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Zusammenfassung

Diese Arbeit behandelt die numerische Simulation von Mehrphasen-Strömungen mit
Surfactants. Die Mehrphasen-Strömung ist eine Strömung von zwei nicht mischbaren
Flüssigkeiten, dabei können diese Flüssigkeiten sogenannte oberflächenaktive Substanzen
(Surfactants) mit sich führen. Der Surfactant ist in den Flüssigkeiten gelöst und kann
sich an dem Interface anlagern. Auf dem Interface verändert der Surfactant die Ober-
flächenspannung, was zu einen nicht-homogenen Oberflächenspannungskoeffizienten führt,
was wiederum viele verschiedene physikalische Effekte nach sich zieht. Z.B. kann die
Marangoni-Konvektion einen erheblichen Einfluss auf die Strömungsstruktur solcher
Zweiphasen-Strömungen haben.

Die mathematische Beschreibung solcher Strömungen führt auf ein System der Navier-
Stokes Gleichungen und ein System für den Bulk- und Oberflächen Transport. Diese
Systeme sind gekoppelt und nichtlinear. Diese Arbeit stellt eine Finite Element Meth-
ode vor, die solche gekoppelten Systeme von Strömungs und Transport Gleichungen
behandelt. Die Finite Element Methode bedient sich dabei des ALE-Bezugsystem, d.h.
es werden bewegte Gitter und ausgerichtete Oberflächengitter verwendet. Der Vorteil
dieser Methode is eine sehr genaue Einbindung der von dem Surfactant abhängigen
Oberflächenspannung, was zu einer Methode führt, die in vielen verschiedenen Anwen-
dungsfällen gute Resulate erzielt.

Ein sehr wichtiger Aspekt, bei der numerischen Behandlung von Zweiphasen-Strö-
mungen, ist die Handhabung der Unstetigkeiten am Interface. Daher wird der Standard
stetige Taylor-Hood Finite Element Raum zu einem nur phasenweise stetigen Raum
erweitert. Das ist ein Raum, welcher einen stetigen Druck in jeder Flüssigkeitsphase
hat, aber eine Unstetigkeit im Druck über das Interface erlaubt. In Kapitel 4 wird
dann gezeigt, dass dieser erweiterte Finite Element Raum dabei inf-sup stabil bleibt,
was wesentlich ist, um ein stabile numerische Methode zu erhalten, und um sogenannte
unphysikalischen Oszillationen zu vermeiden.

Ein anderer wichtiger Aspekt der ALE-Methoden ist die Behandlung des Gitters,
insbesondere des Oberflächengitters. Gitter geringer Qualität benötigen eine Neuver-
netzung des gesamten Gebietes, was teuer zu berechnen ist und was zusätzliche Fehler
in der numerische Lösung mit sich bringt. Verschiedene Gitterglättungstechnicken wer-
den betrachtet und verglichen, die zu einer erheblichen Verbesserung der Gitterqualität
führen.

Desweiteren wird die Methode, die in dieser Arbeit vorgestellt wird, validiert und
mit anderen numerischen Verfahren und mit analytischen Näherungen für Zweiphasen-
Strömungen verglichen. Diese Ergebnisse werden in Kapitel 5 vorgestellt.





V

Abstract

This work treats the numerical simulation of two-phase flows with surfactants. A
two-phase flow is the flow of two immiscible fluids, where the fluids can carry so called
surface active agents (surfactant). The surfactant is dissolved in the fluids and can
accumulate on the interface. On the interface, the surfactant alters the surface tension
force, leading to a non-homogeneous surface tension coefficient, which induces many
physical effects. E.g. Marangoni convection can have a significant influence on the flow
pattern of such two-phase flows.

The mathematical description of such flows leads to a system of two-phase Navier-
Stokes equations and a system of bulk- and surface transport equations. This system
is coupled and nonlinear. This work presents a finite element method handling these
coupled flow and transport equations. The finite element method employs the ALE-
framework, i.e. uses moving meshes and fitted surface grids. The advantage of this
method is a very accurate incorporation of the surfactant depending surface tension
coefficient, which renders a method applicable in many different scenarios.

An important aspect is the handling of the discontinuities across the interface. A
careful choice for the finite element space has to be taken. Therefore, the standard
continuous Taylor-Hood finite element space is extended to a domain-wise continuous
Taylor-Hood finite element space. That is a space in which the pressure is continuous
in each fluid phase, but is allowed to exhibit a jump across the interface. It is shown
in Chapter 4, that this extended Taylor-Hood finite element space is still inf-sup stable,
which is crucial to prevent so called spurious oscillations and get a stable scheme.

Another important part of ALE techniques is the handling of the mesh, especially
the surface mesh of the interface. Meshes of poor quality require a re-meshing of the
whole domain. That is very costly in terms of computational work, and it introduces
additional errors to the numerical solution. Different mesh smoothing techniques for the
surface mesh are considered and compared, which result in a significant improvement of
the mesh quality.

The method presented in this work is validated and compared with other numerical
schemes and analytical approximation for two-phase flows with surfactants. These results
are presented in Chapter 5.
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Chapter 1

Introduction

Two-Phase flows are important in nature and in several applications in engineering,
chemistry, biology, and science. A two-phase flow consists of two fluids, that do not mix
completely, i.e. the fluids form an interface that separates both participating phases. At
the interface an additional force occurs, due to the different properties of the fluids. This
force is called surface tension force. The surface tension force is well known in every
day life. It responsible for the shape of droplets of water in air or resting on a plate, it
makes the surface of water in a bottle curved, or it allows a water strider to walk on a
puddle. But, the surface tension is also important in engineering. It makes foams stable,
it allows contact less sealing of shafts, or it creates bubbles in chemical reactors.

An important property of the surface tension force, is that it can be altered by so
called surface active agents (surfactants). Surfactants are impurities that are dissolved
in the fluids and can be adsorbed by the interface. Many applications of two-phase flows
wouldn’t be possible without a surfactant. An important surfactant, known in every
day life is soap, which allows hydrophobic substance to mix with water in form of small
droplets.

In the mathematical and numerical treatment of two-phase flows with surfactants,
one is concerned with several problems. A flow problem for the fluids and a transport
problem for the surfactant. Since, the surfactant can be dissolved in the fluid or ac-
cumulated on the interface, it is distinguished between the bulk transport, which is the
transport in the fluid phase, and the surface transport, which is the transport on the
interface. The fluid phases are also called the bulk.

Usually, the flow problem is described by the Navier-Stokes equations. While the
numerical treatment of the one-phase Navier-Stokes equations is well developed and has
already a long history, the numerical treatment of two-phase flows is still in its infancy.
Most results were developed only in the recent years, where several different approaches
were followed.

The wide field of numerical treatment of two-phase flows based on continuum me-
chanics can be divided into two main branches. Methods using the diffuse interface
models and methods using the sharp interface models. Diffuse interface models treat
the two-phase flow as a flow of a mixture of fluids. The interface is not defined. Rather,
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2 CHAPTER 1. INTRODUCTION

there is a region of transition from one fluid to the other. This region is a result of a
demixing of the fluids and has a small thickness depending on the participating fluids.
The demixing is driven by physical processes, following the energy minimisation of the
free energy of the fluid system [1, 2, 9, 36, 54, 114]. Numerical methods were developed
for those models and successfully applied [3, 7, 63, 109]. Methods based on the diffuse
interface model handle topological changes in the fluid domains very well, since the in-
terface is not pre-defined. Topological changes in the fluid domain are situation like
droplet break up or droplet coalescence. Also, the dynamics of such topological changes
are physically accurate, since it is based on physical modelling. A problem for numeri-
cal methods based on diffuse interface models is the resolution of the interface. In real
world applications the interface is often very thin. Adaptive meshes near the interface
can solve some of the related problems. But in some important cases, the interface is
so thin, that it is impossible to resolve it with modern computers. Such systems are for
example air-water systems. The high resolution of the interface usually leads to larger
computation times, compared with sharp interface based methods.

Sharp interface models for two-phase flows assume an infinite thin interface between
the fluids. The position of the interface is defined by additional equations for its evolu-
tion, or in some cases given a priori. Numerical methods employing the sharp interface
model are distinguished into two classes. Methods that treat the position of the inter-
face implicit are the so called interface capturing methods. And methods that have an
explicit representation of the interface position are the interface tracking methods.

Capturing methods are methods that describe the motion of the interface by means of
an secondary marker. Thus, the surface is given implicit and has to be reconstructed from
this marker function. Examples for capturing methods are the volume of fluid (VOF)
technique, and the level set method. The VOF methods are mostly used together with
finite volume methods. In the VOF methods, each cell of a mesh holds the information
about what fraction of the fluids occupies the cell, from which the interface and its
properties can be reconstructed [10, 30, 76]. Level set methods describe the interface
by a function indicating the fluid phase by a value. Then, the interface is an isoline or
isosurface of this level set function. Mostly, this function is the signed distance function
to the interface and the interface is represented by the zero level [68, 70, 107]. Level
set and VOF methods can handle topological changes easily. Although, the break up or
coalescence of the interface might not be physically accurate.

Tracking methods employ a distinct mesh for the interface. It is distinguished be-
tween Eulerian methods and Lagrangian or ALE methods. Eulerian methods use a fixed
background mesh over which the mesh for the interface moves. This methods are also
called front tracking methods or immersed boundary methods. This methods have been
successfully applied to two-phase flows using finite volume methods [90, 111], in the
finite difference context [112], and with finite element methods [18, 20, 21].

In the Lagrangian or ALE methods, the mesh for the interface consists of faces of
the background mesh, and thus is part of the background mesh. Faces belonging to the
interface are marked as such, and usually don’t change this property (there are exceptions
[22]). Thus, the background mesh must follow the movement of the interface and hence,
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this methods employ a moving mesh, instead of a fixed background mesh. Moving mesh
techniques have been used in the finite difference context [75], finite volume context [44,
45], and the finite element context [16, 58, 61, 92]

The capturing methods and the front tracking methods are so called unfitted meth-
ods, while the moving mesh techniques are used as fitted methods. In unfitted methods,
the interface can cut mesh cells. In fitted methods the interface is always aligned and
no cutting of mesh cells occurs.

In unfitted methods, discontinuities and kinks of functions, that can appear in the
interior of a mesh cell, have to be handled carefully. In the finite element context, a
whole class of new methods have been developed, the so called extended finite element
(XFEM) or CutFEM methods. These methods are used to solve flow and bulk equations
[34, 69, 73] and for partial differential equations on surfaces as well [35, 95, 96].

In the fitted methods, the discontinuities also have to be handled. But here, this is
less of a problem, since jumps appear across mesh cell boundaries only and discontinuous
finite element spaces are available.

A disadvantage of the tracking methods is the difficulty in handling of topological
changes. In fact, this is nearly impossible. Although, there are successful attempts to
handle the break up and coalescence of fluid phases [94], these schemes are essentially
mesh handling algorithms, and do not guarantee a physical accurate coalescence or break
up.

The finite element analysis for two-phase flows coupled with bulk-surface transport
equations in the framework of ALE finite element methods is still in its infancy. In the
following a short overview is given, without claim of completeness.

The ALE finite element method for coupled bulk-surface problems works well to-
gether with parametric finite element methods on surfaces. Since a surface mesh is given
explicit, these methods can easily be applied for the surface transport of the surfactant.
In recent years these methods have been developed a lot. Although, the first occur-
rence of such methods has been several decades back in [48]. For transport problems on
evolving surfaces, using a finite element method with linear elements, an analysis was
done for the semi-discrete problem in [46, 47] and later for the fully discrete problem
in [49]. Surface finite element methods also using the ALE framework for the surface,
instead of an Lagrangian description, were used in [53]. For fixed surfaces, higher order
finite element methods for diffusion (Laplace-Beltrami operator) were considered in [43].
Methods for evolving surfaces using space-time finite elements methods were studied in
[95] and [97]. An overview of different parametric surface finite element methods is given
in [50].

Existing finite element analysis for the bulk equations in the ALE framework are
restricted to the case that domain evolution is given a priori. Mostly transport equations
are considered in a one-phase setting. A finite element analysis of a transport and a
diffusion problem using different time discretization is found already in [93] and [92]. An
important role plays the so called geometric conversation law (GCL), although it is not
quite clear which role. The GCL is a condition on the time integration. In short, it states
that the Reynolds transport theorem also has to hold for the time-discrete scheme [25,
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56]. However, it is also shown that the GCL condition is neither sufficient nor necessary,
for the stability of a scheme [25].

An analysis of a stabilised ALE finite element method for convection diffusion prob-
lems can be found in [13]. An analysis of time-discrete ALE methods for transport
problems, using higher order discontinuous Galerkin methods in time are found in [27]
and [28]. Further, an analysis of the unsteady Stokes problem in a time dependent
domain using a ALE finite element method can be found in [104].

For the coupled bulk-surface transport problem are also some works available already,
which are concerned with the analysis of finite element methods. Although, only the
stationary case is treated yet. An analysis for coupled elliptic problems can be found in
[52] and [99], and in the context of unfitted methods an analysis is found recently in [67]

This work is concerned with the two-phase flows with surfactants in the ALE finite
element framework. It tries to contribute to the relative young field of finite element
methods for coupled flow and transport problems. This work is structured as follows.

In the remaining first chapter, some mathematical notations and preliminaries are
introduced.

In the second chapter, the governing equations are introduced. The one-phase Navier-
Stokes is equation is derived, which is then extended to the two-phase Navier-Stokes
system. After that, the bulk transport and surface transport equations, including the
coupling conditions, are derived. These equations are augmented by equations of state
for the adsorption and desorption processes, and the dependencies for surface tension
force. Then, the equations are transferred to a dimensionless form. Finally, a weak
formulation is obtained.

In Chapter 3, the ALE framework is introduced. The handling of the ALE mapping
and the domain velocity is described. Different methods for constructing an ALE map-
ping for the bulk and for the surface are presented. After that, the stability of a reduced
problem (flow problem only) is studied. Finally, some special formulation used in the
numerical simulations are introduced.

The finite element discretization is introduced in Chapter 4. First, the space dis-
cretization is obtained. The influence of the chosen pair of finite element space for the
flow problem is discussed. After that, the inf-sup stability of the domain-wise discontin-
uous Taylor-Hood finite element space used is shown. Then, the time discretization is
introduced. The most common time-stepping scheme in the context of the Navier-Stokes
equations, the θ-scheme, and the fractional Θ-scheme are applied in the ALE framework.
Chapter 4 is closed with different finite element discretizations of the surface evolution
equations.

Finally in Chapter 5, the numerical scheme is validated and several numerical results
are presented. A Taylor flow is considered with and without surfactants and the results
are compared to other schemes. An oscillating drop is compared with results obtained
from analytic approximations. And closing Chapter 5, the behaviour of the different
surface mesh evolution algorithm are shown.
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1.1 Mathematical Preliminaries

The basic notation and standard mathematical preliminaries, which are important in
this work, are introduced. No proofs are given, since these are standard results from
mathematical literature like [50, 57].

1.1.1 Basic Notations

Throughout this work, the following notations and definitions are used.
For a scalar function f : Ω ⊂ Rd → R, f = f(x1, . . . , xd), sufficiently smooth, the

partial derivative with respect to the i-th component is denoted with

∂if :=
∂f

∂xi
,

analogue, if the components are named, e.g f = f(x, . . . , z, t)

∂xf :=
∂f

∂x
, . . . , ∂zf :=

∂f

∂z
, ∂tf :=

∂f

∂t
.

The material derivative of a function f = f(x, t), sufficiently smooth, respecting a
velocity u, is denoted with

∂ut f := ∂tf + u · ∇f .

For a scalar function f : Ω→ R and a vector valued function F : Ω→ Rd for which
the following quantities exist, the following notations for integral values are used. For
the volume integral V and V of f and F respectively, the notation

V =

∫
Ω
f dV , and V =

∫
Ω

F dV .

is used.
Surface integrals of the first kind A1 and of the second kind A2 are denoted with

A1 =

∫
∂Ω
f dA , and A2 =

∫
∂Ω

F · dA .

The vector valued versions are written analogue. When necessary, the notation of line
integrals is also used, and similar to surface integrals. For line integrals L1 of first kind
and of second kind L2, the notation

L1 =

∫
∂Ω
f dC , and L2 =

∫
∂Ω

F · dC ,

is used.
Let V be a Banach space, the norm for v ∈ V is denoted with ‖v‖V . The dual space

of V is denoted with V ′. If the space is a Sobolev space W s,p(Ω), the notation ‖v‖s,p,Ω
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for the norm of v ∈ W s,p(Ω) is used. For the Hilbert spaces W s,2(Ω) the notation
Hs(Ω) = W s,p(Ω) is used and the norm is denoted with ‖v‖s,Ω. The L2(Ω)d inner
product is written as

(f, g)Ω :=

∫
Ω
f · g dV .

and analogue, on a surface it is defined

〈f, g〉∂Ω :=

∫
∂Ω
f · g dA .

For matrix valued functions, it is set for A,B ∈ Rm×n, with A = (aij)i,j and B = (bij)i,j

(A,B)Ω :=

∫
Ω
A : B dV and 〈A,B〉∂Ω :=

∫
∂Ω
A : B dA ,

where A : B is the matrix scalar product

A : B :=
∑
i,j

aijbij .

The following two theorems define traces of functions and partial integration.

Theorem 1.1.1 (Traces and Green’s formula). Let 1 ≤ p < ∞ and Ω be a Lipschitz
domain. There exists a uniquely determined continuous linear mapping γΩ

0 : W 1,p(Ω)→
Lp(∂Ω) such that

γΩ
0 (f) = f |∂Ω , ∀f ∈ C∞(Ω) .

If 1 < p <∞, then Green’s formula∫
Ω

(f∂ig + g∂if) dV =

∫
∂Ω
γΩ

0 (f)γΩ
0 (g)ni dA ,

holds for f ∈W 1,p(Ω), g ∈W 1, p
p−1 (Ω).

From which the divergence theorem follows.

Lemma 1.1.1 (Divergence formula). Let 1 < p <∞ and Ω be a Lipschitz domain, then
the divergence formula ∫

Ω
∇ · F dV =

∫
∂Ω

F · dA (1.1.1)

holds for F ∈W 1,p(Ω)d.
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1.1.2 Surfaces

The following notations, definitions, and theorems for surfaces are taken from [50], but
they can also be found in standard textbooks about differential geometry.

Parametric surface and smooth functions thereon, are defined as follows.

Definition 1.1.1 (Parametric surface). A set Γ ⊂ Rn+1 is called a n-dimensional
parametrized Ck surface, if there exists for every point x0 ∈ Γ an open set U ⊂ Rn+1

with x0 ∈ U , an open connected set V ∈ Rn and a mapping γ : V → U ∩ Γ for which
the following holds. γ ∈ Ck(V,Rn+1), γ is bijective, and the rank of ∇γ is n on V . The
mapping γ is called a local parametrization of Γ.

Definition 1.1.2. A function f : Γ→ R is called k-times differentiable, if all functions
f ◦ γi, i = 1, . . . , n+ 1, are k-times differentiable.

Let Γ ⊂ Rn+1 be a n-dimensional parametrized C1 surface and let γ : V → Γ be
a local parametrization of Γ. The first fundamental form G(y) = [gij(y)]ij=1,...,n, for
y ∈ V is defined as follows

gij(y) = ∂iγ(y) · ∂jγ(y) i, j = 1, . . . , n .

The determinant of G is denoted with g = det(G), and the inverse of G is denoted with
superscripts gij , such that

G−1 =
[
gij
]
i,j=1...,n

.

Then the surface differential operators are defined as follows.

Definition 1.1.3 (Tangential surface gradient). Let Γ ⊂ Rn+1 be a n-dimensional
parametrized C1 surface, with the local parametrization γ : V → Γ. Further, let
f : Γ → R be a differentiable function and let F = f(γ(y)) for y ∈ V . Then the
tangential surface gradient ∇Γf : Γ→ Rn+1 is defined as follows

(∇Γf) (γ(y)) :=
d∑

i,j=1

gij(y)∂iF (y)∂jF (y) ,

for y ∈ V .

Definition 1.1.4 (Laplace-Beltrami operator). Let Γ ⊂ Rn+1 be a n-dimensional para-
metrized C2 surface, with the local parametrization γ : V → Γ. Further, let f : Γ → R
be a two times differentiable function and let F = f(γ(y)) for y ∈ V . Then the Laplace-
Beltrami operator ∆Γ f : Γ→ R is defined as follows

(∆Γ f)(γ(y)) :=
1√
g(y)

n∑
i,j=1

∂j

(
gij(y)

√
g(y)∂iF (y)

)
,

for y ∈ V .
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An alternative, and useful definition of a surface and the surface operators, is the
following.

Definition 1.1.5 (Hypersurface). The set Γ ∈ Rn+1 is called a Ck hypersurface, if for
every point x0, there exists a open set U ⊂ Rn+1 with x0 ∈ U and a function φ ∈ Ck(U),
with ∇φ 6= 0 on Γ ∩ U and

U ∩ Γ = {x ∈ U : φ(x) = 0} .

Definition 1.1.6. Let Γ ⊂ Rn+1 be a C1 hypersurface, and let f : Γ → R be a differ-
entiable function. Further, let n be the normal of Γ, and let f̄ : U → R be a smooth
extension of f , such that f̄ |Γ = f , where U ⊂ Rn+1, with Γ ⊂ U , is a neighbourhood of
Γ. Then the tangential surface gradient ∇Γf is defined as

∇Γf(x) := ∇f̄(x)− (n(x) · ∇f̄(x))n(x) ,

for x ∈ Γ.

Note, the surface gradient of f on Γ is independent of the extension f̄ . For the
following definition of the Laplace-Beltrami operator, let the surface gradient be written
as

∇Γf = (D1f, . . . ,Dn+1f)T .

Definition 1.1.7. Let Γ ⊂ Rn+1 be a n-dimensional parametrized C1 surface, and let
f : Γ → R be a two times differentiable function. The Laplace-Beltrami operator is
defined as follows

∆Γ f := ∇Γ · ∇Γf =
n+1∑
i=1

DiDif .

Both definitions of the surface gradient and Laplace-Beltrami operator are equivalent
[50].

In the following, the mean curvature is introduced in the setting of hypersurfaces.
Note, this could also be done in the setting of parametrized surface and the second
fundamental form.

Definition 1.1.8 (Weingarten map). Let Γ ⊂ Rn+1 be an oriented C2 hypersurface, and
let n(x) = (n1(x), . . . , nn+1(x))T be the normal of Γ. The extended Weingarten map is
defined as

Hij(x) = Dinj(x) , i, j = 1, . . . , n+ 1 ,

for x ∈ Γ. The restriction of Hij to the tangent space is called Weingarten map.
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Definition 1.1.9 (Mean curvature). Let Γ ⊂ Rn+1 be an oriented C2 hypersurface, the
mean curvature H is defined as

H(x) =
n+1∑
i=1

Hij(x) ,

for x ∈ Γ.

With this definitions the partial integration on surfaces can be defined.

Lemma 1.1.2 (Partial integration on surfaces). Let Γ ⊂ Rn+1 be a hypersurface with a
smooth boundary ∂Γ and let f be a differentiable function, then it holds∫

Γ
∇Γf dA =

∫
Γ
fHn dA+

∫
∂Γ
fµ dC ,

where n is the normal to Γ and µ the co-normal to ∂Γ.

Lemma 1.1.3 (Green’s formula on surfaces). Let Γ ⊂ Rn+1 be a hypersurface with a
smooth boundary ∂Γ and let f be a differentiable function and g be a two times differ-
entiable function, then it holds∫

Γ
∇Γf · ∇Γg dA = −

∫
Γ
f ∆Γ g dA+

∫
∂Γ
f∇Γg · dC .

Lemma 1.1.4 (Divergence theorem on surfaces). Let Γ ⊂ Rn+1 be a hypersurface with
a smooth boundary ∂Γ and let Φ : Γ→ Rd be a differentiable function, then it holds∫

Γ
∇Γ · Φ dA−

∫
Γ
HΦ · dA =

∫
∂Γ

Φ · dC . (1.1.2)
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Chapter 2

Governing Equations

In the following chapter, the governing equations for the two-phase flow with soluble
surfactants are introduced. The equations are derived in the strong form. Then, a weak
formulation is obtained from the strong form.

The equations are derived from fundamental physical principles in fluid dynamic and
mass transfer and interfacial phenomena [57, 81, 83, 103, 106, 108]. The conservation
laws for the fluid and the surfactant are considered, where several simplifications are
assumed. Here, only incompressible, isothermal, and isotropic flows are allowed. More-
over, the surfactant transport is assumed to be isotropic and homogeneous, in the bulk
and on the surface as well. The interface is massless and has no viscosity.

First, the conservation laws for the flow in the bulk are obtained and the one-phase
Navier-Stokes equations are derived. Then, the coupling conditions for two-phase Navier-
Stokes equations are obtained. The coupling condition results in a kinematic condition
for the evolution of the interface, and a dynamic condition for the surface tension and
the Marangoni force.

After establishing the Navier-Stokes equations for the two-phase flow, the conserva-
tion laws for the mass transport of the surfactant is considered. From these balances the
transport equations for the bulk and the surface surfactant, as well as the coupling condi-
tion are obtained. These equations have to be completed with the adsorption dynamics,
where the Langmuir and the Henry model is assumed [81, 103].

Finally, the model is transferred into a dimensionless form and a weak formulation
is introduced.

2.1 The Navier-Stokes Equations

A fluid and its motion during the time interval [t0, tb] ⊂ R is considered. At time
t ∈ [t0, tb] the fluid occupies the domain Ω(t) ⊂ Rd. The space time domain Q(t0, tb)
the fluid occupies is given as

Q(t0, tb) := {(x, t) ∈ Rd+1 : t ∈ [t0, tb],x ∈ Ω(t)} . (2.1.1)

11
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There are two possibilities the motion of a fluid can be described [39, 57, 83]. In the
Lagrangian description each individual particle of the fluid is considered. A particle at
position x0 ∈ Rd at time t0 follows the trajectory

x(t) = X(x0, t) .

The function X : Ω(t0) × (t0, t1) → Rd describes the motion of a fluid occupying Ω(t0)
at time t0. The position x0 of a particle is called the Lagrangian coordinate.

In the Eulerian description the motion of the fluid is determined by a velocity field
u : Q(t0, tb)→ Rd. Here, u(x, t) is the velocity of the particle passing position x at time
t. Using (2.1.1) the velocity is given by

u(x, t) = ∂tX(x0, t) ,

with x = X(x0, t) and x is called the Eulerian coordinate.
The derivation of the Navier-Stokes equations considers arbitrary volumes of fluid in

Lagrangian coordinates, the so called material volumes. They are defined as follows:

Definition 2.1.1 (Material volume). Let V0 ⊂ Ω(t0) be a bounded subset of the domain
at time t0. A material volume V(t) is defined by

V(t) := {x ∈ Ω : x = X(x0, t),x0 ∈ V0} ,

for t ∈ (t0, tb).

Remark 2.1.1. At every time t ∈ (t0, tb) a material volume V(t) consists of no other
particles found in V0. By definition no particle can enter or leave V(t), since the boundary
moves with the particle velocity u.

The description of a fluid can include other properties, than the position and the
velocity. For an arbitrary quantity f : Q(t0, tb) → R associated with the fluid and
sufficiently smooth the following holds

Lemma 2.1.1 (Reynolds transport theorem). Let V(t) be a material volume and f :
Q(t0, tb)→ R be a C1(Q(t0, tb)) function, then the following holds:

d

dt

∫
V(t)

f dV =

∫
V(t)

∂tf +∇ · (fu) dV (2.1.2)

and

d

dt

∫
V(t)

f dV =

∫
V(t)

∂tf dV +

∫
∂V(t)

fu · dA . (2.1.3)

Proof. The proof of (2.1.2) can be found in [57]. The second form of the transport
theorem (2.1.3) is a direct consequence of the Gauss theorem (1.1.1) applied to (2.1.2).
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The Reynolds transport theorem is fundamental for the derivation of partial dif-
ferential equations describing physical phenomena based on conservation laws, like the
Navier-Stokes equations. The quantity f considered can be physical properties like mo-
mentum, density, temperature, energy, or surfactant concentration. In order to derive
the partial differential equations for an isothermal flow it is sufficient to consider the
mass- and momentum density.

2.1.1 Mass Balance

Let ρ : Q(t0, tb) → R be the mass density field of the fluid. Then, the total mass M(t)
of fluid of a material volume V(t) at time t is given by

M(t) =

∫
V(t)

ρ dV .

Because of Remark 2.1.1, the mass of the material volume is constant for all t ∈ (t0, tb).
Thus the change of total mass is zero. Applying the Reynolds transport theorem (2.1.2),
it follows

0 =
d

dt

∫
V(t)

ρ dV =

∫
V(t)

∂tρ+∇ · (ρu) dV .

Since the material volume V(t) is arbitrary, a localisation procedure can be applied [57],
and a partial differential equation is derived. The mass balance equation describes the
mass balance locally, and reads as follows

∂tρ+∇ · (ρu) = 0 in Ω(t) . (2.1.4)

Since it is assumed that the fluid is incompressible, the mass balance equation can be
simplified further. An incompressible fluid implies a constant density, such that it follows
for all t ∈ (t0, tb)

∇ · u = 0 in Ω(t) . (2.1.5)

2.1.2 Momentum Balance

Let p : Q(t0, tb)→ Rd be the momentum density field p = ρu of the fluid in Ω(t). The
total momentum P(t) of a material volume is given as

P(t) =

∫
V(t)

p dV.

Following Newton’s laws of motion [84], the rate of change in momentum is equal to the
sum of all acting forces. It is distinguished between two types of forces, volume forces
and surface forces. The volume forces represent external forces acting on the body of
fluid, like gravitation, electric fields, magnetic fields, etc. Here, a general force field
g : Q(t0, tb)→ Rd is considered, which is interpreted as the gravitational force.
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The total gravitational force F1(t) acting on a material volume V(t) is given as

F1(t) =

∫
V(t)

ρg dV .

The surface forces model internal forces, that are forces the fluid is acting on its self.
The fluid surrounding a material volume V(t) is carrying over momentum to the surface
of V(t). A general principle of continuum mechanics, the Cauchy stress theorem [40, 83],
states that the force acting on a point of the surface is a linear function of the normal in
this point. Thus, the internal forces are described by a tensor field S : Q(t0, tb)→ Rd×d
and the force f , which is carried over to V(t) at a point x ∈ ∂V(t) on the surface with
normal n is determined by

f = Sn .

S is called Cauchy stress tensor or just stress tensor.
The total surface force F2(t) acting on the boundary of V(t) is given by

F2 =

∫
∂V(t)

S · dA .

Applying Newton’s laws of motion, the rate of change in moment is then given by

d

dt
P(t) = F1(t) + F2(t) =

∫
V(t)

ρg dV +

∫
∂V(t)

S · dA .

After applying the Gauss theorem on the surface integral, it follows

d

dt

∫
V(t)

p dV =

∫
V(t)

ρg +∇ · S dV .

Now, the Reynolds transport theorem (2.1.2) can be used component-wise. Introducing
the notation u = (u1, . . . , ud), p = (p1, . . . , pd), g = (g1, . . . , gd), etc., the following
balance for the momentum holds∫

V(t)
∂tpi +∇ · (piu) dV =

∫
V(t)

ρgi + (∇ · S)i dV,

for i = 1, . . . , d. Using a localisation procedure the local momentum balance equation is
derived

∂tp +∇ · (p⊗ u) = ρg +∇ · S in Ω(t) ,

for all t ∈ (t0, tb).
Using the mass balance (2.1.4), the momentum balance can be simplified further.

Reminding that p = ρu the momentum balance equation reads for all t ∈ (t0, tb)

ρ (∂tu + (u · ∇) u) = ρg +∇ · S in Ω(t) . (2.1.6)
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In a viscous Newtonian fluid, the stress tensor is assumed to be linearly dependent
on the pressure p and on the deformation tensor

D(u) =
1

2

(
∇u + (∇u)T

)
.

The general form of the stress tensor is [40, 57]

S(u, p) = L(D(u))− pI ,

where L(D(u)) is a linear mapping of the tensor D(u).

It can be further shown that the stress tensor for an isotropic medium must have the
form [40]

S(u, p) = 2µD(u) + λ (∇ · u) I− pI .

Using the mass balance (2.1.5), the stress tensor for an incompressible Newtonian fluid
simplifies to

S(u, p) = 2µD(u)− pI . (2.1.7)

The parameter µ is the dynamic viscosity and given by the material properties of the
fluids.

The momentum balance equations (2.1.6) together with the mass balance equation
(2.1.5) using the stress tensor (2.1.7) are the well known Navier-Stokes equations for
incompressible, viscous flows:

Find u : Q(t0, tb)→ Rd and p : Q(t0, tb)→ R such that it holds

ρ (∂tu + u · ∇u)−∇ · S(u, p) = ρg in Ω(t) ,

∇ · u = 0 in Ω(t) ,

for all t ∈ (t0, tb).

Naturally, these equations have to be closed with initial- and boundary conditions in
order to get a well-posed problem. The boundary conditions are left open at this point,
since they vary from case to case.

2.2 Two-Phase Flows

A two-phase flow is the flow of two immiscible fluids. Each fluid is occupying a sepa-
rate subdomain, partitioning Ω(t) into two open subdomains. Let Ω1(t) be the time-
dependent “inner” domain and let Ω2(t) be the time-dependent “outer” domain, with
Ω(t) = Ω1(t) ∪ Ω2(t) and Ω1(t) ∩ Ω2(t) = ∅. Then, Γ(t) = Ω1(t) ∩ Ω2(t) denotes the
interface between the two domains. The domains Ωi(t) of the fluid phases are also called
bulk domains or bulk phases.
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Ω1(t)

Ω2(t)

Γ(t)�

@I
nΓ

Figure 2.1: Schematic view of the two-phase domain

The space time domain, which the time-dependent interface forms, is

QΓ(t0, tb) := {(x, t) ∈ Rd+1 : t ∈ [t0, tb],x ∈ Γ(t)} .

Each phase occupies the space time domain

Qi(t0, tb) := {(x, t) ∈ Rd+1 : t ∈ [t0, tb],x ∈ Ωi(t)} ,

for i = 1, 2.
The balance equations for the mass and the momentum in a material volume, that

have been derived in the last section, are still valid for material volumes that are proper
subsets of either the inner fluid or the outer fluid. But, for material volumes that contain
a part of the interface, these balances are not valid any more. Also, the Reynolds
transport Theorem 2.1.1 is not valid for discontinuous functions. This means that the
Navier-Stokes equations are valid in each phase, but with different material properties
ρi and µi, i = 1, 2, for each phase respectively.

In the case of the two-phase flow, the Navier-Stokes equations have to be completed
by coupling conditions, that represent the balances of physical quantities across the
interface, also called jump conditions or interface conditions. In order to derive these
jump conditions a transport theorem is needed, that is valid for discontinuous, but
domain-wise smooth functions. Those are functions that are smooth in each phase, but
are allowed to exhibit a jump across the interface, are called domain-wise continuous or
domain-wise smooth in the following.

Because the interface itself can have physical properties, which have to be considered
in the balance equations, another transport theorem for control volumes on the interface
is needed. These fundamental theorems are laid out in the following, starting with the
definition of the jump of a function over the interface.
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In the following nΓ : QΓ(t0, tb) → Rd denotes the normal to Γ(t). The convention
that the normal nΓ is oriented such that it points outward Ω1(t) into Ω2(t) is used, as
shown in Figure 2.1.

Definition 2.2.1. Let f : Q(t0, tb) → R be a domain-wise continuous function with
f |Qi(t0,tb) ∈ C

0(Qi(t0, tb)), for i = 1, 2. The jump across Γ(t) is defined as

JfKΓ(x, t) := lim
h→+0

(f(x− hnΓ(x, t), t)− f(x + hnΓ(x, t), t)) ,

for x ∈ Γ(t).

In general, the interface can have a velocity different than the surrounding fluid. For
example, if the interface itself has a mass, and can act as a source or sink of particles
from the bulk domains. Even if the interface is assumed to be of zero mass, it can have
a different velocity as the fluid, if a phase transition is allowed, or if there is no friction
between the fluid and the tangential components of the velocity differ. Although, all
these cases are neglected later on, for a general transport theorem these conditions have
to be considered. Thus, a separate interface velocity wΓ : QΓ(t0, tb)→ Rd is introduced.
With this notation the following transport theorem holds:

Lemma 2.2.1 (Transport theorem). Let V(t) be a material volume with velocity u,
containing a part of the interface W(t) ⊂ Γ(t) with the velocity wΓ. Further, let f :
Q(t0, tb) → Rd be a domain-wise continuous function with f |Qi(t0,tb) ∈ C1(Qi(t0, tb)),
for i = 1, 2, then the following transport theorem holds

d

dt

∫
V(t)

f dV =

∫
V(t)

∂tf +∇ · (fu) dV +

∫
W(t)

Jf(wΓ − u)KΓ · dA , (2.2.1)

for t ∈ (t0, tb).

Proof. The proof is based on applying the Reynolds transport theorem (2.1.3) in each
bulk domain, where (2.1.3) is valid. At every time t ∈ (t0, tb) the V(t) can be decomposed
in V1(t) ⊂ Ω1(t) and V2(t) ⊂ Ω2(t) with V(t) = V1(t) ∪ V2(t) and W(t) = V1(t) ∩ V2(t)
. In the domains Vi(t), i = 1, 2 the Reynolds transport theorem (2.1.3) is applied as
follows

d

dt

∫
V(t)

f dV =
d

dt

∫
V1(t)

f dV +
d

dt

∫
V2(t)

f dV

=

∫
V1(t)

∂tf dV +

∫
∂V1(t)

f |V1(t)v1 · dA

+

∫
V2(t)

∂tf dV +

∫
∂V2(t)

f |V2(t)v2 · dA ,

where vi, i = 1, 2 is the velocity on the boundary of Vi(t), i = 1, 2, respectively. Since
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vi = u on ∂V(t) and vi = wΓ on W(t) for i = 1, 2 it follows

d

dt

∫
V(t)

f dV =

∫
V(t)

∂tf dV +

∫
∂V(t)

fu · dA

+

∫
W(t)

f |V1(t)wΓ · dA−
∫
W(t)

f |V2(t)wΓ · dA

=

∫
V(t)

∂tf dV +

∫
∂V(t)

fu · dA +

∫
W(t)

JfKΓwΓ · dA ,

where the orientation of the normals was taken into account. Applying the Gauss theo-
rem1 on the boundary integral term over ∂V(t), it follows

d

dt

∫
V(t)

f dV =

∫
V(t)

∂tf +∇ · (fu) dV −
∫
W(t)

JfuKΓ · dA +

∫
W(t)

JfKΓwΓ · dA

=

∫
V(t)

∂tf +∇ · (fu) dV +

∫
W(t)

Jf(wΓ − u)KΓ · dA ,

which concludes the proof.

A transport theorem on hypersurfaces holds as follows:

Lemma 2.2.2 (Transport theorem on surfaces). Let W(t) ⊂ Γ(t) be a control volume
on the interface Γ(t) moving with the velocity v, and let f : QΓ(t0, tb)→ R be a function
defined on Γ(t), and sufficiently smooth, then the following identity holds

d

dt

∫
W(t)

fΓ dA =

∫
W(t)

∂vt fΓ + fΓ∇Γ · v dA , (2.2.2)

for t ∈ (t0, tb).

Proof. The proof can be found in [50, Lemma 5.1].

Remark 2.2.1. The velocity v of the control volume W(t) can be decomposed into the
velocity of the interface wΓ plus a tangential velocity component vt, such that v =
wΓ + vt. The surface transport theorem can be written in the form

d

dt

∫
W(t)

fΓ dA =

∫
W(t)

∂wΓ
t fΓ +∇Γ · (fΓvt) + fΓ∇Γ ·wΓ dA , (2.2.3)

where the time derivative is with respect to wΓ.

In order to derive the coupling conditions, the limit δ → 0 for balances in a series
of material volumes Vδ(t) of special shape is considered. The material volumes are such
that at time t, they have the shape of a thin layer aroundW(t) of thickness δ. A material
volume Vδ(t) is the result of the extrusion of W(t) by the amount ±δ along the normal
nΓ into the adjacent bulk domain (Figure 2.2). Since the shape of Vδ(t) is a curved
box, it will also called box material volume, here. Further notations regarding the box
material volume are introduced as follows. For a vivid representation see Figure 2.2.

1Gauss theorem for a domain-wise smooth flux Φ:
∫
V ∇ · Φ dV =

∫
∂V Φ · dA +

∫
WJΦKΓ · dA.
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Figure 2.2: Box shaped material volume

Definition 2.2.2 (Box material volume). Let W(t) be an arbitrary subset of Γ(t), with
the normal nΓ. Further, let δ ∈ R, δ > 0, the material volume Vδ(t) is defined as

Vδ(t) :=
{

x ∈ Rd : x = x0 + dnΓ, x0 ∈ W(t), d ∈ R : |d| < δ
}
.

The top surface of Vδ(t) is A±(t) = A+(t) ∪A−(t), with

A+(t) :=
{

x ∈ Rd : x = x0 + δnΓ, x0 ∈ W(t)
}
,

A−(t) :=
{

x ∈ Rd : x = x0 − δnΓ, x0 ∈ W(t)
}
,

and the remaining, lateral surfaces of Vδ(t) are R(t) = ∂Vδ(t) \A±(t).

A limit for δ → 0 is considered from which coupling conditions can be derived.

Lemma 2.2.3. Let Vδ(t) be boxed material volume, and let Φ : Q(t0, tb) → Rd be a
domain-wise smooth vector field, with Φ|Qi(t0,tb) ∈ C

0(Qi(t0, tb))d, for i = 1, 2, and Φ is
bounded in a neighbourhood of W(t). Further, let φ : Q(t0, tb) → R be a function with
φ ∈ C0(Q(t0, tb)). Then, the following holds

lim
δ→0

∫
∂Vδ(t)

Φ · dA = −
∫
W(t)

JΦKΓ · dA , (2.2.4)

and

lim
δ→0

∫
Vδ(t)

φ dV = 0 , (2.2.5)

for t ∈ (t0, tb).

Proof. For fixed t ∈ (t0, tb) and δ > 0, let ηt : W0 → W(t) be a parametrization W(t),
with (u, v) ∈ W0 7→ x ∈ W(t). Then, a parametrization γt :W0 → A+ of A+ is given as

γt = ηt + δnΓ .
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The following holds

lim
δ→0

∫
A+

Φ dA = lim
δ→0

∫∫
W0

Φ · (∂uγt × ∂vγt) dudv

= lim
δ→0

∫∫
W0

Φ · (∂uηt × ∂vηt +O(δ)) dudv

=

∫∫
W0

Φ · (∂uηt × ∂vηt) dudv

=

∫
W(t)

Φ|Ω2(t) · dA .

An analogue identity is derived in the same way for A−, but with an opposite sign,
because of the orientation of the normals

lim
δ→0

∫
A−

Φ dA = −
∫
W(t)

Φ|Ω1(t) · dA .

The integral over the remaining surface R(t) vanishes, since R(t) vanishes for δ → 0 and
Φ is bounded, thus

lim
δ→0

∫
∂Vδ(t)

Φ · dA = lim
δ→0

∫
A+

Φ · dA + lim
δ→0

∫
A−

Φ · dA + lim
δ→0

∫
R(t)

Φ · dA

=

∫
W(t)

Φ|Ω2(t) · dA−
∫
W(t)

Φ|Ω1(t) · dA

= −
∫
W(t)

JΦKΓ dA .

The second statement follows directly from the continuity of φ, which concludes the
proof.

All tools needed to derive the coupling conditions are available now. Next, the
balances for mass and momentum in material volumes with an interface will be derived.

2.2.1 Mass Balance

The mass balance for a material volume V(t) containing a part W(t) ⊂ Γ(t) of the
interface is derived. For the moment, the interface is allowed to have a mass itself,
and there can be a mass exchange between the interface and the bulk domain. In the
following. let ρΓ : QΓ(t0, tb)→ R be the mass density of the interface.

Since, V(t) is a material volume, a particle can only enter or leave V(t) through the
interface ∂W(t). Thus, it must hold

d

dt

∫
V(t)

ρ dV +
d

dt

∫
W(t)

ρΓ dA =

∫
∂W(t)

ΠρΓ · dC ,
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where ΠρΓ : QΓ(t0, tb) → Rd models mass of the interface entering the volume through
∂W(t), that will not specified further. Note, that ΠρΓ is needed, since W(t) is not
necessary a material volume regarding the interface. Neglecting the contribution of
mass through ∂W(t) would result in the wrong balance.

Applying the transport theorems for the bulk domain (2.2.1) and the surface (2.2.3)
on material volumes, that are box material volumes, gives∫

Vδ(t)
∂tρ+∇ · (ρu) dV +

∫
W(t)

Jρ(wΓ − u)KΓ · dA

+

∫
W(t)

∂wΓ
t ρΓ +∇Γ · (ρΓvt) + ρΓ∇Γ ·wΓ dA =

∫
∂W(t)

ΠρΓ · dC .

Taking the limit δ → 0 by using (2.2.5) and applying the surface divergence theorem
(1.1.2) on the right hand side, delivers∫

W(t)
{Jρ (wΓ − u)KΓ · nΓ + ∂wΓ

t ρΓ +∇Γ · (ρΓvt) + ρΓ∇Γ ·wΓ} dA

=

∫
W(t)
∇Γ ·ΠρΓ dA−

∫
W(t)
HΠρΓ · dA ,

for an arbitrary material volume W(t) ⊂ Γ(t) on the interface. The localisation proce-
dure results in the mass balance coupling condition.

Jρ (wΓ − u)KΓ · nΓ + ∂wΓ
t ρΓ +∇Γ · (ρΓvt) + ρΓ∇Γ ·wΓ = ∇Γ ·ΠρΓ −HΠρΓnΓ, on Γ(t) .

Assuming the interface can not have a mass itself, the surface density is zero ρΓ = 0
and with it ΠρΓ = 0, too. The coupling condition is reduced to

Jρ(wΓ − u)KΓ · nΓ = 0 on Γ(t) . (2.2.6)

If the velocity u of the fluid is assumed to be continuous, it holds JuKΓ = 0 and (2.2.6)
can be written as JρKΓ(wΓ−u) ·nΓ = 0. Thus, the coupling condition (2.2.6) is fulfilled
if

JuKΓ = 0, and wΓ · nΓ = u · nΓ on Γ(t) . (2.2.7)

The equations (2.2.7) are the final coupling condition for the mass balance.

2.2.2 Momentum Balance

The same approach is used for the momentum balance. A surface momentum density
pΓ : QΓ(t0, tb) → Rd, with pΓ = ρΓwΓ is introduced. A change in momentum of the
bulk and the interface can happen through different ways:

(i) External forces,

(ii) surface forces acting ∂V(t) induced by the surrounding bulk fluid,
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(iii) and line forces acting on ∂W(t) induced by the surrounding interface.

All other internal forces must cancel each other, due to Newtons actio-reactio principle
[83, 84]. Thus, the following abstract momentum balance for a material volume V(t),
that contains a part W(t) of the interface, can be established

d

dt

∫
V(t)

p dV +
d

dt

∫
W(t)

pΓ dA

=

∫
V(t)

ρg dV +

∫
W(t)

ρΓg dA+

∫
∂V(t)

S(u, p) · dA +

∫
∂W(t)

SΓ · dC .

The stress tensor S(u, p) for the bulk phases was already specified in the last section.
Now, a surface stress tensor SΓ : QΓ(t0, tb)→ Rd×d needs to be introduced. The surface
stress tensor models the forces coming from the interface, such as the surface tension
force. The tensor SΓ will be specified later.

Applying the transport theorems (2.2.1) and (2.2.3) component-wise for box material
volumes Vδ(t), and using the Gauss theorem on surfaces, gives the following momentum
balance ∫

Vδ(t)
∂tp +∇ · (p⊗ u) dV +

∫
W(t)

Jp⊗ (wΓ − u)KΓ · dA

+

∫
W(t)

∂wΓ
t pΓ +∇Γ · (pΓ ⊗ vt) + pΓ∇Γ ·wΓ dA

=

∫
Vδ(t)

ρg dV +

∫
∂Vδ(t)

S(u, p) · dA +

∫
W(t)

ρΓg dA

+

∫
W(t)
∇Γ · SΓ dA−

∫
W(t)
HSΓ · dA .

Proceeding to the limit δ → 0 by using (2.2.4) and (2.2.5), and applying the localisation
procedure, the momentum balance becomes the following coupling condition

Jp⊗ (wΓ − u)KΓnΓ + ∂wΓ
t pΓ +∇Γ · (pΓ ⊗ vt) + pΓ∇Γ ·wΓ

= −JS(u, p)KΓnΓ + ρΓg +∇Γ · SΓ −HSΓnΓ on Γ(t) .

Since, it is assumed that the interface has no mass, the coupling condition simplifies
further. With pΓ = ρΓwΓ = 0 the momentum coupling condition gets

Jp⊗ (wΓ − u)KΓnΓ + JS(u, p)KΓnΓ = ∇Γ · SΓ −HSΓnΓ on Γ(t) .

Using the mass jump condition (2.2.7) the momentum coupling condition finally reads

JS(u, p)KΓnΓ = ∇Γ · SΓ −HSΓnΓ on Γ(t) . (2.2.8)

All together, the full Navier-Stokes equations for a two-phase flow read:
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Find u : Q(t0, tb) → Rd, wΓ : QΓ(t0, tb) → Rd, and p : Q(t0, tb) → R such that for
all t ∈ (t0, tb)

ρ (∂tu + u · ∇u)−∇ · S(u, p) = ρg in Ωi(t), i = 1, 2 ,

∇ · u = 0 in Ωi(t), i = 1, 2 ,

JuKΓ = 0 on Γ(t) ,

(wΓ − u) · nΓ = 0 on Γ(t) ,

JS(u, p)KΓnΓ = ∇Γ · SΓ −HSΓnΓ on Γ(t) .

As in the case for the standard Navier-Stokes equations, the equations have to be aug-
mented with initial- and boundary conditions in order to get a well-posed problem.

2.3 Capillary Forces

In this subsection, a closer look to the surface stress tensor SΓ is taken.
It is assumed, that for the surface stress tensor similar principles hold, as for the

stress tensor S(u, p) in the bulk phases. The surface stress tensor is linearly dependent
on the surface pressure σ : QΓ(t0, tb) → R and the surface deformation tensor DΓ(u) :
QΓ(t0, tb)→ Rd×d, with

DΓ(u) =
1

2

(
∇Γu + (∇Γu)T

)
,

and has the form

SΓ(u, σ) = L(DΓ(u)) + σPΓ ,

where L : Rd×d → Rd×d is a linear mapping and PΓ : Rd → Rd is the surface projection
PΓ = I− nTΓnΓ.

The dynamic part L(DΓ(u)) will be neglected. Only a surface pressure is considered,
the surface tension. Noting that PΓnΓ = 0, the momentum coupling condition (2.2.8)
becomes

JS(u, p)KΓnΓ = ∇Γ · (σPΓ) .

Remark 2.3.1. Note, that the projection operator PΓ can be written as

PΓ = ∇ΓidΓ ,

where idΓ is the identity function on Γ(t). If the surface pressure σ is assumed to be
constant σ0, it holds

∇Γ · (σ0PΓ) = σ0 ∆Γ idΓ .

Employing the Laplace-Beltrami identity ∆Γ idΓ = −HnΓ the standard form of the mo-
mentum coupling condition for capillary flows appears:

JS(u, p)KΓnΓ = −σ0HnΓ ,
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where σ0 identifies as the surface tension coefficient, given by the material properties of
the fluids forming the interface.

Further, if the fluids are at rest, i.e. u = 0, the Young-Laplace equation is recovered:

JpKΓ = σ0H .

Contrary to Remark 2.3.1, in this work the surface tension coefficient σ is allowed
to vary over the interface. The surface tension coefficient is assumed to be a function of
the surfactant concentrations at the interface. The dependencies are introduced later,
after the surfactant transport equations are introduced in the next sections.

Remark 2.3.2. The surface stress tensor used here, is a specialisation of the Boussinesq-
Scriven model for the surface stress [102, 106, 29]

SΓ(u, σ) = (σ + (λΓ − µΓ)(∇Γ · u))PΓ + µΓDΓ(u) .

If the shear and area viscous effects µΓ and λΓ are neglected the surface stress tensor
used above is obtained.

The Navier-Stokes equations for the two-phase flow now read:

Find u : Q(t0, tb) → Rd, wΓ : QΓ(t0, tb) → Rd, and p : Q(t0, tb) → R such that for
all t ∈ (t0, tb)

ρ (∂tu + u · ∇u)−∇ · S(u, p) = ρg in Ωi(t), i = 1, 2 ,

∇ · u = 0 in Ωi(t), i = 1, 2 ,

JuKΓ = 0 on Γ(t) ,

(wΓ − u) · nΓ = 0 on Γ(t) ,

JS(u, p)KΓnΓ −∇Γ · (σPΓ) = 0 on Γ(t) ,

where these equations have to be completed with initial- and boundary conditions.

2.4 Surfactant Transport

In the following two subsections, the balances for the surfactant in bulk phases and on the
interface are derived. This results in a system of transport equations for the surfactant.
Note, that the surfactant will not be considered to be a separate fluid. Otherwise, the
flow of a mixture of fluids would have to be considered. The mixture would then consist
of the solvent and the solute. Instead, the surfactant concentrations are considered as
an additional property of the fluid. Note, one consequence is that the assumption, that
the interface has no mass, is admissible.

The surfactant concentration is a quantity attached to the particles of the fluids.
As showed in the last section, a quantity f can undergo a change through external
sources and fluxes. External forces act on the body of a material volume and fluxes act
through the surface of a material volume. The fluxes model the exchange of f with the
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surrounding fluid. In the last sections, for the Navier-Stokes equations, these quantities
were the mass density and the momentum of the fluid. Now, these quantities will be the
surfactant concentrations.

This means, in general a balance must have the following abstract form. For a
material volume V(t) in the bulk, it must hold

d

dt

∫
V(t)

f dV =

∫
V(t)
Q dV −

∫
∂V(t)

j · dA ,

where Q represents an external source and j a surface flux. The sign of the surface
integral is a consequence of the normal pointing outward.

Analogue, for a material volume W(t) on the interface the abstract balance reads

d

dt

∫
W(t)

fΓ dA =

∫
W(t)
QΓ dA−

∫
∂W(t)

jΓ · dC ,

where QΓ is the corresponding external source and jΓ the corresponding surface flux.

The derivation of the transport equation follows the same approach as for the Navier-
Stokes equations. Identifying the sources and fluxes by physical means, applying the
appropriate transport theorem, and using the localisation procedure, that results in a
partial differential equation. Considering a material volume containing a part of the
interface will result in coupling conditions.

2.4.1 Bulk Surfactant Transport

Let ci : Qi(t0, tb) → R be surfactant concentrations of the bulk surfactant in the fluid
domains Ωi(t), for i = 1, 2.

It is assumed, that the bulk surfactant can not be created inside the bulk. Chemical
reaction which could create surfactant molecules are neglected. This implies, that the
external source vanishes, i.e. Q = 0. Further, diffusion of surfactant can take place. The
diffusion is modelled by Fick’s law [108] in each phase. The diffusion flux reads

ji = −Di∇ci , (2.4.1)

for i = 1, 2. The diffusion coefficient matrix Di for the bulk phase Ωi(t), is given by the
material properties of the surfactant and the bulk fluids. For isotropic media, i.e. all
directions are equal, Di is a number. It is also assumed, that the fluid is homogeneous
regarding the diffusion, such that Di is a constant, for i = 1, 2.

In the following, let Vi(t) ⊂ Ωi(t) denote a material volume, that is a proper subset
of Ωi(t). Using the diffusion flux (2.4.1), the balance for the bulk surfactant is obtained

d

dt

∫
Vi(t)

ci dV =

∫
∂Vi(t)

Di∇ci · dA ,

for i = 1, 2.



26 CHAPTER 2. GOVERNING EQUATIONS

Using the transport theorem (2.1.2) on the left side, and the Gauss theorem on the
right side, the balance becomes∫

Vi(t)
∂tci +∇ · (ciu) dV =

∫
Vi(t)

Di ∆ ci dV .

The localisation procedure applied, a differential equation is obtained

∂tci +∇ · (ciu) = Di ∆ c .

Using the mass balance equation (2.1.5) for u, the final form of the transport equation
of the bulk surfactant is derived.

∂tci + u · ∇ci = Di ∆ ci in Ωi(t) ,

for i = 1, 2 and t ∈ (t0, tb).

2.4.2 Surface Surfactant Transport

Let γ : QΓ(t0, tb)→ R be the surface surfactant.
The surface surfactant on the interface is surfactant that is adsorbed from the bulk

phases. The bulk surfactant acts as an external source for the interface. Therefore,
the source QΓ on the interface is not zero. It is assumed that QΓ is a function of the
surfactant concentration

QΓ = QΓ(c1, c2, γ) .

The particular dependencies will be introduced later.
For the diffusion of the surface surfactant a Fick’s law on the interface is assumed.

The surface diffusion flux reads

jΓ = −DΓ∇Γγ , (2.4.2)

where DΓ is the surface diffusion coefficient. Like in the bulk, the surface diffusion is
assumed to be isotropic and homogeneous. Thus, DΓ is a constant as well. The surface
diffusion coefficient is given by the material properties.

For a material volume W(t) on the interface, the surface surfactant balance reads

d

dt

∫
W(t)

γ dA =

∫
W(t)
QΓ(c1, c2, γ) dA+

∫
∂W(t)

DΓ∇Γγ · dC . (2.4.3)

Applying the surface transport theorem (2.2.2) to the left hand side and using a surface
divergence theorem on the line integral, the balance becomes∫

W(t)
∂ut γ + γ∇Γ · u dA =

∫
W(t)
QΓ(c1, c2, γ) dA+

∫
W(t)

DΓ ∆Γ γ dA .

The localisation procedure generates a partial differential equation on the surface for the
surfactant transport

∂ut γ + γ∇Γ · u = QΓ(c1, c2, γ) +DΓ ∆Γ γ on Γ(t) , (2.4.4)

for t ∈ (t0, tb).
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2.5 Coupled Problem

A coupling condition is needed for the surfactant transport equation. In order to derive
the coupling condition, a material volume V(t) that contains a part of the interface is
considered.

Since internal surfactant transport must cancel each other, the balance for the ma-
terial volume V(t) reads

d

dt

∫
V(t)

c dV +
d

dt

∫
W(t)

γ dA = −
∫
∂V(t)

j · dA−
∫
∂W(t)

jΓ · dC .

The balances on a series of box material volumes Vδ(t) are considered. Using the trans-
port theorems (2.1.2) and (2.2.2) on the left hand side and applying the appropriate
divergence theorems on the surface and line integrals on the right hand side, the balance
becomes ∫

Vδ(t)
∂tc+∇ · (cu) dV +

∫
W(t)

∂ut γ + γ∇Γ · u dA

= −
∫
∂Vδ(t)

j · dA−
∫
W(t)
∇Γ · jΓ dA .

Taking the limit δ → 0 and using (2.2.4) and (2.2.5), it follows∫
W(t)

JjKΓ · dA =

∫
W(t)

∂ut γ + γ∇Γ · u +∇Γ · jΓ dA .

Using the localisation procedure and substituting the fluxes (2.4.1) and (2.4.2), the
coupling condition for the surfactant is obtained

−JD∇cKΓ · nΓ = ∂ut γ + γ∇Γ · u−DΓ ∆Γ γ on Γ(t) .

Substituting the equation for the surface surfactant transport (2.4.4), the coupling con-
dition takes its final form

−JD∇cKΓ · nΓ = QΓ(c1, c2, γ) on Γ(t) ,

for t ∈ (t0, tb).
The model equations for the two-phase flow with soluble surfactant read:
Find u, wΓ, p, c and γ such that for all t ∈ (t0, tb)

ρ (∂tu + (u · ∇) u)−∇ · S(u, p) = ρg in Ωi(t), i = 1, 2 , (2.5.1a)

∇ · u = 0 in Ωi(t), i = 1, 2 , (2.5.1b)

∂tci −D∆ ci + u · ∇ci = 0 in Ωi(t), i = 1, 2 , (2.5.1c)

∂ut γ −DΓ ∆Γ γ + γ∇Γ · u = QΓ(c1, c2, γ) on Γ(t) , (2.5.1d)

JuKΓ = 0 on Γ(t) , (2.5.1e)

(wΓ − u) · nΓ = 0 on Γ(t) , (2.5.1f)

JS(u, p)KΓnΓ +∇Γ · (σPΓ) = 0 on Γ(t) , (2.5.1g)

−JD∇cKΓ · nΓ = QΓ(c1, c2, γ) on Γ(t) . (2.5.1h)

The equations have to be augmented with initial- and boundary conditions.
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2.5.1 Soluble Surfactant

The surfactant that is dissolved in the bulk phases, can be adsorbed by the interface.
Surfactant that is adsorbed on the interface can dissolve into each of the phases by a
desorption process. The surfactant at the interface also has an influence on the surface
pressure. The surfactant changes the surface tension coefficient σ = σ(γ). The adsorp-
tion and desorption process, and the dependencies of the surface pressure are introduced
in this section.

In general there is a correlation between surface pressure and surfactant concentra-
tions in thin films, the Gibb’s equation of state [81, 103]

γ = − 1

RT

dσ

d ln c
, (2.5.2)

where R is the universal gas constant, and T is the temperature. Having a correlation
between the bulk surfactant concentration and the surface surfactant concentration, a
equation for the behaviour of the surface pressure can be derived. Considering equi-
librium of the ad- and desorption dynamics, an equation of state for the surfactants is
derived, also called the adsorption isotherm. With this adsorption isotherm the Gibbs
equation (2.5.2) can be integrated and the surface tension is derived.

For the adsorption and desorption dynamics, it is assumed that the interface is a thin
mono-layer, i.e. there is exactly one layer of surfactant molecules. There exist several
models for such mono-layer films. Here, the Langmuir model is chosen. The Langmuir
model results into multi-linear equations. From the Langmuir model a linearisation can
be derived, resulting in the linear Henry model. The Henry model is valid for small
changes in surface surfactant and is also considered here.

In the Langmuir model several assumptions are made. The places where the surfac-
tant molecules can occupy the interface are called sites. For the sites the following three
basic assumptions are:

(i) The interface consists of a finite number of sites per surface area, and every site is
equivalent for every surfactant molecule.

(ii) The probability to occupy an empty site is independent from the sites in the
neighbourhood.

(iii) There are no interaction between sites.

From this assumptions the ad- and desorption fluxes are derived.

The surface source QΓ is decomposed into two parts, QΓ = qa + qd. Where, qa
represents the mass flux of surfactant adsorbing at the interface, and qd the mass flux
of surfactant desorbing from the interface. The rate of surfactant adsorption qa from
each phase Ωi(t) depends linear on the surfactant concentration on the interface and the
concentration in the bulk

qa = kiaci (γ∞ − γ) on Γ(t) ,
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since there is a finite number of sites on the interface. The maximum surfactant con-
centration possible, i.e. all sites are occupied, is denoted with γ∞, and kia is the rate of
adsorption into the respective phase i. kia is also called adsorption coefficient and is given
as a material parameter. γ∞ is also denoted as the maximum packing concentration.

The rate of surfactant desorption depends only linear on the amount of surfactant
on the surface

qd = −kidγ on Γ(t) ,

since there is no limit in sites for the surfactant in the bulk phases. kid is the desorption
coefficient into the respective phase i and given as a material parameter.

Together, the following source terms QΓ(ci, γ) for each phase are obtained

QΓ(ci, γ) = kiaci (γ∞ − γ)− kidγ .

The total source QΓ(c1, c2, γ) is then

QΓ(c1, c2, γ) =

2∑
i=1

QΓ(ci, γ) on Γ(t) .

Both phases are in equilibrium to the interface, if the adsorption rates equal the
desorption rates

QΓ(ci, γ) = 0 .

for i = 1, 2. Let Ki
L = kia/k

i
d be the Langmuir coefficient for phase i = 1, 2, the

equilibrium condition results in

γ(ci) = γ∞
Ki
Lci

1 +Ki
Lci

or ci(γ) =
γ

Ki
L (γ∞ − γ)

,

as the Langmuir isotherms.

Using these isotherms to integrate the Gibb’s equation results in different forms,
depending whether the first or second form is used. With ci(γ) the Szyszkowski equation
of state [103] is obtained

σ − σ0 = −RTγ∞ ln(1 +KLci) ,

where σ0 is a reference surface tension, usually that of a clean interface.

Unfortunately, the Szyszkowski equation is not useful here, since it gives not a unique
surface tension coefficient if the surfactant is soluble in both phases. Using the second
form γ(ci) leads to the Frumkin equation of state [103]

σ − σ0 = RTγ∞ ln

(
1− γ

γ∞

)
.
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Note, that the Frumkin equation is independent from the bulk phases. It delivers a
unique surface tension coefficient, depending only on the surface surfactant concentra-
tion.

A linearisation of the Langmuir model results in the Henry model. An approximation
for a low surfactant concentration on the interface compared to the maximum packing
concentration, i.e. γ/γ∞ → 0 is

QΓ(ci, γ) = kiaγ
∞ci − kidγ ,

which is the Henry model.

The corresponding isotherm is

γ/γ∞ = Ki
Hci ,

with the Henry coefficients Ki
H = kia/k

i
d. This isotherm results in the following surface

equation of state

σ − σ0 = −RTγ .

In summary, the following jump conditions are obtained. For the Langmuir model it
holds:

JS(u, p)KΓ · nΓ = −∇Γ · (σ(γ)PΓ) with σ(γ) = σ0 +RTγ∞ ln

(
1− γ

γ∞

)
,

−JD∇cKΓ · nΓ =

2∑
i=1

kiaci (γ∞ − γ)− kidγ .

While for the Henry model the jump conditions read:

JS(u, p)KΓ · nΓ = −∇Γ · (σ(γ)PΓ) with σ(γ) = σ0 −RTγ ,

−JD∇cKΓ · nΓ =
2∑
i=1

kiaγ
∞ci − kidγ .

2.5.2 Insoluble Surfactant

In the case of an insoluble surfactant, the surfactant is restricted to the interface and
can not dissolve into the bulk. The equations for the two-phase flow with an insoluble
surfactant result from the equations for soluble surfactants. Setting the adsorption
and desorption rates to zero, i.e. QΓ(c1, c2, γ) = 0 and neglecting the bulk surfactant
transport, the following system of equation is obtained:
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Find u, wΓ, p, and γ such that for all t ∈ (t0, tb)

ρ (∂tu + (u · ∇) u)−∇ · S(u, p) = ρg in Ωi(t), i = 1, 2 ,

∇ · u = 0 in Ωi(t), i = 1, 2 ,

∂ut γ −DΓ ∆Γ γ + γ∇Γ · u = 0 on Γ(t) ,

JuKΓ = 0 on Γ(t) ,

(wΓ − u) · nΓ = 0 on Γ(t) ,

JS(u, p)KΓnΓ −∇Γ · (σPΓ) = 0 on Γ(t) ,

which have to be augmented with initial- and boundary conditions.

2.5.3 Free Surface Flow

In case of free surface flows the outer phase is neglected. All values in the phase Ω2(t)
are assumed to be zero. Therefore, the jump conditions become a boundary condition

JfKΓ(x, t) = lim
h→+0

f(x− hnΓ(x, t), t)− 0 = f |∂Ω1(t)(x, t) .

Substituting this into the equations for the two-phase flow with surfactant, results in:
Find u, wΓ, p, c1 and γ such that for all t ∈ (t0, tb)

ρ (∂tu + (u · ∇) u)−∇ · S(u, p) = ρg in Ω1(t) ,

∇ · u = 0 in Ω1(t) ,

∂tc1 −D∆ c1 + u · ∇c1 = 0 in Ω1(t) ,

∂ut γ −DΓ ∆Γ γ + γ∇Γ · u = QΓ(c1, γ) on ∂Ω1(t) ,

(wΓ − u) · nΓ = 0 on ∂Ω1(t) ,

S(u, p)nΓ −∇Γ · (σPΓ) = 0 on ∂Ω1(t) ,

−D∇c · nΓ = QΓ(c1, γ) on ∂Ω1(t) ,

which have to be augmented with initial- and boundary conditions.

2.6 Dimensionless Formulation

The aim of this subsection is to introduce a dimensionless formulation of the equations
(2.5.1a)–(2.5.1h). For a dimensionless formulation, all variables are transformed by
scaling factors. The characteristics of the flow is then determined by these numbers.

First the Navier-Stokes equations are rescaled. Let the new dimensionless variables
for time, position and the velocity and pressure be t̂, x̂, û, and p̂, respectively. Fur-
ther, let L be a characteristics length scale, U be a characteristics velocity, and P be a
characteristics pressure, the dimensionless variables are as follows

x̂ =
x

L
, û =

u

U
, t̂ =

U

L
t , p̂ =

p

P
.
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Substituting the variables into the Navier-Stokes equations, for each phase the following
rescaling is obtained

∂
t̂
û + (û · ∇x̂) û−∇x̂ ·

[
2µi
ρiUL

D̂(û)− P

ρiU2
p̂I
]

=
gL

U
eg in Ωi(t) .

By choosing P = ρ1U
2 the dimensionless Navier-Stokes equations become in the inner

domain Ω1(t)

∂
t̂
û + (û · ∇x̂) û−∇x̂ ·

[
2 Re−1

1 D̂(û)− p̂I
]

= Fr−1 eg in Ω1(t) ,

and in the outer domain

∂
t̂
û + (û · ∇x̂) û−∇x̂ ·

[
2 Re−1

2 D̂(û)− ρ1

ρ2
p̂I
]

= Fr−1 eg in Ω2(t) .

Here, the Reynolds numbers Rei and Froude number Fr

Rei =
ρiUL

µi
, i = 1, 2 , and Fr =

U2

gL
,

are the first three characteristic dimensionless numbers.
Scaling with ρ2/ρ1 in the bulk phase Ω2(t) leads to

ρ2

ρ1

(
∂
t̂
û + (û · ∇x̂) û

)
−∇x̂ ·

[
2
ρ2

ρ1
Re−1

2 D̂(û)− p̂I
]

=
ρ2

ρ1
Fr−1 eg in Ω2(t) ,

for the Navier-Stokes equation in Ω2(t).
Introducing the fourth characteristic number ρ1/ρ2 as the density ratio, and setting

% =


1 in Ω1(t)

ρ2

ρ1
in Ω2(t)

, Re =

 Re1 in Ω1(t)

Re2 in Ω2(t)
,

the Navier-Stokes equations are written as

%
(
∂
t̂
û + (û · ∇x̂) û

)
−∇x̂ ·

[
2%Re−1 D̂(û)− p̂I

]
= %Fr−1 eg in Ωi(t), i = 1, 2 ,

∇x̂ · u = 0 in Ωi(t), i = 1, 2 .

With the dimensionless stress tensor introduced as

Ŝ(û, p̂) = 2%Re−1 D̂(û)− p̂I ,

the jump of the stress tensor scales as follows

JS(u, p)KΓ = ρ1U
2JŜ(û, p̂)KΓ = P JŜ(û, p̂)KΓ .
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Then, the momentum coupling condition becomes after scaling with L/σ0

JŜ(û, p̂)KΓ =
σ0

ρ1U2L
∇Γ̂ · (σ̂PΓ) = We−1∇Γ̂ · (σ̂PΓ) ,

where the fifth characteristic number We and the sixth characteristic number E occur,

We =
ρ1U

2L

σ0
, σ̂ =


1 + E ln

(
1 +

γ

γ∞

)
Langmuir

1− E
γ

γ∞
Henry

, E =
RTγ∞

σ0
.

The number We is the Weber number and the number E is the surface elasticity.
The surfactant concentration are scaled by introducing a characteristic concentration

C in the bulk phase, and using the maximum packing concentration as a characteristic
concentration on the surface. The dimensionless surfactant concentration are given as
follows

ĉi =
ci
C
, i = 1, 2 , γ̂ =

γ

γ∞
.

The bulk concentration equation becomes

∂
t̂
ĉi − Pe−1

i ∆ ĉi + û · ∇ĉi = 0 in Ωi(t), i = 1, 2 ,

with the two Peclet numbers

Pei =
UL

Di
, i = 1, 2 ,

which are the seventh and eighth characteristic numbers. The surface surfactant con-
centration equation scales as follows

∂u
t̂
γ̂ − Pe−1

Γ ∆Γ γ̂ + γ̂∇Γ · û = Q̂Γ(ĉ1, ĉ2, γ̂) ,

with the surface Peclet number

PeΓ =
UL

DΓ
,

which is the ninth characteristic number. The bulk surfactant jump condition gets

−JPe−1∇ĉKΓ · n̂Γ =
1

UC
JD∇cKΓ · n̂Γ =

1

UC
QΓ(c1, c2, γ)

= β Q̂Γ(ĉ1, ĉ2, γ̂) ,

with the characteristic numbers

β =
γ∞

LC
, Da =

kaγ
∞

U
, Bi =

kdL

U
,
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and the dimensionless adsorption and desorption laws for i = 1, 2

Q̂Γ(ĉi, γ̂) =

 β−1 Da ĉi(1− γ̂)− Bi γ̂ Langmuir

β−1 Da ĉi − Bi γ̂ Henry
.

This makes twelve characteristic numbers that have to be determined. In summary
they are

% =


1 in Ω1(t)

ρ2

ρ1
in Ω2(t)

, Re =


ρ1UL

µ1
in Ω1(t)

ρ2UL

µ2
in Ω2(t)

, Fr =
U

gL
, We =

ρ1U
2L

σ0
,

E =
RTγ∞

σ0
, Pe =


UL

D1
in Ω1(t)

UL

D2
in Ω2(t)

, PeΓ =
UL

DΓ
, β =

γ∞

LC
,

Da =
kaγ
∞

U
, Bi =

kdL

U
.

The dimensionless model then reads
Find û, ŵΓ, p̂, ĉi, and γ̂ such that for all t̂ ∈ (t̂0, t̂b)

%
(
∂
t̂
û + û · ∇x̂û

)
−∇x̂ · Ŝ(û, p̂) = %Fr−1 eg in Ω̂i(t̂), i = 1, 2 , (2.6.1a)

∇x̂ · û = 0 in Ω̂i(t̂), i = 1, 2 , (2.6.1b)

∂
t̂
ĉi − Pe−1 ∆x̂ ĉi + û · ∇x̂ · ĉi = 0 in Ω̂i(t̂), i = 1, 2 , (2.6.1c)

∂u
t̂
γ̂ − Pe−1

Γ ∆Γ̂ γ + γ̂∇Γ̂ · û = Q̂Γ(ĉ1, ĉ2, γ̂) on Γ̂(t̂) , (2.6.1d)

JûKΓ = 0 on Γ̂(t̂) , (2.6.1e)

(ŵ − û) · n̂Γ = 0 on Γ̂(t̂) , (2.6.1f)

JŜ(û, p̂)KΓn̂Γ −We−1∇Γ̂ · (σ̂PΓ) = 0 on Γ̂(t̂) , (2.6.1g)

−JPe−1∇ĉKΓ · n̂Γ = β Q̂Γ(ĉ1, ĉ2, γ̂) on Γ̂(t̂) , (2.6.1h)

with appropriate initial- and boundary conditions.
The dimensionless model will be used in the remaining work, but the “hat” in the

notation will be dropped.

2.7 Weak Formulation

Finally, the weak formulation of the model for the two-phase flow with soluble surfactants
will be derived. What closes chapter two.

The momentum balance equation (2.6.1a) is multiplied with a test function v and
integrated over each domain Ωi(t), i = 1, 2, separately

(% (∂tu + u · ∇u) ,v)Ωi(t)
− (∇ · S(u, p),v)Ωi(t)

=
(
%Fr−1 eg,v

)
Ωi(t)

, for i = 1, 2 .
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The divergence of the stress tensor is integrated by parts for each domain

(∇ · S(u, p),v)Ωi(t)
= − (S(u, p),∇v)Ωi(t)

+ 〈S(u, p)n,v〉∂Ωi(t)
, for i = 1, 2 .

A homogeneous Dirichlet boundary condition on ∂Ω(t) is assumed, and therefore v ∈
H1

0 (Ω(t))d. Summing up the equations for i = 1, 2 and considering the vanishing test
functions on ∂Ω(t), it holds

(∇ · S(u, p),v)Ω(t) = 〈JS(u, p)KΓnΓ,v〉Γ(t) − (S(u, p),∇v)Ω(t) .

After substituting the stress jump condition (2.6.1g) and applying integration by parts,
it is obtained

(∇ · S(u, p),v)Ω(t) =
〈
We−1∇Γ · (σPΓ),v

〉
Γ(t)
− (S(u, p),∇v)Ω(t)

= −
〈
We−1 σPΓ,∇Γv

〉
Γ(t)
− (S(u, p),∇v)Ω(t) .

Thus, the weak form of (2.6.1a) becomes

(% (∂tu + u · ∇u) ,v)Ω(t) + (S(u, p),∇v)Ω(t) =
(
%Fr−1 eg,v

)
Ω(t)
−
〈
We−1 σPΓ,∇Γv

〉
Γ(t)

.

The term (S(u, p),∇v)Ω can be written as

(S(u, p),∇v)Ω(t) =
(
2%Re−1 D(u),D(v)

)
Ω(t)
− (p,∇ · v)Ω(t) ,

where the symmetry of D(u) is exploited.
The weak form of the momentum balance reads

(%∂tu,v)Ω(t) + (%u · ∇u,v)Ω(t) +
(
2%Re−1 D(u),D(v)

)
Ω(t)
− (p,∇ · v)Ω(t)

=
(
%Fr−1 eg,v

)
Ω(t)
−
〈
We−1 σPΓ,∇Γv

〉
Γ(t)

,

for all v ∈ H1
0 (Ω(t))d.

The weak mass balance (2.6.1b) is derived similar, multiplying with q ∈ L2
0(Ω) and

integration over the domain Ω results in

(∇ · u, q)Ω(t) = 0 ,

for all q ∈ L2
0(Ω)

Next, the bulk surfactant transport equation is considered. To simplify the notation
the following abbreviation is introduced: v ∈ H1(Ω1∪Ω2)⇔ (v1, v2) ∈ H1(Ω1)×H1(Ω2)
with the scalar product

(u, v)Ω = (u1, v1)Ω1
+ (u2, v2)Ω2

∀u, v ∈ H1(Ω1 ∪ Ω2) .

Multiplying equation (2.6.1c) with a test function φi ∈ H1(Ωi) for each domain, and
integrating by parts and using (2.6.1h) leads to

(∂tc, φ)Ω(t) +
(
Pe−1∇c,∇φ

)
Ω(t)

+ (u · ∇c, φ)Ω(t) = 〈βQΓ(c1, c2, γ), φ〉Γ(t) ,
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for all φ ∈ H1(Ω1(t) ∪ Ω2(t)).
Multiplying equation (2.4.3) with a test function ξ ∈ H1(Γ(t)), and integrating by

parts, the weak form of the surface balance becomes

〈∂ut γ, ξ〉Γ(t) +
〈
Pe−1

Γ ∇Γγ,∇Γξ
〉

Γ(t)
+ 〈γ∇Γ · u, ξ〉Γ(t) = 〈QΓ(c1, c2, γ), ξ〉Γ(t) ,

for all ξ ∈ H1(Γ(t)).
All together the following weak problem is formulated:

Problem 2.7.1. For almost all t ∈ (t0, tb), find u ∈ H1(Ω)d, p ∈ L2
0(Ω), c ∈ H1(Ω1(t)∪

Ω2(t)), γ ∈ H1(Γ(t)), such that

(%∂tu,v)Ω(t) + (%u · ∇u,v)Ω(t) +
(
2%Re−1 D(u),D(v)

)
Ω(t)
− (p,∇ · v)Ω(t)

=
(
%Fr−1 eg,v

)
Ω(t)
−
〈
We−1 σPΓ,∇Γv

〉
Γ(t)

,

(∇ · u, q) = 0 ,

(∂tc, φ) +
(
Pe−1∇c,∇φ

)
+ (u · ∇c, φ) = 〈βQΓ(c1, c2, γ), φ〉 ,

〈∂ut γ, ξ〉 +
〈
Pe−1

Γ ∇Γγ,∇Γξ
〉

+ 〈γ∇Γ · u, ξ〉 = 〈QΓ(c1, c2, γ), ξ〉 ,

for all v ∈ H1(Ω)d, q ∈ L2
0(Ω), φ ∈ H1(Ω1(t) ∪ Ω2(t)), ξ ∈ H1(Γ(t)).



Chapter 3

Moving Domains

In Chapter 3, the Arbitrary Lagrangian Eulerian (ALE) frame is introduced. The ALE
frame is used to track the moving domains. It is based on introducing a fixed reference
domain, similar to the full Lagrangian approach. An appropriate mapping is used to
describe the evolution of the fluid domain.

First, the mathematical foundation is laid out to reformulate the Navier-Stokes equa-
tions and the transport equations in the ALE frame. Then, the construction of the ALE
mapping is considered. The ALE mapping is found by solving an additional problem,
since it is not given by the flow problem. Here, different methods are considered. Finally,
a stable formulation of the Navier-Stokes equations for capillary flows, i.e. the two-phase
Navier-Stokes equation without the surfactant transport and hence a constant surface
tension coefficient, is considered.

3.1 Arbitrary Lagrangian Eulerian (ALE) Formulation

In the Arbitrary Lagrangian Eulerian (ALE) description of the motion of a fluid a refer-
ence domain is used, that is fixed in time. This is similar to the Lagrangian description,
where the Lagrangian coordinates of a particle are fixed, too. However, in the ALE
description a domain point does not necessarily follow a fluid particle path. The fluid
and the domain are allowed to move differently, with different velocities. Even so, the
ALE domain can occupy the same space time domain Q(t0, tb) as the fluid, which makes
it suitable to describe the shape of a fluid volume.

Let Ω̃ ⊂ Rd be a reference domain. A mapping At : Ω̃ → Ω(t) is introduced, which
maps for every time t ∈ (t0, tb) the reference domain Ω̃ onto the fluid domain Ω(t). A
point y ∈ Ω̃ in the reference domain is mapped to a point x ∈ Ω(t) via

x = x(y, t) = At(y) .

It is assumed that At is a homeomorphism from Ω̃ onto Ω(t), for almost every t ∈ (t0, tb),
i.e. At is bijective and continuous and its inverse is continuous, as well. It is further
assumed, that the partial derivative with respect to t exists for almost every t.

37
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Similar to the Lagrangian description, the reference domain Ω̃ is referred to as the
ALE frame, and y ∈ Ω̃ is referred to as the ALE coordinate of a point x ∈ Ω(t). The
current domain Ω(t) is referred to as the Eulerian frame and x ∈ Ω(t) as the Eulerian
coordinate.

A function f : Q(t0, tb) → R given in the Eulerian frame has a representation f̃ :
Ω̃× R→ R in the ALE frame as follows

f̃(y, t) := f(At(y), t) .

Let w : Q(t0, tb)→ Rd denote the velocity of the domain, given by the ALE mapping.
The domain velocity w, in the ALE frame, is given as

w̃ = ∂tAt .

This translates to the Eulerian frame as follows

w(x, t) = w̃(A−1
t (x), t) = (∂tAt) (A−1

t (x)) . (3.1.1)

Remark 3.1.1. Note, that for a function f ,
(
∂tf̃
) (
A−1
t (x), t

)
is the material derivative

of f with respect to the velocity field w

(∂wt f) (x, t) =
(
∂tf̃
) (
A−1
t (x), t

)
.

Thus, the velocity of the domain is given in the Eulerian frame as the material derivative

w = ∂wt x . (3.1.2)

In the following ∂wt will be called ALE time derivative or just ALE derivative.

For a function f : Q(t0, tb)→ R the time derivative transforms between the Lagrangian-
and the Eulerian frame, as follows. By applying the chain rule it is obtained

∂tf̃(y, t) = ∂tf(At(y), t) = (∂tf) (At(y), t) + ∂tAt(y) · (∇f) (At(y), t) .

Substituting y = A−1
t (x) and using (3.1.1) it becomes

∂wt f = ∂tf + w · ∇f . (3.1.3)

The ALE time derivative becomes the material derivative with respect to the domain
velocity w.

The material derivative (3.1.3) is used to transform a partial differential equation
into its ALE form. Let u : Q(t0, tb)→ R be a solution and f : Q(t0, tb)→ R be the right
hand side of a partial differential equation

∂tu+ L(u) = f in Ω(t) , (3.1.4)

where L is a differential operator in space. After substituting the partial time derivative
with the ALE time derivative using (3.1.3), the generic partial differential equation
(3.1.4) becomes

∂wt u−w · ∇u+ L(u) = f , (3.1.5)

which is the ALE form of (3.1.4).
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Remark 3.1.2. The ALE form (3.1.5) is the non-conservative ALE form. There are
other possibilities to derive an ALE formulation [92, 93]. A conservative ALE formula-
tion of the generic partial differential equation (3.1.4) would be

∂wt u+ u∇ ·w + L(u)−∇ · (uw) = f .

For a generic conservation law, the partial differential operator L(u) has the form

L(u) = ∇ · (F(u)) (3.1.6)

with generic flux F . Thus, the partial differential equation takes the form

∂wt u+ u∇ ·w +∇ · (F(u)− uw) = f ,

which results in the generic conservation law for u using a transport theorem

d

dt

∫
Ω(t)

u dV =

∫
Ω(t)

f dV −
∫
∂Ω(t)

(F(u)− uw) · dA .

Hence, the name conservative ALE formulation.

In this work, for the bulk equations the non-conservative formulation is used, since
the bulk differential operators are not used in the form (3.1.6). That is because, it is
assumed that ∇ · u = 0, a priori. For the surface equation it holds ∇Γ · u 6= 0. The
surface differential operator is used in the conservative form (3.1.6), in terms of the
surface derivatives. For the surface equations a conservative ALE form will be derived,
as shown later.

Substituting the partial time derivative (3.1.3) in the Navier-Stokes equations, the
momentum balance equations become

% (∂wt u + (u−w) · ∇u)−∇ · S(u, p) = %Fr−1 eg , (3.1.7)

the non-conservative ALE formulation of the Navier-Stokes equations. Using the substi-
tution (3.1.3) for the time derivatives in the bulk surfactant transport equations, results
in

∂wt ci − Pe−1 ∆ ci + (u−w) · ∇ci = 0 , (3.1.8)

the non-conservative ALE formulation of the bulk transport for i = 1, 2.

An analogue approach is used for the interface and the equations on the interface.
Let Γ̃ ⊂ Rd be a reference interface for Γ(t). An homeomorphism At,Γ : Γ̃ → Γ(t) is
assumed between a reference interface Γ̃ and the interface Γ(t), with

x = At,Γ(y) ,

for y ∈ Γ̃ and x ∈ Γ(t).



40 CHAPTER 3. MOVING DOMAINS

Analogue, the interface velocity wΓ is then given as

w̃Γ = ∂tAt,Γ ,

and for a function fΓ : QΓ(t0, tb)→ R, defined in the Eulerian frame, an ALE represen-
tation is given as

f̃Γ(y, t) = fΓ(At,Γ(y), t) .

For the material derivatives on the interface, respecting different velocities, it holds

∂wΓ
t fΓ = ∂ut fΓ + (wΓ − u) · ∇ΓfΓ .

Substituting the material derivatives, the surface transport equation is transformed
into the a non-conservative ALE form, as follows

∂wΓ
t γ + (u−wΓ) · ∇Γγ + γ∇Γ · u = DΓ ∆Γ γ +QΓ(c1, c2, γ) .

Rearranging the terms, the conservative ALE formulation is obtained

∂wΓ
t γ + γ∇Γ ·wΓ +∇Γ · [γ (u−wΓ)] = DΓ ∆Γ γ +QΓ(c1, c2, γ) , (3.1.9)

which will serve as a starting point for the weak formulation.

Using equations (3.1.7), (3.1.8) and (3.1.9) in the derivation of the weak formulation
of the last chapter results in the following weak ALE formulation

Problem 3.1.1. For almost all t ∈ (t0, tb), find u ∈ H1
0 (Ω(t))d, w ∈ H1

0 (Ω(t))d, wΓ ∈
H1(Γ(t))d, p ∈ L2

0(Ω(t)), c ∈ H1(Ω1(t) ∪ Ω2(t)), γ ∈ H1(Γ(t)), such that

(%∂wt u,v) + (%(u−w) · ∇u,v)

+
(
2%Re−1 D(u),D(v)

)
− (p,∇ · v) =

(
%Fr−1 eg,v

)
−
〈
We−1 σ(c)PΓ,∇v

〉
,

(∇ · u, q) = 0 ,

(∂wt c, φ) + ((u−w)∇c, φ) +
(
Pe−1∇c,∇φ

)
= 〈βQΓ(c1, c2, γ), φ〉 ,

(∂wΓ
t γ, ξ) + (γ∇Γ ·wΓ, ξ)

+ 〈∇Γ · [γ (u−wΓ)] , ξ〉 +DΓ 〈∇Γγ,∇Γξ〉 = 〈QΓ(c1, c2, γ), ξ〉 ,

for all v ∈ H1
0 (Ω(t))d, q ∈ L2

0(Ω(t))d, φ ∈ H1(Ω1(t) ∪ Ω2(t)), ξ ∈ H1(Γ(t))).

Note, this problem has to be augmented with equations for w and wΓ. These addi-
tional problems will be given in the next two sections.
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3.2 The ALE Mapping

The ALE mappings At and At,Γ for the bulk domain and the surface, respectively,
that were introduced in the last section are not determined. Like the name Arbitrary
Lagrangian Eulerian method suggest, the mappings are arbitrary to a certain extend.
As a first restriction, it is assumed that

At|Γ(t) = At,Γ ,

for t ∈ (t0, tb). In this way, one has to deal with only one mapping for the whole domain.
This restriction also implies that

w|Γ(t) = wΓ (3.2.1)

for t ∈ (t0, tb).
One obvious choice for w could be

w = u in Ω(t) ,

for t ∈ (t0, tb). The ALE formulation would recover the Lagrangian formulation for
this choice of the domain velocity. The kinematic boundary condition (2.2.8) would be
fulfilled trivially. However, a Lagrangian approach is not desired here. In terms of a
discrete triangular domain, it is not preferable to deform the computational domain like
a fluid.

Another choice could be setting the domain velocity to zero. This would result in
a fully Eulerian method. However, the tracking property of the fluid domain would be
lost, which is the purpose of the ALE method.

Instead, it is assumed that the image of the reference domain Ω̃ under the mapping
At is the fluid domain Ω(t), for all t ∈ (t0, tb), i.e.

w · n = u · n on ∂Ω(t) . (3.2.2)

Different methods to construct an ALE mapping from boundary data are considered in
the following. There are more methods proposed in [92]. In order to construct the ALE
mapping it is assumed that the velocity or the position of the boundary and the interface
are given. Then, the task is to find an extension into the interior of the bulk domains.

The first method considered, is to find the domain velocity as a solution from the
following Laplace problem.

Problem 3.2.1. Given the evolution gi of the boundaries ∂Ωi(t), for every time t ∈
(t0, tb), the evolution w is then obtained by solving

−∆ w = 0 in Ωi(t) , (3.2.3a)

w = gi on ∂Ωi(t) , (3.2.3b)

for i = 1, 2.
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This method is also called harmonic extension. Using (3.1.2) the ALE mapping At
is obtained. The harmonic extension is simple and easy to solve in terms of numerical
methods. Further, it has the property to minimise the variation of w in a L2-sense [94].
The Laplace problem is equivalent to the minimisation problem

min
w∈H1(Ωi(t))

∫
Ωi(t)

(∇w)2 dV , w|∂Ωi(t) = gi .

Thus, it follows ‖∇w‖L2(Ω(t)) → min. This property helps to reduce mesh distortion in
the discrete setting, which is a desired trait.

Remark 3.2.1. The harmonic extension can also be formulated in terms of the absolute
position At of the domain:

Given the position of x of the boundaries ∂Ωi(t) for every time t ∈ (t0, t1), the
evolution w is obtained by solving

−∆At = 0 in Ωi(t) ,

At = x on ∂Ωi(t) ,

for i = 1, 2.

Another approach to extend the ALE mapping, is to consider the domain as a linear
elastic solid. The domain Ω(t) is considered to be the result of pushing a reference
configuration Ω̃ into its current configuration Ω(t). Let d = x − y = At(y) − y be the
displacement of the domain, an elasticity problem can be formulated as follows.

Problem 3.2.2. Given the displacement gi of the boundary of the domain Ωi(t) for
every time t, the displacement d is obtained b solvingy

∇ · [λ1(∇ · d)I + 2λ2D(d)] = 0 on Ωi(t) ,

y = gi on ∂Ωi(t) ,

for i = 1, 2.

The linear elastic solid extension minimises the internal stresses defined by the stress
tensor [λ1(∇ · y)I + 2λ2D(y)]. Through Lame constants λi, i = 1, 2 the degree of the
internal deformation can be controlled. In terms of a triangular mesh, the deformation
of a mesh cell can be controlled, and is minimised. Provided the mesh of the reference
domain is of good quality, the resulting mesh is expected of good quality, too.

This subsection is closed by an important result, regarding the regularity of the ALE
mapping At. In the finite element context Sobolev spaces are used, like H1(Ω(t)). The
following theorem gives a cue about the regularity of At needed to have a suitable trans-
formation of such Sobolev spaces from the ALE frame to the Eulerian frame. Although,
At,A−1

t ∈ C1 would be sufficient to have v = ṽ◦At ∈ H1(Ω(t)) if and only if ṽ ∈ H1(Ω̃).
Unfortunately, this requirement is to strong, since At or w are given in terms of finite
element functions, which are in H1(Ω(t)). The following theorem relaxes the conditions
on the regularity of At.
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Theorem 3.2.1. Let Ω̃ be bounded with a Lipschitz continuous boundary, and let At
be a homeomorphism. For each t ∈ (t0, tb), let Ω(t) = At(Ω̃) be bounded and ∂Ω(t) be
Lipschitz. Further, let At ∈ W 1,∞(Ω̃) and A−1

t ∈ W 1,∞(Ω(t)), then, v ∈ H1(Ω(t)) if
and only if ṽ ∈ H1(Ω̃), and ‖v‖H1(Ω(t)) is equivalent to ‖ṽ‖H1(Ω̃) for all ṽ ∈ H1(Ω̃).

Proof. The proof can be found in [92, Proposition, 1.3.1].

3.3 Surface Evolution

From the requirement (3.2.2) and from the kinematic interface condition (2.2.8) the
boundary evolution of the bulk domains Ωi(t), i = 1, 2 is not uniquely determined. The
tangential component can be chosen freely. In order to construct the ALE mapping,
both components of boundary evolution are needed, as shown in the last subsection.
The freedom in the tangential component can be used to obtain different methods, that
result in different discrete schemes. Different methods to construct an interface evolution
are considered in the following.

Assuming the fluid velocity is given, the bulk domain velocities for the boundaries
∂Ωi(t) could be taken in a full Lagrangian fashion, by setting

w = u on ∂Ωi(t) ,

for i = 1, 2. Alternatively, the kinematic boundary condition could be used

w = (u · nΓ)nΓ on ∂Ωi(t) ,

for i = 1, 2 (Note that, ∂Ω1(t) = Γ(t)). Throughout this work, these methods will be
referred to as the classical methods. In terms of numerical discretization, the classical
methods provide a lightweight scheme. For each mesh node on the boundary, an ordinary
differential equation has to be solved, that can be done explicitly.

Another approach is to use a weak formulation of kinematic condition (3.2.2):

For almost all t ∈ (t0, tb), find w ∈ L2(∂Ωi(t))
d, such that for all ψ ∈ L2(∂Ωi(t)) it

holds

〈u−w,nΓψ〉∂Ωi(t)
= 0 , (3.3.1)

for i = 1, 2.

The problem (3.3.1) is not well-posed, since it has no unique solution. Equation
(3.3.1) considers the normal component of w only. It has to be augmented by a second
equation for the tangential component of w. The following method was proposed in [17].
Using the Laplace-Beltrami identity on Γ(t)

∆Γ idΓ = −HnΓ ,

leads to the following weak formulation of the boundary evolution.
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Problem 3.3.1. Given u, for almost all t ∈ (t0, tb), find w ∈ L2(∂Ωi(t)))
d and H ∈

L2(∂Ωi(t))), such that for all (ψ, η) ∈ L2(∂Ωi(t))× L2(∂Ωi(t))
d it holds

〈u−w,nΓψ〉∂Ωi(t)
= 0 , (3.3.2a)

〈HnΓ, η〉∂Ωi(t)
− 〈∇ΓidΓ,∇Γη〉∂Ωi(t)

= 0 . (3.3.2b)

The discrete solution of Problem 3.3.1 has some remarkable properties regarding the
node distribution on the interface. This will be discussed in Chapter 4 and Chapter 5.

3.4 A Stable ALE Formulation

Combining Problem 3.3.1 with the Navier-Stokes equations for the two-phase capillary
flow, has the advantage of resulting in a stable formulation, contrary to using the classical
methods. This has been shown for non-ALE formulations in [18] and it holds true for
the ALE formulation as well. That will be shown in the following.

In order to simplify the notation, the domain velocity w and the interface velocity wΓ

will be considered as independent throughout this subsection. Additionally, the domain
velocity w will be considered as given throughout this subsection, since it turns out that
the result will be independent of w, anyway.

The capillary two-phase flow problem with a fixed surface tension coefficient is con-
sidered. Thus, the bulk and surface surfactant is neglected.

Problem 3.4.1. Given w, for almost all t ∈ (t0, tb) find (u, p,wΓ,H) ∈ H1
0 (Ω(t))d ×

L2
0(Ω(t)) ×H1(Γ(t))d × L2(Γ(t)) such that for all (v, q, η, ψ) ∈ H1

0 (Ω(t))d × L2
0(Ω(t)) ×

H1(Γ(t))d × L2(Γ(t)) it holds

(%∂wt u,v) + (%(u−w) · ∇u,v) +
(
2%Re−1 D(u),D(v)

)
− (p,∇ · v) = f(v) , (3.4.1a)

(∇ · u, q) = 0 , (3.4.1b)

〈u−wΓ,nΓψ〉Γ = 0 , (3.4.1c)

〈HnΓ, η〉Γ − 〈∇ΓidΓ,∇Γη〉Γ = 0 , (3.4.1d)

where

f(v) :=
(
%Fr−1 eg,v

)
−
〈
We−1 σ0PΓ,∇Γv

〉
Γ
.

In the following, some preliminary results are obtained. First, the formula for partial
integration is extended to domain-wise smooth functions, as follows.

Lemma 3.4.1. For ϕ ∈ H1
0 (Ω) and v ∈ H1

0 (Ω)d it holds

(%v,∇ϕ) = − (%ϕ,∇ · v) + 〈J%ϕvKΓ,nΓ〉Γ . (3.4.2)

Proof. The result is obtained by using ∇ · (ϕv) = v ·∇ϕ+ϕ∇ ·v a.e., and applying the
divergence theorem (1.1.1) domain-wise.
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Further, the following useful identity holds.

Lemma 3.4.2. Let Γ(t) be a smooth, evolving hypersurface, then the following holds

d

dt

∫
Γ(t)

dA = 〈∇ΓidΓ,∇ΓwΓ〉Γ(t) . (3.4.3)

Proof. Using the Reynolds transport theorem for the function f = 1, yields

d

dt

∫
Γ(t)

dA =

∫
Γ(t)
∇Γ ·wΓ dA .

Applying the divergence theorem on surface (1.1.2), leads to∫
Γ(t)
∇Γ ·wΓ dA =

∫
Γ(t)
HwΓ · dA ,

where it was used that Γ(t) has no boundary. Finally, using the Laplace-Beltrami identity
∆Γ idΓ = −HnΓ and applying integration by parts, the result (3.4.3) is obtained

d

dt

∫
Γ(t)

dA =

∫
Γ(t)
HwΓ · dA = 〈∇ΓidΓ,∇ΓwΓ(t)〉Γ(t) .

With the lemmata above, the following theorem regarding the stability of Prob-
lem 3.4.1 can be proven.

Theorem 3.4.1. For Problem 3.4.1 the following holds

d

dt

(
1

2

∥∥∥% 1
2 u
∥∥∥2

L2(Ω(t))
+ σ0 We−1 |Γ(t)|

)
+ 2 ‖εD(u)‖2L2(Ω(t)) = Fr−1 (%eg,u) ,

where ε =
(
%Re−1

) 1
2 .

Proof. Setting v = u and considering the convective term

(%∂wt u,u) + (%(u−w) · ∇u,u) =
1

2

(
%, ∂wt u2

)
+

1

2

(
%(u−w),∇u2

)
.

Applying (3.4.2) on the convective term, yields(
%, ∂wt u2

)
+
(
%(u−w),∇u2

)
=
(
%, ∂wt u2

)
−
(
%u2,∇ · (u−w)

)
+
〈
J%u2(u−w)KΓ,nΓ

〉
Γ
.

Using (3.4.1b) with q = %u2 and Theorem 2.2.1, yields(
%, ∂wt u2

)
+
(
%(u−w),∇u2

)
=

d

dt

(
%,u2

)
−
〈
J%u2(wΓ −w)KΓ,nΓ

〉
Γ

+
〈
J%u2(u−w)KΓ,nΓ

〉
Γ

=
d

dt

(
%,u2

)
+
〈
u−wΓ,nΓJ%KΓu2

〉
Γ
.
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Using (3.4.1c) with ψ = J%KΓu2|Γ yields

(%∂wt u,u) + (%(u−w) · ∇u,u) =
1

2

d

dt

(
%,u2

)
=

1

2

d

dt

∥∥∥% 1
2 u
∥∥∥2

L2(Ω(t))
.

Considering the right hand side of (3.4.1a) with v = u and using partial integration on
the surface term, it is obtained

f(u) =
(
%Fr−1 eg,u

)
−
〈
We−1 σ0PΓ,∇Γu

〉
Γ

=
(
%Fr−1 eg,u

)
+ We−1 σ0 〈∇Γ · PΓ,u〉Γ

=
(
%Fr−1 eg,u

)
−We−1 σ0 〈HnΓ,u〉Γ .

Using (3.4.1c) with ψ = We−1 σ0H the right hand side becomes

f(u) =
(
%Fr−1 eg,u

)
−We−1 σ0 〈HnΓ,wΓ〉Γ ,

and after applying (3.4.1d) with η = wΓ

f(u) =
(
%Fr−1 eg,u

)
−We−1 σ0 〈∇ΓidΓ,∇ΓwΓ〉Γ .

Using Lemma 3.4.2 the right hand side becomes

f(u) =
(
%Fr−1 eg,u

)
−We−1 σ0

d

dt
|Γ(t)| .

Setting ε =
(
%Re−1

) 1
2 , altogether it is obtained

1

2

d

dt

∥∥∥% 1
2 u
∥∥∥2

L2Ω
+ 2 ‖εD(u)‖2Ω = Fr−1 (%eg,u) − σ0 We−1 d

dt
|Γ(t)| ,

d

dt

(
1

2

∥∥∥% 1
2 u
∥∥∥2

+ σ0 We−1 |Γ(t)|
)

+ 2 ‖εD(u)‖2 = Fr−1 (%eg,u) ,

which concludes the proof.

3.5 Some Special Models

In the following subsections some specialisations of the model for two-phase flow with
surfactant, derived above, are given.

3.5.1 Pressure Driven Periodic Channel Flow

A two-phase flow in a channel is considered. The surfactant is neglected, only surface
tension is considered. The model is used to simulate a Taylor flow, in Chapter 5. A
Taylor flow consists of several bubbles following each other in a channel. Each Taylor
bubble moves through the wake of a Taylor bubble in front. Therefore, it is assumed
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Figure 3.1: Schematic view of a domain for a two-phase channel flow.

that the flow pattern is periodic. The purpose of the following model is to incorporate
periodic boundary conditions.

It is assumed, that one bubble is located in a specific channel segment, see Figure 3.1.
The inflow boundary of the channel segment is denoted with ΓI , the outflow boundary
is denoted with ΓO, and the remaining channel wall is denoted with ΓW . The bubble
interface is denoted with ΓF . The channel is assumed to be of length L, and it holds

ΓI =
{

x ∈ Rd : x = y + (0, L)T ,y ∈ ΓO

}
. (3.5.1)

The periodicity is assumed to be in y-direction. In the following let y = (0, L)T . It
is required that

u(x, t) = u(x + y, t) .

It is further assumed that the flow is smooth in the complete channel, which implies
the velocity is smooth for any choice of segment from the channel. Hence, the following
additional condition is enforced

(n · ∇)u(x, t) = (n · ∇)u(x + y, t) , on ΓO .

Including these conditions, the equations of the strong form for this problem read:

∂wt u + ((u−w) · ∇)u−∇ · S(u, p) = 0 in Ω(t) , (3.5.2a)

∇ · u = 0 in Ω(t) , (3.5.2b)

JuKΓ = 0 in Ω(t) , (3.5.2c)

w · nΓ = u · nΓ on ΓF (t) , (3.5.2d)

JS(u, p)KΓ · nΓ = We−1 σ0∇Γ · PΓ on ΓF (t) , (3.5.2e)

u(x, t) = u(x + y, t) on ΓO , (3.5.2f)

(n · ∇)u(x, t) = (n · ∇)u(x + y, t) on ΓO , (3.5.2g)

u = 0 on ΓW . (3.5.2h)
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In order to derive the weak form of the equations above, a periodic functions space
is introduced

V (t) := {v ∈ H1(Ω(t))d : v(x) = v(x + (0, L)) on ΓO,v = 0 on ΓW } .

Equation (3.5.2a) is multiplied with a test function v ∈ V (t). The term with the stress
tensor is integrated by parts on each domain separately, which leads to

(∇ · S(u, p),v)Ω(t) = − (S(u, p),∇v)Ω(t) −We−1 σ0 〈PΓ,∇Γv〉Γ(t)

+ 〈S(u, p)n,v〉ΓI(t) + (S(u, p)n,v)ΓO(t) .

In the interface integrals the momentum balance condition (3.5.2e) was substituted,
analogue to the weak formulations before. The integral terms over the inflow boundary
and the outflow boundary do not vanish this time, since the periodic boundary conditions
are used.

Using (3.5.2g) the normal stress S(u, p)n on the outflow boundary ΓO can be written
as

S(u(x, t), p(x, t))n(x) = %Re−1
(
∇u(x, t) + (∇u(x, t))T

)
n(x)− p(x, t)n(x)

= %Re−1
(
∇u(x + y, t) + (∇u(x + y, t)T

)
n(x)

− p(x, t)n(x)

= S(u(x + y), p(x, t))n(x)

and after using (3.5.1) and considering the orientation of the normals it is obtained

S(u(x, t), p(x, t))nΓO(x) = −S(u(x + y, t), p(x, t))nΓI (x + y) .

Let pO(x, t) = p(x−y, t) for x ∈ ΓI be the pressure on outflow boundary transferred to
the inflow boundary. Exploiting the periodicity of the test function v, the integral term
of the normal stress over the outflow boundary can be written as

〈S(u, p)n,v〉ΓO(t) = −〈S(u, pO)n,v〉ΓI(t) ,

such that

〈S(u, p)n,v〉ΓI(t) + 〈S(u, p)n,v〉ΓO(t) = 〈[S(u, p)− S(u, pO)] n,v〉ΓI(t)

= 〈(p− pO) n,v〉ΓI(t) .

The pressure difference δp := p− pO is the pressure drop in the channel, and has to
be given. For the stress term it is obtained

(∇ · S(u, p),v)Ω(t) = −
(
2%Re−1 D(u),D(u)

)
Ω(t)

+ (p,∇ · v)Ω(t)

−We−1 σ0 〈PΓ,∇Γv〉Γ(t) + 〈δpn,v〉ΓI(t) .
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The following abbreviations are introduced

at(b; u,v) := (% (b · ∇) u,v)Ω(t) +
(
2%Re−1 D(u),D(u)

)
Ω(t)

,

bt(v, q) := (∇ · v, q)Ω(t) ,

ft(δp; v) := 〈δpn,v〉ΓI(t) −We−1 σ0 〈PΓ,∇Γv〉Γ(t) .

With these forms the weak formulation reads:

Problem 3.5.1 (Pressure driven periodic channel flow). For almost all t ∈ (t0, tb), given
δp(t), find (u,w, p) ∈ V (t)×H1

0 (Ω(t))× L2
0(Ω(t)) such that

(%∂wt u,v)Ω(t) + at((u−w) ; u,v)− bt(v, p) = ft(δp(t); v) , (3.5.3a)

bt(u, q) = 0 , (3.5.3b)

for all (v, q) ∈ V (t)× L2
0(Ω(t)).

3.5.2 Three Dimensional Rotational Symmetric Flow

In many applications, the flow structure has a symmetry. This can be exploited in order
to reduce the complexity of the problem. In the following a three dimensional rotational
symmetric flow is considered. Such that, the three dimensional problem is transferred
into a two dimensional problem.

The coordinates suited to describe a rotational symmetric problem are the cylin-
drical coordinates. Hence, the flow problem given in Cartesian coordinates, has to be
transferred in cylindrical coordinates. Let a point x given in Cartesian coordinates be
described by the tuple x = (x, y, z)T and given in cylindrical coordinates by the tuple
x = (r, φ, z)T . In cylindrical coordinates r is the radial distance from the symmetry axis,
φ is the azimuth angle, and z is the height.

Both coordinate systems can be transferred into each other, byxy
z

 =

r cosφ
r sinφ
z

 ,

rφ
z

 =


√
x2 + y2

arctan(y/x)
z

 , 0 ≤ φ ≤ 2π .

For a scalar function f given in Cartesian coordinates f = f(x, y, z), the corresponding
counterpart, given in cylindrical coordinates will be denoted with f̃ = f̃(r, φ, z). It holds

f̃(r, φ, z) = f(x(r, φ), y(r, φ), z) .

With this definition, the differential operator transform as follows. The nabla operator
in cylindrical coordinates is given as follows

∇f̃ =
(
∂rf̃ , r

−1∂φf̃ , ∂z f̃
)T

. (3.5.4)
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The Laplace operator in cylindrical coordinates reads

∆ f̃ = r−1∂r

(
r∂rf̃

)
+ r−2∂2

φφf̃ + ∂2
zz f̃ .

A vector valued function v = (vx, vy, vz)
T in Cartesian coordinates, will be denoted

ṽ = (vr, vφ, vz)
T in cylindrical coordinates. It holdsvxvy

vz

 =

vr cosφ− vφ sinφ
vr sinφ+ vφ cosφ

uz

 .

The divergence operator is written in cylindrical coordinates as follows

∇ · ṽ = r−1∂r(rvr) + r−1∂φvφ + ∂zvz .

Rotational symmetry implies, that a function is independent of the azimuth angle φ,
i.e. ∂φf̃ = 0, ∂φvr = 0, and ∂φvz = 0. Further, it is assumed that the φ-component of a
vector field vanishes, i.e. vφ = 0 and

ṽ =
(
vr, 0, vz

)T
. (3.5.5)

With this assumptions the Nabla operator gets

∇f̃ =
(
∂rf̃ , 0, ∂z f̃

)T
,

and the divergence operator reads

∇ · ṽ = r−1∂rvr + vr + ∂zvz .

Further, the convectional derivative (b̃ · ∇)ũ is as follows

(
b̃ · ∇

)
ũ =

br∂rur + bz∂zur
0

br∂ruz + bz∂zuz

 . (3.5.6)

Using (3.5.4) component-wise, the Jacobian ∇v written in cylindrical coordinates
reads for a rotational symmetric function v

∇ṽ =

cosφ∂rvr −r−1 sinφvr cosφ∂zvr
sinφ∂rvr r−1 cosφvr cosφ∂zvr
∂rvz 0 ∂zvz

 .

It follows for the matrix scalar product ∇ũ : ∇ṽ that

∇ũ : ∇ṽ = ∂rur∂rvr + r−2urvr + ∂zur∂zvr + ∂ruz∂rvz + ∂zuz∂zvz .
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From this, the matrix scalar product D(ũ) : D(ṽ) of the deformation tensors can be
deduced

D(ũ) : D(ṽ) = ∂rur∂rvr + r−2urvr +
1

2
(∂zur + ∂ruz) (∂zvr + ∂rvz) + ∂zuz∂zvz .

(3.5.7)

In the following, let Ω(t) be a rotational symmetric domain, and let Ω̃(t) be the two
dimensional domain, that generates Ω(t), i.e.

Ω̃(t) :=
{

(r, z) ∈ R2 : (r, φ, z) ∈ Ω(t), 0 ≤ φ ≤ 2π
}
.

And let Γ̃(t) be the curve generating Γ(t), i.e.

Γ̃(t) =
(
(r, z) ∈ R2 : (r, φ, z) ∈ Γ(t)

)
.

With this notations the integral forms can be transferred to cylindrical coordinates. For
a volume integral over and rotational symmetric function f̃ = f̃(r, z) it holds∫

Ω(t)
f dV =

∫∫∫
Ω(t)

f(x, y, z) dx dy dz =

∫∫∫
Ω(t)

f̃(r, z)r dr dφ dz

= 2π

∫∫
Ω̃(t)

f̃(r, z)r dr dz .

From this it follows, with using (3.5.5)

(%∂wt u,v)Ω(t) = 2π

∫∫
Ω̃(t)

%̃∂wt ũ · ṽr dr dz ,

and using (3.5.6)

(% (b · ∇) u,v)Ω(t) = 2π

∫∫
Ω̃(t)

%̃(b̃ · ∇)ũ · ṽr dr dz ,

and using (3.5.7)

(
%Re−1 D(u),D(v)

)
Ω(t)

= 2π

∫∫
Ω̃(t)

%̃Re−1 D(ũ) : D(ṽ)r dr dz ,

(∇ · v, q)Ω(t) = 2π

∫∫
Ω̃(t)

q̃
(
∂rvr + r−1vr + ∂zvz

)
r dr dz ,

〈u,v〉Γ(t) = 2π

∫
Γ̃(t)

ũ · ṽr dC ,

We−1 〈σPΓ,∇Γv〉Γ(t) = 2πWe−1

∫
Γ̃(t)

σ̃
[
∇Γ̃r · ∇Γ̃vr +∇Γ̃z · ∇Γ̃vz + r−1vr

]
r dC .
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Substituting the above integral forms leads to the rotational symmetric formulation,
for the components (ur, uz) ∈ R2. The symmetry axis r = 0 is an artificial boundary
and needs additional boundary conditions. The boundary conditions are

ur(r, z) = 0 , for r = 0 ,

∂ruz = 0 , for r = 0 .



Chapter 4

Finite Element Method

In Chapter 4, the ALE finite element discretizations in space and time are introduced.
First, the ALE finite element space is defined. In order to do so, some basic finite
element concepts are recalled, and ALE meshes are introduced. Then, a space-discrete
weak form is obtained.

The choice for the finite element space in the context of a discontinuous pressure,
which is important for two-phase flows, is discussed. The finite elements used for the
Navier-Stokes part have a discontinuous, domain-wise continuous pressure. This finite
element space is an extended Taylor-Hood finite element space, that is a domain-wise
Taylor-Hood finite element space. The velocity space is a space of piecewise polynomials
of order s, which is continuous in the whole domain, while the pressure space consist of
polynomials of order s− 1, that are allowed to be discontinuous across the interface. It
is shown that this domain-wise Taylor-Hood space is inf-sup stable.

After that, several time discretizations are introduced. A first order semi-implicit
Euler method, a θ-scheme, from which the second order accurate Crank-Nicolson scheme
follows, and the second order accurate and A-stable fractional step Θ-scheme. Further,
decoupling strategies are presented, which decouple the Navier-Stokes equations from
the transport equations.

Finally, different discretization of the surface evolution are discussed.

4.1 Spatial Discretization

In order to lay down the notation, a few basic finite element concepts are recalled. Most
notations and definitions are taken from standard finite element textbooks, like [41, 55].

Let Ps be the polynomial space of order s. Thus, for M ⊂ Rd

Ps(M) :=

p ∈ C0(M) : p(x) =
∑
|α|≤s

λαxα , λα ∈ R

 ,

where the multi-index notation is used, i.e. α = (α1, . . . , αd) and xα = xα1
1 · · ·x

αd
d .

The definition of a finite element and a mapped finite element is as follows.

53
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Definition 4.1.1 (Finite element). A finite element is a triple (K,PK ,ΣK) where:

(i) K is a compact, connected, non-empty subset of Rd with a Lipschitz continuous
boundary.

(ii) PK is a finite dimensional vector space of real valued functions, defined over K.

(iii) ΣK is a set of N linear forms {N1, . . . ,NN} ⊂ P ′K , such that Σ is PK-unisolvent,
i.e. the mapping P 3 p 7→ (N1(p), . . . ,NN (p)) ∈ RN is bijective. The linear forms
are called nodal functional or local degrees of freedom.

Definition 4.1.2 (Mapped finite element). Let (K̂, P̂ , Σ̂) be a finite element triple as
in Definition 4.1.1, and let FK : K̂ → K be a bijective mapping, then a mapped finite
element (K,PK ,ΣK) is defined with

PK := {φ ◦ F−1
K : φ ∈ P̂}

and

ΣK := {N ∈ P ′K : N (φ ◦ F−1
K ) = N̂ (φ), N̂ ∈ Σ̂, ∀φ ∈ P̂} .

If K̂ ⊂ Rd−n, 0 < n < d and K is a (d− n)-dimensional manifold embedded in Rn, the
mapped finite element is also called a parametric finite element.

A mapped finite element is a finite element, provided FK is a bijective mapping [41].
In a three dimensional space, parametric finite elements could be surface elements or
line elements.

Definition 4.1.3 (Mesh). Let Ω ⊂ Rd be a domain with piecewise smooth boundary. A
mesh Th = {Kj}Nj=1 is a set of a finite number of compact, Lipschitz, and non-empty
subsets Km ⊂ Ω, j = 1, . . . , N with

Ω =
N⋃
j=1

Kj and K̊i ∩ K̊j = ∅, i 6= j.

The subsets Km are called cells. The subscript h refers to the fineness of the mesh, where

hK = diamK and h = max
j=1,...,N

hKj ,

and hK is called the local mesh size and h is called the mesh size.

Definition 4.1.4 (Mapped mesh). Let Ω ⊂ Rd and Th be a mesh as in Definition 4.1.3.
A mapped mesh is a mesh where each cell is the image of a reference cell K̂ of a mapping
FK , i.e.

∀K ∈ Th : K = FK(K̂) .

FK : K̂ → Rd is called the reference transformation.
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In this work, simplicial meshes are considered, i.e. triangular meshes in two dimen-
sions and tetrahedral meshes in three dimensions. Here, the notation simplicial mesh
is somewhat relaxed. The reference cell K̂ is required to be a simplex. The mapped
cell K = FK(K̂) does not necessarily has to be a simplex. It is allowed to be a curved
simplex.

Let the reference element K̂ be a (d − n)-simplex. If the reference mapping FK :
K̂ ⊂ Rd−n → Rd, 0 < n < d is an affine mapping, then K is a (d−n)-simplex embedded
in Rd and FK can be written as

FK(x̂) = BK x̂ + bK , x̂ ∈ K̂ ,

where BK ∈ Rd×(d−n) and bK ∈ Rd.
Let r = (d − n) and ai, i = 0, . . . , r be the vertices of this r-simplex K, then the

affine mapping FK can also be written as

x = FK(x̂) =
d∑
i=0

aiφi(x̂) , x̂ ∈ K̂ . (4.1.1)

The set {φi}ri=0 is the Lagrange basis of the space P1(K̂) of polynomials of order one
over K̂, respective the points âi = F−1

K (ai), i = 0, . . . , r. The reference simplex K̂ is
spanned by the vertices âi. The φi(x̂) are also called barycentric coordinates λi = φi(x̂)
of the simplex K. The matrix BK and the vector bK are given by

BK =

a1 − a0
...

ar − a0


T

, and bK = a0 .

The approach (4.1.1) can be generalised to polynomial spaces of higher order. In-
troducing additional points, respective the order of the polynomial space, the mapped
cell is then a cell with curved piecewise polynomial faces. If the polynomial degree of
the mapping FK is equal to the polynomial degree of the finite element approximation
space, then the mesh cells are called isoparametric cells. Isoparametric cells are used to
improve the approximation of the curvature of the interface [74].

Definition 4.1.5 (Parametric polynomial mesh). Let Ω ⊂ Rd be a domain with piecewise
polynomial boundary and let Th be a mapped mesh as in Definition 4.1.4. The mesh Th
is called a parametric polynomial mesh of order s, if for every K ∈ Th it holds

FK =
n∑
i=0

aiφi ,

where {φi}ni=0, with Ps(K) = span{φi}ni=0, is a Lagrange basis respective the points
F−1
K (ai), i = 1, . . . , n.

The points ai are called nodes or vertices of the mesh.
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In the following, the set of all nodes belonging to a cell K is denoted with NK . The
purpose of the following definition is to have a mesh that is aligned to the interface.

Definition 4.1.6 (Fitted mesh). Let Ω ⊂ Rd with Ω = Ω1 ∪ Ω2 ∪ Γ be a domain with
an interface Γ and two subdomains Ω1, Ω2 with Ω1 ∩Ω2 = ∅ and Γ = Ω1 ∩Ω2. Further,
let Th be a polynomial mesh as in Definition 4.1.5. Th is called fitted to Γ, if for each
cell K ∈ Th it holds

NK ⊂ Ω1 or NK ⊂ Ω2 .

A mesh that is fitted to an interface Γ is also denoted with T Γ
h .

Given a fitted mesh for a domain Ω = Ω1 ∪Ω2 ∪ Γ, a mesh for the surface Γ is given
implicitly. Since, a face of a d-dimensional simplex, is a (d − 1)-dimensional simplex,
selecting all faces F of a mesh T Γ

h with NF ⊂ Γ a parametric polynomial surface mesh
is generated.

Definition 4.1.7 (Interface mesh). Given a fitted mesh T Γ
h of Ω ⊂ Rd as in Defini-

tion 4.1.6 and let F(T Γ
h ) be the set of all faces of the cells belonging to T Γ

h , then a
surface mesh is given by

SΓ
h := {F ∈ F(T Γ

h ) : NF ⊂ Γ} .

The domain

Γh :=
⋃
F∈SΓ

h

F ,

is the discrete interface.

Note that Γh and Γ are not necessarily the same surface.

A cell F of the surface mesh is then the image of a reference mapping FF : F̂ → F ,
where F̂ ⊂ K̂ is a corresponding reference face. Note, that two faces could be the image
of different reference faces of the reference cell.

Having introduced the notion of a finite element and a fitted mesh for a domain with
an interface, the finite element space can be introduced. A mapped finite element space
on the reference domain Ω̃ ⊂ Rd and on the reference surface Γ̃ is introduced in the
following.

Definition 4.1.8 (Mapped finite element space). Let Ω ⊂ Rd be a domain and T Γ
h a

fitted mesh for Ω as in Definition 4.1.6 and SΓ
h a surface mesh as in Definition 4.1.7.

A continuous mapped finite element space consisting of piecewise polynomials of order
s is defined as

Ps(Ω) := {φ ∈ H1(Ω) : ∀K ∈ T Γ
h : φ|K = φ̂ ◦ F−1

K , φ̂ ∈ Ps(K̂)} .



4.1. SPATIAL DISCRETIZATION 57

A phase-wise continuous finite element space consisting of polynomials of order s is
defined as

Ds(Ω) := {φ ∈ H1(Ω1 ∪ Ω2) : ∀K ∈ T Γ
h : φ|K = φ̂ ◦ F−1

K , φ̂ ∈ Ps(K̂)} .

A continuous parametric surface finite element space is defined as

Ss(Γ) := {φ ∈ H1(Γ) : ∀F ∈ SΓ
h : φ|F = φ̂ ◦ F−1

F , φ̂ ∈ Ps(F̂ )} .

Having defined a finite element space on the reference domain, a finite element space
in the current domain is given as follows.

Definition 4.1.9 (ALE finite element space). Let Ω ⊂ Rd be a domain and Ω̃ its
reference domain, i.e. Ω = At(Ω̃), and let Ps(Ω̃), Ds(Ω̃), and Ss(Γ̃) be finite element
spaces on Ω̃ as in Definition 4.1.8, then the ALE finite element spaces on Ω are defined
as

PAt,s(Ω) := {φ ∈ H1(Ω) : φ = φ̃ ◦ A−1
t , φ̃ ∈ Ps(Ω̃)} ,

DAt,s(Ω) := {φ ∈ H1(Ω1 ∪ Ω2) : φ = φ̃ ◦ A−1
t , φ̃ ∈ Ds(Ω̃)} ,

SAt,s(Γ) := {φ ∈ H1(Γ) : φ = φ̃ ◦ A−1
t , φ̃ ∈ Ss(Γ̃)} .

With the finite element spaces for the bulk phases and the surface introduced, the
space discretization of problem (3.1.10) can be formulated. For t ∈ (t0, tb), it is set
Vs(t) = PAt,s(Ω(t))d as the velocity space, Qs(t) = DAt,s(Ω(t)) for the pressure space,
Bs(t) = DAt,s(Ω(t)) for the bulk surfactant space, and Ss(t) = PAt,s(Γh(t)) for the
surface surfactant space.

In order to shorten the notation, the following abbreviations are introduced. The
triple form aut : Vs(t)× Vs(t)× Vs(t)→ R with

aut (b; u,v) := (%(b · ∇)u,v)Ω(t) +
(
2%Re−1 D(u),D(v)

)
Ω(t)

,

the bilinear form bt : Vs(t)×Qs−1(t)→ R with

bt(v, q) := (p,∇ · v)Ω(t) ,

the triple form act : Vs(t)× Bs(t)× Bs(t)→ R with

act(b; c, φ) := ((b · ∇)c, φ)Ω(t) +
(
Pe−1∇c, φ

)
Ω(t)

,

the quadruple form aΓ
t : Vs(t)× Vs(t)× Ss(t)× Ss(t)→ R with

aΓ
t (b,w; γ, ξ) := 〈γ∇Γ ·w, ξ〉Γ(t) + 〈∇Γ · (γb) , ξ〉Γ(t) +

〈
Pe−1

Γ ∇Γγ,∇Γξ
〉

Γ(t)
,

the bilinear form fut : Ss(t)× Vs(t)→ R with

fut (γ; v) :=
(
%Fr−1 g,v

)
Ω(t)
−
〈
We−1 σ(γ)PΓ,∇v

〉
Γ(t)

,
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the nonlinear form f ct : Bs(t)× Ss(t)× Bs(t)→ R with

f ct (γ, c;φ) := 〈βQΓ(c1, c2, γ), φ〉Γ(t) ,

and the nonlinear form fΓ
t : Bs(t)× Ss(t)× Ss(t)→ R with

fΓ
t (c, γ; ξ) := 〈QΓ(c1, c2, γ), ξ〉Γ(t) .

Then, the semi-discrete, time continuous problem for the two-phase flow reads:

Problem 4.1.1. For almost all t ∈ (t0, tb), find

(u(t),w(t), p(t), c(t), γ(t)) ∈ Vs(t)× Vs(t)×Qs−1(t)× Bs(t)× Ss(t) ,

such that with b(t) = u(t)−w(t) it holds

(%∂wt u,v) + aut (b; u,v)− bt(v, p) = fut (γ,v) , (4.1.2a)

bt(u, q) = 0 , (4.1.2b)

(∂wt c, φ) + act(b, c, φ) = f ct (c, γ, φ) , (4.1.2c)

〈∂wt γ, ξ〉 + aΓ
t (b,w; γ, ξ) = fΓ

t (c, γ, ξ) , (4.1.2d)

for all (v, q, φ, ξ) ∈ Vs(t)×Qs−1(t)× Bs(t)× Ss(t).

Note, that the equations (4.1.2) have to be augmented by equations for the mesh
velocity w. These equations for the mesh velocity w could be a discrete version of the
problems given in Chapter 3. For the harmonic extension (3.2.3) a discrete version could
be:

Given u ∈ Vs(t), find w ∈ Vs(t) such that

(∇w,∇v)Ω(t) = 0 , (4.1.3a)

w|Γh = u|Γh , (4.1.3b)

for all v ∈ Vs(t).
Discrete versions of the surface evolution, will be discussed later in this chapter.

4.2 Inf-Sup Stable Finite Element Space

4.2.1 Spurious Velocities

The finite element pair for the two-phase Navier-Stokes problem has to be chosen care-
fully. In the finite element discretization of the Navier-Stokes problem, using the Galerkin
approach with mixed finite elements for velocity and pressure, the spaces have to fulfil a
compatibility condition, the inf-sup condition. The inf-sup condition is needed to get a
well-posed saddle point problem [11]. Additionally, the discretization of the two-phase
Navier-Stokes problem has to consider a discontinuous pressure, see Remark 2.3.1.
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The discretization of Navier-Stokes equations lead to a saddle point problem. An
abstract saddle point problem, is formulated as follows. Let X and Q be reflexive Banach
spaces, and let a : X ×X → R and b : X × Q → R be bilinear forms on those spaces.
With f ∈ X ′ and g ∈ Q′ the saddle point problem reads:

Find u ∈ X and p ∈ Q, such that

a(u, v) + b(v, p) = f(v) ∀v ∈ X , (4.2.1a)

b(u, q) = g(q) ∀q ∈ Q . (4.2.1b)

Let X0 be the kernel of the mapping v 7→ b(v, ·), i.e.

X0 := {v ∈ X : b(v, q) = 0, ∀q ∈ Q} .

For the abstract saddle point problem (4.2.1) the following important theorem holds.

Theorem 4.2.1. Problem (4.2.1) has a unique solution if and only if

(i)

∃α > 0 : inf
u∈X0

sup
v∈X0

a(u, v)

‖u‖X ‖v‖X
≥ α ,

∀v ∈ X0 : (a(u, v) = 0, ∀u ∈ X0)⇒ v = 0 .

(ii)

∃β > 0 : inf
q∈Q

sup
v∈X

b(v, q)

‖v‖X ‖q‖Q
≥ β .

Proof. The proof can be found in [55, p.100].

If the bilinear form a is coercive on X0, the condition (i) in Theorem 4.2.1 fulfilled.
That is the case for the Stokes equation and the Navier-Stokes equation in the discrete
setting. Condition (i) from Theorem 4.2.1 is also fulfilled if a is coercive on X. Under the
assumption, condition (i) in Theorem 4.2.1 is meet, the theorem reduces to the inf-sup
condition or Babuška-Brezzi condition [12, 32].

For the Navier-Stokes or Stokes problem the bilinear form b : X ×Q→ R reads

b(v, q) = (∇ · v, q) , ∀v ∈ X,∀q ∈ Q .

With this bilinear form, the inf-sup condition, necessary for the well-posedness of the
Navier-Stokes equations, is fulfilled if:

There exist a constant β > 0, such that

inf
q∈Q

sup
v∈X

(∇ · v, q)
‖v‖X ‖q‖M

≥ β . (4.2.2)
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This is a condition at the spacesX andQ, involved in solving the discrete problem. There
exist a lot of inf-sup stable finite element pairs. For example, the family of Taylor-Hood
elements Pk+1/Pk, k ≥ 1. The Taylor-Hood elements consist of piecewise polynomials
of order k + 1 for the velocity space X and of polynomials of order k for the pressure
space Q.

However, the Taylor-Hood elements have a continuous pressure approximation, which
is not suitable for the approximation of a discontinuous pressure across the interface [60].
On the one hand, the order of convergence reduces to O(

√
h). In Table 4.2 the experi-

mental order of convergence rates, of a two-phase flow problem on a three dimensional
tetrahedral grid are shown. It is seen that the order reduces for a continuous pressure
space. On the other hand, a discontinuous pressure space is needed to preserve the fluid
volume of each phase. This can be seen by using the Reynolds transport theorem

d

dt

∫
Ωi(t)

1 dV =

∫
Ωi(t)
∇ · u dV =

(
∇ · u,1Ωi(t)

)
,

for i = 1, 2, where 1Ωi(t) is the characteristic function of domain i. The volume of each
phase is preserved if (

∇ · u,1Ωi(t)

)
= 0 for i = 1, 2 . (4.2.3)

The divergence constraint in the discrete setting is not strong enough in order to have
∇ · u = 0 point wise. Instead, it is necessary that 1Ωi(t) ∈ M , i = 1, 2, to fulfil
(4.2.3). This is not the case for continuous pressure approximations. A violation of
these conditions leads to so called spurious velocities. That are non-physical velocities
of the fluids near the interface, which can pollute the solution [19, 60, 64].

A solution to these problems is to use inf-sup stable finite element pairs with a
discontinuous pressure space. There exist such pairs, for example the P+

2 /Pdisc
1 space.

The continuous P+
2 space used for the velocity space, denotes the space of piecewise

polynomials of order two, enriched with cubic cell bubbles. The discontinuous Pdisc
1

space used for the pressure denotes the piecewise polynomials of order one.
Using a pressure space that is discontinuous on a element-wise level, comes with a

cost. Enriching the pressure space, requires to enrich the velocity space, in order to
fulfil the inf-sup condition. While in two dimensions, it is enough to enrich the velocity
space with one cubic bubble function, in three dimensions already five additional bubbles
are needed. This implies an increase in the number of degrees of freedom with using a
discontinuous pressure approximation on an element level. Especially in three dimensions
the increase in number of unknowns is pronounced. Table 4.1 gives an example for the
increase in two and three dimensions.

Although, the enriched discontinuous pressure space would increase the quality of the
approximation of the divergence constraint, a discontinuous space is not really needed on
an element-wise level to prevent spurious velocities. In order to resolve the pressure jump
across the interface, the pressure must be discontinuous on a domain-wise level only. A
consequence is to use a Taylor-Hood element in each phase, but allow a discontinuous
pressure at the interface, i.e. a piecewise Taylor-Hood space (P2/P1-disc). This technique
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Table 4.1: Increase with refinement levels of the degrees of freedom for finite elements
with continuous and discontinuous pressure, in two dimensions (left) and three dimen-
sions (right)

Level P2/P1 P+
2 /Pdisc

1

1 347 666
2 1 339 2 626
3 5 267 10 434
4 20 899 41 602

Level P2/P1 P+
2 /Pdisc

1

1 4 673 16 055
2 32 821 122 365
3 245 254 955 415
4 1 894 568 7 550 827

Table 4.2: Experimental order of convergence rates in three dimensions for discontinuous
and continuous pressure spaces

Element L2-error eoc H1
0 -error eoc

P2/P1 1.1141 · 10−2 1.3757 4.6523 · 10−2 0.3110

P2/P1-disc 6.6595 · 10−6 3.4789 9.0207 · 10−5 2.5422

P+
2 /Pdisc

1 9.0710 · 10−6 3.5344 2.3594 · 10−4 2.6588

is also called node doubling, since it results from not identifying the pressure nodes lying
on the interface.

Node doubling increases the number of unknowns by the amount of the pressure
nodes lying on the interface. Since the pressure is a scalar quantity and the nodes
involved in the interface are usually rare, this is not as much, as compared to enriching
the velocity space. Thus, the node doubling technique would bring a good reduction in
the number of unknowns, provided it is not necessary to enrich the velocity space, in
order to fulfil the inf-sup condition (4.2.2). Fortunately, the velocity space of the Taylor-
Hood element is already rich enough, such that the node doubling technique does not
violate the inf-sup condition. This is shown in the next section for the two dimensional
and three dimensional case.

4.2.2 The Inf-Sup Stability of the Domain-Wise Taylor-Hood Spaces

In the following subsection, the inf-sup stability of the domain-wise Taylor-Hood finite
element space is proven. The proof holds for multi-phase domains, i.e. more than
two phases are possible. A decomposition of the fluid domain into a fixed but arbitrary
number of subdomains is considered. But, these subdomains are required to be polygonal
domains.

For the course of this subsection, let Ω ⊂ Rd, d = 2, 3 be a polygonal multi-phase
domain, and let {Ωi}

Np
i=1 be a polygonal partition of Ω, such that

Ω =

Np⋃
i=1

Ωi and Ωi ∩ Ωj = ∅, i 6= j ,

where Np is the number of phases.
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With Γij = Ωi ∩ Ωj the interface between Ωi and Ωj is indicated. Since Γij can be
the empty set, or Γij can be degenerated to just a point for some i and j, the following
set of indices is introduced

IΓ := {(i, j) : Γ̊ij 6= ∅, 1 ≤ i < j ≤ Np} .

For each (i, j) ∈ IΓ, Γij is a proper interface of the multi-phase domain. Further, let Γ
be the union of all proper interfaces

Γ :=
⋃

(i,j)∈IΓ

Γij .

Since Ωi is polygonal, for i = 1, . . . , Np, each Γij , (i, j) ∈ IΓ, is a piecewise linear
hypersurface, that consists of a finite number of segments. Let Γkij be the k-th segment
of Γij , Then

Γij =

Nij⋃
k=1

Γkij ,

where Nij is the number of segments of Γij .
Since Γij is piecewise smooth only, the normals are not necessarily defined at the

boundary points of each of Γkij . But it is possible to define a mean normal, at those

points. Let nkij be the normal of the plane segment Γkij . For a point x ∈ Γij that is

part of several adjacent segments Γklij , l = 1, . . . ,M , the sum sij(x) of the corresponding
normals is

sij(x) :=
∑

l∈N:x∈Γlij

nlij .

Then, the mean normal n̄ij(x) at x ∈ Γij is then defined as

n̄ij(x) :=
sij(x)

‖sij(x)‖
.

For convenience in the notation the following set of singular points is introduced

Xij(Γ) :=
{

x ∈ Γij : ∃k1, k2 ∈ N : k1 6= k2 : x ∈ Γk1
ij and x ∈ Γk2

ij

}
.

Note, the mean normal n̄ij is defined for each Γij , (i, j) ∈ IΓ, separately.
The following assumption on the normals and its mean values of Γij is needed

Assumption 4.2.1. There exists a constant CΓ > 0, such that for all (i, j) ∈ IΓ the
following holds. For all x ∈ Xij, with x ∈ Γklij , for l = 1, . . . ,M , it must hold

nklij · n̄ij(x) ≥ CΓ , ∀l = 1, . . . ,M . (4.2.4)
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This assumption states that the angles between two adjacent segments are not zero.
This assumption is usually fulfilled for polygonal domains. It excludes subdomains with
slits, which is not allowed.

The following assumption makes sure that the Taylor-Hood finite element space is
inf-sup stable on each subdomain. Let {T Γ

h }h>0 be a family meshes of Ω aligned to Γ,
the following assumption must hold.

Assumption 4.2.2. The family of meshes
{
T Γ
h

}
h>0

of Ω is shape-regular, i.e. there
exists a constant C such that for all h

hK
ρK
≤ C , ∀K ∈ T Γ

h ,

where ρK is the diameter of the largest ball that can be inscribed in K.
Further, each cell of T Γ

h has at least one vertex which is not part of an interface Γ
or the boundary ∂Ω.

The next assumption is a condition on the family of surface meshes
{
SΓ
h

}
h>0

, that
comes with the fitted bulk mesh.

Assumption 4.2.3. The family of surface meshes
{
SΓ
h

}
h>0

is quasi-uniform, i.e. it is
shape-regular and there exists a constant C such that for all h

hF ≥ Ch , ∀F ∈ SΓ
h .

Further, it is assumed that the surface mesh SΓ
h is such that Γh = Γ, for all h.

Note, since it holds hK ≥ hF for a cell K and its faces F , the bulk mesh is quasi-
uniform regarding all cells K ∈ T Γ

h , with K has a face belonging to SΓ
h , i.e. the bulk

mesh is quasi-uniform in a layer around the interface.
Next, the finite element spaces Xh and Qh for the Taylor-Hood element with phase-

wise continuous pressure are defined. In order to emphasises the discrete setting and
the dependency on h, a subscript h is added. The velocity and pressure spaces are as
follows

Xh := {v ∈ C(Ω)d : v ∈ Ps(Ω)d} ,
Qh := {q ∈ L2

0(Ω) : q|Ωi ∈ Ps−1(Ωi), 1 ≤ i ≤ Np} ,

for s ≥ 2. Further, the following spaces are introduced

Xh(Ωi) := {v ∈ Xh : v = 0 in Ω \ Ωi} ,
Qh(Ωi) := {q ∈ L2

0(Ωi) : q ∈ Ps−1(Ωi)} ,
Q̄h := {q ∈ L2

0(Ω) : q|Ωi = qi = const., 1 ≤ i ≤ Np} .

Further preliminaries to proof the main result about the inf-sup stability of the
phase-wise Taylor-Hood finite element space, are laid out in the following. The proof
is based on the Boland–Nicoläıdes macro element technique and the Fortin criterion for
the inf-sup condition. Therefore, the following theorem by Boland–Nicoläıdes is recalled.
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Theorem 4.2.2. Let the pair of spaces (Xh, Qh) satisfy the local inf-sup condition

sup
v∈Xh(Ωi)

(qh,∇ · vh)Ωi

|vh|1,Ωi
≥ λ′ ‖qh‖0,Ωi ∀qh ∈ Qh(Ωi), 1 ≤ i ≤ Np , (4.2.5)

with λ′ > 0 independent of h and i.

If there exist a subspace X̄h of Xh such that the pair (X̄h, Q̄h) satisfies the inf-sup
condition with a constant λ̄ independent of h, then (Xh, Qh) also satisfies the inf-sup
condition with a constant λ independent of h.

Proof. The theorem and its proof can be found in [26].

Further, the Fortin criterion for the inf-sup condition is recalled.

Lemma 4.2.1. The inf-sup condition (4.2.2) for the pair (Xh, Qh) holds with a constant
λ > 0 independent of h, if and only if there exists an operator Πh : H1

0 (Ω)d → Xh

satisfying

(qh,∇ · v)Ω = (qh,∇ · (Πhv))Ω , ∀qh ∈ Qh, ∀v ∈ H1
0 (Ω)d

and

|Πhv|1,Ω ≤ CF |v|1,Ω ∀v ∈ H1
0 (Ω)d

with a constant CF > 0 independent of h.

Proof. The theorem and its proof can be found in [59] or in [55, p.185].

In the case of the phase-wise Taylor-Hood space, the local inf-sup condition is already
fulfilled, as stated by the next corollary.

Corollary 4.2.1. If T Γ
h fulfils Assumption 4.2.2, then the pair (Xh, Qh) fulfils the local

inf-sup condition (4.2.5) with a constant λ′ independent of h and i.

Proof. The restriction (Xh(Ωi), (Qh(Ωi))) of (Xh, Qh) to Ωi is the standard Taylor–Hood
finite element space on Ωi, for all 1 ≤ i ≤ Np, which is inf-sup stable.

In the following, a pair of spaces (X̄h, Q̄h) is constructed, which is inf-sup stable, as
required by the Boland–Nicoläıdes theorem. Let

X̄h := {v ∈ C(Ω)d : v|K ∈ P2(K)d, ∀K ∈ T Γ
h } ,

be the standard P2 on Ω, then the pair (X̄h, Q̄h) is inf-sup stable and meets the re-
quirement of the Boland–Nicoläıdes Theorem 4.2.2. This is shown in the following, by
constructing an appropriate Fortin operator Πh. The construction of Πh is based on the
Scott-Zhang operator. A definition of the Scott-Zhang operator can be found in [105]
and is not recalled here.



4.2. INF-SUP STABLE FINITE ELEMENT SPACE 65

Before the interpolation operator is constructed and it is shown it has the required
properties for the Fortin Lemma 4.2.1, a few properties of the Scott–Zhang operator are
recalled.

In the following, the Scott–Zhang operator will be denoted with Zh. The construction
of Scott–Zhang operator requires the following definition of a neighbourhood of a cell
K.

Definition 4.2.1. Let T Γ
h be a mesh of Ω. The neighbourhood ωK of K ∈ T Γ

h is defined
as

ωK :=
⋃

{
K′∈Th:K

′∩K 6=∅
}K ′ .

Further, the following global and local interpolation properties of the Scott–Zhang
operator hold.

Lemma 4.2.2. Let Zh : H1(Ω) → X̄h be the Scott–Zhang operator, then there exist a
constant C independent of h, such that the following holds:

(a) Stability: For all 0 ≤ m ≤ min(1, l)

‖Zhv‖m,Ω ≤ C ‖v‖l,Ω , ∀v ∈ H l(Ω) , ∀h . (4.2.6)

(b) Approximation: Provided l < s+ 1, for all 0 ≤ m ≤ l

‖v −Zhv‖m,K ≤ Ch
l−m
K |v|l,ωk , ∀K ∈ T Γ

h ,∀h . (4.2.7)

Proof. The theorem can be found in [55] and its proof in [105].

Next, the Fortin operator Πh is constructed. To do that, a special finite element
function is considered. A function that is one in all mesh nodes lying in the interior
of an interface Γij , and zero at the nodes elsewhere. Considering the nodes (nodal
functionals) for the space X̄h with a standard Lagrange basis. For each interface Γij ,
there are nodes lying on the boundary ∂Γij and nodes lying in the interior of Γij . Let
Mij be the set of all grid nodes, belonging to Γij , i.e

Mij :=

a ∈ ⋃
K∈T Γ

h

NK : a ∈ Γij

 .

Then, the set of internal nodes of Γij , denoted with M̊ij is given as

M̊ij := {a ∈Mij : a /∈ ∂Γij} .

It is required that M̊ij is non-empty.
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Assumption 4.2.4. The mesh T Γ
h is such that M̊ij 6= ∅ for all h, with h < h0, for a

h0 > 0.

Note that if this is not the case, it is only one regular refinement step required in
order to fulfil this assumption.

In the following, the k-th node of M̊ij is denoted with akij , such that M̊ij =
{
akij

}M
k=1

,

where M is the cardinality of M̊ij . Further, a normal ñkij in a node akij is defined as
follows

ñkij :=

 n̄ij(a
k
ij) : akij ∈ Xij ,

nΓ : else .

Let φkij be the Lagrange basis functions of X̄h, belonging to akij , the following vector

valued functions Φij ∈ X̄h for each interface Γij is defined as

Φij :=
M∑
k=1

φkijñ
k
ij ∀(i, j) ∈ IΓ .

Note, Φij is the piecewise quadratic interpolation of the normals in the nodes akij .

With this functions, the interpolation operator Πh : H1
0 (Ω)d → Xh is defined as

follows

Πhv :=
∑

(i,j)∈IΓ

Nij(v)Φij + Zhv , (4.2.8)

with

Nij(v) =

∫
Γij

(v −Zhv) · dA∫
Γij

Φij · dA
∀(i, j) ∈ IΓ ,

and Zij is the Scott-Zhang operator as in [105].

Next, it will be shown that the interpolation operator Πh has the properties as
required in Lemma 4.2.1.

Lemma 4.2.3. For the interpolation operator Πh : H1
0 (Ω)d → X̄h(Ω) with the definition

(4.2.8) above, it holds

(qh,∇ · v) = (qh,∇ · (Πhv)) ∀qh ∈ Q̄h .

Proof. Since qh is constant qi in each subdomain Ωi it holds∫
Ωi

qh (∇ · (v −Πhv)) dV = qi

∫
Ωi

∇ · (v −Πhv) dV ∀qh ∈ Q̄h ,
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Applying the Gauss theorem gives∫
Ωi

∇ · (v −Πhv) dV =

∫
∂Ωi

(v −Πhv) · dA .

Since ∂Ωi is the union of some Γij for some j with (i, j) ∈ IΓ, and the supports of the
Φij are disjoint, it is sufficient to consider the surface integrals over Γij . By construction
of Πh it holds∫

Γij

(v −Πhv) · dA =

∫
Γij

(v −Zhv) · dA−
∫

Γij

Nij(v)Φh · dA

=

∫
Γij

(v −Zhv) · dA−
∫

Γij

(v −Zhv) · dA

= 0 .

From this it is concluded that∫
Ωi

∇ · (v −Πhv) dV = 0 ,

which completes the proof.

For the stability it holds:

Lemma 4.2.4. If the assumptions above are fulfilled, then

|v −Πhv|m,Ω ≤ Ch
k−m |v|k,Ω ∀v ∈ Hk(Ω) ,

and in particular

|Πhv|1,Ω ≤ C |v|1,Ω ∀v ∈ H1(Ω) .

Proof. By construction of the operator Πh, and using the triangle inequality it holds

|v −Πhv|m,Ω ≤ |v −Zhv|m,Ω +
∑

(i,j)∈IΓ

|Nij(v)| |Φij |m,Ω .

For the first part, the estimates of the Scott-Zhang operator (4.2.7) deliver the right
result, the second part needs a closer look.

By definition of the functional Nij , the following expression has to be estimated

∑
(i,j)∈IΓ

|Nij(v)| |Φij |m,Ω =
∑

(i,j)∈IΓ

∣∣∣∫Γij
(v −Zhv) · dA

∣∣∣∣∣∣∫Γij
Φij · dA

∣∣∣ |Φij |m,Ω ,

which will be done in the following.
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The denominator can be estimated from below, as follows. Let eK ∈ SΓ
h be an face

of a mesh cell K ∈ T Γ
h , and êK̂ be the corresponding face on the reference cell K̂. Then

it holds∫
eK

Φij · dA =
∑

{k∈N: akij∈eK}

ñkij · neK
∫
eK

φkij dA =
∑

{k∈N: akij∈eK}

ñkij · neK
|eK |∣∣êK̂∣∣

∫
êK̂

φ̂kij dA ,

where neK denotes the normal to the face eK and φ̂ij = φij ◦ FK the reference function.
Because of assumption (4.2.4) the scalar product ñkij · neK is bounded from below, and
it follows ∫

eK

Φij · dA ≥ C1 |eK | .

After summation over all faces belonging to Γij it holds∫
Γij

Φij · dA ≥ C1 |Γij | , (4.2.9)

independent of h.
Analogue, for a cell K ∈ T Γ

h , that is part of the support of Φh, it holds

|Φij |m,K ≤ C
∑

{k∈N: akij∈K∩Γij}

∣∣∣nkij∣∣∣ |φij |m,K ≤ C |φij |m,K .

Standard finite element estimates together with Assumption 4.2.3 imply

|Φij |m,Ω ≤ Ch
−m . (4.2.10)

It remains to consider the approximation error of the Scott–Zhang operator on the
surfaces Γij . Using a trace theorem, it follows on a face eK .∣∣∣∣∫

eK

(v −Zhv) · dA

∣∣∣∣ ≤ C3 |eK |
∫
êK̂

|v̂ − Ẑhv| dA

≤ C3 |eK | ‖v̂ − Ẑhv‖1,K̂ .

Standard finite element estimates and the property (4.2.7) of the Scott-Zhang operator
deliver

‖v̂ − Ẑhv‖1,K̂ ≤ C2 |detBK |−
1
2

{
‖v −Zhv‖20,K + h2

K |v −Zhv|
2
1,K

} 1
2

≤ C2 |detBK |−
1
2 hkK |v|k,ωK ,

where ωK is the neighbourhood of K as in Definition 4.2.1. Since the mesh T Γ
h is assumed

to be shape-regular, ωK consists of finite many cells independent of h, such that after
summation and with (4.2.9), it follows

|Nij(v)| ≤ Chk |v|k,Ω .
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Together with (4.2.10), it is deduced that

|Nij(v)| |Φij |m,Ω ≤ Ch
k−m |v|k,Ω ,

and thus

|v −Πhv|m,Ω ≤ Ch
k−m |v|k,Ω ,

which completes the proof of the first part of the lemma.

The second part of the lemma is deduced by setting m = k = 1 and using

|Πhv|1,Ω ≤ |v −Πhv|1,Ω + |v|1,Ω ,

what finally delivers

|Πhv|1,Ω ≤ (1 + C) |v|1,Ω .

That proves the second part of the lemma and completes the proof.

The following is then a direct consequence of the Fortin lemma and the Boland–
Nicoläıdes theorem. For the pair (X̄h, Q̄h) the following corollary holds.

Corollary 4.2.2. Let
{
T Γ
h

}
h>0

be a family of regular meshes fulfilling the assumptions

above, then the finite element space pair (X̄h, Q̄h) is inf-sup stable.

Proof. This follows directly from the Fortin lemma and Lemma 4.2.3 and Lemma 4.2.4.

Finally, the main result of this section is stated. For the domain-wise Taylor-Hood
finite element space the inf-sup condition holds as follows.

Theorem 4.2.3. Let
{
T Γ
h

}
h>0

be a family of regular meshes fulfilling the assumptions
above, then the finite element space pair (Xh, Qh) is inf-sup stable.

Proof. This follows from Corollary 4.2.2 and Theorem 4.2.2.

Remark 4.2.1. The Corollary 4.2.2 does not prove that the P2/P0 pair is inf-sup stable
in three dimensions, which is not the case. Here, it is required that M̊ij 6= ∅. This is not
fulfilled in the case of P2 in three dimensions, where all nodes are edge nodes. Therefore,
it is not possible to consider each cell as a separate subdomain, which would be required,
in order to prove such a result with the method used above.

Remark 4.2.2. The result of this section may be generalised to non Taylor-Hood ele-
ments. A finite element pair (Xh, Qh) could be inf-sup stable on Ω, provided that it is
inf-sup stable in each subdomain Ωi, and the assumptions are fulfilled. This result may
be shown by setting X̄h = Xh and using the construction above.
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4.3 Time Discretization

Let t0 < t1 < · · · < tN = tb be a partition of the time interval [t0, tb]. The following
notation is used: For a time dependent function f = f(x, t), the value at time t = tn is
denoted with fn(·) = f(·, tn), for n = 0, . . . , N . A similar notation is used for the time
dependent domains, but with an upper script, Ωn = Ω(tn), n = 0, . . . , N . The finite
element function spaces above, also get an upper script, e.g. Vns = Vs(t). For the forms
defined on Ωn, an integer subscript n for the time slice tn is used, to indicate the time
at which the form is evaluated, e.g. an = atn .

A function fn : Ωn → R is defined on the domain Ωn. However, in the ALE context
a function fn on domain Ωn can be transformed to a function gm : Ωm → R on the
domain Ωm, via

xn = Atn(A−1
tm (xm)) ,

such that

gm(xm) = fn(Atn(A−1
tm (xm)))

is a function on the domain Ωm. In the following, let Anm be an operator transferring
the values of a function fn on the domain Ωn to a domain Ωm, via

gm(x) = (Anmfn)(x) := fn(Atn(A−1
tm (x))) , x ∈ Ωm .

In this way, a function defined on a domain Ωn can be evaluated on a domain Ωm,
and thus, can be used in the forms defined on Ωm. In order to shorten the notation,
the transfer operator is skipped, whenever it is clear on which domain a function is
evaluated, e.g. in integrals ∫

Ωm
fn dV :=

∫
Ωm
Anmfn dV ,

or in linear forms

an(fn, gm) := an(fn,Amn gm) .

Semi-Implicit Euler Scheme

With τn = tn+1 − tn the time step length of the n-th time step will be denoted. The
following time discretizations are introduced. One possibility is to approximate the ALE
derivative ∂wt f by a semi-implicit Euler type approximation

An+1
n (∂wt f)n+1 ≈

An+1
n fn+1 − fn

τn
, (4.3.1)

which leads to the following time discretization

(∂wt fn+1, g)n ≈ τ
−1
n

(
An+1
n fn+1 − fn, g

)
n

= τ−1
n (fn+1 − fn, g)n .
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The integration domain is the old domain at time tn, whereas the derivative is taken at
time tn+1, hence the name semi-implicit.

Another possibility is to use a fully-implicit Euler approximation as follows

(∂wt f)n+1 ≈
fn+1 −Ann+1fn

τn
, (4.3.2)

which leads to

(fn+1, g)n+1 ≈ τ
−1
n

(
fn+1 −Ann+1fn, g

)
n+1

= τ−1
n (fn+1 − fn, g)n+1 .

Now, the integration domain is the new domain at time tn+1.
Note that for the fully coupled problem, the new integration domain is a priori

unknown at time tn+1. Hence, the fully-implicit choice is impractical and leads to a
highly nonlinear problem. For problems where the domain evolution is given, the fully-
implicit Euler discretization is applicable.

Applying the semi-implicit Euler time discretization to the fully coupled problem,
leads to the following semi-implicit Euler discretization:

Problem 4.3.1. Given Ωn, un, cn and γn, find (un+1,wn+1, pn+1, cn+1, γn+1) ∈ Vn+1
s ×

Vn+1
s ×Qn+1

s−1 × Bn+1
s × Sn+1

s , such that with bn+1 := un+1 −wn+1 it holds

(% (un+1 − un) ,v)n + τn (aun(bn+1; un+1,v)− bn(v, pn+1)) = τnf
u
n (γn+1,v) , (4.3.3a)

bn(un+1, q) = 0 , (4.3.3b)

(cn+1 − cn, φ)n + τna
c
n(bn+1; cn+1, φ) = τnf

c
n(cn+1, γn+1, φ) ,

(4.3.3c)

〈γn+1 − γn, ξ〉n + τna
Γ
n(bn+1,wn+1, γn+1, ξ) = τnf

Γ
n (cn+1, γn+1, ξ) ,

(4.3.3d)

for all (v, q, φ, ξ) ∈ Vns ×Qn
s−1 × Bns × Sns .

The equations (4.3.3) result in a nonlinear monolithic system. This system can be
solved iteratively. Another approach is to decouple parts of the problem, and solve
the subproblems separately. Breaking the fully coupled problem into less complex sub
problems results in a simpler scheme, in terms of implementation and amount of work
needed to solve the algebraic systems.

Decoupling the Navier-Stokes part from the convection–diffusion allows to update the
mesh after the Navier-Stokes stage, and use the new mesh in the convection–diffusion
stage. It is then possible to use a fully-implicit Euler time discretization for the convec-
tion diffusion equations, since the domain is given. Further, the decoupling of the full
problem into a flow stage and a surfactant stage, makes it possible to use existing im-
plementations of Navier-Stokes solvers and convection–diffusion solvers, which are quite
common.

The Navier-Stokes part can be decoupled from the convection–diffusion part, by
taking the right hand side fun in (4.3.3a) explicit regarding the surface surfactant. The
decoupled nonlinear Navier-Stokes stage is then solved with a Picard type iteration, as
follows.
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Problem 4.3.2. Given Ωn, u0
n+1 := un, w0

n+1 := wn, and γn, find (uin+1,w
i
n+1, p

i
n+1) ∈

Vn+1
s × Vn+1

s ×Qn+1
s−1 , such that with bi−1

n+1 := ui−1
n+1 −wi−1

n+1 it holds(
%
(
uin+1 − un

)
,v
)
n

+ τna
u
n(bi−1

n+1; uin+1,v)− τnbn(v, pin+1) = τnf
u
n (γn,v) ,

bn(uin+1, q) = 0 ,

for all (v, q) ∈ Vns ×Qn
s−1.

The convection–diffusion stage is discretized with the fully-implicit Euler step (4.3.2).
The nonlinear system is linearized by a staggered iteration, since the right hand side f cn
and fΓ

n are linear in each argument. Taking the bulk surfactant concentration explicit in
the surface equation (4.3.3d), while taking the surface surfactant concentration explicit
in the bulk equation (4.3.3c), leads to the following nonlinear iteration.

Problem 4.3.3. Given Ωn+1, c0
n+1 := cn, γ0

n+1 := γn, un+1, and wn+1, find (γin+1, c
i
n+1) ∈

Sn+1
s × Bn+1

s , such that with bn+1 := un+1 −wn+1 it holds〈
γin+1 − γn, ξ

〉
n+1

+ τna
Γ
n+1(bn+1,wn+1; γin+1, ξ) = τnf

Γ
n+1(ci−1

n+1, γ
i
n+1, ξ) , (4.3.5a)(

cin+1 − cn, φ
)
n+1

+ τna
c
n+1(bn+1; cin+1, φ) = τnf

c
n+1(cin+1, γ

i
n+1, φ) , (4.3.5b)

for all (ξ, φ) ∈ Sn+1
s × Bn+1

s .

Note, that the equations (4.3.3) and (4.3.4) have to be augmented by suitable equa-
tions for the domain velocity, like (4.1.3).

Crank-Nicolson and θ-Scheme

The θ-scheme is a convex combination of a forward and a backward Euler step. On a
fixed domain it reads,

θf ′n+1 + (1− θ)f ′n ≈
fn+1 − fn

τn
. (4.3.6)

for a parameters θ ∈ [0, 1]. The Crank-Nicolson scheme is obtained for θ = 1
2 .

As in the implicit Euler scheme with moving domains, the terms can be evaluated
either on the new or old domain. The evaluation of equation (4.3.6) on the old domain
Ωn leads to

θAn+1
n (∂wt f)n+1 + (1− θ)(∂wt f)n ≈

An+1
n fn+1 − fn

τn
. (4.3.7)

The evaluation of equation (4.3.6) using the new domain Ωn+1 gives

θ(∂wt f)n+1 + (1− θ)Ann+1(∂wt f)n ≈
fn+1 −Ann+1fn

τn
. (4.3.8)

A monolithic system could be formulated, using the semi-implicit version (4.3.7).
However, the decoupling of the Navier-Stokes equations and the convection–diffusion
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equations should also be used in the θ-scheme. By using the same decoupling strategies
as in the Euler scheme, the following scheme is obtained.

The Navier-Stokes stage is obtained by using the semi-implicit θ-scheme (4.3.7) and
taking the surface surfactant concentration γn explicit. The resulting nonlinear Navier-
Stokes equation are solved by a Picard type iteration as follows.

Problem 4.3.4. Given Ωn, u0
n+1 := un, w0

n+1 := wn and γn, find (uin+1,w
i
n+1, p

i
n+1) ∈

Vn+1
s × Vn+1

s ×Qn+1
s−1 , such that with bi−1

n+1 := ui−1
n+1 −wi−1

n+1 it holds(
%(uin+1 − un),v

)
n

+τn
[
θaun(bi−1

n+1; uin+1,v)− bn(v, pn+1)
]

= τn [fun (γn,v)− (1− θ)aun(bn; un,v)] ,
(4.3.9a)

bn(uin+1, q) = 0 , (4.3.9b)

for all (v, q) ∈ Vns ×Qn
s .

After the Navier-Stokes stage the mesh is updated. The convection–diffusion stage is
then done on the new domain Ωn+1. Again, a staggered iteration is applied to linearize
the nonlinear systems, as follows.

Problem 4.3.5. Given Ωn+1, c0
n+1 := cn, γ0

n+1 := γn, un+1, and wn+1, find (γin+1, c
i
n+1) ∈

Sn+1
s × Bn+1

s , such that with bn+1 := un+1 −wn+1 it holds〈
γin+1 − γn, ξ

〉
n+1

+ θτn
[
aΓ
n+1(bn+1,wn+1; γin+1, ξ)− fΓ

n+1(ci−1
n+1, γ

i
n+1, ξ)

]
=(1− θ)τn

[
fΓ
n+1(cn, γn, ξ)− aΓ

n+1(bn+1,wn+1; γn, ξ)
]
,

(4.3.10a)

(
cin+1 − cn, φ

)
n+1

+ θτn
[
acn+1(bn+1; cin+1, φ)− f cn+1(cin+1, γ

i
n+1, φ)

]
=(1− θ)τn

[
f cn+1(cn, γn, φ)− acn+1(bn+1, cn, φ)

]
,

(4.3.10b)

for all (ξ, φ) ∈ Sns × Bns .

Of course, the Navier-Stokes stage has to be completed with equations for the mesh
updated, as already stated before.

Fractional Step Θ-Scheme

The fractional step Θ-scheme combines three θ-steps, executed sequentially. A time
step is divided into three substeps of different size. In each substep, the θ-scheme is
applied, resulting in a A-stable scheme of second order (for fixed domains), provided the
parameters for each θ-step are chosen properly.

For the fractional step Θ-scheme, each time interval [tn, tn+1] is divided into three
subintervals [tn, tn+Θ], [tn+Θ, tn+(1−Θ)], and [tn+(1−Θ), tn+1]. The subintervals have the
length of Θτn, (1−2Θ)τn, and Θτn, respectively. In each substep, a θ-scheme is applied,
where the parameter θ selected for each substep as follows. For the first substep it is
set θ = α, for the second substep it is set θ = 1 − α, and for the third substep it is set
θ = α, with an α ∈ (0, 1).
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The fractional step Θ-scheme is of second order if Θ is chosen as Θ = 1−
√

2
2 . Further,

the fractional step Θ-scheme is strongly A-stable if α ∈ (1
2 , 1), see [33, 87, 88].

The fractional step Θ-scheme, together with the decoupling techniques above, leads
to the following scheme.

Problem 4.3.6. Let Θ = 1 −
√

2
2 , Θ′ = 1 − Θ, Θ̃ = 1 − 2Θ, θ ∈ (1

2 , 1) and θ′ = 1 − θ.
The three substeps of the fractional step Θ-scheme read:

First substep: Navier-Stokes stage: Given Ωn, u0
n+Θ := un, w0

n+Θ := wn and γn,

find (uin+Θ,w
i
n+Θ, p

i
n+Θ) ∈ Vn+Θ

s ×Vn+Θ
s ×Qn+Θ

s−1 , such that with bi−1
n+Θ := ui−1

n+Θ−wi−1
n+Θ

it holds(
%
(
uin+Θ − un

)
,v
)
n

+ Θτn
[
θaun+Θ(bi−1

n+Θ; uin+Θ,v)− bn(v, pn+Θ)
]

= Θτn
[
fun (γn,v)− θ′aun(bi−1

n+Θ; un,v)
]
,

(4.3.11a)

bn(uin+Θ, q) = 0 , (4.3.11b)

for all (v, q) ∈ Vns ×Qn
s−1.

Convection–diffusion stage: Given Ωn+Θ, c0
n+Θ := cn, γ0

n+Θ := γn, un+Θ, and wn+Θ,
find (γin+Θ, c

i
n+Θ) ∈ Sn+Θ

s × Bn+Θ
s , such that with bn+Θ := un+Θ −wn+Θ it holds

〈
γin+Θ, ξ

〉
n+Θ

+ θΘτn
[
aΓ
n+Θ(bn+Θ,wn+Θ; γin+Θ, ξ)− fΓ

n+Θ(ci−1
n+Θ, γ

i
n+Θ, ξ)

]
= 〈γn, ξ〉n+Θ + θ′Θτn

[
fΓ
n+Θ(cn, γn, ξ)− aΓ

n+Θ(bn+Θ,wn+Θ; γn, ξ)
]
,

(4.3.12a)

(
cin+Θ, φ

)
n+Θ

+ θΘτn
[
acn+Θ(bn+Θ; cin+Θ, φ)− f cn+Θ(cin+Θ, γ

i
n+Θ, φ)

]
= (cn, φ)n+Θ + θ′Θτn

[
f cn+Θ(cn, γn, φ)− acn+Θ(bn+Θ, cn, φ)

]
,

(4.3.12b)

for all (ξ, φ) ∈ Sn+Θ
s × Bn+Θ

s .

Second step: Navier-Stokes stage: Given Ωn+Θ, u0
n+Θ′ := un+Θ, w0

n+Θ′ := wn+Θ

and γn+Θ, find (uin+Θ′ ,w
i
n+Θ′ , p

i
n+Θ′) ∈ Vn+Θ′

s ×Vn+Θ′
s ×Qn+Θ′

s−1 , such that with bi−1
n+Θ′ :=

ui−1
n+Θ′ −wi−1

n+Θ′ it holds

(
%
(
uin+Θ′ − un+Θ

)
,v
)
n+Θ

+ Θ̃τn
[
θ′aun+Θ(bi−1

n+Θ′ ; u
i
n+Θ′ ,v)− bn+Θ(v, pn+Θ′)

]
= Θ̃τn

[
fun (γn+Θ,v)− θaun+Θ(bi−1

n+Θ′ ; un+Θ,v)
]
,

(4.3.13a)

bn+Θ(uin+Θ′ , q) = 0 , (4.3.13b)

for all (v, q) ∈ Vn+Θ
s ×Qn+Θ

s−1 .

Convection–diffusion stage: Given Ωn+Θ′, c0
n+Θ′ := cn+Θ, γ0

n+Θ′ := γn+Θ, un+Θ′,

and wn+Θ′, find (γin+Θ′ , c
i
n+Θ′) ∈ Sn+Θ′

s ×Bn+Θ′
s , such that with bn+Θ′ := un+Θ′−wn+Θ′
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it holds〈
γin+Θ′ , ξ

〉
n+Θ′

+ θ′Θ̃τn
[
aΓ
n+Θ′(bn+Θ′ ,wn+Θ′ ; γ

i
n+Θ′ , ξ)− fΓ

n+Θ′(c
i−1
n+Θ′ , γ

i
n+Θ′ , ξ)

]
= 〈γn+Θ, ξ〉n+Θ′ + θΘ̃τn

[
fΓ
n+Θ′(cn+Θ, γn+Θ, ξ)− aΓ

n+Θ′(bn+Θ′ ,wn+Θ′ ; γn+Θ, ξ)
]
,

(4.3.14a)

(
cin+Θ′ , φ

)
n+Θ′

+ θ′Θ̃τn
[
acn+Θ′(bn+Θ′ ; c

i
n+Θ′ , φ)− f cn+Θ′(c

i
n+Θ′ , γ

i
n+Θ′ , φ)

]
= (cn+Θ, φ)n+Θ′ + θΘ̃τn

[
f cn+Θ′(cn+Θ, γn+Θ, φ)− acn+Θ′(bn+Θ′ , cn+Θ, φ)

]
,

(4.3.14b)

for all (ξ, φ) ∈ Sn+Θ′
s × Bn+Θ′

s .

Third step: Navier-Stokes stage: Given Ωn+Θ′, u0
n+1 := un+Θ′, w0

n+1 := wn+Θ′

and γn+Θ′, find (uin+1,w
i
n+1, p

i
n+1) ∈ Vn+1

s × Vn+1
s × Qn+1

s−1 , such that with bi−1
n+1 :=

ui−1
n+1 −wi−1

n+1 it holds(
%uin+1 − un+Θ′ ,v

)
n+Θ′

+ Θτn
[
θaun+Θ′(b

i−1
n+1; uin+1,v)− bn+Θ′(v, pn+1)

]
= Θτn

[
fun+Θ′(γn+Θ′ ,v)− θ′aun+Θ′(b

i−1
n+1; un+Θ′),v)

]
,

(4.3.15a)

bn+Θ′(u
i
n+1, q) = 0 , (4.3.15b)

for all (v, q) ∈ Vn+Θ′
s ×Qn+Θ′

s−1 .

Convection–diffusion step: Given Ωn+1, c0
n+1 := cn+Θ′, γ

0
n+1 := γn+Θ′, un+1, and

wn+1, find (γin+1, c
i
n+1) ∈ Sn+1

s × Bn+1
s , such that with bn+1 := un+1 −wn+1 it holds〈

γin+1, ξ
〉
n+1

+ θΘτn
[
aΓ
n+1(bn+1,wn+1; γin+1, ξ)− fΓ

n+1(ci−1
n+1, γ

i
n+1, ξ)

]
= 〈γn+Θ′ , ξ〉n+1 + θ′Θτn

[
fΓ
n+1(cn+Θ′ , γn+Θ′ , ξ)− aΓ

n+1(bn+1,wn+1; γn+Θ′ , ξ)
]
,

(4.3.16a)(
cin+1, φ

)
n+1

+ θΘτn
[
acn+1(bn+1; cin+1, φ)− f cn+1(cin+1, γ

i
n+1, φ)

]
= (cn+Θ′ , φ)n+1 + θ′Θτn

[
f cn+1(cn+Θ′ , γn+Θ′ , φ)− acn+1(bn+1, cn+Θ′ , φ)

]
,

(4.3.16b)

for all (ξ, φ) ∈ Sn+1
s × Bn+1

s .

Also for the fractional step Θ-scheme, the Navier-Stokes stages have to be completed
with equations for the mesh updated.

The three different time discretizations, the semi-implicit Euler scheme, the Crank-
Nicolson scheme, and the fractional step Θ-scheme, were compared in several numerical
tests. The fractional step Θ-scheme allows a significant larger time step size compared
to the semi-implicit Euler and Crank-Nicolson scheme. But this is compensated by the
higher amount of computational work needed for the fractional step Θ-scheme. The
Crank-Nicolson scheme shows less advantage over the semi-implicit Euler scheme. The
advantage regarding time step size is less pronounced. The Crank-Nicolson scheme also
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needs a little more computational work, than the Euler scheme, since more terms have
to be assembled.

The fractional step Θ-scheme and Crank-Nicolson scheme also show less numerical
dissipation than the Euler scheme, using the same time step size. However, due to less
computational work needed for the Euler scheme, it is always possible to chose a smaller
time step size. Overall, it was mostly sufficient to use the semi-implicit Euler scheme
compared to the other two. This might be a hint, that not all properties of the Crank-
Nicolson and fractional step Θ-scheme transfer from the fixed grid setting to the ALE
setting. This could be due to the explicit handling of the domain in the Navier-Stokes
stages.

4.4 Discrete Surface Evolution

The evolution and the quality of the surface mesh is of particular importance for numer-
ical methods solving interface and free surface problems. Often, the important physical
phenomena happen at the interface, which lead to a higher dynamic in the flow structure
near the interface. The quality of the mesh at the interface is crucial for an accurate
capturing of those phenomena.

In the classical methods, the nodes of the interface are moved according to the
kinematic interface condition w · nΓ = u · nΓ. An Euler stepping scheme is used to
update the position of the mesh nodes. In the following, let xln+1 and xln be the position
of the l-th node of the interface Γh, at time tn+1 and tn, respectively. Further, let wl

n+1

be the velocity of the interface node, and let uln+1 be the velocity of the fluid at the l-th
node, at time tn+1. Then, the node velocity is approximated by

wl
n+1 =

xln+1 − xln
τn

, (4.4.1)

and a forward Euler discretization of the dynamic interface condition (2.2.7) leads to

xln+1 = xln + τnw
l
n+1 or xln+1 = xln + τn

(
wl
n+1 · nln

)
nln .

Here, nln is the normal at the mesh node at time tn. This normal has to be defined, since
the discrete surface is not a smooth manifold, and the nodes could be singular points.
Typically, the normal is defined in the nodes as the average value of the normals of the
adjacent cells of the interface mesh. The average could also be weighted by the cell area.
Or, if the discrete interface is an approximation of a given smooth manifold, nln can be
taken from there.

The classical methods are easy and fast to implement. The interface mesh velocity
is either given, or the result of Navier-Stokes stage, and the displacement of the nodes is
calculated explicit. However, the classical methods suffer from problems arising from the
lack of control over the distribution of the nodes. The version with wl

n+1 = u(xln+1, tn+1)
describes a Lagrangian interface, hence it suffers from the problems that are typical for
full Lagrangian methods. A high dynamic flow structure leads to mesh distortions that
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become very fast very large. As a result, the quality of the numerical simulation suffers.
In some situations, the version with wl

n+1 =
(
u(xln+1, tn+1) · nln

)
nln can reduce some of

the distortions. But mostly, it is a priori not clear which version leads to a better result.
In fact, in some situations none of the two versions of the classical method can prevent
mesh distortion. For example, in a rising bubble flow, each version will lead to a drifting
of nodes in the flow direction. That in turn leads to a coarsening of the mesh at the top,
and an accumulation of nodes at the rear of the bubble. This behaviour is introduced
through the special vortex type flow profile of such problems (raising bubbles). Such flow
profiles result in a constant creation of new surface at the top of the bubble. However,
the classical methods are good to use, if the scenario involves only small oscillations, like
in case of oscillating bubbles.

4.4.1 Weak Surface Evolution

A discretization of the weak formulation of the surface evolution, i.e. Problem 3.3.1,
leads to a numerical scheme with advantageous properties regarding the stability and
node distribution. This was shown in [17], where a particular discretization with lumped
bilinear forms was studied.

The mesh velocity in (3.3.2) is substituted with the approximation (4.4.1). The
Laplace-Beltrami identity is used semi-implicit, i.e. the integration domain is the old
interface Γnh, but the position and the curvature are that of the new interface Γn+1

h and
are the unknowns. This leads to the following discrete version of Problem 3.3.1.

Problem 4.4.1. Given Γnh and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such that

〈xn+1,nΓψ〉n = 〈xn + τnu,nΓψ〉n , (4.4.2a)

〈Hn+1nΓ, η〉n − 〈∇Γxn+1,∇Γη〉n = 0 , (4.4.2b)

for all (η, ψ) ∈ (Sns )d × Sns .

In this work, the polynomial order s is either one or two, although higher order
approximations are possible. But, for the following considerations only isoparametric
approximation up to order two are taken into account.

The formulation in Problem 4.4.1 is given in terms of the absolute position xn+1 of
the interface. Of course, the problem can be formulated in terms of the mesh velocity
wn+1, too. Substituting (4.4.1) and after rearranging the terms, it is obtained:

Problem 4.4.2. Given Γnh, xn and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such that

〈wn+1,nΓψ〉n = 〈u,nΓψ〉n , (4.4.3a)

〈Hn+1nΓ, η〉n − τn 〈∇Γwn+1,∇Γη〉n = −〈PΓ,∇Γη〉n , (4.4.3b)

for all (η, ψ) ∈ (Sns )d × Sns .
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Figure 4.1: Numbering of faces and nodes for the piecewise linear (dashed) and piecewise
quadratic (solid) surface mesh.

4.4.2 Weak Surface Evolution: Lumped with P1 and P2 Elements

For the following variations of the Problems 4.4.1 and 4.4.2, the dimension d is restricted
to d = 2, i.e. surface and interface of two dimensional domains. However, the methods
as such are applicable for case d = 3, too.

Next, a version of (4.4.2) using lumped bilinear forms is introduced, and the lumped
bilinear forms 〈u,v〉hn for s = 1, 2 are introduced. Let the interface mesh SΓ

h consist of
the faces Fi ∈ SΓ

h , i = 1, . . . , N . For s = 1, the piecewise linear case, each face Fi is the
convex combination of the nodes xi and xi+1. Compare with Figure 4.1.

For the piecewise linear case, the lumped bilinear form reads

〈u,v〉h,1n :=
1

2

N∑
i=1

|Fi|
(
u(xi) · v(xi) + u(xi+1) · v(xi+1)

)
. (4.4.4)

This is equivalent to applying the trapezoidal integration rule to the standard bilinear
form, assuming a piecewise linear interface mesh.

In case of the piecewise quadratic isoparametric interface mesh, the face Fi is the
quadratic curve through the nodes xi, xi+ 1

2
, and xi+1, as shown in Figure 4.1. The

lumped bilinear form can be generated by applying the Simpson integration rule. Then,
the lumped bilinear form for the quadratic isoparametric case reads

〈u,v〉h,2n :=

N∑
i=1

2∑
k=0

ωk

{
u(xi+

k
2 ) · v(xi+

k
2 )
∣∣∣detDFFi(x

i+ k
2 )
∣∣∣} , (4.4.5)

where ωk = 1
6 , for k = 0, 2 and ωk = 4

6 for k = 1.
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The problem for the weak surface evolution formulated with the lumped bilinear
forms is then as follows.

Problem 4.4.3. For s = 1, 2 and given Γnh and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such
that

〈xn+1,nΓψ〉h,sn = 〈xn + τnu,nΓψ〉h,sn , (4.4.6a)

〈Hn+1nΓ, η〉h,sn − 〈∇Γxn+1,∇Γη〉n = 0 , (4.4.6b)

for all (η, ψ) ∈ (Sns )d × Sns .

Besides having diagonal matrices for the lumped bilinear forms, the lumped version
for the linear case (s = 1) has a remarkable property. As shown in [17], the solution of
the semi-discrete (continuous in time) lumped piecewise linear formulation results in a
equi-distribution of the mesh points. Hence, all mesh nodes attain the same euclidean
distance from each other. For the fully discrete scheme, the equi-distribution is reach
after some iterations in time. As shown later in Chapter 5, this property for s = 1 seems
to be transferred to the quadratic isoparametric case. But unfortunately, the number
of iterations needed to reach equi-distribution is much larger compared to the piecewise
linear case. In fact, the number of iterations needed is so large that the method becomes
unpractical, in terms of the intended equi-distribution of nodes (compare Chapter 5).

For s = 2, the method needs to much time to redistribute the nodes in tangential
direction, and cannot keep up with the interface movement, if the dynamic of the flow
field is large. In this case, the interface mesh loses its quality easily, like in the classical
methods. This might be a result of a non-unique interface representation given the
nodes in the quadratic isoparametric case. Contrary to the piecewise linear case, two
different sets of nodes can represent the same interface, since the isoparametric node
can be moved around tangential without changing the shape. This is not the case for
piecewise linear interface, assuming the grid cells are not co-planar.

Although, there are no theoretical results, numerical experiments show (Chapter 5)
that the non-lumped version has a preferable property, too. The nodes tend to accumu-
late in regions of high curvature. This is a very useful property, since a high curvature
means high details in the surface shape. In order to give an accurate representation
of the shape, a higher number of nodes is needed in such regions. As in the lumped
case, while the piecewise linear method redistributes the nodes very fast, the piecewise
isoparametric quadratic scheme is much slower in redistributing the nodes in tangential
direction. That makes it impractical also in the non-lumped case.

In order to transfer the good properties of the piecewise linear scheme to the piecewise
quadratic scheme, a trick is used, which is described in the next subsection.

4.4.3 P1-iso-P2

In order to use a weak surface evolution scheme, with the properties of the linear case,
also for the piecewise quadratic case, the piecewise quadratic interface is substituted
by a finer piecewise linear mesh. The finer piecewise linear mesh consists of the same
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nodes as the quadratic interface, including the isoparametric points. The polynomials
on the piecewise quadratic are substituted by nodal interpolations with piecewise linear
functions on the finer mesh.

xi

xi+
1
2

xi+1

Ki

K−i K+
i

Figure 4.2: Partition of an isoparametric mesh cell.

Each cell Ki ∈ SΓ
h is substituted with the two cells K−i and K+

i , which are the

straight lines connecting the nodes. K−i is the convex combination of xi and xi+
1
2 as

follows

K−i = {x ∈ R2 : x = sxi + (1− s)xi+
1
2 , s ∈ [0, 1]} ,

while K+
i the convex combination of xi+

1
2 and xi+1

K+
i = {x ∈ R2 : x = sxi+

1
2 + (1− s)xi+1, s ∈ [0, 1]} .

In application, no additional grid is created, instead the bilinear forms are changed
such that the corresponding matrices are generated. Let s̄−i : [0, 1] → K−i be the
parametrization of K−i via

x(s) = sxi + (1− s)xi+
1
2 , s ∈ [0, 1] ,

and s−i (x) its inverse. Analogue, let s̄+
i : [0, 1]→ K+

i be the parametrization of K+
i via

x(s) = sxi+
1
2 + (1− s)xi+1 , s ∈ [0, 1] ,

and s+
i (x) its inverse.

With this definitions, let Π−1 : S2(Ki) → S1(K−i ) be a interpolation operator given
as

(Π−1 φ)(x) = φ(ai)s
−
i (x) + φ(ai+ 1

2
)(1− s−i (x)) ,
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and analogue the interpolation operator Π+
1 : S2(Ki)→ S1(K+

i ) given as

(Π+
1 φ)(x) = φ(ai+ 1

2
)s+
i (x) + φ(ai+1)(1− s+

i (x)) .

The scalar product for the P1-iso-P2 non-lumped scheme is given as

〈φ, ψ〉isoKi :=
〈
Π−i φ,Π

−
i ψ
〉
K−i

+
〈
Π+
i φ,Π

+
i ψ
〉
K+
i
,

and

〈φ, ψ〉ison :=

N∑
i=1

〈φ, ψ〉isoKi .

Similar the lumped version of the bilinear form is defined as follows,

〈φ, ψ〉h,isoKi
:=
〈
Π−i φ,Π

−
i ψ
〉h,1
K−i

+
〈
Π+
i φ,Π

+
i ψ
〉h,1
K+
i
,

and

〈φ, ψ〉h,ison :=
N∑
i=1

〈φ, ψ〉h,isoKi
.

The problem of the weak surface evolution with the P1-iso-P2 bilinear forms is then:

Problem 4.4.4. Given Γnh and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such that

〈xn+1,nΓψ〉ison = 〈xn + τnu,nΓψ〉ison ,

〈Hn+1nΓ, η〉ison − 〈∇Γxn+1,∇Γη〉n = 0 ,

for all (η, ψ) ∈ (Sns )d × Sns .

With the lumped bilinear form it reads as follows:

Problem 4.4.5. Given Γnh and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such that

〈xn+1,nΓψ〉h,ison = 〈xn + τnu,nΓψ〉h,ison ,

〈Hn+1nΓ, η〉h,ison − 〈∇Γxn+1,∇Γη〉n = 0 ,

for all (η, ψ) ∈ (Sns )d × Sns .

4.4.4 Combined Scheme

Having two schemes, one that results in equi-distributed mesh nodes and a second sim-
ilar scheme resulting in a curvature dependent mesh node distribution, the idea is to
combine both schemes in order to get a parameter determining the final node distri-
bution. Taking the convex combination of both schemes, introduces such a parameter.
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Then, the parameter can be chosen, such that it is adjustable whether a more uniform
node distribution or a more curvature dependent distribution is preferred.

In order to simplify the notation, analogue to the lumped bilinear forms the following
notation is allowed. For s = 1, 2 it is set

〈η, ψ〉sn := 〈η, ψ〉n .

With this abbreviation the combined scheme for the three versions, P1, P2, and
P1-iso-P2 reads.

Problem 4.4.6. Given λ ∈ [0, 1], Γnh and u, find (xn+1,Hn+1) ∈ (Sns )d × Sns such that

(1− λ) 〈xn+1,nΓψ〉h,#n + λ 〈xn+1,nΓψ〉#n = 〈xn + τnu,nΓψ〉n ,

(1− λ) 〈Hn+1nΓ, η〉h,#n + λ 〈Hn+1nΓ, η〉#n = 〈∇Γxn+1,∇Γη〉n ,

for all (η, ψ) ∈ (Sns )d×Sns . Where, with # ∈ {1, 2, iso}, 〈·, ·〉#n and 〈·, ·〉h,#n denotes either
the piecewise linear, piecewise quadratic or the P1-iso-P2 forms.



Chapter 5

Results

The purpose of Chapter 5 is to validate the ALE finite element scheme for two-phase
flows with surfactants, that was developed in the last chapters. Numerical computations
for different test scenarios are done.

The first example is a capillary two-phase flow simulating a Taylor bubble train
flow. The surfactant is neglected and the pure hydrodynamics of such flows are studied.
The numerical computations of the scheme from this work are compared to the results
obtained by other numerical schemes. Two dimensional and three dimensional rotational
symmetric computations are done.

The second example is a two-phase flow with soluble surfactants, simulating a Tay-
lor bubble under the influence of surfactants. The results are also compared to other
numerical schemes. Further, the effect of the surfactant on the Taylor bubble is studied.
In this example, the computations are restricted to the two dimensional case.

The third example is an oscillating drop in three dimensions under the influence
of a soluble and insoluble surfactant. The computations are compared to analytical
approximations of such flows, found in the literature. The frequencies and damping
rates, as well as the amplitudes of the oscillating drop is compared with this theoretical
results.

The last, and fourth example, considers the schemes for the surface evolution. Dif-
ferent methods are compared, and the properties regarding the node distribution are
shown. The behaviour of the lumped and non-lumped schemes, as well as the P1 and P2

scheme is demonstrated on a selected example using the mean curvature flow.

All programs (of course, with the exception of those with which the scheme is com-
pared in the first two examples) are written by the author of this work, using the program
package MooNMD [77]. MooNMD is a program package written in C++, providing a
framework for the development of finite element codes. It was developed on the Otto-
von-Guericke Univerity Magdeburg, with the help of the author of this work.

The program codes solving two dimensional problems (and the rotational symmetric
ones) are serial codes. Two dimensional computations require fewer amount of computa-
tional work, and serial codes can solve such problems in a reasonable time. However, in
three dimensional computation the amount of computational work increases significant.

83
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Therefore, for the three dimensional problems, a parallel program code was developed.
The parallel program code employs the MPI standard [66, 65]. The parallelization was
achieved employing the domain decomposition technique. Thus, the parallel code is
able to use an (theoretical) arbitrary amount of processors in order to speed up the
computations.

5.1 Taylor Flow Comparison without Surfactant

In the following subsection, a numerical simulation of a Taylor bubble train flow is done.
The results are compared with the numerical simulations and experimental results of
groups within the DFG Priority Program SPP 1506. Also, the results are compared to
analytical approximations found in the literature. The content of this subsection was
already published in [6].

Taylor bubbles are long bubbles of gas in capillary tube filled with a liquid. Typically,
Taylor bubbles have a bullet shape in flow direction, while a thin film of liquid is forming
between bubble and tube wall. A Taylor flow is the flow of a series of elongated Taylor
bubbles in a narrow channel, where the channel is almost completely filled with bubbles.

Taylor bubbles were originally described by G. Taylor [42]. In his work, he reports
on experiments on the rise of bubbles in nitrobenzene. In channels or tubes with a large
diameter Taylor bubbles may not appear, whereas in tubes of a small diameter they are
very stable [86]. This stability and the distinct shape and flow profile makes the Taylor
bubble an excellent tool for validation and benchmarking tests of numerical schemes.

In a theoretical investigation on a two dimensional Taylor bubble flow, a relation
between the capillary number and the film width between the bubble and the channel
wall was derived in [31]. The Bretherton approximation is valid within an error margin
smaller 5% for capillary numbers Ca ≤ 3 · 10−3 and reads

dFilm = 1.3375 · CaR , (5.1.1)

where R is the tube radius. The capillary number is given as

Ca =
µLU

σ0
,

where µL is the dynamic viscosity of the liquid phase, U is the characteristic velocity of
the Taylor bubble, and σ0 the surface tension coefficient of the liquid-gas interface. The
capillary number is connected to the Weber number We and the Reynolds number ReL.
Let ρL be the density of the liquid phase and let

ReL =
2ρLUR

µL

be the Reynolds number of the liquid, then

We = ReL Ca .
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Later, an approximation for the film width was also done for higher capillary num-
bers. By using a boundary element method and numerical simulations an empiric cor-
relation between film width and capillary number was found [72]. The Halpern approx-
imation is valid for capillary numbers in the range of 0.05 ≤ Ca ≤ 100 and reads

dFilm = 0.417 ·
(
1− exp

(
−1.69 · Ca0.5025

))
R . (5.1.2)

In the following, three different scenarios are considered. A two dimensional Tay-
lor bubble flow, where the Bretherton and Halpern approximations are valid, an axis-
symmetric Taylor bubble flow, which is closer to a real world example, and a case where
an axis-symmetric Taylor bubble flow is compared to data from an experimental setup.

Each scenario is simulated by four different numerical schemes, including the scheme
presented in this work. Two schemes employ the ALE technique. Among these are,
the scheme of this work, and a quite similar scheme implemented in a program package
called Navier [15, 14, 23, 79, 80]. The other two schemes employ both a diffuse interface
model. One diffuse interface model is implemented in the program package called AMDiS
[4, 8, 113], the other diffuse interface scheme is implemented in the program package
called EconDrop [37, 51, 71]. The program package used for the numerical simulations
employing the techniques presented in this work, will be called MooNMD.

In all simulations, the initial bubble shape is given by a fixed shape. The initial
bubble shape is given by two half circles as caps, and straight edges as body connecting
the caps (see Figure 5.1). Given the channel width, the radius of the caps is determined
by the initial film width. For capillary numbers Ca < 0.05 the initial film width is set
according to (5.1.1), for the other capillary numbers equation (5.1.2) is used.
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Figure 5.1: Initial bubble shape (rotated by 90 degrees).

5.1.1 Model

The model solved with numerical scheme MooNMD is a pressure driven channel flow
Problem 3.5.1 and the corresponding rotational symmetric formulation following Chapter
3.5.2. In the two dimensional case, in order to speed up the simulation, the following
changes where included. First, the axis symmetry of the problem was exploited. Only one
half (x ≥ 0) was simulated with the appropriate boundary conditions on the symmetry
axis. Let u = (ux, uy)

T be the two dimensional velocity field and ΓS be the symmetry
axis, which coincides with the y-axis, the boundary conditions read

ux = 0 on ΓS ,

∂xuy = 0 on ΓS .
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The x-component of the velocity has a Dirichlet boundary condition, and the y-component
has a Neumann boundary condition.

Second, the gas phase, which is the inner of the bubble has been neglected. Such
that the problem becomes a free surface problem, and computation of the velocity field
in the bubble was skipped.

The Problem 3.5.1 has been discretized according the methods described in the chap-
ters before. Different time discretization were used, but the differences were minimal.
Here, the results of the semi-implicit Euler time discretization are presented.

The periodic boundary condition is included in the finite element space. This is done
by identifying the mesh nodes on ΓI with the mesh nodes on ΓO. Of course, this requires
a matched surface mesh for ΓI and ΓO.

The prescribed pressure drop δp is adapted in each time step, in order to hold the
centre of mass of the Taylor bubble stationary.

5.1.2 Scenario I: Two Dimensional Flow

Scenario I is the two dimensional case. A two dimensional Taylor flow (Bretherton
problem) is computed by the different schemes and the results are compared. Although
the two dimensional benchmark test is purely numerical, the physical parameters are
chosen such that they are close to an experimental realisable situation (a round capillary
of approximately 1mm diameter filled with air bubbles in glycerol).

Table 5.1: Physical parameters for the numerical benchmark.
ρL 1·103 kg

m3 density of liquid phase
ρG � ρL density of gas phase
µL 1·10−2 Pa s dynamic viscosity of liquid phase
µG � ηL dynamic viscosity of gas phase

σ0 5·10−4 N
m surface tension coefficient

U 1·10−3 m
s characteristic velocity

2R 1·10−3 m characteristic length, width of computational domain,
also called hydraulic diameter

L 1·10−2 m length of computational domain

In Table 5.1 the physical parameters are given. The corresponding dimensionless
numbers are shown in Table 5.2. The capillary number is varied for this benchmark,
and the influence of the capillary number on the Taylor flow is studied. The physical
parameters given in Table 5.1 corresponds to a capillary number of Ca = 2 · 10−2.
Simulations with a capillary number ten times higher, ten times lower and one hundred
times lower were additionally done. A varying capillary number can be viewed as varying
the bubble speed or as a varying surface tension coefficient. The results are compared
with the Bretherton approximation (5.1.1) and the Halpern approximation (5.1.2).

For those schemes that have computed the gas phase, the density ratios of the fluids
are not prescribed, since it is not possible to choose them freely in every method. A
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typical density ration for an air bubble in glycerol is approximately one to thousand.
The density ratio in the simulations are chosen as close as possible.

Table 5.2: Dimensionless quantities for the numerical benchmark.
ReL

ρL V d
ηL

1·10−1 Reynolds no. in liquid phase

ReG
ρG V d
ηG

≈ ReL Reynolds no. in gas phase

Ca ηLV
σ 2·10{−4,−3,−2,−1} capillary no.

We ReLCa 1·10−1Ca Weber no.

In the following a selection of the results are shown.

Film Width

The film width is measured only over a part of the bubble. The minimal distance of
the interface to the tube wall is measured from the part, that is one unit length (2R)
above and below the centre of mass of the bubble. Figure 5.2 shows the film width for
the different capillary numbers. The film width is compared between the different codes
and the approximation of Bretherton (5.1.1) and Halpern (5.1.2).

An excellent agreement of the results of MooNMD to the other schemes and the
predictions by Bretherton and Halpern is seen. The agreement is especially good with
Navier scheme. That is as expected, since the Navier scheme is a sharp interface ALE
scheme, too. It is also seen how the Bretherton approximation loses accuracy for higher
capillary numbers.

Bubble Shape

In Figure 5.3 the shape of the Taylor bubble for the four different schemes are shown.
The results are shown for the capillary number Ca = 2 · 10−2. In order to compare the
shapes, the centre of gravity of each shape is matched in the figure. A good agreement
in the shapes of all schemes is seen, especially in the film. Again the agreement of
MooNMD is especially good with Navier. One code, which employs a diffuse interface
model, shows a slight different shape at the front cap and the rear cap, since the bubble
is a bit shorter.

Figure 5.4 shows a close up of the front and rear cap. The matching of the shapes in
the figure is different from Figure 5.3. The shapes are positioned such that the points at
x = 0 superimpose. A good agreement in the result of MooNMD to the other schemes is
seen. A slight deviation in the rear cap of the shape computed by EconDrop is observed.
Overall, MooNMD generates the same Taylor bubble shapes, as the other schemes.

Velocity Profile

The velocities are compared through the comparison of the velocity profiles along a cut
parallel to the x-axis. The result is shown in Figure 5.5. The y-position of the cut is
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Figure 5.2: Comparison of the film width of a Taylor bubble.

chosen such that the cut is directly at the rear of the bubble. Note, this implies the
y-value might be different for each graph.

The left figure of Figure 5.5 shows the x-component of the velocity along the cut. A
good agreement of the values produced by MooNMD to the other different schemes is
seen. Again, a slight deviation is observed for the diffuse interface scheme EconDrop. It
has to be noticed that, since the bubble is a bit shorter for this scheme, the cut is at a
different y value. The right figure in Figure 5.5 shows the y-component of the velocity
along the cut. As for the x-component, a good agreement is seen among all four schemes.
The deviation to EconDrop is even less pronounced.

5.1.3 Scenario II: 3D Axis-Symmetric Flow

Scenario II is a three dimensional scenario under the assumption of rotational symmetry,
such that the resulting problem can be computed on a two dimensional mesh. The
physical parameters are chosen as in the two dimensional Scenario I. The parameters
are given in Table 5.1, and the dimensionless numbers are given in Table 5.2.

Next, a selection of the results for Scenario II are given.
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Figure 5.3: Comparison of the bubble shapes for Ca = 2 · 10−2.

Pressure Drop

Figure 5.6 shows the final pressure drop δp needed to hold the bubble flow stationary.
The values for the capillary numbers Ca = 2 ·10−4 and Ca = 2 ·10−1 were not computed
by MooNMD. For those values computed, a good agreement is seen for the results of
MooNMD. As before, the match is especially good to the other ALE scheme Navier.

Bubble Shape

The shape of the bubbles for the axis-symmetric case is shown in Figure 5.7. The shape
presented in the figure is for the capillary number Ca = 2 · 10−2. A good agreement in
the shapes from the different schemes is seen. The close up of the cap and rear region
of the bubble is shown in Figure 5.8. A good agreement is observed as well. Note, the
alignment of the shapes in the figure is chosen as in the two dimensional scenario.

Velocity Profile

Figure 5.9 shows the velocity profile along a cut. The cut is chosen as in the two
dimensional scenario. A good agreement is observed for all schemes that have computed
the axis-symmetric case for the capillary number Ca = 2 · 10−2. The deviation observed
for the scheme MooNMD, is due to a coarser grid used by MooNMD. The post process,
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Figure 5.4: Comparison of bubble shapes for Ca = 2 · 10−2: Close up of the front cap
(left) and the rear cap (right) of the bubble.
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Figure 5.5: Comparison of the velocity profile for Ca = 2 · 10−2.

used to evaluate the velocity profile along the cut ignores the quadratic part of the
solution. Although, a coarser grid was used, the agreement is very good.

5.1.4 Scenario III: Experimental Data

Scenario III includes a comparison with a real experimental Taylor flow. For the compar-
ison with experimental data, the bubble shape measured in a radio-graphic projection
was available. Other data, like pressure drop and velocity profile was not provided by
the experimental setup.

The physical parameters are taken from the experimental setup given in [6]. The
parameters are given in Table 5.3. The resulting dimensionless numbers are found in
Table 5.4.

The numerical simulation exploits the rotational symmetry of the Taylor bubble.
The computation is an axis symmetric computation on a two dimensional mesh.
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Figure 5.6: Comparison of pressure drops for Ca = 2 · 10−2.

Bubble Shape

Figure 5.10 shows an overview of the shape of the whole bubble, while Figure 5.11 shows
the close up at the front and the rear of the bubble. The alignment of the shapes in the
figures is as in the scenarios before. While the numerical results are in good accordance,
the bullet shape seems to be less pronounced in the experimental data, i.e. the numerical
results exhibit too low surface tension effects. It remains unclear whether this is due
to some error in the measurement (e.g. by a violation of the assumption of rotational
symmetry, wrong physical parameters, etc.) or to some physical effects not considered in
the models. However, the bubble shape is reproduced well in the numerical simulations.

Again, the results obtain by MooNMD are in good accordance to the other schemes.
The agreement is especially good to the scheme Navier, which is an ALE scheme, too.
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Figure 5.7: Comparison of the bubble shape for Ca = 2 · 10−2.
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Figure 5.8: Comparison of the bubble shape for Ca = 2 · 10−2: Close up at front cap
(left) and rear cap (right) of the bubble.



5.1. TAYLOR FLOW COMPARISON WITHOUT SURFACTANT 93

0.0 0.1 0.2 0.3 0.4 0.5
x (in multiples of hydraulic diameter)

−0.1

0.0

0.1

0.2

0.3

0.4

N
o
n
d
im

e
n
si

o
n
a
l 
v
e
lo

ci
ty

 (
x
)

Navier

MooNMD

AMDiS

0.0 0.1 0.2 0.3 0.4 0.5
x (in multiples of hydraulic diameter)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
n
d
im
e
n
si
o
n
a
l 
v
e
lo
ci
ty
 (
y
)

Navier

MooNMD

AMDiS

Figure 5.9: Comparison of the velocity profiles.

Table 5.3: Physical parameters for Scenario III.
ρL 1.196·103 kg

m3 density of liquid phase, literature data fit
ρG � ρL density of gas phase
µL 29.8·10−3 Pa s dynamic viscosity of liquid phase, literature data fit
µG � ηL dynamic viscosity of gas phase

σ0 66.8·10−3 N
m surface tension coefficient, literature data fit

U 210.2·10−3 m
s bubble velocity, measured in experiment

2R 1.98·10−3 m hydraulic diameter, measured in radiographic projec-
tion

V 20.68·10−9 m3 bubble volume, computed from 2D bubble shape
measured in radiographic projection

L 1·10−2 m length of computational domain

Table 5.4: Dimensionless quantities for Scenario III.
ReL

ρL V d
ηL

1.67379·101 Reynolds no. in liquid phase

ReG
ρG V d
ηG

≈ ReL Reynolds no. in gas phase

Ca ηLV
σ 9.39637·10−2 capillary no.

We ReLCa 1.57275·100 Weber no.
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Figure 5.10: Comparison of the bubble shapes: Complete bubble.
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Figure 5.11: Comparison of the bubble shape: Close up at cap (left) and rear (right) of
the bubble.
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5.2 Taylor Flow Comparison with Surfactants

The Taylor flow comparison of the last subsection is extended to a scenario that includes
surfactants. The effect of a surfactant on the Taylor flow is studied. Similar to the Taylor
flow comparison without surfactants, the results of the scheme presented in this work
are compared to simulation of other groups within the DFG Priority Program SPP 1506.
The results shown here were already published in [5].

As in the Taylor flow comparison from the last subsection, two diffuse interface and
two sharp interface schemes are involved. But unlike before, the other sharp interface
scheme is an Eulerian scheme and does not employ the ALE method. Also, in contrast
to the comparison in the last section, a two dimensional scenario is considered this time
only.

The setup has been changed, in order to include the surfactant. Instead of simulating
a bubble train, a single Taylor bubble in a counter flow scenario is considered now. The
surfactant is supposed to be soluble in the liquid phase only. The bubble is rising due
to gravity. In order to hold the bubble stationary, the rising bubble is countered by a
steady flow. Such that the bubble becomes stationary if both effects cancel each other.

The assumption of periodicity of the flow field is neglected. It is assumed that a
laminar pipe flow of a homogeneous surfactant solution enters the computational domain
from above through ΓI , see Figure 3.1. The surfactant solution is allowed to leave the
computational domain through ΓO. Thus, a Dirichlet boundary condition for the fluid
and the surfactant is assumed at ΓI . Let s : [0, 1] → ΓI be a parametrization of ΓI , a
typical parabolic profile is prescribed for the velocity at ΓI

uΓI := u(t,x(s)) = −4umax(t)s(1− s)ey on ΓI ,

where umax is the maximum inflow velocity. The parameter umax is used to restrict the
vertical movement of the bubble, by changing its value over time according to the bubble
velocity. The boundary condition for the surfactant at ΓI reads

c|ΓI = c0 on ΓI ,

where c0 is the given constant surfactant concentration of the surfactant solution.
On the outflow boundary ΓO a do-nothing (stress free) condition is assumed for the

fluid and for the surfactant as well

S(u, p)n = 0 , ∇c · n = 0 on ΓO .

At the channel wall a no-slip condition is assumed for the fluid, i.e. a homogeneous
Dirichlet condition on ΓW

u = 0 on ΓW .

Since no surfactant can enter the channel wall, the flux of surfactant is obstructed.
Together with the vanishing velocity of the fluid at the channel wall, this leads to a
homogeneous Neumann condition for the surfactant concentration at ΓW ,

∇c · n = 0 on ΓW .
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The parameters chosen for the simulations are similar to that of the last subsection,
augmented with the surfactant related parameters. Due to the wide variety of different
surfactants with different properties, the surfactant related parameters are chosen freely.
The Damköhler and Biot numbers are fixed to Da = Bi = 0.01. The other surfactant
related parameters are varied, in order to see their influence on the Taylor bubble.
The surface elasticity is chosen from E = {0.5, 1.0}, the surfactant concentration of the
surfactant solution is chosen from c0 = {0.02, 0.08}. The surface Peclet number PeΓ and
the bulk Peclet number Pe are assumed to be equal, and are chosen from two different
values, Pe = PeΓ = {1, 10}.

All these values are found empirically in order to have a fast converging and stable
simulation for all participating schemes. The remaining dimensionless parameters are as
in Table 5.2, namely Re = 0.1, We = 2 · 10−3, and Fr = 1 · 10−4.

The diffuse interface schemes are realised in the program package AMDiS and 2PStab,
the sharp interface models are realised in the program packages BGN and MooNMD,
where MooNMD employs the methods presented in this work. Further information of
the other schemes can be found in [5], and will not be specified here.

The initial domain is chosen as in the last section, given in Figure 5.1. The initial
bubble diameter is set to 0.7 units, the initial total bubble length is set to 4.7 units. The
initial fluid is in rest, i.e. u|t=0 = 0 in Ω(0). The initial surfactant concentration in the
bulk is homogeneous and set to c|t=0 = c0. The initial surface surfactant concentration
is set to a constant, which is given according to the equilibrium condition

Da

Bi
=

γ

c (1− γ)
.

At each time step, the vertical bubble speed uny is measured (velocity in y-direction)
through

uny :=

∫
Ωn1

un · ey dV ,

where ey is the unit vector in y-direction. Given the old inflow velocity unmax = umax(tn)
a new inflow velocity un+1

max found through

un+1
max = unmax + uny .

It has to be noted, that this leads to a quasi stationary bubble, since if uny = 0 it follows
un+1

max = unmax.

In the following, the results of this benchmark are presented.

5.2.1 Results

Different benchmark values are considered. Apart from the direct numerical values c, γ
and umax, calculated by the codes, some of them are determined by a post process. Due
to the different nature of the methods, the post process can differ.
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Here, the film width dfilm is defined as the minimal distance between bubble and wall.
For the sharp-interface schemes, dfilm is computed directly from the numeric interface
representation while the diffuse-interface schemes use the zero level contour line of phase
field φ.

The bulk surfactant mass mc and surface surfactant mass mγ is defined as the total
amount of surfactant present in the bulk and on the surface, respectively. In case of
the sharp interface schemes the bulk surfactant exist in Ω2(t) and the surface surfactant
exists on Γ(t). The corresponding masses are calculated as

mc(t) =

∫
Ω2(t)

c dV, mγ(t) =

∫
Γ(t)

γ dV .

In the case of the diffuse-interface schemes, the quantities c and γ are defined in the
whole domain Ω(t) and, thus the masses are calculated as

mc(t) =
1

2

∫
Ω(t)

(1− φ)c dV, mc(t) =

∫
Ω(t)

δc dV.

Having defined the benchmark values, a closer look at the results is taken in the following.

Inflow Velocity

Figure 5.12 shows the evolution over time of the maximum inflow velocity umax for
the simulation parameters (c0,Pe,PeΓ,E) = (0.02, 1, 1, 1), exemplarily. All four schemes
show a similar behaviour. After some oscillations, umax reaches a stationary state already
before t = 1. The sharp interface results are very close to each other and so are the
diffuse interface results. The diffuse interface schemes predict a slightly smaller bubble
velocity. Overall, the scheme MooNMD reproduces the results of the other schemes very
well.

In Table 5.5, the final counter current flow velocity at t = 10 (except for 2PStab
t = 1, unfortunately, due to a very small time step used for 2PStab, the simulation time
was limited for this scheme) is shown for all parameter combinations. A good agreement
of the results obtained by MooNMD to the other schemes is seen. It has to be noted,
that the variation of the flow velocities across the different numerical models, dominates
the variation of the velocity across different parameters. The flow velocity seems to be
insensitive to the chosen surfactant related parameters.

The missing values in Table 5.5, in particular for c0 = 0.08 and Pe = PeΓ = 10, are
caused by numerical problems due to high surfactant concentration at the bubble rear
and the following low surface tension. The sharp interface schemes seem to have less
problems in this situation.

Surfactant Concentration and Surfactant Mass

The development of the surfactant masses over time are shown in Figure 5.13 and Fig-
ure 5.14. In Figure 5.13 the course of bulk surfactant mass is shown for the parameter
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Figure 5.12: Maximum inflow velocity over time for (c0,Pe,PeΓ,E) = (0.02, 1, 1, 1).

set (c0,Pe,PeΓ,E) = (0.02, 1, 1, 1). The bulk surfactant mass decreases over time and
reaches a stationary state. It can be seen that the surfactant mass reaches its equilibrium
slower than the inflow velocity and the stationary state is not reached until approximately
t = 5. Agreement among the schemes is particular high between MooNMD and AMDiS,
despite the conceptual difference between the sharp and diffuse interface models.

Analogue, in Figure 5.14 the temporal evolution of the surface surfactant mass for the
parameters (c0,Pe,PeΓ,E) = (0.02, 1, 1, 1) are shown. A slow decrease of the surfactant
mass over time is observed, indicating that a discrete stationary solution is not yet found
at T = 10. Although the continuous problem would eventually lead to a stationary state,
for which conservation of mass holds trivially, the loss of exact divergence free flow in the
discrete setting may lead to a slight, but steady loss of surfactant mass over time. The
deviation in the simulation using the AMDiS scheme at the beginning of the simulation
cannot be explained, but in general the scheme shows the same overall behaviour as the
other schemes. MooNMD reproduces the results of the other schemes very well.

The stationary local distribution of the surfactant in the bulk phase and on the
surface at time t = 10 is shown in Figure 5.15, exemplarily for the parameter sets
(c0,Pe,PeΓ,E) = (0.02, 1, 1, 1) on the right and (c0,Pe,PeΓ,E) = (0.02, 10, 10, 1) on the
left. The surface, the inner line, is scaled and translated a bit, in order to distinguish it
from the bulk. A different distribution due to the different diffusion intensities is noted.
For both parameter regimes, the surfactant is adsorbed at the bubble surface, leading
to a decrease of the bulk surfactant in the film at the channel wall. Along the bubble
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Table 5.5: Maximum counter flow velocity umax at the stationary state for different
simulation parameters.

c0 = 0.02 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 3.27506 3.27336 3.27539 3.27391
MooNMD 3.39283 3.39284 3.39283 3.39284
2PStab (t = 1) 3.28185 3.28102 3.28248 3.28087
BGN 3.37914 3.37773 3.36149 3.35499

c0 = 0.08 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 3.26413 3.25311 - -
MooNMD 3.39286 3.38990 3.39198 3.39203
2PStab (t = 1) 3.29367 - - -
BGN 3.35935 3.33733 3.33063 3.31528

surface, the surfactant is transported with the flow and finally accumulates at the rear
cap of the Taylor bubble, where it is continuously desorbed into the bulk. In the case
of higher diffusion (left), the local variations in the surfactant concentration are more
pronounced.

Figure 5.16 shows the stationary bulk surfactant distribution along the channel wall
for the parameter set (c0,Pe,PeΓ,E) = (0.02, 1, 1, 1), exemplarily. An excellent agree-
ment among the numerical scheme is found. The characteristic decrease in bulk surfac-
tant concentration in the film can be observed quite well.

Film Thickness

Finally, the effect of the surfactant on the film thickness is investigated. Figure 5.17
shows the film width over time for the parameter set (c0, P e, PeΓ, E = (0.02, 1, 1, 0.5).
The behaviour of all four schemes is similar and very close to each other. After some
initial oscillations and interface waves, the bubble shape reaches a stationary state after
a short time and the film width stays constant.

The stationary film width is given in Table 5.6 for all schemes and all parameters.
All values are determined at the final time t = 10. Except for the 2PStab scheme, for
which they are taken at time t = 1, as before. Fortunately, the solution is already fairly
stationary at t = 1, such that the comparison seems valid.

In general, the diffuse interface schemes predict a smaller film thickness which might
be due to a minimal Cahn–Hilliard dynamics that lead to a slight retraction of the
bubble. This explanation is also supported by the slight smaller bubble length of the
diffuse interface schemes, seen in Table 5.7.

Figure 5.18 shows a comparison of the film width with varying surface elasticity E
(left) and with varying diffusion coefficients Pe and PeΓ (right). All codes show that
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Figure 5.13: Bulk surfactant mass over time, for (c0, P e, PeΓ, E) = (0.02, 1, 1, 1).

an increasing surface elasticity and an increasing surfactant diffusion leads to a larger
film thickness. This is consistent with analytic predictions conducted in [100]. Due to
the chosen parameters, the change in film width across different parameters is minimal
and the differences between the codes may seem large. However, the differences in
film thickness between the codes are less than 2% and the equal slope of the lines in
Figure 5.18 indicates a good agreement between all four schemes with respect to the
dependency of the film thickness on surface elasticity and surfactant diffusion.

From Table 5.5 it can be seen that the bubble velocity is almost independent of the
surfactant related parameters, although the film thickness varies. This is in contrast
to the results of [31], that predict an increasing bubble velocity with an increasing film
width. This might be a unique behaviour due to the presence of the surfactant that was
not included in [31].
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Figure 5.14: Surface surfactant mass over time, for (c0, P e, PeΓ, E) = (0.02, 1, 1, 1).

Table 5.6: Film width for different simulation parameters.

c0 = 0.02 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 0.14408 0.14802 0.14304 0.14604
MooNMD 0.14724 0.15086 0.14601 0.14853
2PStab (t = 1) 0.14627 0.14957 0.14504 0.14739
BGN 0.14674 0.15053 0.14492 0.14789

c0 = 0.08 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 0.14960 0.14914 - -
MooNMD 0.15121 0.15113 0.15037 0.15032
2PStab (t = 1) 0.14962 - - -
BGN 0.15101 0.14932 0.14845 0.15144
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c c

cΓ cΓ

Figure 5.15: Stationary surfactant distribution from MooNMD in the bulk phases and
on the surface. For (c0, P e, PeΓ, E) = (0.02, 1, 1, 1) (right), and for (c0, P e, PeΓ, E) =
(0.02, 10, 10, 1) (left).

Table 5.7: Bubble length for different simulation parameters.

c0 = 0.02 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 4.71900 4.72500 4.72000 4.73100
MooNMD 4.76351 4.77366 4.76632 4.77970
2PStab (t = 1) 4.73000 4.75000 4.74000 4.76000
BGN 4.75971 4.76951 4.76212 4.77465

c0 = 0.08 Pe = PeΓ = 1 Pe = PeΓ = 10
E = 0.5 E = 1 E = 0.5 E = 1

AMDiS 4.76200 4.80000 - -
MooNMD 4.81922 5.05115 4.87267 4.97512
2PStab (t = 1) 4.80000 - - -
BGN 4.81032 4.82561 4.81045 4.84463



5.2. TAYLOR FLOW COMPARISON WITH SURFACTANTS 103

0.0192

0.0193

0.0194

0.0195

0.0196

0.0197

0.0198

0.0199

0.02

0.0201

0 2 4 6 8 10

b
u
lk

su
rf

ac
ta

n
t

co
n
ce

n
tr

at
io

n

y

AMDiS
MooNMD

2PStab
BGN

Figure 5.16: Stationary bulk surfactant concentration along the channel wall at time
t = 10 (t = 1 for 2PStab), for (c0, P e, PeΓ, E) = (0.02, 1, 1, 1).
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Figure 5.17: Film width over time, for (c0, P e, PeΓ, E) = (0.02, 1, 1, 0.5).
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5.3 Freely Oscillating Droplet

The goal of this section is to validate the proposed scheme further. The scheme is com-
pared to analytic models of oscillating drops with surfactants. Parts of this subsection
are already published in [62].

The understanding of the dynamics of drops and bubbles is of importance in numer-
ous practical applications. The presence of surfactants changes the dynamic features of
an interface. Non-uniform surfactant concentrations result in Marangoni forces, and the
interface will show additional viscoelastic effects, which alter the dynamic behaviour of
the droplet.

There are many theoretical, experimental and numerical investigations into the field
of oscillations of drops and bubbles. In fact, the study of small-amplitude oscillations of
inviscid fluids has an over one hundred years long history. Initiated with a normal mode
analysis for inviscid fluids in [78, 101] at the end of the nineteenth century, the theory
was refined further. Later, also weakly viscid fluids are investigated in [38, 82] and in
cases where viscous effects cannot be neglected in [89, 98]. Further, large-amplitude
oscillations were studied in [24].

Oscillations of drops and bubbles, when surfactants are present were subject to the-
oretical investigations in [85, 91, 110]. In [91] a weakly viscous fluid with insoluble
surfactant is considered. A set of ordinary differential equations for the amplitudes of
shape and surfactant concentration oscillation is derived with an analysis of the energy
using an averaging method. The velocity field has been approximated by the method
of matched asymptotic expansions. In [110] a viscous drop with soluble surfactant is
analysed. Analytical approximate solutions for the frequency and the damping rate are
derived using a perturbation method. The results from [91, 110] are taken as validation
models here.

In this subsection the validation models are compared to the fully three dimensional
numerical computations. The numerical scheme solves for a capillary free surface flow
with soluble or insoluble surfactant using the ALE-finite element method on moving
grids, as presented in Chapter 4.

A short recall on the main theoretical results of oscillating drops as derived in [82,
91, 110] is given. After this the result of the computations are presented.

5.3.1 Basic Oscillating Droplet Dynamics

From the linearized theory of a small-amplitude oscillations of a drop, the angular fre-
quency and the damping rate of the oscillation can be predicted [24, 38, 82, 98]. A
spherical drop perturbed by a spherical harmonic, has the surface given by

r(θ, φ) = r0 + anYn(θ, φ) , (5.3.1)

where r0 is the unperturbed radius and an is the perturbation amplitude and

Yn(θ, φ) =

√
2n+ 1

4π
Pn(cosφ) (5.3.2)
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is a spherical harmonic with the Legendre polynomial Pn.
The natural angular Lamb frequency ω0,n for the oscillation of the n-th mode of a

drop in vacuum is given by

ω2
0,n = n(n− 1)(n+ 2)

σ

%r3
0

. (5.3.3)

Including weak viscosity, the Lamb damping rate of the oscillation is

δn = (n− 1)(2n+ 1)
η

%r2
0

, (5.3.4)

and the angular frequency

ωn =
√
ω2

0,n − δ2
n . (5.3.5)

To obtain a dimensionless form, the physical time is scaled with UL−1. Then the
formulas for ω0,n and δn read

ω2
0,n = n(n− 1)(n+ 2)We−1 , (5.3.6)

δn = (n− 1)(2n+ 1)Re−1 , (5.3.7)

where the characteristic length L is set to r0.
For the most important second mode, which is considered here, it is obtained

ω2
0,2 =

8

We
, δ2 =

5

Re
. (5.3.8)

The aperiodic limit is associated with ω0,2 = δ2, i.e.

We

Re2 =
Ca

Re
=

8

25
, (5.3.9)

where Ca is the capillary number.
Theoretical results for an oscillating droplet with insoluble surfactants are derived in

[91]. A set of differential equations for the amplitude al of the l-th mode of the shape
oscillations and amplitude gl of the l − th mode of the surface surfactant concentration
are given. For the case of a small amount of surfactant and for the second mode the
equations read

ä2 +
5

Re
ȧ2 +

8

Ŵe
a2 = −2

Ê

Ŵe
g2 , (5.3.10)

ġ2 +
6√
PeΓ

g2 = ȧ2 , (5.3.11)

with the corrected Weber number Ŵe and surface elasticity Ê

Ŵe =
We

σ(ceqΓ )
, Ê =

ceqΓ E

σ(ceqΓ )
, (5.3.12)



5.3. FREELY OSCILLATING DROPLET 107

where ceqΓ is the equilibrium surface surfactant concentration.

In order to compare the insoluble theory with the results here, the equations (5.3.10)
and (5.3.11) are solved numerically with a Matlab code using the ode45 routine.

A result for higher viscosities and soluble surfactant is given in [110]. For the dimen-
sionless complex frequency α a first order approximation

α = i(1 + ε+O(ε2)) (5.3.13)

is given. ε is given as

ε =
1

2

(1 + 16(
√
β−1i− 3i)β)P̂ − 12βi

1 + (
√
β−1i− 3i)(3P̂ i+ 4β)

, (5.3.14)

where i is the imaginary unit and β = (Reω̂)−1, with ω̂ =

√
8/Ŵe and

P̂ =
E′

4Ĝ
+

2i

Reω̂
, (5.3.15)

Ĝ = 1 +
6i

PeΓω̂
−

(
DaBi

√
ω̂

κ2
√

Pe3i
− ω̂

κi

)−1

, (5.3.16)

(5.3.17)

with κ = ceqDa+Bi and ceq the equilibrium bulk surfactant concentration. The damping
rate is given by the real part, and the frequency by the imaginary part of ω̂α.

5.3.2 Numerical results

The damping rate and the angular frequency is determined from a damped cosine fit to
the data, i.e. a non-linear least square fit is done to the function

f(t;Af , δf , ωf , ω
′
f , φf , Cf ) := Afe

−δf t cos(ωf t+ ω′f t
2 + φf ) + Cf , (5.3.18)

with the parameters A, δf , ωf , ω′f φf and Cf . Note, that a linear time dependent
frequency ω(t) = ωf + ω′f t is allowed. However, in the following examples the frequency
drift was small and is neglected.

The fit is used to determine the parameters from the full three dimensional numerical
calculation, where the tip position of the drop is used. The fit is also used to determine
the frequency ωf and damping rate δf from the solution of the equation (5.3.10) and
(5.3.11) in the insoluble case.

In the numerical computations the initial drop is in rest. The shape is given by
(5.3.1) for n = 2 with an amplitude of a2 = 0.1. The drop is not in equilibrium and will
start to oscillate. The Weber number is fixed to We = 0.0081 in all examples, which will
give roughly five oscillations in the time interval [0, 1]. The timestep length is ∆t = 10−4,
i.e. 10000 steps per computation.
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In both cases, the insoluble and the soluble surfactant, the bulk and surface Peclet,
the Damkoehler and Biot numbers are Pe = 1, PeΓ = 1, Da = 1 and Bi = 1, respectively.
The equilibrium bulk surfactant concentration ceq and the equilibrium surface surfactant
concentration ceqΓ are

ceq = 0.1111 and ceqΓ = 0.1 . (5.3.19)

The initial surfactant concentrations are set to ceq and ceqΓ , respectively.
Two examples are considered, an insoluble case with a Reynolds number of Re =

10.684 and a soluble case with a Reynolds number of Re = 1.0684. The Reynolds
numbers are chosen such that the dimensionless viscosity

√
WeRe−1 < 0.1, a bound given

in [24, 98], where the viscous effects become negligibly, and the analytic approximations
are valid. It has to be noted, this bound excludes the aperiodic limit, which is obtained
for
√

WeRe−1 = 0.5657, as given in (5.3.9). For Re = 1.0684 one has
√

WeRe−1 = 0.0842,
which is quite close to the bound, and for Re = 10.684 one has

√
WeRe−1 = 0.0084. In

Table 5.8 the resulting frequencies and damping rates from the linear Lamb theory are
given.

Table 5.8: Lamb frequency, angular frequency and damping rate for different Reynolds
numbers.

Re ω0,2 ω2 δ2

1.0684 31.4270 31.0766 4.6799
10.684 31.4270 31.4235 0.4682

In Fig. 5.19 a comparison of the normalized amplitudes of the shape oscillation in the
soluble case is shown. Normalized means a2(t) is scaled with a2(0)−1 such that the graph
starts at one. In the figure, (sim) is the shape oscillation by numerical computation and
(pred) is the shape oscillation obtain by (5.3.14). The Reynolds number is Re = 1.0684
and the surface elasticity E = 1.0. A good agreement is seen, although the prediction
runs a little ahead.

In Fig. 5.20 a comparison of the normalized amplitudes of the shape oscillation in
the insoluble case is shown. (pred) is the prediction of the shape oscillation obtained
by (5.3.10) and (5.3.11). Here the Reynolds number is Re = 10.684, which means lower
damping as in the previous example, and the surface elasticity is E = 1.0. We see a
good agreement, the prediction runs ahead again and shows less damping.

In Fig. 5.21 the damping rates versus different surface elasticities for the numerical
simulation (sim) and the prediction after (5.3.14) (pred) is schown. In Fig. 5.22 the
same is shown for the frequencies. We see a quite good agreement in the frequencies
over the considered range of surface elasticities. The agreement gets better for low
surface elasticities. Contrary, an increasing disagreement in the damping rates for lower
surface elasticities and a better agreement for higher surface elasticities is seen.

In the case of insoluble surfactant, shown in Fig. 5.23 and Fig. 5.24, a better agree-
ment for the damping rates at lower surface elasticties is seen. The angular frequencies
are in good agreement for lower elasticities. Both, the missmatch in damping rate and
the frequency increases with higher surface elasticities.
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Figure 5.19: Comparison of the course of the second mode of an freely oscillation drop
with soluble surfactant between the numerical simulation (sim) and the prediction from
(5.3.14) (pred), for (Re, E) = (1.0684, 1.0).

5.3.3 Conclusion

The numerical method presented in this work was used to solve a capillary free boundary
flow with soluble and insoluble surfactants, where the surfactant is allowed to affect the
surface tension force and thus changes the dynamical behaviour. The numerical method
was validated at the example of a freely oscillating droplet in zero gravity. Thereby, the
solution was compared to different simplified models available in the literature.

The presented numerical method confirms, as expected, that the linear theory by
Lamb [82] fails to predict damping rates and frequencies for the case of viscous fluid,
and fluid with surfactants present.

A quite good agreement give the theories presented in [110] for the soluble surfac-
tant and in [91] for the insoluble surfactant. In both cases an excellent match for the
frequencies is observed. Although, the numerical simulation for the soluble and insolu-
ble cases tends to underestimate the frequencies. A different situation is found for the
damping rates, here in both cases the numerical simulation overestimates the damping.
The disagreement increases with the surface elasticity in the insoluble case, what might
be expect, since the theory chosen from [91] is for small surface elasticities. Also, the
backward Euler scheme used in the numerical simulation introduces numerical damping.
Contrary, in the soluble case the disagreement increases with lower surface elasticities,
thus there could be a problem with the numerical damping, and a lower time step size
or a time discretization, which introduce less numerical damping, could be necessary in
order to get a better agreement.
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Figure 5.20: Comparison of the course of the second mode of an freely oscillation drop
with insoluble surfactant between the numerical simulation (sim) and the prediction
from (5.3.10) and (5.3.11) (pred), for (Re, E) = (10.684, 1.0).
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Figure 5.21: Damping rate versus surface elasticity for Re = 1.0684 and soluble surfac-
tant, for the numerical simulation (sim) and the prediction from (5.3.14) (pred).
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Figure 5.22: Angular frequency versus surface elasticity for Re = 1.0684 and soluble
surfactant, for the numerical simulation (sim) and the prediction from (5.3.14) (pred).
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Figure 5.23: Damping rate versus surface elasticity for Re = 10.684 and insoluble sur-
factant, for the numerical simulation (sim) and the prediction from (5.3.10) and (5.3.11)
(pred).
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Figure 5.24: Angular frequency versus surface elasticity for Re = 10.684 and insoluble
surfactant, for the numerical simulation (sim) and the prediction from (5.3.10) and
(5.3.11) (pred).
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5.4 Weak Surface Evolution

In this section, numerical tests for the weak surface evolution are performed. The lumped
and non-lumped versions, and the piecewise linear and piecewise quadratic schemes are
compared.

The interface grid velocity has to be given. Instead of providing a predefined velocity
field, the problem of the weak surface evolution is coupled to a mean curvature flow
problem, as in [17]. This defines an equilibrium shape and curvature, and the velocity is a
consequence of a difference of the current curvature and the curvature in the equilibrium.
In the mean curvature flow the velocity of the surface is given as

u · n = ∆ΓH .

Substituting this in the weak surface evolution formulation in Problem 4.4.2, and apply-
ing integration by parts, the following equations arise.

Problem 5.4.1. Given Γnh and u, find (wn+1,Hn+1) ∈ Ss(Γnh)2 × Ss(Γnh) such that

〈wn+1,nΓψ〉h,sn + 〈∇ΓHn+1,∇Γψ〉n = 0 ,

〈Hn+1nΓ, η〉h,sn − τn 〈∇Γwn+1,∇Γη〉n = 〈PΓ,∇Γη〉n ,

for all (η, ψ) ∈ Ss(Γnh)2 × Ss(Γnh).

The stationary solution of the mean curvature flow is a circle, since ∆ΓH = 0 implies
a constant curvature for closed surfaces. In order to evaluate the weak surface evolution
also on shapes with varying curvature a slight modification of Problem 5.4.1 is used.
The normal velocity is set to

u · n = ∆Γ

(
H−H0

)
,

where H0 is a given function. For the stationary case u · n = 0, this results in ∆ΓH =
∆ΓH0, which means

H = H0 + C ,

where C is a constant. Such that if H0 is not constant, and describes a shape with
a varying curvature instead, the equilibrium shape will also have a varying curvature,
which is the desired property.

The resulting problem reads:

Problem 5.4.2. Given Γnh, u, and H0, find (wn+1,Hn+1) ∈ Ss(Γnh)2×Ss(Γnh) such that

〈wn+1,nΓψ〉h,sn + 〈∇ΓHn+1,∇Γψ〉n =
〈
∇ΓH0,∇Γψ

〉
n
,

〈Hn+1nΓ, η〉h,sn − τn 〈∇Γwn+1,∇Γη〉n = 〈PΓ,∇Γη〉n ,

for all (η, ψ) ∈ Ss(Γnh)2 × Ss(Γnh).

Next, three test examples are given.
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5.4.1 Comparison P1- and P2-Scheme

A comparison between the piecewise linear and the piecewise quadratic scheme is given.
The mean curvature flow Problem 5.4.1 in the lumped version is solved. The initial
shape is an ellipsoid, where the node distribution is highly uneven, see Figure 5.25.

Figure 5.25: Initial shape and node distribution.

Solving Problem 5.4.1, the mean curvature flow will drive the ellipsoid towards a
circle over time. Simultaneously, the nodes will redistribute in tangential direction. In
Figure 5.26 the result after a few time steps is shown. The shape is not a full circle
yet. That can be seen from the colour code of the nodes, which shows the curvature.
A red colour decodes a higher curvature, and a blue colour a lower curvature. While
the piecewise linear scheme shows a near even node distribution already, the piecewise
quadratic scheme shows nearly no difference in tangential node distribution to the initial
state.

A few time steps later, both schemes have reached the stationary circular shape,
which is shown in Figure 5.27. In the piecewise linear scheme, the nodes are redistributed
in tangential direction such that equal distance is achieved. Contrary, in the piecewise
quadratic scheme, the node distribution is still near the initial state. The movement of
the nodes in tangential direction is far to slow and cannot keep up with the movement
in normal direction induced by the dynamic of the mean curvature flow problem.

In Figure 5.28, the result of a continuation of the simulation, after the circular shape
is reached, is shown. It shows that even after a time span, more then a hundred times
longer than the time span needed to reach the equilibrium circular shape, the piecewise
quadratic scheme has not reach equi-distribution of the nodes, yet.

This shows that the piecewise quadratic scheme is not practicable in terms of the
desired node distribution.
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Figure 5.26: Shape and node distribution after a short time.

5.4.2 Lumped vs Non-lumped Scheme

For the comparison of the lumped and the non-lumped scheme a shape with varying
curvature is used, since both schemes distinguish in those cases. Thus, Problem 5.4.2 is
solved. The right hand side H0 is chosen as

H0(x, y) = 16x2 .

The choice of H0 results in a long stretched equilibrium shape, with two top and bottom
cap regions of high curvature and a body region of low curvature. For the initial shape,
a circle is used shown in Figure 5.29.

Figure 5.30 shows the final shape and node distribution of the lumped (right) and
the non-lumped (left) schemes. The difference of the two schemes can be seen clearly.
While the lumped scheme attains equi-distribution, the non-lumped scheme carries more
nodes the regions of high curvature. In the example used here this results in a better
approximation of the shape by the non-lumped scheme. The fixed amount of nodes is
used more efficient, to approximate the shape.

5.4.3 Combined Schemes

For the test of the combined scheme, the linear combination of Problem 5.4.2 solved.

Problem 5.4.3. Given Γnh, u, H0, and λ, find (wn+1,Hn+1) ∈ S1(Γnh)2 × S1(Γnh) such
that

(1− λ) 〈wn+1,nΓψ〉h,1n + λ 〈wn+1,nΓψ〉n + 〈∇ΓHn+1,∇Γψ〉n =
〈
∇ΓH0,∇Γψ

〉
n
,

(1− λ) 〈Hn+1nΓ, η〉h,1n + λ 〈Hn+1nΓ, η〉n − τn 〈∇Γwn+1,∇Γη〉n = 〈PΓ,∇Γη〉n ,
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Figure 5.27: Shape and node distribution at the time where the stationary shape is
reached.

for all (η, ψ) ∈ Ss(Γnh)2 × Ss(Γnh).

Where H0 is chosen as before

H0(x, y) = 16x2 .

Figure 5.31 the resulting equilibrium shape and node distribution for different val-
ues of lambda. It is seen that with lambda it can be gradually chosen between equi-
distribution and a curvature dependent distribution. The curvature dependent distribu-
tion seems to be more suited for the present problem.
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Figure 5.28: Shape and node distribution after a very long time.

Figure 5.29: Initial shape and node distribution for the lumped vs non-lumped compar-
ison.
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Figure 5.30: Final equilibrium shape and node distribution for the lumped vs non-lumped
comparison.

lumped λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.8 non-lumped

Figure 5.31: Final equilibrium shape and node distribution for different parameters λ.
From left to right λ = {0.0, 0.1, 0.2, 0.5, 0.8, 1.0}.



Chapter 6

Summary

The main aim of this work was the development of an accurate and robust numer-
ical scheme for the simulation of two-phase flows with surfactants in two and three
dimensions. The developed methods are fitted interface tracking methods employing
the Arbitrary Lagrangian Eulerian framework on moving meshes.

First, the governing equations for a two-phase flow with soluble surfactants were
derived. A set of Navier-Stokes equations coupled to a set of transport equations in the
bulk and on the interface were deduced from physical principles of mass- and momentum
conservation. Coupling conditions for the equations governing in each subdomain were
obtained by considering the mass- and momentum balances across the interface. The
derived equations were transformed into a dimensionless form and a weak formulation
was derived.

The coupled flow and transport equation were transformed into a moving frame of
reference, the ALE frame. The ALE mapping was introduced, in order to describe the
evolution of the time dependent domains the fluid phases occupy. Two different meth-
ods to obtain the ALE mapping were considered. A special treatment of the interface
evolution, using a weak formulation of the kinematic mass coupling condition, were
presented.

Then, the finite element discretization of the ALE formulation of the flow and trans-
port equations were introduced. Simplicial moving meshes were used, i.e. triangles in
two dimensions and tetrahedrons in three dimensions. Isoparametric mesh cells were
employed, in order to get a higher order approximation of the interface.

The choice for the finite element pair used for the Navier-Stokes equations were
discussed. Since, a discontinuous pressure approximation is mandatory for a two-phase
flow with a capillary surface, an extended Taylor-Hood element was introduced, that has
a discontinuous pressure across the interface. The extended Taylor-Hood finite element
prevents spurious velocity, which are observed in the numerical simulation of two-phase
flows. Further, it significantly reduces the number of unknowns used, compared to finite
element space employing a discontinuous pressure approximation on an element level.
The inf-sup stability for this extended Taylor-Hood finite element space was proven.

The known and commonly used time discretization for the one-phase Navier-Stokes
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equations, namely the implicit Euler, the θ-scheme, and the fractional Θ-scheme, were
adapted to the coupled flow and transport system for two-phase flows with surfactants.
Decoupling strategies were introduced to separate the Navier-Stokes equations from
the transport problem, such that an iterative solution strategy could be applied to the
nonlinear systems.

The weak formulation for the surface evolution were discretized by different methods.
The resulting schemes were compared, regarding their surface mesh node distribution
and surface mesh quality. A method for piecewise linear surface meshes, that results
in equi-distributed nodes, and a scheme resulting in a curvature dependent distribution
of nodes, was adopted to piecewise quadratic surface meshes. The obtained scheme for
quadratic meshes exhibits the same properties regarding the node distribution.

Finally, the presented methods were validated in several numerical test. The numer-
ical test indicate that the obtained methods are reliable in several different applications.

Of course, this work also lefts open several questions. Future work in this field
is in particular the numerical analysis of the proposed scheme or at least some of its
subproblems. This could include:

• The study of the inf-sup stability of the extended Taylor-Hood finite element space
in case of smooth, non-polygonal interfaces. This would involve, the study of the
inf-sup stability of the Taylor-Hood finite element space on a series of non-nested
meshes, for which surprisingly no results was found in the literature by the author.

• The transfer of the stability result of the continuous capillary two-phase flow prob-
lem (3.4.1) to the discrete case.

• The study of the stability of the proposed time discretization in the context of
ALE finite element methods and the discrete GCL condition.

• Theoretical insight regarding the node distribution properties of the weak grid
evolution using the non-lumped bilinear forms.

• Numerical analysis of the stationary and non-stationary coupled bulk-surface trans-
port problem in the ALE context.
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[16] E. Bänsch and S. Weller. “A comparison of several time discretization methods
for free surface flows”. In: Proceedings of the Conference Algoritmy. 2015, pp. 331–
341.

[17] J. W. Barrett, H. Garcke, and R. Nürnberg. “A parametric finite element method
for fourth order geometric evolution equations”. In: J. Comput. Phys. 222.1
(2007), pp. 441–462.

[18] J. W. Barrett, H. Garcke, and R. Nürnberg. “A stable parametric finite element
discretization of two-phase Navier-Stokes flow”. In: J. Sci. Comput. 63.1 (2015),
pp. 78–117.

[19] J. W. Barrett, H. Garcke, and R. Nürnberg. “Eliminating spurious velocities
with a stable approximation of viscous incompressible two-phase Stokes flow”.
In: Comput. Methods Appl. Mech. Engrg. 267 (2013), pp. 511–530.

[20] J. W. Barrett, H. Garcke, and R. Nürnberg. “Stable finite element approximations
of two-phase flow with soluble surfactant”. In: J. Comput. Phys. 297 (2015),
pp. 530–564.

[21] J. W. Barrett, H. Garcke, and R. Nürnberg. “Stable numerical approximation of
two-phase flow with a Boussinesq-Scriven surface fluid”. In: Commun. Math. Sci.
13.7 (2015), pp. 1829–1874.

[22] S. Basting and M. Weismann. “A hybrid level set/front tracking approach for
finite element simulations of two-phase flows”. In: J. Comput. Appl. Math. 270
(2014), pp. 471–483.
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