk elemental 3d transition metals Fe, Co, and Ni.

These materials are a good place to start since there have been already multiple studies into

different facets of their light-induced ultrafast demagnetization we can use as a reference

point.[9, 11, 16] From a computational point of view bulk elemental ferromagnets are also a

good starting point given that they have only one atom in the unit cell and so the calculations

run faster. There is also yet another good reason to choose Fe, Co, and Ni: the LSDA, the

approximation most commonly used in ultrafast demagnetization studies, is known to not

be able to accurately describe their electronic structure[14]. This gives us a chance to look

at the impact of electron correlation on light-induced demagnetization and how important

a correct description of the initial state is.

To do so we start by laying out all the studies done to guarantee the proper convergence

of the calculations. Having established that our calculations are well converged we move

on to the demagnetization calculations and present our results at the LDA and LDA+U

level, and relate the findings to the system’s electronic structure. With this relationship in

mind, we then investigate the role that several laser parameters (intensity, fluence, duration,

frequency) play in the demagnetization dynamics of the system.

The systems studied here were body-centered cubic (BCC) iron with a lattice parameter

of 2.856 Å, face-centered cubic (FCC) cobalt with a lattice parameter of 3.544 Å, and FCC

nickel with a lattice parameter of 3.520 Å. All calculations in this work were done with the

29
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real-space time-dependent DFT code Octopus.

3.1 Ground state convergence

It is of course of the utmost importance that our calculations are well converged, otherwise

they are meaningless. The results of a DFT calculation with Octopus depend on a number of

parameters, some with a bigger impact than others, and we must guarantee that our choices

lead to correct results. One obvious example of a question we must consider in practice is

when is self-consistency reached? DFT is an iterative process, and we have said previously

in chapter 2 that we exit this iterative process when the density is converged. But what

do we consider as a converged density? Octopus defaults to exiting the SCF loop once the

relative error of the density is smaller than 10−6 for two consecutive iterations. This relative

error is defined as

ϵrel =
1

N
ϵabs (3.1)

where N is the total number of electrons and ϵabs is the absolute error on the density defined

as

ϵabs =

∫
|nout(r)− ninp(r)| dr. (3.2)

This is also the criteria we use.

Another parameter of great importance is the spacing. Octopus is a real-space code

which means that quantities such as the density are represented on a real-space grid with

each point separated by a certain spacing. One may get the density to converge to a certain

threshold but if the grid is too coarse the density, and therefore all related properties one

might be interested in, will not be very accurate. Obviously the finer the mesh the better

the results but also the more demanding the computations. It is necessary then to find

what is the smallest real-space grid that still produces correct results, that offers the best

compromise between accuracy and speed.

We performed several calculations to guarantee that the ground-state was converged with

regards to the spacing and the uniform k-point grid used and those results are presented

in this section. By converged ground-state we mean that several properties of interest, the

total energy, the magnetization, the DOS, and the actual demagnetization dynamics, do

not change considerably when we increase the number of points in either the real-space or

k-point grid.
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Figure 3.1: Convergence of the total energy (left panel) and the z component of the mag-
netization (right panel) with regards to the spacing used. These calculations were all done
with a 4× 4× 4 k-point grid for all systems.

3.1.1 Total energy and magnetization convergence

We start by looking at the total energy and the z component of the magnetization, as that

is essentially the direction in which the magnetization points.

For their convergence with the spacing see figure 3.1. In it we compare the ground-state

total energy (and the z component of the magnetization), calculated with different values for

the grid spacing while maintaining all other variables the same, to the most accurate results

we have, those with the smallest spacing. This is why both graphs tend to zero as we move

left (to smaller spacing values), as those were the calculations used as benchmarks. While

a smaller value for the spacing means more accurate results it also means more demanding

calculations and so we search for the largest spacing possible that still produces satisfactory

results. It is apparent that the magnetization is much harder to converge than the total

energy, necessitating a much smaller spacing to achieve similar error values. In fact, for Fe,

the energy with largest spacing used (0.35 a.u.) has a relative error of 2.22 % and we need

to go all the way down to a spacing of 0.22 a.u. to find a similar error in the magnetization

(2.27%). The magnetization is so much harder to converge that the reason there are so few

points for Co is that for larger spacing values the calculations do not converge to the correct

ground-state, we obtain a non-magnetic state.

Next, the same quantities were converged with regards to the k-point grid used to sample

the Brillouin zone along each axis. We now keep the spacing fixed and increase the size of

the k-point grid. The values chosen for the spacing were the largest ones that still produced

a relative error for the magnetization of the order of 1 % in figure 3.1 (0.21 a.u. for Fe and
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Figure 3.2: Convergence of the total energy (left panel) and the z component of the mag-
netization (right panel) with regards to the Nkpts × Nkpts × Nkpts k-point grid used. These
calculations were all done with a constant spacing of 0.21 a.u. for Fe and 0.25 a.u. for both
Co and Ni

0.25 a.u. for both Co and Ni). Figure 3.2 displays these results.

The more accurate results are now on the right side, with the denser k-point grids, and so

those are the ones against which the error values displayed are defined. Both the total energy

and the magnetization vary a lot less with the density of the k-point grid than with the value

of the spacing, although the magnetization still changes quite a bit. We can consider the

magnetization converged for our purposes if it has a relative error smaller than 1 % which

happens with an Nkpts value of 12, 8, and 14 for Fe, Co, and Ni respectively. The energy on

the other hand can be considered converged with all of the grids used.

3.1.2 Density of states convergence

The total energy and the z component of the magnetization are not the only quantities we

have access to. They are not the only ways we have to assess the convergence of the ground-

state. Another way the convergence of the ground state was guaranteed was by looking at

the density of states (DOS). This is depicted for Fe in figure 3.3. The left panel shows the

DOS calculated with different values of spacing but with a fixed 4 × 4 × 4 k-point grid,

as was done in figure 3.1. And the right panel shows the DOS calculated with different

k-point grids but a constant value for the spacing of 0.111 Å (0.21 a.u.), like the calculations

presented in figure 3.2. As in the case of the energy and the magnetization, the DOS is also

much more sensitive to the spacing than it is to the k-point grid. The DOS with the largest

spacing considered is completely different to those calculated with smaller values whereas

in the k-point grid the sparsest grid only exhibits some small though significant differences
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Figure 3.3: Convergence of the density of states of Fe with regards to the spacing (left panel)
and to the k-point grid used (right panel). In both panels 0 corresponds to the Fermi energy.

when compared to the DOS with denser grids.

In figure 3.4 we show the same plots but for Co. The changes in the DOS with the

spacing are not as wild here as in figure 3.3, which is expected as we could not use values

for the spacing as large as those in the Fe case, but the k-point case is far more interesting.

While previously it seemed like the ground-state was converged with an 8 × 8 × 8 k-point

grid, as the relative error in both the energy and magnetization was under 1%, figure 3.4

makes it clear we can not consider it as such. The DOS with that k-point grid exhibits some

noticeable deviations from the DOS with denser grids.

A similar figure of the convergence of the DOS for the remaining case of Ni is shown in

appendix A.

3.1.3 Demagnetization convergence

Finally, the quantity we are really interested in, the one that is most important to be well

converged, is the demagnetization, i.e. how the magnetization changes in time under the

influence of a laser field.

To confirm that the dynamics were converged, small propagations, just 3 fs, were per-

formed using different values for the spacing and k-point grid. These results for Ni are shown

in figure 3.5.

It is clear that the results are well converged. As with the ground state properties we

looked at before, the demagnetization dynamics are easier to converge with the k-point grid

than with the spacing. Going from a 14×14×14 k-point grid (solid red line) to a 24×24×24
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Figure 3.4: Convergence of the density of states of Co with regards to the spacing (left panel)
and to the k-point grid used (right panel). In both panels 0 corresponds to the Fermi energy.

0.1
0.0
0.1

A(
t) 

(a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (fs)

0.900

0.925

0.950

0.975

1.000

M
(t)

 / 
M

(t=
0)

spacing = 0.25(a. u. ), Nkpts = 14
spacing = 0.22(a. u. ), Nkpts = 14
spacing = 0.25(a. u. ), Nkpts = 24

Ni

Figure 3.5: Short propagation of the relative magnetization in Ni with different parameters.
The upper panel shows the vector potential A(t) of the laser pulse and the lower panel the
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k-point grid (dashed blue line) while using the same spacing produces no visible changes in

figure 3.5. Varying the spacing, however, going from a spacing of 0.25 a.u. (0.132 Å) in the

solid red line to a spacing of 0.22 a.u. (0.116 Å) in the dotted green line, does produce some

changes. These are barely noticeable though and so it is safe to say that our calculations are

also converged with respect to spacing.

Taking all this information for all the quantities of interest in all of the systems considered

we can finally consider the ground-state converged with a uniform spacing of 0.111 Å and a

12 × 12 × 12 k-point grid to sample the Brillouin zone for BCC iron, a spacing of 0.132 Å

and a 16× 16× 16 k-point grid for FCC cobalt, and a spacing of 0.132 Å and a k-point grid

of 14× 14× 14 for FCC nickel.

3.2 LSDA+U calculations

With the ground state properly converged we can now move on to the time-dependent

calculations.

The laser pulse used to induce the demagnetization dynamics has the form

f(x, y, z) cos(ωt)g(t). (3.3)

f(x, y, z) gives the field’s polarization and spatial dependence. In our case, the field is

polarized along the x-axis, perpendicular to the magnetic moment direction, and since we

employ the dipole approximation, that is we discard the spatial variation of the electric

field as the wavelength is much greater than the atomic distances, our field is constant in

space. The central frequency of our field, ω, has a carrier photon energy of 2.712 eV which

corresponds to a wavelength of 457.1 nm. As we can see the use of the dipole approximation

is completely justified.

The pulse is enveloped by a cosinusoidal envelope g(t) with the form

g(t) = E0 cos(
π

2

t− 2τ0 − t0
τ0

). (3.4)

E0 is the electric field amplitude that relates to the field’s intensity, the more common way

to describe its strength, by

I(t) =
c

8π
E2(t). (3.5)

The pulse we use has a peak intensity of 1015 W/cm2. The duration of the pulse is set by t0

and τ0 since g(t) = 0 if |t−t0| > τ0. In our case, t0 and τ0 are both set to 3 fs and so our pulse

lasts for 6 fs, peaking at 3 fs. This means that our laser field is shorter and more intense than
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most laser pulses typically used in experiments. This is done for practical reasons as a short

laser pulse means a smaller computation time. The higher intensity offsets the shorter length

of the pulse in terms of the energy it caries and it also ensures that our calculations produce

a significant amount of demagnetization since, as we discussed in chapter 1, the LSDA is

known to produce demagnetization values far lower than the experimental ones. That being

said some recent experiments[45] have used pulses with full width at half maximum (FWHM)

as short as 4 fs and with an intensity of 4× 1012W/cm2 so the laser pulses used here are not

completely unrealistic.

The demagnetization calculations were done at the LSDA level, with and without Hub-

bard U corrections of different intensities. The values of Ueff applied to the d orbitals of

the metals studied were of 2 and 4 eV for Fe, 1.6 and 3.2 eV for Co, and 1.2 and 2.4 eV for

Ni. At first, values for Ueff were chosen from the typical values in the literature[46–48] and

subsequently other values were chosen that are either half or double the original ones in order

to investigate how changes in the magnitude of the U correction impact the demagnetization

dynamics.

3.2.1 Effects of U on ground-state properties

Before looking at the time-dependent results let us see some interesting effects of the Hubbard

U on ground-state properties of the systems. The Hubbard U introduces a shift in the d

orbitals of the metal, changing considerably its DOS. These changes with U can be seen for

Fe, compared to experimental data [49], in figure 3.6.

We see a fair agreement with experiment at the LDA level but as we apply the U correc-

tion the theoretical peaks shift away from the experimental ones, especially for the majority

spins. It is important to note as well that the two spin channels are affected in opposite

ways. The majority spin peaks shift to lower energies while the minority spin ones shift to

higher energies.

And so we seem to be in a predicament, the correction we employ does not actually

correct much. A few thoughts on that. Firstly, the example we chose to show in figure 3.6

(Fe) is where the discrepancy is most drastic. The impact of the Hubbard U on the DOS

of both Co and Ni (which can be seen in appendix B) is much smaller, though the LSDA

results are still closer to the experimental data than the LSDA+U ones are. Secondly,

the DFT+U approach is not the optimal approach to represent the ground state DOS of

transition metals. Were that our aim and more sophisticated methods, such as DMFT, or at

least more carefully selected values of U would have been used. That being said it has been

shown repeatedly that LSDA+U can improve the description of the electronic structure of
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Figure 3.6: Comparison of the Fe majority and minority DOS calculated using the LDA and
different U values with experimental data.[49]

Table 3.1: Ground state magnetic moments calculated versus experimental values (in Bohr
magnetons per atom). The values of U used are described in the main text and U2 > U1

LSDA U1 U2 exp.

Fe 2.33 2.61 2.72 2.12 [52]
Co 1.68 1.76 1.77 1.75 [53]
Ni 0.659 0.683 0.688 0.61 [54]

3d materials.[50, 51] Finally our aim is not really to carefully reproduce experimental results

but instead to study how a change in the description of electronic correlation affects the

demagnetization dynamics. For that, a static U provides a simple tool with significant effects

on ground-state properties (and on the demagnetization dynamics as we will see further on).

Another example of a ground-state property affected by the addition of the Hubbard U is

the magnetic moment. Its values, obtained for each system by integrating the magnetization

density in the unit cell, are shown in table 3.1. With the exception of Co, the ground

state magnetic moment calculated is greater than the experimental values and becomes even

greater with the use of the Hubbard U . This increase is to be expected since the effect of

the U correction is to shift the majority spin DOS down and the minority spin DOS up, as
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discussed previously and shown in figure 3.6. This increases the number of majority spin

states occupied and lessens the number of minority spin ones and therefore the magnetic

moment will increase. The change of the magnetic moment with U is much greater for Fe

than for the other metals which is also to be expected for the same reasons as the shift

caused by the Hubbard U is much more significant in this case as well.

3.2.2 Demagnetization dynamics with U

Now that we have dealt with the effects of the Hubbard U correction on ground-state prop-

erties we can finally move on to the effects we were originally interested in, those on the

dynamics. The dynamics of the magnetic moments for the LSDA and LSDA+U cases are

presented in Fig. 3.7. The first thing we observe is that demagnetization occurs only while

the laser pulse is present (after that the magnetization essentially oscillates around a con-

stant), unlike in experiments where most of the demagnetization is measured in fact after

the laser field is turned off.[55, 56] The amount of demagnetization observed is also quite

smaller than that of experimental results, with Fe demagnetizing around 9 %, Co around

6 %, and Ni around 8 % in the LSDA case whereas in the previously mentioned experiments

Ni was measured to demagnetize at least 30 %, and this is while using a laser field quite less

powerful than in our case. Although different from experiments our results are in line with

other similar theoretical works where only electronic effects have been considered, in both

the magnitude and period where the demagnetization is observed.[10, 16, 57]

We should note, on the more technical side of things, that the ground state magnetic

moments whose dynamics are depicted in figure 3.7 are not calculated by integrating mag-

netization density in the entire unit cell like in table 3.1 but are instead calculated by

integrating in spheres centered around each atom. Since there is only one atom in the unit

cell for the system we study here this should not make much of a difference. Turns out that

the version of Octopus we were using, when dealing with 3D materials with only one atom

in the unit cell, had a bug where the radius of these spheres, which should be half of the

distance between neighbouring atoms, ends up being only half of that, i.e. a quarter of the

distance between neighbouring atoms. The spheres used to calculate the magnetic moments

in our calculations thus had a radius of 0.618 Å for Fe, 0.627 Å for Co, and 0.622 Å for Ni.

Unfortunately, we only noticed this problem too late, after the time-dependent calculations

had already been done with the shorter radius but on the brighter side this turned out to not

have a meaningful effect on our investigation, especially because we are not really interested

in extremely precise quantitative results for certain properties but more so in the qualitative

effects of the theory level used.
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Figure 3.7: Demagnetization of elemental transition metals. From top panel to bottom
panel, we have a) the vector potential A(t) of the laser pulse, the magnetization dynamics
of b) Fe, c) Co, and d) Ni with standard LSDA and using LSDA+U . The parameters of the
laser pulse are given in the main text.
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Table 3.2: Ground state magnetic moments of Ni calculated with two different radii (in Bohr
magnetons per atom).

0.622 Å 1.244 Å

Ni 0.572522 0.679199
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Figure 3.8: Demagnetization dynamics for Ni in a short propagation with two different radii
being used to calculate the magnetic moments.

Take Ni for example. If we recalculate the magnetic moment at the LSDA level using

this time a local sphere with a radius of 1.244 Å (i.e. half of the distance between two

neighbouring atoms and double of what we originally used) and compare it to the magnetic

moment calculated with the original radius of 0.622 Å (table 3.2) we find that the value of

the magnetic moment increases by around 19%. This is not an inconsequential increase but

in the grand scheme of things the system remains ferromagnetic, magnetized in the same

direction and the magnetic moments are of the same order of magnitude. We would like

to point out again that we are not really aiming at a perfect description of experiment (in

which case a 19 % increase would not be negligible) but instead on how different theory

levels affect qualitatively the dynamics.

Speaking of dynamics, they are also not affected very much by the change in the radius

of the integration sphere, as seen in figure 3.8. In it, we see that the dynamics during a

very short propagation (only 1 fs) do not change much with the radius used. Even if the

discrepancy gets bigger further into the simulation the fact remains that the system still

demagnetizes.

This means that the demagnetization we observe in this chapter is genuine and not

only the result of electrons getting excited to states that lie beyond our unfortunately short
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integration radius. This is further corroborated by the results presented in the next chapter

for antiferromagnetic materials that do not suffer from this problem. Furthermore, all of the

results in this chapter suffer from this bugged radius so that the results are still consistent

and comparable. And so in regards to this technical difficulty, we have found all is well that

ends well.

Turning back to figure 3.7, when the Hubbard U correction is applied we find similar

dynamics to the LSDA case, the difference being in the magnitude of demagnetization ob-

served. The changes might not seem big but the demagnetization goes from around 8 % in

Fe in the LSDA case to around 6 % with a U of 4 eV, a relative decrease of 25 %, though

these are still quite far from the experimental results. LSDA+U then is not a magical cure

that gets us results in perfect accordance with experiments, which to be fair was never really

a reasonable expectation. But it does affect the results in a manner that can be considered

significant and therefore a correct description of correlations is certainly a piece to be taken

into account in getting us there.

We also note that for Fe and Ni the amount of demagnetization diminishes when the

Hubbard U is applied while for Co it increases. So it seems that the Hubbard U impact,

even qualitatively, greatly depends on the system being studied.

One important parameter to consider when doing time-dependent calculations that we

have failed to mention so far in this chapter is the time-step. If a time-step that is too large

is employed the propagation becomes unstable. That means, for example, that the total

energy of the system will not be conserved and it will quickly diverge. At the same time, it

is important to use a time-step that is as big as possible to guarantee that our calculations

are done in a reasonable amount of time.

The variable reference for the Octopus code says that for 3D systems the biggest time-step

possible has been found empirically to be (in atomic units)

dt = 0.046− 0.207h+ 0.808h2, (3.6)

where h is the spacing used for the real-space grid. We have found this default to generally

be a good one but the value for the time-step will also depend on the system we are using,

the perturbation we are applying, and other factors, so it is important that we confirm that

our propagation is stable. In the end, the time-steps chosen in our calculations were 0.73 as

for Fe, 1.21 as for Co, and 0.98 as for Ni.

To confirm that time-steps chosen are in fact appropriate we can look at the total energy

dynamics, in figure 3.9 for the Fe case. After the laser pulse, the energy remains constant as

expected since we do not consider coupling to the phonons and the external field is the only
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Figure 3.9: Energy dynamics for Fe in both the LSDA and LSDA+U cases.

source of energy for the system. This means that after the laser pulse there is no source of

energy coming into the system and there is also nowhere else for energy to go and so the

total energy must remain constant. The fact that the total energy remains constant after

the pulse is therefore a good indication that the time-step was indeed chosen correctly and

the calculations are converged with regards to this parameter. Similar results were obtained

of both Co and Ni and are shown in appendix B.

Looking again at figure 3.9 we find that although the dynamics are rather similar for the

different levels of theory considered (LSDA and LSDA+U) the final energies differ quite a

bit, even though in all cases it is greater than the initial energy i.e. the system absorbed

energy from the laser field. We can depict this more clearly by plotting the energy absorbed

by the materials, that is, the difference between the energy at the beginning and the end of

the simulation for each of the functionals used (Fig 3.10). As in figure 3.7, Co stands out

as behaving contrary to both Fe and Ni. In both of those cases, the system absorbs less

energy as the strength of the U applied increases but in Co it absorbs more. But since Co

also demagnetizes more in the LSDA+U case what we find then is that the system absorbs

more energy in the cases where it also demagnetizes more.

This apparent correlation between demagnetization and absorbed energy points to the

laser field exciting a varying number of electrons, i.e. if the laser excites more electrons

the system absorbs more energy and demagnetizes more, if the laser excites fewer electrons

it absorbs and demagnetizes less. If this is the case we should be able to link it to the

bandstructure of the material in question at equilibrium. To do so we look at the joint

density of states (JDOS). The JDOS is in essence a density of transitions available to the
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system. It measures how many pairs of occupied and unoccupied states in each spin channel

exist that are separated by a given energy. The JDOS at the LSDA and LSDA+U level for

each of the materials studied is plotted in Fig. 3.11.

The Hubbard U correction shifts the d orbitals of the metals and so in general there

are fewer optical transitions at the laser frequencies and more at higher energies. This is

particularly clear in the Fe case where the JDOS decreases with U in the laser region and

increases for example in the region around 8 eV. As we expected there are fewer transitions

available at the laser frequencies in Fe with increasing U and suitably less demagnetization.

In Ni, the Hubbard U does not have a big impact on the JDOS in the region of interest

and indeed its demagnetization is little affected by it. For Co, the contrarian case where

demagnetization increases with U , things are a little more complicated. The region where

the JDOS goes from being smaller in the LSDA+U case compared to the LSDA one to

being bigger happens where the laser spectrum is strongest. This makes a simple visual

interpretation rather more difficult but we can probe other areas of the JDOS where their

relative strengths are clearly differentiated. For example, at lower energies, the Co JDOS

is decidedly bigger in the LSDA case and it gets smaller with increasing U . We therefore

expect a laser field centered at 1.2 eV (spectrum shown on the right side of Fig 3.12) to

demagnetize more in the LSDA case and this is indeed what we observe on the left panel of

Fig 3.12.
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Figure 3.11: Joint density of states for the LSDA and LSDA+U cases in a) Fe, b) Co and c)
Ni. Superimposed is the frequency spectrum of the laser pulse used (dotted line, in arbitrary
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We note that the demagnetization here is not only inverted in terms of relative strength

from the Co case in Fig. 3.7 but its magnitude is also lower, as the JDOS is smaller in

this region than in the region probed by the first laser. This again points to the magnitude

of demagnetization being related to the amount of optical transitions available which is an

important result that can be quite useful in the search for materials suitable for all-optical

demagnetization.

3.3 The effects of different laser parameters

If this is the case and our results are simply due to electronic transitions then how are

results at this level of theory affected by the choice of the perturbation to be applied?

How do different parameters of the laser field, intensity, frequency, and duration, influence

the demagnetization dynamics calculated? Is the fluence, the quantity most often used to

describe the applied laser fields, even a good descriptor when dealing with such short pulses?

In this section, we present the results of calculations done with laser fields with changing

parameters in order to address these questions.

3.3.1 Intensity

If demagnetization is initiated by the excitation of electrons to the conduction band then

more photons should lead to more excitations and therefore more demagnetization i.e., as-



46 CHAPTER 3. FERROMAGNETS

0.1
0.0
0.1

A(
t) 

(a
.u

.)

0 2 4 6 8 10 12
Time (fs)

0.80

0.85

0.90

0.95

1.00
M

(t)
 / 

M
(t=

0)

I0 = 1015 W/cm²
I0 = 8 × 1014 W/cm²
I0 = 5 × 1014 W/cm²

I0 = 2 × 1014 W/cm²
I0 = 1014 W/cm²

Ni

Figure 3.13: Upper panel: Laser pulse shape. Lower panel: Time evolution of the relative
magnetic moment for Ni under the influence of laser field of varying peak intensity.

suming single-photon absorption, the demagnetization should scale linearly with the intensity

of the laser field. In order to test this we applied laser fields of differing intensities to Ni

while keeping the pulse duration and its frequency fixed (Fig 3.13).

It is clear that the different laser fields produce similar dynamics (demagnetization during

the laser pulse and oscillations around a fixed value after it) and that lower intensities produce

less demagnetization. But does it scale linearly as expected?

To better visualize whether that is the case we plot in figure 3.14 the final amount of

demagnetization (averaged over the last 1000 time-steps, 0.98 fs) as a function of the intensity

of the field used. We can see that it does indeed scale linearly.

The demagnetization scales roughly linearly with intensity but it starts to depart slightly

from this behaviour as the intensity increases. The most intense pulse is 10 times as intense

as the least intense one whereas the demagnetization goes from around 0.92 % in the I0 =

1014 W/cm2 pulse to around 8.77 % in the I0 = 1015 W/cm2 pulse or about 9.53 times as

much. This departure may be due to non-linear effects created by the high intensities used.

This once again suggests that at the LSDA level demagnetization and optical transition

availability are tightly connected. We find similar results for Co, depicted in appendix C.

Given this, one may now ask whether the laser intensity or the laser fluence is better

suited to describe demagnetization. To investigate this we employ different laser fields with

the same central frequency but different pulse duration and peak intensity such that they

all had the same fluence. For example, we employ a laser field that is 10 times less intense

than the field we used originally, in figures 3.7 and 3.12, but also lasts 10 times longer.
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Figure 3.14: Demagnetization as a function of peak intensity for Ni. The red line is a guide
to the eyes.
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This time we choose Co as the system to apply the various same-fluence laser fields. As

can be seen in figure 3.15, these pulses lead to quite different demagnetization levels leading

us to conclude that the laser fluence is not a good predictor of how much a given laser pulse

can demagnetize the material, at least for the kind of short, intense laser pulses used here.

Like in the earlier results demagnetization is not present after the laser pulse but these

new longer calculations shine light on another important aspect of light-induced demagne-

tization which is not clear under the ultra-short laser pulses used originally: the demagneti-

zation seems to occur mostly at the beginning of the laser pulse and to saturate as it nears

its end. This is clearer in the case of the laser field with an intensity I0 = 1014 W/cm2 and

a total duration of T = 60 fs. In it, the magnetization essentially stops around the 35 fs

mark, just over halfway through the laser pulse. This effect is related to the excitation to the

conduction bands. In the view of single-photon absorption, the number of electrons excited

by a laser pulse resembles the time integral of the pulse. That is, most of the ionization takes

place around the field maximum rather than at the end of the pulse. The fact that the de-

magnetization process resembles the time integral of the laser pulse is yet another indication

of its tight connection to the number of electrons excited in the conduction bands.

A further interesting aspect of figure 3.15 is that, at least as far as the parameters

considered here, shorter laser pulses demagnetize more. And as in the first case (Figs 3.7

and 3.10), the system absorbs more energy when it demagnetizes more, as can be seen in

Fig 3.16, despite all laser pulses carrying the same amount of energy.

A more intense laser field will evidently excite more electrons within each half cycle but

the less intense pulses are longer so that the total amount of excitations should be the same.

If we assume this process to be linear in intensity, for the same fluence we should get the

same demagnetization yet this is clearly not the case in our simulations. The laser fields all

carry the same total amount of energy but the system absorbs it quite differently from case

to case. How then do we explain the difference in demagnetization between the various laser

fields?

Looking at the frequency spectrum of the pulses and the JDOS of Co at the LSDA level,

the system considered here, in Fig 3.17 we find that the laser pulses we employ have quite

different frequency spectrums and, as expected, that the shorter pulses have wider spectrums.

The shorter pulses are so short that they encompass a broad range of frequencies. The

shortest laser (peak intensity of I0 = 1015 W/cm2 and duration of T = 6 fs) has a FWHM of

around 1.5 eV. This means this laser field has a larger set of frequencies and thus access to

more optical transitions. On the other end, the longest pulse has a FWHM of about 0.25 eV

and covers quite a smaller range of frequencies.

We attribute the higher demagnetization for the shorter pulses to the fact that they can
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Figure 3.18: a) Vector potential A(t) of the laser fields with different pulse duration but the
same remaining parameters. b) Time evolution of the magnetic moment of Co under these
two laser fields. c) JDOS of Co (solid line) and the frequency spectrum of the two laser
pulses used.

excite many more electrons because they have access to many more transitions. This also

means that when a pulse is so short that the number of optical transitions available varies

significantly over the energy range covered by the laser spectrum, the fluence stops being a

valid quantity to describe demagnetization, and one should consider instead pulse duration

and intensity as two independent and equally relevant parameters having different effects on

the light-induced demagnetization.

As the pulses get longer their spectrum gets narrower and so the difference in the range of

available transitions decreases. As so we expect that for longer laser fields the fluence becomes

a good quantity to assess the magnitude of demagnetization, since such pulses would have

such a thin spectrum that the JDOS region they would probe would be essentially constant.

3.3.2 Pulse duration

Looking at figure C.2 and figure 3.15 we notice that we already have calculations for Co

under the influence of laser fields with the same intensity (I0 = 1014 W/cm2) but different

pulse duration (6 fs in figure C.2 and 60 fs in figure 3.15). This allows us to investigate

the influence of yet another laser parameter, the pulse duration, in the demagnetization

dynamics of ferromagnets.

Figure 3.18 shows these results, on the left side the magnetization dynamics of Co under

the influence of these different length pulses and on the right side their frequency spectrum

over the Co JDOS.
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The longer pulse naturally carries more energy, more photons and so, in accordance with

our previous results, it should produce more demagnetization. And that is indeed what

occurs although unlike in the case of different intensities (figure C.2) the increase is not

even nearly linear with the increase in energy. The 6 fs pulse demagnetizes around 1.1 %

while the 60 fs demagnetizes around 3.4 %. A 10-time increase in the intensity, from 1014 to

1015 W/cm2, increases the demagnetization more than 9 times over, while an equal increase in

the duration of the excitation, from 6 fs to 60 fs, produces an increase in the demagnetization

of only about 3 times. And this, despite the energy carried by the pulse increasing in the

same manner. Once again we find that for ultra-short pulses different laser parameters have

different effects on the demagnetization dynamics and each of them must be considered in

conjunction with the others.

We attribute the different scaling of the demagnetization amount when changing the

duration compared to changing the intensity to the different laser spectrums of the two

pulses used in the pulse duration case as seen on the right side of figure 3.18. Unlike in

the different intensity case, here the two laser fields probe different areas of the JDOS. The

spectrum for the 60 fs is much sharper than the 6 fs one, and so the availability of transitions

is quite different from one laser to the other. When we increase the energy carried by the

laser pulse by increasing its duration we decrease the number of transitions that are available

to the system but when we increase its energy by increasing the intensity we do not and so

the demagnetization will not scale the same way in both cases.

These results once again support our claim that when dealing with ultrashort laser pulses

the fluence ceases to be an acceptable descriptor of the laser field and each parameter must

be considered when defining the laser field and its effects on demagnetization.

3.3.3 Frequency

From the parameters we used to define our original laser pulse the only one we have yet

to look into in more detail is the frequency. But that is not quite true. We made sense

of our results for Co with the LSDA and LSDA+U (figure 3.7) by probing a new region of

the JDOS where the relative strength of the JDOS at the LSDA and LSDA+U level was

clear (figure 3.12). The laser pulses used in both of these cases differ only by their central

frequency and so we already have the data to find the role that the laser’s frequency has on

the demagnetization dynamics. In fact, we have it at both the LSDA and LSDA+U level.

We choose the LSDA+U case with a U of 3.2 eV and add a third laser field with central

frequency of 8 eV as a further comparison point. Figure 3.19 shows both the demagnetization

achieved with each pulse as well as their frequency spectrum in relation to the Co LSDA+U
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Figure 3.19: Demagnetization of Co with laser fields of central frequency 1.2 eV, 2.712 eV
and 8 eV at the LSDA+U level with an effective U of 3.2 eV. a) Vector potential A(t) of the
laser pulses, b) Magnetization dynamics of Co with standard LSDA+U under the different
laser pulses. c) JDOS for the LSDA+U Co. Superimposed are the frequency spectrums of
the laser pulses used (coded as in a)

JDOS on its left and right side, respectively.

Once more we find evidence of the relationship between demagnetization and optical

transitions at this level. The amount of demagnetization observed tracks pretty well with

the strength of the JDOS in the area covered by the spectrum of the laser field in question.

The field with central frequency 1.2 eV is centered in the region with by far the lowest JDOS

of the three and the demagnetization is correspondingly far lower than with the other two

laser fields. Furthermore, the original field of 2.712 eV covers the area with the highest

JDOS and demagnetizes the most. This is despite the fact that the highest frequency laser

caries more energy than the middle one, meaning that the demagnetization observed at the

ALSDA level is not just a function of the energy given to the system but does indeed depend

critically on the availability of optical transitions.

All of the results in this section lay further strength to our claim that at the adiabatic

LSDA level, with frozen ions, all the demagnetization observed is the result of atomic tran-

sitions. Whatever knob we turn in the external field we apply, be it its intensity, frequency,

or duration, we can predict its effects, at least qualitatively, simply by considering its impact

on the field’s spectrum and how that relates to the JDOS of the material in question.



Chapter 4

Antiferromagnets

In this chapter we turn our attention to another class of systems, antiferromagnets. In anti-

ferromagnetic materials, the magnetic moments are arranged ferromagnetically in different

sublattices so that the total magnetic moment is zero. That is, magnetic moments in differ-

ent sublattices point in opposing directions while all having the same direction in the same

sublattice.

Antiferromagnetic systems are of particular interest to the field of spintronics because

they promise an extremely fast switching rate. The spin dynamics in antiferromagnets are

orders of magnitude faster than in ferromagnets[58] and so can be used to achieve even

faster reading and writing speeds. This speedup is a well-known property of antiferromag-

nets, known as the exchange enhancement of dynamic parameters[59], resulting from the

fact that dynamic parameters contain a large parameter, Hex, the exchange field of the

antiferromagnet, not present in ferromagnets.

In particular, we will be looking at antiferromagnetic transition metal oxides where elec-

tronic correlations play an important part. In fact, correlations play such an important

part in describing, for example, NiO that, when ignored, the ground-state is predicted to be

metallic when in reality it is an insulator. This class of materials is known as Mott insulators.

Since we are dealing with the same class of metallic elements as in the previous chapter we

run into the same problem that the localized 3d orbitals are not properly described at the

LSDA level. MnO, FeO, CoO, and NiO are examples of Mott insulators where the LDA is

well known for its inability to correctly reproduce the insulating case[30]. Changing to a

spin-dependent version (LSDA) does produce a band gap at the Fermi level for MnO[60, 61].

And yet it still fails to do so for many other systems, FeO and CoO among them, meaning

that a better approach is necessary, like the LSDA+U one. If correlations play such an im-

portant part in describing the ground-state properties of antiferromagnetic transition metal

oxides what is their effect on dynamical processes such as laser-induced demagnetization?

53
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Figure 4.1: Typical structure for the transition metal oxides studied, although this picture is
of CoO specifically. The alternating antiferromagnetically coupled planes are clearly visible.
Taken from [62]

This is what we investigate in this chapter. We follow the blueprint laid out in the

previous chapter and start by converging the ground-state in all the systems we intend to

study before moving on to the LSDA and LSDA+U calculations. Here we study changes

in both the ground-state and in the demagnetization dynamics. We interpret the findings

in much the same manner as the ferromagnets and proceed to similar investigations of the

effects of different laser parameters on the demagnetization observed.

4.1 Ground-state convergence

The antiferromagnetic materials we chose to investigate in this chapter were the transition

metal oxides MnO, FeO, and NiO. These are the same transition metals used to study the

ferromagnetic case with the exception of Mn substituting for Co. This was done because CoO

proved to be extremely difficult to converge. The spacing needed to have the magnetization

converged would be too small and the k-point grid too big, making the time-dependent

simulations impractical.

The systems considered here all have the fcc rock-salt structure where the metal atoms

form planes along the (111) direction and successive planes are coupled antiferromagnetically,

as is shown in figure 4.1. Thus the simulation box used contains two metal atoms and

two oxygen atoms, in order to properly simulate the antiferromagnetic state. Their lattice

parameters are 3.18, 3.20, and 4.17 Å, for MnO, FeO and NiO respectively.
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Figure 4.2: Convergence of the total energy (left panel) and the z component of the magneti-
zation (right panel) with regards to the spacing used. The z component of the magnetization
is calculated for one of the metallic atoms in the unit cell. These calculations were all done
with a constant k-point grid. For MnO that grid was a 2×2×2 k-point , for FeO a 4×4×4
k-point grid and for NiO a 8× 8× 8 k-point grid.

4.1.1 Total energy and magnetization convergence

Like in the ferromagnetic case we must start by ensuring that the ground-state is properly

converged.

We begin by looking at the convergence of the total energy and the z component of the

magnetization with regards to the spacing used, which is shown in figure 4.2. The error values

displayed here, and later on in figure 4.3, are defined in the same manner as in the previous

chapter, that is, in relation to the most precise calculations in each case (smaller spacing

and denser k-point grid). The z component of the magnetization though is slightly different

here compared to the one in the previous chapter. The quantity plotted here is calculated

again in a sphere but this time there is no bug and the sphere’s radius is indeed half the

distance between two neighbouring atoms (1.123 Å for MnO, 1.042 Å for FeO, and 1.042 Å

for NiO). The main difference though is that we plot the magnetization calculated around

only one of the two metallic atoms present. The magnetization around the other metal atom

is obviously symmetric, given that we are dealing with antiferromagnets, making the total

magnetization essentially zero and therefore not a good measure of the convergence of the

ground-state.

From this figure we can see that, like in the ferromagnets, the total energy is much easier

to converge than the magnetization. Only one calculation here, NiO with the biggest spacing

considered, even has a relative error greater than 1% for the energy. By comparison, the

relative error in Mz for the same calculation is over 10%.
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Figure 4.3: Convergence of the total energy (left panel) and the z component of the magne-
tization (right panel) with regards to the k-point grid used. The spacing was kept constant
with at 0.122 Åfor MnO, 0.114 Åfor FeO, and 0.122 Å a.u. for NiO

The convergence of these same quantities with the size of the k-point grid is shown in

figure 4.3. We again find that, as in the case of the ferromagnetic materials, the system is

quite more sensitive to the spacing used than it is to the k-point grid. The total energy

remains essentially constant and even the magnetization does not change much with the

increase in k-point grid density.

The energy and the z component of the magnetization seem well converged with the

sparsest k-point grid considered but again these are not the only quantities we consider

when we study the convergence of our ground-state.

4.1.2 Density of states convergence

Following the ferromagnetic case, we also look at the DOS and it proved once again to be

more difficult to converge than the total energy and the magnetization.

The DOS for FeO is shown in figure 4.4, with different spacing values on the left panel and

with different k-point grids on the right panel, analogously to figure 3.3 in the ferromagnetic

case.

Here we can see why the ground-state can not be considered converged, despite the energy

and the magnetization appearing converged with even the sparsest k-point grid size used in

figure 4.3. The DOS clearly exhibits some deviations in the calculation with a 4 × 4 × 4

k-point grid that are not present with a denser grid. This is why we can not rely on a single

quantity to judge whether or not the ground state is converged. Different properties converge

at different rates and it is important that all quantities of interest are well converged.

Similar plots for the DOS of MnO and NiO are presented in appendix D, where we find
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Figure 4.4: Convergence of the density of states of FeO with regards to the spacing (left
panel) and to the k-point grid used (right panel). In both panels 0 corresponds to the Fermi
energy

that for MnO, like for FeO, the DOS is also not properly converged with a 4× 4× 4 k-point

grid. In the NiO, case the smallest k-point grid considered was an 8 × 8 × 8 one and the

DOS seems properly converged with it.

The data shown in figure 4.4 also reinforces the notion that these systems are more

sensitive to changes in the spacing than in the k-point grid.

4.1.3 Demagnetization convergence

Finally, we look at the property whose convergence is most crucial for our work, the demag-

netization dynamics themselves.

To confirm that the dynamics are properly converged we again perform small time-

dependent runs of just 3 fs with different spacing values and different k-point grids. This is

shown for FeO in the LDA+U case with U = 5eV in figure 4.5.

Like in the ferromagnetic case, and also similarly to the other quantities we have looked

at so far, the demagnetization is much more susceptible to changes in the spacing than in

the k-point grid. Changing from an 8×8×8 to a 10×10×10 k-point grid, while keeping the

same spacing, has no discernible effect on the demagnetization dynamics (the two lines, solid

blue and dotted cyan, overlap in figure 4.5). The spacing however does have a significant

effect. Going from a spacing of 0.22 a.u. (0.116 Å) to a spacing of 0.20 a.u. (0.107 Å) while

keeping the k-point grid fixed, drastically changes the dynamics just in this short interval.

So while the DOS, the total energy, and the magnetization of FeO look converged with a
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laser pulse and the lower panel the various dynamics.

Table 4.1: x, y and z components of the total ground-state magnetic moment for each of the
oxides considered (in Bohr magnetons).

mx my mz

MnO -0.000001 0.001397 -0.003013
FeO -0.000381 -0.004370 -0.000061
NiO 0.000000 0.000000 0.000000

spacing of 0.22 a.u. (0.116 Å) it is clear the dynamics are not and so we cannot consider our

ground-state converged with this spacing.

Similar studies for the convergence of the demagnetization dynamics for MnO and NiO

were also performed and are shown with the rest of the plots regarding the convergence of

the ground-state for these systems in appendix D, with comparable results.

Taking all of this information for all of the quantities considered and for the various cases

studied, the ground state was ultimately considered converged with a uniform spacing of

0.122 Å (0.23 a.u.) and an 8 × 8 × 8 k-point grid to sample the Brillouin zone for MnO, a

spacing of 0.107 Å (0.20 a.u.) and an 8× 8× 8 k-point grid for FeO, and a uniform spacing

of 0.095 Å (0.18 a.u.) and a 10× 10× 10 k-point grid for NiO.

We should note that the ground-state we find is indeed antiferromagnetic as we can see

by the total magnetic moment, calculated by integrating the magnetization in the entire

simulation box, displayed in table 4.1.

Since there are only two magnetic atoms in the simulation box (the magnetic moment

around the two oxygen atoms is essentially zero) the fact that each component of the total
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magnetic moment is quite small, or in the NiO actually zero, means that magnetic moments

of the metal atoms are antisymmetric and we have indeed an antiferromagnetic system.

When comparing to the ferromagnets, the antiferromagnets only converge with quite a

smaller spacing but also a smaller number of k-points, which is not surprising since the

simulation box is bigger here, containing two metal atoms and two oxygen atoms.

4.2 LSDA+U calculations

With the ground state converged we can finally look at the demagnetization induced in the

antiferromagnets in question by a laser pulse with the same parameters as the one used in

figure 3.7.

The values for the Hubbard correction used in the LSDA+U calculations were 2 and 5 eV

for MnO, 3 and 5 eV for FeO, and 2 and 6.93 eV for NiO. These values were again chosen

from the range of values used in the literature.[63, 64] The U correction was only applied to

the 3d orbitals of the metallic atoms, the O atoms were treated with standard LSDA.

The time steps used this time around were 0.73 as for NiO, also 0.73 as for MnO, and

0.48 as for FeO.

4.2.1 Effects of U on ground-state properties

Following the pattern we established in chapter 3 we start by looking at the changes brought

about in the ground-state by the change in the theory level used.

In figure 4.6 we plot the DOS for FeO at the LSDA level and with both of the values

used for U at the LSDA+U level, 3 and 5 eV. Looking at the DOS close to the Fermi level

(represented as the zero on the energy scale) we see that the LSDA does indeed fail to predict

an insulating ground-state, since the DOS not only is non-zero here, it even has a strong

peak. In the calculations done with the Hubbard U on the other hand, the DOS at the Fermi

level is very close to zero. With a properly selected value for the Hubbard U , one would

obtain the real, insulating ground-state.

A similar shift, from the metallic to an insulator state with the application of the Hubbard

U can also be seen for MnO and NiO and is depicted in appendix E.

Following again the ferromagnetic example, we can study how the Hubbard U affects

the magnetic moments. These results are shown in table 4.2. Unlike in the ferromagnetic

case, the magnetic moments are not calculated in the entire simulation box, those are very

close to zero as we show in table 4.1, but around only one of the metallic atoms, as we have

discussed above in subsection 4.1.1.
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Figure 4.6: DOS for FeO in the LSDA and LSDA+U cases. In all cases the 0 of the energy
corresponds to the Fermi level. Note how the system goes from metallic at the LSDA level
to insulating at the LSDA+U level.

Our results are similar to other LSDA results[67], and like in our ferromagnetic calcula-

tions, the magnetic moment increases as the U increases. In fact, for both MnO and NiO, the

calculated value gets closer to the experimental value as stronger U corrections get applied.

This is not the case for FeO where the LSDA magnetic moment is already bigger than the

experimental value, though not by much, and so as it increases with the U correction it keeps

getting further from it.

This increase in the magnetic moments when the U correction is applied is easily un-

derstood in the same way as in the ferromagnetic case, discussed in chapter 3. The U

values could have been chosen to better reproduce the experimental moments but we again

Table 4.2: Ground state magnetic moments per atom calculated versus experimental values
(in Bohr magnetons per atom). The values of U used are described in the main text and
U2 > U1

LSDA U1 U2 exp.

Mn in MnO 4.214 4.392 4.477 4.58[65]
Fe in FeO 3.438 3.503 3.554 3.32[66]
Ni in NiO 1.263 1.480 1.634 1.90[65]
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note that the objective here was not to reproduce experiments but to investigate the effect

of the Hubbard U in the demagnetization dynamics and how changes in the ground state

description affect them in the adiabatic regime.

And so, in regards to changes to static properties, we have confirmed that even adequate

values of U account much better for correlation effects in transition metal oxides and improve

significantly their ground-state description. They may or may not also improve the values

for the magnetic moments. But how do they affect the demagnetization dynamics?

4.2.2 Demagnetization dynamics

Before we look at the results of the time-dependent simulations we must consider the fact

that we are now dealing with antiferromagnets which presents us with a new challenge, how

do we plot the magnetization dynamics? The total magnetization is nearly zero, as evidenced

in table 4.1, and so it is of no use.

It is usual, when dealing with antiferromagnets, to use the staggered magnetization

S = M1 −M2, (4.1)

where M1 and M2 refer to the magnetization in each of the sublattices. This way we get a

quantity that is non-zero and so much more useful.

However, since the dynamics in both of the magnetic atoms are generally symmetric

(which we can clearly see in figure 4.7 for NiO) then it suffices to look at the magnetization

surrounding one of the magnetic atoms. There is no need to go the extra step of creating a

new quantity to account for the two sublattices when the dynamics in one just mirror the

other.

In the end, the magnetization whose dynamics are plotted in figure 4.8 and throughout

this chapter is calculated around one of the metal atoms (with the radii that are mentioned

in the previous section) and the magnetization around the other metal atom is symmetric.

Now that we have guaranteed that our calculations are converged with regards to the

different parameters in Octopus, that we have seen how U affects the ground-state, that we

have clarified the technical details of what we will be looking at, we can finally move on to

the stated purpose of this chapter, to investigate the impact of the Hubbard U correction on

the light-induced demagnetization in the antiferromagnetic case. These results are shown in

figure 4.8.

The first thing that jumps out from figure 4.8 when compared to the analogous results

for ferromagnets in chapter 3 is the magnitude of demagnetization achieved here. Whereas

in the ferromagnetic case we find demagnetizations of around 8%, in here we have, at the
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Figure 4.7: Demagnetization dynamics of the z component of the magnetic moment around
each atom in the NiO case at the LSDA level. The symmetry between both magnetic atoms
is clear.

LSDA level, demagnetization of around 15% for both MnO and FeO. NiO even demagnetizes

almost entirely with the LSDA.

Another noteworthy difference is in the impact that the Hubbard U has. The effects on

the demagnetization are much more pronounced here. For the transition metal oxides here

we find relative decreases in the amount of demagnetization of around 64%, 63%, and 47%

when going from LSDA to the smaller value of U for MnO, FeO, and NiO respectively. For

comparison, in Fe, which is the system most affected by the U from among the ferromagnets

we studied, a correction of 4 eV changes the demagnetization from around 8% at the LSDA

level to around 6%. This is still a significant change but nowhere near the aforementioned

change of 63% for FeO with a smaller U of 3 eV.

When compared with the ferromagnets, the demagnetization in the antiferromagnets also

happens faster, saturating a bit before the end of the pulse. Take the example of Ni as a

ferromagnet and in NiO. The dynamics for both of these cases at the LSDA level is depicted

in figure 4.9. Take care that in this figure each one is plotted on a different axis as the amount

of demagnetization observed is wildly different in the two cases and we are only interested in

the overall shape. The dynamics in the antiferromagnetic case saturate a bit faster, around

the 4 fs mark which is, as we discussed above, a known property of antiferromagnets and

one of the reasons for the interest in their demagnetization.

Turning from differences to similarities, the magnetization also remains essentially con-

stant here after the laser pulse which is, as we discussed in the previous chapter, both

contrary to experimental results but also to be expected at this theory level.

Returning to our antiferromagnets in and of themselves, we can take a look at the dy-
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have a) the vector potential A(t) of the laser pulse, the magnetization dynamics of b) MnO,
c) FeO, and d) NiO with standard LSDA and using LSDA+U . The values of Ueff = U − J
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Figure 4.9: Demagnetization dynamics for bulk Ni and Ni in NiO at the LSDA level.

namics of the total energy for NiO in figure 4.10. It is important to note that, as with the

ferromagnets in the previous chapter, after the laser field is gone, the total energy remains

constant in all cases (including for MnO and FeO as can be seen in similar plots in appendix

E). This is again an indication that the calculations are well converged with regards to the

time-step used. It is also apparent that the energy after the laser pulse is greater than at

the beginning, i.e. the system again absorbs energy.

But if we want to look only at the energy transferred to the system in the course of the

demagnetization process figure 4.10 is not the most useful, given the huge swings in energy

provoked by the extremely intense laser field we employ, and so we resort again to plotting

only the energy absorbed by all the systems in figure 4.11.

Looking at it we find once more that when the system demagnetizes more it also absorbs

more energy. Note also that NiO is by far the system that absorbs more energy and it is also

by far the oxide that demagnetizes the most in our calculations. The difference in excess

energy between the LSDA case and the different LSDA+U cases is more pronounced here

than in the ferromagnets studied above, and so is the difference in demagnetization.

As in the ferromagnetic case, the increased absorption points to more transitions taking

place, and so, analogously to figure 3.11, we again look at the JDOS, which we plot for the

oxides in figure 4.12, with the laser spectrum superimposed. We find again that the Hubbard

U correction shifts the energy of the orbitals it is applied to, increasing the energy necessary

for excitations involving those states, which is reflected in the JDOS as a shift towards higher

energies. This shift is also reflected in the magnetic moment calculated around each magnetic

atom, as is shown in table 4.2.
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Figure 4.12: Joint density of states for the LSDA and LSDA+U cases in a) MnO, b) FeO,
and c) NiO. Superimposed is the frequency spectrum of the laser pulse used (dashed line, in
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Returning to the JDOS, we again find a significant correlation between its strength in

the areas probed by the laser field and the magnitude of demagnetization observed. For

all antiferromagnets considered, the JDOS around 2.712 eV (the central frequency of the

laser field used) decreases with U and so does the respective demagnetization. What’s more,

the JDOS changes a lot more with the Hubbard U here, for the antiferromagnets, than it

does in the ferromagnets (figure 3.11). And so it is no surprise that the impact of U on the

demagnetization is also much greater for the antiferromagnets than it is for the ferromagnets.

The calculations for the laser-induced demagnetization in antiferromagnetic materials

reinforce our findings in the previous chapter that at the adiabatic LSDA level with frozen

phonons the demagnetization observed is tightly correlated with the availability of optical

transitions. The only impact the Hubbard U correction has is to shift said availability and

the subsequent changes in the demagnetization dynamics are the result of that shift.

4.3 Probing different areas of the JDOS

If, at the theory level we are considering here, adiabatic LSDA, the demagnetization is

simply related to optical transitions then the JDOS should have some predictive power, at

least qualitatively.

In this section, we present two ways in which we can use the JDOS to predict relative

levels of demagnetization and see if the picture we have, of demagnetization at the adiabatic

LSDA level being driven by optical transitions, delivers on that promise. We can compare

the JDOS with different U corrections over a certain frequency range and predict with which

U will we observe more demagnetization. Or we can keep the theory level fixed and use laser

pulses of different frequency and predict which will produce more demagnetization.

4.3.1 Using the Hubbard U

If the perturbing field is centered on a peak in the JDOS we should observe a much greater

level of demagnetization than if it is centered on a valley. Consider then the JDOS for MnO

around the 5 eV mark. The LSDA JDOS has a valley there and its magnitude is pretty

similar to the JDOS in the LSDA+U case with a U of 5 eV. Meanwhile with a U of 2 eV

the JDOS has a peak in this region. So if we apply a laser field with a central frequency of

5 eV to these three systems we expect to see similar values of demagnetization at the LSDA

and U = 5 eV levels and more demagnetization with a U of 2 eV.

That is precisely what we see in figure 4.13. In the right panel, we see the JDOS for MnO

with and without U with the spectrum of the new laser superimposed in black, to better
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Figure 4.13: Demagnetization of MnO with a laser field of central frequency 5 eV. a) Vector
potential A(t) of the laser pulse, b) Magnetization dynamics of MnO with standard LSDA
and using LSDA+U . c) JDOS for the LSDA and LSDA+U cases in MnO. Superimposed is
the frequency spectrum of the laser pulse used (black dashed line, in arbitrary units)

visualize the new area of the JDOS being probed. And on the left panel we see the results

for the demagnetization dynamics with said new laser pulse and they are exactly what we

expected, similar demagnetization levels with the LSDA and with a Hubbard U of 5 eV and

a much greater demagnetization with an U of 2 eV.

4.3.2 Using different frequency pulses

We can also use laser pulses with different frequencies to probe different areas of the JDOS

instead of keeping the laser fixed and using the Hubbard correction to change the JDOS.

Take a look, for example, at the demagnetization in NiO at the LSDA level with pulses

of central frequency 1.9 eV and 4 eV as well as the original pulse of 2.712 eV, in figure 4.14.

The original pulse’s spectrum peaks slightly after a big peak in the JDOS. When we

apply a pulse centered on this peak in the JDOS (1.9 eV), we observe essentially the same

demagnetization. Since NiO already demagnetized completely with the 2.712 eV pulse the

extra transitions available do not have a discernible effect, the system cannot demagnetize

more. On the other hand, when we drastically diminish the number of transitions available by

applying a laser pulse centered at 4 eV, where the JDOS has a big valley, the demagnetization

observed is a lot smaller, about a quarter of the demagnetization observed with the other

pulses.

We have also done a version of this comparison before (obviously for ferromagnets in
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Figure 4.14: Demagnetization of NiO with laser fields of central frequency 1.9 eV, 2.712 eV
and 4 eV at the LSDA level. a) Vector potential A(t) of the laser pulses, b) Magnetization
dynamics of NiO with standard LSDA under the different laser pulses. c) JDOS for the
LSDA NiO. Superimposed are the frequency spectrums of the laser pulses used (color-coded
as in a)

section 3.3.3 but also implicitly for antiferromagnets in this section). When we chose a new

laser field in figure 4.13 to better compare the demagnetization across theory levels we also

ended up, in conjunction with figure 4.8, with results for the demagnetization with laser

pulses of different frequency at three different levels, LSDA and LSDA+U with a U of 2 eV

and 5 eV.

For all of these cases, the changes in demagnetization are what we expected. At the LSDA

level, we go from pretty close to a peak, in a zone where the JDOS is relatively strong, with

the laser of frequency 2.712 eV to a region where the JDOS has a local minimum and is

quite less strong, with the 5 eV laser field. And the demagnetization suitably decreases from

around 15% in figure 4.8 to slightly over 10% in figure 4.13. With a Hubbard U of 2 eV, the

strength of the JDOS in the area covered by the spectrum increases when going from one

laser field to the other, and the demagnetization also increases, from around 5% in figure 4.8

to over 20% in figure 4.13.

Thus the JDOS does have predictive power, at least in qualitative terms. All the results

we have shown in this chapter are in line with our interpretation that at the adiabatic level

the availability of transitions at the laser frequencies is of tremendous importance to the

light-induced demagnetization dynamics.



70 CHAPTER 4. ANTIFERROMAGNETS



Chapter 5

Spin-orbit coupling

In this chapter, we shift our investigation not to a new set of materials but instead to the

effects of a very important term when describing demagnetization dynamics, the spin-orbit

coupling.

As we alluded to in the introduction, spin-orbit mediated spin-flips are one of the possible

mechanisms responsible for laser-induced ultra-fast demagnetization[7]. Given that phonons

do not play a role in the calculations presented in chapters 3 and 4, SOC is the likely culprit

behind the demagnetization observed at this theory level. And so it is worth it to look into

it a bit more closely.

In this chapter we address how changes in the magnitude of SOC impact the results, and

investigate the origins of demagnetization in our calculations.

5.1 Spin-orbit strength

So far, we have shown that at the adiabatic level the demagnetization is intimately related

to the number of optical transitions available. But these are not spin-flip transitions. The

actual change in the magnetization comes from SOC mediated transitions after the laser

field excites the system away from equilibrium.

To gain insight into the role of the SOC in the demagnetization process we can make use

of a variable in the Octopus code, SOStrength, that lets us choose the strength of the SOC

in our calculations. So not only can we see how the demagnetization dynamics proceed if we

turned the SOC off, but also if the coupling was a lot stronger than in reality.

We tried this for Ni, with the same structure and the same ground-state parameters as

in chapter 3. The choice of using one of the materials studied in the previous chapters is an

obvious one as it saves us the trouble of having to converge the ground state again. From

those, the ferromagnets are the better choice as their simpler structure and smaller unitary

71
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Figure 5.1: Demagnetization of fcc Ni with different strengths for the spin-orbit coupling.
a) the vector potential A(t) of the laser pulse. b) the magnetization dynamics of Ni with
different SOC strengths. The parameters of the laser pulse are given in the main text in
chapter 3

cell mean that the calculations are performed faster. On top of that, we have found in the

previous chapters that the demagnetization proceeds in much the same manner, and relates

similarly to the respective electronic structure, in both ferromagnets and antiferromagnets,

and so there is also no physical reason to choose the more complex system. From among Fe,

Co, and Ni, we choose Ni, again for computational reasons as it offers the best compromise

between k-point grid size and spacing used. All of this can be summarized by saying that

Ni was chosen for practical computational reasons.

We also employ the same laser field as previously, detailed in chapter 3. The only

difference between the results shown in figure 5.1 is the strength of the SOC. It was set to 0

in one case, and to 2 in the other, as well as the original case where it has the default value

of 1.

We find that changing the strength of the SOC has a significant, but not huge, impact

on the amount of demagnetization observed.

Perhaps more surprisingly, eliminating the SOC completely, i.e. setting its strength to 0,

still seems to produce some demagnetization. If our calculations are truly well converged and

nothing is wrong with the Octopus code, this result would contradict previous ones[7, 12],

and it would mean that the LSDA would break the zero-torque theorem[68]. But not all is

lost quite yet. It is perfectly possible that the demagnetization observed in this case is only

the product of the excitation of electrons to the outside of the integration spheres, that is,

the demagnetization plotted in figure 5.1 for the SOStrength = 0 case is not legitimate, it
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Figure 5.2: a) the vector potential A(t) of the laser pulse b) Total charge c) Relative differ-
ence of the majority and minority charges. The exact meaning of this quantity is discussed
in more detail in the main text.

is only an artifact of the way the magnetization is calculated in Octopus.

To confirm this hypothesis we plot, in figure 5.2, different integrals of nαβ, at the different

SOStrength levels.

In section b) of figure 5.2 we plot the total charge, i.e. the integral of nTr (see equation

2.12), over the entire simulation box. As we can see, the total number of electrons remains

constant throughout the propagation in all cases. This assures us that the code is working

properly, the propagation is stable, and we are not creating or destroying electrons. Moreover

18 is the number of non-core electrons in Ni in the pseudopotentials we are using.

In section c) we plot the integral of n↑↑(t) − n↓↓(t), relative to its value at t = 0. This

quantity is related to the z component of the magnetization[24]. We can now confirm that

the demagnetization without SOC in figure 5.1 is truly spurious. And when we turn on SOC

there is indeed some legitimate demagnetization, even if not much.

So if we consider the entire simulation box and integrate over it, we confirm that our cal-

culations are well converged and they agree with previous results. Our results also strengthen

the idea that SOC mediated spin-flips are an important part of laser-induced demagnetiza-
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tion, though far from being the only process involved. After all, even with double the SOC,

the demagnetization we observe in Ni is still very far from the experimental one[55].

The type of analysis done in figure 5.2 is only possible because we only use one atom in the

unit cell. The same plot for the antiferromagnets we studied in chapter 4 would not provide

us with any insightful information. The total magnetization is always zero, regardless of the

demagnetization dynamics of each atom.

This raises a question regarding the code we have been using, Octopus. Spheres are

clearly not the best volume to use when integrating the local magnetic moments, as they do

not cover the entire space. This is something that should be changed in the future, perhaps

by using Voronoi cells.



Chapter 6

Conclusion

We have employed the LSDA+U method to investigate how the description of correlations,

and therefore how changes to the bandstructure caused by it, impacts the light-induced

demagnetization on a number of materials. Specifically, we considered the elemental ferro-

magnetic transition metals Fe, Co, and Ni, as well as the antiferromagnetic transition metal

oxides MnO, FeO, and NiO.

In all cases, we found that the Hubbard U correction produces significant changes in the

amount of demagnetization observed. The overall impact is greater for the oxides, where

the amount of demagnetization observed is also much larger, but is still considerable in the

ferromagnetic materials. And yet the results we have presented in this thesis are still very far

off from the experimental ones, especially for the elemental ferromagnetic metals. A correct

description of electronic correlations is an important piece in correctly representing light-

induced demagnetization with ab initio methods but it is also clear that there is a myriad

of other processes and effects that further contribute to the demagnetization and need to be

addressed in the future. One clear example of a process that certainly plays an important

part, yet we fail to account for it in our calculations, is the interaction with the phononic

system.This is clearly an area that deserves further investigation in the future.

We have established a relationship between the amount of demagnetization observed in

our calculations and the JDOS of the material in question in the energy range of the laser

pulse used. That is, in our calculations, for both ferro and antiferromagnets, the system

demagnetizes more when there are more transitions available at the laser frequencies. This

holds for all the material studied across all the theory levels used. In fact, this is the reason

for the changes in the demagnetization when the Hubbard U is applied. The Hubbard U

changes the JDOS and the demagnetization changes accordingly, which is why the effects

of applying the U are not always the same. Sometimes the demagnetization increases,

sometimes it decreases, depending on the material in question and the laser pulse applied. It

75



76 CHAPTER 6. CONCLUSION

is also why the effect of the Hubbard correction is more pronounced in the antiferromagnets

we studied, it has a bigger impact on their electronic structure

We investigated this relationship further by performing several calculations where we

change different laser parameters and see how each impacts the demagnetization. In every

single one of these calculations, the system demagnetizes more when there are more tran-

sitions available, be it (1) from a change in the DOS in the region of the laser spectrum,

whether that change is from the Hubbard U changing the DOS or from shifting the spectrum

by using a different central frequency, (2) from an increase in the area covered by the laser

spectrum because the pulse is shorter, or (3) just simply because there are more photons in

the laser field due to its intensity increasing.

One interesting corollary of our investigation into the impact of different pulse param-

eters on the demagnetization is that for sufficiently short pulses the fluence ceases to be a

good descriptor. These pulses are so short that their spectrum covers a region where the

JDOS changes significantly and so one needs to be careful about how each laser parameter

individually affects its spectrum. It is possible to have pulses with the same fluence produce

different demagnetization levels.

We have confirmed that SOC is crucial when simulating demagnetization, as without it

no demagnetization takes place. But it is also clear from our calculations that at the LSDA

level a lot of other information is still missing. We have also found an issue in the Octopus

code that affects slightly the results produced. To solve it the way the magnetization is

calculated in the Octopus code should be tweaked.

One can continue to investigate the role of correlations in the demagnetization dynamics

by employing more sophisticated corrections, like an ab initio time-dependent U [36].As for

the broader field of light-induced demagnetization, the adiabatic approximation is clearly

a crude one when dealing with the ultrafast, high-intensity laser pulses used in it, and so

another area that should be further looked into is to develop and use better functionals

that take into consideration memory effects. Moreover, there is already evidence that such

memory effects play a key role in demagnetization[16]. Exchange-correlation functionals

with non-zero exchange torque could also help elucidate the role of optical torques in the

demagnetization process and so it is worth it to invest in their development and use for

non-colinear magnetism.

One thing is for certain, the adiabatic LSDA, even with a static U is very far off from

accurately describing the physics we observe in experiment. Which is not to say that it is

completely unusable. It does produce some demagnetization, and as we have seen it does

highlight the importance of SOC in the demagnetization process as well as the role of spin-

flip transitions in it. And we have used it to produce insights into the relationship between
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the magnitude of demagnetization and the availability of optical transitions. But it is clear,

and this work helps cement this fact, that time-dependent DFT simulations with adiabatic

functionals, and with only simple corrections to it, are not the most accurate tools to describe

real-world light-induced demagnetization, even if they do offer some insights.
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Appendix A

Ground-state convergence in

ferromagnets

In chapter 3 not all plots for the ground-state convergence are shown. This would have been

too repetitive in the main text. And yet, as we stressed out in that chapter, the proper

convergence of the ground-state is vital. In this appendix we present the plots regarding the

ground-state convergence in ferromagnets missing from chapter 3.
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Figure A.1: Convergence of the density of states of Co with regards to the spacing (left
panel) and to the k-point grid used (right panel). In both panels 0 corresponds to the Fermi
energy

The convergence of the DOS with both the spacing and the k-point grid for Ni is the

only one missing in the main text and is shown here, in figure A.1. The results follow much

the same trend as those of Fe and Co, discussed in the main text.

For the convergence of the demagnetization, ensured by doing short propagations with

79



80 APPENDIX A. GROUND-STATE CONVERGENCE IN FERROMAGNETS

0.1
0.0
0.1

A(
t) 

(a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (fs)

0.92

0.94

0.96

0.98

1.00
M

(t)

spacing = 0.21(a. u. ), Nkpts = 12
spacing = 0.20(a. u. ), Nkpts = 12
spacing = 0.21(a. u. ), Nkpts = 20

Fe

Figure A.2: Short propagation of the relative magnetization in Fe with different parameters.
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various dynamics. The results are nearly the same with different spacing and k-point grid
which means the calculations are well converged.

different spacing values and different k-point grids, only the results for Ni are shown in

chapter 3. The results for Fe and Co (figures A.2 and A.3 respectively) are similar the the

Ni ones (figure 3.5).
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Appendix B

LSDA+U results for Co and Ni

The effects of the Hubbard U correction on the ground-state DOS for Co and Ni are not

shown in chapter 3. Only Fe is shown there because the results are more pronounced in it.

The results for Co and Ni are shown in this appendix (figures B.1 and B.2). Similarly to the

Fe case discussed in chapter 3, the LSDA results are closer to experiment and the Hubbard

U shifts them away.
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Figure B.1: Comparison of the Co DOS calculated using the LDA and different U values
with experimental data.
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The dynamics of the energy are also missing for Co and Ni in chapter 3. These results

(figures B.3 and B.4) are also similar to the analogous Fe ones. The energy at the end of the

pulse is higher for Co and Ni in the cases where it demagnetizes more, like in the Fe case.

The energy also remains constant after the pulse which means the time-step was properly

converged for Co and Ni as well.
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Appendix C

Demagnetization in Co under laser

pulses of varying intensity

Like for Ni, in figure 3.13, the demagnetization in Co was also investigated under laser pulses

with different intensities and the same pulse duration and central frequency. This is depicted

in figure C.1.
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Figure C.1: Upper panel: Laser pulse shape. Lower panel: Time evolution of the relative
magnetic moment for Co under the influence of laser field of varying peak intensity.

Also as in the Ni case, the demagnetization increases with increased intensity but it

deviates more form the linear scaling (figure C.2). The most intense pulse is 10 times more

intense than the least intense one but Co only demagnetizes approximately 6.3 times more.
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Appendix D

Ground state convergence in MnO

and NiO

In the antiferromagnetic case, once again not all plots regarding the ground state convergence

were shown in chapter 4. In that chapter only the convergence of FeO is presented. The

extra plots for the convergence of MnO and NiO are presented in this appendix.

For the convergence of the DOS with both the spacing and the k-point grid see figure

D.1 for MnO and figure D.2 for NiO.
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Figure D.1: Convergence of the density of states of MnO with regards to the spacing (left
panel) and to the k-point grid used (right panel). In both panels 0 corresponds to the Fermi
energy
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For the convergence of the demagnetization dynamics see figures D.3 and D.4 for MnO

and NiO respectively.

The results in this appendix follow closely those of FeO, discussed in more detail in

chapter 4.
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Appendix E

LSDA+U results for the

antiferromagnets

In this appendix we show extra plots for the DOS of MnO and NiO at both the LSDA and

LSDA+U level. These plots (figures E.1 and E.2) are analogous to figure 4.6 for FeO.
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Figure E.1: DOS for MnO in the LSDA and LSDA+U cases. In all cases the 0 of the energy
corresponds to the Fermi level. Note how the system goes from metallic at the LSDA level
to insulating at the LSDA+U level

Similarly to the FeO case discussed in the main text, the Hubbard U correction produces

the correct insulator state as opposed to the metallic state produced by the LSDA.
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Figure E.2: DOS for NiO in the LSDA and LSDA+U cases. In all cases the 0 of the energy
corresponds to the Fermi level. Note how the system goes from metallic at the LSDA level
to insulating at the LSDA+U level

The energy dynamics for MnO and FeO are plotted in figures E.3 and E.4.

As in previous cases the system demagnetizes more when it absorbs more energy and the

time-step selected was adequate as the energy remains constant after the laser pulse.
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[61] K. Terakura, A. Williams, T. Oguchi, and J. Kübler, Physical Review Letters 52, 1830 (1984).
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