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Abstract: To date, no scientific data is available regarding the development and radiographic as-
sessment of approximal caries development after the insertion of 3D-printed, non-invasive veneers
of different restoration thicknesses. For the present study, non-invasive veneers were fabricated
from two different materials for printing and milling (Vita Enamic and VarseoSmile Crown plus).
Three different restoration thicknesses (0.5, 0.7, and 0.9 mm) were selected. After digital design,
leaving the approximal space free, and manufacturing of the restorations, adhesive insertion followed.
All specimens were placed in a demineralizing solution for 28 days. Subsequently, a radiological
and fluorescent examination was performed. The present study showed statistically significant
interactions for the day (p < 0.0001) and manufacturing method (p < 0.0001) but not for restoration
thickness. Additive manufactured restorations showed less radiological caries progression compared
to subtractive manufactured restorations after 21 and 28 days (0.7 and 0.9 mm restoration thickness)
(p < 0.0001). DIAGNOdent proved that the restoration thickness affected the caries progression within
the subtractive group (p < 0.0001). Radiographic and fluorescence examination showed equivalent
results regarding approximal caries assessment. For additive manufacturing, less caries progression
was shown without consideration of the restoration thickness.

Keywords: 3D printing; additive manufacturing; non-invasive; secondary caries; veneers

1. Introduction

Digital dentistry is increasingly coming into focus. A digital workflow using computer-
aided design/computer-aided manufacturing (CAD/CAM) has yielded various new hy-
brid materials for subtractive manufacturing (SM). They are characterized by improved
mechanical and esthetic properties [1–4].

However, SM is considered time-consuming and inefficient regarding material con-
sumption. Furthermore, delicate marginal areas cannot be realized by milling. In contrast
to SM processes, additive manufacturing (AM) offers a more economical material con-
sumption, while multiple and complex restoration geometries can be produced simulta-
neously [5–7], reducing manufacturing time and costs [8]. In addition to millable hybrid
materials, printable dental materials are increasingly coming to the fore. One CAD/CAM
printable hybrid material (VarseoSmile Crown plus, Bego, Bremen, Germany) is approved
for permanent single-tooth restorations according to the Medical Device Regulation as class
IIa material. Other printable materials are approved only for temporary restorations. The
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material promises excellent mechanical properties, a good fit for non-invasive restorations,
low material consumption, and inexpensive production. As far as this material allows for
manufacturing very thin (up to 0.3 mm) restorations, 3D-printed restorations on single
teeth could be applied in a less invasive or non-invasive way to protect sound dental hard
tissues. In the case of a non-invasive approach, the approximal areas are not separated from
each other and cannot be covered by a restoration. Furthermore, the restoration margin is
often extended close to the approximal area, making it less attainable for dental hygiene
and producing a predisposed area for caries. Consistent oral hygiene and regular dental
and radiological examinations would be indispensable in a non-invasive approach.

Excessive tooth wear due to erosion, attrition, and abrasion usually leads to the
need for restorative measures [9]. Based on an increasing number of patients suffering
from erosions, attrition, and abrasion, complex prosthetic rehabilitations occur more often.
If extensive areas of the enamel or dentin are affected, hypersensitivities, deteriorated
esthetics, and a decrease of the vertical dimension of occlusion (VDO) might occur, for
which reestablishment is a time-consuming process [9,10]. The conservative treatment
is invasive and expensive for the patient. With the help of non-invasive, 3D-printed
restorations, a rehabilitation of the VDO could be achieved, preserving the existing dental
hard tissues. Also, the treatment time and costs could be reduced. Using a completely
digital workflow, complex prosthetic rehabilitations could become easier, cheaper, and less
invasive than the conventional treatment concept. Esthetic improvements could be achieved
immediately. So far, no in vivo data regarding 3D-printed, non-invasive restorations
are available.

For a reliable dental radiological examination, an adequate radiopacity of a dental
material is crucial for assessing the marginal integrity of the restoration, detecting gaps
in the interface, diagnosing secondary caries, and distinguishing the material from dental
hard tissues [1,11–14]. A radiopacity of a material equal to or higher than that of dentine is
considered beneficial for dental diagnostics [1,15]. It is known that radiopacity values de-
pend on the materials’ filler content and quantities, for example, the glass, ceramic, and/or
resin filler content [1]. Therefore, for the clinical suitability of a new dental restorative
material, the evaluation of the radiopacity is necessary concerning the respective indication
area of the material [1,16,17].

In contrast to the advantages of a higher radiopacity described above, a low radiopacity
could bring advantages in assessing the approximal areas after insertion of non-invasive
3D-printed restorations with regard to the development of caries. So far, no scientific
data on the radiopacity of non-invasive 3D-printed restorations and approximal caries
detection is available. Whether and when an approximal lesion is restored depends on
its progression [18]. Clinically, close radiological monitoring is recommended [18]. Also,
other diagnostic tools for caries detection are available. Based on fluorescence, caries
development can be assessed and compared to radiographic examination. Nowadays,
remineralizing procedures are preferred instead of restorative treatment [18–20].

Previous studies outside of dentistry already used X-ray analysis in order to draw
conclusions about the microstructure of 3D-printed materials [21–23]. The microstructure
gives information about the porosity and mechanical properties of a material, particularly
the amount and distribution of voids within the intra- and inter-layer structure of a 3D-
printed material [21]. Furthermore, the filler distribution after the printing process is of
great interest for the final restorations. So far, no data are available regarding 3D-printed
dental restorative materials. Therefore, the present study could provide the first data
regarding X-ray depiction and analysis of a 3D-printed dental material.

The aim of the present study was to assess radiographically and with the help of fluo-
rescence, the incidence, and progression of approximal caries in the enamel after insertion
of non-invasive veneers of different restoration thicknesses and different manufacturing
processes on the 7th, 14th, 21st, and 28th day. The working hypothesis was that restoration
thickness, manufacturing method, and day do not influence the caries lesions assessment
by non-invasive restoration type.
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2. Materials and Methods
2.1. Specimen Preparation

Twenty-four human incisors were collected and provided by the oral surgery de-
partment of the Charité-Universitätsmedizin Berlin for the present study. The teeth were
randomly divided into three groups (n = 8) according to the different tested restoration
thickness of the non-invasive restorations (0.5, 0.7, and 0.9 mm) (Figures 1 and 2).
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Figure 2. Schematic of the workflow of the entire experiment.

All teeth were scanned using an intraoral scanner (Primescan, Dentsply Sirona, Charlotte,
NC, USA). The data were transmitted to the dental laboratory of the Charité. Here, the
digital design, excluding the approximal areas of each tooth, and the manufacturing process
of the non-invasive veneers were carried out. For the additive group, the printable material
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(VarseoSmile Crown plus, Bego; printer: Varseo XS, Bego), and for the subtractive group,
the millable material (Vita Enamic, Vita Zahnfabrik, Bad Sackingen, Germany) (Table 1)
were used to manufacture the restorations. Fabrication and postprocessing were carried
out according to the manufacturer’s instructions.

Table 1. Details of the tested CAD/CAM hybrid materials.

Material Composition Manufacturer Code

VarseoSmile
Crown plus

Ceramic-filled (30–50 wt% inorganic
fillers; particle size 0.7 µm) silanized
dental glass, methyl benzoylfor-mate,

diphenyl (2, 4, 6-trimethylbenzoyl)
phosphine oxide hybrid material

Bego, Bremen,
Germany VSCP

Vita Enamic
Polymer infiltrated (UDMA,

TEGDMA 14 wt%) feldspar ceramic
network (86 wt%)

Vita Zahnfabrik,
Bad Sackingen,

Germany
VE

For bonding the restorations on the specimens, all teeth were etched with 37% phos-
phoric acid for 30 s (Ätzgel 37%, Orbis Dental Handel mbH, Münster, Germany). The
etching gel was removed thoroughly with a dental sprayer, and the teeth were dried with
compressed air for 30 s. Afterward, a self-etching universal adhesive (Scotchbond SE,
3M Espe, Landsberg am Lech, Germany) was applied on the surface of each tooth. The
restorations were cut in the middle with the help of a cutting disk. Consequently, a direct
radiographic comparison between a covered and an uncovered half of each tooth could
be drawn. The restorations were air-abraded with aluminum oxide and conditioned with
a universal primer (Monobond Plus, Ivoclar, Schaan, Liechtenstein). A luting composite
(RelyX Ultimate, 3M Espe) was used for fixation. After the removal of the cement residues
in all other areas, light curing was conducted. Subsequently, all uncovered areas of the
enamel, except for the proximal areas, were coated with nail varnish (Manhattan Super Gel,
Paris, France) (Figure 3a,b).
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Figure 3. (a,b) Embedded specimen with an already bonded 3D-printed restoration on half of
the tooth and prepared with nail varnish covering before placement in demineralizing solution.
The approximal areas were not covered with nail varnish in order to expose these areas to the
demineralizing solution.

2.2. Artificial Carious Lesions

To create artificial carious lesions in the mesial and distal proximal areas of each tooth,
the specimens were exposed to a demineralizing solution for 28 days (pH 4.95; 37 ◦C) [24].
The pH was checked daily and, if necessary, corrected with a potassium hydroxide solution
(10 M) [25]. The specimens remained in the demineralizing solution for a total of four weeks.
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2.3. Radiological and Fluorescence Examination

For a reproducible and reliable radiological examination, all teeth were embedded in
a specially prepared and fixed X-ray holder (Luxatemp Automix Plus, DMG Chemisch-
Pharmazeutische Fabrik GmbH, Hamburg, Germany) (Figure 4). It allowed the specimen
to be rotated by 45◦ in each case so that mesial and distal eccentric radiographs could be
taken in addition to an orthoradial image. The distance between the head of the X-ray unit
and the specimen was 8 cm. All teeth were radiologically checked in advance to ensure that
they were free of caries and restorations approximally (Figure 5a–f). All specimens were
examined radiologically at intervals of 7 days with regard to the development of a carious
lesion in the approximal areas depending on the different restoration thicknesses and
manufacturing methods tested. An X-ray voltage of 70 kV and an energy of 19.6 mGy·cm2

was used (Heliodent plus, Dentsply Sirona, Charlotte, NC, USA). The radiographs were
processed immediately in an automatic processor (Vista Scan, Dürr Dental, Bietigheim-
Bissingen, Germany).
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Additionally, approximal caries detection was conducted with the help of DIAGN-
Odent 2095 (KaVo Dental GmbH, Berlin, Germany). The DIAGNOdent scores range
between 0 and 99. In the present study DIAGNOdent values < 15 represented no deminer-
alization. Values between 15 and 19 demineralization extended into the inner half of enamel
up to the upper third of dentin. Values <19 represented a demineralization extending to
deeper dentin [26] (Figure 6).

2.4. Data Analyses

The evaluation of the radiographs and DIAGNOdent analysis of all specimens was
conducted in accordance with the studies by Mejáre et al. [18]. The following scoring
systems were used regarding an evaluation of the approximal areas of each tooth (Table 2;
Figure 7). Two clinicians conducted the analysis (E.P. and A.U.). For calibration purposes,
ten radiographs (orthoradial, mesial- and distaleccentric) were analyzed and discussed in
common [18]. About two-thirds of all X-ray images were then analyzed by one clinician
(E.P.). The rest of the X-ray images were analyzed by the other (A.U.). To perform an intra-
examiner reproducibility, 10% of all radiographs were analyzed twice by each clinician
mentioned above. For inter-examiner reproducibility, another 15% were analyzed by both.
The radiographs were selected randomly by an independent assistant. Consequently, it
could be ensured that the clinicians did not analyze the same radiograph for a second time.
The reproducibility was tested and calculated in accordance with the κ-values for diagnoses
published by Cohen et al., 1960 [27]. The inter-examiner agreement had a κ-value of 0.57,
and the intra-examiner agreement showed κ-values of 0.79 and 0.72.
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Figure 5. (a–f). Initial orthoradial X-ray of one sample restored with VSCP ((a) = 0.5 mm),
((c) = 0.7 mm), ((e) = 0.9 mm) and VE ((b) = 0.5 mm), ((d) = 0.7 mm), ((f) = 0.9 mm) with different
layer thicknesses.
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Table 2. Radiographic scores for classification of approximal carious lesions.

Score Description

0 No visible radiolucency

1 Radiolucency in the outer half
(<half of the enamel)

2 Radiolucency in the inner half
(<half of the enamel up to the enamel-dentin border)

3 Radiolucency in the dentin (broken enamel-dentin border but without obvious
spread in the dentin)

4 Radiolucency with obvious spread in the outer half of the dentin
(<halfway through the pulp)

5 Radiolucency with obvious spread in the inner half of the dentin
(>halfway through the pulp)
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X-ray restored with VSCP (Score 1) after 28 days of demineralization; (c) Orthoradial X-ray restored
with VSCP (Score 2) after 28 days of demineralization. The green circles mark the developed artificial
caries lesions of different scores over time.
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2.5. Statistical Analyses

The gathered data was expressed as mean and standard deviation. A two-way analysis
of variance (ANOVA) was performed to evaluate the statistically significant differences,
with the restoration thickness and material as two independent factors. The gathered
data was analyzed for the goodness-of-fit using the Shapiro–Wilk test. Tukey’s multiple
comparisons tests were used for multiple comparisons analyses. All statistical analyses
were performed with JMP 14 software (SAS Corp., Heidelberg, Germany). A p-value less
than 0.05 was defined as statistically significant.

3. Results

The radiological examination revealed statistically significant interactions for the day
(F = 13.3; p < 0.0001) and manufacturing method (F = 11.4; p < 0.0001) but not for restoration
thickness (F = 2.38; p < 0.09).

Figure 8 illustrates the post-hoc multiple comparisons between all the groups. The
overall tendency indicated that the additive group showed less radiological caries pro-
gression than the subtractive for the 0.7 and 0.9 mm restoration thickness on the 21st and
28th day (p < 0.0001). There was no statistically significant difference with regard to
restoration thickness within the additive group. However, in the subtractive group, the
0.7 and 0.9 thicknesses demonstrated more radiological caries progression on both the
21st and 28th days (p < 0.0001).
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The DIAGNOdent method proved the fact that the restoration thickness affected the
caries progression within the subtractive group (p < 0.0001) (Figure 9). No difference in
caries progression was observed within the additive group.
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4. Discussion

In the present study, different effects of non-invasive veneers of different restoration
thicknesses and manufacturing methods regarding approximal caries development could
be shown. A significant correlation between the days and the manufacturing process
(additive) could be proven. The restoration thickness had a significant influence on milled,
non-invasive veneers. The working hypothesis that restoration thickness, manufactur-
ing method, and the day do not influence the caries lesions assessment by non-invasive
restorations type was therefore rejected.

The working hypothesis that restoration thickness, manufacturing method, and the
day do not influence the caries lesions assessment by non-invasive restorations type was
therefore rejected.

In the present study, a direct light processing (DLP) 3D printer was utilized for additive
manufacturing of non-invasive restorations. There have been some studies reporting
the stereolithography (SLA) method for manufacturing such composite–ceramic hybrid
restorations [28,29]. Whether the SLA-printed restoration would demonstrate the same
caries rate and its assessability should be examined in further research.

Until now, additive-manufactured restorations in fixed prosthodontics are new and
mainly unexplored [30]. The accuracy of 3D-printed restorations was evaluated positively
in the still-reduced data situation. Studies showed marginal and internal fits that were
superior to those of milled restorations [30–32]. However, there is only limited data on the
clinical performance of 3D-printed restorations, and such aspects as caries and marginal
integration over a certain period of intraoral use are not yet evaluated. For this reason,
the present study aimed to describe the influence of printed and milled non-invasive
restorations on approximal caries development. These data should be considered as the first
classification of the material. In the sensitive approximal region, additive manufacturing
could offer advantages in the future with regard to the prevention of secondary caries.

The different principles of light projection between DLP and SLA may have some
influence on the translucency of restorations and, therefore, on the radiological detectabil-
ity of caries. In addition, the materials processed by DLP and SLA methods differ in
their chemical composition because of the photosensible pigments, which may also result
in an alternative radiopacity. Furthermore, the restoration thickness and layer orienta-
tion may also influence the internal structure of restorations. In the present study, the
50 µm restoration thickness and 45◦ build angle have been used. The restorations have
been glazed prior to the fixations, which added some thickness and might have also in-
fluenced the optical properties of restoration. This effect may be neglected in the case of
mechanical polishing instead of glazing. Thus, the avenue of materials choice and addi-
tive manufacturing method and restorations post-processing must be pursued in future
research.

Based on the results of the present study, it was shown that the manufacturing process
had a significant influence on caries detection. However, this could be due to ultra-thin
printable restoration thicknesses and the resulting positive marginal adaptation. In this
trial, non-invasive veneers were manufactured. So far, permanent 3D-printed single-tooth
restorations have only been approved by the FDA (Food and Drug Administration) as
grade IIa materials for prepared teeth [30]. However, in the long term, non-invasive 3D-
printed restorations will provide a real therapeutic gain since printing ultra-thin restoration
thicknesses are the real advantage compared to milled restorations. However, there is
limited literature available on the accuracy of 3D-printed restorations for both invasive and
non-invasive restorations. Furthermore, clinical data does not exist so far.

Regarding translucency, scientific data about 3D-printable materials is again scarce.
Due to its liquid character, the distribution of fillers might be inhomogeneous. The filler
content of the tested printed material (VSCP) is set between 30–50% by the manufac-
turer. To achieve optimal 3D-printing outcomes, a more flowable consistency of a pre-
polymerized/raw composite resin, which has a reduced amount of inorganic filler content
of the resin composite, is needed. However, the absence or decreasing amount of inorganic
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filler lowers the mechanical properties of 3D-printed resin or composite resin, narrowing
their clinical indications to long-term interim restorations [33]. Milled CAD/CAM blocks
seem to offer a more homogeneous microstructure since they are manufactured industrially.
The microstructure of the tested milled material (VE) is described as a polymer-infiltrated
ceramic network with a filler content of 86%, according to the manufacturer. Variations in
translucency were related to differences in crystal volume and the scattering of light regard-
ing all-ceramic materials [34]. Less scattering of light can be achieved by a less crystalline
content. Therefore, the translucency can be influenced by the crystal volume [34]. However,
a lower translucency could be beneficial for caries detection regarding CAD/CAM hybrid
materials for milling and printing. 3D-printed, non-invasive veneers could offer an easier
and more predictable caries assessment due to a lower translucency. Furthermore, no
radiological data about the microstructure of 3D-printed dental restorations are available
today. It is known that the printing process, as well as the composition of the material,
can have a great impact on mechanical properties. Scientific data regarding industrial
materials and 3D printing of silicones exist [21–23]. Studies showed that a higher porosity
was found in the interlayer regions [21]. Consequently, mechanical strength could be
reduced. Higher porosity and inhomogeneous distribution of the ingredients affect the
material properties [21,35,36]. A precise analysis of the microstructure of the 3D-printed
material using X-ray has been used in previous studies as well [21,37] to derive information
regarding the pore shape, size, distribution, orientation, and position [21] of the ingredients.
Computed tomography (CT) has been used for an investigation of additive manufactured
materials since a 3D analysis of the tested material or structure became possible [22]. It
is considered the most effective nondestructive test method for measuring the internal
features of a 3D-printed material [22,38]. Since a volumetric analysis has become possible,
an evaluation of the 3D details of pores, and their shape, density, and distribution, for ex-
ample, in 3D-printed metallic materials, could be conducted with the help of CT. However,
regarding approximal caries detection in dentistry, two-dimensional X-ray is considered
the gold standard. Therefore, it has been used in the present study as well.

However, further in-vivo studies are necessary. As for now, the composite–ceramic
hybrid materials are the only ones to be used for a non-invasive thin restoration. However,
there have been clinical reports on ceramics 3D printing. The clinical approvement for the
3D-printed ceramics will open new horizons for the investigation of caries detectability by
a 3D-printed non-invasive restoration.

The application of DIAGNOdent showed a positive correlation with radiographic
examination in the present study. The technology is based on laser fluorescence, which
measures the different laser fluorescence of healthy and carious dental hard tissues [39].
The advantage is the absence of ionizing radiation [39]. Previous study results showed high
accuracy and capability of DIAGNOdent with regard to caries detection [39–44]. However,
only one study has so far demonstrated a significant difference [39,40]. Several studies
indicated that DIAGNOdent should be used as an additional diagnostic tool [39,45,46]. The
detection of approximal secondary caries, as in the present study, is more complicated than
the detection of primary caries [39]. So far, different diagnostic tools for caries detection
have been applied and investigated. These include digital and analog radiography, but also
laser fluorescence [39,47–49]. The evaluation of radiographs requires clinical experience [39].
DIAGNOdent as a diagnostic tool could, therefore, also be useful for less experienced users,
provided that the high accuracy is proven [39,50]. The results of the present study should
be used for further studies with a direct comparison with radiographs so that a reliable
clinical application can be guaranteed [39].

The present study presents a radiological and fluorescence analysis of a novel CAD/CAM
3D-printable hybrid material. A direct comparison to an established CAD/CAM millable
hybrid material was drawn. Such studies are essential to provide data regarding the ma-
terial microstructure based on different manufacturing processes, yet they are currently
lacking. One main limitation of our study is that only one 3D printer and one printing
strategy were used. Furthermore, the testing of different CAD/CAM hybrid materials for
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milling and printing would have been desirable. Also, in vivo data would provide valuable
information regarding material properties. Little is known about the long-term clinical
behavior of 3D-printed restorations compared to milled restorations. CAD/CAM technol-
ogy, as well as the development of high-density polymers based on highly cross-linked
polymethylmetacrylate (PMMA) or newly available CAD/CAM printable hybrid materials,
offer new clinical and technical options for complex prosthetic rehabilitations. Advance-
ments in CAD/CAM technology have facilitated the integration of digital workflow into
clinical treatment sequences [5]. In addition to subtractive manufacturing of restorations,
additive manufacturing is increasingly coming to the fore. Nowadays, 3D-printed restora-
tions on single teeth can be applied in a non-invasive procedure. By using an intraoral
scan and a digital facebow [51,52], the status quo of the occlusion and maxillomandibular
relationship could be recorded. The data can afterward be uploaded and integrated into
the virtual articulator in the design software. No pretreatment with a splint is necessary.
Esthetic improvements are achieved immediately. Hypersensitivities can be eliminated.
Preparation of the teeth is not necessary. The already reduced dental hard tissues can be
preserved. Compared to CAD/CAM millable hybrid restorations, CAD/CAM printable
hybrid restorations offer more delicate marginal areas. AM offers the possibility of realizing
very thin layer thicknesses for non-invasive restorations compared to milling. However,
the treatment concept using 3D-printed restorations has not been evaluated in an in vivo
environment until now. Further in vitro and in vivo studies are required to collect sufficient
data and knowledge about these novel available dental materials based on a complete
digital workflow.

5. Conclusions

The present study revealed that both radiographic and fluorescence examinations were
able to produce equivalent results regarding approximal caries development assessment.
For additive manufacturing, less caries progression without consideration of the restoration
thickness could be shown as in the subtractive method. For subtractive manufacturing,
caries development after 21 and 28 days by 0.7 and 0.9 mm restoration thickness could
significantly be proven. DIAGNOdent and radiography showed a positive correlation.
This preliminary in vitro analysis sheds some light on the clinical aspects of 3D-printed
restorations application and demonstrates that additive manufacturing of such restorations
may compete with subtractive ones. Surely, long-term preclinical and clinical data is needed
to assess the performance of non-invasive 3D-printed thin restorations.
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